Sample records for flux coupling analysis

  1. Flux coupling and transcriptional regulation within the metabolic network of the photosynthetic bacterium Synechocystis sp. PCC6803.

    PubMed

    Montagud, Arnau; Zelezniak, Aleksej; Navarro, Emilio; de Córdoba, Pedro Fernández; Urchueguía, Javier F; Patil, Kiran Raosaheb

    2011-03-01

    Synechocystis sp. PCC6803 is a model cyanobacterium capable of producing biofuels with CO(2) as carbon source and with its metabolism fueled by light, for which it stands as a potential production platform of socio-economic importance. Compilation and characterization of Synechocystis genome-scale metabolic model is a pre-requisite toward achieving a proficient photosynthetic cell factory. To this end, we report iSyn811, an upgraded genome-scale metabolic model of Synechocystis sp. PCC6803 consisting of 956 reactions and accounting for 811 genes. To gain insights into the interplay between flux activities and metabolic physiology, flux coupling analysis was performed for iSyn811 under four different growth conditions, viz., autotrophy, mixotrophy, heterotrophy, and light-activated heterotrophy (LH). Initial steps of carbon acquisition and catabolism formed the versatile center of the flux coupling networks, surrounded by a stable core of pathways leading to biomass building blocks. This analysis identified potential bottlenecks for hydrogen and ethanol production. Integration of transcriptomic data with the Synechocystis flux coupling networks lead to identification of reporter flux coupling pairs and reporter flux coupling groups - regulatory hot spots during metabolic shifts triggered by the availability of light. Overall, flux coupling analysis provided insight into the structural organization of Synechocystis sp. PCC6803 metabolic network toward designing of a photosynthesis-based production platform. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Analysis of a flux-coupling type superconductor fault current limiter with pancake coils

    NASA Astrophysics Data System (ADS)

    Liu, Shizhuo; Xia, Dong; Zhang, Zhifeng; Qiu, Qingquan; Zhang, Guomin

    2017-10-01

    The characteristics of a flux-coupling type superconductor fault current limiter (SFCL) with pancake coils are investigated in this paper. The conventional double-wound non-inductive pancake coil used in AC power systems has an inevitable defect in Voltage Sourced Converter Based High Voltage DC (VSC-HVDC) power systems. Due to its special structure, flashover would occur easily during the fault in high voltage environment. Considering the shortcomings of conventional resistive SFCLs with non-inductive coils, a novel flux-coupling type SFCL with pancake coils is carried out. The module connections of pancake coils are performed. The electromagnetic field and force analysis of the module are contrasted under different parameters. To ensure proper operation of the module, the impedance of the module under representative operating conditions is calculated. Finally, the feasibility of the flux-coupling type SFCL in VSC-HVDC power systems is discussed.

  3. TORT/MCNP coupling method for the calculation of neutron flux around a core of BWR.

    PubMed

    Kurosawa, Masahiko

    2005-01-01

    For the analysis of BWR neutronics performance, accurate data are required for neutron flux distribution over the In-Reactor Pressure Vessel equipments taking into account the detailed geometrical arrangement. The TORT code can calculate neutron flux around a core of BWR in a three-dimensional geometry model, but has difficulties in fine geometrical modelling and lacks huge computer resource. On the other hand, the MCNP code enables the calculation of the neutron flux with a detailed geometry model, but requires very long sampling time to give enough number of particles. Therefore, a TORT/MCNP coupling method has been developed to eliminate the two problems mentioned above in each code. In this method, the TORT code calculates angular flux distribution on the core surface and the MCNP code calculates neutron spectrum at the points of interest using the flux distribution. The coupling method will be used as the DOT-DOMINO-MORSE code system. This TORT/MCNP coupling method was applied to calculate the neutron flux at points where induced radioactivity data were measured for 54Mn and 60Co and the radioactivity calculations based on the neutron flux obtained from the above method were compared with the measured data.

  4. Investigation of Surface Flux Feedbacks for Coupled Atmosphere-Ocean Anomalies

    NASA Technical Reports Server (NTRS)

    Roberts, J. Brent; Robertson, Pete

    2010-01-01

    The use of "dynamical coupling" rules allows for identifying coupled vs. uncoupled anomalies and one-way interaction. Results of this study are consistent with those of Pena et al. (2003,2004) although using a more recent reanalysis at higher resolution. Find more atmosphere-forcing coupled anomalies in the extratropics and ocean-forcing anomalies in the tropics. The LHF and SWR show the largest magnitude anomalies in the composite analysis. The turbulent flux responses are due to interactions between the differing responses in wind speed and near-surface gradients. The radiative fluxes responses are primarily tied to changes in cloud fraction, as expected, though longwave response can be tied more to changes in the upwelling component.

  5. Reconstruction and flux analysis of coupling between metabolic pathways of astrocytes and neurons: application to cerebral hypoxia

    PubMed Central

    Çakιr, Tunahan; Alsan, Selma; Saybaşιlι, Hale; Akιn, Ata; Ülgen, Kutlu Ö

    2007-01-01

    Background It is a daunting task to identify all the metabolic pathways of brain energy metabolism and develop a dynamic simulation environment that will cover a time scale ranging from seconds to hours. To simplify this task and make it more practicable, we undertook stoichiometric modeling of brain energy metabolism with the major aim of including the main interacting pathways in and between astrocytes and neurons. Model The constructed model includes central metabolism (glycolysis, pentose phosphate pathway, TCA cycle), lipid metabolism, reactive oxygen species (ROS) detoxification, amino acid metabolism (synthesis and catabolism), the well-known glutamate-glutamine cycle, other coupling reactions between astrocytes and neurons, and neurotransmitter metabolism. This is, to our knowledge, the most comprehensive attempt at stoichiometric modeling of brain metabolism to date in terms of its coverage of a wide range of metabolic pathways. We then attempted to model the basal physiological behaviour and hypoxic behaviour of the brain cells where astrocytes and neurons are tightly coupled. Results The reconstructed stoichiometric reaction model included 217 reactions (184 internal, 33 exchange) and 216 metabolites (183 internal, 33 external) distributed in and between astrocytes and neurons. Flux balance analysis (FBA) techniques were applied to the reconstructed model to elucidate the underlying cellular principles of neuron-astrocyte coupling. Simulation of resting conditions under the constraints of maximization of glutamate/glutamine/GABA cycle fluxes between the two cell types with subsequent minimization of Euclidean norm of fluxes resulted in a flux distribution in accordance with literature-based findings. As a further validation of our model, the effect of oxygen deprivation (hypoxia) on fluxes was simulated using an FBA-derivative approach, known as minimization of metabolic adjustment (MOMA). The results show the power of the constructed model to simulate disease behaviour on the flux level, and its potential to analyze cellular metabolic behaviour in silico. Conclusion The predictive power of the constructed model for the key flux distributions, especially central carbon metabolism and glutamate-glutamine cycle fluxes, and its application to hypoxia is promising. The resultant acceptable predictions strengthen the power of such stoichiometric models in the analysis of mammalian cell metabolism. PMID:18070347

  6. Verification of land-atmosphere coupling in forecast models, reanalyses and land surface models using flux site observations.

    PubMed

    Dirmeyer, Paul A; Chen, Liang; Wu, Jiexia; Shin, Chul-Su; Huang, Bohua; Cash, Benjamin A; Bosilovich, Michael G; Mahanama, Sarith; Koster, Randal D; Santanello, Joseph A; Ek, Michael B; Balsamo, Gianpaolo; Dutra, Emanuel; Lawrence, D M

    2018-02-01

    We confront four model systems in three configurations (LSM, LSM+GCM, and reanalysis) with global flux tower observations to validate states, surface fluxes, and coupling indices between land and atmosphere. Models clearly under-represent the feedback of surface fluxes on boundary layer properties (the atmospheric leg of land-atmosphere coupling), and may over-represent the connection between soil moisture and surface fluxes (the terrestrial leg). Models generally under-represent spatial and temporal variability relative to observations, which is at least partially an artifact of the differences in spatial scale between model grid boxes and flux tower footprints. All models bias high in near-surface humidity and downward shortwave radiation, struggle to represent precipitation accurately, and show serious problems in reproducing surface albedos. These errors create challenges for models to partition surface energy properly and errors are traceable through the surface energy and water cycles. The spatial distribution of the amplitude and phase of annual cycles (first harmonic) are generally well reproduced, but the biases in means tend to reflect in these amplitudes. Interannual variability is also a challenge for models to reproduce. Our analysis illuminates targets for coupled land-atmosphere model development, as well as the value of long-term globally-distributed observational monitoring.

  7. Conjugate Heat Transfer Study in Hypersonic Flows

    NASA Astrophysics Data System (ADS)

    Sahoo, Niranjan; Kulkarni, Vinayak; Peetala, Ravi Kumar

    2018-04-01

    Coupled and decoupled conjugate heat transfer (CHT) studies are carried out to imitate experimental studies for heat transfer measurement in hypersonic flow regime. The finite volume based solvers are used for analyzing the heat interaction between fluid and solid domains. Temperature and surface heat flux signals are predicted by both coupled and decoupled CHT analysis techniques for hypersonic Mach numbers. These two methodologies are also used to study the effect of different wall materials on surface parameters. Effectiveness of these CHT solvers has been verified for the inverse problem of wall heat flux recovery using various techniques reported in the literature. Both coupled and decoupled CHT techniques are seen to be equally useful for prediction of local temperature and heat flux signals prior to the experiments in hypersonic flows.

  8. Roles of Vacancy/Interstitial Diffusion and Segregation in the Microchemistry at Grain Boundaries of Irradiated Fe-Cr-Ni alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ying; Field, Kevin G.; Allen, Todd R.

    2016-02-23

    A detailed analysis of the diffusion fluxes near and at grain boundaries of irradiated Fe–Cr–Ni alloys, induced by preferential atom-vacancy and atom-interstitial coupling, is presented. The diffusion flux equations were based on the Perks model formulated through the linear theory of the thermodynamics of irreversible processes. The preferential atom-vacancy coupling was described by the mobility model, whereas the preferential atom-interstitial coupling was described by the interstitial binding model. The composition dependence of the thermodynamic factor was modeled using the CALPHAD approach. The calculated fluxes up to 10 dpa suggested the dominant diffusion mechanism for chromium and iron is via vacancy,more » while that for nickel can swing from the vacancy to the interstitial dominant mechanism. The diffusion flux in the vicinity of a grain boundary was found to be greatly modified by the segregation induced by irradiation, leading to the oscillatory behavior of alloy compositions in this region.« less

  9. Cycle flux algebra for ion and water flux through the KcsA channel single-file pore links microscopic trajectories and macroscopic observables.

    PubMed

    Oiki, Shigetoshi; Iwamoto, Masayuki; Sumikama, Takashi

    2011-01-31

    In narrow pore ion channels, ions and water molecules diffuse in a single-file manner and cannot pass each other. Under such constraints, ion and water fluxes are coupled, leading to experimentally observable phenomena such as the streaming potential. Analysis of this coupled flux would provide unprecedented insights into the mechanism of permeation. In this study, ion and water permeation through the KcsA potassium channel was the focus, for which an eight-state discrete-state Markov model has been proposed based on the crystal structure, exhibiting four ion-binding sites. Random transitions on the model lead to the generation of the net flux. Here we introduced the concept of cycle flux to derive exact solutions of experimental observables from the permeation model. There are multiple cyclic paths on the model, and random transitions complete the cycles. The rate of cycle completion is called the cycle flux. The net flux is generated by a combination of cyclic paths with their own cycle flux. T.L. Hill developed a graphical method of exact solutions for the cycle flux. This method was extended to calculate one-way cycle fluxes of the KcsA channel. By assigning the stoichiometric numbers for ion and water transfer to each cycle, we established a method to calculate the water-ion coupling ratio (CR(w-i)) through cycle flux algebra. These calculations predicted that CR(w-i) would increase at low potassium concentrations. One envisions an intuitive picture of permeation as random transitions among cyclic paths, and the relative contributions of the cycle fluxes afford experimental observables.

  10. Cycle Flux Algebra for Ion and Water Flux through the KcsA Channel Single-File Pore Links Microscopic Trajectories and Macroscopic Observables

    PubMed Central

    Oiki, Shigetoshi; Iwamoto, Masayuki; Sumikama, Takashi

    2011-01-01

    In narrow pore ion channels, ions and water molecules diffuse in a single-file manner and cannot pass each other. Under such constraints, ion and water fluxes are coupled, leading to experimentally observable phenomena such as the streaming potential. Analysis of this coupled flux would provide unprecedented insights into the mechanism of permeation. In this study, ion and water permeation through the KcsA potassium channel was the focus, for which an eight-state discrete-state Markov model has been proposed based on the crystal structure, exhibiting four ion-binding sites. Random transitions on the model lead to the generation of the net flux. Here we introduced the concept of cycle flux to derive exact solutions of experimental observables from the permeation model. There are multiple cyclic paths on the model, and random transitions complete the cycles. The rate of cycle completion is called the cycle flux. The net flux is generated by a combination of cyclic paths with their own cycle flux. T.L. Hill developed a graphical method of exact solutions for the cycle flux. This method was extended to calculate one-way cycle fluxes of the KcsA channel. By assigning the stoichiometric numbers for ion and water transfer to each cycle, we established a method to calculate the water-ion coupling ratio (CR w-i) through cycle flux algebra. These calculations predicted that CR w-i would increase at low potassium concentrations. One envisions an intuitive picture of permeation as random transitions among cyclic paths, and the relative contributions of the cycle fluxes afford experimental observables. PMID:21304994

  11. Finding elementary flux modes in metabolic networks based on flux balance analysis and flux coupling analysis: application to the analysis of Escherichia coli metabolism.

    PubMed

    Tabe-Bordbar, Shayan; Marashi, Sayed-Amir

    2013-12-01

    Elementary modes (EMs) are steady-state metabolic flux vectors with minimal set of active reactions. Each EM corresponds to a metabolic pathway. Therefore, studying EMs is helpful for analyzing the production of biotechnologically important metabolites. However, memory requirements for computing EMs may hamper their applicability as, in most genome-scale metabolic models, no EM can be computed due to running out of memory. In this study, we present a method for computing randomly sampled EMs. In this approach, a network reduction algorithm is used for EM computation, which is based on flux balance-based methods. We show that this approach can be used to recover the EMs in the medium- and genome-scale metabolic network models, while the EMs are sampled in an unbiased way. The applicability of such results is shown by computing “estimated” control-effective flux values in Escherichia coli metabolic network.

  12. Coherent structures and trace gases fluxes and concentrations in and above a heterogeneous spruce forest (Invited)

    NASA Astrophysics Data System (ADS)

    Foken, T.

    2013-12-01

    Near the FLUXNET site DE-Bay (Waldstein-Weidenbrunnen) three intensive measuring periods took place in 2007, 2008, and 2011 within the EGER project (ExchanGE processes in mountainous Regions). The main focus of all three experiments was the investigation of turbulent structures and their influence on the energy exchange and trace gas fluxes as well as trace gas reactions. Due to a tornado-like storm event an approximately 300 m long forest edge between a 25 m high spruce forest and a clearing was generated about 150 m south of the DE-Bay site. The investigation of processes at these forest edge was the main issue of the 2011 experiment. A main topic of all experiments was the investigation of the coupling between the atmosphere, the crowns and the trunk space as well as the horizontal coupling. This coupling algorithm is based on the analysis of coherent structures at three levels. While a complete coupling was only observed during daytime, at night well-coupled events were found in connection with low-level jets. The change of inert (CO2) or reactive (O3, NO, NO2, HONO) trace gas concentration could be explained with the coupling situation. It was also found that at the forest edge, coherent structures contribute less to total turbulent flux than within the forest. Accordingly, these coherent motions do not ensure that there is better vertical coupling between the forest stand and the overlying atmosphere at the forest edge. The relative contributions of sweeps and ejections to coherent flux reveal that there might be even larger circulations that cause better ventilation at the forest edge. Ejections dominate during the daytime, whereas sweeps contribute more during nighttime. Thus, there is systematic outflow during the daytime and inflow of fresh air directly at the forest edge during the nighttime. To underline these findings perpendicular to the edge, a mobile measuring system investigated the horizontal gradients of temperature, moisture, radiation, carbon dioxide and ozone concentrations. The data analysis was coupled with a higher order closure modelling and a typical K-approach modelling. The first showed the best agreement with experimental data and differences between both model types could be explained by the degree of coupling. An LES simulation and comparison with the experimental data is ongoing.

  13. Study of Ionosphere-Magnetosphere Coupling Using Whistler Data (P51)

    NASA Astrophysics Data System (ADS)

    Singh, S.; Singh, R. P.; Singh, L.

    2006-11-01

    singh_shubha@yahoo.co.in singhshubhadhu@gmail.com The VLF waves observed at the ground stations are used for probing the ionosphere/magnetosphere parameters. The probing principle depends on the analysis of dispersion produced in the whistler mode waves during their propagation from the source to the observation point. Dispersion depends on the distribution of plasma particles and ambient magnetic field along the path of propagation. Specifically, we derive the information about the equatorial electron density, total electron content in a flux tube, equatorial east-west electric field, transport of electron flux from one region to the other, electron temperature etc. The transport of flux and electric fields are essentially involved in the study of coupling of the ionosphere and magnetosphere. In the present paper, we shall report the analysis of whistler data recorded at Varanasi and Jammu. The analysis shows that the analyzed whistlers from both the stations belong to mid-high latitudes contrary to the belief that they were low latitude phenomena. Further, there is no correspondence between the dispersion and derived L-value for the path of propagation. This leads to the requirement of detailed study of VLF wave propagation in the inhomogeneous ionosphere-magnetosphere system. The electron density and the total electron content in a flux tube derived from whistler measurements at Varanasi and Jammu are approximately one order of magnitude smaller than the previously reported data from the whistler measurements at mid- high latitudes. However, their variation with L-value has the same nature. The time development of the content of flux is evaluated which could easily explain the reported flux transport during the study of coupling of ionosphere to the magnetosphere. We have also evaluated electric field, which compares well with the previously reported value. These results clearly indicate that the VLF wave propagation at low latitude and their diagnostic properties require much more attention both from the point of view of data collection and theoretical formulation. Efforts should be made in this direction to study the latitudinal/ longitudinal distribution of electron density and its long-term variations using a network of stations equipped with identical equipments spread over a range of latitudes and longitudes. The collected data will be useful in the study of coupling of ionosphere and magnetosphere.

  14. Analysis of Near-Surface Oceanic Measurements Obtained During the Low-Wind Component of the Coupled Boundary Layers and Air-Sea Transfer (CBLAST) Experiment

    DTIC Science & Technology

    2006-09-30

    temperature and the upwelling IR radiative heat flux were obtained from a pyrometer . The heat fluxes are combined to compute the net heat flux into or out...sampled acoustic Doppler velocimeters (ADVs) and thermistors (Figure 1b). These measurements provide inertial-range estimates of dissipation rates...horizontal velocity at the sea surface were obtained with a “fanbeam” acoustic Doppler current profiler (ADCP), which produces spatial maps of the

  15. Exploring the Influence of Topography on Belowground C Processes Using a Coupled Hydrologic-Biogeochemical Model

    NASA Astrophysics Data System (ADS)

    Shi, Y.; Davis, K. J.; Eissenstat, D. M.; Kaye, J. P.; Duffy, C.; Yu, X.; He, Y.

    2014-12-01

    Belowground carbon processes are affected by soil moisture and soil temperature, but current biogeochemical models are 1-D and cannot resolve topographically driven hill-slope soil moisture patterns, and cannot simulate the nonlinear effects of soil moisture on carbon processes. Coupling spatially-distributed physically-based hydrologic models with biogeochemical models may yield significant improvements in the representation of topographic influence on belowground C processes. We will couple the Flux-PIHM model to the Biome-BGC (BBGC) model. Flux-PIHM is a coupled physically-based land surface hydrologic model, which incorporates a land-surface scheme into the Penn State Integrated Hydrologic Model (PIHM). The land surface scheme is adapted from the Noah land surface model. Because PIHM is capable of simulating lateral water flow and deep groundwater, Flux-PIHM is able to represent the link between groundwater and the surface energy balance, as well as the land surface heterogeneities caused by topography. The coupled Flux-PIHM-BBGC model will be tested at the Susquehanna/Shale Hills critical zone observatory (SSHCZO). The abundant observations, including eddy covariance fluxes, soil moisture, groundwater level, sap flux, stream discharge, litterfall, leaf area index, above ground carbon stock, and soil carbon efflux, make SSHCZO an ideal test bed for the coupled model. In the coupled model, each Flux-PIHM model grid will couple a BBGC cell. Flux-PIHM will provide BBGC with soil moisture and soil temperature information, while BBGC provides Flux-PIHM with leaf area index. Preliminary results show that when Biome- BGC is driven by PIHM simulated soil moisture pattern, the simulated soil carbon is clearly impacted by topography.

  16. Assessing uncertainty and sensitivity of model parameterizations and parameters in WRF affecting simulated surface fluxes and land-atmosphere coupling over the Amazon region

    NASA Astrophysics Data System (ADS)

    Qian, Y.; Wang, C.; Huang, M.; Berg, L. K.; Duan, Q.; Feng, Z.; Shrivastava, M. B.; Shin, H. H.; Hong, S. Y.

    2016-12-01

    This study aims to quantify the relative importance and uncertainties of different physical processes and parameters in affecting simulated surface fluxes and land-atmosphere coupling strength over the Amazon region. We used two-legged coupling metrics, which include both terrestrial (soil moisture to surface fluxes) and atmospheric (surface fluxes to atmospheric state or precipitation) legs, to diagnose the land-atmosphere interaction and coupling strength. Observations made using the Department of Energy's Atmospheric Radiation Measurement (ARM) Mobile Facility during the GoAmazon field campaign together with satellite and reanalysis data are used to evaluate model performance. To quantify the uncertainty in physical parameterizations, we performed a 120 member ensemble of simulations with the WRF model using a stratified experimental design including 6 cloud microphysics, 3 convection, 6 PBL and surface layer, and 3 land surface schemes. A multiple-way analysis of variance approach is used to quantitatively analyze the inter- and intra-group (scheme) means and variances. To quantify parameter sensitivity, we conducted an additional 256 WRF simulations in which an efficient sampling algorithm is used to explore the multiple-dimensional parameter space. Three uncertainty quantification approaches are applied for sensitivity analysis (SA) of multiple variables of interest to 20 selected parameters in YSU PBL and MM5 surface layer schemes. Results show consistent parameter sensitivity across different SA methods. We found that 5 out of 20 parameters contribute more than 90% total variance, and first-order effects dominate comparing to the interaction effects. Results of this uncertainty quantification study serve as guidance for better understanding the roles of different physical processes in land-atmosphere interactions, quantifying model uncertainties from various sources such as physical processes, parameters and structural errors, and providing insights for improving the model physics parameterizations.

  17. Automation of preparation of nonmetallic samples for analysis by atomic absorption and inductively coupled plasma spectrometry

    NASA Technical Reports Server (NTRS)

    Wittmann, A.; Willay, G.

    1986-01-01

    For a rapid preparation of solutions intended for analysis by inductively coupled plasma emission spectrometry or atomic absorption spectrometry, an automatic device called Plasmasol was developed. This apparatus used the property of nonwettability of glassy C to fuse the sample in an appropriate flux. The sample-flux mixture is placed in a composite crucible, then heated at high temperature, swirled until full dissolution is achieved, and then poured into a water-filled beaker. After acid addition, dissolution of the melt, and filling to the mark, the solution is ready for analysis. The analytical results obtained, either for oxide samples or for prereduced iron ores show that the solutions prepared with this device are undistinguished from those obtained by manual dissolutions done by acid digestion or by high temperature fusion. Preparation reproducibility and analytical tests illustrate the performance of Plasmasol.

  18. A New Approach for Coupled GCM Sensitivity Studies

    NASA Astrophysics Data System (ADS)

    Kirtman, B. P.; Duane, G. S.

    2011-12-01

    A new multi-model approach for coupled GCM sensitivity studies is presented. The purpose of the sensitivity experiments is to understand why two different coupled models have such large differences in their respective climate simulations. In the application presented here, the differences between the coupled models using the Center for Ocean-Land-Atmosphere Studies (COLA) and the National Center for Atmospheric Research (NCAR) atmospheric general circulation models (AGCMs) are examined. The intent is to isolate which component of the air-sea fluxes is most responsible for the differences between the coupled models and for the errors in their respective coupled simulations. The procedure is to simultaneously couple the two different atmospheric component models to a single ocean general circulation model (OGCM), in this case the Modular Ocean Model (MOM) developed at the Geophysical Fluid Dynamics Laboratory (GFDL). Each atmospheric component model experiences the same SST produced by the OGCM, but the OGCM is simultaneously coupled to both AGCMs using a cross coupling strategy. In the first experiment, the OGCM is coupled to the heat and fresh water flux from the NCAR AGCM (Community Atmospheric Model; CAM) and the momentum flux from the COLA AGCM. Both AGCMs feel the same SST. In the second experiment, the OGCM is coupled to the heat and fresh water flux from the COLA AGCM and the momentum flux from the CAM AGCM. Again, both atmospheric component models experience the same SST. By comparing these two experimental simulations with control simulations where only one AGCM is used, it is possible to argue which of the flux components are most responsible for the differences in the simulations and their respective errors. Based on these sensitivity experiments we conclude that the tropical ocean warm bias in the COLA coupled model is due to errors in the heat flux, and that the erroneous westward shift in the tropical Pacific cold tongue minimum in the NCAR model is due errors in the momentum flux. All the coupled simulations presented here have warm biases along the eastern boundary of the tropical oceans suggesting that the problem is common to both AGCMs. In terms of interannual variability in the tropical Pacific, the CAM momentum flux is responsible for the erroneous westward extension of the sea surface temperature anomalies (SSTA) and errors in the COLA momentum flux cause the erroneous eastward migration of the El Niño-Southern Oscillation (ENSO) events. These conclusions depend on assuming that the error due to the OGCM can be neglected.

  19. Three-dimensional local grid refinement for block-centered finite-difference groundwater models using iteratively coupled shared nodes: A new method of interpolation and analysis of errors

    USGS Publications Warehouse

    Mehl, S.; Hill, M.C.

    2004-01-01

    This paper describes work that extends to three dimensions the two-dimensional local-grid refinement method for block-centered finite-difference groundwater models of Mehl and Hill [Development and evaluation of a local grid refinement method for block-centered finite-difference groundwater models using shared nodes. Adv Water Resour 2002;25(5):497-511]. In this approach, the (parent) finite-difference grid is discretized more finely within a (child) sub-region. The grid refinement method sequentially solves each grid and uses specified flux (parent) and specified head (child) boundary conditions to couple the grids. Iteration achieves convergence between heads and fluxes of both grids. Of most concern is how to interpolate heads onto the boundary of the child grid such that the physics of the parent-grid flow is retained in three dimensions. We develop a new two-step, "cage-shell" interpolation method based on the solution of the flow equation on the boundary of the child between nodes shared with the parent grid. Error analysis using a test case indicates that the shared-node local grid refinement method with cage-shell boundary head interpolation is accurate and robust, and the resulting code is used to investigate three-dimensional local grid refinement of stream-aquifer interactions. Results reveal that (1) the parent and child grids interact to shift the true head and flux solution to a different solution where the heads and fluxes of both grids are in equilibrium, (2) the locally refined model provided a solution for both heads and fluxes in the region of the refinement that was more accurate than a model without refinement only if iterations are performed so that both heads and fluxes are in equilibrium, and (3) the accuracy of the coupling is limited by the parent-grid size - A coarse parent grid limits correct representation of the hydraulics in the feedback from the child grid.

  20. Synchronizing Two AGCMs via Ocean-Atmosphere Coupling (Invited)

    NASA Astrophysics Data System (ADS)

    Kirtman, B. P.

    2009-12-01

    A new approach for fusing or synchronizing to very different Atmospheric General Circulation Models (AGCMs) is described. The approach is also well suited for understand why two different coupled models have such large differences in their respective climate simulations. In the application presented here, the differences between the coupled models using the Center for Ocean-Land-Atmosphere Studies (COLA) and the National Center for Atmospheric Research (NCAR) atmospheric general circulation models (AGCMs) are examined. The intent is to isolate which component of the air-sea fluxes is most responsible for the differences between the coupled models and for the errors in their respective coupled simulations. The procedure is to simultaneously couple the two different atmospheric component models to a single ocean general circulation model (OGCM), in this case the Modular Ocean Model (MOM) developed at the Geophysical Fluid Dynamics Laboratory (GFDL). Each atmospheric component model experiences the same SST produced by the OGCM, but the OGCM is simultaneously coupled to both AGCMs using a cross coupling strategy. In the first experiment, the OGCM is coupled to the heat and fresh water flux from the NCAR AGCM (Community Atmospheric Model; CAM) and the momentum flux from the COLA AGCM. Both AGCMs feel the same SST. In the second experiment, the OGCM is coupled to the heat and fresh water flux from the COLA AGCM and the momentum flux from the CAM AGCM. Again, both atmospheric component models experience the same SST. By comparing these two experimental simulations with control simulations where only one AGCM is used, it is possible to argue which of the flux components are most responsible for the differences in the simulations and their respective errors. Based on these sensitivity experiments we conclude that the tropical ocean warm bias in the COLA coupled model is due to errors in the heat flux, and that the erroneous westward shift in the tropical Pacific cold tongue minimum in the NCAR model is due errors in the momentum flux. All the coupled simulations presented here have warm biases along the eastern boundary of the tropical oceans suggesting that the problem is common to both AGCMs. In terms of interannual variability in the tropical Pacific, the CAM momentum flux is responsible for the erroneous westward extension of the sea surface temperature anomalies (SSTA) and errors in the COLA momentum flux cause the erroneous eastward migration of the El Niño-Southern Oscillation (ENSO) events. These conclusions depend on assuming that the error due to the OGCM can be neglected.

  1. Development of a novel method for unraveling the origin of natron flux used in Roman glass production based on B isotopic analysis via multicollector inductively coupled plasma mass spectrometry.

    PubMed

    Devulder, Veerle; Degryse, Patrick; Vanhaecke, Frank

    2013-12-17

    The provenance of the flux raw material used in the manufacturing of Roman glass is an understudied topic in archaeology. Whether one or multiple sources of natron mineral salts were exploited during this period is still open for debate, largely because of the lack of a good provenance indicator. The flux is the major source of B in Roman glass. Therefore, B isotopic analysis of a sufficiently large collection and variety (origin and age) of such glass samples might give an indication of the number of flux sources used. For this purpose, a method based on acid digestion, chromatographic B isolation and B isotopic analysis using multicollector inductively coupled plasma mass spectrometry was developed. B isolation was accomplished using a combination of strong cation exchange and strong anion exchange chromatography. Although the B fraction was not completely matrix-free, the remaining Sb was shown not to affect the δ(11)B result. The method was validated using obsidian and archaeological glass samples that were stripped of their B content, after which an isotopic reference material with known B isotopic composition was added. Absence of artificial B isotope fractionation was demonstrated, and the total uncertainty was shown to be <2‰. A proof-of-concept application to natron glass samples showed a narrow range of δ(11)B, whereas first results for natron salt samples do show a larger difference in δ(11)B. These results suggest the use of only one natron source or of several sources with similar δ(11)B. This indicates that B isotopic analysis is a promising tool for the provenance determination of this flux raw material.

  2. Vectorlike particles, Z‧ and Yukawa unification in F-theory inspired E6

    NASA Astrophysics Data System (ADS)

    Karozas, Athanasios; Leontaris, George K.; Shafi, Qaisar

    2018-03-01

    We explore the low energy implications of an F-theory inspired E6 model whose breaking yields, in addition to the MSSM gauge symmetry, a Z‧ gauge boson associated with a U (1) symmetry broken at the TeV scale. The zero mode spectrum of the effective low energy theory is derived from the decomposition of the 27 and 27 ‾ representations of E6 and we parametrise their multiplicities in terms of a minimum number of flux parameters. We perform a two-loop renormalisation group analysis of the gauge and Yukawa couplings of the effective theory model and estimate lower bounds on the new vectorlike particles predicted in the model. We compute the third generation Yukawa couplings in an F-theory context assuming an E8 point of enhancement and express our results in terms of the local flux densities associated with the gauge symmetry breaking. We find that their values are compatible with the ones computed by the renormalisation group equations, and we identify points in the parameter space of the flux densities where the t - b - τ Yukawa couplings unify.

  3. Bridging the Scales from Field to Region with Practical Tools to Couple Time- and Space-Synchronized Data from Flux Towers and Networks with Proximal and Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Burba, G. G.; Avenson, T.; Burkart, A.; Gamon, J. A.; Guan, K.; Julitta, T.; Pastorello, G.; Sakowska, K.

    2017-12-01

    Many hundreds of flux towers are presently operational as standalone projects and as parts of regional networks. However, the vast majority of these towers do not allow straightforward coupling with remote sensing (drone, aircraft, satellite, etc.) data, and even fewer have optical sensors for validation of remote sensing products, and upscaling from field to regional levels. In 2016-2017, new tools to collect, process, and share time-synchronized flux data from multiple towers were developed and deployed globally. Originally designed to automate site and data management, and to streamline flux data analysis, these tools allow relatively easy matching of tower data with remote sensing data: GPS-driven PTP time protocol synchronizes instrumentation within the station, different stations with each other, and all of these to remote sensing data to precisely align remote sensing and flux data in time Footprint size and coordinates computed and stored with flux data help correctly align tower flux footprints and drone, aircraft or satellite motion to precisely align optical and flux data in space Full snapshot of the remote sensing pixel can then be constructed, including leaf-level, ground optical sensor, and flux tower measurements from the same footprint area, closely coupled with the remote sensing measurements to help interpret remote sensing data, validate models, and improve upscaling Additionally, current flux towers can be augmented with advanced ground optical sensors and can use standard routines to deliver continuous products (e.g. SIF, PRI, NDVI, etc.) based on automated field spectrometers (e.g., FloX and RoX, etc.) and other optical systems. Several dozens of new towers already operational globally can be readily used for the proposed workflow. Over 500 active traditional flux towers can be updated to synchronize their data with remote sensing measurements. This presentation will show how the new tools are used by major networks, and describe how this approach can be utilized for matching remote sensing and tower data to aid in ground truthing, improve scientific interactions, and promote joint grant writing and other forms of collaboration between the flux and remote sensing communities.

  4. Intercomparison of oceanic and atmospheric forced and coupled mesoscale simulations. Part I: Surface fluxes

    NASA Astrophysics Data System (ADS)

    Josse, P.; Caniaux, G.; Giordani, H.; Planton, S.

    1999-04-01

    A mesoscale non-hydrostatic atmospheric model has been coupled with a mesoscale oceanic model. The case study is a four-day simulation of a strong storm event observed during the SEMAPHORE experiment over a 500 × 500 km2 domain. This domain encompasses a thermohaline front associated with the Azores current. In order to analyze the effect of mesoscale coupling, three simulations are compared: the first one with the atmospheric model forced by realistic sea surface temperature analyses; the second one with the ocean model forced by atmospheric fields, derived from weather forecast re-analyses; the third one with the models being coupled. For these three simulations the surface fluxes were computed with the same bulk parametrization. All three simulations succeed well in representing the main oceanic or atmospheric features observed during the storm. Comparison of surface fields with in situ observations reveals that the winds of the fine mesh atmospheric model are more realistic than those of the weather forecast re-analyses. The low-level winds simulated with the atmospheric model in the forced and coupled simulations are appreciably stronger than the re-analyzed winds. They also generate stronger fluxes. The coupled simulation has the strongest surface heat fluxes: the difference in the net heat budget with the oceanic forced simulation reaches on average 50 Wm-2 over the simulation period. Sea surface-temperature cooling is too weak in both simulations, but is improved in the coupled run and matches better the cooling observed with drifters. The spatial distributions of sea surface-temperature cooling and surface fluxes are strongly inhomogeneous over the simulation domain. The amplitude of the flux variation is maximum in the coupled run. Moreover the weak correlation between the cooling and heat flux patterns indicates that the surface fluxes are not responsible for the whole cooling and suggests that the response of the ocean mixed layer to the atmosphere is highly non-local and enhanced in the coupled simulation.

  5. Three-phase inductive-coupled structures for contactless PHEV charging system

    NASA Astrophysics Data System (ADS)

    Lee, Jia-You; Shen, Hung-Yu; Li, Cheng-Bin

    2016-07-01

    In this article, a new-type three-phase inductive-coupled structure is proposed for the contactless plug-in hybrid electric vehicle (PHEV) charging system regarding with SAE J-1773. Four possible three-phase core structures are presented and subsequently investigated by the finite element analysis. To study the correlation between the core geometric parameter and the coupling coefficient, the magnetic equivalent circuit model of each structure is also established. In accordance with the simulation results, the low reluctance and the sharing of flux path in the core material are achieved by the proposed inductive-coupled structure with an arc-shape and three-phase symmetrical core material. It results in a compensation of the magnetic flux between each phase and a continuous flow of the output power in the inductive-coupled structure. Higher coupling coefficient between inductive-coupled structures is achieved. A comparison of coupling coefficient, mutual inductance, and self-inductance between theoretical and measured results is also performed to verify the proposed model. A 1 kW laboratory scale prototype of the contactless PHEV charging system with the proposed arc-shape three-phase inductive-coupled structure is implemented and tested. An overall system efficiency of 88% is measured when two series lithium iron phosphate battery packs of 25.6 V/8.4 Ah are charged.

  6. Pattern formation in diffusive excitable systems under magnetic flow effects

    NASA Astrophysics Data System (ADS)

    Mvogo, Alain; Takembo, Clovis N.; Ekobena Fouda, H. P.; Kofané, Timoléon C.

    2017-07-01

    We study the spatiotemporal formation of patterns in a diffusive FitzHugh-Nagumo network where the effect of electromagnetic induction has been introduced in the standard mathematical model by using magnetic flux, and the modulation of magnetic flux on membrane potential is realized by using memristor coupling. We use the multi-scale expansion to show that the system equations can be reduced to a single differential-difference nonlinear equation. The linear stability analysis is performed and discussed with emphasis on the impact of magnetic flux. It is observed that the effect of memristor coupling importantly modifies the features of modulational instability. Our analytical results are supported by the numerical experiments, which reveal that the improved model can lead to nonlinear quasi-periodic spatiotemporal patterns with some features of synchronization. It is observed also the generation of pulses and rhythmics behaviors like breathing or swimming which are important in brain researches.

  7. Thermal coupling of conjugate ionospheres and the tilt of the earth's magnetic field

    NASA Technical Reports Server (NTRS)

    Richards, P. G.; Torr, D. G.

    1986-01-01

    The effect of thermal coupling and the tilt of the earth's magnetic field on interhemispheric coupling is investigated, and, due to a longitudinal displacement in the conjugate points, it is found that the tilt significantly effects the upward flow of H(+) flux such that the maximum upward flux can occur several hours before local sunrise. Heating from the conjugate atmosphere, which accompanies solar illumination in one hemisphere, produces electron temperatures 1000 K higher in the dark than in the sunlit hemisphere, and the morning upward H(+) fluxes in the dark ionosphere are as large as the daytime fluxes. A strong symmetry is also noted in the overall behavior of the H(+) fluxes due to the differing day lengths at the conjugate points, which are separated by 15 deg in latitude. Electron temperatures in the conjugate hemispheres are found to be strongly coupled above the F region peaks, though in the vicinity of the peaks near 250 km, the coupling is weak during the day and strong during the night.

  8. The coupling of the neutron transport application RATTLESNAKE to the nuclear fuels performance application BISON under the MOOSE framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gleicher, Frederick N.; Williamson, Richard L.; Ortensi, Javier

    The MOOSE neutron transport application RATTLESNAKE was coupled to the fuels performance application BISON to provide a higher fidelity tool for fuel performance simulation. This project is motivated by the desire to couple a high fidelity core analysis program (based on the self-adjoint angular flux equations) to a high fidelity fuel performance program, both of which can simulate on unstructured meshes. RATTLESNAKE solves self-adjoint angular flux transport equation and provides a sub-pin level resolution of the multigroup neutron flux with resonance treatment during burnup or a fast transient. BISON solves the coupled thermomechanical equations for the fuel on a sub-millimetermore » scale. Both applications are able to solve their respective systems on aligned and unaligned unstructured finite element meshes. The power density and local burnup was transferred from RATTLESNAKE to BISON with the MOOSE Multiapp transfer system. Multiple depletion cases were run with one-way data transfer from RATTLESNAKE to BISON. The eigenvalues are shown to agree well with values obtained from the lattice physics code DRAGON. The one-way data transfer of power density is shown to agree with the power density obtained from an internal Lassman-style model in BISON.« less

  9. Investigation of Conjugate Heat Transfer in Turbine Blades and Vanes

    NASA Technical Reports Server (NTRS)

    Kassab, A. J.; Kapat, J. S.

    2001-01-01

    We report on work carried out to develop a 3-D coupled Finite Volume/BEM-based temperature forward/flux back (TFFB) coupling algorithm to solve the conjugate heat transfer (CHT) which arises naturally in analysis of systems exposed to a convective environment. Here, heat conduction within a structure is coupled to heat transfer to the external fluid which is convecting heat into or out of the solid structure. There are two basic approaches to solving coupled fluid structural systems. The first is a direct coupling where the solution of the different fields is solved simultaneously in one large set of equations. The second approach is a loose coupling strategy where each set of field equations is solved to provide boundary conditions for the other. The equations are solved in turn until an iterated convergence criterion is met at the fluid-solid interface. The loose coupling strategy is particularly attractive when coupling auxiliary field equations to computational fluid dynamics codes. We adopt the latter method in which the BEM is used to solve heat conduction inside a structure which is exposed to a convective field which in turn is resolved by solving the NASA Glenn compressible Navier-Stokes finite volume code Glenn-HT. The BEM code features constant and bi-linear discontinuous elements and an ILU-preconditioned GMRES iterative solver for the resulting non-symmetric algebraic set arising in the conduction solution. Interface of flux and temperature is enforced at the solid/fluid interface, and a radial-basis function scheme is used to interpolated information between the CFD and BEM surface grids. Additionally, relaxation is implemented in passing the fluxes from the conduction solution to the fluid solution. Results from a simple test example are reported.

  10. Mott transition in the π -flux S U (4 ) Hubbard model on a square lattice

    NASA Astrophysics Data System (ADS)

    Zhou, Zhichao; Wu, Congjun; Wang, Yu

    2018-05-01

    With increasing repulsive interaction, we show that a Mott transition occurs from the semimetal to the valence bond solid, accompanied by the Z4 discrete symmetry breaking. Our simulations demonstrate the existence of a second-order phase transition, which confirms the Ginzburg-Landau analysis. The phase transition point and the critical exponent η are also estimated. To account for the effect of a π flux on the ordering in the strong-coupling regime, we analytically derive by the perturbation theory the ring-exchange term, which is the leading-order term that can reflect the difference between the π -flux and zero-flux S U (4 ) Hubbard models.

  11. Coupled two-dimensional edge plasma and neutral gas modeling of tokamak scrape-off-layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maingi, Rajesh

    1992-08-01

    The objective of this study is to devise a detailed description of the tokamak scrape-off-layer (SOL), which includes the best available models of both the plasma and neutral species and the strong coupling between the two in many SOL regimes. A good estimate of both particle flux and heat flux profiles at the limiter/divertor target plates is desired. Peak heat flux is one of the limiting factors in determining the survival probability of plasma-facing-components at high power levels. Plate particle flux affects the neutral flux to the pump, which determines the particle exhaust rate. A technique which couples a two-dimensionalmore » (2-D) plasma and a 2-D neutral transport code has been developed (coupled code technique), but this procedure requires large amounts of computer time. Relevant physics has been added to an existing two-neutral-species model which takes the SOL plasma/neutral coupling into account in a simple manner (molecular physics model), and this model is compared with the coupled code technique mentioned above. The molecular physics model is benchmarked against experimental data from a divertor tokamak (DIII-D), and a similar model (single-species model) is benchmarked against data from a pump-limiter tokamak (Tore Supra). The models are then used to examine two key issues: free-streaming-limits (ion energy conduction and momentum flux) and the effects of the non-orthogonal geometry of magnetic flux surfaces and target plates on edge plasma parameter profiles.« less

  12. Analysis of Water Vapour Flux Between Alpine Wetlands Underlying the Surface and Atmosphere in the Source Region of the Yellow River

    NASA Astrophysics Data System (ADS)

    Xie, Y.; Wen, J.; Liu, R.; Wang, X.; JIA, D.

    2017-12-01

    Wetland underlying surface is sensitive to climate change. Analysis of the degree of coupling between wetlands and the atmosphere and a quantitative assessment of how environmental factors influence latent heat flux have considerable scientific significance. Previous studies, which focused on the forest, grassland and farmland ecosystems, lack research on the alpine wetlands. In addition, research on the environmental control mechanism of latent heat flux is still qualitative and lacks quantitative evaluations and calculations. Using data from the observational tests of the Maduo Observatory of Climate and Environment of the Northwest Institute of Eco-Environment and Resource, CAS, from June 1 to August 31, 2014, this study analysed the time-varying characteristics and causes of the degree of coupling between alpine wetlands underlying surface and the atmosphere and quantitatively calculated the influences of different environmental factors (solar radiation and vapour pressure deficit) on latent heat flux. The results were as follows: Due to the diurnal variations of solar radiation and wind speed, the diurnal variations of the Ω factor present a trend in which the Ω factor are small in the morning and large in the evening. Due to the vegetation growing cycle, the seasonal variations of the Ω factor present a reverse "U" trend . These trends are similar to the diurnal and seasonal variations of the absolute control exercised by solar radiation over the latent heat flux. This conforms to omega theory. The values for average absolute atmospheric factor (surface factor or total ) control exercised by solar radiation and water vapour pressure are 0.20 (0.02 or 0.22 ) and 0.005 (-0.07 or -0.06) W·m-2·Pa-1, respectively.. Generally speaking, solar radiation and water vapour pressure deficit exert opposite forces on the latent heat flux. The average Ω factor is high during the vegetation growing season, with a value of 0.38, and the degree of coupling between the alpine wetland surface and the atmosphere system is low. The actual measurements agree with omega theory. The latent heat flux is mainly influenced by solar radiation. From the above, our study has provided reference information for exploring the influences of environmental factors on the latent heat flux over the alpine wetlands of the Yellow River source region.

  13. Communication: On the calculation of time-dependent electron flux within the Born-Oppenheimer approximation: A flux-flux reflection principle

    NASA Astrophysics Data System (ADS)

    Albert, Julian; Hader, Kilian; Engel, Volker

    2017-12-01

    It is commonly assumed that the time-dependent electron flux calculated within the Born-Oppenheimer (BO) approximation vanishes. This is not necessarily true if the flux is directly determined from the continuity equation obeyed by the electron density. This finding is illustrated for a one-dimensional model of coupled electronic-nuclear dynamics. There, the BO flux is in perfect agreement with the one calculated from a solution of the time-dependent Schrödinger equation for the coupled motion. A reflection principle is derived where the nuclear BO flux is mapped onto the electronic flux.

  14. Numerical Analysis of Convection/Transpiration Cooling

    NASA Technical Reports Server (NTRS)

    Glass, David E.; Dilley, Arthur D.; Kelly, H. Neale

    1999-01-01

    An innovative concept utilizing the natural porosity of refractory-composite materials and hydrogen coolant to provide CONvective and TRANspiration (CONTRAN) cooling and oxidation protection has been numerically studied for surfaces exposed to a high heat flux, high temperature environment such as hypersonic vehicle engine combustor walls. A boundary layer code and a porous media finite difference code were utilized to analyze the effect of convection and transpiration cooling on surface heat flux and temperature. The boundary, layer code determined that transpiration flow is able to provide blocking of the surface heat flux only if it is above a minimum level due to heat addition from combustion of the hydrogen transpirant. The porous media analysis indicated that cooling of the surface is attained with coolant flow rates that are in the same range as those required for blocking, indicating that a coupled analysis would be beneficial.

  15. Study of Aerothermodynamic Modeling Issues Relevant to High-Speed Sample Return Vehicles

    NASA Technical Reports Server (NTRS)

    Johnston, Christopher O.

    2014-01-01

    This paper examines the application of state-of-the-art coupled ablation and radiation simulations to highspeed sample return vehicles, such as those returning from Mars or an asteroid. A defining characteristic of these entries is that the surface recession rates and temperatures are driven by nonequilibrium convective and radiative heating through a boundary layer with significant surface blowing and ablation products. Measurements relevant to validating the simulation of these phenomena are reviewed and the Stardust entry is identified as providing the best relevant measurements. A coupled ablation and radiation flowfield analysis is presented that implements a finite-rate surface chemistry model. Comparisons between this finite-rate model and a equilibrium ablation model show that, while good agreement is seen for diffusion-limited oxidation cases, the finite-rate model predicts up to 50% lower char rates than the equilibrium model at sublimation conditions. Both the equilibrium and finite rate models predict significant negative mass flux at the surface due to sublimation of atomic carbon. A sensitivity analysis to flowfield and surface chemistry rates show that, for a sample return capsule at 10, 12, and 14 km/s, the sublimation rates for C and C3 provide the largest changes to the convective flux, radiative flux, and char rate. A parametric uncertainty analysis of the radiative heating due to radiation modeling parameters indicates uncertainties ranging from 27% at 10 km/s to 36% at 14 km/s. Applying the developed coupled analysis to the Stardust entry results in temperatures within 10% of those inferred from observations, and final recession values within 20% of measurements, which improves upon the 60% over-prediction at the stagnation point obtained through an uncoupled analysis. Emission from CN Violet is shown to be over-predicted by nearly and order-of-magnitude, which is consistent with the results of previous independent analyses. Finally, the coupled analysis is applied to a 14 km/s Earth entry representative of a Mars sample return. Although the radiative heating provides a larger fraction of the total heating, the influence of ablation and radiation on the flowfield are shown to be similar to Stardust.

  16. The pentose phosphate pathway leads to enhanced succinic acid flux in biofilms of wild-type Actinobacillus succinogenes.

    PubMed

    Bradfield, Michael F A; Nicol, Willie

    2016-11-01

    Increased pentose phosphate pathway flux, relative to total substrate uptake flux, is shown to enhance succinic acid (SA) yields under continuous, non-growth conditions of Actinobacillus succinogenes biofilms. Separate fermentations of glucose and xylose were conducted in a custom, continuous biofilm reactor at four different dilution rates. Glucose-6-phosphate dehydrogenase assays were performed on cell extracts derived from in situ removal of biofilm at each steady state. The results of the assays were coupled to a kinetic model that revealed an increase in oxidative pentose phosphate pathway (OPPP) flux relative to total substrate flux with increasing SA titre, for both substrates. Furthermore, applying metabolite concentration data to metabolic flux models that include the OPPP revealed similar flux relationships to those observed in the experimental kinetic analysis. A relative increase in OPPP flux produces additional reduction power that enables increased flux through the reductive branch of the TCA cycle, leading to increased SA yields, reduced by-product formation and complete closure of the overall redox balance.

  17. Effects of explicit convection on global land-atmosphere coupling in the superparameterized CAM

    DOE PAGES

    Sun, Jian; Pritchard, Michael S.

    2016-07-25

    Here, conventional global climate models are prone to producing unrealistic land-atmosphere coupling signals. Cumulus and convection parameterizations are natural culprits but the effect of bypassing them with explicitly resolved convection on global land-atmosphere coupling dynamics has not been explored systematically. We apply a suite of modern land-atmosphere coupling diagnostics to isolate the effect of cloud Superparameterization in the Community Atmosphere Model (SPCAM) v3.5, focusing on both the terrestrial segment (i.e., soil moisture and surface turbulent fluxes interaction) and atmospheric segment (i.e., surface turbulent fluxes and precipitation interaction) in the water pathway of the landatmosphere feedback loop. At daily timescales, SPCAMmore » produces stronger uncoupled terrestrial signals (negative sign) over tropical rainforests in wet seasons, reduces the terrestrial coupling strength in the Central Great Plain in American, and reverses the coupling sign (from negative to positive) over India in the boreal summer season—all favorable improvements relative to reanalysis-forced land modeling. Analysis of the triggering feedback strength (TFS) and amplification feedback strength (AFS) shows that SPCAM favorably reproduces the observed geographic patterns of these indices over North America, with the probability of afternoon precipitation enhanced by high evaporative fraction along the eastern United States and Mexico, while conventional CAM does not capture this signal. We introduce a new diagnostic called the Planetary Boundary Layer (PBL) Feedback Strength (PFS), which reveals that SPCAM exhibits a tight connection between the responses of the lifting condensation level, the PBL height, and the rainfall triggering to surface turbulent fluxes; a triggering disconnect is found in CAM.« less

  18. Effects of explicit convection on global land-atmosphere coupling in the superparameterized CAM

    NASA Astrophysics Data System (ADS)

    Sun, Jian; Pritchard, Michael S.

    2016-09-01

    Conventional global climate models are prone to producing unrealistic land-atmosphere coupling signals. Cumulus and convection parameterizations are natural culprits but the effect of bypassing them with explicitly resolved convection on global land-atmosphere coupling dynamics has not been explored systematically. We apply a suite of modern land-atmosphere coupling diagnostics to isolate the effect of cloud Superparameterization in the Community Atmosphere Model (SPCAM) v3.5, focusing on both the terrestrial segment (i.e., soil moisture and surface turbulent fluxes interaction) and atmospheric segment (i.e., surface turbulent fluxes and precipitation interaction) in the water pathway of the land-atmosphere feedback loop. At daily timescales, SPCAM produces stronger uncoupled terrestrial signals (negative sign) over tropical rainforests in wet seasons, reduces the terrestrial coupling strength in the Central Great Plain in American, and reverses the coupling sign (from negative to positive) over India in the boreal summer season—all favorable improvements relative to reanalysis-forced land modeling. Analysis of the triggering feedback strength (TFS) and amplification feedback strength (AFS) shows that SPCAM favorably reproduces the observed geographic patterns of these indices over North America, with the probability of afternoon precipitation enhanced by high evaporative fraction along the eastern United States and Mexico, while conventional CAM does not capture this signal. We introduce a new diagnostic called the Planetary Boundary Layer (PBL) Feedback Strength (PFS), which reveals that SPCAM exhibits a tight connection between the responses of the lifting condensation level, the PBL height, and the rainfall triggering to surface turbulent fluxes; a triggering disconnect is found in CAM.

  19. Effects of explicit convection on global land-atmosphere coupling in the superparameterized CAM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Jian; Pritchard, Michael S.

    Here, conventional global climate models are prone to producing unrealistic land-atmosphere coupling signals. Cumulus and convection parameterizations are natural culprits but the effect of bypassing them with explicitly resolved convection on global land-atmosphere coupling dynamics has not been explored systematically. We apply a suite of modern land-atmosphere coupling diagnostics to isolate the effect of cloud Superparameterization in the Community Atmosphere Model (SPCAM) v3.5, focusing on both the terrestrial segment (i.e., soil moisture and surface turbulent fluxes interaction) and atmospheric segment (i.e., surface turbulent fluxes and precipitation interaction) in the water pathway of the landatmosphere feedback loop. At daily timescales, SPCAMmore » produces stronger uncoupled terrestrial signals (negative sign) over tropical rainforests in wet seasons, reduces the terrestrial coupling strength in the Central Great Plain in American, and reverses the coupling sign (from negative to positive) over India in the boreal summer season—all favorable improvements relative to reanalysis-forced land modeling. Analysis of the triggering feedback strength (TFS) and amplification feedback strength (AFS) shows that SPCAM favorably reproduces the observed geographic patterns of these indices over North America, with the probability of afternoon precipitation enhanced by high evaporative fraction along the eastern United States and Mexico, while conventional CAM does not capture this signal. We introduce a new diagnostic called the Planetary Boundary Layer (PBL) Feedback Strength (PFS), which reveals that SPCAM exhibits a tight connection between the responses of the lifting condensation level, the PBL height, and the rainfall triggering to surface turbulent fluxes; a triggering disconnect is found in CAM.« less

  20. Computed and observed turbulent heat fluxes during an extreme Bora event in the Adriatic using atmosphere-ocean coupling

    NASA Astrophysics Data System (ADS)

    Ličer, Matjaž; Smerkol, Peter; Fettich, Anja; Ravdas, Michalis; Papapostolou, Alexandros; Mantziafou, Anneta; Strajnar, Benedikt; Cedilnik, Jure; Jeromel, Maja; Jerman, Jure; Petan, Sašo; Benetazzo, Alvise; Carniel, Sandro; Malačič, Vlado; Sofianos, Sarantis

    2016-04-01

    We have studied the performances of (a) a two-way coupled atmosphere-ocean modeling system and (b) one-way coupled ocean model (forced by the atmosphere model), as compared to the available in situ measurements during and after a strong Adriatic Bora wind event in February 2012, which led to extreme air-sea interactions. The simulations span the period between January and March 2012. The models used were ALADIN (4.4 km resolution) on the atmosphere side and Adriatic setup of POM (1°/30 × 1°/30 angular resolution) on the ocean side. The atmosphere-ocean coupling was implemented using the OASIS3-MCT model coupling toolkit. Two-way coupling ocean feedback to the atmosphere is limited to sea surface temperature. We have compared modeled atmosphere-ocean fluxes (computed using modified Louis scheme) and sea temperatures from both setups to platform and CTD measurements of fluxes (computed using COARE scheme) and temperatures from three observational platforms (Vida, Paloma, Acqua Alta) in the Northern Adriatic. We show that turbulent fluxes from both setups differ up to 20% during the Bora but not significantly before and after the event. The impact of the coupling on the ocean is significant while the impact on the atmosphere is less pronounced. When compared to observations, two way coupling ocean temperatures exhibit a four times lower RMSE than those from one-way coupled system. Two-way coupling improves sensible heat fluxes at all stations but does not improve latent heat loss.

  1. Nonequilibrium Energy Transfer at Nanoscale: A Unified Theory from Weak to Strong Coupling

    NASA Astrophysics Data System (ADS)

    Wang, Chen; Ren, Jie; Cao, Jianshu

    2015-07-01

    Unraveling the microscopic mechanism of quantum energy transfer across two-level systems provides crucial insights to the optimal design and potential applications of low-dimensional nanodevices. Here, we study the non-equilibrium spin-boson model as a minimal prototype and develop a fluctuation-decoupled quantum master equation approach that is valid ranging from the weak to the strong system-bath coupling regime. The exact expression of energy flux is analytically established, which dissects the energy transfer as multiple boson processes with even and odd parity. Our analysis provides a unified interpretation of several observations, including coherence-enhanced heat flux and negative differential thermal conductance. The results will have broad implications for the fine control of energy transfer in nano-structural devices.

  2. Two-qubit gates and coupling with low-impedance flux qubits

    NASA Astrophysics Data System (ADS)

    Chow, Jerry; Corcoles, Antonio; Rigetti, Chad; Rozen, Jim; Keefe, George; Rothwell, Mary-Beth; Rohrs, John; Borstelmann, Mark; Divincenzo, David; Ketchen, Mark; Steffen, Matthias

    2011-03-01

    We experimentally demonstrate the coupling of two low-impedance flux qubits mediated via a transmission line resonator. We explore the viability of experimental coupling protocols which involve selective microwave driving on the qubits independently as well as fast frequency tuning through on-chip flux-bias. Pulse-shaping techniques for single-qubit and two-qubit gates are employed for reducing unwanted leakage and phase errors. A joint readout through the transmission line resonator is used for characterizing single-qubit and two-qubit states.

  3. Using a spatially-distributed hydrologic biogeochemistry model to study the spatial variation of carbon processes in a Critical Zone Observatory

    NASA Astrophysics Data System (ADS)

    Shi, Y.; Eissenstat, D. M.; Davis, K. J.; He, Y.

    2016-12-01

    Forest carbon processes are affected by, among other factors, soil moisture, soil temperature, soil nutrients and solar radiation. Most of the current biogeochemical models are 1-D and represent one point in space. Therefore, they cannot resolve the topographically driven hill-slope land surface heterogeneity or the spatial pattern of nutrient availability. A spatially distributed forest ecosystem model, Flux-PIHM-BGC, has been developed by coupling a 1-D mechanistic biogeochemical model Biome-BGC (BBGC) with a spatially distributed land surface hydrologic model, Flux-PIHM. Flux-PIHM is a coupled physically based model, which incorporates a land-surface scheme into the Penn State Integrated Hydrologic Model (PIHM). The land surface scheme is adapted from the Noah land surface model. Flux-PIHM is able to represent the link between groundwater and the surface energy balance, as well as the land surface heterogeneities caused by topography. In the coupled Flux-PIHM-BGC model, each Flux-PIHM model grid couples a 1-D BBGC model, while soil nitrogen is transported among model grids via subsurface water flow. In each grid, Flux-PIHM provides BBGC with soil moisture, soil temperature, and solar radiation information, while BBGC provides Flux-PIHM with leaf area index. The coupled Flux-PIHM-BGC model has been implemented at the Susquehanna/Shale Hills critical zone observatory (SSHCZO). Model results suggest that the vegetation and soil carbon distribution is primarily constrained by nitorgen availability (affected by nitorgen transport via topographically driven subsurface flow), and also constrained by solar radiation and root zone soil moisture. The predicted vegetation and soil carbon distribution generally agrees with the macro pattern observed within the watershed. The coupled ecosystem-hydrologic model provides an important tool to study the impact of topography on watershed carbon processes, as well as the impact of climate change on water resources.

  4. Thermal protection system gap analysis using a loosely coupled fluid-structural thermal numerical method

    NASA Astrophysics Data System (ADS)

    Huang, Jie; Li, Piao; Yao, Weixing

    2018-05-01

    A loosely coupled fluid-structural thermal numerical method is introduced for the thermal protection system (TPS) gap thermal control analysis in this paper. The aerodynamic heating and structural thermal are analyzed by computational fluid dynamics (CFD) and numerical heat transfer (NHT) methods respectively. An interpolation algorithm based on the control surface is adopted for the data exchanges on the coupled surface. In order to verify the analysis precision of the loosely coupled method, a circular tube example was analyzed, and the wall temperature agrees well with the test result. TPS gap thermal control performance was studied by the loosely coupled method successfully. The gap heat flux is mainly distributed in the small region at the top of the gap which is the high temperature region. Besides, TPS gap temperature and the power of the active cooling system (CCS) calculated by the traditional uncoupled method are higher than that calculated by the coupled method obviously. The reason is that the uncoupled method doesn't consider the coupled effect between the aerodynamic heating and structural thermal, however the coupled method considers it, so TPS gap thermal control performance can be analyzed more accurately by the coupled method.

  5. Validation of newly designed regional earth system model (RegESM) for Mediterranean Basin

    NASA Astrophysics Data System (ADS)

    Turuncoglu, Ufuk Utku; Sannino, Gianmaria

    2017-05-01

    We present a validation analysis of a regional earth system model system (RegESM) for the Mediterranean Basin. The used configuration of the modeling system includes two active components: a regional climate model (RegCM4) and an ocean modeling system (ROMS). To assess the performance of the coupled modeling system in representing the climate of the basin, the results of the coupled simulation (C50E) are compared to the results obtained by a standalone atmospheric simulation (R50E) as well as several observation datasets. Although there is persistent cold bias in fall and winter, which is also seen in previous studies, the model reproduces the inter-annual variability and the seasonal cycles of sea surface temperature (SST) in a general good agreement with the available observations. The analysis of the near-surface wind distribution and the main circulation of the sea indicates that the coupled model can reproduce the main characteristics of the Mediterranean Sea surface and intermediate layer circulation as well as the seasonal variability of wind speed and direction when it is compared with the available observational datasets. The results also reveal that the simulated near-surface wind speed and direction have poor performance in the Gulf of Lion and surrounding regions that also affects the large positive SST bias in the region due to the insufficient horizontal resolution of the atmospheric component of the coupled modeling system. The simulated seasonal climatologies of the surface heat flux components are also consistent with the CORE.2 and NOCS datasets along with the overestimation in net long-wave radiation and latent heat flux (or evaporation, E), although a large observational uncertainty is found in these variables. Also, the coupled model tends to improve the latent heat flux by providing a better representation of the air-sea interaction as well as total heat flux budget over the sea. Both models are also able to reproduce the temporal evolution of the inter-annual anomaly of surface air temperature and precipitation (P) over defined sub-regions. The Mediterranean water budget (E, P and E-P) estimates also show that the coupled model has high skill in the representation of water budget of the Mediterranean Sea. To conclude, the coupled model reproduces climatological land surface fields and the sea surface variables in the range of observation uncertainty and allow studying air-sea interaction and main regional climate characteristics of the basin.

  6. Particle Filter-Based Recursive Data Fusion With Sensor Indexing for Large Core Neutron Flux Estimation

    NASA Astrophysics Data System (ADS)

    Tamboli, Prakash Kumar; Duttagupta, Siddhartha P.; Roy, Kallol

    2017-06-01

    We introduce a sequential importance sampling particle filter (PF)-based multisensor multivariate nonlinear estimator for estimating the in-core neutron flux distribution for pressurized heavy water reactor core. Many critical applications such as reactor protection and control rely upon neutron flux information, and thus their reliability is of utmost importance. The point kinetic model based on neutron transport conveniently explains the dynamics of nuclear reactor. The neutron flux in the large core loosely coupled reactor is sensed by multiple sensors measuring point fluxes located at various locations inside the reactor core. The flux values are coupled to each other through diffusion equation. The coupling facilitates redundancy in the information. It is shown that multiple independent data about the localized flux can be fused together to enhance the estimation accuracy to a great extent. We also propose the sensor anomaly handling feature in multisensor PF to maintain the estimation process even when the sensor is faulty or generates data anomaly.

  7. Quantum transport in coupled resonators enclosed synthetic magnetic flux

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, L., E-mail: jinliang@nankai.edu.cn

    Quantum transport properties are instrumental to understanding quantum coherent transport processes. Potential applications of quantum transport are widespread, in areas ranging from quantum information science to quantum engineering, and not restricted to quantum state transfer, control and manipulation. Here, we study light transport in a ring array of coupled resonators enclosed synthetic magnetic flux. The ring configuration, with an arbitrary number of resonators embedded, forms a two-arm Aharonov–Bohm interferometer. The influence of magnetic flux on light transport is investigated. Tuning the magnetic flux can lead to resonant transmission, while half-integer magnetic flux quantum leads to completely destructive interference and transmissionmore » zeros in an interferometer with two equal arms. -- Highlights: •The light transport is investigated through ring array of coupled resonators enclosed synthetic magnetic field. •Aharonov–Bohm ring interferometer of arbitrary configuration is investigated. •The half-integer magnetic flux quantum leads to destructive interference and transmission zeros for two-arm at equal length. •Complete transmission is available via tuning synthetic magnetic flux.« less

  8. Phototransduction Influences Metabolic Flux and Nucleotide Metabolism in Mouse Retina.

    PubMed

    Du, Jianhai; Rountree, Austin; Cleghorn, Whitney M; Contreras, Laura; Lindsay, Ken J; Sadilek, Martin; Gu, Haiwei; Djukovic, Danijel; Raftery, Dan; Satrústegui, Jorgina; Kanow, Mark; Chan, Lawrence; Tsang, Stephen H; Sweet, Ian R; Hurley, James B

    2016-02-26

    Production of energy in a cell must keep pace with demand. Photoreceptors use ATP to maintain ion gradients in darkness, whereas in light they use it to support phototransduction. Matching production with consumption can be accomplished by coupling production directly to consumption. Alternatively, production can be set by a signal that anticipates demand. In this report we investigate the hypothesis that signaling through phototransduction controls production of energy in mouse retinas. We found that respiration in mouse retinas is not coupled tightly to ATP consumption. By analyzing metabolic flux in mouse retinas, we also found that phototransduction slows metabolic flux through glycolysis and through intermediates of the citric acid cycle. We also evaluated the relative contributions of regulation of the activities of α-ketoglutarate dehydrogenase and the aspartate-glutamate carrier 1. In addition, a comprehensive analysis of the retinal metabolome showed that phototransduction also influences steady-state concentrations of 5'-GMP, ribose-5-phosphate, ketone bodies, and purines. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Etching Characteristics of VO2 Thin Films Using Inductively Coupled Cl2/Ar Plasma

    NASA Astrophysics Data System (ADS)

    Ham, Yong-Hyun; Efremov, Alexander; Min, Nam-Ki; Lee, Hyun Woo; Yun, Sun Jin; Kwon, Kwang-Ho

    2009-08-01

    A study on both etching characteristics and mechanism of VO2 thin films in the Cl2/Ar inductively coupled plasma was carried. The variable parameters were gas pressure (4-10 mTorr) and input power (400-700 W) at fixed bias power of 150 W and initial mixture composition of 25% Cl2 + 75% Ar. It was found that an increase in both gas pressure and input power results in increasing VO2 etch rate while the etch selectivity over photoresist keeps a near to constant values. Plasma diagnostics by Langmuir probes and zero-dimensional plasma model provided the data on plasma parameters, steady-state densities and fluxes of active species on the etched surface. The model-based analysis of the etch mechanism showed that, for the given ranges of operating conditions, the VO2 etch kinetics corresponds to the transitional regime of ion-assisted chemical reaction and is influenced by both neutral and ion fluxes with a higher sensitivity to the neutral flux.

  10. FCDECOMP: decomposition of metabolic networks based on flux coupling relations.

    PubMed

    Rezvan, Abolfazl; Marashi, Sayed-Amir; Eslahchi, Changiz

    2014-10-01

    A metabolic network model provides a computational framework to study the metabolism of a cell at the system level. Due to their large sizes and complexity, rational decomposition of these networks into subsystems is a strategy to obtain better insight into the metabolic functions. Additionally, decomposing metabolic networks paves the way to use computational methods that will be otherwise very slow when run on the original genome-scale network. In the present study, we propose FCDECOMP decomposition method based on flux coupling relations (FCRs) between pairs of reaction fluxes. This approach utilizes a genetic algorithm (GA) to obtain subsystems that can be analyzed in isolation, i.e. without considering the reactions of the original network in the analysis. Therefore, we propose that our method is useful for discovering biologically meaningful modules in metabolic networks. As a case study, we show that when this method is applied to the metabolic networks of barley seeds and yeast, the modules are in good agreement with the biological compartments of these networks.

  11. Magnetic merging in colliding flux tubes

    NASA Technical Reports Server (NTRS)

    Zweibel, Ellen G.; Rhoads, James E.

    1995-01-01

    We develop an analytical theory of reconnection between colliding, twisted magnetic flux tubes. Our analysis is restricted to direct collisions between parallel tubes and is based on the collision dynamics worked out by Bogdan (1984). We show that there is a range of collision velocities for which neutral point reconnection of the Parker-Sweet type can occur, and a smaller range for which reconnection leads to coalescence. Mean velocities within the solar convection zone are probably significantly greater than the upper limit for coalescence. This suggests that the majority of flux tube collisions do not result in merging, unless the frictional coupling of the tubes to the background flow is extremely strong.

  12. Coupling the Canadian Terrestrial Ecosystem Model (CTEM v. 2.0) to Environment and Climate Change Canada's greenhouse gas forecast model (v.107-glb)

    NASA Astrophysics Data System (ADS)

    Badawy, Bakr; Polavarapu, Saroja; Jones, Dylan B. A.; Deng, Feng; Neish, Michael; Melton, Joe R.; Nassar, Ray; Arora, Vivek K.

    2018-02-01

    The Canadian Land Surface Scheme and the Canadian Terrestrial Ecosystem Model (CLASS-CTEM) together form the land surface component in the family of Canadian Earth system models (CanESMs). Here, CLASS-CTEM is coupled to Environment and Climate Change Canada (ECCC)'s weather and greenhouse gas forecast model (GEM-MACH-GHG) to consistently model atmosphere-land exchange of CO2. The coupling between the land and the atmospheric transport model ensures consistency between meteorological forcing of CO2 fluxes and CO2 transport. The procedure used to spin up carbon pools for CLASS-CTEM for multi-decadal simulations needed to be significantly altered to deal with the limited availability of consistent meteorological information from a constantly changing operational environment in the GEM-MACH-GHG model. Despite the limitations in the spin-up procedure, the simulated fluxes obtained by driving the CLASS-CTEM model with meteorological forcing from GEM-MACH-GHG were comparable to those obtained from CLASS-CTEM when it is driven with standard meteorological forcing from the Climate Research Unit (CRU) combined with reanalysis fields from the National Centers for Environmental Prediction (NCEP) to form CRU-NCEP dataset. This is due to the similarity of the two meteorological datasets in terms of temperature and radiation. However, notable discrepancies in the seasonal variation and spatial patterns of precipitation estimates, especially in the tropics, were reflected in the estimated carbon fluxes, as they significantly affected the magnitude of the vegetation productivity and, to a lesser extent, the seasonal variations in carbon fluxes. Nevertheless, the simulated fluxes based on the meteorological forcing from the GEM-MACH-GHG model are consistent to some extent with other estimates from bottom-up or top-down approaches. Indeed, when simulated fluxes obtained by driving the CLASS-CTEM model with meteorological data from the GEM-MACH-GHG model are used as prior estimates for an atmospheric CO2 inversion analysis using the adjoint of the GEOS-Chem model, the retrieved CO2 flux estimates are comparable to those obtained from other systems in terms of the global budget and the total flux estimates for the northern extratropical regions, which have good observational coverage. In data-poor regions, as expected, differences in the retrieved fluxes due to the prior fluxes become apparent. Coupling CLASS-CTEM into the Environment Canada Carbon Assimilation System (EC-CAS) is considered an important step toward understanding how meteorological uncertainties affect both CO2 flux estimates and modeled atmospheric transport. Ultimately, such an approach will provide more direct feedback to the CLASS-CTEM developers and thus help to improve the performance of CLASS-CTEM by identifying the model limitations based on atmospheric constraints.

  13. Rates of insulin secretion in INS-1 cells are enhanced by coupling to anaplerosis and Kreb's cycle flux independent of ATP synthesis.

    PubMed

    Cline, Gary W; Pongratz, Rebecca L; Zhao, Xiaojian; Papas, Klearchos K

    2011-11-11

    Mechanistic models of glucose stimulated insulin secretion (GSIS) established in minimal media in vitro, may not accurately describe the complexity of coupling metabolism with insulin secretion that occurs in vivo. As a first approximation, we have evaluated metabolic pathways in a typical growth media, DMEM as a surrogate in vivo medium, for comparison to metabolic fluxes observed under the typical experimental conditions using the simple salt-buffer of KRB. Changes in metabolism in response to glucose and amino acids and coupling to insulin secretion were measured in INS-1 832/13 cells. Media effects on mitochondrial function and the coupling efficiency of oxidative phosphorylation were determined by fluorometrically measured oxygen consumption rates (OCRs) combined with (31)P NMR measured rates of ATP synthesis. Substrate preferences and pathways into the TCA cycle, and the synthesis of mitochondrial 2nd messengers by anaplerosis were determined by (13)C NMR isotopomer analysis of the fate of [U-(13)C] glucose metabolism. Despite similar incremental increases in insulin secretion, the changes of OCR in response to increasing glucose from 2.5 to 15mM were blunted in DMEM relative to KRB. Basal and stimulated rates of insulin secretion rates were consistently higher in DMEM, while ATP synthesis rates were identical in both DMEM and KRB, suggesting greater mitochondrial uncoupling in DMEM. The relative rates of anaplerosis, and hence synthesis and export of 2nd messengers from the mitochondria were found to be similar in DMEM to those in KRB. And, the correlation of total PC flux with insulin secretion rates in DMEM was found to be congruous with the correlation in KRB. Together, these results suggest that signaling mechanisms associated with both TCA cycle flux and with anaplerotic flux, but not ATP production, may be responsible for the enhanced rates of insulin secretion in more complex, and physiologically-relevant media. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Effects of the Extended Water Retention Curve on Coupled Heat and Water Transport in the Vadose Zone

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Mohanty, B.

    2017-12-01

    Understanding and simulating coupled heat and water transfer appropriately in the shallow subsurface is of vital significance for accurate prediction of soil evaporation that would improve the coupling between land surface and atmosphere. The theory of Philip and de Vries (1957) and its extensions (de Vries, 1958; Milly, 1982), although physically incomplete, are still adopted successfully to describe the coupled heat and water movement in field soils. However, the adsorptive water retention, which was ignored in Philip and de Vries theory and its extensions for characterizing soil hydraulic parameters, was shown to be non-negligible for soil moisture and evaporation flux calculation in dry field soils based on a recent synthetic analysis (Mohanty and Yang, 2013). In this study, we attempt to comprehensively investigate the effects of full range water retention curve on coupled heat and water transport simulation with a focus on soil moisture content, temperature and soil evaporative flux, based on two synthetic (sand and loam) and two field sites (Riverside, California and Audubon, Arizona) analysis. The results of synthetic sand and loam numerical modeling showed that when neglecting the adsorptive water retention, the resulting simulated soil water content would be larger, and the evaporative flux would be lower, respectively, compared to that obtained by the full range water retention curve mode. The simulated temperature did not show significant difference with or without accounting for adsorptive water retention. The evaporation underestimation when neglecting the adsorptive water retention is mainly caused by isothermal hydraulic conductivity underprediction. These synthetic findings were further corroborated by the Audubon, Arizona field site experimental results. The results from Riverside, California field experimental site showed that the soil surface can reach very dry status, although the soil profile below the drying front is not dry, which also to some extent justifies the necessity of employing full range water retention function in such generally not quite dry scenarios.

  15. Flux-dependent anti-crossing of resonances in parallel non-coupled double quantum dots

    NASA Astrophysics Data System (ADS)

    Joe, Yong S.; Hedin, Eric R.; Kim, Jiseok

    2008-08-01

    We present novel resonant phenomena through parallel non-coupled double quantum dots (QDs) embedded in each arm of an Aharonov-Bohm (AB) ring with magnetic flux passing through its center. The electron transmission through this AB ring with each QD formed by two short-range potential barriers is calculated using a scattering matrix at each junction and a transfer matrix in each arm. We show that as the magnetic flux modulates, a distortion of the grid-like square transmission occurs and an anti-crossing of the resonances appears. Hence, the modulation of magnetic flux in this system can have an equivalent effect to the control of inter-dot coupling between the two QDs.

  16. Advanced multiphysics coupling for LWR fuel performance analysis

    DOE PAGES

    Hales, J. D.; Tonks, M. R.; Gleicher, F. N.; ...

    2015-10-01

    Even the most basic nuclear fuel analysis is a multiphysics undertaking, as a credible simulation must consider at a minimum coupled heat conduction and mechanical deformation. The need for more realistic fuel modeling under a variety of conditions invariably leads to a desire to include coupling between a more complete set of the physical phenomena influencing fuel behavior, including neutronics, thermal hydraulics, and mechanisms occurring at lower length scales. This paper covers current efforts toward coupled multiphysics LWR fuel modeling in three main areas. The first area covered in this paper concerns thermomechanical coupling. The interaction of these two physics,more » particularly related to the feedback effect associated with heat transfer and mechanical contact at the fuel/clad gap, provides numerous computational challenges. An outline is provided of an effective approach used to manage the nonlinearities associated with an evolving gap in BISON, a nuclear fuel performance application. A second type of multiphysics coupling described here is that of coupling neutronics with thermomechanical LWR fuel performance. DeCART, a high-fidelity core analysis program based on the method of characteristics, has been coupled to BISON. DeCART provides sub-pin level resolution of the multigroup neutron flux, with resonance treatment, during a depletion or a fast transient simulation. Two-way coupling between these codes was achieved by mapping fission rate density and fast neutron flux fields from DeCART to BISON and the temperature field from BISON to DeCART while employing a Picard iterative algorithm. Finally, the need for multiscale coupling is considered. Fission gas production and evolution significantly impact fuel performance by causing swelling, a reduction in the thermal conductivity, and fission gas release. The mechanisms involved occur at the atomistic and grain scale and are therefore not the domain of a fuel performance code. However, it is possible to use lower length scale models such as those used in the mesoscale MARMOT code to compute average properties, e.g. swelling or thermal conductivity. These may then be used by an engineering-scale model. Examples of this type of multiscale, multiphysics modeling are shown.« less

  17. The Influence of Ablation on Radiative Heating for Earth Entry

    NASA Technical Reports Server (NTRS)

    Johnston, Christopher O.; Gnoffo, Peter A.; Sutton, Kenneth

    2008-01-01

    Using the coupled ablation and radiation capability recently included in the LAURA flowfield solver, this paper investigates the influence of ablation on the shock-layer radiative heating for Earth entry. The extension of the HARA radiation model, which provides the radiation predictions in LAURA, to treat a gas consisting of the elements C, H, O, and N is discussed. It is shown that the absorption coefficient of air is increased with the introduction of the C and H elements. A simplified shock layer model is studied to show the impact of temperature, as well as the abundance of C and H, on the net absorption or emission from an ablation contaminated boundary layer. It is found that the ablation species reduce the radiative flux in the vacuum ultraviolet, through increased absorption, for all temperatures. However, in the infrared region of the spectrum, the ablation species increase the radiative flux, through strong emission, for temperatures above 3,000 K. Thus, depending on the temperature and abundance of ablation species, the contaminated boundary layer may either provide a net increase or decrease in the radiative flux reaching the wall. To assess the validity of the coupled ablation and radiation LAURA analysis, a previously analyzed Mars-return case (15.24 km/s), which contains significant ablation and radiation coupling, is studied. Exceptional agreement with previous viscous shock-layer results is obtained. A 40% decrease in the radiative flux is predicted for ablation rates equal to 20% of the free-stream mass flux. The Apollo 4 peak-heating case (10.24 km/s) is also studied. For ablation rates up to 3.4% of the free-stream mass flux, the radiative heating is reduced by up to 19%, while the convective heating is reduced by up to 87%. Good agreement with the Apollo 4 radiometer data is obtained by considering absorption in the radiometer cavity. For both the Mars return and the Apollo 4 cases, coupled radiation alone is found to reduce the radiative heating by 30 60% and the convective heating by less than 5%.

  18. Nonequilibrium Energy Transfer at Nanoscale: A Unified Theory from Weak to Strong Coupling

    PubMed Central

    Wang, Chen; Ren, Jie; Cao, Jianshu

    2015-01-01

    Unraveling the microscopic mechanism of quantum energy transfer across two-level systems provides crucial insights to the optimal design and potential applications of low-dimensional nanodevices. Here, we study the non-equilibrium spin-boson model as a minimal prototype and develop a fluctuation-decoupled quantum master equation approach that is valid ranging from the weak to the strong system-bath coupling regime. The exact expression of energy flux is analytically established, which dissects the energy transfer as multiple boson processes with even and odd parity. Our analysis provides a unified interpretation of several observations, including coherence-enhanced heat flux and negative differential thermal conductance. The results will have broad implications for the fine control of energy transfer in nano-structural devices. PMID:26152705

  19. Effects of leaf area index on the coupling between water table, land surface energy fluxes, and planetary boundary layer at the regional scale

    NASA Astrophysics Data System (ADS)

    Lu, Y.; Rihani, J.; Langensiepen, M.; Simmer, C.

    2013-12-01

    Vegetation plays an important role in the exchange of moisture and energy at the land surface. Previous studies indicate that vegetation increases the complexity of the feedbacks between the atmosphere and subsurface through processes such as interception, root water uptake, leaf surface evaporation, and transpiration. Vegetation cover can affect not only the interaction between water table depth and energy fluxes, but also the development of the planetary boundary layer. Leaf Area Index (LAI) is shown to be a major factor influencing these interactions. In this work, we investigate the sensitivity of water table, surface energy fluxes, and atmospheric boundary layer interactions to LAI as a model input. We particularly focus on the role LAI plays on the location and extent of transition zones of strongest coupling and how this role changes over seasonal timescales for a real catchment. The Terrestrial System Modelling Platform (TerrSysMP), developed within the Transregional Collaborative Research Centre 32 (TR32), is used in this study. TerrSysMP consists of the variably saturated groundwater model ParFlow, the land surface model Community Land Model (CLM), and the regional climate and weather forecast model COSMO (COnsortium for Small-scale Modeling). The sensitivity analysis is performed over a range of LAI values for different vegetation types as extracted from the Moderate Resolution Imaging Spectroradiometer (MODIS) dataset for the Rur catchment in Germany. In the first part of this work, effects of vegetation structure on land surface energy fluxes and their connection to water table dynamics are studied using the stand-alone CLM and the coupled subsurface-surface components of TerrSysMP (ParFlow-CLM), respectively. The interconnection between LAI and transition zones of strongest coupling are investigated and analyzed through a subsequent set of subsurface-surface-atmosphere coupled simulations implementing the full TerrSysMP model system.

  20. Flux qubits in a planar circuit quantum electrodynamics architecture: Quantum control and decoherence

    NASA Astrophysics Data System (ADS)

    Orgiazzi, J.-L.; Deng, C.; Layden, D.; Marchildon, R.; Kitapli, F.; Shen, F.; Bal, M.; Ong, F. R.; Lupascu, A.

    2016-03-01

    We report experiments on superconducting flux qubits in a circuit quantum electrodynamics (cQED) setup. Two qubits, independently biased and controlled, are coupled to a coplanar waveguide resonator. Dispersive qubit state readout reaches a maximum contrast of 72%. We measure energy relaxation times at the symmetry point of 5 and 10 μ s , corresponding to 7 and 20 μ s when relaxation through the resonator due to Purcell effect is subtracted out, and levels of flux noise of 2.6 and 2.7 μ Φ0/√{Hz} at 1 Hz for the two qubits. We discuss the origin of decoherence in the measured devices. The strong coupling between the qubits and the cavity leads to a large, cavity-mediated, qubit-qubit coupling. This coupling, which is characterized spectroscopically, reaches 38 MHz. These results demonstrate the potential of cQED as a platform for fundamental investigations of decoherence and quantum dynamics of flux qubits.

  1. Hidden symmetry in the presence of fluxes

    NASA Astrophysics Data System (ADS)

    Kubizňák, David; Warnick, Claude M.; Krtouš, Pavel

    2011-03-01

    We derive the most general first-order symmetry operator for the Dirac equation coupled to arbitrary fluxes. Such an operator is given in terms of an inhomogeneous form ω which is a solution to a coupled system of first-order partial differential equations which we call the generalized conformal Killing-Yano system. Except trivial fluxes, solutions of this system are subject to additional constraints. We discuss various special cases of physical interest. In particular, we demonstrate that in the case of a Dirac operator coupled to the skew symmetric torsion and U(1) field, the system of generalized conformal Killing-Yano equations decouples into the homogeneous conformal Killing-Yano equations with torsion introduced in D. Kubiznak et al. (2009) [8] and the symmetry operator is essentially the one derived in T. Houri et al. (2010) [9]. We also discuss the Dirac field coupled to a scalar potential and in the presence of 5-form and 7-form fluxes.

  2. Assimilating AmeriFlux Site Data into the Community Land Model with Carbon-Nitrogen Coupling via the Ensemble Kalman Filter

    NASA Astrophysics Data System (ADS)

    Pettijohn, J. C.; Law, B. E.; Williams, M. D.; Stoeckli, R.; Thornton, P. E.; Hudiburg, T. M.; Thomas, C. K.; Martin, J.; Hill, T. C.

    2009-12-01

    The assimilation of terrestrial carbon, water and nutrient cycle measurements into land surface models of these processes is fundamental to improving our ability to predict how these ecosystems may respond to climate change. A combination of measurements and models, each with their own systematic biases, must be considered when constraining the nonlinear behavior of these coupled dynamics. As such, we use the sequential Ensemble Kalman Filter (EnKF) to assimilate eddy covariance (EC) and other site-level AmeriFlux measurements into the NCAR Community Land Model with Carbon-Nitrogen coupling (CLM-CN v3.5), run in single-column mode at a 30-minute time step, to improve estimates of relatively unconstrained model state variables and parameters. Specifically, we focus on a semi-arid ponderosa pine site (US-ME2) in the Pacific Northwest to identify the mechanisms by which this ecosystem responds to severe late summer drought. Our EnKF analysis includes water, carbon, energy and nitrogen state variables (e.g., 10 volumetric soil moisture levels (0-3.43 m), ponderosa pine and shrub evapotranspiration and net ecosystem exchange of carbon dioxide stocks and flux components, snow depth, etc.) and associated parameters (e.g., PFT-level rooting distribution parameters, maximum subsurface runoff coefficient, soil hydraulic conductivity decay factor, snow aging parameters, maximum canopy conductance, C:N ratios, etc.). The effectiveness of the EnKF in constraining state variables and associated parameters is sensitive to their relative frequencies, in that C-N state variables and parameters with long time constants require similarly long time series in the analysis. We apply the EnKF kernel perturbation routine to disrupt preliminary convergence of covariances, which has been found in recent studies to be a problem more characteristic of low frequency vegetation state variables and parameters than high frequency ones more heavily coupled with highly varying climate (e.g., shallow soil moisture, snow depth). Preliminary results demonstrate that the assimilation of EC and other available AmeriFlux site physical, chemical and biological data significantly helps quantify and reduce CLM-CN model uncertainties and helps to constrain ‘hidden’ states and parameters that are essential in the coupled water, carbon, energy and nutrient dynamics of these sites. Such site-level calibration of CLM-CN is an initial step in identifying model deficiencies and in forecasts of future ecosystem responses to climate change.

