NASA Astrophysics Data System (ADS)
Muldoon, F. H.
2018-04-01
Hydrothermal waves in flows driven by thermocapillary and buoyancy effects are suppressed by applying a predictive control method. Hydrothermal waves arise in the manufacturing of crystals, including the "open boat" crystal growth process, and lead to undesirable impurities in crystals. The open boat process is modeled using the two-dimensional unsteady incompressible Navier-Stokes equations under the Boussinesq approximation and the linear approximation of the surface thermocapillary force. The flow is controlled by a spatially and temporally varying heat flux density through the free surface. The heat flux density is determined by a conjugate gradient optimization algorithm. The gradient of the objective function with respect to the heat flux density is found by solving adjoint equations derived from the Navier-Stokes ones in the Boussinesq approximation. Special attention is given to heat flux density distributions over small free-surface areas and to the maximum admissible heat flux density.
Real-time plasma control in a dual-frequency, confined plasma etcher
NASA Astrophysics Data System (ADS)
Milosavljević, V.; Ellingboe, A. R.; Gaman, C.; Ringwood, J. V.
2008-04-01
The physics issues of developing model-based control of plasma etching are presented. A novel methodology for incorporating real-time model-based control of plasma processing systems is developed. The methodology is developed for control of two dependent variables (ion flux and chemical densities) by two independent controls (27 MHz power and O2 flow). A phenomenological physics model of the nonlinear coupling between the independent controls and the dependent variables of the plasma is presented. By using a design of experiment, the functional dependencies of the response surface are determined. In conjunction with the physical model, the dependencies are used to deconvolve the sensor signals onto the control inputs, allowing compensation of the interaction between control paths. The compensated sensor signals and compensated set-points are then used as inputs to proportional-integral-derivative controllers to adjust radio frequency power and oxygen flow to yield the desired ion flux and chemical density. To illustrate the methodology, model-based real-time control is realized in a commercial semiconductor dielectric etch chamber. The two radio frequency symmetric diode operates with typical commercial fluorocarbon feed-gas mixtures (Ar/O2/C4F8). Key parameters for dielectric etching are known to include ion flux to the surface and surface flux of oxygen containing species. Control is demonstrated using diagnostics of electrode-surface ion current, and chemical densities of O, O2, and CO measured by optical emission spectrometry and/or mass spectrometry. Using our model-based real-time control, the set-point tracking accuracy to changes in chemical species density and ion flux is enhanced.
NASA Astrophysics Data System (ADS)
Krishna, Hemanth; Kumar, Hemantha; Gangadharan, Kalluvalappil
2017-08-01
A magneto rheological (MR) fluid damper offers cost effective solution for semiactive vibration control in an automobile suspension. The performance of MR damper is significantly depends on the electromagnetic circuit incorporated into it. The force developed by MR fluid damper is highly influenced by the magnetic flux density induced in the fluid flow gap. In the present work, optimization of electromagnetic circuit of an MR damper is discussed in order to maximize the magnetic flux density. The optimization procedure was proposed by genetic algorithm and design of experiments techniques. The result shows that the fluid flow gap size less than 1.12 mm cause significant increase of magnetic flux density.
Interior Permanent Magnet Reluctance Machine with Brushless Field Excitation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiles, R.H.
2005-10-07
In a conventional permanent magnet (PM) machine, the air-gap flux produced by the PM is fixed. It is difficult to enhance the air-gap flux density due to limitations of the PM in a series-magnetic circuit. However, the air-gap flux density can be weakened by using power electronic field weakening to the limit of demagnetization of the PMs. This paper presents the test results of controlling the PM air-gap flux density through the use of a stationary brushless excitation coil in a reluctance interior permanent magnet with brushless field excitation (RIPM-BFE) motor. Through the use of this technology the air-gap fluxmore » density can be either enhanced or weakened. There is no concern with demagnetizing the PMs during field weakening. The leakage flux of the excitation coil through the PMs is blocked. The prototype motor built on this principle confirms the concept of flux enhancement and weakening through the use of excitation coils.« less
Control and design heat flux bending in thermal devices with transformation optics.
Xu, Guoqiang; Zhang, Haochun; Jin, Yan; Li, Sen; Li, Yao
2017-04-17
We propose a fundamental latent function of control heat transfer and heat flux density vectors at random positions on thermal materials by applying transformation optics. The expressions for heat flux bending are obtained, and the factors influencing them are investigated in both 2D and 3D cloaking schemes. Under certain conditions, more than one degree of freedom of heat flux bending exists corresponding to the temperature gradients of the 3D domain. The heat flux path can be controlled in random space based on the geometrical azimuths, radial positions, and thermal conductivity ratios of the selected materials.
Solar Illumination Control of the Polar Wind
NASA Astrophysics Data System (ADS)
Maes, L.; Maggiolo, R.; De Keyser, J.; André, M.; Eriksson, A. I.; Haaland, S.; Li, K.; Poedts, S.
2017-11-01
Polar wind outflow is an important process through which the ionosphere supplies plasma to the magnetosphere. The main source of energy driving the polar wind is solar illumination of the ionosphere. As a result, many studies have found a relation between polar wind flux densities and solar EUV intensity, but less is known about their relation to the solar zenith angle at the ionospheric origin, certainly at higher altitudes. The low energy of the outflowing particles and spacecraft charging means it is very difficult to measure the polar wind at high altitudes. We take advantage of an alternative method that allows estimations of the polar wind flux densities far in the lobes. We analyze measurements made by the Cluster spacecraft at altitudes from 4 up to 20 RE. We observe a strong dependence on the solar zenith angle in the ion flux density and see that both the ion velocity and density exhibit a solar zenith angle dependence as well. We also find a seasonal variation of the flux density.
Microprocessor in controlled transdermal drug delivery of anti-cancer drugs.
Chandrashekar, N S; Shobha Rani, R H
2009-12-01
Microprocessor controlled transdermal delivery of anticancer drugs 5-Fluorouracil (5-FU) and 6-Mercaptopurine (6-MP) was developed and in vitro evaluation was done. Drugs were loaded based on the pharmacokinetics parameters. In vitro diffusion studies were carried at different current density (0.0, 0.1, 0.22, 0.50 mA/cm2). The patches were evaluated for the drug content, thickness, weight, folding endurance, flatness, thumb tack test and adhesive properties all were well with in the specification of transdermal patches with elegant and transparent in appearance. In vitro permeation studies through human cadaver skin showed, passive delivery (0.0 mA/cm2) of 6-MP was low. As the current density was progressively increased, the flux also increased. the flux also increased with 0.1 mA/cm2 for 15-20 min, but it was less than desired flux, 0.2 mA/cm2 for 30 min showed better flux than 0.1 mA/cm2 current, but lag time was more than 4 h, 0.5 mA/cm2 current for more than 1 h, flux was >159 microg/cm2 h which was desired flux for 6-MP. 5-FU flux reached the minimum effective concentration (MEC) of 54 microg/cm2 h with 0.5 mA/cm2 current for 30-45 min, drug concentration were within the therapeutic window in post-current phase. We concluded from Ohm's Law that as the resistance decreases, current increases. Skin resistance decrease with increase in time and current, increase in the drug permeation. Interestingly, for all investigated current densities, as soon as the current was switched off, 5-FU and 6-MP flux decreased fairly, but the controlled drug delivery can be achieved by switching the current for required period of time.
Partial detachment of high power discharges in ASDEX Upgrade
NASA Astrophysics Data System (ADS)
Kallenbach, A.; Bernert, M.; Beurskens, M.; Casali, L.; Dunne, M.; Eich, T.; Giannone, L.; Herrmann, A.; Maraschek, M.; Potzel, S.; Reimold, F.; Rohde, V.; Schweinzer, J.; Viezzer, E.; Wischmeier, M.; the ASDEX Upgrade Team
2015-05-01
Detachment of high power discharges is obtained in ASDEX Upgrade by simultaneous feedback control of core radiation and divertor radiation or thermoelectric currents by the injection of radiating impurities. So far 2/3 of the ITER normalized heat flux Psep/R = 15 MW m-1 has been obtained in ASDEX Upgrade under partially detached conditions with a peak target heat flux well below 10 MW m-2. When the detachment is further pronounced towards lower peak heat flux at the target, substantial changes in edge localized mode (ELM) behaviour, density and radiation distribution occur. The time-averaged peak heat flux at both divertor targets can be reduced below 2 MW m-2, which offers an attractive DEMO divertor scenario with potential for simpler and cheaper technical solutions. Generally, pronounced detachment leads to a pedestal and core density rise by about 20-40%, moderate (<20%) confinement degradation and a reduction of ELM size. For AUG conditions, some operational challenges occur, like the density cut-off limit for X-2 electron cyclotron resonance heating, which is used for central tungsten control.
Flux-Feedback Magnetic-Suspension Actuator
NASA Technical Reports Server (NTRS)
Groom, Nelson J.
1990-01-01
Flux-feedback magnetic-suspension actuator provides magnetic suspension and control forces having linear transfer characteristics between force command and force output over large range of gaps. Hall-effect devices used as sensors for electronic feedback circuit controlling currents flowing in electromagnetic windings to maintain flux linking suspended element at substantially constant value independent of changes in length of gap. Technique provides effective method for maintenance of constant flux density in gap and simpler than previous methods. Applications include magnetic actuators for control of shapes and figures of antennas and of precise segmented reflectors, magnetic suspensions in devices for storage of angular momentum and/or kinetic energy, and systems for control, pointing, and isolation of instruments.
Changes in divertor conditions in response to changing core density with RMPs
Briesemeister, Alexis R.; Ahn, Joon -Wook; Canik, John M.; ...
2017-06-07
The effects of changes in core density on divertor electron temperature, density and heat flux when resonant magnetic perturbations (RMPs) are applied are presented, notably a reduction in RMP induced secondary radial peaks in the electron temperature profile at the target plate is observed when the core density is increased, which is consistent with modeling. RMPs is used here to indicated non-axisymmetric magnetic field perturbations, created using in-vessel control coils, which have components which has at least one but typically many resonances with the rotational transform of the plasma. RMPs are found to alter inter-ELM heat flux to the divertormore » by modifying the core plasma density. It is shown that applying RMPs reduces the core density and increases the inter-ELM heat flux to both the inner and outer targets. Using gas puffing to return the core density to the pre-RMP levels more than eliminates the increase in inter-ELM heat flux, but a broadening of the heat flux to the outer target remains. These measurements were made at a single toroidal location, but the peak in the heat flux profile was found near the outer strike point where simulations indicate little toroidal variation should exist and tangentially viewing diagnostics showed no evidence of strong asymmetries. In experiments where divertor Thomson scattering measurements were available it is shown that, local secondary peaks in the divertor electron temperature profile near the target plate are reduced as the core density is increased, while peaks in the divertor electron density profile near the target are increased. Furthermore, these trends observed in the divertor electron temperature and density are qualitatively reproduced by scanning the upstream density in EMC3-Eirene modeling. Measurements are presented showing that higher densities are needed to induce detachment of the outer strike point in a case where an increase in electron temperature, likely due to a change in MHD activity, is seen after RMPs are applied.« less
Changes in divertor conditions in response to changing core density with RMPs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Briesemeister, Alexis R.; Ahn, Joon -Wook; Canik, John M.
The effects of changes in core density on divertor electron temperature, density and heat flux when resonant magnetic perturbations (RMPs) are applied are presented, notably a reduction in RMP induced secondary radial peaks in the electron temperature profile at the target plate is observed when the core density is increased, which is consistent with modeling. RMPs is used here to indicated non-axisymmetric magnetic field perturbations, created using in-vessel control coils, which have components which has at least one but typically many resonances with the rotational transform of the plasma. RMPs are found to alter inter-ELM heat flux to the divertormore » by modifying the core plasma density. It is shown that applying RMPs reduces the core density and increases the inter-ELM heat flux to both the inner and outer targets. Using gas puffing to return the core density to the pre-RMP levels more than eliminates the increase in inter-ELM heat flux, but a broadening of the heat flux to the outer target remains. These measurements were made at a single toroidal location, but the peak in the heat flux profile was found near the outer strike point where simulations indicate little toroidal variation should exist and tangentially viewing diagnostics showed no evidence of strong asymmetries. In experiments where divertor Thomson scattering measurements were available it is shown that, local secondary peaks in the divertor electron temperature profile near the target plate are reduced as the core density is increased, while peaks in the divertor electron density profile near the target are increased. Furthermore, these trends observed in the divertor electron temperature and density are qualitatively reproduced by scanning the upstream density in EMC3-Eirene modeling. Measurements are presented showing that higher densities are needed to induce detachment of the outer strike point in a case where an increase in electron temperature, likely due to a change in MHD activity, is seen after RMPs are applied.« less
NASA Astrophysics Data System (ADS)
Mazlan, Mohamed Mubin Aizat; Sulaiman, Erwan; Husin, Zhafir Aizat; Othman, Syed Muhammad Naufal Syed; Khan, Faisal
2015-05-01
In hybrid excitation machines (HEMs), there are two main flux sources which are permanent magnet (PM) and field excitation coil (FEC). These HEMs have better features when compared with the interior permanent magnet synchronous machines (IPMSM) used in conventional hybrid electric vehicles (HEVs). Since all flux sources including PM, FEC and armature coils are located on the stator core, the rotor becomes a single piece structure similar with switch reluctance machine (SRM). The combined flux generated by PM and FEC established more excitation fluxes that are required to produce much higher torque of the motor. In addition, variable DC FEC can control the flux capabilities of the motor, thus the machine can be applied for high-speed motor drive system. In this paper, the comparisons of single-phase 8S-4P outer and inner rotor hybrid excitation flux switching machine (HEFSM) are presented. Initially, design procedures of the HEFSM including parts drawing, materials and conditions setting, and properties setting are explained. Flux comparisons analysis is performed to investigate the flux capabilities at various current densities. Then the flux linkages of PM with DC FEC of various DC FEC current densities are examined. Finally torque performances are analyzed at various armature and FEC current densities for both designs. As a result, the outer-rotor HEFSM has higher flux linkage of PM with DC FEC and higher average torque of approximately 10% when compared with inner-rotor HEFSM.
Atmospheric blocking as a traffic jam in the jet stream
NASA Astrophysics Data System (ADS)
Nakamura, N.; Huang, S. Y.
2017-12-01
It is demonstrated using the ERA-Interim product that synoptic to intraseasonal variabilities of extratropical circulation in the boreal storm track regions are strongly affected by the zonal convergence of the column-integrated eastward flux of local wave activity (LWA). In particular, from the multi-year daily samples of LWA fluxes, we find that the wintertime zonal LWA flux in the jet exit regions tends to maximize for an intermediate value of column-averaged LWA. This is because an increasing LWA decelerates the zonal flow, eventually weakening the eastward advection of LWA. From theory we argue that large wave events on the decreasing side of the flux curve with increasing LWA cannot be maintained as a stable steady state. Consistent with this argument, observed states corresponding to that side of flux curve often exhibit local wave breaking and blocking events. A close parallelism exists for the traffic flow problem, in which the traffic flux (traffic density times traffic speed) is often observed to maximize for an intermediate value of traffic density. This is because the traffic speed is controlled not only by the imposed speed limit but also by the traffic density — an increasingly heavy traffic slows down the flow naturally and eventually decreases the flux. Once the flux starts to decrease with an increasing traffic density, a traffic jam kicks in suddenly (Lighthill and Whitham 1955, Richards 1956). The above idea is demonstrated by a simple conceptual model based on the equivalent barotropic PV contour design (Nakamura and Huang 2017, JAS), which predicts a threshold of blocking onset. The idea also suggests that the LWA that gives the `flux capacity,' i.e., the maximum LWA flux at a given location, is a useful predictor of local wave breaking/block formation.
An A-train climatology of extratropical cyclone clouds and precipitation
NASA Astrophysics Data System (ADS)
Naud, C. M.; Booth, J.; Del Genio, A. D.; van den Heever, S. C.; Posselt, D. J.
2016-12-01
It is demonstrated using the ERA-Interim product that synoptic to intraseasonal variabilities of extratropical circulation in the boreal storm track regions are strongly affected by the zonal convergence of the column-integrated eastward flux of local wave activity (LWA). In particular, from the multi-year daily samples of LWA fluxes, we find that the wintertime zonal LWA flux in the jet exit regions tends to maximize for an intermediate value of column-averaged LWA. This is because an increasing LWA decelerates the zonal flow, eventually weakening the eastward advection of LWA. From theory we argue that large wave events on the decreasing side of the flux curve with increasing LWA cannot be maintained as a stable steady state. Consistent with this argument, observed states corresponding to that side of flux curve often exhibit local wave breaking and blocking events. A close parallelism exists for the traffic flow problem, in which the traffic flux (traffic density times traffic speed) is often observed to maximize for an intermediate value of traffic density. This is because the traffic speed is controlled not only by the imposed speed limit but also by the traffic density — an increasingly heavy traffic slows down the flow naturally and eventually decreases the flux. Once the flux starts to decrease with an increasing traffic density, a traffic jam kicks in suddenly (Lighthill and Whitham 1955, Richards 1956). The above idea is demonstrated by a simple conceptual model based on the equivalent barotropic PV contour design (Nakamura and Huang 2017, JAS), which predicts a threshold of blocking onset. The idea also suggests that the LWA that gives the `flux capacity,' i.e., the maximum LWA flux at a given location, is a useful predictor of local wave breaking/block formation.
NASA Astrophysics Data System (ADS)
Chaufray, J.-Y.; Yelle, R. V.; Gonzalez-Galindo, F.; Forget, F.; Lopez-Valverde, M.; Leblanc, F.; Modolo, R.
2018-03-01
We simulate the hydrogen density near the exobase of Mars, using the 3-D Martian Global Circulation Model of Laboratoire de Météorologie Dynamique, coupled to an exospheric ballistic model to compute the downward ballistic flux. The simulated hydrogen distribution near the exobase obtained at two different seasons—Ls = 180° and Ls = 270°—is close to Zero Net Ballistic Flux equilibrium. In other words, the hydrogen density near the exobase adjusts to have a balance between the local upward ballistic and the downward ballistic flux due to a short lateral migration time in the exosphere compared to the vertical diffusion time. This equilibrium leads to a hydrogen density n near the exobase directly controlled by the exospheric temperature T by the relation nT5/2 = constant. This relation could be used to extend 1-D hydrogen exospheric model of Mars used to derive the hydrogen density and escape flux at Mars from Lyman-α observations to 3-D model based on observed or modeled exospheric temperature near the exobase, without increasing the number of free parameters.
A vadose zone water fluxmeter with divergence control
NASA Astrophysics Data System (ADS)
Gee, G. W.; Ward, A. L.; Caldwell, T. G.; Ritter, J. C.
2002-08-01
Unsaturated water flux densities are needed to quantify water and contaminant transfer within the vadose zone. However, water flux densities are seldom measured directly and often are predicted with uncertainties of an order or magnitude or more. A water fluxmeter was designed, constructed, and tested to directly measure drainage fluxes in field soils. The fluxmeter was designed to minimize divergence. It concentrates flow into a narrow sensing region filled with a fiberglass wick. The wick applies suction, proportional to its length, and passively drains the meter. The meter can be installed in an augured borehole at almost any depth below the root zone. Water flux through the meter is measured with a self-calibrating tipping bucket, with a sensitivity of ~4 mL tip-1. For our meter this is equivalent to detection limit of ~0.1 mm. Passive-wick devices previously have not properly corrected for flow divergence. Laboratory measurements supported predictions of a two-dimensional (2-D) numerical model, which showed that control of the collector height H and knowledge of soil hydraulic properties are required for improving divergence control, particularly at fluxes below 1000 mm yr-1. The water fluxmeter is simple in concept, is inexpensive, and has the capability of providing continuous and reliable monitoring of unsaturated water fluxes ranging from less than 1 mm yr-1 to more than 1000 mm yr-1.
A vadose zone water fluxmeter with divergence control
Gee, G.W.; Ward, A.L.; Caldwell, T.G.; Ritter, J.C.
2002-01-01
Unsaturated water flux densities are needed to quantify water and contaminant transfer within the vadose zone. However, water flux densities are seldom measured directly and often are predicted with uncertainties of an order or magnitude or more. A water fluxmeter was designed, constructed, and tested to directly measure drainage fluxes in field soils. The fluxmeter was designed to minimize divergence. It concentrates flow into a narrow sensing region filled with a fiberglass wick. The wick applies suction, proportional to its length, and passively drains the meter. The meter can be installed in an augured borehole at almost any depth below the root zone. Water flux through the meter is measured with a self‐calibrating tipping bucket, with a sensitivity of ∼4 mL tip−1. For our meter this is equivalent to detection limit of ∼0.1 mm. Passive‐wick devices previously have not properly corrected for flow divergence. Laboratory measurements supported predictions of a two‐dimensional (2‐D) numerical model, which showed that control of the collector height H and knowledge of soil hydraulic properties are required for improving divergence control, particularly at fluxes below 1000 mm yr−1. The water fluxmeter is simple in concept, is inexpensive, and has the capability of providing continuous and reliable monitoring of unsaturated water fluxes ranging from less than 1 mm yr−1 to more than 1000 mm yr−1.
NASA Astrophysics Data System (ADS)
Yoon, Dae-Woo; Cho, Jung-Wook; Kim, Seon-Hyo
2017-08-01
The present study proposes a countermeasure for regulating total heat flux through the mold flux layer by designed mold flux with additive metallic iron particles. The heat flux through the B2O3-CaO-SiO2-Na2O-CaF2-Fe system was investigated using the infrared emitter technique to evaluate total flux density across the mold flux film. Both scanning electron microscope (SEM) and X-ray diffraction analysis were employed in order to identify the morphological and compositional changes of the crystalline phase, according to increasing iron contents in the mold flux. It was confirmed that the crystalline layer of studied mold fluxes does not have a meaningful effect on the total heat flux density due to the similar structure and fraction of the crystalline phase. The extinction coefficient was measured for glassy mold fluxes using an ultraviolet/visible and a Fourier transformation-infrared ray spectrometer in the range of 0.5 to 5 μm. For analyzing the scattering behavior of iron particles on the extinction coefficient, the number density and diameter of particles were observed by an automated SEM (auto-SEM). With these data, Mie scattering theory is adopted to define the scattering behavior of dispersed iron droplets in glassy matrix. It was found that the theoretical scattering coefficient demonstrated about 1623 to 3295 m-1, which is in accordance with the experimental results. In doing so, this study successfully achieves the strong scattering behavior that would contribute greatly to the optimization of overall heat flux through the mold flux film during the casting process.
NASA Technical Reports Server (NTRS)
Moore, T. E.
1980-01-01
Motivated by recent observations of highly variable hot plasma composition in the magnetosphere, control of the ionospheric escape flux composition by low-altitude particle dynamics and ion chemistry has been investigated for an e(-), H(+), O(+) ionosphere. It is found that the fraction of the steady state escape flux which is O(+) can be controlled very sensitively by the occurrence of parallel or transverse ion acceleration at altitudes below the altitude where the neutral oxygen density falls rapidly below the neutral hydrogen density and the ionospheric source of O(+) tends to be rapidly converted by charge exchange to H(+). The acceleration is required both to overcome the gravitational confinement of O(+) and to violate charge exchange equilibrium so that the neutral hydrogen atmosphere appears 'optically' thin to escaping O(+). Constraints are placed on the acceleration processes, and it is shown that O(+) escape is facilitated by observed ionospheric responses to magnetic activity.
NASA Astrophysics Data System (ADS)
Brunner, D.; Wolfe, S. M.; LaBombard, B.; Kuang, A. Q.; Lipschultz, B.; Reinke, M. L.; Hubbard, A.; Hughes, J.; Mumgaard, R. T.; Terry, J. L.; Umansky, M. V.; The Alcator C-Mod Team
2017-08-01
The Alcator C-Mod team has recently developed a feedback system to measure and control surface heat flux in real-time. The system uses real-time measurements of surface heat flux from surface thermocouples and a pulse-width modulated piezo valve to inject low-Z impurities (typically N2) into the private flux region. It has been used in C-Mod to mitigate peak surface heat fluxes >40 MW m-2 down to <10 MW m-2 while maintaining excellent core confinement, H 98 > 1. While the system works quite well under relatively steady conditions, use of it during transients has revealed important limitations on feedback control of impurity seeding in conventional vertical target plate divertors. In some cases, the system is unable to avoid plasma reattachment to the divertor plate or the formation of a confinement-damaging x-point MARFE. This is due to the small operational window for mitigated heat flux in the parameters of incident plasma heat flux, plasma density, and impurity density as well as the relatively slow response of the impurity gas injection system compared to plasma transients. Given the severe consequences for failure of such a system to operate reliably in a reactor, there is substantial risk that the conventional vertical target plate divertor will not provide an adequately controllable system in reactor-class devices. These considerations motivate the need to develop passively stable, highly compliant divertor configurations and experimental facilities that can test such possible solutions.
Simms, Laura E.; Engebretson, Mark J.; Pilipenko, Viacheslav; ...
2016-04-07
The daily maximum relativistic electron flux at geostationary orbit can be predicted well with a set of daily averaged predictor variables including previous day's flux, seed electron flux, solar wind velocity and number density, AE index, IMF Bz, Dst, and ULF and VLF wave power. As predictor variables are intercorrelated, we used multiple regression analyses to determine which are the most predictive of flux when other variables are controlled. Empirical models produced from regressions of flux on measured predictors from 1 day previous were reasonably effective at predicting novel observations. Adding previous flux to the parameter set improves the predictionmore » of the peak of the increases but delays its anticipation of an event. Previous day's solar wind number density and velocity, AE index, and ULF wave activity are the most significant explanatory variables; however, the AE index, measuring substorm processes, shows a negative correlation with flux when other parameters are controlled. This may be due to the triggering of electromagnetic ion cyclotron waves by substorms that cause electron precipitation. VLF waves show lower, but significant, influence. The combined effect of ULF and VLF waves shows a synergistic interaction, where each increases the influence of the other on flux enhancement. Correlations between observations and predictions for this 1 day lag model ranged from 0.71 to 0.89 (average: 0.78). Furthermore, a path analysis of correlations between predictors suggests that solar wind and IMF parameters affect flux through intermediate processes such as ring current ( Dst), AE, and wave activity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simms, Laura E.; Engebretson, Mark J.; Pilipenko, Viacheslav
The daily maximum relativistic electron flux at geostationary orbit can be predicted well with a set of daily averaged predictor variables including previous day's flux, seed electron flux, solar wind velocity and number density, AE index, IMF Bz, Dst, and ULF and VLF wave power. As predictor variables are intercorrelated, we used multiple regression analyses to determine which are the most predictive of flux when other variables are controlled. Empirical models produced from regressions of flux on measured predictors from 1 day previous were reasonably effective at predicting novel observations. Adding previous flux to the parameter set improves the predictionmore » of the peak of the increases but delays its anticipation of an event. Previous day's solar wind number density and velocity, AE index, and ULF wave activity are the most significant explanatory variables; however, the AE index, measuring substorm processes, shows a negative correlation with flux when other parameters are controlled. This may be due to the triggering of electromagnetic ion cyclotron waves by substorms that cause electron precipitation. VLF waves show lower, but significant, influence. The combined effect of ULF and VLF waves shows a synergistic interaction, where each increases the influence of the other on flux enhancement. Correlations between observations and predictions for this 1 day lag model ranged from 0.71 to 0.89 (average: 0.78). Furthermore, a path analysis of correlations between predictors suggests that solar wind and IMF parameters affect flux through intermediate processes such as ring current ( Dst), AE, and wave activity.« less
NASA Technical Reports Server (NTRS)
Israelsson, Ulf E. (Inventor); Strayer, Donald M. (Inventor)
1992-01-01
A contact-less method for determining transport critical current density and flux penetration depth in bulk superconductor material. A compressor having a hollow interior and a plunger for selectively reducing the free space area for distribution of the magnetic flux therein are formed of superconductor material. Analytical relationships, based upon the critical state model, Maxwell's equations and geometrical relationships define transport critical current density and flux penetration depth in terms of the initial trapped magnetic flux density and the ratio between initial and final magnetic flux densities whereby data may be reliably determined by means of the simple test apparatus for evaluating the current density and flux penetration depth.
NASA Astrophysics Data System (ADS)
Xie, Shengbo; Qu, Jianjun; Mu, Yanhu; Xu, Xiangtian
Mechanical control of drifting sand used to protect the Qinghai-Tibet Railway from sand damage inevitably results in sand deposition, and the change in radiation and heat flux after the ground surface is covered with sandy sediments remains unclear. These variations were studied in this work through field observations along with laboratory analyses and tests. After the ground surface was covered with sandy sediments produced by the mechanical control of sand in the Qinghai-Tibet Railway, the reflectivity increased, and the annual average reflectivity on the surface covered with sandy sediments was higher than that without sandy sediments, with the value increasing by 0.043. Moreover, the surface shortwave radiation increased, whereas the surface net radiation decreased. The annual average value of the surface shortwave radiant flux density on the sandy sediments was higher than that without sandy sediments, with the value increasing by 7.291 W·m-2. The annual average value of the surface net radiant flux density on the sandy sediments decreased by 9.639 W·m-2 compared with that without sandy sediments. The soil heat flux also decreased, and the annual average value of the heat flux in the sandy sediments decreased by 0.375 W·m-2 compared with that without sandy sediments. These variations caused the heat source on the surface of sandy sediments underground to decrease, which is beneficial for preventing permafrost from degradation in the section of sand control of the railway.
Intramolecular Nuclear Flux Densities
NASA Astrophysics Data System (ADS)
Barth, I.; Daniel, C.; Gindensperger, E.; Manz, J.; PéRez-Torres, J. F.; Schild, A.; Stemmle, C.; Sulzer, D.; Yang, Y.
The topic of this survey article has seen a renaissance during the past couple of years. Here we present and extend the results for various phenomena which we have published from 2012-2014, with gratitude to our coauthors. The new phenomena include (a) the first reduced nuclear flux densities in vibrating diatomic molecules or ions which have been deduced from experimental pump-probe spectra; these "experimental" nuclear flux densities reveal several quantum effects including (b) the "quantum accordion", i.e., during the turn from bond stretch to bond compression, the diatomic system never stands still — instead, various parts of it with different bond lengths flow into opposite directions. (c) Wavepacket interferometry has been extended from nuclear densities to flux densities, again revealing new phenomena: For example, (d) a vibrating nuclear wave function with compact initial shape may split into two partial waves which run into opposite directions, thus causing interfering flux densities. (e) Tunneling in symmetric 1-dimensional double-well systems yields maximum values of the associated nuclear flux density just below the potential barrier; this is in marked contrast with negligible values of the nuclear density just below the barrier. (f) Nuclear flux densities of pseudorotating nuclei may induce huge magnetic fields. A common methodologic theme of all topics is the continuity equation which connects the time derivative of the nuclear density to the divergence of the flux density, subject to the proper boundary conditions. (g) Nearly identical nuclear densities with different boundary conditions may be related to entirely different flux densities, e.g., during tunneling in cyclic versus non-cyclic systems. The original continuity equation, density and flux density of all nuclei, or of all nuclear degrees of freedom, may be reduced to the corresponding quantities for just a single nucleus, or just a single degree of freedom.
NASA Astrophysics Data System (ADS)
Kondo, Takahiro; Ohta, Masayuki; Ito, Tsuyohito; Okada, Shigefumi
2013-09-01
Effects of a rotating magnetic field (RMF) on the electron energy distribution function (EEDF) and on the electron density are investigated with the aim of controlling the radical composition of inductively coupled plasmas. By adjusting the RMF frequency and generation power, the desired electron density and electron energy shift are obtained. Consequently, the amount and fraction of high-energy electrons, which are mostly responsible for direct dissociation processes of raw molecules, will be controlled externally. This controllability, with no electrode exposed to plasma, will enable us to control radical components and their flux during plasma processing.
NASA Astrophysics Data System (ADS)
Chamberlain, Samuel D.; Verfaillie, Joseph; Eichelmann, Elke; Hemes, Kyle S.; Baldocchi, Dennis D.
2017-11-01
Corrections accounting for air density fluctuations due to heat and water vapour fluxes must be applied to the measurement of eddy-covariance fluxes when using open-path sensors. Experimental tests and ecosystem observations have demonstrated the important role density corrections play in accurately quantifying carbon dioxide (CO2) fluxes, but less attention has been paid to evaluating these corrections for methane (CH4) fluxes. We measured CH4 fluxes with open-path sensors over a suite of sites with contrasting CH4 emissions and energy partitioning, including a pavement airfield, two negligible-flux ecosystems (drained alfalfa and pasture), and two high-flux ecosystems (flooded wetland and rice). We found that density corrections successfully re-zeroed fluxes in negligible-flux sites; however, slight overcorrection was observed above pavement. The primary impact of density corrections varied over negligible- and high-flux ecosystems. For negligible-flux sites, corrections led to greater than 100% adjustment in daily budgets, while these adjustments were only 3-10% in high-flux ecosystems. The primary impact to high-flux ecosystems was a change in flux diel patterns, which may affect the evaluation of relationships between biophysical drivers and fluxes if correction bias exists. Additionally, accounting for density effects to high-frequency CH4 fluctuations led to large differences in observed CH4 flux cospectra above negligible-flux sites, demonstrating that similar adjustments should be made before interpreting CH4 cospectra for comparable ecosystems. These results give us confidence in CH4 fluxes measured by open-path sensors, and demonstrate that density corrections play an important role in adjusting flux budgets and diel patterns across a range of ecosystems.
Cryogenic High-Sensitivity Magnetometer
NASA Technical Reports Server (NTRS)
Day, Peter; Chui, Talso; Goodstein, David
2005-01-01
A proposed magnetometer for use in a cryogenic environment would be sensitive enough to measure a magnetic-flux density as small as a picogauss (10(exp -16) Tesla). In contrast, a typical conventional flux-gate magnetometer cannot measure a magnetic-flux density smaller that about 1 microgauss (10(exp -10) Tesla). One version of this device, for operation near the low end of the cryogenic temperature range, would include a piece of a paramagnetic material on a platform, the temperature of which would be controlled with a periodic variation. The variation in temperature would be measured by use of a conventional germanium resistance thermometer. A superconducting coil would be wound around the paramagnetic material and coupled to a superconducting quantum interference device (SQUID) magnetometer.
Sensing magnetic flux density of artificial neurons with a MEMS device.
Tapia, Jesus A; Herrera-May, Agustin L; García-Ramírez, Pedro J; Martinez-Castillo, Jaime; Figueras, Eduard; Flores, Amira; Manjarrez, Elías
2011-04-01
We describe a simple procedure to characterize a magnetic field sensor based on microelectromechanical systems (MEMS) technology, which exploits the Lorentz force principle. This sensor is designed to detect, in future applications, the spiking activity of neurons or muscle cells. This procedure is based on the well-known capability that a magnetic MEMS device can be used to sense a small magnetic flux density. In this work, an electronic neuron (FitzHugh-Nagumo) is used to generate controlled spike-like magnetic fields. We show that the magnetic flux density generated by the hardware of this neuron can be detected with a new MEMS magnetic field sensor. This microdevice has a compact resonant structure (700 × 600 × 5 μm) integrated by an array of silicon beams and p-type piezoresistive sensing elements, which need an easy fabrication process. The proposed microsensor has a resolution of 80 nT, a sensitivity of 1.2 V.T(-1), a resonant frequency of 13.87 kHz, low power consumption (2.05 mW), quality factor of 93 at atmospheric pressure, and requires a simple signal processing circuit. The importance of our study is twofold. First, because the artificial neuron can generate well-controlled magnetic flux density, we suggest it could be used to analyze the resolution and performance of different magnetic field sensors intended for neurobiological applications. Second, the introduced MEMS magnetic field sensor may be used as a prototype to develop new high-resolution biomedical microdevices to sense magnetic fields from cardiac tissue, nerves, spinal cord, or the brain.
47 CFR 25.208 - Power flux density limits.
Code of Federal Regulations, 2014 CFR
2014-10-01
... COMMUNICATIONS Technical Standards § 25.208 Power flux density limits. (a) In the band 3650-4200 MHz, the power flux density at the Earth's surface produced by emissions from a space station for all conditions and... and 10.7-11.7 GHz for NGSO FSS space stations, the power flux-density at the Earth's surface produced...
A comparison of UV surface brightness and HI surface densities for spiral galaxies
NASA Technical Reports Server (NTRS)
Federman, S. R.; Strom, C.
1990-01-01
Shaya and Federman (1987) suggested that the ambient ultraviolet flux at 1000 A permeating a spiral galaxy controls the neutral hydrogen (HI) surface density in the galaxy. They found that the atomic envelopes surrounding small molecular clouds, because of their great number, provide the major contribution to the HI surface density over the stellar disk. The increase in HI surface density with later Hubble types was ascribed to the stronger UV fields from more high-mass stars in later Hubble types. These hypotheses are based on the observations of nearby diffuse interstellar clouds, which show a sharp atomic-to-molecular transition (Savage et al. 1977), and on the theoretical framework introduced by Federman, Glassgold, and Kwan (1979). Atomic envelopes around interstellar clouds in the solar neighborhood arise when a steady state is reached between photodissociation of H2 and the formation of H2 on grains. The photodissociation process involves photons with wavelengths between 912 A and 1108 A. Shaya and Federman used H-alpha flux as an approximate measure for the far UV flux and made their comparisons based on averages over Hubble type. Here, researchers compare, on an individual basis, UV data obtained with space-borne and balloon-borne instruments for galaxies with measurements of HI surface density (Warmels 1988a, b). The comparisons substantiate the conclusion of Shaya and Federman that the far UV field controls the HI content of spiral galaxies.
Measurement of Flux Density of Cas A at Low Frequencies
NASA Astrophysics Data System (ADS)
Patil, Ajinkya; Fisher, R.
2012-01-01
Cas A is used as a flux calibrator throughout the radio spectrum. Therefore it is important to know the spectral and secular variations in its flux density. Earlier observations by Scott et. al. (1969) and Baars et. al. (1972) suggested a secular decrease in flux density of Cas A at a rate of about 1% per year at all frequencies. However later observations by Erickson & Perley (1975) and Read (1977) indicated anomalously high flux from Cas A at 38 MHz. Also, these observations suggested that the original idea of faster decay of the flux density rate at low frequencies may be in error or that something more complex than simple decay is affecting the flux density at low frequencies. The source changes at 38 MHz still remains a mystery. We intend to present the results of follow up observations made from 1995 to 1998 with a three element interferometer in Green Bank operating in frequency range 30 to 120 MHz. We will discuss the problems at such low frequencies due to large beamwidth and unstable ionosphere. We will also discuss the strategies we have used so far to to find the flux density of Cas A by calculating the ratio of flux density of Cas A to that of Cyg A, assuming flux density of Cyg A to be constant. Above mentioned work was performed in summer student program sponsored by National Radio Astronomy Observatory.
Gas Flux and Density Surrounding a Cylindrical Aperture in the Free Molecular Flow Regime
NASA Technical Reports Server (NTRS)
Soulas, George C.
2011-01-01
The equations for rigorously calculating the particle flux and density surrounding a cylindrical aperture in the free molecular flow regime are developed and presented. The fundamental equations for particle flux and density from a reservoir and a diffusely reflecting surface will initially be developed. Assumptions will include a Maxwell-Boltzmann speed distribution, equal particle and wall temperatures, and a linear flux distribution along the cylindrical aperture walls. With this information, the equations for axial flux and density surrounding a cylindrical aperture will be developed. The cylindrical aperture will be divided into multiple volumes and regions to rigorously determine the surrounding axial flux and density, and appropriate limits of integration will be determined. The results of these equations will then be evaluated. The linear wall flux distribution assumption will be assessed. The axial flux and density surrounding a cylindrical aperture with a thickness-to-radius ratio of 1.25 will be presented. Finally, the equations determined in this study will be verified using multiple methods.
Spillage and flux density on a receiver aperture lip. [of solar thermal collector
NASA Technical Reports Server (NTRS)
Jaffe, L. D.
1985-01-01
In a dish-type point-focusing solar thermal collector, the spillage and the flux density on the receiver aperture lip are related in a very simple way, if the aperture is circular and centered on the optical axis. Specifically, the flux density on the lip is equal to the spillage times the peak flux density in the plane of the lip.
Pollution-tolerant invertebrates enhance greenhouse gas flux in urban wetlands.
Mehring, Andrew S; Cook, Perran L M; Evrard, Victor; Grant, Stanley B; Levin, Lisa A
2017-09-01
One of the goals of urban ecology is to link community structure to ecosystem function in urban habitats. Pollution-tolerant wetland invertebrates have been shown to enhance greenhouse gas (GHG) flux in controlled laboratory experiments, suggesting that they may influence urban wetland roles as sources or sinks of GHG. However, it is unclear if their effects can be detected in highly variable conditions in a field setting. Here we use an extensive data set on carbon dioxide (CO 2 ), methane (CH 4 ), and nitrous oxide (N 2 O) flux in sediment cores (n = 103) collected from 10 urban wetlands in Melbourne, Australia during summer and winter in order to test for invertebrate enhancement of GHG flux. We detected significant multiplicative enhancement effects of temperature, sediment carbon content, and invertebrate density on CH 4 and CO 2 flux. Each doubling in density of oligochaete worms or large benthic invertebrates (oligochaete worms and midge larvae) corresponded to ~42% and ~15% increases in average CH 4 and CO 2 flux, respectively. However, despite exceptionally high densities, invertebrates did not appear to enhance N 2 O flux. This was likely due to fairly high organic carbon content in sediments (range 2.1-12.6%), and relatively low nitrate availability (median 1.96 μmol/L NO 3 - -N), which highlights the context-dependent nature of community structural effects on ecosystem function. The invertebrates enhancing GHG flux in this study are ubiquitous, and frequently dominate faunal communities in impaired aquatic ecosystems. Therefore, invertebrate effects on CO 2 and CH 4 flux may be common in wetlands impacted by urbanization, and urban wetlands may make greater contributions to the total GHG budgets of cities if the negative impacts of urbanization on wetlands are left unchecked. © 2017 by the Ecological Society of America.
NUMERICAL STUDY ON IN SITU PROMINENCE FORMATION BY RADIATIVE CONDENSATION IN THE SOLAR CORONA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaneko, T.; Yokoyama, T., E-mail: kaneko@eps.s.u-tokyo.ac.jp
2015-06-10
We propose an in situ formation model for inverse-polarity solar prominences and demonstrate it using self-consistent 2.5 dimensional MHD simulations, including thermal conduction along magnetic fields and optically thin radiative cooling. The model enables us to form cool dense plasma clouds inside a flux rope by radiative condensation, which is regarded as an inverse-polarity prominence. Radiative condensation is triggered by changes in the magnetic topology, i.e., formation of the flux rope from the sheared arcade field, and by thermal imbalance due to the dense plasma trapped inside the flux rope. The flux rope is created by imposing converging and shearingmore » motion on the arcade field. Either when the footpoint motion is in the anti-shearing direction or when heating is proportional to local density, the thermal state inside the flux rope becomes cooling-dominant, leading to radiative condensation. By controlling the temperature of condensation, we investigate the relationship between the temperature and density of prominences and derive a scaling formula for this relationship. This formula suggests that the proposed model reproduces the observed density of prominences, which is 10–100 times larger than the coronal density. Moreover, the time evolution of the extreme ultraviolet emission synthesized by combining our simulation results with the response function of the Solar Dynamics Observatory Atmospheric Imaging Assembly filters agrees with the observed temporal and spatial intensity shift among multi-wavelength extreme ultraviolet emission during in situ condensation.« less
Suppression of the n=2 rotational instability in field-reversed configurations
NASA Astrophysics Data System (ADS)
Hoffman, Alan L.; Slough, J.; Harding, Dennis G.
1983-06-01
Compact toroid plasmas formed in field-reversed theta pinches are generally destroyed after 30-50 μsec by a rotating n=2 instability. In the reported experiment, instability is controlled, and the plasma destruction is avoided in the TRX-1 theta pinch through the application of octopole magnetic fields. The decay times for loss of poloidal flux and particles are unaffected by the octopole fields. These decay times are about 100 μsec based on inferences from interferometry and excluded flux measurements. The weak, rotating elliptical disturbance (controlled n=2 mode) also made possible a novel determination of the density profile near the separatrix using single-chord interferometry. The local density gradient scale length in this region is found to be about one ion gyrodiameter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gul, Banat, E-mail: banatgul@gmail.com; Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp; Aman-ur-Rehman, E-mail: amansadiq@gmail.com
Fluid model has been applied to perform a comparative study of hydrogen bromide (HBr)/He and HBr/Ar capacitively coupled plasma discharges that are being used for anisotropic etching process. This model has been used to identify the most dominant species in HBr based plasmas. Our simulation results show that the neutral species like H and Br, which are the key player in chemical etching, have bell shape distribution, while ions like HBr{sup +}, Br{sup +}, which play a dominant rule in the physical etching, have double humped distribution and show peaks near electrodes. It was found that the dilution of HBrmore » by Ar and/or He results in an increase in electron density and electron temperature, which results in more ionization and dissociation and hence higher densities of neutral and charged species can be achieved. The ratio of positive ion flux to the neutral flux increases with an increase in additive gas fraction. Compare to HBr/He plasma, the HBr/Ar plasma shows a maximum change in the ion density and flux and hence the etching rate can be considered in the ion-assisted and in the ion-flux etch regime in HBr/Ar discharge. The densities of electron and other dominant species in HBr/Ar plasma are higher than those of HBr/He plasma. The densities and fluxes of the active neutrals and positive ions for etching and subsequently chemical etching versus physical sputtering in HBr/Ar and HBr/He plasmas discharge can be controlled by tuning gas mixture ratio and the desire etching can be achieved.« less
Ward, H C; Kotthaus, S; Grimmond, C S B; Bjorkegren, A; Wilkinson, M; Morrison, W T J; Evans, J G; Morison, J I L; Iamarino, M
2015-03-01
Anthropogenic and biogenic controls on the surface-atmosphere exchange of CO2 are explored for three different environments. Similarities are seen between suburban and woodland sites during summer, when photosynthesis and respiration determine the diurnal pattern of the CO2 flux. In winter, emissions from human activities dominate urban and suburban fluxes; building emissions increase during cold weather, while traffic is a major component of CO2 emissions all year round. Observed CO2 fluxes reflect diurnal traffic patterns (busy throughout the day (urban); rush-hour peaks (suburban)) and vary between working days and non-working days, except at the woodland site. Suburban vegetation offsets some anthropogenic emissions, but 24-h CO2 fluxes are usually positive even during summer. Observations are compared to estimated emissions from simple models and inventories. Annual CO2 exchanges are significantly different between sites, demonstrating the impacts of increasing urban density (and decreasing vegetation fraction) on the CO2 flux to the atmosphere. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Magnetic Flux Density of Different Types of New Generation Magnetic Attachment Systems.
Akin, Hakan
2015-07-01
The purpose of this study was to analyze the static magnetic flux density of different types of new generation laser-welded magnetic attachments in the single position and the attractive position and to determine the effect of different corrosive environments on magnetic flux density. Magnetic flux densities of four magnetic attachment systems (Hyper slim, Hicorex slim, Dyna, and Steco) were measured with a gaussmeter. Then magnetic attachment systems were immersed in two different media, namely 1% lactic acid solution (pH 2.3), and 0.9% NaCl solution (pH 7.3). Magnetic flux densities of the attachment systems were measured with a gaussmeter after immersion to compare with measurements before immersion (α = 0.05). The data were statistically evaluated with one-way ANOVA, paired-samples t-test, and post hoc Tukey-Kramer multiple comparisons tests (α = 0.05). The highest magnetic flux density was found in Dyna magnets for both single and attractive positions. In addition, after the magnets were in the corrosive environments for 2 weeks, they had a significant decrease in magnetic flux density (p < 0.05). No significant differences were found between corrosive environments (p > 0.05). The leakage flux of all the magnetic attachments did not exceed the WHO's guideline of 40 mT. The magnets exhibited a significant decrease in magnetic flux density after aging in corrosive environments including lactic acid and NaCl. © 2014 by the American College of Prosthodontists.
NASA Astrophysics Data System (ADS)
Huang, Huan; Zheng, Jun; Zheng, Botian; Qian, Nan; Li, Haitao; Li, Jipeng; Deng, Zigang
2017-10-01
In order to clarify the correlations between magnetic flux and levitation force of the high-temperature superconducting (HTS) bulk, we measured the magnetic flux density on bottom and top surfaces of a bulk superconductor while vertically moving above a permanent magnet guideway (PMG). The levitation force of the bulk superconductor was measured simultaneously. In this study, the HTS bulk was moved down and up for three times between field-cooling position and working position above the PMG, followed by a relaxation measurement of 300 s at the minimum height position. During the whole processes, the magnetic flux density and levitation force of the bulk superconductor were recorded and collected by a multipoint magnetic field measurement platform and a self-developed maglev measurement system, respectively. The magnetic flux density on the bottom surface reflected the induced field in the superconductor bulk, while on the top, it reveals the penetrated magnetic flux. The results show that the magnetic flux density and levitation force of the bulk superconductor are in direct correlation from the viewpoint of inner supercurrent. In general, this work is instructive for understanding the connection of the magnetic flux density, the inner current density and the levitation behavior of HTS bulk employed in a maglev system. Meanwhile, this magnetic flux density measurement method has enriched present experimental evaluation methods of maglev system.
Performance of InGaAs short wave infrared avalanche photodetector for low flux imaging
NASA Astrophysics Data System (ADS)
Singh, Anand; Pal, Ravinder
2017-11-01
Opto-electronic performance of the InGaAs/i-InGaAs/InP short wavelength infrared focal plane array suitable for high resolution imaging under low flux conditions and ranging is presented. More than 85% quantum efficiency is achieved in the optimized detector structure. Isotropic nature of the wet etching process poses a challenge in maintaining the required control in the small pitch high density detector array. Etching process is developed to achieve low dark current density of 1 nA/cm2 in the detector array with 25 µm pitch at 298 K. Noise equivalent photon performance less than one is achievable showing single photon detection capability. The reported photodiode with low photon flux is suitable for active cum passive imaging, optical information processing and quantum computing applications.
Jeong, Woo Chul; Chauhan, Munish; Sajib, Saurav Z K; Kim, Hyung Joong; Serša, Igor; Kwon, Oh In; Woo, Eung Je
2014-09-07
Magnetic Resonance Electrical Impedance Tomography (MREIT) is an MRI method that enables mapping of internal conductivity and/or current density via measurements of magnetic flux density signals. The MREIT measures only the z-component of the induced magnetic flux density B = (Bx, By, Bz) by external current injection. The measured noise of Bz complicates recovery of magnetic flux density maps, resulting in lower quality conductivity and current-density maps. We present a new method for more accurate measurement of the spatial gradient of the magnetic flux density gradient (∇ Bz). The method relies on the use of multiple radio-frequency receiver coils and an interleaved multi-echo pulse sequence that acquires multiple sampling points within each repetition time. The noise level of the measured magnetic flux density Bz depends on the decay rate of the signal magnitude, the injection current duration, and the coil sensitivity map. The proposed method uses three key steps. The first step is to determine a representative magnetic flux density gradient from multiple receiver coils by using a weighted combination and by denoising the measured noisy data. The second step is to optimize the magnetic flux density gradient by using multi-echo magnetic flux densities at each pixel in order to reduce the noise level of ∇ Bz and the third step is to remove a random noise component from the recovered ∇ Bz by solving an elliptic partial differential equation in a region of interest. Numerical simulation experiments using a cylindrical phantom model with included regions of low MRI signal to noise ('defects') verified the proposed method. Experimental results using a real phantom experiment, that included three different kinds of anomalies, demonstrated that the proposed method reduced the noise level of the measured magnetic flux density. The quality of the recovered conductivity maps using denoised ∇ Bz data showed that the proposed method reduced the conductivity noise level up to 3-4 times at each anomaly region in comparison to the conventional method.
User's guide for ERB-7 SEFDT. Volume 3: Quality control report for year-2
NASA Technical Reports Server (NTRS)
Vasanth, K. L.
1984-01-01
Problems in the solar data generated by the Nimbus 7 satellite are discussed specifically for scientific users. Major and minor data flaws in the Solar and Earth Flux Data Tape (SEFDT) were identified, defined and categorized. Solar channel assembly misalignment, data gaps, and algorithm errors were among the problems described in detail. Solar flux density data derived from SEFDT are presented in graphical form.
Transverse jet shear layer instabilities and their control
NASA Astrophysics Data System (ADS)
Karagozian, Ann
2013-11-01
The jet in crossflow, or transverse jet, is a canonical flowfield that has relevance to engineering systems ranging from dilution jets and film cooling for gas turbine engines to thrust vector control and fuel injection in high speed aerospace vehicles to environmental control of effluent from chimney and smokestack plumes. Over the years, our UCLA Energy and Propulsion Research Lab's studies on this flowfield have focused on the dynamics of the vorticity associated with equidensity and variable density jets in crossflow, including the stability characteristics of the jet's upstream shear layer. A range of different experimental diagnostics have been used to study the jet's upstream shear layer, whereby a transition from convectively unstable behavior at high jet-to-crossflow momentum flux ratios to absolutely unstable flow at low momentum flux and/or density ratios is identified. These differences in shear layer stability characteristics have a profound effect on how one employs external excitation to control jet penetration, spread, and mixing, depending on the flow regime and specific engineering application. These control strategies, and challenges for future research directions, will be identified in this presentation.
Neutron detection of the Triga Mark III reactor, using nuclear track methodology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Espinosa, G., E-mail: espinosa@fisica.unam.mx; Golzarri, J. I.; Raya-Arredondo, R.
Nuclear Track Methodology (NTM), based on the neutron-proton interaction is one often employed alternative for neutron detection. In this paper we apply NTM to determine the Triga Mark III reactor operating power and neutron flux. The facility nuclear core, loaded with 85 Highly Enriched Uranium as fuel with control rods in a demineralized water pool, provide a neutron flux around 2 × 10{sup 12} n cm{sup −2} s{sup −1}, at the irradiation channel TO-2. The neutron field is measured at this channel, using Landauer{sup ®} PADC as neutron detection material, covered by 3 mm Plexiglas{sup ®} as converter. After exposure, plasticmore » detectors were chemically etched to make observable the formed latent tracks induced by proton recoils. The track density was determined by a custom made Digital Image Analysis System. The resulting average nuclear track density shows a direct proportionality response for reactor power in the range 0.1-7 kW. We indicate several advantages of the technique including the possibility to calibrate the neutron flux density measured at low reactor power.« less
Characteristics of Low-latitude Coronal Holes near the Maximum of Solar Cycle 24
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hofmeister, Stefan J.; Veronig, Astrid; Reiss, Martin A.