  3. Magnetospheric-ionospheric Poynting flux

    NASA Technical Reports Server (NTRS)

    Thayer, Jeffrey P.

    1994-01-01

    Over the past three years of funding SRI, in collaboration with the University of Texas at Dallas, has been involved in determining the total electromagnetic energy flux into the upper atmosphere from DE-B electric and magnetic field measurements and modeling the electromagnetic energy flux at high latitudes, taking into account the coupled magnetosphere-ionosphere system. This effort has been very successful in establishing the DC Poynting flux as a fundamental quantity in describing the coupling of electromagnetic energy between the magnetosphere and ionosphere. The DE-B satellite electric and magnetic field measurements were carefully scrutinized to provide, for the first time, a large data set of DC, field-aligned, Poynting flux measurement. Investigations describing the field-aligned Poynting flux observations from DE-B orbits under specific geomagnetic conditions and from many orbits were conducted to provide a statistical average of the Poynting flux distribution over the polar cap. The theoretical modeling effort has provided insight into the observations by formulating the connection between Poynting's theorem and the electromagnetic energy conversion processes that occur in the ionosphere. Modeling and evaluation of these processes has helped interpret the satellite observations of the DC Poynting flux and improved our understanding of the coupling between the ionosphere and magnetosphere.

  4. Using a spatially-distributed hydrologic biogeochemistry model with nitrogen transport to study the spatial variation of carbon stocks and fluxes in a Critical Zone Observatory

    NASA Astrophysics Data System (ADS)

    Shi, Y.; Eissenstat, D. M.; He, Y.; Davis, K. J.

    2017-12-01

    Most current biogeochemical models are 1-D and represent one point in space. Therefore, they cannot resolve topographically driven land surface heterogeneity (e.g., lateral water flow, soil moisture, soil temperature, solar radiation) or the spatial pattern of nutrient availability. A spatially distributed forest biogeochemical model with nitrogen transport, Flux-PIHM-BGC, has been developed by coupling a 1-D mechanistic biogeochemical model Biome-BGC (BBGC) with a spatially distributed land surface hydrologic model, Flux-PIHM, and adding an advection dominated nitrogen transport module. Flux-PIHM is a coupled physically based model, which incorporates a land-surface scheme into the Penn State Integrated Hydrologic Model (PIHM). The land surface scheme is adapted from the Noah land surface model, and is augmented by adding a topographic solar radiation module. Flux-PIHM is able to represent the link between groundwater and the surface energy balance, as well as land surface heterogeneities caused by topography. In the coupled Flux-PIHM-BGC model, each Flux-PIHM model grid couples a 1-D BBGC model, while nitrogen is transported among model grids via surface and subsurface water flow. In each grid, Flux-PIHM provides BBGC with soil moisture, soil temperature, and solar radiation, while BBGC provides Flux-PIHM with spatially-distributed leaf area index. The coupled Flux-PIHM-BGC model has been implemented at the Susquehanna/Shale Hills Critical Zone Observatory. The model-predicted aboveground vegetation carbon and soil carbon distributions generally agree with the macro patterns observed within the watershed. The importance of abiotic variables (including soil moisture, soil temperature, solar radiation, and soil mineral nitrogen) in predicting aboveground carbon distribution is calculated using a random forest. The result suggests that the spatial pattern of aboveground carbon is controlled by the distribution of soil mineral nitrogen. A Flux-PIHM-BGC simulation without the nitrogen transport module is also executed. The model without nitrogen transport fails in predicting the spatial patterns of vegetation carbon, which indicates the importance of having a nitrogen transport module in spatially distributed ecohydrologic modeling.

  5. Observed Local Soil Moisture-Atmosphere Feedbacks within the Context of Remote SST Anomalies: Lessons From Recent Droughts

    NASA Astrophysics Data System (ADS)

    Tawfik, A. B.; Dirmeyer, P.; Lawrence, D. M.

    2015-12-01

    The existence and possible transition from positive to negative soil moisture-atmosphere feedbacks is explored in this presentation using collocated flux tower measurements (Ameriflux) and atmospheric profiles from reanalysis. The focus is on the series of physical processes that lead to these local feedbacks connecting remote sea surface temperature changes (SST anomalies) to local soil moisture and boundary layer responses. Seasonal and Agricultural droughts are particularly useful test beds for examining these feedback processes because they are typically characterized by prolonged stretches of rain-free days followed by some termination condition. To quantify the full process-chain across these distinct spatial scales, complimentary information from several well-established land-atmosphere coupling metrics are used including, but not limited to, Mixing Diagram approaches, Soil Moisture Memory, and the Heated Condensation Framework. Preliminary analysis shows that there may be transitions from negative and positive soil moisture-atmosphere feedbacks as droughts develop. This is largely instigated by persistent atmospheric forcing that initially promotes increased surface latent heat flux, which limits boundary layer depth and dry air entrainment. However, if stagnant synoptic conditions continue eventually soil moisture is depleted to the point of shutting off surface latent heat flux producing deep boundary layers and increased dry air entrainment thus deepening drought stress. A package of standardized Fortran 90 modules called the Coupling Metrics Toolkit (CoMeT; https://github.com/abtawfik/coupling-metrics) used to calculate these land-atmosphere coupling metrics is also briefly presented.

  6. Non-resonant interactions between superconducting circuits coupled through a dc-SQUID

    NASA Astrophysics Data System (ADS)

    Jin, X. Y.; Lecocq, F.; Cicak, K.; Kotler, S. S.; Peterson, G. A.; Teufel, J. D.; Aumentado, J.; Simmonds, R. W.

    We use a flux-biased direct current superconducting quantum interference device (dc-SQUID) to generate non-resonant tunable interactions between transmon qubits and resonators modes. By modulating the flux to the dc-SQUID, we can create an interaction with variable coupling rates from zero to greater than 100 MHz. We explore this system experimentally and describe its operation. Parametric coupling is important for constructing larger coupled systems, useful for both quantum information architectures and quantum simulators.

  7. E-Flux2 and SPOT: Validated Methods for Inferring Intracellular Metabolic Flux Distributions from Transcriptomic Data.

    PubMed

    Kim, Min Kyung; Lane, Anatoliy; Kelley, James J; Lun, Desmond S

    2016-01-01

    Several methods have been developed to predict system-wide and condition-specific intracellular metabolic fluxes by integrating transcriptomic data with genome-scale metabolic models. While powerful in many settings, existing methods have several shortcomings, and it is unclear which method has the best accuracy in general because of limited validation against experimentally measured intracellular fluxes. We present a general optimization strategy for inferring intracellular metabolic flux distributions from transcriptomic data coupled with genome-scale metabolic reconstructions. It consists of two different template models called DC (determined carbon source model) and AC (all possible carbon sources model) and two different new methods called E-Flux2 (E-Flux method combined with minimization of l2 norm) and SPOT (Simplified Pearson cOrrelation with Transcriptomic data), which can be chosen and combined depending on the availability of knowledge on carbon source or objective function. This enables us to simulate a broad range of experimental conditions. We examined E. coli and S. cerevisiae as representative prokaryotic and eukaryotic microorganisms respectively. The predictive accuracy of our algorithm was validated by calculating the uncentered Pearson correlation between predicted fluxes and measured fluxes. To this end, we compiled 20 experimental conditions (11 in E. coli and 9 in S. cerevisiae), of transcriptome measurements coupled with corresponding central carbon metabolism intracellular flux measurements determined by 13C metabolic flux analysis (13C-MFA), which is the largest dataset assembled to date for the purpose of validating inference methods for predicting intracellular fluxes. In both organisms, our method achieves an average correlation coefficient ranging from 0.59 to 0.87, outperforming a representative sample of competing methods. Easy-to-use implementations of E-Flux2 and SPOT are available as part of the open-source package MOST (http://most.ccib.rutgers.edu/). Our method represents a significant advance over existing methods for inferring intracellular metabolic flux from transcriptomic data. It not only achieves higher accuracy, but it also combines into a single method a number of other desirable characteristics including applicability to a wide range of experimental conditions, production of a unique solution, fast running time, and the availability of a user-friendly implementation.

  8. A Bayesian Framework for Coupled Estimation of Key Unknown Parameters of Land Water and Energy Balance Equations

    NASA Astrophysics Data System (ADS)

    Farhadi, L.; Abdolghafoorian, A.

    2015-12-01

    The land surface is a key component of climate system. It controls the partitioning of available energy at the surface between sensible and latent heat, and partitioning of available water between evaporation and runoff. Water and energy cycle are intrinsically coupled through evaporation, which represents a heat exchange as latent heat flux. Accurate estimation of fluxes of heat and moisture are of significant importance in many fields such as hydrology, climatology and meteorology. In this study we develop and apply a Bayesian framework for estimating the key unknown parameters of terrestrial water and energy balance equations (i.e. moisture and heat diffusion) and their uncertainty in land surface models. These equations are coupled through flux of evaporation. The estimation system is based on the adjoint method for solving a least-squares optimization problem. The cost function consists of aggregated errors on state (i.e. moisture and temperature) with respect to observation and parameters estimation with respect to prior values over the entire assimilation period. This cost function is minimized with respect to parameters to identify models of sensible heat, latent heat/evaporation and drainage and runoff. Inverse of Hessian of the cost function is an approximation of the posterior uncertainty of parameter estimates. Uncertainty of estimated fluxes is estimated by propagating the uncertainty for linear and nonlinear function of key parameters through the method of First Order Second Moment (FOSM). Uncertainty analysis is used in this method to guide the formulation of a well-posed estimation problem. Accuracy of the method is assessed at point scale using surface energy and water fluxes generated by the Simultaneous Heat and Water (SHAW) model at the selected AmeriFlux stations. This method can be applied to diverse climates and land surface conditions with different spatial scales, using remotely sensed measurements of surface moisture and temperature states

  9. A comparison of coupled biogeophysical and biogeochemical dynamics across a precipitation gradient in Oregon using data assimilation

    NASA Astrophysics Data System (ADS)

    Pettijohn, J. C.; Law, B. E.; Williams, M. D.; Stoekli, R.; Thornton, P. E.; Thomas, C. K.; Hudiburg, T. W.; Martin, J.

    2010-12-01

    We present results from our coupled biophysical - biochemical model data fusion (MDF) analysis across a climatic gradient in Oregon, USA, using data from a coast-range Douglas-fir (US-Fir; 2006-2008) and a semi-arid ponderosa pine (US-Me2; 2002-2008) AmeriFlux site. Our MDF scheme couples the Ensemble Kalman Filter (EnKF) with the National Center for Atmospheric Research (NCAR) Community Land Model with Carbon-Nitrogen coupling (CLM-CN, version 3.5). Assimilated data includes continuous eddy covariance measurements of forest-atmosphere CO2 (NEE, net ecosystem exchange) and water vapor fluxes (λE, latent heat flux), chamber-based soil respiratory flux, soil moisture and temperature, snow depth (US-Me2), MODIS-derived 8 day LAI, and carbon and nitrogen pools. We quantify the ecosystem carbon and nitrogen budgets, partition NEE and λE fluxes, and thus increase confidence in multi-scale controls on CO2 and water vapor exchange. The MDF did a better job predicting NEE than λE at both sites (r2 = 0.86 for NEE at both sites; λE r2 = 0.65 and 0.63 at the US-ME2 and US-Fir sites, respectively) partly due to a weighting scheme we prescribed for NEE. The distribution of carbon and nitrogen differed significantly between sites, with total ecosystem carbon (vegetation, detritus, soil) of the US-Fir site being about 1.4 times higher than the US-Me2 site (35 kg C m-2 vs. 25 kg C m-2). Mean NEE over overlapping water years ‘07-‘08 was -495 gC m-2 at the US-Me2 site as opposed to -809 gC m-2 at the US-Fir site, nearly a two-fold difference in C uptake across this precipitation gradient. Average GPP and ecosystem respiration (Re) over these two water years were both ~1.7x greater at the US-Fir site, with 1712 gC m^-2 and 1217 gC m-2, respectively, at the US-Me2 site vs. 2841 gC m-2 and 2032 gC m-2 at the US-Fir. Autotrophic respiration contributed 79% and 72% to the Re flux at the US-Me2 and US-Fir sites, respectively, with total soil respiration contributing 53% and 58% to Re. While a comparison of observed and MDF environmental response functions suggests both root-zone soil moisture and leaf-to-air VPD photosynthetic controls at both sites, the MDF did not impose CLM-CN’s soil stress upon photosynthesis at the US-Fir site, suggesting the apparent soil moisture response arises from correlations with other driving variables such as VPD. In summary, we demonstrate that MDF analysis can help constrain coupled ecosystem carbon and water dynamics by combining long-term ecosystem measurements by incorporating necessary measurement and model uncertainties.

  10. Surface thermochemical effects on TPS-coupled aerothermodynamics in hypersonic Martian gas flow

    NASA Astrophysics Data System (ADS)

    Yang, Xiaofeng; Gui, Yewei; Tang, Wei; Du, Yanxia; Liu, Lei; Xiao, Guangming; Wei, Dong

    2018-06-01

    This paper deals with the surface thermochemical effects on TPS-coupled aerothermodynamics in hypersonic Martian gas flow. An interface condition with finite-rate thermochemistry was established to balance the three-dimensional Navier-Stokes solver and TPS thermal response solver, and a series of coupled simulations of chemical non-equilibrium aerothermodynamics and structure heat transfer with various surface catalycities were performed for hypersonic Mars entries. The analysis of surface thermochemistry reveals that the surface chemical reactions have great contribution to aerodynamic heating, and the temperature-dependence of finite-rate catalysis highly influences the evolution of the coupling aerodynamic heating in the coupling process. For fixed free stream parameters with proper catalytic excitation energy, a "leap" phenomenon of the TPS-coupled heat flux with the coupling time appears in the initial stage of the coupling process, due to the strong thermochemical effects on the TPS surface.

  11. ULF waves: the main periodicities and their relationships with solar wind structures and magnetospheric electron flux

    NASA Astrophysics Data System (ADS)

    Piersanti, M.; Alberti, T.; Lepreti, F.; Vecchio, A.; Villante, U.; Carbone, V.; Waters, C. L.

    2015-12-01

    We use high latitude ULF wave power in the range 2-7 mHz (Pc5 geomagnetic micropulsations), solar wind speed and dynamic pressure, and relativistic magnetospheric electron flux (E > 0.6 MeV), in the period January - September 2008, in order to detect typical periodicities and physical mechanisms involved into the solar wind-magnetosphere coupling during the declining phase of the 23th solar cycle. Using the Empirical Mode Decomposition (EMD) and applying a statistical test and cross-correlation analysis,we investigate the timescales and the physical mechanisms involved into the solar wind-magnetosphere coupling.Summarizing, we obtain the following results:1. We note the existence of two different timescales into the four datasets which are related to the short-term dynamics, with a characteristic timescale τ<3 days, and to the longer timescale dynamics, with a timescale between 7 and 80 days. The short-term variations could be related to the fluctuations around a characteristic mean value, while longer timescales dynamics can be associated with solar rotational periodicity and mechanisms regarding the occurrence of high-speed streams and corotating interaction regions but also with stream-stream interactions and synodic solar rotation.2. The cross-correlation analysis highlights the relevant role of the dynamical coupling between solar wind and magnetosphere via pressure balance and direct transfer of compressional waves into the magnetosphere. Moreover, it shows that the Kelvin-Helmholtz instability is not the primary source of geomagnetic ultra-low frequency wave activity. These results are in agreement with previous works [Engebretson et al, 1998].3. The cross-correlation coefficient between Pc5 wave power and relativistic electron flux longscale reconstructions shows that Pc5 wave activity leads enhancements in magnetospheric electron flux to relativistic energy with a characteristic time delay of about 54 hours, which is in agreement with the lag of about 2 days found by [Mann et al., 2004].

  12. Fano effect dominance over Coulomb blockade in transport properties of parallel coupled quantum dot system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brogi, Bharat Bhushan, E-mail: brogi-221179@yahoo.in; Ahluwalia, P. K.; Chand, Shyam

    2015-06-24

    Theoretical study of the Coulomb blockade effect on transport properties (Transmission Probability and I-V characteristics) for varied configuration of coupled quantum dot system has been studied by using Non Equilibrium Green Function(NEGF) formalism and Equation of Motion(EOM) method in the presence of magnetic flux. The self consistent approach and intra-dot Coulomb interaction is being taken into account. As the key parameters of the coupled quantum dot system such as dot-lead coupling, inter-dot tunneling and magnetic flux threading through the system can be tuned, the effect of asymmetry parameter and magnetic flux on this tuning is being explored in Coulomb blockademore » regime. The presence of the Coulomb blockade due to on-dot Coulomb interaction decreases the width of transmission peak at energy level ε + U and by adjusting the magnetic flux the swapping effect in the Fano peaks in asymmetric and symmetric parallel configuration sustains despite strong Coulomb blockade effect.« less

  13. Sea ice - atmosphere interaction: Application of multispectral satellite data in polar surface energy flux estimates

    NASA Technical Reports Server (NTRS)

    Steffen, Konrad; Schweiger, A.; Maslanik, J.; Key, J.; Haefliger, M.; Weaver, R.

    1991-01-01

    In the past six months, work has continued on energy flux sensitivity studies, ice surface temperature retrievals, corrections to Advanced Very High Resolution Radiometer (AVHRR) thermal infrared data, modelling of cloud fraction retrievals, and radiation climatologies. We tentatively conclude that the SSM/I may not provide accurate enough estimates of ice concentration and type to improve our shorter term energy flux estimates. SSM/I derived parameters may still be applicable in longer term climatological flux characterizations. We hold promise for a system coupling observation to a ice deformation model. Such a model may provide information on ice distribution which can be used in energy flux calculations. Considerable variation was found in modelled energy flux estimates when bulk transfer coefficients are modulated by lead fetch. It is still unclear what the optimum formulation is and this will be the subject of further work. Data sets for ice surface temperature retrievals were assembled and preliminary data analysis was started. Finally, construction of a conceptual framework for further modelling of the Arctic radiation flux climatology was started.

  14. Predicting SPE Fluxes: Coupled Simulations and Analysis Tools

    NASA Astrophysics Data System (ADS)

    Gorby, M.; Schwadron, N.; Linker, J.; Caplan, R. M.; Wijaya, J.; Downs, C.; Lionello, R.

    2017-12-01

    Presented here is a nuts-and-bolts look at the coupled framework of Predictive Science Inc's Magnetohydrodynamics Around a Sphere (MAS) code and the Energetic Particle Radiation Environment Module (EPREM). MAS simulated coronal mass ejection output from a variety of events can be selected as the MHD input to EPREM and a variety of parameters can be set to run against: bakground seed particle spectra, mean free path, perpendicular diffusion efficiency, etc.. A standard set of visualizations are produced as well as a library of analysis tools for deeper inquiries. All steps will be covered end-to-end as well as the framework's user interface and availability.

  15. Magnetosphere-ionosphere coupling: processes and rates

    NASA Astrophysics Data System (ADS)

    Lotko, W.

    Magnetosphere-ionosphere coupling describes the interaction between the collisionless plasma of the magnetosphere and the ionized and neutral collisional gases of the ionosphere and thermosphere. This coupling introduces feedback and scale interactivity in the form of a time-variable mass flux, electron energy flux and Poynting flux flowing between the two regions. Although delineation of an MI coupling region is somewhat ambiguous, at mid and high latitudes it may be considered as the region of the topside ionosphere and low-altitude magnetosphere where electromagnetic energy is converted to plasma beams and heat via collisionless dissipation processes. Above this region the magnetically guided transmission of electromagnetic power from distant magnetospheric dynamos encounters only weak attenuation. The ionospheric region below it is dominated by ionization processes and collisional cross-field transport and current closure. This tutorial will use observations, models and theory to characterize three major issues in MI coupling: (1) the production of plasma beams and heat in the coupling region; (2) the acceleration of ions leading to massive outflows; and (3) the length and time scale dependence of electromagnetic energy deposition at low altitude. Our success in identifying many of the key processes is offset by a lack of quantitative understanding of the factors controlling the rates of energy deposition and of the production of particle energy and mass fluxes.

  16. Flux-split algorithms for flows with non-equilibrium chemistry and vibrational relaxation

    NASA Technical Reports Server (NTRS)

    Grossman, B.; Cinnella, P.

    1990-01-01

    The present consideration of numerical computation methods for gas flows with nonequilibrium chemistry thermodynamics gives attention to an equilibrium model, a general nonequilibrium model, and a simplified model based on vibrational relaxation. Flux-splitting procedures are developed for the fully-coupled inviscid equations encompassing fluid dynamics and both chemical and internal energy-relaxation processes. A fully coupled and implicit large-block structure is presented which embodies novel forms of flux-vector split and flux-difference split algorithms valid for nonequilibrium flow; illustrative high-temperature shock tube and nozzle flow examples are given.

  17. Global-scale carbon and energy flows through the marine planktonic food web: An analysis with a coupled physical-biological model

    NASA Astrophysics Data System (ADS)

    Stock, Charles A.; Dunne, John P.; John, Jasmin G.

    2014-01-01

    Global-scale planktonic ecosystem models exhibit large differences in simulated net primary production (NPP) and assessment of planktonic food web fluxes beyond primary producers has been limited, diminishing confidence in carbon flux estimates from these models. In this study, a global ocean-ice-ecosystem model was assessed against a suite of observation-based planktonic food web flux estimates, many of which were not considered in previous modeling studies. The simulation successfully captured cross-biome differences and similarities in these fluxes after calibration of a limited number of highly uncertain yet influential parameters. The resulting comprehensive carbon budgets suggested that shortened food webs, elevated growth efficiencies, and tight consumer-resource coupling enable oceanic upwelling systems to support 45% of pelagic mesozooplankton production despite accounting for only 22% of ocean area and 34% of NPP. In seasonally stratified regions (42% of ocean area and 40% of NPP), weakened consumer-resource coupling tempers mesozooplankton production to 41% and enhances export below 100 m to 48% of the global total. In oligotrophic systems (36% of ocean area and 26% of NPP), the dominance of small phytoplankton and low consumer growth efficiencies supported only 14% of mesozooplankton production and 17% of export globally. Bacterial production, in contrast, was maintained in nearly constant proportion to primary production across biomes through the compensating effects of increased partitioning of NPP to the microbial food web in oligotrophic ecosystems and increased bacterial growth efficiencies in more productive areas. Cross-biome differences in mesozooplankton trophic level were muted relative to those invoked by previous work such that significant differences in consumer growth efficiencies and the strength of consumer-resource coupling were needed to explain sharp cross-biome differences in mesozooplankton production. Lastly, simultaneous consideration of multiple flux constraints supports a highly distributed view of respiration across the planktonic food web rather than one dominated by heterotrophic bacteria. The solution herein is unlikely unique in its ability to explain observed cross-biome energy flow patterns and notable misfits remain. Resolution of existing uncertainties in observed biome-scale productivity and increasingly mechanistic physical and biological model components should yield significant refinements to estimates herein.

  18. Spatiotemporal dynamics of carbon dioxide and methane fluxes from agricultural and restored wetlands in the California Delta

    NASA Astrophysics Data System (ADS)

    Hatala, Jaclyn Anne

    The Sacramento-San Joaquin Delta in California was drained for agriculture and human settlement over a century ago, resulting in extreme rates of soil subsidence and release of CO2 to the atmosphere from peat oxidation. Because of this century-long ecosystem carbon imbalance where heterotrophic respiration exceeded net primary productivity, most of the land surface in the Delta is now up to 8 meters below sea level. To potentially reverse this trend of chronic carbon loss from Delta ecosystems, land managers have begun converting drained lands back to flooded ecosystems, but at the cost of increased production of CH4, a much more potent greenhouse gas than CO2. To evaluate the impacts of inundation on the biosphere-atmophere exchange of CO2 and CH4 in the Delta, I first measured and analyzed net fluxes of CO2 and CH4 for two continuous years with the eddy covariance technique in a drained peatland pasture and a recently re-flooded rice paddy. This analysis demonstrated that the drained pasture was a consistent large source of CO2 and small source of CH 4, whereas the rice paddy was a mild sink for CO2 and a mild source of CH4. However more importantly, this first analysis revealed nuanced complexities for measuring and interpreting patterns in CO2 and CH4 fluxes through time and space. CO2 and CH4 fluxes are inextricably linked in flooded ecosystems, as plant carbon serves as the primary substrate for the production of CH4 and wetland plants also provide the primary transport pathway of CH4 flux to the atmosphere. At the spatially homogeneous rice paddy during the summer growing season, I investigated rapid temporal coupling between CO2 and CH4 fluxes. Through wavelet Granger-causality analysis, I demonstrated that daily fluctuations in growing season gross ecosystem productivity (photosynthesis) exert a stronger control than temperature on the diurnal pattern in CH4 flux from rice. At a spatially heterogeneous restored wetland site, I analyzed the spatial coupling between net CO2 and CH4 fluxes by characterizing two-dimensional patterns of emergent vegetation within eddy covariance flux footprints. I combined net CO2 and CH4 fluxes from three eddy flux towers with high-resolution remote sensing imagery classified for emergent vegetation and an analytical 2-D flux footprint model to assess the impact of vegetation fractal pattern and abundance on the measured flux. Both emergent vegetation abundance and fractal complexity are important metrics for constraining variability within CO2 and CH4 flux in this complex landscape. Scaling between carbon flux measurements at individual sites and regional scales depends on the connection to remote sensing metrics that can be broadly applied. In the final chapter of this dissertation, I analyzed a long term dataset of hyperspectral ground reflectance measurements collected within the flux tower footprints of three structurally similar yet functionally diverse ecosystems: an annual grassland, a degraded pepperweed pasture, and a rice paddy. The normalized difference vegetation index (NDVI) was highly correlated with landscape-scale photosynthesis across all sites, however this work also revealed new potential spectral indices with high correlation to both net and partitioned CO2 fluxes. This analysis within this dissertation serves as a framework for considering the impacts of temporal and spatial heterogeneity on measured landscape-scale fluxes of CO2 and CH4. Scaling measurements through time and space is especially critical for interpreting fluxes of trace gases with a high degree of temporal heterogeneity, like CH4 and N 2O, from landscapes that have a high degree of spatial heterogeneity, like wetlands. This work articulates a strong mechanistic connection between CO2 and CH4 fluxes in wetland ecosystems, and provides important management considerations for implementing and monitoring inundated land-use conversion as an effective carbon management strategy in the California Delta.

  19. Modeling evapotranspiration based on plant hydraulic theory can predict spatial variability across an elevation gradient and link to biogeochemical fluxes

    NASA Astrophysics Data System (ADS)

    Mackay, D. S.; Frank, J.; Reed, D.; Whitehouse, F.; Ewers, B. E.; Pendall, E.; Massman, W. J.; Sperry, J. S.

    2012-04-01

    In woody plant systems transpiration is often the dominant component of total evapotranspiration, and so it is key to understanding water and energy cycles. Moreover, transpiration is tightly coupled to carbon and nutrient fluxes, and so it is also vital to understanding spatial variability of biogeochemical fluxes. However, the spatial variability of transpiration and its links to biogeochemical fluxes, within- and among-ecosystems, has been a challenge to constrain because of complex feedbacks between physical and biological controls. Plant hydraulics provides an emerging theory with the rigor needed to develop testable hypotheses and build useful models for scaling these coupled fluxes from individual plants to regional scales. This theory predicts that vegetative controls over water, energy, carbon, and nutrient fluxes can be determined from the limitation of plant water transport through the soil-xylem-stomata pathway. Limits to plant water transport can be predicted from measurable plant structure and function (e.g., vulnerability to cavitation). We present a next-generation coupled transpiration-biogeochemistry model based on this emerging theory. The model, TREEScav, is capable of predicting transpiration, along with carbon and nutrient flows, constrained by plant structure and function. The model incorporates tightly coupled mechanisms of the demand and supply of water through the soil-xylem-stomata system, with the feedbacks to photosynthesis and utilizable carbohydrates. The model is evaluated by testing it against transpiration and carbon flux data along an elevation gradient of woody plants comprising sagebrush steppe, mid-elevation lodgepole pine forests, and subalpine spruce/fir forests in the Rocky Mountains. The model accurately predicts transpiration and carbon fluxes as measured from gas exchange, sap flux, and eddy covariance towers. The results of this work demonstrate that credible spatial predictions of transpiration and related biogeochemical fluxes will be possible at regional scales using relatively easily obtained vegetation structural and functional information.

  20. Coupling of TRAC-PF1/MOD2, Version 5.4.25, with NESTLE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knepper, P.L.; Hochreiter, L.E.; Ivanov, K.N.

    1999-09-01

    A three-dimensional (3-D) spatial kinetics capability within a thermal-hydraulics system code provides a more correct description of the core physics during reactor transients that involve significant variations in the neutron flux distribution. Coupled codes provide the ability to forecast safety margins in a best-estimate manner. The behavior of a reactor core and the feedback to the plant dynamics can be accurately simulated. For each time step, coupled codes are capable of resolving system interaction effects on neutronics feedback and are capable of describing local neutronics effects caused by the thermal hydraulics and neutronics coupling. With the improvements in computational technology,more » modeling complex reactor behaviors with coupled thermal hydraulics and spatial kinetics is feasible. Previously, reactor analysis codes were limited to either a detailed thermal-hydraulics model with simplified kinetics or multidimensional neutron kinetics with a simplified thermal-hydraulics model. The authors discuss the coupling of the Transient Reactor Analysis Code (TRAC)-PF1/MOD2, Version 5.4.25, with the NESTLE code.« less

  1. Electrochemically driven mechanical energy harvesting.

    PubMed

    Kim, Sangtae; Choi, Soon Ju; Zhao, Kejie; Yang, Hui; Gobbi, Giorgia; Zhang, Sulin; Li, Ju

    2016-01-06

    Efficient mechanical energy harvesters enable various wearable devices and auxiliary energy supply. Here we report a novel class of mechanical energy harvesters via stress-voltage coupling in electrochemically alloyed electrodes. The device consists of two identical Li-alloyed Si as electrodes, separated by electrolyte-soaked polymer membranes. Bending-induced asymmetric stresses generate chemical potential difference, driving lithium ion flux from the compressed to the tensed electrode to generate electrical current. Removing the bending reverses ion flux and electrical current. Our thermodynamic analysis reveals that the ideal energy-harvesting efficiency of this device is dictated by the Poisson's ratio of the electrodes. For the thin-film-based energy harvester used in this study, the device has achieved a generating capacity of 15%. The device demonstrates a practical use of stress-composition-voltage coupling in electrochemically active alloys to harvest low-grade mechanical energies from various low-frequency motions, such as everyday human activities.

  2. Electrochemically driven mechanical energy harvesting

    PubMed Central

    Kim, Sangtae; Choi, Soon Ju; Zhao, Kejie; Yang, Hui; Gobbi, Giorgia; Zhang, Sulin; Li, Ju

    2016-01-01

    Efficient mechanical energy harvesters enable various wearable devices and auxiliary energy supply. Here we report a novel class of mechanical energy harvesters via stress–voltage coupling in electrochemically alloyed electrodes. The device consists of two identical Li-alloyed Si as electrodes, separated by electrolyte-soaked polymer membranes. Bending-induced asymmetric stresses generate chemical potential difference, driving lithium ion flux from the compressed to the tensed electrode to generate electrical current. Removing the bending reverses ion flux and electrical current. Our thermodynamic analysis reveals that the ideal energy-harvesting efficiency of this device is dictated by the Poisson's ratio of the electrodes. For the thin-film-based energy harvester used in this study, the device has achieved a generating capacity of 15%. The device demonstrates a practical use of stress-composition–voltage coupling in electrochemically active alloys to harvest low-grade mechanical energies from various low-frequency motions, such as everyday human activities. PMID:26733282

  3. Aeolian snow transport from wind tunnel experiments

    NASA Astrophysics Data System (ADS)

    Paterna, E.; Crivelli, P.; Lehning, M.

    2016-12-01

    Aeolian snow transport has a significant impact on snow redistribution in mountains, prairies as well as on glaciers, ice shelves, and sea ice. In all these environments, the local mass balance is highly influenced by Aeolian snow transport. The dynamics of snow saltation has a high impact on the land surface processes shaping these regions. More specifically, the observed high intermittency of saltation fluxes poses a problem for saltation models and needs to be better understood. We therefore aimed at unveiling the mechanisms underlying snow saltation at different saltation strengths and its coupling with the turbulent fluctuations of the wind. We conducted wind tunnel measurements of the momentum and mass-fluxes during snow saltation. For the mass-flux measurements we employed a shadowgraphy system which acquires images of the snow particle's shadows at high spatial and temporal resolution. The size and displacement of the particles are then determined by means of image analysis and Particle Tracking Velocimetry (PTV), allowing to estimate both snow mass-flux and flow velocity. Our controlled wind tunnel experiments revealed the existence of two regimes of saltation. In a turbulence-dependent regime occurring during weak saltation activity, we observed a strong coupling between snow transport and turbulent flow. Conversely during stronger saltation activity a turbulence-independent regime emerges, where the saltation develops its own length scale and it efficiently decouples from the wind fluctuations. We argue that different entrainment mechanisms could explain the existence of the two different saltation regimes as well as the observed high level of mass-flux intermittency.

  4. Seasonal simulations using a coupled ocean-atmosphere model with data assimilation

    NASA Astrophysics Data System (ADS)

    Larow, Timothy Edward

    1997-10-01

    A coupled ocean-atmosphere initialization scheme using Newtonian relaxation has been developed for the Florida State University coupled ocean-atmosphere global general circulation model. The coupled model is used for seasonal predictions of the boreal summers of 1987 and 1988. The atmosphere model is a modified version of the Florida State University global spectral model, resolution triangular truncation 42 waves. The ocean general circulation model consists of a slightly modified version developed by Latif (1987). Coupling is synchronous with exchange of information every two model hours. Using daily analysis from ECMWF and observed monthly mean SSTs from NCEP, two - one year, time dependent, Newtonian relaxation were conducted using the coupled model prior to the seasonal forecasts. Relaxation was selectively applied to the atmospheric vorticity, divergence, temperature, and dew point depression equations, and to the ocean's surface temperature equation. The ocean's initial conditions are from a six year ocean-only simulation which used observed wind stresses and a relaxation towards observed SSTs for forcings. Coupled initialization was conducted from 1 June 1986 to 1 June 1987 for the 1987 boreal forecast and from 1 June 1987 to 1 June 1988 for the 1988 boreal forecast. Examination of annual means of net heat flux, freshwater flux and wind stress obtained by from the initialization show close agreement with Oberhuber (1988) climatology and the Florida State University pseudo wind stress analysis. Sensitivity of the initialization/assimilation scheme was tested by conducting two - ten member ensemble integrations. Each member was integrated for 90 days (June-August) of the respective year. Initial conditions for the ensembles consisted of the same ocean state as used by the initialize forecasts, while the atmospheric initial conditions were from ECMWF analysis centered on 1 June of the respective year. Root mean square error and anomaly correlations between observed and forecasted SSTs in the Nino 3 and Nino 4 regions show greater skill between the initialized forecasts than the ensemble forecasts. It is hypothesized that differences in the specific humidity within the planetary boundary layer are responsible for the large SST errors noted with the ensembles.

  5. Evaluating Stellarator Divertor Designs with EMC3

    NASA Astrophysics Data System (ADS)

    Bader, Aaron; Anderson, D. T.; Feng, Y.; Hegna, C. C.; Talmadge, J. N.

    2013-10-01

    In this paper various improvements of stellarator divertor design are explored. Next step stellarator devices require innovative divertor solutions to handle heat flux loads and impurity control. One avenue is to enhance magnetic flux expansion near strike points, somewhat akin to the X-Divertor concept in Tokamaks. The effect of judiciously placed external coils on flux deposition is calculated for configurations based on the HSX stellarator. In addition, we attempt to optimize divertor plate location to facilitate the external coil placement. Alternate areas of focus involve altering edge island size to elucidate the driving physics in the edge. The 3-D nature of stellarators complicates design and necessitates analysis of new divertor structures with appropriate simulation tools. We evaluate the various configurations with the coupled codes EMC3-EIRENE, allowing us to benchmark configurations based on target heat flux, impurity behavior, radiated power, and transitions to high recycling and detached regimes. Work supported by DOE-SC0006103.

  6. The development of flux-split algorithms for flows with non-equilibrium thermodynamics and chemical reactions

    NASA Technical Reports Server (NTRS)

    Grossman, B.; Cinella, P.

    1988-01-01

    A finite-volume method for the numerical computation of flows with nonequilibrium thermodynamics and chemistry is presented. A thermodynamic model is described which simplifies the coupling between the chemistry and thermodynamics and also results in the retention of the homogeneity property of the Euler equations (including all the species continuity and vibrational energy conservation equations). Flux-splitting procedures are developed for the fully coupled equations involving fluid dynamics, chemical production and thermodynamic relaxation processes. New forms of flux-vector split and flux-difference split algorithms are embodied in a fully coupled, implicit, large-block structure, including all the species conservation and energy production equations. Several numerical examples are presented, including high-temperature shock tube and nozzle flows. The methodology is compared to other existing techniques, including spectral and central-differenced procedures, and favorable comparisons are shown regarding accuracy, shock-capturing and convergence rates.

  7. A COUPLED LAND-SURFACE AND DRY DEPOSITION MODEL AND COMPARISON TO FIELD MEASUREMENTS OF SURFACE HEAT, MOISTURE, AND OZONE FLUXES

    EPA Science Inventory

    We have developed a coupled land-surface and dry deposition model for realistic treatment of surface fluxes of heat, moisture, and chemical dry deposition within a comprehensive air quality modeling system. A new land-surface model (LSM) with explicit treatment of soil moisture...

  8. Collective coupling in hybrid superconducting circuits

    NASA Astrophysics Data System (ADS)

    Saito, Shiro

    Hybrid quantum systems utilizing superconducting circuits have attracted significant recent attention, not only for quantum information processing tasks but also as a way to explore fundamentally new physics regimes. In this talk, I will discuss two superconducting circuit based hybrid quantum system approaches. The first is a superconducting flux qubit - electron spin ensemble hybrid system in which quantum information manipulated in the flux qubit can be transferred to, stored in and retrieved from the ensemble. Although the coherence time of the ensemble is short, about 20 ns, this is a significant first step to utilize the spin ensemble as quantum memory for superconducting flux qubits. The second approach is a superconducting resonator - flux qubit ensemble hybrid system in which we fabricated a superconducting LC resonator coupled to a large ensemble of flux qubits. Here we observed a dispersive frequency shift of approximately 250 MHz in the resonators transmission spectrum. This indicates thousands of flux qubits are coupling to the resonator collectively. Although we need to improve our qubits inhomogeneity, our system has many potential uses including the creation of new quantum metamaterials, novel applications in quantum metrology and so on. This work was partially supported by JSPS KAKENHI Grant Number 25220601.

  9. Diagnosing Air-Sea Interactions on Intraseasonal Timescales

    NASA Astrophysics Data System (ADS)

    DeMott, C. A.

    2014-12-01

    What is the role of ocean coupling in the Madden Julian Oscillation (MJO)? Consensus thinking holds that the essential physics of the MJO involve interactions between convection, atmospheric wave dynamics, and boundary layer and free troposphere moisture. However, many modeling studies demonstrate improved MJO simulation when an atmosphere-only general circulation model (AGCM) is coupled to an ocean model, so feedbacks from the ocean are probably not negligible. Assessing the importance and processes of these feedbacks is challenging for at least two reasons. First, observations of the MJO only sample the fully coupled ocean-atmosphere system; there is no "uncoupled" MJO in nature. Second, the practice of analyzing the MJO in uncoupled and coupled GCMs (CGCMs) involves using imperfect tools to study the problem. Although MJO simulation is improving in many models, shortcomings remain in both AGCMs and CGCMs, making it difficult to determine if changes brought about through coupling reflect critical air-sea interactions or are simply part of the collective idiosyncracies of a given model. For the atmosphere, ocean feedbacks from intraseasonal sea surface temperature (SST) variations are communicated through their effects on surface fluxes of heat and moisture. This presentation suggests a set of analysis tools for diagnosing the impact of an interactive ocean on surface latent and sensible heat fluxes, including their mean, variance, spectral characteristics, and phasing with respect to wind, SST, and MJO convection. The diagnostics are demonstrated with application to several CMIP5 models, and reveal a variety of responses to coupled ocean feedbacks.

  10. Unifying quantum heat transfer in a nonequilibrium spin-boson model with full counting statistics

    NASA Astrophysics Data System (ADS)

    Wang, Chen; Ren, Jie; Cao, Jianshu

    2017-02-01

    To study the full counting statistics of quantum heat transfer in a driven nonequilibrium spin-boson model, we develop a generalized nonequilibrium polaron-transformed Redfield equation with an auxiliary counting field. This enables us to study the impact of qubit-bath coupling ranging from weak to strong regimes. Without external modulations, we observe maximal values of both steady-state heat flux and noise power in moderate coupling regimes, below which we find that these two transport quantities are enhanced by the finite-qubit-energy bias. With external modulations, the geometric-phase-induced heat flux shows a monotonic decrease upon increasing the qubit-bath coupling at zero qubit energy bias (without bias). While under the finite-qubit-energy bias (with bias), the geometric-phase-induced heat flux exhibits an interesting reversal behavior in the strong coupling regime. Our results unify the seemingly contradictory results in weak and strong qubit-bath coupling regimes and provide detailed dissections for the quantum fluctuation of nonequilibrium heat transfer.

  11. MODFLOW–LGR—Documentation of ghost node local grid refinement (LGR2) for multiple areas and the boundary flow and head (BFH2) package

    USGS Publications Warehouse

    Mehl, Steffen W.; Hill, Mary C.

    2013-01-01

    This report documents the addition of ghost node Local Grid Refinement (LGR2) to MODFLOW-2005, the U.S. Geological Survey modular, transient, three-dimensional, finite-difference groundwater flow model. LGR2 provides the capability to simulate groundwater flow using multiple block-shaped higher-resolution local grids (a child model) within a coarser-grid parent model. LGR2 accomplishes this by iteratively coupling separate MODFLOW-2005 models such that heads and fluxes are balanced across the grid-refinement interface boundary. LGR2 can be used in two-and three-dimensional, steady-state and transient simulations and for simulations of confined and unconfined groundwater systems. Traditional one-way coupled telescopic mesh refinement methods can have large, often undetected, inconsistencies in heads and fluxes across the interface between two model grids. The iteratively coupled ghost-node method of LGR2 provides a more rigorous coupling in which the solution accuracy is controlled by convergence criteria defined by the user. In realistic problems, this can result in substantially more accurate solutions and require an increase in computer processing time. The rigorous coupling enables sensitivity analysis, parameter estimation, and uncertainty analysis that reflects conditions in both model grids. This report describes the method used by LGR2, evaluates accuracy and performance for two-and three-dimensional test cases, provides input instructions, and lists selected input and output files for an example problem. It also presents the Boundary Flow and Head (BFH2) Package, which allows the child and parent models to be simulated independently using the boundary conditions obtained through the iterative process of LGR2.

  12. MODFLOW-2005, the U.S. Geological Survey modular ground-water model - documentation of shared node local grid refinement (LGR) and the boundary flow and head (BFH) package

    USGS Publications Warehouse

    Mehl, Steffen W.; Hill, Mary C.

    2006-01-01

    This report documents the addition of shared node Local Grid Refinement (LGR) to MODFLOW-2005, the U.S. Geological Survey modular, transient, three-dimensional, finite-difference ground-water flow model. LGR provides the capability to simulate ground-water flow using one block-shaped higher-resolution local grid (a child model) within a coarser-grid parent model. LGR accomplishes this by iteratively coupling two separate MODFLOW-2005 models such that heads and fluxes are balanced across the shared interfacing boundary. LGR can be used in two-and three-dimensional, steady-state and transient simulations and for simulations of confined and unconfined ground-water systems. Traditional one-way coupled telescopic mesh refinement (TMR) methods can have large, often undetected, inconsistencies in heads and fluxes across the interface between two model grids. The iteratively coupled shared-node method of LGR provides a more rigorous coupling in which the solution accuracy is controlled by convergence criteria defined by the user. In realistic problems, this can result in substantially more accurate solutions and require an increase in computer processing time. The rigorous coupling enables sensitivity analysis, parameter estimation, and uncertainty analysis that reflects conditions in both model grids. This report describes the method used by LGR, evaluates LGR accuracy and performance for two- and three-dimensional test cases, provides input instructions, and lists selected input and output files for an example problem. It also presents the Boundary Flow and Head (BFH) Package, which allows the child and parent models to be simulated independently using the boundary conditions obtained through the iterative process of LGR.

  13. Coupling Flux Towers and Networks with Proximal and Remote Sensing Data: New Tools to Collect and Share Time-Synchronized Hourly Fluxes

    NASA Astrophysics Data System (ADS)

    Burba, George; Avenson, Tom; Burkart, Andreas; Gamon, John; Guan, Kaiyu; Julitta, Tommaso; Pastorello, Gilberto; Sakowska, Karolina

    2017-04-01

    Multiple hundreds of flux towers are presently operational as standalone projects and as parts of larger networks. However, the vast majority of these towers do not allow straight-forward coupling with satellite data, and even fewer have optical sensors for validation of satellite products and upscaling from field to regional levels. In 2016, new tools to collect, process, and share time-synchronized flux data from multiple towers were developed and deployed globally. Originally designed to automate site and data management, these new tools can also be effective in coupling tower data with satellite data due to the following present capabilities: Fully automated FluxSuite system combines hardware, software and web-services, and does not require an expert to run it It can be incorporated into a new flux station or added to a present station, using weatherized remotely-accessible microcomputer, SmartFlux2 It utilizes EddyPro software to calculate fully-processed fluxes and footprints in near-realtime, alongside radiation, optical, weather and soil data All site data are merged into a single quality-controlled file timed using PTP time protocol Data from optical sensors can be integrated into this complete dataset via compatible dataloggers Multiple stations can be linked into time-synchronized network with automated reports and email alerts visible to PIs in real-time Remote sensing researchers without stations can form "virtual networks" of stations by collaborating with tower PIs from different physical networks The present system can then be utilized to couple ground data with satellite data via the following proposed concept: GPS-driven PTP protocol will synchronize instrumentation within the station, different stations with each other, and all of these to satellite data to precisely align optical and flux data in time Footprint size and coordinates computed and stored with flux data will help correctly align footprints and satellite motion to precisely align optical and flux data in space Current flux towers can be augmented with ground optical sensors and use standard routines to deliver continuous products (e.g. SIF, PRI, NDVI, etc.) based on automated field spectrometers (e.g., FloX and RoX, etc.) and other optical systems Schedule can be developed to point ground optical sensor into the footprint, or to run leaf chamber measurements in the footprint, at the same time with the satellite or UAV above the footprint Full snapshot of the satellite pixel can then be constructed including leaf-level, ground optical sensor, and flux measurements from the same footprint area closely coupled with the satellite measurements to help interpret satellite data, validate models, and improve upscaling Several dozens of new towers already operational globally can be readily adapted for the proposed concept. In addition, over 500 active traditional towers can be updated to synchronize their data with satellite measurements. This presentation will show how FluxSuite system is used by major networks, and describe the concept of how this approach can be utilized to couple satellite and tower data.

  14. Genome-scale metabolic model for Lactococcus lactis MG1363 and its application to the analysis of flavor formation.

    PubMed

    Flahaut, Nicolas A L; Wiersma, Anne; van de Bunt, Bert; Martens, Dirk E; Schaap, Peter J; Sijtsma, Lolke; Dos Santos, Vitor A Martins; de Vos, Willem M

    2013-10-01

    Lactococcus lactis subsp. cremoris MG1363 is a paradigm strain for lactococci used in industrial dairy fermentations. However, despite of its importance for process development, no genome-scale metabolic model has been reported thus far. Moreover, current models for other lactococci only focus on growth and sugar degradation. A metabolic model that includes nitrogen metabolism and flavor-forming pathways is instrumental for the understanding and designing new industrial applications of these lactic acid bacteria. A genome-scale, constraint-based model of the metabolism and transport in L. lactis MG1363, accounting for 518 genes, 754 reactions, and 650 metabolites, was developed and experimentally validated. Fifty-nine reactions are directly or indirectly involved in flavor formation. Flux Balance Analysis and Flux Variability Analysis were used to investigate flux distributions within the whole metabolic network. Anaerobic carbon-limited continuous cultures were used for estimating the energetic parameters. A thorough model-driven analysis showing a highly flexible nitrogen metabolism, e.g., branched-chain amino acid catabolism which coupled with the redox balance, is pivotal for the prediction of the formation of different flavor compounds. Furthermore, the model predicted the formation of volatile sulfur compounds as a result of the fermentation. These products were subsequently identified in the experimental fermentations carried out. Thus, the genome-scale metabolic model couples the carbon and nitrogen metabolism in L. lactis MG1363 with complete known catabolic pathways leading to flavor formation. The model provided valuable insights into the metabolic networks underlying flavor formation and has the potential to contribute to new developments in dairy industries and cheese-flavor research.

  15. Estimation of Land Surface Fluxes and Their Uncertainty via Variational Data Assimilation Approach

    NASA Astrophysics Data System (ADS)

    Abdolghafoorian, A.; Farhadi, L.

    2016-12-01

    Accurate estimation of land surface heat and moisture fluxes as well as root zone soil moisture is crucial in various hydrological, meteorological, and agricultural applications. "In situ" measurements of these fluxes are costly and cannot be readily scaled to large areas relevant to weather and climate studies. Therefore, there is a need for techniques to make quantitative estimates of heat and moisture fluxes using land surface state variables. In this work, we applied a novel approach based on the variational data assimilation (VDA) methodology to estimate land surface fluxes and soil moisture profile from the land surface states. This study accounts for the strong linkage between terrestrial water and energy cycles by coupling the dual source energy balance equation with the water balance equation through the mass flux of evapotranspiration (ET). Heat diffusion and moisture diffusion into the column of soil are adjoined to the cost function as constraints. This coupling results in more accurate prediction of land surface heat and moisture fluxes and consequently soil moisture at multiple depths with high temporal frequency as required in many hydrological, environmental and agricultural applications. One of the key limitations of VDA technique is its tendency to be ill-posed, meaning that a continuum of possibilities exists for different parameters that produce essentially identical measurement-model misfit errors. On the other hand, the value of heat and moisture flux estimation to decision-making processes is limited if reasonable estimates of the corresponding uncertainty are not provided. In order to address these issues, in this research uncertainty analysis will be performed to estimate the uncertainty of retrieved fluxes and root zone soil moisture. The assimilation algorithm is tested with a series of experiments using a synthetic data set generated by the simultaneous heat and water (SHAW) model. We demonstrate the VDA performance by comparing the (synthetic) true measurements (including profile of soil moisture and temperature, land surface water and heat fluxes, and root water uptake) with VDA estimates. In addition, the feasibility of extending the proposed approach to use remote sensing observations is tested by limiting the number of LST observations and soil moisture observations.

  16. Coupled qubits as a quantum heat switch

    NASA Astrophysics Data System (ADS)

    Karimi, B.; Pekola, J. P.; Campisi, M.; Fazio, R.

    2017-12-01

    We present a quantum heat switch based on coupled superconducting qubits, connected to two LC resonators that are terminated by resistors providing two heat baths. To describe the system, we use a standard second order master equation with respect to coupling to the baths. We find that this system can act as an efficient heat switch controlled by the applied magnetic flux. The flux influences the energy level separations of the system, and under some conditions, the finite coupling of the qubits enhances the transmitted power between the two baths, by an order of magnitude under realistic conditions. At the same time, the bandwidth at maximum power of the switch formed of the coupled qubits is narrowed.

  17. Coupled atmosphere-ocean-wave simulations of a storm event over the Gulf of Lion and Balearic Sea

    USGS Publications Warehouse

    Renault, Lionel; Chiggiato, Jacopo; Warner, John C.; Gomez, Marta; Vizoso, Guillermo; Tintore, Joaquin

    2012-01-01

    The coastal areas of the North-Western Mediterranean Sea are one of the most challenging places for ocean forecasting. This region is exposed to severe storms events that are of short duration. During these events, significant air-sea interactions, strong winds and large sea-state can have catastrophic consequences in the coastal areas. To investigate these air-sea interactions and the oceanic response to such events, we implemented the Coupled Ocean-Atmosphere-Wave-Sediment Transport Modeling System simulating a severe storm in the Mediterranean Sea that occurred in May 2010. During this event, wind speed reached up to 25 m.s-1 inducing significant sea surface cooling (up to 2°C) over the Gulf of Lion (GoL) and along the storm track, and generating surface waves with a significant height of 6 m. It is shown that the event, associated with a cyclogenesis between the Balearic Islands and the GoL, is relatively well reproduced by the coupled system. A surface heat budget analysis showed that ocean vertical mixing was a major contributor to the cooling tendency along the storm track and in the GoL where turbulent heat fluxes also played an important role. Sensitivity experiments on the ocean-atmosphere coupling suggested that the coupled system is sensitive to the momentum flux parameterization as well as air-sea and air-wave coupling. Comparisons with available atmospheric and oceanic observations showed that the use of the fully coupled system provides the most skillful simulation, illustrating the benefit of using a fully coupled ocean-atmosphere-wave model for the assessment of these storm events.

  18. Land-atmosphere coupling strength determines impact of land cover change in South-East Asia

    NASA Astrophysics Data System (ADS)

    Toelle, M. H.

    2017-12-01

    In a previous modeling study of large-scale deforestation in South-East Asia, between 20° S and 20° N, a decrease of latent heat flux and an increase of sensible heat flux is found. This induced higher temperatures, and ultimately deepened the boundary layer with leading to less rainfall, but higher rainfall amounts and extreme temperatures. In order to attribute these differences to a feedback mechanism, a correlation analysis is performed. Therefore, the land-atmosphere coupling strength is compared with the impact of land cover change during seasonal periods and ENSO events. Hereby, ERA-Interim-driven COSMO-CLM simulations are analyzed for the period 1990 to 2004. The regional climate model is able to reproduce the overall soil moisture spatial pattern suggested by the observational Global Land Evaporation Amsterdam Model. However, COSMO-CLM shows more spatial variability and strength. By deforestation, the coupling strength between land and atmosphere is increased. Major changes in coupling strength occur during La Niña events. The impact due to deforestation depends non-linearly on the coupling strength exemplified by maximum temperature and evapotranspiration. It is shown that the magnitude of change in extreme temperature due to deforestation depends on the former coupling strength over the region. The rise in extreme temperatures due to deforestation occurs mainly over the mainland, where the coupling strength is strongest. The impact is less pronounced over the maritime islands due to the oceanic influence. It is suggested that the regional-scale impact depends on the model-specific coupling strength besides the physical reasoning over this region. Deforestation over South-East Asia will likely have consequences for the agricultural output and increase socio-economic vulnerability.

  19. Dimethylsulfide model calibration and parametric sensitivity analysis for the Greenland Sea

    NASA Astrophysics Data System (ADS)

    Qu, Bo; Gabric, Albert J.; Zeng, Meifang; Xi, Jiaojiao; Jiang, Limei; Zhao, Li

    2017-09-01

    Sea-to-air fluxes of marine biogenic aerosols have the potential to modify cloud microphysics and regional radiative budgets, and thus moderate Earth's warming. Polar regions play a critical role in the evolution of global climate. In this work, we use a well-established biogeochemical model to simulate the DMS flux from the Greenland Sea (20°W-10°E and 70°N-80°N) for the period 2003-2004. Parameter sensitivity analysis is employed to identify the most sensitive parameters in the model. A genetic algorithm (GA) technique is used for DMS model parameter calibration. Data from phase 5 of the Coupled Model Intercomparison Project (CMIP5) are used to drive the DMS model under 4 × CO2 conditions. DMS flux under quadrupled CO2 levels increases more than 300% compared with late 20th century levels (1 × CO2). Reasons for the increase in DMS flux include changes in the ocean state-namely an increase in sea surface temperature (SST) and loss of sea ice-and an increase in DMS transfer velocity, especially in spring and summer. Such a large increase in DMS flux could slow the rate of warming in the Arctic via radiative budget changes associated with DMS-derived aerosols.

  20. The effects of sea spray and atmosphere-wave coupling on air-sea exchange during a tropical cyclone

    NASA Astrophysics Data System (ADS)

    Garg, Nikhil; Kwee Ng, Eddie Yin; Narasimalu, Srikanth

    2018-04-01

    The study investigates the role of the air-sea interface using numerical simulations of Hurricane Arthur (2014) in the Atlantic. More specifically, the present study aims to discern the role ocean surface waves and sea spray play in modulating the intensity and structure of a tropical cyclone (TC). To investigate the effects of ocean surface waves and sea spray, numerical simulations were carried out using a coupled atmosphere-wave model, whereby a sea spray microphysical model was incorporated within the coupled model. Furthermore, this study also explores how sea spray generation can be modelled using wave energy dissipation due to whitecaps; whitecaps are considered as the primary mode of spray droplets generation at hurricane intensity wind speeds. Three different numerical simulations including the sea- state-dependent momentum flux, the sea-spray-mediated heat flux, and a combination of the former two processes with the sea-spray-mediated momentum flux were conducted. The foregoing numerical simulations were evaluated against the National Data Buoy Center (NDBC) buoy and satellite altimeter measurements as well as a control simulation using an uncoupled atmosphere model. The results indicate that the model simulations were able to capture the storm track and intensity: the surface wave coupling results in a stronger TC. Moreover, it is also noted that when only spray-mediated heat fluxes are applied in conjunction with the sea-state-dependent momentum flux, they result in a slightly weaker TC, albeit stronger compared to the control simulation. However, when a spray-mediated momentum flux is applied together with spray heat fluxes, it results in a comparably stronger TC. The results presented here allude to the role surface friction plays in the intensification of a TC.

  1. Bora event variability and the role of air-sea feedback

    USGS Publications Warehouse

    Pullen, J.; Doyle, J.D.; Haack, T.; Dorman, C.; Signell, R.P.; Lee, C.M.

    2007-01-01

    A two-way interacting high resolution numerical simulation of the Adriatic Sea using the Navy Coastal Ocean Model (NCOM) and Coupled Ocean/ Atmosphere Mesoscale Prediction System (COAMPS??) was conducted to improve forecast momentum and heat flux fields, and to evaluate surface flux field differences for two consecutive bora events during February 2003. (COAMPS?? is a registered trademark of the Naval Research Laboratory.) The strength, mean positions and extensions of the bora jets, and the atmospheric conditions driving them varied considerably between the two events. Bora 1 had 62% stronger heat flux and 51% larger momentum flux than bora 2. The latter displayed much greater diurnal variability characterized by inertial oscillations and the early morning strengthening of a west Adriatic barrier jet, beneath which a stronger west Adriatic ocean current developed. Elsewhere, surface ocean current differences between the two events were directly related to differences in wind stress curl generated by the position and strength of the individual bora jets. The mean heat flux bias was reduced by 72%, and heat flux RMSE reduced by 30% on average at four instrumented over-water sites in the two-way coupled simulation relative to the uncoupled control. Largest reductions in wind stress were found in the bora jets, while the biggest reductions in heat flux were found along the north and west coasts of the Adriatic. In bora 2, SST gradients impacted the wind stress curl along the north and west coasts, and in bora 1 wind stress curl was sensitive to the Istrian front position and strength. The two-way coupled simulation produced diminished surface current speeds of ???12% over the northern Adriatic during both bora compared with a one-way coupled simulation. Copyright 2007 by the American Geophysical Union.

  2. Energy-flux characterization of conical and space-time coupled wave packets

    NASA Astrophysics Data System (ADS)

    Lotti, A.; Couairon, A.; Faccio, D.; Trapani, P. Di

    2010-02-01

    We introduce the concept of energy density flux as a characterization tool for the propagation of ultrashort laser pulses with spatiotemporal coupling. In contrast with calculations for the Poynting vector, those for energy density flux are derived in the local frame moving at the velocity of the envelope of the wave packet under examination and do not need knowledge of the magnetic field. We show that the energy flux defined from a paraxial propagation equation follows specific geometrical connections with the phase front of the optical wave packet, which demonstrates that the knowledge of the phase fronts amounts to the measurement of the energy flux. We perform a detailed numerical study of the energy density flux in the particular case of conical waves, with special attention paid to stationary-envelope conical waves (X or O waves). A full characterization of linear conical waves is given in terms of their energy flux. We extend the definition of this concept to the case of nonlinear propagation in Kerr media with nonlinear losses.

  3. Patterns in coupled water and energy cycle: Modeling, synthesis with observations, and assessing the subsurface-landsurface interactions

    NASA Astrophysics Data System (ADS)

    Rahman, A.; Kollet, S. J.; Sulis, M.

    2013-12-01

    In the terrestrial hydrological cycle, the atmosphere and the free groundwater table act as the upper and lower boundary condition, respectively, in the non-linear two-way exchange of mass and energy across the land surface. Identifying and quantifying the interactions among various atmospheric-subsurface-landsurface processes is complicated due to the diverse spatiotemporal scales associated with these processes. In this study, the coupled subsurface-landsurface model ParFlow.CLM was applied over a ~28,000 km2 model domain encompassing the Rur catchment, Germany, to simulate the fluxes of the coupled water and energy cycle. The model was forced by hourly atmospheric data from the COSMO-DE model (numerical weather prediction system of the German Weather Service) over one year. Following a spinup period, the model results were synthesized with observed river discharge, soil moisture, groundwater table depth, temperature, and landsurface energy flux data at different sites in the Rur catchment. It was shown that the model is able to reproduce reasonably the dynamics and also absolute values in observed fluxes and state variables without calibration. The spatiotemporal patterns in simulated water and energy fluxes as well as the interactions were studied using statistical, geostatistical and wavelet transform methods. While spatial patterns in the mass and energy fluxes can be predicted from atmospheric forcing and power law scaling in the transition and winter months, it appears that, in the summer months, the spatial patterns are determined by the spatially correlated variability in groundwater table depth. Continuous wavelet transform techniques were applied to study the variability of the catchment average mass and energy fluxes at varying time scales. From this analysis, the time scales associated with significant interactions among different mass and energy balance components were identified. The memory of precipitation variability in subsurface hydrodynamics acts at the 20-30 day time scale, while the groundwater contribution to sustain the long-term variability patterns in evapotranspiration acts at the 40-60 day scale. Diurnal patterns in connection with subsurface hydrodynamics were also detected. Thus, it appears that the subsurface hydrodynamics respond to the temporal patterns in land surface fluxes due to the variability in atmospheric forcing across multiple space and time scales.

  4. A Digital Map From External Forcing to the Final Surface Warming Pattern and its Seasonal Cycle

    NASA Astrophysics Data System (ADS)

    Cai, M.

    2015-12-01

    Historically, only the thermodynamic processes (e.g., water vapor, cloud, surface albedo, and atmospheric lapse rate) that directly influence the top of the atmosphere (TOA) radiative energy flux balance are considered in climate feedback analysis. One of my recent research areas is to develop a new framework for climate feedback analysis that explicitly takes into consideration not only the thermodynamic processes that the directly influence the TOA radiative energy flux balance but also the local dynamical (e.g., evaporation, surface sensible heat flux, vertical convections etc) and non-local dynamical (large-scale horizontal energy transport) processes in aiming to explain the warming asymmetry between high and low latitudes, between ocean and land, and between the surface and atmosphere. In the last 5-6 years, we have developed a coupled atmosphere-surface climate feedback-response analysis method (CFRAM) as a new framework for estimating climate feedback and sensitivity in coupled general circulation models with a full physical parameterization package. In the CFRAM, the isolation of partial temperature changes due to an external forcing alone or an individual feedback is achieved by solving the linearized infrared radiation transfer model subject to individual energy flux perturbations (external or due to feedbacks). The partial temperature changes are addable and their sum is equal to the (total) temperature change (in the linear sense). The CFRAM is used to isolate the partial temperature changes due to the external forcing, due to water vapor feedback, clouds, surface albedo, local vertical convection, and non-local atmospheric dynamical feedbacks, as well as oceanic heat storage. It has been shown that seasonal variations in the cloud feedback, surface albedo feedback, and ocean heat storage/dynamics feedback, directly caused by the strong annual cycle of insolation, contribute primarily to the large seasonal variation of polar warming. Furthermore, the CO2 forcing, and water vapor and atmospheric dynamics feedbacks add to the maximum polar warming in fall/winter.

  5. Towards a Better Understanding of Water Stores and Fluxes: Model Observation Synthesis in a Snowmelt Dominated Research Watershed

    NASA Astrophysics Data System (ADS)

    Ryken, A.; Gochis, D.; Carroll, R. W. H.; Bearup, L. A.; Williams, K. H.; Maxwell, R. M.

    2017-12-01

    The hydrology of high-elevation, mountainous regions is poorly represented in Earth Systems Models (ESMs). In addition to regulating downstream water delivery, these ecosystems play an important role in the storage and land-atmosphere exchange of carbon and water. Water balances are sensitive to the amount of water stored in the snowpack (SWE) and the amount of water leaving the system in the form of evapotranspiration—two pieces of the hydrologic cycle that are difficult to observe and model in heterogeneous mountainous regions due to spatially variant weather patterns. In an effort to resolve this hydrologic gap in ESMs, this study seeks to better understand the interactions between groundwater, carbon flux, and the lower atmosphere in these high-altitude environments through integration of field observations and model simulations. We compare model simulations to field observations to elucidate process performance combined with a sensitivity analysis to better understand parameter uncertainty. Observations from a meteorological station in the East River Basin are used to force an integrated single-column hydrologic model, ParFlow-CLM. This met station is co-located with an eddy covariance tower, which, along with snow surveys, is used to better constrain the water, carbon, and energy fluxes in the coupled land-atmosphere model to increase our understanding of high-altitude headwaters. Preliminary results suggest the model compares well to the eddy covariance tower and field observations, shown through both correct magnitude and timing of peak SWE along with similar magnitudes and diurnal patterns of heat and water fluxes. Initial sensitivity analysis results show that an increase in temperature leads to a decrease in peak SWE as well as an increase in latent heat revealing a sensitivity of the model to air temperature. Further sensitivity analysis will help us understand more parameter uncertainty. Through obtaining more accurate and higher resolution meteorological data and applying it to a coupled hydrologic model, this study can lead to better representation of mountainous environments in all ESMs.

  6. Tunable resonant and non-resonant interactions between a phase qubit and LC resonator

    NASA Astrophysics Data System (ADS)

    Allman, Michael Shane; Whittaker, Jed D.; Castellanos-Beltran, Manuel; Cicak, Katarina; da Silva, Fabio; Defeo, Michael; Lecocq, Florent; Sirois, Adam; Teufel, John; Aumentado, Jose; Simmonds, Raymond W.

    2014-03-01

    We use a flux-biased radio frequency superconducting quantum interference device (rf SQUID) with an embedded flux-biased direct current (dc) SQUID to generate strong resonant and non-resonant tunable interactions between a phase qubit and a lumped-element resonator. The rf-SQUID creates a tunable magnetic susceptibility between the qubit and resonator providing resonant coupling rates from zero to near the ultra-strong coupling regime. By modulating the magnetic susceptibility, non-resonant parametric coupling achieves rates > 100 MHz . Nonlinearity of the magnetic susceptibility also leads to parametric coupling at subharmonics of the qubit-resonator detuning. Controllable coupling is generically important for constructing coupled-mode systems ubiquitous in physics, useful for both, quantum information architectures and quantum simulators. This work supported by NIST and NSA grant EAO140639.

  7. Real-time diamagnetic flux measurements on ASDEX Upgrade.

    PubMed

    Giannone, L; Geiger, B; Bilato, R; Maraschek, M; Odstrčil, T; Fischer, R; Fuchs, J C; McCarthy, P J; Mertens, V; Schuhbeck, K H

    2016-05-01

    Real-time diamagnetic flux measurements are now available on ASDEX Upgrade. In contrast to the majority of diamagnetic flux measurements on other tokamaks, no analog summation of signals is necessary for measuring the change in toroidal flux or for removing contributions arising from unwanted coupling to the plasma and poloidal field coil currents. To achieve the highest possible sensitivity, the diamagnetic measurement and compensation coil integrators are triggered shortly before plasma initiation when the toroidal field coil current is close to its maximum. In this way, the integration time can be chosen to measure only the small changes in flux due to the presence of plasma. Two identical plasma discharges with positive and negative magnetic field have shown that the alignment error with respect to the plasma current is negligible. The measured diamagnetic flux is compared to that predicted by TRANSP simulations. The poloidal beta inferred from the diamagnetic flux measurement is compared to the values calculated from magnetic equilibrium reconstruction codes. The diamagnetic flux measurement and TRANSP simulation can be used together to estimate the coupled power in discharges with dominant ion cyclotron resonance heating.

  8. Using a spatially-distributed hydrologic biogeochemistry model with a nitrogen transport module to study the spatial variation of carbon processes in a Critical Zone Observatory

    DOE PAGES

    Shi, Yuning; Eissenstat, David M.; He, Yuting; ...

    2018-05-12

    Terrestrial carbon processes are affected by soil moisture, soil temperature, nitrogen availability and solar radiation, among other factors. Most of the current ecosystem biogeochemistry models represent one point in space, and have limited characterization of hydrologic processes. Therefore these models can neither resolve the topographically driven spatial variability of water, energy, and nutrient, nor their effects on carbon processes. A spatially-distributed land surface hydrologic biogeochemistry model, Flux-PIHM-BGC, is developed by coupling the Biome-BGC model with a physically-based land surface hydrologic model, Flux-PIHM. In the coupled system, each Flux-PIHM model grid couples a 1-D Biome-BGC model. In addition, a topographic solarmore » radiation module and an advection-driven nitrogen transport module are added to represent the impact of topography on nutrient transport and solar energy distribution. Because Flux-PIHM is able to simulate lateral groundwater flow and represent the land surface heterogeneities caused by topography, Flux-PIHM-BGC is capable of simulating the complex interaction among water, energy, nutrient, and carbon in time and space. The Flux-PIHM-BGC model is tested at the Susquehanna/Shale Hills Critical Zone Observatory. Model results show that distributions of carbon and nitrogen stocks and fluxes are strongly affected by topography and landscape position, and tree growth is nitrogen limited. The predicted aboveground and soil carbon distributions generally agree with the macro patterns observed. Although the model underestimates the spatial variation, the predicted watershed average values are close to the observations. Lastly, the coupled Flux-PIHM-BGC model provides an important tool to study spatial variations in terrestrial carbon and nitrogen processes and their interactions with environmental factors, and to predict the spatial structure of the responses of ecosystems to climate change.« less

  9. Using a spatially-distributed hydrologic biogeochemistry model with a nitrogen transport module to study the spatial variation of carbon processes in a Critical Zone Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Yuning; Eissenstat, David M.; He, Yuting

    Terrestrial carbon processes are affected by soil moisture, soil temperature, nitrogen availability and solar radiation, among other factors. Most of the current ecosystem biogeochemistry models represent one point in space, and have limited characterization of hydrologic processes. Therefore these models can neither resolve the topographically driven spatial variability of water, energy, and nutrient, nor their effects on carbon processes. A spatially-distributed land surface hydrologic biogeochemistry model, Flux-PIHM-BGC, is developed by coupling the Biome-BGC model with a physically-based land surface hydrologic model, Flux-PIHM. In the coupled system, each Flux-PIHM model grid couples a 1-D Biome-BGC model. In addition, a topographic solarmore » radiation module and an advection-driven nitrogen transport module are added to represent the impact of topography on nutrient transport and solar energy distribution. Because Flux-PIHM is able to simulate lateral groundwater flow and represent the land surface heterogeneities caused by topography, Flux-PIHM-BGC is capable of simulating the complex interaction among water, energy, nutrient, and carbon in time and space. The Flux-PIHM-BGC model is tested at the Susquehanna/Shale Hills Critical Zone Observatory. Model results show that distributions of carbon and nitrogen stocks and fluxes are strongly affected by topography and landscape position, and tree growth is nitrogen limited. The predicted aboveground and soil carbon distributions generally agree with the macro patterns observed. Although the model underestimates the spatial variation, the predicted watershed average values are close to the observations. Lastly, the coupled Flux-PIHM-BGC model provides an important tool to study spatial variations in terrestrial carbon and nitrogen processes and their interactions with environmental factors, and to predict the spatial structure of the responses of ecosystems to climate change.« less

  10. Josephson flux-flow oscillator: The microscopic tunneling approach

    NASA Astrophysics Data System (ADS)

    Gulevich, D. R.; Koshelets, V. P.; Kusmartsev, F. V.

    2017-07-01

    We elaborate a theoretical description of large Josephson junctions which is based on Werthamer's microscopic tunneling theory. The model naturally incorporates coupling of electromagnetic radiation to the tunnel currents and, therefore, is particularly suitable for description of the self-coupling effect in Josephson junction. In our numerical calculations we treat the arising integro-differential equation, which describes temporal evolution of the superconducting phase difference coupled to the electromagnetic field, by the Odintsov-Semenov-Zorin algorithm. This allows us to avoid evaluation of the time integrals at each time step while taking into account all the memory effects. To validate the obtained microscopic model of large Josephson junction we focus our attention on the Josephson flux-flow oscillator. The proposed microscopic model of flux-flow oscillator does not involve the phenomenological damping parameter, rather the damping is taken into account naturally in the tunnel current amplitudes calculated at a given temperature. The theoretically calculated current-voltage characteristics is compared to our experimental results obtained for a set of fabricated flux-flow oscillators of different lengths.

  11. QBO Modulation of the Mesopause Gravity Wave Momentum Flux over Tierra del Fuego

    NASA Technical Reports Server (NTRS)

    De Wit, R. J.; Janches, D.; Fritts, D. C.; Hibbins, R. E.

    2016-01-01

    The interannual variability of the mesosphere and lower thermosphere (MLT) gravity wave momentum flux over southern mid latitudes (53.7degS) has been studied using more than 7 years of meteor radar observations at Ro Grande, Argentina. A modulation, with periods similar to that of the equatorial stratospheric quasi-biennial oscillation (QBO), is observed in the vertical flux of zonal as well as meridional momentum. The QBO signal is largest in the zonal component during summer and is in phase with the stratospheric QBO at 50 hPa (approx. 21 km). The relation between the stratospheric QBO and the QBO modulation in the MLT gravity wave forcing (derived from the divergence of the momentum flux) was found to be consistent with that expected from the Holton-Tan effect coupled to the interhemispheric coupling mechanism. These results provide the first observational support for the existence of the midlatitude gravity wave forcing anomalies as hypothesized in the interhemispheric coupling mechanism.

  12. Magnetohydrodynamic simulations of the ejection of a magnetic flux rope

    NASA Astrophysics Data System (ADS)

    Pagano, P.; Mackay, D. H.; Poedts, S.

    2013-06-01

    Context. Coronal mass ejections (CME's) are one of the most violent phenomena found on the Sun. One model to explain their occurrence is the flux rope ejection model. In this model, magnetic flux ropes form slowly over time periods of days to weeks. They then lose equilibrium and are ejected from the solar corona over a few hours. The contrasting time scales of formation and ejection pose a serious problem for numerical simulations. Aims: We simulate the whole life span of a flux rope from slow formation to rapid ejection and investigate whether magnetic flux ropes formed from a continuous magnetic field distribution, during a quasi-static evolution, can erupt to produce a CME. Methods: To model the full life span of magnetic flux ropes we couple two models. The global non-linear force-free field (GNLFFF) evolution model is used to follow the quasi-static formation of a flux rope. The MHD code ARMVAC is used to simulate the production of a CME through the loss of equilibrium and ejection of this flux rope. Results: We show that the two distinct models may be successfully coupled and that the flux rope is ejected out of our simulation box, where the outer boundary is placed at 2.5 R⊙. The plasma expelled during the flux rope ejection travels outward at a speed of 100 km s-1, which is consistent with the observed speed of CMEs in the low corona. Conclusions: Our work shows that flux ropes formed in the GNLFFF can lead to the ejection of a mass loaded magnetic flux rope in full MHD simulations. Coupling the two distinct models opens up a new avenue of research to investigate phenomena where different phases of their evolution occur on drastically different time scales. Movies are available in electronic form at http://www.aanda.org

  13. Kink-induced full and failed eruptions of two coupled flux tubes of the same filament

    NASA Astrophysics Data System (ADS)

    Dechev, M.; Koleva, K.; Duchlev, P.

    2018-02-01

    In this work, we report results from the study of a filament/prominence eruption on 2014 May 4. This eruption belongs to the class of rarely reported causally linked eruptions of two coupled flux tubes (FTs) of a quiet region filament. We made a comparative analysis based on multiwave observations from Solar Dynamics Observatory (SDO) and Solar Terrestrial Relations Observatory (STEREO) A and B combining the high temporal and spatial data taken from three different viewpoints. The main results of the study are as follows: (1) The source of the eruptive prominence consists of two coupled FTs located near the eastern limb: top-located one (FT1) and bottom-located one (FT2). (2) FT1 and FT2 had the same helicity, i.e. left-handed twist and writhe. Their untwisting motion during eruption suggests that kink instability seems to act. (3) The kinematic evolution of the FT1 suggests a slow successful eruption that was associated with a slow CME. (4) The FT2 exhibited failed kinked eruption with a non-radial propagation followed by its reformation. This eruption was accompanied of apparent mass draining in the legs, flare-ribbons and post-flare EUV arcade.

  14. Unidirectional Flux Balance of Monovalent Ions in Cells with Na/Na and Li/Na Exchange: Experimental and Computational Studies on Lymphoid U937 Cells

    PubMed Central

    Vereninov, Igor A.; Yurinskaya, Valentina E.; Model, Michael A.; Vereninov, Alexey A.

    2016-01-01

    Monovalent ion traffic across the cell membrane occurs via various pathways. Evaluation of individual fluxes in whole cell is hampered by their strong interdependence. This difficulty can be overcome by computational analysis of the whole cell flux balance. However, the previous computational studies disregarded ion movement of the self-exchange type. We have taken this exchange into account. The developed software allows determination of unidirectional fluxes of all monovalent ions via the major pathways both under the balanced state and during transient processes. We show how the problem of finding the rate coefficients can be solved by measurement of monovalent ion concentrations and some of the fluxes. Interdependence of fluxes due to the mandatory conditions of electroneutrality and osmotic balance and due to specific effects can be discriminated, enabling one to identify specific changes in ion transfer machinery under varied conditions. To test the effectiveness of the developed approach we made use of the fact that Li/Na exchange is known to be an analogue of the coupled Na/Na exchange. Thus, we compared the predicted and experimental data obtained on U937 cells under varied Li+ concentrations and following inhibition of the sodium pump with ouabain. We found that the coupled Na/Na exchange in U937 cells comprises a significant portion of the entire Na+ turnover. The data showed that the loading of the sodium pump by Li/Na exchange involved in the secondary active Li+ transport at 1–10 mM external Li+ is small. This result may be extrapolated to similar Li+ and Na+ flux relationships in erythrocytes and other cells in patients treated with Li+ in therapeutic doses. The developed computational approach is applicable for studying various cells and can be useful in education for demonstrating the effects of individual transporters and channels on ion gradients, cell water content and membrane potential. PMID:27159324

  15. A Mathematical Model of Solute Coupled Water Transport in Toad Intestine Incorporating Recirculation of the Actively Transported Solute

    PubMed Central

    Larsen, Erik Hviid; Sørensen, Jakob Balslev; Sørensen, Jens Nørkær

    2000-01-01

    A mathematical model of an absorbing leaky epithelium is developed for analysis of solute coupled water transport. The non-charged driving solute diffuses into cells and is pumped from cells into the lateral intercellular space (lis). All membranes contain water channels with the solute passing those of tight junction and interspace basement membrane by convection-diffusion. With solute permeability of paracellular pathway large relative to paracellular water flow, the paracellular flux ratio of the solute (influx/outflux) is small (2–4) in agreement with experiments. The virtual solute concentration of fluid emerging from lis is then significantly larger than the concentration in lis. Thus, in absence of external driving forces the model generates isotonic transport provided a component of the solute flux emerging downstream lis is taken up by cells through the serosal membrane and pumped back into lis, i.e., the solute would have to be recirculated. With input variables from toad intestine (Nedergaard, S., E.H. Larsen, and H.H. Ussing, J. Membr. Biol. 168:241–251), computations predict that 60–80% of the pumped flux stems from serosal bath in agreement with the experimental estimate of the recirculation flux. Robust solutions are obtained with realistic concentrations and pressures of lis, and with the following features. Rate of fluid absorption is governed by the solute permeability of mucosal membrane. Maximum fluid flow is governed by density of pumps on lis-membranes. Energetic efficiency increases with hydraulic conductance of the pathway carrying water from mucosal solution into lis. Uphill water transport is accomplished, but with high hydraulic conductance of cell membranes strength of transport is obscured by water flow through cells. Anomalous solvent drag occurs when back flux of water through cells exceeds inward water flux between cells. Molecules moving along the paracellular pathway are driven by a translateral flow of water, i.e., the model generates pseudo-solvent drag. The associated flux-ratio equation is derived. PMID:10919860

  16. Large dimensions and small curvatures from supersymmetric brane back-reaction

    NASA Astrophysics Data System (ADS)

    Burgess, C. P.; van Nierop, L.

    2011-04-01

    We compute the back-reaction of pairs of codimension-two branes within an explicit flux-stabilized compactification, to trace how its properties depend on the parameters that define the brane-bulk couplings. Both brane tension and magnetic couplings to the stabilizing flux play an important role in the resulting dynamics, with the magnetic coupling allowing some of the flux to be localized on the branes (thus changing the flux-quantization conditions). We find that back-reaction lifts the classical flat directions of the bulk supergravity, and we calculate both the scalar potential and changes to the extra-dimensional and on-brane geometries that result, as functions of the assumed brane couplings. When linearized about simple rugby-ball geometries the resulting solutions allow a systematic exploration of the system's response. Several of the systems we explore have remarkable properties. Among these are a propensity for the extra dimensions to stabilize at exponentially large sizes, providing a mechanism for generating extremely large volumes. In some circumstances the brane-dilaton coupling allows the bulk dilaton to adjust to suppress the on-brane curvature parametrically below the change in brane tension, potentially providing a mechanism for reducing the vacuum energy. We explore the stability of this suppression to quantum effects in the case where their strength is controlled by the value of the field along the classical flat direction, and find it can (but need not) be stable.

  17. The Martian climate: Energy balance models with CO2/H2O atmospheres

    NASA Technical Reports Server (NTRS)

    Hoffert, M. I.

    1985-01-01

    Coupled equations are developed for mass and heat transport in a seasonal Mars model with condensation and sublimation of CO2 at the polar caps. Topics covered include physical considerations of planetary as mass and energy balance; effects of phase changes at the surface on mass and heat flux; atmospheric transport and governing equations; and numerical analysis.

  18. Weak coupling limit of F-theory models with MSSM spectrum and massless U(1)'s

    NASA Astrophysics Data System (ADS)

    Mayorga Peña, Damián Kaloni; Valandro, Roberto

    2018-03-01

    We consider the Sen limit of several global F-theory compactifications, some of which exhibit an MSSM-like spectrum. We show that these indeed have a consistent limit where they can be viewed as resulting from an intersecting brane configuration in type IIB. We discuss the match of the fluxes and the chiral spectrum in detail. We find that some D5-tadpole canceling gauge fluxes do not lift to harmonic vertical four-form fluxes in the resolved F-theory manifold. We discuss the connection between splitting of curves at weak coupling and remnant discrete symmetries.

  19. Weakly-tunable transmon qubits in a multi-qubit architecture

    NASA Astrophysics Data System (ADS)

    Hertzberg, Jared; Bronn, Nicholas; Corcoles, Antonio; Brink, Markus; Keefe, George; Takita, Maika; Hutchings, M.; Plourde, B. L. T.; Gambetta, Jay; Chow, Jerry

    Quantum error-correction employing a 2D lattice of qubits requires a strong coupling between adjacent qubits and consistently high gate fidelity among them. In such a system, all-microwave cross-resonance gates offer simplicity of setup and operation. However, the relative frequencies of adjacent qubits must be carefully arranged in order to optimize gate rates and eliminate unwanted couplings. We discuss the incorporation of weakly-flux-tunable transmon qubits into such an architecture. Using DC tuning through filtered flux-bias lines, we adjust qubit frequencies while minimizing the effects of flux noise on decoherence.

  20. Exchangers man the pumps: Functional interplay between proton pumps and proton-coupled Ca exchangers.

    PubMed

    Barkla, Bronwyn J; Hirschi, Kendal D; Pittman, Jon K

    2008-05-01

    Tonoplast-localised proton-coupled Ca(2+) transporters encoded by cation/H(+)exchanger (CAX) genes play a critical role in sequestering Ca(2+) into the vacuole. These transporters may function in coordination with Ca(2+) release channels, to shape stimulus-induced cytosolic Ca(2+) elevations. Recent analysis of Arabidopsis CAX knockout mutants, particularly cax1 and cax3, identified a variety of phenotypes including sensitivity to abiotic stresses, which indicated that these transporters might play a role in mediating the plant's stress response. A common feature of these mutants was the perturbation of H(+)-ATPase activity at both the tonoplast and the plasma membrane, suggesting a tight interplay between the Ca(2+)/H(+) exchangers and H(+) pumps. We speculate that indirect regulation of proton flux by the exchangers may be as important as the direct regulation of Ca(2+) flux. These results suggest cautious interpretation of mutant Ca(2+)/H(+) exchanger phenotypes that may be due to either perturbed Ca(2+) or H(+) transport.

  1. Verification of ARES transport code system with TAKEDA benchmarks

    NASA Astrophysics Data System (ADS)

    Zhang, Liang; Zhang, Bin; Zhang, Penghe; Chen, Mengteng; Zhao, Jingchang; Zhang, Shun; Chen, Yixue

    2015-10-01

    Neutron transport modeling and simulation are central to many areas of nuclear technology, including reactor core analysis, radiation shielding and radiation detection. In this paper the series of TAKEDA benchmarks are modeled to verify the critical calculation capability of ARES, a discrete ordinates neutral particle transport code system. SALOME platform is coupled with ARES to provide geometry modeling and mesh generation function. The Koch-Baker-Alcouffe parallel sweep algorithm is applied to accelerate the traditional transport calculation process. The results show that the eigenvalues calculated by ARES are in excellent agreement with the reference values presented in NEACRP-L-330, with a difference less than 30 pcm except for the first case of model 3. Additionally, ARES provides accurate fluxes distribution compared to reference values, with a deviation less than 2% for region-averaged fluxes in all cases. All of these confirms the feasibility of ARES-SALOME coupling and demonstrate that ARES has a good performance in critical calculation.

  2. CLIVAR-GSOP/GODAE Ocean Synthesis Inter-Comparison of Global Air-Sea Fluxes From Ocean and Coupled Reanalyses

    NASA Astrophysics Data System (ADS)

    Valdivieso, Maria

    2014-05-01

    The GODAE OceanView and CLIVAR-GSOP ocean synthesis program has been assessing the degree of consistency between global air-sea flux data sets obtained from ocean or coupled reanalyses (Valdivieso et al., 2014). So far, fifteen global air-sea heat flux products obtained from ocean or coupled reanalyses have been examined: seven are from low-resolution ocean reanalyses (BOM PEODAS, ECMWF ORAS4, JMA/MRI MOVEG2, JMA/MRI MOVECORE, Hamburg Univ. GECCO2, JPL ECCOv4, and NCEP GODAS), five are from eddy-permitting ocean reanalyses developed as part of the EU GMES MyOcean program (Mercator GLORYS2v1, Reading Univ. UR025.3, UR025.4, UKMO GloSea5, and CMCC C-GLORS), and the remaining three are couple reanalyses based on coupled climate models (JMA/MRI MOVE-C, GFDL ECDA and NCEP CFSR). The global heat closure in the products over the period 1993-2009 spanned by all data sets is presented in comparison with observational and atmospheric reanalysis estimates. Then, global maps of ensemble spread in the seasonal cycle, and of the Signal to Noise Ratio of interannual flux variability over the 17-yr common period are shown to illustrate the consistency between the products. We have also studied regional variability in the products, particularly at the OceanSITES project locations (such as, for instance, the TAO/TRITON and PIRATA arrays in the Tropical Pacific and Atlantic, respectively). Comparisons are being made with other products such as OAFlux latent and sensible heat fluxes (Yu et al., 2008) combined with ISCCP satellite-based radiation (Zhang et al., 2004), the ship-based NOC2.0 product (Berry and Kent, 2009), the Large and Yeager (2009) hybrid flux dataset CORE.2, and two atmospheric reanalysis products, the ECMWF ERA-Interim reanalysis (referred to as ERAi, Dee et al., 2011) and the NCEP/DOE reanalysis R2 (referred to as NCEP-R2, Kanamitsu et al., 2002). Preliminary comparisons with the observational flux products from OceanSITES are also underway. References Berry, D.I. and E.C. Kent (2009), A New Air-Sea Interaction Gridded Dataset from ICOADS with Uncertainty Estimates. Bull. Amer. Meteor. Soc 90(5), 645-656. doi: 10.1175/2008BAMS2639.1. Dee, D. P. et al. (2011), The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q.J.R. Meteorol. Soc., 137: 553-597. doi: 10.1002/qj.828. Kanamitsu M., Ebitsuzaki W., Woolen J., Yang S.K., Hnilo J.J., Fiorino M., Potter G. (2002), NCEP-DOE AMIP-II reanalysis (R-2). Bull. Amer. Meteor. Soc., 83:1631-1643. Large, W. and Yeager, S. (2009), The global climatology of an interannually varying air-sea flux data set. Clim. Dynamics, Volume 33, pp 341-364 Valdivieso, M. and co-authors (2014): Heat fluxes from ocean and coupled reanalyses, Clivar Exchanges. Issue 64. Yu, L., X. Jin, and R. A. Weller (2008), Multidecade Global Flux Datasets from the Objectively Analyzed Air-sea Fluxes (OAFlux) Project: Latent and Sensible Heat Fluxes, Ocean Evaporation, and Related Surface Meteorological Variables. Technical Report OAFlux Project (OA2008-01), Woods Hole Oceanographic Institution. Zhang, Y., WB Rossow, AA Lacis, V Oinas, MI Mishchenk (2004), Calculation of radiative fluxes from the surface to top of atmsophere based on ISCCP and other global data sets. Journal of Geophysical Research: Atmospheres (1984-2012) 109 (D19).

  3. Metabolic analysis of adaptive evolution for in silico-designed lactate-producing strains.

    PubMed

    Hua, Qiang; Joyce, Andrew R; Fong, Stephen S; Palsson, Bernhard Ø

    2006-12-05

    Experimental evolution is now frequently applied to many biological systems to achieve desired objectives. To obtain optimized performance for metabolite production, a successful strategy has been recently developed that couples metabolic engineering techniques with laboratory evolution of microorganisms. Previously, we reported the growth characteristics of three lactate-producing, adaptively evolved Escherichia coli mutant strains designed by the OptKnock computational algorithm. Here, we describe the use of (13)C-labeled experiments and mass distribution measurements to study the evolutionary effects on the fluxome of these differently designed strains. Metabolic flux ratios and intracellular flux distributions as well as physiological data were used to elucidate metabolic responses over the course of adaptive evolution and metabolic differences among strains. The study of 3 unevolved and 12 evolved engineered strains as well as a wild-type strain suggests that evolution resulted in remarkable improvements in both substrate utilization rate and the proportion of glycolytic flux to total glucose utilization flux. Among three strain designs, the most significant increases in the fraction of glucose catabolized through glycolysis (>50%) and the glycolytic fluxes (>twofold) were observed in phosphotransacetylase and phosphofructokinase 1 (PFK1) double deletion (pta- pfkA) strains, which were likely attributed to the dramatic evolutionary increase in gene expression and catalytic activity of the minor PFK encoded by pfkB. These fluxomic studies also revealed the important role of acetate synthetic pathway in anaerobic lactate production. Moreover, flux analysis suggested that independent of genetic background, optimal relative flux distributions in cells could be achieved faster than physiological parameters such as nutrient utilization rate. (c) 2006 Wiley Periodicals, Inc.

  4. Moistening of the northern North American Great Plains enhances land-atmosphere coupling

    NASA Astrophysics Data System (ADS)

    Gerken, T.; Bromley, G. T.; Stoy, P. C.

    2017-12-01

    Land use change impacts planetary boundary layer processes and regional climate by altering the magnitude and timing of water and energy flux into the atmosphere. In the North American Great Plains (NGP), a decline in the practice of summer fallow on the order of 20 Mha from the 1970s until the present has coincided with a decrease in summertime radiative forcing, on the order of 6 W m-2. MERRA 2 (Modern-Era Retrospective analysis for Research and Applications) for the area near Fort Peck, Montana, (a FLUXNET site established in 2000) shows a decrease of summertime (June-August) sensible heat fluxes ranging from -3.6 to -8.5 W m-2 decade-1, associated with an increase of latent heat fluxes (5.2-9.1 W m-2 decade-1) since the 1980s. Net radiation changed little. The result was a strong decrease of summer Bowen ratios from 1.5-2 in 1980 to approximately 1 in 2015. Findings are consistent with the effects on increased summertime evapotranspiration due to reduction in summer fallow that should lead to smaller Bowen ratios and a larger build-up of moist static energy. We use a mixed-layer (ML) atmospheric modeling framework to further investigate the impact of the surface energy balance on convective development and local land-atmosphere coupling in the NGP. Using summertime eddy covariance data from Fort Peck and atmospheric soundings from the nearby Glasgow airport, we compare the development of modeled ML and lifted condensation level (LCL) to find times of ML exceeding LCL, a necessary but not sufficient condition for the occurrence of convective precipitation. We establish that the ML model adequately captures ML heights and timing of locally triggered convection at the site and that there is a c. 10% increase in modeled convection permitting conditions today compared to 1975-85 in response to ML-moistening and decreasing Bo. We find that growing season land-atmosphere coupling develops from wet preference in May to dry coupling in July and atmospheric suppression of convection in September, highlighting the importance of subseasonal dynamics for precipitation. The approach is extended to the regional scale using fluxes and profiles from MERRA2 to establish the exact nature or land-atmosphere coupling associated with moistening of the atmospheric boundary-layer for the NGP region.

  5. Effect of Global Warming and Increased Freshwater Flux on Northern Hemispheric Cooling

    NASA Astrophysics Data System (ADS)

    Girihagama, L. N.; Nof, D.

    2016-02-01

    We wish to answer the, fairly complicated, question of whether global warming and an increased freshwater flux can cause Northern Hemispheric warming or cooling. Starting from the assumption that the ocean is the primary source of variability in the Northern hemispheric ocean-atmosphere coupled system, we employed a simple non-linear one-dimensional coupled ocean-atmosphere model. The simplicity of the model allows us to analytically predict the evolution of many dynamical variables of interest such as, the strength of the Atlantic Meridional overturning circulation (AMOC), temperatures of the ocean and atmosphere, mass transports, salinity, and ocean-atmosphere heat fluxes. The model results show that a reduced AMOC transport due to an increased freshwater flux causes cooling in both the atmosphere and ocean in the North Atlantic (NA) deep-water formation region. Cooling in both the ocean and atmosphere can cause reduction of the ocean-atmosphere temperature difference, which in turn reduces heat fluxes in both the ocean and atmosphere. For present day climate parameters, the calculated critical freshwater flux needed to arrest AMOC is 0.08 Sv. For a constant atmospheric zonal flow, there is minimal reduction in the AMOC strength, as well as minimal warming of the ocean and atmosphere. This model provides a conceptual framework for a dynamically sound response of the ocean and atmosphere to AMOC variability as a function of increased freshwater flux. The results are qualitatively consistent with numerous realistic coupled numerical models of varying complexity.

  6. Impact of Land Model Calibration on Coupled Land-Atmosphere Prediction

    NASA Technical Reports Server (NTRS)

    Santanello, Joseph A., Jr.; Kumar, Sujay V.; Peters-Lidard, Christa D.; Harrison, Ken; Zhou, Shujia

    2012-01-01

    Land-atmosphere (L-A) interactions play a critical role in determining the diurnal evolution of both planetary boundary layer (PBL) and land surface heat and moisture budgets, as well as controlling feedbacks with clouds and precipitation that lead to the persistence of dry and wet regimes. Recent efforts to quantify the strength of L-A coupling in prediction models have produced diagnostics that integrate across both the land and PBL components of the system. In this study, we examine the impact of improved specification of land surface states, anomalies, and fluxes on coupled WRF forecasts during the summers of extreme dry and wet land surface conditions in the U.S. Southern Great Plains. The improved land initialization and surface flux parameterizations are obtained through calibration of the Noah land surface model using the new optimization and uncertainty estimation subsystem in NASA's Land Information System (LIS-OPT/UE). The impact of the calibration on the a) spinup of the land surface used as initial conditions, and b) the simulated heat and moisture states and fluxes of the coupled WRF simulations is then assessed. Changes in ambient weather and land-atmosphere coupling are evaluated along with measures of uncertainty propagation into the forecasts. In addition, the sensitivity of this approach to the period of calibration (dry, wet, average) is investigated. Results indicate that the offline calibration leads to systematic improvements in land-PBL fluxes and near-surface temperature and humidity, and in the process provide guidance on the questions of what, how, and when to calibrate land surface models for coupled model prediction.

  7. Coupled multi-group neutron photon transport for the simulation of high-resolution gamma-ray spectroscopy applications

    NASA Astrophysics Data System (ADS)

    Burns, Kimberly Ann

    The accurate and efficient simulation of coupled neutron-photon problems is necessary for several important radiation detection applications. Examples include the detection of nuclear threats concealed in cargo containers and prompt gamma neutron activation analysis for nondestructive determination of elemental composition of unknown samples. In these applications, high-resolution gamma-ray spectrometers are used to preserve as much information as possible about the emitted photon flux, which consists of both continuum and characteristic gamma rays with discrete energies. Monte Carlo transport is the most commonly used modeling tool for this type of problem, but computational times for many problems can be prohibitive. This work explores the use of coupled Monte Carlo-deterministic methods for the simulation of neutron-induced photons for high-resolution gamma-ray spectroscopy applications. RAdiation Detection Scenario Analysis Toolbox (RADSAT), a code which couples deterministic and Monte Carlo transport to perform radiation detection scenario analysis in three dimensions [1], was used as the building block for the methods derived in this work. RADSAT was capable of performing coupled deterministic-Monte Carlo simulations for gamma-only and neutron-only problems. The purpose of this work was to develop the methodology necessary to perform coupled neutron-photon calculations and add this capability to RADSAT. Performing coupled neutron-photon calculations requires four main steps: the deterministic neutron transport calculation, the neutron-induced photon spectrum calculation, the deterministic photon transport calculation, and the Monte Carlo detector response calculation. The necessary requirements for each of these steps were determined. A major challenge in utilizing multigroup deterministic transport methods for neutron-photon problems was maintaining the discrete neutron-induced photon signatures throughout the simulation. Existing coupled neutron-photon cross-section libraries and the methods used to produce neutron-induced photons were unsuitable for high-resolution gamma-ray spectroscopy applications. Central to this work was the development of a method for generating multigroup neutron-photon cross-sections in a way that separates the discrete and continuum photon emissions so the neutron-induced photon signatures were preserved. The RADSAT-NG cross-section library was developed as a specialized multigroup neutron-photon cross-section set for the simulation of high-resolution gamma-ray spectroscopy applications. The methodology and cross sections were tested using code-to-code comparison with MCNP5 [2] and NJOY [3]. A simple benchmark geometry was used for all cases compared with MCNP. The geometry consists of a cubical sample with a 252Cf neutron source on one side and a HPGe gamma-ray spectrometer on the opposing side. Different materials were examined in the cubical sample: polyethylene (C2H4), P, N, O, and Fe. The cross sections for each of the materials were compared to cross sections collapsed using NJOY. Comparisons of the volume-averaged neutron flux within the sample, volume-averaged photon flux within the detector, and high-purity gamma-ray spectrometer response (only for polyethylene) were completed using RADSAT and MCNP. The code-to-code comparisons show promising results for the coupled Monte Carlo-deterministic method. The RADSAT-NG cross-section production method showed good agreement with NJOY for all materials considered although some additional work is needed in the resonance region and in the first and last energy bin. Some cross section discrepancies existed in the lowest and highest energy bin, but the overall shape and magnitude of the two methods agreed. For the volume-averaged photon flux within the detector, typically the five most intense lines agree to within approximately 5% of the MCNP calculated flux for all of materials considered. The agreement in the code-to-code comparisons cases demonstrates a proof-of-concept of the method for use in RADSAT for coupled neutron-photon problems in high-resolution gamma-ray spectroscopy applications. One of the primary motivators for using the coupled method over pure Monte Carlo method is the potential for significantly lower computational times. For the code-to-code comparison cases, the run times for RADSAT were approximately 25--500 times shorter than for MCNP, as shown in Table 1. This was assuming a 40 mCi 252Cf neutron source and 600 seconds of "real-world" measurement time. The only variance reduction technique implemented in the MCNP calculation was forward biasing of the source toward the sample target. Improved MCNP runtimes could be achieved with the addition of more advanced variance reduction techniques.

  8. Skin Temperature Analysis and Bias Correction in a Coupled Land-Atmosphere Data Assimilation System

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael G.; Radakovich, Jon D.; daSilva, Arlindo; Todling, Ricardo; Verter, Frances

    2006-01-01

    In an initial investigation, remotely sensed surface temperature is assimilated into a coupled atmosphere/land global data assimilation system, with explicit accounting for biases in the model state. In this scheme, an incremental bias correction term is introduced in the model's surface energy budget. In its simplest form, the algorithm estimates and corrects a constant time mean bias for each gridpoint; additional benefits are attained with a refined version of the algorithm which allows for a correction of the mean diurnal cycle. The method is validated against the assimilated observations, as well as independent near-surface air temperature observations. In many regions, not accounting for the diurnal cycle of bias caused degradation of the diurnal amplitude of background model air temperature. Energy fluxes collected through the Coordinated Enhanced Observing Period (CEOP) are used to more closely inspect the surface energy budget. In general, sensible heat flux is improved with the surface temperature assimilation, and two stations show a reduction of bias by as much as 30 Wm(sup -2) Rondonia station in Amazonia, the Bowen ratio changes direction in an improvement related to the temperature assimilation. However, at many stations the monthly latent heat flux bias is slightly increased. These results show the impact of univariate assimilation of surface temperature observations on the surface energy budget, and suggest the need for multivariate land data assimilation. The results also show the need for independent validation data, especially flux stations in varied climate regimes.

  9. Simulation of high-energy radiation belt electron fluxes using NARMAX-VERB coupled codes

    PubMed Central

    Pakhotin, I P; Drozdov, A Y; Shprits, Y Y; Boynton, R J; Subbotin, D A; Balikhin, M A

    2014-01-01

    This study presents a fusion of data-driven and physics-driven methodologies of energetic electron flux forecasting in the outer radiation belt. Data-driven NARMAX (Nonlinear AutoRegressive Moving Averages with eXogenous inputs) model predictions for geosynchronous orbit fluxes have been used as an outer boundary condition to drive the physics-based Versatile Electron Radiation Belt (VERB) code, to simulate energetic electron fluxes in the outer radiation belt environment. The coupled system has been tested for three extended time periods totalling several weeks of observations. The time periods involved periods of quiet, moderate, and strong geomagnetic activity and captured a range of dynamics typical of the radiation belts. The model has successfully simulated energetic electron fluxes for various magnetospheric conditions. Physical mechanisms that may be responsible for the discrepancies between the model results and observations are discussed. PMID:26167432

  10. Coupling of the coronal helium abundance to the solar wind

    NASA Technical Reports Server (NTRS)

    Hansteen, Viggo H.; Leer, Egil; Holzer, Thomas E.

    1994-01-01

    Models of the transition region-corona-solar wind system are investigated in order to find the coronal helium abundance and to study the role played by coronal helium in controlling the solar wind proton flux. The thermal force on alpha-particles in the transition region sets the flow of helium into the corona. The frictional coupling between alpha-particles and protons and/or the electric polarization field determines the proton flux in the solar wind as well as the fate of the coronal helium content. The models are constructed by solving the time-dependent population and momentum equations for all species of hydrogen and helium in an atmosphere with a given temperature profile. Several temperature profiles are considered in order to very the roles of frictional coupling and electric polarization field in the solar wind, and the thermal force in the transition region. Steady-state solutions are found for coronae with a hydrogen flux at 1 AU of 1.0 x 10(exp 9)/cm(exp 2)/sec or larger. For coronae with lower hydrogen fluxes, the helium flux into the corona is larger than the flux 'pulled out' by the solar wind protons, and solutions with increasing coronal helium content are found. The timescale for forming a helium-filled corona, that may allow for a steady outflow, is long compared to the mixing time for the corona.

  11. Air-Sea Heat Flux Transfer for MJO Initiation Processes during DYNAMO/CINDY2011 in Extended-Range Forecasts

    NASA Astrophysics Data System (ADS)

    Hong, X.; Reynolds, C. A.; Doyle, J. D.

    2016-12-01

    In this study, two-sets of monthly forecasts for the period during the Dynamics of Madden-Julian Oscillation (MJO)/Cooperative Indian Ocean Experiment of Intraseasonal Variability (DAYNAMO/CINDY) in November 2011 are examined. Each set includes three forecasts with the first set from Navy Global Environmental Model (NAVGEM) and the second set from Navy's non-hydrostatic Coupled Ocean-Atmosphere Mesoscale Prediction System (COAMPS®1). Three NAVGEM monthly forecasts have used sea surface temperature (SST) from persistent at the initial time, from Navy Coupled Ocean Data Assimilation (NCODA) analysis, and from coupled NAVGEM-Hybrid Coordinate Ocean Model (HYCOM) forecasts. Examination found that NAVGEM can predict the MJO at 20-days lead time using SST from analysis and from coupled NAVGEM-HYCOM but cannot predict the MJO using the persistent SST, in which a clear circumnavigating signal is absent. Three NAVGEM monthly forecasts are then applied as lateral boundary conditions for three COAMPS monthly forecasts. The results show that all COAMPS runs, including using lateral boundary conditions from the NAVGEM that is without the MJO signal, can predict the MJO. Vertically integrated moisture anomaly and 850-hPa wind anomaly in all COAMPS runs have indicated strong anomalous equatorial easterlies associated with Rossby wave prior to the MJO initiation. Strong surface heat fluxes and turbulence kinetic energy have promoted the convective instability and triggered anomalous ascending motion, which deepens moist boundary layer and develops deep convection into the upper troposphere to form the MJO phase. The results have suggested that air-sea interaction process is important for the initiation and development of the MJO. 1COAMPS® is a registered trademark of the Naval Research Laboratory

  12. Overview of the 2013 FireFlux II grass fire field experiment

    Treesearch

    C.B. Clements; B. Davis; D. Seto; J. Contezac; A. Kochanski; J.-B. Fillipi; N. Lareau; B. Barboni; B. Butler; S. Krueger; R. Ottmar; R. Vihnanek; W.E. Heilman; J. Flynn; M.A. Jenkins; J. Mandel; C. Teske; D. Jimenez; J. O' Brien; B. Lefer

    2014-01-01

    In order to better understand the dynamics of fire-atmosphere interactions and the role of micrometeorology on fire behaviour the FireFlux campaign was conducted in 2006 on a coastal tall-grass prairie in southeast Texas, USA. The FireFlux campaign dataset has become the international standard for evaluating coupled fire-atmosphere model systems. While FireFlux is one...

  13. Automated Video-Based Analysis of Contractility and Calcium Flux in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes Cultured over Different Spatial Scales.

    PubMed

    Huebsch, Nathaniel; Loskill, Peter; Mandegar, Mohammad A; Marks, Natalie C; Sheehan, Alice S; Ma, Zhen; Mathur, Anurag; Nguyen, Trieu N; Yoo, Jennie C; Judge, Luke M; Spencer, C Ian; Chukka, Anand C; Russell, Caitlin R; So, Po-Lin; Conklin, Bruce R; Healy, Kevin E

    2015-05-01

    Contractile motion is the simplest metric of cardiomyocyte health in vitro, but unbiased quantification is challenging. We describe a rapid automated method, requiring only standard video microscopy, to analyze the contractility of human-induced pluripotent stem cell-derived cardiomyocytes (iPS-CM). New algorithms for generating and filtering motion vectors combined with a newly developed isogenic iPSC line harboring genetically encoded calcium indicator, GCaMP6f, allow simultaneous user-independent measurement and analysis of the coupling between calcium flux and contractility. The relative performance of these algorithms, in terms of improving signal to noise, was tested. Applying these algorithms allowed analysis of contractility in iPS-CM cultured over multiple spatial scales from single cells to three-dimensional constructs. This open source software was validated with analysis of isoproterenol response in these cells, and can be applied in future studies comparing the drug responsiveness of iPS-CM cultured in different microenvironments in the context of tissue engineering.

  14. Suppression of activation energy and superconductivity by the addition of Al{sub 2}O{sub 3} nanoparticles in CuTl-1223 matrix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jabbar, Abdul; Qasim, Irfan; Mumtaz, M.

    2014-05-28

    Low anisotropic (Cu{sub 0.5}Tl{sub 0.5})Ba{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10−δ} (CuTl-1223) high T{sub c} superconducting matrix was synthesized by solid-state reaction and Al{sub 2}O{sub 3} nanoparticles were prepared separately by co-precipitation method. Al{sub 2}O{sub 3} nanoparticles were added with different concentrations during the final sintering cycle of CuTl-1223 superconducting matrix to get the required (Al{sub 2}O{sub 3}){sub y}/CuTl-1223, y = 0.0, 0.5, 0.7, 1.0, and 1.5 wt. %, composites. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy, energy dispersive X-ray, and dc-resistivity (ρ) measurements. The activation energy and superconductivity were suppressed with increasing concentration of Al{sub 2}O{sub 3} nanoparticles in (CuTl-1223) matrix.more » The XRD analysis showed that the addition of Al{sub 2}O{sub 3} nanoparticles did not affect the crystal structure of the parent CuTl-1223 superconducting phase. The suppression of activation energy and superconducting properties is most probably due to weak flux pinning in the samples. The possible reason of weak flux pinning is reduction of weak links and enhanced inter-grain coupling due to the presence of Al{sub 2}O{sub 3} nanoparticles at the grain boundaries. The presence of Al{sub 2}O{sub 3} nanoparticles at the grain boundaries possibly reduced the number of flux pinning centers, which were present in the form of weak links in the pure CuTl-1223 superconducting matrix. The increase in the values of inter-grain coupling (α) deduced from the fluctuation induced conductivity analysis with the increased concentration of Al{sub 2}O{sub 3} nanoparticles is a theoretical evidence of improved inter-grain coupling.« less

  15. Strong coupling in electromechanical computation

    NASA Astrophysics Data System (ADS)

    Füzi, János

    2000-06-01

    A method is presented to carry out simultaneously electromagnetic field and force computation, electrical circuit analysis and mechanical computation to simulate the dynamic operation of electromagnetic actuators. The equation system is solved by a predictor-corrector scheme containing a Powell error minimization algorithm which ensures that every differential equation (coil current, field strength rate, flux rate, speed of the keeper) is fulfilled within the same time step.

  16. Evolution of Earth-like Extrasolar Planetary Atmospheres: Assessing the Atmospheres and Biospheres of Early Earth Analog Planets with a Coupled Atmosphere Biogeochemical Model

    NASA Astrophysics Data System (ADS)

    Gebauer, S.; Grenfell, J. L.; Stock, J. W.; Lehmann, R.; Godolt, M.; von Paris, P.; Rauer, H.

    2017-01-01

    Understanding the evolution of Earth and potentially habitable Earth-like worlds is essential to fathom our origin in the Universe. The search for Earth-like planets in the habitable zone and investigation of their atmospheres with climate and photochemical models is a central focus in exoplanetary science. Taking the evolution of Earth as a reference for Earth-like planets, a central scientific goal is to understand what the interactions were between atmosphere, geology, and biology on early Earth. The Great Oxidation Event in Earth's history was certainly caused by their interplay, but the origin and controlling processes of this occurrence are not well understood, the study of which will require interdisciplinary, coupled models. In this work, we present results from our newly developed Coupled Atmosphere Biogeochemistry model in which atmospheric O2 concentrations are fixed to values inferred by geological evidence. Applying a unique tool (Pathway Analysis Program), ours is the first quantitative analysis of catalytic cycles that governed O2 in early Earth's atmosphere near the Great Oxidation Event. Complicated oxidation pathways play a key role in destroying O2, whereas in the upper atmosphere, most O2 is formed abiotically via CO2 photolysis. The O2 bistability found by Goldblatt et al. (2006) is not observed in our calculations likely due to our detailed CH4 oxidation scheme. We calculate increased CH4 with increasing O2 during the Great Oxidation Event. For a given atmospheric surface flux, different atmospheric states are possible; however, the net primary productivity of the biosphere that produces O2 is unique. Mixing, CH4 fluxes, ocean solubility, and mantle/crust properties strongly affect net primary productivity and surface O2 fluxes. Regarding exoplanets, different "states" of O2 could exist for similar biomass output. Strong geological activity could lead to false negatives for life (since our analysis suggests that reducing gases remove O2 that masks its biosphere over a wide range of conditions).

  17. Evolution of Earth-like Extrasolar Planetary Atmospheres: Assessing the Atmospheres and Biospheres of Early Earth Analog Planets with a Coupled Atmosphere Biogeochemical Model.

    PubMed

    Gebauer, S; Grenfell, J L; Stock, J W; Lehmann, R; Godolt, M; von Paris, P; Rauer, H

    2017-01-01

    Understanding the evolution of Earth and potentially habitable Earth-like worlds is essential to fathom our origin in the Universe. The search for Earth-like planets in the habitable zone and investigation of their atmospheres with climate and photochemical models is a central focus in exoplanetary science. Taking the evolution of Earth as a reference for Earth-like planets, a central scientific goal is to understand what the interactions were between atmosphere, geology, and biology on early Earth. The Great Oxidation Event in Earth's history was certainly caused by their interplay, but the origin and controlling processes of this occurrence are not well understood, the study of which will require interdisciplinary, coupled models. In this work, we present results from our newly developed Coupled Atmosphere Biogeochemistry model in which atmospheric O 2 concentrations are fixed to values inferred by geological evidence. Applying a unique tool (Pathway Analysis Program), ours is the first quantitative analysis of catalytic cycles that governed O 2 in early Earth's atmosphere near the Great Oxidation Event. Complicated oxidation pathways play a key role in destroying O 2 , whereas in the upper atmosphere, most O 2 is formed abiotically via CO 2 photolysis. The O 2 bistability found by Goldblatt et al. ( 2006 ) is not observed in our calculations likely due to our detailed CH 4 oxidation scheme. We calculate increased CH 4 with increasing O 2 during the Great Oxidation Event. For a given atmospheric surface flux, different atmospheric states are possible; however, the net primary productivity of the biosphere that produces O 2 is unique. Mixing, CH 4 fluxes, ocean solubility, and mantle/crust properties strongly affect net primary productivity and surface O 2 fluxes. Regarding exoplanets, different "states" of O 2 could exist for similar biomass output. Strong geological activity could lead to false negatives for life (since our analysis suggests that reducing gases remove O 2 that masks its biosphere over a wide range of conditions). Key Words: Early Earth-Proterozoic-Archean-Oxygen-Atmosphere-Biogeochemistry-Photochemistry-Biosignatures-Earth-like planets. Astrobiology 16, 27-54.

  18. FIBER AND INTEGRATED OPTICS: Influence of diffraction-induced emission of light on resonant conversion of surface waves in diffraction-coupled optical waveguides

    NASA Astrophysics Data System (ADS)

    Kiselev, V. A.; Shaposhnikov, S. N.

    1989-09-01

    An investigation is reported of diffraction-induced emission of surface waves under conditions of resonant transfer of light between different regular and corrugated waveguides. It is shown that the part of the emitted light flux carried by surface waves along diffraction-coupled waveguides depends strongly on the ratio of the effective refractive indices of the guides. The dependences of the optical coupling length and of the corresponding emitted light flux on the distance between the waveguides and on the difference between their refractive indices are given.

  19. Advancement in Watershed Modelling Using Dynamic Lateral and Longitudinal Sediment (Dis)connectivity Prediction

    NASA Astrophysics Data System (ADS)

    Mahoney, D. T.; al Aamery, N. M. H.; Fox, J.

    2017-12-01

    The authors find that sediment (dis)connectivity has seldom taken precedence within watershed models, and the present study advances this modeling framework and applies the modeling within a bedrock-controlled system. Sediment (dis)connectivity, defined as the detachment and transport of sediment from source to sink between geomorphic zones, is a major control on sediment transport. Given the availability of high resolution geospatial data, coupling sediment connectivity concepts within sediment prediction models offers an approach to simulate sediment sources and pathways within a watershed's sediment cascade. Bedrock controlled catchments are potentially unique due to the presence of rock outcrops causing longitudinal impedance to sediment transport pathways in turn impacting the longitudinal distribution of the energy gradient responsible for conveying sediment. Therefore, the authors were motivated by the need to formulate a sediment transport model that couples sediment (dis)connectivity knowledge to predict sediment flux for bedrock controlled catchments. A watershed-scale sediment transport model was formulated that incorporates sediment (dis)connectivity knowledge collected via field reconnaissance and predicts sediment flux through coupling with the Partheniades equation and sediment continuity model. Sediment (dis)connectivity was formulated by coupling probabilistic upland lateral connectivity prediction with instream longitudinal connectivity assessments via discretization of fluid and sediment pathways. Flux predictions from the upland lateral connectivity model served as an input to the instream longitudinal connectivity model. Disconnectivity in the instream model was simulated via the discretization of stream reaches due to barriers such as bedrock outcroppings and man-made check dams. The model was tested for a bedrock controlled catchment in Kentucky, USA for which extensive historic water and sediment flux data was available. Predicted sediment flux was validated via sediment flux measurements collected by the authors. Watershed configuration and the distribution of lateral and longitudinal impedances to sediment transport were found to have significant influence on sediment connectivity and thus sediment flux.

  20. Comparison of eigenvectors for coupled seismo-electromagnetic layered-Earth modelling

    NASA Astrophysics Data System (ADS)

    Grobbe, N.; Slob, E. C.; Thorbecke, J. W.

    2016-07-01

    We study the accuracy and numerical stability of three eigenvector sets for modelling the coupled poroelastic and electromagnetic layered-Earth response. We use a known eigenvector set, its flux-normalized version and a newly derived flux-normalized set. The new set is chosen such that the system is properly uncoupled when the coupling between the poroelastic and electromagnetic fields vanishes. We carry out two different numerical stability tests: the first test focuses on the internal system, eigenvector and eigenvalue consistency; the second test investigates the stability and preciseness of the flux-normalized systems by looking at identity relations. We find that the known set shows the largest deviation for both tests, whereas the new set performs best. In two additional numerical modelling experiments, these numerical inaccuracies are shown to generate numerical noise levels comparable to small signals, such as signals coming from the important interface conversion responses, especially when the coupling coefficient is small. When coupling vanishes completely, the known set does not produce proper results. The new set produces numerically stable and accurate results in all situations. We therefore strongly recommend to use this newly derived set for future layered-Earth seismo-electromagnetic modelling experiments.

  1. Macroscopic Magnetic Coupling Effect: The Physical Origination of a High-Temperature Superconducting Flux Pump

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Coombs, Tim

    2018-04-01

    We have uncovered at the macroscopic scale a magnetic coupling phenomenon in a superconducting YBa2Cu3O7 -δ (YBCO) film, which physically explains the mechanism of the high-temperature superconducting flux pump. The coupling occurs between the applied magnetic poles and clusters of vortices induced in the YBCO film, with each cluster containing millions of vortices. The coupling energy is verified to originate from the inhomogeneous field of the magnetic poles, which reshapes the vortex distribution, aggregates millions of vortices into a single cluster, and accordingly moves with the poles. A contrast study is designed to verify that, to provide the effective coupling energy, the applied wavelength must be short while the field amplitude must be strong, i.e., local-field inhomogeneity is the crucial factor. This finding broadens our understanding of the collective vortex behavior in an applied magnetic field with strong local inhomogeneity. Moreover, this phenomenon largely increases the controlled vortex flow rate by several orders of magnitude compared with existing methods, providing motivation for and physical support to a new branch of wireless superconducting dc power sources, i.e., the high-temperature superconducting flux pump.

  2. Upper oceanic response to tropical cyclone Phailin in the Bay of Bengal using a coupled atmosphere-ocean model

    NASA Astrophysics Data System (ADS)

    Prakash, Kumar Ravi; Pant, Vimlesh

    2017-01-01

    A numerical simulation of very severe cyclonic storm `Phailin', which originated in southeastern Bay of Bengal (BoB) and propagated northwestward during 10-15 October 2013, was carried out using a coupled atmosphere-ocean model. A Model Coupling Toolkit (MCT) was used to make exchanges of fluxes consistent between the atmospheric model `Weather Research and Forecasting' (WRF) and ocean circulation model `Regional Ocean Modelling System' (ROMS) components of the `Coupled Ocean-Atmosphere-Wave-Sediment Transport' (COAWST) modelling system. The track and intensity of tropical cyclone (TC) Phailin simulated by the WRF component of the coupled model agrees well with the best-track estimates reported by the India Meteorological Department (IMD). Ocean model component (ROMS) was configured over the BoB domain; it utilized the wind stress and net surface heat fluxes from the WRF model to investigate upper oceanic response to the passage of TC Phailin. The coupled model shows pronounced sea surface cooling (2-2.5 °C) and an increase in sea surface salinity (SSS) (2-3 psu) after 06 GMT on 12 October 2013 over the northwestern BoB. Signature of this surface cooling was also observed in satellite data and buoy measurements. The oceanic mixed layer heat budget analysis reveals relative roles of different oceanic processes in controlling the mixed layer temperature over the region of observed cooling. The heat budget highlighted major contributions from horizontal advection and vertical entrainment processes in governing the mixed layer cooling (up to -0.1 °C h-1) and, thereby, reduction in sea surface temperature (SST) in the northwestern BoB during 11-12 October 2013. During the post-cyclone period, the net heat flux at surface regained its diurnal variations with a noontime peak that provided a warming tendency up to 0.05 °C h-1 in the mixed layer. Clear signatures of TC-induced upwelling are seen in vertical velocity (about 2.5 × 10-3 m s-1), rise in isotherms and isohalines along 85-88° E longitudes in the northwestern BoB. The study demonstrates that a coupled atmosphere-ocean model (WRF + ROMS) serves as a useful tool to investigate oceanic response to the passage of cyclones.

  3. Discrete-time quantum walk with nitrogen-vacancy centers in diamond coupled to a superconducting flux qubit

    NASA Astrophysics Data System (ADS)

    Hardal, Ali Ü. C.; Xue, Peng; Shikano, Yutaka; Müstecaplıoğlu, Özgür E.; Sanders, Barry C.

    2013-08-01

    We propose a quantum-electrodynamics scheme for implementing the discrete-time, coined quantum walk with the walker corresponding to the phase degree of freedom for a quasimagnon field realized in an ensemble of nitrogen-vacancy centers in diamond. The coin is realized as a superconducting flux qubit. Our scheme improves on an existing proposal for implementing quantum walks in cavity quantum electrodynamics by removing the cumbersome requirement of varying drive-pulse durations according to mean quasiparticle number. Our improvement is relevant to all indirect-coin-flip cavity quantum-electrodynamics realizations of quantum walks. Our numerical analysis shows that this scheme can realize a discrete quantum walk under realistic conditions.

  4. The Oceanic Flux Program: A three decade time-series of particle flux in the deep Sargasso Sea

    NASA Astrophysics Data System (ADS)

    Weber, J. C.; Conte, M. H.

    2010-12-01

    The Oceanic Flux Program (OFP), 75 km SE of Bermuda, is the longest running time-series of its kind. Initiated in 1978, the OFP has produced an unsurpassed, nearly continuous record of temporal variability in deep ocean fluxes, with a >90% temporal coverage at 3200m depth. The OFP, in conjunction with the co-located Bermuda-Atlantic Time Series (BATS) and the Bermuda Testbed Mooring (BTM) time-series, has provided key observations enabling detailed assessment of how seasonal and non-seasonal variability in the deep ocean is linked with the overlying physical and biogeochemical environment. This talk will focus on the short-term flux variability that overlies the seasonal flux pattern in the Sargasso Sea, emphasizing episodic extreme flux events. Extreme flux events are responsible for much of the year-to-year variability in mean annual flux and are most often observed during early winter and late spring when surface stratification is weak or transient. In addition to biological phenomena (e.g. salp blooms), passage of productive meso-scale features such as eddies, which alter surface water mixing characteristics and surface export fluxes, may initiate some extreme flux events. Yet other productive eddies show a minimal influence on the deep flux, underscoring the importance of upper ocean ecosystem structure and midwater processes on the coupling between the surface ocean environment and deep fluxes. Using key organic and inorganic tracers, causative processes that influence deep flux generation and the strength of the coupling with the surface ocean environment can be identified.

  5. ANALYSIS OF FLOW-STRUCTURE COUPLING IN A MECHANICAL MODEL OF THE VOCAL FOLDS AND THE SUBGLOTTAL SYSTEM.

    PubMed

    Howe, M S; McGowan, R S

    2009-11-01

    An analysis is made of the nonlinear interactions between flow in the subglottal vocal tract and glottis, sound waves in the subglottal system and a mechanical model of the vocal folds. The mean flow through the system is produced by a nominally steady contraction of the lungs, and mechanical experiments frequently involve a 'lung cavity' coupled to an experimental subglottal tube of arbitrary or ill-defined effective length L, on the basis that the actual value of L has little or no influence on excitation of the vocal folds. A simple, self-exciting single mass mathematical model of the vocal folds is used to investigate the sound generated within the subglottal domain and the unsteady volume flux from the glottis for experiments where it is required to suppress feedback of sound from the supraglottal vocal tract. In experiments where the assumed absorption of sound within the sponge-like interior of the lungs is small, the influence of changes in L can be very significant: when the subglottal tube behaves as an open-ended resonator (when L is as large as half the acoustic wavelength) there is predicted to be a mild increase in volume flux magnitude and a small change in waveform. However, the strong appearance of second harmonics of the acoustic field is predicted at intermediate lengths, when L is roughly one quarter of the acoustic wavelength. In cases of large lung damping, however, only modest changes in the volume flux are predicted to occur with variations in L.

  6. Magnetic fields in an expanding universe

    NASA Astrophysics Data System (ADS)

    Kastor, David; Traschen, Jennie

    2014-04-01

    We find a solution to 4D Einstein-Maxwell theory coupled to a massless dilaton field, for all values of the dilaton coupling, describing a Melvin magnetic field in an expanding universe with ‘stiff matter’ equation of state parameter w = +1. As the universe expands, magnetic flux becomes more concentrated around the symmetry axis for dilaton coupling a\\lt1/\\sqrt{3} and more dispersed for a\\gt1/\\sqrt{3}. An electric field circulates around the symmetry axis in the direction determined by Lenz's law. For a = 0 the magnetic flux through a disc of fixed comoving radius is proportional to the proper area of the disc. This result disagrees with the usual expectation based on a test magnetic field that this flux should be constant, and we show why this difference arises. We also find a Melvin solution in an accelerating universe with w = -7/9 for a dilaton field with a certain exponential potential.

  7. Dynamics of charged bulk viscous collapsing cylindrical source with heat flux

    NASA Astrophysics Data System (ADS)

    Shah, S. M.; Abbas, G.

    2017-04-01

    In this paper, we have explored the effects of dissipation on the dynamics of charged bulk viscous collapsing cylindrical source which allows the out-flow of heat flux in the form of radiations. The Misner-Sharp formalism has been implemented to drive the dynamical equation in terms of proper time and radial derivatives. We have investigated the effects of charge and bulk viscosity on the dynamics of collapsing cylinder. To determine the effects of radial heat flux, we have formulated the heat transport equations in the context of Müller-Israel-Stewart theory by assuming that thermodynamics viscous/heat coupling coefficients can be neglected within some approximations. In our discussion, we have introduced the viscosity by the standard (non-causal) thermodynamics approach. The dynamical equations have been coupled with the heat transport equation; the consequences of the resulting coupled heat equation have been analyzed in detail.

  8. Spatiotemporal variability of water and energy fluxes: TERENO- prealpine hydrometeorological data analysis and inverse modeling with GEOtop and PEST

    NASA Astrophysics Data System (ADS)

    Soltani, M.; Kunstmann, H.; Laux, P.; Mauder, M.

    2016-12-01

    In mountainous and prealpine regions echohydrological processes exhibit rapid changes within short distances due to the complex orography and strong elevation gradients. Water- and energy fluxes between the land surface and the atmosphere are crucial drivers for nearly all ecosystem processes. The aim of this research is to analyze the variability of surface water- and energy fluxes by both comprehensive observational hydrometeorological data analysis and process-based high resolution hydrological modeling for a mountainous and prealpine region in Germany. We particularly focus on the closure of the observed energy balance and on the added value of energy flux observations for parameter estimation in our hydrological model (GEOtop) by inverse modeling using PEST. Our study area is the catchment of the river Rott (55 km2), being part of the TERENO prealpine observatory in Southern Germany, and we focus particularly on the observations during the summer episode May to July 2013. We present the coupling of GEOtop and the parameter estimation tool PEST, which is based on the Gauss-Marquardt-Levenberg method, a gradient-based nonlinear parameter estimation algorithm. Estimation of the surface energy partitioning during the data analysis process revealed that the latent heat flux was considered as the main consumer of available energy. The relative imbalance was largest during nocturnal periods. An energy imbalance was observed at the eddy-covariance site Fendt due to either underestimated turbulent fluxes or overestimated available energy. The calculation of the simulated energy and water balances for the entire catchment indicated that 78% of net radiation leaves the catchment as latent heat flux, 17% as sensible heat, and 5% enters the soil in the form of soil heat flux. 45% of the catchment aggregated precipitation leaves the catchment as discharge and 55% as evaporation. Using the developed GEOtop-PEST interface, the hydrological model is calibrated by comparing simulated and observed discharge, soil moisture and -temperature, sensible-, latent-, and soil heat fluxes. A reasonable quality of fit could be achieved. Uncertainty- and covariance analyses are performed, allowing the derivation of confidence intervals for all estimated parameters.

  9. Turbulence and Radiation in Stratocumulus-Topped Marine Boundary Layers: A Case Study from VOCALS-REx

    DOE PAGES

    Ghate, Virendra P.; Albrecht, Bruce A.; Miller, Mark A.; ...

    2014-01-13

    Observations made during a 24-h period as part of the Variability of the American Monsoon Systems (VAMOS) Ocean–Cloud–Atmosphere–Land Study Regional Experiment (VOCALS-REx) are analyzed to study the radiation and turbulence associated with the stratocumulus-topped marine boundary layer (BL). The first 14 h exhibited a well-mixed (coupled) BL with an average cloud-top radiative flux divergence of ~130 W m 22; the BL was decoupled during the last 10 h with negligible radiative flux divergence. The averaged radiative cooling very close to the cloud top was -9.04 K h -1 in coupled conditions and -3.85 K h -1 in decoupled conditions. Thismore » is the first study that combined data from a vertically pointing Doppler cloud radar and a Doppler lidar to yield the vertical velocity structure of the entire BL. The averaged vertical velocity variance and updraft mass flux during coupled conditions were higher than those during decoupled conditions at all levels by a factor of 2 or more. The vertical velocity skewness was negative in the entire BL during coupled conditions, whereas it was weakly positive in the lower third of the BL and negative above during decoupled conditions. A formulation of velocity scale is proposed that includes the effect of cloud-top radiative cooling in addition to the surface buoyancy flux. When scaled by the velocity scale, the vertical velocity variance and coherent downdrafts had similar magnitude during the coupled and decoupled conditions. Finally, the coherent updrafts that exhibited a constant profile in the entire BL during both the coupled and decoupled conditions scaled well with the convective velocity scale to a value of ~0.5.« less

  10. Effects of Precipitation on Ocean Mixed-Layer Temperature and Salinity as Simulated in a 2-D Coupled Ocean-Cloud Resolving Atmosphere Model

    NASA Technical Reports Server (NTRS)

    Li, Xiaofan; Sui, C.-H.; Lau, K-M.; Adamec, D.

    1999-01-01

    A two-dimensional coupled ocean-cloud resolving atmosphere model is used to investigate possible roles of convective scale ocean disturbances induced by atmospheric precipitation on ocean mixed-layer heat and salt budgets. The model couples a cloud resolving model with an embedded mixed layer-ocean circulation model. Five experiment are performed under imposed large-scale atmospheric forcing in terms of vertical velocity derived from the TOGA COARE observations during a selected seven-day period. The dominant variability of mixed-layer temperature and salinity are simulated by the coupled model with imposed large-scale forcing. The mixed-layer temperatures in the coupled experiments with 1-D and 2-D ocean models show similar variations when salinity effects are not included. When salinity effects are included, however, differences in the domain-mean mixed-layer salinity and temperature between coupled experiments with 1-D and 2-D ocean models could be as large as 0.3 PSU and 0.4 C respectively. Without fresh water effects, the nocturnal heat loss over ocean surface causes deep mixed layers and weak cooling rates so that the nocturnal mixed-layer temperatures tend to be horizontally-uniform. The fresh water flux, however, causes shallow mixed layers over convective areas while the nocturnal heat loss causes deep mixed layer over convection-free areas so that the mixed-layer temperatures have large horizontal fluctuations. Furthermore, fresh water flux exhibits larger spatial fluctuations than surface heat flux because heavy rainfall occurs over convective areas embedded in broad non-convective or clear areas, whereas diurnal signals over whole model areas yield high spatial correlation of surface heat flux. As a result, mixed-layer salinities contribute more to the density differences than do mixed-layer temperatures.

  11. Flux qubit interaction with rapid single-flux quantum logic circuits: Control and readout

    NASA Astrophysics Data System (ADS)

    Klenov, N. V.; Kuznetsov, A. V.; Soloviev, I. I.; Bakurskiy, S. V.; Denisenko, M. V.; Satanin, A. M.

    2017-07-01

    We present the results of an analytical study and numerical simulation of the dynamics of a superconducting three-Josephson-junction (3JJ) flux qubit magnetically coupled with rapid single-flux quantum (RSFQ) logic circuit, which demonstrate the fundamental possibility of implementing the simplest logic operations at picosecond times, as well as rapid non-destructive readout. It is shown that when solving optimization problems, the qubit dynamics can be conveniently interpreted as a precession of the magnetic moment vector around the direction of the magnetic field. In this case, the role of magnetic field components is played by combinations of the Hamiltonian matrix elements, and the role of the magnetic moment is played by the Bloch vector. Features of the 3JJ qubit model are discussed during the analysis of how the qubit is affected by exposure to a short control pulse, as are the similarities between the Bloch and Landau-Lifshitz-Gilbert equations. An analysis of solutions to the Bloch equations made it possible to develop recommendations for the use of readout RSFQ circuits in implementing an optimal interface between the classical and quantum parts of the computer system, as well as to justify the use of single-quantum logic in order to control superconducting quantum circuits on a chip.

  12. Estimation of regional surface CO2 fluxes with GOSAT observations using two inverse modeling approaches

    NASA Astrophysics Data System (ADS)

    Maksyutov, Shamil; Takagi, Hiroshi; Belikov, Dmitry A.; Saeki, Tazu; Zhuravlev, Ruslan; Ganshin, Alexander; Lukyanov, Alexander; Yoshida, Yukio; Oshchepkov, Sergey; Bril, Andrey; Saito, Makoto; Oda, Tomohiro; Valsala, Vinu K.; Saito, Ryu; Andres, Robert J.; Conway, Thomas; Tans, Pieter; Yokota, Tatsuya

    2012-11-01

    Inverse estimation of surface C02 fluxes is performed with atmospheric transport model using ground-based and GOSAT observations. The NIES-retrieved C02 column mixing (Xc02) and column averaging kernel are provided by GOSAT Level 2 product v. 2.0 and PPDF-DOAS method. Monthly mean C02 fluxes for 64 regions are estimated together with a global mean offset between GOSAT data and ground-based data. We used the fixed-lag Kalman filter to infer monthly fluxes for 42 sub-continental terrestrial regions and 22 oceanic basins. We estimate fluxes and compare results obtained by two inverse modeling approaches. In basic approach adopted in GOSAT Level4 product v. 2.01, we use aggregation of the GOSAT observations into monthly mean over 5x5 degree grids, fluxes are estimated independently for each region, and NIES atmospheric transport model is used for forward simulation. In the alternative method, the model-observation misfit is estimated for each observation separately and fluxes are spatially correlated using EOF analysis of the simulated flux variability similar to geostatistical approach, while transport simulation is enhanced by coupling with a Lagrangian transport model Flexpart. Both methods use using the same set of prior fluxes and region maps. Daily net ecosystem exchange (NEE) is predicted by the Vegetation Integrative Simulator for Trace gases (VISIT) optimized to match seasonal cycle of the atmospheric C02 . Monthly ocean-atmosphere C02 fluxes are produced with an ocean pC02 data assimilation system. Biomass burning fluxes were provided by the Global Fire Emissions Database (GFED); and monthly fossil fuel C02 emissions are estimated with ODIAC inventory. The results of analyzing one year of the GOSAT data suggest that when both GOSAT and ground-based data are used together, fluxes in tropical and other remote regions with lower associated uncertainties are obtained than in the analysis using only ground-based data. With version 2.0 of L2 Xc02 the fluxes appear reasonable for many regions and seasons, however there is a need for improving the L2 bias correction, data filtering and the inverse modeling method to reduce estimated flux anomalies visible in some areas. We also observe that application of spatial flux correlations with EOF­ based approach reduces flux anomalies.

  13. Modulated Hawking radiation and a nonviolent channel for information release

    NASA Astrophysics Data System (ADS)

    Giddings, Steven B.

    2014-11-01

    Unitarization of black hole evaporation requires that quantum information escapes a black hole; an important question is to identify the mechanism or channel by which it does so. Accurate counting of black hole states via the Bekenstein-Hawking entropy would indicate this information should be encoded in radiation with average energy flux matching Hawking's. Information can be encoded with no change in net flux via fine-grained modulation of the Hawking radiation. In an approximate effective field theory description, couplings to the stress tensor of the black hole atmosphere that depend on the internal state of the black hole are a promising alternative for inducing such modulation. These can be picturesquely thought of as due to state-dependent metric fluctuations in the vicinity of the horizon. Such couplings offer the prospect of emitting information without extra energy flux, and can be shown to do so at linear order in the couplings, with motivation given for possible extension of this result to higher orders. The potential advantages of such couplings to the stress tensor thus extend beyond their universality, which is helpful in addressing constraints from black hole mining.

  14. Nonlinear coupled equations for electrochemical cells as developed by the general equation for nonequilibrium reversible-irreversible coupling.

    PubMed

    Bedeaux, Dick; Kjelstrup, Signe; Öttinger, Hans Christian

    2014-09-28

    We show how the Butler-Volmer and Nernst equations, as well as Peltier effects, are contained in the general equation for nonequilibrium reversible and irreversible coupling, GENERIC, with a unique definition of the overpotential. Linear flux-force relations are used to describe the transport in the homogeneous parts of the electrochemical system. For the electrode interface, we choose nonlinear flux-force relationships. We give the general thermodynamic basis for an example cell with oxygen electrodes and electrolyte from the solid oxide fuel cell. In the example cell, there are two activated chemical steps coupled also to thermal driving forces at the surface. The equilibrium exchange current density obtains contributions from both rate-limiting steps. The measured overpotential is identified at constant temperature and stationary states, in terms of the difference in electrochemical potential of products and reactants. Away from these conditions, new terms appear. The accompanying energy flux out of the surface, as well as the heat generation at the surface are formulated, adding to the general thermodynamic basis.

  15. Nonlinear coupled equations for electrochemical cells as developed by the general equation for nonequilibrium reversible-irreversible coupling

    NASA Astrophysics Data System (ADS)

    Bedeaux, Dick; Kjelstrup, Signe; Öttinger, Hans Christian

    2014-09-01

    We show how the Butler-Volmer and Nernst equations, as well as Peltier effects, are contained in the general equation for nonequilibrium reversible and irreversible coupling, GENERIC, with a unique definition of the overpotential. Linear flux-force relations are used to describe the transport in the homogeneous parts of the electrochemical system. For the electrode interface, we choose nonlinear flux-force relationships. We give the general thermodynamic basis for an example cell with oxygen electrodes and electrolyte from the solid oxide fuel cell. In the example cell, there are two activated chemical steps coupled also to thermal driving forces at the surface. The equilibrium exchange current density obtains contributions from both rate-limiting steps. The measured overpotential is identified at constant temperature and stationary states, in terms of the difference in electrochemical potential of products and reactants. Away from these conditions, new terms appear. The accompanying energy flux out of the surface, as well as the heat generation at the surface are formulated, adding to the general thermodynamic basis.

  16. General N=1 supersymmetric flux vacua of massive type IIA string theory.

    PubMed

    Behrndt, Klaus; Cvetic, Mirjam

    2005-07-08

    We derive conditions for the existence of four-dimensional N=1 supersymmetric flux vacua of massive type IIA string theory with general supergravity fluxes turned on. For an SU(3) singlet Killing spinor, we show that such flux vacua exist when the internal geometry is nearly Kähler. The geometry is not warped, all the allowed fluxes are proportional to the mass parameter, and the dilaton is fixed by a ratio of (quantized) fluxes. The four-dimensional cosmological constant, while negative, becomes small in the vacuum with the weak string coupling.

  17. BACTERIAL FLUX FROM CHAPARRAL INTO THE ATMOSPHERE IN MID-SUMMER AT A HIGH DESERT LOCATION

    EPA Science Inventory

    Estimates of the bacterial flux for a daylight cycle were observed at the Hanford Nuclear Reservation, Richland, WA, during June 1992, using a modified Bowen ratio method. he upward daytime bacterial flux was coupled with the solar radiation/sensible heat cycle, but commenced 2 h...

  18. Inversion of geothermal heat flux in a thermomechanically coupled nonlinear Stokes ice sheet model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Hongyu; Petra, Noemi; Stadler, Georg

    We address the inverse problem of inferring the basal geothermal heat flux from surface velocity observations using a steady-state thermomechanically coupled nonlinear Stokes ice flow model. This is a challenging inverse problem since the map from basal heat flux to surface velocity observables is indirect: the heat flux is a boundary condition for the thermal advection–diffusion equation, which couples to the nonlinear Stokes ice flow equations; together they determine the surface ice flow velocity. This multiphysics inverse problem is formulated as a nonlinear least-squares optimization problem with a cost functional that includes the data misfit between surface velocity observations andmore » model predictions. A Tikhonov regularization term is added to render the problem well posed. We derive adjoint-based gradient and Hessian expressions for the resulting partial differential equation (PDE)-constrained optimization problem and propose an inexact Newton method for its solution. As a consequence of the Petrov–Galerkin discretization of the energy equation, we show that discretization and differentiation do not commute; that is, the order in which we discretize the cost functional and differentiate it affects the correctness of the gradient. Using two- and three-dimensional model problems, we study the prospects for and limitations of the inference of the geothermal heat flux field from surface velocity observations. The results show that the reconstruction improves as the noise level in the observations decreases and that short-wavelength variations in the geothermal heat flux are difficult to recover. We analyze the ill-posedness of the inverse problem as a function of the number of observations by examining the spectrum of the Hessian of the cost functional. Motivated by the popularity of operator-split or staggered solvers for forward multiphysics problems – i.e., those that drop two-way coupling terms to yield a one-way coupled forward Jacobian – we study the effect on the inversion of a one-way coupling of the adjoint energy and Stokes equations. Here, we show that taking such a one-way coupled approach for the adjoint equations can lead to an incorrect gradient and premature termination of optimization iterations. This is due to loss of a descent direction stemming from inconsistency of the gradient with the contours of the cost functional. Nevertheless, one may still obtain a reasonable approximate inverse solution particularly if important features of the reconstructed solution emerge early in optimization iterations, before the premature termination.« less

  19. Inversion of geothermal heat flux in a thermomechanically coupled nonlinear Stokes ice sheet model

    DOE PAGES

    Zhu, Hongyu; Petra, Noemi; Stadler, Georg; ...

    2016-07-13

    We address the inverse problem of inferring the basal geothermal heat flux from surface velocity observations using a steady-state thermomechanically coupled nonlinear Stokes ice flow model. This is a challenging inverse problem since the map from basal heat flux to surface velocity observables is indirect: the heat flux is a boundary condition for the thermal advection–diffusion equation, which couples to the nonlinear Stokes ice flow equations; together they determine the surface ice flow velocity. This multiphysics inverse problem is formulated as a nonlinear least-squares optimization problem with a cost functional that includes the data misfit between surface velocity observations andmore » model predictions. A Tikhonov regularization term is added to render the problem well posed. We derive adjoint-based gradient and Hessian expressions for the resulting partial differential equation (PDE)-constrained optimization problem and propose an inexact Newton method for its solution. As a consequence of the Petrov–Galerkin discretization of the energy equation, we show that discretization and differentiation do not commute; that is, the order in which we discretize the cost functional and differentiate it affects the correctness of the gradient. Using two- and three-dimensional model problems, we study the prospects for and limitations of the inference of the geothermal heat flux field from surface velocity observations. The results show that the reconstruction improves as the noise level in the observations decreases and that short-wavelength variations in the geothermal heat flux are difficult to recover. We analyze the ill-posedness of the inverse problem as a function of the number of observations by examining the spectrum of the Hessian of the cost functional. Motivated by the popularity of operator-split or staggered solvers for forward multiphysics problems – i.e., those that drop two-way coupling terms to yield a one-way coupled forward Jacobian – we study the effect on the inversion of a one-way coupling of the adjoint energy and Stokes equations. Here, we show that taking such a one-way coupled approach for the adjoint equations can lead to an incorrect gradient and premature termination of optimization iterations. This is due to loss of a descent direction stemming from inconsistency of the gradient with the contours of the cost functional. Nevertheless, one may still obtain a reasonable approximate inverse solution particularly if important features of the reconstructed solution emerge early in optimization iterations, before the premature termination.« less

  20. Inversion of geothermal heat flux in a thermomechanically coupled nonlinear Stokes ice sheet model

    NASA Astrophysics Data System (ADS)

    Zhu, Hongyu; Petra, Noemi; Stadler, Georg; Isaac, Tobin; Hughes, Thomas J. R.; Ghattas, Omar

    2016-07-01

    We address the inverse problem of inferring the basal geothermal heat flux from surface velocity observations using a steady-state thermomechanically coupled nonlinear Stokes ice flow model. This is a challenging inverse problem since the map from basal heat flux to surface velocity observables is indirect: the heat flux is a boundary condition for the thermal advection-diffusion equation, which couples to the nonlinear Stokes ice flow equations; together they determine the surface ice flow velocity. This multiphysics inverse problem is formulated as a nonlinear least-squares optimization problem with a cost functional that includes the data misfit between surface velocity observations and model predictions. A Tikhonov regularization term is added to render the problem well posed. We derive adjoint-based gradient and Hessian expressions for the resulting partial differential equation (PDE)-constrained optimization problem and propose an inexact Newton method for its solution. As a consequence of the Petrov-Galerkin discretization of the energy equation, we show that discretization and differentiation do not commute; that is, the order in which we discretize the cost functional and differentiate it affects the correctness of the gradient. Using two- and three-dimensional model problems, we study the prospects for and limitations of the inference of the geothermal heat flux field from surface velocity observations. The results show that the reconstruction improves as the noise level in the observations decreases and that short-wavelength variations in the geothermal heat flux are difficult to recover. We analyze the ill-posedness of the inverse problem as a function of the number of observations by examining the spectrum of the Hessian of the cost functional. Motivated by the popularity of operator-split or staggered solvers for forward multiphysics problems - i.e., those that drop two-way coupling terms to yield a one-way coupled forward Jacobian - we study the effect on the inversion of a one-way coupling of the adjoint energy and Stokes equations. We show that taking such a one-way coupled approach for the adjoint equations can lead to an incorrect gradient and premature termination of optimization iterations. This is due to loss of a descent direction stemming from inconsistency of the gradient with the contours of the cost functional. Nevertheless, one may still obtain a reasonable approximate inverse solution particularly if important features of the reconstructed solution emerge early in optimization iterations, before the premature termination.

  1. Characterization of an inductively coupled plasma source with convergent nozzle

    NASA Astrophysics Data System (ADS)

    Dropmann, Michael; Clements, Kathryn; Edgren, Josh; Laufer, Rene; Herdrich, Georg; Matthews, Lorin; Hyde, Truell

    2015-11-01

    The inductively heated plasma generator (IPG6-B) located in the CASPER labs at Baylor University has recently been characterized for both air, nitrogen and helium. A primary area of research within the intended scope of the instrument is the analysis of material degradation under high heat fluxes such as those imposed by a plasma during atmospheric entry of a spacecraft and at the divertor within various fusion experiment. In order to achieve higher flow velocities and respectively higher heat fluxes, a new exit flange has been designed to allow the installation of nozzles with varying geometries at the exit of the plasma generator. This paper will discuss characterization of the plasma generator for a convergent nozzle accelerating the plasma jet to supersonic velocity. The diagnostics employed include a cavity calorimeter to measure the total plasma power, a Pitot probe to measure stagnation pressure and a heat flux probe to measure the local heat flux. Radial profiles of stagnation pressure and heat flux allowing the determination of the local plasma enthalpy in the plasma jet will be presented. Support from the NSF and the DOE (award numbers PHY-1262031 and PHY-1414523) is gratefully acknowledged.

  2. Constraining the Sulfur Dioxide Degassing Flux from Turrialba Volcano, Costa Rica Using Unmanned Aerial System Measurements

    NASA Technical Reports Server (NTRS)

    Xi, Xin; Johnson, Matthew S.; Jeong, Seongeun; Fladeland, Matthew; Pieri, David; Diaz, Jorge Andres; Bland, Geoffrey L.

    2016-01-01

    Observed sulfur dioxide (SO2)mixing ratios onboard unmanned aerial systems (UAS) duringMarch 11-13, 2013 are used to constrain the three-day averaged SO2 degassing flux fromTurrialba volcanowithin a Bayesian inverse modeling framework. A mesoscale model coupled with Lagrangian stochastic particle backward trajectories is used to quantify the source-receptor relationships at very high spatial resolutions (i.e., b1 km). The model shows better performance in reproducing the near-surface meteorological properties and observed SO2 variations when using a first-order closure non-local planetary boundary layer (PBL) scheme. The optimized SO2 degassing fluxes vary from 0.59 +/- 0.37 to 0.83 +/- 0.33 kt d-1 depending on the PBL scheme used. These fluxes are in good agreement with ground-based gas flux measurements, and correspond to corrective scale factors of 8-12 to the posteruptive SO2 degassing rate in the AeroCom emission inventory. The maximum a posteriori solution for the SO2 flux is highly sensitive to the specification of prior and observational errors, and relatively insensitive to the SO2 loss term and temporal averaging of observations. Our results indicate relatively low degassing activity but sustained sulfur emissions from Turrialba volcano to the troposphere during March 2013. This study demonstrates the utility of low-cost small UAS platforms for volcanic gas composition and flux analysis.

  3. Coupled Data Assimilation for Integrated Earth System Analysis and Prediction: Goals, Challenges, and Recommendations

    NASA Technical Reports Server (NTRS)

    Penny, Stephen G.; Akella, Santha; Buehner, Mark; Chevallier, Matthieu; Counillon, Francois; Draper, Clara; Frolov, Sergey; Fujii, Yosuke; Karspeck, Alicia; Kumar, Arun

    2017-01-01

    The purpose of this report is to identify fundamental issues for coupled data assimilation (CDA), such as gaps in science and limitations in forecasting systems, in order to provide guidance to the World Meteorological Organization (WMO) on how to facilitate more rapid progress internationally. Coupled Earth system modeling provides the opportunity to extend skillful atmospheric forecasts beyond the traditional two-week barrier by extracting skill from low-frequency state components such as the land, ocean, and sea ice. More generally, coupled models are needed to support seamless prediction systems that span timescales from weather, subseasonal to seasonal (S2S), multiyear, and decadal. Therefore, initialization methods are needed for coupled Earth system models, either applied to each individual component (called Weakly Coupled Data Assimilation - WCDA) or applied the coupled Earth system model as a whole (called Strongly Coupled Data Assimilation - SCDA). Using CDA, in which model forecasts and potentially the state estimation are performed jointly, each model domain benefits from observations in other domains either directly using error covariance information known at the time of the analysis (SCDA), or indirectly through flux interactions at the model boundaries (WCDA). Because the non-atmospheric domains are generally under-observed compared to the atmosphere, CDA provides a significant advantage over single-domain analyses. Next, we provide a synopsis of goals, challenges, and recommendations to advance CDA: Goals: (a) Extend predictive skill beyond the current capability of NWP (e.g. as demonstrated by improving forecast skill scores), (b) produce physically consistent initial conditions for coupled numerical prediction systems and reanalyses (including consistent fluxes at the domain interfaces), (c) make best use of existing observations by allowing observations from each domain to influence and improve the full earth system analysis, (d) develop a robust observation-based identification and understanding of mechanisms that determine the variability of weather and climate, (e) identify critical weaknesses in coupled models and the earth observing system, (f) generate full-field estimates of unobserved or sparsely observed variables, (g) improve the estimation of the external forcings causing changes to climate, (h) transition successes from idealized CDA experiments to real-world applications. Challenges: (a) Modeling at the interfaces between interacting components of coupled Earth system models may be inadequate for estimating uncertainty or error covariances between domains, (b) current data assimilation methods may be insufficient to simultaneously analyze domains containing multiple spatiotemporal scales of interest, (c) there is no standardization of observation data or their delivery systems across domains, (d) the size and complexity of many large-scale coupled Earth system models makes it is difficult to accurately represent uncertainty due to model parameters and coupling parameters, (e) model errors lead to local biases that can transfer between the different Earth system components and lead to coupled model biases and long-term model drift, (e) information propagation across model components with different spatiotemporal scales is extremely complicated, and must be improved in current coupled modeling frameworks, (h) there is insufficient knowledge on how to represent evolving errors in non-atmospheric model components (e.g. as sea ice, land and ocean) on the timescales of NWP.

  4. Development of a robust modeling tool for radiation-induced segregation in austenitic stainless steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ying; Field, Kevin G; Allen, Todd R.

    2015-09-01

    Irradiation-assisted stress corrosion cracking (IASCC) of austenitic stainless steels in Light Water Reactor (LWR) components has been linked to changes in grain boundary composition due to irradiation induced segregation (RIS). This work developed a robust RIS modeling tool to account for thermodynamics and kinetics of the atom and defect transportation under combined thermal and radiation conditions. The diffusion flux equations were based on the Perks model formulated through the linear theory of the thermodynamics of irreversible processes. Both cross and non-cross phenomenological diffusion coefficients in the flux equations were considered and correlated to tracer diffusion coefficients through Manning’s relation. Themore » preferential atomvacancy coupling was described by the mobility model, whereas the preferential atom-interstitial coupling was described by the interstitial binding model. The composition dependence of the thermodynamic factor was modeled using the CALPHAD approach. Detailed analysis on the diffusion fluxes near and at grain boundaries of irradiated austenitic stainless steels suggested the dominant diffusion mechanism for chromium and iron is via vacancy, while that for nickel can swing from the vacancy to the interstitial dominant mechanism. The diffusion flux in the vicinity of a grain boundary was found to be greatly influenced by the composition gradient formed from the transient state, leading to the oscillatory behavior of alloy compositions in this region. This work confirms that both vacancy and interstitial diffusion, and segregation itself, have important roles in determining the microchemistry of Fe, Cr, and Ni at irradiated grain boundaries in austenitic stainless steels.« less

  5. Air-Sea Momentum and Enthalpy Exchange in Coupled Atmosphere-Wave-Ocean Modeling of Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Curcic, M.; Chen, S. S.

    2016-02-01

    The atmosphere and ocean are coupled through momentum, enthalpy, and mass fluxes. Accurate representation of these fluxes in a wide range of weather and climate conditions is one of major challenges in prediction models. Their current parameterizations are based on sparse observations in low-to-moderate winds and are not suited for high wind conditions such as tropical cyclones (TCs) and winter storms. In this study, we use the Unified Wave INterface - Coupled Model (UWIN-CM), a high resolution, fully-coupled atmosphere-wave-ocean model, to better understand the role of ocean surface waves in mediating air-sea momentum and enthalpy exchange in TCs. In particular, we focus on the explicit treatment of wave growth and dissipation for calculating atmospheric and oceanic stress, and its role in upper ocean mixing and surface cooling in the wake of the storm. Wind-wave misalignment and local wave disequilibrium result in difference between atmospheric and oceanic stress being largest on the left side of the storm. We find that explicit wave calculation in the coupled model reduces momentum transfer into the ocean by more than 10% on average, resulting in reduced cooling in TC's wake and subsequent weakening of the storm. We also investigate the impacts of sea surface temperature and upper ocean parameterization on air-sea enthalpy fluxes in the fully coupled model. High-resolution UWIN-CM simulations of TCs with various intensities and structure are conducted in this study to better understand the complex TC-ocean interaction and improve the representation of air-sea coupling processes in coupled prediction models.

  6. Design and Impacts of Land-Biogenic-Atmosphere Coupling in the NASA-Unified WRF (NU-WRF) Modeling System

    NASA Technical Reports Server (NTRS)

    Tan, Qian; Santanello, Joseph A., Jr.; Zhou, Shujia; Tao, Zhining; Peters-Lidard, Christa d.; Chn, Mian

    2011-01-01

    Land-Atmosphere coupling is typically designed and implemented independently for physical (e.g. water and energy) and chemical (e.g. biogenic emissions and surface depositions)-based models and applications. Differences in scale, data requirements, and physics thus limit the ability of Earth System models to be fully coupled in a consistent manner. In order for the physical-chemical-biological coupling to be complete, treatment of the land in terms of surface classification, condition, fluxes, and emissions must be considered simultaneously and coherently across all components. In this study, we investigate a coupling strategy for the NASA-Unified Weather Research and Forecasting (NU-WRF) model that incorporates the traditionally disparate fluxes of water and energy through NASA's LIS (Land Information System) and biogenic emissions through BEIS (Biogenic Emissions Inventory System) and MEGAN (Model of Emissions of Gases and Aerosols from Nature) into the atmosphere. In doing so, inconsistencies across model inputs and parameter data are resolved such that the emissions from a particular plant species are consistent with the heat and moisture fluxes calculated for that land cover type. In turn, the response of the atmospheric turbulence and mixing in the planetary boundary layer (PBL) acts on the identical surface type, fluxes, and emissions for each. In addition, the coupling of dust emission within the NU-WRF system is performed in order to ensure consistency and to maximize the benefit of high-resolution land representation in LIS. The impacts of those self-consistent components on' the simulation of atmospheric aerosols are then evaluated through the WRF-Chem-GOCART (Goddard Chemistry Aerosol Radiation and Transport) model. Overall, this ambitious project highlights the current difficulties and future potential of fully coupled. components. in Earth System models, and underscores the importance of the iLEAPS community in supporting improved knowledge of processes and innovative approaches for models and observations.

  7. Extending the Confrontation of Weather and Climate Models from Soil Moisture to Surface Flux Data

    NASA Astrophysics Data System (ADS)

    Dirmeyer, P.; Chen, L.; Wu, J.

    2016-12-01

    The atmosphere and land components of weather and climate models are typically developed separately and coupled as a last step before new model versions are released. Separate testing of land surface models (LSMs) and atmospheric models is often quite extensive in the development phase, but validation of coupled land-atmosphere behavior is often minimal if performed at all. This is partly because of this piecemeal model development approach and partly because the necessary in situ data to confront coupled land-atmosphere models (LAMs) has been meager until quite recently. Over the past 10-20 years there has been a growing number of networks of measurements of land surface states, surface fluxes, radiation and near-surface meteorology, although they have been largely uncoordinated and frequently incomplete across the range of variables necessary to validate LAMs. We extend recent work "confronting" a variety of LSMs and LAMs with in situ observations of soil moisture from cross-standardized networks to comparisons with measurements of surface latent and sensible heat fluxes at FLUXNET sites in a variety of climate regimes around the world. The motivation is to determine how well LSMs represent observed statistics of variability and co-variability, how much models differ from one another, and how those statistics change when the LSMs are coupled to atmospheric models. Furthermore, comparisons are made to several LAMs in both open-loop (free running) and reanalysis configurations. This shows to what extent data assimilation can constrain the processes involved in flux variability, and helps illuminate model development pathways to improve coupled land-atmosphere interactions in weather and climate models.

  8. Underdamped long Josephson junction coupled to overdamped single-flux-quantum circuits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Y.M.; Borzenets, V.; Kaplunenko, V.K.

    1997-09-01

    We report a circuit that integrates an underdamped long Josephson junction with overdamped single-flux-quantum (SFQ) circuits. We confirm that the resonant soliton modes in the long junction are not affected by SFQ cells coupled to the junction, and demonstrate that the radiation frequency and linewidth of the soliton resonances can be measured with SFQ T-flip-flops. Our experimental results also show that a 4{pi} quantum mechanical phase leap at the end of the long junction, which is due to the reflection of a soliton, creates two single flux quanta propagating in the overdamped Josephson transmission line. {copyright} {ital 1997 American Institutemore » of Physics.}« less

  9. An improved flux-split algorithm applied to hypersonic flows in chemical equilibrium

    NASA Technical Reports Server (NTRS)

    Palmer, Grant

    1988-01-01

    An explicit, finite-difference, shock-capturing numerical algorithm is presented and applied to hypersonic flows assumed to be in thermochemical equilibrium. Real-gas chemistry is either loosely coupled to the gasdynamics by way of a Gibbs free energy minimization package or fully coupled using species mass conservation equations with finite-rate chemical reactions. A scheme is developed that maintains stability in the explicit, finite-rate formulation while allowing relatively high time steps. The codes use flux vector splitting to difference the inviscid fluxes and employ real-gas corrections to viscosity and thermal conductivity. Numerical results are compared against existing ballistic range and flight data. Flows about complex geometries are also computed.

  10. Coherent Coupled Qubits for Quantum Annealing

    NASA Astrophysics Data System (ADS)

    Weber, Steven J.; Samach, Gabriel O.; Hover, David; Gustavsson, Simon; Kim, David K.; Melville, Alexander; Rosenberg, Danna; Sears, Adam P.; Yan, Fei; Yoder, Jonilyn L.; Oliver, William D.; Kerman, Andrew J.

    2017-07-01

    Quantum annealing is an optimization technique which potentially leverages quantum tunneling to enhance computational performance. Existing quantum annealers use superconducting flux qubits with short coherence times limited primarily by the use of large persistent currents Ip. Here, we examine an alternative approach using qubits with smaller Ip and longer coherence times. We demonstrate tunable coupling, a basic building block for quantum annealing, between two flux qubits with small (approximately 50-nA) persistent currents. Furthermore, we characterize qubit coherence as a function of coupler setting and investigate the effect of flux noise in the coupler loop on qubit coherence. Our results provide insight into the available design space for next-generation quantum annealers with improved coherence.

  11. Finite Element Analysis in the Estimation of Air-Gap Torque and Surface Temperature of Induction Machine

    NASA Astrophysics Data System (ADS)

    Mr., J. Ravi Kumar; Banakara, Basavaraja, Dr.

    2017-08-01

    This paper presents electromagnetic and thermal behavior of Induction Motor (IM) through the modeling and analysis by applying multiphysics coupled Finite Element Analysis (FEA). Therefore prediction of the magnetic flux, electromagnetic torque, stator and rotor losses and temperature distribution inside an operating electric motor are the most important issues during its design. Prediction and estimation of these parameters allows design engineers to decide capability of the machine for the proposed load, temperature rating and its application for which it is being designed ensuring normal motor operation at rated conditions. In this work, multiphysics coupled electromagnetic - thermal modeling and analysis of induction motor at rated and high frequency has carried out applying Arkkio’s torque method. COMSOL Multiphysics software is used for modeling and finite element analysis of IM. Transient electromagnetic torque, magnetic field distribution, speed-torque characteristics of IM were plotted and studied at different frequencies. This proposed work helps in the design and prediction of accurate performance of induction motor specific to various industrial drive applications. Results obtained are also validated with experimental analysis. The main purpose of this model is to use it as an integral part of the design aiming to system optimization of Variable Speed Drive (VSD) and its components using coupled simulations.

  12. Momentum transport and non-local transport in heat-flux-driven magnetic reconnection in HEDP

    NASA Astrophysics Data System (ADS)

    Liu, Chang; Fox, Will; Bhattacharjee, Amitava

    2016-10-01

    Strong magnetic fields are readily generated in high-energy-density plasmas and can affect the heat confinement properties of the plasma. Magnetic reconnection can in turn be important as an inverse process, which destroys or reconfigures the magnetic field. Recent theory has demonstrated a novel physics regime for reconnection in high-energy-density plasmas where the magnetic field is advected into the reconnection layer by plasma heat flux via the Nernst effect. In this work we elucidate the physics of the electron dissipation layer in this heat-flux-driven regime. Through fully kinetic simulation and a new generalized Ohm's law, we show that momentum transport due to the heat-flux-viscosity effect provides the dissipation mechanism to allow magnetic field line reconnection. Scaling analysis and simulations show that the characteristic width of the current sheet in this regime is several electron mean-free-paths. These results additionally show a coupling between non-local transport and momentum transport, which in turn affects the dynamics of the magnetic field. This work was supported by the U.S. Department of Energy under Contract No. DE-SC0008655.

  13. Impact of climate, CO2 and land use on terrestrial carbon and water fluxes in China based on a multi-model analysis

    NASA Astrophysics Data System (ADS)

    Jia, B.; Xie, Z.

    2017-12-01

    Climate change and anthropogenic activities have been exerting profound influences on ecosystem function and processes, including tightly coupled terrestrial carbon and water cycles. However, their relative contributions of the key controlling factors, e.g., climate, CO2 fertilization, land use and land cover change (LULCC), on spatial-temporal patterns of terrestrial carbon and water fluxes in China are still not well understood due to the lack of ecosystem-level flux observations and uncertainties in single terrestrial biosphere model (TBM). In the present study, we quantified the effect of climate, CO2, and LULCC on terrestrial carbon and water fluxes in China using multi-model simulations for their inter-annual variability (IAV), seasonal cycle amplitude (SCA) and long-term trend during the past five decades (1961-2010). In addition, their relative contributions to the temporal variations of gross primary productivity (GPP), net ecosystem productivity (NEP) and evapotranspiration (ET) were investigated through factorial experiments. Finally, the discussions about the inter-model differences and model uncertainties were presented.

  14. Flux Renormalization in Constant Power Burnup Calculations

    DOE PAGES

    Isotalo, Aarno E.; Aalto Univ., Otaniemi; Davidson, Gregory G.; ...

    2016-06-15

    To more accurately represent the desired power in a constant power burnup calculation, the depletion steps of the calculation can be divided into substeps and the neutron flux renormalized on each substep to match the desired power. Here, this paper explores how such renormalization should be performed, how large a difference it makes, and whether using renormalization affects results regarding the relative performance of different neutronics–depletion coupling schemes. When used with older coupling schemes, renormalization can provide a considerable improvement in overall accuracy. With previously published higher order coupling schemes, which are more accurate to begin with, renormalization has amore » much smaller effect. Finally, while renormalization narrows the differences in the accuracies of different coupling schemes, their order of accuracy is not affected.« less

  15. Improved representations of coupled soil–canopy processes in the CABLE land surface model (Subversion revision 3432)

    DOE PAGES

    Haverd, Vanessa; Cuntz, Matthias; Nieradzik, Lars P.; ...

    2016-09-07

    CABLE is a global land surface model, which has been used extensively in offline and coupled simulations. While CABLE performs well in comparison with other land surface models, results are impacted by decoupling of transpiration and photosynthesis fluxes under drying soil conditions, often leading to implausibly high water use efficiencies. Here, we present a solution to this problem, ensuring that modelled transpiration is always consistent with modelled photosynthesis, while introducing a parsimonious single-parameter drought response function which is coupled to root water uptake. We further improve CABLE's simulation of coupled soil–canopy processes by introducing an alternative hydrology model with amore » physically accurate representation of coupled energy and water fluxes at the soil–air interface, including a more realistic formulation of transfer under atmospherically stable conditions within the canopy and in the presence of leaf litter. The effects of these model developments are assessed using data from 18 stations from the global eddy covariance FLUXNET database, selected to span a large climatic range. Here, marked improvements are demonstrated, with root mean squared errors for monthly latent heat fluxes and water use efficiencies being reduced by 40 %. Results highlight the important roles of deep soil moisture in mediating drought response and litter in dampening soil evaporation.« less

  16. Full Coupling Between the Atmosphere, Surface, and Subsurface for Integrated Hydrologic Simulation

    NASA Astrophysics Data System (ADS)

    Davison, Jason Hamilton; Hwang, Hyoun-Tae; Sudicky, Edward A.; Mallia, Derek V.; Lin, John C.

    2018-01-01

    An ever increasing community of earth system modelers is incorporating new physical processes into numerical models. This trend is facilitated by advancements in computational resources, improvements in simulation skill, and the desire to build numerical simulators that represent the water cycle with greater fidelity. In this quest to develop a state-of-the-art water cycle model, we coupled HydroGeoSphere (HGS), a 3-D control-volume finite element surface and variably saturated subsurface flow model that includes evapotranspiration processes, to the Weather Research and Forecasting (WRF) Model, a 3-D finite difference nonhydrostatic mesoscale atmospheric model. The two-way coupled model, referred to as HGS-WRF, exchanges the actual evapotranspiration fluxes and soil saturations calculated by HGS to WRF; conversely, the potential evapotranspiration and precipitation fluxes from WRF are passed to HGS. The flexible HGS-WRF coupling method allows for unique meshes used by each model, while maintaining mass and energy conservation between the domains. Furthermore, the HGS-WRF coupling implements a subtime stepping algorithm to minimize computational expense. As a demonstration of HGS-WRF's capabilities, we applied it to the California Basin and found a strong connection between the depth to the groundwater table and the latent heat fluxes across the land surface.

  17. Improved representations of coupled soil–canopy processes in the CABLE land surface model (Subversion revision 3432)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haverd, Vanessa; Cuntz, Matthias; Nieradzik, Lars P.

    CABLE is a global land surface model, which has been used extensively in offline and coupled simulations. While CABLE performs well in comparison with other land surface models, results are impacted by decoupling of transpiration and photosynthesis fluxes under drying soil conditions, often leading to implausibly high water use efficiencies. Here, we present a solution to this problem, ensuring that modelled transpiration is always consistent with modelled photosynthesis, while introducing a parsimonious single-parameter drought response function which is coupled to root water uptake. We further improve CABLE's simulation of coupled soil–canopy processes by introducing an alternative hydrology model with amore » physically accurate representation of coupled energy and water fluxes at the soil–air interface, including a more realistic formulation of transfer under atmospherically stable conditions within the canopy and in the presence of leaf litter. The effects of these model developments are assessed using data from 18 stations from the global eddy covariance FLUXNET database, selected to span a large climatic range. Here, marked improvements are demonstrated, with root mean squared errors for monthly latent heat fluxes and water use efficiencies being reduced by 40 %. Results highlight the important roles of deep soil moisture in mediating drought response and litter in dampening soil evaporation.« less

  18. Improved representations of coupled soil-canopy processes in the CABLE land surface model (Subversion revision 3432)

    NASA Astrophysics Data System (ADS)

    Haverd, Vanessa; Cuntz, Matthias; Nieradzik, Lars P.; Harman, Ian N.

    2016-09-01

    CABLE is a global land surface model, which has been used extensively in offline and coupled simulations. While CABLE performs well in comparison with other land surface models, results are impacted by decoupling of transpiration and photosynthesis fluxes under drying soil conditions, often leading to implausibly high water use efficiencies. Here, we present a solution to this problem, ensuring that modelled transpiration is always consistent with modelled photosynthesis, while introducing a parsimonious single-parameter drought response function which is coupled to root water uptake. We further improve CABLE's simulation of coupled soil-canopy processes by introducing an alternative hydrology model with a physically accurate representation of coupled energy and water fluxes at the soil-air interface, including a more realistic formulation of transfer under atmospherically stable conditions within the canopy and in the presence of leaf litter. The effects of these model developments are assessed using data from 18 stations from the global eddy covariance FLUXNET database, selected to span a large climatic range. Marked improvements are demonstrated, with root mean squared errors for monthly latent heat fluxes and water use efficiencies being reduced by 40 %. Results highlight the important roles of deep soil moisture in mediating drought response and litter in dampening soil evaporation.

  19. WES feedback and the Atlantic Meridional Mode: observations and CMIP5 comparisons

    NASA Astrophysics Data System (ADS)

    Amaya, Dillon J.; DeFlorio, Michael J.; Miller, Arthur J.; Xie, Shang-Ping

    2017-09-01

    The Atlantic Meridional Mode (AMM) is the dominant mode of tropical SST/wind coupled variability. Modeling studies have implicated wind-evaporation-SST (WES) feedback as the primary driver of the AMM's evolution across the Atlantic basin; however, a robust coupling of the SST and winds has not been shown in observations. This study examines observed AMM growth, propagation, and decay as a result of WES interactions. Investigation of an extended maximum covariance analysis shows that boreal wintertime atmospheric forcing generates positive SST anomalies (SSTA) through a reduction of surface evaporative cooling. When the AMM peaks in magnitude during spring and summer, upward latent heat flux anomalies occur over the warmest SSTs and act to dampen the initial forcing. In contrast, on the southwestern edge of the SSTA, SST-forced cross-equatorial flow reduces the strength of the climatological trade winds and provides an anomalous latent heat flux into the ocean, which causes southwestward propagation of the initial atmosphere-forced SSTA through WES dynamics. Additionally, the lead-lag relationship of the ocean and atmosphere indicates a transition from an atmosphere-forcing-ocean regime in the northern subtropics to a highly coupled regime in the northern tropics that is not observed in the southern hemisphere. CMIP5 models poorly simulate the latitudinal transition from a one-way interaction to a two-way feedback, which may explain why they also struggle to reproduce spatially coherent interactions between tropical Atlantic SST and winds. This analysis provides valuable insight on how meridional modes act as links between extratropical and tropical variability and focuses future research aimed at improving climate model simulations.

  20. Using a spatially-distributed hydrologic biogeochemistry model to study the spatial variation of carbon processes in a Critical Zone Observatory

    NASA Astrophysics Data System (ADS)

    Shi, Y.; Eissenstat, D. M.; Davis, K. J.; He, Y.

    2015-12-01

    Forest carbon processes are affected by soil moisture, soil temperature and solar radiation. Most of the current biogeochemical models are 1-D and represent one point in space. Therefore they can neither resolve topographically driven hill-slope soil moisture patterns, nor simulate the nonlinear effects of soil moisture on carbon processes. A spatially-distributed biogeochemistry model, Flux-PIHM-BGC, has been developed by coupling the Biome-BGC (BBGC) model with a coupled physically-based land surface hydrologic model, Flux-PIHM. Flux-PIHM incorporates a land-surface scheme (adapted from the Noah land surface model) into the Penn State Integrated Hydrologic Model (PIHM). Because PIHM is capable of simulating lateral water flow and deep groundwater, Flux-PIHM is able to represent the link between groundwater and the surface energy balance, as well as the land surface heterogeneities caused by topography. Flux-PIHM-BGC model was tested at the Susquehanna/Shale Hills critical zone observatory (SSHCZO). The abundant observations at the SSHCZO, including eddy covariance fluxes, soil moisture, groundwater level, sap flux, stream discharge, litterfall, leaf area index, aboveground carbon stock, and soil carbon efflux, provided an ideal test bed for the coupled model. Model results show that when uniform solar radiation is used, vegetation carbon and soil carbon are positively correlated with soil moisture in space, which agrees with the observations within the watershed. When topographically-driven solar radiation is used, however, the wetter valley floor becomes radiation limited, and produces less vegetation and soil carbon than the drier hillslope due to the assumption that canopy height is uniform in the watershed. This contradicts with the observations, and suggests that a tree height model with dynamic allocation model are needed to reproduce the spatial variation of carbon processes within a watershed.

  1. Charge-exchange coupling between pickup ions across the heliopause and its effect on energetic neutral hydrogen flux

    DOE PAGES

    Zirnstein, Eric J.; Heerikhuisen, J.; Zank, G. P.; ...