We investigate the statistics of 288 low-latitude coronal holes extracted from SDO /AIA-193 filtergrams over the time range of 2011 January 01–2013 December 31. We analyze the distribution of characteristic coronal hole properties, such as the areas, mean AIA-193 intensities, and mean magnetic field densities, the local distribution of the SDO /AIA-193 intensity and the magnetic field within the coronal holes, and the distribution of magnetic flux tubes in coronal holes. We find that the mean magnetic field density of all coronal holes under study is 3.0 ± 1.6 G, and the percentaged unbalanced magnetic flux is 49 ± 16%.more » The mean magnetic field density, the mean unsigned magnetic field density, and the percentaged unbalanced magnetic flux of coronal holes depend strongly pairwise on each other, with correlation coefficients cc > 0.92. Furthermore, we find that the unbalanced magnetic flux of the coronal holes is predominantly concentrated in magnetic flux tubes: 38% (81%) of the unbalanced magnetic flux of coronal holes arises from only 1% (10%) of the coronal hole area, clustered in magnetic flux tubes with field strengths >50 G (10 G). The average magnetic field density and the unbalanced magnetic flux derived from the magnetic flux tubes correlate with the mean magnetic field density and the unbalanced magnetic flux of the overall coronal hole (cc>0.93). These findings give evidence that the overall magnetic characteristics of coronal holes are governed by the characteristics of the magnetic flux tubes.« less
NASA Astrophysics Data System (ADS)
Yamashita, Cintia; Mello e Sousa, Silvia Helena de; Vicente, Thaisa Marques; Martins, Maria Virgínia; Nagai, Renata Hanae; Frontalini, Fabrizio; Godoi, Sueli Susana; Napolitano, Dante; Burone, Letícia; Carreira, Renato; Figueira, Rubens Cesar Lopes; Taniguchi, Nancy Kazumi; Rezende, Carlos Eduardo de; Koutsoukos, Eduardo Apostolos Machado
2018-05-01
Living (stained) benthic foraminifera from deep-sea stations in the Campos Basin, southeastern Brazilian continental margin, were investigated to understand their distribution patterns and ecology, as well as the oceanographic processes that control foraminiferal distribution. Sediments were collected from 1050 m to 1950 m of water depth during the austral winter of 2003, below the Intermediate Western Boundary Current (IWBC) and the Deep Water Boundary Current (DWBC). Based on statistical analysis, vertical flux of particulate organic matter and the grain size of sediment seem to be the main factors controlling the spatial distribution of benthic foraminifera. The middle slope (1050 m deep) is characterized by relatively high foraminiferal density and a predominance of phytodetritus-feeding foraminifera such as Epistominella exigua and Globocassidulina subglobosa. The occurrence of these species seems to reflect the Brazil Current System (BCS). The above-mentioned currents are associated with the relatively high vertical flux of particulate organic matter and the prevalence of sandy sediments, respectively. The lower slope (between 1350 and 1950 m of water depth) is marked by low foraminiferal density and assemblages composed of Bolivina spp. and Brizalina spp., with low particulate organic matter flux values, muddy sediments, and more refractory organic matter. The distribution of this group seems to be related to episodic fluxes of food particles to the seafloor, which are influenced by the BCS at the surface and are deposited under low deep current activity (DWBC).
NASA Astrophysics Data System (ADS)
Torii, S.; Yuasa, K.
2004-10-01
Various magnetic levitation systems using oxide superconductors are developed as strong pinning forces are obtained in melt-processed bulk. However, the trapped flux of superconductor is moved by flux creep and fluctuating magnetic field. Therefore, to examine the internal condition of superconductor, the authors measure the dynamic surface flux density distribution of YBCO bulk. Flux density measurement system has a structure with the air-core coil and the Hall sensors. Ten Hall sensors are arranged in series. The YBCO bulk, which has 25 mm diameter and 13 mm thickness, is field cooled by liquid nitrogen. After that, magnetic field is changed by the air-core coil. This paper describes about the measured results of flux density distribution of YBCO bulk in the various frequencies of air-core coils currents.
Satellite Investigation of Atmospheric Metal Deposition During Meteor Showers
NASA Astrophysics Data System (ADS)
Correira, J.; Aikin, A. C.; Grebowsky, J. M.
2008-12-01
Using the nadir-viewing Global Ozone Measuring Experiment (GOME) UV/VIS spectrometer on the ERS-2 satellite, we investigate short term variations in the magnesium column densities and any connection to possible enhanced mass deposition during a meteor shower. We derive a time dependent mass flux rate due to meteor showers using published estimates of mass density and activity profiles of meteor showers. An average daily mass flux rate is also calculated and used as a baseline against which calculated shower mass flux rates are compared. These theoretical mass flux rates are then compared with GOME derived metal column densities from the years 1996 - 2001.There appears to be little correlation between theoretical mass flux rates and changes in the Mg and Mg+ metal column densities. A possible explanation for the lack of a shower related increase in metal concentrations may be differences in the mass regimes dominating the average background mass flux and shower mass flux.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clem, John R
2011-02-17
I introduce a critical-state theory incorporating both flux cutting and flux transport to calculate the magnetic-field and current-density distributions inside a type-II superconducting cylinder at its critical current in a longitudinal applied magnetic field. The theory is an extension of the elliptic critical-state model introduced by Romero-Salazar and Pérez-Rodríguez. The vortex dynamics depend in detail on two nonlinear effective resistivities for flux cutting (ρ{sub ∥}) and flux flow (ρ{sub ⊥}), and their ratio r=ρ{sub ∥}/ρ{sub ⊥}. When r<1, the low relative efficiency of flux cutting in reducing the magnitude of the internal magnetic-flux density leads to a paramagnetic longitudinal magneticmore » moment. As a model for understanding the experimentally observed interrelationship between the critical currents for flux cutting and depinning, I calculate the forces on a helical vortex arc stretched between two pinning centers when the vortex is subjected to a current density of arbitrary angle Φ. Simultaneous initiation of flux cutting and flux transport occurs at the critical current density J{sub c}(Φ) that makes the vortex arc unstable.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clem, John R.
2011-02-17
I introduce a critical-state theory incorporating both flux cutting and flux transport to calculate the magnetic-field and current-density distributions inside a type-II superconducting cylinder at its critical current in a longitudinal applied magnetic field. The theory is an extension of the elliptic critical-state model introduced by Romero-Salazar and Perez-Rodriguez. The vortex dynamics depend in detail on two nonlinear effective resistivities for flux cutting ({rho}{parallel}) and flux flow ({rho}{perpendicular}), and their ratio r = {rho}{parallel}/{rho}{perpendicular}. When r < 1, the low relative efficiency of flux cutting in reducing the magnitude of the internal magnetic-flux density leads to a paramagnetic longitudinal magneticmore » moment. As a model for understanding the experimentally observed interrelationship between the critical currents for flux cutting and depinning, I calculate the forces on a helical vortex arc stretched between two pinning centers when the vortex is subjected to a current density of arbitrary angle {phi}. Simultaneous initiation of flux cutting and flux transport occurs at the critical current density J{sub c}({phi}) that makes the vortex arc unstable.« less
NASA Astrophysics Data System (ADS)
Clem, John R.
2011-06-01
I introduce a critical-state theory incorporating both flux cutting and flux transport to calculate the magnetic-field and current-density distributions inside a type-II superconducting cylinder at its critical current in a longitudinal applied magnetic field. The theory is an extension of the elliptic critical-state model introduced by Romero-Salazar and Pérez-Rodríguez. The vortex dynamics depend in detail on two nonlinear effective resistivities for flux cutting (ρ∥) and flux flow (ρ⊥), and their ratio r=ρ∥/ρ⊥. When r<1, the low relative efficiency of flux cutting in reducing the magnitude of the internal magnetic-flux density leads to a paramagnetic longitudinal magnetic moment. As a model for understanding the experimentally observed interrelationship between the critical currents for flux cutting and depinning, I calculate the forces on a helical vortex arc stretched between two pinning centers when the vortex is subjected to a current density of arbitrary angle ϕ. Simultaneous initiation of flux cutting and flux transport occurs at the critical current density Jc(ϕ) that makes the vortex arc unstable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wullschleger, Stan D; Childs, Kenneth W; King, Anthony Wayne
2011-01-01
A variety of thermal approaches are used to estimate sap flux density in stems of woody plants. Models have proven valuable tools for interpreting the behavior of heat pulse, heat balance, and heat field deformation techniques, but have seldom been used to describe heat transfer dynamics for the heat dissipation method. Therefore, to better understand the behavior of heat dissipation probes, a model was developed that takes into account the thermal properties of wood, the physical dimensions and thermal characteristics of the probes, and the conductive and convective heat transfer that occurs due to water flow in the sapwood. Probesmore » were simulated as aluminum tubes 20 mm in length and 2 mm in diameter, whereas sapwood, heartwood, and bark each had a density and water fraction that determined their thermal properties. Base simulations assumed a constant sap flux density with sapwood depth and no wounding or physical disruption of xylem beyond the 2 mm diameter hole drilled for probe installation. Simulations across a range of sap flux densities showed that the dimensionless quantity k defined as ( Tm T)/ T where Tm is the temperature differential ( T) between the heated and unheated probe under zero flow conditions was dependent on the thermal conductivity of the sapwood. The relationship between sap flux density and k was also sensitive to radial gradients in sap flux density and to xylem disruption near the probe. Monte Carlo analysis in which 1000 simulations were conducted while simultaneously varying thermal conductivity and wound diameter revealed that sap flux density and k showed considerable departure from the original calibration equation used with this technique. The departure was greatest for abrupt patterns of radial variation typical of ring-porous species. Depending on the specific combination of thermal conductivity and wound diameter, use of the original calibration equation resulted in an 81% under- to 48% over-estimation of sap flux density at modest flux rates. Future studies should verify these simulations and assess their utility in estimating sap flux density for this widely used technique.« less
Gebauer, Tobias; Horna, Viviana; Leuschner, Christoph
2008-12-01
Forest transpiration estimates are frequently based on xylem sap flux measurements in the outer sections of the hydro-active stem sapwood. We used Granier's constant-heating technique with heating probes at various xylem depths to analyze radial patterns of sap flux density in the sapwood of seven broad-leaved tree species differing in wood density and xylem structure. Study aims were to (1) compare radial sap flux density profiles between diffuse- and ring-porous trees and (2) analyze the relationship between hydro-active sapwood area and stem diameter. In all investigated species except the diffuse-porous beech (Fagus sylvatica L.) and ring-porous ash (Fraxinus excelsior L.), sap flux density peaked at a depth of 1 to 4 cm beneath the cambium, revealing a hump-shaped curve with species-specific slopes. Beech and ash reached maximum sap flux densities immediately beneath the cambium in the youngest annual growth rings. Experiments with dyes showed that the hydro-active sapwood occupied 70 to 90% of the stem cross-sectional area in mature trees of diffuse-porous species, whereas it occupied only about 21% in ring-porous ash. Dendrochronological analyses indicated that vessels in the older sapwood may remain functional for 100 years or more in diffuse-porous species and for up to 27 years in ring-porous ash. We conclude that radial sap flux density patterns are largely dependent on tree species, which may introduce serious bias in sap-flux-derived forest transpiration estimates, if non-specific sap flux profiles are assumed.
Correlated flux densities from VLBI observations with the DSN
NASA Technical Reports Server (NTRS)
Coker, R. F.
1992-01-01
Correlated flux densities of extragalactic radio sources in the very long baseline interferometry (VLBI) astrometric catalog are required for the VLBI tracking of Galileo, Mars Observer, and future missions. A system to produce correlated and total flux density catalogs was developed to meet these requirements. A correlated flux density catalog of 274 sources, accurate to about 20 percent, was derived from more than 5000 DSN VLBI observations at 2.3 GHz (S-band) and 8.4 GHz (X-band) using 43 VLBI radio reference frame experiments during the period 1989-1992. Various consistency checks were carried out to ensure the accuracy of the correlated flux densities. All observations were made on the California-Spain and California-Australia DSN baselines using the Mark 3 wideband data acquisition system. A total flux density catalog, accurate to about 20 percent, with data on 150 sources, was also created. Together, these catalogs can be used to predict source strengths to assist in the scheduling of VLBI tracking passes. In addition, for those sources with sufficient observations, a rough estimate of source structure parameters can be made.
NASA Technical Reports Server (NTRS)
Murakami, Masato; Gotoh, Satoshi; Fujimoto, Hiroyuki; Koshizuka, Naoki; Tanaka, Shoji
1991-01-01
In the Y-Ba-Cu-O system, YBa2Cu3O(x) phase is produced by the following peritectic reaction: Y2BaCuO5 + liquid yields 2YBa2Cu3O(x). Through the control of processing conditions and starting compositions, it becomes possible to fabricate large crystals containing fine Y2BaCuO5(211) inclusions. Such crystals exhibit Jc values exceeding 10000 A/sq cm at 77 K and 1T. Recently, researchers developed a novel process which can control the volume fraction of 211 inclusions. Elimination of 211 inclusions is also possible. In this study, researchers prepared YBaCuO crystals with and without 211 inclusions using the novel process, and compared flux pinning, flux creep and critical currents. Magnetic field dependence of Jc for YBaCuO crystals with and with 211 inclusions is shown. It is clear that fine 211 inclusions can contribute to flux pinning. It was also found that flux creep rate could be reduced by increasing flux pinning force. Critical current density estimates based on the conventional flux pinning theory were in good agreement with experimental results.
NASA Astrophysics Data System (ADS)
Hayward, Christopher C.; Kereš, Dušan; Jonsson, Patrik; Narayanan, Desika; Cox, T. J.; Hernquist, Lars
2011-12-01
We perform three-dimensional dust radiative transfer (RT) calculations on hydrodynamic simulations of isolated and merging disk galaxies in order to quantitatively study the dependence of observed-frame submillimeter (submm) flux density on galaxy properties. We find that submm flux density and star formation rate (SFR) are related in dramatically different ways for quiescently star-forming galaxies and starbursts. Because the stars formed in the merger-induced starburst do not dominate the bolometric luminosity and the rapid drop in dust mass and more compact geometry cause a sharp increase in dust temperature during the burst, starbursts are very inefficient at boosting submm flux density (e.g., a >~ 16 × boost in SFR yields a <~ 2 × boost in submm flux density). Moreover, the ratio of submm flux density to SFR differs significantly between the two modes; thus one cannot assume that the galaxies with highest submm flux density are necessarily those with the highest bolometric luminosity or SFR. These results have important consequences for the bright submillimeter-selected galaxy (SMG) population. Among them are: (1) The SMG population is heterogeneous. In addition to merger-driven starbursts, there is a subpopulation of galaxy pairs, where two disks undergoing a major merger but not yet strongly interacting are blended into one submm source because of the large (gsim 15" or ~130 kpc at z = 2) beam of single-dish submm telescopes. (2) SMGs must be very massive (M sstarf >~ 6 × 1010 M ⊙). (3) The infall phase makes the SMG duty cycle a factor of a few greater than what is expected for a merger-driven starburst. Finally, we provide fitting functions for SCUBA and AzTEC submm flux densities as a function of SFR and dust mass and bolometric luminosity and dust mass; these should be useful for calculating submm flux density in semi-analytic models and cosmological simulations when performing full RT is computationally not feasible.
Acoustic energy in ducts - Further observations
NASA Technical Reports Server (NTRS)
Eversman, W.
1979-01-01
The transmission of acoustic energy in uniform ducts carrying uniform flow is investigated with the purpose of clarifying two points of interest. The two commonly used definitions of acoustic 'energy' flux are shown to be related by a Legendre transformation of the Lagrangian density exactly as in deriving the Hamiltonian density in mechanics. In the acoustic case the total energy density and the Hamiltonian density are not the same which accounts for two different 'energy' fluxes. When the duct has acoustically absorptive walls neither of the two flux expressions gives correct results. A reevaluation of the basis of derivation of the energy density and energy flux provides forms which yield consistent results for soft walled ducts.
NASA Astrophysics Data System (ADS)
Huang, Wentao; Hua, Wei; Yu, Feng
2017-05-01
Due to high airgap flux density generated by magnets and the special double salient structure, the cogging torque of the flux-switching permanent magnet (FSPM) machine is considerable, which limits the further applications. Based on the model predictive current control (MPCC) and the compensation control theory, a compensating-current MPCC (CC-MPCC) scheme is proposed and implemented to counteract the dominated components in cogging torque of an existing three-phase 12/10 FSPM prototyped machine, and thus to alleviate the influence of the cogging torque and improve the smoothness of electromagnetic torque as well as speed, where a comprehensive cost function is designed to evaluate the switching states. The simulated results indicate that the proposed CC-MPCC scheme can suppress the torque ripple significantly and offer satisfactory dynamic performances by comparisons with the conventional MPCC strategy. Finally, experimental results validate both the theoretical and simulated predictions.
W. J. Massman; J. -P. Tuovinen
2006-01-01
We explore some of the underlying assumptions used to derive the density or WPL terms (Webb et al. (1980) Quart J RoyMeteorol Soc 106:85-100) required for estimating the surface exchange fluxes by eddy covariance. As part of this effort we recast the origin of the density terms as an assumption regarding the density fluctuations rather than as a (dry air) flux...
Code of Federal Regulations, 2012 CFR
2012-10-01
... following: (1) Single-entry validation equivalent power flux-density, in the space-to-Earth direction, (EPFD down) limits. (i) Provide a set of power flux-density (pfd) masks, on the surface of the Earth, for... section. (2) Single-entry validation equivalent power flux-density, in the Earth-to-space direction, EPFD...
Code of Federal Regulations, 2010 CFR
2010-10-01
... following: (1) Single-entry validation equivalent power flux-density, in the space-to-Earth direction, (EPFD down) limits. (i) Provide a set of power flux-density (pfd) masks, on the surface of the Earth, for... section. (2) Single-entry validation equivalent power flux-density, in the Earth-to-space direction, EPFD...
Code of Federal Regulations, 2011 CFR
2011-10-01
... following: (1) Single-entry validation equivalent power flux-density, in the space-to-Earth direction, (EPFD down) limits. (i) Provide a set of power flux-density (pfd) masks, on the surface of the Earth, for... section. (2) Single-entry validation equivalent power flux-density, in the Earth-to-space direction, EPFD...
NASA Technical Reports Server (NTRS)
Weaver, W. L.; Green, R. N.
1980-01-01
A study was performed on the use of geometric shape factors to estimate earth-emitted flux densities from radiation measurements with wide field-of-view flat-plate radiometers on satellites. Sets of simulated irradiance measurements were computed for unrestricted and restricted field-of-view detectors. In these simulations, the earth radiation field was modeled using data from Nimbus 2 and 3. Geometric shape factors were derived and applied to these data to estimate flux densities on global and zonal scales. For measurements at a satellite altitude of 600 km, estimates of zonal flux density were in error 1.0 to 1.2%, and global flux density errors were less than 0.2%. Estimates with unrestricted field-of-view detectors were about the same for Lambertian and non-Lambertian radiation models, but were affected by satellite altitude. The opposite was found for the restricted field-of-view detectors.
NASA Astrophysics Data System (ADS)
Miura, S.; Tsuchiya, Y.; Yoshida, Y.; Ichino, Y.; Awaji, S.; Matsumoto, K.; Ibi, A.; Izumi, T.
2017-08-01
In order to apply REBa2Cu3O y (REBCO, RE = rare earth elements or Y) coated conductors in high magnetic field, coil-based applications, the isotropic improvement of their critical current performance with respect to the directions of the magnetic field under these operating conditions is required. Most applications operate at temperatures lower than 50 K and magnetic fields over 2 T. In this study, the improvement of critical current density (J c) performance for various applied magnetic field directions was achieved by controlling the nanostructure of the BaHfO3 (BHO)-doped SmBa2Cu3O y (SmBCO) films on metallic substrates. The corresponding minimum J c value of the films at 40 K under an applied 3 T field was 5.2 MA cm-2, which is over ten times higher than that of a fully optimized Nb-Ti wire at 4.2 K. At 4.2 K, under a 17.5 T field, a flux pinning force density of 1.4 TN m-3 for B//c was realized; this value is among the highest values reported for REBCO films to date. More importantly, the F p for B//c corresponds to the minimum value for various applied magnetic field directions. We investigated the dominant flux pinning centers of films at 4.2 K using the anisotropic scaling approach based on the effective mass model. The dominant flux pinning centers are random pinning centers at 4.2 K, i.e., a high pinning performance was achieved by the high number density of random pins in the matrix of the BHO-doped SmBCO films.
NASA Technical Reports Server (NTRS)
Xing, W.; Heinrich, B.; Zhou, HU; Fife, A. A.; Cragg, A. R.; Grant, P. D.
1995-01-01
Mapping of the magnetic flux density B(sub z) (perpendicular to the film plane) for a YBa2Cu3O7 thin-film sample was carried out using a scanning micro-Hall probe. The sheet magnetization and sheet current densities were calculated from the B(sub z) distributions. From the known sheet magnetization, the tangential (B(sub x,y)) and normal components of the flux density B were calculated in the vicinity of the film. It was found that the sheet current density was mostly determined by 2B(sub x,y)/d, where d is the film thickness. The evolution of flux penetration as a function of applied field will be shown.
Ider, Yusuf Ziya; Birgul, Ozlem; Oran, Omer Faruk; Arikan, Orhan; Hamamura, Mark J; Muftuler, L Tugan
2010-06-07
Fourier transform (FT)-based algorithms for magnetic resonance current density imaging (MRCDI) from one component of magnetic flux density have been developed for 2D and 3D problems. For 2D problems, where current is confined to the xy-plane and z-component of the magnetic flux density is measured also on the xy-plane inside the object, an iterative FT-MRCDI algorithm is developed by which both the current distribution inside the object and the z-component of the magnetic flux density on the xy-plane outside the object are reconstructed. The method is applied to simulated as well as actual data from phantoms. The effect of measurement error on the spatial resolution of the current density reconstruction is also investigated. For 3D objects an iterative FT-based algorithm is developed whereby the projected current is reconstructed on any slice using as data the Laplacian of the z-component of magnetic flux density measured for that slice. In an injected current MRCDI scenario, the current is not divergence free on the boundary of the object. The method developed in this study also handles this situation.
On the relationship between finger width, velocity, and fluxes in thermohaline convection
NASA Astrophysics Data System (ADS)
Sreenivas, K. R.; Singh, O. P.; Srinivasan, J.
2009-02-01
Double-diffusive finger convection occurs in many natural processes. The theories for double-diffusive phenomena that exist at present consider systems with linear stratification in temperature and salinity. The double-diffusive systems with step change in salinity and temperature are, however, not amenable to simple stability analysis. Hence factors that control the width of the finger, velocity, and fluxes in systems that have step change in temperature and salinity have not been understood so far. In this paper we provide new physical insight regarding factors that influence finger convection in two-layer double-diffusive system through two-dimensional numerical simulations. Simulations have been carried out for density stability ratios (Rρ) from 1.5 to 10. For each density stability ratio, the thermal Rayleigh number (RaT) has been systematically varied from 7×103 to 7×108. Results from these simulations show how finger width, velocity, and flux ratios in finger convection are interrelated and the influence of governing parameters such as density stability ratio and the thermal Rayleigh number. The width of the incipient fingers at the time of onset of instability has been shown to vary as RaT-1/3. Velocity in the finger varies as RaT1/3/Rρ. Results from simulation agree with the scale analysis presented in the paper. Our results demonstrate that wide fingers have lower velocities and flux ratios compared to those in narrow fingers. This result contradicts present notions about the relation between finger width and flux ratio. A counterflow heat-exchanger analogy is used in understanding the dependence of flux ratio on finger width and velocity.
Numerical assessment of low-frequency dosimetry from sampled magnetic fields
NASA Astrophysics Data System (ADS)
Freschi, Fabio; Giaccone, Luca; Cirimele, Vincenzo; Canova, Aldo
2018-01-01
Low-frequency dosimetry is commonly assessed by evaluating the electric field in the human body using the scalar potential finite difference method. This method is effective only when the sources of the magnetic field are completely known and the magnetic vector potential can be analytically computed. The aim of the paper is to present a rigorous method to characterize the source term when only the magnetic flux density is available at discrete points, e.g. in case of field measurements. The method is based on the solution of the discrete magnetic curl equation. The system is restricted to the independent set of magnetic fluxes and circulations of magnetic vector potential using the topological information of the computational mesh. The solenoidality of the magnetic flux density is preserved using a divergence-free interpolator based on vector radial basis functions. The analysis of a benchmark problem shows that the complexity of the proposed algorithm is linearly dependent on the number of elements with a controllable accuracy. The method proposed in this paper also proves to be useful and effective when applied to a real world scenario, where the magnetic flux density is measured in proximity of a power transformer. A 8 million voxel body model is then used for the numerical dosimetric analysis. The complete assessment is completed in less than 5 min, that is more than acceptable for these problems.
Numerical assessment of low-frequency dosimetry from sampled magnetic fields.
Freschi, Fabio; Giaccone, Luca; Cirimele, Vincenzo; Canova, Aldo
2017-12-29
Low-frequency dosimetry is commonly assessed by evaluating the electric field in the human body using the scalar potential finite difference method. This method is effective only when the sources of the magnetic field are completely known and the magnetic vector potential can be analytically computed. The aim of the paper is to present a rigorous method to characterize the source term when only the magnetic flux density is available at discrete points, e.g. in case of field measurements. The method is based on the solution of the discrete magnetic curl equation. The system is restricted to the independent set of magnetic fluxes and circulations of magnetic vector potential using the topological information of the computational mesh. The solenoidality of the magnetic flux density is preserved using a divergence-free interpolator based on vector radial basis functions. The analysis of a benchmark problem shows that the complexity of the proposed algorithm is linearly dependent on the number of elements with a controllable accuracy. The method proposed in this paper also proves to be useful and effective when applied to a real world scenario, where the magnetic flux density is measured in proximity of a power transformer. A 8 million voxel body model is then used for the numerical dosimetric analysis. The complete assessment is completed in less than 5 min, that is more than acceptable for these problems.
Uniform magnetic targeting of magnetic particles attracted by a new ferromagnetic biological patch.
Pei, Ning; Cai, Lanlan; Yang, Kai; Ma, Jiaqi; Gong, Yongyong; Wang, Qixin; Huang, Zheyong
2018-02-01
A new non-toxic ferromagnetic biological patch (MBP) was designed in this paper. The MBP consisted of two external layers that were made of transparent silicone, and an internal layer that was made of a mixture of pure iron powder and silicon rubber. Finite-element analysis showed that the local inhomogeneous magnetic field (MF) around the MBP was generated when MBP was placed in a uniform MF. The local MF near the MBP varied with the uniform MF and shape of the MBP. Therefore, not only could the accumulation of paramagnetic particles be adjusted by controlling the strength of the uniform MF, but also the distribution of the paramagnetic particles could be improved with the different shape of the MBP. The relationship of the accumulation of paramagnetic particles or cells, magnetic flux density, and fluid velocity were studied through in vitro experiments and theoretical considerations. The accumulation of paramagnetic particles first increased with increment in the magnetic flux density of the uniform MF. But when the magnetic flux density of the uniform MF exceeded a specific value, the magnetic flux density of the MBP reached saturation, causing the accumulation of paramagnetic particles to fall. In addition, the adsorption morphology of magnetic particles or cells could be improved and the uniform distribution of magnetic particles could be achieved by changing the shape of the MBP. Also, MBP may be used as a new implant to attract magnetic drug carrier particles in magnetic drug targeting. Bioelectromagnetics. 39:98-107, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Using Solar Radio Burst Integrated Fluxes to Predict Energetic Proton Flux Increases.
1982-08-31
Energy Density, ET, of the radio burst, an integration across the frequency interval of the time-integrated radio fluxes at each frequency, was found to...integrated flux or energy at five frequencies in the 600- to 8800-MHz frequency interval and related them to the peak proton flux of the associated... energy of the burst normalized to its peak flux. One other characteristic of the radio burst to which Croom 13 referred was the total energy density, ET
Turbulent Simulations of Divertor Detachment Based On BOUT + + Framework
NASA Astrophysics Data System (ADS)
Chen, Bin; Xu, Xueqiao; Xia, Tianyang; Ye, Minyou
2015-11-01
China Fusion Engineering Testing Reactor is under conceptual design, acting as a bridge between ITER and DEMO. The detached divertor operation offers great promise for a reduction of heat flux onto divertor target plates for acceptable erosion. Therefore, a density scan is performed via an increase of D2 gas puffing rates in the range of 0 . 0 ~ 5 . 0 ×1023s-1 by using the B2-Eirene/SOLPS 5.0 code package to study the heat flux control and impurity screening property. As the density increases, it shows a gradually change of the divertor operation status, from low-recycling regime to high-recycling regime and finally to detachment. Significant radiation loss inside the confined plasma in the divertor region during detachment leads to strong parallel density and temperature gradients. Based on the SOLPS simulations, BOUT + + simulations will be presented to investigate the stability and turbulent transport under divertor plasma detachment, particularly the strong parallel gradient driven instabilities and enhanced plasma turbulence to spread heat flux over larger surface areas. The correlation between outer mid-plane and divertor turbulence and the related transport will be analyzed. Prepared by LLNL under Contract DE-AC52-07NA27344. LLNL-ABS-675075.
47 CFR 25.262 - Licensing and domestic coordination requirements for 17/24 GHz BSS space stations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... degree or less from an appendix F location, and may operate at the maximum power flux density limits defined in §§ 25.208(c) and (w) of this part, without coordinating its power flux density levels with... BSS U.S. licensee or permittee that does not comply with the power flux-density limits set forth in...
Observation of improved and degraded confinement with driven flow on the LAPD
NASA Astrophysics Data System (ADS)
Schaffner, David
2012-10-01
External continuous control over azimuthal flow and flow shear has been achieved in a linear plasma device for the first time allowing for a careful study of the effect of flow shear on pressure-gradient-driven turbulence and transport in the edge of the Large Plasma Device (LAPD). The flow is controlled using biasable iris-like limiters situated axially between the cathode source and main plasma chamber. LAPD rotates spontaneously in the ion diamagnetic direction (IDD); positive limiter bias first reduces, then minimizes (producing a near-zero shear state), and finally reverses the flow into the electron diamagnetic direction (EDD). Degradation of particle confinement is observed in the minimum shearing state and reduction in turbulent particle flux is observed with increasing shearing in both flow directions. Near-complete suppression of turbulent particle flux is observed for shearing rates comparable to the turbulent autocorrelation rate measured in the minimum shear state. Turbulent flux suppression is dominated by amplitude reduction in low-frequency (>10kHz) density fluctuations and a reduction in the radial correlation length. An increase in fluctuations for the highest shearing states is observed with the emergence of a coherent mode which does not lead to net particle transport. Magnetic field is varied in order to explore whether and how field effects transport modification. Calculations of transport equations are used to predict density profiles given source and temperature profiles and can show the level of transport predicted to be necessary in order to produce the experimental density profiles observed. Finally, the variations of density fluctuations and radial correlation length are fit well with power-laws and compare favorably to simple models of shear suppression of transport.
The timing and intensity of column collapse during explosive volcanic eruptions
NASA Astrophysics Data System (ADS)
Carazzo, Guillaume; Kaminski, Edouard; Tait, Stephen
2015-02-01
Volcanic columns produced by explosive eruptions commonly reach, at some stage, a collapse regime with associated pyroclastic density currents propagating on the ground. The threshold conditions for the entrance into this regime are mainly controlled by the mass flux and exsolved gas content at the source. However, column collapse is often partial and the controls on the fraction of total mass flux that feeds the pyroclastic density currents, defined here as the intensity of collapse, are unknown. To better understand this regime, we use a new experimental apparatus reproducing at laboratory scale the convecting and collapsing behavior of hot particle-laden air jets. We validate the predictions of a 1D theoretical model for the entrance into the regime of partial collapse. Furthermore, we show that where a buoyant plume and a collapsing fountain coexist, the intensity of collapse can be predicted by a universal scaling relationship. We find that the intensity of collapse in the partial collapse regime is controlled by magma gas content and temperature, and always exceeds 40%, independent of peak mass flux and total erupted volume. The comparison between our theoretical predictions and a set of geological data on historic and pre-historic explosive eruptions shows that the model can be used to predict both the onset and intensity of column collapse, hence it can be used for rapid assessment of volcanic hazards notably ash dispersal during eruptive crises.
Minnealloy: a new magnetic material with high saturation flux density and low magnetic anisotropy
NASA Astrophysics Data System (ADS)
Mehedi, Md; Jiang, Yanfeng; Suri, Pranav Kumar; Flannigan, David J.; Wang, Jian-Ping
2017-09-01
We are reporting a new soft magnetic material with high saturation magnetic flux density, and low magnetic anisotropy. The new material is a compound of iron, nitrogen and carbon, α‧-Fe8(NC), which has saturation flux density of 2.8 ± 0.15 T and magnetic anisotropy of 46 kJ m-3. The saturation flux density is 27% higher than pure iron, a widely used soft magnetic material. Soft magnetic materials are very important building blocks of motors, generators, inductors, transformers, sensors and write heads of hard disk. The new material will help in the miniaturization and efficiency increment of the next generation of electronic devices.
Modelling radiation fluxes in simple and complex environments: basics of the RayMan model.
Matzarakis, Andreas; Rutz, Frank; Mayer, Helmut
2010-03-01
Short- and long-wave radiation flux densities absorbed by people have a significant influence on their energy balance. The heat effect of the absorbed radiation flux densities is parameterised by the mean radiant temperature. This paper presents the physical basis of the RayMan model, which simulates the short- and long-wave radiation flux densities from the three-dimensional surroundings in simple and complex environments. RayMan has the character of a freely available radiation and human-bioclimate model. The aim of the RayMan model is to calculate radiation flux densities, sunshine duration, shadow spaces and thermo-physiologically relevant assessment indices using only a limited number of meteorological and other input data. A comparison between measured and simulated values for global radiation and mean radiant temperature shows that the simulated data closely resemble measured data.
Water Use Patterns of Four Tropical Bamboo Species Assessed with Sap Flux Measurements.
Mei, Tingting; Fang, Dongming; Röll, Alexander; Niu, Furong; Hendrayanto; Hölscher, Dirk
2015-01-01
Bamboos are grasses (Poaceae) that are widespread in tropical and subtropical regions. We aimed at exploring water use patterns of four tropical bamboo species (Bambusa vulgaris, Dendrocalamus asper, Gigantochloa atroviolacea, and G. apus) with sap flux measurement techniques. Our approach included three experimental steps: (1) a pot experiment with a comparison of thermal dissipation probes (TDPs), the stem heat balance (SHB) method and gravimetric readings using potted B. vulgaris culms, (2) an in situ calibration of TDPs with the SHB method for the four bamboo species, and (3) field monitoring of sap flux of the four bamboo species along with three tropical tree species (Gmelina arborea, Shorea leprosula, and Hevea brasiliensis) during a dry and a wet period. In the pot experiment, it was confirmed that the SHB method is well suited for bamboos but that TDPs need to be calibrated. In situ, species-specific parameters for such calibration formulas were derived. During field monitoring we found that some bamboo species reached high maximum sap flux densities. Across bamboo species, maximal sap flux density increased with decreasing culm diameter. In the diurnal course, sap flux densities in bamboos peaked much earlier than radiation and vapor pressure deficit (VPD), and also much earlier than sap flux densities in trees. There was a pronounced hysteresis between sap flux density and VPD in bamboos, which was less pronounced in trees. Three of the four bamboo species showed reduced sap flux densities at high VPD values during the dry period, which was associated with a decrease in soil moisture content. Possible roles of internal water storage, root pressure and stomatal sensitivity are discussed.
Water Use Patterns of Four Tropical Bamboo Species Assessed with Sap Flux Measurements
Mei, Tingting; Fang, Dongming; Röll, Alexander; Niu, Furong; Hendrayanto; Hölscher, Dirk
2016-01-01
Bamboos are grasses (Poaceae) that are widespread in tropical and subtropical regions. We aimed at exploring water use patterns of four tropical bamboo species (Bambusa vulgaris, Dendrocalamus asper, Gigantochloa atroviolacea, and G. apus) with sap flux measurement techniques. Our approach included three experimental steps: (1) a pot experiment with a comparison of thermal dissipation probes (TDPs), the stem heat balance (SHB) method and gravimetric readings using potted B. vulgaris culms, (2) an in situ calibration of TDPs with the SHB method for the four bamboo species, and (3) field monitoring of sap flux of the four bamboo species along with three tropical tree species (Gmelina arborea, Shorea leprosula, and Hevea brasiliensis) during a dry and a wet period. In the pot experiment, it was confirmed that the SHB method is well suited for bamboos but that TDPs need to be calibrated. In situ, species-specific parameters for such calibration formulas were derived. During field monitoring we found that some bamboo species reached high maximum sap flux densities. Across bamboo species, maximal sap flux density increased with decreasing culm diameter. In the diurnal course, sap flux densities in bamboos peaked much earlier than radiation and vapor pressure deficit (VPD), and also much earlier than sap flux densities in trees. There was a pronounced hysteresis between sap flux density and VPD in bamboos, which was less pronounced in trees. Three of the four bamboo species showed reduced sap flux densities at high VPD values during the dry period, which was associated with a decrease in soil moisture content. Possible roles of internal water storage, root pressure and stomatal sensitivity are discussed. PMID:26779233
NASA Technical Reports Server (NTRS)
Jones, Harry; Jenkins, Richard G.; Goodall, Roger M.; Macleod, Colin; ElAbbar, Abdallah A.; Campbell, Archie M.
1996-01-01
A research program, involving 3 British universities, directed at quantifying the controllability of High Temperature Superconducting (HTS) magnets for use in attraction levitation transport systems will be described. The work includes measurement of loss mechanisms for iron cored HTS magnets which need to produce a flux density of approx. 1 tesla in the airgap between the magnet poles and a ferromagnetic rail. This flux density needs to be maintained and this is done by introducing small variations of the magnet current using a feedback loop, at frequencies up to 10 Hz to compensate for load changes, track variation etc. The test magnet assemblies constructed so far will be described and the studies and modelling of designs for a practical levitation demonstrator (using commercially obtained HTS tape) will be discussed with particular emphasis on how the field distribution and its components, e.g., the component vector normal to the broad face of the tape, can radically affect design philosophy compared to the classical electrical engineering approach. Although specifically aimed at levitation transport the controllability data obtained have implications for a much wider range of applications.
Energy propagation by transverse waves in multiple flux tube systems using filling factors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Doorsselaere, T.; Gijsen, S. E.; Andries, J.
2014-11-01
In the last few years, it has been found that transverse waves are present at all times in coronal loops or spicules. Their energy has been estimated with an expression derived for bulk Alfvén waves in homogeneous media, with correspondingly uniform wave energy density and flux. The kink mode, however, is localized in space with the energy density and flux dependent on the position in the cross-sectional plane. The more relevant quantities for the kink mode are the integrals of the energy density and flux over the cross-sectional plane. The present paper provides an approximation to the energy propagated bymore » kink modes in an ensemble of flux tubes by means of combining the analysis of single flux tube kink oscillations with a filling factor for the tube cross-sectional area. This finally allows one to compare the expressions for energy flux of Alfvén waves with an ensemble of kink waves. We find that the correction factor for the energy in kink waves, compared to the bulk Alfvén waves, is between f and 2f, where f is the density filling factor of the ensemble of flux tubes.« less
W. J. Massman
2004-01-01
Atmospheric trace gas fluxes measured with an eddy covariance sensor that detects a constituent's density fluctuations within the in situ air need to include terms resulting from concurrent heat and moisture fluxes, the so called 'density' or 'WPL corrections' (Webb et al. 1980). The theory behind these additional terms is well established. But...
Surface radiant flux densities inferred from LAC and GAC AVHRR data
NASA Astrophysics Data System (ADS)
Berger, F.; Klaes, D.
To infer surface radiant flux densities from current (NOAA-AVHRR, ERS-1/2 ATSR) and future meteorological (Envisat AATSR, MSG, METOP) satellite data, the complex, modular analysis scheme SESAT (Strahlungs- und Energieflüsse aus Satellitendaten) could be developed (Berger, 2001). This scheme allows the determination of cloud types, optical and microphysical cloud properties as well as surface and TOA radiant flux densities. After testing of SESAT in Central Europe and the Baltic Sea catchment (more than 400scenes U including a detailed validation with various surface measurements) it could be applied to a large number of NOAA-16 AVHRR overpasses covering the globe.For the analysis, two different spatial resolutions U local area coverage (LAC) andwere considered. Therefore, all inferred results, like global area coverage (GAC) U cloud cover, cloud properties and radiant properties, could be intercompared. Specific emphasis could be made to the surface radiant flux densities (all radiative balance compoments), where results for different regions, like Southern America, Southern Africa, Northern America, Europe, and Indonesia, will be presented. Applying SESAT, energy flux densities, like latent and sensible heat flux densities could also be determined additionally. A statistical analysis of all results including a detailed discussion for the two spatial resolutions will close this study.
Metal concentrations in the upper atmosphere during meteor showers
NASA Astrophysics Data System (ADS)
Correira, J.; Aikin, A. C.; Grebowsky, J. M.; Burrows, J. P.
2010-02-01
Using the nadir-viewing Global Ozone Measuring Experiment (GOME) UV/VIS spectrometer on the ERS-2 satellite, we investigate short term variations in the vertical magnesium column densities in the atmosphere and any connection to possible enhanced mass deposition during a meteor shower. Time-dependent mass influx rates are derived for all the major meteor showers using published estimates of mass density and temporal profiles of meteor showers. An average daily sporadic background mass flux rate is also calculated and used as a baseline against which calculated shower mass flux rates are compared. These theoretical mass flux rates are then compared with GOME derived metal vertical column densities of Mg and Mg+ from the years 1996-2001. There is no correlation between theoretical mass flux rates and changes in the Mg and Mg+ metal column densities. A possible explanation for the lack of a shower related increase in metal concentrations may be differences in the mass regimes dominating the average background mass flux and shower mass flux.
Metal concentrations in the upper atmosphere during meteor showers
NASA Astrophysics Data System (ADS)
Correira, J.; Aikin, A. C.; Grebowsky, J. M.; Burrows, J. P.
2009-09-01
Using the nadir-viewing Global Ozone Measuring Experiment (GOME) UV/VIS spectrometer on the ERS-2 satellite, we investigate short term variations in the vertical magnesium column densities in the atmosphere and any connection to possible enhanced mass deposition during a meteor shower. Time-dependent mass influx rates are derived for all the major meteor showers using published estimates of mass density and temporal profiles of meteor showers. An average daily sporadic background mass flux rate is also calculated and used as a baseline against which calculated shower mass flux rates are compared. These theoretical mass flux rates are then compared with GOME derived metal vertical column densities of Mg and Mg+ from the years 1996-2001. There is no correlation between theoretical mass flux rates and changes in the Mg and Mg+ metal column densities. A possible explanation for the lack of a shower related increase in metal concentrations may be differences in the mass regimes dominating the average background mass flux and shower mass flux.
NASA Astrophysics Data System (ADS)
Shahrouzi, Hamid; Moses, Anthony J.; Anderson, Philip I.; Li, Guobao; Hu, Zhuochao
2018-04-01
The flux distribution in an overlapped linear joint constructed in the central region of an Epstein Square was studied experimentally and results compared with those obtained using a computational magnetic field solver. High permeability grain-oriented (GO) and low permeability non-oriented (NO) electrical steels were compared at a nominal core flux density of 1.60 T at 50 Hz. It was found that the experimental results only agreed well at flux densities at which the reluctance of different paths of the flux are similar. Also it was revealed that the flux becomes more uniform when the working point of the electrical steel is close to the knee point of the B-H curve of the steel.
Inverse modeling of Asian (222)Rn flux using surface air (222)Rn concentration.
Hirao, Shigekazu; Yamazawa, Hiromi; Moriizumi, Jun
2010-11-01
When used with an atmospheric transport model, the (222)Rn flux distribution estimated in our previous study using soil transport theory caused underestimation of atmospheric (222)Rn concentrations as compared with measurements in East Asia. In this study, we applied a Bayesian synthesis inverse method to produce revised estimates of the annual (222)Rn flux density in Asia by using atmospheric (222)Rn concentrations measured at seven sites in East Asia. The Bayesian synthesis inverse method requires a prior estimate of the flux distribution and its uncertainties. The atmospheric transport model MM5/HIRAT and our previous estimate of the (222)Rn flux distribution as the prior value were used to generate new flux estimates for the eastern half of the Eurasian continent dividing into 10 regions. The (222)Rn flux densities estimated using the Bayesian inversion technique were generally higher than the prior flux densities. The area-weighted average (222)Rn flux density for Asia was estimated to be 33.0 mBq m(-2) s(-1), which is substantially higher than the prior value (16.7 mBq m(-2) s(-1)). The estimated (222)Rn flux densities decrease with increasing latitude as follows: Southeast Asia (36.7 mBq m(-2) s(-1)); East Asia (28.6 mBq m(-2) s(-1)) including China, Korean Peninsula and Japan; and Siberia (14.1 mBq m(-2) s(-1)). Increase of the newly estimated fluxes in Southeast Asia, China, Japan, and the southern part of Eastern Siberia from the prior ones contributed most significantly to improved agreement of the model-calculated concentrations with the atmospheric measurements. The sensitivity analysis of prior flux errors and effects of locally exhaled (222)Rn showed that the estimated fluxes in Northern and Central China, Korea, Japan, and the southern part of Eastern Siberia were robust, but that in Central Asia had a large uncertainty.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xing, W.; Heinrich, B.; Zhou, H.
1994-12-31
Mapping of the magnetic flux density B{sub z} (perpendicular to the film plane) for a YBa{sub 2}Cu{sub 3}O{sub 7} thin-film sample was carried out using a scanning micro-Hall probe. The sheet magnetization and sheet current densities were calculated from the B{sub z} distributions. From the known sheet magnetization, the tangential (B{sub x,y}) and normal components of the flux density B were calculated in the vicinity of the film. It was found that the sheet current density was mostly determined by 2B{sub x,y}/d, where d is the film thickness. The evolution of flux penetration as a function of applied field willmore » be shown.« less
NASA Astrophysics Data System (ADS)
Li, Xingfu; Shi, Qing; Wang, Huaping; Sun, Tao; Huang, Qiang; Fukuda, Toshio
2017-12-01
In this paper, a magnetically-guided assembly method is proposed to methodically construct diverse modules with a microfiber-based network for promoting nutrient circulation and waste excretion of cell culture. The microfiber is smoothly spun from the microfluidic device via precise control of the volumetric flow rate, and superparamagnetic nanoparticles within the alginate solution of the microfluidic fiber enable its magnetic response. The magnetized device is used to effectively capture the microfiber using its powerful magnetic flux density and high magnetic field gradient. Subsequently, the dot-matrix magnetic flux density is used to distribute the microfibers in an orderly fashion that depends on the array structure of the magnetized device. Furthermore, the magnetic microfluidic fibers are spatially organized into desired locations and are cross-aligned to form highly interconnected netlike modules in a liquid environment. Therefore, the experimental results herein demonstrate the structural controllability and stability of various modules and establish the effectiveness of the proposed method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayward, Christopher C.; Keres, Dusan; Jonsson, Patrik
2011-12-20
We perform three-dimensional dust radiative transfer (RT) calculations on hydrodynamic simulations of isolated and merging disk galaxies in order to quantitatively study the dependence of observed-frame submillimeter (submm) flux density on galaxy properties. We find that submm flux density and star formation rate (SFR) are related in dramatically different ways for quiescently star-forming galaxies and starbursts. Because the stars formed in the merger-induced starburst do not dominate the bolometric luminosity and the rapid drop in dust mass and more compact geometry cause a sharp increase in dust temperature during the burst, starbursts are very inefficient at boosting submm flux densitymore » (e.g., a {approx}> 16 Multiplication-Sign boost in SFR yields a {approx}< 2 Multiplication-Sign boost in submm flux density). Moreover, the ratio of submm flux density to SFR differs significantly between the two modes; thus one cannot assume that the galaxies with highest submm flux density are necessarily those with the highest bolometric luminosity or SFR. These results have important consequences for the bright submillimeter-selected galaxy (SMG) population. Among them are: (1) The SMG population is heterogeneous. In addition to merger-driven starbursts, there is a subpopulation of galaxy pairs, where two disks undergoing a major merger but not yet strongly interacting are blended into one submm source because of the large ({approx}> 15'' or {approx}130 kpc at z = 2) beam of single-dish submm telescopes. (2) SMGs must be very massive (M{sub *} {approx}> 6 Multiplication-Sign 10{sup 10} M{sub Sun }). (3) The infall phase makes the SMG duty cycle a factor of a few greater than what is expected for a merger-driven starburst. Finally, we provide fitting functions for SCUBA and AzTEC submm flux densities as a function of SFR and dust mass and bolometric luminosity and dust mass; these should be useful for calculating submm flux density in semi-analytic models and cosmological simulations when performing full RT is computationally not feasible.« less
Spitzer Mid-to-Far-Infrared Flux Densities of Distant Galaxies
NASA Astrophysics Data System (ADS)
Papovich, Casey J.; Rudnick, G.; Le Floc'h, E.; van Dokkum, P. G.; Rieke, G. H.; Taylor, E. N.; Armus, L.; Gawiser, E.; Marcillac, D.; Huang, J.; Franx, M.
2007-05-01
We study the 24, 70, and 160 μm properties of high-redshift galaxies. Our primary interest is to improve the constraints on the total infrared (IR) luminosities, L(IR), of these galaxies. We combine Spitzer data in the southern Extended Chandra Deep Field with a Ks-band-selected galaxy sample with photometric redshifts from the Multiwavelength Survey by Yale-Chile. We used a stacking analysis to measure the average 70 and 160 μm flux densities of 1.5 < zph < 2.5 galaxies as a function of 24 μm flux density, X-ray activity, and rest-frame near-IR color. Galaxies with 1.5 < zph < 2.5 and S(24) = 54-250 μJy have L(IR) derived from their average 24-160 μm flux densities within factors of 2-3 of those derived from the 24 μm flux densities only. However, L(IR) derived from the average 24-160 μm flux densities for galaxies with S(24) > 250 μJy and 1.5 < zph < 2.5 are lower than those derived using only the 24 μm flux density by factors of 2-6. Galaxies with S(24) > 250 μJy have S(70)/S(24) flux ratios comparable to sources with X-ray detections or red rest-frame IR colors, suggesting that warm dust possibly heated by AGN produces high 24 μm emission. Based on the average 24-160 μm flux densities, 24 μm-selected galaxies at 1.5 < zph < 2.5 have an upper envelope of L(IR) < 6 × 1012 L⊙, which if attributed to star formation corresponds to < 1000 M⊙ yr-1. This envelope is similar to the maximal star formation rate observed in low redshift galaxies, suggesting that high redshift galaxies have star formation efficiencies and feedback processes comparable to lower redshift analogs. Support for this work was provided by NASA through the Spitzer Space Telescope Fellowship Program, through a contract issued by JPL, Caltech under a contract with NASA.
Development of a high-efficiency motor/generator for flywheel energy storage
NASA Astrophysics Data System (ADS)
Lashley, Christopher; Anand, Dave K.; Kirk, James A.; Zmood, Ronald B.
This study addresses the design changes and extensions necessary to construct and test a working prototype of a motor/generator for a magnetically suspended flywheel energy storage system. The brushless motor controller for the motor was specified and the electronic commutation arrangement designed. The laminations were redesigned and fabricated using laser machining. Flux density measurements were made and the results used to redesign the armature windings. A test rig was designed and built, and the motor/generator was installed and speed tested to 9000 rpm. Experimental methods of obtaining the machine voltage and torque constants Kv and Kt, obtaining the useful air-gap flux density, and characterizing the motor and other system components are described. The measured Kv and Kt were approximately 40 percent greater than predicted by theory and initial experiment.
Development of a high-efficiency motor/generator for flywheel energy storage
NASA Technical Reports Server (NTRS)
Lashley, Christopher; Anand, Dave K.; Kirk, James A.; Zmood, Ronald B.
1991-01-01
This study addresses the design changes and extensions necessary to construct and test a working prototype of a motor/generator for a magnetically suspended flywheel energy storage system. The brushless motor controller for the motor was specified and the electronic commutation arrangement designed. The laminations were redesigned and fabricated using laser machining. Flux density measurements were made and the results used to redesign the armature windings. A test rig was designed and built, and the motor/generator was installed and speed tested to 9000 rpm. Experimental methods of obtaining the machine voltage and torque constants Kv and Kt, obtaining the useful air-gap flux density, and characterizing the motor and other system components are described. The measured Kv and Kt were approximately 40 percent greater than predicted by theory and initial experiment.
Abnormal changes in the density of thermal neutron flux in biocenoses near the earth surface.
Plotnikova, N V; Smirnov, A N; Kolesnikov, M V; Semenov, D S; Frolov, V A; Lapshin, V B; Syroeshkin, A V
2007-04-01
We revealed an increase in the density of thermal neutron flux in forest biocenoses, which was not associated with astrogeophysical events. The maximum spike of this parameter in the biocenosis reached 10,000 n/(sec x m2). Diurnal pattern of the density of thermal neutron flux depended only on the type of biocenosis. The effects of biomodulation of corpuscular radiation for balneology are discussed.
On the modelling of scalar and mass transport in combustor flows
NASA Technical Reports Server (NTRS)
Nikjooy, M.; So, R. M. C.
1989-01-01
Results are presented of a numerical study of swirling and nonswirling combustor flows with and without density variations. Constant-density arguments are used to justify closure assumptions invoked for the transport equations for turbulent momentum and scalar fluxes, which are written in terms of density-weighted variables. Comparisons are carried out with measurements obtained from three different axisymmetric model combustor experiments covering recirculating flow, swirling flow, and variable-density swirling flow inside the model combustors. Results show that the Reynolds stress/flux models do a credible job of predicting constant-density swirling and nonswirling combustor flows with passive scalar transport. However, their improvements over algebraic stress/flux models are marginal. The extension of the constant-density models to variable-density flow calculations shows that the models are equally valid for such flows.
Lee, Byung Il; Oh, Suk Hoon; Woo, Eung Je; Lee, Soo Yeol; Cho, Min Hyoung; Kwon, Ohin; Seo, Jin Keun; Lee, June-Yub; Baek, Woon Sik
2003-07-07
In magnetic resonance electrical impedance tomography (MREIT), we try to reconstruct a cross-sectional resistivity (or conductivity) image of a subject. When we inject a current through surface electrodes, it generates a magnetic field. Using a magnetic resonance imaging (MRI) scanner, we can obtain the induced magnetic flux density from MR phase images of the subject. We use recessed electrodes to avoid undesirable artefacts near electrodes in measuring magnetic flux densities. An MREIT image reconstruction algorithm produces cross-sectional resistivity images utilizing the measured internal magnetic flux density in addition to boundary voltage data. In order to develop such an image reconstruction algorithm, we need a three-dimensional forward solver. Given injection currents as boundary conditions, the forward solver described in this paper computes voltage and current density distributions using the finite element method (FEM). Then, it calculates the magnetic flux density within the subject using the Biot-Savart law and FEM. The performance of the forward solver is analysed and found to be enough for use in MREIT for resistivity image reconstructions and also experimental designs and validations. The forward solver may find other applications where one needs to compute voltage, current density and magnetic flux density distributions all within a volume conductor.
Theoretical study of a molecular turbine.
Perez-Carrasco, R; Sancho, J M
2013-10-01
We present an analytic and stochastic simulation study of a molecular engine working with a flux of particles as a turbine. We focus on the physical observables of velocity, flux, power, and efficiency. The control parameters are the external conservative force and the particle densities. We revise a simpler previous study by using a more realistic model containing multiple equidistant vanes complemented by stochastic simulations of the particles and the turbine. Here we show that the effect of the thermal fluctuations into the flux and the efficiency of these nanometric devices are relevant to the working scale of the system. The stochastic simulations of the Brownian motion of the particles and turbine support the simplified analytical calculations performed.
Cole, David; Bending, Simon; Savel'ev, Sergey; Grigorenko, Alexander; Tamegai, Tsuyoshi; Nori, Franco
2006-04-01
Initially inspired by biological motors, new types of nanodevice have been proposed for controlling the motion of nanoparticles. Structures incorporating spatially asymmetric potential profiles (ratchet substrates) have been realized experimentally to manipulate vortices in superconductors, particles in asymmetric silicon pores, as well as charged particles through artificial pores and arrays of optical tweezers. Using theoretical ideas, we demonstrate experimentally how to guide flux quanta in layered superconductors using a drive that is asymmetric in time instead of being asymmetric in space. By varying the time-asymmetry of the drive, we are able experimentally to increase or decrease the density of magnetic flux at the centre of superconducting samples that have no spatial ratchet substrate. This is the first ratchet without a ratchet potential. The experimental results can be well described by numerical simulations considering the dragging effect of two types of vortices penetrating layered superconductors in tilted magnetic fields.
Low temperature formation of electrode having electrically conductive metal oxide surface
Anders, Simone; Anders, Andre; Brown, Ian G.; McLarnon, Frank R.; Kong, Fanping
1998-01-01
A low temperature process is disclosed for forming metal suboxides on substrates by cathodic arc deposition by either controlling the pressure of the oxygen present in the deposition chamber, or by controlling the density of the metal flux, or by a combination of such adjustments, to thereby control the ratio of oxide to metal in the deposited metal suboxide coating. The density of the metal flux may, in turn, be adjusted by controlling the discharge current of the arc, by adjusting the pulse length (duration of on cycle) of the arc, and by adjusting the frequency of the arc, or any combination of these parameters. In a preferred embodiment, a low temperature process is disclosed for forming an electrically conductive metal suboxide, such as, for example, an electrically conductive suboxide of titanium, on an electrode surface, such as the surface of a nickel oxide electrode, by such cathodic arc deposition and control of the deposition parameters. In the preferred embodiment, the process results in a titanium suboxide-coated nickel oxide electrode exhibiting reduced parasitic evolution of oxygen during charging of a cell made using such an electrode as the positive electrode, as well as exhibiting high oxygen overpotential, resulting in suppression of oxygen evolution at the electrode at full charge of the cell.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, Jeffrey
Tango enables the accelerated numerical solution of the multiscale problem of self-consistent transport and turbulence. Fast turbulence results in fluxes of heat and particles that slowly change the mean profiles of temperature and density. The fluxes are computed by separate turbulence simulation codes; Tang solves for the self-consistent change in mean temperature or density given those fluxes.
Determination of meteor flux distribution over the celestial sphere
NASA Technical Reports Server (NTRS)
Andreev, V. V.; Belkovich, O. I.; Filimonova, T. K.; Sidorov, V. V.
1992-01-01
A new method of determination of meteor flux density distribution over the celestial sphere is discussed. The flux density was derived from observations by radar together with measurements of angles of arrival of radio waves reflected from meteor trails. The role of small meteor showers over the sporadic background is shown.
A short response time atomic source for trapped ion experiments
NASA Astrophysics Data System (ADS)
Ballance, T. G.; Goodwin, J. F.; Nichol, B.; Stephenson, L. J.; Ballance, C. J.; Lucas, D. M.
2018-05-01
Ion traps are often loaded from atomic beams produced by resistively heated ovens. We demonstrate an atomic oven which has been designed for fast control of the atomic flux density and reproducible construction. We study the limiting time constants of the system and, in tests with 40Ca, show that we can reach the desired level of flux in 12 s, with no overshoot. Our results indicate that it may be possible to achieve an even faster response by applying an appropriate one-off heat treatment to the oven before it is used.
Zhao, Jing-Chun; Zhang, Bo-Ru; Hong, Lei; Shi, Kai; Wu, Wei-Wei; Yu, Jia-Ao
2018-04-01
Hypertrophic scar is characterized by excessive deposits of collagen during skin wound healing, which could become a challenge to clinicians. This study assessed the effects of the extracorporeal shock wave therapy (ESWT) on hypertrophic scar formation and the underlying gene regu-lation. A rabbit ear hypertrophic scar model was generated and randomly divided into three groups: L-ESWT group to receive L-ESWT (energy flux density of 0.1 mJ/mm2), H-ESWT (energy flux density of 0.2 mJ/mm2) and sham ESWT group (S-ESWT). Hypertrophic scar tissues were then collected and stained with hematoxylin and eosin (H&E) and Masson's trichrome staining, respectively, to assess scar elevation index (SEI), fibroblast density and collagen fiber arrangement. Expression of cell proliferation marker proliferating cell nuclear antigen (PCNA) and α-smooth muscle actin (α-SMA) were assessed using RT-PCR and immunohistochemistry in hypertrophic scar tissues. H&E staining sections showed significant reduction of SEI and fibroblast density in both ESWT treatment groups compared to S-ESWT, but there was no dramatic difference between L-ESWT and H-ESWT groups. Masson's trichrome staining showed that collagen fibers were more slender and broader and oriented in parallel to skin surface after administration of ESWT compared to control tissues. At the gene level, PCNA‑positive fibroblasts and α-SMA-positive myofibroblasts were significantly decreased after L-ESWT or H-ESWT compared to the controls. Furthermore, there was no significant difference in expression of PCNA mRNA between L-ESWT or H-ESWT and S-ESWT, whereas expression of α-SMA mRNA significantly decreased in L-ESWT compared to that of H-ESWT and S-ESWT (P=0.002 and P=0.030, respectively). In conclusion, L-ESWT could be effective on suppression of hypertrophic scar formation by inhibition of scar elevation index and fibroblast density as well as α-SMA expression in hypertrophic scar tissues of the rabbit model.
A Theory of Density Layering in Stratified Turbulence using Statistical State Dynamics
NASA Astrophysics Data System (ADS)
Fitzgerald, J.; Farrell, B.
2016-12-01
Stably stratified turbulent fluids commonly develop density structures that are layered in the vertical direction (e.g., Manucharyan et al., 2015). Within layers, density is approximately constant and stratification is weak. Between layers, density varies rapidly and stratification is strong. A common explanation for the existence of layers invokes the negative diffusion mechanism of Phillips (1972) & Posmentier (1977). The physical principle underlying this mechanism is that the flux-gradient relationship connecting the turbulent fluxes of buoyancy to the background stratification must have the special property of weakening fluxes with strengthening gradient. Under these conditions, the evolution of the stratification is governed by a negative diffusion problem which gives rise to spontaneous layer formation. In previous work on stratified layering, this flux-gradient property is often assumed (e.g, Posmentier, 1977) or drawn from phenomenological models of turbulence (e.g., Balmforth et al., 1998).In this work we develop the theoretical underpinnings of layer formation by applying stochastic turbulence modeling and statistical state dynamics (SSD) to predict the flux-gradient relation and analyze layer formation directly from the equations of motion. We show that for stochastically-forced homogeneous 2D Boussinesq turbulence, the flux-gradient relation can be obtained analytically and indicates that the fluxes always strengthen with stratification. The Phillips mechanism thus does not operate in this maximally simplified scenario. However, when the problem is augmented to include a large scale background shear, we show that the flux-gradient relationship is modified so that the fluxes weaken with stratification. Sheared and stratified 2D Boussinesq turbulence thus spontaneously forms density layers through the Phillips mechanism. Using SSD (Farrell & Ioannou 2003), we obtain a closed, deterministic dynamics for the stratification and the statistical turbulent state. We show that density layers form as a linear instability of the sheared turbulence, associated with a supercritical bifurcation. We further show that SSD predicts the nonlinear equilibration and maintenance of the layers, and captures the phenomena of layer growth and mergers (Radko, 2007).
Beta electron fluxes inside a magnetic plasma cavern: Calculation and comparison with experiment
NASA Astrophysics Data System (ADS)
Stupitskii, E. L.; Smirnov, E. V.; Kulikova, N. A.
2010-12-01
We study the possibility of electrostatic blanking of beta electrons in the expanding spherical blob of a radioactive plasma in a rarefied ionosphere. From numerical studies on the dynamics of beta electrons departing a cavern, we obtain the form of a function that determines the portion of departing electrons and calculate the flux density of beta electrons inside the cavern in relation to the Starfish Prime nuclear blast. We show that the flux density of electrons in geomagnetic flux tubes and inside the cavern depend on a correct allowance for the quantity of beta electrons returning to the cavern. On the basis of a physical analysis, we determine the approximate criterion for the return of electrons from a geomagnetic flux tube to the cavern. We compare calculation results in terms of the flux density of beta electrons inside the cavern with the recently published experimental results from operation Starfish Prime.
High-Strength Undiffused Brushless (HSUB) Machine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, John S; Tolbert, Leon M; Lee, Seong T
2007-01-01
This paper introduces a new high-strength undiffused brushless machine that transfers the stationary excitation magnetomotive force to the rotor without any brushes. For a conventional permanent magnet (PM) machine, the air gap flux density cannot be enhanced effectively but can be weakened. In the new machine, both the stationary excitation coil and the PM in the rotor produce an enhanced air gap flux. The PM in the rotor prevents magnetic flux diffusion between the poles and guides the reluctance flux path. The pole flux density in the air gap can be much higher than what the PM alone can produce.more » A high-strength machine is thus obtained. The air gap flux density can be weakened through the stationary excitation winding. This type of machine is particularly suitable for electric and hybrid-electric vehicle applications. Patents of this new technology are either granted or pending.« less
High-Strength Undiffused Brushless (HSUB) Machine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, John S; Lee, Seong T; Tolbert, Leon M
2008-01-01
This paper introduces a new high-strength undiffused brushless machine that transfers the stationary excitation magnetomotive force to the rotor without any brushes. For a conventional permanent magnet (PM) machine, the air-gap flux density cannot be enhanced effectively but can be weakened. In the new machine, both the stationary excitation coil and the PM in the rotor produce an enhanced air-gap flux. The PM in the rotor prevents magnetic-flux diffusion between the poles and guides the reluctance flux path. The pole flux density in the air gap can be much higher than what the PM alone can produce. A high-strength machinemore » is thus obtained. The air-gap flux density can be weakened through the stationary excitation winding. This type of machine is particularly suitable for electric and hybrid-electric vehicle applications. Patents of this new technology are either granted or pending.« less
Field evaluation of open and closed-path CO2 flux systems over asphalt surface
NASA Astrophysics Data System (ADS)
Bogoev, I.; Santos, E.
2016-12-01
Eddy covariance (EC) is a widely used method for quantifying surface fluxes of heat, water vapor and carbon dioxide between ecosystems and the atmosphere. A typical EC system consists of an ultrasonic anemometer measuring the 3D wind vector and a fast-response infrared gas analyzer for sensing the water vapor and CO2 density in the air. When using an open-path analyzer that detects the constituent's density in situ a correction for concurrent air temperature and humidity fluctuations must be applied, Webb et al. (1980). In environments with small magnitudes of CO2 flux (<5µmol m-2 s-1) and in the presence of high sensible heat flux, like wintertime over boreal forest, open-path flux measurements have been challenging since the magnitude of the density corrections are as large as the uncorrected CO2 flux itself. A new technology merging the sensing paths of the gas analyzer and the sonic anemometer has been recently developed. This new integrated instrument allows a direct measurement of CO2 mixing ratio in the open air and has the potential to improve the quality of the temperature related density corrections by synchronously measuring the sensible heat flux in the optical path of the gas analyzer. We evaluate the performance and the accuracy of this new sensor over a large parking lot with an asphalt surface where the CO2 fluxes are considered low and the interfering sensible heat fluxes are above 200 Wm-2. A co-located closed-path EC system is used as a reference measurement to examine any systematic biases and apparent CO2 uptake observed with open-path sensors under high sensible heat flux regimes. Half-hour mean and variance of CO2 and water vapor concentrations are evaluated. The relative spectral responses, covariances and corrected turbulent fluxes using a common sonic anemometer are analyzed. The influence of sensor separation and frequency response attenuation on the density corrections is discussed.
Entropy and climate. I - ERBE observations of the entropy production of the earth
NASA Technical Reports Server (NTRS)
Stephens, G. L.; O'Brien, D. M.
1993-01-01
An approximate method for estimating the global distributions of the entropy fluxes flowing through the upper boundary of the climate system is introduced, and an estimate of the entropy exchange between the earth and space and the entropy production of the planet is provided. Entropy fluxes calculated from the Earth Radiation Budget Experiment measurements show how the long-wave entropy flux densities dominate the total entropy fluxes at all latitudes compared with the entropy flux densities associated with reflected sunlight, although the short-wave flux densities are important in the context of clear sky-cloudy sky net entropy flux differences. It is suggested that the entropy production of the planet is both constant for the 36 months of data considered and very near its maximum possible value. The mean value of this production is 0.68 x 10 exp 15 W/K, and the amplitude of the annual cycle is approximately 1 to 2 percent of this value.
Energy-flux characterization of conical and space-time coupled wave packets
NASA Astrophysics Data System (ADS)
Lotti, A.; Couairon, A.; Faccio, D.; Trapani, P. Di
2010-02-01
We introduce the concept of energy density flux as a characterization tool for the propagation of ultrashort laser pulses with spatiotemporal coupling. In contrast with calculations for the Poynting vector, those for energy density flux are derived in the local frame moving at the velocity of the envelope of the wave packet under examination and do not need knowledge of the magnetic field. We show that the energy flux defined from a paraxial propagation equation follows specific geometrical connections with the phase front of the optical wave packet, which demonstrates that the knowledge of the phase fronts amounts to the measurement of the energy flux. We perform a detailed numerical study of the energy density flux in the particular case of conical waves, with special attention paid to stationary-envelope conical waves (X or O waves). A full characterization of linear conical waves is given in terms of their energy flux. We extend the definition of this concept to the case of nonlinear propagation in Kerr media with nonlinear losses.
Magnetic flux concentration and zonal flows in magnetorotational instability turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bai, Xue-Ning; Stone, James M., E-mail: xbai@cfa.harvard.edu
2014-11-20
Accretion disks are likely threaded by external vertical magnetic flux, which enhances the level of turbulence via the magnetorotational instability (MRI). Using shearing-box simulations, we find that such external magnetic flux also strongly enhances the amplitude of banded radial density variations known as zonal flows. Moreover, we report that vertical magnetic flux is strongly concentrated toward low-density regions of the zonal flow. Mean vertical magnetic field can be more than doubled in low-density regions, and reduced to nearly zero in high-density regions in some cases. In ideal MHD, the scale on which magnetic flux concentrates can reach a few diskmore » scale heights. In the non-ideal MHD regime with strong ambipolar diffusion, magnetic flux is concentrated into thin axisymmetric shells at some enhanced level, whose size is typically less than half a scale height. We show that magnetic flux concentration is closely related to the fact that the turbulent diffusivity of the MRI turbulence is anisotropic. In addition to a conventional Ohmic-like turbulent resistivity, we find that there is a correlation between the vertical velocity and horizontal magnetic field fluctuations that produces a mean electric field that acts to anti-diffuse the vertical magnetic flux. The anisotropic turbulent diffusivity has analogies to the Hall effect, and may have important implications for magnetic flux transport in accretion disks. The physical origin of magnetic flux concentration may be related to the development of channel flows followed by magnetic reconnection, which acts to decrease the mass-to-flux ratio in localized regions. The association of enhanced zonal flows with magnetic flux concentration may lead to global pressure bumps in protoplanetary disks that helps trap dust particles and facilitates planet formation.« less
NASA Astrophysics Data System (ADS)
Mukundan, Vrinda; Bhardwaj, Anil
2018-01-01
A one dimensional photochemical model for the dayside ionosphere of Titan has been developed for calculating the density profiles of ions and electrons under steady state photochemical equilibrium condition. We concentrated on the T40 flyby of Cassini orbiter and used the in-situ measurements from instruments onboard Cassini as input to the model. An energy deposition model is employed for calculating the attenuated photon flux and photoelectron flux at different altitudes in Titan's ionosphere. We used the Analytical Yield Spectrum approach for calculating the photoelectron fluxes. Volume production rates of major primary ions, like, N2+, N+ , CH4+, CH3+, etc due to photon and photoelectron impact are calculated and used as input to the model. The modeled profiles are compared with the Cassini Ion Neutral Mass Spectrometer (INMS) and Langmuir Probe (LP) measurements. The calculated electron density is higher than the observation by a factor of 2 to 3 around the peak. We studied the impact of different model parameters, viz. photoelectron flux, ion production rates, electron temperature, dissociative recombination rate coefficients, neutral densities of minor species, and solar flux on the calculated electron density to understand the possible reasons for this discrepancy. Recent studies have shown that there is an overestimation in the modeled photoelectron flux and N2+ ion production rates which may contribute towards this disagreement. But decreasing the photoelectron flux (by a factor of 3) and N2+ ion production rate (by a factor of 2) decreases the electron density only by 10 to 20%. Reduction in the measured electron temperature by a factor of 5 provides a good agreement between the modeled and observed electron density. The change in HCN and NH3 densities affects the calculated densities of the major ions (HCNH+ , C2H5+, and CH5+); however the overall impact on electron density is not appreciable ( < 20%). Even though increasing the dissociative recombination rate coefficients of the ions C2H5+ and CH5+ by a factor of 10 reduces the difference between modeled and observed densities of the major ions, the modeled electron density is still higher than the observation by ∼ 60% at the peak. We suggest that there might be some unidentified chemical reactions that may account for the additional loss of plasma in Titan's ionosphere.
ORDEM 3.0 and the Risk of High-Density Debris
NASA Technical Reports Server (NTRS)
Matney, Mark; Anz-Meador, Philip
2014-01-01
NASA’s Orbital Debris Engineering Model was designed to calculate orbital debris fluxes on spacecraft in order to assess collision risk. The newest of these models, ORDEM 3.0, has a number of features not present in previous models. One of the most important is that the populations and fluxes are now broken out into material density groups. Previous models concentrated on debris size alone, but a particle’s mass and density also determine the amount of damage it can cause. ORDEM 3.0 includes a high-density component, primarily consisting of iron/steel particles that drive much of the risk to spacecraft. This paper will outline the methods that were used to separate and identify the different densities of debris, and how these new densities affect the overall debris flux and risk.
A model for heliospheric flux-ropes
NASA Astrophysics Data System (ADS)
Nieves-Chinchilla, T.; Linton, M.; Vourlidas, A.; Hidalgo, M. A. U.
2017-12-01
This work is presents an analytical flux-rope model, which explores different levels of complexity starting from a circular-cylindrical geometry. The framework of this series of models was established by Nieves-Chinchilla et al. 2016 with the circular-cylindrical analytical flux rope model. The model attempts to describe the magnetic flux rope topology with distorted cross-section as a possible consequence of the interaction with the solar wind. In this model, the flux rope is completely described in a non-orthogonal geometry. The Maxwell equations are solved using tensor calculus consistent with the geometry chosen, invariance along the axial direction, and with the assumption of no radial current density. The model is generalized in terms of the radial and azimuthal dependence of the poloidal current density component and axial current density component. The misalignment between current density and magnetic field is studied in detail for several example profiles of the axial and poloidal current density components. This theoretical analysis provides a map of the force distribution inside of the flux-rope. For reconstruction of the heliospheric flux-ropes, the circular-cylindrical reconstruction technique has been adapted to the new geometry and applied to in situ ICMEs with a flux-rope entrained and tested with cases with clear in situ signatures of distortion. The model adds a piece in the puzzle of the physical-analytical representation of these magnetic structures that should be evaluated with the ultimate goal of reconciling in-situ reconstructions with imaging 3D remote sensing CME reconstructions. Other effects such as axial curvature and/or expansion could be incorporated in the future to fully understand the magnetic structure.
Meteoroid stream flux densities and the zenith exponent
NASA Astrophysics Data System (ADS)
Molau, Sirko; Barentsen, Geert
2013-01-01
The MetRec software was recently extended to measure the limiting magnitude in real-time, and to determine meteoroid stream flux densities. This paper gives a short overview of the applied algorithms. We introduce the MetRec Flux Viewer, a web tool to visualize activity profiles on- line. Starting from the Lyrids 2011, high-quality flux density profiles were derived from IMO Video Network observations for every major meteor shower. They are often in good agreement with visual data. Analyzing the 2011 Perseids, we found systematic daily variations in the flux density profile, which can be attributed to a zenith exponent gamma > 1.0. We analyzed a number of meteor showers in detail and found zenith exponent variations from shower to shower in the range between 1.55 and 2.0. The average value over all analyzed showers is gamma = 1.75. In order to determine the zenith exponent precisely, the observations must cover a large altitude range (at least 45 degrees).
NASA Astrophysics Data System (ADS)
Jourde, Kevin; Gibert, Dominique; Marteau, Jacques; de Bremond d'Ars, Jean; Gardien, Serge; Girerd, Claude; Ianigro, Jean-Christophe; Carbone, Daniele
2014-05-01
Muon tomography measures the flux of cosmic muons crossing geological bodies to determine their density. Three acquisitions with different sights of view were made at la soufrière de Guadeloupe. All of them show important density fluctuations and reveal the volcano phreatic system. The telescopes used to perform these measurements are exposed to noise fluxes with high intensities relative to the tiny flux of interest. We give experimental evidences ofa so far never described source of noise caused by a flux of upward-going particles. Data acquired on La soufrière of Guadeloupe and Mount Etna reveal that upward-going particles are detected only when the rear side of the telescope is exposed to a wide volume of atmosphere located below the altitude of the telescope and with a rock obstruction less than several tens of meters. Biases produced on density muon radiographies by upward-going fluxes are quantified and correction procedures are applied to radiographies of la soufrière.
NASA Technical Reports Server (NTRS)
Ristorcelli, J. R.
1993-01-01
The turbulent mass flux, or equivalently the fluctuating Favre velocity mean, appears in the first and second moment equations of compressible kappa-epsilon and Reynolds stress closures. Mathematically it is the difference between the unweighted and density-weighted averages of the velocity field and is therefore a measure of the effects of compressibility through variations in density. It appears to be fundamental to an inhomogeneous compressible turbulence, in which it characterizes the effects of the mean density gradients, in the same way the anisotropy tensor characterizes the effects of the mean velocity gradients. An evolution equation for the turbulent mass flux is derived. A truncation of this equation produces an algebraic expression for the mass flux. The mass flux is found to be proportional to the mean density gradients with a tensor eddy-viscosity that depends on both the mean deformation and the Reynolds stresses. The model is tested in a wall bounded DNS at Mach 4.5 with notable results.
Sugiura, Haruka; Ito, Manami; Okuaki, Tomoya; Mori, Yoshihito; Kitahata, Hiroyuki; Takinoue, Masahiro
2016-01-01
The design, construction and control of artificial self-organized systems modelled on dynamical behaviours of living systems are important issues in biologically inspired engineering. Such systems are usually based on complex reaction dynamics far from equilibrium; therefore, the control of non-equilibrium conditions is required. Here we report a droplet open-reactor system, based on droplet fusion and fission, that achieves dynamical control over chemical fluxes into/out of the reactor for chemical reactions far from equilibrium. We mathematically reveal that the control mechanism is formulated as pulse-density modulation control of the fusion–fission timing. We produce the droplet open-reactor system using microfluidic technologies and then perform external control and autonomous feedback control over autocatalytic chemical oscillation reactions far from equilibrium. We believe that this system will be valuable for the dynamical control over self-organized phenomena far from equilibrium in chemical and biomedical studies. PMID:26786848
Sugiura, Haruka; Ito, Manami; Okuaki, Tomoya; Mori, Yoshihito; Kitahata, Hiroyuki; Takinoue, Masahiro
2016-01-20
The design, construction and control of artificial self-organized systems modelled on dynamical behaviours of living systems are important issues in biologically inspired engineering. Such systems are usually based on complex reaction dynamics far from equilibrium; therefore, the control of non-equilibrium conditions is required. Here we report a droplet open-reactor system, based on droplet fusion and fission, that achieves dynamical control over chemical fluxes into/out of the reactor for chemical reactions far from equilibrium. We mathematically reveal that the control mechanism is formulated as pulse-density modulation control of the fusion-fission timing. We produce the droplet open-reactor system using microfluidic technologies and then perform external control and autonomous feedback control over autocatalytic chemical oscillation reactions far from equilibrium. We believe that this system will be valuable for the dynamical control over self-organized phenomena far from equilibrium in chemical and biomedical studies.
Magnetic flux density reconstruction using interleaved partial Fourier acquisitions in MREIT.
Park, Hee Myung; Nam, Hyun Soo; Kwon, Oh In
2011-04-07
Magnetic resonance electrical impedance tomography (MREIT) has been introduced as a non-invasive modality to visualize the internal conductivity and/or current density of an electrically conductive object by the injection of current. In order to measure a magnetic flux density signal in MREIT, the phase difference approach in an interleaved encoding scheme cancels the systematic artifacts accumulated in phase signals and also reduces the random noise effect. However, it is important to reduce scan duration maintaining spatial resolution and sufficient contrast, in order to allow for practical in vivo implementation of MREIT. The purpose of this paper is to develop a coupled partial Fourier strategy in the interleaved sampling in order to reduce the total imaging time for an MREIT acquisition, whilst maintaining an SNR of the measured magnetic flux density comparable to what is achieved with complete k-space data. The proposed method uses two key steps: one is to update the magnetic flux density by updating the complex densities using the partially interleaved k-space data and the other is to fill in the missing k-space data iteratively using the updated background field inhomogeneity and magnetic flux density data. Results from numerical simulations and animal experiments demonstrate that the proposed method reduces considerably the scanning time and provides resolution of the recovered B(z) comparable to what is obtained from complete k-space data.
NASA Astrophysics Data System (ADS)
Kim, Sungjin; Lieberman, M. A.; Lichtenberg, A. J.
2003-10-01
Control and reduction of neutral radical flux/ion flux ratio and electron temperature Te is required for next generation etching in the microelectronics industry. We investigate time-modulated power for these purposes using a volume-averaged (global) oxygen discharge model, We consider pressures of 10-50 mTorr and plasma densities of 10^10-10^11 cm-3. In this regime, the discharge is found to be weakly electronegative. The modulation period and the duty ratio (on-time/period) are varied to determine the optimum conditions for reduction of FR= O-atom flux/ion flux and T_e. Two chambers with different height/diameter ratios (<< 1, and unity) are examined to determine the influence of the surface-area/volume ratio. At a fixed duty ratio, both FR and Te are found to have minimum values as the pulse period is varied, with the minimum value decreasing as the duty ratio decreases. Significant reductions in FR and Te are found. Support provided by Lam Research, NSF Grant ECS-0139956, California industries, and UC-SMART Contract SM99-10051.
NASA Astrophysics Data System (ADS)
Kube, R.; Garcia, O. E.; Theodorsen, A.; Brunner, D.; Kuang, A. Q.; LaBombard, B.; Terry, J. L.
2018-06-01
The Alcator C-Mod mirror Langmuir probe system has been used to sample data time series of fluctuating plasma parameters in the outboard mid-plane far scrape-off layer. We present a statistical analysis of one second long time series of electron density, temperature, radial electric drift velocity and the corresponding particle and electron heat fluxes. These are sampled during stationary plasma conditions in an ohmically heated, lower single null diverted discharge. The electron density and temperature are strongly correlated and feature fluctuation statistics similar to the ion saturation current. Both electron density and temperature time series are dominated by intermittent, large-amplitude burst with an exponential distribution of both burst amplitudes and waiting times between them. The characteristic time scale of the large-amplitude bursts is approximately 15 μ {{s}}. Large-amplitude velocity fluctuations feature a slightly faster characteristic time scale and appear at a faster rate than electron density and temperature fluctuations. Describing these time series as a superposition of uncorrelated exponential pulses, we find that probability distribution functions, power spectral densities as well as auto-correlation functions of the data time series agree well with predictions from the stochastic model. The electron particle and heat fluxes present large-amplitude fluctuations. For this low-density plasma, the radial electron heat flux is dominated by convection, that is, correlations of fluctuations in the electron density and radial velocity. Hot and dense blobs contribute only a minute fraction of the total fluctuation driven heat flux.
NASA Astrophysics Data System (ADS)
Doronin, D. O.
2018-04-01
The demand in measuring and studies of heat conduction of various media is very urgent now. This article considers the problem of heat conduction monitoring and measurement in various media and materials in any industries and branches of science as well as metrological support of the heat flux measurement equipment. The main study objects are both the sensors manufactured and facilities onto which these sensors will be installed: different cladding structures of the buildings, awnings, rocket fairings, boiler units, internal combustion engines. The Company develops and manufactures different types of heat flux sensors: thermocouple, thin-film, heterogeneous gradient as well as metrological equipment for the gauging calibration of the heat flux density measurement. The calibration shall be performed using both referencing method in the unit and by fixed setting of the heat flux in the unit. To manufacture heterogeneous heat flux gradient sensors (HHFGS) the Company developed and designed a number of units: diffusion welding unit, HHFGS cutting unit. Rather good quality HHFGS prototypes were obtained. At this stage the factory tests on the equipment for the heat flux density measurement equipment are planned. A high-sensitivity heat flux sensor was produced, now it is tested at the Construction Physics Research Institute (Moscow). It became possible to create thin-film heat flux sensors with the sensitivity not worse than that of the sensors manufactured by Captec Company (France). The Company has sufficient premises to supply the market with a wide range of sensors, to master new sensor manufacture technologies which will enable their application range.
NASA Astrophysics Data System (ADS)
Ashtekar, Koustubh; Diehl, Gregory; Hamer, John
2012-10-01
The hafnium cathode is widely used in DC plasma arc cutting (PAC) under an oxygen gas environment to cut iron and iron alloys. The hafnium erosion is always a concern which is controlled by the surface temperature. In this study, the effect of cathode cooling efficiency and oxygen gas pressure on the hafnium surface temperature are quantified. The two layer cathode sheath model is applied on the refractive hafnium surface while oxygen species (O2, O, O+, O++, e-) are considered within the thermal dis-equilibrium regime. The system of non-linear equations comprising of current density balance, heat flux balance at both the cathode surface and the sheath-ionization layer is coupled with the plasma gas composition solver. Using cooling heat flux, gas pressure and current density as inputs; the cathode wall temperature, electron temperature, and sheath voltage drop are calculated. Additionally, contribution of emitted electron current (Je) and ions current (Ji) to the total current flux are estimated. Higher gas pressure usually reduces Ji and increases Je that reduces the surface temperature by thermionic cooling.
Chauhan, Munish; Jeong, Woo Chul; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je
2013-08-27
Magnetic resonance electrical impedance tomography (MREIT) has been introduced as a non-invasive method for visualizing the internal conductivity and/or current density of an electrically conductive object by externally injected currents. The injected current through a pair of surface electrodes induces a magnetic flux density distribution inside the imaging object, which results in additional magnetic flux density. To measure the magnetic flux density signal in MREIT, the phase difference approach in an interleaved encoding scheme cancels out the systematic artifacts accumulated in phase signals and also reduces the random noise effect by doubling the measured magnetic flux density signal. For practical applications of in vivo MREIT, it is essential to reduce the scan duration maintaining spatial-resolution and sufficient contrast. In this paper, we optimize the magnetic flux density by using a fast gradient multi-echo MR pulse sequence. To recover the one component of magnetic flux density Bz, we use a coupled partial Fourier acquisitions in the interleaved sense. To prove the proposed algorithm, we performed numerical simulations using a two-dimensional finite-element model. For a real experiment, we designed a phantom filled with a calibrated saline solution and located a rubber balloon inside the phantom. The rubber balloon was inflated by injecting the same saline solution during the MREIT imaging. We used the multi-echo fast low angle shot (FLASH) MR pulse sequence for MRI scan, which allows the reduction of measuring time without a substantial loss in image quality. Under the assumption of a priori phase artifact map from a reference scan, we rigorously investigated the convergence ratio of the proposed method, which was closely related with the number of measured phase encode set and the frequency range of the background field inhomogeneity. In the phantom experiment with a partial Fourier acquisition, the total scan time was less than 6 seconds to measure the magnetic flux density Bz data with 128×128 spacial matrix size, where it required 10.24 seconds to fill the complete k-space region. Numerical simulation and experimental results demonstrated that the proposed method reduces the scanning time and provides the recovered Bz data comparable to what we obtained by measuring complete k-space data.
Chapman Enskog-maximum entropy method on time-dependent neutron transport equation
NASA Astrophysics Data System (ADS)
Abdou, M. A.
2006-09-01
The time-dependent neutron transport equation in semi and infinite medium with linear anisotropic and Rayleigh scattering is proposed. The problem is solved by means of the flux-limited, Chapman Enskog-maximum entropy for obtaining the solution of the time-dependent neutron transport. The solution gives the neutron distribution density function which is used to compute numerically the radiant energy density E(x,t), net flux F(x,t) and reflectivity Rf. The behaviour of the approximate flux-limited maximum entropy neutron density function are compared with those found by other theories. Numerical calculations for the radiant energy, net flux and reflectivity of the proposed medium are calculated at different time and space.
Memoryless control of boundary concentrations of diffusing particles.
Singer, A; Schuss, Z; Nadler, B; Eisenberg, R S
2004-12-01
Flux between regions of different concentration occurs in nearly every device involving diffusion, whether an electrochemical cell, a bipolar transistor, or a protein channel in a biological membrane. Diffusion theory has calculated that flux since the time of Fick (1855), and the flux has been known to arise from the stochastic behavior of Brownian trajectories since the time of Einstein (1905), yet the mathematical description of the behavior of trajectories corresponding to different types of boundaries is not complete. We consider the trajectories of noninteracting particles diffusing in a finite region connecting two baths of fixed concentrations. Inside the region, the trajectories of diffusing particles are governed by the Langevin equation. To maintain average concentrations at the boundaries of the region at their values in the baths, a control mechanism is needed to set the boundary dynamics of the trajectories. Different control mechanisms are used in Langevin and Brownian simulations of such systems. We analyze models of controllers and derive equations for the time evolution and spatial distribution of particles inside the domain. Our analysis shows a distinct difference between the time evolution and the steady state concentrations. While the time evolution of the density is governed by an integral operator, the spatial distribution is governed by the familiar Fokker-Planck operator. The boundary conditions for the time dependent density depend on the model of the controller; however, this dependence disappears in the steady state, if the controller is of a renewal type. Renewal-type controllers, however, produce spurious boundary layers that can be catastrophic in simulations of charged particles, because even a tiny net charge can have global effects. The design of a nonrenewal controller that maintains concentrations of noninteracting particles without creating spurious boundary layers at the interface requires the solution of the time-dependent Fokker-Planck equation with absorption of outgoing trajectories and a source of ingoing trajectories on the boundary (the so called albedo problem).
Gao, Nuo; Zhu, S A; He, Bin
2005-06-07
We have developed a new algorithm for magnetic resonance electrical impedance tomography (MREIT), which uses only one component of the magnetic flux density to reconstruct the electrical conductivity distribution within the body. The radial basis function (RBF) network and simplex method are used in the present approach to estimate the conductivity distribution by minimizing the errors between the 'measured' and model-predicted magnetic flux densities. Computer simulations were conducted in a realistic-geometry head model to test the feasibility of the proposed approach. Single-variable and three-variable simulations were performed to estimate the brain-skull conductivity ratio and the conductivity values of the brain, skull and scalp layers. When SNR = 15 for magnetic flux density measurements with the target skull-to-brain conductivity ratio being 1/15, the relative error (RE) between the target and estimated conductivity was 0.0737 +/- 0.0746 in the single-variable simulations. In the three-variable simulations, the RE was 0.1676 +/- 0.0317. Effects of electrode position uncertainty were also assessed by computer simulations. The present promising results suggest the feasibility of estimating important conductivity values within the head from noninvasive magnetic flux density measurements.
A 1420 MHz Catalog of Compact Sources in the Northern Galactic Plane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, A. R.; Leahy, D. A.; Sunstrum, C.
We present a catalog of compact sources of radio emission at 1420 MHz in the northern Galactic plane from the Canadian Galactic Plane Survey. The catalog contains 72,758 compact sources with an angular size less than 3′ within the Galactic longitude range 52° < ℓ < 192° down to a 5 σ detection level of ∼1.2 mJy. Linear polarization properties are included for 12,368 sources with signals greater than 4 σ{sub QU} in the Canadian Galactic Plane Survey (CGPS) Stokes Q and U images at the position of the total intensity peak. We compare CGPS flux densities with cataloged flux densities in themore » Northern VLA Sky Survey catalog for 10,897 isolated unresolved sources with CGPS flux density greater than 4 mJy to search for sources that show variable flux density on timescales of several years. We identify 146 candidate variables that exhibit high fractional variations between the two surveys. In addition, we identify 13 candidate transient sources that have CGPS flux density above 10 mJy but are not detected in the Northern VLA Sky Survey.« less
3-D density imaging with muon flux measurements from underground galleries
NASA Astrophysics Data System (ADS)
Lesparre, N.; Cabrera, J.; Marteau, J.
2017-03-01
Atmospheric muon flux measurements provide information on subsurface density distribution. In this study, muon flux was measured underground, in the Tournemire experimental platform (France). The objective was to image the medium between the galleries and the surface and evaluate the feasibility to detect the presence of discontinuities, for example, produced by secondary subvertical faults or by karstic networks. Measurements were performed from three different sites with a partial overlap of muon trajectories, offering the possibility to seek density variations at different depths. The conversion of the measured muon flux to average density values showed global variations further analysed through a 3-D nonlinear inversion procedure. Main results are the presence of a very low density region at the level of the upper aquifer, compatible with the presence of a karstic network hosting local cavities, and the absence of secondary faults. We discuss the validity of the present results and propose different strategies to improve the accuracy of such measurements and analysis.
Ion Densities in the Nightside Ionosphere of Mars: Effects of Electron Impact Ionization
NASA Astrophysics Data System (ADS)
Girazian, Z.; Mahaffy, P.; Lillis, R. J.; Benna, M.; Elrod, M.; Fowler, C. M.; Mitchell, D. L.
2017-11-01
We use observations from the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission to show how superthermal electron fluxes and crustal magnetic fields affect ion densities in the nightside ionosphere of Mars. We find that due to electron impact ionization, high electron fluxes significantly increase the CO2+, O+, and O2+ densities below 200 km but only modestly increase the NO+ density. High electron fluxes also produce distinct peaks in the CO2+, O+, and O2+ altitude profiles. We also find that superthermal electron fluxes are smaller near strong crustal magnetic fields. Consequently, nightside ion densities are also smaller near strong crustal fields because they decay without being replenished by electron impact ionization. Furthermore, the NO+/O2+ ratio is enhanced near strong crustal fields because, in the absence of electron impact ionization, O2+ is converted into NO+ and not replenished. Our results show that electron impact ionization is a significant source of CO2+, O+, and O2+ in the nightside ionosphere of Mars.
NASA Astrophysics Data System (ADS)
Roy, M.; Lewis, M.; George, N. K.; Johnson, A.; Dichter, M.; Rowe, C. A.; Guardincerri, E.
2016-12-01
The joint-inversion of gravity data and cosmic ray muon flux measurements has been utilized by a number of groups to image subsurface density structure in a variety of settings, including volcanic edifices. Cosmic ray muons are variably-attenuated depending upon the density structure of the material they traverse, so measuring muon flux through a region of interest provides an independent constraint on the density structure. Previous theoretical studies have argued that the primary advantage of combining gravity and muon data is enhanced resolution in regions not sampled by crossing muon trajectories, e.g. in sensing deeper structure or structure adjacent to the region sampled by muons. We test these ideas by investigating the ability of gravity data alone and the joint-inversion of gravity and muon flux to image subsurface density structure, including voids, in a well-characterized field location. Our study area is a tunnel vault located at the Los Alamos National Laboratory within Quaternary ash-flow tuffs on the Pajarito Plateau, flanking the Jemez Volcano in New Mexico. The regional geology of the area is well-characterized (with density measurements in nearby wells) and the geometry of the tunnel and the surrounding terrain is known. Gravity measurements were made using a Lacoste and Romberg D meter and the muon detector has a conical acceptance region of 45 degrees from the vertical and track resolution of several milliradians. We obtain individual and joint resolution kernels for gravity and muon flux specific to our experimental design and plan to combine measurements of gravity and muon flux both within and above the tunnel to infer density structure. We plan to compare our inferred density structure against the expected densities from the known regional hydro-geologic framework.
Xu, Chun; Chao, Yong-lie; Du, Li; Yang, Ling
2004-05-01
To measure and analyze the flux densities of static magnetic fields generated by two types of commonly used dental magnetic attachments and their retentive forces, and to provide guidance for the clinical application of magnetic attachments. A digital Gaussmeter was used to measure the flux densities of static magnetic fields generated by two types of magnetic attachments, under four circumstances: open-field circuit; closed-field circuit; keeper and magnet slid laterally for a certain distance; and existence of air gap between keeper and magnet. The retentive forces of the magnetic attachments in standard closed-field circuit, with the keeper and magnet sliding laterally for a certain distance or with a certain air gap between keeper and magnet were measured by a tensile testing machine. There were flux leakages under both the open-field circuit and closed-field circuit of the two types of magnetic attachments. The flux densities on the surfaces of MAGNEDISC 800 (MD800) and MAGFIT EX600W (EX600) magnetic attachments under open-field circuit were 275.0 mT and 147.0 mT respectively. The flux leakages under closed-field circuit were smaller than those under open-field circuit. The respective flux densities on the surfaces of MD800 and EX600 magnetic attachments decreased to 11.4 mT and 4.5 mT under closed-field circuit. The flux density around the magnetic attachment decreased as the distance from the surface of the attachment increased. When keeper and magnet slid laterally for a certain distance or when air gap existed between keeper and magnet, the flux leakage increased in comparison with that under closed-field circuit. Under the standard closed-field circuit, the two types of magnetic attachments achieved the largest retentive forces. The retentive forces of MD800 and EX600 magnetic attachments under the standard closed-field circuit were 6.20 N and 4.80 N respectively. The retentive forces decreased with the sliding distance or with the increase of air gap between keeper and magnet. The magnetic attachments have flux leakages. When they are used in patients' oral cavities, if keeper and magnet are not attached accurately, the flux leakage will increase, and at the same time the retentive force will decrease. Therefore the keeper and magnet should be attached accurately in clinical application.
Muon tomography of rock density using Micromegas-TPC telescope
NASA Astrophysics Data System (ADS)
Hivert, Fanny; Busto, José; Gaffet, Stéphane; Ernenwein, Jean-Pierre; Brunner, Jurgen; Salin, Pierre; Decitre, Jean-Baptiste; Lázaro Roche, Ignacio; Martin, Xavier
2014-05-01
The knowledge of the subsurface properties is essentially obtained by geophysical methods, e.g., seismic imaging, electric prospection or gravimetry. The current work is based on a recently developed method to investigate in situ the density of rocks using a measurement of the muon flux, whose attenuation depends on the quantity of matter the particles travel through and hence on the rock density and thickness. The present project (T2DM2) aims at performing underground muon flux measurements in order to characterize spatial and temporal rock massif density variations above the LSBB underground research facility in Rustrel (France). The muon flux will be measured with a new muon telescope device using Micromegas-Time Projection Chamber (TPC) detectors. The first step of the work presented covers the muon flux simulation based on the Gaisser model (Gaisser T., 1990), for the muon flux at the ground level, and on the MUSIC code (Kudryavtsev V. A., 2008) for the propagation of muons through the rock. The results show that the muon flux distortion caused by density variations is enough significant to be observed at 500 m depth for measurement times of about one month. This time-scale is compatible with the duration of the water transfer processes within the unsaturated Karst zone where LSBB is located. The work now focuses on the optimization of the detector layout along the LSBB galleries in order to achieve the best sensitivity.
Effect of the target power density on high-power impulse magnetron sputtering of copper
NASA Astrophysics Data System (ADS)
Kozák, Tomáš
2012-04-01
We present a model analysis of high-power impulse magnetron sputtering of copper. We use a non-stationary global model based on the particle and energy conservation equations in two zones (the high density plasma ring above the target racetrack and the bulk plasma region), which makes it possible to calculate time evolutions of the averaged process gas and target material neutral and ion densities, as well as the fluxes of these particles to the target and substrate during a pulse period. We study the effect of the increasing target power density under conditions corresponding to a real experimental system. The calculated target current waveforms show a long steady state and are in good agreement with the experimental results. For an increasing target power density, an analysis of the particle densities shows a gradual transition to a metal dominated discharge plasma with an increasing degree of ionization of the depositing flux. The average fraction of target material ions in the total ion flux onto the substrate is more than 90% for average target power densities higher than 500 W cm-2 in a pulse. The average ionized fraction of target material atoms in the flux onto the substrate reaches 80% for a maximum average target power density of 3 kW cm-2 in a pulse.
NASA Astrophysics Data System (ADS)
Kahn, Amanda S.; Ruhl, Henry A.; Smith, Kenneth L.
2012-12-01
Density and average size of two species of abyssal sponges were analyzed at Station M (∼4100 m depth) over an 18-year time-series (1989-2006) using camera sled transects. Both sponge taxa share a similar plate-like morphology despite being within different families, and both showed similar variations in density and average body size over time, suggesting that the same factors may control the demographics of both species. Peaks in significant cross correlations between increases in particulate organic carbon flux and corresponding increases in sponge density occurred with a time lag of 13 months. Sponge density also fluctuated with changes in two climate indices: the NOI with a time lag of 18 months and NPGO with a time lag of 15 months. The results support previous suggestions that increased particulate organic carbon flux may induce recruitment or regeneration in deep-sea sponges. It is unknown whether the appearance of young individuals results from recruitment, regeneration, or both, but the population responses to seasonal and inter-annual changes in food supply demonstrate that sponge populations are dynamic and are capable of responding to inter-annual changes despite being sessile and presumably slow-growing.
Wind farm density and harvested power in very large wind farms: A low-order model
NASA Astrophysics Data System (ADS)
Cortina, G.; Sharma, V.; Calaf, M.
2017-07-01
In this work we create new understanding of wind turbine wakes recovery process as a function of wind farm density using large-eddy simulations of an atmospheric boundary layer diurnal cycle. Simulations are forced with a constant geostrophic wind and a time varying surface temperature extracted from a selected period of the Cooperative Atmospheric Surface Exchange Study field experiment. Wind turbines are represented using the actuator disk model with rotation and yaw alignment. A control volume analysis around each turbine has been used to evaluate wind turbine wake recovery and corresponding harvested power. Results confirm the existence of two dominant recovery mechanisms, advection and flux of mean kinetic energy, which are modulated by the background thermal stratification. For the low-density arrangements advection dominates, while for the highly loaded wind farms the mean kinetic energy recovers through fluxes of mean kinetic energy. For those cases in between, a smooth balance of both mechanisms exists. From the results, a low-order model for the wind farms' harvested power as a function of thermal stratification and wind farm density has been developed, which has the potential to be used as an order-of-magnitude assessment tool.
Seasonal leaf dynamics across a tree density gradient in a Brazilian savanna.
William A. Hoffmann; Edson Rangel da Silva; Gustavo C. Machado; Sandra Bucci; Fabian G. Scholz; Guillermo Goldstein; Frederick C. Meinzer
2005-01-01
Interactions between trees and grasses that influence leaf area index (LAI) have important consequences for savanna ecosystem processes through their controls on water, carbon, and energy fluxes as well as fire regimes. We measured LAI, of the groundlayer (herbaceous and woody plants 1-m tall), in the Brazilian...
Evaluation of heat and particle controllability on the JT-60SA divertor
NASA Astrophysics Data System (ADS)
Kawashima, H.; Hoshino, K.; Shimizu, K.; Takizuka, T.; Ide, S.; Sakurai, S.; Asakura, N.
2011-08-01
The JT-60SA divertor design has been established on the basis of engineering requirements and physics analysis. Heat and particle fluxes under the full input power of 41 MW can give severe heat loads on the divertor targets, while the allowable heat load is limited below 15 MW/m2. Dependence of the heat flux mitigation on a D2 gas-puff is evaluated by SONIC simulations for high density (ne_ave ˜ 1 × 1020 m-3) high current plasmas. It is found that the peak heat load 10 MW/m2 with dense (ned > 4 × 1020 m-3) and cold (Ted, Tid ⩽ 1 eV) divertor plasmas are obtained at a moderate gas-puff of Γpuff = 15 × 1021 s-1. Divertor plasmas are controlled from attached to detached condition using the divertor pump with pumping-speed below 100 m3/s. In full non-inductive current drive plasmas with low density (ne_ave ˜ 5 × 1019 m-3), the reduction of divertor heat load is achieved with the Ar injection.
Apex Dips of Experimental Flux Ropes: Helix or Cusp?
NASA Astrophysics Data System (ADS)
Wongwaitayakornkul, Pakorn; Haw, Magnus A.; Li, Hui; Li, Shengtai; Bellan, Paul M.
2017-10-01
We present a new theory for the presence of apex dips in certain experimental flux ropes. Previously such dips were thought to be projections of a helical loop axis generated by the kink instability. However, new evidence from experiments and simulations suggest that the feature is a 2D cusp rather than a 3D helix. The proposed mechanism for cusp formation is a density pileup region generated by nonlinear interaction of neutral gas cones emitted from fast-gas nozzles. The results indicate that density perturbations can result in large distortions of an erupting flux rope, even in the absence of significant pressure or gravitational forces. The density pileup at the apex also suppresses the m = 1 kink mode by acting as a stationary node. Consequently, more accurate density profiles should be considered when attempting to model the stability and shape of solar and astrophysical flux ropes.
Apex Dips of Experimental Flux Ropes: Helix or Cusp?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wongwaitayakornkul, Pakorn; Haw, Magnus A.; Bellan, Paul M.
We present a new theory for the presence of apex dips in certain experimental flux ropes. Previously such dips were thought to be projections of a helical loop axis generated by the kink instability. However, new evidence from experiments and simulations suggest that the feature is a 2D cusp rather than a 3D helix. The proposed mechanism for cusp formation is a density pileup region generated by nonlinear interaction of neutral gas cones emitted from fast-gas nozzles. The results indicate that density perturbations can result in large distortions of an erupting flux rope, even in the absence of significant pressuremore » or gravitational forces. The density pileup at the apex also suppresses the m = 1 kink mode by acting as a stationary node. Consequently, more accurate density profiles should be considered when attempting to model the stability and shape of solar and astrophysical flux ropes.« less
NASA Astrophysics Data System (ADS)
Asari, Ashraf; Guo, Youguang; Zhu, Jianguo
2017-08-01
Core losses of rotating electrical machine can be predicted by identifying the magnetic properties of the magnetic material. The magnetic properties should be properly measured since there are some variations of vector flux density in the rotating machine. In this paper, the SOMALOY 700 material has been measured under x, y and z- axes flux density penetration by using the 3-D tester. The calibrated sensing coils are used in detecting the flux densities which have been generated by the Labview software. The measured sensing voltages are used in obtaining the magnetic properties of the sample such as magnetic flux density B, magnetic field strength H, hysteresis loop which can be used to calculate the total core loss of the sample. The results of the measurement are analyzed by using the Mathcad software before being compared to another material.
High density operation for reactor-relevant power exhaust
NASA Astrophysics Data System (ADS)
Wischmeier, M.; ASDEX Upgrade Team; Jet Efda Contributors
2015-08-01
With increasing size of a tokamak device and associated fusion power gain an increasing power flux density towards the divertor needs to be handled. A solution for handling this power flux is crucial for a safe and economic operation. Using purely geometric arguments in an ITER-like divertor this power flux can be reduced by approximately a factor 100. Based on a conservative extrapolation of current technology for an integrated engineering approach to remove power deposited on plasma facing components a further reduction of the power flux density via volumetric processes in the plasma by up to a factor of 50 is required. Our current ability to interpret existing power exhaust scenarios using numerical transport codes is analyzed and an operational scenario as a potential solution for ITER like divertors under high density and highly radiating reactor-relevant conditions is presented. Alternative concepts for risk mitigation as well as strategies for moving forward are outlined.
Lamination effects on a 3D model of the magnetic core of power transformers
NASA Astrophysics Data System (ADS)
Poveda-Lerma, Antonio; Serrano-Callergues, Guillermo; Riera-Guasp, Martin; Pineda-Sanchez, Manuel; Puche-Panadero, Ruben; Perez-Cruz, Juan
2017-12-01
In this paper the lamination effect on the model of a power transformer's core with stacked E-I structure is analyzed. The distribution of the magnetic flux in the laminations depends on the stacking method. In this work it is shown, using a 3D FEM model and an experimental prototype, that the non-uniform distribution of the flux in a laminated E-I core with alternate-lap joint stack increases substantially the average value of the magnetic flux density in the core, compared with a butt joint stack. Both the simulated model and the experimental tests show that the presence of constructive air-gaps in the E-I junctions gives rise to a zig-zag flux in the depth direction. This inter-lamination flux reduces the magnetic flux density in the I-pieces and increases substantially the magnetic flux density in the E-pieces, with highly saturated points that traditional 2D analysis cannot reproduce. The relation between the number of laminations included in the model, and the computational resourses needed to build it, is also evaluated in this work.
NASA Astrophysics Data System (ADS)
Kudo, Kozo; Yoshida, Yuko; Yoshimura, Noboru; Ishida, Nakao
1993-11-01
The yield of the antitumor antibiotic neocarzinostatin (NCS), produced by Streptomyces carzinostaticus var. F-41, was sensitive to an external magnetic flux. When this strain was cultivated at 28°C in a NCS-producing medium under various magnetic flux densities, good NCS yield was observed at below 250 G magnetic flux density during the exponential growth phase as compared with that obtained in the same medium without magnetic flux, but was not observed at more than 500 G. However, no definite effect on the physiological characteristics and carbohydrate utilization of this strain, and primary physicochemical properties of NCS from magnetic flux could be detected.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hwang, Don-Ha; Woo, Byung-Chul; Sun, Jong-Ho
2008-04-01
A new method for detecting eccentricity and broken rotor bar conditions in a squirrel-cage induction motor is proposed. Air-gap flux variation analysis is done using search coils, which are inserted at stator slots. Using this method, the leakage flux in radial direction can be directly detected. Using finite element method, the air-gap flux variation is accurately modeled and analyzed. From the results of the simulation, a motor under normal condition shows maximum magnetic flux density of 1.3 T. On the other hand, the eccentric air-gap condition displays about 1.1 T at 60 deg. and 1.6 T at 240 deg. Amore » difference of flux density is 0.5 T in the abnormal condition, whereas no difference is detected in the normal motor. In the broken rotor bar conditions, the flux densities at 65 deg. and 155 deg. are about 0.4 T and 0.8 T, respectively. These simulation results are coincided with those of experiment. Consequently, the measurement of the magnetic flux at air gap is one of effective ways to discriminate the faulted conditions of the eccentricity and broken rotor bars.« less
INTERPRETING FLUX FROM BROADBAND PHOTOMETRY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Peter J.; Breeveld, Alice; Roming, Peter W. A.