    2014-02-24

    Pickup ions (PUIs) appear to play an integral role in the multi-component nature of the plasma in the interaction between the solar wind (SW) and local interstellar medium (LISM). Three-dimensional (3D) MHD simulations with a kinetic treatment for neutrals and PUIs are currently still not viable. In light of recent energetic neutral atom (ENA) observations by the Interstellar Boundary EXplorer, the purpose of this paper is to illustrate the complex coupling between PUIs across the heliopause (HP) as facilitated by ENAs using estimates of PUI properties extracted from a 3D MHD simulation of the SW-LISM interaction with kinetic neutrals. First,more » we improve upon the multi-component treatment of the inner heliosheath (IHS) plasma from Zank et al. by including the extinction of PUIs through charge-exchange. We find a significant amount of energy is transferred away from hot, termination shock-processed PUIs into a colder, "freshly injected" PUI population. Second, we extend the multi-component approach to estimate ENA flux from the outer heliosheath (OHS), formed from charge-exchange between interstellar hydrogen atoms and energetic PUIs. These PUIs are formed from ENAs in the IHS that crossed the HP and experienced charge-exchange. Lastly, our estimates, based on plasma-neutral simulations of the SW-LISM interaction and a post-processing analysis of ENAs and PUIs, suggest the majority of flux visible at 1 AU from the front of the heliosphere, between ~0.02 and 10 keV, originates from OHS PUIs, indicating strong coupling between the IHS and OHS plasmas through charge-exchange.« less

  2. Solar chameleons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brax, Philippe; Zioutas, Konstantin

    2010-08-15

    We analyze the creation of chameleons deep inside the Sun (R{approx}0.7R{sub sun}) and their subsequent conversion to photons near the magnetized surface of the Sun. We find that the spectrum of the regenerated photons lies in the soft x-ray region, hence addressing the solar corona problem. Moreover, these back-converted photons originating from chameleons have an intrinsic difference with regenerated photons from axions: their relative polarizations are mutually orthogonal before Compton interacting with the surrounding plasma. Depending on the photon-chameleon coupling and working in the strong coupling regime of the chameleons to matter, we find that the induced photon flux, whenmore » regenerated resonantly with the surrounding plasma, coincides with the solar flux within the soft x-ray energy range. Moreover, using the soft x-ray solar flux as a prior, we find that with a strong enough photon-chameleon coupling, the chameleons emitted by the Sun could lead to a regenerated photon flux in the CAST magnetic pipes, which could be within the reach of CAST with upgraded detector performance. Then, axion helioscopes have thus the potential to detect and identify particle candidates for the ubiquitous dark energy in the Universe.« less

  3. Glenn-ht/bem Conjugate Heat Transfer Solver for Large-scale Turbomachinery Models

    NASA Technical Reports Server (NTRS)

    Divo, E.; Steinthorsson, E.; Rodriquez, F.; Kassab, A. J.; Kapat, J. S.; Heidmann, James D. (Technical Monitor)

    2003-01-01

    A coupled Boundary Element/Finite Volume Method temperature-forward/flux-hack algorithm is developed for conjugate heat transfer (CHT) applications. A loosely coupled strategy is adopted with each field solution providing boundary conditions for the other in an iteration seeking continuity of temperature and heat flux at the fluid-solid interface. The NASA Glenn Navier-Stokes code Glenn-HT is coupled to a 3-D BEM steady state heat conduction code developed at the University of Central Florida. Results from CHT simulation of a 3-D film-cooled blade section are presented and compared with those computed by a two-temperature approach. Also presented are current developments of an iterative domain decomposition strategy accommodating large numbers of unknowns in the BEM. The blade is artificially sub-sectioned in the span-wise direction, 3-D BEM solutions are obtained in the subdomains, and interface temperatures are averaged symmetrically when the flux is updated while the fluxes are averaged anti-symmetrically to maintain continuity of heat flux when the temperatures are updated. An initial guess for interface temperatures uses a physically-based 1-D conduction argument to provide an effective starting point and significantly reduce iteration. 2-D and 3-D results show the process converges efficiently and offers substantial computational and storage savings. Future developments include a parallel multi-grid implementation of the approach under MPI for computation on PC clusters.

  4. Direct-Current Monitor With Flux-Reset Transformer Coupling

    NASA Technical Reports Server (NTRS)

    Canter, Stanley

    1993-01-01

    Circuit measures constant or slowly-varying unidirectional electrical current using flux-reset transformer coupling. Measurement nonintrusive in sense that no need for direct contact with wire that carries load current to be measured, and no need to install series resistive element in load-current path. Toroidal magnetic core wrapped with coil of wire placed around load-current-carrying wire, acts as transformer core, load-current-carrying wire acts as primary winding of transformer, and coil wrapped on core acts as secondary winding.

  5. Analysis of sewage sludge using an experimental prompt gamma neutron activation analysis (pgnaa) set-up with an am-be source

    NASA Astrophysics Data System (ADS)

    Idiri, Z.; Redjem, F.; Beloudah, N.

    2016-09-01

    An experimental PGNAA set-up using a 1 Ci Am-Be source has been developed and used for analysis of bulk sewage sludge samples issued from a wastewater treatment plant situated in an industrial area of Algiers. The sample dimensions were optimized using thermal neutron flux calculations carried out with the MCNP5 Monte Carlo Code. A methodology is then proposed to perform quantitative analysis using the absolute method. For this, average thermal neutron flux inside the sludge samples is deduced using average thermal neutron flux in reference water samples and thermal flux measurements with the aid of a 3He neutron detector. The average absolute gamma detection efficiency is determined using the prompt gammas emitted by chlorine dissolved in a water sample. The gamma detection efficiency is normalized for sludge samples using gamma attenuation factors calculated with the MCNP5 code for water and sludge. Wet and dehydrated sludge samples were analyzed. Nutritive elements (Ca, N, P, K) and heavy metals elements like Cr and Mn were determined. For some elements, the PGNAA values were compared to those obtained using Atomic Absorption Spectroscopy (AAS) and Inductively Coupled Plasma (ICP) methods. Good agreement is observed between the different values. Heavy element concentrations are very high compared to normal values; this is related to the fact that the wastewater treatment plant is treating not only domestic but also industrial wastewater that is probably rejected by industries without removal of pollutant elements. The detection limits for almost all elements of interest are sufficiently low for the method to be well suited for such analysis.

  6. Ginzburg-Landau Theory for Flux Phase and Superconductivity in t-J Model

    NASA Astrophysics Data System (ADS)

    Kuboki, Kazuhiro

    2018-02-01

    Ginzburg-Landau (GL) equations and GL free energy for flux phase and superconductivity are derived microscopically from the t-J model on a square lattice. Order parameter (OP) for the flux phase has direct coupling to a magnetic field, in contrast to the superconducting OP which has minimal coupling to a vector potential. Therefore, when the flux phase OP has unidirectional spatial variation, staggered currents would flow in a perpendicular direction. The derived GL theory can be used for various problems in high-Tc cuprate superconductors, e.g., states near a surface or impurities, and the effect of an external magnetic field. Since the GL theory derived microscopically directly reflects the electronic structure of the system, e.g., the shape of the Fermi surface that changes with doping, it can provide more useful information than that from phenomenological GL theories.

  7. Impact of a Regional Drought on Terrestrial Carbon Fluxes and Atmospheric Carbon: Results from a Coupled Carbon Cycle Model

    NASA Technical Reports Server (NTRS)

    Lee, Eunjee; Koster, Randal D.; Ott, Lesley E.; Weir, Brad; Mahanama, Sarith; Chang, Yehui; Zeng, Fan-Wei

    2017-01-01

    Understanding the underlying processes that control the carbon cycle is key to predicting future global change. Much of the uncertainty in the magnitude and variability of the atmospheric carbon dioxide (CO2) stems from uncertainty in terrestrial carbon fluxes, and the relative impacts of temperature and moisture variations on regional and global scales are poorly understood. Here we investigate the impact of a regional drought on terrestrial carbon fluxes and CO2 mixing ratios over North America using the NASA Goddard Earth Observing System (GEOS) Model. Results show a sequence of changes in carbon fluxes and atmospheric CO2, induced by the drought. The relative contributions of meteorological changes to the neighboring carbon dynamics are also presented. The coupled modeling approach allows a direct quantification of the impact of the regional drought on local and proximate carbon exchange at the land surface via the carbon-water feedback processes.

  8. U(1) mediation of flux supersymmetry breaking

    NASA Astrophysics Data System (ADS)

    Grimm, Thomas W.; Klemm, Albrecht

    2008-10-01

    We study the mediation of supersymmetry breaking triggered by background fluxes in Type II string compactifications with Script N = 1 supersymmetry. The mediation arises due to an U(1) vector multiplet coupling to both a hidden supersymmetry breaking flux sector and a visible D-brane sector. The required internal manifolds can be constructed by non-Kähler resolutions of singular Calabi-Yau manifolds. The effective action encoding the U(1) coupling is then determined in terms of the global topological properties of the internal space. We investigate suitable local geometries for the hidden and visible sector in detail. This includes a systematic study of orientifold symmetries of del Pezzo surfaces realized in compact geometries after geometric transition. We construct compact examples admitting the key properties to realize flux supersymmetry breaking and U(1) mediation. Their toric realization allows us to analyze the geometry of curve classes and confirm the topological connection between the hidden and visible sector.

  9. Numerical study for peristalsis of Carreau-Yasuda nanomaterial with convective and zero mass flux condition

    NASA Astrophysics Data System (ADS)

    Hayat, T.; Ahmed, Bilal; Alsaedi, A.; Abbasi, F. M.

    2018-03-01

    The present communication investigates flow of Carreau-Yasuda nanofluid in presence of mixed convection and Hall current. Effects of viscous dissipation, Ohmic heating and convective conditions are addressed. In addition zero nanoparticle mass flux condition is imposed. Wave frame analysis is carried out. Coupled differential systems after long wavelength and low Reynolds number are numerically solved. Effects of different parameters on velocity, temperature and concentration are studied. Heat and mass transfer rates are analyzed through tabular values. It is observed that concentration for thermophoresis and Brownian motion parameters has opposite effect. Further heat and mass transfer rates at the upper wall enhances significantly when Hartman number increases and reverse situation is noticed for Hall parameter.

  10. An active atmospheric methane sink in high Arctic mineral cryosols

    DOE PAGES

    Lau, Maggie C.Y.; Stackhouse, B.; Layton, Alice C.; ...

    2015-01-01

    The transition of Arctic carbon-rich cryosols into methane (CH₄)-emitting wetlands due to global warming is a rising concern. However, the spatially predominant mineral cryosols and their CH₄ emission potential are poorly understood. Fluxes measured in situ and estimated under laboratory conditions coupled with -omics analysis indicate (1) mineral cryosols in the Canadian high Arctic contain atmospheric CH₄-oxidizing bacteria; (2) the atmospheric CH⁺ uptake flux increases with ground temperature; and, as a result, (3) the atmospheric CH₄ sink strength will increase by a factor of 5-30 as the Arctic warms by 5-15 °C over a century. We demonstrated that acidic mineralmore » cryosols have previously unrecognized potential of negative CH₄ feedback.« less

  11. Development of high-fidelity multiphysics system for light water reactor analysis

    NASA Astrophysics Data System (ADS)

    Magedanz, Jeffrey W.

    There has been a tendency in recent years toward greater heterogeneity in reactor cores, due to the use of mixed-oxide (MOX) fuel, burnable absorbers, and longer cycles with consequently higher fuel burnup. The resulting asymmetry of the neutron flux and energy spectrum between regions with different compositions causes a need to account for the directional dependence of the neutron flux, instead of the traditional diffusion approximation. Furthermore, the presence of both MOX and high-burnup fuel in the core increases the complexity of the heat conduction. The heat transfer properties of the fuel pellet change with irradiation, and the thermal and mechanical expansion of the pellet and cladding strongly affect the size of the gap between them, and its consequent thermal resistance. These operational tendencies require higher fidelity multi-physics modeling capabilities, and this need is addressed by the developments performed within this PhD research. The dissertation describes the development of a High-Fidelity Multi-Physics System for Light Water Reactor Analysis. It consists of three coupled codes -- CTF for Thermal Hydraulics, TORT-TD for Neutron Kinetics, and FRAPTRAN for Fuel Performance. It is meant to address these modeling challenges in three ways: (1) by resolving the state of the system at the level of each fuel pin, rather than homogenizing entire fuel assemblies, (2) by using the multi-group Discrete Ordinates method to account for the directional dependence of the neutron flux, and (3) by using a fuel-performance code, rather than a Thermal Hydraulics code's simplified fuel model, to account for the material behavior of the fuel and its feedback to the hydraulic and neutronic behavior of the system. While the first two are improvements, the third, the use of a fuel-performance code for feedback, constitutes an innovation in this PhD project. Also important to this work is the manner in which such coupling is written. While coupling involves combining codes into a single executable, they are usually still developed and maintained separately. It should thus be a design objective to minimize the changes to those codes, and keep the changes to each code free of dependence on the details of the other codes. This will ease the incorporation of new versions of the code into the coupling, as well as re-use of parts of the coupling to couple with different codes. In order to fulfill this objective, an interface for each code was created in the form of an object-oriented abstract data type. Object-oriented programming is an effective method for enforcing a separation between different parts of a program, and clarifying the communication between them. The interfaces enable the main program to control the codes in terms of high-level functionality. This differs from the established practice of a master/slave relationship, in which the slave code is incorporated into the master code as a set of subroutines. While this PhD research continues previous work with a coupling between CTF and TORT-TD, it makes two major original contributions: (1) using a fuel-performance code, instead of a thermal-hydraulics code's simplified built-in models, to model the feedback from the fuel rods, and (2) the design of an object-oriented interface as an innovative method to interact with a coupled code in a high-level, easily-understandable manner. The resulting code system will serve as a tool to study the question of under what conditions, and to what extent, these higher-fidelity methods will provide benefits to reactor core analysis. (Abstract shortened by UMI.)

  12. Simulation of the Indian Summer Monsoon Using Comprehensive Atmosphere-land Interactions, in the Absence of Two-way Air-sea Interactions

    NASA Technical Reports Server (NTRS)

    Lim, Young-Kwon; Shin, D. W.; Cocke, Steven; Kang, Sung-Dae; Kim, Hae-Dong

    2011-01-01

    Community Land Model version 2 (CLM2) as a comprehensive land surface model and a simple land surface model (SLM) were coupled to an atmospheric climate model to investigate the role of land surface processes in the development and the persistence of the South Asian summer monsoon. Two-way air-sea interactions were not considered in order to identify the reproducibility of the monsoon evolution by the comprehensive land model, which includes more realistic vertical soil moisture structures, vegetation and 2-way atmosphere-land interactions at hourly intervals. In the monsoon development phase (May and June). comprehensive land-surface treatment improves the representation of atmospheric circulations and the resulting convergence/divergence through the improvements in differential heating patterns and surface energy fluxes. Coupling with CLM2 also improves the timing and spatial distribution of rainfall maxima, reducing the seasonal rainfall overestimation by approx.60 % (1.8 mm/d for SLM, 0.7 mm/dI for CLM2). As for the interannual variation of the simulated rainfall, correlation coefficients of the Indian seasonal rainfall with observation increased from 0.21 (SLM) to 0.45 (CLM2). However, in the mature monsoon phase (July to September), coupling with the CLM2 does not exhibit a clear improvement. In contrast to the development phase, latent heat flux is underestimated and sensible heat flux and surface temperature over India are markedly overestimated. In addition, the moisture fluxes do not correlate well with lower-level atmospheric convergence, yielding correlation coefficients and root mean square errors worse than those produced by coupling with the SLM. A more realistic representation of the surface temperature and energy fluxes is needed to achieve an improved simulation for the mature monsoon period.

  13. Impact of air-sea drag coefficient for latent heat flux on large scale climate in coupled and atmosphere stand-alone simulations

    NASA Astrophysics Data System (ADS)

    Torres, Olivier; Braconnot, Pascale; Marti, Olivier; Gential, Luc

    2018-05-01

    The turbulent fluxes across the ocean/atmosphere interface represent one of the principal driving forces of the global atmospheric and oceanic circulation. Despite decades of effort and improvements, representation of these fluxes still presents a challenge due to the small-scale acting turbulent processes compared to the resolved scales of the models. Beyond this subgrid parameterization issue, a comprehensive understanding of the impact of air-sea interactions on the climate system is still lacking. In this paper we investigates the large-scale impacts of the transfer coefficient used to compute turbulent heat fluxes with the IPSL-CM4 climate model in which the surface bulk formula is modified. Analyzing both atmosphere and coupled ocean-atmosphere general circulation model (AGCM, OAGCM) simulations allows us to study the direct effect and the mechanisms of adjustment to this modification. We focus on the representation of latent heat flux in the tropics. We show that the heat transfer coefficients are highly similar for a given parameterization between AGCM and OAGCM simulations. Although the same areas are impacted in both kind of simulations, the differences in surface heat fluxes are substantial. A regional modification of heat transfer coefficient has more impact than uniform modification in AGCM simulations while in OAGCM simulations, the opposite is observed. By studying the global energetics and the atmospheric circulation response to the modification, we highlight the role of the ocean in dampening a large part of the disturbance. Modification of the heat exchange coefficient modifies the way the coupled system works due to the link between atmospheric circulation and SST, and the different feedbacks between ocean and atmosphere. The adjustment that takes place implies a balance of net incoming solar radiation that is the same in all simulations. As there is no change in model physics other than drag coefficient, we obtain similar latent heat flux between coupled simulations with different atmospheric circulations. Finally, we analyze the impact of model tuning and show that it can offset part of the feedbacks.

  14. On the feasibility of growth-coupled product synthesis in microbial strains.

    PubMed

    Klamt, Steffen; Mahadevan, Radhakrishnan

    2015-07-01

    Enforcing obligate coupling of growth with synthesis of a desired product has become a key principle for metabolic engineering of microbial production strains. Various methods from stoichiometric and constraint-based modeling have been developed to calculate intervention strategies by which a given microorganism can only grow if it synthesizes a desired compound as a mandatory by-product. However, growth-coupled synthesis is not necessarily feasible for every compound of a metabolic network and no rigorous criterion is currently known to test feasibility of coupled product and biomass formation (before searching for suitable intervention strategies). In this work, we show which properties a network must fulfill such that strain designs guaranteeing coupled biomass and product synthesis can exist at all. In networks without flux bounds, coupling is feasible if and only if an elementary mode exists that leads to formation of both biomass and product. Setting flux boundaries leads to more complicated inhomogeneous problems. Making use of the concept of elementary (flux) vectors, a generalization of elementary modes, a criterion for feasibility can also be derived for this situation. We applied our criteria to a metabolic model of Escherichia coli and determined for each metabolite, whether its net production can be coupled with biomass synthesis and calculated the maximal (guaranteed) coupling yield. The somewhat surprising result is that, under aerobic conditions, coupling is indeed possible for each carbon metabolite of the central metabolism. This also holds true for most metabolites under anaerobic conditions but consideration of ATP maintenance requirements implies infeasibility of coupling for certain compounds. On the other hand, ATP maintenance may also increase the maximal coupling yield for some metabolites. Overall, our work provides important insights and novel tools for a central problem of computational strain design. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  15. Genome-Scale Metabolic Reconstructions and Theoretical Investigation of Methane Conversion in Methylomicrobium buryatense Strain 5G(B1)

    DOE PAGES

    de la Torre, Andrea; Metivier, Aisha; Chu, Frances; ...

    2015-11-25

    Methane-utilizing bacteria (methanotrophs) are capable of growth on methane and are attractive systems for bio-catalysis. However, the application of natural methanotrophic strains to large-scale production of value-added chemicals/biofuels requires a number of physiological and genetic alterations. An accurate metabolic model coupled with flux balance analysis can provide a solid interpretative framework for experimental data analyses and integration.

  16. On the coupling of fluid dynamics and electromagnetism at the top of the earth's core

    NASA Technical Reports Server (NTRS)

    Benton, E. R.

    1985-01-01

    A kinematic approach to short-term geomagnetism has recently been based upon pre-Maxwell frozen-flux electromagnetism. A complete dynamic theory requires coupling fluid dynamics to electromagnetism. A geophysically plausible simplifying assumption for the vertical vorticity balance, namely that the vertical Lorentz torque is negligible, is introduced and its consequences are developed. The simplified coupled magnetohydrodynamic system is shown to conserve a variety of magnetic and vorticity flux integrals. These provide constraints on eligible models for the geomagnetic main field, its secular variation, and the horizontal fluid motions at the top of the core, and so permit a number of tests of the underlying assumptions.

  17. Automated Video-Based Analysis of Contractility and Calcium Flux in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes Cultured over Different Spatial Scales

    PubMed Central

    Huebsch, Nathaniel; Loskill, Peter; Mandegar, Mohammad A.; Marks, Natalie C.; Sheehan, Alice S.; Ma, Zhen; Mathur, Anurag; Nguyen, Trieu N.; Yoo, Jennie C.; Judge, Luke M.; Spencer, C. Ian; Chukka, Anand C.; Russell, Caitlin R.; So, Po-Lin

    2015-01-01

    Contractile motion is the simplest metric of cardiomyocyte health in vitro, but unbiased quantification is challenging. We describe a rapid automated method, requiring only standard video microscopy, to analyze the contractility of human-induced pluripotent stem cell-derived cardiomyocytes (iPS-CM). New algorithms for generating and filtering motion vectors combined with a newly developed isogenic iPSC line harboring genetically encoded calcium indicator, GCaMP6f, allow simultaneous user-independent measurement and analysis of the coupling between calcium flux and contractility. The relative performance of these algorithms, in terms of improving signal to noise, was tested. Applying these algorithms allowed analysis of contractility in iPS-CM cultured over multiple spatial scales from single cells to three-dimensional constructs. This open source software was validated with analysis of isoproterenol response in these cells, and can be applied in future studies comparing the drug responsiveness of iPS-CM cultured in different microenvironments in the context of tissue engineering. PMID:25333967

  18. A magnetoelectric flux gate: new approach for weak DC magnetic field detection.

    PubMed

    Chu, Zhaoqiang; Shi, Huaduo; PourhosseiniAsl, Mohammad Javad; Wu, Jingen; Shi, Weiliang; Gao, Xiangyu; Yuan, Xiaoting; Dong, Shuxiang

    2017-08-17

    The magnetic flux gate sensors based on Faraday's Law of Induction are widely used for DC or extremely low frequency magnetic field detection. Recently, as the fast development of multiferroics and magnetoelectric (ME) composite materials, a new technology based on ME coupling effect is emerging for potential devices application. Here, we report a magnetoelectric flux gate sensor (MEFGS) for weak DC magnetic field detection for the first time, which works on a similar magnetic flux gate principle, but based on ME coupling effect. The proposed MEFGS has a shuttle-shaped configuration made of amorphous FeBSi alloy (Metglas) serving as both magnetic and magnetostrictive cores for producing a closed-loop high-frequency magnetic flux and also a longitudinal vibration, and one pair of embedded piezoelectric PMN-PT fibers ([011]-oriented Pb(Mg,Nb)O 3 -PbTiO 3 single crystal) serving as ME flux gate in a differential mode for detecting magnetic anomaly. In this way, the relative change in output signal of the MEFGS under an applied DC magnetic anomaly of 1 nT was greatly enhanced by a factor of 4 to 5 in comparison with the previous reports. The proposed ME flux gate shows a great potential for magnetic anomaly detections, such as magnetic navigation, magnetic based medical diagnosis, etc.

  19. Modeling multi-process connectivity in river deltas: extending the single layer network analysis to a coupled multilayer network framework

    NASA Astrophysics Data System (ADS)

    Tejedor, A.; Longjas, A.; Foufoula-Georgiou, E.

    2017-12-01

    Previous work [e.g. Tejedor et al., 2016 - GRL] has demonstrated the potential of using graph theory to study key properties of the structure and dynamics of river delta channel networks. Although the distribution of fluxes in river deltas is mostly driven by the connectivity of its channel network a significant part of the fluxes might also arise from connectivity between the channels and islands due to overland flow and seepage. This channel-island-subsurface interaction creates connectivity pathways which facilitate or inhibit transport depending on their degree of coupling. The question we pose here is how to collectively study system connectivity that emerges from the aggregated action of different processes (different in nature, intensity and time scales). Single-layer graphs as those introduced for delta channel networks are inadequate as they lack the ability to represent coupled processes, and neglecting across-process interactions can lead to mis-representation of the overall system dynamics. We present here a framework that generalizes the traditional representation of networks (single-layer graphs) to the so-called multi-layer networks or multiplex. A multi-layer network conceptualizes the overall connectivity arising from different processes as distinct graphs (layers), while allowing at the same time to represent interactions between layers by introducing interlayer links (across process interactions). We illustrate this framework using a study of the joint connectivity that arises from the coupling of the confined flow on the channel network and the overland flow on islands, on a prototype delta. We show the potential of the multi-layer framework to answer quantitatively questions related to the characteristic time scales to steady-state transport in the system as a whole when different levels of channel-island coupling are modulated by different magnitudes of discharge rates.

  20. Modulated Hawking radiation and a nonviolent channel for information release

    DOE PAGES

    Giddings, Steven B.

    2014-09-16

    The unitarization of black hole evaporation requires that quantum information escapes a black hole; an important question is to identify the mechanism or channel by which it does so. Accurate counting of black hole states via the Bekenstein–Hawking entropy would indicate this information should be encoded in radiation with average energy flux matching Hawking’s. Information can be encoded with no change in net flux via fine-grained modulation of the Hawking radiation. In an approximate effective field theory description, couplings to the stress tensor of the black hole atmosphere that depend on the internal state of the black hole are amore » promising alternative for inducing such modulation. These can be picturesquely thought of as due to state-dependent metric fluctuations in the vicinity of the horizon. Such couplings offer the prospect of emitting information without extra energy flux, and can be shown to do so at linear order in the couplings, with motivation given for possible extension of this result to higher orders. The potential advantages of such couplings to the stress tensor thus extend beyond their universality, which is helpful in addressing constraints from black hole mining.« less

  1. Coherent coupling of a superconducting flux qubit to an electron spin ensemble in diamond.

    PubMed

    Zhu, Xiaobo; Saito, Shiro; Kemp, Alexander; Kakuyanagi, Kosuke; Karimoto, Shin-ichi; Nakano, Hayato; Munro, William J; Tokura, Yasuhiro; Everitt, Mark S; Nemoto, Kae; Kasu, Makoto; Mizuochi, Norikazu; Semba, Kouichi

    2011-10-12

    During the past decade, research into superconducting quantum bits (qubits) based on Josephson junctions has made rapid progress. Many foundational experiments have been performed, and superconducting qubits are now considered one of the most promising systems for quantum information processing. However, the experimentally reported coherence times are likely to be insufficient for future large-scale quantum computation. A natural solution to this problem is a dedicated engineered quantum memory based on atomic and molecular systems. The question of whether coherent quantum coupling is possible between such natural systems and a single macroscopic artificial atom has attracted considerable attention since the first demonstration of macroscopic quantum coherence in Josephson junction circuits. Here we report evidence of coherent strong coupling between a single macroscopic superconducting artificial atom (a flux qubit) and an ensemble of electron spins in the form of nitrogen-vacancy colour centres in diamond. Furthermore, we have observed coherent exchange of a single quantum of energy between a flux qubit and a macroscopic ensemble consisting of about 3 × 10(7) such colour centres. This provides a foundation for future quantum memories and hybrid devices coupling microwave and optical systems.

  2. Energetics of an rf SQUID Coupled to Two Thermal Reservoirs

    DOE PAGES

    Gardas, B.; Łuczka, J.; Ptok, A.; ...

    2015-12-07

    We study energetics of a Josephson tunnel junction connecting a superconducting loop pierced by an external magnetic flux (an rf SQUID) and coupled to two independent thermal reservoirs of different temperature. In the framework of the theory of quantum dissipative systems, we analyze energy currents in stationary states. The stationary energy flow can be periodically modulated by the external magnetic flux exemplifying the rf SQUID as a quantum heat interferometer. Additionally, we consider the transient regime and identify three distinct regimes: monotonic decay, damped oscillations and pulse-type behavior of energy currents. Furthermore, the first two regimes can be controlled bymore » the external magnetic flux while the last regime is robust against its variation.« less

  3. Resilience of the quantum Rabi model in circuit QED

    NASA Astrophysics Data System (ADS)

    E Manucharyan, Vladimir; Baksic, Alexandre; Ciuti, Cristiano

    2017-07-01

    In circuit quantum electrodynamics (circuit QED), an artificial ‘circuit atom’ can couple to a quantized microwave radiation much stronger than its real atomic counterpart. The celebrated quantum Rabi model describes the simplest interaction of a two-level system with a single-mode boson field. When the coupling is large enough, the bare multilevel structure of a realistic circuit atom cannot be ignored even if the circuit is strongly anharmonic. We explored this situation theoretically for flux (fluxonium) and charge (Cooper pair box) type multi-level circuits tuned to their respective flux/charge degeneracy points. We identified which spectral features of the quantum Rabi model survive and which are renormalized for large coupling. Despite significant renormalization of the low-energy spectrum in the fluxonium case, the key quantum Rabi feature—nearly-degenerate vacuum consisting of an atomic state entangled with a multi-photon field—appears in both types of circuits when the coupling is sufficiently large. Like in the quantum Rabi model, for very large couplings the entanglement spectrum is dominated by only two, nearly equal eigenvalues, in spite of the fact that a large number of bare atomic states are actually involved in the atom-resonator ground state. We interpret the emergence of the two-fold degeneracy of the vacuum of both circuits as an environmental suppression of flux/charge tunneling due to their dressing by virtual low-/high-impedance photons in the resonator. For flux tunneling, the dressing is nothing else than the shunting of a Josephson atom with a large capacitance of the resonator. Suppression of charge tunneling is a manifestation of the dynamical Coulomb blockade of transport in tunnel junctions connected to resistive leads.

  4. Air-sea interactions during strong winter extratropical storms

    USGS Publications Warehouse

    Nelson, Jill; He, Ruoying; Warner, John C.; Bane, John

    2014-01-01

    A high-resolution, regional coupled atmosphere–ocean model is used to investigate strong air–sea interactions during a rapidly developing extratropical cyclone (ETC) off the east coast of the USA. In this two-way coupled system, surface momentum and heat fluxes derived from the Weather Research and Forecasting model and sea surface temperature (SST) from the Regional Ocean Modeling System are exchanged via the Model Coupling Toolkit. Comparisons are made between the modeled and observed wind velocity, sea level pressure, 10 m air temperature, and sea surface temperature time series, as well as a comparison between the model and one glider transect. Vertical profiles of modeled air temperature and winds in the marine atmospheric boundary layer and temperature variations in the upper ocean during a 3-day storm period are examined at various cross-shelf transects along the eastern seaboard. It is found that the air–sea interactions near the Gulf Stream are important for generating and sustaining the ETC. In particular, locally enhanced winds over a warm sea (relative to the land temperature) induce large surface heat fluxes which cool the upper ocean by up to 2 °C, mainly during the cold air outbreak period after the storm passage. Detailed heat budget analyses show the ocean-to-atmosphere heat flux dominates the upper ocean heat content variations. Results clearly show that dynamic air–sea interactions affecting momentum and buoyancy flux exchanges in ETCs need to be resolved accurately in a coupled atmosphere–ocean modeling framework.

  5. Remote Sensing of Cloud Properties using Ground-based Measurements of Zenith Radiance

    NASA Technical Reports Server (NTRS)

    Chiu, J. Christine; Marshak, Alexander; Knyazikhin, Yuri; Wiscombe, Warren J.; Barker, Howard W.; Barnard, James C.; Luo, Yi

    2006-01-01

    An extensive verification of cloud property retrievals has been conducted for two algorithms using zenith radiances measured by the Atmospheric Radiation Measurement (ARM) Program ground-based passive two-channel (673 and 870 nm) Narrow Field-Of-View Radiometer. The underlying principle of these algorithms is that clouds have nearly identical optical properties at these wavelengths, but corresponding spectral surface reflectances (for vegetated surfaces) differ significantly. The first algorithm, the RED vs. NIR, works for a fully three-dimensional cloud situation. It retrieves not only cloud optical depth, but also an effective radiative cloud fraction. Importantly, due to one-second time resolution of radiance measurements, we are able, for the first time, to capture detailed changes in cloud structure at the natural time scale of cloud evolution. The cloud optical depths tau retrieved by this algorithm are comparable to those inferred from both downward fluxes in overcast situations and microwave brightness temperatures for broken clouds. Moreover, it can retrieve tau for thin patchy clouds, where flux and microwave observations fail to detect them. The second algorithm, referred to as COUPLED, couples zenith radiances with simultaneous fluxes to infer 2. In general, the COUPLED and RED vs. NIR algorithms retrieve consistent values of tau. However, the COUPLED algorithm is more sensitive to the accuracies of measured radiance, flux, and surface reflectance than the RED vs. NIR algorithm. This is especially true for thick overcast clouds where it may substantially overestimate z.

  6. Modelling deep-water formation in the north-west Mediterranean Sea with a new air-sea coupled model: sensitivity to turbulent flux parameterizations

    NASA Astrophysics Data System (ADS)

    Seyfried, Léo; Marsaleix, Patrick; Richard, Evelyne; Estournel, Claude

    2017-12-01

    In the north-western Mediterranean, the strong, dry, cold winds, the Tramontane and Mistral, produce intense heat and moisture exchange at the interface between the ocean and the atmosphere leading to the formation of deep dense waters, a process that occurs only in certain regions of the world. The purpose of this study is to demonstrate the ability of a new coupled ocean-atmosphere modelling system based on MESONH-SURFEX-SYMPHONIE to simulate a deep-water formation event in real conditions. The study focuses on summer 2012 to spring 2013, a favourable period that is well documented by previous studies and for which many observations are available. Model results are assessed through detailed comparisons with different observation data sets, including measurements from buoys, moorings and floats. The good overall agreement between observations and model results shows that the new coupled system satisfactorily simulates the formation of deep dense water and can be used with confidence to study ocean-atmosphere coupling in the north-western Mediterranean. In addition, to evaluate the uncertainty associated with the representation of turbulent fluxes in strong wind conditions, several simulations were carried out based on different parameterizations of the flux bulk formulas. The results point out that the choice of turbulent flux parameterization strongly influences the simulation of the deep-water convection and can modify the volume of the newly formed deep water by a factor of 2.

  7. Characterization of a 6 kW high-flux solar simulator with an array of xenon arc lamps capable of concentrations of nearly 5000 suns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gill, Robert; Bush, Evan; Loutzenhiser, Peter, E-mail: peter.loutzenhiser@me.gatech.edu

    2015-12-15

    A systematic methodology for characterizing a novel and newly fabricated high-flux solar simulator is presented. The high-flux solar simulator consists of seven xenon short-arc lamps mounted in truncated ellipsoidal reflectors. Characterization of spatial radiative heat flux distribution was performed using calorimetric measurements of heat flow coupled with CCD camera imaging of a Lambertian target mounted in the focal plane. The calorimetric measurements and images of the Lambertian target were obtained in two separate runs under identical conditions. Detailed modeling in the high-flux solar simulator was accomplished using Monte Carlo ray tracing to capture radiative heat transport. A least-squares regression modelmore » was used on the Monte Carlo radiative heat transfer analysis with the experimental data to account for manufacturing defects. The Monte Carlo ray tracing was calibrated by regressing modeled radiative heat flux as a function of specular error and electric power to radiation conversion onto measured radiative heat flux from experimental results. Specular error and electric power to radiation conversion efficiency were 5.92 ± 0.05 mrad and 0.537 ± 0.004, respectively. An average radiative heat flux with 95% errors bounds of 4880 ± 223 kW ⋅ m{sup −2} was measured over a 40 mm diameter with a cavity-type calorimeter with an apparent absorptivity of 0.994. The Monte Carlo ray-tracing resulted in an average radiative heat flux of 893.3 kW ⋅ m{sup −2} for a single lamp, comparable to the measured radiative heat fluxes with 95% error bounds of 892.5 ± 105.3 kW ⋅ m{sup −2} from calorimetry.« less

  8. Hybrid-secondary uncluttered permanent magnet machine and method

    DOEpatents

    Hsu, John S.

    2005-12-20

    An electric machine (40) has a stator (43), a permanent magnet rotor (38) with permanent magnets (39) and a magnetic coupling uncluttered rotor (46) for inducing a slip energy current in secondary coils (47). A dc flux can be produced in the uncluttered rotor when the secondary coils are fed with dc currents. The magnetic coupling uncluttered rotor (46) has magnetic brushes (A, B, C, D) which couple flux in through the rotor (46) to the secondary coils (47c, 47d) without inducing a current in the rotor (46) and without coupling a stator rotational energy component to the secondary coils (47c, 47d). The machine can be operated as a motor or a generator in multi-phase or single-phase embodiments and is applicable to the hybrid electric vehicle. A method of providing a slip energy controller is also disclosed.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    A generalized, intuitive two-fluid picture of 2D non-driven collisionless magnetic reconnection is described using results from a full-3D numerical simulation. The relevant two-fluid equations simplify to the condition that the flux associated with canonical circulation Q=m e∇×u e+q eB is perfectly frozen into the electron fluid. In the reconnection geometry, flux tubes defined by Q are convected with the central electron current, effectively stretching the tubes and increasing the magnitude of Q exponentially. This, coupled with the fact that Q is a sum of two quantities, explains how the magnetic fields in the reconnection region reconnect and give rise tomore » strong electron acceleration. The Q motion provides an interpretation for other phenomena as well, such as spiked central electron current filaments. The simulated reconnection rate was found to agree with a previous analytical calculation having the same geometry. Energy analysis shows that the magnetic energy is converted and propagated mainly in the form of the Poynting flux, and helicity analysis shows that the canonical helicity ∫P·Q dV as a whole must be considered when analyzing reconnection. A mechanism for whistler wave generation and propagation is also described, with comparisons to recent spacecraft observations.« less

  10. The role of climate on inter-annual variation in stream nitrate fluxes and concentrations.

    PubMed

    Gascuel-Odoux, Chantal; Aurousseau, Pierre; Durand, Patrick; Ruiz, Laurent; Molenat, Jérôme

    2010-11-01

    In recent decades, temporal variations in nitrate fluxes and concentrations in temperate rivers have resulted from the interaction of anthropogenic and climatic factors. The effect of climatic drivers remains unclear, while the relative importance of the drivers seems to be highly site dependent. This paper focuses on 2-6 year variations called meso-scale variations, and analyses the climatic drivers of these variations in a study site characterized by high N inputs from intensive animal farming systems and shallow aquifers with impervious bedrock in a temperate climate. Three approaches are developed: 1) an analysis of long-term records of nitrate fluxes and nitrate concentrations in 30 coastal rivers of Western France, which were well-marked by meso-scale cycles in the fluxes and concentration with a slight hysteresis; 2) a test of the climatic control using a lumped two-box model, which demonstrates that hydrological assumptions are sufficient to explain these meso-scale cycles; and 3) a model of nitrate fluxes and concentrations in two contrasted catchments subjected to recent mitigation measures, which analyses nitrate fluxes and concentrations in relation to N stored in groundwater. In coastal rivers, hydrological drivers (i.e., effective rainfall), and particularly the dynamics of the water table and rather stable nitrate concentration, explain the meso-scale cyclic patterns. In the headwater catchment, agricultural and hydrological drivers can interact according to their settings. The requirements to better distinguish the effect of climate and human changes in integrated water management are addressed: long-term monitoring, coupling the analysis and the modelling of large sets of catchments incorporating different sizes, land uses and environmental factors. Copyright © 2009 Elsevier B.V. All rights reserved.

  11. Session on coupled atmospheric/chemistry coupled models

    NASA Technical Reports Server (NTRS)

    Thompson, Anne

    1993-01-01

    The session on coupled atmospheric/chemistry coupled models is reviewed. Current model limitations, current issues and critical unknowns, and modeling activity are addressed. Specific recommendations and experimental strategies on the following are given: multiscale surface layer - planetary boundary layer - chemical flux measurements; Eulerian budget study; and Langrangian experiment. Nonprecipitating cloud studies, organized convective systems, and aerosols - heterogenous chemistry are also discussed.

  12. Ultrafast quantum computation in ultrastrongly coupled circuit QED systems.

    PubMed

    Wang, Yimin; Guo, Chu; Zhang, Guo-Qiang; Wang, Gangcheng; Wu, Chunfeng

    2017-03-10

    The latest technological progress of achieving the ultrastrong-coupling regime in circuit quantum electrodynamics (QED) systems has greatly promoted the developments of quantum physics, where novel quantum optics phenomena and potential computational benefits have been predicted. Here, we propose a scheme to accelerate the nontrivial two-qubit phase gate in a circuit QED system, where superconducting flux qubits are ultrastrongly coupled to a transmission line resonator (TLR), and two more TLRs are coupled to the ultrastrongly-coupled system for assistant. The nontrivial unconventional geometric phase gate between the two flux qubits is achieved based on close-loop displacements of the three-mode intracavity fields. Moreover, as there are three resonators contributing to the phase accumulation, the requirement of the coupling strength to realize the two-qubit gate can be reduced. Further reduction in the coupling strength to achieve a specific controlled-phase gate can be realized by adding more auxiliary resonators to the ultrastrongly-coupled system through superconducting quantum interference devices. We also present a study of our scheme with realistic parameters considering imperfect controls and noisy environment. Our scheme possesses the merits of ultrafastness and noise-tolerance due to the advantages of geometric phases.

  13. Ultrafast quantum computation in ultrastrongly coupled circuit QED systems

    PubMed Central

    Wang, Yimin; Guo, Chu; Zhang, Guo-Qiang; Wang, Gangcheng; Wu, Chunfeng

    2017-01-01

    The latest technological progress of achieving the ultrastrong-coupling regime in circuit quantum electrodynamics (QED) systems has greatly promoted the developments of quantum physics, where novel quantum optics phenomena and potential computational benefits have been predicted. Here, we propose a scheme to accelerate the nontrivial two-qubit phase gate in a circuit QED system, where superconducting flux qubits are ultrastrongly coupled to a transmission line resonator (TLR), and two more TLRs are coupled to the ultrastrongly-coupled system for assistant. The nontrivial unconventional geometric phase gate between the two flux qubits is achieved based on close-loop displacements of the three-mode intracavity fields. Moreover, as there are three resonators contributing to the phase accumulation, the requirement of the coupling strength to realize the two-qubit gate can be reduced. Further reduction in the coupling strength to achieve a specific controlled-phase gate can be realized by adding more auxiliary resonators to the ultrastrongly-coupled system through superconducting quantum interference devices. We also present a study of our scheme with realistic parameters considering imperfect controls and noisy environment. Our scheme possesses the merits of ultrafastness and noise-tolerance due to the advantages of geometric phases. PMID:28281654

  14. Energetics of muscle contraction: the whole is less than the sum of its parts

    NASA Technical Reports Server (NTRS)

    Kushmerick, M. J.; Conley, K. E.

    2002-01-01

    Understanding muscle energetics is a problem in optimizing supply of ATP to the demands of ATPases. The complexity of reactions and their fluxes to achieve this balance is greatly reduced by recognizing constraints imposed by the integration of common metabolites at fixed stoichiometry among modular units. ATPase is driven externally. Oxidative phosphorylation and glycogenolysis are the suppliers. We focus on their regulation which involves different controls, but reduces to two principles that enable facile experimental analysis of the supply and demand fluxes. The ratio of concentration of phosphocreatine (PCr) to ATP, not their individual values, sets the range of achievable concentrations of ADP in resting and active muscle (at fixed pH) in different cell types. This principle defines the fraction of available flux of oxidative phosphorylation utilized (at fixed enzyme activities). Then the kinetics of PCr recovery defines the kinetics of oxygen supply and substrate utilization. The second principle is the constancy of PCr and H(+) (lactate) production by glycogenolysis due to the coupling of ATPase and glycolysis. This principle enables glycogenolytic flux to be measured from intracellular proton loads. Further simplification occurs because the magnitude of the interacting fluxes and metabolite concentrations are specified within narrow limits when both the resting and active fluxes are quantified. Thus there is a small set of rules for assessing and understanding the thermodynamics and kinetics of muscle energetics.

  15. High-resolution CO2 and CH4 flux inverse modeling combining GOSAT, OCO-2 and ground-based observations

    NASA Astrophysics Data System (ADS)

    Maksyutov, S. S.; Oda, T.; Saito, M.; Ito, A.; Janardanan Achari, R.; Sasakawa, M.; Machida, T.; Kaiser, J. W.; Belikov, D.; Valsala, V.; O'Dell, C.; Yoshida, Y.; Matsunaga, T.

    2017-12-01

    We develop a high-resolution CO2 and CH4 flux inversion system that is based on the Lagrangian-Eulerian coupled tracer transport model, and is designed to estimate surface fluxes from atmospheric CO2 and CH4 data observed by the GOSAT and OCO-2 satellites and by global in-situ networks, including observation in Siberia. We use the Lagrangian particle dispersion model (LPDM) FLEXPART to estimate the surface flux footprints for each observation at 0.1-degree spatial resolution for three days of transport. The LPDM is coupled to a global atmospheric tracer transport model (NIES-TM). The adjoint of the coupled transport model is used in an iterative optimization procedure based on either quasi-Newtonian algorithm or singular value decomposition. Combining surface and satellite data for use in inversion requires correcting for biases present in satellite observation data, that is done in a two-step procedure. As a first step, bi-weekly corrections to prior flux fields are estimated for the period of 2009 to 2015 from in-situ CO2 and CH4 data from global observation network, included in Obspack-GVP (for CO2), WDCGG (CH4) and JR-STATION datasets. High-resolution prior fluxes were prepared for anthropogenic emissions (ODIAC and EDGAR), biomass burning (GFAS), and the terrestrial biosphere. The terrestrial biosphere flux was constructed using a vegetation mosaic map and separate simulations of CO2 fluxes by the VISIT model for each vegetation type present in a grid. The prior flux uncertainty for land is scaled proportionally to monthly mean GPP by the MODIS product for CO2 and EDGAR emissions for CH4. Use of the high-resolution transport leads to improved representation of the anthropogenic plumes, often observed at continental continuous observation sites. OCO-2 observations are aggregated to 1 second averages, to match the 0.1 degree resolution of the transport model. Before including satellite observations in the inversion, the monthly varying latitude-dependent bias is estimated by comparing satellite observations with column abundance simulated with surface fluxes optimized by surface inversion. The bias-corrected GOSAT and OCO-2 data are then used in the inversion together with ground-based observations. Application of the bias correction to satellite data reduces the difference between the flux estimates based on ground-based and satellite observations.

  16. Impact of the ocean diurnal cycle on the North Atlantic mean sea surface temperatures in a regionally coupled model

    NASA Astrophysics Data System (ADS)

    Guemas, Virginie; Salas-Mélia, David; Kageyama, Masa; Giordani, Hervé; Voldoire, Aurore

    2013-03-01

    This study investigates the mechanisms by which the ocean diurnal cycle can affect the ocean mean state in the North Atlantic region. We perform two ocean-atmosphere regionally coupled simulations (20°N-80°N, 80°W-40°E) using the CNRMOM1D ocean model coupled to the ARPEGE4 atmospheric model: one with a 1 h coupling frequency (C1h) and another with a 24 h coupling frequency (C24h). The comparison between both experiments shows that accounting for the ocean diurnal cycle tends to warm up the surface ocean at high latitudes and cool it down in the subtropics during the boreal summer season (June-August). In the subtropics, the leading cause for the formation of the negative surface temperature anomalies is the fact that the nocturnal entrainment heat flux overcompensates the diurnal absorption of solar heat flux. Both in the subtropics and in the high latitudes, the surface temperature anomalies are involved in a positive feedback loop: the cold (warm) surface anomalies favour a decrease (increase) in evaporation, a decrease (increase) in tropospheric humidity, a decrease (increase) in downwelling longwave radiative flux which in turn favours the surface cooling (warming). Furthermore, the decrease in meridional sea surface temperature gradient affects the large-scale atmospheric circulation by a decrease in the zonal mean flow.

  17. MHD effects and heat transfer for the UCM fluid along with Joule heating and thermal radiation using Cattaneo-Christov heat flux model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shah, S., E-mail: sajidshah313@yahoo.com; Hussain, S.; Sagheer, M.

    2016-08-15

    Present study examines the numerical analysis of MHD flow of Maxwell fluid with thermal radiation and Joule heating by considering the recently developed Cattaneo-Christov heat flux model which explains the time relaxation characteristics for the heat flux. The objective is to analyze the governing parameters such as viscoelastic fluid parameter, Magnetic parameter, Eckert and Prandtl number’s impact on the velocity and temperature profiles through graphs and tables. Suitable similarity transformations have been used to reduce the formulated PDEs into a system of coupled non-linear ODEs. Shooting technique has been invoked for finding the numerical solutions of the dimensionless velocity andmore » temperature profiles. Additionally, the MATLAB built-in routine bvp4c has also been used to verify and strengthen the results obtained by shooting method. From some special cases of the present work, a comparison with the previously published results has been presented.« less

  18. Can sterile neutrinos be ruled out as warm dark matter candidates?

    PubMed

    Viel, Matteo; Lesgourgues, Julien; Haehnelt, Martin G; Matarrese, Sabino; Riotto, Antonio

    2006-08-18

    We present constraints on the mass of warm dark matter (WDM) particles from a combined analysis of the matter power spectrum inferred from the Sloan Digital Sky Survey Lyman-alpha flux power spectrum at 2.2

  19. Threshold for sand mobility on Mars calibrated from seasonal variations of sand flux.

    PubMed

    Ayoub, F; Avouac, J-P; Newman, C E; Richardson, M I; Lucas, A; Leprince, S; Bridges, N T

    2014-09-30

    Coupling between surface winds and saltation is a fundamental factor governing geological activity and climate on Mars. Saltation of sand is crucial for both erosion of the surface and dust lifting into the atmosphere. Wind tunnel experiments along with measurements from surface meteorology stations and modelling of wind speeds suggest that winds should only rarely move sand on Mars. However, evidence for currently active dune migration has recently accumulated. Crucially, the frequency of sand-moving events and the implied threshold wind stresses for saltation have remained unknown. Here we present detailed measurements of Nili Patera dune field based on High Resolution Imaging Science Experiment images, demonstrating that sand motion occurs daily throughout much of the year and that the resulting sand flux is strongly seasonal. Analysis of the seasonal sand flux variation suggests an effective threshold for sand motion for application to large-scale model wind fields (1-100 km scale) of τ(s)=0.01±0.0015 N m(-2).

  20. Siting Background Towers to Characterize Incoming Air for Urban Greenhouse Gas Estimation: A Case Study in the Washington, DC/Baltimore Area

    NASA Astrophysics Data System (ADS)

    Mueller, K.; Yadav, V.; Lopez-Coto, I.; Karion, A.; Gourdji, S.; Martin, C.; Whetstone, J.

    2018-03-01

    There is increased interest in understanding urban greenhouse gas (GHG) emissions. To accurately estimate city emissions, the influence of extraurban fluxes must first be removed from urban greenhouse gas (GHG) observations. This is especially true for regions, such as the U.S. Northeastern Corridor-Baltimore/Washington, DC (NEC-B/W), downwind of large fluxes. To help site background towers for the NEC-B/W, we use a coupled Bayesian Information Criteria and geostatistical regression approach to help site four background locations that best explain CO2 variability due to extraurban fluxes modeled at 12 urban towers. The synthetic experiment uses an atmospheric transport and dispersion model coupled with two different flux inventories to create modeled observations and evaluate 15 candidate towers located along the urban domain for February and July 2013. The analysis shows that the average ratios of extraurban inflow to total modeled enhancements at urban towers are 21% to 36% in February and 31% to 43% in July. In July, the incoming air dominates the total variability of synthetic enhancements at the urban towers (R2 = 0.58). Modeled observations from the selected background towers generally capture the variability in the synthetic CO2 enhancements at urban towers (R2 = 0.75, root-mean-square error (RMSE) = 3.64 ppm; R2 = 0.43, RMSE = 4.96 ppm for February and July). However, errors associated with representing background air can be up to 10 ppm for any given observation even with an optimal background tower configuration. More sophisticated methods may be necessary to represent background air to accurately estimate urban GHG emissions.

  1. Global reductions in seafloor biomass in response to climate change.

    PubMed

    Jones, Daniel O B; Yool, Andrew; Wei, Chih-Lin; Henson, Stephanie A; Ruhl, Henry A; Watson, Reg A; Gehlen, Marion

    2014-06-01

    Seafloor organisms are vital for healthy marine ecosystems, contributing to elemental cycling, benthic remineralization, and ultimately sequestration of carbon. Deep-sea life is primarily reliant on the export flux of particulate organic carbon from the surface ocean for food, but most ocean biogeochemistry models predict global decreases in export flux resulting from 21st century anthropogenically induced warming. Here we show that decadal-to-century scale changes in carbon export associated with climate change lead to an estimated 5.2% decrease in future (2091-2100) global open ocean benthic biomass under RCP8.5 (reduction of 5.2 Mt C) compared with contemporary conditions (2006-2015). Our projections use multi-model mean export flux estimates from eight fully coupled earth system models, which contributed to the Coupled Model Intercomparison Project Phase 5, that have been forced by high and low representative concentration pathways (RCP8.5 and 4.5, respectively). These export flux estimates are used in conjunction with published empirical relationships to predict changes in benthic biomass. The polar oceans and some upwelling areas may experience increases in benthic biomass, but most other regions show decreases, with up to 38% reductions in parts of the northeast Atlantic. Our analysis projects a future ocean with smaller sized infaunal benthos, potentially reducing energy transfer rates though benthic multicellular food webs. More than 80% of potential deep-water biodiversity hotspots known around the world, including canyons, seamounts, and cold-water coral reefs, are projected to experience negative changes in biomass. These major reductions in biomass may lead to widespread change in benthic ecosystems and the functions and services they provide. © 2013 The Authors Global Change Biology Published by John Wiley & Sons Ltd.

  2. Environmental Drivers of Benthic Flux Variation and Ecosystem Functioning in Salish Sea and Northeast Pacific Sediments.

    PubMed

    Belley, Rénald; Snelgrove, Paul V R; Archambault, Philippe; Juniper, S Kim

    2016-01-01

    The upwelling of deep waters from the oxygen minimum zone in the Northeast Pacific from the continental slope to the shelf and into the Salish Sea during spring and summer offers a unique opportunity to study ecosystem functioning in the form of benthic fluxes along natural gradients. Using the ROV ROPOS we collected sediment cores from 10 sites in May and July 2011, and September 2013 to perform shipboard incubations and flux measurements. Specifically, we measured benthic fluxes of oxygen and nutrients to evaluate potential environmental drivers of benthic flux variation and ecosystem functioning along natural gradients of temperature and bottom water dissolved oxygen concentrations. The range of temperature and dissolved oxygen encountered across our study sites allowed us to apply a suite of multivariate analyses rarely used in flux studies to identify bottom water temperature as the primary environmental driver of benthic flux variation and organic matter remineralization. Redundancy analysis revealed that bottom water characteristics (temperature and dissolved oxygen), quality of organic matter (chl a:phaeo and C:N ratios) and sediment characteristics (mean grain size and porosity) explained 51.5% of benthic flux variation. Multivariate analyses identified significant spatial and temporal variation in benthic fluxes, demonstrating key differences between the Northeast Pacific and Salish Sea. Moreover, Northeast Pacific slope fluxes were generally lower than shelf fluxes. Spatial and temporal variation in benthic fluxes in the Salish Sea were driven primarily by differences in temperature and quality of organic matter on the seafloor following phytoplankton blooms. These results demonstrate the utility of multivariate approaches in differentiating among potential drivers of seafloor ecosystem functioning, and indicate that current and future predictive models of organic matter remineralization and ecosystem functioning of soft-muddy shelf and slope seafloor habitats should consider bottom water temperature variation. Bottom temperature has important implications for estimates of seasonal and spatial benthic flux variation, benthic-pelagic coupling, and impacts of predicted ocean warming at high latitudes.

  3. The Impact of the Evolving Satellite Data Record on Reanalysis Water and Energy Fluxes During the Past 30 Years

    NASA Technical Reports Server (NTRS)

    Robertson, Franklin R.; Miller, T. L.; Bosilovich, M. G.; Chen, J.

    2010-01-01

    Retrospective analyses (reanalyses) use a fixed assimilation model to take diverse observations and synthesize consistent, time-dependent fields of state variables and fluxes (e.g. temperature, moisture, momentum, turbulent and radiative fluxes). Because they offer data sets of these quantities at regular space / time intervals, atmospheric reanalyses have become a mainstay of the climate community for diagnostic purposes and for driving offline ocean and land models. Of course, one weakness of these data sets is the susceptibility of the flux products to uncertainties because of shortcomings in parameterized model physics. Another issue, perhaps less appreciated, is the fact that the discreet changes in the evolving observational system, particularly from satellite sensors, may also introduce artifacts in the time series of quantities. In this paper we examine the ability of the NASA MERRA (Modern Era Retrospective Analysis for Research and Applications) and other recent reanalyses to determine variability in the climate system over the satellite record ( the last 30 years). In particular we highlight the effect on reanalyses of discontinuities at the junctures of the onset of passive microwave imaging (Special Sensor Microwave Imager) in late 1987 as well as improved sounding and imaging with the Advanced Microwave Sounding Unit, AMSU-A, in 1998. We examine these data sets from two perspectives. The first is the ability to capture modes of variability that have coherent spatial structure (e.g. ENSO events and near-decadal coupling to SST changes) and how these modes are contained within trends in near global averages of key quantities. Secondly, we consider diagnostics that measure the consistency in energetic scaling in the hydrologic cycle, particularly the fractional changes in column-integrated water vapor versus precipitation as they are coupled to radiative flux constraints. These results will be discussed in the context of implications for science objectives and priorities of the NASA Energy and Water Cycle Study, NEWS.

  4. Transient and sustained elementary flux mode networks on a catalytic string-based chemical evolution model.

    PubMed

    Pereira, José A

    2014-08-01

    Theoretical models designed to test the metabolism-first hypothesis for prebiotic evolution have yield strong indications about the hypothesis validity but could sometimes use a more extensive identification between model objects and real objects towards a more meaningful interpretation of results. In an attempt to go in that direction, the string-based model SSE ("steady state evolution") was developed, where abstract molecules (strings) and catalytic interaction rules are based on some of the most important features of carbon compounds in biological chemistry. The system is open with a random inflow and outflow of strings but also with a permanent string food source. Although specific catalysis is a key aspect of the model, used to define reaction rules, the focus is on energetics rather than kinetics. Standard energy change tables were constructed and used with standard formation reactions to track energy flows through the interpretation of equilibrium constant values. Detection of metabolic networks on the reaction system was done with elementary flux mode (EFM) analysis. The combination of these model design and analysis options enabled obtaining metabolic and catalytic networks showing several central features of biological metabolism, some more clearly than in previous models: metabolic networks with stepwise synthesis, energy coupling, catalysts regulation, SN2 coupling, redox coupling, intermediate cycling, coupled inverse pathways (metabolic cycling), autocatalytic cycles and catalytic cascades. The results strongly suggest that the main biological metabolism features, including the genotype-phenotype interpretation, are caused by the principles of catalytic systems and are prior to modern genetic systems principles. It also gives further theoretical support to the thesis that the basic features of biologic metabolism are a consequence of the time evolution of a random catalyst search working on an open system with a permanent food source. The importance of the food source characteristics and evolutionary possibilities are discussed. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Influence of sea squirt (Halocynthia roretzi) aquaculture on benthic-pelagic coupling in coastal waters: A study of the South Sea in Korea

    NASA Astrophysics Data System (ADS)

    Lee, Jae Seong; Kim, Sung-Han; Kim, Yong-Tae; Hong, Sok Jin; Han, Jeong Hee; Hyun, Jung-Ho; Shin, Kyung-Hoon

    2012-03-01

    The influence of sea squirt aquaculture on benthic-pelagic coupling was evaluated in semi-enclosed Korean coastal waters with an in situ benthic chamber and results show for the first time that suspended sea squirt cultures play an important role in benthic-pelagic coupling in the coastal zone. Measurements of primary production, vertical particulate fluxes, and benthic fluxes were made at two stations, a sea squirt (Halocynthia roretzi) farm (SSF) and an area of organic-matter-enriched sediment in Jinhae Bay. The vertical material fluxes of organic carbon, nitrogen, and biogenic silicate (BSi) were significantly higher at SSF than in Jinhae Bay, indicating massive biodeposits in the surface sediments at SSF. The organic carbon oxidation rates (Cox) were estimated after correction for CaCO3 dissolution. The average Cox at SSF (204 mmol C m-2 d-1) was significantly higher than that in the organic-enriched Jinhae Bay sediment (77 mmol C m-2 d-1). The organic carbon burial fluxes were determined using vertical profiles of organic carbon of up to 30 cm and the sedimentation rate calculated from the excess 210Pb distribution. At both stations, ˜95% of the settled organic carbon was oxidized and only ˜5% was buried in the deep sediment layer. The benthic fluxes of dissolved inorganic nitrogen and phosphate at SSF were 2-12 times higher than in Jinhae Bay, corresponding to 85%, and 270%, respectively, of the requirements for primary production.

  6. Polaron effects on the performance of light-harvesting systems: a quantum heat engine perspective

    NASA Astrophysics Data System (ADS)

    Xu, Dazhi; Wang, Chen; Zhao, Yang; Cao, Jianshu

    2016-02-01

    We explore energy transfer in a generic three-level system, which is coupled to three non-equilibrium baths. Built on the concept of quantum heat engine, our three-level model describes non-equilibrium quantum processes including light-harvesting energy transfer, nano-scale heat transfer, photo-induced isomerization, and photovoltaics in double quantum-dots. In the context of light-harvesting, the excitation energy is first pumped up by sunlight, then is transferred via two excited states which are coupled to a phonon bath, and finally decays to the reaction center. The efficiency of this process is evaluated by steady state analysis via a polaron-transformed master equation; thus the entire range of the system-phonon coupling strength can be covered. We show that the coupling with the phonon bath not only modifies the steady state, resulting in population inversion, but also introduces a finite steady state coherence which optimizes the energy transfer flux and efficiency. In the strong coupling limit, the steady state coherence disappears and the efficiency recovers the heat engine limit given by Scovil and Schultz-Dubois (1959 Phys. Rev. Lett. 2 262).

  7. Benchmark solutions for the galactic heavy-ion transport equations with energy and spatial coupling

    NASA Technical Reports Server (NTRS)

    Ganapol, Barry D.; Townsend, Lawrence W.; Lamkin, Stanley L.; Wilson, John W.

    1991-01-01

    Nontrivial benchmark solutions are developed for the galactic heavy ion transport equations in the straightahead approximation with energy and spatial coupling. Analytical representations of the ion fluxes are obtained for a variety of sources with the assumption that the nuclear interaction parameters are energy independent. The method utilizes an analytical LaPlace transform inversion to yield a closed form representation that is computationally efficient. The flux profiles are then used to predict ion dose profiles, which are important for shield design studies.

  8. The SURFEXv7.2 land and ocean surface platform for coupled or offline simulation of earth surface variables and fluxes

    NASA Astrophysics Data System (ADS)

    Masson, V.; Le Moigne, P.; Martin, E.; Faroux, S.; Alias, A.; Alkama, R.; Belamari, S.; Barbu, A.; Boone, A.; Bouyssel, F.; Brousseau, P.; Brun, E.; Calvet, J.-C.; Carrer, D.; Decharme, B.; Delire, C.; Donier, S.; Essaouini, K.; Gibelin, A.-L.; Giordani, H.; Habets, F.; Jidane, M.; Kerdraon, G.; Kourzeneva, E.; Lafaysse, M.; Lafont, S.; Lebeaupin Brossier, C.; Lemonsu, A.; Mahfouf, J.-F.; Marguinaud, P.; Mokhtari, M.; Morin, S.; Pigeon, G.; Salgado, R.; Seity, Y.; Taillefer, F.; Tanguy, G.; Tulet, P.; Vincendon, B.; Vionnet, V.; Voldoire, A.

    2013-07-01

    SURFEX is a new externalized land and ocean surface platform that describes the surface fluxes and the evolution of four types of surfaces: nature, town, inland water and ocean. It is mostly based on pre-existing, well-validated scientific models that are continuously improved. The motivation for the building of SURFEX is to use strictly identical scientific models in a high range of applications in order to mutualise the research and development efforts. SURFEX can be run in offline mode (0-D or 2-D runs) or in coupled mode (from mesoscale models to numerical weather prediction and climate models). An assimilation mode is included for numerical weather prediction and monitoring. In addition to momentum, heat and water fluxes, SURFEX is able to simulate fluxes of carbon dioxide, chemical species, continental aerosols, sea salt and snow particles. The main principles of the organisation of the surface are described first. Then, a survey is made of the scientific module (including the coupling strategy). Finally, the main applications of the code are summarised. The validation work undertaken shows that replacing the pre-existing surface models by SURFEX in these applications is usually associated with improved skill, as the numerous scientific developments contained in this community code are used to good advantage.

  9. Mass Spectrometric and Langmuir Probe Measurements in Inductively Coupled Plasmas in Ar, CHF3/Ar and CHF3/Ar/O2 Mixtures

    NASA Technical Reports Server (NTRS)

    Kim, J. S.; Rao, M. V. V. S.; Cappelli, M. A.; Sharma, S. P.; Meyyappan, M.; Arnold, Jim (Technical Monitor)

    2000-01-01

    Absolute fluxes and energy distributions of ions in inductively coupled plasmas of Ar, CHF3/Ar, and CHF3/Ar/O2 have been measured. These plasmas were generated in a Gaseous Electronics Conference (GEC) cell modified for inductive coupling at pressures 10-50 mTorr and 100-300 W of 13.56 MHz radio frequency (RF) power in various feedgas mixtures. In pure Ar plasmas, the Ar(+) flux increases linearly with pressure as well as RF-power. Total ion flux in CHF3 mixtures decreases with increase in pressure and also CHF3 concentration. Relative ion fluxes observed in the present studies are analyzed with the help of available cross sections for electron impact ionization and charge-exchange ion-molecule reactions. Measurements of plasma potential, electron and ion number densities, electron energy distribution function, and mean electron energy have also been made in the center of the plasma with a RF compensated Langmuir probe. Plasma potential values are compared with the mean ion energies determined from the measured ion energy distributions and are consistent. Electron temperature, plasma potential, and mean ion energy vary inversely with pressure, but increase with CHF3 content in the mixture.

  10. Improving the Amazonian Hydrologic Cycle in a Coupled Land-Atmosphere, Single Column Model

    NASA Astrophysics Data System (ADS)

    Harper, A. B.; Denning, S.; Baker, I.; Prihodko, L.; Branson, M.

    2006-12-01

    We have coupled a land-surface model, the Simple Biosphere Model (SiB3), to a single column of the Colorado State University General Circulation Model (CSU-GCM) in the Amazon River Basin. This is a preliminary step in the broader goal of improved simulation of Basin-wide hydrology. A previous version of the coupled model (SiB2) showed drought and catastrophic dieback of the Amazon rain forest. SiB3 includes updated soil hydrology and root physiology. Our test area for the coupled single column model is near Santarem, Brazil, where measurements from the km 83 flux tower in the Tapajos National Forest can be used to evaluate model output. The model was run for 2001 using NCEP2 Reanalysis as driver data. Preliminary results show that the updated biosphere model coupled to the GCM produces improved simulations of the seasonal cycle of surface water balance and precipitation. Comparisons of the diurnal and seasonal cycles of surface fluxes are also being made.

  11. Far-field analysis of coupled bulk and boundary layer diffusion toward an ion channel entrance.

    PubMed Central

    Schumaker, M F; Kentler, C J

    1998-01-01

    We present a far-field analysis of ion diffusion toward a channel embedded in a membrane with a fixed charge density. The Smoluchowski equation, which represents the 3D problem, is approximated by a system of coupled three- and two-dimensional diffusions. The 2D diffusion models the quasi-two-dimensional diffusion of ions in a boundary layer in which the electrical potential interaction with the membrane surface charge is important. The 3D diffusion models ion transport in the bulk region outside the boundary layer. Analytical expressions for concentration and flux are developed that are accurate far from the channel entrance. These provide boundary conditions for a numerical solution of the problem. Our results are used to calculate far-field ion flows corresponding to experiments of Bell and Miller (Biophys. J. 45:279, 1984). PMID:9591651

  12. Numerical analysis of a high-order unstructured overset grid method for compressible LES of turbomachinery

    NASA Astrophysics Data System (ADS)

    de Laborderie, J.; Duchaine, F.; Gicquel, L.; Vermorel, O.; Wang, G.; Moreau, S.

    2018-06-01

    Large-Eddy Simulation (LES) is recognized as a promising method for high-fidelity flow predictions in turbomachinery applications. The presented approach consists of the coupling of several instances of the same LES unstructured solver through an overset grid method. A high-order interpolation, implemented within this coupling method, is introduced and evaluated on several test cases. It is shown to be third order accurate, to preserve the accuracy of various second and third order convective schemes and to ensure the continuity of diffusive fluxes and subgrid scale tensors even in detrimental interface configurations. In this analysis, three types of spurious waves generated at the interface are identified. They are significantly reduced by the high-order interpolation at the interface. The latter having the same cost as the original lower order method, the high-order overset grid method appears as a promising alternative to be used in all the applications.

  13. An Electromagnetically Actuated Vacuum Circuit Breaker Developed by Electromagnetic Analysis Coupled with Motion

    NASA Astrophysics Data System (ADS)

    Takeuchi, Toshie; Nakagawa, Takafumi; Tsukima, Mitsuru; Koyama, Kenichi; Tohya, Nobumoto; Yano, Tomotaka

    A new electromagnetically actuated vacuum circuit breaker (VCB) has been designed and developed on the basis of the transient electromagnetic analysis coupled with motion. The VCB has three advanced bi-stable electromagnetic actuators, which control each phase independently. The VCB serves as a synchronous circuit breaker as well as a standard circuit breaker. In this work, the flux delay due to the eddy current is analytically formulated using the delay time constant of the actuator coil current, thereby leading to accurate driving behavior. With this analytical method, the electromagnetic mechanism for a 24kV rated VCB has been optimized; and as a result, the driving energy is reduced to one fifth of that of a conventional VCB employing spring mechanism, and the number of parts is significantly decreased. Therefore, the developed VCB becomes compact, highly reliable and highly durable.

  14. A case study of convectively generated gravity waves coupling of the lower atmosphere and mesosphere-lower thermosphere (MLT) over the tropical region: An observational evidence

    NASA Astrophysics Data System (ADS)

    Eswaraiah, S.; Venkata Chalapathi, G.; Niranjan Kumar, K.; Venkat Ratnam, M.; Kim, Yong Ha; Vishnu Prasanth, P.; Lee, Jaewook; Rao, S. V. B.

    2018-04-01

    We have utilized the Gadanki MST Radar and Rayleigh LIDAR to understand the vertical coupling between the lower atmosphere and mesosphere through the short-period gravity waves (GWs). The short-period GWs (20 min-2 h) are noticed both in the troposphere and in the mesosphere during the deep convection. During the convection, the large vertical velocities (>5 m/s) and significant variations in the momentum flux (∼3 m2/s2) are noticed in the troposphere and higher fluxes (∼45 m2/s2) are evidenced in the mesosphere. The observations suggest the vertical coupling between the lower and middle atmosphere during convection.

  15. Conductance oscillations of core-shell nanowires in transversal magnetic fields

    NASA Astrophysics Data System (ADS)

    Manolescu, Andrei; Nemnes, George Alexandru; Sitek, Anna; Rosdahl, Tomas Orn; Erlingsson, Sigurdur Ingi; Gudmundsson, Vidar

    2016-05-01

    We analyze theoretically electronic transport through a core-shell nanowire in the presence of a transversal magnetic field. We calculate the conductance for a variable coupling between the nanowire and the attached leads and show how the snaking states, which are low-energy states localized along the lines of the vanishing radial component of the magnetic field, manifest their existence. In the strong-coupling regime they induce flux periodic, Aharonov-Bohm-like, conductance oscillations, which, by decreasing the coupling to the leads, evolve into well-resolved peaks. The flux periodic oscillations arise due to interference of the snaking states, which is a consequence of backscattering at either the contacts with leads or magnetic or potential barriers in the wire.

  16. Field coupling-induced pattern formation in two-layer neuronal network

    NASA Astrophysics Data System (ADS)

    Qin, Huixin; Wang, Chunni; Cai, Ning; An, Xinlei; Alzahrani, Faris

    2018-07-01

    The exchange of charged ions across membrane can generate fluctuation of membrane potential and also complex effect of electromagnetic induction. Diversity in excitability of neurons induces different modes selection and dynamical responses to external stimuli. Based on a neuron model with electromagnetic induction, which is described by magnetic flux and memristor, a two-layer network is proposed to discuss the pattern control and wave propagation in the network. In each layer, gap junction coupling is applied to connect the neurons, while field coupling is considered between two layers of the network. The field coupling is approached by using coupling of magnetic flux, which is associated with distribution of electromagnetic field. It is found that appropriate intensity of field coupling can enhance wave propagation from one layer to another one, and beautiful spatial patterns are formed. The developed target wave in the second layer shows some difference from target wave triggered in the first layer of the network when two layers are considered by different excitabilities. The potential mechanism could be pacemaker-like driving from the first layer will be encoded by the second layer.

  17. Transient thermal stresses of work roll by coupled thermoelasticity

    NASA Astrophysics Data System (ADS)

    Lai, W. B.; Chen, T. C.; Weng, C. I.

    1991-01-01

    A numerical method, based on a two-dimensional plane strain model, is developed to predict the transient responses (that include distributions of temperature, thermal deformation, and thermal stress) of work roll during strip rolling by coupled thermoelasticity. The method consists of discretizing the space domain of the problem by finite element method first, and then treating the time domain by implicit time integration techniques. In order to avoid the difficulty in analysis due to relative movement between work roll and its thermal boundary, the energy equation is formulated with respect to a fixed Eulerian reference frame. The effect of thermoelastic coupling term, that is generally disregarded in strip rolling, can be considered and assessed. The influences of some important process parameters, such as rotational speed of the roll and intensity of heat flux, on transient solutions are also included and discussed. Furthermore, since the stress history at any point of the roll in both transient and steady state could be accurately evaluated, it is available to perform the analysis of thermal fatigue for the roll by means of previous data.

  18. A new class of draw solutions for minimizing reverse salt flux to improve forward osmosis desalination.

    PubMed

    Nguyen, Hau Thi; Nguyen, Nguyen Cong; Chen, Shiao-Shing; Ngo, Huu Hao; Guo, Wenshan; Li, Chi-Wang

    2015-12-15

    The applications of forward osmosis (FO) have been hindered because of the lack of an optimal draw solution. The reverse salt flux from the draw solution not only reduces the water flux but also increases the cost of draw solute replenishment. Therefore, in this study, Tergitol NP7 and NP9 with a long straight carbon chain and low critical micelle concentration (CMC) were coupled with highly charged ethylenediaminetetraacetic acid (EDTA) as an innovative draw solution to minimize reverse salt diffusion in FO for the first time. The results showed that the lowest reverse salt flux of 0.067 GMH was observed when 0.1M EDTA-2Na coupled with 15mM NP7 was used as a draw solution and deionized water was used as a feed solution in FO mode (active layer facing with the feed solution). This is due to the hydrophobic interaction between the tails of NP7 and the FO membrane, thus creating layers on the membrane surface and constricting the FO membrane pores. Moreover, 1M EDTA-2Na coupled with 15mM NP7 is promising as an optimal draw solution for brackish water and sea water desalination. Average water fluxes of 7.68, 6.78, and 5.95 LMH were achieved when brackish water was used as a feed solution (5, 10, and 20g/L NaCl), and an average water flux of 3.81 LMH was achieved when sea water was used as a feed solution (35g/L NaCl). The diluted draw solution was recovered using a nanofiltration (NF-TS80) membrane with a high efficiency of 95% because of the high charge and large size of the draw solution. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Estimation of Key Parameters of the Coupled Energy and Water Model by Assimilating Land Surface Data

    NASA Astrophysics Data System (ADS)

    Abdolghafoorian, A.; Farhadi, L.

    2017-12-01

    Accurate estimation of land surface heat and moisture fluxes, as well as root zone soil moisture, is crucial in various hydrological, meteorological, and agricultural applications. Field measurements of these fluxes are costly and cannot be readily scaled to large areas relevant to weather and climate studies. Therefore, there is a need for techniques to make quantitative estimates of heat and moisture fluxes using land surface state observations that are widely available from remote sensing across a range of scale. In this work, we applies the variational data assimilation approach to estimate land surface fluxes and soil moisture profile from the implicit information contained Land Surface Temperature (LST) and Soil Moisture (SM) (hereafter the VDA model). The VDA model is focused on the estimation of three key parameters: 1- neutral bulk heat transfer coefficient (CHN), 2- evaporative fraction from soil and canopy (EF), and 3- saturated hydraulic conductivity (Ksat). CHN and EF regulate the partitioning of available energy between sensible and latent heat fluxes. Ksat is one of the main parameters used in determining infiltration, runoff, groundwater recharge, and in simulating hydrological processes. In this study, a system of coupled parsimonious energy and water model will constrain the estimation of three unknown parameters in the VDA model. The profile of SM (LST) at multiple depths is estimated using moisture diffusion (heat diffusion) equation. In this study, the uncertainties of retrieved unknown parameters and fluxes are estimated from the inverse of Hesian matrix of cost function which is computed using the Lagrangian methodology. Analysis of uncertainty provides valuable information about the accuracy of estimated parameters and their correlation and guide the formulation of a well-posed estimation problem. The results of proposed algorithm are validated with a series of experiments using a synthetic data set generated by the simultaneous heat and water (SHAW) model. In addition, the feasibility of extending this algorithm to use remote sensing observations that have low temporal resolution is examined by assimilating the limited number of land surface moisture and temperature observations.

  20. A scheme for two-photon lasing with two coupled flux qubits in circuit quantum electrodynamics

    NASA Astrophysics Data System (ADS)

    Huang, Wen; Zou, Xu-Bo; Guo, Guang-Can

    2015-06-01

    We theoretically study the system of a superconducting transmission line resonator coupled to two interacting superconducting flux qubits. It is shown that under certain conditions the resonator mode can be tuned to two-photon resonance between the ground state and the highest excited state while the middle excited states are far-off resonance. Furthermore, we study the steady-state properties of the flux qubits and resonator, such as the photon statistics, the spectrum and squeezing of the resonator, and demonstrate that two-photon laser can be implemented with current experimental technology. Project supported by the National Fundamental Research Program of China (Grant No. 2011cba00200), the National Natural Science Foundation of China (Grant No. 11274295), and the Doctor Foundation of Education Ministry of China (Grant No. 20113402110059).

  1. Fluxonium-Based Artificial Molecule with a Tunable Magnetic Moment

    NASA Astrophysics Data System (ADS)

    Kou, A.; Smith, W. C.; Vool, U.; Brierley, R. T.; Meier, H.; Frunzio, L.; Girvin, S. M.; Glazman, L. I.; Devoret, M. H.

    2017-07-01

    Engineered quantum systems allow us to observe phenomena that are not easily accessible naturally. The LEGO®-like nature of superconducting circuits makes them particularly suited for building and coupling artificial atoms. Here, we introduce an artificial molecule, composed of two strongly coupled fluxonium atoms, which possesses a tunable magnetic moment. Using an applied external flux, one can tune the molecule between two regimes: one in which the ground-excited state manifold has a magnetic dipole moment and one in which the ground-excited state manifold has only a magnetic quadrupole moment. By varying the applied external flux, we find the coherence of the molecule to be limited by local flux noise. The ability to engineer and control artificial molecules paves the way for building more complex circuits for quantum simulation and protected qubits.

  2. Method for providing slip energy control in permanent magnet electrical machines

    DOEpatents

    Hsu, John S.

    2006-11-14

    An electric machine (40) has a stator (43), a permanent magnet rotor (38) with permanent magnets (39) and a magnetic coupling uncluttered rotor (46) for inducing a slip energy current in secondary coils (47). A dc flux can be produced in the uncluttered rotor when the secondary coils are fed with dc currents. The magnetic coupling uncluttered rotor (46) has magnetic brushes (A, B, C, D) which couple flux in through the rotor (46) to the secondary coils (47c, 47d) without inducing a current in the rotor (46) and without coupling a stator rotational energy component to the secondary coils (47c, 47d). The machine can be operated as a motor or a generator in multi-phase or single-phase embodiments and is applicable to the hybrid electric vehicle. A method of providing a slip energy controller is also disclosed.

  3. Quantum optics in a high impedance environment

    NASA Astrophysics Data System (ADS)

    Puertas, Javier; Gheeraert, Nicolas; Krupko, Yuriy; Dassonneville, Remy; Planat, Luca; Foroughui, Farshad; Naud, Cecile; Guichard, Wiebke; Buisson, Olivier; Florens, Serge; Roch, Nicolas; Snyman, Izak

    Understanding light matter interaction remains a key topic in fundamental physics. Its strength is imposed by the fine structure constant, α. For most atomic and molecular systems α =e2/ℏc 4 πɛo = 1 / 137 << 1 , giving weak interactions. When dealing with superconducting artificial atoms, α is either proportional to 1 /Zc (magnetic coupling) or Zc (electric coupling), where Zc is the characteristic impedance of the environment. Recent experiments followed the first approach, coupling a flux qubit to a low impedance environment, demonstrating strong interaction (α 1). In our work, we reached the large α regime, following a complementary approach: we couple electrically a transmon qubit to an array of 5000 SQUIDs. This metamaterial provides high characteristic impedance ( 3 kΩ), in-situ flux tunability and full control over its dispersion relation. In this new regime, all usual approximations break down and new phenomena such as frequency conversion at the single photon level are expected.

  4. The Madden-Julian oscillation in ECHAM4 coupled and uncoupled general circulation models

    DOE PAGES

    Sperber, Kenneth R.; Gualdi, Silvio; Legutke, Stephanie; ...

    2005-06-29

    The Madden-Julian oscillation (MJO) dominates tropical variability on timescales of 30–70 days. During the boreal winter/spring, it is manifested as an eastward propagating disturbance, with a strong convective signature over the eastern hemisphere. The space–time structure of the MJO is analyzed using simulations with the ECHAM4 atmospheric general circulation model run with observed monthly mean sea-surface temperatures (SSTs), and coupled to three different ocean models. The coherence of the eastward propagation of MJO convection is sensitive to the ocean model to which ECHAM4 is coupled. For ECHAM4/OPYC and ECHO-G, models for which ~100 years of daily data is available, Montemore » Carlo sampling indicates that their metrics of eastward propagation are different at the 1% significance level. The flux-adjusted coupled simulations, ECHAM4/OPYC and ECHO-G, maintain a more realistic mean-state, and have a more realistic MJO simulation than the nonadjusted scale interaction experiment (SINTEX) coupled runs. The SINTEX model exhibits a cold bias in Indian Ocean and tropical West Pacific Ocean sea-surface temperature of ~0.5°C. This cold bias affects the distribution of time-mean convection over the tropical eastern hemisphere. Furthermore, the eastward propagation of MJO convection in this model is not as coherent as in the two models that used flux adjustment or when compared to an integration of ECHAM4 with prescribed observed SST. This result suggests that simulating a realistic basic state is at least as important as air–sea interaction for organizing the MJO. While all of the coupled models simulate the warm (cold) SST anomalies that precede (succeed) the MJO convection, the interaction of the components of the net surface heat flux that lead to these anomalies are different over the Indian Ocean. The ECHAM4/OPYC model in which the atmospheric model is run at a horizontal resolution of T42, has eastward propagating zonal wind anomalies and latent heat flux anomalies. However, the integrations with ECHO-G and SINTEX, which used T30 atmospheres, produce westward propagation of the latent heat flux anomalies, contrary to reanalysis. Furthermore, it is suggested that the differing ability of the models to represent the near-surface westerlies over the Indian Ocean is related to the different horizontal resolutions of the atmospheric model employed.« less

  5. Dual representation of lattice QCD with worldlines and worldsheets of Abelian color fluxes

    NASA Astrophysics Data System (ADS)

    Marchis, Carlotta; Gattringer, Christof

    2018-02-01

    We present a new dual representation for lattice QCD in terms of wordlines and worldsheets. The exact reformulation is carried out using the recently developed Abelian color flux method where the action is decomposed into commuting minimal terms that connect different colors on neighboring sites. Expanding the Boltzmann factors for these commuting terms allows one to reorganize the gauge field contributions according to links such that the gauge fields can be integrated out in closed form. The emerging constraints give the dual variables the structure of worldlines for the fermions and worldsheets for the gauge degrees of freedom. The partition sum has the form of a strong coupling expansion, and with the Abelian color flux approach discussed here all coefficients of the expansion are known in closed form. We present the dual form for three cases: pure SU(3) lattice gauge theory, strong coupling QCD and full QCD, and discuss in detail the constraints for the color fluxes and their physical interpretation.

  6. Characterization of X-Ray Diffraction System with a Microfocus X-Ray Source and a Polycapillary Optic

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail; Marshall, Joy K.; Ciszak, Ewa; Ponomarev, Igor

    2000-01-01

    We present here an optimized microfocus x-ray source and polycapillary optic system designed for diffraction of small protein crystals. The x-ray beam is formed by a 5.5mm focal length capillary collimator coupled with a 40 micron x-ray source operating at 46Watts. Measurements of the x-ray flux, the divergence and the spectral characteristics of the beam are presented, This optimized system provides a seven fold greater flux than our recently reported configuration [M. Gubarev, et al., J. of Applied Crystallography (2000) 33, in press]. We now make a comparison with a 5kWatts rotating anode generator (Rigaku) coupled with confocal multilayer focusing mirrors (Osmic, CMF12- 38Cu6). The microfocus x-ray source and polycapillary collimator system delivers 60% of the x-ray flux from the rotating anode system. Additional ways to improve our microfocus x-ray system, and thus increase the x-ray flux will be discussed.

  7. MEMS cantilever based magnetic field gradient sensor

    NASA Astrophysics Data System (ADS)

    Dabsch, Alexander; Rosenberg, Christoph; Stifter, Michael; Keplinger, Franz

    2017-05-01

    This paper describes major contributions to a MEMS magnetic field gradient sensor. An H-shaped structure supported by four arms with two circuit paths on the surface is designed for measuring two components of the magnetic flux density and one component of the gradient. The structure is produced from silicon wafers by a dry etching process. The gold leads on the surface carry the alternating current which interacts with the magnetic field component perpendicular to the direction of the current. If the excitation frequency is near to a mechanical resonance, vibrations with an amplitude within the range of 1-103 nm are expected. Both theoretical (simulations and analytic calculations) and experimental analysis have been carried out to optimize the structures for different strength of the magnetic gradient. In the same way the impact of the coupling structure on the resonance frequency and of different operating modes to simultaneously measure two components of the flux density were tested. For measuring the local gradient of the flux density the structure was operated at the first symmetrical and the first anti-symmetrical mode. Depending on the design, flux densities of approximately 2.5 µT and gradients starting from 1 µT mm-1 can be measured.

  8. Variable dual-frequency electrostatic wave launcher for plasma applications.

    PubMed

    Jorns, Benjamin; Sorenson, Robert; Choueiri, Edgar

    2011-12-01

    A variable tuning system is presented for launching two electrostatic waves concurrently in a magnetized plasma. The purpose of this system is to satisfy the wave launching requirements for plasma applications where maximal power must be coupled into two carefully tuned electrostatic waves while minimizing erosion to the launching antenna. Two parallel LC traps with fixed inductors and variable capacitors are used to provide an impedance match between a two-wave source and a loop antenna placed outside the plasma. Equivalent circuit analysis is then employed to derive an analytical expression for the normalized, average magnetic flux density produced by the antenna in this system as a function of capacitance and frequency. It is found with this metric that the wave launcher can couple to electrostatic modes at two variable frequencies concurrently while attenuating noise from the source signal at undesired frequencies. An example based on an experiment for plasma heating with two electrostatic waves is used to demonstrate a procedure for tailoring the wave launcher to accommodate the frequency range and flux densities of a specific two-wave application. This example is also used to illustrate a method based on averaging over wave frequencies for evaluating the overall efficacy of the system. The wave launcher is shown to be particularly effective for the illustrative example--generating magnetic flux densities in excess of 50% of the ideal case at two variable frequencies concurrently--with a high adaptability to a number of plasma dynamics and heating applications.