2016-10-01
We discuss the transformation of observed photometry into flux for the creation of spectral energy distributions (SED) and the computation of bolometric luminosities. We do this in the context of supernova studies, particularly as observed with the Swift spacecraft, but the concepts and techniques should be applicable to many other types of sources and wavelength regimes. Traditional methods of converting observed magnitudes to flux densities are not very accurate when applied to UV photometry. Common methods for extinction and the integration of pseudo-bolometric fluxes can also lead to inaccurate results. The sources of inaccuracy, though, also apply to other wavelengths.more » Because of the complicated nature of translating broadband photometry into monochromatic flux densities, comparison between observed photometry and a spectroscopic model is best done by forward modeling the spectrum into the count rates or magnitudes of the observations. We recommend that integrated flux measurements be made using a spectrum or SED which is consistent with the multi-band photometry rather than converting individual photometric measurements to flux densities, linearly interpolating between the points, and integrating. We also highlight some specific areas where the UV flux can be mischaracterized.« less
NASA Astrophysics Data System (ADS)
Benda, L. E.
2009-12-01
Stochastic geomorphology refers to the interaction of the stochastic field of sediment supply with hierarchically branching river networks where erosion, sediment flux and sediment storage are described by their probability densities. There are a number of general principles (hypotheses) that stem from this conceptual and numerical framework that may inform the science of erosion and sedimentation in river basins. Rainstorms and other perturbations, characterized by probability distributions of event frequency and magnitude, stochastically drive sediment influx to channel networks. The frequency-magnitude distribution of sediment supply that is typically skewed reflects strong interactions among climate, topography, vegetation, and geotechnical controls that vary between regions; the distribution varies systematically with basin area and the spatial pattern of erosion sources. Probability densities of sediment flux and storage evolve from more to less skewed forms downstream in river networks due to the convolution of the population of sediment sources in a watershed that should vary with climate, network patterns, topography, spatial scale, and degree of erosion asynchrony. The sediment flux and storage distributions are also transformed downstream due to diffusion, storage, interference, and attrition. In stochastic systems, the characteristically pulsed sediment supply and transport can create translational or stationary-diffusive valley and channel depositional landforms, the geometries of which are governed by sediment flux-network interactions. Episodic releases of sediment to the network can also drive a system memory reflected in a Hurst Effect in sediment yields and thus in sedimentological records. Similarly, discreet events of punctuated erosion on hillslopes can lead to altered surface and subsurface properties of a population of erosion source areas that can echo through time and affect subsequent erosion and sediment flux rates. Spatial patterns of probability densities have implications for the frequency and magnitude of sediment transport and storage and thus for the formation of alluvial and colluvial landforms throughout watersheds. For instance, the combination and interference of probability densities of sediment flux at confluences creates patterns of riverine heterogeneity, including standing waves of sediment with associated age distributions of deposits that can vary from younger to older depending on network geometry and position. Although the watershed world of probability densities is rarified and typically confined to research endeavors, it has real world implications for the day-to-day work on hillslopes and in fluvial systems, including measuring erosion, sediment transport, mapping channel morphology and aquatic habitats, interpreting deposit stratigraphy, conducting channel restoration, and applying environmental regulations. A question for the geomorphology community is whether the stochastic framework is useful for advancing our understanding of erosion and sedimentation and whether it should stimulate research to further develop, refine and test these and other principles. For example, a changing climate should lead to shifts in probability densities of erosion, sediment flux, storage, and associated habitats and thus provide a useful index of climate change in earth science forecast models.
NASA Astrophysics Data System (ADS)
Kunert, N.; Barros, P.; Higuchi, N.
2012-12-01
Native fruiting plants are widely cultivated in the Amazon but only little information on their water use characteristics can be found in the literature. Due to the growing local consumption and the increasing popularity for new "exotic" fruits all over Brazil and worldwide, additional new plantations cultivating such fruit-bearing species might be established in the Amazon in the future. These new plantations will affect the water table of the cultivated areas, however, the impact of these changes on the regional hydrology are not known. We, therefore, decided to study plant water use characteristics of two native fruit plants commonly occurring in the Amazon region, a tree species (Cupuaçu, Theobroma grandiflorum, (Willd. ex Spreng.) Schum., Malvaceae) and a palm species (Açai, Euterpe oleraceae Mart., Arecaceae). This study was conducted in a fruit plantation close to the city of Manaus, in the Central Amazon, Brazil. The objectives of our study were 1) to compare variables controlling plant water use and 2) to identify differences in water use between woody monocot and dicot plant species. We chose three representative individuals with well-sun-exposed crowns for each species, which were equipped with Granier-type thermal dissipation probes to measure sap flux density continuously for six weeks from August 1st 2011 until September 6th 2011. We used a simple sap flux model with two environmental variables, photosynthetic photon flux density and vapor pressure deficit, to compare sap flux densities between species. We achieved a good model fit and modeled sap flux densities corresponded very well with the actual measured values. No significant differences among species in sap flux densities were indicated by the model. Overall, palms had a 3.5 fold higher water consumption compared to trees with similar diameter. Water use scaled independent from species with the size of the conductive xylem area (r2 = 0.85), so that the higher water use of the palms was largely explained by higher conductivity of the xylem cross section area. Palms transpired a mean of 1.67 mm m-2 of water per unit crown projection area per day, whereas trees transpired only 0.30 mm m-2 per day, resulting in a 5.6 times lower transpiration rate. We conclude that changes in the water table due to land use change are predictable and highly depending on the species planted in the area with altered land use.
Aeolian transport in the field: A comparison of the effects of different surface treatments
NASA Astrophysics Data System (ADS)
Dong, Zhibao; Lv, Ping; Zhang, Zhengcai; Qian, Guangqiang; Luo, Wanyin
2012-05-01
Aeolian transport represents the result of wind-surface interactions, and therefore depends strongly on variations in the characteristics of the sediment surface. We conducted field observations of aeolian transport of typical dune sand in three 80 m × 80 m plots with different surface treatments: gravel-covered sand, enclosed shifting sand, and open (unprotected) shifting sand. The study was performed at the Shapotou Aeolian Experiment Site in the southeastern part of China's Tengger Desert to compare the effects of these different surface treatments on aeolian transport. To do so, we analyzed the flux density profiles and transport rates above each surface. The flux density profiles for all three treatments followed the exponential decay law that was proposed by most previous researchers to describe the saltation flux density profiles. Coefficients of the exponential decay function were defined as a function of the surface and the wind velocity. The enclosed and open plots with shifting sand had similar flux density profiles, but the flux density above gravel-covered plots showed that transport decayed more slowly with increasing height, producing flux density profiles with a higher average saltation height. The transport rate above the three treatment plots tended to increase proportionally with the cube of the mean wind velocity and with the maximum wind velocity during the observation period, but was more strongly correlated with the square of drift potential. Transport rates above the plot with open shifting sand were greater than those above the plots with enclosed shifting sand and the gravel-covered plot.
Book review: Estimating groundwater recharge
Stonestrom, David A.
2011-01-01
Groundwater recharge is the entry of fresh water into the saturated portion of the subsurface part of the hydrologic cycle, the modifier “saturated” indicating that the pressure of the pore water is greater than atmospheric. Briefly stated, recharge is downward flux across the water table. The term “groundwater recharge” can refer either to the multiple interacting processes generating and controlling the flux or to the fluxR itself. When referring to flux, R can represent either (1) a value integrated over large areas and long periods of time or (2) a point value, or instantaneous flux density, that varies erratically as well as continuously in time and space. Knowing how R is distributed through space and time is required for understanding the dynamics of groundwater flow and transport in any watershed, aquifer, or selected domain of interest and for understanding heads, flow paths, and discharges to streams, wetlands, and other surface water bodies. Clearly among the most important of hydrologic fluxes, R is also one of the most difficult to measure. Advancements in hydrologic science have proceeded surprisingly in lockstep with advances in determining R.
Hydrogen recycling in graphite at higher fluxes
NASA Astrophysics Data System (ADS)
Larsson, D.; Bergsåker, H.; Hedqvist, A.
Understanding hydrogen recycling is essential for particle control in fusion devices with a graphite wall. At Extrap T2 three different models have been used. A zero-dimensional (0D) recycling model reproduces the density behavior in plasma discharges as well as in helium glow discharge. A more sophisticated one-dimensional (1D) model is used along with a simple mixing model to explain the results in isotopic exchange experiments. Due to high fluxes some changes in the models were needed. In the paper, the three models are discussed and the results are compared with experimental data.
LOFAR 150-MHz observations of the Boötes field: catalogue and source counts
NASA Astrophysics Data System (ADS)
Williams, W. L.; van Weeren, R. J.; Röttgering, H. J. A.; Best, P.; Dijkema, T. J.; de Gasperin, F.; Hardcastle, M. J.; Heald, G.; Prandoni, I.; Sabater, J.; Shimwell, T. W.; Tasse, C.; van Bemmel, I. M.; Brüggen, M.; Brunetti, G.; Conway, J. E.; Enßlin, T.; Engels, D.; Falcke, H.; Ferrari, C.; Haverkorn, M.; Jackson, N.; Jarvis, M. J.; Kapińska, A. D.; Mahony, E. K.; Miley, G. K.; Morabito, L. K.; Morganti, R.; Orrú, E.; Retana-Montenegro, E.; Sridhar, S. S.; Toribio, M. C.; White, G. J.; Wise, M. W.; Zwart, J. T. L.
2016-08-01
We present the first wide area (19 deg2), deep (≈120-150 μJy beam-1), high-resolution (5.6 × 7.4 arcsec) LOFAR High Band Antenna image of the Boötes field made at 130-169 MHz. This image is at least an order of magnitude deeper and 3-5 times higher in angular resolution than previously achieved for this field at low frequencies. The observations and data reduction, which includes full direction-dependent calibration, are described here. We present a radio source catalogue containing 6 276 sources detected over an area of 19 deg2, with a peak flux density threshold of 5σ. As the first thorough test of the facet calibration strategy, introduced by van Weeren et al., we investigate the flux and positional accuracy of the catalogue. We present differential source counts that reach an order of magnitude deeper in flux density than previously achieved at these low frequencies, and show flattening at 150-MHz flux densities below 10 mJy associated with the rise of the low flux density star-forming galaxies and radio-quiet AGN.
Horizontal density-gradient effects on simulation of flow and transport in the Potomac Estuary
Schaffranek, Raymond W.; Baltzer, Robert A.; ,
1990-01-01
A two-dimensional, depth-integrated, hydrodynamic/transport model of the Potomac Estuary between Indian Head and Morgantown, Md., has been extended to include treatment of baroclinic forcing due to horizontal density gradients. The finite-difference model numerically integrates equations of mass and momentum conservation in conjunction with a transport equation for heat, salt, and constituent fluxes. Lateral and longitudinal density gradients are determined from salinity distributions computed from the convection-diffusion equation and an equation of state that expresses density as a function of temperature and salinity; thus, the hydrodynamic and transport computations are directly coupled. Horizontal density variations are shown to contribute significantly to momentum fluxes determined in the hydrodynamic computation. These fluxes lead to enchanced tidal pumping, and consequently greater dispersion, as is evidenced by numerical simulations. Density gradient effects on tidal propagation and transport behavior are discussed and demonstrated.
Wang, Ching-Jen; Yang, Kuender D; Wang, Feng-Sheng; Hsu, Chia-Chen; Chen, Hsiang-Ho
2004-01-01
Shock wave treatment is believed to improve bone healing after fracture. The purpose of this study was to evaluate the effect of shock wave treatment on bone mass and bone strength after fracture of the femur in a rabbit model. A standardized closed fracture of the right femur was created with a three-point bending method in 24 New Zealand white rabbits. Animals were randomly divided into three groups: (1) control (no shock wave treatment), (2) low-energy (shock wave treatment at 0.18 mJ/mm2 energy flux density with 2000 impulses), and (3) high-energy (shock wave treatment at 0.47 mJ/mm2 energy flux density with 4000 impulses). Bone mass (bone mineral density (BMD), callus formation, ash and calcium contents) and bone strength (peak load, peak stress and modulus of elasticity) were assessed at 12 and 24 weeks after shock wave treatment. While the BMD values of the high-energy group were significantly higher than the control group (P = 0.021), the BMD values between the low-energy and control groups were not statistically significant (P = 0.358). The high-energy group showed significantly more callus formation (P < 0.001), higher ash content (P < 0.001) and calcium content (P = 0.003) than the control and low-energy groups. With regard to bone strength, the high-energy group showed significantly higher peak load (P = 0.012), peak stress (P = 0.015) and modulus of elasticity (P = 0.011) than the low-energy and control groups. Overall, the effect of shock wave treatment on bone mass and bone strength appears to be dose dependent in acute fracture healing in rabbits.
Behavior of moving plasma in solenoidal magnetic field in a laser ion source
NASA Astrophysics Data System (ADS)
Ikeda, S.; Takahashi, K.; Okamura, M.; Horioka, K.
2016-02-01
In a laser ion source, a solenoidal magnetic field is useful to guide the plasma and to control the extracted beam current. However, the behavior of the plasma drifting in the magnetic field has not been well understood. Therefore, to investigate the behavior, we measured the plasma ion current and the total charge within a single pulse in the solenoid by changing the distance from the entrance of the solenoid to a detector. We observed that the decrease of the total charge along the distance became smaller as the magnetic field became larger and then the charge became almost constant with a certain magnetic flux density. The results indicate that the transverse spreading speed of the plasma decreased with increasing the field and the plasma was confined transversely with the magnetic flux density. We found that the reason of the confinement was not magnetization of ions but an influence induced by electrons.
Behavior of moving plasma in solenoidal magnetic field in a laser ion source.
Ikeda, S; Takahashi, K; Okamura, M; Horioka, K
2016-02-01
In a laser ion source, a solenoidal magnetic field is useful to guide the plasma and to control the extracted beam current. However, the behavior of the plasma drifting in the magnetic field has not been well understood. Therefore, to investigate the behavior, we measured the plasma ion current and the total charge within a single pulse in the solenoid by changing the distance from the entrance of the solenoid to a detector. We observed that the decrease of the total charge along the distance became smaller as the magnetic field became larger and then the charge became almost constant with a certain magnetic flux density. The results indicate that the transverse spreading speed of the plasma decreased with increasing the field and the plasma was confined transversely with the magnetic flux density. We found that the reason of the confinement was not magnetization of ions but an influence induced by electrons.
Analysis of recoverable current from one component of magnetic flux density in MREIT and MRCDI.
Park, Chunjae; Lee, Byung Il; Kwon, Oh In
2007-06-07
Magnetic resonance current density imaging (MRCDI) provides a current density image by measuring the induced magnetic flux density within the subject with a magnetic resonance imaging (MRI) scanner. Magnetic resonance electrical impedance tomography (MREIT) has been focused on extracting some useful information of the current density and conductivity distribution in the subject Omega using measured B(z), one component of the magnetic flux density B. In this paper, we analyze the map Tau from current density vector field J to one component of magnetic flux density B(z) without any assumption on the conductivity. The map Tau provides an orthogonal decomposition J = J(P) + J(N) of the current J where J(N) belongs to the null space of the map Tau. We explicitly describe the projected current density J(P) from measured B(z). Based on the decomposition, we prove that B(z) data due to one injection current guarantee a unique determination of the isotropic conductivity under assumptions that the current is two-dimensional and the conductivity value on the surface is known. For a two-dimensional dominating current case, the projected current density J(P) provides a good approximation of the true current J without accumulating noise effects. Numerical simulations show that J(P) from measured B(z) is quite similar to the target J. Biological tissue phantom experiments compare J(P) with the reconstructed J via the reconstructed isotropic conductivity using the harmonic B(z) algorithm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tolbert, Leon M; Lee, Seong T
2010-01-01
This paper shows how to maximize the effect of the slanted air-gap structure of an interior permanent magnet synchronous motor with brushless field excitation (BFE) for application in a hybrid electric vehicle. The BFE structure offers high torque density at low speed and weakened flux at high speed. The unique slanted air-gap is intended to increase the output torque of the machine as well as to maximize the ratio of the back-emf of a machine that is controllable by BFE. This irregularly shaped air-gap makes a flux barrier along the d-axis flux path and decreases the d-axis inductance; as amore » result, the reluctance torque of the machine is much higher than a uniform air-gap machine, and so is the output torque. Also, the machine achieves a higher ratio of the magnitude of controllable back-emf. The determination of the slanted shape was performed by using magnetic equivalent circuit analysis and finite element analysis (FEA).« less
NASA Astrophysics Data System (ADS)
Gross, N. A.; Withers, P.; Sojka, J. J.
2014-12-01
The Chapman Layer Model is a "textbook" model of the ionosphere (for example, "Theory of Planetary Atmospheres" by Chamberlain and Hunten, Academic Press (1978)). The model use fundamental assumptions about the neutral atmosphere, the flux of ionizing radiation, and the recombination rate to calculation the ionization rate, and ion/electron density for a single species atmosphere. We have developed a "Chapman Layer Calculator" application that is deployed on the web using Java. It allows the user to see how various parameters control ion density, peak height, and profile of the ionospheric layer. Users can adjust parameters relevant to thermosphere scale height (temperature, gravitational acceleration, molecular weight, neutral atmosphere density) and to Extreme Ultraviolet solar flux (reference EUV, distance from the Sun, and solar Zenith Angle) and then see how the layer changes. This allows the user to simulate the ionosphere on other planets, by adjusting to the appropriate parameters. This simulation has been used as an exploratory activity for the NASA/LWS - Heliophysics Summer School 2014 and has an accompanying activity guide.
NASA Technical Reports Server (NTRS)
Lee, Choon-Ki; Han, Shin-Chan; Dieter,Bilitza; Ki-Weon,Seo
2012-01-01
The 27-day variations of topside ionosphere are investigated using the in-situ electron density measurements from the CHAMP planar Langmuir probe and GRACE K-band ranging system. As the two satellite systems orbit at the altitudes of approx. 370 km and approx. 480 km, respectively, the satellite data sets are greatly valuable for examining the electron density variations in the vicinity of F2-peak. In a 27-day period, the electron density measurements from the satellites are in good agreements with the solar flux, except during the solar minimum period. The time delays are mostly 1-2 day and represent the hemispherical asymmetry. The globally-estimated spatial patterns of the correlation between solar flux and in-situ satellite measurements show poor correlations in the (magnetic) equatorial region, which are not found from the ground measurements of vertically-integrated electron content. We suggest that the most plausible cause for the poor correlation is the vertical movement of ionization due to atmospheric dynamic processes that is not controlled by the solar extreme ultraviolet radiation.
Code of Federal Regulations, 2013 CFR
2013-10-01
...-density, in the space-to-Earth direction, (EPFD down) limits. (i) Provide a set of power flux-density (PFD) masks, on the surface of the Earth, for each space station in the NGSO FSS system. The PFD masks shall.... (2) Single-entry additional operational equivalent power flux-density, in the space-to-Earth...
Effect of Thermospheric Neutral Density upon Inner Trapped-belt Proton Flux
NASA Technical Reports Server (NTRS)
Wilson, Thomas L.; Lodhi, M. A. K.; Diaz, Abel B.
2007-01-01
We wish to point out that a secular change in the Earth's atmospheric neutral density alters charged-particle lifetime in the inner trapped radiation belts, in addition to the changes recently reported as produced by greenhouse gases. Heretofore, changes in neutral density have been of interest primarily because of their effect on the orbital drag of satellites. We extend this to include the orbital lifetime of charged particles in the lower radiation belts. It is known that the charged-belt population is coupled to the neutral density of the atmosphere through changes induced by solar activity, an effect produced by multiple scattering off neutral and ionized atoms along with ionization loss in the thermosphere where charged and neutral populations interact. It will be shown here that trapped-belt flux J is bivariant in energy E and thermospheric neutral density , as J(E,rho). One can conclude that proton lifetimes in these belts are also directly affected by secular changes in the neutral species populating the Earth s thermosphere. This result is a consequence of an intrinsic property of charged-particle flux, that flux is not merely a function of E but is dependent upon density rho when a background of neutrals is present.
NASA Astrophysics Data System (ADS)
Robinet, Jérémy; Ameijeiras-Mariño, Yolanda; Vanderborght, Jan; Opfergelt, Sophie; Govers, Gerard
2017-04-01
Hydrology plays a major role in controlling biogeochemical fluxes at various scales. Among the various controlling factors of water fluxes at the hillslope or catchment scale, land use change is a direct human effect which has been relatively under-examined despite its potential important impact. The overall objective of this research is therefore to investigate how land use change can affect water fluxes and how these changes may, on their turn, affect biogeochemical fluxes, with a particular focus on silicon (Si) dynamic. We selected two small catchments with contrasting land use (agriculture vs. natural forest) in a subtropical region in the south of Brazil. The conversion of forest to arable land in the agricultural catchment is relatively recent, as deforestation started at the beginning of the 20th century. Stream, pore and groundwater were monitored, sampled and analyzed for major elements concentrations and δ18O. Preliminary results showed that deforestation and agriculture led to an increase in solute export at the catchment outlet, with for example dissolved Si (DSi) concentration and flux two times higher for the agricultural catchment. δ18O and DSi concentration data showed the importance of preferential flow in macropores in the forested catchment, probably because of the high root and low bulk densities. This led to a reduced mobilization of the pore water during rainfall event, contrarily to the agricultural catchment. As a result, there is almost no contribution of this relatively DSi-enriched pool to the river discharge in the forested environment. Those results indicate that the conversion of forest to arable land has had a significant impact on the biogeochemical fluxes, highlighted in this study with observed changes in DSi flux. Those changes could be partially attributed to changes in water fluxes and pathways.
NASA Astrophysics Data System (ADS)
Ji, Jinghua; Luo, Jianhua; Lei, Qian; Bian, Fangfang
2017-05-01
This paper proposed an analytical method, based on conformal mapping (CM) method, for the accurate evaluation of magnetic field and eddy current (EC) loss in fault-tolerant permanent-magnet (FTPM) machines. The aim of modulation function, applied in CM method, is to change the open-slot structure into fully closed-slot structure, whose air-gap flux density is easy to calculate analytically. Therefore, with the help of Matlab Schwarz-Christoffel (SC) Toolbox, both the magnetic flux density and EC density of FTPM machine are obtained accurately. Finally, time-stepped transient finite-element method (FEM) is used to verify the theoretical analysis, showing that the proposed method is able to predict the magnetic flux density and EC loss precisely.
Density variations of meteor flux along the Earth's orbit
NASA Technical Reports Server (NTRS)
Svetashkova, N. T.
1987-01-01
No model of distribution of meteor substance is known to explain the observed diurnal and annual variations of meteor rates, if that distribution is assumed to be constant during the year. Differences between the results of observations and the prediction of diurnal variation rates leads to the conclusion that the density of the orbits of meteor bodies changes with the motion of the Earth along its orbit. The distributions of the flux density over the celestial sphere are obtained by the method described previously by Svetashkova, 1984. The results indicate that the known seasonal and latitudinal variations of atmospheric conditions does not appear to significantly affect the value of the mean flux density of meteor bodies and the matter influx onto the Earth.
Study on magnetic circuit of moving magnet linear compressor
NASA Astrophysics Data System (ADS)
Xia, Ming; Chen, Xiaoping; Chen, Jun
2015-05-01
The moving magnet linear compressors are very popular in the tactical miniature stirling cryocoolers. The magnetic circuit of LFC3600 moving magnet linear compressor, manufactured by Kunming institute of Physics, was studied in this study. Three methods of the analysis theory, numerical calculation and experiment study were applied in the analysis process. The calculated formula of magnetic reluctance and magnetomotive force were given in theoretical analysis model. The magnetic flux density and magnetic flux line were analyzed in numerical analysis model. A testing method was designed to test the magnetic flux density of the linear compressor. When the piston of the motor was in the equilibrium position, the value of the magnetic flux density was at the maximum of 0.27T. The results were almost equal to the ones from numerical analysis.
Cluster electric current density measurements within a magnetic flux rope in the plasma sheet
NASA Technical Reports Server (NTRS)
Slavin, J. A.; Lepping, R. P.; Gjerloev, J.; Goldstein, M. L.; Fairfield, D. H.; Acuna, M. H.; Balogh, A.; Dunlop, M.; Kivelson, M. G.; Khurana, K.
2003-01-01
On August 22, 2001 all 4 Cluster spacecraft nearly simultaneously penetrated a magnetic flux rope in the tail. The flux rope encounter took place in the central plasma sheet, Beta(sub i) approx. 1-2, near the leading edge of a bursty bulk flow. The "time-of-flight" of the flux rope across the 4 spacecraft yielded V(sub x) approx. 700 km/s and a diameter of approx.1 R(sub e). The speed at which the flux rope moved over the spacecraft is in close agreement with the Cluster plasma measurements. The magnetic field profiles measured at each spacecraft were first modeled separately using the Lepping-Burlaga force-free flux rope model. The results indicated that the center of the flux rope passed northward (above) s/c 3, but southward (below) of s/c 1, 2 and 4. The peak electric currents along the central axis of the flux rope predicted by these single-s/c models were approx.15-19 nA/sq m. The 4-spacecraft Cluster magnetic field measurements provide a second means to determine the electric current density without any assumption regarding flux rope structure. The current profile determined using the curlometer technique was qualitatively similar to those determined by modeling the individual spacecraft magnetic field observations and yielded a peak current density of 17 nA/m2 near the central axis of the rope. However, the curlometer results also showed that the flux rope was not force-free with the component of the current density perpendicular to the magnetic field exceeding the parallel component over the forward half of the rope, perhaps due to the pressure gradients generated by the collision of the BBF with the inner magnetosphere. Hence, while the single-spacecraft models are very successful in fitting flux rope magnetic field and current variations, they do not provide a stringent test of the force-free condition.
THE CELESTIAL REFERENCE FRAME AT 24 AND 43 GHz. II. IMAGING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charlot, P.; Boboltz, D. A.; Fey, A. L.
2010-05-15
We have measured the submilliarcsecond structure of 274 extragalactic sources at 24 and 43 GHz in order to assess their astrometric suitability for use in a high-frequency celestial reference frame (CRF). Ten sessions of observations with the Very Long Baseline Array have been conducted over the course of {approx}5 years, with a total of 1339 images produced for the 274 sources. There are several quantities that can be used to characterize the impact of intrinsic source structure on astrometric observations including the source flux density, the flux density variability, the source structure index, the source compactness, and the compactness variability.more » A detailed analysis of these imaging quantities shows that (1) our selection of compact sources from 8.4 GHz catalogs yielded sources with flux densities, averaged over the sessions in which each source was observed, of about 1 Jy at both 24 and 43 GHz, (2) on average the source flux densities at 24 GHz varied by 20%-25% relative to their mean values, with variations in the session-to-session flux density scale being less than 10%, (3) sources were found to be more compact with less intrinsic structure at higher frequencies, and (4) variations of the core radio emission relative to the total flux density of the source are less than 8% on average at 24 GHz. We conclude that the reduction in the effects due to source structure gained by observing at higher frequencies will result in an improved CRF and a pool of high-quality fiducial reference points for use in spacecraft navigation over the next decade.« less
Elliptic-cylindrical analytical flux-rope model for ICMEs
NASA Astrophysics Data System (ADS)
Nieves-Chinchilla, T.; Linton, M.; Hidalgo, M. A. U.; Vourlidas, A.
2016-12-01
We present an analytical flux-rope model for realistic magnetic structures embedded in Interplanetary Coronal Mass Ejections. The framework of this model was established by Nieves-Chinchilla et al. (2016) with the circular-cylindrical analytical flux rope model and under the concept developed by Hidalgo et al. (2002). Elliptic-cylindrical geometry establishes the first-grade of complexity of a series of models. The model attempts to describe the magnetic flux rope topology with distorted cross-section as a possible consequence of the interaction with the solar wind. In this model, the flux rope is completely described in the non-euclidean geometry. The Maxwell equations are solved using tensor calculus consistently with the geometry chosen, invariance along the axial component, and with the only assumption of no radial current density. The model is generalized in terms of the radial dependence of the poloidal current density component and axial current density component. The misalignment between current density and magnetic field is studied in detail for the individual cases of different pairs of indexes for the axial and poloidal current density components. This theoretical analysis provides a map of the force distribution inside of the flux-rope. The reconstruction technique has been adapted to the model and compared with in situ ICME set of events with different in situ signatures. The successful result is limited to some cases with clear in-situ signatures of distortion. However, the model adds a piece in the puzzle of the physical-analytical representation of these magnetic structures. Other effects such as axial curvature, expansion and/or interaction could be incorporated in the future to fully understand the magnetic structure. Finally, the mathematical formulation of this model opens the door to the next model: toroidal flux rope analytical model.
NASA Astrophysics Data System (ADS)
Favreau, Peter; Gapud, Albert A.; Moraes, Sunhee; Delong, Lance; Reyes, Arneil P.; Thompson, James R.; Christen, David K.
2010-03-01
The interaction of two different ordering schemes -- charge density waves (CDWs) and superconductivity -- is studied in high-quality samples of NbSe2, particularly in the motion of magnetic flux quanta. More specifically, the study is on the effect of ``switching off'' the CDW phase -- effected by doping with Ta -- on the magnetic-field H dependence of: (i) the Lorentz-force-driven free flux flow (FFF) resistivity ρf associated with the ordered motion of vortices, and (ii) critical current density Jc. FFF is achieved for the first time in this material. The field dependence of ρf deviates from traditional Bardeen-Stephen flux flow and is more consistent with effects of flux core size as predicted by Kogan and Zelezhina. However, the suppression of CDW's seems to have no significant effect on these properties. On the other hand, Jc(H) shows a surprising double peak for the CDW-suppressed sample --contrary to previous studies in which the Jc peak was shown to disappear. Possible mechanisms are discussed.
Divertor heat flux mitigation in the National Spherical Torus Experimenta)
NASA Astrophysics Data System (ADS)
Soukhanovskii, V. A.; Maingi, R.; Gates, D. A.; Menard, J. E.; Paul, S. F.; Raman, R.; Roquemore, A. L.; Bell, M. G.; Bell, R. E.; Boedo, J. A.; Bush, C. E.; Kaita, R.; Kugel, H. W.; Leblanc, B. P.; Mueller, D.; NSTX Team
2009-02-01
Steady-state handling of divertor heat flux is a critical issue for both ITER and spherical torus-based devices with compact high power density divertors. Significant reduction of heat flux to the divertor plate has been achieved simultaneously with favorable core and pedestal confinement and stability properties in a highly shaped lower single null configuration in the National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40, 557 2000] using high magnetic flux expansion at the divertor strike point and the radiative divertor technique. A partial detachment of the outer strike point was achieved with divertor deuterium injection leading to peak flux reduction from 4-6MWm-2to0.5-2MWm-2 in small-ELM 0.8-1.0MA, 4-6MW neutral beam injection-heated H-mode discharges. A self-consistent picture of the outer strike point partial detachment was evident from divertor heat flux profiles and recombination, particle flux and neutral pressure measurements. Analytic scrape-off layer parallel transport models were used for interpretation of NSTX detachment experiments. The modeling showed that the observed peak heat flux reduction and detachment are possible with high radiated power and momentum loss fractions, achievable with divertor gas injection, and nearly impossible to achieve with main electron density, divertor neutral density or recombination increases alone.
NASA Astrophysics Data System (ADS)
Endo, Noritaka
2016-12-01
A simple stochastic cellular automaton model is proposed for simulating bedload transport, especially for cases with a low transport rate and where available sediments are very sparse on substrates in a subaqueous system. Numerical simulations show that the bed type changes from sheet flow through sand patches to ripples as the amount of sand increases; this is consistent with observations in flume experiments and in the field. Without changes in external conditions, the sand flux calculated for a given amount of sand decreases over time as bedforms develop from a flat bed. This appears to be inconsistent with the general understanding that sand flux remains unchanged under the constant-fluid condition, but it is consistent with the previous experimental data. For areas of low sand abundance, the sand flux versus sand amount (flux-density relation) in the simulation shows a single peak with an abrupt decrease, followed by a long tail; this is very similar to the flux-density relation seen in automobile traffic flow. This pattern (the relation between segments of the curve and the corresponding bed states) suggests that sand sheets, sand patches, and sand ripples correspond respectively to the free-flow phase, congested phase, and jam phase of traffic flows. This implies that sand topographic features on starved beds are determined by the degree of interference between sand particles. Although the present study deals with simple cases only, this can provide a simplified but effective modeling of the more complicated sediment transport processes controlled by interference due to contact between grains, such as the pulsatory migration of grain-size bimodal mixtures with repetition of clustering and scattering.
NASA Astrophysics Data System (ADS)
Citrin, J.; Bourdelle, C.; Casson, F. J.; Angioni, C.; Bonanomi, N.; Camenen, Y.; Garbet, X.; Garzotti, L.; Görler, T.; Gürcan, O.; Koechl, F.; Imbeaux, F.; Linder, O.; van de Plassche, K.; Strand, P.; Szepesi, G.; Contributors, JET
2017-12-01
Quasilinear turbulent transport models are a successful tool for prediction of core tokamak plasma profiles in many regimes. Their success hinges on the reproduction of local nonlinear gyrokinetic fluxes. We focus on significant progress in the quasilinear gyrokinetic transport model QuaLiKiz (Bourdelle et al 2016 Plasma Phys. Control. Fusion 58 014036), which employs an approximated solution of the mode structures to significantly speed up computation time compared to full linear gyrokinetic solvers. Optimisation of the dispersion relation solution algorithm within integrated modelling applications leads to flux calculations × {10}6-7 faster than local nonlinear simulations. This allows tractable simulation of flux-driven dynamic profile evolution including all transport channels: ion and electron heat, main particles, impurities, and momentum. Furthermore, QuaLiKiz now includes the impact of rotation and temperature anisotropy induced poloidal asymmetry on heavy impurity transport, important for W-transport applications. Application within the JETTO integrated modelling code results in 1 s of JET plasma simulation within 10 h using 10 CPUs. Simultaneous predictions of core density, temperature, and toroidal rotation profiles for both JET hybrid and baseline experiments are presented, covering both ion and electron turbulence scales. The simulations are successfully compared to measured profiles, with agreement mostly in the 5%-25% range according to standard figures of merit. QuaLiKiz is now open source and available at www.qualikiz.com.
Self-consistent gyrokinetic modeling of neoclassical and turbulent impurity transport
NASA Astrophysics Data System (ADS)
Estève, D.; Sarazin, Y.; Garbet, X.; Grandgirard, V.; Breton, S.; Donnel, P.; Asahi, Y.; Bourdelle, C.; Dif-Pradalier, G.; Ehrlacher, C.; Emeriau, C.; Ghendrih, Ph.; Gillot, C.; Latu, G.; Passeron, C.
2018-03-01
Trace impurity transport is studied with the flux-driven gyrokinetic GYSELA code (Grandgirard et al 2016 Comput. Phys. Commun. 207 35). A reduced and linearized multi-species collision operator has been recently implemented, so that both neoclassical and turbulent transport channels can be treated self-consistently on an equal footing. In the Pfirsch-Schlüter regime that is probably relevant for tungsten, the standard expression for the neoclassical impurity flux is shown to be recovered from gyrokinetics with the employed collision operator. Purely neoclassical simulations of deuterium plasma with trace impurities of helium, carbon and tungsten lead to impurity diffusion coefficients, inward pinch velocities due to density peaking, and thermo-diffusion terms which quantitatively agree with neoclassical predictions and NEO simulations (Belli et al 2012 Plasma Phys. Control. Fusion 54 015015). The thermal screening factor appears to be less than predicted analytically in the Pfirsch-Schlüter regime, which can be detrimental to fusion performance. Finally, self-consistent nonlinear simulations have revealed that the tungsten impurity flux is not the sum of turbulent and neoclassical fluxes computed separately, as is usually assumed. The synergy partly results from the turbulence-driven in-out poloidal asymmetry of tungsten density. This result suggests the need for self-consistent simulations of impurity transport, i.e. including both turbulence and neoclassical physics, in view of quantitative predictions for ITER.
NASA Technical Reports Server (NTRS)
Witt, N.; Blum, P. W.; Ajello, J. M.
1981-01-01
The latitudinal variation of the solar proton flux and energy causes a density increase at high solar latitudes of the neutral gas penetrating the heliosphere. Measurements of the neutral density by UV resonance radiation observations from interplanetary spacecraft thus permit deductions on the dependence of the solar proton flux on heliographic latitude. Using both the results of Mariner 10 measurements and of other off-ecliptic solar wind observations, the values of the solar proton fluxes and energies at polar heliographic latitudes are determined for several cases of interest. The Mariner 10 analysis, together with IPS results, indicate a significant decrease of the solar proton flux at polar latitudes.
De-blending deep Herschel surveys: A multi-wavelength approach
NASA Astrophysics Data System (ADS)
Pearson, W. J.; Wang, L.; van der Tak, F. F. S.; Hurley, P. D.; Burgarella, D.; Oliver, S. J.
2017-07-01
Aims: Cosmological surveys in the far-infrared are known to suffer from confusion. The Bayesian de-blending tool, XID+, currently provides one of the best ways to de-confuse deep Herschel SPIRE images, using a flat flux density prior. This work is to demonstrate that existing multi-wavelength data sets can be exploited to improve XID+ by providing an informed prior, resulting in more accurate and precise extracted flux densities. Methods: Photometric data for galaxies in the COSMOS field were used to constrain spectral energy distributions (SEDs) using the fitting tool CIGALE. These SEDs were used to create Gaussian prior estimates in the SPIRE bands for XID+. The multi-wavelength photometry and the extracted SPIRE flux densities were run through CIGALE again to allow us to compare the performance of the two priors. Inferred ALMA flux densities (FinferALMA), at 870 μm and 1250 μm, from the best fitting SEDs from the second CIGALE run were compared with measured ALMA flux densities (FmeasALMA) as an independent performance validation. Similar validations were conducted with the SED modelling and fitting tool MAGPHYS and modified black-body functions to test for model dependency. Results: We demonstrate a clear improvement in agreement between the flux densities extracted with XID+ and existing data at other wavelengths when using the new informed Gaussian prior over the original uninformed prior. The residuals between FmeasALMA and FinferALMA were calculated. For the Gaussian priors these residuals, expressed as a multiple of the ALMA error (σ), have a smaller standard deviation, 7.95σ for the Gaussian prior compared to 12.21σ for the flat prior; reduced mean, 1.83σ compared to 3.44σ; and have reduced skew to positive values, 7.97 compared to 11.50. These results were determined to not be significantly model dependent. This results in statistically more reliable SPIRE flux densities and hence statistically more reliable infrared luminosity estimates. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jeong Ae; Sohn, Bong Won; Jung, Taehyun
We present the catalog of the KVN Calibrator Survey (KVNCS). This first part of the KVNCS is a single-dish radio survey simultaneously conducted at 22 ( K band) and 43 GHz ( Q band) using the Korean VLBI Network (KVN) from 2009 to 2011. A total of 2045 sources are selected from the VLBA Calibrator Survey with an extrapolated flux density limit of 100 mJy at the K band. The KVNCS contains 1533 sources in the K band with a flux density limit of 70 mJy and 553 sources in the Q band with a flux density limit of 120more » mJy; it covers the whole sky down to −32.°5 in decl. We detected 513 sources simultaneously in the K and Q bands; ∼76% of them are flat-spectrum sources (−0.5 ≤ α ≤ 0.5). From the flux–flux relationship, we anticipated that most of the radiation of many of the sources comes from the compact components. The sources listed in the KVNCS therefore are strong candidates for high-frequency VLBI calibrators.« less
USDA-ARS?s Scientific Manuscript database
Micrometeorological methods and ecosystem-scale energy and mass flux density measurements have become increasingly important in soil, agricultural, and environmental sciences. For many scientists without formal training in atmospheric science, these techniques are relatively inaccessible. Eddy cov...
NASA Astrophysics Data System (ADS)
Horwitz, James; Zeng, Wen
2007-10-01
Foster et al. [2002] reported elevated ionospheric density regions convected from subauroral plasmaspheric regions toward noon, in association with convection of plasmaspheric tails. These Storm Enhanced Density (SED) regions could supply cleft ion fountain outflows. Here, we will utilize our Dynamic Fluid Kinetic (DyFK) model to simulate the entry of a high-density ``plasmasphere-like'' flux tube entering the cleft region and subjected to an episode of wave-driven transverse ion heating. It is found that the O^+ ion density at higher altitudes increases and the density at lower altitudes decreases, following this heating episode, indicating increased fluxes of O^+ ions from the ionospheric source gain sufficient energy to reach higher altitudes after the effects of transverse wave heating. Foster, J. C., P. J. Erickson, A. J. Coster, J. Goldstein, and F. J. Rich, Ionospheric signatures of plasmaspheric tails, Geophys. Res. Lett., 29(13), 1623, doi:10.1029/2002GL015067, 2002.
Estimating Evapotranspiration Of Orange Orchards Using Surface Renewal And Remote Sensing Techniques
NASA Astrophysics Data System (ADS)
Consoli, S.; Russo, A.; Snyder, R.
2006-08-01
Surface renewal (SR) analysis was utilized to calculate sensible heat flux density from high frequency temperature measurements above orange orchard canopies during 2005 in eastern Sicily (Italy). The H values were employed to estimate latent heat flux density (LE) using measured net radiation (Rn) and soil heat flux density (G) in the energy balance (EB) equation. Crop coefficients were determined by calculating the ratio Kc=ETa/ETo, with reference ETo derived from the daily Penman-Monteith equation. The estimated daily Kc values showed an average of about 0.75 for canopy covers having about 70% ground shading and 80% of PAR light interception. Remote sensing estimates of Kc and ET fluxes were compared with those measured by SR-EB. IKONOS satellite estimates of Kc and NDVI were linearly correlated for the orchard stands.
Electromagnetic Properties Analysis on Hybrid-driven System of Electromagnetic Motor
NASA Astrophysics Data System (ADS)
Zhao, Jingbo; Han, Bingyuan; Bei, Shaoyi
2018-01-01
The hybrid-driven system made of permanent-and electromagnets applied in the electromagnetic motor was analyzed, equivalent magnetic circuit was used to establish the mathematical models of hybrid-driven system, based on the models of hybrid-driven system, the air gap flux, air-gap magnetic flux density, electromagnetic force was proposed. Taking the air-gap magnetic flux density and electromagnetic force as main research object, the hybrid-driven system was researched. Electromagnetic properties of hybrid-driven system with different working current modes is studied preliminary. The results shown that analysis based on hybrid-driven system can improve the air-gap magnetic flux density and electromagnetic force more effectively and can also guarantee the output stability, the effectiveness and feasibility of the hybrid-driven system are verified, which proved theoretical basis for the design of hybrid-driven system.
NASA Astrophysics Data System (ADS)
Sui, Yi; Zheng, Ping; Tong, Chengde; Yu, Bin; Zhu, Shaohong; Zhu, Jianguo
2015-05-01
This paper describes a tubular dual-stator flux-switching permanent-magnet (PM) linear generator for free-piston energy converter. The operating principle, topology, and design considerations of the machine are investigated. Combining the motion characteristic of free-piston Stirling engine, a tubular dual-stator PM linear generator is designed by finite element method. Some major structural parameters, such as the outer and inner radii of the mover, PM thickness, mover tooth width, tooth width of the outer and inner stators, etc., are optimized to improve the machine performances like thrust capability and power density. In comparison with conventional single-stator PM machines like moving-magnet linear machine and flux-switching linear machine, the proposed dual-stator flux-switching PM machine shows advantages in higher mass power density, higher volume power density, and lighter mover.
Rocket observations of the ionosphere during the eclipse of 26 February 1979
NASA Technical Reports Server (NTRS)
Mcinerney, M. K.; Smith, L. G.
1984-01-01
Electron density profiles and energetic particle fluxes were determined from two rockets launched, respectively, at the beginning and end of totality during the solar eclipse of 26 February 1979. These, and one other rocket at the same time of day on 24 February 1979, were launched from near Red Lake, Ontario. The electron density profile from 24 February shows the electron density to be normal above 110 km, to rocket apogee. Below 110 km, the electron density is enhanced, by an order of magnitude in the D region, compared with data from Wallops Island at the same solar zenith angle (63 deg). The enhancement is qualitatively explained by the large flux of field aligned energetic particles observed on the same rocket. During totality (on 26 February) the electron density above 110 km to rocket apogee is reduced by a factor of about three. Below 110 km, the electron density is much greater than observed during previous eclipses. The particle flux measured on the 26 February was an order of magnitude less than that on the 24 February but showed greater variability, particularly at the higher energies (100 keV). A feature of the particle flux is that, for the two rockets that were separated horizontally by 38 km while above the absorbing region, the variations are uncorrelated.
Experiments and High-resolution Simulations of Density and Viscosity Feedbacks on Convective Mixing
NASA Astrophysics Data System (ADS)
Hidalgo, Juan J.; Fe, Jaime; MacMinn, Christopher W.; Cueto-Felgueroso, Luis; Juanes, Ruben
2011-11-01
Dissolution by convective mixing is one of the main trapping mechanisms during CO2 sequestration in saline aquifers. Initially, the buoyant CO2 dissolves into the underlying brine by diffusion. The CO2-brine mixture is denser than the two initial fluids, leading to a Rayleigh-Bénard-type instability known as convective mixing, which greatly accelerates CO2 dissolution. Although this is a well-known process, it remains unclear how convective mixing scales with the governing parameters of the system and its impact on the actual mixing of CO2 and brine. We explore the dependence of the CO2 dissolution flux on the nonlinearity of the density and viscosity of the fluid mixture by means of high-resolution numerical simulations and laboratory experiments with an analogue fluid system (water and propylene glycol). We find that the value of the concentration for which the density of the mixture is maximum, and the viscosity contrast between the fluids, both exert a powerful control on the convective flux. From the experimental and simulation results, we obtain the scaling behavior of convective mixing, and clarify the role of nonlinear density and viscosity feedbacks. JJH acknowledges the support from the FP7 Marie Curie Actions of the European Commission, via the CO2-MATE project (PIOF-GA-2009-253678).
NASA Astrophysics Data System (ADS)
Ponce de Leon, Philip J.; Hill, Frances A.; Heubel, Eric V.; Velásquez-García, Luis F.
2015-06-01
We report the design, fabrication, and characterization of planar arrays of externally-fed silicon electrospinning emitters for high-throughput generation of polymer nanofibers. Arrays with as many as 225 emitters and with emitter density as large as 100 emitters cm-2 were characterized using a solution of dissolved PEO in water and ethanol. Devices with emitter density as high as 25 emitters cm-2 deposit uniform imprints comprising fibers with diameters on the order of a few hundred nanometers. Mass flux rates as high as 417 g hr-1 m-2 were measured, i.e., four times the reported production rate of the leading commercial free-surface electrospinning sources. Throughput increases with increasing array size at constant emitter density, suggesting the design can be scaled up with no loss of productivity. Devices with emitter density equal to 100 emitters cm-2 fail to generate fibers but uniformly generate electrosprayed droplets. For the arrays tested, the largest measured mass flux resulted from arrays with larger emitter separation operating at larger bias voltages, indicating the strong influence of electrical field enhancement on the performance of the devices. Incorporation of a ground electrode surrounding the array tips helps equalize the emitter field enhancement across the array as well as control the spread of the imprints over larger distances.
NASA Astrophysics Data System (ADS)
Simms, Laura; Engebretson, Mark; Clilverd, Mark; Rodger, Craig; Lessard, Marc; Gjerloev, Jesper; Reeves, Geoffrey
2018-05-01
Relativistic electron flux at geosynchronous orbit depends on enhancement and loss processes driven by ultralow frequency (ULF) Pc5, chorus, and electromagnetic ion cyclotron (EMIC) waves, seed electron flux, magnetosphere compression, the "Dst effect," and substorms, while solar wind inputs such as velocity, number density, and interplanetary magnetic field Bz drive these factors and thus correlate with flux. Distributed lag regression models show the time delay of highest influence of these factors on log10 high-energy electron flux (0.7-7.8 MeV, Los Alamos National Laboratory satellites). Multiple regression with an autoregressive term (flux persistence) allows direct comparison of the magnitude of each effect while controlling other correlated parameters. Flux enhancements due to ULF Pc5 and chorus waves are of equal importance. The direct effect of substorms on high-energy electron flux is strong, possibly due to injection of high-energy electrons by the substorms themselves. Loss due to electromagnetic ion cyclotron waves is less influential. Southward Bz shows only moderate influence when correlated processes are accounted for. Adding covariate compression effects (pressure and interplanetary magnetic field magnitude) allows wave-driven enhancements to be more clearly seen. Seed electrons (270 keV) are most influential at lower relativistic energies, showing that such a population must be available for acceleration. However, they are not accelerated directly to the highest energies. Source electrons (31.7 keV) show no direct influence when other factors are controlled. Their action appears to be indirect via the chorus waves they generate. Determination of specific effects of each parameter when studied in combination will be more helpful in furthering modeling work than studying them individually.
The Space Shuttle Orbiter molecular environment induced by the supplemental flash evaporator system
NASA Technical Reports Server (NTRS)
Ehlers, H. K. F.
1985-01-01
The water vapor environment of the Space Shuttle Orbiter induced by the supplemental flash evaporator during the on-orbit flight phase has been analyzed based on Space II model predictions and orbital flight measurements. Model data of local density, column density, and return flux are presented. Results of return flux measurements with a mass spectrometer during STS-2 and of direct flux measurements during STS-4 are discussed and compared with model predictions.
Densitometric tomography using the measurement of muon flux
NASA Astrophysics Data System (ADS)
Hivert, F.; Busto, J.; Brunner, J.; Salin, P.; Gaffet, S.
2013-12-01
The knowledge of the subsurface properties is essentially obtained by geophysical methods, e.g. seismic imaging, electric prospection or gravimetry. The present work develops a recent method to investigate the in situ density of rocks using atmospheric the muon flux measurement , its attenuation depending on the rock density and thickness. This new geophysical technique have been mainly applied in volcanology (Lesparre N., 2011) using scintillator detectors. The present project (T2DM2) aims to realize underground muons flux measurements in order to characterizing the rock massif density variations above the LSBB underground research facility in Rustrel (France). The muon flux will be measure with a new Muon telescope instrumentation using Micromegas detectors in Time Projection Chambers (TPC) configuration. The first step of the work presented considers the muon flux simulation using the Gaisser model, for the interactions between muons and atmospheric particles, and the MUSIC code (Kudryavtsev V. A., 2008) for the muons/rock interactions. The results show that the muon flux attenuation caused by density variations are enough significant to be observed until around 500 m depth and for period of time in the order of one month. Such a duration scale and depth of investigation is compatible with the duration of the water transfer processes involved within the Karst unsaturated zone where LSBB is located. Our work now concentrates on the optimization of the spatial distribution of detectors that will be deployed in future.
3-D capacitance density imaging system
Fasching, G.E.
1988-03-18
A three-dimensional capacitance density imaging of a gasified bed or the like in a containment vessel is achieved using a plurality of electrodes provided circumferentially about the bed in levels and along the bed in channels. The electrodes are individually and selectively excited electrically at each level to produce a plurality of current flux field patterns generated in the bed at each level. The current flux field patterns are suitably sensed and a density pattern of the bed at each level determined. By combining the determined density patterns at each level, a three-dimensional density image of the bed is achieved. 7 figs.
3-D capacitance density imaging of fluidized bed
Fasching, George E.
1990-01-01
A three-dimensional capacitance density imaging of a gasified bed or the like in a containment vessel is achieved using a plurality of electrodes provided circumferentially about the bed in levels and along the bed in channels. The electrodes are individually and selectively excited electrically at each level to produce a plurality of current flux field patterns generated in the bed at each level. The current flux field patterns are suitably sensed and a density pattern of the bed at each level determined. By combining the determined density patterns at each level, a three-dimensional density image of the bed is achieved.
NASA Technical Reports Server (NTRS)
Hildebrandt, A. F.; Elleman, D. D.; Whitmore, F. C. (Inventor)
1966-01-01
A magnetic flux pump is described for increasing the intensity of a magnetic field by transferring flux from one location to the magnetic field. The device includes a pair of communicating cavities formed in a block of superconducting material, and a piston for displacing the trapped magnetic flux into the secondary cavity producing a field having an intense flux density.
NASA Astrophysics Data System (ADS)
Intrator, T.; Zhang, S. Y.; Degnan, J. H.; Furno, I.; Grabowski, C.; Hsu, S. C.; Ruden, E. L.; Sanchez, P. G.; Taccetti, J. M.; Tuszewski, M.; Waganaar, W. J.; Wurden, G. A.
2004-05-01
Magnetized target fusion (MTF) is a potentially low cost path to fusion, intermediate in plasma regime between magnetic and inertial fusion energy. It requires compression of a magnetized target plasma and consequent heating to fusion relevant conditions inside a converging flux conserver. To demonstrate the physics basis for MTF, a field reversed configuration (FRC) target plasma has been chosen that will ultimately be compressed within an imploding metal liner. The required FRC will need large density, and this regime is being explored by the FRX-L (FRC-Liner) experiment. All theta pinch formed FRCs have some shock heating during formation, but FRX-L depends further on large ohmic heating from magnetic flux annihilation to heat the high density (2-5×1022m-3), plasma to a temperature of Te+Ti≈500 eV. At the field null, anomalous resistivity is typically invoked to characterize the resistive like flux dissipation process. The first resistivity estimate for a high density collisional FRC is shown here. The flux dissipation process is both a key issue for MTF and an important underlying physics question.
NASA Astrophysics Data System (ADS)
Niino, Yuu
2018-05-01
We investigate how the statistical properties of dispersion measure (DM) and apparent flux density/fluence of (nonrepeating) fast radio bursts (FRBs) are determined by unknown cosmic rate density history [ρ FRB(z)] and luminosity function (LF) of the transient events. We predict the distributions of DMs, flux densities, and fluences of FRBs taking account of the variation of the receiver efficiency within its beam, using analytical models of ρ FRB(z) and LF. Comparing the predictions with the observations, we show that the cumulative distribution of apparent fluences suggests that FRBs originate at cosmological distances and ρ FRB increases with redshift resembling the cosmic star formation history (CSFH). We also show that an LF model with a bright-end cutoff at log10 L ν (erg s‑1 Hz‑1) ∼ 34 are favored to reproduce the observed DM distribution if ρ FRB(z) ∝ CSFH, although the statistical significance of the constraints obtained with the current size of the observed sample is not high. Finally, we find that the correlation between DM and flux density of FRBs is potentially a powerful tool to distinguish whether FRBs are at cosmological distances or in the local universe more robustly with future observations.
Plasma in Saturn's Nightside Magnetosphere and the Implications for Global Circulation
NASA Technical Reports Server (NTRS)
McAndrews, H.J.; Thomsen, M.F.; Arridge, C.S.; Jackman, C.M.; Wilson, R.J.; Henderson, M.G.; Tokar, R.L.; Khurana, K.K.; Sittler, E. C.; Coates, A.J.;
2009-01-01
We present a bulk ion flow map from the nightside, equatorial region of Saturn's magnetosphere derived from the Cassini CAPS ion mass spectrometer data. The map clearly demonstrates the dominance of corotation flow over radial flow and suggests that the flux tubes sampled are still closed and attached to the planet up to distances of 50RS. The plasma characteristics in the near-midnight region are described and indicate a transition between the region of the magnetosphere containing plasma on closed drift paths and that containing flux tubes which may not complete a full rotation around the planet. Data from the electron spectrometer reveal two plasma states of high and low density. These are attributed either to the sampling of mass-loaded and depleted flux tubes, respectively, or to the latitudinal structure of the plasma sheet. Depleted, returning flux tubes are not, in general, directly observed in the ions, although the electron observations suggest that such a process must take place in order to produce the low-density population. Flux-tube content is conserved below a limit defined by the mass-loading and magnetic field strength and indicates that the flux tubes sampled may survive their passage through the tail. The conditions for mass-release are evaluated using measured densities, angular velocities and magnetic field strength. The results suggest that for the relatively dense ion populations detectable by the ion mass spectrometer (IMS), the condition for flux-tube breakage has not yet been exceeded. However, the low-density regimes observed in the electron data suggest that loaded flux tubes at greater distances do exceed the threshold for mass-loss and subsequently return to the inner magnetosphere significantly depleted of plasma.