  9. Improvement of succinate production by release of end-product inhibition in Corynebacterium glutamicum.

    PubMed

    Chung, Soon-Chun; Park, Joon-Song; Yun, Jiae; Park, Jin Hwan

    2017-03-01

    Succinate is a renewable-based platform chemical that may be used to produce a wide range of chemicals including 1,4-butanediol, tetrahydrofurane, and γ-butyrolactone. However, industrial fermentation of organic acids is often subject to end-product inhibition, which significantly retards cell growth and limits metabolic activities and final productivity. In this study, we report the development of metabolically engineered Corynebacterium glutamicum for high production of succinate by release of end-product inhibition coupled with an increase of key metabolic flux. It was found that the rates of glucose consumption and succinate production were significantly reduced by extracellular succinate in an engineered strain, S003. To understand the mechanism underlying the inhibition by succinate, comparative transcriptome analysis was performed. Among the downregulated genes, overexpression of the NCgl0275 gene was found to suppress the inhibition of glucose consumption and succinate production, resulting in a 37.7% increase in succinate production up to 55.4g/L in fed-batch fermentation. Further improvement was achieved by increasing the metabolic flux from PEP to OAA. The final engineered strain was able to produce 152.2g/L succinate, the highest production reported to date, with a yield of 1.1g/g glucose under anaerobic condition. These results suggest that the release of end-product inhibition coupled with an increase in key metabolic flux is a promising strategy for enhancing production of succinate. Copyright © 2017. Published by Elsevier Inc.

  10. Tracking heat flux sensors for concentrating solar applications

    DOEpatents

    Andraka, Charles E; Diver, Jr., Richard B

    2013-06-11

    Innovative tracking heat flux sensors located at or near the solar collector's focus for centering the concentrated image on a receiver assembly. With flux sensors mounted near a receiver's aperture, the flux gradient near the focus of a dish or trough collector can be used to precisely position the focused solar flux on the receiver. The heat flux sensors comprise two closely-coupled thermocouple junctions with opposing electrical polarity that are separated by a thermal resistor. This arrangement creates an electrical signal proportional to heat flux intensity, and largely independent of temperature. The sensors are thermally grounded to allow a temperature difference to develop across the thermal resistor, and are cooled by a heat sink to maintain an acceptable operating temperature.

  11. Helium Flux from the Earth's Mantle as Estimated from Hawaiian Fumarolic Degassing.

    PubMed

    Naughton, J J; Lee, J H; Keeling, D; Finlayson, J B; Dority, G

    1973-04-06

    Averaged helium to carbon dioxide ratios measured from systematic collections of gases from Sulphur Bank fumarole. Kilauea, Hawaii, when coupled with estimates of carbon in the earth's crust, give a helium flux of 1 x 105 atoms per square centimeter per second. This is within the lower range of other estimates, and may represent the flux from deep-seated sources in the upper mantle.

  12. Simulating Energy, Water and Carbon Fluxes at the Shortgrass Steppe Long Term Ecological Research (LTER) Site

    NASA Astrophysics Data System (ADS)

    Beltran-Przekurat, A. B.; Pielke, R. A.; Morgan, J. A.; Burke, I. C.

    2005-12-01

    Coupled atmospheric-biospheric models are a particularly valuable tool for studying the potential effects of land-use and land-cover changes on the near-surface atmosphere since the atmosphere and biosphere are allowed to dynamically interact through the surface and canopy energy balance. GEMRAMS is a coupled atmospheric-biospheric model comprised of an atmospheric model, RAMS, and an ecophysiological process-based model, GEMTM. In the first part of this study, the soil-vegetation-atmosphere-transfer (SVAT) scheme, LEAF2, from RAMS, coupled with GEMTM, are used to simulate energy, water and carbon fluxes over different cropping systems (winter wheat and irrigated corn) and over a mixed C3/C4 shortgrass prairie located at the USDA-ARS Central Plains Experimental Range near Nunn, Colorado, the LTER Shortgrass Steppe site. The new SVAT scheme, GEMLEAF, is forced with air temperature and humidity, wind speed and photosynthetic active radiation (PAR). Calculated canopy temperature and relative humidity, soil moisture and temperature and PAR are used to compute sunlit/shaded leaf photosynthesis (for C3 and C4 plant types) and respiration. Photosynthate is allocated to leaves, shoots, roots and reproductive organs with variable partition coefficients, which are functions of soil water conditions. As water stress increases, the fraction of photosynthate allocated to root growth increases. Leaf area index (LAI) is estimated from daily leaf biomass growth, using the vegetation-prescribed specific leaf area. Canopy conductance, computed and based on photosynthesis and relative humidity, is used to calculate latent heat flux. Simulated energy and CO2 fluxes are compared to observations collected using Bowen ratio flux towers during two growing seasons. Seasonality of the fluxes reflecting different plant phenologies agrees well with the observed patterns. In the second part of this study, simulations for two clear days are performed with GEMRAMS over a model domain centered at the SGS site. Simulated spatial differences in the energy fluxes can be associated with the highly heterogeneous landscape in this area.

  13. Infusion of SMAP Data into Offline and Coupled Models: Evaluation, Calibration, and Assimilation

    NASA Astrophysics Data System (ADS)

    Lawston, P.; Santanello, J. A., Jr.; Dennis, E. J.; Kumar, S.

    2017-12-01

    The impact of the land surface on the water and energy cycle is modulated by its coupling to the planetary boundary layer (PBL), and begins at the local scale. A core component of the local land-atmosphere coupling (LoCo) effort requires understanding the `links in the chain' between soil moisture and precipitation, most notably through surface heat fluxes and PBL evolution. To date, broader (i.e. global) application of LoCo diagnostics has been limited by observational data requirements of the coupled system (and in particular, soil moisture) that are typically only met during localized, short-term field campaigns. SMAP offers, for the first time, the ability to map high quality, near-surface soil moisture globally every few days at a spatial resolution comparable to current modeling efforts. As a result, there are numerous potential avenues for SMAP model-data fusion that can be explored in the context of improving understanding of L-A interaction and NWP. In this study, we assess multiple points of intersection of SMAP products with offline and coupled models and evaluate impacts using process-level diagnostics. Results will inform upon the importance of high-resolution soil moisture mapping for improved coupled prediction and model development, as well as reconciling differences in modeled, retrieved, and measured soil moisture. Specifically, NASA model (LIS, NU-WRF) and observation (SMAP, NLDAS-2) products are combined with in-situ standard and IOP measurements (soil moisture, flux, and radiosonde) over the ARM-SGP. An array of land surface model spinups (via LIS-Noah) are performed with varying atmospheric forcing, greenness fraction, and soil layering permutations. Calibration of LIS-Noah soil hydraulic parameters is then performed using an array of in-situ soil moisture and flux and SMAP products. In addition, SMAP assimilation is performed in LIS-Noah both at the scale of the observation (36 and 9km) and the model grid (1km). The focus is on the consistency in calibrated parameters, impact of soil drydown dynamics and soil layers, and terrestrial (soil moisture-flux) coupling. The impacts of these various spinup runs and initialization of NU-WRF coupled forecasts then follows with a focus on weather (ambient, PBL, and precipitation) using LoCo metrics.

  14. Incorporating maps of leaf chlorophyll in a thermal-based two-source energy balance scheme for mapping coupled fluxes of carbon and water exchange at a range of scales

    NASA Astrophysics Data System (ADS)

    Houborg, R.; Anderson, M. C.; Kustas, W. P.

    2008-12-01

    A light-use efficiency (LUE) based model of canopy resistance was recently implemented within a thermal- based Two-Source Energy Balance (TSEB) scheme facilitating coupled simulations of land-surface fluxes of water, energy and CO2 exchange from field to regional scales (Anderson et al., 2008). The LUE model component computes canopy-scale carbon assimilation and transpiration fluxes and incorporates LUE modifications from biome specific nominal values (Bn) in response to variations in humidity, CO2 concentration, temperature (soil and air), wind speed, and direct beam vs. diffuse light composition. Here we incorporate leaf chlorophyll content (Cab) as a determinant of spatial and temporal variations in Bn as Cab is related to key LUE modulating factors such as crop phenology, vegetation stress and photosynthetic capacity. A linear relationship between Bn and Cab, established from stand-level measurement of LUE for unstressed environmental conditions and a representative set of Cab values for a range of agricultural and natural vegetation groups, is used to distribute Bn over the modeling domain. The technique is tested for an agricultural area near Bushland, Texas by fusing reflective and thermal based remote sensing inputs from SPOT, Landsat, ASTER and aircraft sensor systems. Maps of LAI and Cab are generated by using at-sensor radiances in green, red and near-infrared wavelengths as input to a REGularized canopy reFLECtance (REGFLEC) modeling tool that couples leaf optics (PROSPECT), canopy reflectance (ACRM), and atmospheric radiative transfer (6SV1) model components. Modeled carbon and water fluxes are compared with eddy covariance measurements made in stands of cotton and with fluxes measured by an aircraft flying transects over irrigated and non-irrigated agricultural land and natural vegetation. The technique is flexible and scalable and is portable to continental scales using GOES and MODIS data products. The results demonstrate utility in combining remotely sensed observations in the reflective solar and thermal domains for estimating carbon and water fluxes within a coupled framework.

  15. Reflection and transmission of elastic waves through a couple-stress elastic slab sandwiched between two half-spaces

    NASA Astrophysics Data System (ADS)

    Wang, Changda; Chen, Xuejun; Wei, Peijun; Li, Yueqiu

    2017-12-01

    The reflection and transmission of elastic waves through a couple-stress elastic slab that is sandwiched between two couple-stress elastic half-spaces are studied in this paper. Because of the couple-stress effects, there are three types of elastic waves in the couple-stress elastic solid, two of which are dispersive. The interface conditions between two couple-stress solids involve the surface couple and rotation apart from the surface traction and displacement. The nontraditional interface conditions between the slab and two solid half-spaces are used to obtain the linear algebraic equation sets from which the amplitude ratios of reflection and transmission waves to the incident wave can be determined. Then, the energy fluxes carried by the various reflection and transmission waves are calculated numerically and the normal energy flux conservation is used to validate the numerical results. The special case, couple-stress elastic slab sandwiched by the classical elastic half-spaces, is also studied and compared with the situation that the classical elastic slab sandwiched by the classical elastic half-spaces. Incident longitudinal wave (P wave) and incident transverse wave (SV wave) are both considered. The influences of the couple-stress are mainly discussed based on the numerical results. It is found that the couple-stress mainly influences the transverse modes of elastic waves.

  16. Predicting the severity of spurious “double ITCZ” problem in CMIP5 coupled models from AMIP simulations [Tropical versus extratropical origins of the spurious 'double ITCZ' in coupled climate models

    DOE PAGES

    Xiang, Baoqiang; Zhao, Ming; Held, Isaac M.; ...

    2017-02-13

    The severity of the double Intertropical Convergence Zone (DI) problem in climate models can be measured by a tropical precipitation asymmetry index (PAI), indicating whether tropical precipitation favors the Northern Hemisphere or the Southern Hemisphere. Examination of 19 Coupled Model Intercomparison Project phase 5 models reveals that the PAI is tightly linked to the tropical sea surface temperature (SST) bias. As one of the factors determining the SST bias, the asymmetry of tropical net surface heat flux in Atmospheric Model Intercomparison Project (AMIP) simulations is identified as a skillful predictor of the PAI change from an AMIP to a coupledmore » simulation, with an intermodel correlation of 0.90. Using tropical top-of-atmosphere (TOA) fluxes, the correlations are lower but still strong. However, the extratropical asymmetries of surface and TOA fluxes in AMIP simulations cannot serve as useful predictors of the PAI change. Furthermore, this study suggests that the largest source of the DI bias is from the tropics and from atmospheric models.« less

  17. One-Dimensional Coupled Ecosystem-Carbon Flux Model for the Simulation of Biogeochemical Parameters at Ocean Weather Station P

    NASA Technical Reports Server (NTRS)

    Signorini, S.; McClain, C.; Christian, J.; Wong, C. S.

    2000-01-01

    In this Technical Publication, we describe the model functionality and analyze its application to the seasonal and interannual variations of phytoplankton, nutrients, pCO2 and CO2 concentrations in the eastern subarctic Pacific at Ocean Weather Station P (OWSP, 50 deg. N 145 deg. W). We use a verified one-dimensional ecosystem model, coupled with newly incorporated carbon flux and carbon chemistry components, to simulate 22 years (1958-1980) of pCO2 and CO2 variability at Ocean Weather Station P (OWS P). This relatively long period of simulation verifies and extends the findings of previous studies using an explicit approach for the biological component and realistic coupling with the carbon flux dynamics. The slow currents and the horizontally homogeneous ocean in the subarctic Pacific make OWS P one of the best available candidates for modeling the chemistry of the upper ocean in one dimension. The chlorophyll and ocean currents composite for 1998 illustrates this premise. The chlorophyll concentration map was derived from SeaWiFS data and the currents are from an OGCM simulation (from R. Murtugudde).

  18. C-2W Magnetic Measurement Suite

    NASA Astrophysics Data System (ADS)

    Roche, T.; Thompson, M. C.; Griswold, M.; Knapp, K.; Koop, B.; Ottaviano, A.; Tobin, M.; TAE, Tri Alpha Energy, Inc. Team

    2017-10-01

    Commissioning and early operations are underway on C-2W, Tri Alpha Energy's new FRC experiment. The increased complexity level of this machine requires an equally enhanced diagnostic capability. A fundamental component of any magnetically confined fusion experiment is a firm understanding of the magnetic field itself. C-2W is outfitted with over 700 magnetic field probes, 550 internal and 150 external. Innovative in-vacuum annular flux loop / B-dot combination probes will provide information about plasma shape, size, pressure, energy, total temperature, and trapped flux when coupled with establish theoretical interpretations. The massive Mirnov array, consisting of eight rings of eight 3D probes, will provide detailed information about plasma motion, stability, and MHD modal content with the aid of singular value decomposition (SVD) analysis. Internal Rogowski probes will detect the presence of axial currents flowing in the plasma jet in multiple axial locations. Initial data from this array of diagnostics will be presented along with some interpretation and discussion of the analysis techniques used.

  19. Turbulence and Coherent Structure in the Atmospheric Boundary Layer near the Eyewall of Hurricane Hugo (1989)

    NASA Astrophysics Data System (ADS)

    Zhang, J. A.; Marks, F. D.; Montgomery, M. T.; Black, P. G.

    2008-12-01

    In this talk we present an analysis of observational data collected from NOAA'S WP-3D research aircraft during the eyewall penetration of category five Hurricane Hugo (1989). The 1 Hz flight level data near 450m above the sea surface comprising wind velocity, temperature, pressure and relative humidity are used to estimate the turbulence intensity and fluxes. In the turbulent flux calculation, the universal shape spectra and co-spectra derived using the 40 Hz data collected during the Coupled Boundary Layer Air-sea Transfer (CBLAST) Hurricane experiment are applied to correct the high frequency part of the data collected in Hurricane Hugo. Since the stationarity assumption required for standard eddy correlations is not always satisfied, different methods are summarized for computing the turbulence parameters. In addition, a wavelet analysis is conducted to investigate the time and special scales of roll vortices or coherent structures that are believed important elements of the eye/eyewall mixing processes that support intense storms.

  20. Analyzing energy-water exchange dynamics in the Thar desert

    NASA Astrophysics Data System (ADS)

    Raja, P.; Singh, Nilendu; Srinivas, C. V.; Singhal, Mohit; Chauhan, Pankaj; Singh, Maharaj; Sinha, N. K.

    2017-07-01

    Regions of strong land-atmosphere coupling will be more susceptible to the hydrological impacts in the intensifying hydrological cycle. In this study, micrometeorological experiments were performed to examine the land-atmosphere coupling strength over a heat low region (Thar desert, NW India), known to influence the Indian summer monsoon (ISM). Within the vortex of Thar desert heat low, energy-water exchange and coupling behavior were studied for 4 consecutive years (2011-2014) based on sub-hourly measurements of radiative-convective flux, state parameters and sub-surface thermal profiles using lead-lag analysis between various E-W balance components. Results indicated a strong (0.11-0.35) but variable monsoon season (July-September) land-atmosphere coupling events. Coupling strength declined with time, becomes negative beyond 10-day lag. Evapotranspiration (LE) influences rainfall at the monthly time-scale (20-40 days). Highly correlated monthly rainfall and LE anomalies (r = 0.55, P < 0.001) suggested a large precipitation memory linked to the local land surface state. Sensible heating (SH) during March and April are more strongly (r = 0.6-0.7) correlated to ISM rainfall than heating during May or June (r = 0.16-0.36). Analyses show strong and weak couplings among net radiation (Rn)-vapour pressure deficit (VPD), LE-VPD and Rn-LE switching between energy-limited to water-limited conditions. Consistently, +ve and -ve residual energy [(dE) = (Rn - G) - (SH + LE)] were associated with regional wet and dry spells respectively with a lead of 10-40 days. Dew deposition (18.8-37.9 mm) was found an important component in the annual surface water balance. Strong association of variation of LE and rainfall was found during monsoon at local-scale and with regional-scale LE (MERRA 2D) but with a lag which was more prominent at local-scale than at regional-scale. Higher pre-monsoon LE at local-scale as compared to low and monotonous variation in regional-scale LE led to hypothesize that excess energy and water vapour brought through advection caused by pre-monsoon rainfall might have been recycled through rainfall to compensate for early part of monsoon rainfall at local-scale. However, long-term measurements and isotope analysis would be able to strengthen this hypothesis. This study would fill the key gaps in the global flux studies and improve understanding on local E-W exchange pathways, responses and feedbacks.

  1. Search for sharp and smooth spectral signatures of μνSSM gravitino dark matter with Fermi-LAT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gómez-Vargas, Germán A.; López-Fogliani, Daniel E.; Perez, Andres D.

    The μνSSM solves the μ problem of supersymmetric models and reproduces neutrino data, simply using couplings with right-handed neutrinos ν's. Given that these couplings break explicitly R parity, the gravitino is a natural candidate for decaying dark matter in the μνSSM. In this work we carry out a complete analysis of the detection of μνSSM gravitino dark matter through γ-ray observations. In addition to the two-body decay producing a sharp line, we include in the analysis the three-body decays producing a smooth spectral signature. We perform first a deep exploration of the low-energy parameter space of the μνSSM taking intomore » account that neutrino data must be reproduced. Then, we compare the γ-ray fluxes predicted by the model with Fermi -LAT observations. In particular, with the 95% CL upper limits on the total diffuse extragalactic γ-ray background using 50 months of data, together with the upper limits on line emission from an updated analysis using 69.9 months of data. For standard values of bino and wino masses, gravitinos with masses larger than about 4 GeV, or lifetimes smaller than about 10{sup 28} s, produce too large fluxes and are excluded as dark matter candidates. However, when limiting scenarios with large and close values of the gaugino masses are considered, the constraints turn out to be less stringent, excluding masses larger than 17 GeV and lifetimes smaller than 4 × 10{sup 25} s.« less

  2. Search for sharp and smooth spectral signatures of μνSSM gravitino dark matter with Fermi-LAT

    NASA Astrophysics Data System (ADS)

    Gómez-Vargas, Germán A.; López-Fogliani, Daniel E.; Muñoz, Carlos; Perez, Andres D.; Ruiz de Austri, Roberto

    2017-03-01

    The μνSSM solves the μ problem of supersymmetric models and reproduces neutrino data, simply using couplings with right-handed neutrinos ν's. Given that these couplings break explicitly R parity, the gravitino is a natural candidate for decaying dark matter in the μνSSM. In this work we carry out a complete analysis of the detection of μνSSM gravitino dark matter through γ-ray observations. In addition to the two-body decay producing a sharp line, we include in the analysis the three-body decays producing a smooth spectral signature. We perform first a deep exploration of the low-energy parameter space of the μνSSM taking into account that neutrino data must be reproduced. Then, we compare the γ-ray fluxes predicted by the model with Fermi-LAT observations. In particular, with the 95% CL upper limits on the total diffuse extragalactic γ-ray background using 50 months of data, together with the upper limits on line emission from an updated analysis using 69.9 months of data. For standard values of bino and wino masses, gravitinos with masses larger than about 4 GeV, or lifetimes smaller than about 1028 s, produce too large fluxes and are excluded as dark matter candidates. However, when limiting scenarios with large and close values of the gaugino masses are considered, the constraints turn out to be less stringent, excluding masses larger than 17 GeV and lifetimes smaller than 4 × 1025 s.

  3. The effect of plant water storage on water fluxes within the coupled soil-plant system [The role of plant water storage on water fluxes within the coupled soil-plant system

    DOE PAGES

    Huang, Cheng -Wei; Domec, Jean -Christophe; Ward, Eric J.; ...

    2016-11-21

    In addition to buffering plants from water stress during severe droughts, plant water storage (PWS) alters many features of the spatio-temporal dynamics of water movement in the soil–plant system. How PWS impacts water dynamics and drought resilience is explored using a multi-layer porous media model. Here, the model numerically resolves soil–plant hydrodynamics by coupling them to leaf-level gas exchange and soil–root interfacial layers. Novel features of the model are the considerations of a coordinated relationship between stomatal aperture variation and whole-system hydraulics and of the effects of PWS and nocturnal transpiration (F e,night) on hydraulic redistribution (HR) in the soil.

  4. Magnetoelectric coupling of a magnetoelectric flux gate sensor in vibration noise circumstance

    NASA Astrophysics Data System (ADS)

    Chu, Zhaoqiang; Shi, Huaduo; Gao, Xiangyu; Wu, Jingen; Dong, Shuxiang

    2018-01-01

    A magnetoelectric (ME) flux gate sensor (MEFGS) consisting of piezoelectric PMN-PT single crystals and ferromagnetic amorphous alloy ribbon in a self-differential configuration is featured with the ability of weak magnetic anomaly detection. Here, we further investigated its ME coupling and magnetic field detection performance in vibration noise circumstance, including constant frequency, impact, and random vibration noise. Experimental results show that the ME coupling coefficient of MEFGS is as high as 5700 V/cm*Oe at resonant frequency, which is several orders magnitude higher than previously reported differential ME sensors. It was also found that under constant and impact vibration noise circumstance, the noise reduction and attenuation factor of MEFGS are over 17 and 85.7%, respectively. This work is important for practical application of MEFGS in real environment.

  5. The effect of plant water storage on water fluxes within the coupled soil-plant system [The role of plant water storage on water fluxes within the coupled soil-plant system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Cheng -Wei; Domec, Jean -Christophe; Ward, Eric J.

    In addition to buffering plants from water stress during severe droughts, plant water storage (PWS) alters many features of the spatio-temporal dynamics of water movement in the soil–plant system. How PWS impacts water dynamics and drought resilience is explored using a multi-layer porous media model. Here, the model numerically resolves soil–plant hydrodynamics by coupling them to leaf-level gas exchange and soil–root interfacial layers. Novel features of the model are the considerations of a coordinated relationship between stomatal aperture variation and whole-system hydraulics and of the effects of PWS and nocturnal transpiration (F e,night) on hydraulic redistribution (HR) in the soil.

  6. Flat bands in lattices with non-Hermitian coupling

    NASA Astrophysics Data System (ADS)

    Leykam, Daniel; Flach, Sergej; Chong, Y. D.

    2017-08-01

    We study non-Hermitian photonic lattices that exhibit competition between conservative and non-Hermitian (gain/loss) couplings. A bipartite sublattice symmetry enforces the existence of non-Hermitian flat bands, which are typically embedded in an auxiliary dispersive band and give rise to nondiffracting "compact localized states". Band crossings take the form of non-Hermitian degeneracies known as exceptional points. Excitations of the lattice can produce either diffracting or amplifying behaviors. If the non-Hermitian coupling is fine-tuned to generate an effective π flux, the lattice spectrum becomes completely flat, a non-Hermitian analog of Aharonov-Bohm caging in which the magnetic field is replaced by balanced gain and loss. When the effective flux is zero, the non-Hermitian band crossing points give rise to asymmetric diffraction and anomalous linear amplification.

  7. Towards an improved and more flexible representation of water stress in coupled photosynthesis-stomatal conductance models; implications for simulated land surface fluxes and variables at various spatiotemporal scales

    NASA Astrophysics Data System (ADS)

    Egea, G.; Verhoef, A.; Vidale, P. L.; Black, E.; Van den Hoof, C.

    2012-04-01

    Coupled photosynthesis-stomatal conductance (A-gs) models are commonly used in ecosystem models to represent the exchange rate of CO2 and H2O between vegetation and the atmosphere. The ways these models account for water stress differ greatly among modelling schemes. This study provides insight into the impact of contrasting model configurations of water stress on the simulated leaf-level values of net photosynthesis (A), stomatal conductance (gs), the functional relationship among them and their ratio, the intrinsic water use efficiency (A/gs), as soil dries. A simple, yet versatile, normalized soil moisture dependent function was used to account for the effects of water stress on gs, on mesophyll conductance (gm ) and on the biochemical capacity (Egea et al., 2011). Model output was compared to leaf-level values obtained from the literature. The sensitivity analyses emphasized the necessity to combine both stomatal and non-stomatal limitations of A in coupled A-gs models to accurately capture the observed functional relationships A vs. gs and A/gs vs. gs in response to drought. Accounting for water stress in coupled A-gs models by imposing either stomatal or biochemical limitations of A, as commonly practiced in most ecosystem models, failed to reproduce the observed functional relationship between key leaf gas exchange attributes. A quantitative limitation analysis revealed that the general pattern of C3 photosynthetic response to water stress can be represented in coupled A-gs models by imposing the highest limitation strength to mesophyll conductance, then to stomatal conductance and finally to the biochemical capacity. This more realistic representation of soil water stress on the simulated leaf-level values of A and gs was embedded in the JULES (Joint UK Land Environment Simulator; Best et al., 2011), model and tested for a number of vegetation types, for which driving and flux verification data were available. These simulations provide an insight into the effect that the revised parameterization will have on GCM simulations of climate variability and change. Best, M. J. et al. (2011). The Joint UK Land Environment Simulator (JULES), model description - Part 1: Energy and water fluxes. Geosci. Model Dev., 4, 677-699. Egea, G., Verhoef, A., Vidale, P.L. (2011) Towards an improved and more flexible representation of water stress in coupled photosynthesis-stomatal conductance models. Agricultural and Forest Meteorology, 151 (10), 1370-1384.

  8. Numerical experiment on the flow field properties of a blunted body with a counterflowing jet in supersonic flows

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Zhang, Rui-Rui; Yan, Li; Ou, Min; Moradi, R.

    2018-06-01

    The prediction of the drag and heat flux reduction characteristics is a very important issue in the conceptual design phase of the hypersonic vehicle. In this paper, the flow field properties around a blunted body with a counterflowing jet in the supersonic flow with the freestream Mach number being 3.98 were investigated numerically, and they are obtained by means of the two-dimensional axisymmetric Reynolds-averaged Navier-Stokes (RANS) equations coupled with the two equation standard k-ε turbulence model. The surface Stanton number distributions, as well as the surface static pressures, were extracted from the flow field structures in order to evaluate the drag and heat flux reduction characteristics. Further, the influences of the jet pressure ratio and the jet Mach number on the drag and heat flux reduction were analyzed based on the detailed code validation and grid independency analysis process. The obtained results show that the flow cell Reynolds number has a great impact on the heat flux prediction, and its best value is 5.0 for the case studied in the current study. However, the flow cell Reynolds number and the grid scale both have only a slight impact on the prediction of the surface static pressure distribution, as well as the turbulence model. The larger jet pressure ratio is beneficial for the drag and heat flux reduction, and the smaller jet Mach number is beneficial for the heat flux reduction. Further, the long penetration mode is beneficial for the drag reduction, but it is not beneficial for the heat flux reduction.

  9. Analysis of Functional Coupling: Mitochondrial Creatine Kinase and Adenine Nucleotide Translocase

    PubMed Central

    Vendelin, Marko; Lemba, Maris; Saks, Valdur A.

    2004-01-01

    The mechanism of functional coupling between mitochondrial creatine kinase (MiCK) and adenine nucleotide translocase (ANT) in isolated heart mitochondria is analyzed. Two alternative mechanisms are studied: 1), dynamic compartmentation of ATP and ADP, which assumes the differences in concentrations of the substrates between intermembrane space and surrounding solution due to some diffusion restriction and 2), direct transfer of the substrates between MiCK and ANT. The mathematical models based on these possible mechanisms were composed and simulation results were compared with the available experimental data. The first model, based on a dynamic compartmentation mechanism, was not sufficient to reproduce the measured values of apparent dissociation constants of MiCK reaction coupled to oxidative phosphorylation. The second model, which assumes the direct transfer of substrates between MiCK and ANT, is shown to be in good agreement with experiments—i.e., the second model reproduced the measured constants and the estimated ADP flux, entering mitochondria after the MiCK reaction. This model is thermodynamically consistent, utilizing the free energy profiles of reactions. The analysis revealed the minimal changes in the free energy profile of the MiCK-ANT interaction required to reproduce the experimental data. A possible free energy profile of the coupled MiCK-ANT system is presented. PMID:15240503

  10. Magnetic flux trapping during field reversal in the formation of a field-reversed configuration

    NASA Astrophysics Data System (ADS)

    Steinhauer, Loren C.

    1985-11-01

    The flow of plasma and magnetic flux toward a wall is examined in a slab geometry where the magnetic field is parallel to the wall. Magnetohydrodynamic (MHD) flow with a quasisteady approximation is assumed that reduces the problem to three coupled ordinary differential equations. The calculated behavior shows that a thin current sheath is established at the wall in which a variety of phenomena appear, including significant resistive heating and rapid deceleration of the plasma flow. The sheath physics determines the speed at which flux and plasma flow toward the wall. The model has been applied to the field-reversal phase of a field-reversed theta pinch, during which the reduced magnetic field near the wall drives an outward flow of plasma and magnetic flux. The analysis leads to approximate expressions for the instantaneous flow speed, the loss of magnetic flux during the field reversal phase, the integrated heat flow to the wall, and the highest possible magnetic flux retained after reversal. Predictions from this model are compared with previous time-dependent MHD calculations and with experimental results from the TRX-1 [Proceedings of the 4th Symposium on the Physics and Technology of Compact Toroids, 27-29 October 1981 (Lawrence Livermore National Laboratory, Livermore, CA, 1982), p. 61] and TRX-2 [Proceedings of the 6th U.S. Symposium on Compact Toroid Research, 20-23 February, 1984 (Princeton Plasma Physics Laboratory, Princeton, NJ, 1984), p. 154] experiments.

  11. Process-oriented modelling to identify main drivers of erosion-induced carbon fluxes

    NASA Astrophysics Data System (ADS)

    Wilken, Florian; Sommer, Michael; Van Oost, Kristof; Bens, Oliver; Fiener, Peter

    2017-05-01

    Coupled modelling of soil erosion, carbon redistribution, and turnover has received great attention over the last decades due to large uncertainties regarding erosion-induced carbon fluxes. For a process-oriented representation of event dynamics, coupled soil-carbon erosion models have been developed. However, there are currently few models that represent tillage erosion, preferential water erosion, and transport of different carbon fractions (e.g. mineral bound carbon, carbon encapsulated by soil aggregates). We couple a process-oriented multi-class sediment transport model with a carbon turnover model (MCST-C) to identify relevant redistribution processes for carbon dynamics. The model is applied for two arable catchments (3.7 and 7.8 ha) located in the Tertiary Hills about 40 km north of Munich, Germany. Our findings indicate the following: (i) redistribution by tillage has a large effect on erosion-induced vertical carbon fluxes and has a large carbon sequestration potential; (ii) water erosion has a minor effect on vertical fluxes, but episodic soil organic carbon (SOC) delivery controls the long-term erosion-induced carbon balance; (iii) delivered sediments are highly enriched in SOC compared to the parent soil, and sediment delivery is driven by event size and catchment connectivity; and (iv) soil aggregation enhances SOC deposition due to the transformation of highly mobile carbon-rich fine primary particles into rather immobile soil aggregates.

  12. A generalized two-fluid picture of non-driven collisionless reconnection and its relation to whistler waves

    DOE PAGES

    None, None

    2017-05-05

    A generalized, intuitive two-fluid picture of 2D non-driven collisionless magnetic reconnection is described using results from a full-3D numerical simulation. The relevant two-fluid equations simplify to the condition that the flux associated with canonical circulation Q=m e∇×u e+q eB is perfectly frozen into the electron fluid. In the reconnection geometry, flux tubes defined by Q are convected with the central electron current, effectively stretching the tubes and increasing the magnitude of Q exponentially. This, coupled with the fact that Q is a sum of two quantities, explains how the magnetic fields in the reconnection region reconnect and give rise tomore » strong electron acceleration. The Q motion provides an interpretation for other phenomena as well, such as spiked central electron current filaments. The simulated reconnection rate was found to agree with a previous analytical calculation having the same geometry. Energy analysis shows that the magnetic energy is converted and propagated mainly in the form of the Poynting flux, and helicity analysis shows that the canonical helicity ∫P·Q dV as a whole must be considered when analyzing reconnection. A mechanism for whistler wave generation and propagation is also described, with comparisons to recent spacecraft observations.« less

  13. Local feedback mechanisms of the shallow water region around the Maritime Continent

    NASA Astrophysics Data System (ADS)

    Xue, Pengfei; Eltahir, Elfatih A. B.; Malanotte-Rizzoli, Paola; Wei, Jun

    2014-10-01

    The focus of this study is the local-scale air-sea feedback mechanisms over the shallow shelf water region (water depth <200 m) of the Maritime Continent (MC). MC was selected as a pilot study site for its extensive shallow water coverage, geographic complexity, and importance in the global climate system. To identify the local-scale air-sea feedback processes, we ran numerical experiments with perturbed surface layer water temperature using a coupled ocean-atmosphere model and an uncoupled ocean model. By examining the responses of the coupled and uncoupled models to the water temperature perturbation, we identify that, at a local-scale, a negative feedback process through the coupled dynamics that tends to restore the SST from its perturbation could dominate the shallow water region of the MC at a short time scale of several days. The energy budget shows that 38% of initial perturbation-induced heat energy was adjusted through the air-sea feedback mechanisms within 2 weeks, of which 58% is directly transferred into the atmosphere by the adjustment of latent heat flux due to the evaporative cooling mechanism. The increased inputs of heat and moisture into the lower atmosphere then modifies its thermal structure and increases the formation of low-level clouds, which act as a shield preventing incoming solar radiation from reaching the sea surface, accounts for 38% of the total adjustment of surface heat fluxes, serving as the second mechanism for the negative feedback process. The adjustment of sensible heat flux and net longwave radiation play a secondary role. The response of the coupled system to the SST perturbation suggests a response time scale of the coupled feedback process of about 3-5 days. The two-way air-sea feedback tightly links the surface heat fluxes, clouds and SST, and can play an important role in regulating the short-term variability of the SST over the shallow shelf water regions.

  14. Application of the principles of systems biology and Wiener's cybernetics for analysis of regulation of energy fluxes in muscle cells in vivo.

    PubMed

    Guzun, Rita; Saks, Valdur

    2010-03-08

    The mechanisms of regulation of respiration and energy fluxes in the cells are analyzed based on the concepts of systems biology, non-equilibrium steady state kinetics and applications of Wiener's cybernetic principles of feedback regulation. Under physiological conditions cardiac function is governed by the Frank-Starling law and the main metabolic characteristic of cardiac muscle cells is metabolic homeostasis, when both workload and respiration rate can be changed manifold at constant intracellular level of phosphocreatine and ATP in the cells. This is not observed in skeletal muscles. Controversies in theoretical explanations of these observations are analyzed. Experimental studies of permeabilized fibers from human skeletal muscle vastus lateralis and adult rat cardiomyocytes showed that the respiration rate is always an apparent hyperbolic but not a sigmoid function of ADP concentration. It is our conclusion that realistic explanations of regulation of energy fluxes in muscle cells require systemic approaches including application of the feedback theory of Wiener's cybernetics in combination with detailed experimental research. Such an analysis reveals the importance of limited permeability of mitochondrial outer membrane for ADP due to interactions of mitochondria with cytoskeleton resulting in quasi-linear dependence of respiration rate on amplitude of cyclic changes in cytoplasmic ADP concentrations. The system of compartmentalized creatine kinase (CK) isoenzymes functionally coupled to ANT and ATPases, and mitochondrial-cytoskeletal interactions separate energy fluxes (mass and energy transfer) from signalling (information transfer) within dissipative metabolic structures - intracellular energetic units (ICEU). Due to the non-equilibrium state of CK reactions, intracellular ATP utilization and mitochondrial ATP regeneration are interconnected by the PCr flux from mitochondria. The feedback regulation of respiration occurring via cyclic fluctuations of cytosolic ADP, Pi and Cr/PCr ensures metabolic stability necessary for normal function of cardiac cells.

  15. Characterization of the Infrared/X-ray sub-second variability for the black-hole transient GX 339-4

    NASA Astrophysics Data System (ADS)

    Vincentelli, F. M.; Casella, P.; Maccarone, T. J.; Uttley, P.; Gandhi, P.; Belloni, T.; De Marco, B.; Russell, D. M.; Stella, L.; O'Brien, K.

    2018-03-01

    We present a detailed analysis of the X-ray/IR fast variability of the Black-Hole Transient GX 339-4 during its low/hard state in August 2008. Thanks to simultaneous high time-resolution observations made with the VLT and RXTE, we performed the first characterisation of the sub-second variability in the near-infrared band - and of its correlation with the X-rays - for a low-mass X-ray binary, using both time- and frequency-domain techniques. We found a power-law correlation between the X-ray and infrared fluxes when measured on timescales of 16 seconds, with a marginally variable slope, steeper than the one found on timescales of days at similar flux levels. We suggest the variable slope - if confirmed - could be due to the infrared flux being a non-constant combination of both optically thin and optically thick synchrotron emission from the jet, as a result of a variable self-absorption break. From cross spectral analysis we found an approximately constant infrared time lag of ≈0.1s, and a very high coherence of ˜90 per cent on timescales of tens of seconds, slowly decreasing toward higher frequencies. Finally, we report on the first detection of a linear rms-flux relation in the emission from a low-mass X-ray binary jet, on timescales where little correlation is found between the X-rays and the jet emission itself. This suggests that either the inflow variations and jet IR emission are coupled by a non-linear or time-variable transform, or that the IR rms-flux relation is not transferred from the inflow to the jet, but is an intrinsic property of emission processes in the jet.

  16. Characterization of the infrared/X-ray subsecond variability for the black hole transient GX 339-4

    NASA Astrophysics Data System (ADS)

    Vincentelli, F. M.; Casella, P.; Maccarone, T. J.; Uttley, P.; Gandhi, P.; Belloni, T.; De Marco, B.; Russell, D. M.; Stella, L.; O'Brien, K.

    2018-07-01

    We present a detailed analysis of the X-ray/IR fast variability of the Black-Hole Transient GX 339-4 during its low/hard state in 2008 August. Thanks to simultaneous high time resolution observations made with the VLT and RXTE, we performed the first characterization of the subsecond variability in the near-infrared band - and of its correlation with the X-rays - for a low-mass X-ray binary, using both time- and frequency-domain techniques. We found a power-law correlation between the X-ray and infrared fluxes when measured on time-scales of 16 s, with a marginally variable slope, steeper than the one found on time-scales of days at similar flux levels. We suggest the variable slope - if confirmed - could be due to the infrared flux being a non-constant combination of both optically thin and optically thick synchrotron emission from the jet, as a result of a variable self-absorption break. From cross spectral analysis, we found an approximately constant infrared time lag of ≈0.1 s, and a very high coherence of ˜90 per cent on time-scales of tens of seconds, slowly decreasing towards higher frequencies. Finally, we report on the first detection of a linear rms-flux relation in the emission from a low-mass X-ray binary jet, on time-scales where little correlation is found between the X-rays and the jet emission itself. This suggests that either the inflow variations and jet IR emission are coupled by a non-linear or time-variable transform, or that the IR rms-flux relation is not transferred from the inflow to the jet, but is an intrinsic property of emission processes in the jet.

  17. Urban heat fluxes in the subsurface of Cologne, Germany

    NASA Astrophysics Data System (ADS)

    Zhu, K.; Bayer, P.; Blum, P.

    2012-04-01

    Urbanization during the last hundred years has led to both environmental and thermal impacts on the subsurface. The urban heat island (UHI) effect is mostly described as an atmospheric phenomenon, where the measured aboveground temperatures in cities are elevated in comparison to undisturbed rural regions. However, UHIs can be found below, as well as above ground. A large amount of anthropogenic heat migrates into the urban subsurface, which also raises the ground temperature and permanently changes the thermal conditions in shallow aquifers. The main objective of our work is to study and determine the urban heat fluxes in Cologne, Germany, and to improve our understanding of the dynamics of subsurface energy fluxes in UHIs. Ideally, our findings will contribute to strategic and more sustainable geothermal use in cities. For a quantitative analysis of the energy fluxes within the subsurface and across the atmospheric boundary, two and three-dimensional coupled numerical flow and heat transport models were developed. The simulation results indicate that during the past hundred years, an average vertical urban heat flux that ranges between 80 and 375 mW m-2 can be deduced. Thermal anomalies have migrated into the local urban aquifer system and they reach a depth of about 150 m. In this context, the influence of the regional groundwater flow on the subsurface heat transport and temperature development is comprehensively discussed.

  18. Causes of the large warm bias in the Angola-Benguela Frontal Zone in the Norwegian Earth System Model

    NASA Astrophysics Data System (ADS)

    Koseki, Shunya; Keenlyside, Noel; Demissie, Teferi; Toniazzo, Thomas; Counillon, Francois; Bethke, Ingo; Ilicak, Mehmet; Shen, Mao-Lin

    2018-06-01

    We have investigated the causes of the sea surface temperature (SST) bias in the Angola-Benguela Frontal Zone (ABFZ) of the southeastern Atlantic Ocean simulated by the Norwegian Earth System Model (NorESM). Similar to other coupled-models, NorESM has a warm SST bias in the ABFZ of up to 8 °C in the annual mean. Our analysis of NorESM reveals that a cyclonic surface wind bias over the ABFZ drives a locally excessively strong southward (0.05 m/s (relative to observation)) Angola Current displacing the ABFZ southward. A series of uncoupled stand-alone atmosphere and ocean model simulations are performed to investigate the cause of the coupled model bias. The stand-alone atmosphere model driven with observed SST exhibits a similar cyclonic surface circulation bias; while the stand-alone ocean model forced with the reanalysis data produces a warm SST in the ABFZ with a magnitude approximately half of that in the coupled NorESM simulation. An additional uncoupled sensitivity experiment shows that the atmospheric model's local negative surface wind curl generates anomalously strong Angola Current at the ocean surface. Consequently, this contributes to the warm SST bias in the ABFZ by 2 °C (compared to the reanalysis forced simulation). There is no evidence that local air-sea feedbacks among wind stress curl, SST, and sea level pressure (SLP) affect the ABFZ SST bias. Turbulent surface heat flux differences between coupled and uncoupled experiments explain the remaining 2 °C warm SST bias in NorESM. Ocean circulation, upwelling and turbulent heat flux errors all modulate the intensity and the seasonality of the ABFZ errors.

  19. Role of the Tropical Pacific in recent Antarctic Sea-Ice Trends

    NASA Astrophysics Data System (ADS)

    Codron, F.; Bardet, D.; Allouache, C.; Gastineau, G.; Friedman, A. R.; Douville, H.; Voldoire, A.

    2017-12-01

    The recent (up to 2016) trends in Antarctic sea-ice cover - a global increase masking a dipole between the Ross and Bellingshausen-Weddel seas - are still not well understood, and not reproduced by CMIP5 coupled climate models. We here explore the potential role of atmospheric circulation changes around the Amundsen Sea, themselves possibly forced by tropical SSTs, an explanation that has been recently advanced. As a first check on this hypothesis, we compare the atmospheric circulation trends simulated by atmospheric GCMs coupled with an ocean or with imposed SSTs (AMIP experiment from CMIP5); the latter being in theory able to reproduce changes caused by natural SST variability. While coupled models simulate in aggregate trends that project on the SAM structure, strongest in summer, the AMIP simulations add in the winter season a pronounced Amundsen Sea Low signature (and a PNA signature in the northern hemisphere) both consistent with a Niña-like trend in the tropical Pacific. We then use a specific coupled GCM setup, in which surface wind anomalies over the tropical Pacific are strongly nudged towards the observed ones, including their interannual variability, but the model is free to evolve elsewhere. The two GCMs used then simulate a deepening trend in the Amundsen-Sea Low in winter, and are able to reproduce a dipole in sea-ice cover. Further analysis shows that the sea-ice dipole is partially forced by surface heat flux anomalies in early winter - the extent varying with the region and GCM used. The turbulent heat fluxes then act to damp the anomalies in late winter, which may however be maintained by ice-albedo feedbacks.

  20. A process-level attribution of the annual cycle of surface temperature over the Maritime Continent

    NASA Astrophysics Data System (ADS)

    Li, Yana; Yang, Song; Deng, Yi; Hu, Xiaoming; Cai, Ming

    2017-12-01

    The annual cycle of the surface temperature over the Maritime Continent (MC) is characterized by two periods of rapid warming in March-April and September-October, respectively, and a period of rapid cooling in June-July. Based upon an analysis of energy balance within individual atmosphere-surface columns, the seasonal variations of surface temperature in the MC are partitioned into partial temperature changes associated with various radiative and non-radiative (dynamical) processes. The seasonal variations in direct solar forcing and surface latent heat flux show the largest positive contributions to the annual cycle of MC surface temperature while the changes in oceanic dynamics (including ocean heat content change) work against the temperature changes related to the annual cycle. The rapid warming in March-April is mainly a result of the changes in atmospheric quick processes and ocean-atmosphere coupling such as water vapor, surface latent heat flux, clouds, and atmospheric dynamics while the contributions from direct solar forcing and oceanic dynamics are negative. This feature is in contrast to that associated with the warming in September-October, which is driven mainly by the changes in solar forcing with a certain amount of contributions from water vapor and latent heat flux change. More contribution from atmospheric quick processes and ocean-atmosphere coupling in March-April coincides with the sudden northward movement of deep convection belt, while less contribution from these quick processes and coupling is accompanied with the convection belt slowly moving southward. The main contributors to the rapid cooling in June-July are the same as those to the rapid warming in March-April, and the cooling is also negatively contributed by direct solar forcing and oceanic dynamics. The changes in water vapor in all three periods contribute positively to the change in total temperature and they are associated with the change in the location of the center of large-scale moisture convergence during the onset and demise stages of the East Asian summer monsoon.

  1. Coupled Atmosphere-Wave-Ocean Modeling of Tropical Cyclones: Progress, Challenges, and Ways Forward

    NASA Astrophysics Data System (ADS)

    Chen, Shuyi

    2015-04-01

    It has long been recognized that air-sea interaction plays an important role in tropical cyclones (TC) intensity change. However, most current numerical weather prediction (NWP) models are deficient in predicting TC intensity. The extreme high winds, intense rainfall, large ocean waves, and copious sea spray in TCs push the surface-exchange parameters for temperature, water vapor, and momentum into untested regimes. Parameterizations of air-sea fluxes in NWP models are often crude and create "manmade" energy source/sink that does not exist, especially in the absence of a fully interactive ocean in the model. The erroneous surface heat, moisture, and momentum fluxes can cause compounding errors in the model (e.g., precipitation, water vapor, boundary layer properties). The energy source (heat and moisture fluxes from the ocean) and sink (surface friction and wind-induced upper ocean cooling) are critical to TC intensity. However, observations of air-sea fluxes in TCs are very limited, especially in extreme high wind conditions underneath of the eyewall region. The Coupled Boundary Layer Air-Sea Transfer (CBLAST) program was designed to better understand the air-sea interaction, especially in high wind conditions, which included laboratory and coupled model experiments and field campaign in 2003-04 hurricane seasons. Significant progress has been made in better understanding of air-sea exchange coefficients up to 30 m/s, i.e., a leveling off in drag coefficient and relatively invariant exchange coefficient of enthalpy with wind speed. More recently, the Impact of Typhoon on the Ocean in the Pacific (ITOP) field campaign in 2010 has provided an unprecedented data set to study the air-sea fluxes in TCs and their impact on TC structure and intensity. More than 800 GPS dropsondes and 900 AXBTs/AXCTs as well as drifters, floats, and moorings were deployed in TCs, including Typhoons Fanapi and Malakas, and Supertyphoon Megi with a record peak wind speed of more than 80 m/s. It is found that the air-sea fluxes are quite asymmetric around a storm with complex features representing various air-sea interaction processes in TCs. A unique observation in Typhoon Fanapi is the development of a stable boundary layer in the near-storm cold wake region, which has a direct impact on TC inner core structure and intensity. Despite of the progress, challenges remain. Air-sea momentum exchange in wind speed greater than 30-40 m/s is largely unresolved. Directional wind-wave stress and wave-current stress are difficult to determine from observations. Effects of sea spray on the air-sea fluxes are still not well understood. This talk will provide an overview on progress made in recent years, challenges we are facing, and ways forward. An integrated coupled observational and atmosphere-wave-ocean modeling system is urgently needed, in which coupled model development and targeted observations from field campaign and lab measurements together form the core of the research and prediction system. Another important aspect is that fully coupled models provide explicit, integrated impact forecasts of wind, rain, waves, ocean currents and surges in TCs and winter storms, which are missing in most current NWP models. It requires a new strategy for model development, evaluation, and verification. Ensemble forecasts using high-resolution coupled atmosphere-wave-ocean models can provide probabilistic forecasts and quantitative uncertainty estimates, which also allow us to explore new methodologies to verify probabilistic impact forecasts and evaluate model physics using a stochastic approach. Examples of such approach in TCs including Superstorm Sandy will be presented.

  2. Sensitivity of Land Surface Parameters on Thunderstorm Simulation through HRLDAS-WRF Coupling Mode

    NASA Astrophysics Data System (ADS)

    Kumar, Dinesh; Kumar, Krishan; Mohanty, U. C.; Kisore Osuri, Krishna

    2016-07-01

    Land surface characteristics play an important role in large scale, regional and mesoscale atmospheric process. Representation of land surface characteristics can be improved through coupling of mesoscale atmospheric models with land surface models. Mesoscale atmospheric models depend on Land Surface Models (LSM) to provide land surface variables such as fluxes of heat, moisture, and momentum for lower boundary layer evolution. Studies have shown that land surface properties such as soil moisture, soil temperature, soil roughness, vegetation cover, have considerable effect on lower boundary layer. Although, the necessity to initialize soil moisture accurately in NWP models is widely acknowledged, monitoring soil moisture at regional and global scale is a very tough task due to high spatial and temporal variability. As a result, the available observation network is unable to provide the required spatial and temporal data for the most part of the globe. Therefore, model for land surface initializations rely on updated land surface properties from LSM. The solution for NWP land-state initialization can be found by combining data assimilation techniques, satellite-derived soil data, and land surface models. Further, it requires an intermediate step to use observed rainfall, satellite derived surface insolation, and meteorological analyses to run an uncoupled (offline) integration of LSM, so that the evolution of modeled soil moisture can be forced by observed forcing conditions. Therefore, for accurate land-state initialization, high resolution land data assimilation system (HRLDAS) is used to provide the essential land surface parameters. Offline-coupling of HRLDAS-WRF has shown much improved results over Delhi, India for four thunder storm events. The evolution of land surface variables particularly soil moisture, soil temperature and surface fluxes have provided more realistic condition. Results have shown that most of domain part became wetter and warmer after assimilation of soil moisture and soil temperature at the initial condition which helped to improve the exchange fluxes at lower atmospheric level. Mixing ratio were increased along with elevated theta-e at lower level giving a signature of improvement in LDAS experiment leading to a suitable condition for convection. In the analysis, moisture convergence, mixing ratio and vertical velocities have improved significantly in terms of intensity and time lag. Surface variables like soil moisture, soil temperature, sensible heat flux and latent heat flux have progressed in a possible realistic pattern. Above discussion suggests that assimilation of soil moisture and soil temperature improves the overall simulations significantly.

  3. Validation of nonlinear gyrokinetic simulations of L- and I-mode plasmas on Alcator C-Mod

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Creely, A. J.; Howard, N. T.; Rodriguez-Fernandez, P.

    New validation of global, nonlinear, ion-scale gyrokinetic simulations (GYRO) is carried out for L- and I-mode plasmas on Alcator C-Mod, utilizing heat fluxes, profile stiffness, and temperature fluctuations. Previous work at C-Mod found that ITG/TEM-scale GYRO simulations can match both electron and ion heat fluxes within error bars in I-mode [White PoP 2015], suggesting that multi-scale (cross-scale coupling) effects [Howard PoP 2016] may be less important in I-mode than in L-mode. New results presented here, however, show that global, nonlinear, ion-scale GYRO simulations are able to match the experimental ion heat flux, but underpredict electron heat flux (at most radii),more » electron temperature fluctuations, and perturbative thermal diffusivity in both L- and I-mode. Linear addition of electron heat flux from electron scale runs does not resolve this discrepancy. These results indicate that single-scale simulations do not sufficiently describe the I-mode core transport, and that multi-scale (coupled electron- and ion-scale) transport models are needed. In conclusion a preliminary investigation with multi-scale TGLF, however, was unable to resolve the discrepancy between ion-scale GYRO and experimental electron heat fluxes and perturbative diffusivity, motivating further work with multi-scale GYRO simulations and a more comprehensive study with multi-scale TGLF.« less

  4. High flux circularly polarized gamma beam factory: coupling a Fabry-Perot optical cavity with an electron storage ring

    PubMed Central

    Chaikovska, I.; Cassou, K.; Chiche, R.; Cizeron, R.; Cornebise, P.; Delerue, N.; Jehanno, D.; Labaye, F.; Marie, R.; Martens, A.; Peinaud, Y.; Soskov, V.; Variola, A.; Zomer, F.; Cormier, E.; Lhermite, J.; Dolique, V.; Flaminio, R.; Michel, C.; Pinard, L.; Sassolas, B.; Akagi, T.; Araki, S.; Honda, Y.; Omori, T.; Terunuma, N.; Urakawa, J.; Miyoshi, S.; Takahashi, T.; Yoshitama, H.

    2016-01-01

    We report and discuss high-flux generation of circularly polarized γ-rays by means of Compton scattering. The γ-ray beam results from the collision of an external-cavity-enhanced infrared laser beam and a low emittance relativistic electron beam. By operating a non-planar bow-tie high-finesse optical Fabry-Perot cavity coupled to a storage ring, we have recorded a flux of up to (3.5 ± 0.3) × 108 photons per second with a mean measured energy of 24 MeV. The γ-ray flux has been sustained for several hours. In particular, we were able to measure a record value of up to 400 γ-rays per collision in a full bandwidth. Moreover, the impact of Compton scattering on the electron beam dynamics could be observed resulting in a reduction of the electron beam lifetime correlated to the laser power stored in the Fabry-Perot cavity. We demonstrate that the electron beam lifetime provides an independent and consistent determination of the γ-ray flux. Furthermore, a reduction of the γ-ray flux due to intrabeam scattering has clearly been identified. These results, obtained on an accelerator test facility, warrant potential scaling and revealed both expected and yet unobserved effects. They set the baseline for further scaling of the future Compton sources under development around the world. PMID:27857146

  5. Validation of nonlinear gyrokinetic simulations of L- and I-mode plasmas on Alcator C-Mod

    DOE PAGES

    Creely, A. J.; Howard, N. T.; Rodriguez-Fernandez, P.; ...

    2017-03-02

    New validation of global, nonlinear, ion-scale gyrokinetic simulations (GYRO) is carried out for L- and I-mode plasmas on Alcator C-Mod, utilizing heat fluxes, profile stiffness, and temperature fluctuations. Previous work at C-Mod found that ITG/TEM-scale GYRO simulations can match both electron and ion heat fluxes within error bars in I-mode [White PoP 2015], suggesting that multi-scale (cross-scale coupling) effects [Howard PoP 2016] may be less important in I-mode than in L-mode. New results presented here, however, show that global, nonlinear, ion-scale GYRO simulations are able to match the experimental ion heat flux, but underpredict electron heat flux (at most radii),more » electron temperature fluctuations, and perturbative thermal diffusivity in both L- and I-mode. Linear addition of electron heat flux from electron scale runs does not resolve this discrepancy. These results indicate that single-scale simulations do not sufficiently describe the I-mode core transport, and that multi-scale (coupled electron- and ion-scale) transport models are needed. In conclusion a preliminary investigation with multi-scale TGLF, however, was unable to resolve the discrepancy between ion-scale GYRO and experimental electron heat fluxes and perturbative diffusivity, motivating further work with multi-scale GYRO simulations and a more comprehensive study with multi-scale TGLF.« less

  6. Omens of coupled model biases in the CMIP5 AMIP simulations

    NASA Astrophysics Data System (ADS)

    Găinuşă-Bogdan, Alina; Hourdin, Frédéric; Traore, Abdoul Khadre; Braconnot, Pascale

    2018-02-01

    Despite decades of efforts and improvements in the representation of processes as well as in model resolution, current global climate models still suffer from a set of important, systematic biases in sea surface temperature (SST), not much different from the previous generation of climate models. Many studies have looked at errors in the wind field, cloud representation or oceanic upwelling in coupled models to explain the SST errors. In this paper we highlight the relationship between latent heat flux (LH) biases in forced atmospheric simulations and the SST biases models develop in coupled mode, at the scale of the entire intertropical domain. By analyzing 22 pairs of forced atmospheric and coupled ocean-atmosphere simulations from the CMIP5 database, we show a systematic, negative correlation between the spatial patterns of these two biases. This link between forced and coupled bias patterns is also confirmed by two sets of dedicated sensitivity experiments with the IPSL-CM5A-LR model. The analysis of the sources of the atmospheric LH bias pattern reveals that the near-surface wind speed bias dominates the zonal structure of the LH bias and that the near-surface relative humidity dominates the east-west contrasts.

  7. Assessment of South Asian Summer Monsoon Simulation in CMIP5-Coupled Climate Models During the Historical Period (1850-2005)

    NASA Astrophysics Data System (ADS)

    Prasanna, Venkatraman

    2016-04-01

    This paper evaluates the performance of 29 state-of-art CMIP5-coupled atmosphere-ocean general circulation models (AOGCM) in their representation of regional characteristics of monsoon simulation over South Asia. The AOGCMs, despite their relatively coarse resolution, have shown some reasonable skill in simulating the mean monsoon and precipitation variability over the South Asian monsoon region. However, considerable biases do exist with reference to the observed precipitation and also inter-model differences. The monsoon rainfall and surface flux bias with respect to the observations from the historical run for the period nominally from 1850 to 2005 are discussed in detail. Our results show that the coupled model simulations over South Asia exhibit large uncertainties from one model to the other. The analysis clearly brings out the presence of large systematic biases in coupled simulation of boreal summer precipitation, evaporation, and sea surface temperature (SST) in the Indian Ocean, often exceeding 50 % of the climatological values. Many of the biases are common to many models. Overall, the coupled models need further improvement in realistically portraying boreal summer monsoon over the South Asian monsoon region.

  8. A hybrid Rayleigh-Taylor-current-driven coupled instability in a magnetohydrodynamically collimated cylindrical plasma with lateral gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhai, Xiang, E-mail: xzhai@caltech.edu; Bellan, Paul M., E-mail: pbellan@caltech.edu

    We present an MHD theory of Rayleigh-Taylor instability on the surface of a magnetically confined cylindrical plasma flux rope in a lateral external gravity field. The Rayleigh-Taylor instability is found to couple to the classic current-driven instability, resulting in a new type of hybrid instability that cannot be described by either of the two instabilities alone. The lateral gravity breaks the axisymmetry of the system and couples all azimuthal modes together. The coupled instability, produced by combination of helical magnetic field, curvature of the cylindrical geometry, and lateral gravity, is fundamentally different from the classic magnetic Rayleigh-Taylor instability occurring atmore » a two-dimensional planar interface. The theory successfully explains the lateral Rayleigh-Taylor instability observed in the Caltech plasma jet experiment [Moser and Bellan, Nature 482, 379 (2012)]. Potential applications of the theory include magnetic controlled fusion, solar emerging flux, solar prominences, coronal mass ejections, and other space and astrophysical plasma processes.« less

  9. Large enhancement of thermoelectric effects in a tunneling-coupled parallel DQD-AB ring attached to one normal and one superconducting lead

    NASA Astrophysics Data System (ADS)

    Yao, Hui; Zhang, Chao; Li, Zhi-Jian; Nie, Yi-Hang; Niu, Peng-bin

    2018-05-01

    We theoretically investigate the thermoelectric properties in a tunneling-coupled parallel DQD-AB ring attached to one normal and one superconducting lead. The role of the intrinsic and extrinsic parameters in improving thermoelectric properties is discussed. The peak value of figure of merit near gap edges increases with the asymmetry parameter decreasing, particularly, when asymmetry parameter is less than 0.5, the figure of merit near gap edges rapidly rises. When the interdot coupling strengh is less than the superconducting gap the thermopower spectrum presents a single-platform structure. While when the interdot coupling strengh is larger than the gap, a double-platform structure appears in thermopower spectrum. Outside the gap the peak values of figure of merit might reach the order of 102. On the basis of optimizing internal parameters the thermoelectric conversion efficiency of the device can be further improved by appropriately matching the total magnetic flux and the flux difference between two subrings.

  10. Modeling of Escherichia coli fluxes on a catchment and the impact on coastal water and shellfish quality

    USDA-ARS?s Scientific Manuscript database

    We coupled the Soil and Water Assessment Tool (SWAT) with a hydrodynamic model in the Daoulas’ catchment and estuary to estimate daily variations in Escherichia coli fluxes due to catchment activities (manure spreading and wastewater treatment plants discharge) and to assess their impact on coastal ...

  11. Improving Surface Flux Parameterizations in the NRL Coupled Ocean/Atmosphere Mesoscale Prediction System

    DTIC Science & Technology

    2008-09-30

    these days from a suite of instruments were analyzed, including those from rawinsonde launches, acoustic radar, and the 20 m flux tower. The objective...aircraft IR pyrometer in CBLAST-Low on (c) August 18, and (d) August 25, 2003. The NCOM simulation suggests that the high SST variability observed on

  12. Bond and flux-disorder effects on the superconductor-insulator transition of a honeycomb array of Josephson junctions

    NASA Astrophysics Data System (ADS)

    Granato, Enzo

    2018-05-01

    We study the effects of disorder on the zero-temperature quantum phase transition of a honeycomb array of Josephson junctions in a magnetic field with an average of fo flux quantum per plaquette. Bond disorder due to spatial variations in the Josephson couplings and magnetic flux disorder due to variations in the plaquette areas are considered. The model can describe the superconductor-insulator transition in ultra-thin films with a triangular pattern of nanoholes. Path integral Monte Carlo simulations of the equivalent (2 + 1)-dimensional classical model are used to study the critical behavior and estimate the universal resistivity at the transition. The results show that bond disorder leads to a rounding of the first-order phase transition for fo = 1 / 3 to a continuous transition. For integer fo, the decrease of the critical coupling parameter with flux disorder is significantly different from that of the same model defined on a square lattice. The results are compared with recent experimental observations on nanohole thin films with geometrical disorder and external magnetic field.

  13. Impact of a regional drought on terrestrial carbon fluxes and atmospheric carbon: results from a coupled carbon cycle model

    NASA Astrophysics Data System (ADS)

    Lee, E.; Koster, R. D.; Ott, L. E.; Weir, B.; Mahanama, S. P. P.; Chang, Y.; Zeng, F.

    2017-12-01

    Understanding the underlying processes that control the carbon cycle is key to predicting future global change. Much of the uncertainty in the magnitude and variability of the atmospheric carbon dioxide (CO2) stems from uncertainty in terrestrial carbon fluxes. Budget-based analyses show that such fluxes exhibit substantial interannual variability, but the relative impacts of temperature and moisture variations on regional and global scales are poorly understood. Here we investigate the impact of a regional drought on terrestrial carbon fluxes and CO2 mixing ratios over North America using the NASA Goddard Earth Observing System (GEOS) Model. Two 48-member ensembles of NASA GEOS-5 simulations with fully coupled land and atmosphere carbon components are performed - a control ensemble and an ensemble with an artificially imposed dry land surface anomaly for three months (April-June) over the lower Mississippi River Valley. Comparison of the results using the ensemble approach allows a direct quantification of the impact of the regional drought on local and proximate carbon exchange at the land surface via the carbon-water feedback processes.

  14. Particle tracing modeling of ion fluxes at geosynchronous orbit

    DOE PAGES

    Brito, Thiago V.; Woodroffe, Jesse; Jordanova, Vania K.; ...

    2017-10-31

    The initial results of a coupled MHD/particle tracing method to evaluate particle fluxes in the inner magnetosphere are presented. This setup is capable of capturing the earthward particle acceleration process resulting from dipolarization events in the tail region of the magnetosphere. On the period of study, the MHD code was able to capture a dipolarization event and the particle tracing algorithm was able to capture our results of these disturbances and calculate proton fluxes in the night side geosynchronous orbit region. The simulation captured dispersionless injections as well as the energy dispersion signatures that are frequently observed by satellites atmore » geosynchronous orbit. Currently, ring current models rely on Maxwellian-type distributions based on either empirical flux values or sparse satellite data for their boundary conditions close to geosynchronous orbit. In spite of some differences in intensity and timing, the setup presented here is able to capture substorm injections, which represents an improvement regarding a reverse way of coupling these ring current models with MHD codes through the use of boundary conditions.« less

  15. Fine-tuning with brane-localized flux in 6D supergravity

    NASA Astrophysics Data System (ADS)

    Niedermann, Florian; Schneider, Robert

    2016-02-01

    There are claims in the literature that the cosmological constant problem could be solved in a braneworld model with two large (micron-sized) supersymmetric extra dimensions. The mechanism relies on two basic ingredients: first, the cosmological constant only curves the compact bulk geometry into a rugby shape while the 4D curvature stays flat. Second, a brane-localized flux term is introduced in order to circumvent Weinberg's fine-tuning argument, which otherwise enters here through a backdoor via the flux quantization condition. In this paper, we show that the latter mechanism does not work in the way it was designed: the only localized flux coupling that guarantees a flat on-brane geometry is one which preserves the scale invariance of the bulk theory. Consequently, Weinberg's argument applies, making a fine-tuning necessary again. The only remaining window of opportunity lies within scale invariance breaking brane couplings, for which the tuning could be avoided. Whether the corresponding 4D curvature could be kept under control and in agreement with the observed value will be answered in our companion paper [1].

  16. Radial plasma drifts deduced from VLF whistler mode signals - A modelling study

    NASA Astrophysics Data System (ADS)

    Poulter, E. M.; Andrews, M. K.; Bailey, G. J.; Moffett, R. J.

    1984-05-01

    VLF whistler mode signals have previously been used to infer radial plasma drifts in the equatorial plane of the plasmasphere and the field-aligned ionosphere-protonosphere coupling fluxes. Physical models of the plasmasphere consisting of O(+) adn H(+) ions along dipole magnetic field lines, and including radial E x B drifts, are applied to a mid-latitude flux tube appropriate to whistler mode signals received at Wellington, New Zealand, from the fixed frequency VLF transmitter NLK (18.6 kHz) in Seattle, U.S.A. These models are first shown to provide a good representation of the recorded Doppler shift and group delay data. They are then used to simulate the process of deducing the drifts and fluxes from the recorded data. Provided the initial whistler mode duct latitude and the ionospheric contributions are known, the drifts at the equatorial plane can be estimated to about + or - 20 m/s (approximately 10-15 percent), and the two hemisphere ionosphere-protonosphere coupling fluxes to about + or - 10 to the 12th/sq m-sec (approximately 40 percent).

  17. Particle tracing modeling of ion fluxes at geosynchronous orbit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brito, Thiago V.; Woodroffe, Jesse; Jordanova, Vania K.

    The initial results of a coupled MHD/particle tracing method to evaluate particle fluxes in the inner magnetosphere are presented. This setup is capable of capturing the earthward particle acceleration process resulting from dipolarization events in the tail region of the magnetosphere. On the period of study, the MHD code was able to capture a dipolarization event and the particle tracing algorithm was able to capture our results of these disturbances and calculate proton fluxes in the night side geosynchronous orbit region. The simulation captured dispersionless injections as well as the energy dispersion signatures that are frequently observed by satellites atmore » geosynchronous orbit. Currently, ring current models rely on Maxwellian-type distributions based on either empirical flux values or sparse satellite data for their boundary conditions close to geosynchronous orbit. In spite of some differences in intensity and timing, the setup presented here is able to capture substorm injections, which represents an improvement regarding a reverse way of coupling these ring current models with MHD codes through the use of boundary conditions.« less

  18. Nitrogen recovery from pig slurry in a two-chambered bioelectrochemical system.

    PubMed

    Sotres, A; Cerrillo, M; Viñas, M; Bonmatí, A

    2015-10-01

    Abiotic batch experiments showed that ammonia migration from anode to cathode was favored by an increase in voltage, from 39.9% to 44.6%, using synthetic media. A slight increase in ammonia migration was observed when using pig slurry, reaching a maximum of 49.9%. In a continuously MFC fed with pig slurry with a stripping/absorption unit coupled to the cathode chamber, the highest nitrogen flux (7.2 g N d(-1) m(-2)) was achieved using buffer as catholyte. Nitrogen flux increased to 10.3 g N d(-1) m(-2) when shifting to MEC mode. A clear improvement in nitrogen flux (25.5 g N d(-1) m(-2)) was observed when using NaCl as catholyte. Besides, ammonia stripping was favored, reaching a nitrogen recovery of 94.3% in the absorption column, due to the high pH reached in the cathode. The microbial community analysis revealed an enrichment of certain taxonomic Eubacterial and Archaeal groups when the system shifted from MFC to MEC mode. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Dissipationless conductance in a topological coaxial cable

    NASA Astrophysics Data System (ADS)

    Schuster, Thomas; Iadecola, Thomas; Chamon, Claudio; Jackiw, Roman; Pi, So-Young

    2016-09-01

    We present a dynamical mechanism leading to dissipationless conductance, whose quantized value is controllable in a (3+1)-dimensional electronic system. The mechanism is exemplified by a theory of Weyl fermions coupled to a Higgs field, also known as an axion insulator. We show that the insertion of an axial gauge flux can induce vortex lines in the Higgs field, similar to the development of vortices in a superconductor upon the insertion of magnetic flux. We further show that the necessary axial gauge flux can be generated using Rashba spin-orbit coupling or a magnetic field. Vortex lines in the Higgs field are known to bind chiral fermionic modes, each of which serves as a one-way channel for electric charge with conductance e2/h . Combining these elements, we present a physical picture, the "topological coaxial cable," illustrating how the value of the quantized conductance could be controlled in such an axion insulator.

  20. Deformation of N = 4 SYM with varying couplings via fluxes and intersecting branes

    NASA Astrophysics Data System (ADS)

    Choi, Jaewang; Fernández-Melgarejo, José J.; Sugimoto, Shigeki

    2018-03-01

    We study deformations of N = 4 supersymmetric Yang-Mills theory with space-time dependent couplings by embedding probe D3-branes in supergravity backgrounds with non-trivial fluxes. The effective action on the world-volume of the D3-branes is analyzed and a map between the deformation parameters and the fluxes is obtained. As an explicit example, we consider D3-branes in a background corresponding to ( p, q) 5-branes intersecting them and show that the effective theory on the D3-branes precisely agrees with the supersymmetric Janus configuration found by Gaiotto and Witten in [1]. D3-branes in an intersecting D3-brane background is also analyzed and the D3-brane effective action reproduces one of the supersymmetric configurations with ISO(1 , 1) × SO(2) × SO(4) symmetry found in our previous paper [2].

  1. Hysteresis and fast timescales in transport relations of toroidal plasmas

    NASA Astrophysics Data System (ADS)

    Itoh, K.; Itoh, S.-I.; Ida, K.; Inagaki, S.; Kamada, Y.; Kamiya, K.; Dong, J. Q.; Hidalgo, C.; Evans, T.; Ko, W. H.; Park, H.; Tokuzawa, T.; Kubo, S.; Kobayashi, T.; Kosuga, Y.; Sasaki, M.; Yun, G. S.; Song, S. D.; Kasuya, N.; Nagashima, Y.; Moon, C.; Yoshinuma, M.; Makino, R.; Tsujimura, T.; Tsuchiya, H.; Stroth, U.

    2017-10-01

    This article assesses current understanding of hysteresis in transport relations, and its impact on the field. The rapid changes of fluxes compared to slow changes of plasma parameters are overviewed for both core and edge plasmas. The modulation ECH experiment is explained, in which the heating power cycles on-and-off periodically, revealing hysteresis and fast changes in the gradient-flux relation. The key finding is that hystereses were observed simultaneously in both the the gradient-flux and gradient-fluctuation relations. Hysteresis with rapid timescale exists in the channels of energy, electron and impurity densities, and plausibly in momentum. Advanced methods of data analysis are explained. Transport hysteresis can be studied by observing the higher harmonics of temperature perturbation δ Tm in heating modulation experiments. The hysteresis introduces the term δ Tm , which depends on the harmonic number m in an algebraic manner (not exponential decay). Next, the causes of hysteresis and its fast timescale are discussed. The nonlocal-in-space coupling works here, but does not suffice. One mechanism for ‘the heating heats turbulence’ is that the external source S in phase space for heating has its fluctuation in turbulent plasma. This coupling can induce the direct input of heating power into fluctuations. The height of the jump in transport hysteresis is smaller for heavier hydrogen isotopes, and could be one of the origins of isotope effects on confinement. Finally, the impacts of transport hysteresis on the control system are assessed. Control systems must be designed so as to protect the system from sudden plasma loss.

  2. Methane Seep Carbonates Host Distinct, Diverse, and Dynamic Microbial Assemblages

    PubMed Central

    Pasulka, Alexis L.; Marlow, Jeffrey J.; Grupe, Benjamin M.; Levin, Lisa A.

    2015-01-01

    ABSTRACT Marine methane seeps are globally distributed geologic features in which reduced fluids, including methane, are advected upward from the subsurface. As a result of alkalinity generation during sulfate-coupled methane oxidation, authigenic carbonates form slabs, nodules, and extensive pavements. These carbonates shape the landscape within methane seeps, persist long after methane flux is diminished, and in some cases are incorporated into the geologic record. In this study, microbial assemblages from 134 native and experimental samples across 5,500 km, representing a range of habitat substrates (carbonate nodules and slabs, sediment, bottom water, and wood) and seepage conditions (active and low activity), were analyzed to address two fundamental questions of seep microbial ecology: (i) whether carbonates host distinct microbial assemblages and (ii) how sensitive microbial assemblages are to habitat substrate type and temporal shifts in methane seepage flux. Through massively parallel 16S rRNA gene sequencing and statistical analysis, native carbonates are shown to be reservoirs of distinct and highly diverse seep microbial assemblages. Unique coupled transplantation and colonization experiments on the seafloor demonstrated that carbonate-associated microbial assemblages are resilient to seep quiescence and reactive to seep activation over 13 months. Various rates of response to simulated seep quiescence and activation are observed among similar phylogenies (e.g., Chloroflexi operational taxonomic units) and similar metabolisms (e.g., putative S oxidizers), demonstrating the wide range of microbial sensitivity to changes in seepage flux. These results imply that carbonates do not passively record a time-integrated history of seep microorganisms but rather host distinct, diverse, and dynamic microbial assemblages. PMID:26695630

  3. Quantifying nutrient uptake as driver of rock weathering in forest ecosystems by magnesium stable isotopes

    NASA Astrophysics Data System (ADS)

    Uhlig, David; Schuessler, Jan A.; Bouchez, Julien; Dixon, Jean L.; von Blanckenburg, Friedhelm

    2017-04-01

    Plants and soil microbiota play an active role in rock weathering and potentially couple weathering at depth with erosion at the soil surface. The nature of this coupling is still unresolved because we lacked means to quantify the passage of chemical elements from rock through higher plants. In a temperate forested landscape of the Southern Sierra Critical Zone Observatory (SSCZO), California, we measured magnesium (Mg) stable isotopes that are sensitive indicators of Mg utilisation by biota. We find that Mg is highly bio-utilised: 50-100 % of the Mg released by chemical weathering is taken up by forest trees. To estimate the tree uptake of other bio-utilised elements (K, Ca, P and Si) we compared the dissolved fluxes of these elements and Mg in rivers with their solubilisation fluxes from rock (rock dissolution flux minus secondary mineral formation flux). We find a deficit in the dissolved fluxes throughout, that we attribute to the nutrient uptake by forest trees. Therefore, both the Mg isotopes and the flux comparison suggests that a substantial part of the major element weathering flux is consumed by the tree biomass. This isotopic and elemental compartment separation is preserved only if the mineral nutrients contained in biomass are prevented from re-dissolution after litter fall, showing that these nutrients have been removed as "solid" biomass. The enrichment of 26Mg over 24Mg in tree trunks relative to leaf litter suggests that this removal occurs mainly in coarse woody debris (CWD). Today, CWD is exported from the ecosystem by tree logging. Over pre-anthropogenic weathering time scales, a similar removal flux might have been in operation in the form of natural erosion of CWD. Regardless of the removal mechanism, our data provides the first direct quantification of biogenic uptake following weathering. We find that Mg and other bio-elements are taken up by trees at up to 7 m depth, and surface recycling of all bio-elements but P is minimal. Thus, in the watersheds of the SSCZO in which weathering is fast and kinetically-limited, the coupling between erosion and weathering might be established by bio-elements that are taken up by trees, not recycled and missing in the dissolved river flux due to erosion as CWD and as leaf-derived bio-opal for Si. We suggest that the partitioning of a biogenic weathering flux into eroded plant debris might represent a significant global contribution to element export after weathering in eroding mountain catchments that are characterised by a continuous supply of fresh mineral nutrients.

  4. Translation of Land Surface Model Accuracy and Uncertainty into Coupled Land-Atmosphere Prediction

    NASA Technical Reports Server (NTRS)

    Santanello, Joseph A.; Kumar, Sujay; Peters-Lidard, Christa D.; Harrison, Kenneth W.; Zhou, Shuija

    2012-01-01

    Land-atmosphere (L-A) Interactions playa critical role in determining the diurnal evolution of both planetary boundary layer (PBL) and land surface heat and moisture budgets, as well as controlling feedbacks with clouds and precipitation that lead to the persistence of dry and wet regimes. Recent efforts to quantify the strength of L-A coupling in prediction models have produced diagnostics that integrate across both the land and PBL components of the system. In this study, we examine the impact of improved specification of land surface states, anomalies, and fluxes on coupled WRF forecasts during the summers of extreme dry (2006) and wet (2007) land surface conditions in the U.S. Southern Great Plains. The improved land initialization and surface flux parameterizations are obtained through the use of a new optimization and uncertainty estimation module in NASA's Land Information System (US-OPT/UE), whereby parameter sets are calibrated in the Noah land surface model and classified according to a land cover and soil type mapping of the observation sites to the full model domain. The impact of calibrated parameters on the a) spinup of the land surface used as initial conditions, and b) heat and moisture states and fluxes of the coupled WRF Simulations are then assessed in terms of ambient weather and land-atmosphere coupling along with measures of uncertainty propagation into the forecasts. In addition, the sensitivity of this approach to the period of calibration (dry, wet, average) is investigated. Finally, tradeoffs of computational tractability and scientific validity, and the potential for combining this approach with satellite remote sensing data are also discussed.

  5. An analytical model for contaminant transport in landfill composite liners considering coupled effect of consolidation, diffusion, and degradation.

    PubMed

    Xie, Haijian; Yan, Huaxiang; Feng, Shijin; Wang, Qiao; Chen, Peixiong

    2016-10-01

    One-dimensional mathematical model is developed to investigate the behavior of contaminant transport in landfill composite liner system considering coupled effect of consolidation, diffusion, and degradation. The first- and second-type bottom boundary conditions are used to derive the steady-state and quasi-steady-state analytical solutions. The concentration profiles obtained by the proposed analytical solution are in good agreement with those obtained by the laboratory tests. The bottom concentration and flux of the soil liners can be greatly reduced when the degradation effect and porosity changing are considered. For the case under steady-state, the bottom flux and concentration for the case with t 1/2 =10 years can be 2.8 and 5.5 times lower than those of the case with t 1/2 =100 years, respectively. The bottom concentration and flux of the soil liners can be greatly reduced when the coefficient of volume compressibility decreases. For quasi-steady-state and with t 1/2 = 10 years, the bottom flux and concentration for the case with m v  = 0.02/MPa can be 17.4 and 21 times lower than the case with m v  = 0.5/MPa. This may be due to the fact that the true fluid velocity induced by consolidation is greater for the case with high coefficient of volume compressibility. The bottom flux for the case with single compacted clay liner (CCL) can be 1.5 times larger than that for the case with GMB/CCL considering diffusion and consolidation for DCM. The proposed analytical model can be used for verification of more complicated numerical models and assessment of the coupled effect of diffusion, consolidation, and degradation on contaminant transport in landfill liner systems.

  6. Zero bias conductance peak in InAs nanowire coupled to superconducting electrodes

    NASA Astrophysics Data System (ADS)

    Kim, Nam-Hee; Shin, Yun-Sok; Kim, Hong-Seok; Song, Jin-Dong; Doh, Yong-Joo

    2018-04-01

    We report the occurrence of the zero-bias conductance peak (ZBCP) in an InAs nanowire coupled to PbIn superconductors with varying temperature, bias voltage, and magnetic field. The ZBCP is suppressed with increasing temperature and bias voltage above the Thouless energy of the nanowire. Applying a magnetic field also diminishes the ZBCP when the resultant magnetic flux reaches the magnetic flux quantum h/2e. Our observations are consistent with theoretical expectations of reflectionless tunneling, in which the phase coherence between an electron and its Andreev-reflected hole induces the ZBCP as long as time-reversal symmetry is preserved.

  7. Resummed tree heptagon

    NASA Astrophysics Data System (ADS)

    Belitsky, A. V.

    2018-04-01

    The form factor program for the regularized space-time S-matrix in planar maximally supersymmetric gauge theory, known as the pentagon operator product expansion, is formulated in terms of flux-tube excitations propagating on a dual two-dimensional world-sheet, whose dynamics is known exactly as a function of 't Hooft coupling. Both MHV and non-MHV amplitudes are described in a uniform, systematic fashion within this framework, with the difference between the two encoded in coupling-dependent helicity form factors expressed via Zhukowski variables. The nontrivial SU(4) tensor structure of flux-tube transitions is coupling independent and is known for any number of charged excitations from solutions of a system of Watson and Mirror equations. This description allows one to resum the infinite series of form factors and recover the space-time S-matrix exactly in kinematical variables at a given order of perturbation series. Recently, this was done for the hexagon. Presently, we successfully perform resummation for the seven-leg tree NMHV amplitude. To this end, we construct the flux-tube integrands of the fifteen independent Grassmann component of the heptagon with an infinite number of small fermion-antifermion pairs accounted for in NMHV two-channel conformal blocks.

  8. 13C metabolic flux analysis at a genome-scale.

    PubMed

    Gopalakrishnan, Saratram; Maranas, Costas D

    2015-11-01

    Metabolic models used in 13C metabolic flux analysis generally include a limited number of reactions primarily from central metabolism. They typically omit degradation pathways, complete cofactor balances, and atom transition contributions for reactions outside central metabolism. This study addresses the impact on prediction fidelity of scaling-up mapping models to a genome-scale. The core mapping model employed in this study accounts for (75 reactions and 65 metabolites) primarily from central metabolism. The genome-scale metabolic mapping model (GSMM) (697 reaction and 595 metabolites) is constructed using as a basis the iAF1260 model upon eliminating reactions guaranteed not to carry flux based on growth and fermentation data for a minimal glucose growth medium. Labeling data for 17 amino acid fragments obtained from cells fed with glucose labeled at the second carbon was used to obtain fluxes and ranges. Metabolic fluxes and confidence intervals are estimated, for both core and genome-scale mapping models, by minimizing the sum of square of differences between predicted and experimentally measured labeling patterns using the EMU decomposition algorithm. Overall, we find that both topology and estimated values of the metabolic fluxes remain largely consistent between core and GSM model. Stepping up to a genome-scale mapping model leads to wider flux inference ranges for 20 key reactions present in the core model. The glycolysis flux range doubles due to the possibility of active gluconeogenesis, the TCA flux range expanded by 80% due to the availability of a bypass through arginine consistent with labeling data, and the transhydrogenase reaction flux was essentially unresolved due to the presence of as many as five routes for the inter-conversion of NADPH to NADH afforded by the genome-scale model. By globally accounting for ATP demands in the GSMM model the unused ATP decreased drastically with the lower bound matching the maintenance ATP requirement. A non-zero flux for the arginine degradation pathway was identified to meet biomass precursor demands as detailed in the iAF1260 model. Inferred ranges for 81% of the reactions in the genome-scale metabolic (GSM) model varied less than one-tenth of the basis glucose uptake rate (95% confidence test). This is because as many as 411 reactions in the GSM are growth coupled meaning that the single measurement of biomass formation rate locks the reaction flux values. This implies that accurate biomass formation rate and composition are critical for resolving metabolic fluxes away from central metabolism and suggests the importance of biomass composition (re)assessment under different genetic and environmental backgrounds. In addition, the loss of information associated with mapping fluxes from MFA on a core model to a GSM model is quantified. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  9. Low field electron paramagnetic resonance imaging with SQUID detection

    NASA Technical Reports Server (NTRS)

    Hahn, Inseob (Inventor); Day, Peter K. (Inventor); Penanen, Konstantin I. (Inventor); Eom, Byeong H. (Inventor); Cohen, Mark S. (Inventor)

    2012-01-01

    In one embodiment, a flux transformer with a gradiometer pickup coil is magnetically coupled to a SQUID, and a SQUID array amplifier comprising a plurality of SQUIDs, connected in series, is magnetically coupled to the output of the SQUID. Other embodiments are described and claimed.

  10. Benthic-Pelagic Coupling in Biogeochemical and Climate Models: Existing Approaches, Recent developments and Roadblocks

    NASA Astrophysics Data System (ADS)

    Arndt, Sandra

    2016-04-01

    Marine sediments are key components in the Earth System. They host the largest carbon reservoir on Earth, provide the only long term sink for atmospheric CO2, recycle nutrients and represent the most important climate archive. Biogeochemical processes in marine sediments are thus essential for our understanding of the global biogeochemical cycles and climate. They are first and foremost, donor controlled and, thus, driven by the rain of particulate material from the euphotic zone and influenced by the overlying bottom water. Geochemical species may undergo several recycling loops (e.g. authigenic mineral precipitation/dissolution) before they are either buried or diffuse back to the water column. The tightly coupled and complex pelagic and benthic process interplay thus delays recycling flux, significantly modifies the depositional signal and controls the long-term removal of carbon from the ocean-atmosphere system. Despite the importance of this mutual interaction, coupled regional/global biogeochemical models and (paleo)climate models, which are designed to assess and quantify the transformations and fluxes of carbon and nutrients and evaluate their response to past and future perturbations of the climate system either completely neglect marine sediments or incorporate a highly simplified representation of benthic processes. On the other end of the spectrum, coupled, multi-component state-of-the-art early diagenetic models have been successfully developed and applied over the past decades to reproduce observations and quantify sediment-water exchange fluxes, but cannot easily be coupled to pelagic models. The primary constraint here is the high computation cost of simulating all of the essential redox and equilibrium reactions within marine sediments that control carbon burial and benthic recycling fluxes: a barrier that is easily exacerbated if a variety of benthic environments are to be spatially resolved. This presentation provides an integrative overview of the benthic-pelagic coupling that accounts for the complex process interplay from the euphotic ocean to the deep sediment. It explores the intensity of the benthic-pelagic coupling across different environments and from the seasonal to the geological timescale. Different modelling approaches of coupling sediment and water column dynamics in regional/global biogeochemical models and (paleo)climate models are critically evaluated and their most important limitations, as well as the implications for our ability to predict the response of the global carbon cycle to past or future perturbations is discussed. Finally, the presentation identifies major roadblocks to the development of new model approaches and highlights how new techniques, new observational and laboratory data, as well as a close interdisciplinary collaboration can overcome these roadblocks.

  11. Membrane-aerated biofilm proton and oxygen flux during chemical toxin exposure.

    PubMed

    McLamore, E S; Zhang, W; Porterfield, D M; Banks, M K

    2010-09-15

    Bioreactors containing sessile bacteria (biofilms) grown on hollow fiber membranes have been used for treatment of many wastestreams. Real time operational control of bioreactor performance requires detailed knowledge of the relationship between bulk liquid water quality and physiological transport at the biofilm-liquid interface. Although large data sets exist describing membrane-aerated bioreactor effluent quality, very little real time data is available characterizing boundary layer transport under physiological conditions. A noninvasive, microsensor technique was used to quantify real time (≈1.5 s) changes in oxygen and proton flux for mature Nitrosomonas europaea and Pseudomonas aeruginosa biofilms in membrane-aerated bioreactors following exposure to environmental toxins. Stress response was characterized during exposure to toxins with known mode of action (chlorocarbonyl cyanide phenyl-hydrazone and potassium cyanide), and four environmental toxins (rotenone, 2,4-dinitrophenol, cadmium chloride, and pentachlorophenol). Exposure to sublethal concentrations of all environmental toxins caused significant increases in O(2) and/or H(+) flux (depending on the mode of action). These real time microscale signatures (i.e., fingerprints) of O(2) and H(+) flux can be coupled with bulk liquid analysis to improve our understanding of physiology in counter-diffusion biofilms found within membrane aerated bioreactors; leading to enhanced monitoring/modeling strategies for bioreactor control.

  12. Analyzing the carbon cycle with the local ensemble transform Kalman filter, online transport model and real observation data

    NASA Astrophysics Data System (ADS)

    Maki, T.; Sekiyama, T. T.; Shibata, K.; Miyazaki, K.; Miyoshi, T.; Yamada, K.; Yokoo, Y.; Iwasaki, T.

    2011-12-01

    In the current carbon cycle analysis, inverse modeling plays an important role. However, it requires enormous computational resources when we deal with more flux regions and more observations. The local ensemble transform Kalman filter (LETKF) is an alternative approach to reduce such problems. We constructed a carbon cycle analysis system with the LETKF and MRI (Meteorological Research Institute) online transport model (MJ98-CDTM). In MJ98-CDTM, an off-line transport model (CDTM) is directly coupled with the MRI/JMA GCM (MJ98). We further improved vertical transport processes in MJ98-CDTM from previous study. The LETKF includes enhanced features such as smoother to assimilate future observations, adaptive inflation and bias correction scheme. In this study, we use CO2 observations of surface data (continuous and flask), aircraft data (CONTRAIL) and satellite data (GOSAT), although we plan to assimilate AIRS tropospheric CO2 data. We developed a quality control system. We estimated 3-day-mean CO2 flux at a resolution of T42. Here, only CO2 concentrations and fluxes are analyzed whereas meteorological fields are nudged by the Japanese reanalysis (JCDAS). The horizontal localization length scale and assimilation window are chosen to be 1000 km and 3 days, respectively. The results indicate that the assimilation system works properly, better than free transport model run when we validate with independent CO2 concentration observational data and CO2 analysis data.

  13. Saturated ferromagnetism from statistical transmutation in two dimensions.

    PubMed

    Saiga, Yasuhiro; Oshikawa, Masaki

    2006-01-27

    The total spin of the ground state is calculated in the U-->infinity Hubbard model with uniform magnetic flux perpendicular to a square lattice, in the absence of Zeeman coupling. It is found that the saturated ferromagnetism emerges in a rather wide region in the space of the flux density phi and the electron density ne. In particular, the saturated ferromagnetism at phi=ne is induced by the formation of a spin-1/2 boson, which is a composite of an electron and the unit flux quantum.

  14. Dual neutron flux/temperature measurement sensor

    DOEpatents

    Mihalczo, J.T.; Simpson, M.L.; McElhaney, S.A.

    1994-10-04

    Simultaneous measurement of neutron flux and temperature is provided by a single sensor which includes a phosphor mixture having two principal constituents. The first constituent is a neutron sensitive 6LiF and the second is a rare-earth activated Y203 thermophosphor. The mixture is coated on the end of a fiber optic, while the opposite end of the fiber optic is coupled to a light detector. The detected light scintillations are quantified for neutron flux determination, and the decay is measured for temperature determination. 3 figs.

  15. Dual neutron flux/temperature measurement sensor

    DOEpatents

    Mihalczo, John T.; Simpson, Marc L.; McElhaney, Stephanie A.

    1994-01-01

    Simultaneous measurement of neutron flux and temperature is provided by a single sensor which includes a phosphor mixture having two principal constituents. The first constituent is a neutron sensitive 6LiF and the second is a rare-earth activated Y203 thermophosphor. The mixture is coated on the end of a fiber optic, while the opposite end of the fiber optic is coupled to a light detector. The detected light scintillations are quantified for neutron flux determination, and the decay is measured for temperature determination.

  16. Evaluation of Modeling Schemes to Estimate Evapotranspiration and Root Zone Soil Water Content over Vineyard using a Scintillometer and Remotely Sensed Surface Energy Balance

    NASA Astrophysics Data System (ADS)

    Geli, H. M. E.; Gonzalez-Piqueras, J.; Isidro, C., Sr.

    2016-12-01

    Actual crop evapotranspiration (ETa) and root zone soil water content (SMC) are key operational variable to monitor water consumption and water stress condition for improve vineyard grapes productivity and quality. This analysis, evaluates the estimation of ETa and SMC based on two modeling approaches. The first approach is a hybrid model that couples a thermal-based two source energy balance (TSEB) model (Norman et al. 1995) and water balance model to estimate the two variable (Geli 2012). The second approach is based on Large Aperture Scintillometer (LAS)-based estimates of sensible heat flux. The LAS-based estimates of sensible heat fluxes were used to calculate latent heat flux as the residual of surface energy balance equation on hourly basis which was converted to daily ETa. The calculated ETa from the scintillometer was then couple with the water balance approach to provide updated ETa_LAS and SMC_LAS. Both estimates of ETa and SMC based on LAS (i.e. ETa_LAS and SMC_LAS) and TSEB (ETa_TSEB and SMC_TSEB) were compared with ground-based observation from eddy covariance and soil water content measurements at multiple depths. The study site is an irrigated vineyard located in Central Spain Primary with heterogeneous surface conditions in term of irrigation practices and the ground based observation over the vineyard were collected during the summer of 2007. Preliminary results of the inter-comparison of the two approaches suggests relatively good between both modeling approaches and ground-based observations with RMSE lower than 1.2 mm/day for ETa and lower than 20% for SMC. References Norman, J. M., Kustas, W. P., & Humes, K. S. (1995). A two-source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature. Agricultural and Forest Meteorology, 77, 263293. Geli, Hatim M. E. (2012). Modeling spatial surface energy fluxes of agricultural and riparian vegetation using remote sensing, Ph. D. dissertation, Department of Civil and Environmental Engineering, Utah State University.

  17. From discrete auroral arcs to the magnetospheric generator: numerical model and case study

    NASA Astrophysics Data System (ADS)

    Lamy, H.; Echim, M.; Cessateur, G.; Simon Wedlund, C.; Gustavsson, B.; Maggiolo, R.; Gunell, H.; Darrouzet, F.; De Keyser, J.

    2017-12-01

    We discuss an analysis method developed to estimate some of the properties of auroral generators (electron density, ne and temperature, Te), from ionospheric observations of the energy flux of precipitating electrons, e, measured across an auroral arc. The method makes use of a quasi-static magnetosphere-ionosphere coupling model. Assuming that the generator is a magnetospheric plasma interface, one obtains a parametric description of the generator electric field as a function of the kinetic and MHD properties of the interface. This description of the generator is introduced in a stationary M-I coupling model based on the current continuity in the topside ionosphere (Echim et al, 2007). The model is run iteratively for typical values of the magnetospheric ne and Te that are adjusted until the precipitating energy flux ɛ provided by the model at ionospheric altitudes fits the observations. The latter can be provided either in-situ by spacecraft measurements or remotely from optical ground-based observations. The method is illustrated by using the precipitating energy flux observed in-situ by DMSP on April 28, 2001, above a discrete auroral arc. For this particular date we have been able to compare the generator properties determined with our method with actual magnetospheric in-situ data provided by Cluster. The results compare very well and hence validate the method. The methodology is then applied on the energy flux of precipitating electrons estimated from optical images of a discrete auroral arc obtained simultaneously with the CCD cameras of the ALIS (Auroral Large Imaging System) network located in Scandinavia on 5 March 2008 (Simon Wedlund et al, 2013). Tomography-like techniques are used to retrieve the three-dimensional volume emission rates at 4278 Å from which the energy spectra of precipitating magnetospheric electrons can be further derived. These spectra are obtained along and across the arc, with a spatial resolution of approximately 3 km and provide E0, the characteristic energy and ɛ, the total flux energy of precipitating electrons. The generator properties are then estimated using the iterative technique validated with data from the DMSP-Cluster conjunction.

  18. Estimates of CO2 fluxes over the city of Cape Town, South Africa, through Bayesian inverse modelling

    NASA Astrophysics Data System (ADS)

    Nickless, Alecia; Rayner, Peter J.; Engelbrecht, Francois; Brunke, Ernst-Günther; Erni, Birgit; Scholes, Robert J.

    2018-04-01

    We present a city-scale inversion over Cape Town, South Africa. Measurement sites for atmospheric CO2 concentrations were installed at Robben Island and Hangklip lighthouses, located downwind and upwind of the metropolis. Prior estimates of the fossil fuel fluxes were obtained from a bespoke inventory analysis where emissions were spatially and temporally disaggregated and uncertainty estimates determined by means of error propagation techniques. Net ecosystem exchange (NEE) fluxes from biogenic processes were obtained from the land atmosphere exchange model CABLE (Community Atmosphere Biosphere Land Exchange). Uncertainty estimates were based on the estimates of net primary productivity. CABLE was dynamically coupled to the regional climate model CCAM (Conformal Cubic Atmospheric Model), which provided the climate inputs required to drive the Lagrangian particle dispersion model. The Bayesian inversion framework included a control vector where fossil fuel and NEE fluxes were solved for separately.Due to the large prior uncertainty prescribed to the NEE fluxes, the current inversion framework was unable to adequately distinguish between the fossil fuel and NEE fluxes, but the inversion was able to obtain improved estimates of the total fluxes within pixels and across the domain. The median of the uncertainty reductions of the total weekly flux estimates for the inversion domain of Cape Town was 28 %, but reach as high as 50 %. At the pixel level, uncertainty reductions of the total weekly flux reached up to 98 %, but these large uncertainty reductions were for NEE-dominated pixels. Improved corrections to the fossil fuel fluxes would be possible if the uncertainty around the prior NEE fluxes could be reduced. In order for this inversion framework to be operationalised for monitoring, reporting, and verification (MRV) of emissions from Cape Town, the NEE component of the CO2 budget needs to be better understood. Additional measurements of Δ14C and δ13C isotope measurements would be a beneficial component of an atmospheric monitoring programme aimed at MRV of CO2 for any city which has significant biogenic influence, allowing improved separation of contributions from NEE and fossil fuel fluxes to the observed CO2 concentration.

  19. Characterization and Remediation of Contaminated Sites:Modeling, Measurement and Assessment

    NASA Astrophysics Data System (ADS)

    Basu, N. B.; Rao, P. C.; Poyer, I. C.; Christ, J. A.; Zhang, C. Y.; Jawitz, J. W.; Werth, C. J.; Annable, M. D.; Hatfield, K.

    2008-05-01

    The complexity of natural systems makes it impossible to estimate parameters at the required level of spatial and temporal detail. Thus, it becomes necessary to transition from spatially distributed parameters to spatially integrated parameters that are capable of adequately capturing the system dynamics, without always accounting for local process behavior. Contaminant flux across the source control plane is proposed as an integrated metric that captures source behavior and links it to plume dynamics. Contaminant fluxes were measured using an innovative technology, the passive flux meter at field sites contaminated with dense non-aqueous phase liquids or DNAPLs in the US and Australia. Flux distributions were observed to be positively or negatively correlated with the conductivity distribution, depending on the source characteristics of the site. The impact of partial source depletion on the mean contaminant flux and flux architecture was investigated in three-dimensional complex heterogeneous settings using the multiphase transport code UTCHEM and the reactive transport code ISCO3D. Source mass depletion reduced the mean contaminant flux approximately linearly, while the contaminant flux standard deviation reduced proportionally with the mean (i.e., coefficient of variation of flux distribution is constant with time). Similar analysis was performed using data from field sites, and the results confirmed the numerical simulations. The linearity of the mass depletion-flux reduction relationship indicates the ability to design remediation systems that deplete mass to achieve target reduction in source strength. Stability of the flux distribution indicates the ability to characterize the distributions in time once the initial distribution is known. Lagrangian techniques were used to predict contaminant flux behavior during source depletion in terms of the statistics of the hydrodynamic and DNAPL distribution. The advantage of the Lagrangian techniques lies in their small computation time and their inclusion of spatially integrated parameters that can be measured in the field using tracer tests. Analytical models that couple source depletion to plume transport were used for optimization of source and plume treatment. These models are being used for the development of decision and management tools (for DNAPL sites) that consider uncertainty assessments as an integral part of the decision-making process for contaminated site remediation.

  20. A coupled stochastic rainfall-evapotranspiration model for hydrological impact analysis

    NASA Astrophysics Data System (ADS)

    Pham, Minh Tu; Vernieuwe, Hilde; De Baets, Bernard; Verhoest, Niko E. C.

    2018-02-01

    A hydrological impact analysis concerns the study of the consequences of certain scenarios on one or more variables or fluxes in the hydrological cycle. In such an exercise, discharge is often considered, as floods originating from extremely high discharges often cause damage. Investigating the impact of extreme discharges generally requires long time series of precipitation and evapotranspiration to be used to force a rainfall-runoff model. However, such kinds of data may not be available and one should resort to stochastically generated time series, even though the impact of using such data on the overall discharge, and especially on the extreme discharge events, is not well studied. In this paper, stochastically generated rainfall and corresponding evapotranspiration time series, generated by means of vine copulas, are used to force a simple conceptual hydrological model. The results obtained are comparable to the modelled discharge using observed forcing data. Yet, uncertainties in the modelled discharge increase with an increasing number of stochastically generated time series used. Notwithstanding this finding, it can be concluded that using a coupled stochastic rainfall-evapotranspiration model has great potential for hydrological impact analysis.

  1. Enhanced magnetic field probe array for improved excluded flux calculations on the C-2U advanced beam-driven field-reversed configuration plasma experiment

    NASA Astrophysics Data System (ADS)

    Roche, T.; Thompson, M. C.; Mendoza, R.; Allfrey, I.; Garate, E.; Romero, J.; Douglass, J.

    2016-11-01

    External flux conserving coils were installed onto the exterior of the C-2U [M. W. Binderbauer et al., Phys. Plasmas 22, 056110 (2015)] confinement vessel to increase the flux confinement time of the system. The 0.5 in. stainless steel vessel wall has a skin time of ˜5 ms. The addition of the external copper coils effectively increases this time to ˜7 ms. This led to better-confined/longer-lived field-reversed configuration (FRC) plasmas. The fringing fields generated by the external coils have the side effect of rendering external field measurements invalid. Such measurements were key to the previous method of excluded flux calculation [M. C. Thompson et al., Rev. Sci. Instrum. 83, 10D709 (2012)]. A new array of B-dot probes and Rogowski coils were installed to better determine the amount of flux leaked out of the system and ultimately provide a more robust measurement of plasma parameters related to pressure balance including the excluded flux radius. The B-dot probes are surface mountable chip inductors with inductance of 33 μH capable of measuring the DC magnetic field and transient field, due to resistive current decay in the wall/coils, when coupled with active integrators. The Rogowski coils measure the total change in current in each external coil (150 A/2 ms). Currents were also actively driven in the external coils. This renders the assumption of total flux conservation invalid which further complicates the analysis process. The ultimate solution to these issues and the record breaking resultant FRC lifetimes will be presented.

  2. Detecting the position of the moving-iron solenoid by non-displacement sensor based on parameter identification of flux linkage characteristics

    NASA Astrophysics Data System (ADS)

    Wang, Xuping; Quan, Long; Xiong, Guangyu

    2013-11-01

    Currently, most researches use signals, such as the coil current or voltage of solenoid, to identify parameters; typically, parameter identification method based on variation rate of coil current is applied for position estimation. The problem exists in these researches that the detected signals are prone to interference and difficult to obtain. This paper proposes a new method for detecting the core position by using flux characteristic quantity, which adds a new group of secondary winding to the coil of the ordinary switching electromagnet. On the basis of electromagnetic coupling theory analysis and simulation research of the magnetic field regarding the primary and secondary winding coils, and in accordance with the fact that under PWM control mode varying core position and operating current of windings produce different characteristic of flux increment of the secondary winding. The flux increment of the electromagnet winding can be obtained by conducting time domain integration for the induced voltage signal of the extracted secondary winding, and the core position from the two-dimensional fitting curve of the operating winding current and flux-linkage characteristic quantity of solenoid are calculated. The detecting and testing system of solenoid core position is developed based on the theoretical research. The testing results show that the flux characteristic quantity of switching electromagnet magnetic circuit is able to effectively show the core position and thus to accomplish the non-displacement transducer detection of the said core position of the switching electromagnet. This paper proposes a new method for detecting the core position by using flux characteristic quantity, which provides a new theory and method for switch solenoid to control the proportional valve.

  3. Enhanced magnetic field probe array for improved excluded flux calculations on the C-2U advanced beam-driven field-reversed configuration plasma experiment.

    PubMed

    Roche, T; Thompson, M C; Mendoza, R; Allfrey, I; Garate, E; Romero, J; Douglass, J

    2016-11-01

    External flux conserving coils were installed onto the exterior of the C-2U [M. W. Binderbauer et al., Phys. Plasmas 22, 056110 (2015)] confinement vessel to increase the flux confinement time of the system. The 0.5 in. stainless steel vessel wall has a skin time of ∼5 ms. The addition of the external copper coils effectively increases this time to ∼7 ms. This led to better-confined/longer-lived field-reversed configuration (FRC) plasmas. The fringing fields generated by the external coils have the side effect of rendering external field measurements invalid. Such measurements were key to the previous method of excluded flux calculation [M. C. Thompson et al., Rev. Sci. Instrum. 83, 10D709 (2012)]. A new array of B-dot probes and Rogowski coils were installed to better determine the amount of flux leaked out of the system and ultimately provide a more robust measurement of plasma parameters related to pressure balance including the excluded flux radius. The B-dot probes are surface mountable chip inductors with inductance of 33 μH capable of measuring the DC magnetic field and transient field, due to resistive current decay in the wall/coils, when coupled with active integrators. The Rogowski coils measure the total change in current in each external coil (150 A/2 ms). Currents were also actively driven in the external coils. This renders the assumption of total flux conservation invalid which further complicates the analysis process. The ultimate solution to these issues and the record breaking resultant FRC lifetimes will be presented.

  4. An Overview of the Naval Research Laboratory Ocean Surface Flux (NFLUX) System

    NASA Astrophysics Data System (ADS)

    May, J. C.; Rowley, C. D.; Barron, C. N.

    2016-02-01

    The Naval Research Laboratory (NRL) ocean surface flux (NFLUX) system is an end-to-end data processing and assimilation system used to provide near-real time satellite-based surface heat flux fields over the global ocean. Swath-level air temperature (TA), specific humidity (QA), and wind speed (WS) estimates are produced using multiple polynomial regression algorithms with inputs from satellite sensor data records from the Special Sensor Microwave Imager/Sounder, the Advanced Microwave Sounding Unit-A, the Advanced Technology Microwave Sounder, and the Advanced Microwave Scanning Radiometer-2 sensors. Swath-level WS estimates are also retrieved from satellite environmental data records from WindSat, the MetOp scatterometers, and the Oceansat scatterometer. Swath-level solar and longwave radiative flux estimates are produced utilizing the Rapid Radiative Transfer Model for Global Circulation Models (RRTMG). Primary inputs to the RRTMG include temperature and moisture profiles and cloud liquid and ice water paths from the Microwave Integrated Retrieval System. All swath-level satellite estimates undergo an automated quality control process and are then assimilated with atmospheric model forecasts to produce 3-hourly gridded analysis fields. The turbulent heat flux fields, latent and sensible heat flux, are determined from the Coupled Ocean-Atmosphere Response Experiment (COARE) 3.0 bulk algorithms using inputs of TA, QA, WS, and a sea surface temperature model field. Quality-controlled in situ observations over a one-year time period from May 2013 through April 2014 form the reference for validating ocean surface state parameter and heat flux fields. The NFLUX fields are evaluated alongside the Navy's operational global atmospheric model, the Navy Global Environmental Model (NAVGEM). NFLUX is shown to have smaller biases and lower or similar root mean square errors compared to NAVGEM.

  5. Enhanced magnetic field probe array for improved excluded flux calculations on the C-2U advanced beam-driven field-reversed configuration plasma experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roche, T., E-mail: troche@trialphaenergy.com; Thompson, M. C.; Mendoza, R.

    2016-11-15

    External flux conserving coils were installed onto the exterior of the C-2U [M. W. Binderbauer et al., Phys. Plasmas 22, 056110 (2015)] confinement vessel to increase the flux confinement time of the system. The 0.5 in. stainless steel vessel wall has a skin time of ∼5 ms. The addition of the external copper coils effectively increases this time to ∼7 ms. This led to better-confined/longer-lived field-reversed configuration (FRC) plasmas. The fringing fields generated by the external coils have the side effect of rendering external field measurements invalid. Such measurements were key to the previous method of excluded flux calculation [M.more » C. Thompson et al., Rev. Sci. Instrum. 83, 10D709 (2012)]. A new array of B-dot probes and Rogowski coils were installed to better determine the amount of flux leaked out of the system and ultimately provide a more robust measurement of plasma parameters related to pressure balance including the excluded flux radius. The B-dot probes are surface mountable chip inductors with inductance of 33 μH capable of measuring the DC magnetic field and transient field, due to resistive current decay in the wall/coils, when coupled with active integrators. The Rogowski coils measure the total change in current in each external coil (150 A/2 ms). Currents were also actively driven in the external coils. This renders the assumption of total flux conservation invalid which further complicates the analysis process. The ultimate solution to these issues and the record breaking resultant FRC lifetimes will be presented.« less

  6. Advancing approaches for multi-year high-frequency monitoring of temporal and spatial variability in carbon cycle fluxes and drivers in freshwater lakes

    NASA Astrophysics Data System (ADS)

    Desai, A. R.; Reed, D. E.; Dugan, H. A.; Loken, L. C.; Schramm, P.; Golub, M.; Huerd, H.; Baldocchi, A. K.; Roberts, R.; Taebel, Z.; Hart, J.; Hanson, P. C.; Stanley, E. H.; Cartwright, E.

    2017-12-01

    Freshwater ecosystems are hotspots of regional to global carbon cycling. However, significant sample biases limit our ability to quantify and predict these fluxes. For lakes, scaled flux estimates suffer biased sampling toward 1) low-nutrient pristine lakes, 2) infrequent temporal sampling, 3) field campaigns limited to the growing season, and 4) replicates limited to near the center of the lake. While these biases partly reflect the realities of ecological sampling, there is a need to extend observations towards the large fraction of freshwater systems worldwide that are impaired by human activities and those facing significant interannual variability owing to climatic change. Also, for seasonally ice-covered lakes, much of the annual budget of carbon fluxes is thought to be explained by variation in the shoulder seasons of spring ice melt and fall turnover. Recent advances in automated, continuous multi-year temporal sampling coupled with rapid methods for spatial mapping of CO2 fluxes has strong potential to rectify these sampling biases. Here, we demonstrate these advances in an eutrophic seasonally-ice covered lake with an urban shoreline and agricultural watershed. Multiple years of half-hourly eddy covariance flux tower observations from two locations are coupled with frequent spatial samples of these fluxes and drivers by speedboat, floating chamber fluxes, automated buoy-based monitoring of lake nutrient and physical profiles, and ensemble of physical-ecosystem models. High primary productivity in the water column leads to an average net carbon sink during the growing season in much of the lake, but annual net carbon fluxes show the lake can act as an annual source or a sink of carbon depending the timing of spring and fall turnover. Trophic interactions and internal waves drive shorter-term variation while nutrients and biology drive seasonal variation. However, discrepancies remain among methods to quantify fluxes, requiring further investigation.

  7. The Investigation and Semi-Empirical Modeling of Thermoacoustic Phase Relationships in a Lean Premixed Prevapourized Combustor at Elevated Pressure

    NASA Astrophysics Data System (ADS)

    Cirtwill, Joseph Daniel Maxim

    This document presents an investigation of the self-excited coupling mechanisms that occur to produce both low-amplitude intermittent, as well as high-amplitude limit-cycle pressure oscillations in an aeronautical gas turbine combustor. Measurements of a lean premixed prevapourized combustor at elevated pressure were conducted using OH* chemiluminescence, pressure transducers, stereoscopic particle image velocimetry and droplet laser scattering. Analysis of the spectra and phase relationships between the measured variables is performed to determine and describe the coupling mechanisms. A semi-empirical model is presented to explain differences in the limit-cycle pressure amplitudes observed under nominally identical operating conditions. Evidence suggests that an oscillating flux of fuel into the combustor is responsible for both intermittent and limit-cycle oscillations, though different coupling relationships are observed in each case. The final amplitude of limit-cycle oscillations is shown to be correlated with changes in the phase difference between the fuel oscillations and the pressure.

  8. Protein gradients in single cells induced by their coupling to "morphogen"-like diffusion

    NASA Astrophysics Data System (ADS)

    Nandi, Saroj Kumar; Safran, Sam A.

    2018-05-01

    One of the many ways cells transmit information within their volume is through steady spatial gradients of different proteins. However, the mechanism through which proteins without any sources or sinks form such single-cell gradients is not yet fully understood. One of the models for such gradient formation, based on differential diffusion, is limited to proteins with large ratios of their diffusion constants or to specific protein-large molecule interactions. We introduce a novel mechanism for gradient formation via the coupling of the proteins within a single cell with a molecule, that we call a "pronogen," whose action is similar to that of morphogens in multi-cell assemblies; the pronogen is produced with a fixed flux at one side of the cell. This coupling results in an effectively non-linear diffusion degradation model for the pronogen dynamics within the cell, which leads to a steady-state gradient of the protein concentration. We use stability analysis to show that these gradients are linearly stable with respect to perturbations.

  9. Particle tracing modeling of ion fluxes at geosynchronous orbit during substorms

    NASA Astrophysics Data System (ADS)

    Brito, T. V.; Jordanova, V.; Woodroffe, J. R.; Henderson, M. G.; Morley, S.; Birn, J.

    2016-12-01

    The SHIELDS project aims to couple a host of different models for different regions of the magnetosphere using different numerical methods such as MHD, PIC and particle tracing, with the ultimate goal of having a more realistic model of the whole magnetospheric environment capturing, as much as possible, the different physics of the various plasma populations. In that context, we present a modeling framework that can be coupled with a global MHD model to calculate particle fluxes in the inner magnetosphere, which can in turn be used to constantly update the input for a ring current model. In that regard, one advantage of that approach over using spacecraft data is that it produces a much better spatial and temporal coverage of the nightside geosynchronous region and thus a possibly more complete input for the ring current model, which will likely produce more accurate global results for the ring current population. In this presentation, we will describe the particle tracing method in more detail, describe the method used to couple it to the BATS-R-US 3D global MHD code, and the method used to update the flux results to the RAM-SCB ring current model. We will also present the simulation results for the July 18, 2013 period, which showed significant substorm activity. We will compare simulated ion fluxes on the nightside magnetosphere with spacecraft observations to gauge how well our simulations are capturing substorm dynamics.

  10. Impurity coupled to an artificial magnetic field in a Fermi gas in a ring trap

    NASA Astrophysics Data System (ADS)

    Ünal, F. Nur; Hetényi, B.; Oktel, M. Ã.-.

    2015-05-01

    The dynamics of a single impurity interacting with a many-particle background is one of the central problems of condensed-matter physics. Recent progress in ultracold-atom experiments makes it possible to control this dynamics by coupling an artificial gauge field specifically to the impurity. In this paper, we consider a narrow toroidal trap in which a Fermi gas is interacting with a single atom. We show that an external magnetic field coupled to the impurity is a versatile tool to probe the impurity dynamics. Using a Bethe ansatz, we calculate the eigenstates and corresponding energies exactly as a function of the flux through the trap. Adiabatic change of flux connects the ground state to excited states due to flux quantization. For repulsive interactions, the impurity disturbs the Fermi sea by dragging the fermions whose momentum matches the flux. This drag transfers momentum from the impurity to the background and increases the effective mass. The effective mass saturates to the total mass of the system for infinitely repulsive interactions. For attractive interactions, the drag again increases the effective mass which quickly saturates to twice the mass of a single particle as a dimer of the impurity and one fermion is formed. For excited states with momentum comparable to number of particles, effective mass shows a resonant behavior. We argue that standard tools in cold-atom experiments can be used to test these predictions.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cline, Gary W., E-mail: gary.cline@yale.edu; Department of Surgery, University of Minnesota-Twin Cities, Minneapolis, MN 55455; Pongratz, Rebecca L.

    Highlights: Black-Right-Pointing-Pointer We studied media effects on mechanisms of insulin secretion of INS-1 cells. Black-Right-Pointing-Pointer Insulin secretion was higher in DMEM than KRB despite identical ATP synthesis rates. Black-Right-Pointing-Pointer Insulin secretion rates correlated with rates of anaplerosis and TCA cycle. Black-Right-Pointing-Pointer Mitochondria metabolism and substrate cycles augment secretion signal of ATP. -- Abstract: Mechanistic models of glucose stimulated insulin secretion (GSIS) established in minimal media in vitro, may not accurately describe the complexity of coupling metabolism with insulin secretion that occurs in vivo. As a first approximation, we have evaluated metabolic pathways in a typical growth media, DMEM as amore » surrogate in vivo medium, for comparison to metabolic fluxes observed under the typical experimental conditions using the simple salt-buffer of KRB. Changes in metabolism in response to glucose and amino acids and coupling to insulin secretion were measured in INS-1 832/13 cells. Media effects on mitochondrial function and the coupling efficiency of oxidative phosphorylation were determined by fluorometrically measured oxygen consumption rates (OCRs) combined with {sup 31}P NMR measured rates of ATP synthesis. Substrate preferences and pathways into the TCA cycle, and the synthesis of mitochondrial 2nd messengers by anaplerosis were determined by {sup 13}C NMR isotopomer analysis of the fate of [U-{sup 13}C] glucose metabolism. Despite similar incremental increases in insulin secretion, the changes of OCR in response to increasing glucose from 2.5 to 15 mM were blunted in DMEM relative to KRB. Basal and stimulated rates of insulin secretion rates were consistently higher in DMEM, while ATP synthesis rates were identical in both DMEM and KRB, suggesting greater mitochondrial uncoupling in DMEM. The relative rates of anaplerosis, and hence synthesis and export of 2nd messengers from the mitochondria were found to be similar in DMEM to those in KRB. And, the correlation of total PC flux with insulin secretion rates in DMEM was found to be congruous with the correlation in KRB. Together, these results suggest that signaling mechanisms associated with both TCA cycle flux and with anaplerotic flux, but not ATP production, may be responsible for the enhanced rates of insulin secretion in more complex, and physiologically-relevant media.« less

  12. Low to middle tropospheric profiles and biosphere/troposphere fluxes of acidic gases in the summertime Canadian taiga

    NASA Technical Reports Server (NTRS)

    Klemm, O.; Talbot, R. W.; Fitzgerald, D. R.; Klemm, K. I.; Lefer, B. L.

    1994-01-01

    We report features of acidic gases in the troposphere from 9 to 5000 m altitude above ground over the Canadian taiga in the summer of 1990. The measurements were conducted at a 30-m meteorological tower and from the NASA Wallops Electra aircraft as part of the joint U.S.-Canadian Arctic Boundary Layer Expedition (ABLE) 3B Northern Wetland Studies (NOWES). We sampled air for acidic gases using the mist chamber collector coupled with subsequent analysis using ion chromatography. At the tower we collected samples at two heights during a 13-day period, including diurnal studies. Using eddy flux and profile data, we estimated the biosphere/troposphere fluxes of nitric, formic, and acetic acids and sulfur dioxide. For the organic acids, emissions from the taiga in the afternoon hours and deposition during the predawn morning hours were observed. The flux intensities alone were however not high enough to explain the observed changes in mixing ratios. The measured deposition fluxes of nitric acid were high enough to have a significant influence on its mixing ratio in the boundary layer. On three days we measured vertical profiles of nitric, formic, and acetic acids through the lower to midtroposphere. We found that the chemical composition of the troposphere was extremely heterogenous. Pronounced layers of polluted air were readily apparent from our measurements. Local photochemical production and episodic long-range transport of trace components, originating from biomass burning and possibly industrial emissions, appear to have a strong influence on the composition of the troposphere and biosphere/troposphere fluxes of acidic gases at this site.

  13. An Introduction to the Onsager Reciprocal Relations

    ERIC Educational Resources Information Center

    Monroe, Charles W.; Newman, John

    2007-01-01

    The Onsager reciprocal relations are essential to multicomponent transport theory. A discussion of the principles that should be used to derive flux laws for coupled diffusion is presented here. Fluctuation theory is employed to determine the reciprocal relation for transport coefficients that characterize coupled mass and heat transfer in binary…

  14. Assessment and simulation of global terrestrial latent heat flux by synthesis of CMIP5 climate models and surface eddy covariance observations

    Treesearch

    Yunjun Yao; Shunlin Liang; Xianglan Li; Shaomin Liu; Jiquan Chen; Xiaotong Zhang; Kun Jia; Bo Jiang; Xianhong Xie; Simon Munier; Meng Liu; Jian Yu; Anders Lindroth; Andrej Varlagin; Antonio Raschi; Asko Noormets; Casimiro Pio; Georg Wohlfahrt; Ge Sun; Jean-Christophe Domec; Leonardo Montagnani; Magnus Lund; Moors Eddy; Peter D. Blanken; Thomas Grunwald; Sebastian Wolf; Vincenzo Magliulo

    2016-01-01

    The latent heat flux (LE) between the terrestrial biosphere and atmosphere is a major driver of the globalhydrological cycle. In this study, we evaluated LE simulations by 45 general circulation models (GCMs)in the Coupled Model Intercomparison Project Phase 5 (CMIP5) by a comparison...

  15. Investigation of drag and heat reduction induced by a novel combinational lateral jet and spike concept in supersonic flows based on conjugate heat transfer approach

    NASA Astrophysics Data System (ADS)

    Zhu, Liang; Chen, Xiong; Li, Yingkun; Musa, Omer; Zhou, Changsheng

    2018-01-01

    When flying at supersonic or hypersonic speeds through the air, the drag and severe heating have a great impact on the vehicles, thus the drag reduction and thermal protection studies have attracted worldwide attention. In the current study, the Reynolds-averaged Navier-Stokes (RANS) equations coupled with the shear stress transport (SST) k - ω turbulence model have been employed to investigate the flow behavior induced by a novel combinational lateral jet and spike concept in supersonic flows. A coupling conjugate heat transfer (CHT) approach has been applied to investigate the thermal protection, which takes the heat transfer of structure into consideration. After the code was validated by the available experimental results and the gird independency analysis was carried out, the influences of the spike length ratio, lateral jet pressure ratio and lateral jet location on the drag and heat reduction performance are analyzed comprehensively. The obtained results show that a remarkable reduction in the drag and heat flux is achieved when a lateral jet is added to the spike. This implies that the combinational lateral jet and spike concept in supersonic flows have a great benefit to the drag and heat reduction. Both the drag and heat reduction decrease with the increase of the lateral jet pressure ratio, and the heat flux is more sensitive to the lateral jet pressure ratio. The lateral jet should not be located in the bottom of the spike in order to realize better drag and heat reduction performance. The drag and heat flux could be reduced by about 45% by reasonable lateral jet location. The drag decreases with the increase of the spike length ratio whereas the heat flux is affected by the spike length ratio just in a certain range.

  16. The coupling between flame surface dynamics and species mass conservation in premixed turbulent combustion

    NASA Technical Reports Server (NTRS)

    Trouve, A.; Veynante, D.; Bray, K. N. C.; Mantel, T.

    1994-01-01

    Current flamelot models based on a description of the flame surface dynamics require the closure of two inter-related equations: a transport equation for the mean reaction progress variable, (tilde)c, and a transport equation for the flame surface density, Sigma. The coupling between these two equations is investigated using direct numerical simulations (DNS) with emphasis on the correlation between the turbulent fluxes of (tilde)c, bar(pu''c''), and Sigma, (u'')(sub S)Sigma. Two different DNS databases are used in the present work: a database developed at CTR by A. Trouve and a database developed by C. J. Rutland using a different code. Both databases correspond to statistically one-dimensional premixed flames in isotropic turbulent flow. The run parameters, however, are significantly different, and the two databases correspond to different combustion regimes. It is found that in all simulated flames, the correlation between bar(pu''c'') and (u'')(sub S)Sigma is always strong. The sign, however, of the turbulent flux of (tilde)c or Sigma with respect to the mean gradients, delta(tilde)c/delta(x) or delta(Sigma)/delta(x), is case-dependent. The CTR database is found to exhibit gradient turbulent transport of (tilde)c and Sigma, whereas the Rutland DNS features counter-gradient diffusion. The two databases are analyzed and compared using various tools (a local analysis of the flow field near the flame, a classical analysis of the conservation equation for (tilde)(u''c''), and a thin flame theoretical analysis). A mechanism is then proposed to explain the discrepancies between the two databases and a preliminary simple criterion is derived to predict the occurrence of gradient/counter-gradient turbulent diffusion.

  17. Atmospheric footprint of the recent warming slowdown

    PubMed Central

    Liu, Bo; Zhou, Tianjun

    2017-01-01

    Growing body of literature has developed to detect the role of ocean heat uptake and transport in the recent warming slowdown between 1998–2013; however, the atmospheric footprint of the slowdown in dynamical and physical processes remains unclear. Here, we divided recent decades into the recent hiatus period and the preceding warming period (1983–1998) to investigate the atmospheric footprint. We use a process-resolving analysis method to quantify the contributions of different processes to the total temperature changes. We show that the increasing rate of global mean tropospheric temperature was also reduced during the hiatus period. The decomposed trends due to physical processes, including surface albedo, water vapour, cloud, surface turbulent fluxes and atmospheric dynamics, reversed the patterns between the two periods. The changes in atmospheric heat transport are coupled with changes in the surface latent heat flux across the lower troposphere (below approximately 800 hPa) and with cloud-related processes in the upper troposphere (above approximately 600 hPa) and were underpinned by strengthening/weakening Hadley Circulation and Walker Circulation during the warming/hiatus period. This dynamical coupling experienced a phase transition between the two periods, reminding us of the importance of understanding the atmospheric footprint, which constitutes an essential part of internal climate variability. PMID:28084457

  18. Multi-scale coupled modelling of waves and currents on the Catalan shelf.

    NASA Astrophysics Data System (ADS)

    Grifoll, M.; Warner, J. C.; Espino, M.; Sánchez-Arcilla, A.

    2012-04-01

    Catalan shelf circulation is characterized by a background along-shelf flow to the southwest (including some meso-scale features) plus episodic storm driven patterns. To investigate these dynamics, a coupled multi-scale modeling system is applied to the Catalan shelf (North-western Mediterranean Sea). The implementation consists of a set of increasing-resolution nested models, based on the circulation model ROMS and the wave model SWAN as part of the COAWST modeling system, covering from the slope and shelf region (~1 km horizontal resolution) down to a local area around Barcelona city (~40 m). The system is initialized with MyOcean products in the coarsest outer domain, and uses atmospheric forcing from other sources for the increasing resolution inner domains. Results of the finer resolution domains exhibit improved agreement with observations relative to the coarser model results. Several hydrodynamic configurations were simulated to determine dominant forcing mechanisms and hydrodynamic processes that control coastal scale processes. The numerical results reveal that the short term (hours to days) inner-shelf variability is strongly influenced by local wind variability, while sea-level slope, baroclinic effects, radiation stresses and regional circulation constitute second-order processes. Additional analysis identifies the significance of shelf/slope exchange fluxes, river discharge and the effect of the spatial resolution of the atmospheric fluxes.

  19. Coupled structural, thermal, phase-change and electromagnetic analysis for superconductors, volume 2

    NASA Technical Reports Server (NTRS)

    Felippa, Carlos A.; Farhat, Charbel; Park, K. C.; Militello, Carmelo; Schuler, James J.

    1993-01-01

    Two families of parametrized mixed variational principles for linear electromagnetodynamics are constructed. The first family is applicable when the current density distribution is known a priori. Its six independent fields are magnetic intensity and flux density, magnetic potential, electric intensity and flux density and electric potential. Through appropriate specialization of parameters the first principle reduces to more conventional principles proposed in the literature. The second family is appropriate when the current density distribution and a conjugate Lagrange multiplier field are adjoined, giving a total of eight independently varied fields. In this case it is shown that a conventional variational principle exists only in the time-independent (static) case. Several static functionals with reduced number of varied fields are presented. The application of one of these principles to construct finite elements with current prediction capabilities is illustrated with a numerical example.

  20. Tunable evolutions of shock absorption and energy partitioning in magnetic granular chains

    NASA Astrophysics Data System (ADS)

    Leng, Dingxin; Liu, Guijie; Sun, Lingyu

    2018-01-01

    In this paper, we investigate the tunable characteristics of shock waves propagating in one-dimensional magnetic granular chains at various chain lengths and magnetic flux densities. According to the Hertz contact theory and Maxwell principle, a discrete element model with coupling elastic and field-induced interaction potentials of adjacent magnetic grains is proposed. We also present hard-sphere approximation analysis to describe the energy partitioning features of magnetic granular chains. The results demonstrate that, for a fixed magnetic field strength, when the chain length is greater than two times of the wave width of the solitary wave, the chain length has little effect on the output energy of the system; for a fixed chain length, the shock absorption and energy partitioning features of magnetic granular chains are remarkably influenced by varying magnetic flux densities. This study implies that the magnetic granular chain is potential to construct adaptive shock absorption components for impulse mitigation.

  1. El Niño-Southern Oscillation-time scale covariation of sea surface salinity and freshwater flux in the western tropical and northern subtropical Pacific

    NASA Astrophysics Data System (ADS)

    Nagano, Akira; Hasegawa, Takuya; Ueki, Iwao; Ando, Kentaro

    2017-07-01

    We examined the covariation of sea surface salinity (SSS) and freshwater flux in the western tropical and northern subtropical Pacific on the El Niño-Southern Oscillation time scale, using a canonical correlation analysis of monthly data between 2001 and 2013. The dominant covariation, i.e., the first canonical mode, has large positive and negative amplitudes in regions east of the Philippines and New Guinea, respectively, and reaches peaks in autumn to winter of El Niño years. The positive SSS anomaly east of the Philippines is advected to the Kuroshio Extension region. We found that the second canonical mode is another coupled variation with localized amplitudes of SSS under the atmospheric convergence zones in winter to spring of La Niña years. However, the negative SSS anomaly is annihilated possibly by the evaporation in the subtropical region.

  2. Assessment of State-of-the-Art Dust Emission Scheme in GEOS

    NASA Technical Reports Server (NTRS)

    Darmenov, Anton; Liu, Xiaohong; Prigent, Catherine

    2017-01-01

    The GEOS modeling system has been extended with state of the art parameterization of dust emissions based on the vertical flux formulation described in Kok et al 2014. The new dust scheme was coupled with the GOCART and MAM aerosol models. In the present study we compare dust emissions, aerosol optical depth (AOD) and radiative fluxes from GEOS experiments with the standard and new dust emissions. AOD from the model experiments are also compared with AERONET and satellite based data. Based on this comparative analysis we concluded that the new parameterization improves the GEOS capability to model dust aerosols originating from African sources, however it lead to overestimation of dust emissions from Asian and Arabian sources. Further regional tuning of key parameters controlling the threshold friction velocity may be required in order to achieve more definitive and uniform improvement in the dust modeling skill.

  3. Experimental and numerical study of two dimensional heat and mass transfer in unsaturated soil with and application to soil thermal energy storage (SBTES) systems

    NASA Astrophysics Data System (ADS)

    Moradi, A.; Smits, K. M.

    2014-12-01

    A promising energy storage option to compensate for daily and seasonal energy offsets is to inject and store heat generated from renewable energy sources (e.g. solar energy) in the ground, oftentimes referred to as soil borehole thermal energy storage (SBTES). Nonetheless in SBTES modeling efforts, it is widely recognized that the movement of water vapor is closely coupled to thermal processes. However, their mutual interactions are rarely considered in most soil water modeling efforts or in practical applications. The validation of numerical models that are designed to capture these processes is difficult due to the scarcity of experimental data, limiting the testing and refinement of heat and water transfer theories. A common assumption in most SBTES modeling approaches is to consider the soil as a purely conductive medium with constant hydraulic and thermal properties. However, this simplified approach can be improved upon by better understanding the coupled processes at play. Consequently, developing new modeling techniques along with suitable experimental tools to add more complexity in coupled processes has critical importance in obtaining necessary knowledge in efficient design and implementation of SBTES systems. The goal of this work is to better understand heat and mass transfer processes for SBTES. In this study, we implemented a fully coupled numerical model that solves for heat, liquid water and water vapor flux and allows for non-equilibrium liquid/gas phase change. This model was then used to investigate the influence of different hydraulic and thermal parameterizations on SBTES system efficiency. A two dimensional tank apparatus was used with a series of soil moisture, temperature and soil thermal properties sensors. Four experiments were performed with different test soils. Experimental results provide evidences of thermally induced moisture flow that was also confirmed by numerical results. Numerical results showed that for the test conditions applied here, moisture flow is more influenced by thermal gradients rather than hydraulic gradients. The results also demonstrate that convective fluxes are higher compared to conductive fluxes indicating that moisture flow has more contribution to the overall heat flux than conductive fluxes.

  4. Statistical properties of single-mode fiber coupling of satellite-to-ground laser links partially corrected by adaptive optics.

    PubMed

    Canuet, Lucien; Védrenne, Nicolas; Conan, Jean-Marc; Petit, Cyril; Artaud, Geraldine; Rissons, Angelique; Lacan, Jerome

    2018-01-01

    In the framework of satellite-to-ground laser downlinks, an analytical model describing the variations of the instantaneous coupled flux into a single-mode fiber after correction of the incoming wavefront by partial adaptive optics (AO) is presented. Expressions for the probability density function and the cumulative distribution function as well as for the average fading duration and fading duration distribution of the corrected coupled flux are given. These results are of prime interest for the computation of metrics related to coded transmissions over correlated channels, and they are confronted by end-to-end wave-optics simulations in the case of a geosynchronous satellite (GEO)-to-ground and a low earth orbit satellite (LEO)-to-ground scenario. Eventually, the impact of different AO performances on the aforementioned fading duration distribution is analytically investigated for both scenarios.

  5. A magnetostatic-coupling based remote query sensor for environmental monitoring

    NASA Technical Reports Server (NTRS)

    Grimes, C. A.; Stoyanov, P. G.; Liu, Y.; Tong, C.; Ong, K. G.; Loiselle, K.; Shaw, M.; Doherty, S. A.; Seitz, W. R.

    1999-01-01

    A new type of in situ, remotely monitored magnetism-based sensor is presented that is comprised of an array of magnetically soft, magnetostatically-coupled ferromagnetic thin-film elements or particles combined with a chemically responsive material that swells or shrinks in response to the analyte of interest. As the chemically responsive material changes size the distance between the ferromagnetic elements changes, altering the inter-element magnetostatic coupling. This in turn changes the coercive force of the sensor, the amplitude of the voltage spikes detected in nearby pick-up coils upon magnetization reversal and the number of higher-order harmonics generated by the flux reversal. Since the sensor is monitored through changes in magnetic flux, no physical connections such as wires or cables are needed to obtain sensor information, nor is line of sight alignment required as with laser telemetry; the sensors can be detected from within sealed, opaque or thin metallic enclosures.

  6. Magnetic Field Analysis of Lorentz Motors Using a Novel Segmented Magnetic Equivalent Circuit Method

    PubMed Central

    Qian, Junbing; Chen, Xuedong; Chen, Han; Zeng, Lizhan; Li, Xiaoqing

    2013-01-01

    A simple and accurate method based on the magnetic equivalent circuit (MEC) model is proposed in this paper to predict magnetic flux density (MFD) distribution of the air-gap in a Lorentz motor (LM). In conventional MEC methods, the permanent magnet (PM) is treated as one common source and all branches of MEC are coupled together to become a MEC network. In our proposed method, every PM flux source is divided into three sub-sections (the outer, the middle and the inner). Thus, the MEC of LM is divided correspondingly into three independent sub-loops. As the size of the middle sub-MEC is small enough, it can be treated as an ideal MEC and solved accurately. Combining with decoupled analysis of outer and inner MECs, MFD distribution in the air-gap can be approximated by a quadratic curve, and the complex calculation of reluctances in MECs can be avoided. The segmented magnetic equivalent circuit (SMEC) method is used to analyze a LM, and its effectiveness is demonstrated by comparison with FEA, conventional MEC and experimental results. PMID:23358368

  7. Optimization of permeate flux produced by solar energy driven membrane distillation process using central composite design approach.

    PubMed

    Bouguecha, Salah T; Boubakri, Ali; Aly, Samir E; Al-Beirutty, Mohammad H; Hamdi, Mohamed M

    2016-01-01

    Membrane distillation (MD) is considered as a relatively high-energy requirement. To overcome this drawback, it is recommended to couple the MD process with solar energy as the renewable energy source in order to provide heat energy required to optimize its performance to produce permeate flux. In the present work, an original solar energy driven direct contact membrane distillation (DCMD) pilot plant was built and tested under actual weather conditions at Jeddah, KSA, in order to model and optimize permeate flux. The dependency of permeate flux on various operating parameters such as feed temperature (46.6-63.4°C), permeate temperature (6.6-23.4°C), feed flow rate (199-451L/h) and permeate flow rate (199-451L/h) was studied by response surface methodology based on central composite design approach. The analysis of variance (ANOVA) confirmed that all independent variables had significant influence on the model (where P-value <0.05). The high coefficient of determination (R(2) = 0.9644 and R(adj)(2) = 0.9261) obtained by ANOVA demonstrated good correlation between experimental and predicted values of the response. The optimized conditions, determined using desirability function, were T(f) = 63.4°C, Tp = 6.6°C, Q(f) = 451L/h and Q(p) = 451L/h. Under these conditions, the maximum permeate flux of 6.122 kg/m(2).h was achieved, which was close to the predicted value of 6.398 kg/m(2).h.

  8. The role of soil weathering and hydrology in regulating chemical fluxes from catchments (Invited)

    NASA Astrophysics Data System (ADS)

    Maher, K.; Chamberlain, C. P.

    2010-12-01

    Catchment-scale chemical fluxes have been linked to a number of different parameters that describe the conditions at the Earth’s surface, including runoff, temperature, rock type, vegetation, and the rate of tectonic uplift. However, many of the relationships relating chemical denudation to surface processes and conditions, while based on established theoretical principles, are largely empirical and derived solely from modern observations. Thus, an enhanced mechanistic basis for linking global solute fluxes to both surface processes and climate may improve our confidence in extrapolating modern solute fluxes to past and future conditions. One approach is to link observations from detailed soil-based studies with catchment-scale properties. For example, a number of recent studies of chemical weathering at the soil-profile scale have reinforced the importance of hydrologic processes in controlling chemical weathering rates. An analysis of data from granitic soils shows that weathering rates decrease with increasing fluid residence times and decreasing flow rates—over moderate fluid residence times, from 5 days to 10 years, transport-controlled weathering explains the orders of magnitude variation in weathering rates to a better extent than soil age. However, the importance of transport-controlled weathering is difficult to discern at the catchment scale because of the range of flow rates and fluid residence times captured by a single discharge or solute flux measurement. To assess the importance of transport-controlled weathering on catchment scale chemical fluxes, we present a model that links the chemical flux to the extent of reaction between the soil waters and the solids, or the fluid residence time. Different approaches for describing the distribution of fluid residence times within a catchment are then compared with the observed Si fluxes for a limited number of catchments. This model predicts high solute fluxes in regions with high run-off, relief, and long flow paths suggesting that the particular hydrologic setting of a landscape will be the underlying control on the chemical fluxes. As such, we reinterpret the large chemical fluxes that are observed in active mountain belts, like the Himalaya, to be primarily controlled by the long reactive flow paths created by the steep terrain coupled with high amounts of precipitation.

  9. Towards an understanding of coupled physical and biological processes in the cultivated Sahel - 1. Energy and water

    NASA Astrophysics Data System (ADS)

    Ramier, David; Boulain, Nicolas; Cappelaere, Bernard; Timouk, Franck; Rabanit, Manon; Lloyd, Colin R.; Boubkraoui, Stéphane; Métayer, Frédéric; Descroix, Luc; Wawrzyniak, Vincent

    2009-08-01

    SummaryThis paper presents an analysis of the coupled cycling of energy and water by semi-arid Sahelian surfaces, based on two years of continuous vertical flux measurements from two homogeneous recording stations in the Wankama catchment, in the West Niger meso-site of the AMMA project. The two stations, sited in a millet field and in a semi-natural fallow savanna plot, sample the two dominant land cover types in this area typical of the cultivated Sahel. The 2-year study period enables an analysis of seasonal variations over two full wet-dry seasons cycles, characterized by two contrasted rain seasons that allow capturing a part of the interannual variability. All components of the surface energy budget (four-component radiation budget, soil heat flux and temperature, eddy fluxes) are measured independently, allowing for a quality check through analysis of the energy balance closure. Water cycle monitoring includes rainfall, evapotranspiration (from vapour eddy flux), and soil moisture at six depths. The main modes of observed variability are described, for the various energy and hydrological variables investigated. Results point to the dominant role of water in the energy cycle variability, be it seasonal, interannual, or between land cover types. Rainfall is responsible for nearly as much seasonal variations of most energy-related variables as solar forcing. Depending on water availability and plant requirements, evapotranspiration pre-empts the energy available from surface forcing radiation, over the other dependent processes (sensible and ground heat, outgoing long wave radiation). In the water budget, pre-emption by evapotranspiration leads to very large variability in soil moisture and in deep percolation, seasonally, interannually, and between vegetation types. The wetter 2006 season produced more evapotranspiration than 2005 from the fallow but not from the millet site, reflecting differences in plant development. Rain-season evapotranspiration is nearly always lower at the millet site. Higher soil moisture at this site suggests that this difference arises from lower vegetation requirements rather than from lower infiltration/higher runoff. This difference is partly compensated for during the next dry season. Effects of water and vegetation on the energy budget appear to occur more through latent heat than through albedo. A large part of albedo variability comes from soil wetting and drying. Prior to the onset of monsoon rain, the change in air mass temperature and wind produces, through modulation of sensible heat, a marked chilling effect on the components of the surface energy budget.

  10. Comparison of Transformer Winding Methods for Contactless Power Transfer Systems of Electric Vehicle

    NASA Astrophysics Data System (ADS)

    Kaneko, Yasuyoshi; Ehara, Natsuki; Iwata, Takuya; Abe, Shigeru; Yasuda, Tomio; Ida, Kazuhiko

    This paper describes the comparison of the characteristics of double- and single-sided windings of contactless power transfer systems used in electric vehicles. The self-inductance changes with the electric current when the gap length is fixed in single-sided windings. The issue is resolved by maintaining the secondary voltage constant. In the case of double-sided windings, the transformer can be miniaturized in comparison with the single-sided winding transformer. However, the coupling factor is small, and appropriate countermeasures must be adopted to reduce the back leakage flux. The leakage flux is reduced by placing an aluminum board behind the transformer. Thus, the coupling factor increases.

  11. Radiation source with shaped emission

    DOEpatents

    Kubiak, Glenn D.; Sweatt, William C.

    2003-05-13

    Employing a source of radiation, such as an electric discharge source, that is equipped with a capillary region configured into some predetermined shape, such as an arc or slit, can significantly improve the amount of flux delivered to the lithographic wafers while maintaining high efficiency. The source is particularly suited for photolithography systems that employs a ringfield camera. The invention permits the condenser which delivers critical illumination to the reticle to be simplified from five or more reflective elements to a total of three or four reflective elements thereby increasing condenser efficiency. It maximizes the flux delivered and maintains a high coupling efficiency. This architecture couples EUV radiation from the discharge source into a ring field lithography camera.

  12. Dynamic analysis of a magnetic bearing system with flux control

    NASA Technical Reports Server (NTRS)

    Knight, Josiah; Walsh, Thomas; Virgin, Lawrence

    1994-01-01

    Using measured values of two-dimensional forces in a magnetic actuator, equations of motion for an active magnetic bearing are presented. The presence of geometric coupling between coordinate directions causes the equations of motion to be nonlinear. Two methods are used to examine the unbalance response of the system: simulation by direct integration in time; and determination of approximate steady state solutions by harmonic balance. For relatively large values of the derivative control coefficient, the system behaves in an essentially linear manner, but for lower values of this parameter, or for higher values of the coupling coefficient, the response shows a split of amplitudes in the two principal directions. This bifurcation is sensitive to initial conditions. The harmonic balance solution shows that the separation of amplitudes actually corresponds to a change in stability of multiple coexisting solutions.

  13. Impact of Calibrated Land Surface Model Parameters on the Accuracy and Uncertainty of Land-Atmosphere Coupling in WRF Simulations

    NASA Technical Reports Server (NTRS)

    Santanello, Joseph A., Jr.; Kumar, Sujay V.; Peters-Lidard, Christa D.; Harrison, Ken; Zhou, Shujia

    2012-01-01

    Land-atmosphere (L-A) interactions play a critical role in determining the diurnal evolution of both planetary boundary layer (PBL) and land surface temperature and moisture budgets, as well as controlling feedbacks with clouds and precipitation that lead to the persistence of dry and wet regimes. Recent efforts to quantify the strength of L-A coupling in prediction models have produced diagnostics that integrate across both the land and PBL components of the system. In this study, we examine the impact of improved specification of land surface states, anomalies, and fluxes on coupled WRF forecasts during the summers of extreme dry (2006) and wet (2007) land surface conditions in the U.S. Southern Great Plains. The improved land initialization and surface flux parameterizations are obtained through the use of a new optimization and uncertainty estimation module in NASA's Land Information System (LIS-OPT/UE), whereby parameter sets are calibrated in the Noah land surface model and classified according to a land cover and soil type mapping of the observation sites to the full model domain. The impact of calibrated parameters on the a) spinup of the land surface used as initial conditions, and b) heat and moisture states and fluxes of the coupled WRF simulations are then assessed in terms of ambient weather and land-atmosphere coupling along with measures of uncertainty propagation into the forecasts. In addition, the sensitivity of this approach to the period of calibration (dry, wet, average) is investigated. Finally, tradeoffs of computational tractability and scientific validity, and the potential for combining this approach with satellite remote sensing data are also discussed.

  14. Impact of Optimized land Surface Parameters on the Land-Atmosphere Coupling in WRF Simulations of Dry and Wet Extremes

    NASA Technical Reports Server (NTRS)

    Kumar, Sujay; Santanello, Joseph; Peters-Lidard, Christa; Harrison, Ken

    2011-01-01

    Land-atmosphere (L-A) interactions play a critical role in determining the diurnal evolution of both planetary boundary layer (PBL) and land surface temperature and moisture budgets, as well as controlling feedbacks with clouds and precipitation that lead to the persistence of dry and wet regimes. Recent efforts to quantify the strength of L-A coupling in prediction models have produced diagnostics that integrate across both the land and PBL components of the system. In this study, we examine the impact of improved specification of land surface states, anomalies, and fluxes on coupled WRF forecasts during the summers of extreme dry (2006) and wet (2007) conditions in the U.S. Southern Great Plains. The improved land initialization and surface flux parameterizations are obtained through the use of a new optimization and uncertainty module in NASA's Land Information System (LIS-OPT), whereby parameter sets are calibrated in the Noah land surface model and classified according to the land cover and soil type mapping of the observations and the full domain. The impact of the calibrated parameters on the a) spin up of land surface states used as initial conditions, and b) heat and moisture fluxes of the coupled (LIS-WRF) simulations are then assessed in terms of ambient weather, PBL budgets, and precipitation along with L-A coupling diagnostics. In addition, the sensitivity of this approach to the period of calibration (dry, wet, normal) is investigated. Finally, tradeoffs of computational tractability and scientific validity (e.g.,. relating to the representation of the spatial dependence of parameters) and the feasibility of calibrating to multiple observational datasets are also discussed.

  15. Preliminary Numerical and Experimental Analysis of the Spallation Phenomenon

    NASA Technical Reports Server (NTRS)

    Martin, Alexandre; Bailey, Sean C. C.; Panerai, Francesco; Davuluri, Raghava S. C.; Vazsonyi, Alexander R.; Zhang, Huaibao; Lippay, Zachary S.; Mansour, Nagi N.; Inman, Jennifer A.; Bathel, Brett F.; hide

    2015-01-01

    The spallation phenomenon was studied through numerical analysis using a coupled Lagrangian particle tracking code and a hypersonic aerothermodynamics computational fluid dynamics solver. The results show that carbon emission from spalled particles results in a significant modification of the gas composition of the post shock layer. Preliminary results from a test-campaign at the NASA Langley HYMETS facility are presented. Using an automated image processing of high-speed images, two-dimensional velocity vectors of the spalled particles were calculated. In a 30 second test at 100 W/cm2 of cold-wall heat-flux, more than 1300 particles were detected, with an average velocity of 102 m/s, and most frequent observed velocity of 60 m/s.

  16. A multi-scale model for geared transmission aero-thermodynamics

    NASA Astrophysics Data System (ADS)

    McIntyre, Sean M.

    A multi-scale, multi-physics computational tool for the simulation of high-per- formance gearbox aero-thermodynamics was developed and applied to equilibrium and pathological loss-of-lubrication performance simulation. The physical processes at play in these systems include multiphase compressible ow of the air and lubricant within the gearbox, meshing kinematics and tribology, as well as heat transfer by conduction, and free and forced convection. These physics are coupled across their representative space and time scales in the computational framework developed in this dissertation. These scales span eight orders of magnitude, from the thermal response of the full gearbox O(100 m; 10 2 s), through effects at the tooth passage time scale O(10-2 m; 10-4 s), down to tribological effects on the meshing gear teeth O(10-6 m; 10-6 s). Direct numerical simulation of these coupled physics and scales is intractable. Accordingly, a scale-segregated simulation strategy was developed by partitioning and treating the contributing physical mechanisms as sub-problems, each with associated space and time scales, and appropriate coupling mechanisms. These are: (1) the long time scale thermal response of the system, (2) the multiphase (air, droplets, and film) aerodynamic flow and convective heat transfer within the gearbox, (3) the high-frequency, time-periodic thermal effects of gear tooth heating while in mesh and its subsequent cooling through the rest of rotation, (4) meshing effects including tribology and contact mechanics. The overarching goal of this dissertation was to develop software and analysis procedures for gearbox loss-of-lubrication performance. To accommodate these four physical effects and their coupling, each is treated in the CFD code as a sub problem. These physics modules are coupled algorithmically. Specifically, the high- frequency conduction analysis derives its local heat transfer coefficient and near-wall air temperature boundary conditions from a quasi-steady cyclic-symmetric simulation of the internal flow. This high-frequency conduction solution is coupled directly with a model for the meshing friction, developed by a collaborator, which was adapted for use in a finite-volume CFD code. The local surface heat flux on solid surfaces is calculated by time-averaging the heat flux in the high-frequency analysis. This serves as a fixed-flux boundary condition in the long time scale conduction module. The temperature distribution from this long time scale heat transfer calculation serves as a boundary condition for the internal convection simulation, and as the initial condition for the high-frequency heat transfer module. Using this multi-scale model, simulations were performed for equilibrium and loss-of-lubrication operation of the NASA Glenn Research Center test stand. Results were compared with experimental measurements. In addition to the multi-scale model itself, several other specific contributions were made. Eulerian models for droplets and wall-films were developed and im- plemented in the CFD code. A novel approach to retaining liquid film on the solid surfaces, and strategies for its mass exchange with droplets, were developed and verified. Models for interfacial transfer between droplets and wall-film were implemented, and include the effects of droplet deposition, splashing, bouncing, as well as film breakup. These models were validated against airfoil data. To mitigate the observed slow convergence of CFD simulations of the enclosed aerodynamic flows within gearboxes, Fourier stability analysis was applied to the SIMPLE-C fractional-step algorithm. From this, recommendations to accelerate the convergence rate through enhanced pressure-velocity coupling were made. These were shown to be effective. A fast-running finite-volume reduced-order-model of the gearbox aero-thermo- dynamics was developed, and coupled with the tribology model to investigate the sensitivity of loss-of-lubrication predictions to various model and physical param- eters. This sensitivity study was instrumental in guiding efforts toward improving the accuracy of the multi-scale model without undue increase in computational cost. In addition, the reduced-order model is now used extensively by a collaborator in tribology model development and testing. Experimental measurements of high-speed gear windage in partially and fully- shrouded configurations were performed to supplement the paucity of available validation data. This measurement program provided measurements of windage loss for a gear of design-relevant size and operating speed, as well as guidance for increasing the accuracy of future measurements.

  17. Regional Mapping of Coupled Fluxes of Carbon and Water Using Multi-Sensor Fusion Techniques

    NASA Astrophysics Data System (ADS)

    Schull, M. A.; Anderson, M. C.; Semmens, K. A.; Yang, Y.; Gao, F.; Hain, C.; Houborg, R.

    2014-12-01

    In an ever-changing climate there is an increasing need to measure the fluxes of water, energy and carbon for decision makers to implement policies that will help mitigate the effects of climate change. In an effort to improve drought monitoring, water resource management and agriculture assessment capabilities, a multi-scale and multi-sensor framework for routine mapping of land-surface fluxes of water and energy at field to regional scales has been established. The framework uses the ALEXI (Atmosphere Land Exchange Inverse)/DisALEXI (Disaggregated ALEXI) suite of land-surface models forced by remotely sensed data from Landsat, MODIS (MODerate resolution Imaging Spectroradiometer), and GOES (Geostationary Operational Environmental Satellite). Land-surface temperature (LST) can be an effective substitute for in-situ surface moisture observations and a valuable metric for constraining land-surface fluxes at sub-field scales. The adopted multi-scale thermal-based land surface modeling framework facilitates regional to local downscaling of water and energy fluxes by using a combination of shortwave reflective and thermal infrared (TIR) imagery from GOES (4-10 km; hourly), MODIS (1 km; daily), and Landsat (30-100 m; bi-weekly). In this research the ALEXI/DisALEXI modeling suite is modified to incorporate carbon fluxes using a stomatal resistance module, which replaces the Priestley-Taylor latent heat approximation. In the module, canopy level nominal light-use-efficiency (βn) is the parameter that modulates the flux of water and carbon in and out of the canopy. Leaf chlorophyll (Chl) is a key parameter for quantifying variability in photosynthetic efficiency to facilitate the spatial distribution of coupled carbon and water retrievals. Spatial distribution of Chl are retrieved from Landsat (30 m) using a surface reflectance dataset as input to the REGularized canopy reFLECtance (REGFLEC) tool. The modified ALEXI/DisALEXI suite is applied to regions of rain fed and irrigated soybean and maize agricultural landscapes within the continental U.S. and flux estimates are compared with flux tower observations.

  18. Single-photon-driven high-order sideband transitions in an ultrastrongly coupled circuit-quantum-electrodynamics system

    NASA Astrophysics Data System (ADS)

    Chen, Zhen; Wang, Yimin; Li, Tiefu; Tian, Lin; Qiu, Yueyin; Inomata, Kunihiro; Yoshihara, Fumiki; Han, Siyuan; Nori, Franco; Tsai, J. S.; You, J. Q.

    2017-07-01

    We report the experimental observation of high-order sideband transitions at the single-photon level in a quantum circuit system of a flux qubit ultrastrongly coupled to a coplanar waveguide resonator. With the coupling strength reaching 10% of the resonator's fundamental frequency, we obtain clear signatures of higher order red-sideband and first-order blue-sideband transitions, which are mainly due to the ultrastrong Rabi coupling. Our observation advances the understanding of ultrastrongly coupled systems and paves the way to study high-order processes in the quantum Rabi model at the single-photon level.

  19. An overview of mesoscales distribution of ocean color in the North Atlantic

    NASA Technical Reports Server (NTRS)

    Yentsch, C. S.

    1989-01-01

    The spatial changes in phytoplankton abundance is the result of regional differences in the amount of nutrient fluxed into the euphotic zone. The energy contributing to this flux is derived from ocean currents. A close coupling between physics and biology of the system accounts for mesoscale features associated with fluid dynamics being reflected by changes in ocean color.

  20. Spin-polarized currents in a two-terminal double quantum ring driven by magnetic fields and Rashba spin-orbit interaction

    NASA Astrophysics Data System (ADS)

    Dehghan, E.; Khoshnoud, D. Sanavi; Naeimi, A. S.

    2018-06-01

    Aim of this study is to investigate spin transportation in double quantum ring (DQR). We developed an array of DQR to measure the transmission coefficient and analyze the spin transportation through this system in the presence of Rashba spin-orbit interaction (RSOI) and magnetic flux estimated using S-matrix method. In this article, we compute the spin transport and spin-current characteristics numerically as functions of electron energy, angles between the leads, coupling constant of the leads, RSOI, and magnetic flux. Our results suggest that, for typical values of the magnetic flux (ϕ /ϕ0) and Rashba constant (αR), such system can demonstrates many spintronic properties. It is possible to design a new geometry of DQR by incoming electrons polarization in a way to optimize the system to work as a spin-filtering and spin-inverting nano-device with very high efficiency. The results prove that the spin current will strongly modulate with an increase in the magnetic flux and Rashba constant. Moreover it is shown that, when the lead coupling is weak, the perfect spin-inverter does not occur.

  1. Electron-phonon mediated heat flow in disordered graphene

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Clerk, Aashish A.

    2012-09-01

    We calculate the heat flux and electron-phonon thermal conductance in a disordered graphene sheet, going beyond a Fermi’s golden rule approach to fully account for the modification of the electron-phonon interaction by disorder. Using the Keldysh technique combined with standard impurity averaging methods in the regime kFl≫1 (where kF is the Fermi wave vector and l is the mean free path), we consider both scalar potential (i.e., deformation potential) and vector-potential couplings between electrons and phonons. We also consider the effects of electronic screening at the Thomas-Fermi level. We find that the temperature dependence of the heat flux and thermal conductance is sensitive to the presence of disorder and screening, and reflects the underlying chiral nature of electrons in graphene and the corresponding modification of their diffusive behavior. In the case of weak screening, disorder enhances the low-temperature heat flux over the clean system (changing the associated power law from T4 to T3), and the deformation potential dominates. For strong screening, both the deformation potential and vector-potential couplings make comparable contributions, and the low-temperature heat flux obeys a T5 power law.

  2. Response of water temperature to surface wave effects in the Baltic Sea: simulations with the coupled NEMO-WAM model

    NASA Astrophysics Data System (ADS)

    Alari, Victor; Staneva, Joanna; Breivik, Øyvind; Bidlot, Jean-Raymond; Mogensen, Kristian; Janssen, Peter

    2016-04-01

    The effects of wind waves on the Baltic Sea water temperature has been studied by coupling the hydrodynamical model NEMO with the wave model WAM. The wave forcing terms that have been taken into consideration are: Stokes-Coriolis force, seastate dependent energy flux and sea-state dependent momentum flux. The combined role of these processes as well as their individual contributions on simulated temperature is analysed. The results indicate a pronounced effect of waves on surface temperature, on the distribution of vertical temperature and on upwellinǵs. In northern parts of the Baltic Sea a warming of the surface layer occurs in the wave included simulations. This in turn reduces the cold bias between simulated and measured data. The warming is primarily caused by sea-state dependent energy flux. Wave induced cooling is mostly observed in near coastal areas and is mainly due to Stokes-Coriolis forcing. The latter triggers effect of intensifying upwellings near the coasts, depending on the direction of the wind. The effect of sea-state dependent momentum flux is predominantly to warm the surface layer. During the summer the wave induced water temperature changes were up to 1 °C.

  3. Nuclear fluxes during coherent tunnelling in asymmetric double well potentials

    NASA Astrophysics Data System (ADS)

    Liu, ChunMei; Manz, Jörn; Yang, Yonggang

    2015-08-01

    Previous results for nuclear fluxes during coherent tunnelling of molecules with symmetric double well potentials are extended to fluxes in asymmetric double well potentials. The theory is derived using the two-state approximation (TSA). The symmetric system serves as a reference. As an example, we consider the one-dimensional model of the tunnelling inversion of oriented ammonia, with semiclassical dipole coupling to an electric field. The tunnelling splitting increases with the dipole coupling by a factor f≥slant 1. The tunnelling time decreases by 1/f. The nuclear density appears as the sum of two parts: The tunnelling part decreases as {1/f}2 times the density of the symmetric reference, whereas the non-tunnelling part is the initial density times ≤ft({{1-1}/f}2\\right). Likewise, the nuclear flux decreases by 1/f, with essentially the same shape as for the symmetric reference, with maximum value at the potential barrier. Coherent nuclear tunnellings starting from the upper or lower wells of the asymmetric potential are equivalent. The results are universal, in the frame of the TSA, hence they allow straightforward extrapolations from one system to others. This is demonstrated by the prediction of isotope effects for five isotopomers of ammonia.

  4. Weighted reciprocal of temperature, weighted thermal flux, and their applications in finite-time thermodynamics.

    PubMed

    Sheng, Shiqi; Tu, Z C

    2014-01-01

    The concepts of weighted reciprocal of temperature and weighted thermal flux are proposed for a heat engine operating between two heat baths and outputting mechanical work. With the aid of these two concepts, the generalized thermodynamic fluxes and forces can be expressed in a consistent way within the framework of irreversible thermodynamics. Then the efficiency at maximum power output for a heat engine, one of key topics in finite-time thermodynamics, is investigated on the basis of a generic model under the tight-coupling condition. The corresponding results have the same forms as those of low-dissipation heat engines [ M. Esposito, R. Kawai, K. Lindenberg and C. Van den Broeck Phys. Rev. Lett. 105 150603 (2010)]. The mappings from two kinds of typical heat engines, such as the low-dissipation heat engine and the Feynman ratchet, into the present generic model are constructed. The universal efficiency at maximum power output up to the quadratic order is found to be valid for a heat engine coupled symmetrically and tightly with two baths. The concepts of weighted reciprocal of temperature and weighted thermal flux are also transplanted to the optimization of refrigerators.

  5. Incision and Landsliding Lead to Coupled Increase in Sediment Flux and Grain Size Export

    NASA Astrophysics Data System (ADS)

    Roda-Boluda, D. C.; Brooke, S.; D'Arcy, M. K.; Whittaker, A. C.; Armitage, J. J.

    2017-12-01

    The rates and grain sizes of sediment fluxes modulate the dynamics and timing of landscape response to tectonics, and dictate the depositional patterns of sediment in basins. Over the last decades, we have gained a good quantitative understanding on how sediment flux and grain size may affect incision and basin stratigraphy. However, we comparably still have limited knowledge on how these variables change with varying tectonic rates. To address this question, we have studied 152 catchments along 8 normal fault-bounded ranges in southern Italy, which are affected by varying fault slip rates and experiencing a transient response to tectonics. Using a data set of 38 new and published 10Be erosion rates, we calibrate a sediment flux predictive equation (BQART), in order to estimate catchment sediment fluxes. We demonstrate that long-term sediment flux is governed by fault slip rates and the tectonically-controlled transient incision, and that sediment flux estimates from the BQART, steady-state assumptions, and incised volumes are highly correlated. This is supported by our 10Be erosion rates, which are controlled by fault slip and incision rates, and the associated landsliding. Based on a new landslide inventory, we show that erosion rate differences are likely due to differences in incision-related landslide activity across these catchments, and that landslides are a major component of sediment fluxes. From a data set of >13000 grain size counts on hillslope grain size supply and fluvial sediment at catchment outlets, we observe that landslides deliver material 20-200% coarser than other sediment sources, and that this coarse supply has an impact on the grain size distributions being exported from the catchments. Combining our sediment flux and grain size data sets, we are able to show that for our catchments, and potentially also for any areas that respond to changes in climate or tectonics via enhanced landsliding, sediment flux and grain size export increase concomitantly and scale non-linearly. Finally, we explore the consequences that this coupled sediment flux and grain size increase may have on basin stratigraphy, and we show that it has a significant effect on amplifying gravel front progradation.

  6. WEB-DHM: A distributed biosphere hydrological model developed by coupling a simple biosphere scheme with a hillslope hydrological model

    USDA-ARS?s Scientific Manuscript database

    The coupling of land surface models and hydrological models potentially improves the land surface representation, benefiting both the streamflow prediction capabilities as well as providing improved estimates of water and energy fluxes into the atmosphere. In this study, the simple biosphere model 2...

  7. Cavity-coupled double-quantum dot at finite bias: Analogy with lasers and beyond

    NASA Astrophysics Data System (ADS)

    Kulkarni, Manas; Cotlet, Ovidiu; Türeci, Hakan E.

    2014-09-01

    We present a theoretical and experimental study of photonic and electronic transport properties of a voltage biased InAs semiconductor double quantum dot (DQD) that is dipole coupled to a superconducting transmission line resonator. We obtain the master equation for the reduced density matrix of the coupled system of cavity photons and DQD electrons accounting systematically for both the presence of phonons and the effect of leads at finite voltage bias. We subsequently derive analytical expressions for transmission, phase response, photon number, and the nonequilibrium steady-state electron current. We show that the coupled system under finite bias realizes an unconventional version of a single-atom laser and analyze the spectrum and the statistics of the photon flux leaving the cavity. In the transmission mode, the system behaves as a saturable single-atom amplifier for the incoming photon flux. Finally, we show that the back action of the photon emission on the steady-state current can be substantial. Our analytical results are compared to exact master equation results establishing regimes of validity of various analytical models. We compare our findings to available experimental measurements.

  8. Self-Consistent Large-Scale Magnetosphere-Ionosphere Coupling: Computational Aspects and Experiments

    NASA Technical Reports Server (NTRS)

    Newman, Timothy S.

    2003-01-01

    Both external and internal phenomena impact the terrestrial magnetosphere. For example, solar wind and particle precipitation effect the distribution of hot plasma in the magnetosphere. Numerous models exist to describe different aspects of magnetosphere characteristics. For example, Tsyganenko has developed a series of models (e.g., [TSYG89]) that describe the magnetic field, and Stern [STER75] and Volland [VOLL73] have developed an analytical model that describes the convection electric field. Over the past several years, NASA colleague Khazanov, working with Fok and others, has developed a large-scale coupled model that tracks particle flow to determine hot ion and electron phase space densities in the magnetosphere. This model utilizes external data such as solar wind densities and velocities and geomagnetic indices (e.g., Kp) to drive computational processes that evaluate magnetic, electric field, and plasma sheet models at any time point. These models are coupled such that energetic ion and electron fluxes are produced, with those fluxes capable of interacting with the electric field model. A diagrammatic representation of the coupled model is shown.

  9. The role of evapotranspiration fluxes in summertime precipitation in Central Europe: coupled groundwater-atmosphere simulations with the WRF-LEAFHYDRO system.

    NASA Astrophysics Data System (ADS)

    Regueiro Sanfiz, Sabela; Gómez, Breo; Miguez Macho, Gonzalo

    2017-04-01

    Because of its continental position, Central Europe summertime rainfall is largely dependent on local or regional dynamics, with precipitation water possibly also significantly dependent on local sources. We investigate here land-atmosphere feedbacks over inland Europe focusing in particular on evapotranspiration-soil moisture connections and precipitation recycling ratios. For this purpose, a set of simulations were performed with the Weather Research and Forecasting (WRF) model coupled to LEAFHYDRO soil-vegetation-hydrology model. The LEAFHYDRO Land Surface Model includes a groundwater parameterization with a dynamic water table fully coupling groundwater to the soil-vegetation and surface waters via two-way fluxes. A water tagging capability in the WRF model is used to quantify evapotranspiration contribution to precipitation over the region. Several years are considered, including summertime 2002, during which severe flooding occurred. Preliminary results from our simulations highlight the link of large areas with shallow water with high air moisture values through the summer season; and the importance of the contribution of evapotranspiration to summertime precipitation. Consequently, results show the advantages of using a fully coupled hydrology-atmospheric modeling system.

  10. A Coupling Function Linking Solar Wind /IMF Variations and Geomagnetic Activity

    NASA Astrophysics Data System (ADS)

    Lyatsky, W.; Lyatskaya, S.; Tan, A.

    2006-12-01

    From a theoretical consideration we have obtained expressions for the coupling function linking solar wind and IMF parameters to geomagnetic activity. While deriving these expressions, we took into account (1) a scaling factor due to polar cap expansion while increasing a reconnected magnetic flux in the dayside magnetosphere, and (2) a modified Akasofu function for the reconnected flux for combined IMF Bz and By components. The resulting coupling function may be written as Fa = aVsw B^1/2 sina (q/2), where Vsw is the solar wind speed, B^ is the magnitude of the IMF vector in the Y-Z plane, q is the clock angle between the Z axis and IMF vector in the Y-Z plane, a is a coefficient, and the exponent, a, is derived from the experimental data and equals approximately to 2. The Fa function differs primary by the power of B^ from coupling functions proposed earlier. For testing the obtained coupling function, we used solar wind and interplanetary magnetic field data for four years for maximum and minimum solar activity. We computed 2-D contour plots for correlation coefficients for the dependence of geomagnetic activity indices on solar wind parameters for different coupling functions. The obtained diagrams showed a good correspondence to the theoretic coupling function Fa for a »2. The maximum correlation coefficient for the dependence of the polar cap PC index on the Fa coupling function is significantly higher than that computed for other coupling functions used researchers, for the same time intervals.

  11. Development of a 1.5D plasma transport code for coupling to full orbit runaway electron simulations

    NASA Astrophysics Data System (ADS)

    Lore, J. D.; Del Castillo-Negrete, D.; Baylor, L.; Carbajal, L.

    2017-10-01

    A 1.5D (1D radial transport + 2D equilibrium geometry) plasma transport code is being developed to simulate runaway electron generation, mitigation, and avoidance by coupling to the full-orbit kinetic electron transport code KORC. The 1.5D code solves the time-dependent 1D flux surface averaged transport equations with sources for plasma density, pressure, and poloidal magnetic flux, along with the Grad-Shafranov equilibrium equation for the 2D flux surface geometry. Disruption mitigation is simulated by introducing an impurity neutral gas `pellet', with impurity densities and electron cooling calculated from ionization, recombination, and line emission rate coefficients. Rapid cooling of the electrons increases the resistivity, inducing an electric field which can be used as an input to KORC. The runaway electron current is then included in the parallel Ohm's law in the transport equations. The 1.5D solver will act as a driver for coupled simulations to model effects such as timescales for thermal quench, runaway electron generation, and pellet impurity mixtures for runaway avoidance. Current progress on the code and details of the numerical algorithms will be presented. Work supported by the US DOE under DE-AC05-00OR22725.

  12. Cardiac system bioenergetics: metabolic basis of the Frank-Starling law

    PubMed Central

    Saks, Valdur; Dzeja, Petras; Schlattner, Uwe; Vendelin, Marko; Terzic, Andre; Wallimann, Theo

    2006-01-01

    The fundamental principle of cardiac behaviour is described by the Frank-Starling law relating force of contraction during systole with end-diastolic volume. While both work and respiration rates increase linearly with imposed load, the basis of mechano-energetic coupling in heart muscle has remained a long-standing enigma. Here, we highlight advances made in understanding of complex cellular and molecular mechanisms that orchestrate coupling of mitochondrial oxidative phosphorylation with ATP utilization for muscle contraction. Cardiac system bioenergetics critically depends on an interrelated metabolic infrastructure regulating mitochondrial respiration and energy fluxes throughout cellular compartments. The data reviewed indicate the significance of two interrelated systems regulating mitochondrial respiration and energy fluxes in cells: (1) the creatine kinase, adenylate kinase and glycolytic pathways that communicate flux changes generated by cellular ATPases within structurally organized enzymatic modules and networks; and (2) a secondary system based on mitochondrial participation in cellular calcium cycle, which adjusts substrate oxidation and energy-transducing processes to meet increasing cellular energy demands. By conveying energetic signals to metabolic sensors, coupled phosphotransfer reactions provide a high-fidelity regulation of the excitation–contraction cycle. Such integration of energetics with calcium signalling systems provides the basis for ‘metabolic pacing’, synchronizing the cellular electrical and mechanical activities with energy supply processes. PMID:16410283

  13. Quantifying nutrient uptake as driver of rock weathering in forest ecosystems by magnesium stable isotopes

    NASA Astrophysics Data System (ADS)

    Uhlig, David; Schuessler, Jan A.; Bouchez, Julien; Dixon, Jean L.; von Blanckenburg, Friedhelm

    2017-06-01

    Plants and soil microbiota play an active role in rock weathering and potentially couple weathering at depth with erosion at the soil surface. The nature of this coupling is still unresolved because we lacked means to quantify the passage of chemical elements from rock through higher plants. In a temperate forested landscape characterised by relatively fast (˜ 220 t km-2 yr-1) denudation and a kinetically limited weathering regime of the Southern Sierra Critical Zone Observatory (SSCZO), California, we measured magnesium (Mg) stable isotopes that are sensitive indicators of Mg utilisation by biota. We find that Mg is highly bio-utilised: 50-100 % of the Mg released by chemical weathering is taken up by forest trees. To estimate the tree uptake of other bio-utilised elements (K, Ca, P and Si) we compared the dissolved fluxes of these elements and Mg in rivers with their solubilisation fluxes from rock (rock dissolution flux minus secondary mineral formation flux). We find a deficit in the dissolved fluxes throughout, which we attribute to the nutrient uptake by forest trees. Therefore both the Mg isotopes and the flux comparison suggest that a substantial part of the major element weathering flux is consumed by the tree biomass. The enrichment of 26Mg over 24Mg in tree trunks relative to leaves suggests that tree trunks account for a substantial fraction of the net uptake of Mg. This isotopic and elemental compartment separation is prevented from obliteration (which would occur by Mg redissolution) by two potential effects. Either the mineral nutrients accumulate today in regrowing forest biomass after clear cutting, or they are exported in litter and coarse woody debris (CWD) such that they remain in solid biomass. Over pre-forest-management weathering timescales, this removal flux might have been in operation in the form of natural erosion of CWD. Regardless of the removal mechanism, our approach provides entirely novel means towards the direct quantification of biogenic uptake following weathering. We find that Mg and other nutrients and the plant-beneficial element Si (bio-elements) are taken up by trees at up to 6 m depth, and surface recycling of all bio-elements but P is minimal. Thus, in the watersheds of the SSCZO, the coupling between erosion and weathering might be established by bio-elements that are taken up by trees, are not recycled and are missing in the dissolved river flux due to erosion as CWD and as leaf-derived bio-opal for Si. We suggest that the partitioning of a biogenic weathering flux into eroded plant debris might represent a significant global contribution to element export after weathering in eroding mountain catchments that are characterised by a continuous supply of fresh mineral nutrients.

  14. Using CO2:CO Correlations to Improve Inverse Analyses of Carbon Fluxes

    NASA Technical Reports Server (NTRS)

    Palmer, Paul I.; Suntharalingam, Parvadha; Jones, Dylan B. A.; Jacob, Daniel J.; Streets, David G.; Fu, Qingyan; Vay, Stephanie A.; Sachse, Glen W.

    2006-01-01

    Observed correlations between atmospheric concentrations of CO2 and CO represent potentially powerful information for improving CO2 surface flux estimates through coupled CO2-CO inverse analyses. We explore the value of these correlations in improving estimates of regional CO2 fluxes in east Asia by using aircraft observations of CO2 and CO from the TRACE-P campaign over the NW Pacific in March 2001. Our inverse model uses regional CO2 and CO surface fluxes as the state vector, separating biospheric and combustion contributions to CO2. CO2-CO error correlation coefficients are included in the inversion as off-diagonal entries in the a priori and observation error covariance matrices. We derive error correlations in a priori combustion source estimates of CO2 and CO by propagating error estimates of fuel consumption rates and emission factors. However, we find that these correlations are weak because CO source uncertainties are mostly determined by emission factors. Observed correlations between atmospheric CO2 and CO concentrations imply corresponding error correlations in the chemical transport model used as the forward model for the inversion. These error correlations in excess of 0.7, as derived from the TRACE-P data, enable a coupled CO2-CO inversion to achieve significant improvement over a CO2-only inversion for quantifying regional fluxes of CO2.