Observations of low-energy electrons upstream of the earth's bow shock
NASA Technical Reports Server (NTRS)
Reasoner, D. L.
1974-01-01
Observations of electron fluxes with a lunar-based electron spectrometer when the moon was upstream of the earth have shown that a subset of observed fluxes are strongly controlled by the interplanetary magnetic field direction. The fluxes occur only when the IMF lines connect back to the earth's bow shock. Observed densities and temperatures were in the ranges 2-4 x 0,001/cu cm and 1.7-2.8 x 1,000,000 K. It is shown that these electrons can account for increases in effective solar wind electron temperatures on bow-shock connected field lines which have been observed previously by other investigators. It is further shown that if a model of the bow shock with an electrostatic potential barrier is assumed, the potential can be estimated to be 500 volts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lü, B.; Münger, E. P.; Sarakinos, K.
The morphology and physical properties of thin films deposited by vapor condensation on solid surfaces are predominantly set by the processes of island nucleation, growth, and coalescence. When deposition is performed using pulsed vapor fluxes, three distinct nucleation regimes are known to exist depending on the temporal profile of the flux. These regimes can be accessed by tuning deposition conditions; however, their effect on film microstructure becomes marginal when coalescence sets in and erases morphological features obtained during nucleation. By preventing coalescence from being completed, these nucleation regimes can be used to control microstructure evolution and thus access a largermore » palette of film morphological features. Recently, we derived the quantitative criterion to stop coalescence during continuous metal vapor flux deposition on insulating surfaces—which typically yields 3-dimensional growth—by describing analytically the competition between island growth by atomic incorporation and the coalescence rate of islands [Lü et al., Appl. Phys. Lett. 105, 163107 (2014)]. Here, we develop the analytical framework for entering a coalescence-free growth regime for metal vapor deposition on insulating substrates using pulsed vapor fluxes, showing that there exist three distinct criteria for suppressing coalescence that correspond to the three nucleation regimes of pulsed vapor flux deposition. The theoretical framework developed herein is substantiated by kinetic Monte Carlo growth simulations. Our findings highlight the possibility of using atomistic nucleation theory for pulsed vapor deposition to control morphology of thin films beyond the point of island density saturation.« less
Flux canceling in three-dimensional radiative magnetohydrodynamic simulations
NASA Astrophysics Data System (ADS)
Thaler, Irina; Spruit, H. C.
2017-05-01
We aim to study the processes involved in the disappearance of magnetic flux between regions of opposite polarity on the solar surface using realistic three-dimensional (3D) magnetohydrodynamic (MHD) simulations. "Retraction" below the surface driven by magnetic forces is found to be a very effective mechanism of flux canceling of opposite polarities. The speed at which flux disappears increases strongly with initial mean flux density. In agreement with existing inferences from observations we suggest that this is a key process of flux disappearance within active complexes. Intrinsic kG strength concentrations connect the surface to deeper layers by magnetic forces, and therefore the influence of deeper layers on the flux canceling process is studied. We do this by comparing simulations extending to different depths. For average flux densities of 50 G, and on length scales on the order of 3 Mm in the horizontal and 10 Mm in depth, deeper layers appear to have only a mild influence on the effective rate of diffusion.
The Solar Flux Dependence of Ionospheric 150 km Radar Echoes and Implications
NASA Astrophysics Data System (ADS)
Patra, A. K.; Pavan Chaitanya, P.; St.-Maurice, J.-P.; Otsuka, Y.; Yokoyama, T.; Yamamoto, M.
2017-11-01
Radar echoes from the daytime equatorial ionospheric F1 region, popularly known as "150 km echoes," have challenged ionospheric plasma physicists for several decades. Recent theoretical simulations showed that enhanced photoelectron fluxes can amplify the amplitude of plasma waves, generating spectra similar to those of the radar echoes, implying that larger solar fluxes should produce more frequent and stronger 150 km echoes. Inspired by this proposal, we studied the occurrence and intensity dependence of the echoes on the EUV flux observed by SOHO over several years. The occurrence and intensity of the echoes were found to have an inverse relationship with this EUV flux measurement. The multiyear trend is independent of the variability often observed over successive days with nearly identical EUV fluxes. These results imply that the relationship between the echoes and EUV flux is more complex. We propose that gravity waves modulate the amplitude of 150 km echoes through changes in the variations in plasma density and photoelectron fluxes associated with the gravity wave-induced neutral density modulations.
NASA Astrophysics Data System (ADS)
Zhang, Pingping; Yin, Ruochun; Chen, Zhiyou; Wu, Lifang; Yu, Zengliang
2007-04-01
The effects of superconducting static magnetic fields (SMFs) on the pollen mother cells (PMCs) of wheat were investigated in order to evaluate the possible genotoxic effect of such non-ionizing radiation. The seeds of wheat were exposed to static magnetic fields with either different magnetic flux densities (0, 1, 3, 5 and 7 Tesla) for 5 h or different durations (1, 3 and 5 h) at a magnetic flux density of 7 Tesla. The seeds were germinated at 23oC after exposure and the seedlings were transplanted into the field. The PMCs from young wheat ears were taken and slides were made following the conventional method. The genotoxic effect was evaluated in terms of micronucleus (MN), chromosomal bridge, lagging chromosome and fragments in PMCs. Although the exposed groups of a low field intensity (below 5 Tesla) showed no statistically significant difference in the aberration frequency compared with the unexposed control groups and sham exposed groups, a significant increase in the chromosomal bridge, lagging chromosome, triple-polar segregation or micronucleus was observed at a field strength of 5 Tesla or 7 Tesla, respectively. The analysis of dose-effect relationships indicated that the increased frequency of meiotic abnormal cells correlated with the flux density of the magnetic field and duration, but no linear relationship was observed. Such statistically significant differences indicated a potential genotoxic effect of high static magnetic fields above 5 T.
Concerning neutral flux shielding in the U-3M torsatron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dreval, N. B., E-mail: mdreval@kipt.kharkov.ua
2015-03-15
The volume of the torsatron U-3M vacuum chamber is about 70 m{sup 3}, whereas the plasma volume is about 0.3 m{sup 3}. The large buffer volume of the chamber serves as a source of a substantial neutral flux into the U-3M plasma. A fraction of this flux falls onto the torsatron helical coils located in front of the plasma, due to which the dynamics of neutral influx into the plasma modifies. The shielding of the molecular flux from the buffer volume into the plasma is estimated using numerical calculations. Only about 10% of the incident flux reaches the plasma volume.more » Estimates show that about 20% of atoms escape beyond the helical coils without colliding with them. Under these conditions, the helical coils substantially affect the neutral flux. A discharge regime with a hot low-density plasma produced by a frame antenna is considered. The spatial distribution of the molecular density produced in this regime by the molecular flux from the chamber buffer volume after it has passed between the helical coils is calculated. The contributions of the fluxes emerging from the side and inner surfaces of the helical coils are considered. The calculations show that the shape of the spatial distribution of the molecular density differs substantially from the shape of the magnetic surfaces.« less
Impact of Te and ne on edge current density profiles in ELM mitigated regimes on ASDEX Upgrade
NASA Astrophysics Data System (ADS)
Dunne, M. G.; Rathgeber, S.; Burckhart, A.; Fischer, R.; Giannone, L.; McCarthy, P. J.; Schneider, P. A.; Wolfrum, E.; the ASDEX Upgrade Team
2015-01-01
ELM resolved edge current density profiles are reconstructed using the CLISTE equilibrium code. As input, highly spatially and temporally resolved edge electron temperature and density profiles are used in addition to data from the extensive set of external poloidal field measurements available at ASDEX Upgrade, flux loop difference measurements, and current measurements in the scrape-off layer. Both the local and flux surface averaged current density profiles are analysed for several ELM mitigation regimes. The focus throughout is on the impact of altered temperature and density profiles on the current density. In particular, many ELM mitigation regimes rely on operation at high density. Two reference plasmas with type-I ELMs are analysed, one with a deuterium gas puff and one without, in order to provide a reference for the behaviour in type-II ELMy regimes and high density ELM mitigation with external magnetic perturbations at ASDEX Upgrade. For type-II ELMs it is found that while a similar pedestal top pressure is sustained at the higher density, the temperature gradient decreases in the pedestal. This results in lower local and flux surface averaged current densities in these phases, which reduces the drive for the peeling mode. No significant differences between the current density measured in the type-I phase and ELM mitigated phase is seen when external perturbations are applied, though the pedestal top density was increased. Finally, ELMs during the nitrogen seeded phase of a high performance discharge are analysed and compared to ELMs in the reference phase. An increased pedestal pressure gradient, which is the source of confinement improvement in impurity seeded discharges, causes a local current density increase. However, the increased Zeff in the pedestal acts to reduce the flux surface averaged current density. This dichotomy, which is not observed in other mitigation regimes, could act to stabilize both the ballooning mode and the peeling mode at the same time.
NASA Astrophysics Data System (ADS)
Feng, W.; Wang, L.; Rack, M.; Liang, Y.; Guo, H. Y.; Xu, G. S.; Xu, J. C.; Liu, J. B.; Sun, Y. W.; Jia, M. N.; Yang, Q. Q.; Zhang, B.; Zou, X. L.; Liu, H.; Zhang, T.; Ding, F.; Chen, J. B.; Duan, Y. M.; Zheng, X. W.; Dai, S. Y.; Deng, G. Z.; Chen, R.; Hu, G. H.; Yan, N.; Si, H.; Liu, S. C.; Xu, S.; Wang, M.; Li, M. H.; Ding, B. J.; Wingen, A.; Huang, J.; Gao, X.; Luo, G. N.; Gong, X. Z.; Garofalo, A. M.; Li, J.; Wan, B. N.; the EAST Team
2017-12-01
Three dimensional (3D) divertor particle flux footprints induced by the lower hybrid wave (LHW) have been systematically investigated in the EAST superconducting tokamak during the recent experimental campaign. We find that the striated particle flux (SPF) peaks away from the strike point (SP) closely fit the pitch of the edge magnetic field line for different safety factors q 95, as predicted by a field line tracing code taking into account the helical current filaments (HCFs) in the scrape-off-layer (SOL). As LHW power increases, it requires the fuelling to be increased e.g. by super molecular beam injection (SMBI), to maintain a similar plasma density, which may be attributed to the pump-out effect due to LHW, and may thus be beneficial for EAST steady state operations. The 3D SPF structure is observed with a LHW power threshold (P LHW ~ 0.9 MW). The ratio of the particle fluxes between SPF and outer strike point (OSP), i.e. {{Γ }ion,SPF}/{{Γ }ion,OSP} , increases with the LHW power. Upon transition to divertor detachment, the particle flux at the main OSP decreases, as expected, however, the particle flux at SPF continues increasing, in contrast to the RMP-induced striations that vanish with increasing divertor density. In addition, we also find that the in-out asymmetry of the 3D particle flux footprint pattern exhibits a clear dependence on the toroidal field direction (B × ∇ B ↓ and B × ∇ B↑). Experiments using neon impurity seeding show a promising capability in 3D particle and heat flux control on EAST. LHW-induced particle and heat flux striations are also present in the H-mode plasmas, reducing the peak heat flux and erosion at the main strike point, thus facilitating long-pulse operation with a new steady-state H-mode over 60 s being recently achieved in EAST.
Particle-In-Cell simulation concerning heat-flux mitigation using electromagnetic fields
NASA Astrophysics Data System (ADS)
Lüskow, Karl Felix; Duras, Julia; Kemnitz, Stefan; Kahnfeld, Daniel; Matthias, Paul; Bandelow, Gunnas; Schneider, Ralf; Konigorski, Detlev
2016-10-01
In space missions enormous amount of money is spent for the thermal protection system for re-entry. To avoid complex materials and save money one idea is to reduce the heat-flux towards the spacecraft. The partially-ionized gas can be controlled by electromagnetic fields. For first-principle tests partially ionized argon flow from an arc-jet was used to measure the heat-flux mitigation created by an external magnetic field. In the successful experiment a reduction of 85% was measured. In this work the Particle-in-Cell (PIC) method was used to simulate this experiment. PIC is able to reproduce the heat flux mitigation qualitatively. The main mechanism is identified as a changed electron transport and by this, modified electron density due to the reaction to the applied magnetic field. Ions follow due to quasi-neutrality and influence then strongly by charge exchange collisions the neutrals dynamics and heat deposition. This work was supported by the German Space Agency DLR through Project 50RS1508.
Fuchsjäger-Mayrl, Gabriele; Malec, Magdalena; Polska, Elzbieta; Jilma, Bernd; Wolzt, Michael; Schmetterer, Leopold
2002-05-01
The blue-field entoptic technique was introduced more than 20 years ago to quantify perimacular white blood cell flux. However, a final confirmation that the perceived corpuscles represent leukocytes is still unavailable. The study design was randomized, placebo-controlled, and double masked with two parallel groups. Fifteen healthy male subjects received a single dose of granulocyte colony stimulating factor (G-CSF, 300 microg) and 15 other subjects received placebo. The following parameters were assessed at baseline and at 12 minutes and 8 hours after administration: retinal white blood cell flux, with the blue-field entoptic technique; retinal blood velocities, with bidirectional laser Doppler velocimetry; retinal venous diameter determined with a retinal vessel analyzer; and blood pressure and pulse rate determined by automated oscillometry and pulse oxymetry, respectively. After 12 minutes, G-CSF reduced total leukocyte count from 5.5 +/- 1.4 10(9)/L at baseline to 1.9 +/- 0.4 10(9)/L. This was paralleled by a 35% +/- 11% decrease in retinal white blood cell density. After 8 hours G-CSF increased total leukocyte counts to 20.0 +/- 4.4 10(9)/L. Again, this increase in circulating leukocytes was reflected by an increase in retinal white blood cell density (110% +/- 48%). All effects were significant at P < 0.001. By contrast, none of the other hemodynamic parameters was changed by administration of G-CSF. The results clearly indicate that the blue-field entoptic technique assesses leukocyte movement in the perimacular capillaries of the retina. Moreover, white blood cell density appears to adequately reflect the number of circulating leukocytes within the retinal microvasculature. Hence, an increase in retinal white blood cell density does not necessarily reflect retinal vasodilatation.
Influence of field dependent critical current density on flux profiles in high Tc superconductors
NASA Technical Reports Server (NTRS)
Takacs, S.
1990-01-01
The field distribution for superconducting cylinders and slabs with field dependent critical current densities in combined DC and AC magnetic fields and the corresponding magnetic fluxes are calculated. It is shown that all features of experimental magnetic-field profile measurements can be explained in the framework of field dependent critical current density. Even the quantitative agreement between the experimental and theoretical results using Kim's model is very good.
Saturated ferromagnetism from statistical transmutation in two dimensions.
Saiga, Yasuhiro; Oshikawa, Masaki
2006-01-27
The total spin of the ground state is calculated in the U-->infinity Hubbard model with uniform magnetic flux perpendicular to a square lattice, in the absence of Zeeman coupling. It is found that the saturated ferromagnetism emerges in a rather wide region in the space of the flux density phi and the electron density ne. In particular, the saturated ferromagnetism at phi=ne is induced by the formation of a spin-1/2 boson, which is a composite of an electron and the unit flux quantum.
Linking lowermost mantle structure, core-mantle boundary heat flux and mantle plume formation
NASA Astrophysics Data System (ADS)
Li, Mingming; Zhong, Shijie; Olson, Peter
2018-04-01
The dynamics of Earth's lowermost mantle exert significant control on the formation of mantle plumes and the core-mantle boundary (CMB) heat flux. However, it is not clear if and how the variation of CMB heat flux and mantle plume activity are related. Here, we perform geodynamic model experiments that show how temporal variations in CMB heat flux and pulses of mantle plumes are related to morphologic changes of the thermochemical piles of large-scale compositional heterogeneities in Earth's lowermost mantle, represented by the large low shear velocity provinces (LLSVPs). We find good correlation between the morphologic changes of the thermochemical piles and the time variation of CMB heat flux. The morphology of the thermochemical piles is significantly altered during the initiation and ascent of strong mantle plumes, and the changes in pile morphology cause variations in the local and the total CMB heat flux. Our modeling results indicate that plume-induced episodic variations of CMB heat flux link geomagnetic superchrons to pulses of surface volcanism, although the relative timing of these two phenomena remains problematic. We also find that the density distribution in thermochemical piles is heterogeneous, and that the piles are denser on average than the surrounding mantle when both thermal and chemical effects are included.
Double-cavity radiometer for high-flux density solar radiation measurements.
Parretta, A; Antonini, A; Armani, M; Nenna, G; Flaminio, G; Pellegrino, M
2007-04-20
A radiometric method has been developed, suitable for both total power and flux density profile measurement of concentrated solar radiation. The high-flux density radiation is collected by a first optical cavity, integrated, and driven to a second optical cavity, where, attenuated, it is measured by a conventional radiometer operating under a stationary irradiation regime. The attenuation factor is regulated by properly selecting the aperture areas in the two cavities. The radiometer has been calibrated by a pulsed solar simulator at concentration levels of hundreds of suns. An optical model and a ray-tracing study have also been developed and validated, by which the potentialities of the radiometer have been largely explored.
Coordinated observations of PHEMU at radio wavelengths.
NASA Astrophysics Data System (ADS)
Pluchino, S.; Schillirò, F.; Salerno, E.; Pupillo, G.; Kraus, A.; Mack, K.-H.
We present preliminary results for our study of mutual phenomena of the Galilean satellites performed at radio wavelengths with the Medicina and Noto antennas of the Istituto di Radioastronomia \\textendash{} INAF, and with the Effelsberg 100-m radio telescope of the Max-Planck-Institute for Radioastronomy. Measurements of the radio flux density variation occurred during the mutual occultations of Io by Europa and Ganymede were carried out during the PHEMU09 campaign at K- and Q-band. Flux density variations observed for the first time at radio wavelengths are consistent with the typical optical patterns measured when partial occultations occurred. The flux density drops indicate a non-linear dependence with the percentage of overlapped area.
VizieR Online Data Catalog: [U]LIRGs - on the trail of AGN's types (Malek+, 2017)
NASA Astrophysics Data System (ADS)
Malek, K.; Bankowicz, M.; Pollo, A.; Takeuchi, T. T.; Buat, V.; Burgarella, D.; Goto, T.; Malkan, M.
2016-11-01
Identifications and photometric flux densities in all available wavelengths for 39 [U]LIRGs found in the ADF-S survey. All 39 sources for which a counterpart in the 40" radius on the sky has been found in the public databases are listed. The serial ADF-S number, ADF-S coordinates, redshift and fluxes (in four far-infrared (FIR) AKARI bands (65, 90, 140 and 160um), as well as photometric fluxes densities and uncertainties for 16 more bands spanning spectra from FUV (GALEX) to FIR (Herschel/SPIRE) are given for each source. Flux value set to "---" represents unknown value. (1 data file).
STELLTRANS: A Transport Analysis Suite for Stellarators
NASA Astrophysics Data System (ADS)
Mittelstaedt, Joseph; Lazerson, Samuel; Pablant, Novimir; Weir, Gavin; W7-X Team
2016-10-01
The stellarator transport code STELLTRANS allows us to better analyze the power balance in W7-X. Although profiles of temperature and density are measured experimentally, geometrical factors are needed in conjunction with these measurements to properly analyze heat flux densities in stellarators. The STELLTRANS code interfaces with VMEC to find an equilibrium flux surface configuration and with TRAVIS to determine the RF heating and current drive in the plasma. Stationary transport equations are then considered which are solved using a boundary value differential equation solver. The equations and quantities considered are averaged over flux surfaces to reduce the system to an essentially one dimensional problem. We have applied this code to data from W-7X and were able to calculate the heat flux coefficients. We will also present extensions of the code to a predictive capacity which would utilize DKES to find neoclassical transport coefficients to update the temperature and density profiles.
Eddy Covariance Measurements of Methane Flux Using an Open-Path Gas Analyzer
NASA Astrophysics Data System (ADS)
Burba, G.; Anderson, T.; Zona, D.; Schedlbauer, J.; Anderson, D.; Eckles, R.; Hastings, S.; Ikawa, H.; McDermitt, D.; Oberbauer, S.; Oechel, W.; Riensche, B.; Starr, G.; Sturtevant, C.; Xu, L.
2008-12-01
Methane is an important greenhouse gas with a warming potential of about 23 times that of carbon dioxide over a 100-year cycle (Houghton et al., 2001). Measurements of methane fluxes from the terrestrial biosphere have mostly been made using flux chambers, which have many advantages, but are discrete in time and space and may disturb surface integrity and air pressure. Open-path analyzers offer a number of advantages for measuring methane fluxes, including undisturbed in- situ flux measurements, spatial integration using the Eddy Covariance approach, zero frequency response errors due to tube attenuation, confident water and thermal density terms from co-located fast measurements of water and sonic temperature, and remote deployment due to lower power demands in the absence of a pump. The prototype open-path methane analyzer is a VCSEL (vertical-cavity surface-emitting laser)-based instrument. It employs an open Herriott cell and measures levels of methane with RMS noise below 6 ppb at 10 Hz sampling in controlled laboratory environment. Field maintenance is minimized by a self-cleaning mechanism to keep the lower mirror free of contamination. Eddy Covariance measurements of methane flux using the prototype open-path methane analyzer are presented for the period between 2006 and 2008 in three ecosystems with contrasting weather and moisture conditions: (1) Fluxes over a short-hydroperiod sawgrass wetland in the Florida Everglades were measured in a warm and humid environment with temperatures often exceeding 25oC, variable winds, and frequent heavy dew at night; (2) Fluxes over coastal wetlands in an Arctic tundra were measured in an environment with frequent sub-zero temperatures, moderate winds, and ocean mist; (3) Fluxes over pacific mangroves in Mexico were measured in an environment with moderate air temperatures high winds, and sea spray. Presented eddy covariance flux data were collected from a co-located prototype open-path methane analyzer, LI-7500, and sonic anemometer at a 10 Hz rate. Data were processed using EdiRe software following standard FluxNet methodology, including stationarity tests, frequency response, and Webb- Pearman-Leuning density terms. Further details are provided in the extended conference paper at: ftp://ftp.licor.com/public/GBurba/AGU LI- 7700 Paper-2008.pdf
Koller, Anja Pia; Löwe, Hannes; Schmid, Verena; Mundt, Sabine; Weuster-Botz, Dirk
2017-02-01
Light-dependent growth of microalgae can vary remarkably depending on the cultivation system and microalgal strain. Cell size and the pigmentation of each strain, as well as reactor geometry have a great impact on absorption and scattering behavior within a photobioreactor. In this study, the light-dependent, cell-specific growth kinetics of a novel green algae isolate, Scenedesmus obtusiusculus, was studied in a LED-illuminated flat-plate photobioreactor on a lab-scale (1.8 L, 0.09 m 2 ). First, pH-controlled batch processes were performed with S. obtusiusculus at different constant incident photon flux densities. The best performance was achieved by illuminating S. obtusiusculus with 1400 μmol photons m -2 s -1 at the surface of the flat-plate photobioreactor, resulting in the highest biomass concentration (4.95 ± 0.16 g CDW L -1 within 3.5 d) and the highest specific growth rate (0.22 h -1 ). The experimental data were used to identify the kinetic parameters of different growth models considering light inhibition for S. obtusiusculus. Light attenuation within the flat-plate photobioreactor was considered by varying light transfer models. Based on the identified kinetic growth model of S. obtusiusculus, an optimum growth rate of 0.22 h -1 was estimated at a mean integral photon flux density of 1072 μmol photons m -2 s -1 with the Beer-Lambert law and 1590 μmol photons m -2 s -1 with Schuster's light transfer model in the flat-plate photobioreactor. LED illumination was, thus, increased to keep the identified optimum mean integral photon flux density constant in the batch process assuming Schuster's light transfer model. Compared to the same constant incident photon flux density (1590 μmol photons m -2 s -1 ), biomass concentration was up to 24% higher using the lighting profile until a dry cell mass concentration of 14.4 ± 1.4 g CDW L -1 was reached. Afterward, the biomass concentration remained constant, whereas cell growth continued in the batch process with constant incident photon flux density. Finally, biomass concentration was 15.5 ± 1.5 g CDW L -1 and, thus, 7% higher compared to the corresponding batch process with lighting profile. Biotechnol. Bioeng. 2017;114: 308-320. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Dynamics of photosynthetic photon flux density (PPFD) and estimates in coastal northern California
USDA-ARS?s Scientific Manuscript database
The seasonal trends and diurnal patterns of Photosynthetically Active Radiation (PAR) were investigated in the San Francisco Bay Area of Northern California from March through August in 2007 and 2008. During these periods, the daily values of PAR flux density (PFD), energy loading with PAR (PARE), a...
NASA Technical Reports Server (NTRS)
Weaver, W. L.; Green, R. N.
1980-01-01
Geometric shape factors were computed and applied to satellite simulated irradiance measurements to estimate Earth emitted flux densities for global and zonal scales and for areas smaller than the detector field of view (FOV). Wide field of view flat plate detectors were emphasized, but spherical detectors were also studied. The radiation field was modeled after data from the Nimbus 2 and 3 satellites. At a satellite altitude of 600 km, zonal estimates were in error 1.0 to 1.2 percent and global estimates were in error less than 0.2 percent. Estimates with unrestricted field of view (UFOV) detectors were about the same for Lambertian and limb darkening radiation models. The opposite was found for restricted field of view detectors. The UFOV detectors are found to be poor estimators of flux density from the total FOV and are shown to be much better as estimators of flux density from a circle centered at the FOV with an area significantly smaller than that for the total FOV.
NASA Astrophysics Data System (ADS)
Yao, Atsushi; Inoue, Masaki; Tsukada, Kouhei; Fujisaki, Keisuke
2018-05-01
This paper focuses on an evaluation of core losses in laminated magnetic block cores assembled with a high Bs nanocrystalline alloy in high magnetic flux density region. To discuss the soft magnetic properties of the high Bs block cores, the comparison with amorphous (SA1) block cores is also performed. In the high Bs block core, both low core losses and high saturation flux densities Bs are satisfied in the low frequency region. Furthermore, in the laminated block core made of the high Bs alloy, the rate of increase of iron losses as a function of the magnetic flux density remains small up to around 1.6 T, which cannot be realized in conventional laminated block cores based on amorphous alloy. The block core made of the high Bs alloy exhibits comparable core loss with that of amorphous alloy core in the high-frequency region. Thus, it is expected that this laminated high Bs block core can achieve low core losses and high saturation flux densities in the high-frequency region.
Forcing of the Coupled Ionosphere-Thermosphere (IT) System During Magnetic Storms
NASA Technical Reports Server (NTRS)
Huang, Cheryl; Huang, Yanshi; Su, Yi-Jiun; Sutton, Eric; Hairston, Marc; Coley, W. Robin; Doornbos, Eelco; Zhang, Yongliang
2014-01-01
Poynting flux shows peaks around auroral zone AND inside polar cap. Energy enters IT system at all local times in polar cap. Track-integrated flux at DMSP often peaks at polar latitudes- probably due to increased area of polar cap during storm main phases. center dot lon temperatures at DMSP show large increases in polar region at all local times; cusp and auroral zones do not show distinctively high Ti. center dot I on temperatures in the polar cap are higher than in the auroral zones during quiet times. center dot Neutral densities at GRACE and GOCE show maxima at polar latitudes without clear auroral signatures. Response is fast, minutes from onset to density peaks. center dot GUVI observations of O/N2 ratio during storms show similar response as direct measurements of ion and neutral densities, i.e. high temperatures in polar cap during prestorm quiet period, heating proceeding from polar cap to lower latitudes during storm main phase. center dot Discrepancy between maps of Poynting flux and of ion temperatures/neutral densities suggests that connection between Poynting flux and Joule heating is not simple.
Apex Dips of Experimental Flux Ropes: Helix or Cusp?
NASA Astrophysics Data System (ADS)
Haw, Magnus; Wongwaitayakornkul, Pakorn; Li, Hui; Li, Shengtai; Bellan, Paul M.
2017-10-01
We present a new theory for the presence of apex dips in certain experimental flux ropes. Previously such dips were thought to be projections of a helical loop axis generated by the kink instability. However, new evidence from experiments and simulations suggest that the feature is a 2D cusp rather than a 3D helix. The proposed mechanism for cusp formation is a density pileup region generated by nonlinear interaction of neutral gas cones emitted from fast-gas nozzles. The results indicate that small density perturbations can result in large distortions of an erupting flux rope, even in the absence of significant pressure or gravity forces. The density pileup at the apex also suppresses the m=1 kink mode by acting as a stationary node. Consequently, more accurate density profiles should be considered when attempting to precisely model the stability and eruption of solar flux ropes such as CME's. This work was supported by NSF under award 1348393, AFOSR under award FA9550-11-1-0184, and DOE under awards DE-FG02-04ER54755 and DE-SC0010471.
Low frequency spectra of type III solar radio bursts
NASA Technical Reports Server (NTRS)
Weber, R. R.
1978-01-01
Flux density spectra have been determined for 91 simple type III solar bursts observed by the Goddard Space Flight Center radio astronomy experiment on the IMP-6 spacecraft during 1971 and 1972. Spectral peaks were found to occur at frequencies ranging from 44 kHz up to 2500 kHz. Half of the bursts peaked between 250 kHz and 900 kHz, corresponding to emission at solar distances of about 0.3 to 0.1 AU. Maximum burst flux density sometimes exceeds 10 to the -14th W/sq m/Hz. The primary factor controlling the spectral peak frequency of these bursts appears to be a variation in intrinsic power radiated by the source as the exciter moves outward from the sun, rather than radio propagation effects between the source and IMP-6. Thus, a burst spectrum strongly reflects the evolution of the properties of the exciting electron beam, and according to current theory, beam deceleration could help account for the observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyer, L.; Witzel, G.; Ghez, A. M.
2014-08-10
Continuously time variable sources are often characterized by their power spectral density and flux distribution. These quantities can undergo dramatic changes over time if the underlying physical processes change. However, some changes can be subtle and not distinguishable using standard statistical approaches. Here, we report a methodology that aims to identify distinct but similar states of time variability. We apply this method to the Galactic supermassive black hole, where 2.2 μm flux is observed from a source associated with Sgr A* and where two distinct states have recently been suggested. Our approach is taken from mathematical finance and works withmore » conditional flux density distributions that depend on the previous flux value. The discrete, unobserved (hidden) state variable is modeled as a stochastic process and the transition probabilities are inferred from the flux density time series. Using the most comprehensive data set to date, in which all Keck and a majority of the publicly available Very Large Telescope data have been merged, we show that Sgr A* is sufficiently described by a single intrinsic state. However, the observed flux densities exhibit two states: noise dominated and source dominated. Our methodology reported here will prove extremely useful to assess the effects of the putative gas cloud G2 that is on its way toward the black hole and might create a new state of variability.« less
NASA Astrophysics Data System (ADS)
Guo, Minghuan; Wang, Zhifeng; Sun, Feihu
2016-05-01
The optical efficiencies of a solar trough concentrator are important to the whole thermal performance of the solar collector, and the outer surface of the tube absorber is a key interface of energy flux. So it is necessary to simulate and analyze the concentrated solar flux density distributions on the tube absorber of a parabolic trough solar collector for various sun beam incident angles, with main optical errors considered. Since the solar trough concentrators are linear focusing, it is much of interest to investigate the solar flux density distribution on the cross-section profile of the tube absorber, rather than the flux density distribution along the focal line direction. Although a few integral approaches based on the "solar cone" concept were developed to compute the concentrated flux density for some simple trough concentrator geometries, all those integral approaches needed special integration routines, meanwhile, the optical parameters and geometrical properties of collectors also couldn't be changed conveniently. Flexible Monte Carlo ray trace (MCRT) methods are widely used to simulate the more accurate concentrated flux density distribution for compound parabolic solar trough concentrators, while generally they are quite time consuming. In this paper, we first mainly introduce a new backward ray tracing (BRT) method combined with the lumped effective solar cone, to simulate the cross-section flux density on the region of interest of the tube absorber. For BRT, bundles of rays are launched at absorber-surface points of interest, directly go through the glass cover of the absorber, strike on the uniformly sampled mirror segment centers in the close-related surface region of the parabolic reflector, and then direct to the effective solar cone around the incident sun beam direction after the virtual backward reflection. All the optical errors are convoluted into the effective solar cone. The brightness distribution of the effective solar cone is supposed to be circular Gaussian type. Then a parabolic trough solar collector of Euro Trough 150 is used as an example object to apply this BRT method. Euro Trough 150 is composed of RP3 mirror facets, with the focal length of 1.71m, aperture width of 5.77m, outer tube diameter of 0.07m. Also to verify the simulated flux density distributions, we establish a modified MCRT method. For this modified MCRT method, the random rays with weighted energy elements are launched in the close-related rectangle region in the aperture plane of the parabolic concentrator and the optical errors are statistically modeled in the stages of forward ray tracing process. Given the same concentrator geometric parameters and optical error values, the simulated results from these two ray tracing methods are in good consistence. The two highlights of this paper are the new optical simulation method, BRT, and figuring out the close-related mirror surface region for BRT and the close-related aperture region for MCRT in advance to effectively simulate the solar flux distribution on the absorber surface of a parabolic trough collector.
Oil Palm and Rubber Tree Water Use Patterns: Effects of Topography and Flooding
Hardanto, Afik; Röll, Alexander; Niu, Furong; Meijide, Ana; Hendrayanto; Hölscher, Dirk
2017-01-01
Oil palm and rubber plantations extend over large areas and encompass heterogeneous site conditions. In periods of high rainfall, plants in valleys and at riparian sites are more prone to flooding than plants at elevated topographic positions. We asked to what extent topographic position and flooding affect oil palm and rubber tree water use patterns and thereby influence spatial and temporal heterogeneity of transpiration. In an undulating terrain in the lowlands of Jambi, Indonesia, plantations of the two species were studied in plot pairs consisting of upland and adjacent valley plots. All upland plots were non-flooded, whereas the corresponding valley plots included non-flooded, long-term flooded, and short-term flooded conditions. Within each plot pair, sap flux densities in palms or trees were monitored simultaneously with thermal dissipation probes. In plot pairs with non-flooded valleys, sap flux densities of oil palms were only slightly different between the topographic positions, whereas sap flux densities of rubber trees were higher in the valley than at the according upland site. In pairs with long-term flooded valleys, sap flux densities in valleys were lower than at upland plots for both species, but the reduction was far less pronounced in oil palms than in rubber trees (-22 and -45% in maximum sap flux density, respectively). At these long-term flooded valley plots palm and tree water use also responded less sensitively to fluctuations in micrometeorological variables than at upland plots. In short-term flooded valley plots, sap flux densities of oil palm were hardly affected by flooding, but sap flux densities of rubber trees were reduced considerably. Topographic position and flooding thus affected water use patterns in both oil palms and rubber trees, but the changes in rubber trees were much more pronounced: compared to non-flooded upland sites, the different flooding conditions at valley sites amplified the observed heterogeneity of plot mean water use by a factor of 2.4 in oil palm and by a factor of 4.2 in rubber plantations. Such strong differences between species as well as the pronounced heterogeneity of water use across space and time may be of relevance for eco-hydrological assessments of tropical plantation landscapes. PMID:28421091
Energy density and energy flux in the focus of an optical vortex: reverse flux of light energy.
Kotlyar, Victor V; Kovalev, Alexey A; Nalimov, Anton G
2018-06-15
Using the Richards-Wolf formulas for an arbitrary circularly polarized optical vortex with an integer topological charge m, we obtain explicit expressions for all components of the electric and magnetic field strength vectors near the focus, as well as expressions for the intensity (energy density) and for the energy flux (components of the Poynting vector) in the focal plane of an aplanatic optical system. For m=2, from the obtained expressions it follows that the energy flux near the optical axis propagates in the reversed direction, rotating along a spiral around the optical axis. On the optical axis itself, the reversed flux is maximal and decays rapidly with the distance from the axis. For m=3, in contrast, the reversed energy flux in the focal plane is minimal (zero) on the optical axis and increases (until the first ring of the light intensity) as a squared distance from the axis.
NASA Astrophysics Data System (ADS)
Ferriere, Alain; Volut, Mikael; Perez, Antoine; Volut, Yann
2016-05-01
A flux mapping system has been designed, implemented and experimented at the top of the Themis solar tower in France. This system features a moving bar associated to a CCD video camera and a flux gauge mounted onto the bar used as reference measurement for calibration purpose. Images and flux signal are acquired separately. The paper describes the equipment and focus on the data processing to issue the distribution of flux density and concentration at the aperture of the solar receiver. Finally, the solar power entering into the receiver is estimated by integration of flux density. The processing is largely automated in the form of a dedicated software with fast execution. A special attention is paid to the accuracy of the results, to the robustness of the algorithm and to the velocity of the processing.
On the surface density of X-ray selected BL Lacertae objects
NASA Technical Reports Server (NTRS)
Maccacaro, T.; Gioia, I. M.; Maccagni, D.; Stocke, J. T.
1984-01-01
Only a handful of BL Lac objects have been found as a result of systematic optical identification of serendipitous Einstein X-ray sources. By combining the data from two flux-limited complete X-ray surveys (the HEAO 1 A-2 and the Einstein Observatory Medium Sensitivity Survey) the surface density of X-ray emitting BL Lac objects is evaluated as a function of their X-ray flux. It is found that a single power law is not an acceptable representation of the BL Lac objects' X-ray log N-log S. The number-flux relationship is consistent with the Euclidean slope at 'high' flux levels but shows a drastic flattnring below fluxes of the order of 10 to the -12th ergs per sq cm/s. The implications of this result are briefly discussed with respect to the luminosity function, the cosmological evolution, and the X-ray to optical flux ratio in BL Lac objects.
A Novel Transverse Flux Machine for Vehicle Traction Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wan, Zhao; Ahmed, Adeeb; Husain, Iqbal
2015-10-05
A novel transverse flux machine topology for electric vehicle traction application using ferrite magnets is presented in this paper. The proposed transverse flux topology utilizes novel magnet arrangements in the rotor that are similar to Halbach-array to boost flux linkage; on the stator side, cores are alternately arranged around a pair of ring windings in each phase to make use of the entire rotor flux that eliminates end windings. Analytical design considerations and finite element methods are used for an optimized design of a scooter in-wheel motor. Simulation results from Finite Element Analysis (FEA) show the motor achieved comparable torquemore » density to conventional rare-earth permanent magnet machines. This machine is a viable candidate for direct drive applications with low cost and high torque density.« less
Temporal and spatial distribution of metallic species in the upper atmosphere
NASA Astrophysics Data System (ADS)
Correira, John Thomas
2009-06-01
Every day the Earth is bombarded by approximately 100 tons of meteoric material. Much of this material is completely ablated on atmospheric entry, resulting in a layer of atomic metals in the upper atmosphere between 70 km - 150 km. These neutral atoms are ionized by solar radiation and charge exchange. Metal ions have a long lifetime against recombination loss, allowing them to be redistributed globally by electromagnetic forces, especially when lifted to altitudes >150 km. UV radiances from the Global Ozone Monitoring Experiment (GOME) spectrometer are used to determine long-term dayside variations of the total vertical column density below 795 km of the meteoric metal species Mg and Mg + in the upper atmosphere. A retrieval algorithm developed to determine magnesium column densities was applied to all available data from the years 1996-2001. Long term results show middle latitude dayside Mg + peaks in vertical content during the summer, while neutral Mg demonstrates a much more subtle maximum in summer. Atmospheric metal concentrations do not correlate strongly solar activity. An analysis of spatial variations shows geospatial distributions are patchy, with local regions of increased column density. To study short term variations and the role of meteor showers a time dependent mass flux rate is calculated using published estimates of meteor stream mass densities and activity profiles. An average daily mass flux rate is also calculated and used as a baseline against which shower mass flux rates are compared. These theoretical mass flux rates are then compared with GOME derived metal column densities. There appears to be little correlation between modeled meteor shower mass flux rates and changes in the observed neutral magnesium and Mg + metal column densities.
Optimization of multiply acquired magnetic flux density B(z) using ICNE-Multiecho train in MREIT.
Nam, Hyun Soo; Kwon, Oh In
2010-05-07
The aim of magnetic resonance electrical impedance tomography (MREIT) is to visualize the electrical properties, conductivity or current density of an object by injection of current. Recently, the prolonged data acquisition time when using the injected current nonlinear encoding (ICNE) method has been advantageous for measurement of magnetic flux density data, Bz, for MREIT in the signal-to-noise ratio (SNR). However, the ICNE method results in undesirable side artifacts, such as blurring, chemical shift and phase artifacts, due to the long data acquisition under an inhomogeneous static field. In this paper, we apply the ICNE method to a gradient and spin echo (GRASE) multi-echo train pulse sequence in order to provide the multiple k-space lines during a single RF pulse period. We analyze the SNR of the measured multiple B(z) data using the proposed ICNE-Multiecho MR pulse sequence. By determining a weighting factor for B(z) data in each of the echoes, an optimized inversion formula for the magnetic flux density data is proposed for the ICNE-Multiecho MR sequence. Using the ICNE-Multiecho method, the quality of the measured magnetic flux density is considerably increased by the injection of a long current through the echo train length and by optimization of the voxel-by-voxel noise level of the B(z) value. Agarose-gel phantom experiments have demonstrated fewer artifacts and a better SNR using the ICNE-Multiecho method. Experimenting with the brain of an anesthetized dog, we collected valuable echoes by taking into account the noise level of each of the echoes and determined B(z) data by determining optimized weighting factors for the multiply acquired magnetic flux density data.
NASA Astrophysics Data System (ADS)
Gibson, Andrew R.; Gans, Timo
2017-11-01
The charged particle dynamics in low-pressure oxygen plasmas excited by odd harmonic dual frequency waveforms (low frequency of 13.56 MHz and high frequency of 40.68 MHz) are investigated using a one-dimensional numerical simulation in regimes of both low and high electronegativity. In the low electronegativity regime, the time and space averaged electron and negative ion densities are approximately equal and plasma sustainment is dominated by ionisation at the sheath expansion for all combinations of low and high frequency and the phase shift between them. In the high electronegativity regime, the negative ion density is a factor of 15-20 greater than the low electronegativity cases. In these cases, plasma sustainment is dominated by ionisation inside the bulk plasma and at the collapsing sheath edge when the contribution of the high frequency to the overall voltage waveform is low. As the high frequency component contribution to the waveform increases, sheath expansion ionisation begins to dominate. It is found that the control of the average voltage drop across the plasma sheath and the average ion flux to the powered electrode are similar in both regimes of electronegativity, despite the differing electron dynamics using the considered dual frequency approach. This offers potential for similar control of ion dynamics under a range of process conditions, independent of the electronegativity. This is in contrast to ion control offered by electrically asymmetric waveforms where the relationship between the ion flux and ion bombardment energy is dependent upon the electronegativity.
Ider, Y Ziya; Onart, Serkan
2004-02-01
Magnetic resonance-electrical impedance tomography (MREIT) algorithms fall into two categories: those utilizing internal current density and those utilizing only one component of measured magnetic flux density. The latter group of algorithms have the advantage that the object does not have to be rotated in the magnetic resonance imaging (MRI) system. A new algorithm which uses only one component of measured magnetic flux density is developed. In this method, the imaging problem is formulated as the solution of a non-linear matrix equation which is solved iteratively to reconstruct resistivity. Numerical simulations are performed to test the algorithm both for noise-free and noisy cases. The uniqueness of the solution is monitored by looking at the singular value behavior of the matrix and it is shown that at least two current injection profiles are necessary. The method is also modified to handle region-of-interest reconstructions. In particular it is shown that, if the image of a certain xy-slice is sought for, then it suffices to measure the z-component of magnetic flux density up to a distance above and below that slice. The method is robust and has good convergence behavior for the simulation phantoms used.
DOC Dynamics in Small Headwater Streams: the Role of Hydrology, Climate, and Land Management
NASA Astrophysics Data System (ADS)
Lajtha, K.; Lee, B. S.; Jones, J. A.
2015-12-01
Dissolved organic carbon (DOC) is a critical component of the carbon (C) cycle of both terrestrial and aquatic systems. For small headwater allochthonous streams, terrestrial C delivery fuels the metabolism of receiving waters and significantly influences biotic diversity and function. While nutrient fluxes in streams have long been used as indicators of terrestrial ecosystem processes, less attention has been given to terrestrial controls on DOC export. We used the long-term stream chemistry records from the H.J. Andrews Forest LTER to examine forest management, climatic, and hydrologic controls on both seasonal and annual DOC fluxes. Within a watershed, annual DOC flux was highly related to annual discharge (Q), although considerable variability in higher discharge years suggested a role for indices of storminess, especially early in the water year. Among watersheds, younger, previously harvested watersheds generally had significantly lower DOC fluxes for a given Q than old-growth watersheds, even 4+ decades after harvest. The exception to this pattern was a harvested watershed that had significant downed wood retained on site, and had densities of coarse woody debris (CWD) close to that of the old-growth watersheds even though live tree biomass was similar to the other harvested watersheds. Other climatic factors did not appear to have significant roles in predicting either seasonal or annual fluxes of DOC. This is in sharp contrast to fluxes of nitrate at our site, which appears to be related most significantly to the presence of alder within the watershed. Taken together, our data suggest a persistent and cascading role for CWD in old-growth forest ecosystems.
Direct Identification of Dilute Surface Spins on Al2 O3 : Origin of Flux Noise in Quantum Circuits
NASA Astrophysics Data System (ADS)
de Graaf, S. E.; Adamyan, A. A.; Lindström, T.; Erts, D.; Kubatkin, S. E.; Tzalenchuk, A. Ya.; Danilov, A. V.
2017-02-01
An on-chip electron spin resonance technique is applied to reveal the nature and origin of surface spins on Al2 O3 . We measure a spin density of 2.2 ×1 017 spins/m2 , attributed to physisorbed atomic hydrogen and S =1 /2 electron spin states on the surface. This is direct evidence for the nature of spins responsible for flux noise in quantum circuits, which has been an issue of interest for several decades. Our findings open up a new approach to the identification and controlled reduction of paramagnetic sources of noise and decoherence in superconducting quantum devices.
NASA Astrophysics Data System (ADS)
Sabrekov, Aleksandr F.; Runkle, Benjamin R. K.; Glagolev, Mikhail V.; Terentieva, Irina E.; Stepanenko, Victor M.; Kotsyurbenko, Oleg R.; Maksyutov, Shamil S.; Pokrovsky, Oleg S.
2017-08-01
Small lakes represent an important source of atmospheric CH4 from northern wetlands. However, spatiotemporal variations in flux magnitudes and the lack of knowledge about their main environmental controls contribute large uncertainty into the global CH4 budget. In this study, we measured methane fluxes from small lakes using chambers and bubble traps. Field investigations were carried out in July-August 2014 within the West Siberian middle and southern taiga zones. The average and median of measured methane chamber fluxes were 0.32 and 0.30 mgCH4 m-2 h-1 for middle taiga lakes and 8.6 and 4.1 mgCH4 m-2 h-1 for southern taiga lakes, respectively. Pronounced flux variability was found during measurements on individual lakes, between individual lakes and between zones. To analyze these differences and the influences of environmental controls, we developed a new dynamic process-based model. It shows good performance with emission rates from the southern taiga lakes and poor performance for individual lakes in the middle taiga region. The model shows that, in addition to well-known controls such as temperature, pH and lake depth, there are significant variations in the maximal methane production potential between these climatic zones. In addition, the model shows that variations in gas-filled pore space in lake sediments are capable of controlling the total methane emissions from individual lakes. The CH4 emissions exhibited distinct zonal differences not only in absolute values but also in their probability density functions: the middle taiga lake fluxes were best described by a lognormal distribution while the southern taiga lakes followed a power-law distribution. The latter suggests applicability of self-organized criticality theory for methane emissions from the southern taiga zone, which could help to explain the strong variability within individual lakes.
NASA Astrophysics Data System (ADS)
Tyul'Bashev, S. A.
2009-01-01
A complete sample of radio sources has been studied using the interplanetary scintillation method. In total, 32 sources were observed, with scintillations detected in 12 of them. The remaining sources have upper limits for the flux densities of their compact components. Integrated flux densities are estimated for 18 sources.
Investigation of a complete sample of flat spectrum radio sources from the S5 survey
NASA Astrophysics Data System (ADS)
Eckart, A.; Witzel, A.; Biermann, P.; Johnston, K. J.; Simon, R.; Schalinski, C.; Kuhr, H.
1986-11-01
An analysis of 13 extragalactic sources of the S5 survey with flux densities greater than or equal to 1 Jy at 4990 MHz, mapped with milliarcsecond resolution at 1.6 and 5 GHz by means of VLBI, is presented. All sources appear to display multiple components dominated in flux density at 6 cm by a core component which is self-absorbed at 18 cm. Comparison of the measured to predicted X-ray flux density of the core radio components suggests that all sources should display bulk relativistic motion with small angles to the line of sight, and four sources show rapid changes in their radio structures which can be interpreted as apparent superliminal motion.
The EVN Galactic Plane Survey - EGaPS
NASA Technical Reports Server (NTRS)
Petrov, Leonid
2011-01-01
I present a catalogue of the positions and correlated flux densities of 109 compact extragalactic radio sources in the Galactic plane determined from an analysis of a 48-h Very Long Baseline Interferometry (VLBI) experiment at 22 GHz with the European VLBI Network. The median position uncertainty is 9 mas. The correlated flux densities of the detected sources are in the range of 2-300 mJy. In addition to the target sources, nine water masers have been detected, of which two are new. I derived the positions of the masers with an accuracy of 30-200 mas and determined the velocities of the maser components and their correlated flux densities. The catalogue and the supporting material are available at http://astrogeo.org/egaps.
Modification of ocean-estuary salt fluxes by density-driven advection of a headland eddy
NASA Astrophysics Data System (ADS)
Fram, J. P.; Stacey, M. T.
2005-05-01
Scalar exchange between San Francisco Bay and the coastal ocean is examined using shipboard observations made across the Golden Gate Channel. Ocean-estuary exchange is often described as a combination of two independent types of mechanisms: density-driven exchange such as gravitational circulation and tidal asymmetries such as tidal trapping. In this study we found that exchange is also governed by an interaction between these mechanisms. Tidally trapped eddies created in shallow shoals are mixed into the main channel earlier in the tidal cycle during the rainy season because the eddies are pushed seaward by gravitational circulation. This interaction increases the tidally averaged dispersive salt flux into the bay. The study consists of experiments during each of three 'seasons': winter/spring runoff (March 2002), summer upwelling (July 2003), and fall relaxation (October 2002). Within each experiment, transects across the channel were repeated approximately every 12 minutes for 25 hours during both spring tide and the following neap tide. Velocity was measured from a boat-mounted ADCP. Scalar concentrations were measured from a tow-yoed SeaSciences Acrobat. Salinity exchange over each spring-neap cycle is quantified with harmonic analysis. Harmonic results are decomposed into flux mechanisms using temporal and spatial correlations. The temporal correlation of cross-sectional averaged salinity and velocity (tidal pumping flux) is the largest part of the dispersive flux of salinity into the bay. From the tidal pumping portion of the dispersive flux, it is shown that there is less exchange than was found in earlier studies. Furthermore, tidal pumping flux scales strongly with flow due to density-driven movement of tidally trapped eddies and density-driven increases in ebb-flood frictional phasing. Complex bathymetry makes salinity exchange scale differently with flow than would be expected from simple tidal pumping and gravitational circulation models.
Magnetic flux pumping in 3D nonlinear magnetohydrodynamic simulations
NASA Astrophysics Data System (ADS)
Krebs, I.; Jardin, S. C.; Günter, S.; Lackner, K.; Hoelzl, M.; Strumberger, E.; Ferraro, N.
2017-10-01
A self-regulating magnetic flux pumping mechanism in tokamaks that maintains the core safety factor at q ≈1 , thus preventing sawteeth, is analyzed in nonlinear 3D magnetohydrodynamic simulations using the M3D-C1 code. In these simulations, the most important mechanism responsible for the flux pumping is that a saturated (m =1 ,n =1 ) quasi-interchange instability generates an effective negative loop voltage in the plasma center via a dynamo effect. It is shown that sawtoothing is prevented in the simulations if β is sufficiently high to provide the necessary drive for the (m =1 ,n =1 ) instability that generates the dynamo loop voltage. The necessary amount of dynamo loop voltage is determined by the tendency of the current density profile to centrally peak which, in our simulations, is controlled by the peakedness of the applied heat source profile.
Magnetic flux pumping in 3D nonlinear magnetohydrodynamic simulations
Krebs, I.; Jardin, S. C.; Gunter, S.; ...
2017-09-27
A self-regulating magnetic flux pumping mechanism in tokamaks that maintains the core safety factor at q≈1, thus preventing sawteeth, is analyzed in nonlinear 3D magnetohydrodynamic simulations using the M3D-C1 code. In these simulations, the most important mechanism responsible for the flux pumping is that a saturated (m=1,n=1) quasi-interchange instability generates an effective negative loop voltage in the plasma center via a dynamo effect. It is shown that sawtoothing is prevented in the simulations if β is sufficiently high to provide the necessary drive for the (m=1,n=1) instability that generates the dynamo loop voltage. In conclusion, the necessary amount of dynamomore » loop voltage is determined by the tendency of the current density profile to centrally peak which, in our simulations, is controlled by the peakedness of the applied heat source profile.« less
Solar radio proxies for improved satellite orbit prediction
NASA Astrophysics Data System (ADS)
Yaya, Philippe; Hecker, Louis; Dudok de Wit, Thierry; Fèvre, Clémence Le; Bruinsma, Sean
2017-12-01
Specification and forecasting of solar drivers to thermosphere density models is critical for satellite orbit prediction and debris avoidance. Satellite operators routinely forecast orbits up to 30 days into the future. This requires forecasts of the drivers to these orbit prediction models such as the solar Extreme-UV (EUV) flux and geomagnetic activity. Most density models use the 10.7 cm radio flux (F10.7 index) as a proxy for solar EUV. However, daily measurements at other centimetric wavelengths have also been performed by the Nobeyama Radio Observatory (Japan) since the 1950's, thereby offering prospects for improving orbit modeling. Here we present a pre-operational service at the Collecte Localisation Satellites company that collects these different observations in one single homogeneous dataset and provides a 30 days forecast on a daily basis. Interpolation and preprocessing algorithms were developed to fill in missing data and remove anomalous values. We compared various empirical time series prediction techniques and selected a multi-wavelength non-recursive analogue neural network. The prediction of the 30 cm flux, and to a lesser extent that of the 10.7 cm flux, performs better than NOAA's present prediction of the 10.7 cm flux, especially during periods of high solar activity. In addition, we find that the DTM-2013 density model (Drag Temperature Model) performs better with (past and predicted) values of the 30 cm radio flux than with the 10.7 flux.