  15. Intrapersonal Variability in Negative Affect as a Moderator of Accuracy and Bias in Interpersonal Perception.

    PubMed

    Sadikaj, Gentiana; Moskowitz, D S; Zuroff, David C

    2015-08-01

    High intrapersonal variability has frequently been found to be related to poor personal and interpersonal outcomes. Little research has examined processes by which intrapersonal variability influences outcomes. This study explored the relation of intrapersonal variability in negative affect (negative affect flux) to accuracy and bias in the perception of a romantic partner's quarrelsome behavior. A sample of 93 cohabiting couples participated in a study using an event-contingent recording (ECR) methodology in which they reported their negative affect, quarrelsome behavior, and perception of their partner's quarrelsome behavior in interactions with each other during a 20-day period. Negative affect flux was operationalized as the within-person standard deviation of negative affect scores across couple interactions. Findings suggested that participants were both accurate in tracking changes in their partner's quarrelsome behavior and biased in assuming their partner's quarrelsome behavior mirrored their own quarrelsome behavior. Negative affect flux moderated both accuracy and bias of assumed similarity such that participants with higher flux manifested both greater tracking accuracy and larger bias of assumed similarity. Negative affect flux may be related to enhanced vigilance to close others' negative behavior, which may explain higher tracking accuracy and propensity to rely on a person's own negative behavior as a means of judging others' negative behavior. These processes may augment these individuals' negative interpersonal behavior, enhance cycles of negative social interactions, and lead to poor intrapersonal and interpersonal outcomes.

  16. Quantifying fluxes and characterizing compositional changes of dissolved organic matter in aquatic systems in situ using combined acoustic and optical measurements

    USGS Publications Warehouse

    Downing, B.D.; Boss, E.; Bergamaschi, B.A.; Fleck, J.A.; Lionberger, M.A.; Ganju, N.K.; Schoellhamer, D.H.; Fujii, R.

    2009-01-01

    Studying the dynamics and geochemical behavior of dissolved and particulate organic material is difficult because concentration and composition may rapidly change in response to aperiodic as well as periodic physical and biological forcing. Here we describe a method useful for quantifying fluxes and analyzing dissolved organic matter (DOM) dynamics. The method uses coupled optical and acoustic measurements that provide robust quantitative estimates of concentrations and constituent characteristics needed to investigate processes and calculate fluxes of DOM in tidal and other lotic environments. Data were collected several times per hour for 2 weeks or more, with the frequency and duration limited only by power consumption and data storage capacity. We assessed the capabilities and limitations of the method using data from a winter deployment in a natural tidal wetland of the San Francisco Bay estuary. We used statistical correlation of in situ optical data with traditional laboratory analyses of discrete water samples to calibrate optical properties suited as proxies for DOM concentrations and characterizations. Coupled with measurements of flow velocity, we calculated long-term residual horizontal fluxes of DOC into and out from a tidal wetland. Subsampling the dataset provides an estimate for the maximum sampling interval beyond which the error in flux estimate is significantly increased.?? 2009, by the American Society of Limnology and Oceanography, Inc.

  17. Assessing Air-Sea Interaction in the Evolving NASA GEOS Model

    NASA Technical Reports Server (NTRS)

    Clayson, Carol Anne; Roberts, J. Brent

    2015-01-01

    In order to understand how the climate responds to variations in forcing, one necessary component is to understand the full distribution of variability of exchanges of heat and moisture between the atmosphere and ocean. Surface heat and moisture fluxes are critical to the generation and decay of many coupled air-sea phenomena. These mechanisms operate across a number of scales and contain contributions from interactions between the anomalous (i.e. non-mean), often extreme-valued, flux components. Satellite-derived estimates of the surface turbulent and radiative heat fluxes provide an opportunity to assess results from modeling systems. Evaluation of only time mean and variability statistics, however only provides limited traceability to processes controlling what are often regime-dependent errors. This work will present an approach to evaluate the representation of the turbulent fluxes at the air-sea interface in the current and evolving Goddard Earth Observing System (GEOS) model. A temperature and moisture vertical profile-based clustering technique is used to identify robust weather regimes, and subsequently intercompare the turbulent fluxes and near-surface parameters within these regimes in both satellite estimates and GEOS-driven data sets. Both model reanalysis (MERRA) and seasonal-to-interannual coupled GEOS model simulations will be evaluated. Particular emphasis is placed on understanding the distribution of the fluxes including extremes, and the representation of near-surface forcing variables directly related to their estimation. Results from these analyses will help identify the existence and source of regime-dependent biases in the GEOS model ocean surface turbulent fluxes. The use of the temperature and moisture profiles for weather-state clustering will be highlighted for its potential broad application to 3-D output typical of model simulations.

  18. First UAV Measurements of Entrainment Layer Fluxes with Coupled Cloud Property Measurements

    NASA Astrophysics Data System (ADS)

    Thomas, R. M.; Praveen, P. S.; Wilcox, E. M.; Pistone, K.; Bender, F.; Ramanathan, V.

    2012-12-01

    This study details entrainment flux measurements made from a lightweight unmanned aerial vehicle (UAV) containing turbulent water vapor flux instrumentation (Thomas et al., 2012). The system was flown for 26 flights during the Cloud, Aerosol, Radiative forcing, Dynamics EXperiment (CARDEX) in the Maldives in March 2012 to study interrelationships between entrainment, aerosols, water budget, cloud microphysics and radiative fluxes in a trade wind cumulus cloud regime. A major advantage of using this lightweight, precision autopiloted UAV system with scientific telemetry is the ability to target small-scale features in the boundary layer, such as an entrainment layer, with minimal aircraft induced disruption. Results are presented from two UAVs flown in stacked formation: one UAV situated in-cloud measuring cloud-droplet size distribution spectra and liquid water content, and another co-located 100m above measuring turbulent properties and entrainment latent heat flux (λEE). We also show latent heat flux and turbulence measurements routinely made at the entrainment layer base and altitudes from the surface up to 4kft. Ratios of λEE to corresponding surface tower values (λES) display a bimodal frequency distribution with ranges 0.22-0.53 and 0.79-1.5, with occasional events >7. Reasons for this distribution are discussed drawing upon boundary layer and free tropospheric dynamics and meteorology, turbulence length scales, surface conditions, and cloud interactions. Latent heat flux profiles are combined with in-cloud UAV Liquid Water Content (LWC) data and surface based Liquid Water Path (LWP) and Precipitable Water Vapor (PWV) measurements to produce observationally constrained vertical water budgets, providing insights into diurnal coupling of λEE and λES. Observed λEE, λES, water budgets, and cloud microphysical responses to entrainment are then contextualized with respect to measured aerosol loading profiles and airmass history.

  19. Assessing air-sea interaction in the evolving NASA GEOS model

    NASA Astrophysics Data System (ADS)

    Clayson, C. A.; Roberts, J. B.

    2014-12-01

    In order to understand how the climate responds to variations in forcing, one necessary component is to understand the full distribution of variability of exchanges of heat and moisture between the atmosphere and ocean. Surface heat and moisture fluxes are critical to the generation and decay of many coupled air-sea phenomena. These mechanisms operate across a number of scales and contain contributions from interactions between the anomalous (i.e. non-mean), often extreme-valued, flux components. Satellite-derived estimates of the surface turbulent and radiative heat fluxes provide an opportunity to assess results from modeling systems. Evaluation of only time mean and variability statistics, however only provides limited traceability to processes controlling what are often regime-dependent errors. This work will present an approach to evaluate the representation of the turbulent fluxes at the air-sea interface in the current and evolving Goddard Earth Observing System (GEOS) model. A temperature and moisture vertical profile-based clustering technique is used to identify robust weather regimes, and subsequently intercompare the turbulent fluxes and near-surface parameters within these regimes in both satellite estimates and GEOS-driven data sets. Both model reanalysis (MERRA) and seasonal-to-interannual coupled GEOS model simulations will be evaluated. Particular emphasis is placed on understanding the distribution of the fluxes including extremes, and the representation of near-surface forcing variables directly related to their estimation. Results from these analyses will help identify the existence and source of regime-dependent biases in the GEOS model ocean surface turbulent fluxes. The use of the temperature and moisture profiles for weather-state clustering will be highlighted for its potential broad application to 3-D output typical of model simulations.

  20. Worldlines and worldsheets for non-abelian lattice field theories: Abelian color fluxes and Abelian color cycles

    NASA Astrophysics Data System (ADS)

    Gattringer, Christof; Göschl, Daniel; Marchis, Carlotta

    2018-03-01

    We discuss recent developments for exact reformulations of lattice field theories in terms of worldlines and worldsheets. In particular we focus on a strategy which is applicable also to non-abelian theories: traces and matrix/vector products are written as explicit sums over color indices and a dual variable is introduced for each individual term. These dual variables correspond to fluxes in both, space-time and color for matter fields (Abelian color fluxes), or to fluxes in color space around space-time plaquettes for gauge fields (Abelian color cycles). Subsequently all original degrees of freedom, i.e., matter fields and gauge links, can be integrated out. Integrating over complex phases of matter fields gives rise to constraints that enforce conservation of matter flux on all sites. Integrating out phases of gauge fields enforces vanishing combined flux of matter-and gauge degrees of freedom. The constraints give rise to a system of worldlines and worldsheets. Integrating over the factors that are not phases (e.g., radial degrees of freedom or contributions from the Haar measure) generates additional weight factors that together with the constraints implement the full symmetry of the conventional formulation, now in the language of worldlines and worldsheets. We discuss the Abelian color flux and Abelian color cycle strategies for three examples: the SU(2) principal chiral model with chemical potential coupled to two of the Noether charges, SU(2) lattice gauge theory coupled to staggered fermions, as well as full lattice QCD with staggered fermions. For the principal chiral model we present some simulation results that illustrate properties of the worldline dynamics at finite chemical potentials.

  1. A Decadal Inversion of CO2 Using the Global Eulerian-Lagrangian Coupled Atmospheric Model (GELCA): Sensitivity to the Ground-Based Observation Network

    NASA Technical Reports Server (NTRS)

    Shirai, T.; Ishizawa, M.; Zhuravlev, R.; Ganshin, A.; Belikov, D.; Saito, M.; Oda, T.; Valsala, V.; Gomez-Pelaez, A. J.; Langenfelds, R.; hide

    2017-01-01

    We present an assimilation system for atmospheric carbon dioxide (CO2) using a Global Eulerian-Lagrangian Coupled Atmospheric model (GELCA), and demonstrate its capability to capture the observed atmospheric CO2 mixing ratios and to estimate CO2 fluxes. With the efficient data handling scheme in GELCA, our system assimilates non-smoothed CO2 data from observational data products such as the Observation Package (ObsPack) data products as constraints on surface fluxes. We conducted sensitivity tests to examine the impact of the site selections and the prior uncertainty settings of observation on the inversion results. For these sensitivity tests, we made five different sitedata selections from the ObsPack product. In all cases, the time series of the global net CO2 flux to the atmosphere stayed close to values calculated from the growth rate of the observed global mean atmospheric CO2 mixing ratio. At regional scales, estimated seasonal CO2 fluxes were altered, depending on the CO2 data selected for assimilation. Uncertainty reductions (URs) were determined at the regional scale and compared among cases. As measures of the model-data mismatch, we used the model-data bias, root-mean-square error, and the linear correlation. For most observation sites, the model-data mismatch was reasonably small. Regarding regional flux estimates, tropical Asia was one of the regions that showed a significant impact from the observation network settings. We found that the surface fluxes in tropical Asia were the most sensitive to the use of aircraft measurements over the Pacific, and the seasonal cycle agreed better with the results of bottom-up studies when the aircraft measurements were assimilated. These results confirm the importance of these aircraft observations, especially for constraining surface fluxes in the tropics.

  2. Development of compact explosively driven ferromagnetic seed source for helical magnetic flux compression generator

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Zhang, He; Ma, Shaojie; Shi, Yunlei

    2018-05-01

    A compact explosively driven ferromagnetic generator (FMG) is developed for seed power source of helical magnetic flux compression generator (HMFCG). The mechanism of FMG is studied by establishing a magnetoelectric conversion model. Analytical calculations and numerical simulations are conducted on the magnetostatic field of open-circuit magnet in FMG. The calculation method for the magnet's cross-sectional magnetic flux is obtained. The pulse sources made of different materials and equipped with different initiation modes are experimentally explored. Besides, the dynamic coupling experiments of FMG and HMFCG are carried out. The results show that, N35 single-ended and double-ended initiating FMGs have an energy conversion efficiency ηt not less than 14.6% and 24.4%, respectively; FMG has an output pulse current not less than 4kA and an energy of about 3J on 320nH inductive load; HMFCG experiences energy gains of about 2-3 times. FMG and HMFCG can be coupled to form a full-blast electrical driving pulse source.

  3. Soil organic matter dynamics and CO2 fluxes in relation to landscape scale processes: linking process understanding to regional scale carbon mass-balances

    NASA Astrophysics Data System (ADS)

    Van Oost, Kristof; Nadeu, Elisabet; Wiaux, François; Wang, Zhengang; Stevens, François; Vanclooster, Marnik; Tran, Anh; Bogaert, Patrick; Doetterl, Sebastian; Lambot, Sébastien; Van wesemael, Bas

    2014-05-01

    In this paper, we synthesize the main outcomes of a collaborative project (2009-2014) initiated at the UCL (Belgium). The main objective of the project was to increase our understanding of soil organic matter dynamics in complex landscapes and use this to improve predictions of regional scale soil carbon balances. In a first phase, the project characterized the emergent spatial variability in soil organic matter storage and key soil properties at the regional scale. Based on the integration of remote sensing, geomorphological and soil analysis techniques, we quantified the temporal and spatial variability of soil carbon stock and pool distribution at the local and regional scales. This work showed a linkage between lateral fluxes of C in relation with sediment transport and the spatial variation in carbon storage at multiple spatial scales. In a second phase, the project focused on characterizing key controlling factors and process interactions at the catena scale. In-situ experiments of soil CO2 respiration showed that the soil carbon response at the catena scale was spatially heterogeneous and was mainly controlled by the catenary variation of soil physical attributes (soil moisture, temperature, C quality). The hillslope scale characterization relied on advanced hydrogeophysical techniques such as GPR (Ground Penetrating Radar), EMI (Electromagnetic induction), ERT (Electrical Resistivity Tomography), and geophysical inversion and data mining tools. Finally, we report on the integration of these insights into a coupled and spatially explicit model and its application. Simulations showed that C stocks and redistribution of mass and energy fluxes are closely coupled, they induce structured spatial and temporal patterns with non negligible attached uncertainties. We discuss the main outcomes of these activities in relation to sink-source behavior and relevance of erosion processes for larger-scale C budgets.

  4. Dynamic optimization of metabolic networks coupled with gene expression.

    PubMed

    Waldherr, Steffen; Oyarzún, Diego A; Bockmayr, Alexander

    2015-01-21

    The regulation of metabolic activity by tuning enzyme expression levels is crucial to sustain cellular growth in changing environments. Metabolic networks are often studied at steady state using constraint-based models and optimization techniques. However, metabolic adaptations driven by changes in gene expression cannot be analyzed by steady state models, as these do not account for temporal changes in biomass composition. Here we present a dynamic optimization framework that integrates the metabolic network with the dynamics of biomass production and composition. An approximation by a timescale separation leads to a coupled model of quasi-steady state constraints on the metabolic reactions, and differential equations for the substrate concentrations and biomass composition. We propose a dynamic optimization approach to determine reaction fluxes for this model, explicitly taking into account enzyme production costs and enzymatic capacity. In contrast to the established dynamic flux balance analysis, our approach allows predicting dynamic changes in both the metabolic fluxes and the biomass composition during metabolic adaptations. Discretization of the optimization problems leads to a linear program that can be efficiently solved. We applied our algorithm in two case studies: a minimal nutrient uptake network, and an abstraction of core metabolic processes in bacteria. In the minimal model, we show that the optimized uptake rates reproduce the empirical Monod growth for bacterial cultures. For the network of core metabolic processes, the dynamic optimization algorithm predicted commonly observed metabolic adaptations, such as a diauxic switch with a preference ranking for different nutrients, re-utilization of waste products after depletion of the original substrate, and metabolic adaptation to an impending nutrient depletion. These examples illustrate how dynamic adaptations of enzyme expression can be predicted solely from an optimization principle. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Ground-based Remote Sensing for Quantifying Subsurface and Surface Co-variability to Scale Arctic Ecosystem Functioning

    NASA Astrophysics Data System (ADS)

    Oktem, R.; Wainwright, H. M.; Curtis, J. B.; Dafflon, B.; Peterson, J.; Ulrich, C.; Hubbard, S. S.; Torn, M. S.

    2016-12-01

    Predicting carbon cycling in Arctic requires quantifying tightly coupled surface and subsurface processes including permafrost, hydrology, vegetation and soil biogeochemistry. The challenge has been a lack of means to remotely sense key ecosystem properties in high resolution and over large areas. A particular challenge has been characterizing soil properties that are known to be highly heterogeneous. In this study, we exploit tightly-coupled above/belowground ecosystem functioning (e.g., the correlations among soil moisture, vegetation and carbon fluxes) to estimate subsurface and other key properties over large areas. To test this concept, we have installed a ground-based remote sensing platform - a track-mounted tram system - along a 70 m transect in the ice-wedge polygonal tundra near Barrow, Alaska. The tram carries a suite of near-surface remote sensing sensors, including sonic depth, thermal IR, NDVI and multispectral sensors. Joint analysis with multiple ground-based measurements (soil temperature, active layer soil moisture, and carbon fluxes) was performed to quantify correlations and the dynamics of above/belowground processes at unprecedented resolution, both temporally and spatially. We analyzed the datasets with particular focus on correlating key subsurface and ecosystem properties with surface properties that can be measured by satellite/airborne remote sensing over a large area. Our results provided several new insights about system behavior and also opens the door for new characterization approaches. We documented that: (1) soil temperature (at >5 cm depth; critical for permafrost thaw) was decoupled from soil surface temperature and was influenced strongly by soil moisture, (2) NDVI and greenness index were highly correlated with both soil moisture and gross primary productivity (based on chamber flux data), and (3) surface deformation (which can be measured by InSAR) was a good proxy for thaw depth dynamics at non-inundated locations.

  6. On the Relation Between Soft Electron Precipitations in the Cusp Region and Solar Wind Coupling Functions

    NASA Astrophysics Data System (ADS)

    Dang, Tong; Zhang, Binzheng; Wiltberge, Michael; Wang, Wenbin; Varney, Roger; Dou, Xiankang; Wan, Weixing; Lei, Jiuhou

    2018-01-01

    In this study, the correlations between the fluxes of precipitating soft electrons in the cusp region and solar wind coupling functions are investigated utilizing the Lyon-Fedder-Mobarry global magnetosphere model simulations. We conduct two simulation runs during periods from 20 March 2008 to 16 April 2008 and from 15 to 24 December 2014, which are referred as "Equinox Case" and "Solstice Case," respectively. The simulation results of Equinox Case show that the plasma number density in the high-latitude cusp region scales well with the solar wind number density (ncusp/nsw=0.78), which agrees well with the statistical results from the Polar spacecraft measurements. For the Solstice Case, the plasma number density of high-latitude cusp in both hemispheres increases approximately linearly with upstream solar wind number density with prominent hemispheric asymmetry. Due to the dipole tilt effect, the average number density ratio ncusp/nsw in the Southern (summer) Hemisphere is nearly 3 times that in the Northern (winter) Hemisphere. In addition to the solar wind number density, 20 solar wind coupling functions are tested for the linear correlation with the fluxes of precipitating cusp soft electrons. The statistical results indicate that the solar wind dynamic pressure p exhibits the highest linear correlation with the cusp electron fluxes for both equinox and solstice conditions, with correlation coefficients greater than 0.75. The linear regression relations for equinox and solstice cases may provide an empirical calculation for the fluxes of cusp soft electron precipitation based on the upstream solar wind driving conditions.

  7. Metastability and avalanche dynamics in strongly correlated gases with long-range interactions

    NASA Astrophysics Data System (ADS)

    Hruby, Lorenz; Dogra, Nishant; Landini, Manuele; Donner, Tobias; Esslinger, Tilman

    2018-03-01

    We experimentally study the stability of a bosonic Mott insulator against the formation of a density wave induced by long-range interactions and characterize the intrinsic dynamics between these two states. The Mott insulator is created in a quantum degenerate gas of 87-Rubidium atoms, trapped in a 3D optical lattice. The gas is located inside and globally coupled to an optical cavity. This causes interactions of global range, mediated by photons dispersively scattered between a transverse lattice and the cavity. The scattering comes with an atomic density modulation, which is measured by the photon flux leaking from the cavity. We initialize the system in a Mott-insulating state and then rapidly increase the global coupling strength. We observe that the system falls into either of two distinct final states. One is characterized by a low photon flux, signaling a Mott insulator, and the other is characterized by a high photon flux, which we associate with a density wave. Ramping the global coupling slowly, we observe a hysteresis loop between the two states—a further signature of metastability. A comparison with a theoretical model confirms that the metastability originates in the competition between short- and global-range interactions. From the increasing photon flux monitored during the switching process, we find that several thousand atoms tunnel to a neighboring site on the timescale of the single-particle dynamics. We argue that a density modulation, initially forming in the compressible surface of the trapped gas, triggers an avalanche tunneling process in the Mott-insulating region.

  8. Heat flux exchange estimation by using ATSR SST data in TOGA area

    NASA Astrophysics Data System (ADS)

    Xue, Yong; Lawrence, Sean P.; Llewellyn-Jones, David T.

    1995-12-01

    The study of phenomena such as ENSO requires consideration of the dynamics and thermodynamics of the coupled ocean-atmosphere system. The dynamic and thermal properties of the atmosphere and ocean are directly affected by air-sea transfers of fluxes of momentum, heat and moisture. In this paper, we present results of turbulent heat fluxes calculated by using two years (1992 and 1993) monthly average TOGA data and ATSR SST data in TOGA area. A comparison with published results indicates good qualitative agreement. Also, we compared the results of heat flux exchange by using ATSR SST data and by using the TOGA bucket SST data. The ATSR SST data set has been shown to be useful in helping to estimate the large space scale heat flux exchange.

  9. Finite Element Analysis of Poroelastic Composites Undergoing Thermal and Gas Diffusion

    NASA Technical Reports Server (NTRS)

    Salamon, N. J. (Principal Investigator); Sullivan, Roy M.; Lee, Sunpyo

    1995-01-01

    A theory for time-dependent thermal and gas diffusion in mechanically time-rate-independent anisotropic poroelastic composites has been developed. This theory advances previous work by the latter two authors by providing for critical transverse shear through a three-dimensional axisymmetric formulation and using it in a new hypothesis for determining the Biot fluid pressure-solid stress coupling factor. The derived governing equations couple material deformation with temperature and internal pore pressure and more strongly couple gas diffusion and heat transfer than the previous theory. Hence the theory accounts for the interactions between conductive heat transfer in the porous body and convective heat carried by the mass flux through the pores. The Bubnov Galerkin finite element method is applied to the governing equations to transform them into a semidiscrete finite element system. A numerical procedure is developed to solve the coupled equations in the space and time domains. The method is used to simulate two high temperature tests involving thermal-chemical decomposition of carbon-phenolic composites. In comparison with measured data, the results are accurate. Moreover unlike previous work, for a single set of poroelastic parameters, they are consistent with two measurements in a restrained thermal growth test.

  10. Scaling of electromagnetic transducers for shunt damping and energy harvesting

    NASA Astrophysics Data System (ADS)

    Elliott, Stephen J.; Zilletti, Michele

    2014-04-01

    In order for an electromagnetic transducer to operate well as either a mechanical shunt damper or as a vibration energy harvester, it must have good electromechanical coupling. A simple two-port analysis is used to derive a non-dimensional measure of electromechanical coupling, which must be large compared with unity for efficient operation in both of these applications. The two-port parameters for an inertial electromagnetic transducer are derived, from which this non-dimensional coupling parameter can be evaluated. The largest value that this parameter takes is approximately equal to the square of the magnetic flux density times the length of wire in the field, divided by the mechanical damping times the electrical resistance. This parameter is found to be only of the order of one for voice coil devices that weigh approximately 1 kg, and so such devices are generally not efficient, within the definition used here, in either of these applications. The non-dimensional coupling parameter is found to scale in approximate proportion to the device's characteristic length, however, and so although miniaturised devices are less efficient, greater efficiency can be obtained with large devices, such as those used to control civil engineering structures.

  11. Fluxes of biogenic volatile organic compounds measured and modelled above a Norway spruce forest

    NASA Astrophysics Data System (ADS)

    Juráň, Stanislav; Fares, Silvano; Pallozzi, Emanuele; Guidolotti, Gabriele; Savi, Flavia; Alivernini, Alessandro; Calfapietra, Carlo; Večeřová, Kristýna; Křůmal, Kamil; Večeřa, Zbyněk; Cudlín, Pavel; Urban, Otmar

    2016-04-01

    Fluxes of biogenic volatile organic compounds (BVOCs) were investigated at Norway spruce forest at Bílý Kříž in Beskydy Mountains of the Czech Republic during the summer 2014. A proton-transfer-reaction-time-of-flight mass spectrometer (PTR-TOF-MS, Ionicon Analytik, Austria) has been coupled with eddy-covariance system. Additionally, Inverse Lagrangian Transport Model has been used to derive fluxes from concentration gradient of various monoterpenes previously absorbed into n-heptane by wet effluent diffusion denuder with consequent quantification by gas chromatography with mass spectrometry detection. Modelled data cover each one day of three years with different climatic conditions and previous precipitation patterns. Model MEGAN was run to cover all dataset with monoterpene fluxes and measured basal emission factor. Highest fluxes measured by eddy-covariance were recorded during the noon hours, represented particularly by monoterpenes and isoprene. Inverse Lagrangian Transport Model suggests most abundant monoterpene fluxes being α- and β-pinene. Principal component analysis revealed dependencies of individual monoterpene fluxes on air temperature and particularly global radiation; however, these dependencies were monoterpene specific. Relationships of monoterpene fluxes with CO2 flux and relative air humidity were found to be negative. MEGAN model correlated to eddy-covariance PTR-TOF-MS measurement evince particular differences, which will be shown and discussed. Bi-directional fluxes of oxygenated short-chain volatiles (methanol, formaldehyde, acetone, acetaldehyde, formic acid, acetic acid, methyl vinyl ketone, methacrolein, and methyl ethyl ketone) were recorded by PTR-TOF-MS. Volatiles of anthropogenic origin as benzene and toluene were likely transported from the most benzene polluted region in Europe - Ostrava city and adjacent part of Poland around Katowice, where metallurgical and coal mining industries are located. Those were accumulated during the night bellow a shallow boundary layer and subsequently resuspended during the day. We discuss here the importance of wide-spread temperate Norway spruce forests in biosphere-atmosphere exchange under climate change. Although temperate forests could play a key role in air pollutants removal, these contribute at the same time to a secondary organic aerosol formation by production of BVOCs. Measurements of trace gases are important for further parametrization of biosphere-atmosphere continuum transport models.

  12. Drivers of Arctic Ocean warming in CMIP5 models

    NASA Astrophysics Data System (ADS)

    Burgard, Clara; Notz, Dirk

    2017-05-01

    We investigate changes in the Arctic Ocean energy budget simulated by 26 general circulation models from the Coupled Model Intercomparison Project Phase 5 framework. Our goal is to understand whether the Arctic Ocean warming between 1961 and 2099 is primarily driven by changes in the net atmospheric surface flux or by changes in the meridional oceanic heat flux. We find that the simulated Arctic Ocean warming is driven by positive anomalies in the net atmospheric surface flux in 11 models, by positive anomalies in the meridional oceanic heat flux in 11 models, and by positive anomalies in both energy fluxes in four models. The different behaviors are mainly characterized by the different changes in meridional oceanic heat flux that lead to different changes in the turbulent heat loss to the atmosphere. The multimodel ensemble mean is hence not representative of a consensus across the models in Arctic climate projections.

  13. Feedback control of persistent-current oscillation based on the atomic-clock technique

    NASA Astrophysics Data System (ADS)

    Yu, Deshui; Dumke, Rainer

    2018-05-01

    We propose a scheme of stabilizing the persistent-current Rabi oscillation based on the flux qubit-resonator-atom hybrid structure. The low-Q L C resonator weakly interacts with the flux qubit and maps the persistent-current Rabi oscillation of the flux qubit onto the intraresonator electric field. This oscillating electric field is further coupled to a Rydberg-Rydberg transition of the 87Rb atoms. The Rabi-frequency fluctuation of the flux qubit is deduced from measuring the atomic population via the fluorescence detection and stabilized by feedback controlling the external flux bias. Our numerical simulation indicates that the feedback-control method can efficiently suppress the background fluctuations in the flux qubit, especially in the low-frequency limit. This technique may be extensively applicable to different types of superconducting circuits, paving a way to long-term-coherence superconducting quantum information processing.

  14. Impact of compressibility on heat transport characteristics of large terrestrial planets

    NASA Astrophysics Data System (ADS)

    Čížková, Hana; van den Berg, Arie; Jacobs, Michel

    2017-07-01

    We present heat transport characteristics for mantle convection in large terrestrial exoplanets (M ⩽ 8M⊕) . Our thermal convection model is based on a truncated anelastic liquid approximation (TALA) for compressible fluids and takes into account a selfconsistent thermodynamic description of material properties derived from mineral physics based on a multi-Einstein vibrational approach. We compare heat transport characteristics in compressible models with those obtained with incompressible models based on the classical- and extended Boussinesq approximation (BA and EBA respectively). Our scaling analysis shows that heat flux scales with effective dissipation number as Nu ∼Dieff-0.71 and with Rayleigh number as Nu ∼Raeff0.27. The surface heat flux of the BA models strongly overestimates the values from the corresponding compressible models, whereas the EBA models systematically underestimate the heat flux by ∼10%-15% with respect to a corresponding compressible case. Compressible models are also systematically warmer than the EBA models. Compressibility effects are therefore important for mantle dynamic processes, especially for large rocky exoplanets and consequently also for formation of planetary atmospheres, through outgassing, and the existence of a magnetic field, through thermal coupling of mantle and core dynamic systems.

  15. Modelling deuterium release from tungsten after high flux high temperature deuterium plasma exposure

    NASA Astrophysics Data System (ADS)

    Grigorev, Petr; Matveev, Dmitry; Bakaeva, Anastasiia; Terentyev, Dmitry; Zhurkin, Evgeny E.; Van Oost, Guido; Noterdaeme, Jean-Marie

    2016-12-01

    Tungsten is a primary candidate for plasma facing materials for future fusion devices. An important safety concern in the design of plasma facing components is the retention of hydrogen isotopes. Available experimental data is vast and scattered, and a consistent physical model of retention of hydrogen isotopes in tungsten is still missing. In this work we propose a model of non-equilibrium hydrogen isotopes trapping under fusion relevant plasma exposure conditions. The model is coupled to a diffusion-trapping simulation tool and is used to interpret recent experiments involving high plasma flux exposures. From the computational analysis performed, it is concluded that high flux high temperature exposures (T = 1000 K, flux = 1024 D/m2/s and fluence of 1026 D/m2) result in generation of sub-surface damage and bulk diffusion, so that the retention is driven by both sub-surface plasma-induced defects (bubbles) and trapping at natural defects. On the basis of the non-equilibrium trapping model we have estimated the amount of H stored in the sub-surface region to be ∼10-5 at-1, while the bulk retention is about 4 × 10-7 at-1, calculated by assuming the sub-surface layer thickness of about 10 μm and adjusting the trap concentration to comply with the experimental results for the integral retention.

  16. Metabolic remodeling triggered by salivation and diabetes in major salivary glands.

    PubMed

    Nogueira, Fernando N; Carvalho, Rui A

    2017-02-01

    The metabolic profile of major salivary glands was evaluated by 13 C nuclear magnetic resonance isotopomer analysis ( 13 C NMR-IA) following the infusion of [U- 13 C]glucose in order to define the true metabolic character of submandibular (SM) and parotid (PA) glands at rest and during salivary stimulation, and to determine the metabolic remodeling driven by diabetes. In healthy conditions, the SM gland is characterized at rest by a glycolytic metabolic profile and extensive pyruvate cycling. On the contrary, the PA gland, although also dominated by glycolysis, also possesses significant Krebs' cycle activity and does not sustain extensive pyruvate cycling. Under stimulation, both glands increase their glycolytic and Krebs' cycle fluxes, but the metabolic coupling between the two pathways is further compromised to account for the much increased biosynthetic anaplerotic fluxes. In diabetes, the responsiveness of the PA gland to a salivary stimulus is seriously hindered, mostly as a result of the incapacity to burst glycolytic activity and also an inability to improve the Krebs' cycle flux to compensate. The Krebs' cycle activity in the SM gland is also consistently compromised, but the glycolytic flux in this gland is more resilient. This diabetes-induced metabolic remodeling in SM and PA salivary glands illustrates the metabolic need to sustain adequate saliva production, and identifies glycolytic and oxidative pathways as key players in the metabolic dynamism of salivary glands. Copyright © 2016 John Wiley & Sons, Ltd.

  17. Volatile selenium flux from the great Salt Lake, Utah

    USGS Publications Warehouse

    Diaz, X.; Johnson, W.P.; Oliver, W.A.; Naftz, D.L.

    2009-01-01

    The removal mechanisms that govern Se concentrations in the Great Salt Lake are unknown despite this terminal lake being an avian habitat of hemispheric importance. However, the volatilization flux of Se from the Great Salt Lake has not been previously measured due to challenges of analysis in this hypersaline environment This paper presents results from recent field studies examining the spatial distribution of dissolved volatile Se (areally and with depth) in the south arm (main body) of the Great Salt Lake. The analyses involved collection of dissolved volatile Se in a cryofocusing trap system via sparging with helium. The cryotrapped volatile Se was digested with nitric acid and analyzed by inductively coupled plasma mass spectrometry (ICP-MS). Results show concentrations of dissolved volatile Se that increase with depth in the shallow brine, suggesting that phytoplankton in the open waters and bioherms in shallow sites (<4 m in depth) may be responsible for volatile Se production. Volatile Se flux to the atmosphere was determined using mass transport models corrected to simulate the highly saline environment of the south arm of the Great Salt Lake. The estimated annual flux of volatile Se was 1455 kg/year within a range from 560 to 3780 kg Se/year for the 95% confidence interval and from 970 to 2180 kg Se/year within the 68% confidence interval. ?? 2009 American Chemical Society.

  18. Estimation of suspended sediment flux in streams using continuous turbidity and flow data coupled with laboratory concentrations

    Treesearch

    Jack Lewis

    2002-01-01

    The widening use of sediment surrogate measurements such as turbidity necessitates consideration of new methods for estimating sediment flux. Generally, existing methods can be simply be used in new ways. The effectiveness of a method varies according to the quality of the surrogate data and its relation to suspended sediment concentration (SSC). For this discussion,...

  19. Air-Sea Enthalpy and Momentum Exchange at Major Hurricane Wind Speeds

    DTIC Science & Technology

    2010-06-01

    momentum fluxes. Hurricane simulations using the Navy Coupled Ocean / Atmosphere Mesoscale Prediction System are also sensitive to the surface flux and sea... Atmospheric Research NWP Numerical Weather Prediction NOAA National Oceanic and Atmospheric Administration PTH Pressure, Temperature, relative Humidity RE87... Oceanic and Atmospheric Administration for organizing the CBLAST field program and collecting the data used for this study. xx THIS PAGE

  20. A salt oscillator in the glacial northern Atlantic? part II: A 'scale analysis' model

    NASA Astrophysics Data System (ADS)

    Birchfield, G. Edward; Broecker, Wallace S.

    1990-12-01

    A proposal has been made by Broecker et al. (1990) that rapid changes on a time scale of a thousand years or so, seen over much of the last major glacial in the Greenland ice core record, represent significant climate changes and are caused by a salt oscillator in the glacial Atlantic. This proposal is examined in terms of a rudimentary quantitative model. Scale analysis asserts that heat transported to the high-latitude atmosphere when the thermohaline circulation is turned on, is large enough to produce the melting rates found by Fairbanks (1989) for the time interval around that of the Younger Dryas event and that these melting rates are of the same order of magnitude as the mass flux associated with water vapor flux to the Pacific Ocean estimated by Broecker (1989). Scale analysis also suggests that the salinity fluxes associated with 1) the water vapor flux mechanism, 2) the rapid melting episodes of Fairbanks, 3) possibly ice sheet growth events, 4) net transport by the thermohaline circulation and 5) net transport by turbulent eddy mixing are roughly of the same order of magnitude and therefore may be important mechanisms for producing salinity oscillations on a time scale of a few thousands of years, (see Broecker, 1990). By integration of simple salt conservation equations, it is found that model oscillations with a period of a few thousand years occur over a significant range of salinity fluxes; estimated fluxes fall well within the range for which oscillations exist. The model also suggests that there may exist close coupling between the European-Scandinavian ice sheets and the bimodal response of the oscillator; that is, significant increases or decreases in continental ice volume may accompany each complete cycle of the oscillator. In addition, it appears that continental ice may be required for the salt oscillator to function. A crucial element, which cannot adequately be investigated with the present model, concerns the local effect of salinity source/sinks associated with melt water production. The proximity of these source regions on the neighboring ice sheets to the local regions where production of deep water occurs may play a critical role in the functioning of the proposed salt oscillator. In addition, further treatment of thermodynamics is needed to investigate the feasibility of a salinity driven oscillator.

  1. Radiation/convection coupling in rocket motors and plumes

    NASA Technical Reports Server (NTRS)

    Farmer, R. C.; Saladino, A. J.

    1993-01-01

    The three commonly used propellant systems - H2/O2, RP-1/O2, and solid propellants - primarily radiate as molecular emitters, non-scattering small particles, and scattering larger particles, respectively. Present technology has accepted the uncoupling of the radiation analysis from that of the flowfield. This approximation becomes increasingly inaccurate as one considers plumes, interior rocket chambers, and nuclear rocket propulsion devices. This study will develop a hierarchy of methods which will address radiation/convection coupling in all of the aforementioned propulsion systems. The nature of the radiation/convection coupled problem is that the divergence of the radiative heat flux must be included in the energy equation and that the local, volume-averaged intensity of the radiation must be determined by a solution of the radiative transfer equation (RTE). The intensity is approximated by solving the RTE along several lines of sight (LOS) for each point in the flowfield. Such a procedure is extremely costly; therefore, further approximations are needed. Modified differential approximations are being developed for this purpose. It is not obvious which order of approximations are required for a given rocket motor analysis. Therefore, LOS calculations have been made for typical rocket motor operating conditions in order to select the type approximations required. The results of these radiation calculations, and the interpretation of these intensity predictions are presented herein.

  2. Flow Coupling Effects in Jet-in-Crossflow Flowfields

    NASA Technical Reports Server (NTRS)

    Bain, D. B.; Smith, C. E.; Liscinsky, D. S.; Holdeman, J. D.

    1996-01-01

    The combustor designer is typically required to design liner orifices that effectively mix air jets with crossflow effluent. CFD combustor analysis is typically used in the design process; however the jets are usually assumed to enter the combustor with a uniform velocity and turbulence profile. The jet-mainstream flow coupling is usually neglected because of the computational expense. This CFD study was performed to understand the effect of jet-mainstream flow coupling, and to assess the accuracy of jet boundary conditions that are commonly used in combustor internal calculations. A case representative of a plenum-fed quick-mix section of a Rich Burn/Quick Mix/Lean Burn combustor (i.e. a jet-mainstream mass-flow ratio of about 3 and a jet-mainstream momentum-flux ratio of about 30) was investigated. This case showed that the jet velocity entering the combustor was very non-uniform, with a low normal velocity at the leading edge of the orifice and a high normal velocity at the trailing edge of the orifice. Three different combustor-only cases were analyzed with uniform inlet jet profile. None of the cases matched the plenum-fed calculations. To assess liner thickness effects, a thin-walled case was also analyzed. The CFD analysis showed the thin-walled jets had more penetration than the thick-walled jets.

  3. Application of the Principles of Systems Biology and Wiener’s Cybernetics for Analysis of Regulation of Energy Fluxes in Muscle Cells in Vivo

    PubMed Central

    Guzun, Rita; Saks, Valdur

    2010-01-01

    The mechanisms of regulation of respiration and energy fluxes in the cells are analyzed based on the concepts of systems biology, non-equilibrium steady state kinetics and applications of Wiener’s cybernetic principles of feedback regulation. Under physiological conditions cardiac function is governed by the Frank-Starling law and the main metabolic characteristic of cardiac muscle cells is metabolic homeostasis, when both workload and respiration rate can be changed manifold at constant intracellular level of phosphocreatine and ATP in the cells. This is not observed in skeletal muscles. Controversies in theoretical explanations of these observations are analyzed. Experimental studies of permeabilized fibers from human skeletal muscle vastus lateralis and adult rat cardiomyocytes showed that the respiration rate is always an apparent hyperbolic but not a sigmoid function of ADP concentration. It is our conclusion that realistic explanations of regulation of energy fluxes in muscle cells require systemic approaches including application of the feedback theory of Wiener’s cybernetics in combination with detailed experimental research. Such an analysis reveals the importance of limited permeability of mitochondrial outer membrane for ADP due to interactions of mitochondria with cytoskeleton resulting in quasi-linear dependence of respiration rate on amplitude of cyclic changes in cytoplasmic ADP concentrations. The system of compartmentalized creatine kinase (CK) isoenzymes functionally coupled to ANT and ATPases, and mitochondrial-cytoskeletal interactions separate energy fluxes (mass and energy transfer) from signalling (information transfer) within dissipative metabolic structures – intracellular energetic units (ICEU). Due to the non-equilibrium state of CK reactions, intracellular ATP utilization and mitochondrial ATP regeneration are interconnected by the PCr flux from mitochondria. The feedback regulation of respiration occurring via cyclic fluctuations of cytosolic ADP, Pi and Cr/PCr ensures metabolic stability necessary for normal function of cardiac cells. PMID:20479996

  4. Dynamics and sources of reduced sulfur, humic substances and dissolved organic carbon in a temperate river system affected by agricultural practices.

    PubMed

    Marie, Lauriane; Pernet-Coudrier, Benoît; Waeles, Matthieu; Gabon, Marine; Riso, Ricardo

    2015-12-15

    Although reduced organic sulfur substances (RSS) as well as humic substances (HS) are widely suspected to play a role in, for example, metal speciation or used as a model of dissolved organic carbon (DOC) in laboratory studies, reports of their quantification in natural waters are scarce. We have examined the dynamics and sources of reduced sulfur, HS and DOC over an annual cycle in a river system affected by agricultural practices. The new differential pulse cathodic stripping voltammetry was successfully applied to measure glutathione-like compounds (GSHs), thioacetamide-like compounds (TAs) and the liquid chromatography coupled to organic detector to analyze HS and DOC at high frequency in the Penzé River (NW France). The streamflow-concentration patterns, principal components analysis and flux analysis allowed discrimination of the source of each organic compound type. Surprisingly, the two RSS and HS detected in all samples, displayed different behavior. As previously shown, manuring practice is the main source of DOC and HS in this watershed where agricultural activity is predominant. The HS were then transferred to the river systems via runoff, particularly during the spring and autumn floods, which are responsible of >60% of the annual flux. TAs had a clear groundwater source and may be formed underground, whereas GSHs displayed two sources: one aquagenic in spring and summer probably linked to the primary productivity and a second, which may be related to bacterial degradation. High sampling frequency allowed a more accurate assessment of the flux values which were 280 tC y(-1) for DOC representing 20 kg C ha(-1) y(-1). HS, TAs and GSHs fluxes represented 60, 13, and 4% of the total annual DOC export, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Continuous soil VOCl measurements with automated flux chambers and micro-ECD gas chromatography coupled with the thermal desorption and cooled injection systems

    NASA Astrophysics Data System (ADS)

    Molodovskaya, M. S.; Svensson, T.; Pitts, A.; Delmonte, J.; Nesic, Z.; Oberg, G.

    2010-12-01

    The volatile organic chlorinated compounds (VOCl) are important components of the global chlorine budget. The origin of VOCl in the environment was for decades thought to be strictly anthropogenic. Over the past decade, a number of studies have however shown that VOCls are naturally formed in soil, and nowadays this source is recognized as a crucial part of the global biogeochemical chlorine cycle. The relative contribution of soil VOCl to the global chlorine cycle is however unclear, a key reason being that monitoring of soil VOCl is complicated by low concentrations and high variability of emission rates. Static chamber deployments coupled with canister gas sampling and gas chromatography (GC) analysis is the most commonly used method for quantifying VOCl emissions. Static chambers are however of limited use for estimating larger scale fluxes since the method is highly labor intensive (leading low sampling frequency). The poor data resolution resulting from these limitations can strongly bias the data extrapolation. Here, we report a method that would allow more continuous and precise VOCl flux measurements. The study has been carried out in a forest in British Columbia, Canada, using automated dynamic chambers and advanced GC technique. The chamber setup is based on a design that previously has been employed and proven successful for carbon dioxide and soil respiration measurements. The method includes a collar permanently inserted into the ground and an attached dome-shaped cover. The air from the closed chamber is pumped through the on-site sampling device. The cover opens and closes automatically between deployments (40 min in average), which helps to minimize the chamber supervision and obtain more continuous data. Soil VOCl concentrations are commonly at the ppt-level, much lower than atmospheric carbon dioxide, so necessary adjustments were made to the chamber system to pre-concentrate the compounds of interest. During each deployment, soil air from the automated chamber was continuously pumped through the glass tubes filled with carbon-based absorbent (Carbotrap 300) to capture and retain VOCl. At the end of each measurement period, the tubes are brought back to the lab, and the content is analyzed by Agilent 7890 GC/micro-ECD coupled with the Gerstel Thermal Desorption System (TDS) and Cooled Injection System (CIS). The ultra sensitive micro-ECD detection and high-efficiency capillary column (Rtx®-VMS, 20m x 0.18mm ID x 1.0µm) allows rapid separation and quantification of the mid-weight VOCl such as chloroform, carbon tetrachloride, 1,1,1-trichloroethane and bromochloromethane. The GC-method dynamic range is linear within 0.1-200.0ng, and the analytical precision is determined to be 4%. The described system can be used for the analysis of soil/atmosphere exchange of VOCl at the detection limit of 1.9ng m-2 h-1, which is far below previously reported average soil emission levels from forest soils. The high precision GC analysis combined with the automatic chambers makes it possible to study the high spatial and temporal variability of soil VOCl fluxes.

  6. A priori study of subgrid-scale flux of a passive scalar in isotropic homogeneous turbulence.

    PubMed

    Chumakov, Sergei G

    2008-09-01

    We perform a direct numerical simulation (DNS) of forced homogeneous isotropic turbulence with a passive scalar that is forced by mean gradient. The DNS data are used to study the properties of subgrid-scale flux of a passive scalar in the framework of large eddy simulation (LES), such as alignment trends between the flux, resolved, and subgrid-scale flow structures. It is shown that the direction of the flux is strongly coupled with the subgrid-scale stress axes rather than the resolved flow quantities such as strain, vorticity, or scalar gradient. We derive an approximate transport equation for the subgrid-scale flux of a scalar and look at the relative importance of the terms in the transport equation. A particular form of LES tensor-viscosity model for the scalar flux is investigated, which includes the subgrid-scale stress. Effect of different models for the subgrid-scale stress on the model for the subgrid-scale flux is studied.

  7. Two-Flux Method for Transient Radiative Transfer in a Semitransparent Layer

    NASA Technical Reports Server (NTRS)

    Siegel, Robert

    1996-01-01

    The two-flux method was used to obtain transient solutions for a plane layer including internal reflections and scattering. The layer was initially at uniform temperature, and was heated or cooled by external radiation and convection. The two-flux equations were examined as a means for evaluating the radiative flux gradient in the transient energy equation. Comparisons of transient temperature distributions using the two-flux method were made with results where the radiative flux gradient was evaluated from the exact radiative transfer equations. Good agreement was obtained for optical thicknesses from 0.5 to 5 and for refractive indices of 1 and 2. Illustrative results obtained with the two-flux method demonstrate the effect of isotropic scattering coupled with changing the refractive index. For small absorption with large scattering the maximum layer temperature is increased when the refractive index is increased. For larger absorption the effect is opposite, and the maximum temperature decreases with increased refractive index .

  8. Genome-scale metabolic reconstructions and theoretical investigation of methane conversion in Methylomicrobium buryatense strain 5G(B1).

    PubMed

    de la Torre, Andrea; Metivier, Aisha; Chu, Frances; Laurens, Lieve M L; Beck, David A C; Pienkos, Philip T; Lidstrom, Mary E; Kalyuzhnaya, Marina G

    2015-11-25

    Methane-utilizing bacteria (methanotrophs) are capable of growth on methane and are attractive systems for bio-catalysis. However, the application of natural methanotrophic strains to large-scale production of value-added chemicals/biofuels requires a number of physiological and genetic alterations. An accurate metabolic model coupled with flux balance analysis can provide a solid interpretative framework for experimental data analyses and integration. A stoichiometric flux balance model of Methylomicrobium buryatense strain 5G(B1) was constructed and used for evaluating metabolic engineering strategies for biofuels and chemical production with a methanotrophic bacterium as the catalytic platform. The initial metabolic reconstruction was based on whole-genome predictions. Each metabolic step was manually verified, gapfilled, and modified in accordance with genome-wide expression data. The final model incorporates a total of 841 reactions (in 167 metabolic pathways). Of these, up to 400 reactions were recruited to produce 118 intracellular metabolites. The flux balance simulations suggest that only the transfer of electrons from methanol oxidation to methane oxidation steps can support measured growth and methane/oxygen consumption parameters, while the scenario employing NADH as a possible source of electrons for particulate methane monooxygenase cannot. Direct coupling between methane oxidation and methanol oxidation accounts for most of the membrane-associated methane monooxygenase activity. However the best fit to experimental results is achieved only after assuming that the efficiency of direct coupling depends on growth conditions and additional NADH input (about 0.1-0.2 mol of incremental NADH per one mol of methane oxidized). The additional input is proposed to cover loss of electrons through inefficiency and to sustain methane oxidation at perturbations or support uphill electron transfer. Finally, the model was used for testing the carbon conversion efficiency of different pathways for C1-utilization, including different variants of the ribulose monophosphate pathway and the serine cycle. We demonstrate that the metabolic model can provide an effective tool for predicting metabolic parameters for different nutrients and genetic perturbations, and as such, should be valuable for metabolic engineering of the central metabolism of M. buryatense strains.

  9. Demonstration of Tokamak Ohmic Flux Saving by Transient Coaxial Helicity Injection in the National Spherical Torus Experiment

    NASA Astrophysics Data System (ADS)

    Raman, R.; Mueller, D.; Nelson, B. A.; Jarboe, T. R.; Gerhardt, S.; Kugel, H. W.; Leblanc, B.; Maingi, R.; Menard, J.; Ono, M.; Paul, S.; Roquemore, L.; Sabbagh, S.; Soukhanovskii, V.

    2010-03-01

    Transient coaxial helicity injection (CHI) started discharges in the National Spherical Torus Experiment (NSTX) have attained peak currents up to 300 kA and when coupled to induction, it has produced up to 200 kA additional current over inductive-only operation. CHI in NSTX has shown to be energetically quite efficient, producing a plasma current of about 10 A/J of capacitor bank energy. In addition, for the first time, the CHI-produced toroidal current that couples to induction continues to increase with the energy supplied by the CHI power supply at otherwise similar values of the injector flux, indicating the potential for substantial current generation capability by CHI in NSTX and in future toroidal devices.

  10. Enhanced Ahead-of-Eye TC Coastal Ocean Cooling Processes and their Impact on Air-Sea Heat Fluxes and Storm Intensity

    NASA Astrophysics Data System (ADS)

    Seroka, G. N.; Miles, T. N.; Glenn, S. M.; Xu, Y.; Forney, R.; Roarty, H.; Schofield, O.; Kohut, J. T.

    2016-02-01

    Any landfalling tropical cyclone (TC) must first traverse the coastal ocean. TC research, however, has focused over the deep ocean, where TCs typically spend the vast majority of their lifetime. This paper will show that the ocean's response to TCs can be different between deep and shallow water, and that the additional shallow water processes must be included in coupled models for accurate air-sea flux treatment and TC intensity prediction. The authors will present newly observed coastal ocean processes that occurred in response to Hurricane Irene (2011), due to the presence of a coastline, an ocean bottom, and highly stratified conditions. These newly observed processes led to enhanced ahead-of-eye SST cooling that significantly impacted air-sea heat fluxes and Irene's operationally over-predicted storm intensity. Using semi-idealized modeling, we find that in shallow water in Irene, only 6% of cooling due to air-sea heat fluxes, 17% of cooling due to 1D vertical mixing, and 50% of cooling due to all processes (1D mixing, air-sea heat fluxes, upwelling, and advection) occurred ahead-of-eye—consistent with previous studies. Observations from an underwater glider and buoys, however, indicated 75-100% of total SST cooling over the continental shelf was ahead-of-eye. Thus, the new coastal ocean cooling processes found in this study must occur almost completely ahead-of-eye. We show that Irene's intense cooling was not captured by basic satellite SST products and coupled ocean-atmosphere hurricane models, and that including the cooling in WRF modeling mitigated the high bias in model predictions. Finally, we provide evidence that this SST cooling—not track, wind shear, or dry air intrusion—was the key missing contribution to Irene's decay just prior to NJ landfall. Ongoing work is exploring the use of coupled WRF-ROMS modeling in the coastal zone.

  11. Secular trends and climate drift in coupled ocean-atmosphere general circulation models

    NASA Astrophysics Data System (ADS)

    Covey, Curt; Gleckler, Peter J.; Phillips, Thomas J.; Bader, David C.

    2006-02-01

    Coupled ocean-atmosphere general circulation models (coupled GCMs) with interactive sea ice are the primary tool for investigating possible future global warming and numerous other issues in climate science. A long-standing problem with such models is that when different components of the physical climate system are linked together, the simulated climate can drift away from observation unless constrained by ad hoc adjustments to interface fluxes. However, 11 modern coupled GCMs, including three that do not employ flux adjustments, behave much better in this respect than the older generation of models. Surface temperature trends in control run simulations (with external climate forcing such as solar brightness and atmospheric carbon dioxide held constant) are small compared with observed trends, which include 20th century climate change due to both anthropogenic and natural factors. Sea ice changes in the models are dominated by interannual variations. Deep ocean temperature and salinity trends are small enough for model control runs to extend over 1000 simulated years or more, but trends in some regions, most notably the Arctic, differ substantially among the models and may be problematic. Methods used to initialize coupled GCMs can mitigate climate drift but cannot eliminate it. Lengthy "spin-ups" of models, made possible by increasing computer power, are one reason for the improvements this paper documents.

  12. Gauged baby Skyrme model with a Chern-Simons term

    NASA Astrophysics Data System (ADS)

    Samoilenka, A.; Shnir, Ya.

    2017-02-01

    The properties of the multisoliton solutions of the (2 +1 )-dimensional Maxwell-Chern-Simons-Skyrme model are investigated numerically. Coupling to the Chern-Simons term allows for existence of the electrically charge solitons which may also carry magnetic fluxes. Two particular choices of the potential term is considered: (i) the weakly bounded potential and (ii) the double vacuum potential. In the absence of gauge interaction in the former case the individual constituents of the multisoliton configuration are well separated, while in the latter case the rotational invariance of the configuration remains unbroken. It is shown that coupling of the planar multi-Skyrmions to the electric and magnetic field strongly affects the pattern of interaction between the constituents. We analyze the dependency of the structure of the solutions, the energies, angular momenta, electric and magnetic fields of the configurations on the gauge coupling constant g , and the electric potential. It is found that, generically, the coupling to the Chern-Simons term strongly affects the usual pattern of interaction between the skyrmions, in particular the electric repulsion between the solitons may break the multisoliton configuration into partons. We show that as the gauge coupling becomes strong, both the magnetic flux and the electric charge of the solutions become quantized although they are not topological numbers.

  13. Surface Water and Energy Budgets for Sub-Saharan Africa in GFDL Coupled Climate Model

    NASA Astrophysics Data System (ADS)

    Tian, D.; Wood, E. F.; Vecchi, G. A.; Jia, L.; Pan, M.

    2015-12-01

    This study compare surface water and energy budget variables from the Geophysical Fluid Dynamics Laboratory (GFDL) FLOR models with the National Centers for Environmental Prediction (NCEP) Climate Forecast System Reanalysis (CFSR), Princeton University Global Meteorological Forcing Dataset (PGF), and PGF-driven Variable Infiltration Capacity (VIC) model outputs, as well as available observations over the sub-Saharan Africa. The comparison was made for four configurations of the FLOR models that included FLOR phase 1 (FLOR-p1) and phase 2 (FLOR-p2) and two phases of flux adjusted versions (FLOR-FA-p1 and FLOR-FA-p2). Compared to p1, simulated atmospheric states in p2 were nudged to the Modern-Era Retrospective Analysis for Research and Applications (MERRA) reanalysis. The seasonal cycle and annual mean of major surface water (precipitation, evapotranspiration, runoff, and change of storage) and energy variables (sensible heat, ground heat, latent heat, net solar radiation, net longwave radiation, and skin temperature) over a 34-yr period during 1981-2014 were compared in different regions in sub-Saharan Africa (West Africa, East Africa, and Southern Africa). In addition to evaluating the means in three sub-regions, empirical orthogonal functions (EOFs) analyses were conducted to compare both spatial and temporal characteristics of water and energy budget variables from four versions of GFDL FLOR, NCEP CFSR, PGF, and VIC outputs. This presentation will show how well each coupled climate model represented land surface physics and reproduced spatiotemporal characteristics of surface water and energy budget variables. We discuss what caused differences in surface water and energy budgets in land surface components of coupled climate model, climate reanalysis, and reanalysis driven land surface model. The comparisons will reveal whether flux adjustment and nudging would improve depiction of the surface water and energy budgets in coupled climate models.

  14. The role of diatom resting spores in pelagic-benthic coupling in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Rembauville, Mathieu; Blain, Stéphane; Manno, Clara; Tarling, Geraint; Thompson, Anu; Wolff, George; Salter, Ian

    2018-05-01

    Natural iron fertilization downstream of Southern Ocean island plateaus supports large phytoplankton blooms and promotes carbon export from the mixed layer. In addition to sequestering atmospheric CO2, the biological carbon pump also supplies organic matter (OM) to deep-ocean ecosystems. Although the total flux of OM arriving at the seafloor sets the energy input to the system, the chemical nature of OM is also of significance. However, a quantitative framework linking ecological flux vectors to OM composition is currently lacking. In the present study we report the lipid composition of export fluxes collected by five moored sediment traps deployed in contrasting productivity regimes of Southern Ocean island systems (Kerguelen, Crozet and South Georgia) and compile them with quantitative data on diatom and faecal pellet fluxes. At the three naturally iron-fertilized sites, the relative contribution of labile lipids (mono- and polyunsaturated fatty acids, unsaturated fatty alcohols) is 2-4 times higher than at low productivity sites. There is a strong attenuation of labile components as a function of depth, irrespective of productivity. The three island systems also display regional characteristics in lipid export. An enrichment of zooplankton dietary sterols, such as C27Δ5, at South Georgia is consistent with high zooplankton and krill biomass in the region and the importance of faecal pellets to particulate organic carbon (POC) flux. There is a strong association of diatom resting spore fluxes that dominate productive flux regimes with energy-rich unsaturated fatty acids. At the Kerguelen Plateau we provide a statistical framework to link seasonal variation in ecological flux vectors and lipid composition over a complete annual cycle. Our analyses demonstrate that ecological processes in the upper ocean, e.g. resting spore formation and grazing, not only impact the magnitude and stoichiometry of the Southern Ocean biological pump, but also regulate the composition of exported OM and the nature of pelagic-benthic coupling.

  15. Influence of Gap-Filling to Generate Continuous Datasets on Process Network Analysis

    NASA Astrophysics Data System (ADS)

    Yun, J.; Kim, J.; Kim, S.; Chun, J.

    2013-12-01

    The interplay of environmental conditions, energy, matter, and information defines the context and constraints for the set of processes and structures that may emerge during self-organization in complex ecosystems. Following Ruddell and Kumar (2009), we have evaluated statistical measures of characterizing the organization of the information flow in ecohydrological process networks in a deciduous forest ecosystem. We used the time series data obtained in 2008 (normal year) from the KoFlux forest tower site in central Korea. The 30-minute averages of eddy fluxes of energy, water and CO2 were measured at 40m above an oak-dominated old deciduous forest along with other micrometeorological variables. In this analysis, we selected 13 variables: atmospheric pressure (Pa), net ecosystem CO2 exchange (NEE), gross primary productivity (GPP), ecosystem respiration (RE), latent heat flux (LE), precipitation (Precip), solar radiation (Rg), air temperature (T), vapor pressure deficit (VPD), sensible heat flux (H), canopy temperature (Tc), wind direction (WD), and wind speed (WS). Our results support that a process network approach can be used to formally resolve feedback, time scales, and subsystems that define the complex ecosystem's organization by considering mutual information and transfer entropy simultaneously. We also observed that the turbulent and atmospheric boundary layer subsystems are coupled through feedback loops, and form a regional self-organizing subsystem in August when the forest is in healthy environment. In particular, we noted that the observed feedback loops in the process network disappeared when the time series data were artificially gap-filled for missing data, which is a common practice in post-data processing. In this presentation, we report the influence of gap-filling on the process network analysis by artificially assigning different sizes and periods of missing data and discuss the implication of our results on validation and calibration of ecosystem models. Acknowledgment. This research was supported by the Korea Meteorological Administration Research and Development Program under Grant CATER 2013-3030.

  16. Temperature and Thermal Expansion Analysis of the Cooling Roller Based on the Variable Heat Flux Boundary Condition

    NASA Astrophysics Data System (ADS)

    Li, Yongkang; Yang, Yang; He, Changyan

    2018-04-01

    Planar flow casting (PFC) is a primary method for preparing an amorphous ribbon. The qualities of the amorphous ribbon are significantly influenced by the temperature and thermal expansion of the cooling roller. This study proposes a new approach to analyze the three-dimensional temperature and thermal expansion of the cooling roller using variable heat flux that acted on the cooling roller as a boundary condition. First, a simplified two-dimensional model of the PFC is developed to simulate the distribution of the heat flux in the circumferential direction with the software FLUENT. The resulting heat flux is extended to be three-dimensional in the ribbon's width direction. Then, the extended heat flux is imported as the boundary condition by the CFX Expression Language, and the transient temperature of the cooling roller is analyzed in the CFX software. Next, the transient thermal expansion of the cooling roller is simulated through the thermal-structural coupling method. Simulation results show that the roller's temperature and expansion are unevenly distributed, reach the peak value in the middle width direction, and the quasi-steady state of the maximum temperature and thermal expansion are achieved after approximately 50 s and 150 s of casting, respectively. The minimum values of the temperature and expansion are achieved when the roller has a thickness of 45 mm. Finally, the reliability of the approach proposed is verified by measuring the roller's thermal expansion on the spot. This study provides theoretical guidance for the roller's thermal expansion prediction and the gap adjustment in the PFC.

  17. Temperature and Thermal Expansion Analysis of the Cooling Roller Based on the Variable Heat Flux Boundary Condition

    NASA Astrophysics Data System (ADS)

    Li, Yongkang; Yang, Yang; He, Changyan

    2018-06-01

    Planar flow casting (PFC) is a primary method for preparing an amorphous ribbon. The qualities of the amorphous ribbon are significantly influenced by the temperature and thermal expansion of the cooling roller. This study proposes a new approach to analyze the three-dimensional temperature and thermal expansion of the cooling roller using variable heat flux that acted on the cooling roller as a boundary condition. First, a simplified two-dimensional model of the PFC is developed to simulate the distribution of the heat flux in the circumferential direction with the software FLUENT. The resulting heat flux is extended to be three-dimensional in the ribbon's width direction. Then, the extended heat flux is imported as the boundary condition by the CFX Expression Language, and the transient temperature of the cooling roller is analyzed in the CFX software. Next, the transient thermal expansion of the cooling roller is simulated through the thermal-structural coupling method. Simulation results show that the roller's temperature and expansion are unevenly distributed, reach the peak value in the middle width direction, and the quasi-steady state of the maximum temperature and thermal expansion are achieved after approximately 50 s and 150 s of casting, respectively. The minimum values of the temperature and expansion are achieved when the roller has a thickness of 45 mm. Finally, the reliability of the approach proposed is verified by measuring the roller's thermal expansion on the spot. This study provides theoretical guidance for the roller's thermal expansion prediction and the gap adjustment in the PFC.

  18. Gas Core Reactor Numerical Simulation Using a Coupled MHD-MCNP Model

    NASA Technical Reports Server (NTRS)

    Kazeminezhad, F.; Anghaie, S.

    2008-01-01

    Analysis is provided in this report of using two head-on magnetohydrodynamic (MHD) shocks to achieve supercritical nuclear fission in an axially elongated cylinder filled with UF4 gas as an energy source for deep space missions. The motivation for each aspect of the design is explained and supported by theory and numerical simulations. A subsequent report will provide detail on relevant experimental work to validate the concept. Here the focus is on the theory of and simulations for the proposed gas core reactor conceptual design from the onset of shock generations to the supercritical state achieved when the shocks collide. The MHD model is coupled to a standard nuclear code (MCNP) to observe the neutron flux and fission power attributed to the supercritical state brought about by the shock collisions. Throughout the modeling, realistic parameters are used for the initial ambient gaseous state and currents to ensure a resulting supercritical state upon shock collisions.

  19. ``Lock and key mechanism'' for ligand binding with adrenergic receptors and the arising mechanical effects on the cell membrane

    NASA Astrophysics Data System (ADS)

    Lunghi, Laura; Deseri, Luca

    2013-03-01

    Chemicals hitting the surface of cell aggregates are known to give arise to cyclic Adenosine Mono Phosphate (cAMP), a second messenger that transduces inside the cell the effects of species that cannot get through the cell membrane. Ligands bind to a specific receptor following the so called ``lock and key mechanism'' (beta)-adrenergic receptors are proteins embedded in the lipid bilayer characterized by seven transmembrane helices. Thinning and thickening in cell membranes may be initiated by conformational changes of some of three of the seven domains above. The cell response is linked to the coupling of chemical, conformational and mechanical effects. Part of the cAMP remains intracellular, whereas the remaining fractions migrates outside the cell due to membrane transporters. A new Helmholtz free energy, accounting for receptor and transporter densities, receptor conformation field and membrane elasticity is investigated. It is shown how the density of active receptors is directly related to the conformation field and it enters the resulting balance equation for the membrane stress. Balance laws for fluxes of transporters and receptors, coupled with the former because of the outgoing cAMP flux caused by the transporters, as well as for the diffusive powers must be supplied. The Center for Nonlinear Analysis through the NSF Grant No. DMS-0635983 is gratefully acknowledged.

  20. High-Fidelity Coupled Monte-Carlo/Thermal-Hydraulics Calculations

    NASA Astrophysics Data System (ADS)

    Ivanov, Aleksandar; Sanchez, Victor; Ivanov, Kostadin

    2014-06-01

    Monte Carlo methods have been used as reference reactor physics calculation tools worldwide. The advance in computer technology allows the calculation of detailed flux distributions in both space and energy. In most of the cases however, those calculations are done under the assumption of homogeneous material density and temperature distributions. The aim of this work is to develop a consistent methodology for providing realistic three-dimensional thermal-hydraulic distributions by coupling the in-house developed sub-channel code SUBCHANFLOW with the standard Monte-Carlo transport code MCNP. In addition to the innovative technique of on-the fly material definition, a flux-based weight-window technique has been introduced to improve both the magnitude and the distribution of the relative errors. Finally, a coupled code system for the simulation of steady-state reactor physics problems has been developed. Besides the problem of effective feedback data interchange between the codes, the treatment of temperature dependence of the continuous energy nuclear data has been investigated.

  1. Velocity Enhancement by Synchronization of Magnetic Domain Walls

    NASA Astrophysics Data System (ADS)

    Hrabec, Aleš; Křižáková, Viola; Pizzini, Stefania; Sampaio, João; Thiaville, André; Rohart, Stanislas; Vogel, Jan

    2018-06-01

    Magnetic domain walls are objects whose dynamics is inseparably connected to their structure. In this Letter, we investigate magnetic bilayers, which are engineered such that a coupled pair of domain walls, one in each layer, is stabilized by a cooperation of Dzyaloshinskii-Moriya interaction and flux-closing mechanism. The dipolar field mediating the interaction between the two domain walls links not only their position but also their structure. We show that this link has a direct impact on their magnetic-field-induced dynamics. We demonstrate that in such a system the coupling leads to an increased domain wall velocity with respect to single domain walls. Since the domain wall dynamics is observed in a precessional regime, the dynamics involves the synchronization between the two walls to preserve the flux closure during motion. Properties of these coupled oscillating walls can be tuned by an additional in-plane magnetic field enabling a rich variety of states, from perfect synchronization to complete detuning.

  2. Superconductor magnetic reading and writing heads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, F.S.; Dugas, M.P.

    1990-11-20

    This paper describes a head for interfacing with a magnetic recording media. It comprises: a member of magnetic material forming at least a portion of a magnetic flux circuit ending with a pole face surface in interfacing relation to the media for establishing a main pole in proximity to the media in the magnetic flux circuit, magnetically responsive means in magnetically coupled relation to the magnetic flux circuit, means encasing at least a portion of the external surfaces of the member with superconductive material except for the media interfacing portion of the pole face surface. The encasing means including superconductingmore » material substantially surrounding the magnetic flux circuit in proximity to the pole face surface, and means establishing an environment for the superconductive material at a temperature for maintaining the superconductive material in its superconductive state, whereby magnetic flux in the magnetic flux circuit associated with the encasing means is concentrated within the magnetic flux circuit while placement of the pole face surface in proximity to the recording media permits sensitive magnetic flux controlled information exchanges between the media and the head.« less

  3. Comparative analysis of the bioenergetics of adult cardiomyocytes and nonbeating HL-1 cells: respiratory chain activities, glycolytic enzyme profiles, and metabolic fluxes.

    PubMed

    Monge, Claire; Beraud, Nathalie; Tepp, Kersti; Pelloux, Sophie; Chahboun, Siham; Kaambre, Tuuli; Kadaja, Lumme; Roosimaa, Mart; Piirsoo, Andres; Tourneur, Yves; Kuznetsov, Andrey V; Saks, Valdur; Seppet, Enn

    2009-04-01

    Comparative analysis of the bioenergetic parameters of adult rat cardiomyocytes (CM) and HL-1 cells with very different structure but similar cardiac phenotype was carried out with the aim of revealing the importance of the cell structure for regulation of its energy fluxes. Confocal microscopic analysis showed very different mitochondrial arrangement in these cells. The cytochrome content per milligram of cell protein was decreased in HL-1 cells by a factor of 7 compared with CM. In parallel, the respiratory chain complex activities were decreased by 4-8 times in the HL-1 cells. On the contrary, the activities of glycolytic enzymes, hexokinase (HK), and pyruvate kinase (PK) were increased in HL-1 cells, and these cells effectively transformed glucose into lactate. At the same time, the creatine kinase (CK) activity was significantly decreased in HL-1 cells. In conclusion, the results of this study comply with the assumption that in contrast to CM in which oxidative phosphorylation is a predominant provider of ATP and the CK system is a main carrier of energy from mitochondria to ATPases, in HL-1 cells the energy metabolism is based mostly on the glycolytic reactions coupled to oxidative phosphorylation through HK.

  4. Methods for heat transfer and temperature field analysis of the insulated diesel, phase 3

    NASA Technical Reports Server (NTRS)

    Morel, Thomas; Wahiduzzaman, Syed; Fort, Edward F.; Keribar, Rifat; Blumberg, Paul N.

    1988-01-01

    Work during Phase 3 of a program aimed at developing a comprehensive heat transfer and thermal analysis methodology for design analysis of insulated diesel engines is described. The overall program addresses all the key heat transfer issues: (1) spatially and time-resolved convective and radiative in-cylinder heat transfer, (2) steady-state conduction in the overall structure, and (3) cyclical and load/speed temperature transients in the engine structure. These are all accounted for in a coupled way together with cycle thermodynamics. This methodology was developed during Phases 1 and 2. During Phase 3, an experimental program was carried out to obtain data on heat transfer under cooled and insulated engine conditions and also to generate a database to validate the developed methodology. A single cylinder Cummins diesel engine was instrumented for instantaneous total heat flux and heat radiation measurements. Data were acquired over a wide range of operating conditions in two engine configurations. One was a cooled baseline. The other included ceramic coated components (0.050 inches plasma sprayed zirconia)-piston, head and valves. The experiments showed that the insulated engine has a smaller heat flux than the cooled one. The model predictions were found to be in very good agreement with the data.

  5. Quantifying the Role of Atmospheric Forcing in Ice Edge Retreat and Advance Including Wind-Wave Coupling

    DTIC Science & Technology

    2015-09-30

    Quantifying the Role of Atmospheric Forcing in Ice Edge Retreat and Advance Including Wind- Wave Coupling Peter S. Guest (NPS Technical Contact) Naval...surface fluxes and ocean waves in coupled models in the Beaufort and Chukchi Seas. 2. Understand the physics of heat and mass transfer from the ocean...to the atmosphere. 3. Improve forecasting of waves on the open ocean and in the marginal ice zone. 2 OBJECTIVES 1. Quantifying the open-ocean

  6. Impacts of mesoscale eddies in the South China Sea on biogeochemical cycles

    NASA Astrophysics Data System (ADS)

    Guo, Mingxian; Chai, Fei; Xiu, Peng; Li, Shiyu; Rao, Shivanesh

    2015-09-01

    Biogeochemical cycles associated with mesoscale eddies in the South China Sea (SCS) were investigated. The study was based on a coupled physical-biogeochemical Pacific Ocean model (Regional Ocean Model System-Carbon, Silicate, and Nitrogen Ecosystem, ROMS-CoSiNE) simulation for the period from 1991 to 2008. A total of 568 mesoscale eddies with lifetime longer than 30 days were used in the analysis. Composite analysis revealed that the cyclonic eddies were associated with abundance of nutrients, phytoplankton, and zooplankton while the anticyclonic eddies depressed biogeochemical cycles, which are generally controlled by the eddy pumping mechanism. In addition, diatoms were dominant in phytoplankton species due to the abundance of silicate. Dipole structures of vertical fluxes with net upward motion in cyclonic eddies and net downward motion in anticyclonic eddies were revealed. During the lifetime of an eddy, the evolutions of physical, biological, and chemical structures were not linearly coupled at the eddy core where plankton grew, and composition of the community depended not only on the physical and chemical processes but also on the adjustments by the predator-prey relationship.

  7. Combined Influence of Hall Current and Soret Effect on Chemically Reacting Magnetomicropolar Fluid Flow from Radiative Rotating Vertical Surface with Variable Suction in Slip-Flow Regime

    PubMed Central

    Jain, Preeti

    2014-01-01

    An analysis study is presented to study the effects of Hall current and Soret effect on unsteady hydromagnetic natural convection of a micropolar fluid in a rotating frame of reference with slip-flow regime. A uniform magnetic field acts perpendicularly to the porous surface which absorbs the micropolar fluid with variable suction velocity. The effects of heat absorption, chemical reaction, and thermal radiation are discussed and for this Rosseland approximation is used to describe the radiative heat flux in energy equation. The entire system rotates with uniform angular velocity Ω about an axis normal to the plate. The nonlinear coupled partial differential equations are solved by perturbation techniques. In order to get physical insight, the numerical results of translational velocity, microrotation, fluid temperature, and species concentration for different physical parameters entering into the analysis are discussed and explained graphically. Also, the results of the skin-friction coefficient, the couple stress coefficient, Nusselt number, and Sherwood number are discussed with the help of figures for various values of flow pertinent flow parameters. PMID:27350957

  8. Comparison of MERRA-2 and ECCO-v4 ocean surface heat fluxes: Consequences of different forcing feedbacks on ocean circulation and implications for climate data assimilation.

    NASA Astrophysics Data System (ADS)

    Strobach, E.; Molod, A.; Menemenlis, D.; Forget, G.; Hill, C. N.; Campin, J. M.; Heimbach, P.

    2017-12-01

    Forcing ocean models with reanalysis data is a common practice in ocean modeling. As part of this practice, prescribed atmospheric state variables and interactive ocean SST are used to calculate fluxes between the ocean and the atmosphere. When forcing an ocean model with reanalysis fields, errors in the reanalysis data, errors in the ocean model and errors in the forcing formulation will generate a different solution compared to other ocean reanalysis solutions (which also have their own errors). As a first step towards a consistent coupled ocean-atmosphere reanalysis, we compare surface heat fluxes from a state-of-the-art atmospheric reanalysis, the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2), to heat fluxes from a state-of-the-art oceanic reanalysis, the Estimating the Circulation and Climate of the Ocean Version 4, Release 2 (ECCO-v4). Then, we investigate the errors associated with the MITgcm ocean model in its ECCO-v4 ocean reanalysis configuration (1992-2011) when it is forced with MERRA-2 atmospheric reanalysis fields instead of with the ECCO-v4 adjoint optimized ERA-interim state variables. This is done by forcing ECCO-v4 ocean with and without feedbacks from MERRA-2 related to turbulent fluxes of heat and moisture and the outgoing long wave radiation. In addition, we introduce an intermediate forcing method that includes only the feedback from the interactive outgoing long wave radiation. The resulting ocean circulation is compared with ECCO-v4 reanalysis and in-situ observations. We show that, without feedbacks, imbalances in the energy and the hydrological cycles of MERRA-2 (which are directly related to the fact it was created without interactive ocean) result in considerable SST drifts and a large reduction in sea level. The bulk formulae and interactive outgoing long wave radiation, although providing air-sea feedbacks and reducing model-data misfit, strongly relax the ocean to observed SST and may result in unwanted features such as large change in the water budget. These features have implications in on desired forcing recipe to be used. The results strongly and unambiguously argue for next generation data assimilation climate studies to involve fully coupled systems.

  9. [Determination of trace metals in atmospheric dry deposition with a heavy matrix of PUF by inductively coupled plasma mass spectroscopy after microwave digestion].

    PubMed

    Pan, Yue-peng; Wang, Yue-si; Yang, Yong-jie; Wu, Dan; Xin, Jin-yuan; Fan, Wen-yan

    2010-03-01

    Interest in atmospheric dry deposition results mostly from concerns about the effects of the deposited trace elements entering waterbody, soil and vegetation as well as their subsequent health effects. A microwave assisted digestion method followed by inductively coupled plasma mass spectrometric (MAD-ICP/MS) analysis was developed to determine the concentrations of a large number of trace metals in atmospheric dry deposition samples with a heavy matrix of polyurethane foam (PUF). A combination of HNO3-H2O2-HF was used for digestion. The experimental protocol for the microwave assisted digestion was established using two different SRMs (GBW 07401, Soil and GBW 08401, Coal fly ash). Subsequently, blanks and limits of detection for total trace metal concentrations were determined for PUF filter which was used for dry deposition sampling. Finally, the optimized digestion method was applied to real world atmospheric dry deposition samples collected at 10 sites in Jingjinji area in winter from Dec. 2007 to Feb. 2008. The results showed that the area-averaged total mass fluxes ranged between 85 and 912 mg x (m2 x d)(-1), and fluxes of most elements were highest at Baoding and lowest at Xinglong. In addition, the elemental fluxes in urban areas of Beijing, Tianjin and Tangshan were measured to be higher than that in suburb and rural sites. The average fluxes of crust elements (A1, Fe, Mn, K, Na, Ca and Mg) were one to three orders of magnitude higher than anthropogenic elements (Cu, Pb, Cr, Ni, V, Zn and Ba), varying from 151 to 16034 microg x (m2 x d)(-1) versus 14 to 243 microg x (m2 x d)(-1). Zinc was the most abundant heavy metal and calcium the highest of the crust elements while the elements Mo, Co, Cd, As and Be deposited less or even could not be detected. The anthropogenic and crustal contributions were estimated by employing enrichment factors (EF) calculated relative to the average crustal composition. The EF values of all elements except Pb and Zn were below 10, suggesting that local soil and/or dust generally dominate in the dry deposition flux.

  10. Vacuum ultraviolet photon fluxes in argon-containing inductively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Radovanov, S. B.; Persing, H. M.; Wang, S.; Culver, C. L.; Boffard, J. B.; Lin, C. C.; Wendt, A. E.

    2013-09-01

    Vacuum ultraviolet (VUV) photons emitted from excited atomic states are ubiquitous in material processing plasmas. Damage of materials is induced by energy transfer from the VUV photons to the surface, causing disorder in the surface region, surface reactions, and affecting bonds in the material bulk. Monitoring of the surface flux of VUV photons from inductively coupled plasmas (ICP) and its dependence on discharge parameters is thus highly desirable. Results of non-invasive, direct windowless VUV detection using a photosensitive diode will be presented. Relative VUV fluxes were also obtained using a sodium salicylate coating on the inside of a vacuum window, converting VUV into visible light detected through the vacuum window. The coating is sensitive to wavelengths in the range 80-300 nm, while the photodiode is only sensitive to wavelengths below 120 nm. In argon the VUV emissions are primarily produced by spontaneous decay from 3p5 4 s resonance levels (1s2,1s4) and may be reabsorbed by ground state atoms. Real-time resonance level concentrations were measured and used to predict the VUV photon flux at the detector for a range of different ICP pressures, powers, and for various admixtures of Ar with N2, and H2. This work was supported in part by NSF grant PHY-1068670.

  11. Simulation of Oxygen Disintegration and Mixing With Hydrogen or Helium at Supercritical Pressure

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Taskinoglu, Ezgi

    2012-01-01

    The simulation of high-pressure turbulent flows, where the pressure, p, is larger than the critical value, p(sub c), for the species under consideration, is relevant to a wide array of propulsion systems, e.g. gas turbine, diesel, and liquid rocket engines. Most turbulence models, however, have been developed for atmospheric-p turbulent flows. The difference between atmospheric-p and supercritical-p turbulence is that, in the former situation, the coupling between dynamics and thermodynamics is moderate to negligible, but for the latter it is very significant, and can dominate the flow characteristics. The reason for this stems from the mathematical form of the equation of state (EOS), which is the perfect-gas EOS in the former case, and the real-gas EOS in the latter case. For flows at supercritical pressure, p, the large eddy simulation (LES) equations consist of the differential conservation equations coupled with a real-gas EOS. The equations use transport properties that depend on the thermodynamic variables. Compared to previous LES models, the differential equations contain not only the subgrid scale (SGS) fluxes, but also new SGS terms, each denoted as a correction. These additional terms, typically assumed null for atmospheric pressure flows, stem from filtering the differential governing equations, and represent differences between a filtered term and the same term computed as a function of the filtered flow field. In particular, the energy equation contains a heat-flux correction (q-correction) that is the difference between the filtered divergence of the heat flux and the divergence of the heat flux computed as a function of the filtered flow field. In a previous study, there was only partial success in modeling the q-correction term, but in this innovation, success has been achieved by using a different modeling approach. This analysis, based on a temporal mixing layer Direct Numerical Simulation database, shows that the focus in modeling the q-correction should be on reconstructing the primitive variable gradients rather than their coefficients, and proposes the approximate deconvolution model (ADM) as an effective means of flow field reconstruction for LES heat flux calculation. Further, results for a study conducted for temporal mixing layers initially containing oxygen in the lower stream, and hydrogen or helium in the upper stream, show that, for any LES, including SGS-flux models (constant-coefficient Gradient or Scale-Similarity models, dynamic-coefficient Smagorinsky/Yoshizawa or mixed Smagorinsky/Yoshizawa/Gradient models), the inclusion of the q-correction in the LES leads to the theoretical maximum reduction of the SGS heat-flux difference. The remaining error in modeling this new subgrid term is thus irreducible.

  12. A Method to Assess Flux Hazards at CSP Plants to Reduce Avian Mortality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Clifford K.; Wendelin, Timothy; Horstman, Luke

    A method to evaluate avian flux hazards at concentrating solar power plants (CSP) has been developed. A heat-transfer model has been coupled to simulations of the irradiance in the airspace above a CSP plant to determine the feather temperature along prescribed bird flight paths. Probabilistic modeling results show that the irradiance and assumed feather properties (thickness, absorptance, heat capacity) have the most significant impact on the simulated feather temperature, which can increase rapidly (hundreds of degrees Celsius in seconds) depending on the parameter values. The avian flux hazard model is being combined with a plant performance model to identify alternativemore » heliostat standby aiming strategies that minimize both avian flux hazards and negative impacts on plant performance.« less

  13. One-step generation of multipartite entanglement among nitrogen-vacancy center ensembles

    PubMed Central

    Song, Wan-lu; Yin, Zhang-qi; Yang, Wan-li; Zhu, Xiao-bo; Zhou, Fei; Feng, Mang

    2015-01-01

    We describe a one-step, deterministic and scalable scheme for creating macroscopic arbitrary entangled coherent states (ECSs) of separate nitrogen-vacancy center ensembles (NVEs) that couple to a superconducting flux qubit. We discuss how to generate the entangled states between the flux qubit and two NVEs by the resonant driving. Then the ECSs of the NVEs can be obtained by projecting the flux qubit, and the entanglement detection can be realized by transferring the quantum state from the NVEs to the flux qubit. Our numerical simulation shows that even under current experimental parameters the concurrence of the ECSs can approach unity. We emphasize that this method is straightforwardly extendable to the case of many NVEs. PMID:25583623

  14. A method to assess flux hazards at CSP plants to reduce avian mortality

    NASA Astrophysics Data System (ADS)

    Ho, Clifford K.; Wendelin, Timothy; Horstman, Luke; Yellowhair, Julius

    2017-06-01

    A method to evaluate avian flux hazards at concentrating solar power plants (CSP) has been developed. A heat-transfer model has been coupled to simulations of the irradiance in the airspace above a CSP plant to determine the feather temperature along prescribed bird flight paths. Probabilistic modeling results show that the irradiance and assumed feather properties (thickness, absorptance, heat capacity) have the most significant impact on the simulated feather temperature, which can increase rapidly (hundreds of degrees Celsius in seconds) depending on the parameter values. The avian flux hazard model is being combined with a plant performance model to identify alternative heliostat standby aiming strategies that minimize both avian flux hazards and negative impacts on plant performance.

  15. Solar, interplanetary, and magnetospheric parameters for the radiation belt energetic electron flux

    NASA Astrophysics Data System (ADS)

    Vassiliadis, D.; Fung, S. F.; Klimas, A. J.

    2005-04-01

    In developing models of the radiation belt energetic electron flux, it is important to include the states of the interplanetary medium and the magnetosphere, as well as the solar activity. In this study we choose the log flux je(t;L;E) at 2-6 MeV, as measured by the Proton-Electron Telescope (PET) on SAMPEX in the period 1993-2002, as a representative flux variable and evaluate the usefulness of 17 interplanetary and magnetospheric (IP/MS) parameters in its specification. The reference parameter is the solar wind velocity, chosen because of its known high geoeffectiveness. We use finite impulse response filters to represent the effective coupling of the individual parameters to the log flux. We measure the temporal and spatial scales of the coupling using the impulse response function and the input's geoeffectiveness using the data-model correlation. The correlation profile as a function of L is complex, and we identify its peaks in reference to the radial regions P0 (L = 3.1-4.0, inner edge of the outer belt), P1 (4.1-7.5, main outer belt), and P2 (>7.5, quasi-trapped population), whose boundaries are determined from a radial correlative analysis (Vassiliadis et al., 2003b). Using the profiles, we classify the IP/MS parameters in four categories: (1) For the solar wind velocity and pressure the correlation is high and largely independent of L across P0 and P1, reaching its maximum in L = 4.8-6.1, or the central part of P1. (2) The IMF BSouth component and related IP/MS parameters have a bimodal correlation function, with peaks in region P0 (L = 3.0-4.1) and the geosynchronous orbit region within P1. (3) The IMF BNorth and four other interplanetary or solar irradiance parameters have a minimum correlation in P1, while the highest correlation is in the slot-outer belt boundary (L = 2.5). (4) Finally, the solar wind density has a unique correlation profile, which is anticorrelated with that of the solar wind velocity for certain L shells. We verify this classification using more complex filtering methods as well as standard correlation analysis. The categories correspond to four types of solar-terrestrial interactions, namely, viscous interaction, magnetic reconnection, effects of ionospheric heating, and effects of high solar wind density. The response to these interactions produces the observed inner magnetospheric coherence. In each category the L dependence of the correlation profile helps explain why geoeffective solar wind structures are followed by electron acceleration in some L ranges but not in others.