Limitations of quasilinear transport theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balescu, R.
1992-01-01
The anomalous fluxes are evaluated in the simplest possible geometric situation: drift waves in a shearless slab geometry, in the presence of density and temperature gradients. It is shown that, within the strict quasilinear framework, the linear transport equations relating the fluxes to the thermodynamic forces have serious limitations. Such a linear relation does not even exist for the ion energy flux. For all the fluxes, the first correction'' has a singularity whose location depends on the relative value of the density gradient and of the ion temperature gradient: its existence seriously restricts the domain of validity of the quasilinearmore » transport theory. The semiempirical quasilinear'' formulas used in the comparisons with experiments are also discussed.« less
Energy flux and characteristic energy of an elemental auroral structure
NASA Technical Reports Server (NTRS)
Lanchester, B. S.; Palmer, J. R.; Rees, M. H.; Lummerzheim, D.; Kaila, K.; Turunen, T.
1994-01-01
Electron density profiles acquired with the EISCAT radar at 0.2 s time resolution, together with TV images and photometric intensities, were used to study the characteristics of thin (less than 1 km) auroral arc structures that drifted through the field of view of the instruments. It is demonstrated that both high time and space resolution are essential for deriving the input parameters of the electron flux responsible for the elemental auroral structures. One such structure required a 400 mW/sq m (erg/sq cm s) downward energy flux carried by an 8 keV monochromatic electron flux equivalent to a current density of 50 micro Angstrom/sq m.
NASA Astrophysics Data System (ADS)
Buemi, C. S.; Leto, P.; Trigilio, C.; Umana, G.; Giroletti, M.; Orienti, M.; Raiteri, C. M.; Villata, M.; Bach, U.
2013-04-01
We report on extremely high radio flux of BL Lacertae at 43 and 8 GHz. Observations at 43 GHz with the 32 m radio telescope in Noto (Italy) revealed a flux density of 10.5 +/- 0.2 Jy on 2013 April 10.65, while observations at 8 GHz with the 32 m radio telescope in Medicina (Italy) detected a flux density of 8.2 +/- 0.7 Jy on April 12.22. These extremely high radio fluxes show that the radio activity likely correlated to the strong optical, near-infrared, and gamma-ray activity of 2011-2012 (see ATels #4028, #4031, #4155, #4271, #4277, #4349, #4565, #4600), and X-ray activity of late 2012 (ATels #4557, #4627), is far to be exhausted.
NASA Astrophysics Data System (ADS)
Liu, Chengcheng; Wang, Youhua; Lei, Gang; Guo, Youguang; Zhu, Jianguo
2017-05-01
Since permanent magnets (PM) are stacked between the adjacent stator teeth and there are no windings or PMs on the rotor, flux-switching permanent magnet machine (FSPMM) owns the merits of good flux concentrating and robust rotor structure. Compared with the traditional PM machines, FSPMM can provide higher torque density and better thermal dissipation ability. Combined with the soft magnetic composite (SMC) material and ferrite magnets, this paper proposes a new 3D-flux FSPMM (3DFFSPMM). The topology and operation principle are introduced. It can be found that the designed new 3DFFSPMM has many merits over than the traditional FSPMM for it can utilize the advantages of SMC material. Moreover, the PM flux of this new motor can be regulated by using the mechanical method. 3D finite element method (FEM) is used to calculate the magnetic field and parameters of the motor, such as flux density, inductance, PM flux linkage and efficiency map. The demagnetization analysis of the ferrite magnet is also addressed to ensure the safety operation of the proposed motor.
NASA Astrophysics Data System (ADS)
Bloom, A. Anthony; Lauvaux, Thomas; Worden, John; Yadav, Vineet; Duren, Riley; Sander, Stanley P.; Schimel, David S.
2016-12-01
Understanding the processes controlling terrestrial carbon fluxes is one of the grand challenges of climate science. Carbon cycle process controls are readily studied at local scales, but integrating local knowledge across extremely heterogeneous biota, landforms and climate space has proven to be extraordinarily challenging. Consequently, top-down or integral flux constraints at process-relevant scales are essential to reducing process uncertainty. Future satellite-based estimates of greenhouse gas fluxes - such as CO2 and CH4 - could potentially provide the constraints needed to resolve biogeochemical process controls at the required scales. Our analysis is focused on Amazon wetland CH4 emissions, which amount to a scientifically crucial and methodologically challenging case study. We quantitatively derive the observing system (OS) requirements for testing wetland CH4 emission hypotheses at a process-relevant scale. To distinguish between hypothesized hydrological and carbon controls on Amazon wetland CH4 production, a satellite mission will need to resolve monthly CH4 fluxes at a ˜ 333 km resolution and with a ≤ 10 mg CH4 m-2 day-1 flux precision. We simulate a range of low-earth orbit (LEO) and geostationary orbit (GEO) CH4 OS configurations to evaluate the ability of these approaches to meet the CH4 flux requirements. Conventional LEO and GEO missions resolve monthly ˜ 333 km Amazon wetland fluxes at a 17.0 and 2.7 mg CH4 m-2 day-1 median uncertainty level. Improving LEO CH4 measurement precision by
O+ trough zones in the polar cap ionosphere-magnetosphere coupling region
NASA Astrophysics Data System (ADS)
Horwitz, James; Zeng, Wen; Jaafari, Fajer
Regions of low-density troughs in O+ have been observed at 1 RE altitude in the polar cap ionosphere-magnetosphere region by the Thermal Ion Dynamics Experiment(TIDE) on the POLAR spacecraft. In this presentation, the UT Arlington Dynamic Fluid-Kinetic (DyFK) code is employed to investigate the formation of such O+ density troughs. We utilize convection paths of flux tubes in the high-latitude region as prescribed by an empirical convection model with solar wind inputs to track the evolution of ionospheric plasma transport and in particular O+ densities along these tubes with time/space. The flux tubes are subjected to auroral processes of precipitation and wave-driven ion heating when they pass through the auroral oval, which tends to elevate the plasma densities in these tubes. When the F-regions of such tubes traverse locations where the F-region is in darkness, recombination there causes the higher-altitude regions to drain and the densities to decline throughout. Owing to the varying effects of these processes, significant and low trough-like densities at higher altitudes developed along these flux tubes. The modeled densities near 6000 km altitudes will be compared with multiple POLAR passes featuring POLAR/TIDE-measured O+ densities for inside and outside of such trough regions.
Tropical small streams are a consistent source of methane
NASA Astrophysics Data System (ADS)
Vihermaa, Leena; Waldron, Susan
2013-04-01
To date only a few studies have quantified diffusive methane emissions from headwater streams therefore the magnitude and seasonal variation of these emissions remain poorly understood. Here we present results from two Western Amazonian small streams (first and second order) in Tambopata National Reserve, Peru. Towards the end of wet season, April-May 2012, the streams were sampled using a static floating chamber to accumulate methane. Samples were drawn from the headspace twice daily over period of four days on three separate occasions. The methane concentrations were analysed using a gas chromatograph and the linear part of concentration increase used to calculate the flux rates. The streams were consistently outgassing methane. The seasonally active first order stream outgassed 6 ±2.4 nmol CH4-C m-2 s-1 and the second order stream 20 ±4.0 nmol CH4-C m-2 s-1. The latter flux rate is comparable to fluxes measured from seasonally flooded Amazonian forest in previous studies. The range measured in our streams is comparable to previous results in temperate streams and the lower end of fluxes observed in some peatland streams. The only other study on Amazonian small streams detected methane fluxes that were 100 times greater than those measured here. Depending on the density of small streams in Amazonian basin and the prevalent flux rate, the fluvial methane fluxes may constitute a significant global warming potential. Upscaling to the Amazon basin, assuming small stream density of 0.2 %, as was found at our field site, and the flux rates detected, yields an annual global warming potential equal to approximately 1.5 Mt of CO2 which is of minor importance compared to aquatic CO2-C flux of 500 Mt yr-1 from the basin. However, if the higher fluxes detected in the previous study were prevalent, the basin wide methane flux could become significant. Further studies are needed to establish the stream density in the Amazon basin and typical methane flux rates.
NASA Technical Reports Server (NTRS)
Maag, Carl R.; Deshpande, Sunil P.; Johnson, Nicholas L.
1997-01-01
A flight experiment flown onboard the Mir space station as a part of the Euromir 95 mission is considered. The aim of the experiment was to develop a greater understanding of the effects of the space environment on materials. In addition to the active enumeration of particle impacts and trajectories, the aim was to capture hypervelocity particles for their return to earth. Postflight measurements were performed to determine the flux density, diameters and subsequent effects on various optical thermal control and structural materials. Sensors actively measured the atomic oxygen flux, the contamination depostion and their effects during the mission. Two clouds of small particles were detected during a period of 100 days onboard Mir. It is concluded that the measured momenta of these particles suggests that their size and velocity are such that they cause damage to optics and thermal control surfaces.
Novel Transverse Flux Machine for Vehicle Traction Applications: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wan, Z.; Ahmed, A.; Husain, I.
2015-04-02
A novel transverse flux machine topology for electric vehicle traction applications using ferrite magnets is presented in this paper. The proposed transverse flux topology utilizes novel magnet arrangements in the rotor that are similar to the Halbach array to boost flux linkage; on the stator side, cores are alternately arranged around a pair of ring windings in each phase to make use of the entire rotor flux that eliminates end windings. Analytical design considerations and finite-element methods are used for an optimized design of a scooter in-wheel motor. Simulation results from finite element analysis (FEA) show that the motor achievedmore » comparable torque density to conventional rare-earth permanent magnet (PM) machines. This machine is a viable candidate for direct-drive applications with low cost and high torque density.« less
Measurements of plasma sheath heat flux in the Alcator C-Mod divertor
NASA Astrophysics Data System (ADS)
Brunner, Dan; Labombard, Brian; Terry, Jim; Reinke, Matt
2010-11-01
Heat flux is one of the most important parameters controlling the lifetime of first-wall components in fusion experiments and reactors. The sheath heat flux coefficient (γ) is a parameter relating heat flux (from a plasma to a material surface) to the electron temperature and ion saturation current. Being such a simple expression for a kinetic process, it is of great interest to plasma edge fluid modelers. Under the assumptions of equal ion and electron temperatures, no secondary electron emission, and no net current to the surface the value of γ is approximately 7 [1]. Alcator C-Mod provides a unique opportunity among today's experiments to measure reactor-relevant heat fluxes (100's of MW/m^2 parallel to the magnetic field) in reactor-like divertor geometry. Motivated by the DoE 2010 joint milestone to measure heat flux footprints, the lower outer divertor of Alcator has been instrumented with a suite of Langmuir probes, novel surface thermocouples, and calorimeters in tiles purposefully ramped to eliminate shadowing; all within view of an IR camera. Initial results indicate that the experimentally inferred values of γ are found to agree with simple theory in the sheath limited regime and diverges to lower values as the density increases.
Growth and characterization of magnetite-maghemite thin films by the dip coating method
NASA Astrophysics Data System (ADS)
Velásquez, A. A.; Arnedo, A.
2017-11-01
We present the process of growth and characterization of magnetite-maghemite thin films obtained by the dip coating method. The thin films were deposited on glass substrates, using a ferrofluid of nanostructured magnetite-maghemite particles as precursor solution. During the growth of the films the following parameters were controlled: number of dips of the substrates, dip velocity of the substrates and drying times. The films were characterized by Atomic Force Microscopy, Scanning Elelectron Microscopy, four-point method for resistance measurement, Room Temperature Mössbauer Spectroscopy and Hall effect. Mössbauer measurements showed the presence of a sextet attributed to maghemite ( γ-Fe2O3) and two doublets attributed to superparamagnetic magnetite (Fe3O4), indicating a distribution of oxidation states of the iron as well as a particle size distribution of the magnetic phases in the films. Atomic force microscopy measurements showed that the films cover quasi uniformly the substrates, existing in them some pores with sub-micron size. Scanning Electron Microscopy measurements showed a uniform structure in the films, with spherical particles with size around 10 nm. Voltage versus current measurements showed an ohmic response of the films for currents between 0 and 100 nA. On the other hand, Hall effect measurements showed a nonlinear response of the Hall voltage with the magnetic flux density applied perpendicular to the plane of the films, however the response is fairly linear for magnetic flux densities between 0.15 and 0.35 T approximately. The results suggest that the films are promising for application as magnetic flux density sensors.
Magnetoresistive flux focusing eddy current flaw detection
NASA Technical Reports Server (NTRS)
Wincheski, Russell A. (Inventor); Simpson, John W. (Inventor); Namkung, Min (Inventor)
2005-01-01
A giant magnetoresistive flux focusing eddy current device effectively detects deep flaws in thick multilayer conductive materials. The probe uses an excitation coil to induce eddy currents in conducting material perpendicularly oriented to the coil's longitudinal axis. A giant magnetoresistive (GMR) sensor, surrounded by the excitation coil, is used to detect generated fields. Between the excitation coil and GMR sensor is a highly permeable flux focusing lens which magnetically separates the GMR sensor and excitation coil and produces high flux density at the outer edge of the GMR sensor. The use of feedback inside the flux focusing lens enables complete cancellation of the leakage fields at the GMR sensor location and biasing of the GMR sensor to a location of high magnetic field sensitivity. In an alternate embodiment, a permanent magnet is positioned adjacent to the GMR sensor to accomplish the biasing. Experimental results have demonstrated identification of flaws up to 1 cm deep in aluminum alloy structures. To detect deep flaws about circular fasteners or inhomogeneities in thick multilayer conductive materials, the device is mounted in a hand-held rotating probe assembly that is connected to a computer for system control, data acquisition, processing and storage.
Magnetoresistive Flux Focusing Eddy Current Flaw Detection
NASA Technical Reports Server (NTRS)
Wincheski, Russell A. (Inventor); Namkung, Min (Inventor); Simpson, John W. (Inventor)
2005-01-01
A giant magnetoresistive flux focusing eddy current device effectively detects deep flaws in thick multilayer conductive materials. The probe uses an excitation coil to induce eddy currents in conducting material perpendicularly oriented to the coil s longitudinal axis. A giant magnetoresistive (GMR) sensor, surrounded by the excitation coil, is used to detect generated fields. Between the excitation coil and GMR sensor is a highly permeable flux focusing lens which magnetically separates the GMR sensor and excitation coil and produces high flux density at the outer edge of the GMR sensor. The use of feedback inside the flux focusing lens enables complete cancellation of the leakage fields at the GMR sensor location and biasing of the GMR sensor to a location of high magnetic field sensitivity. In an alternate embodiment, a permanent magnet is positioned adjacent to the GMR sensor to accomplish the biasing. Experimental results have demonstrated identification of flaws up to 1 cm deep in aluminum alloy structures. To detect deep flaws about circular fasteners or inhomogeneities in thick multi-layer conductive materials, the device is mounted in a hand-held rotating probe assembly that is connected to a computer for system control, data acquisition, processing and storage.
Radiation damage in single-particle cryo-electron microscopy: effects of dose and dose rate.
Karuppasamy, Manikandan; Karimi Nejadasl, Fatemeh; Vulovic, Milos; Koster, Abraham J; Ravelli, Raimond B G
2011-05-01
Radiation damage is an important resolution limiting factor both in macromolecular X-ray crystallography and cryo-electron microscopy. Systematic studies in macromolecular X-ray crystallography greatly benefited from the use of dose, expressed as energy deposited per mass unit, which is derived from parameters including incident flux, beam energy, beam size, sample composition and sample size. In here, the use of dose is reintroduced for electron microscopy, accounting for the electron energy, incident flux and measured sample thickness and composition. Knowledge of the amount of energy deposited allowed us to compare doses with experimental limits in macromolecular X-ray crystallography, to obtain an upper estimate of radical concentrations that build up in the vitreous sample, and to translate heat-transfer simulations carried out for macromolecular X-ray crystallography to cryo-electron microscopy. Stroboscopic exposure series of 50-250 images were collected for different incident flux densities and integration times from Lumbricus terrestris extracellular hemoglobin. The images within each series were computationally aligned and analyzed with similarity metrics such as Fourier ring correlation, Fourier ring phase residual and figure of merit. Prior to gas bubble formation, the images become linearly brighter with dose, at a rate of approximately 0.1% per 10 MGy. The gradual decomposition of a vitrified hemoglobin sample could be visualized at a series of doses up to 5500 MGy, by which dose the sample was sublimed. Comparison of equal-dose series collected with different incident flux densities showed a dose-rate effect favoring lower flux densities. Heat simulations predict that sample heating will only become an issue for very large dose rates (50 e(-)Å(-2) s(-1) or higher) combined with poor thermal contact between the grid and cryo-holder. Secondary radiolytic effects are likely to play a role in dose-rate effects. Stroboscopic data collection combined with an improved understanding of the effects of dose and dose rate will aid single-particle cryo-electron microscopists to have better control of the outcome of their experiments.
Radiation damage in single-particle cryo-electron microscopy: effects of dose and dose rate
Karuppasamy, Manikandan; Karimi Nejadasl, Fatemeh; Vulovic, Milos; Koster, Abraham J.; Ravelli, Raimond B. G.
2011-01-01
Radiation damage is an important resolution limiting factor both in macromolecular X-ray crystallography and cryo-electron microscopy. Systematic studies in macromolecular X-ray crystallography greatly benefited from the use of dose, expressed as energy deposited per mass unit, which is derived from parameters including incident flux, beam energy, beam size, sample composition and sample size. In here, the use of dose is reintroduced for electron microscopy, accounting for the electron energy, incident flux and measured sample thickness and composition. Knowledge of the amount of energy deposited allowed us to compare doses with experimental limits in macromolecular X-ray crystallography, to obtain an upper estimate of radical concentrations that build up in the vitreous sample, and to translate heat-transfer simulations carried out for macromolecular X-ray crystallography to cryo-electron microscopy. Stroboscopic exposure series of 50–250 images were collected for different incident flux densities and integration times from Lumbricus terrestris extracellular hemoglobin. The images within each series were computationally aligned and analyzed with similarity metrics such as Fourier ring correlation, Fourier ring phase residual and figure of merit. Prior to gas bubble formation, the images become linearly brighter with dose, at a rate of approximately 0.1% per 10 MGy. The gradual decomposition of a vitrified hemoglobin sample could be visualized at a series of doses up to 5500 MGy, by which dose the sample was sublimed. Comparison of equal-dose series collected with different incident flux densities showed a dose-rate effect favoring lower flux densities. Heat simulations predict that sample heating will only become an issue for very large dose rates (50 e−Å−2 s−1 or higher) combined with poor thermal contact between the grid and cryo-holder. Secondary radiolytic effects are likely to play a role in dose-rate effects. Stroboscopic data collection combined with an improved understanding of the effects of dose and dose rate will aid single-particle cryo-electron microscopists to have better control of the outcome of their experiments. PMID:21525648
Plant water relations and the effects of elevated CO2: a review and suggestions for future research
Melvin T. Tyree; John D. Alexander
1993-01-01
Increased ambient carbon dioxide (CO2) has been found to ameliorate water stress in the majority of species studied. The results of many studies indicate that lower evaporative flux density is associated with high CO2-induced stomatal closure. As a result of decreases in evaporative flux density and increases in net...
Code of Federal Regulations, 2014 CFR
2014-10-01
...) Single-entry validation equivalent power flux-density, in the space-to-Earth direction, (EPFD down) limits. (i) Provide a set of power flux-density (PFD) masks, on the surface of the Earth, for each space..., in the space-to-Earth direction, (additional operational EPFD down ) limits. (i) Provide a set of...
David M. Bell; Eric J. Ward; A. Christopher Oishi; Ram Oren; Paul G. Flikkema; James S. Clark; David Whitehead
2015-01-01
Uncertainties in ecophysiological responses to environment, such as the impact of atmospheric and soil moisture conditions on plant water regulation, limit our ability to estimate key inputs for ecosystem models. Advanced statistical frameworks provide coherent methodologies for relating observed data, such as stem sap flux density, to unobserved processes, such as...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greco, S.; Baldocchi, D.D.
1994-06-01
Long-term monitoring of CO[sub 2] and water vapor exchange is needed to determine components of the carbon and hydrologic cycles and to provide data for parameterizing and testing assessment models. Responding to this need we initiated a continous field measurement campaign in April 1993 in a deciduous forest growing near Oak Ridge, TN. The micrometerological eddy correlation method was used to measure flux densities of CO[sub 2] and water vapor over the canopy. Periodic measurements were made of stomatal resistence and pre-dawn water potential to characterize the photosynthetic capacity of the canopy. Three factors accounted for a disproportionate amount ofmore » seasonal variance in CO[sub 2] flux densities: photon flux densities, leaf area and the occurrence of drought. Positive and increasing magnitudes of carbon gain were observed between April and June as leaves expanded, the canopy closed and daily insolation increased. At midsummer a drought and heat spell were experienced. This period caused CO[sub 2] flux densities to decline. By late summer adequate precipitation and replenishment of soil water resurrected carbon uptake rates until autumnal leaf senescence and leaf fall.« less
MEMS cantilever based magnetic field gradient sensor
NASA Astrophysics Data System (ADS)
Dabsch, Alexander; Rosenberg, Christoph; Stifter, Michael; Keplinger, Franz
2017-05-01
This paper describes major contributions to a MEMS magnetic field gradient sensor. An H-shaped structure supported by four arms with two circuit paths on the surface is designed for measuring two components of the magnetic flux density and one component of the gradient. The structure is produced from silicon wafers by a dry etching process. The gold leads on the surface carry the alternating current which interacts with the magnetic field component perpendicular to the direction of the current. If the excitation frequency is near to a mechanical resonance, vibrations with an amplitude within the range of 1-103 nm are expected. Both theoretical (simulations and analytic calculations) and experimental analysis have been carried out to optimize the structures for different strength of the magnetic gradient. In the same way the impact of the coupling structure on the resonance frequency and of different operating modes to simultaneously measure two components of the flux density were tested. For measuring the local gradient of the flux density the structure was operated at the first symmetrical and the first anti-symmetrical mode. Depending on the design, flux densities of approximately 2.5 µT and gradients starting from 1 µT mm-1 can be measured.
Cosmic strings and ultra-high energy cosmic rays
NASA Technical Reports Server (NTRS)
Bhattacharjee, Pijushpani
1989-01-01
The flux is calculated of ultrahigh energy protons due to the process of cusp evaporation from cosmic string loops. For the standard value of the dimensionless cosmic string parameter epsilon is identical to G(sub mu) approx. = 10(exp -6), the flux is several orders of magnitude below the observed cosmic ray flux of ultrahigh energy protons. However, the flux at any energy initially increases as the value of epsilon is decreased. This at first suggests that there may be a lower limit on the value of epsilon, which would imply a lower limit on the temperature of a cosmic string forming phase transition in the early universe. However, the calculation shows that this is not the case -- the particle flux at any energy reaches its highest value at epsilon approx. = 10(exp -15) and it then decreases for further decrease of the value of epsilon. This is due to the fact that for too small values of epsilon (less than 10(exp -15)), the energy loss of the loops through the cusp evaporation process itself (rather than gravitational energy loss of the loops) becomes the dominant factor that controls the behavior of the number density of the loops at the relevant times of emission of the particles. The highest flux at any energy remains at least four orders of magnitude below the observed flux. There is thus no lower limit on epsilon.
Active Control of Power Exhaust in Strongly Heated ASDEX Upgrade Plasmas
NASA Astrophysics Data System (ADS)
Dux, Ralph; Kallenbach, Arne; Bernert, Matthias; Eich, Thomas; Fuchs, Christoph; Giannone, Louis; Herrmann, Albrecht; Schweinzer, Josef; Treutterer, Wolfgang
2012-10-01
Due to the absence of carbon as an intrinsic low-Z radiator, and tight limits for the acceptable power load on the divertor target, ITER will rely on impurity seeding for radiative power dissipation and for generation of partial detachment. The injection of more than one radiating species is required to optimise the power removal in the main plasma and in the divertor region, i.e. a low-Z species for radiation in the divertor and a medium-Z species for radiation in the outer core plasma. In ASDEX Upgrade, a set of robust sensors, which is suitable to feedback control the radiated power in the main chamber and the divertor as well as the electron temperature at the target, has been developed. Different feedback schemes were applied in H-mode discharges with a maximum heating power of up to 23,W, i.e. at ITER values of P/R (power per major radius) to control all combinations of power flux into the divertor region, power flux onto the target or electron temperature at the target through injection of nitrogen as the divertor radiator and argon as the main chamber radiator. Even at the highest heating powers the peak heat flux density at the target is kept at benign values. The control schemes and the plasma behaviour in these discharges will be discussed.
Wilcox, R. S.; Rhodes, T. L.; Shafer, M. W.; ...
2018-04-19
Smore » mall 3D perturbations to the magnetic field in DIII-D ( δ B / B ~ 2 × 10 - 4 ) result in large modulations of density fluctuation amplitudes in the pedestal, which are shown using Doppler backscattering measurements to vary by a factor of 2. Helical perturbations of equilibrium density within flux surfaces have previously been observed in the pedestal of DIII-D plasmas when 3D fields are applied and were correlated with density fluctuation asymmetries in the pedestal. These intra-surface density and pressure variations are shown through two fluid MHD modeling studies using the M3D-C1 code to be due to the misalignment of the density and temperature equilibrium iso-surfaces in the pedestal region. This modeling demonstrates that the phase shift between the two iso-surfaces corresponds to the diamagnetic direction of the two species, with the mass density surfaces shifted in the ion diamagnetic direction relative to the temperature and magnetic flux iso-surfaces. Finally, the resulting pedestal density, potential, and turbulence asymmetries within flux surfaces near the separatrix may be at least partially responsible for several poorly understood phenomena that occur with the application of 3D fields in tokamaks, including density pump out and the increase in power required to transition from L- to H-mode.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilcox, R. S.; Rhodes, T. L.; Shafer, M. W.
Smore » mall 3D perturbations to the magnetic field in DIII-D ( δ B / B ~ 2 × 10 - 4 ) result in large modulations of density fluctuation amplitudes in the pedestal, which are shown using Doppler backscattering measurements to vary by a factor of 2. Helical perturbations of equilibrium density within flux surfaces have previously been observed in the pedestal of DIII-D plasmas when 3D fields are applied and were correlated with density fluctuation asymmetries in the pedestal. These intra-surface density and pressure variations are shown through two fluid MHD modeling studies using the M3D-C1 code to be due to the misalignment of the density and temperature equilibrium iso-surfaces in the pedestal region. This modeling demonstrates that the phase shift between the two iso-surfaces corresponds to the diamagnetic direction of the two species, with the mass density surfaces shifted in the ion diamagnetic direction relative to the temperature and magnetic flux iso-surfaces. Finally, the resulting pedestal density, potential, and turbulence asymmetries within flux surfaces near the separatrix may be at least partially responsible for several poorly understood phenomena that occur with the application of 3D fields in tokamaks, including density pump out and the increase in power required to transition from L- to H-mode.« less
NASA Astrophysics Data System (ADS)
Wilcox, R. S.; Rhodes, T. L.; Shafer, M. W.; Sugiyama, L. E.; Ferraro, N. M.; Lyons, B. C.; McKee, G. R.; Paz-Soldan, C.; Wingen, A.; Zeng, L.
2018-05-01
Small 3D perturbations to the magnetic field in DIII-D ( δB /B ˜2 ×10-4 ) result in large modulations of density fluctuation amplitudes in the pedestal, which are shown using Doppler backscattering measurements to vary by a factor of 2. Helical perturbations of equilibrium density within flux surfaces have previously been observed in the pedestal of DIII-D plasmas when 3D fields are applied and were correlated with density fluctuation asymmetries in the pedestal. These intra-surface density and pressure variations are shown through two fluid MHD modeling studies using the M3D-C1 code to be due to the misalignment of the density and temperature equilibrium iso-surfaces in the pedestal region. This modeling demonstrates that the phase shift between the two iso-surfaces corresponds to the diamagnetic direction of the two species, with the mass density surfaces shifted in the ion diamagnetic direction relative to the temperature and magnetic flux iso-surfaces. The resulting pedestal density, potential, and turbulence asymmetries within flux surfaces near the separatrix may be at least partially responsible for several poorly understood phenomena that occur with the application of 3D fields in tokamaks, including density pump out and the increase in power required to transition from L- to H-mode.
Anomalies of neutron field of the Earth.
NASA Astrophysics Data System (ADS)
Plotnikova, Natalia
This work is devoted to the researches of time and spatial heterogeneity of thermal neurtron flux (Fn) density in the troposphere of the Earth. We had already received the values of thermal neutron flux density on the surface of the Earth in the European part of Russia. The large-scale monitoring of thermal neutron flux density was carried out on structural cross-section from Drake Strait in the Atlantic Ocean to the high latitudes of Arctic. We observe the increase of Fn from 44° N to 59° N, from 0,4 to 2,9 •10-3 н/(c•cn2). The values of Fn were received in latitude Novorossiysk (0,4•10-3 n/(c•sm2)) , Moskow (0,7-1,5•10-3 n/(c•sm2)), Arhangelsk (1,3•10-3 n/(c•sm2)). High-rise dependance of the thermal neutron flux density on the surface of the Earth and in troposphere during transcontinental flights was researched. With the increasing of height from 0 to 8000 m the thermal neutron flux density rises to 180•10-3 н/(c•cn2) The measurements were carried out in latitude of Spitsbergen. The value of thermal neutron flux density on the North pole was measured. Fn is equal to 0,7•10-3 n/(c•sm2)) 890 20/ in North latitude. Recently it has been shown, that thermal neutrons render appreciable influence on alive organisms [Matveeva and etc., 2004, Masunaga S., 2001]. Abmormal increases of thermal neutron flux density are revealed in flora biogeocenosis. Daily background Fn demonstrate the specific abnormal flares for every biocenosis or biotope long-lasting (for tens of minutes) Fn - meaning during the «flares» in biogeocenosis depends on the contains of flora community and can reach 104 n/(c m2). [Plotnikova N.V., Siroeshkin A.V., 2005]. The researches of the neutron field in the World Ocean were received at the time of transatlantic expedition by the programme of RAS «Meridian» (2006, 2008). Abnormal increasing Fn had being observed in the area of equator and between 310N to 540N and 330S to 530S Moreover, the coordinates of these anomalies coincide with the coordinates of the subequatorial and subtropical climatic zones. This anomalous increase Fn happens above, with an increase in phytoplankton biomass, the value of Fn is growing. Abnormal outbreak of Fn in biocenoses and over fields of phytoplankton can be associated with a well-known effect of «neutron trap» in heterogeneous environments, and the thermalization of the epithermal neutrons. Presence of the biological answer to weak streams thermal neutrons allow to assume, that these corpuscular streams are one of the "intermediaries" allowing alive organisms to feel a lot of astrogeophysical events, in addition to known climatic factors. In addition, the thermal neutron flux density is the integral characteristic,which allows to make a"neutron portrait " of the resort or the countryside. Thus, speaking about the anomalies of the natural radioactive background , special attention should be paid to the level Fn and its variations, and the potential impact on biological objects and human. The data obtained interaction of neutron flux and biological objects may be important for their adaptation to extreme environmental conditions. Our data suggest that even in the lower layers of troposphere value thermal neutron flux (Fn) can be quite high, confirm the need for further studies to human security at the high altitude and transcontinental air flights.
METHOD AND APPARATUS FOR CONTROLLING NEUTRON DENSITY
Wigner, E.P.; Young, G.J.; Weinberg, A.M.
1961-06-27
A neutronic reactor comprising a moderator containing uniformly sized and spaced channels and uniformly dimensioned fuel elements is patented. The fuel elements have a fissionable core and an aluminum jacket. The cores and the jackets of the fuel elements in the central channels of the reactor are respectively thinner and thicker than the cores and jackets of the fuel elements in the remainder of the reactor, producing a flattened flux.
NASA Astrophysics Data System (ADS)
Feinberg, Benedict; Gould, Harvey
2018-03-01
Following the application of an external magnetic field to a thin-walled demagnetized Permalloy cylinder, the magnetic flux density at the center of the shielded volume decreases by roughly 20% over periods of hours to days. We measured this effect for applied magnetic fields from 0.48 A/m to 16 A/m, the latter being comparable to the Earths magnetic field at its weakest point. Delayed changes in magnetic flux density are also observed following alternating current demagnetization. We attribute these effects to delayed changes in magnetization, which have previously been observed in thin Permalloy films and small bulk samples of ferromagnetic materials. Phenomenological models of thermal activation are discussed. Some possible effects on experiments that rely on static shielding are noted.
Chen, Xuedong; Zeng, Lizhan
2018-01-01
This paper presents a novel 2-D magnet array with gaps and staggers, which is especially suitable for magnetically levitated planar motor with moving magnets. The magnetic flux density distribution is derived by Fourier analysis and superposition. The influences of gaps and staggers on high-order harmonics and flux density were analyzed, and the optimized design is presented. Compared with the other improved structures based on traditional Halbach magnet arrays, the proposed design has the lowest high-order harmonics percentage, and the characteristics of flux density meet the demand of high acceleration in horizontal directions. It is also lightweight and easy to manufacture. The proposed magnet array was built, and the calculation results have been verified with experiment. PMID:29300323
THE KCAL VERA 22 GHz CALIBRATOR SURVEY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petrov, L.; Honma, M.; Shibata, S. M., E-mail: Leonid.Petrov@lpetrov.net
2012-02-15
We observed a sample of 1536 sources with correlated flux densities brighter than 200 mJy at 8 GHz with the very long baseline interferometry (VLBI) array VLBI Exploration of Radio Astrometry at 22 GHz. One half of the target sources has been detected. The detection limit was around 200 mJy. We derived the correlated flux densities of 877 detected sources in three ranges of projected baseline lengths. The objective of these observations was to determine the suitability of given sources as phase calibrators for dual-beam and phase-referencing observations at high frequencies. Preliminary results indicate that the number of compact extragalacticmore » sources at 22 GHz brighter than a given correlated flux density level is two times less than that at 8 GHz.« less
The ancient oxygen exosphere of Mars - Implications for atmosphere evolution
NASA Technical Reports Server (NTRS)
Zhang, M. H. G.; Luhmann, J. G.; Bougher, S. W.; Nagy, A. F.
1993-01-01
The paper considers absorption of oxygen (atoms and ions) by the surface as a mechanism for the early Martian atmosphere escape, due to the effect of high EUV flux of the ancient sun. Hot oxygen exosphere densities in ancient atmosphere and ionosphere are calculated for different EUV fluxes and the escape fluxes associated with these exposures. Using these densities, the ion production rate above the ionopause is calculated for different epochs including photoionization, charge exchange, and solar wind electron impact. It is found that, when the inferred high solar EUV fluxes of the past are taken into account, oxygen equivalent to that in several tens of meters of water, planet-wide, should have escaped Martian atmosphere to space over the last 3 Gyr.
The ancient oxygen exosphere of Mars - Implications for atmosphere evolution
NASA Astrophysics Data System (ADS)
Zhang, M. H. G.; Luhmann, J. G.; Bougher, S. W.; Nagy, A. F.
1993-06-01
The paper considers absorption of oxygen (atoms and ions) by the surface as a mechanism for the early Martian atmosphere escape, due to the effect of high EUV flux of the ancient sun. Hot oxygen exosphere densities in ancient atmosphere and ionosphere are calculated for different EUV fluxes and the escape fluxes associated with these exposures. Using these densities, the ion production rate above the ionopause is calculated for different epochs including photoionization, charge exchange, and solar wind electron impact. It is found that, when the inferred high solar EUV fluxes of the past are taken into account, oxygen equivalent to that in several tens of meters of water, planet-wide, should have escaped Martian atmosphere to space over the last 3 Gyr.
Horton, Kyle G; Shriver, W Gregory; Buler, Jeffrey J
2016-01-01
Daily magnitudes and fluxes of landbird migration are often measured via nocturnal traffic rates aloft or diurnal densities within terrestrial habitats during stopover. However, these measures are not consistently correlated and at times reveal opposing trends. For this reason we sought to determine how comparison methods (daily magnitude or daily flux), nocturnal monitoring tools (weather surveillance radar, WSR; thermal imaging, TI), and temporal scale (preceding or following diurnal sampling) influenced correlation strength from stopover densities estimated by daily transect counts. We quantified nocturnal traffic rates at two temporal scales; averaged across the entire night and within individual decile periods of the night, and at two spatial scales; within 1 km of airspace surrounding the site via WSR and directly overhead within the narrow beam of a TI. Overall, the magnitude of daily bird density during stopover was positively related to the magnitude of broad-scale radar traffic rates of migrants on preceding and following nights during both the spring and fall. These relationships were strongest on the following night, and particularly from measures early in the night. Only during the spring on the following nights did we find positive correlations between the daily flux of transect counts and migration traffic rates (both WSR and TI). This indicates that our site likely had a more consistent daily turnover of migrants compared to the fall. The lack of general correlations between seasonal trends or daily flux in fine-scale TI traffic rates and stopover densities across or within nights was unexpected and likely due to poor sampling of traffic rates due to the camera's narrow beam. The order (preceding or following day) and metric of comparisons (magnitude or flux), as well as the tool (WSR or TI) used for monitoring nocturnal migration traffic can have dramatic impacts when compared with ground-based estimates of migrant density. WSR provided measures of the magnitude and daily flux in nocturnal migration traffic rates that related to daily stopover counts of migrants during spring and fall. Relationships among migrating bird flux measures are more complex than simple measures of magnitude of migration. Care should be given to address these complexities when comparing data among methods.
Non-equilibrium reactive flux: A unified framework for slow and fast reaction kinetics.
Bose, Amartya; Makri, Nancy
2017-10-21
The flux formulation of reaction rate theory is recast in terms of the expectation value of the reactive flux with an initial condition that corresponds to a non-equilibrium, factorized reactant density. In the common case of slow reactive processes, the non-equilibrium expression reaches the plateau regime only slightly slower than the equilibrium flux form. When the reactants are described by a single quantum state, as in the case of electron transfer reactions, the factorized reactant density describes the true initial condition of the reactive process. In such cases, the time integral of the non-equilibrium flux expression yields the reactant population as a function of time, allowing characterization of the dynamics in cases where there is no clear separation of time scales and thus a plateau regime cannot be identified. The non-equilibrium flux offers a unified approach to the kinetics of slow and fast chemical reactions and is ideally suited to mixed quantum-classical methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reboiro, M., E-mail: reboiro@fisica.unlp.edu.ar; Civitarese, O., E-mail: osvaldo.civitarese@fisica.unlp.edu.ar; Ramírez, R.
2017-03-15
The degree of coherence in a hybrid system composed of superconducting flux-qubits and an electron ensemble is analysed. Both, the interactions among the electrons and among the superconducting flux-qubits are taken into account. The time evolution of the hybrid system is solved exactly, and discussed in terms of the reduced density matrix of each subsystem. It is seen that the inclusion of a line width, for the electrons and for the superconducting flux-qubits, influences the pattern of spin-squeezing and the coherence of the superconducting flux qubits. - Highlights: • The degree of coherence in a hybrid system, composed of superconductingmore » flux qubits and an electron ensemble, is analysed. • The time evolution of the hybrid system is solved exactly and discussed in terms of the reduced density matrix of each subsystem. • It is shown that the initial state of the system evolves to a stationary squeezed state.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muljadi, Eduard; Hasan, Iftekhar; Husain, Tausif
In this paper, a nonlinear analytical model based on the Magnetic Equivalent Circuit (MEC) method is developed for a double-sided E-Core Transverse Flux Machine (TFM). The proposed TFM has a cylindrical rotor, sandwiched between E-core stators on both sides. Ferrite magnets are used in the rotor with flux concentrating design to attain high airgap flux density, better magnet utilization, and higher torque density. The MEC model was developed using a series-parallel combination of flux tubes to estimate the reluctance network for different parts of the machine including air gaps, permanent magnets, and the stator and rotor ferromagnetic materials, in amore » two-dimensional (2-D) frame. An iterative Gauss-Siedel method is integrated with the MEC model to capture the effects of magnetic saturation. A single phase, 1 kW, 400 rpm E-Core TFM is analytically modeled and its results for flux linkage, no-load EMF, and generated torque, are verified with Finite Element Analysis (FEA). The analytical model significantly reduces the computation time while estimating results with less than 10 percent error.« less
Absorption of acoustic waves by sunspots. II - Resonance absorption in axisymmetric fibril models
NASA Technical Reports Server (NTRS)
Rosenthal, C. S.
1992-01-01
Analytical calculations of acoustic waves scattered by sunspots which concentrate on the absorption at the magnetohydrodynamic Alfven resonance are extended to the case of a flux-tube embedded in a uniform atmosphere. The model is based on a flux-tubes of varying radius that are highly structured, translationally invariant, and axisymmetric. The absorbed fractional energy is determined for different flux-densities and subphotospheric locations with attention given to the effects of twist. When the flux is highly concentrated into annuli efficient absorption is possible even when the mean magnetic flux density is low. The model demonstrates low absorption at low azimuthal orders even in the presence of twist which generally increases the range of wave numbers over which efficient absorption can occur. Resonance absorption is concluded to be an efficient mechanism in monolithic sunspots, fibril sunspots, and plage fields.
Soybeans (Glycine max (L.) Merr. cv Essex) were grown in a green house, and the first trifoliate leaf was either allowed to expand under a high photosynthetic photon flux density (PPFD) (1.4 millimoled per square meter per second) or a low PPFD (0.8 Millimoles per square meter pe...
Precision flux density measurements of the giant planets at 8420 MHz
NASA Technical Reports Server (NTRS)
Turegano, J. A.; Klein, M. J.
1981-01-01
Precision measurements of the 3.56 cm flux densities of Jupiter, Saturn, Uranus, and Neptune are reported. The results are compared with previously published measurements as a means of: remotely sensing long-term changes in the microwave emission from the atmospheres of these planets and measuring the effects of Saturn's rings on the disk temperature as observed from earth at different ring inclination angles.
NASA Astrophysics Data System (ADS)
Peter, Kerstin; Pätzold, Martin; Molina-Cuberos, Gregorio; Witasse, Olivier; González-Galindo, F.; Withers, Paul; Bird, Michael K.; Häusler, Bernd; Hinson, David P.; Tellmann, Silvia; Tyler, G. Leonard
2014-05-01
The electron density distributions of the lower ionospheres of Mars and Venus are mainly dependent on the solar X-ray and EUV flux and the solar zenith angle. The influence of an increasing solar flux is clearly seen in the increase of the observed peak electron density and total electron content (TEC) of the main ionospheric layers. The model “Ionization in Atmospheres” (IonA) was developed to compare ionospheric radio sounding observations, which were performed with the radio science experiments MaRS on Mars Express and VeRa on Venus Express, with simulated electron density profiles of the Mars and Venus ionospheres. This was done for actual observation conditions (solar flux, solar zenith angle, planetary coordinates) from the bases of the ionospheres to ∼160 km altitude. IonA uses models of the neutral atmospheres at ionospheric altitudes (Mars Climate Database (MCD) v4.3 for Mars; VenusGRAM/VIRA for Venus) and solar flux information in the 0.5-95 nm wavelength range (X-ray to EUV) from the SOLAR2000 data base. The comparison between the observed electron density profiles and the IonA profiles for Mars, simulated for a selected MCD scenario (background atmosphere), shows that the general behavior of the Mars ionosphere is reproduced by all scenarios. The MCD “low solar flux/clear atmosphere” and “low solar flux/MY24” scenarios agree best (on average) with the MaRS set of observations, although the actual Mars atmosphere seemed to be still slightly colder at ionospheric altitudes. For Venus, the VenusGRAM model, based on VIRA, is too limited to be used for the IonA simulation of electron density profiles. The behavior of the V2 peak electron density and TEC as a function of solar zenith angle are in general reproduced, but the peak densities and the TEC are either over- or underestimated for low or high solar EUV fluxes, respectively. The simulated V2 peak altitudes are systematically underestimated by 5 km on average for solar zenith angles less than 45° and the peak altitudes rise for zenith angles larger than 60°. The latter is the opposite of the observed behavior. The explanation is that VIRA and VenusGRAM are valid only for high solar activity, although there is also very poor agreement with VeRa observations from the recent solar cycle, in which the solar activity increases to high values. The disagreement between the observation and simulation of the Venus electron density profiles proves, that the true encountered Venus atmosphere at ionospheric altitudes was denser but locally cooler than predicted by VIRA.
Force sensor using changes in magnetic flux
NASA Technical Reports Server (NTRS)
Pickens, Herman L. (Inventor); Richard, James A. (Inventor)
2012-01-01
A force sensor includes a magnetostrictive material and a magnetic field generator positioned in proximity thereto. A magnetic field is induced in and surrounding the magnetostrictive material such that lines of magnetic flux pass through the magnetostrictive material. A sensor positioned in the vicinity of the magnetostrictive material measures changes in one of flux angle and flux density when the magnetostrictive material experiences an applied force that is aligned with the lines of magnetic flux.
TOPEX/POSEIDON orbit maintenance maneuver design
NASA Technical Reports Server (NTRS)
Bhat, R. S.; Frauenholz, R. B.; Cannell, Patrick E.
1990-01-01
The Ocean Topography Experiment (TOPEX/POSEIDON) mission orbit requirements are outlined, as well as its control and maneuver spacing requirements including longitude and time targeting. A ground-track prediction model dealing with geopotential, luni-solar gravity, and atmospheric-drag perturbations is considered. Targeting with all modeled perturbations is discussed, and such ground-track prediction errors as initial semimajor axis, orbit-determination, maneuver-execution, and atmospheric-density modeling errors are assessed. A longitude targeting strategy for two extreme situations is investigated employing all modeled perturbations and prediction errors. It is concluded that atmospheric-drag modeling errors are the prevailing ground-track prediction error source early in the mission during high solar flux, and that low solar-flux levels expected late in the experiment stipulate smaller maneuver magnitudes.
Su, Jiaye; Guo, Hongxia
2011-01-25
The transport of water molecules through nanopores is not only crucial to biological activities but also useful for designing novel nanofluidic devices. Despite considerable effort and progress that has been made, a controllable and unidirectional water flow is still difficult to achieve and the underlying mechanism is far from being understood. In this paper, using molecular dynamics simulations, we systematically investigate the effects of an external electric field on the transport of single-file water molecules through a carbon nanotube (CNT). We find that the orientation of water molecules inside the CNT can be well-tuned by the electric field and is strongly coupled to the water flux. This orientation-induced water flux is energetically due to the asymmetrical water-water interaction along the CNT axis. The wavelike water density profiles are disturbed under strong field strengths. The frequency of flipping for the water dipoles will decrease as the field strength is increased, and the flipping events vanish completely for the relatively large field strengths. Most importantly, a critical field strength E(c) related to the water flux is found. The water flux is increased as E is increased for E ≤ E(c), while it is almost unchanged for E > E(c). Thus, the electric field offers a level of governing for unidirectional water flow, which may have some biological applications and provides a route for designing efficient nanopumps.
NASA Astrophysics Data System (ADS)
Greschner, S.; Piraud, M.; Heidrich-Meisner, F.; McCulloch, I. P.; Schollwöck, U.; Vekua, T.
2016-12-01
We study the quantum phases of bosons with repulsive contact interactions on a two-leg ladder in the presence of a uniform Abelian gauge field. The model realizes many interesting states, including Meissner phases, vortex fluids, vortex lattices, charge density waves, and the biased-ladder phase. Our work focuses on the subset of these states that breaks a discrete symmetry. We use density matrix renormalization group simulations to demonstrate the existence of three vortex-lattice states at different vortex densities and we characterize the phase transitions from these phases into neighboring states. Furthermore, we provide an intuitive explanation of the chiral-current reversal effect that is tied to some of these vortex lattices. We also study a charge-density-wave state that exists at 1/4 particle filling at large interaction strengths and flux values close to half a flux quantum. By changing the system parameters, this state can transition into a completely gapped vortex-lattice Mott-insulating state. We elucidate the stability of these phases against nearest-neighbor interactions on the rungs of the ladder relevant for experimental realizations with a synthetic lattice dimension. A charge-density-wave state at 1/3 particle filling can be stabilized for flux values close to half a flux quantum and for very strong on-site interactions in the presence of strong repulsion on the rungs. Finally, we analytically describe the emergence of these phases in the low-density regime, and, in particular, we obtain the boundaries of the biased-ladder phase, i.e., the phase that features a density imbalance between the legs. We make contact with recent quantum-gas experiments that realized related models and discuss signatures of these quantum states in experimentally accessible observables.
Testing For Ecological Correlations between Greenhouse Gas ...
The role of coastal wetlands in ameliorating the plight of climate change is well documented. Per unit area, coastal wetlands are among the largest natural carbon sinks, taking up abundant carbon dioxide (CO2) and emitting minimal methane (CH4). While the role of coastal marsh vegetation in mediating CO2 and CH4 flux dynamics has been well-studied, less is known about effects that other biotic drivers, including marsh invertebrates, exert on GHG fluxes. Crabs and mollusks may directly alter soil biogeochemistry and GHG fluxes by bioturbation and deposition of nutrient-rich feces, and indirectly through impacts to vegetation. The objective of this research was to survey GHG fluxes along a gradient of fiddler crab (Uca pugnax) and ribbed mussel (Geukensia demissa) densities. Surveys were performed in a Rhode Island salt marsh at randomly-chosen points in both the Spartina alterniflora-vegetated low marsh and the unvegetated creek bank. During the peak growing season, GHG (CO2 and CH4) fluxes and S. alterniflora, live and dead mussel, and crab burrow densities were measured. GHG fluxes differed substantially between the S. alterniflora marsh and creek bank, with greater CO2 uptake and CH4 emission in the S. alterniflora marsh than along the creek bank. In the S. alterniflora marsh, Spearman’s Correlation Analysis revealed a significant positive correlation between density of dead mussels and CH4 emission. However, none of the measured variables correlat
Spectral Index Properties of millijansky Radio Sources in ATLAS
NASA Astrophysics Data System (ADS)
Randall, Kate; Hopkins, A. M.; Norris, R. P.; Zinn, P.; Middelberg, E.; Mao, M. Y.; Sharp, R. G.
2012-01-01
At the faintest radio flux densities (S1.4GHz < 10 milliJansky (mJy)), the spectral index properties of radio sources are not well constrained. The bright radio source population (S1.4GHz > 10 mJy) is well studied and is predominantly comprised of AGN. At fainter flux densities, particularly into the microJansky regime, star-forming galaxies begin to dominate the radio source population. Understanding these faint radio source populations is essential for understanding galaxy evolution, and the link between AGN and star formation. Conflicting results have recently arisen regarding whether there is a flattening of the average spectral index between a low radio frequency (325 or 610 MHz) and 1.4 GHz at these faint flux densities. To explore this issue, we have investigated the spectral index properties of a new catalogue of 843 MHz radio sources in the ELAIS-S1 (the European Large Area ISO Survey - South 1 Region) field. Our results support previous work showing a tendency towards flatter radio spectra at fainter flux densities. This catalogue is cross-matched to the Australia Telescope Large Area Survey (ATLAS), the widest deep radio survey to date at 1.4 GHz, with complementary 2.3 GHz, optical and infrared Spitzer Wide-area Infra-Red Extragalactic data. The variation of spectral index properties have been explored as a function of redshift, luminosity and flux density. [These new measurements have been used to identify a population of faint Compact Steep Spectrum sources, thought to be one of the earliest stages of the AGN life-cycle. Exploring this population will aid us in understanding the evolution of AGN as a whole.
James, Shelley A; Clearwater, Michael J; Meinzer, Frederick C; Goldstein, Guillermo
2002-03-01
Robust thermal dissipation sensors of variable length (3 to 30 cm) were developed to overcome limitations to the measurement of radial profiles of sap flow in large-diameter tropical trees with deep sapwood. The effective measuring length of the custom-made sensors was reduced to 1 cm at the tip of a thermally nonconducting shaft, thereby minimizing the influence of nonuniform sap flux density profiles across the sapwood. Sap flow was measured at different depths and circumferential positions in the trunks of four trees at the Parque Natural Metropolitano canopy crane site, Panama City, Republic of Panama. Sap flow was detected to a depth of 24 cm in the trunks of a 1-m-diameter Anacardium excelsum (Bertero & Balb. ex Kunth) Skeels tree and a 0.65-m-diameter Ficus insipida Willd. tree, and to depths of 7 cm in a 0.34-m-diameter Cordia alliodora (Ruiz & Pav.) Cham. trunk, and 17 cm in a 0.47-m-diameter Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin trunk. Sap flux density was maximal in the outermost 4 cm of sapwood and declined with increasing sapwood depth. Considerable variation in sap flux density profiles was observed both within and among the trees. In S. morototoni, radial variation in sap flux density was associated with radial variation in wood properties, particularly vessel lumen area and distribution. High variability in radial and circumferential sap flux density resulted in large errors when measurements of sap flow at a single depth, or a single radial profile, were used to estimate whole-plant water use. Diurnal water use ranged from 750 kg H2O day-1 for A. excelsum to 37 kg H2O day-1 for C. alliodora.
Diffusion-limited retention of porous particles at density interfaces
Kindler, Kolja; Khalili, Arzhang; Stocker, Roman
2010-01-01
Downward carbon flux in the ocean is largely governed by particle settling. Most marine particles settle at low Reynolds numbers and are highly porous, yet the fluid dynamics of this regime have remained unexplored. We present results of an experimental investigation of porous particles settling through a density interface at Reynolds numbers between 0.1 and 1. We tracked 100 to 500 μm hydrogel spheres with 95.5% porosity and negligible permeability. We found that a small negative initial excess density relative to the lower (denser) fluid layer, a common scenario in the ocean, results in long retention times of particles at the interface. We hypothesized that the retention time was determined by the diffusive exchange of the stratifying agent between interstitial and ambient fluid, which increases excess density of particles that have stalled at the interface, enabling their settling to resume. This hypothesis was confirmed by observations, which revealed a quadratic dependence of retention time on particle size, consistent with diffusive exchange. These results demonstrate that porosity can control retention times and therefore accumulation of particles at density interfaces, a mechanism that could underpin the formation of particle layers frequently observed at pycnoclines in the ocean. We estimate retention times of 3 min to 3.3 d for the characteristic size range of marine particles. This enhancement in retention time can affect carbon transformation through increased microbial colonization and utilization of particles and release of dissolved organics. The observed size dependence of the retention time could further contribute to improve quantifications of vertical carbon flux. PMID:21135242
NASA Astrophysics Data System (ADS)
Gebhart, Trey; Baylor, Larry; Winfrey, Leigh
2016-10-01
The realization of fusion energy requires materials that can withstand high heat and particle fluxes at the plasma material interface. In this work, an electrothermal (ET) plasma source has been designed as a possible transient heat flux source for a linear plasma material interaction device. An ET plasma source operates in the ablative arc regime, which is driven by a DC capacitive discharge. The current travels through the 4mm bore of a boron nitride liner and subsequently ablates and ionizes the liner material. This results in a high density plasma with a large unidirectional bulk flow out of the source exit. The pulse length for the ET source has been optimized using a pulse forming network to have a duration of 1ms at full-width half maximum. The peak currents and maximum source energies seen in this system are 2kA and 5kJ. The goal of this work is to show that the ET source produces electron densities and heat fluxes that are comparable to transient events in future large magnetic confinement fusion devices. Heat flux, plasma temperature, and plasma density were determined for each test shot using infrared imaging and optical spectroscopy techniques. This work will compare the ET source output (heat flux, temperature, and density) with and without an applied magnetic field. Research sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U. S. Department of Energy.