  16. Investigating land-atmosphere coupling and convective triggering associated with the moistening of the northern North American Great Plains

    NASA Astrophysics Data System (ADS)

    Gerken, Tobias; Bromley, Gabriel; Stoy, Paul

    2017-04-01

    Parts of the North American northern Great Plains have undergone a 6 W m-2 decrease in summertime radiative forcing. At the same time agricultural practices have shifted from keeping fields fallow during the summer ("summer fallow") towards no-till cropping systems that increase summertime evapotranspiration and decrease soil carbon loss. MERRA (Modern-Era Retrospective analysis for Research and Applications) for the area near Fort Peck, Montana, (a FLUXNET site established in 2000) shows a decrease of summertime (June-August) sensible heat fluxes ranging from -3.6 to -8.5 W m-2 decade-1, which is associated with an increase of latent heat fluxes of similar magnitude (5.2-9.1 W m-2 decade-1). While net radiation changed little, increasing downward longwave radiation (2.2-4.6 W m-2 decade-1) due to greater cloud cover, was mostly compensated by reduced solar irradiance. The result was a strong decrease of summer Bowen ratios from 1.5-2 in 1980 to approximately 1-1.25 in 2015. At the same time, atmospheric soundings have shown significant increases in both convective available convective energy (CAPE) and convective inhibition (CIN) for the same time span. Overall, these findings are consistent with the effects on increased summertime evapotranspiration due to reduction in summer fallow that should lead to smaller Bowen ratios and a larger build-up of moist static energy as expressed in higher values of CAPE. In order to further investigate the impact of the surface energy balance and flux partitioning on convective development and local land-atmosphere coupling in the North American prairies, a 1-dimensional mixed-layer model is used to compare the evolution of mixed-layer heights to the lifted condensation level, a necessary but not sufficient condition for the occurrence of convective precipitation. Using summertime eddy covariance data from Fort Peck and atmospheric soundings from the nearby Glasgow airport, we establish that the mixed-layer model adequately captures mixed-layer heights and timing of locally triggered convection at the site. The model is then used to quantify the sensitivity of mixing-layer height, CAPE and convective triggering potential, in response to changes in surface flux partitioning between latent and sensible heat due to changes in soil moisture and agricultural management. Results are used to establish the exact nature or land-atmosphere coupling associated with moistening of the atmospheric boundary-layer and increases in convective triggering and will contribute to disentangling local and regional effects on trends in observed precipitation in the northern Great Plains.

  17. Replumbing of the Biological Pump caused by Millennial Climate Variability

    NASA Astrophysics Data System (ADS)

    Galbraith, E.; Sarmiento, J.

    2008-12-01

    It has been hypothesized that millennial-timescale variability in the biological pump was a critical instigator of glacial-interglacial cycles. However, even in the absence of changes in ecosystem function (e.g. due to iron fertilization), determining the mechanisms by which physical climate variability alters the biological pump is not simple. Changes in upper ocean circulation and deep water formation have previously been shown to alter both the downward flux of organic matter and the mass of respired carbon in the ocean interior, often in non- intuitive ways. For example, a reduced upward flux of nutrients at the global scale will decrease the global rate of export production, but it could either increase or decrease the respired carbon content of the ocean interior, depending on where the reduced upward flux of nutrients occurs. Furthermore, viable candidates for physical climate forcing are numerous, including changes in the westerly winds, changes in the depth of the thermocline, and changes in the formation rate of North Atlantic Deep Water, among others. We use a simple, prognostic, light-and temperature-dependent model of biogeochemical cycling within a state-of-the- art global coupled ocean-atmosphere model to examine the response of the biological pump to changes in the coupled Earth system over multiple centuries. The biogeochemical model explicitly distinguishes respired carbon from preformed and saturation carbon, allowing the activity of the biological pump to be clearly quantified. Changes are forced in the model by altering the background climate state, and by manipulating the flux of freshwater to the North Atlantic region. We show how these changes in the physical state of the coupled ocean-atmosphere system impact the distribution and mass of respired carbon in the ocean interior, and the relationship these changes bear to global patterns of export production via the redistribution of nutrients.

  18. Coupling between lower-tropospheric convective mixing and low-level clouds: Physical mechanisms and dependence on convection scheme.

    PubMed

    Vial, Jessica; Bony, Sandrine; Dufresne, Jean-Louis; Roehrig, Romain

    2016-12-01

    Several studies have pointed out the dependence of low-cloud feedbacks on the strength of the lower-tropospheric convective mixing. By analyzing a series of single-column model experiments run by a climate model using two different convective parametrizations, this study elucidates the physical mechanisms through which marine boundary-layer clouds depend on this mixing in the present-day climate and under surface warming. An increased lower-tropospheric convective mixing leads to a reduction of low-cloud fraction. However, the rate of decrease strongly depends on how the surface latent heat flux couples to the convective mixing and to boundary-layer cloud radiative effects: (i) on the one hand, the latent heat flux is enhanced by the lower-tropospheric drying induced by the convective mixing, which damps the reduction of the low-cloud fraction, (ii) on the other hand, the latent heat flux is reduced as the lower troposphere stabilizes under the effect of reduced low-cloud radiative cooling, which enhances the reduction of the low-cloud fraction. The relative importance of these two different processes depends on the closure of the convective parameterization. The convective scheme that favors the coupling between latent heat flux and low-cloud radiative cooling exhibits a stronger sensitivity of low-clouds to convective mixing in the present-day climate, and a stronger low-cloud feedback in response to surface warming. In this model, the low-cloud feedback is stronger when the present-day convective mixing is weaker and when present-day clouds are shallower and more radiatively active. The implications of these insights for constraining the strength of low-cloud feedbacks observationally is discussed.

  19. Consequences of atomic layer etching on wafer scale uniformity in inductively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Huard, Chad M.; Lanham, Steven J.; Kushner, Mark J.

    2018-04-01

    Atomic layer etching (ALE) typically divides the etching process into two self-limited reactions. One reaction passivates a single layer of material while the second preferentially removes the passivated layer. As such, under ideal conditions the wafer scale uniformity of ALE should be independent of the uniformity of the reactant fluxes onto the wafers, provided all surface reactions are saturated. The passivation and etch steps should individually asymptotically saturate after a characteristic fluence of reactants has been delivered to each site. In this paper, results from a computational investigation are discussed regarding the uniformity of ALE of Si in Cl2 containing inductively coupled plasmas when the reactant fluxes are both non-uniform and non-ideal. In the parameter space investigated for inductively coupled plasmas, the local etch rate for continuous processing was proportional to the ion flux. When operated with saturated conditions (that is, both ALE steps are allowed to self-terminate), the ALE process is less sensitive to non-uniformities in the incoming ion flux than continuous etching. Operating ALE in a sub-saturation regime resulted in less uniform etching. It was also found that ALE processing with saturated steps requires a larger total ion fluence than continuous etching to achieve the same etch depth. This condition may result in increased resist erosion and/or damage to stopping layers using ALE. While these results demonstrate that ALE provides increased etch depth uniformity, they do not show an improved critical dimension uniformity in all cases. These possible limitations to ALE processing, as well as increased processing time, will be part of the process optimization that includes the benefits of atomic resolution and improved uniformity.

  20. Coupling between lower‐tropospheric convective mixing and low‐level clouds: Physical mechanisms and dependence on convection scheme

    PubMed Central

    Bony, Sandrine; Dufresne, Jean‐Louis; Roehrig, Romain

    2016-01-01

    Abstract Several studies have pointed out the dependence of low‐cloud feedbacks on the strength of the lower‐tropospheric convective mixing. By analyzing a series of single‐column model experiments run by a climate model using two different convective parametrizations, this study elucidates the physical mechanisms through which marine boundary‐layer clouds depend on this mixing in the present‐day climate and under surface warming. An increased lower‐tropospheric convective mixing leads to a reduction of low‐cloud fraction. However, the rate of decrease strongly depends on how the surface latent heat flux couples to the convective mixing and to boundary‐layer cloud radiative effects: (i) on the one hand, the latent heat flux is enhanced by the lower‐tropospheric drying induced by the convective mixing, which damps the reduction of the low‐cloud fraction, (ii) on the other hand, the latent heat flux is reduced as the lower troposphere stabilizes under the effect of reduced low‐cloud radiative cooling, which enhances the reduction of the low‐cloud fraction. The relative importance of these two different processes depends on the closure of the convective parameterization. The convective scheme that favors the coupling between latent heat flux and low‐cloud radiative cooling exhibits a stronger sensitivity of low‐clouds to convective mixing in the present‐day climate, and a stronger low‐cloud feedback in response to surface warming. In this model, the low‐cloud feedback is stronger when the present‐day convective mixing is weaker and when present‐day clouds are shallower and more radiatively active. The implications of these insights for constraining the strength of low‐cloud feedbacks observationally is discussed. PMID:28239438

  1. Ecosystem-scale VOC fluxes during an extreme drought in a ...

    EPA Pesticide Factsheets

    Considerable amounts and varieties of biogenic volatile organic compounds (BVOCs) are exchanged between vegetation and the surrounding air. These BVOCs play key ecological and atmospheric roles that must be adequately represented for accurately modeling the coupled biosphere-atmosphere-climate Earth system. One key uncertainty in existing models is the response of BVOC fluxes to an important global change process: drought. We describe the diurnal and seasonal variation in isoprene, monoterpene and methanol fluxes from a temperate forest ecosystem before, during, and after an extreme 2012 drought event in the Ozark region of the central USA. BVOC fluxes were dominated by isoprene, which attained high emission rates of up to 35.4 mg m-2 h-1 at midday. Methanol fluxes were characterized by net deposition in the morning, changing to a net emission flux through the rest of the daylight hours. Net flux of CO2 reached its seasonal maximum approximately a month earlier than isoprenoid fluxes, which highlights the differential response of photosynthesis and isoprenoid emissions to progressing drought conditions. Nevertheless, both processes were strongly suppressed under extreme drought, although isoprene fluxes remained relatively high compared to reported fluxes from other ecosystems. Methanol exchange was less affected by drought throughout the season, confirming the complex processes driving biogenic methanol fluxes. The fraction of daytime (7-17 h) assimilated carbo

  2. Improvement in magnetic field immunity of externally-coupled transcutaneous energy transmission system for a totally implantable artificial heart.

    PubMed

    Yamamoto, Takahiko; Koshiji, Kohji; Homma, Akihiko; Tatsumi, Eisuke; Taenaka, Yoshiyuki

    2008-01-01

    Transcutaneous energy transmission (TET) that uses electromagnetic induction between the external and internal coils of a transformer is the most promising method to supply driving energy to a totally implantable artificial heart without invasion. Induction-heating (IH) cookers generate magnetic flux, and if a cooker is operated near a transcutaneous transformer, the magnetic flux generated will link with the external and internal coils of the transcutaneous transformer. This will affect the performance of the TET and the artificial heart system. Hence, it is necessary to improve the magnetic field immunity of the TET system. During operation of the system, if the transcutaneous transformer is in close proximity to an IH cooker, the electric power generated by the cooker and coupled to the transformer can drive the artificial heart system. To prevent this coupling, the external coil was shielded with a conductive shield that had a slit in it. This reduces the coupling between the transformer and the magnetic field generated by the induction cooker. However, the temperature of the shield increased due to heating by eddy currents. The temperature of the shield can be reduced by separating the IH cooker and the shield.

  3. Validation of the Fully-Coupled Air-Sea-Wave COAMPS System

    NASA Astrophysics Data System (ADS)

    Smith, T.; Campbell, T. J.; Chen, S.; Gabersek, S.; Tsu, J.; Allard, R. A.

    2017-12-01

    A fully-coupled, air-sea-wave numerical model, COAMPS®, has been developed by the Naval Research Laboratory to further enhance understanding of oceanic, atmospheric, and wave interactions. The fully-coupled air-sea-wave system consists of an atmospheric component with full physics parameterizations, an ocean model, NCOM (Navy Coastal Ocean Model), and two wave components, SWAN (Simulating Waves Nearshore) and WaveWatch III. Air-sea interactions between the atmosphere and ocean components are accomplished through bulk flux formulations of wind stress and sensible and latent heat fluxes. Wave interactions with the ocean include the Stokes' drift, surface radiation stresses, and enhancement of the bottom drag coefficient in shallow water due to the wave orbital velocities at the bottom. In addition, NCOM surface currents are provided to SWAN and WaveWatch III to simulate wave-current interaction. The fully-coupled COAMPS system was executed for several regions at both regional and coastal scales for the entire year of 2015, including the U.S. East Coast, Western Pacific, and Hawaii. Validation of COAMPS® includes observational data comparisons and evaluating operational performance on the High Performance Computing (HPC) system for each of these regions.

  4. Large cooling differentials and high heat flux capability with p-type Bi2Te3/Sb2Te3 and n-type Bi2Te3/Bi2SexTe3-x Superlattice Thermoelectric Devices

    NASA Astrophysics Data System (ADS)

    Bulman, Gary; Siivola, Ed; Wiitala, Ryan; Grant, Brian; Pierce, Jonathan; Venkatasubramanian, Rama

    2007-03-01

    Thin film superlattice (SL) based thermoelectric (TE) devices offer the potential for improved efficiency and high heat flux cooling over conventional bulk materials. Recently, we have demonstrated external cooling of 55K and heat pumping capacity of 128 W/cm^2. These high heat fluxes in thin film devices, while attractive for cooling hot-spots in electronics, also make the device performance sensitive to various thermal resistances in the device structure. We will discuss advances in the cooling performance of Bi2Te3-based SL TE devices and describe a method to extract device material parameters, including thermal resistance, from measurements of their δT-I-V characteristics. These parameters will be compared to values obtained through Hall and Seebeck coefficient measurement on epitaxial materials. Results will be presented for both single couple and multi-couple modules, as well as multi-stage cascaded devices made with these materials. Single stage cooling couples with δTmax of 57.8K (Tc˜242K) and multi-stage modules with δTmax˜92.2K (Tc˜209K) have been measured. G.E. Bulman, E. Siivola, B. Shen and R. Venkatasubramanian, Appl. Phys. Lett. 89, 122117 (2006).

  5. Improved global simulation of groundwater-ecosystem interactions via tight coupling of a dynamic global ecosystem model and a global hydrological model

    NASA Astrophysics Data System (ADS)

    Braakhekke, Maarten; Rebel, Karin; Dekker, Stefan; Smith, Benjamin; Sutanudjaja, Edwin; van Beek, Rens; van Kampenhout, Leo; Wassen, Martin

    2017-04-01

    In up to 30% of the global land surface ecosystems are potentially influenced by the presence of a shallow groundwater table. In these regions upward water flux by capillary rise increases soil moisture availability in the root zone, which has a strong effect on evapotranspiration, vegetation dynamics, and fluxes of carbon and nitrogen. Most global hydrological models and several land surface models simulate groundwater table dynamics and their effects on land surface processes. However, these models typically have relatively simplistic representation of vegetation and do not consider changes in vegetation type and structure. Dynamic global vegetation models (DGVMs), describe land surface from an ecological perspective, combining detailed description of vegetation dynamics and structure, and biogeochemical processes and are thus more appropriate to simulate the ecological and biogeochemical effects of groundwater interactions. However, currently virtually all DGVMs ignore these effects, assuming that water tables are too deep to affect soil moisture in the root zone. We have implemented a tight coupling between the dynamic global ecosystem model LPJ-GUESS and the global hydrological model PCR-GLOBWB, which explicitly simulates groundwater dynamics. This coupled model allows us to explicitly account for groundwater effects on terrestrial ecosystem processes at global scale. Results of global simulations indicate that groundwater strongly influences fluxes of water, carbon and nitrogen, in many regions, adding up to a considerable effect at the global scale.

  6. A Dynamic Coupled Magnetosphere-Ionosphere-Ring Current Model

    NASA Astrophysics Data System (ADS)

    Pembroke, Asher

    In this thesis we describe a coupled model of Earth's magnetosphere that consists of the Lyon-Fedder-Mobarry (LFM) global magnetohydrodynamics (MHD) simulation, the MIX ionosphere solver and the Rice Convection Model (RCM). We report some results of the coupled model using idealized inputs and model parameters. The algorithmic and physical components of the model are described, including the transfer of magnetic field information and plasma boundary conditions to the RCM and the return of ring current plasma properties to the LFM. Crucial aspects of the coupling include the restriction of RCM to regions where field-line averaged plasma-beta ¡=1, the use of a plasmasphere model, and the MIX ionosphere model. Compared to stand-alone MHD, the coupled model produces a substantial increase in ring current pressure and reduction of the magnetic field near the Earth. In the ionosphere, stronger region-1 and region-2 Birkeland currents are seen in the coupled model but with no significant change in the cross polar cap potential drop, while the region-2 currents shielded the low-latitude convection potential. In addition, oscillations in the magnetic field are produced at geosynchronous orbit with the coupled code. The diagnostics of entropy and mass content indicate that these oscillations are associated with low-entropy flow channels moving in from the tail and may be related to bursty bulk flows and bubbles seen in observations. As with most complex numerical models, there is the ongoing challenge of untangling numerical artifacts and physics, and we find that while there is still much room for improvement, the results presented here are encouraging. Finally, we introduce several new methods for magnetospheric visualization and analysis, including a fluid-spatial volume for RCM and a field-aligned analysis mesh for the LFM. The latter allows us to construct novel visualizations of flux tubes, drift surfaces, topological boundaries, and bursty-bulk flows.

  7. Calibration of an estuarine sediment transport model to sediment fluxes as an intermediate step for simulation of geomorphic evolution

    USGS Publications Warehouse

    Ganju, N.K.; Schoellhamer, D.H.

    2009-01-01

    Modeling geomorphic evolution in estuaries is necessary to model the fate of legacy contaminants in the bed sediment and the effect of climate change, watershed alterations, sea level rise, construction projects, and restoration efforts. Coupled hydrodynamic and sediment transport models used for this purpose typically are calibrated to water level, currents, and/or suspended-sediment concentrations. However, small errors in these tidal-timescale models can accumulate to cause major errors in geomorphic evolution, which may not be obvious. Here we present an intermediate step towards simulating decadal-timescale geomorphic change: calibration to estimated sediment fluxes (mass/time) at two cross-sections within an estuary. Accurate representation of sediment fluxes gives confidence in representation of sediment supply to and from the estuary during those periods. Several years of sediment flux data are available for the landward and seaward boundaries of Suisun Bay, California, the landward-most embayment of San Francisco Bay. Sediment flux observations suggest that episodic freshwater flows export sediment from Suisun Bay, while gravitational circulation during the dry season imports sediment from seaward sources. The Regional Oceanic Modeling System (ROMS), a three-dimensional coupled hydrodynamic/sediment transport model, was adapted for Suisun Bay, for the purposes of hindcasting 19th and 20th century bathymetric change, and simulating geomorphic response to sea level rise and climatic variability in the 21st century. The sediment transport parameters were calibrated using the sediment flux data from 1997 (a relatively wet year) and 2004 (a relatively dry year). The remaining years of data (1998, 2002, 2003) were used for validation. The model represents the inter-annual and annual sediment flux variability, while net sediment import/export is accurately modeled for three of the five years. The use of sediment flux data for calibrating an estuarine geomorphic model guarantees that modeled geomorphic evolution will not exceed the actual supply of sediment from the watershed and seaward sources during the calibration period. Decadal trends in sediment supply (and therefore fluxes) can accumulate to alter decadal geomorphic change. Therefore, simulations of future geomorphic evolution are bolstered by this intermediate calibration step.

  8. Investigation on a coupled CFD/DSMC method for continuum-rarefied flows

    NASA Astrophysics Data System (ADS)

    Tang, Zhenyu; He, Bijiao; Cai, Guobiao

    2012-11-01

    The purpose of the present work is to investigate the coupled CFD/DSMC method using the existing CFD and DSMC codes developed by the authors. The interface between the continuum and particle regions is determined by the gradient-length local Knudsen number. A coupling scheme combining both state-based and flux-based coupling methods is proposed in the current study. Overlapping grids are established between the different grid systems of CFD and DSMC codes. A hypersonic flow over a 2D cylinder has been simulated using the present coupled method. Comparison has been made between the results obtained from both methods, which shows that the coupled CFD/DSMC method can achieve the same precision as the pure DSMC method and obtain higher computational efficiency.

  9. Experimental warming in a dryland community reduced plant photosynthesis and soil CO2 efflux although the relationship between the fluxes remained unchanged

    USGS Publications Warehouse

    Wertin, Timothy M.; Belnap, Jayne; Reed, Sasha C.

    2016-01-01

    1. Drylands represent our planet's largest terrestrial biome and, due to their extensive area, maintain large stocks of carbon (C). Accordingly, understanding how dryland C cycling will respond to climate change is imperative for accurately forecasting global C cycling and future climate. However, it remains difficult to predict how increased temperature will affect dryland C cycling, as substantial uncertainties surround the potential responses of the two main C fluxes: plant photosynthesis and soil CO2 efflux. In addition to a need for an improved understanding of climate effects on individual dryland C fluxes, there is also notable uncertainty regarding how climate change may influence the relationship between these fluxes.2. To address this important knowledge gap, we measured a growing season's in situphotosynthesis, plant biomass accumulation, and soil CO2 efflux of mature Achnatherum hymenoides (a common and ecologically important C3 bunchgrass growing throughout western North America) exposed to ambient or elevated temperature (+2°C above ambient, warmed via infrared lamps) for three years.3. The 2°C increase in temperature caused a significant reduction in photosynthesis, plant growth, and soil CO2 efflux. Of important note, photosynthesis and soil respiration appeared tightly coupled and the relationship between these fluxes was not altered by the elevated temperature treatment, suggesting C fixation's strong control of both above-ground and below-ground dryland C cycling. Leaf water use efficiency was substantially increased in the elevated temperature treatment compared to the control treatment.4. Taken together, our results suggest notable declines in photosynthesis with relatively subtle warming, reveal strong coupling between above- and below-ground C fluxes in this dryland, and highlight temperature's strong effect on fundamental components of dryland C and water cycles.

  10. Efficient C1-continuous phase-potential upwind (C1-PPU) schemes for coupled multiphase flow and transport with gravity

    NASA Astrophysics Data System (ADS)

    Jiang, Jiamin; Younis, Rami M.

    2017-10-01

    In the presence of counter-current flow, nonlinear convergence problems may arise in implicit time-stepping when the popular phase-potential upwinding (PPU) scheme is used. The PPU numerical flux is non-differentiable across the co-current/counter-current flow regimes. This may lead to cycles or divergence in the Newton iterations. Recently proposed methods address improved smoothness of the numerical flux. The objective of this work is to devise and analyze an alternative numerical flux scheme called C1-PPU that, in addition to improving smoothness with respect to saturations and phase potentials, also improves the level of scalar nonlinearity and accuracy. C1-PPU involves a novel use of the flux limiter concept from the context of high-resolution methods, and allows a smooth variation between the co-current/counter-current flow regimes. The scheme is general and applies to fully coupled flow and transport formulations with an arbitrary number of phases. We analyze the consistency property of the C1-PPU scheme, and derive saturation and pressure estimates, which are used to prove the solution existence. Several numerical examples for two- and three-phase flows in heterogeneous and multi-dimensional reservoirs are presented. The proposed scheme is compared to the conventional PPU and the recently proposed Hybrid Upwinding schemes. We investigate three properties of these numerical fluxes: smoothness, nonlinearity, and accuracy. The results indicate that in addition to smoothness, nonlinearity may also be critical for convergence behavior and thus needs to be considered in the design of an efficient numerical flux scheme. Moreover, the numerical examples show that the C1-PPU scheme exhibits superior convergence properties for large time steps compared to the other alternatives.

  11. Synergistic cross-scale coupling of turbulence in a tokamak plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard, N. T., E-mail: nthoward@psfc.mit.edu; Holland, C.; White, A. E.

    2014-11-15

    For the first time, nonlinear gyrokinetic simulations spanning both the ion and electron spatio-temporal scales have been performed with realistic electron mass ratio ((m{sub D}∕m{sub e}){sup 1∕2 }= 60.0), realistic geometry, and all experimental inputs, demonstrating the coexistence and synergy of ion (k{sub θ}ρ{sub s}∼O(1.0)) and electron-scale (k{sub θ}ρ{sub e}∼O(1.0)) turbulence in the core of a tokamak plasma. All multi-scale simulations utilized the GYRO code [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] to study the coupling of ion and electron-scale turbulence in the core (r/a = 0.6) of an Alcator C-Mod L-mode discharge shown previously to exhibit an under-predictionmore » of the electron heat flux when using simulations only including ion-scale turbulence. Electron-scale turbulence is found to play a dominant role in setting the electron heat flux level and radially elongated (k{sub r} ≪ k{sub θ}) “streamers” are found to coexist with ion-scale eddies in experimental plasma conditions. Inclusion of electron-scale turbulence in these simulations is found to increase both ion and electron heat flux levels by enhancing the transport at the ion-scale while also driving electron heat flux at sub-ρ{sub i} scales. The combined increases in the low and high-k driven electron heat flux may explain previously observed discrepancies between simulated and experimental electron heat fluxes and indicates a complex interaction of short and long wavelength turbulence.« less

  12. Synchronization stability and pattern selection in a memristive neuronal network.

    PubMed

    Wang, Chunni; Lv, Mi; Alsaedi, Ahmed; Ma, Jun

    2017-11-01

    Spatial pattern formation and selection depend on the intrinsic self-organization and cooperation between nodes in spatiotemporal systems. Based on a memory neuron model, a regular network with electromagnetic induction is proposed to investigate the synchronization and pattern selection. In our model, the memristor is used to bridge the coupling between the magnetic flux and the membrane potential, and the induction current results from the time-varying electromagnetic field contributed by the exchange of ion currents and the distribution of charged ions. The statistical factor of synchronization predicts the transition of synchronization and pattern stability. The bifurcation analysis of the sampled time series for the membrane potential reveals the mode transition in electrical activity and pattern selection. A formation mechanism is outlined to account for the emergence of target waves. Although an external stimulus is imposed on each neuron uniformly, the diversity in the magnetic flux and the induction current leads to emergence of target waves in the studied network.

  13. ALP conversion and the soft X-ray excess in the outskirts of the Coma cluster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraljic, David; Rummel, Markus; Conlon, Joseph P., E-mail: David.Kraljic@physics.ox.ac.uk, E-mail: Markus.Rummel@physics.ox.ac.uk, E-mail: j.conlon1@physics.ox.ac.uk

    2015-01-01

    It was recently found that the soft X-ray excess in the center of the Coma cluster can be fitted by conversion of axion-like-particles (ALPs) of a cosmic axion background (CAB) to photons. We extend this analysis to the outskirts of Coma, including regions up to 5 Mpc from the center of the cluster. We extract the excess soft X-ray flux from ROSAT All-Sky Survey data and compare it to the expected flux from ALP to photon conversion of a CAB. The soft X-ray excess both in the center and the outskirts of Coma can be simultaneously fitted by ALP tomore » photon conversion of a CAB. Given the uncertainties of the cluster magnetic field in the outskirts we constrain the parameter space of the CAB. In particular, an upper limit on the CAB mean energy and a range of allowed ALP-photon couplings are derived.« less

  14. Exchangers man the pumps

    PubMed Central

    Barkla, Bronwyn J; Hirschi, Kendal D

    2008-01-01

    Tonoplast-localised proton-coupled Ca2+ transporters encoded by cation/H+ exchanger (CAX) genes play a critical role in sequestering Ca2+ into the vacuole. These transporters may function in coordination with Ca2+ release channels, to shape stimulus-induced cytosolic Ca2+ elevations. Recent analysis of Arabidopsis CAX knockout mutants, particularly cax1 and cax3, identified a variety of phenotypes including sensitivity to abiotic stresses, which indicated that these transporters might play a role in mediating the plant's stress response. A common feature of these mutants was the perturbation of H+-ATPase activity at both the tonoplast and the plasma membrane, suggesting a tight interplay between the Ca2+/H+ exchangers and H+ pumps. We speculate that indirect regulation of proton flux by the exchangers may be as important as the direct regulation of Ca2+ flux. These results suggest cautious interpretation of mutant Ca2+/H+ exchanger phenotypes that may be due to either perturbed Ca2+ or H+ transport. PMID:19841670

  15. Thermal Radiation Anomalies Associated with Major Earthquakes

    NASA Technical Reports Server (NTRS)

    Ouzounov, Dimitar; Pulinets, Sergey; Kafatos, Menas C.; Taylor, Patrick

    2017-01-01

    Recent developments of remote sensing methods for Earth satellite data analysis contribute to our understanding of earthquake related thermal anomalies. It was realized that the thermal heat fluxes over areas of earthquake preparation is a result of air ionization by radon (and other gases) and consequent water vapor condensation on newly formed ions. Latent heat (LH) is released as a result of this process and leads to the formation of local thermal radiation anomalies (TRA) known as OLR (outgoing Longwave radiation, Ouzounov et al, 2007). We compare the LH energy, obtained by integrating surface latent heat flux (SLHF) over the area and time with released energies associated with these events. Extended studies of the TRA using the data from the most recent major earthquakes allowed establishing the main morphological features. It was also established that the TRA are the part of more complex chain of the short-term pre-earthquake generation, which is explained within the framework of a lithosphere-atmosphere coupling processes.

  16. Optimum analysis of a Brownian refrigerator.

    PubMed

    Luo, X G; Liu, N; He, J Z

    2013-02-01

    A Brownian refrigerator with the cold and hot reservoirs alternating along a space coordinate is established. The heat flux couples with the movement of the Brownian particles due to an external force in the spatially asymmetric but periodic potential. After using the Arrhenius factor to describe the behaviors of the forward and backward jumps of the particles, the expressions for coefficient of performance (COP) and cooling rate are derived analytically. Then, through maximizing the product of conversion efficiency and heat flux flowing out, a new upper bound only depending on the temperature ratio of the cold and hot reservoirs is found numerically in the reversible situation, and it is a little larger than the so-called Curzon and Ahlborn COP ε(CA)=(1/√[1-τ])-1. After considering the irreversible factor owing to the kinetic energy change of the moving particles, we find the optimized COP is smaller than ε(CA) and the external force even does negative work on the Brownian particles when they jump from a cold to hot reservoir.

  17. Viscous wing theory development. Volume 1: Analysis, method and results

    NASA Technical Reports Server (NTRS)

    Chow, R. R.; Melnik, R. E.; Marconi, F.; Steinhoff, J.

    1986-01-01

    Viscous transonic flows at large Reynolds numbers over 3-D wings were analyzed using a zonal viscid-inviscid interaction approach. A new numerical AFZ scheme was developed in conjunction with the finite volume formulation for the solution of the inviscid full-potential equation. A special far-field asymptotic boundary condition was developed and a second-order artificial viscosity included for an improved inviscid solution methodology. The integral method was used for the laminar/turbulent boundary layer and 3-D viscous wake calculation. The interaction calculation included the coupling conditions of the source flux due to the wing surface boundary layer, the flux jump due to the viscous wake, and the wake curvature effect. A method was also devised incorporating the 2-D trailing edge strong interaction solution for the normal pressure correction near the trailing edge region. A fully automated computer program was developed to perform the proposed method with one scalar version to be used on an IBM-3081 and two vectorized versions on Cray-1 and Cyber-205 computers.

  18. Synchronization stability and pattern selection in a memristive neuronal network

    NASA Astrophysics Data System (ADS)

    Wang, Chunni; Lv, Mi; Alsaedi, Ahmed; Ma, Jun

    2017-11-01

    Spatial pattern formation and selection depend on the intrinsic self-organization and cooperation between nodes in spatiotemporal systems. Based on a memory neuron model, a regular network with electromagnetic induction is proposed to investigate the synchronization and pattern selection. In our model, the memristor is used to bridge the coupling between the magnetic flux and the membrane potential, and the induction current results from the time-varying electromagnetic field contributed by the exchange of ion currents and the distribution of charged ions. The statistical factor of synchronization predicts the transition of synchronization and pattern stability. The bifurcation analysis of the sampled time series for the membrane potential reveals the mode transition in electrical activity and pattern selection. A formation mechanism is outlined to account for the emergence of target waves. Although an external stimulus is imposed on each neuron uniformly, the diversity in the magnetic flux and the induction current leads to emergence of target waves in the studied network.

  19. Detailed modeling analysis for soot formation and radiation in microgravity gas jet diffusion flames

    NASA Technical Reports Server (NTRS)

    Ku, Jerry C.; Tong, LI; Greenberg, Paul S.

    1995-01-01

    Radiation heat transfer in combustion systems has been receiving increasing interest. In the case of hydrocarbon fuels, a significant portion of the radiation comes from soot particles, justifying the need for detailed soot formation model and radiation transfer calculations. For laminar gas jet diffusion flames, results from this project (4/1/91 8/22/95) and another NASA study show that flame shape, soot concentration, and radiation heat fluxes are substantially different under microgravity conditions. Our emphasis is on including detailed soot transport models and a detailed solution for radiation heat transfer, and on coupling them with the flame structure calculations. In this paper, we will discuss the following three specific areas: (1) Comparing two existing soot formation models, and identifying possible improvements; (2) A simple yet reasonably accurate approach to calculating total radiative properties and/or fluxes over the spectral range; and (3) Investigating the convergence of iterations between the flame structure solver and the radiation heat transfer solver.

  20. Decrease of energy spilling in Escherichia coli continuous cultures with rising specific growth rate and carbon wasting

    PubMed Central

    2011-01-01

    Background Growth substrates, aerobic/anaerobic conditions, specific growth rate (μ) etc. strongly influence Escherichia coli cell physiology in terms of cell size, biomass composition, gene and protein expression. To understand the regulation behind these different phenotype properties, it is useful to know carbon flux patterns in the metabolic network which are generally calculated by metabolic flux analysis (MFA). However, rarely is biomass composition determined and carbon balance carefully measured in the same experiments which could possibly lead to distorted MFA results and questionable conclusions. Therefore, we carried out both detailed carbon balance and biomass composition analysis in the same experiments for more accurate quantitative analysis of metabolism and MFA. Results We applied advanced continuous cultivation methods (A-stat and D-stat) to continuously monitor E. coli K-12 MG1655 flux and energy metabolism dynamic responses to change of μ and glucose-acetate co-utilisation. Surprisingly, a 36% reduction of ATP spilling was detected with increasing μ and carbon wasting to non-CO2 by-products under constant biomass yield. The apparent discrepancy between constant biomass yield and decline of ATP spilling could be explained by the rise of carbon wasting from 3 to 11% in the carbon balance which was revealed by the discovered novel excretion profile of E. coli pyrimidine pathway intermediates carbamoyl-phosphate, dihydroorotate and orotate. We found that carbon wasting patterns are dependent not only on μ, but also on glucose-acetate co-utilisation capability. Accumulation of these compounds was coupled to the two-phase acetate accumulation profile. Acetate overflow was observed in parallel with the reduction of TCA cycle and glycolysis fluxes, and induction of pentose phosphate pathway. Conclusions It can be concluded that acetate metabolism is one of the major regulating factors of central carbon metabolism. More importantly, our model calculations with actual biomass composition and detailed carbon balance analysis in steady state conditions with -omics data comparison demonstrate the importance of a comprehensive systems biology approach for more advanced understanding of metabolism and carbon re-routing mechanisms potentially leading to more successful metabolic engineering. PMID:21726468

  1. Coupling compositional liquid gas Darcy and free gas flows at porous and free-flow domains interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masson, R., E-mail: roland.masson@unice.fr; Team COFFEE INRIA Sophia Antipolis Méditerranée; Trenty, L., E-mail: laurent.trenty@andra.fr

    This paper proposes an efficient splitting algorithm to solve coupled liquid gas Darcy and free gas flows at the interface between a porous medium and a free-flow domain. This model is compared to the reduced model introduced in [6] using a 1D approximation of the gas free flow. For that purpose, the gas molar fraction diffusive flux at the interface in the free-flow domain is approximated by a two point flux approximation based on a low-frequency diagonal approximation of a Steklov–Poincaré type operator. The splitting algorithm and the reduced model are applied in particular to the modelling of the massmore » exchanges at the interface between the storage and the ventilation galleries in radioactive waste deposits.« less

  2. Characterization of a 50kW Inductively Coupled Plasma Torch for Testing of Ablative Thermal Protection Materials

    NASA Technical Reports Server (NTRS)

    Greene, Benton R.; Clemens, Noel T.; Varghese, Philip L.; Bouslog, Stanley A.; Del Papa, Steven V.

    2017-01-01

    With the development of new manned spaceflight capabilities including NASA's Orion capsule and the Space-X Dragon capsule, there is a renewed importance of understanding the dynamics of ablative thermal protection systems. To this end, a new inductively coupled plasma torch facility is being developed at UT-Austin. The torch operates on argon and/or air at plasma powers up to 50 kW. In the present configuration the flow issues from a low-speed subsonic nozzle and the hot plume is characterized using slug calorimetry and emission spectroscopy. Preliminary measurements using emission spectroscopy have indicated that the torch is capable of producing an air plasma with a temperature between 6,000 K and 8,000 K depending on the power and flow settings and an argon plasma with a temperature of approximately 12,000 K. The operation envelope was measured, and heat flux measured for every point within the envelope using both a slug calorimeter and a Gardon gauge heat flux sensor. The torch was found to induce a stagnation point heat flux of between 90 and 225 W/sq cm.

  3. A third-order gas-kinetic CPR method for the Euler and Navier-Stokes equations on triangular meshes

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Li, Qibing; Fu, Song; Wang, Z. J.

    2018-06-01

    A third-order accurate gas-kinetic scheme based on the correction procedure via reconstruction (CPR) framework is developed for the Euler and Navier-Stokes equations on triangular meshes. The scheme combines the accuracy and efficiency of the CPR formulation with the multidimensional characteristics and robustness of the gas-kinetic flux solver. Comparing with high-order finite volume gas-kinetic methods, the current scheme is more compact and efficient by avoiding wide stencils on unstructured meshes. Unlike the traditional CPR method where the inviscid and viscous terms are treated differently, the inviscid and viscous fluxes in the current scheme are coupled and computed uniformly through the kinetic evolution model. In addition, the present scheme adopts a fully coupled spatial and temporal gas distribution function for the flux evaluation, achieving high-order accuracy in both space and time within a single step. Numerical tests with a wide range of flow problems, from nearly incompressible to supersonic flows with strong shocks, for both inviscid and viscous problems, demonstrate the high accuracy and efficiency of the present scheme.

  4. Resonances in the cumulative reaction probability for a model electronically nonadiabatic reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, J.; Bowman, J.M.

    1996-05-01

    The cumulative reaction probability, flux{endash}flux correlation function, and rate constant are calculated for a model, two-state, electronically nonadiabatic reaction, given by Shin and Light [S. Shin and J. C. Light, J. Chem. Phys. {bold 101}, 2836 (1994)]. We apply straightforward generalizations of the flux matrix/absorbing boundary condition approach of Miller and co-workers to obtain these quantities. The upper adiabatic electronic potential supports bound states, and these manifest themselves as {open_quote}{open_quote}recrossing{close_quote}{close_quote} resonances in the cumulative reaction probability, at total energies above the barrier to reaction on the lower adiabatic potential. At energies below the barrier, the cumulative reaction probability for themore » coupled system is shifted to higher energies relative to the one obtained for the ground state potential. This is due to the effect of an additional effective barrier caused by the nuclear kinetic operator acting on the ground state, adiabatic electronic wave function, as discussed earlier by Shin and Light. Calculations are reported for five sets of electronically nonadiabatic coupling parameters. {copyright} {ital 1996 American Institute of Physics.}« less

  5. Coupled Qubits for Next Generation Quantum Annealing: Improving Coherence

    NASA Astrophysics Data System (ADS)

    Weber, Steven; Samach, Gabriel; Hover, David; Rosenberg, Danna; Yoder, Jonilyn; Kim, David K.; Kerman, Andrew; Oliver, William D.

    Quantum annealing is an optimization technique which potentially leverages quantum tunneling to enhance computational performance. Existing quantum annealers use superconducting flux qubits with short coherence times, limited primarily by the use of large persistent currents. Here, we examine an alternative approach, using flux qubits with smaller persistent currents and longer coherence times. We demonstrate tunable coupling, a basic building-block for quantum annealing, between two such qubits. Furthermore, we characterize qubit coherence as a function of coupler setting and investigate the effect of flux noise in the coupler loop on qubit coherence. Our results provide insight into the available design space for next-generation quantum annealers with improved coherence. This research was funded by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA) and by the Assistant Secretary of Defense for Research & Engineering under Air Force Contract No. FA8721-05-C-0002. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of ODNI, IARPA, or the US Government.

  6. Do the energy fluxes and surface conductance of boreal coniferous forests in Europe scale with leaf area?

    PubMed

    Launiainen, Samuli; Katul, Gabriel G; Kolari, Pasi; Lindroth, Anders; Lohila, Annalea; Aurela, Mika; Varlagin, Andrej; Grelle, Achim; Vesala, Timo

    2016-12-01

    Earth observing systems are now routinely used to infer leaf area index (LAI) given its significance in spatial aggregation of land surface fluxes. Whether LAI is an appropriate scaling parameter for daytime growing season energy budget, surface conductance (G s ), water- and light-use efficiency and surface-atmosphere coupling of European boreal coniferous forests was explored using eddy-covariance (EC) energy and CO 2 fluxes. The observed scaling relations were then explained using a biophysical multilayer soil-vegetation-atmosphere transfer model as well as by a bulk G s representation. The LAI variations significantly alter radiation regime, within-canopy microclimate, sink/source distributions of CO 2 , H 2 O and heat, and forest floor fluxes. The contribution of forest floor to ecosystem-scale energy exchange is shown to decrease asymptotically with increased LAI, as expected. Compared with other energy budget components, dry-canopy evapotranspiration (ET) was reasonably 'conservative' over the studied LAI range 0.5-7.0 m 2 m -2 . Both ET and G s experienced a minimum in the LAI range 1-2 m 2 m -2 caused by opposing nonproportional response of stomatally controlled transpiration and 'free' forest floor evaporation to changes in canopy density. The young forests had strongest coupling with the atmosphere while stomatal control of energy partitioning was strongest in relatively sparse (LAI ~2 m 2 m -2 ) pine stands growing on mineral soils. The data analysis and model results suggest that LAI may be an effective scaling parameter for net radiation and its partitioning but only in sparse stands (LAI <3 m 2 m -2 ). This finding emphasizes the significance of stand-replacing disturbances on the controls of surface energy exchange. In denser forests, any LAI dependency varies with physiological traits such as light-saturated water-use efficiency. The results suggest that incorporating species traits and site conditions are necessary when LAI is used in upscaling energy exchanges of boreal coniferous forests. © 2016 John Wiley & Sons Ltd.

  7. Evolution of Indian land surface biases in the seasonal hindcasts from the Met Office Global Seasonal Forecasting System GloSea5

    NASA Astrophysics Data System (ADS)

    Chevuturi, Amulya; Turner, Andrew G.; Woolnoug, Steve J.; Martin, Gill

    2017-04-01

    In this study we investigate the development of biases over the Indian region in summer hindcasts of the UK Met Office coupled initialised global seasonal forecasting system, GloSea5-GC2. Previous work has demonstrated the rapid evolution of strong monsoon circulation biases over India from seasonal forecasts initialised in early May, together with coupled strong easterly wind biases on the equator. These mean state biases lead to strong precipitation errors during the monsoon over the subcontinent. We analyse a set of three springtime start dates for the 20-year hindcast period (1992-2011) and fifteen total ensemble members for each year. We use comparisons with variety of observations to assess the evolution of the mean state biases over the Indian land surface. All biases within the model develop rapidly, particularly surface heat and radiation flux biases. Strong biases are present within the model climatology from pre-monsoon (May) in the surface heat fluxes over India (higher sensible / lower latent heat fluxes) when compared to observed estimates. The early evolution of such biases prior to onset rains suggests possible problems with the land surface scheme or soil moisture errors. Further analysis of soil moisture over the Indian land surface shows a dry bias present from the beginning of the hindcasts during the pre-monsoon. This lasts until the after the monsoon develops (July) after which there is a wet bias over the region. Soil moisture used for initialization of the model also shows a dry bias when compared against the observed estimates, which may lead to the same in the model. The early dry bias in the model may reduce local moisture availability through surface evaporation and thus may possibly limit precipitation recycling. On this premise, we identify and test the sensitivity of the monsoon in the model against higher soil moisture forcing. We run sensitivity experiments initiated using gridpoint-wise annual soil moisture maxima over the Indian land surface as input for experiments in the atmosphere-only version of the model. We plan to analyse the response of the sensitivity experiments on seasonal forecasting of surface heat fluxes and subsequently monsoon precipitation.

  8. Impact of numerical choices on water conservation in the E3SM Atmosphere Model Version 1 (EAM V1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Kai; Rasch, Philip J.; Taylor, Mark A.

    The conservation of total water is an important numerical feature for global Earth system models. Even small conservation problems in the water budget can lead to systematic errors in century-long simulations for sea level rise projection. This study quantifies and reduces various sources of water conservation error in the atmosphere component of the Energy Exascale Earth System Model. Several sources of water conservation error have been identified during the development of the version 1 (V1) model. The largest errors result from the numerical coupling between the resolved dynamics and the parameterized sub-grid physics. A hybrid coupling using different methods formore » fluid dynamics and tracer transport provides a reduction of water conservation error by a factor of 50 at 1° horizontal resolution as well as consistent improvements at other resolutions. The second largest error source is the use of an overly simplified relationship between the surface moisture flux and latent heat flux at the interface between the host model and the turbulence parameterization. This error can be prevented by applying the same (correct) relationship throughout the entire model. Two additional types of conservation error that result from correcting the surface moisture flux and clipping negative water concentrations can be avoided by using mass-conserving fixers. With all four error sources addressed, the water conservation error in the V1 model is negligible and insensitive to the horizontal resolution. The associated changes in the long-term statistics of the main atmospheric features are small. A sensitivity analysis is carried out to show that the magnitudes of the conservation errors decrease strongly with temporal resolution but increase with horizontal resolution. The increased vertical resolution in the new model results in a very thin model layer at the Earth’s surface, which amplifies the conservation error associated with the surface moisture flux correction. We note that for some of the identified error sources, the proposed fixers are remedies rather than solutions to the problems at their roots. Future improvements in time integration would be beneficial for this model.« less

  9. Impact of numerical choices on water conservation in the E3SM Atmosphere Model version 1 (EAMv1)

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Rasch, Philip J.; Taylor, Mark A.; Wan, Hui; Leung, Ruby; Ma, Po-Lun; Golaz, Jean-Christophe; Wolfe, Jon; Lin, Wuyin; Singh, Balwinder; Burrows, Susannah; Yoon, Jin-Ho; Wang, Hailong; Qian, Yun; Tang, Qi; Caldwell, Peter; Xie, Shaocheng

    2018-06-01

    The conservation of total water is an important numerical feature for global Earth system models. Even small conservation problems in the water budget can lead to systematic errors in century-long simulations. This study quantifies and reduces various sources of water conservation error in the atmosphere component of the Energy Exascale Earth System Model. Several sources of water conservation error have been identified during the development of the version 1 (V1) model. The largest errors result from the numerical coupling between the resolved dynamics and the parameterized sub-grid physics. A hybrid coupling using different methods for fluid dynamics and tracer transport provides a reduction of water conservation error by a factor of 50 at 1° horizontal resolution as well as consistent improvements at other resolutions. The second largest error source is the use of an overly simplified relationship between the surface moisture flux and latent heat flux at the interface between the host model and the turbulence parameterization. This error can be prevented by applying the same (correct) relationship throughout the entire model. Two additional types of conservation error that result from correcting the surface moisture flux and clipping negative water concentrations can be avoided by using mass-conserving fixers. With all four error sources addressed, the water conservation error in the V1 model becomes negligible and insensitive to the horizontal resolution. The associated changes in the long-term statistics of the main atmospheric features are small. A sensitivity analysis is carried out to show that the magnitudes of the conservation errors in early V1 versions decrease strongly with temporal resolution but increase with horizontal resolution. The increased vertical resolution in V1 results in a very thin model layer at the Earth's surface, which amplifies the conservation error associated with the surface moisture flux correction. We note that for some of the identified error sources, the proposed fixers are remedies rather than solutions to the problems at their roots. Future improvements in time integration would be beneficial for V1.

  10. Synchronization behaviors of coupled neurons under electromagnetic radiation

    NASA Astrophysics Data System (ADS)

    Ma, Jun; Wu, Fuqiang; Wang, Chunni

    2017-01-01

    Based on an improved neuronal model, in which the effect of magnetic flux is considered during the fluctuation and change of ion concentration in cells, the transition of synchronization is investigated by imposing external electromagnetic radiation on the coupled neurons, and networks, respectively. It is found that the synchronization degree depends on the coupling intensity and the intensity of external electromagnetic radiation. Indeed, appropriate intensity of electromagnetic radiation could be effective to realize intermittent synchronization, while stronger intensity of electromagnetic radiation can induce disorder of coupled neurons and network. Neurons show rhythm synchronization in the electrical activities by increasing the coupling intensity under electromagnetic radiation, and spatial patterns can be formed in the network under smaller factor of synchronization.

  11. Diagnosing the Nature of Land-Atmosphere Coupling: A Case Study of Dry/Wet Extremes

    NASA Technical Reports Server (NTRS)

    Santanello, Joseph A., Jr.; Peters-Lidard, Christa; Kennedy, Aaron D.

    2012-01-01

    Land-atmosphere (L-A) interactions play a critical role in determining the diurnal evolution of land surface and planetary boundary layer (PBL) temperature and moisture states and fluxes. In turn, these interactions regulate the strength of the connection between surface moisture and precipitation in a coupled system. To address deficiencies in numerical weather prediction and climate models due to improper treatment of L-A interactions, recent studies have focused on development of diagnostics to quantify the strength and accuracy of the land-PBL coupling at the process-level. In this study, a diagnosis of the nature and impacts oflocalland-atmosphere coupling (LoCo) during dry and wet extreme conditions is presented using a combination of models and observations during the summers of2006-7 in the U.S. Southern Great Plains. Specifically, the Weather Research and Forecasting (WRF) model has been coupled to NASA's Land Information System (LIS), which provides a flexible and high-resolution representation and initialization of land surface physics and states. A range of diagnostics exploring the links and feedbacks between soil moisture and precipitation are examined for the dry/wet regimes of this region, along with the behavior and accuracy of different land-PBL scheme couplings under these conditions. In addition, we examine the impact of improved specification ofland surface states, anomalies, and fluxes that are obtained through the use of a hew optimization and uncertainty module in LIS, on the L-A coupling in WRF forecasts. Results demonstrate how LoCo diagnostics can be applied to coupled model components in the context of their integrated impacts on the process-chain connecting the land surface to the PBL and support of hydrological anomalies.

  12. Siphon flows in isolated magnetic flux tubes. V - Radiative flows with variable ionization

    NASA Technical Reports Server (NTRS)

    Montesinos, Benjamin; Thomas, John H.

    1993-01-01

    Steady siphon flows in arched isolated magnetic flux tubes in the solar atmosphere are calculated here including radiative transfer between the flux tube and its surrounding and variable ionization of the flowing gas. It is shown that the behavior of a siphon flow is strongly determined by the degree of radiative coupling between the flux tube and its surroundings in the superadiabatic layer just below the solar surface. Critical siphon flows with adiabatic tube shocks in the downstream leg are calculated, illustrating the radiative relaxation of the temperature jump downstream of the shock. For flows in arched flux tubes reaching up to the temperature minimum, where the opacity is low, the gas inside the flux tube is much cooler than the surrounding atmosphere at the top of the arch. It is suggested that gas cooled by siphon flows contribute to the cool component of the solar atmosphere at the height of the temperature minimum implied by observations of the infrared CO bands at 4.6 and 2.3 microns.

  13. Carbon and energy fluxes from China's largest freshwater lake

    NASA Astrophysics Data System (ADS)

    Gan, G.; LIU, Y.

    2017-12-01

    Carbon and energy fluxes between lakes and the atmosphere are important aspects of hydrology, limnology, and ecology studies. China's largest freshwater lake, the Poyang lake experiences tremendous water-land transitions periodically throughout the year, which provides natural experimental settings for the study of carbon and energy fluxes. In this study, we use the eddy covariance technique to explore the seasonal and diurnal variation patterns of sensible and latent heat fluxes of Poyang lake during its high-water and low-water periods, when the lake is covered by water and mudflat, respectively. We also determine the annual NEE of Poyang lake and the variations of NEE's components: Gross Primary Productivity (GPP) and Ecosystem Respiration (Re). Controlling factors of seasonal and diurnal variations of carbon and energy fluxes are analyzed, and land cover impacts on the variation patterns are also studied. Finally, the coupling between the carbon and energy fluxes are analyzed under different atmospheric, boundary stability and land cover conditions.

  14. The deformation of flux tubes in the solar wind with applications to the structure of magnetic clouds and CMEs

    NASA Technical Reports Server (NTRS)

    Cargill, Peter J.; Chen, James; Spicer, D. S.; Zalesak, S. T.

    1994-01-01

    Two dimensional magnetohydrodynamic simulations of the distortion of a magnetic flux tube, accelerated through ambient solar wind plasma, are presented. Vortices form on the trailing edge of the flux tube, and couple strongly to its interior. If the flux tube azimuthal field is weak, it deforms into an elongated banana-like shape after a few Alfven transit times. A significant azimuthal field component inhibits this distortion. In the case of magnetic clouds in the solar wind, it is suggested that the shape observed at 1 AU was determined by distortion of the cloud in the inner heliosphere. Distortion of the cloud beyond 1 AU takes many days. It is estimated that effective drag coefficients slightly greater than unity are appropriate for modeling flux tube propagation. Synthetic magnetic field profiles as would be seen by a spacecraft traversing the cloud are presented.

  15. High temperature superconductor dc-SQUID microscope with a soft magnetic flux guide

    NASA Astrophysics Data System (ADS)

    Poppe, U.; Faley, M. I.; Zimmermann, E.; Glaas, W.; Breunig, I.; Speen, R.; Jungbluth, B.; Soltner, H.; Halling, H.; Urban, K.

    2004-05-01

    A scanning SQUID microscope based on high-temperature superconductor (HTS) dc-SQUIDs was developed. An extremely soft magnetic amorphous foil was used to guide the flux from room temperature samples to the liquid-nitrogen-cooled SQUID sensor and back. The flux guide passes through the pick-up loop of the HTS SQUID, providing an improved coupling of magnetic flux of the object to the SQUID. The device measures the z component (direction perpendicular to the sample surface) of the stray field of the sample, which is rastered with submicron precision in the x-y direction by a motorized computer-controlled scanning stage. A lateral resolution better than 10 µm, with a field resolution of about 0.6 nT Hz-1/2 was achieved for the determination of the position of the current carrying thin wires. The presence of the soft magnetic foil did not significantly increase the flux noise of the SQUID.

  16. Efficient creation of multipartite entanglement in flux qubits.

    PubMed

    Ferber, J; Wilhelm, F K

    2010-07-09

    We investigate three superconducting flux qubits coupled in a loop. In this setup, tripartite entanglement can be created in a natural, controllable, and stable way. Both generic kinds of tripartite entanglement--the W type as well as the GHZ type entanglement--can be identified among the eigenstates. We also discuss the violation of Bell inequalities in this system and show the impact of a limited measurement fidelity on the detection of entanglement and quantum nonlocality.

  17. Investigation of the MTC noise estimation with a coupled neutronic/thermal-hydraulic dedicated model - 'Closing the loop'

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demaziere, C.; Larsson, V.

    2012-07-01

    This paper investigates the reliability of different noise estimators aimed at determining the Moderator Temperature Coefficient (MTC) of reactivity in Pressurized Water Reactors. By monitoring the inherent fluctuations in the neutron flux and moderator temperature, an on-line monitoring of the MTC without perturbing reactor operation is possible. In order to get an accurate estimation of the MTC by noise analysis, the point-kinetic component of the neutron noise and the core-averaged moderator temperature noise have to be used. Because of the scarcity of the in-core instrumentation, the determination of these quantities is difficult, and several possibilities thus exist for estimating themore » MTC by noise analysis. Furthermore, the effect of feedback has to be negligible at the frequency chosen for estimating the MTC in order to get a proper determination of the MTC. By using an integrated neutronic/thermal- hydraulic model specifically developed for estimating the three-dimensional distributions of the fluctuations in neutron flux, moderator properties, and fuel temperature, different approaches for estimating the MTC by noise analysis can be tested individually. It is demonstrated that a reliable MTC estimation can only be provided if the core is equipped with a sufficient number of both neutron detectors and temperature sensors, i.e. if the core contain in-core detectors monitoring both the axial and radial distributions of the fluctuations in neutron flux and moderator temperature. It is further proven that the effect of feedback is negligible for frequencies higher than 0.1 Hz, and thus the MTC noise estimations have to be performed at higher frequencies. (authors)« less

  18. Understanding and Projecting Climate and Human Impacts on Terrestrial-Coastal Carbon and Nutrient Fluxes

    NASA Astrophysics Data System (ADS)

    Lohrenz, S. E.; Cai, W. J.; Tian, H.; He, R.; Fennel, K.

    2017-12-01

    Changing climate and land use practices have the potential to dramatically alter coupled hydrologic-biogeochemical processes and associated movement of water, carbon and nutrients through various terrestrial reservoirs into rivers, estuaries, and coastal ocean waters. Consequences of climate- and land use-related changes will be particularly evident in large river basins and their associated coastal outflow regions. Here, we describe a NASA Carbon Monitoring System project that employs an integrated suite of models in conjunction with remotely sensed as well as targeted in situ observations with the objectives of describing processes controlling fluxes on land and their coupling to riverine, estuarine and ocean ecosystems. The nature of our approach, coupling models of terrestrial and ocean ecosystem dynamics and associated carbon processes, allows for assessment of how societal and human-related land use, land use change and forestry and climate-related change affect terrestrial carbon transport as well as export of materials through watersheds to the coastal margins. Our objectives include the following: 1) Provide representation of carbon processes in the terrestrial ecosystem to understand how changes in land use and climatic conditions influence the export of materials to the coastal ocean, 2) Couple the terrestrial exports of carbon, nutrients and freshwater to a coastal biogeochemical model and examine how different climate and land use scenarios influence fluxes across the land-ocean interface, and 3) Project future changes under different scenarios of climate and human impact, and support user needs related to carbon management and other activities (e.g., water quality, hypoxia, ocean acidification). This research is providing information that will contribute to determining an overall carbon balance in North America as well as describing and predicting how human- and climate-related changes impact coastal water quality including possible effects of coastal eutrophication and hypoxia.

  19. In Vivo Quantification of Cell Coupling in Plants with Different Phloem-Loading Strategies[W][OA

    PubMed Central

    Liesche, Johannes; Schulz, Alexander

    2012-01-01

    Uptake of photoassimilates into the leaf phloem is the key step in carbon partitioning and phloem transport. Symplasmic and apoplasmic loading strategies have been defined in different plant taxa based on the abundance of plasmodesmata between mesophyll and phloem. For apoplasmic loading to occur, an absence of plasmodesmata is a sufficient but not a necessary criterion, as passage of molecules through plasmodesmata might well be blocked or restricted. Here, we present a noninvasive, whole-plant approach to test symplasmic coupling and quantify the intercellular flux of small molecules using photoactivation microscopy. Quantification of coupling between all cells along the prephloem pathways of the apoplasmic loader Vicia faba and Nicotiana tabacum showed, to our knowledge for the first time in vivo, that small solutes like sucrose can diffuse through plasmodesmata up to the phloem sieve element companion cell complex (SECCC). As expected, the SECCC was found to be symplasmically isolated for small solutes. In contrast, the prephloem pathway of the symplasmic loader Cucurbita maxima was found to be well coupled with the SECCC. Phloem loading in gymnosperms is not well understood, due to a profoundly different leaf anatomy and a scarcity of molecular data compared with angiosperms. A cell-coupling analysis for Pinus sylvestris showed high symplasmic coupling along the entire prephloem pathway, comprising at least seven cell border interfaces between mesophyll and sieve elements. Cell coupling together with measurements of leaf sap osmolality indicate a passive symplasmic loading type. Similarities and differences of this loading type with that of angiosperm trees are discussed. PMID:22422939

  20. Electric flux tube in a magnetic plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao Jinfeng; Shuryak, Edward

    2008-06-15

    In this paper we study a methodical problem related to the magnetic scenario recently suggested and initiated by Liao and Shuryak [Phys. Rev. C 75, 054907 (2007)] to understand the strongly coupled quark-gluon plasma (sQGP): the electric flux tube in a monopole plasma. A macroscopic approach, in which we interpolate between a Bose condensed (dual superconductor) medium and a classical gas medium, is developed first. Then we work out a microscopic approach based on detailed quantum mechanical calculations of the monopole scattering on the electric flux tube, evaluating induced currents for all partial waves. As expected, the flux tube losesmore » its stability when particles can penetrate it: We make this condition precise by calculating the critical value for the product of the flux tube size times the particle momentum, above which the flux tube dissolves. Lattice static potentials indicate that flux tubes seem to dissolve at T>T{sub dissolution}{approx_equal}1.3T{sub c}. Using our criterion one gets an estimate of the magnetic density n{approx_equal}4.4-6.6 fm{sup -3} at this temperature.« less

  1. Improved regional-scale groundwater representation by the coupling of the mesoscale Hydrologic Model (mHM v5.7) to the groundwater model OpenGeoSys (OGS)

    NASA Astrophysics Data System (ADS)

    Jing, Miao; Heße, Falk; Kumar, Rohini; Wang, Wenqing; Fischer, Thomas; Walther, Marc; Zink, Matthias; Zech, Alraune; Samaniego, Luis; Kolditz, Olaf; Attinger, Sabine

    2018-06-01

    Most large-scale hydrologic models fall short in reproducing groundwater head dynamics and simulating transport process due to their oversimplified representation of groundwater flow. In this study, we aim to extend the applicability of the mesoscale Hydrologic Model (mHM v5.7) to subsurface hydrology by coupling it with the porous media simulator OpenGeoSys (OGS). The two models are one-way coupled through model interfaces GIS2FEM and RIV2FEM, by which the grid-based fluxes of groundwater recharge and the river-groundwater exchange generated by mHM are converted to fixed-flux boundary conditions of the groundwater model OGS. Specifically, the grid-based vertical reservoirs in mHM are completely preserved for the estimation of land-surface fluxes, while OGS acts as a plug-in to the original mHM modeling framework for groundwater flow and transport modeling. The applicability of the coupled model (mHM-OGS v1.0) is evaluated by a case study in the central European mesoscale river basin - Nägelstedt. Different time steps, i.e., daily in mHM and monthly in OGS, are used to account for fast surface flow and slow groundwater flow. Model calibration is conducted following a two-step procedure using discharge for mHM and long-term mean of groundwater head measurements for OGS. Based on the model summary statistics, namely the Nash-Sutcliffe model efficiency (NSE), the mean absolute error (MAE), and the interquartile range error (QRE), the coupled model is able to satisfactorily represent the dynamics of discharge and groundwater heads at several locations across the study basin. Our exemplary calculations show that the one-way coupled model can take advantage of the spatially explicit modeling capabilities of surface and groundwater hydrologic models and provide an adequate representation of the spatiotemporal behaviors of groundwater storage and heads, thus making it a valuable tool for addressing water resources and management problems.

  2. The Use of a Mesoscale Climate Model to Validate the Nocturnal Carbon Flux over a Forested Site

    NASA Astrophysics Data System (ADS)

    Werth, D.; Parker, M.; Kurzeja, R.; Leclerc, M.; Watson, T.

    2007-12-01

    The Savannah River National Laboratory is initiating a comprehensive carbon dioxide monitoring and modeling program in collaboration with the University of Georgia and the Brookhaven National Laboratory. One of the primary goals is to study the dynamics of carbon dioxide in the stable nocturnal boundary layer (NBL) over a forested area of the Savannah River Site in southwest South Carolina. In the nocturnal boundary layer (NBL), eddy flux correlation is less effective in determining the release of CO2 due to respiration. Theoretically, however, the flux can be inferred by measuring the build up of CO2 in the stable layer throughout the night. This method of monitoring the flux will be validated and studied in more detail with both observations and the results of a high-resolution regional climate model. The experiment will involve two phases. First, an artificial tracer will be released into the forest boundary layer and observed through an array of sensors and at a flux tower. The event will be simulated with the RAMS climate model run at very high resolution. Ideally, the tracer will remain trapped within the stable layer and accumulate at rates which will allow us to infer the release rate, and this should compare well to the actual release rate. If an unknown mechanism allows the tracer to escape, the model simulation would be used to reveal it. In the second phase, carbon fluxes will be measured overnight through accumulation in the overlying layer. The RAMS model will be coupled with the SiB carbon model to simulate the nocturnal cycle of carbon dynamics, and this will be compared to the data collected during the night. As with the tracer study, the NBL method of flux measurement will be validated against the model. The RAMS-SiB coupled model has been run over the SRS at high-resolution to simulate the NBL, and results from simulations of both phases of the project will be presented.

  3. FluxPyt: a Python-based free and open-source software for 13C-metabolic flux analyses.

    PubMed

    Desai, Trunil S; Srivastava, Shireesh

    2018-01-01

    13 C-Metabolic flux analysis (MFA) is a powerful approach to estimate intracellular reaction rates which could be used in strain analysis and design. Processing and analysis of labeling data for calculation of fluxes and associated statistics is an essential part of MFA. However, various software currently available for data analysis employ proprietary platforms and thus limit accessibility. We developed FluxPyt, a Python-based truly open-source software package for conducting stationary 13 C-MFA data analysis. The software is based on the efficient elementary metabolite unit framework. The standard deviations in the calculated fluxes are estimated using the Monte-Carlo analysis. FluxPyt also automatically creates flux maps based on a template for visualization of the MFA results. The flux distributions calculated by FluxPyt for two separate models: a small tricarboxylic acid cycle model and a larger Corynebacterium glutamicum model, were found to be in good agreement with those calculated by a previously published software. FluxPyt was tested in Microsoft™ Windows 7 and 10, as well as in Linux Mint 18.2. The availability of a free and open 13 C-MFA software that works in various operating systems will enable more researchers to perform 13 C-MFA and to further modify and develop the package.

  4. FluxPyt: a Python-based free and open-source software for 13C-metabolic flux analyses

    PubMed Central

    Desai, Trunil S.

    2018-01-01

    13C-Metabolic flux analysis (MFA) is a powerful approach to estimate intracellular reaction rates which could be used in strain analysis and design. Processing and analysis of labeling data for calculation of fluxes and associated statistics is an essential part of MFA. However, various software currently available for data analysis employ proprietary platforms and thus limit accessibility. We developed FluxPyt, a Python-based truly open-source software package for conducting stationary 13C-MFA data analysis. The software is based on the efficient elementary metabolite unit framework. The standard deviations in the calculated fluxes are estimated using the Monte-Carlo analysis. FluxPyt also automatically creates flux maps based on a template for visualization of the MFA results. The flux distributions calculated by FluxPyt for two separate models: a small tricarboxylic acid cycle model and a larger Corynebacterium glutamicum model, were found to be in good agreement with those calculated by a previously published software. FluxPyt was tested in Microsoft™ Windows 7 and 10, as well as in Linux Mint 18.2. The availability of a free and open 13C-MFA software that works in various operating systems will enable more researchers to perform 13C-MFA and to further modify and develop the package. PMID:29736347

  5. Gravitational effects on planetary neutron flux spectra

    NASA Astrophysics Data System (ADS)

    Feldman, W. C.; Drake, D. M.; O'dell, R. D.; Brinkley, F. W.; Anderson, R. C.

    1989-01-01

    The effects of gravity on the planetary neutron flux spectra for planet Mars, and the lifetime of the neutron, were investigated using a modified one-dimensional diffusion accelerated neutral-particle transport code, coupled with a multigroup cross-section library tailored specifically for Mars. The results showed the presence of a qualitatively new feature in planetary neutron leakage spectra in the form of a component of returning neutrons with kinetic energies less than the gravitational binding energy (0.132 eV for Mars). The net effect is an enhancement in flux at the lowest energies that is largest at and above the outermost layer of planetary matter.

  6. Synthetic gauge flux and Weyl points in acoustic systems

    NASA Astrophysics Data System (ADS)

    Xiao, Meng; Chen, Wen-Jie; He, Wen-Yu; Chan, C. T.

    We consider acoustic systems comprising a honeycomb lattice in the xy plane and periodic along the z direction. As kz is a good quantum number here, for each fixed kz, this system can be treated as a reduced two-dimensional system. By engineering the interlayer coupling in the z-direction, we show that we can realize effective inversion symmetry breaking and synthetic staggered gauge flux in the reduced two-dimensional system. The realizations of chiral edge states for fixed values of kz are direct consequences of the staggered gauge flux. And we then show that the synthetic gauge flux is closely related to the Weyl points in the three-dimensional band structure. This work was supported by the Hong Kong Research Grants Council (Grant No. AoE/P-02/12).

  7. Synchronized Re-Entrant Flux Reversal of Multiple FeSiB Amorphous Wires Having the Larger Output

    NASA Astrophysics Data System (ADS)

    Takajo, Minoru; Yamasaki, Jiro

    Technique to synchronize the re-entrant flux reversal of the multiple magnetostrictive Fe77.5Si7.5B15 amorphous wires was developed using a flux keeper of amorphous ribbons contacted to the wire ends. It is comprehended that the characteristics of the re-entrant flux takes place respectively at almost the same time in the three Fe-Si-B amorphous wires with a diameter of 65, 95μm. This phenomenon can be explained by considering the strong magnetic coupling of wires and amorphous ribbon by stray field from the each wire ends. As a result, the magnitude of the induced voltage in the sense coil is increased in proportion to the multiplication of the number of the wires.

  8. On the dynamo generation of flux ropes in the Venus ionosphere

    NASA Technical Reports Server (NTRS)

    Luhmann, J. G.; Elphic, R. C.

    1985-01-01

    Small scale magnetic field structures or 'flux ropes' observed in the ionosphere of Venus can be interpreted as the result of a kinematic dynamo process acting on weak seed fields. The seed fields result from the prevailing downward convection of magnetic flux from the vicinity of the ionopause, while small scale fluctuations in the velocity of the ionospheric plasma, which can be caused by collisional coupling to gravity waves in the neutral atmosphere, provide the mechanism by which the field is twisted and redistributed into features of similar scale. This mechanism naturally explains some of the average properties of flux ropes such as the variation of their characteristics with altitude and solar zenith angle. It also elucidates the relationship between the large scale and small scale ionospheric magnetic fields.

  9. Tactile communication using a CO(2) flux stimulation for blind or deafblind people.

    PubMed

    da Cunha, Jose Carlos; Bordignon, Luiz Alberto; Nohama, Percy

    2010-01-01

    This paper describes a tactile stimulation system for producing nonvisual image patterns to blind or deafblind people. The stimulator yields a CO(2) pulsatile flux directed to the user's skin throughout a needle that is coupled to a 2-D tactile plotter. The fluxtactile plotter operates with two step motor mounted on a wood structure, controlled by a program developed to produce alphanumerical characters and geometric figures of different size and speed, which will be used to investigate the psychophysical properties of this kind of tactile communication. CO(2) is provided by a cylinder that delivers a stable flux, which is converted to a pulsatile mode through a high frequency solenoid valve that can chop it up to 1 kHz. Also, system temperature is controlled by a Peltier based device. Tests on the prototype indicate that the system is a valuable tool to investigate the psychophysical properties of the skin in response to stimulation by CO(2) jet, allowing a quantitative and qualitative analysis as a function of stimulation parameters. With the system developed, it was possible to plot the geometric figures proposed: triangles, rectangles and octagons, in different sizes and speeds, and verify the control of the frequency of CO(2) jet stimuli.

  10. Design and Characterization of a High Resolution Microfluidic Heat Flux Sensor with Thermal Modulation

    PubMed Central

    Nam, Sung-Ki; Kim, Jung-Kyun; Cho, Sung-Cheon; Lee, Sun-Kyu

    2010-01-01

    A complementary metal-oxide semiconductor-compatible process was used in the design and fabrication of a suspended membrane microfluidic heat flux sensor with a thermopile for the purpose of measuring the heat flow rate. The combination of a thirty-junction gold and nickel thermoelectric sensor with an ultralow noise preamplifier, a low pass filter, and a lock-in amplifier can yield a resolution 20 nW with a sensitivity of 461 V/W. The thermal modulation method is used to eliminate low-frequency noise from the sensor output, and various amounts of fluidic heat were applied to the sensor to investigate its suitability for microfluidic applications. For sensor design and analysis of signal output, a method of modeling and simulating electro-thermal behavior in a microfluidic heat flux sensor with an integrated electronic circuit is presented and validated. The electro-thermal domain model was constructed by using system dynamics, particularly the bond graph. The electro-thermal domain system model in which the thermal and the electrical domains are coupled expresses the heat generation of samples and converts thermal input to electrical output. The proposed electro-thermal domain system model is in good agreement with the measured output voltage response in both the transient and the steady state. PMID:22163568

  11. A spatially resolved retarding field energy analyzer design suitable for uniformity analysis across the surface of a semiconductor wafer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, S., E-mail: shailesh.sharma6@mail.dcu.ie; National Centre for Plasma Science and Technology, Dublin City University, Glasnevin, Dublin 9; Gahan, D., E-mail: david.gahan@impedans.com

    2014-04-15

    A novel retarding field energy analyzer design capable of measuring the spatial uniformity of the ion energy and ion flux across the surface of a semiconductor wafer is presented. The design consists of 13 individual, compact-sized, analyzers, all of which are multiplexed and controlled by a single acquisition unit. The analyzers were tested to have less than 2% variability from unit to unit due to tight manufacturing tolerances. The main sensor assembly consists of a 300 mm disk to mimic a semiconductor wafer and the plasma sampling orifices of each sensor are flush with disk surface. This device is placedmore » directly on top of the rf biased electrode, at the wafer location, in an industrial capacitively coupled plasma reactor without the need for any modification to the electrode structure. The ion energy distribution, average ion energy, and average ion flux were measured at the 13 locations over the surface of the powered electrode to determine the degree of spatial nonuniformity. The ion energy and ion flux are shown to vary by approximately 20% and 5%, respectively, across the surface of the electrode for the range of conditions investigated in this study.« less

  12. Superfluid qubit systems with ring shaped optical lattices

    PubMed Central

    Amico, Luigi; Aghamalyan, Davit; Auksztol, Filip; Crepaz, Herbert; Dumke, Rainer; Kwek, Leong Chuan

    2014-01-01

    We study an experimentally feasible qubit system employing neutral atomic currents. Our system is based on bosonic cold atoms trapped in ring-shaped optical lattice potentials. The lattice makes the system strictly one dimensional and it provides the infrastructure to realize a tunable ring-ring interaction. Our implementation combines the low decoherence rates of neutral cold atoms systems, overcoming single site addressing, with the robustness of topologically protected solid state Josephson flux qubits. Characteristic fluctuations in the magnetic fields affecting Josephson junction based flux qubits are expected to be minimized employing neutral atoms as flux carriers. By breaking the Galilean invariance we demonstrate how atomic currents through the lattice provide an implementation of a qubit. This is realized either by artificially creating a phase slip in a single ring, or by tunnel coupling of two homogeneous ring lattices. The single qubit infrastructure is experimentally investigated with tailored optical potentials. Indeed, we have experimentally realized scaled ring-lattice potentials that could host, in principle, n ~ 10 of such ring-qubits, arranged in a stack configuration, along the laser beam propagation axis. An experimentally viable scheme of the two-ring-qubit is discussed, as well. Based on our analysis, we provide protocols to initialize, address, and read-out the qubit. PMID:24599096

  13. Magnetic testing for inter-granular crack defect of tubing coupling

    NASA Astrophysics Data System (ADS)

    Hu, Bo; Yu, Runqiao

    2018-04-01

    This study focused on the inter-granular crack defects of tubing coupling wherein a non-destructive magnetic testing technique was proposed to determine the magnetic flux leakage features on coupling surface in the geomagnetic field using a high-precision magnetic sensor. The abnormal magnetic signatures of defects were analysed, and the principle of the magnetic test was explained based on the differences in the relative permeability of defects and coupling materials. Abnormal fluctuations of the magnetic signal were observed at the locations of the inter-granular crack defects. Imaging showed the approximate position of defects. The test results were proven by metallographic phase.

  14. Evaluation of Cloud Fraction and Radiative Fluxes in Recent Reanalyses over the Arctic using Surface and Satellite Observations

    NASA Astrophysics Data System (ADS)

    Zib, B.; Dong, X.; Xi, B.; Kennedy, A. D.

    2010-12-01

    Reanalysis datasets can be an essential tool for investigating numerous climate parameters, especially in data-sparse regions like the Arctic. Where long-term continuous data is limited, reanalyses offer a resource for the recognition and analysis of change in a sensitive and complex coupled Arctic climate system. A study focused on the evaluation and intercomparison of four relatively new global reanalysis datasets will be conducted. The four new reanalyses being investigated include: (i) NASA-MERRA, (ii) NCEP-CFS, (iii) NOAA-20CR, and (iv) NCEP-DOE II. In this study, the cloud fraction and TOA radiative fluxes simulated from four reanalyses over the entire Arctic region will be compared with those derived from NASA MODIS and CERES sensors during the period 2000-2008. The surface radiative fluxes derived in each reanalysis will also be compared and validated by the BSRN surface observations during the period 1994-2008. The high latitude BSRN sites used in this study are Barrow, Alaska (BAR) and Ny Alesund, Svalbard, Norway (NYA). BSRN offers high time resolution solar and atmospheric radiation measurements from high accuracy instruments that provide a baseline for validating reanalysis estimates of surface radiation. In addition to downwelling radiation fluxes, cloud fraction from the reanalyses will also be evaluated by the Vaisala ceilometer derived cloud fraction at the Barrow, AK site. The ultimate goal of this study is to quantitatively estimate the uncertainties or biases of cloud fraction and TOA and surface radiative fluxes derived from four different recent reanalyses using highly qualified long-term surface and satellite observations as ground truth over the Arctic region.

  15. Measurement of non-enteric emission fluxes of volatile fatty acids from a California dairy by solid phase micro-extraction with gas chromatography/mass spectrometry

    NASA Astrophysics Data System (ADS)

    Alanis, Phillip; Sorenson, Mark; Beene, Matt; Krauter, Charles; Shamp, Brian; Hasson, Alam S.

    Dairies are a major source of volatile organic compounds (VOCs) in California's San Joaquin Valley; a region that experiences high ozone levels during summer. Short-chain carboxylic acids, or volatile fatty acids (VFAs), are believed to make up a large fraction of VOC emissions from these facilities, although there are few studies to substantiate this. In this work, a method using a flux chamber coupled to solid phase micro-extraction (SPME) fibers followed by analysis using gas chromatography/mass spectrometry was developed to quantify emissions of six VFAs (acetic acid, propanoic acid, butanoic acid, pentanoic acid, hexanoic acid and 3-methyl butanoic acid) from non-enteric sources. The technique was then used to quantify VFA fluxes from a small dairy located on the campus of California State University Fresno. Both animal feed and animal waste are found to be major sources of VFAs, with acetic acid contributing 70-90% of emissions from the sources tested. Measured total acid fluxes during spring (with an average temperature of 20 °C) were 1.84 ± 0.01, 1.06 ± 0.08, (1.3 ± 0.5) × 10 -2, (1.7 ± 0.2) × 10 -2 and (1.2 ± 0.5) × 10 -2 g m -2 h -1 from silage, total mixed rations, flushing lane, open lot and lagoon sources, respectively. VFA emissions from the sources tested total 390 ± 80 g h -1. The data indicate high fluxes of VFAs from dairy facilities, but differences in the design and operation of dairies in the San Joaquin Valley as well as seasonal variations mean that additional measurements must be made to accurately determine emissions inventories for the region.

  16. Lipotoxicity in steatohepatitis occurs despite an increase in tricarboxylic acid cycle activity

    PubMed Central

    Patterson, Rainey E.; Kalavalapalli, Srilaxmi; Williams, Caroline M.; Nautiyal, Manisha; Mathew, Justin T.; Martinez, Janie; Reinhard, Mary K.; McDougall, Danielle J.; Rocca, James R.; Yost, Richard A.; Cusi, Kenneth; Garrett, Timothy J.

    2016-01-01

    The hepatic tricarboxylic acid (TCA) cycle is central to integrating macronutrient metabolism and is closely coupled to cellular respiration, free radical generation, and inflammation. Oxidative flux through the TCA cycle is induced during hepatic insulin resistance, in mice and humans with simple steatosis, reflecting early compensatory remodeling of mitochondrial energetics. We hypothesized that progressive severity of hepatic insulin resistance and the onset of nonalcoholic steatohepatitis (NASH) would impair oxidative flux through the hepatic TCA cycle. Mice (C57/BL6) were fed a high-trans-fat high-fructose diet (TFD) for 8 wk to induce simple steatosis and NASH by 24 wk. In vivo fasting hepatic mitochondrial fluxes were determined by 13C-nuclear magnetic resonance (NMR)-based isotopomer analysis. Hepatic metabolic intermediates were quantified using mass spectrometry-based targeted metabolomics. Hepatic triglyceride accumulation and insulin resistance preceded alterations in mitochondrial metabolism, since TCA cycle fluxes remained normal during simple steatosis. However, mice with NASH had a twofold induction (P < 0.05) of mitochondrial fluxes (μmol/min) through the TCA cycle (2.6 ± 0.5 vs. 5.4 ± 0.6), anaplerosis (9.1 ± 1.2 vs. 16.9 ± 2.2), and pyruvate cycling (4.9 ± 1.0 vs. 11.1 ± 1.9) compared with their age-matched controls. Induction of the TCA cycle activity during NASH was concurrent with blunted ketogenesis and accumulation of hepatic diacylglycerols (DAGs), ceramides (Cer), and long-chain acylcarnitines, suggesting inefficient oxidation and disposal of excess free fatty acids (FFA). Sustained induction of mitochondrial TCA cycle failed to prevent accretion of “lipotoxic” metabolites in the liver and could hasten inflammation and the metabolic transition to NASH. PMID:26814015

  17. Numerical investigation of plasma edge transport and limiter heat fluxes in Wendelstein 7-X startup plasmas with EMC3-EIRENE

    NASA Astrophysics Data System (ADS)

    Effenberg, F.; Feng, Y.; Schmitz, O.; Frerichs, H.; Bozhenkov, S. A.; Hölbe, H.; König, R.; Krychowiak, M.; Pedersen, T. Sunn; Reiter, D.; Stephey, L.; W7-X Team

    2017-03-01

    The results of a first systematic assessment of plasma edge transport processes for the limiter startup configuration at Wendelstein 7-X are presented. This includes an investigation of transport from intrinsic and externally injected impurities and their impact on the power balance and limiter heat fluxes. The fully 3D coupled plasma fluid and kinetic neutral transport Monte Carlo code EMC3-EIRENE is used. The analysis of the magnetic topology shows that the poloidally and toroidally localized limiters cause a 3D helical scrape-off layer (SOL) consisting of magnetic flux tubes of three different connection lengths L C. The transport in the helical SOL is governed by L C as topological scale length for the parallel plasma loss channel to the limiters. A clear modulation of the plasma pressure with L C is seen. The helical flux tube topology results in counter streaming sonic plasma flows. The heterogeneous SOL plasma structure yields an uneven limiter heat load distribution with localized peaking. Assuming spatially constant anomalous transport coefficients, increasing plasma density yields a reduction of the maximum peak heat loads from 12 MWm-2 to 7.5 MWm-2 and a broadening of the deposited heat fluxes. The impact of impurities on the limiter heat loads is studied by assuming intrinsic carbon impurities eroded from the limiter surfaces with a gross chemical sputtering yield of 2 % . The resulting radiative losses account for less than 10% of the input power in the power balance with marginal impact on the limiter heat loads. It is shown that a significant mitigation of peak heat loads, 40-50%, can be achieved with controlled impurity seeding with nitrogen and neon, which is a method of particular interest for the later island divertor phase.

  18. Metabolite recycling and bidirectional C fluxes: Revolutionizing our view on microbial C cycling in soils

    NASA Astrophysics Data System (ADS)

    Dippold, M. A.; Apostel, C.; Kuzyakov, Y.

    2016-12-01

    Biogeochemists' view on microbial C transformation in soil has rarely exceed a strongly simplified concept assuming that C gets either oxidized to CO2 via the microbial catabolism or incorporated into biomass via the anabolism. However, life in a C limited environment as challenging as soil requires microbial adaptation strategies at all levels of metabolism. By coupling of position-specific labeling of core metabolites with compound-specific isotope analysis we demonstrated that catabolic oxidation of these metabolites exists in parallel to reductive, energy consuming pathways, reducing them for anabolic purposes. Up to 55% of glucose, incorporated into the glucose derivative glucosamine, first passed glycolysis before allocated back via gluconeogenesis. Similarly, glutamate-derived C is allocated via anaplerotic pathways towards fatty acid synthesis and in parallel to its oxidation in the citric acid cycle. Furthermore, position-specific labeling of rather `cost-intensive' biomass compounds such as fatty acids revealed that intact recycling of metabolites is a crucial microbial adaptation to C scarcity in soils. Both processes are unlikely to occur in pure cultures, where constant growth conditions under high C supply allow a straight unidirectional regulation of C metabolism. However, unstable environmental conditions, C scarcity and interactions between a still unknown diversity of microorganisms in soils are likely to induce the observed metabolic diversity. To understand how microorganisms catalyze the biogeochemical fluxes in soil, a profound understanding of their metabolic adaptation strategies such as recycling or switching between bidirectional fluxes is crucial. Metabolic flux models adapted to soil microbial communities and their regulatory strategies will not only deepen our understanding on the microorganims' reactions to environmental changes but also create the prerequisits for a quantitative prediction of biogeochemical fluxes based on the underlying microbial processes.

  19. Natural Air-Sea Flux of CO2 in Simulations of the NASA-GISS Climate Model: Sensitivity to the Physical Ocean Model Formulation

    NASA Technical Reports Server (NTRS)

    Romanou, A.; Gregg, Watson W.; Romanski, J.; Kelley, M.; Bleck, R.; Healy, R.; Nazarenko, L.; Russell, G.; Schmidt, G. A.; Sun, S.; hide

    2013-01-01

    Results from twin control simulations of the preindustrial CO2 gas exchange (natural flux of CO2) between the ocean and the atmosphere are presented here using the NASA-GISS climate model, in which the same atmospheric component (modelE2) is coupled to two different ocean models, the Russell ocean model and HYCOM. Both incarnations of the GISS climate model are also coupled to the same ocean biogeochemistry module (NOBM) which estimates prognostic distributions for biotic and abiotic fields that influence the air-sea flux of CO2. Model intercomparison is carried out at equilibrium conditions and model differences are contrasted with biases from present day climatologies. Although the models agree on the spatial patterns of the air-sea flux of CO2, they disagree on the strength of the North Atlantic and Southern Ocean sinks mainly because of kinematic (winds) and chemistry (pCO2) differences rather than thermodynamic (SST) ones. Biology/chemistry dissimilarities in the models stem from the different parameterizations of advective and diffusive processes, such as overturning, mixing and horizontal tracer advection and to a lesser degree from parameterizations of biogeochemical processes such as gravitational settling and sinking. The global meridional overturning circulation illustrates much of the different behavior of the biological pump in the two models, together with differences in mixed layer depth which are responsible for different SST, DIC and nutrient distributions in the two models and consequently different atmospheric feedbacks (in the wind, net heat and freshwater fluxes into the ocean).

  20. Upscaling surface energy fluxes over the North Slope of Alaska using airborne eddy-covariance measurements and environmental response functions

    NASA Astrophysics Data System (ADS)

    Serafimovich, Andrei; Metzger, Stefan; Hartmann, Jörg; Kohnert, Katrin; Zona, Donatella; Sachs, Torsten

    2018-03-01

    The objective of this study was to upscale airborne flux measurements of sensible heat and latent heat and to develop high resolution flux maps. In order to support the evaluation of coupled atmospheric/land-surface models we investigated spatial patterns of energy fluxes in relation to land-surface properties. We used airborne eddy-covariance measurements acquired by the POLAR 5 research aircraft in June-July 2012 to analyze surface fluxes. Footprint-weighted surface properties were then related to 21 529 sensible heat flux observations and 25 608 latent heat flux observations using both remote sensing and modelled data. A boosted regression tree technique was used to estimate environmental response functions between spatially and temporally resolved flux observations and corresponding biophysical and meteorological drivers. In order to improve the spatial coverage and spatial representativeness of energy fluxes we used relationships extracted across heterogeneous Arctic landscapes to infer high-resolution surface energy flux maps, thus directly upscaling the observational data. These maps of projected sensible heat and latent heat fluxes were used to assess energy partitioning in northern ecosystems and to determine the dominant energy exchange processes in permafrost areas. This allowed us to estimate energy fluxes for specific types of land cover, taking into account meteorological conditions. Airborne and modelled fluxes were then compared with measurements from an eddy-covariance tower near Atqasuk. Our results are an important contribution for the advanced, scale-dependent quantification of surface energy fluxes and provide new insights into the processes affecting these fluxes for the main vegetation types in high-latitude permafrost areas.

Top