Sandman, Antonia Nyström; Näslund, Johan; Gren, Ing-Marie; Norling, Karl
2018-05-05
Macrofaunal activities in sediments modify nutrient fluxes in different ways including the expression of species-specific functional traits and density-dependent population processes. The invasive polychaete genus Marenzelleria was first observed in the Baltic Sea in the 1980s. It has caused changes in benthic processes and affected the functioning of ecosystem services such as nutrient regulation. The large-scale effects of these changes are not known. We estimated the current Marenzelleria spp. wet weight biomass in the Baltic Sea to be 60-87 kton (95% confidence interval). We assessed the potential impact of Marenzelleria spp. on phosphorus cycling using a spatially explicit model, comparing estimates of expected sediment to water phosphorus fluxes from a biophysical model to ecologically relevant experimental measurements of benthic phosphorus flux. The estimated yearly net increases (95% CI) in phosphorous flux due to Marenzelleria spp. were 4.2-6.1 kton based on the biophysical model and 6.3-9.1 kton based on experimental data. The current biomass densities of Marenzelleria spp. in the Baltic Sea enhance the phosphorus fluxes from sediment to water on a sea basin scale. Although high densities of Marenzelleria spp. can increase phosphorus retention locally, such biomass densities are uncommon. Thus, the major effect of Marenzelleria seems to be a large-scale net decrease in the self-cleaning capacity of the Baltic Sea that counteracts human efforts to mitigate eutrophication in the region.
Monitoring crop coefficient of orange orchards using energy balance and the remote sensed NDVI
NASA Astrophysics Data System (ADS)
Consoli, Simona; Cirelli, Giuseppe Luigi; Toscano, Attilio
2006-09-01
The structure of vegetation is paramount in regulating the exchange of mass and energy across the biosphereatmosphere interface. In particular, changes in vegetation density affected the partitioning of incoming solar energy into sensible and latent heat fluxes that may result in persistent drought through reductions in agricultural productivity and in the water resources availability. Limited research with citrus orchards has shown improvements to irrigation scheduling due to better water-use estimation and more appropriate timing of irrigation when crop coefficient (Kc) estimate, derived from remotely sensed multispectral vegetation indices (VIs), are incorporated into irrigation-scheduling algorithms. The purpose of this article is the application of an empirical reflectance-based model for the estimation of Kc and evapotranspiration fluxes (ET) using ground observations on climatic data and high-resolution VIs from ASTER TERRA satellite imagery. The remote sensed Kc data were used in developing the relationship with the normalized difference vegetation index (NDVI) for orange orchards during summer periods. Validation of remote sensed data on ET, Kc and vegetation features was deal through ground data observations and the resolution of the energy balance to derive latent heat flux density (λE), using measures of net radiation (Rn) and soil heat flux density (G) and estimate of sensible heat flux density (H) from high frequency temperature measurements (Surface Renewal technique). The chosen case study is that of an irrigation area covered by orange orchards located in Eastern Sicily, Italy) during the irrigation seasons 2005 and 2006.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopez, F.B.; Setter, T.L.; McDavid, C.R.
Greenhouse-grown pigeonpea (Cajunus cajan, (L.)) and cowpea (Vigna unguiculata, (L.)) were well-watered or subjected to low water potential by withholding water to compare their modes of adaptation to water-limited conditions. Leaf CO/sub 2/ exchange rate (CER), leaf diffusive conductance to CO/sub 2/ (g/sub L/), and CO/sub 2/ concentration in the leaf intercellular air space (C/sub i/) were determined at various CO/sub 2/ concentrations and photon flux densities (PFD) of photosynthetically active radiation. In cowpea, g/sub L/ declined to less than 15% of controls and total water potential (Psi/sub w/) at midafternoon declined to -0.8 megapascal after 5 days of withholdingmore » water, whereas g/sub L/ in pigeonpea was about 40% of controls even though midafternoon Psi/sub w/ was -1.9 megapascal. After 8 days of withholding water, Psi/sub w/ at midafternoon decline to -0.9 and -2.4 megapascals in cowpea and pigeonpea, respectively. The solute component of water potential (Psi/sub s/) decreased substantially less in cowpea than pigeonpea. Photosynthetic CER at saturation photon flux density (PFD) and ambient external CO/sub 2/ concentration on day 5 of withholding decreased by 83 and 55% in cowpea and pigeonpea, respectively. When measured at external, CO/sub 2/ concentration in bulk air of 360 microliters per liter, the CER of cowpea had fully recovered to control levels 3 days after rewatering; however, at 970 microliters per liter the PFD-saturated CERS of both species were substantially lower than in controls, indicating residual impairment.« less
A search at the millijansky level for milli-arcsecond cores in a complete sample of radio galaxies
NASA Technical Reports Server (NTRS)
Wehrle, A. E.; Preston, R. A.; Meier, D. L.; Gorenstein, M. V.; Shapiro, I. I.; Rogers, A. E. E.; Rius, A.
1984-01-01
A complete sample of 26 extended radio galaxies was observed at 2.29 GHz with the Mark III VLBI system. The fringe spacing was about 3 milli-arcsec, and the detection limit was about 2 millijanskys. Half of the galaxies were found to possess milli-arcsec radio cores. In all but three sources, the nuclear flux density was less than 0.04 of the total flux density. Galaxies with high optical luminosity (less than -21.2) were more likely than less luminous galaxies to contain a detectable milliparcsec radio core (69 percent vs. 20 percent). For objects with arcsec cores, 80 percent were found to have a milli-arcsec core, even though the milli-arcsec object did not always contribute the greater part of the arcsec flux density.
NASA Astrophysics Data System (ADS)
Kyser, David F.; Eib, Nicholas K.; Ritchie, Nicholas W. M.
2016-07-01
The absorbed energy density (eV/cm3) deposited by extreme ultraviolet (EUV) photons and electron beam (EB) high-keV electrons is proposed as a metric for characterizing the sensitivity of EUV resist films. Simulations of energy deposition are used to calculate the energy density as a function of the incident aerial flux (EUV: mJ/cm2, EB: μC/cm2). Monte Carlo calculations for electron exposure are utilized, and a Lambert-Beer model for EUV absorption. The ratio of electron flux to photon flux which results in equivalent energy density is calculated for a typical organic chemically amplified resist film and a typical inorganic metal-oxide film. This ratio can be used to screen EUV resist materials with EB measurements and accelerate advances in EUV resist systems.
Surface energy and radiation balance systems - General description and improvements
NASA Technical Reports Server (NTRS)
Fritschen, Leo J.; Simpson, James R.
1989-01-01
Surface evaluation of sensible and latent heat flux densities and the components of the radiation balance were desired for various vegetative surfaces during the ASCOT84 experiment to compare with modeled results and to relate these values to drainage winds. Five battery operated data systems equipped with sensors to determine the above values were operated for 105 station days during the ASCOT84 experiment. The Bowen ratio energy balance technique was used to partition the available energy into the sensible and latent heat flux densities. A description of the sensors and battery operated equipment used to collect and process the data is presented. In addition, improvements and modifications made since the 1984 experiment are given. Details of calculations of soil heat flow at the surface and an alternate method to calculate sensible and latent heat flux densities are provided.
Investigation of an inverted meniscus heat pipe wick concept
NASA Technical Reports Server (NTRS)
Saaski, E. W.
1975-01-01
A wicking concept is described for efficient evaporation of heat pipe working fluids under diverse conditions. It embodies the high heat transfer coefficient of the circumferential groove while retaining the circumferential fluid transport capability of a thick porous wick or screen. Experimental tests are described which substantiate the efficacy of the evaporation technique for a circumferentially-grooved heat pipe charged alternately with ammonia and R-ll (CCl3F). With ammonia, heat transfer coefficients in the range of 2 to 2.7 W/sq cm K were measured at heat flux densities up to 20 W/sq cm while, with R-ll, a heat transfer coefficient of l.0 W/sq cm K was measured with flux densities up to 5 W/sq cm. Heat transfer coefficients and flux densities were unusually high compared to literature data for other nonboiling evaporative surfaces.
The brightness temperature of Venus and the absolute flux-density scale at 608 MHz.
NASA Technical Reports Server (NTRS)
Muhleman, D. O.; Berge, G. L.; Orton, G. S.
1973-01-01
The disk temperature of Venus was measured at 608 MHz near the inferior conjunction of 1972, and a value of 498 plus or minus 33 K was obtained using a nominal CKL flux-density scale. The result is consistent with earlier measurements, but has a much smaller uncertainty. Our theoretical model prediction is larger by a factor of 1.21 plus or minus 0.09. This discrepancy has been noticed previously for frequencies below 1400 MHz, but was generally disregarded because of the large observational uncertainties. No way could be found to change the model to produce agreement without causing a conflict with well-established properties of Venus. Thus it is suggested that the flux-density scale may require an upward revision, at least near this frequency, in excess of what has previously been considered likely.
NASA Astrophysics Data System (ADS)
Dang, Tong; Zhang, Binzheng; Wiltberge, Michael; Wang, Wenbin; Varney, Roger; Dou, Xiankang; Wan, Weixing; Lei, Jiuhou
2018-01-01
In this study, the correlations between the fluxes of precipitating soft electrons in the cusp region and solar wind coupling functions are investigated utilizing the Lyon-Fedder-Mobarry global magnetosphere model simulations. We conduct two simulation runs during periods from 20 March 2008 to 16 April 2008 and from 15 to 24 December 2014, which are referred as "Equinox Case" and "Solstice Case," respectively. The simulation results of Equinox Case show that the plasma number density in the high-latitude cusp region scales well with the solar wind number density (ncusp/nsw=0.78), which agrees well with the statistical results from the Polar spacecraft measurements. For the Solstice Case, the plasma number density of high-latitude cusp in both hemispheres increases approximately linearly with upstream solar wind number density with prominent hemispheric asymmetry. Due to the dipole tilt effect, the average number density ratio ncusp/nsw in the Southern (summer) Hemisphere is nearly 3 times that in the Northern (winter) Hemisphere. In addition to the solar wind number density, 20 solar wind coupling functions are tested for the linear correlation with the fluxes of precipitating cusp soft electrons. The statistical results indicate that the solar wind dynamic pressure p exhibits the highest linear correlation with the cusp electron fluxes for both equinox and solstice conditions, with correlation coefficients greater than 0.75. The linear regression relations for equinox and solstice cases may provide an empirical calculation for the fluxes of cusp soft electron precipitation based on the upstream solar wind driving conditions.
Schmidt-Rohlfing, Bernhard; Silny, Jiri; Woodruff, Seth; Gavenis, Karsten
2008-08-01
Although several effects of electromagnetic fields (EMFs) on articular cartilage have been reported in recent studies, the use of EMFs to treat osteoarthritis remains a matter of debate. In an in vitro study, human chondrocytes harvested from osteoarthritic knee joints were released from their surrounding matrix and transferred in defined concentration into a 3D matrix (type-I collagen gel). The cultivation, performed under standard conditions, lasted up to 14 days. During this time, treatment groups were continuously exposed to either sinusoid or pulsed electromagnetic fields (PEMFs). The PEMFs revealed the following characteristics: maximum magnetic flux density of 2 mT, frequency of the bursts of 16.7 Hz with each burst consisting of 20 pulses. Similarly, the sinusoid EMFs also induced a maximum flux density of 2 mT with a frequency of 50 Hz. Control groups consisting of equal number of samples were not exposed to EMF. Immunohistological examinations of formalin-fixed, paraffin-embedded samples revealed positive staining for type-II collagen and proteoglycans in the immediate pericellular region with no differences between the two different treatment groups and the control groups. With increasing cultivation time, both type-II collagen and aggrecan gene expression declined, but no significant differences in gene expression were found between the treatment and control groups. In conclusion, using our in vitro setting, we were unable to detect any effects of pulsed and sinusoidal magnetic fields on human adult osteoarthritic chondrocytes.
VizieR Online Data Catalog: Flux conversion factors for the Swift/UVOT filters (Brown+, 2016)
NASA Astrophysics Data System (ADS)
Brown, P. J.; Breeveld, A.; Roming, P. W. A.; Siegel, M.
2016-10-01
The conversion of observed magnitudes (or the actual observed photon or electron count rates) to a flux density is one of the most fundamental calculations. The flux conversions factors for the six Swift/UVOT filters are tabulated in Table1. (1 data file).
Multi-tip nano-prisms: Controlled growth and emission enhancement properties
NASA Astrophysics Data System (ADS)
Liu, Ming; Meng, Cong; Xue, Zheng-Hong; Xiong, Xiang; Shu, Da-Jun; Peng, Ru-Wen; Wu, Qiang; Hu, Zheng; Wang, Mu
2013-10-01
We report here the experimental observations that the tip topography of ZnO nano-prisms sensitively depends on the percentage of oxygen in the flux of the carrying gas in vapor growth. At a relatively high oxygen concentration, a number of thin filaments can be nucleated atop nano-prisms, forming a unique fish-spear-like multi-tip morphology. The length and density of the “spear tines” depend on the flux of the carrying gas. The field emission properties of the nanorod array with different tip morphology are investigated. The structures with longer and denser spear tines possess lower turn-on electric field and higher electric current density. The cathodoluminescence properties of the ZnO nano-prisms have also been studied. The luminescence related to defects in multi-tip nano-prisms possesses the strongest intensity, and the nanorod without any tine structure possesses the lowest defect luminescence intensity. The intrinsic luminescence of ZnO around 385 nm, however, has the opposite tendency. We suggest that our observation is inspiring in optimizing the emission properties of the nanowire devices.
Spontaneous symmetry breaking in a two-lane model for bidirectional overtaking traffic
NASA Astrophysics Data System (ADS)
Appert-Rolland, C.; Hilhorst, H. J.; Schehr, G.
2010-08-01
Firstly, we consider a unidirectional flux \\bar {\\omega } of vehicles, each of which is characterized by its 'natural' velocity v drawn from a distribution P(v). The traffic flow is modeled as a collection of straight 'world lines' in the time-space plane, with overtaking events represented by a fixed queuing time τ imposed on the overtaking vehicle. This geometrical model exhibits platoon formation and allows, among many other things, for the calculation of the effective average velocity w\\equiv \\phi (v) of a vehicle of natural velocity v. Secondly, we extend the model to two opposite lanes, A and B. We argue that the queuing time τ in one lane is determined by the traffic density in the opposite lane. On the basis of reasonable additional assumptions we establish a set of equations that couple the two lanes and can be solved numerically. It appears that above a critical value \\bar {\\omega }_{\\mathrm {c}} of the control parameter \\bar {\\omega } the symmetry between the lanes is spontaneously broken: there is a slow lane where long platoons form behind the slowest vehicles, and a fast lane where overtaking is easy due to the wide spacing between the platoons in the opposite direction. A variant of the model is studied in which the spatial vehicle density \\bar {\\rho } rather than the flux \\bar {\\omega } is the control parameter. Unequal fluxes \\bar {\\omega }_{\\mathrm {A}} and \\bar {\\omega }_{\\mathrm {B}} in the two lanes are also considered. The symmetry breaking phenomenon exhibited by this model, even though no doubt hard to observe in pure form in real-life traffic, nevertheless indicates a tendency of such traffic.
NASA Astrophysics Data System (ADS)
Schulz, E.; Grasso, F.; Le Hir, P.; Verney, R.; Thouvenin, B.
2018-01-01
Understanding the sediment dynamics in an estuary is important for its morphodynamic and ecological assessment as well as, in case of an anthropogenically controlled system, for its maintenance. However, the quantification of sediment fluxes and budgets is extremely difficult from in-situ data and requires thoroughly validated numerical models. In the study presented here, sediment fluxes and budgets in the lower Seine Estuary were quantified and investigated from seasonal to annual time scales with respect to realistic hydro- and meteorological conditions. A realistic three-dimensional process-based hydro- and sediment-dynamic model was used to quantify mud and sand fluxes through characteristic estuarine cross-sections. In addition to a reference experiment with typical forcing, three experiments were carried out and analyzed, each differing from the reference experiment in either river discharge or wind and waves so that the effects of these forcings could be separated. Hydro- and meteorological conditions affect the sediment fluxes and budgets in different ways and at different locations. Single storm events induce strong erosion in the lower estuary and can have a significant effect on the sediment fluxes offshore of the Seine Estuary mouth, with the flux direction depending on the wind direction. Spring tides cause significant up-estuary fluxes at the mouth. A high river discharge drives barotropic down-estuary fluxes at the upper cross-sections, but baroclinic up-estuary fluxes at the mouth and offshore so that the lower estuary gains sediment during wet years. This behavior is likely to be observed worldwide in estuaries affected by density gradients and turbidity maximum dynamics.
JPRS Report, Science & Technology, USSR: Engineering & Equipment
1989-01-30
flux density and of the speed and density of the mass flux, have a long operating life , and are economical. A technology has been developed for...water pro- vides a repair-free service life of 20 to 30 years. JPRS-ueq-89-002 30 January 1989 Industrial Technology, Planning, Productivity...to raise the temperature of the working body, increase its efficiency, and reduce fuel consumption. Ceramic cutting plates permit a two- to
BRIEF COMMUNICATION: A note on the Coulomb collision operator in curvilinear coordinates
NASA Astrophysics Data System (ADS)
Goncharov, P. R.
2010-10-01
The dynamic friction force, diffusion tensor, flux density in velocity space and Coulomb collision term are expressed in curvilinear coordinates via Trubnikov potential functions corresponding to each species of a background plasma. For comparison, explicit formulae are given for the dynamic friction force, diffusion tensor and collisional flux density in velocity space in curvilinear coordinates via Rosenbluth potential functions summed over all species of the background plasma.
Precision flux density measurements of the giant planets at 8420 MHz
NASA Technical Reports Server (NTRS)
Turegano, J. A.; Klein, M. J.
1981-01-01
Precision measurements of the 3.56 cm flux densities of Jupiter, Saturn, Uranus, and Neptune are reported. The results are compared with previously published measurements as a means of: (1) remotely sensing long-term changes in the microwave emission from the atmospheres of these planets; (2) measuring the effects of Saturn's rings on the disk temperature as observed from earth at different ring inclination angles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simizu, Satoru; Ohodnicki, Paul R.; McHenry, Michael E.
Metal amorphous nanocomposites (MANCs) are promising soft magnetic materials (SMMs) for power electronic applications offering low power loss at high frequency and maintaining a relatively high flux density. While applications in certain motor designs have been recently modeled, their widespread application awaits scaled manufacturing of MANC materials and proliferation of new higher speed motor designs. A hybrid motor design based on permanent magnets and doubly salient stator and rotor is reported here to develop a compact (a factor of 10 smaller than currently possible in Si steels), high-speed (>1 kHz, electrical), high-power (>2.5 kW) motor by incorporating low loss (<10more » W/kg at 1 kHz) MANCs such as recently reported Fe-Ni-based alloys. A feature of this motor design is flux focusing from the permanent magnet allowing use of lower energy permanent magnet chosen from among non-rare earth containing compositions and attractive due to constraints posed by rare earth criticality. A 2-D finite element analysis model reported here indicates that a 2.5 kW hybrid motor may be built with a permanent magnet with a 0.4 T remanence at a rotor speed of 6000 rpm. At a magnetic switching frequency of 1.4 kHz, the core loss may be limited to <3 W by selecting an appropriate MANC SMM. The projected efficiency exceeds 96% not including power loss in the controller. Under full load conditions, the flux density distributions for the SMM stay predominantly <1.3 T, the saturation magnetization of optimized FeNi-based MANC alloys. As a result, the maximum demagnetizing field in the permanent magnet is less than 2.2 × 10 5 A/m sustainable, for example, with a high-grade hard ferrite magnet.« less
Simizu, Satoru; Ohodnicki, Paul R.; McHenry, Michael E.
2018-02-27
Metal amorphous nanocomposites (MANCs) are promising soft magnetic materials (SMMs) for power electronic applications offering low power loss at high frequency and maintaining a relatively high flux density. While applications in certain motor designs have been recently modeled, their widespread application awaits scaled manufacturing of MANC materials and proliferation of new higher speed motor designs. A hybrid motor design based on permanent magnets and doubly salient stator and rotor is reported here to develop a compact (a factor of 10 smaller than currently possible in Si steels), high-speed (>1 kHz, electrical), high-power (>2.5 kW) motor by incorporating low loss (<10more » W/kg at 1 kHz) MANCs such as recently reported Fe-Ni-based alloys. A feature of this motor design is flux focusing from the permanent magnet allowing use of lower energy permanent magnet chosen from among non-rare earth containing compositions and attractive due to constraints posed by rare earth criticality. A 2-D finite element analysis model reported here indicates that a 2.5 kW hybrid motor may be built with a permanent magnet with a 0.4 T remanence at a rotor speed of 6000 rpm. At a magnetic switching frequency of 1.4 kHz, the core loss may be limited to <3 W by selecting an appropriate MANC SMM. The projected efficiency exceeds 96% not including power loss in the controller. Under full load conditions, the flux density distributions for the SMM stay predominantly <1.3 T, the saturation magnetization of optimized FeNi-based MANC alloys. As a result, the maximum demagnetizing field in the permanent magnet is less than 2.2 × 10 5 A/m sustainable, for example, with a high-grade hard ferrite magnet.« less
VizieR Online Data Catalog: 12um ISOCAM survey of the ESO-Sculptor field (Seymour+, 2007)
NASA Astrophysics Data System (ADS)
Seymour, N.; Rocca-Volmerange, B.; de Lapparent, V.
2007-11-01
We present a detailed reduction of a mid-infrared 12um (LW10 filter) ISOCAM open time observation performed on the ESO-Sculptor Survey field (Arnouts et al., 1997A&AS..124..163A). A complete catalogue of 142 sources (120 galaxies and 22 stars), detected with high significance (equivalent to 5{sigma}), is presented above an integrated flux density of 0.31mJy. Star/galaxy separation is performed by a detailed study of colour-colour diagrams. The catalogue is complete to 1mJy and, below this flux density, the incompleteness is corrected using two independent methods. The first method uses stars and the second uses optical counterparts of the ISOCAM galaxies; these methods yield consistent results. We also apply an empirical flux density calibration using stars in the field. For each star, the 12um flux density is derived by fitting optical colours from a multi-band {chi}2 to stellar templates (BaSel-2.0) and using empirical optical-IR colour-colour relations. This article is a companion analysis to our 2007 paper (Rocca-Volmerange et al. 2007A&A...475..801R) where the 12um faint galaxy counts are presented and analysed per galaxy type with the evolutionary code PEGASE.3. (1 data file).
Yamanishi, Yoko; Sakuma, Shinya; Onda, Kazuhisa; Arai, Fumihito
2010-08-01
This paper describes a novel powerful noncontact actuation of a magnetically driven microtool (MMT), achieved by magnetization of the MMT and focusing of the magnetic field in a microfluidic chip for particle sorting. The following are the highlights of this study: (1) an MMT was successfully fabricated from a mixture of neodymium powder and polydimethylsiloxane; the MMT was magnetized such that it acted as an elastic micromagnet with a magnetic flux density that increased by about 100 times after magnetization, and (2) a pair of sharp magnetic needles was fabricated adjacent to a microchannel in a chip by electroplating, in order to focus the magnetic flux density generated by the electromagnetic coils below the biochip; these needles contribute to miniaturization of an actuation module that would enable the integration of multiple functions in the limited area of a chip. FEM analysis of the magnetic flux density around the MMT showed that the magnetic flux density in the setup with the magnetic needles was around 8 times better than that in the setup without the needles. By magnetization, the drive frequency of the MMT improved by about 10 times--from 18 Hz to 180 Hz. We successfully demonstrated the separation of copolymer beads of a particular size in a chip by image sensing.
Operation of the ORNL High Particle Flux Helicon Plasma Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goulding, R. H.; Biewer, T. M.; Caughman, J. B. O.
2011-12-23
A high power, high particle flux rf-based helicon plasma source has been constructed at ORNL and operated at power levels up to 30 kW. High-density hydrogen and helium plasmas have been produced. The source has been designed as the basis for a linear plasma materials interaction (PMI) test facility that will generate particle fluxes {Gamma}{sub p}10{sup 23} m{sup -3} s{sup -1}, and utilize additional ion and electron cyclotron heating to produce high parallel (to the magnetic field) heat fluxes of {approx}10 MW/m{sup 2}. An rf-based source for PMI research is of interest because high plasma densities are generated with nomore » internal electrodes, allowing true steady state operation with minimal impurity generation. The ORNL helicon source has a diameter of 15 cm and to-date has operated at a frequency f = 13.56 MHz, with magnetic field strength |B| in the antenna region up to {approx}0.15 T. Maximum densities of 3x10{sup 19} m{sup -3} in He and 2.5x10{sup 19} m{sup -3} in H have been achieved. Radial density profiles have been seen to be dependent on the axial |B| profile.« less
Operation of the ORNL High Particle Flux Helicon Plasma Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goulding, Richard Howell; Biewer, Theodore M; Caughman, John B
2011-01-01
A high power, high particle flux rf-based helicon plasma source has been constructed at ORNL and operated at power levels up to 30 kW. High-density hydrogen and helium plasmas have been produced. The source has been designed as the basis for a linear plasma materials interaction (PMI) test facility that will generate particle fluxes Gamma(p) > 10(23) M-3 s(-1), and utilize additional ion and electron cyclotron heating to produce high parallel (to the magnetic field) heat fluxes of similar to 10 MW/m(2). An rf-based source for PMI research is of interest because high plasma densities are generated with no internalmore » electrodes, allowing true steady state operation with minimal impurity generation. The ORNL helicon source has a diameter of 15 cm and to-date has operated at a frequency f = 13.56 MHz, with magnetic field strength vertical bar B vertical bar in the antenna region up to similar to 0.15 T. Maximum densities of 3 x 10(19) M-3 in He and 2.5 x 10(19) m(-3) in H have been achieved. Radial density profiles have been seen to be dependent on the axial vertical bar B vertical bar profile.« less
Neutral particle dynamics in a high-power RF source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Todorov, D., E-mail: dimitar-tdrv@phys.uni-sofia.bg; Paunska, Ts.; Shivarova, A.
2015-04-08
Previous studies on the spatial discharge structure in the SPIDER source of negative hydrogen/deuterium ions carried out at low applied power are extended towards description of the discharge maintenance under the conditions of the actual rf power deposition of 100 kW planned for a single driver of the source. In addition to the expected higher electron density, the results show strong increase of the electron temperature and of the temperatures of the neutral species (hydrogen atoms and molecules). In the discussions, not only the spatial distribution of the plasma parameters but also that of the fluxes in the discharge (particlemore » and energy fluxes) is involved. The obtained results come in confirmation of basic concepts for low-pressure discharge maintenance: (i) mutually related electron density and temperature as a display of the generalized Schottky condition, (ii) discharge behavior governed by the fluxes, i.e. strong nonlocality in the discharge, and (iii) a non-ambipolarity in the discharge regime, which originates from shifted maxima of the electron density and temperature and shows evidence in a vortex electron flux and in a dc current in a rf discharge, the latter resulting from a shift in the positions of the maxima of the electron density and plasma potential.« less
Nonlinear control of magnetic signatures
NASA Astrophysics Data System (ADS)
Niemoczynski, Bogdan
Magnetic properties of ferrite structures are known to cause fluctuations in Earth's magnetic field around the object. These fluctuations are known as the object's magnetic signature and are unique based on the object's geometry and material. It is a common practice to neutralize magnetic signatures periodically after certain time intervals, however there is a growing interest to develop real time degaussing systems for various applications. Development of real time degaussing system is a challenging problem because of magnetic hysteresis and difficulties in measurement or estimation of near-field flux data. The goal of this research is to develop a real time feedback control system that can be used to minimize magnetic signatures for ferrite structures. Experimental work on controlling the magnetic signature of a cylindrical steel shell structure with a magnetic disturbance provided evidence that the control process substantially increased the interior magnetic flux. This means near field estimation using interior sensor data is likely to be inaccurate. Follow up numerical work for rectangular and cylindrical cross sections investigated variations in shell wall flux density under a variety of ambient excitation and applied disturbances. Results showed magnetic disturbances could corrupt interior sensor data and magnetic shielding due to the shell walls makes the interior very sensitive to noise. The magnetic flux inside the shell wall showed little variation due to inner disturbances and its high base value makes it less susceptible to noise. This research proceeds to describe a nonlinear controller to use the shell wall data as an input. A nonlinear plant model of magnetics is developed using a constant tau to represent domain rotation lag and a gain function k to describe the magnetic hysteresis curve for the shell wall. The model is justified by producing hysteresis curves for multiple materials, matching experimental data using a particle swarm algorithm, and observing frequency effects. The plant model is used in a feedback controller and simulated for different materials as a proof of concept.
NASA Technical Reports Server (NTRS)
Gregory, D. A.; Stocks, C. D.
1983-01-01
Improved version of Faraday cup increases accuracy of measurements of flux density of charged particles incident along axis through collection aperture. Geometry of cone-and-sensing cup combination assures most particles are trapped.
2012-01-01
Background Plant growth and development depend on the availability of light. Lighting systems therefore play crucial roles in plant studies. Recent advancements of light-emitting diode (LED) technologies provide abundant opportunities to study various plant light responses. The LED merits include solidity, longevity, small element volume, radiant flux controllability, and monochromaticity. To apply these merits in plant light response studies, a lighting system must provide precisely controlled light spectra that are useful for inducing various plant responses. Results We have developed a plant lighting system that irradiated a 0.18 m2 area with a highly uniform distribution of photon flux density (PFD). The average photosynthetic PFD (PPFD) in the irradiated area was 438 micro-mol m–2 s–1 (coefficient of variation 9.6%), which is appropriate for growing leafy vegetables. The irradiated light includes violet, blue, orange-red, red, and far-red wavelength bands created by LEDs of five types. The PFD and mixing ratio of the five wavelength-band lights are controllable using a computer and drive circuits. The phototropic response of oat coleoptiles was investigated to evaluate plant sensitivity to the light control quality of the lighting system. Oat coleoptiles irradiated for 23 h with a uniformly distributed spectral PFD (SPFD) of 1 micro-mol m–2 s–1 nm–1 at every peak wavelength (405, 460, 630, 660, and 735 nm) grew almost straight upwards. When they were irradiated with an SPFD gradient of blue light (460 nm peak wavelength), the coleoptiles showed a phototropic curvature in the direction of the greater SPFD of blue light. The greater SPFD gradient induced the greater curvature of coleoptiles. The relation between the phototropic curvature (deg) and the blue-light SPFD gradient (micro-mol m–2 s–1 nm–1 m–1) was 2 deg per 1 micro-mol m–2 s–1 nm–1 m–1. Conclusions The plant lighting system, with a computer with a graphical user interface program, can control the PFD and mixing ratios of five wavelength-band lights. A highly uniform PFD distribution was achieved, although an intentionally distorted PFD gradient was also created. Phototropic responses of oat coleoptiles to the blue light gradient demonstrated the merit of fine controllability of this plant lighting system. PMID:23173915
Flux density calibration in diffuse optical tomographic systems.
Biswas, Samir Kumar; Rajan, Kanhirodan; Vasu, Ram M
2013-02-01
The solution of the forward equation that models the transport of light through a highly scattering tissue material in diffuse optical tomography (DOT) using the finite element method gives flux density (Φ) at the nodal points of the mesh. The experimentally measured flux (Umeasured) on the boundary over a finite surface area in a DOT system has to be corrected to account for the system transfer functions (R) of various building blocks of the measurement system. We present two methods to compensate for the perturbations caused by R and estimate true flux density (Φ) from Umeasuredcal. In the first approach, the measurement data with a homogeneous phantom (Umeasuredhomo) is used to calibrate the measurement system. The second scheme estimates the homogeneous phantom measurement using only the measurement from a heterogeneous phantom, thereby eliminating the necessity of a homogeneous phantom. This is done by statistically averaging the data (Umeasuredhetero) and redistributing it to the corresponding detector positions. The experiments carried out on tissue mimicking phantom with single and multiple inhomogeneities, human hand, and a pork tissue phantom demonstrate the robustness of the approach.
EVLA observations of radio-loud quasars selected to study radio orientation
NASA Astrophysics Data System (ADS)
Maithil, Jaya; Brotherton, Michael S.; Runnoe, Jessie; Wardle, John F. C.; DiPompeo, Michael; De Breuck, Carlos; Wills, Beverley J.
2018-06-01
We present preliminary work to develop an unbiased sample of radio-loud quasars to test orientation indicators. We have obtained radio data of 147 radio-loud quasars using EVLA at 10 GHz and with the A-array. With this high-resolution data we have measured the uncontaminated core flux density to determine orientation indicators based on radio core dominance. The radio cores of quasars have a flat spectrum over a broad range of frequencies, so we expect that the core flux density at the FIRST and the observed frequencies should be the same in the absence of variability. Jackson & Brown (2012) pointed out that the survey measurements of core flux density, like FIRST, often doesn't have the spatial resolution to distinguish cores from extended emission. Our measurements show that at FIRST spatial resolution, core flux measurements are indeed systematically high. Our results establish that orientation studies need high-resolution radio data as compared to survey data, and that the optical emission is a better normalization than the extended radio emission for a core dominance parameter to track orientation.
Hybrid thermionic-photovoltaic converter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Datas, A.
2016-04-04
A conceptual device for the direct conversion of heat into electricity is presented. This concept hybridizes thermionic (TI) and thermophotovoltaic (TPV) energy conversion in a single thermionic-photovoltaic (TIPV) solid-state device. This device transforms into electricity both the electron and photon fluxes emitted by an incandescent surface. This letter presents an idealized analysis of this device in order to determine its theoretical potential. According to this analysis, the key advantage of this converter, with respect to either TPV or TI, is the higher power density in an extended temperature range. For low temperatures, TIPV performs like TPV due to the negligiblemore » electron flux. On the contrary, for high temperatures, TIPV performs like TI due to the great enhancement of the electron flux, which overshadows the photon flux contribution. At the intermediate temperatures, ∼1650 K in the case of this particular study, I show that the power density potential of TIPV converter is twice as great as that of TPV and TI. The greatest impact concerns applications in which the temperature varies in a relatively wide range, for which averaged power density enhancement above 500% is attainable.« less
Microstructural control and superconducting properties of YBCO melt textured single crystals
NASA Astrophysics Data System (ADS)
Jongprateep, Oratai
The high temperature superconductor has great potential for practical applications such as superconducting energy storage systems. Since the levitation force, required specifically for these applications, largely depends on the critical current density and loop size of the superconducting current, large-sized single crystals with high critical current density are desired. To achieve the goal in fabricating YBa2Cu3O 7-delta (Y123) samples suitable for the applications, detailed and systematic studies are required to gain further understanding of the crystal growth and flux pinning mechanisms. This research is aimed at constituting a contribution to the knowledge base for the Y123 high temperature superconductor field by extending the study of processing conditions involved in controlling the microstructure of the Y123 superconductors for the enhancement of crystal growth and superconductor properties. Relations among processing parameters, microstructure, crystal growth, and critical current density of Y123 superconductors have been established. The experimental results reveal that low heating rate and short holding time can lead to refinement of Y2BaCuO5 (Y211) particles, which is strongly favorable to enhancement of the crystal growth and electrical properties of the Y123 superconductors. It was observed that relatively large Y123 crystals (17-22 mm in size) can be obtained with fine needle-shaped Y211 particles, processed with low heating rate and short holding time at the maximum temperatures. Additionally, the research also formulated a technique to fabricate Y123 superconductors with improved electrical properties required for the practical applications. By incorporating additives such as BaCeO3, BaSnO 3, Pt and Nd2O3 into Y123 superconductors, refinement of Y211 particles occurs. In addition, secondary phase particles with sizes in sub-micrometer and nanometer range can be formed in the Y123 superconductors. The interfaces between the Y123 matrix and these Y211 or secondary phase particles are believed to act as flux pinning sites and to enhance the critical current density (Jc) in the superconductor. The results showed that formation of secondary phase inclusions in Y123 by doping with BaCeO3, BaSnO 3, Pt or Nd2O3 result in enhancement of J c due to the effective flux pinning.
NASA Technical Reports Server (NTRS)
Schatten, K. H.; Hedin, A. E.
1986-01-01
Using the dynamo theory method to predict solar activity, a value for the smoothed sunspot number of 109 + or - 20 is obtained for solar cycle 22. The predicted cycle is expected to peak near December, 1990 + or - 1 year. Concommitantly, F(10.7) radio flux is expected to reach a smoothed value of 158 + or - 18 flux units. Global mean exospheric temperature is expected to reach 1060 + or - 50 K and global total average total thermospheric density at 400 km is expected to reach 4.3 x 10 to the -15th gm/cu cm + or - 25 percent.
Accelerator based fusion reactor
NASA Astrophysics Data System (ADS)
Liu, Keh-Fei; Chao, Alexander Wu
2017-08-01
A feasibility study of fusion reactors based on accelerators is carried out. We consider a novel scheme where a beam from the accelerator hits the target plasma on the resonance of the fusion reaction and establish characteristic criteria for a workable reactor. We consider the reactions d+t\\to n+α,d+{{}3}{{H}\\text{e}}\\to p+α , and p+{{}11}B\\to 3α in this study. The critical temperature of the plasma is determined from overcoming the stopping power of the beam with the fusion energy gain. The needed plasma lifetime is determined from the width of the resonance, the beam velocity and the plasma density. We estimate the critical beam flux by balancing the energy of fusion production against the plasma thermo-energy and the loss due to stopping power for the case of an inert plasma. The product of critical flux and plasma lifetime is independent of plasma density and has a weak dependence on temperature. Even though the critical temperatures for these reactions are lower than those for the thermonuclear reactors, the critical flux is in the range of {{10}22}-{{10}24}~\\text{c}{{\\text{m}}-2}~{{\\text{s}}-1} for the plasma density {ρt}={{10}15}~\\text{c}{{\\text{m}}-3} in the case of an inert plasma. Several approaches to control the growth of the two-stream instability are discussed. We have also considered several scenarios for practical implementation which will require further studies. Finally, we consider the case where the injected beam at the resonance energy maintains the plasma temperature and prolongs its lifetime to reach a steady state. The equations for power balance and particle number conservation are given for this case.
Kolodjaschna, Julia; Berisha, Fatmire; Lasta, Michael; Polska, Elzbieta; Fuchsjäger-Mayrl, Gabriele; Schmetterer, Leopold
2008-08-01
Administration of low doses of Escherichia coli endotoxin (LPS) to humans enables the study of inflammatory mechanisms. The purpose of the present study was to investigate the retinal vascular reactivity after LPS infusion. In a randomized placebo-controlled cross-over study, 18 healthy male volunteers received 20 IU/kg LPS or placebo as an intravenous bolus infusion. Outcome parameters were measured at baseline and 4h after LPS/placebo administration. At baseline and at 4h after administration a short period of 100% oxygen inhalation was used to assess retinal vasoreactivity to this stimulus. Perimacular white blood cell velocity, density and flux were assessed with the blue-field entoptic technique, retinal branch arterial and venous diameters were measured with a retinal vessel analyzer and red blood cell velocity in retinal branch veins was measured with laser Doppler velocimetry. LPS is associated with peripheral blood leukocytosis and increased white blood cell density in ocular microvessels (p<0.001). In addition, retinal arterial (p=0.02) and venous (p<0.01) diameters were increased. All retinal hemodynamic parameters showed a decrease during 100% oxygen breathing. This decrease was significantly blunted by LPS for all retinal outcome parameters except venous diameter (p=0.04 for white blood cell velocity, p=0.0002 for white blood cell density, p<0.0001 for white blood cell flux, p=0.01 for arterial diameter, p=0.02 for red blood cell velocity and p=0.006 for red blood cell flux). These data indicate that LPS-induced inflammation induces vascular dysregulation in the retina. This may provide a link between inflammation and vascular dysregulation. Further studies are warranted to investigate whether this model may be suitable to study inflammation induced vascular dysregulation in the eye.
MMS Examination of FTEs at the Earth's Subsolar Magnetopause
NASA Astrophysics Data System (ADS)
Akhavan-Tafti, M.; Slavin, J. A.; Le, G.; Eastwood, J. P.; Strangeway, R. J.; Russell, C. T.; Nakamura, R.; Baumjohann, W.; Torbert, R. B.; Giles, B. L.; Gershman, D. J.; Burch, J. L.
2018-02-01
Determining the magnetic field structure, electric currents, and plasma distributions within flux transfer event (FTE)-type flux ropes is critical to the understanding of their origin, evolution, and dynamics. Here the Magnetospheric Multiscale mission's high-resolution magnetic field and plasma measurements are used to identify FTEs in the vicinity of the subsolar magnetopause. The constant-α flux rope model is used to identify quasi-force free flux ropes and to infer the size, the core magnetic field strength, the magnetic flux content, and the spacecraft trajectories through these structures. Our statistical analysis determines a mean diameter of 1,700 ± 400 km ( 30 ± 9 di) and an average magnetic flux content of 100 ± 30 kWb for the quasi-force free FTEs at the Earth's subsolar magnetopause which are smaller than values reported by Cluster at high latitudes. These observed nonlinear size and magnetic flux content distributions of FTEs appear consistent with the plasmoid instability theory, which relies on the merging of neighboring, small-scale FTEs to generate larger structures. The ratio of the perpendicular to parallel components of current density, RJ, indicates that our FTEs are magnetically force-free, defined as RJ < 1, in their core regions (<0.6 Rflux rope). Plasma density is shown to be larger in smaller, newly formed FTEs and dropping with increasing FTE size. It is also shown that parallel ion velocity dominates inside FTEs with largest plasma density. Field-aligned flow facilitates the evacuation of plasma inside newly formed FTEs, while their core magnetic field strengthens with increasing FTE size.
NASA Astrophysics Data System (ADS)
Albert, Julian; Hader, Kilian; Engel, Volker
2017-12-01
It is commonly assumed that the time-dependent electron flux calculated within the Born-Oppenheimer (BO) approximation vanishes. This is not necessarily true if the flux is directly determined from the continuity equation obeyed by the electron density. This finding is illustrated for a one-dimensional model of coupled electronic-nuclear dynamics. There, the BO flux is in perfect agreement with the one calculated from a solution of the time-dependent Schrödinger equation for the coupled motion. A reflection principle is derived where the nuclear BO flux is mapped onto the electronic flux.
Density tomography using cosmic ray muons: feasibility domain and field applications
NASA Astrophysics Data System (ADS)
Lesparre, N.; Gibert, D.; Marteau, J.; Déclais, Y.; Carbone, D.; Galichet, E.
2010-12-01
Muons are continuously produced when the protons forming the primary cosmic rays decay during their interactions with the molecules of the upper atmosphere. Both their short cross-section and their long life-time make the muons able to cross hectometers and even kilometers of rock before disintegrating. The flux of muons crossing a geological volume strongly depends on the quantity of matter encountered along their trajectories and, depending on both its size and its density, the geological object appears more or less opaque to muons. By measuring the muon flux emerging from the studied object and correcting for its geometry, the density structure can be deduced. The primary information obtained is the density averaged along muons trajectories and, to recover the 3D density distribution. The detector has to be moved around the target to acquire multi-angle images of the density structure. The inverse problem to be solved shares common features with seismic travel-time tomography and X-ray medical scans, but it also has specificities like Poissonian statistics, low signal-to-noise ratio and scattering which are discussed. Muon telescopes have been designed to sustain installations in harsh conditions such as might be encountered on volcanoes. Data acquired in open sky at various latitude and altitude allow to adjust the incoming muon flux model and to observe its temporal variations. The muon interactions with matter and the underground flux are constrained with data sets acquired inside the underground laboratory of the Mont Terri. The data analysis and the telescope model development are detailed. A model of the muon flux across a volcano is confronted to first measurements on La Soufrière de Guadeloupe volcano. The model takes into account a priori informations and solving kernels are computed to deduce the spatial resolution in order to define the elements size of the model heterogeneities. The spatio-temporal resolution of the method is in relation with the geometry and the installation time of the detector, it is evaluated to get the detectable density variations. The impact of additional telescopes around the volcano on the data quality is estimated to determine the best future locations of installations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dobranskis, R. R.; Zharkova, V. V., E-mail: valentina.zharkova@northumbria.ac.uk
2014-06-10
The original continuity equation (CE) used for the interpretation of the power law energy spectra of beam electrons in flares was written and solved for an electron beam flux while ignoring an additional free term with an electron density. In order to remedy this omission, the original CE for electron flux, considering beam's energy losses in Coulomb collisions, was first differentiated by the two independent variables: depth and energy leading to partial differential equation for an electron beam density instead of flux with the additional free term. The analytical solution of this partial differential continuity equation (PDCE) is obtained bymore » using the method of characteristics. This solution is further used to derive analytical expressions for mean electron spectra for Coulomb collisions and to carry out numeric calculations of hard X-ray (HXR) photon spectra for beams with different parameters. The solutions revealed a significant departure of electron densities at lower energies from the original results derived from the CE for the flux obtained for Coulomb collisions. This departure is caused by the additional exponential term that appeared in the updated solutions for electron differential density leading to its faster decrease at lower energies (below 100 keV) with every precipitation depth similar to the results obtained with numerical Fokker-Planck solutions. The effects of these updated solutions for electron densities on mean electron spectra and HXR photon spectra are also discussed.« less
Howarth, R.W.; Billen, G.; Swaney, D.; Townsend, A.; Jaworski, N.; Lajtha, K.; Downing, J.A.; Elmgren, Ragnar; Caraco, N.; Jordan, T.; Berendse, F.; Freney, J.; Kudeyarov, V.; Murdoch, P.; Zhu, Z.-L.
1996-01-01
We present estimates of total nitrogen and total phosphorus fluxes in rivers to the North Atlantic Ocean from 14 regions in North America, South America, Europe, and Africa which collectively comprise the drainage basins to the North Atlantic. The Amazon basin dominates the overall phosphorus flux and has the highest phosphorus flux per area. The total nitrogen flux from the Amazon is also large, contributing 3.3 Tg yr-1 out of a total for the entire North Atlantic region of 13.1 Tg yr-1. On a per area basis, however, the largest nitrogen fluxes are found in the highly disturbed watersheds around the North Sea, in northwestern Europe, and in the northeastern U.S., all of which have riverine nitrogen fluxes greater than 1,000 kg N km-2 yr-1. Non-point sources of nitrogen dominate riverine fluxes to the coast in all regions. River fluxes of total nitrogen from the temperate regions of the North Atlantic basin are correlated with population density, as has been observed previously for fluxes of nitrate in the world's major rivers. However, more striking is a strong linear correlation between river fluxes of total nitrogen and the sum of anthropogenically-derived nitrogen inputs to the temperate regions (fertilizer application, human-induced increases in atmospheric deposition of oxidized forms of nitrogen, fixation by leguminous crops, and the import/export of nitrogen in agricultural products). On average, regional nitrogen fluxes in rivers are only 25% of these anthropogenically derived nitrogen inputs. Denitrification in wetlands and aquatic ecosystems is probably the dominant sink, with storage in forests perhaps also of importance. Storage of nitrogen in groundwater, although of importance in some localities, is a very small sink for nitrogen inputs in all regions. Agricultural sources of nitrogen dominate inputs in many regions, particularly the Mississippi basin and the North Sea drainages. Deposition of oxidized nitrogen, primarily of industrial origin, is the major control over river nitrogen export in some regions such as the northeastern U.S. Using data from relatively pristine areas as an index of change, we estimate that riverine nitrogen fluxes in many of the temperate regions have increased from pre-industrial times by 2 to 20 fold, although some regions such as northern Canada are relatively unchanged. Fluxes from the most disturbed region, the North Sea drainages, have increased by 6 to 20 fold. Fluxes from the Amazon basin are also at least 2 to 5 fold greater than estimated fluxes from undisturbed temperate-zone regions, despite low population density and low inputs of anthropogenic nitrogen to the region. This suggests that natural riverine nitrogen fluxes in the tropics may be significantly greater than in the temperate zone. However, deforestation may be contributing to the tropical fluxes. In either case, projected increases in fertilizer use and atmospheric deposition in the coming decades are likely to cause dramatic increases in nitrogen loading to many tropical river systems. ?? 1996 Kluwer Academic Publishers.
Detto, Matteo; Verfaillie, Joseph; Anderson, Frank; Xu, Liukang; Baldocchi, Dennis
2011-01-01
Closed- and open-path methane gas analyzers are used in eddy covariance systems to compare three potential methane emitting ecosystems in the Sacramento-San Joaquin Delta (CA, USA): a rice field, a peatland pasture and a restored wetland. The study points out similarities and differences of the systems in field experiments and data processing. The closed-path system, despite a less intrusive placement with the sonic anemometer, required more care and power. In contrast, the open-path system appears more versatile for a remote and unattended experimental site. Overall, the two systems have comparable minimum detectable limits, but synchronization between wind speed and methane data, air density corrections and spectral losses have different impacts on the computed flux covariances. For the closed-path analyzer, air density effects are less important, but the synchronization and spectral losses may represent a problem when fluxes are small or when an undersized pump is used. For the open-path analyzer air density corrections are greater, due to spectroscopy effects and the classic Webb–Pearman–Leuning correction. Comparison between the 30-min fluxes reveals good agreement in terms of magnitudes between open-path and closed-path flux systems. However, the scatter is large, as consequence of the intensive data processing which both systems require.
Uncovering the nonadiabatic response of geosynchronous electrons to geomagnetic disturbance
Gannon, Jennifer; Elkington, Scot R.; Onsager, Terrance G.
2012-01-01
We describe an energy spectrum method for scaling electron integral flux, which is measured at a constant energy, to phase space density at a constant value of the first adiabatic invariant which removes much of the variation due to reversible adiabatic effects. Applying this method to nearly a solar cycle (1995 - 2006) of geosynchronous electron integral flux (E>2.0MeV) from the GOES satellites, we see that much of the diurnal variation in electron phase space density at constant energy can be removed by the transformation to phase space density at constant μ (4000 MeV/G). This allows us a clearer picture of underlying non-adiabatic electron population changes due to geomagnetic activity. Using scaled phase space density, we calculate the percentage of geomagnetic storms resulting in an increase, decrease or no change in geosynchronous electrons as 38%, 7%, and 55%, respectively. We also show examples of changes in the electron population that may be different than the unscaled fluxes alone suggest. These examples include sudden electron enhancements during storms which appear during the peak of negative Dst for μ-scaled phase space density, contrary to the slow increase seen during the recovery phase for unscaled phase space density for the same event.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mallow, Anne M; Abdelaziz, Omar; Graham, Samuel
The thermal charging performance of phase change materials, specifically paraffin wax, combined with compressed expanded natural graphite foam is studied under constant heat flux and constant temperature conditions. By varying the heat flux between 0.39 W/cm2 and 1.55 W/cm2 or maintaining a boundary temperature of 60 C for four graphite foam bulk densities, the impact on the rate of thermal energy storage is discussed. Thermal charging experiments indicate that thermal conductivity of the composite is an insufficient metric to compare the influence of graphite foam on the rate of thermal energy storage of the PCM composite. By dividing the latentmore » heat of the composite by the time to melt for various boundary conditions and graphite foam bulk densities, it is determined that bulk density selection is dependent on the applied boundary condition. A greater bulk density is advantageous for samples exposed to a constant temperature near the melting temperature as compared to constant heat flux conditions where a lower bulk density is adequate. Furthermore, the anisotropic nature of graphite foam bulk densities greater than 50 kg/m3 is shown to have an insignificant impact on the rate of thermal charging. These experimental results are used to validate a computational model for future use in the design of thermal batteries for waste heat recovery.« less
NASA Astrophysics Data System (ADS)
Rogers, Keir K.; Bird, Simeon; Peiris, Hiranya V.; Pontzen, Andrew; Font-Ribera, Andreu; Leistedt, Boris
2018-03-01
We measure the effect of high column density absorbing systems of neutral hydrogen (H I) on the one-dimensional (1D) Lyman α forest flux power spectrum using cosmological hydrodynamical simulations from the Illustris project. High column density absorbers (which we define to be those with H I column densities N(H I) > 1.6 × 10^{17} atoms cm^{-2}) cause broadened absorption lines with characteristic damping wings. These damping wings bias the 1D Lyman α forest flux power spectrum by causing absorption in quasar spectra away from the location of the absorber itself. We investigate the effect of high column density absorbers on the Lyman α forest using hydrodynamical simulations for the first time. We provide templates as a function of column density and redshift, allowing the flexibility to accurately model residual contamination, i.e. if an analysis selectively clips out the largest damping wings. This flexibility will improve cosmological parameter estimation, for example, allowing more accurate measurement of the shape of the power spectrum, with implications for cosmological models containing massive neutrinos or a running of the spectral index. We provide fitting functions to reproduce these results so that they can be incorporated straightforwardly into a data analysis pipeline.
NASA Technical Reports Server (NTRS)
Duffy, Kirsten P.
2016-01-01
NASA Glenn Research Center is investigating hybrid electric and turboelectric propulsion concepts for future aircraft to reduce fuel burn, emissions, and noise. Systems studies show that the weight and efficiency of the electric system components need to be improved for this concept to be feasible. This effort aims to identify design parameters that affect power density and efficiency for a double-Halbach array permanent-magnet ironless axial flux motor configuration. These parameters include both geometrical and higher-order parameters, including pole count, rotor speed, current density, and geometries of the magnets, windings, and air gap.
Wheat production in controlled environments
NASA Technical Reports Server (NTRS)
Salisbury, Frank B.; Bugbee, Bruce; Bubenheim, David
1987-01-01
Conditions are optimized for maximum yield and quality of wheat to be used in a controlled environment life support system (CELSS) in a Lunar or Martian base or a spacecraft. With yields of 23 to 57 g/sq m/d of edible biomass, a minimum size for a CELSS would be between 12 and 30 sq m per person, utilizing about 600 W/sq m of electrical energy for artificial light. Temperature, irradiance, photoperiod, carbon dioxide levels, humidity, and wind velocity are controlled in growth chambers. Nutrient solutions (adjusted for wheat) are supplied to the roots via a recirculating system that controls pH by adding HNO3 and controlling the NO3/NH4 ratio in solution. A rock-wool plant support allows direct seeding and densities up to 10,000 plants sq m. Densities up to 2000 plants/sq m appear to increase seed yield. Biomass production increases almost linearily with increasing irradiance from 400 to 1700 micromol/sq m/s of photosynthetic photon flux, but the efficiency of light utilization decreases over this range. Photoperiod and temperature both have a profound influence on floral initiation, spikelet formation, stem elongation, and fertilization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dewhurst, J. M.; Hnat, B.; Dendy, R. O.
2009-07-15
The extended Hasegawa-Wakatani equations generate fully nonlinear self-consistent solutions for coupled density n and vorticity {nabla}{sup 2}{phi}, where {phi} is electrostatic potential, in a plasma with background density inhomogeneity {kappa}=-{partial_derivative} ln n{sub 0}/{partial_derivative}x and magnetic field strength inhomogeneity C=-{partial_derivative} ln B/{partial_derivative}x. Finite C introduces interchange effects and {nabla}B drifts into the framework of drift turbulence through compressibility of the ExB and diamagnetic drifts. This paper addresses the direct computation of the radial ExB density flux {gamma}{sub n}=-n{partial_derivative}{phi}/{partial_derivative}y, tracer particle transport, the statistical properties of the turbulent fluctuations that drive {gamma}{sub n} and tracer motion, and analytical underpinnings. Systematic trends emergemore » in the dependence on C of the skewness of the distribution of pointwise {gamma}{sub n} and in the relative phase of density-velocity and density-potential pairings. It is shown how these effects, together with conservation of potential vorticity {pi}={nabla}{sup 2}{phi}-n+({kappa}-C)x, account for much of the transport phenomenology. Simple analytical arguments yield a Fickian relation {gamma}{sub n}=({kappa}-C)D{sub x} between the radial density flux {gamma}{sub n} and the radial tracer diffusivity D{sub x}, which is shown to explain key trends in the simulations.« less
Internal wave energy flux from density perturbations in nonlinear stratifications
NASA Astrophysics Data System (ADS)
Lee, Frank M.; Allshouse, Michael R.; Swinney, Harry L.; Morrison, P. J.
2017-11-01
Tidal flow over the topography at the bottom of the ocean, whose density varies with depth, generates internal gravity waves that have a significant impact on the energy budget of the ocean. Thus, understanding the energy flux (J = p v) is important, but it is difficult to measure simultaneously the pressure and velocity perturbation fields, p and v . In a previous work, a Green's-function-based method was developed to calculate the instantaneous p, v , and thus J , given a density perturbation field for a constant buoyancy frequency N. Here we extend the previous analytic Green's function work to include nonuniform N profiles, namely the tanh-shaped and linear cases, because background density stratifications that occur in the ocean and some experiments are nonlinear. In addition, we present a finite-difference method for the general case where N has an arbitrary profile. Each method is validated against numerical simulations. The methods we present can be applied to measured density perturbation data by using our MATLAB graphical user interface EnergyFlux. PJM was supported by the U.S. Department of Energy Contract DE-FG05-80ET-53088. HLS and MRA were supported by ONR Grant No. N000141110701.
Dolphin biosonar target detection in noise: wrap up of a past experiment.
Au, Whitlow W L
2014-07-01
The target detection capability of bottlenose dolphins in the presence of artificial masking noise was first studied by Au and Penner [J. Acoust. Soc. Am. 70, 687-693 (1981)] in which the dolphins' target detection threshold was determined as a function of the ratio of the echo energy flux density and the estimated received noise spectral density. Such a metric was commonly used in human psychoacoustics despite the fact that the echo energy flux density is not compatible with noise spectral density which is averaged intensity per Hz. Since the earlier detection in noise studies, two important parameters, the dolphin integration time applicable to broadband clicks and the dolphin's auditory filter shape, were determined. The inclusion of these two parameters allows for the estimation of the received energy flux density of the masking noise so that the dolphin target detection can now be determined as a function of the ratio of the received energy of the echo over the received noise energy. Using an integration time of 264 μs and an auditory bandwidth of 16.7 kHz, the ratio of the echo energy to noise energy at the target detection threshold is approximately 1 dB.
Performance analysis of a new radial-axial flux machine with SMC cores and ferrite magnets
NASA Astrophysics Data System (ADS)
Liu, Chengcheng; Wang, Youhua; Lei, Gang; Guo, Youguang; Zhu, Jianguo
2017-05-01
Soft magnetic composite (SMC) is a popular material in designing of new 3D flux electrical machines nowadays for it has the merits of isotropic magnetic characteristic, low eddy current loss and high design flexibility over the electric steel. The axial flux machine (AFM) with the extended stator tooth tip both in the radial and circumferential direction is a good example, which has been investigated in the last years. Based on the 3D flux AFM and radial flux machine, this paper proposes a new radial-axial flux machine (RAFM) with SMC cores and ferrite magnets, which has very high torque density though the low cost low magnetic energy ferrite magnet is utilized. Moreover, the cost of RAFM is quite low since the manufacturing cost can be reduced by using the SMC cores and the material cost will be decreased due to the adoption of the ferrite magnets. The 3D finite element method (FEM) is used to calculate the magnetic flux density distribution and electromagnetic parameters. For the core loss calculation, the rotational core loss computation method is used based on the experiment results from previous 3D magnetic tester.
Role of external torque in the formation of ion thermal internal transport barriers
NASA Astrophysics Data System (ADS)
Jhang, Hogun; Kim, S. S.; Diamond, P. H.
2012-04-01
We present an analytic study of the impact of external torque on the formation of ion internal transport barriers (ITBs). A simple analytic relation representing the effect of low external torque on transport bifurcations is derived based on a two field transport model of pressure and toroidal momentum density. It is found that the application of an external torque can either facilitate or hamper bifurcation in heat flux driven plasmas depending on its sign relative to the direction of intrinsic torque. The ratio between radially integrated momentum (i.e., external torque) density to power input is shown to be a key macroscopic control parameter governing the characteristics of bifurcation.
Effect of grain-boundary flux pinning in MgB 2 with columnar structure
NASA Astrophysics Data System (ADS)
Kim, D. H.; Hwang, T. J.; Cha, Y. J.; Seong, W. K.; Kang, W. N.
2009-10-01
We studied the flux pinning properties by grain boundaries in MgB 2 films prepared by using a hybrid physical chemical vapor deposition method on the c-axis oriented sapphire substrates. All the films we report here had the columnar grains with the growth direction perpendicular to the substrates and the grain sizes in the range of a few hundred nanometers. At very low magnetic fields, no discernable grain-boundary (GB) pinning effect was observed in all measuring temperatures, but above those fields, the effect of GB flux pinning was observed as enhanced critical current densities ( Jcs) and reduced resistances when an external magnetic field ( B) was aligned parallel to the c-axis. We interpret the B dependence of Jc in the terms of flux line lattice shear inside the columnar grains activated by dislocations of Frank-Read source while the flux lines pinned by GB act as anchors for dislocations. Magnetic field dependence of flux pinning force density for B parallel to the c-axis was reasonably explained by the above model.
Thermal management of batteries
NASA Astrophysics Data System (ADS)
Gibbard, H. F.; Chen, C.-C.
Control of the internal temperature during high rate discharge or charge can be a major design problem for large, high energy density battery systems. A systematic approach to the thermal management of such systems is described for different load profiles based on: thermodynamic calculations of internal heat generation; calorimetric measurements of heat flux; analytical and finite difference calculations of the internal temperature distribution; appropriate system designs for heat removal and temperature control. Examples are presented of thermal studies on large lead-acid batteries for electrical utility load levelling and nickel-zinc and lithium-iron sulphide batteries for electric vehicle propulsion.
NASA Astrophysics Data System (ADS)
Huang, Jian; Wei, Kai; Jin, Kai; Li, Min; Zhang, YuDong
2018-06-01
The Sodium laser guide star (LGS) plays a key role in modern astronomical Adaptive Optics Systems (AOSs). The spot size and photon return of the Sodium LGS depend strongly on the laser power density distribution at the Sodium layer and thus affect the performance of the AOS. The power density distribution is degraded by turbulence in the uplink path, launch system aberrations, the beam quality of the laser, and so forth. Even without any aberrations, the TE00 Gaussian type is still not the optimal power density distribution to obtain the best balance between the measurement error and temporal error. To optimize and control the LGS power density distribution at the Sodium layer to an expected distribution type, a method that combines pre-correction and beam-shaping is proposed. A typical result shows that under strong turbulence (Fried parameter (r0) of 5 cm) and for a quasi-continuous wave Sodium laser (power (P) of 15 W), in the best case, our method can effectively optimize the distribution from the Gaussian type to the "top-hat" type and enhance the photon return flux of the Sodium LGS; at the same time, the total error of the AOS is decreased by 36% with our technique for a high power laser and poor seeing.
Topology optimization of reduced rare-earth permanent magnet arrays with finite coercivity
NASA Astrophysics Data System (ADS)
Teyber, R.; Trevizoli, P. V.; Christiaanse, T. V.; Govindappa, P.; Rowe, A.
2018-05-01
The supply chain risk of rare-earth permanent magnets has yielded research efforts to improve both materials and magnetic circuits. While a number of magnet optimization techniques exist, literature has not incorporated the permanent magnet failure process stemming from finite coercivity. To address this, a mixed-integer topology optimization is formulated to maximize the flux density of a segmented Halbach cylinder while avoiding permanent demagnetization. The numerical framework is used to assess the efficacy of low-cost (rare-earth-free ferrite C9), medium-cost (rare-earth-free MnBi), and higher-cost (Dy-free NdFeB) permanent magnet materials. Novel magnet designs are generated that produce flux densities 70% greater than the segmented Halbach array, albeit with increased magnet mass. Three optimization formulations are then explored using ferrite C9 that demonstrates the trade-off between manufacturability and design sophistication, generating flux densities in the range of 0.366-0.483 T.
Voigt, J; Knappe-Grüneberg, S; Gutkelch, D; Haueisen, J; Neuber, S; Schnabel, A; Burghoff, M
2015-05-01
Several experiments in fundamental physics demand an environment of very low, homogeneous, and stable magnetic fields. For the magnetic characterization of such environments, we present a portable SQUID system that measures the absolute magnetic flux density vector and the gradient tensor. This vector-tensor system contains 13 integrated low-critical temperature (LTc) superconducting quantum interference devices (SQUIDs) inside a small cylindrical liquid helium Dewar with a height of 31 cm and 37 cm in diameter. The achievable resolution depends on the flux density of the field under investigation and its temporal drift. Inside a seven-layer mu-metal shield, an accuracy better than ±23 pT for the components of the static magnetic field vector and ±2 pT/cm for each of the nine components of the gradient tensor is reached by using the shifting method.
Thermophysical Property Measurements of Molten Slag and Welding Flux by Aerodynamic Levitator
NASA Astrophysics Data System (ADS)
Onodera, Kenta; Nakamura, Airi; Hakamada, Shinya; Watanabe, Masahito; Kargl, Florian
Molten slag and welding flux are important materials for steel processing. Due to lack of durable refractory materials, there is limited publication data on the thermophysical properties of these slags. Therefore, in this study, we measured density and viscosity of CaO-Al2O3-SiO2 slag and welding flux using Aerodynamic Levitation (ADL) with CO2-laser heating in which can be achieve containerless and non-contacting conditions for measurements. For density measurements, in order to obtain correct shape of the droplet we used high-speed camera with the extended He-Ne laser to project the shadow image without the influence of the selfluminescence at the high temperature. For viscosity measurement, we also have a unique vibration method; it caused oscillation in a sample by letting gas for levitation vibrate by an acoustic speaker. Using these techniques, we succeeded to measure systematically density and viscosity of molten oxides system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voigt, J.; Knappe-Grüneberg, S.; Gutkelch, D.
2015-05-15
Several experiments in fundamental physics demand an environment of very low, homogeneous, and stable magnetic fields. For the magnetic characterization of such environments, we present a portable SQUID system that measures the absolute magnetic flux density vector and the gradient tensor. This vector-tensor system contains 13 integrated low-critical temperature (LTc) superconducting quantum interference devices (SQUIDs) inside a small cylindrical liquid helium Dewar with a height of 31 cm and 37 cm in diameter. The achievable resolution depends on the flux density of the field under investigation and its temporal drift. Inside a seven-layer mu-metal shield, an accuracy better than ±23more » pT for the components of the static magnetic field vector and ±2 pT/cm for each of the nine components of the gradient tensor is reached by using the shifting method.« less
The muon tomography Diaphane project : recent upgrades and measurements
NASA Astrophysics Data System (ADS)
Jourde, Kevin; Gibert, Dominique; Marteau, Jacques; de Bremond d'Ars, Jean; Gardien, Serge; Girerd, Claude; Ianigro, Jean-Christophe; Carbone, Daniele
2014-05-01
Muon tomography measures the flux of cosmic muons crossing geological bodies to determine their density. Large density heterogeneities were detected on la Soufrière de Guadeloupe revealing its very active phreatic system. These measurements were made possible thanks to electronic and signal processing developments. Indeed the telescopes used to perform these measurements are exposed to noise fluxes with high intensities relative to the tiny flux of interest. A high precision clock permitted to measure upward-going particles coming from the rear of the telescope that used to mix with the volcano signal. Also the particles energy deposit inside the telescope shows that other particles than muons take part to the noise. We present data acquired on la Soufrière, mount Etna in Italy, and in the Mont Terri tunnel in Switzerland. Biases produced on density muon radiographies are quantified and correction procedures are applied.
NASA Astrophysics Data System (ADS)
Leonard, A. W.; McLean, A. G.; Makowski, M. A.; Stangeby, P. C.
2017-08-01
The midplane separatrix density is characterized in response to variations in upstream parallel heat flux density and central density through deuterium gas injection. The midplane density is determined from a high spatial resolution Thomson scattering diagnostic at the midplane with power balance analysis to determine the separatrix location. The heat flux density is varied by scans of three parameters, auxiliary heating, toroidal field with fixed plasma current, and plasma current with fixed safety factor, q 95. The separatrix density just before divertor detachment onset is found to scale consistent with the two-point model when radiative dissipation is taken into account. The ratio of separatrix to pedestal density, n e,sep/n e,ped varies from ⩽30% to ⩾60% over the dataset, helping to resolve the conflicting scaling of core plasma density limit and divertor detachment onset. The scaling of the separatrix density at detachment onset is combined with H-mode power threshold scaling to obtain a scaling ratio of minimum n e,sep/n e,ped expected in future devices.
Conical electromagnetic radiation flux concentrator
NASA Technical Reports Server (NTRS)
Miller, E. R.
1972-01-01
Concentrator provides method of concentrating a beam of electromagnetic radiation into a smaller beam, presenting a higher flux density. Smaller beam may be made larger by sending radiation through the device in the reverse direction.
Fluctuations and intermittent poloidal transport in a simple toroidal plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goud, T. S.; Ganesh, R.; Saxena, Y. C.
In a simple magnetized toroidal plasma, fluctuation induced poloidal flux is found to be significant in magnitude. The probability distribution function of the fluctuation induced poloidal flux is observed to be strongly non-Gaussian in nature; however, in some cases, the distribution shows good agreement with the analytical form [Carreras et al., Phys. Plasmas 3, 2664 (1996)], assuming a coupling between the near Gaussian density and poloidal velocity fluctuations. The observed non-Gaussian nature of the fluctuation induced poloidal flux and other plasma parameters such as density and fluctuating poloidal velocity in this device is due to intermittent and bursty nature ofmore » poloidal transport. In the simple magnetized torus used here, such an intermittent fluctuation induced poloidal flux is found to play a crucial role in generating the poloidal flow.« less
Solar F10.7 radiation - A short term model for Space Station applications
NASA Technical Reports Server (NTRS)
Vedder, John D.; Tabor, Jill L.
1991-01-01
A new method is described for statistically modeling the F10.7 component of solar radiation for 91-day intervals. The resulting model represents this component of the solar flux as a quasi-exponentially correlated, Weibull distributed random variable, and thereby demonstrates excellent agreement with observed F10.7 data. Values of the F10.7 flux are widely used in models of the earth's upper atmosphere because of its high correlation with density fluctuations due to solar heating effects. Because of the direct relation between atmospheric density and drag, a realistic model of the short term fluctuation of the F10.7 flux is important for the design and operation of Space Station Freedom. The method of modeling this flux described in this report should therefore be useful for a variety of Space Station applications.
NASA Technical Reports Server (NTRS)
Overcash, Dan R.
1991-01-01
In 1986, much excitement was caused by the discovery of a class of materials that conducted electricity with zero resistance at temperatures above the boiling temperature of liquid nitrogen. This excitement was checked by the difficulties of manufacturing ceramics and the usefulness of high temperature superconductors that were restricted by their becoming high resistive conductors at small current densities. A lack of pinning of the magnetic field flux caused the return of high resistance as the current was increased in these materials. A study of the magnetic field near the surface of a high temperature superconductor is the first step in the search for a means of pinning the flux lines and increasing their critical current densities. The author found that a comparison between the defects in the surface of the superconductor and the magnetic field showed only a change in the field near the notch and the edge. No correlation was found between the surface grain or structure and the oscillations in the magnetic field. The observed changes in the magnetic field show resonances which may give an indication of the non-flux pinning in these superconductors. A flux pinning mechanism will increase the critical current densities; therefore, other methods of determining this field should be tried. The author proposes using a flux gate magnetometer with a detector wound on a ferrite core to measure the magnitude and direction of the magnetic field.
Novel model of stator design to reduce the mass of superconducting generators
NASA Astrophysics Data System (ADS)
Kails, Kevin; Li, Quan; Mueller, Markus
2018-05-01
High temperature superconductors (HTS), with much higher current density than conventional copper wires, make it feasible to develop very powerful and compact power generators. Thus, they are considered as one promising solution for large (10 + MW) direct-drive offshore wind turbines due to their low tower head mass. However, most HTS generator designs are based on a radial topology, which requires an excessive amount of HTS material and suffers from cooling and reliability issues. Axial flux machines on the other hand offer higher torque/volume ratios than the radial machines, which makes them an attractive option where space and transportation becomes an issue. However, their disadvantage is heavy structural mass. In this paper a novel stator design is introduced for HTS axial flux machines which enables a reduction in their structural mass. The stator is for the first time designed with a 45° angle that deviates the air gap closing forces into the vertical direction reducing the axial forces. The reduced axial forces improve the structural stability and consequently simplify their structural design. The novel methodology was then validated through an existing design of the HTS axial flux machine achieving a ∼10% mass reduction from 126 tonnes down to 115 tonnes. In addition, the air gap flux density increases due to the new claw pole shapes improving its power density from 53.19 to 61.90 W kg‑1. It is expected that the HTS axial flux machines designed with the new methodology offer a competitive advantage over other proposed superconducting generator designs in terms of cost, reliability and power density.
A miniaturized human-motion energy harvester using flux-guided magnet stacks
NASA Astrophysics Data System (ADS)
Halim, M. A.; Park, J. Y.
2016-11-01
We present a miniaturized electromagnetic energy harvester (EMEH) using two flux-guided magnet stacks to harvest energy from human-generated vibration such as handshaking. Each flux-guided magnet stack increases (40%) the magnetic flux density by guiding the flux lines through a soft magnetic material. The EMEH has been designed to up-convert the applied human-motion vibration to a high-frequency oscillation by mechanical impact of a spring-less structure. The high-frequency oscillator consists of the analyzed 2-magnet stack and a customized helical compression spring. A standard AAA battery sized prototype (3.9 cm3) can generate maximum 203 μW average power from human hand-shaking vibration. It has a maximum average power density of 52 μWcm-3 which is significantly higher than the current state-of-the-art devices. A 6-stage multiplier and rectifier circuit interfaces the harvester with a wearable electronic load (wrist watch) to demonstrate its capability of powering small- scale electronic systems from human-generated vibration.
Measurement of the photoneutron flux density distribution from cylindrical targets
NASA Astrophysics Data System (ADS)
Golovkov, V. M.; Basina, T. N.; Yakovlev, M. R.
1989-09-01
Measurements are performed of the density of photoneutron fluxes from cylindrical targets of2H2O (diameter 64 and height 86 mm), Be (outer diameter 70, inner diameter 40, height 100mm), and238U (diameter 44.5 mm, height 50 mm) under the action of braking radiation from electrons with energies of 4 to 8 MeV in order to determine the effect of target form and orientation relative to the detector upon the recorded photoneutron level. The fluxes were measured by an “all-wave” neutron detector based on an SNM-11 counter in a paraffin retarder at an angle of 90‡ to the axis of the braking radiation beam for various target orientations relative to the detector. Measurement results are compared to calculations. Photoneutron fluxes from heavy water and beryllium targets of the indicated dimensions were also measured for angles of 90, 135, and 167‡. An isotropic nature was noted in the photoneutron fluxes from both targets.
Reverse Current Shock Induced by Plasma-Neutral Collision
NASA Astrophysics Data System (ADS)
Wongwaitayakornkul, Pakorn; Haw, Magnus; Li, Hui; Li, Shengtai; Bellan, Paul
2017-10-01
The Caltech solar experiment creates an arched plasma-filled flux rope expanding into low density background plasma. A layer of electrical current flowing in the opposite direction with respect to the flux rope current is induced in the background plasma just ahead of the flux rope. Two dimensional spatial and temporal measurements by a 3-dimensional magnetic vector probe demonstrate the existence of this induced current layer forming ahead of the flux rope. The induced current magnitude is 20% of the magnitude of the current in the flux rope. The reverse current in the low density background plasma is thought to be a diamagnetic response that shields out the magnetic field ahead of the propagation. The spatial and magnetic characteristics of the reverse current layer are consistent with similar shock structures seen in 3-dimensional ideal MHD numerical simulations performed on the Turquoise supercomputer cluster using the Los Alamos COMPutational Astrophysics Simulation Suite. This discovery of the induced diamagnetic current provides useful insights for space and solar plasma.
Heat Pipe Thermal Conditioning Panel
NASA Technical Reports Server (NTRS)
Saaski, E. W.
1973-01-01
The technology involved in designing and fabricating a heat pipe thermal conditioning panel to satisfy a broad range of thermal control system requirements on NASA spacecraft is discussed. The design specifications were developed for a 30 by 30 inch heat pipe panel. The fundamental constraint was a maximum of 15 gradient from source to sink at 300 watts input and a flux density of 2 watts per square inch. The results of the performance tests conducted on the panel are analyzed.
Performance of ceramic superconductors in magnetic bearings
NASA Technical Reports Server (NTRS)
Kirtley, James L., Jr.; Downer, James R.
1993-01-01
Magnetic bearings are large-scale applications of magnet technology, quite similar in certain ways to synchronous machinery. They require substantial flux density over relatively large volumes of space. Large flux density is required to have satisfactory force density. Satisfactory dynamic response requires that magnetic circuit permeances not be too large, implying large air gaps. Superconductors, which offer large magnetomotive forces and high flux density in low permeance circuits, appear to be desirable in these situations. Flux densities substantially in excess of those possible with iron can be produced, and no ferromagnetic material is required. Thus the inductance of active coils can be made low, indicating good dynamic response of the bearing system. The principal difficulty in using superconductors is, of course, the deep cryogenic temperatures at which they must operate. Because of the difficulties in working with liquid helium, the possibility of superconductors which can be operated in liquid nitrogen is thought to extend the number and range of applications of superconductivity. Critical temperatures of about 98 degrees Kelvin were demonstrated in a class of materials which are, in fact, ceramics. Quite a bit of public attention was attracted to these new materials. There is a difficulty with the ceramic superconducting materials which were developed to date. Current densities sufficient for use in large-scale applications have not been demonstrated. In order to be useful, superconductors must be capable of carrying substantial currents in the presence of large magnetic fields. The possible use of ceramic superconductors in magnetic bearings is investigated and discussed and requirements that must be achieved by superconductors operating at liquid nitrogen temperatures to make their use comparable with niobium-titanium superconductors operating at liquid helium temperatures are identified.
NASA Technical Reports Server (NTRS)
Wieserman, William R.; Schwarze, Gene E.; Niedra, Janis M.
2005-01-01
Magnetic component designers are always looking for improved soft magnetic core materials to increase the efficiency, temperature rating and power density of transformers, motors, generators and alternators, and energy density of inductors. In this paper, we report on the experimental investigation of commercially available cobalt-based amorphous alloys which, in their processing, were subjected to two different types of magnetic field anneals: A longitudinal magnetic field anneal or a transverse magnetic field anneal. The longitudinal field annealed material investigated was Metglas 2714A. The electrical and magnetic characteristics of this material were investigated over the frequency range of 1 to 200 kHz and temperature range of 23 to 150 C for both sine and square wave voltage excitation. The specific core loss was lower for the square than the sine wave voltage excitation for the same maximum flux density, frequency and temperature. The transverse magnetic field annealed core materials include Metglas 2714AF and Vacuumschmelze 6025F. These two materials were experimentally characterized over the frequency range of 10 to 200 kHz for sine wave voltage excitation and 23 C only. A comparison of the 2174A to 2714AF found that 2714AF always had lower specific core loss than 2714A for any given magnetic flux density and frequency and the ratio of specific core loss of 2714A to 2714AF was dependent on both magnetic flux density and frequency. A comparison was also made of the 2714A, 2714AF, and 6025F materials to two different tape thicknesses of the polycrystalline Supermalloy material and the results show that 2714AF and 6025F have the lowest specific core loss at 100 kHz over the magnetic flux density range of 0.1 to 0.4 Tesla.
The stationary non-equilibrium plasma of cosmic-ray electrons and positrons
NASA Astrophysics Data System (ADS)
Tomaschitz, Roman
2016-06-01
The statistical properties of the two-component plasma of cosmic-ray electrons and positrons measured by the AMS-02 experiment on the International Space Station and the HESS array of imaging atmospheric Cherenkov telescopes are analyzed. Stationary non-equilibrium distributions defining the relativistic electron-positron plasma are derived semi-empirically by performing spectral fits to the flux data and reconstructing the spectral number densities of the electronic and positronic components in phase space. These distributions are relativistic power-law densities with exponential cutoff, admitting an extensive entropy variable and converging to the Maxwell-Boltzmann or Fermi-Dirac distributions in the non-relativistic limit. Cosmic-ray electrons and positrons constitute a classical (low-density high-temperature) plasma due to the low fugacity in the quantized partition function. The positron fraction is assembled from the flux densities inferred from least-squares fits to the electron and positron spectra and is subjected to test by comparing with the AMS-02 flux ratio measured in the GeV interval. The calculated positron fraction extends to TeV energies, predicting a broad spectral peak at about 1 TeV followed by exponential decay.
NASA Technical Reports Server (NTRS)
Maag, Carl R.; Tanner, William G.; Borg, Janet; Bibring, Jean-Pierre; Alexander, W. Merle; Maag, Andrew J.
1992-01-01
Many materials and techniques have been developed by the authors to sample the flux of particles in Low Earth Orbit (LEO). Though regular in-site sampling of the flux in LEO the materials and techniques have produced data which compliment the data now being amassed by the Long Duration Exposure Facility (LDEF) research activities. Orbital debris models have not been able to describe the flux of particles with d sub p less than or = 0.05 cm, because of the lack of data. Even though LDEF will provide a much needed baseline flux measurement, the continuous monitoring of micron and sub-micron size particles must be carried out. A flight experiment was conducted on the Space Shuttle as part of the LDCE payload to develop an understanding of the Spatial Density (concentration) as a function of size (mass) for particle sizes 1 x 10(exp 6) cm and larger. In addition to the enumeration of particle impacts, it is the intent of the experiment that hypervelocity particles be captured and returned intact. Measurements will be performed post flight to determine the flux density, diameters, and subsequent effects on various optical, thermal control and structural materials. In addition to these principal measurements, the Particle Impact Experiment (PIE) also provides a structure and sample holders for the exposure of passive material samples to the space environment, e.g., thermal cycling, and atomic oxygen, etc. The experiment will measure the optical property changes of mirrors and will provide the fluence of the ambient atomic oxygen environment to other payload experimenters. In order to augment the amount of material returned in a form which can be analyzed, the survivability of the experiment as well as the captured particles will be assessed. Using Sandia National Laboratory's hydrodynamic computer code CTH, hypervelocity impacts on the materials which comprise the experiments have been investigated and the progress of these studies are reported.
NASA Astrophysics Data System (ADS)
Agudo, Iván; Thum, Clemens; Ramakrishnan, Venkatessh; Molina, Sol N.; Casadio, Carolina; Gómez, José L.
2018-01-01
We report on the first results of the POLAMI (Polarimetric Monitoring of AGNs with Millimetre Wavelengths) programme, a simultaneous 3.5 and 1.3 mm full-Stokes-polarization monitoring of a sample of 36 of the brightest active galactic nuclei in the northern sky with the IRAM 30 m telescope. Through a systematic statistical study of data taken from 2006 October (from 2009 December for the case of the 1.3 mm observations) to 2014 August, we characterize the variability of the total flux density and linear polarization. We find that all sources in the sample are highly variable in total flux density at both 3.5 and 1.3 mm, as well as in spectral index, which (except in particularly prominent flares) is found to be optically thin between these two wavelengths. The total flux-density variability at 1.3 mm is found, in general, to be faster, and to have larger fractional amplitude and flatter power-spectral-density slopes than at 3.5 mm. The polarization degree is on average larger at 1.3 mm than at 3.5 mm, by a factor of 2.6. The variability of linear polarization degree is faster and has higher fractional amplitude than for total flux density, with the typical time-scales during prominent polarization peaks being significantly faster at 1.3 mm than at 3.5 mm. The polarization angle at both 3.5 and 1.3 mm is highly variable. Most of the sources show one or two excursions of >180° on time-scales from a few weeks to about a year during the course of our observations. The 3.5 and 1.3 mm polarization angle evolution follows each other rather well, although the 1.3 mm data show a clear preference to more prominent variability on the short time-scales, i.e. weeks. The data are compatible with multizone models of conical jets involving smaller emission regions for the shortest-wavelength emitting sites. Such smaller emitting regions should also be more efficient in energising particle populations, as implied by the coherent evolution of the spectral index and the total flux density during flaring activity of strong enough sources. The data also favour the integrated emission at 1.3 mm to have better ordered magnetic fields than the one at 3.5 mm.
Formation of Ion Beam from High Density Plasma of ECR Discharge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Izotov, I.; Razin, S.; Sidorov, A.
2005-03-15
One of the most promising directions of ECR multicharged ion sources evolution is related with increase in frequency of microwave pumping. During last years microwave generators of millimeter wave range - gyrotrons have been used more frequently. Creation of plasma with density 1013 cm-3 with medium charged ions and ion flux density through a plug of a magnetic trap along magnetic field lines on level of a few A/cm2 is possible under pumping by powerful millimeter wave radiation and quasigasdynamic (collisional) regime of plasma confinement in the magnetic trap. Such plasma has great prospects for application in plasma based ionmore » implantation systems for processing of surfaces with complicated and petit relief. Use it for ion beam formation seams to be difficult because of too high ion current density. This paper continues investigations described elsewhere and shows possibility to arrange ion extraction in zone of plasma expansion from the magnetic trap along axis of system and magnetic field lines.Plasma was created at ECR gas discharge by means of millimeter wave radiation of a gyrotron with frequency 37.5 GHz, maximum power 100 kW, pulse duration 1.5 ms. Two and three electrode quasi-Pierce extraction systems were used for ion beam formation.It is demonstrated that there is no changes in ion charge state distribution along expansion routing of plasma under collisional confinement. Also ion flux density decreases with distance from plug of the trap, it allows to control extracting ion current density. Multicharged ion beam of Nitrogen with total current up to 2.5 mA at diameter of extracting hole 1 mm, that corresponds current density 320 mA/cm2, was obtained. Magnitude of total ion current was limited due to extracting voltage (60 kV). Under such conditions characteristic transversal dimension of plasma equaled 4 cm, magnetic field value in extracting zone was about 0.1 T at axisymmetrical configuration.« less
IS VOYAGER 1 INSIDE AN INTERSTELLAR FLUX TRANSFER EVENT?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwadron, N. A.; McComas, D. J., E-mail: n.schwadron@unh.edu
Plasma wave observations from Voyager 1 have recently shown large increases in plasma density, to about 0.1 cm{sup –3}, consistent with the density of the local interstellar medium. However, corresponding magnetic field observations continue to show the spiral magnetic field direction observed throughout the inner heliosheath. These apparently contradictory observations may be reconciled if Voyager 1 is inside an interstellar flux transfer event—similar to flux transfer events routinely seen at the Earth's magnetopause. If this were the case, Voyager 1 remains inside the heliopause and based on the Voyager 1 observations we can determine the polarity of the interstellar magnetic field for the first time.
Diode laser-based air mass flux sensor for subsonic aeropropulsion inlets
NASA Astrophysics Data System (ADS)
Miller, Michael F.; Kessler, William J.; Allen, Mark G.
1996-08-01
An optical air mass flux sensor based on a compact, room-temperature diode laser in a fiber-coupled delivery system has been tested on a full-scale gas turbine engine. The sensor is based on simultaneous measurements of O 2 density and Doppler-shifted velocity along a line of sight across the inlet duct. Extensive tests spanning engine power levels from idle to full afterburner demonstrate accuracy and precision of the order of 1 2 of full scale in density, velocity, and mass flux. The precision-limited velocity at atmospheric pressure was as low as 40 cm s. Multiple data-reduction procedures are quantitatively compared to suggest optimal strategies for flight sensor packages.
Noncontact Measurement Of Critical Current In Superconductor
NASA Technical Reports Server (NTRS)
Israelsson, Ulf E.; Strayer, Donald M.
1992-01-01
Critical current measured indirectly via flux-compression technique. Magnetic flux compressed into gap between superconductive hollow cylinder and superconductive rod when rod inserted in hole in cylinder. Hall-effect probe measures flux density before and after compression. Method does not involve any electrical contact with superconductor. Therefore, does not cause resistive heating and consequent premature loss of superconductivity.
Production of high transient heat and particle fluxes in a linear plasma device
NASA Astrophysics Data System (ADS)
De Temmerman, G.; Zielinski, J. J.; van der Meiden, H.; Melissen, W.; Rapp, J.
2010-08-01
We report on the generation of high transient heat and particle fluxes in a linear plasma device by pulsed operation of the plasma source. A capacitor bank is discharged into the source to transiently increase the discharge current up to 1.7 kA, allowing peak densities and temperature of 70×1020 m-3 and 6 eV corresponding to a surface power density of about 400 MW m-2.
NASA Technical Reports Server (NTRS)
Moran, M. Susan; Jackson, Ray D.; Raymond, Lee H.; Gay, Lloyd W.; Slater, Philip N.
1989-01-01
Surface energy balance components were evaluated by combining satellite-based spectral data with on-site measurements of solar irradiance, air temperature, wind speed, and vapor pressure. Maps of latent heat flux density and net radiant flux density were produced using Landsat TM data for three dates. The TM-based estimates differed from Bowen-ratio and aircraft-based estimates by less than 12 percent over mature fields of cotton, wheat, and alfalfa.
Bernabé, Tiago N; de Omena, Paula M; Santos, Viviane Piccin Dos; de Siqueira, Virgínia M; de Oliveira, Valéria M; Romero, Gustavo Q
2018-02-27
Warming is among the major drivers of changes in biotic interactions and, in turn, ecosystem functioning. The decomposition process occurs in a chain of facilitative interactions between detritivores and microorganisms. It remains unclear, however, what effect warming may have on the interrelations between detritivores and microorganisms, and the consequences for the functioning of natural freshwater ecosystems. To address these gaps, we performed a field experiment using tank bromeliads and their associated aquatic fauna. We manipulated the presence of bacteria and detritivorous macroinvertebrates (control, "bacteria," and "bacteria + macroinvertebrates") under ambient and warming scenarios, and analyzed the effects on the microorganisms and ecosystem functioning (detritus mass loss, colored dissolved organic matter, and nitrogen flux). We applied antibiotic solution to eliminate or reduce bacteria from control bromeliads. After 60 days incubation, bacterial density was higher in the presence than in the absence of macroinvertebrates. In the absence of macroinvertebrates, temperature did not influence bacterial density. However, in the presence of macroinvertebrates, bacterial density decreased by 54% with warming. The magnitude of the effects of organisms on ecosystem functioning was higher in the combined presence of bacteria and macroinvertebrates. However, warming reduced the overall positive effects of detritivores on bacterial density, which in turn, cascaded down to ecosystem functioning by decreasing decomposition and nitrogen flux. These results show the existence of facilitative mechanisms between bacteria and detritivores in the decomposition process, which might collapse due to warming. Detritivores seem to contribute to nutrient cycling as they facilitate bacterial populations, probably by increasing nutrient input (feces) in the ecosystem. However, increased temperature mitigated these beneficial effects. Our results add to a growing research body that shows that warming can affect the structure of aquatic communities, and highlight the importance of considering the interactive effects between facilitation and climatic drivers on the functioning of freshwater ecosystems. © 2018 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Miura, S.; Yoshida, Y.; Ichino, Y.; Xu, Q.; Matsumoto, K.; Ichinose, A.; Awaji, S.
2016-01-01
For use in high-magnetic-field coil-based applications, the critical current density (Jc) of REBa2Cu3Oy (REBCO, where RE = rare earth) coated conductors must be isotropically improved, with respect to the direction of the magnetic field; these improvements must be realized at the operating conditions of these applications. In this study, improvement of the Jc for various applied directions of magnetic field was achieved by controlling the morphology of the BaHfO3 (BHO) nano-rods in a SmBCO film. We fabricated the 3.0 vol. % BHO-doped SmBCO film at a low growth temperature of 720 °C, by using a seed layer technique (Ts = 720 °C film). The low-temperature growth resulted in a morphological change in the BHO nano-rods. In fact, a high number density of (3.1 ± 0.1) × 103 μm-2 of small (diameter: 4 ± 1 nm), discontinuous nano-rods that grew in various directions, was obtained. In Jc measurements, the Jc of the Ts = 720 °C film in all directions of the applied magnetic field was higher than that of the non-doped SmBCO film. The Jcmin (6.4 MA/cm2) of the former was more than 6 times higher than that (1.0 MA/cm2) of the latter at 40 K, under 3 T. The aforementioned results indicated that the discontinuous BHO nano-rods, which occurred with a high number density, exerted a 3D-like flux pinning at the measurement conditions considered. Moreover, at 4.2 K and under 17 T, a flux pinning force density of 1.6 TN/m3 was realized; this value was comparable to the highest value recorded, to date.
Simulations of particle and heat fluxes in an ELMy H-mode discharge on EAST using BOUT++ code
NASA Astrophysics Data System (ADS)
Wu, Y. B.; Xia, T. Y.; Zhong, F. C.; Zheng, Z.; Liu, J. B.; team3, EAST
2018-05-01
In order to study the distribution and evolution of the transient particle and heat fluxes during edge-localized mode (ELM) bursts on the Experimental Advanced Superconducting Tokamak (EAST), the BOUT++ six-field two-fluid model is used to simulate the pedestal collapse. The profiles from the EAST H-mode discharge #56129 are used as the initial conditions. Linear analysis shows that the resistive ballooning mode and drift-Alfven wave are two dominant instabilities for the equilibrium, and play important roles in driving ELMs. The evolution of the density profile and the growing process of the heat flux at divertor targets during the burst of ELMs are reproduced. The time evolution of the poloidal structures of T e is well simulated, and the dominant mode in each stage of the ELM crash process is found. The studies show that during the nonlinear phase, the dominant mode is 5, and it changes to 0 when the nonlinear phase goes to saturation after the ELM crash. The time evolution of the radial electron heat flux, ion heat flux, and particle density flux at the outer midplane (OMP) are obtained, and the corresponding transport coefficients D r, χ ir, and χ er reach maximum around 0.3 ∼ 0.5 m2 s‑1 at ΨN = 0.9. The heat fluxes at outer target plates are several times larger than that at inner target plates, which is consistent with the experimental observations. The simulated profiles of ion saturation current density (j s) at the lower outboard (LO) divertor target are compared to those of experiments by Langmuir probes. The profiles near the strike point are similar, and the peak values of j s from simulation are very close to the measurements.
NASA Technical Reports Server (NTRS)
Wilson, Thomas L.; Lodhi, M. A. K.; Diaz, Abel B.
2005-01-01
No simple algorithm seems to exist for calculating proton fluxes and lifetimes in the Earth's inner, trapped radiation belt throughout the solar cycle. Most models of the inner trapped belt in use depend upon AP8 which only describes the radiation environment at solar maximum and solar minimum in Cycle 20. One exception is NOAAPRO which incorporates flight data from the TIROS/NOAA polar orbiting spacecraft. The present study discloses yet another, simple formulation for approximating proton fluxes at any time in a given solar cycle, in particular between solar maximum and solar minimum. It is derived from AP8 using a regression algorithm technique from nuclear physics. From flux and its time integral fluence, one can then approximate dose rate and its time integral dose. It has already been published in this journal that the absorbed dose rate, D, in the trapped belts exhibits a power law relationship, D = A(rho)(sup -n), where A is a constant, rho is the atmospheric density, and the index n is weakly dependent upon shielding. However, that method does not work for flux and fluence. Instead, we extend this idea by showing that the power law approximation for flux J is actually bivariant in energy E as well as density rho. The resulting relation is J(E,rho)approx.(sum of)A(E(sup n))rho(sup -n), with A itself a power law in E. This provides another method for calculating approximate proton flux and lifetime at any time in the solar cycle. These in turn can be used to predict the associated dose and dose rate.
NASA Astrophysics Data System (ADS)
Livsey, D. N.; Downing-Kunz, M.; Schoellhamer, D. H.; Shellenbarger, G.; Wright, S. A.
2016-12-01
Tidal marshes are an important component of estuarine ecosystems. Within the San Francisco Bay Estuary (SFB) tidal marshes play an important role in food web dynamics, are home to an array of endemic mammals, birds, and fishes, filter pollutants, and dampen coastal flooding. With 80% of SFB tidal marshes lost to human development, numerous restoration efforts are underway. The largest tidal marsh restoration project in SFB, the South Bay Salt Pond Restoration Project, is underway in Lower South San Francisco Bay to restore 60,000 ha of this critical habitat; however, rising sea levels, could jeopardize these gains without concomitant vertical accretion rates of the marsh surface via organic matter accumulation and sediment deposition. Recent work in Lower South Bay using continuously collected data from water years (WY) 2009-11 indicates that the direction of net springtime residual sediment flux is related to the amount of springtime Sacramento-San Joaquin Delta (Delta) outflow. Large outflow freshens the Central Bay, causing a density gradient and inverse gravitational circulation that flushes Lower South Bay. In this study we extend the sediment budget for Lower South Bay from WY 2011 to present using 15-minute turbidity and velocity data paired with Acoustic Doppler Current Profiler cross-sectional measurements and in situ suspended-sediment concentration samples to: 1) further examine the mechanisms controlling net springtime residual sediment flux, and 2) further test the hypothesis that Delta outflow controls the direction of net sediment flux for Lower South Bay.
3D Magnetic Field Analysis of a Turbine Generator Stator Core-end Region
NASA Astrophysics Data System (ADS)
Wakui, Shinichi; Takahashi, Kazuhiko; Ide, Kazumasa; Takahashi, Miyoshi; Watanabe, Takashi
In this paper we calculated magnetic flux density and eddy current distributions of a 71MVA turbine generator stator core-end using three-dimensional numerical magnetic field analysis. Subsequently, the magnetic flux densities and eddy current densities in the stator core-end region on the no-load and three-phase short circuit conditions obtained by the analysis have good agreements with the measurements. Furthermore, the differences of eddy current and eddy current loss in the stator core-end region for various load conditions are shown numerically. As a result, the facing had an effect that decrease the eddy current loss of the end plate about 84%.
What's All the Talc About? Air Entrainment in Dilute Pyroclastic Density Currents
NASA Astrophysics Data System (ADS)
Marshall, B. J.; Andrews, B. J.; Fauria, K.
2015-12-01
A quantitative understanding of air entrainment is critical to predicting the behaviors of dilute Pyroclastic Density Currents (PDCs), including runout distance, liftoff, and mass fractionation into co-PDC plumes. We performed experiments in an 8.5x6x2.6 meter tank using 20 micron talc powder over a range of conditions to describe air entrainment as a function of temperature, duration and mass flux. The experiments are reproducible and are scaled with respect to the densimetric and thermal Richardson numbers (Ri and RiT), Froude number, thermal to kinetic energy density ratio (TEb/KE), Stokes number, and Settling number, such that they are dynamically similar to natural dilute PDCs. Experiments are illuminated with a swept laser sheet and imaged at 1000 Hz to create 3D reconstructions of the currents, with ~1-2 cm resolution, at up to 1.5 Hz. An array of 30 high-frequency thermocouples record the precise temperature in the currents at 3 Hz. Bulk entrainment rates are calculated based on measured current volumes, surface areas, temperatures and velocities. Entrainment rates vary from ~0-0.9 and do not show simple variation with TEb/KE, Ri, or RiT. Entrainment does, however, increase with decreasing eruption duration and increasing mass flux. Our results suggest that current heads entrain air more efficiently than current bodies (>0.5 compared to ~0.1). Because shorter duration currents have proportionally larger heads, their bulk entrainment rates are controlled by those heads, whereas longer duration currents are dominated by their bodies. Our experiments demonstrate that air entrainment, which exerts a fundamental control on PDC runout and liftoff, varies spatially and temporally within PDCs.
Assessment of Nuclear Fuels using Radiographic Thickness Measurement Method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muhammad Abir; Fahima Islam; Hyoung Koo Lee
2014-11-01
The Convert branch of the National Nuclear Security Administration (NNSA) Global Threat Reduction Initiative (GTRI) focuses on the development of high uranium density fuels for research and test reactors for nonproliferation. This fuel is aimed to convert low density high enriched uranium (HEU) based fuel to high density low enriched uranium (LEU) based fuel for high performance research reactors (HPRR). There are five U.S. reactors that fall under the HPRR category, including: the Massachusetts Institute of Technology Reactor (MITR), the National Bureau of Standards Reactor (NBSR), the Missouri University Research Reactor (UMRR), the Advanced Test Reactor (ATR), and the Highmore » Flux Isotope Reactor (HFIR). U-Mo alloy fuel phase in the form of either monolithic or dispersion foil type fuels, such as ATR Full-size In center flux trap Position (AFIP) and Reduced Enrichment for Research and Test Reactor (RERTR), are being designed for this purpose. The fabrication process1 of RERTR is susceptible to introducing a variety of fuel defects. A dependable quality control method is required during fabrication of RERTR miniplates to maintain the allowable design tolerances, therefore evaluating and analytically verifying the fabricated miniplates for maintaining quality standards as well as safety. The purpose of this work is to analyze the thickness of the fabricated RERTR-12 miniplates using non-destructive technique to meet the fuel plate specification for RERTR fuel to be used in the ATR.« less
A search for long-time-scale, low-frequency radio transients
NASA Astrophysics Data System (ADS)
Murphy, Tara; Kaplan, David L.; Croft, Steve; Lynch, Christene; Callingham, J. R.; Bannister, Keith; Bell, Martin E.; Hurley-Walker, Natasha; Hancock, Paul; Line, Jack; Rowlinson, Antonia; Lenc, Emil; Intema, H. T.; Jagannathan, P.; Ekers, Ronald D.; Tingay, Steven; Yuan, Fang; Wolf, Christian; Onken, Christopher A.; Dwarakanath, K. S.; For, B.-Q.; Gaensler, B. M.; Hindson, L.; Johnston-Hollitt, M.; Kapińska, A. D.; McKinley, B.; Morgan, J.; Offringa, A. R.; Procopio, P.; Staveley-Smith, L.; Wayth, R.; Wu, C.; Zheng, Q.
2017-04-01
We present a search for transient and highly variable sources at low radio frequencies (150-200 MHz) that explores long time-scales of 1-3 yr. We conducted this search by comparing the TIFR GMRT Sky Survey Alternative Data Release 1 (TGSS ADR1) and the GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) survey catalogues. To account for the different completeness thresholds in the individual surveys, we searched for compact GLEAM sources above a flux density limit of 100 mJy that were not present in the TGSS ADR1; and also for compact TGSS ADR1 sources above a flux density limit of 200 mJy that had no counterpart in GLEAM. From a total sample of 234 333 GLEAM sources and 275 612 TGSS ADR1 sources in the overlap region between the two surveys, there were 99 658 GLEAM sources and 38 978 TGSS ADR sources that passed our flux density cut-off and compactness criteria. Analysis of these sources resulted in three candidate transient sources. Further analysis ruled out two candidates as imaging artefacts. We analyse the third candidate and show it is likely to be real, with a flux density of 182 ± 26 mJy at 147.5 MHz. This gives a transient surface density of ρ = (6.2 ± 6) × 10-5 deg-2. We present initial follow-up observations and discuss possible causes for this candidate. The small number of spurious sources from this search demonstrates the high reliability of these two new low-frequency radio catalogues.
NASA Astrophysics Data System (ADS)
Reyes, J. Leonardo; Lubczynski1, Maciek W.
2010-05-01
Sap flow measurement is a key aspect for understanding how plants use water and their impacts on the ecosystems. A variety of sensors have been developed to measure sap flow, each one with its unique characteristics. When the aim of a research is to have accurate tree water use calculations, with high temporal and spatial resolution (i.e. scaled), a sensor with high accuracy, high measurement efficiency, low signal-to-noise ratio and low price is ideal, but such has not been developed yet. Granier's thermal dissipation probes (TDP) have been widely used in many studies and various environmental conditions because of its simplicity, reliability, efficiency and low cost. However, it has two major flaws when is used in semi-arid environments and broad-stem tree species: it is often affected by high natural thermal gradients (NTG), which distorts the measurements, and it cannot measure the radial variability of sap-flux density in trees with sapwood thicker than two centimeters. The new, multi point heat field deformation sensor (HFD) is theoretically not affected by NTG, and it can measure the radial variability of the sap flow at different depths. However, its high cost is a serious limitation when simultaneous measurements are required in several trees (e.g. catchment-scale studies). The underlying challenge is to develop a monitoring schema in which HFD and TDP are combined to satisfy the needs of measurement efficiency and accuracy in water accounting. To assess the level of agreement between TDP and HFD methods in quantifying sap flow rates and temporal patterns on Quercus ilex (Q.i ) and Quercus pyrenaica trees (Q.p.), three measurement schemas: standard TDP, TDP-NTG-corrected and HFD were compared in dry season at the semi-arid Sardon area, near Salamanca in Spain in the period from June to September 2009. To correct TDP measurements with regard to radial sap flow variability, a radial sap flux density correction factor was applied and tested by adjusting TDP measurements using the HFD-measured radial profiles. The standard TDP daily mean of sap-flux density was 95% higher than the 2cm equivalent of the HFD for Q. ilex and 70% higher for Q. pyrenaica. NTG-corrected TDP daily mean of sap-flux density was 34% higher than HFD for Q. ilex and 47% lower for Q. pyrenaica. Regarding sap flow measurements, the standard TDP sap flow was 81% higher than HFD sap flow for Q. ilex and 297% for Q. pyrenaica. The NTG-corrected TDP sap flow was 24% higher than HFD sap flow for Q. ilex and 23% for Q. pyrenaica. The radial correction, for TDP-NTG-corrected sap-flux density, produced sap-flow measurements in well agreement with HFD, just slightly lower (-3% Q.i. and -4% Q.p.). The TDP-HFD sap flow data acquired in dry season over the savanna type of sparsely distributed oak trees (Q. ilex & Q. pyrenaica) showed that the TDP method must be corrected for NTG and for radial variability of sap flux density in trees with sapwood thicker than 2 cm. If such corrections are not taken into consideration, the amount of accounted water used by the trees is prone to overestimation, especially for Quercus pyrenaica. The obtained results indicate also that the combination of HFD and TDP leads to an efficient and accurate operational sap flow measurement schema that is currently in the optimization stage.
Dynamics of low- and high-Z metal ions emitted during nanosecond laser-produced plasmas
NASA Astrophysics Data System (ADS)
Elsied, Ahmed M.; Diwakar, Prasoon K.; Polek, Mathew; Hassanein, Ahmed
2016-11-01
Dynamics of metal ions during laser-produced plasmas was studied. A 1064 nm, Nd: YAG laser pulse was used to ablate pure Al, Fe, Co, Mo, and Sn samples. Ion flux and velocity were measured using Faraday cup ion collector. Time-of-flight measurements showed decreasing ion flux and ion velocity with increasing atomic weight, and heavy metal ion flux profile exhibited multiple peaks that was not observed in lighter metals. Slow peak was found to follow shifted Maxwell Boltzmann distribution, while the fast peak was found to follow Gaussian distribution. Ion flux angular distribution that was carried out on Mo and Al using fixed laser intensity 2.5 × 1010 W/cm2 revealed that the slow ion flux peaks at small angles, that is, close to normal to the target ˜0° independent of target's atomic weight, and fast ion flux for Mo peaks at large angles ˜40° measured from the target normal, while it completely absents for Al. This difference in spatial and temporal distribution reveals that the emission mechanism of the fast and slow ions is different. From the slow ion flux angular distribution, the measured plume expansion ratio (plume forward peaking) was 1.90 and 2.10 for Al and Mo, respectively. Moreover, the effect of incident laser intensity on the ion flux emission as well as the emitted ion velocity were investigated using laser intensities varying from 2.5 × 1010 W/cm2 to 1.0 × 1011 W/cm2. Linear increase of fast ion flux and velocity, and quadratic increase of slow ion flux and velocity were observed. For further understanding of plume dynamics, laser optical emission spectroscopy was used to characterize Sn plasma by measuring the temporal and spatial evolution of plasma electron density Ne and electron temperature Te. At 3.5 mm away from the target, plasma density showed slow decrease with time, however electron temperature was observed to decrease dramatically. The maximum plasma density and temperature occurred at 0.5 mm away from target and were measured to be 8.0 × 1017 cm-3 and 1.3 eV, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borovsky, Joseph E; Cayton, Thomas E; Denton, Michael H
Electron flux measurements from 7 satellites in geosynchronous orbit from 1990-2007 are fit with relativistic bi-Maxwellians, yielding a number density n and temperature T description of the outer electron radiation belt. For 54.5 spacecraft years of measurements the median value ofn is 3.7x10-4 cm-3 and the median value ofT is 142 keY. General statistical properties of n, T, and the 1.1-1.5 MeV flux J are investigated, including local-time and solar-cycle dependencies. Using superposed-epoch analysis triggered on storm onset, the evolution of the outer electron radiation belt through high-speed-steam-driven storms is investigated. The number density decay during the calm before themore » storm is seen, relativistic-electron dropouts and recoveries from dropout are investigated, and the heating of the outer electron radiation belt during storms is examined. Using four different triggers (SSCs, southward-IMF CME sheaths, southward-IMF magnetic clouds, and minimum Dst), CME-driven storms are analyzed with superposed-epoch techniques. For CME-driven storms an absence of a density decay prior to storm onset is found, the compression of the outer electron radiation belt at time of SSC is analyzed, the number-density increase and temperature decrease during storm main phase is seen, and the increase in density and temperature during storm recovery phase is observed. Differences are found between the density-temperature and the flux descriptions, with more information for analysis being available in the density-temperature description.« less
Fermionic currents in AdS spacetime with compact dimensions
NASA Astrophysics Data System (ADS)
Bellucci, S.; Saharian, A. A.; Vardanyan, V.
2017-09-01
We derive a closed expression for the vacuum expectation value (VEV) of the fermionic current density in a (D +1 )-dimensional locally AdS spacetime with an arbitrary number of toroidally compactified Poincaré spatial dimensions and in the presence of a constant gauge field. The latter can be formally interpreted in terms of a magnetic flux treading the compact dimensions. In the compact subspace, the field operator obeys quasiperiodicity conditions with arbitrary phases. The VEV of the charge density is zero and the current density has nonzero components along the compact dimensions only. They are periodic functions of the magnetic flux with the period equal to the flux quantum and tend to zero on the AdS boundary. Near the horizon, the effect of the background gravitational field is small and the leading term in the corresponding asymptotic expansion coincides with the VEV for a massless field in the locally Minkowski bulk. Unlike the Minkowskian case, in the system consisting of an equal number of fermionic and scalar degrees of freedom, with same masses, charges and phases in the periodicity conditions, the total current density does not vanish. In these systems, the leading divergences in the scalar and fermionic contributions on the horizon are canceled and, as a consequence of that, the charge flux, integrated over the coordinate perpendicular to the AdS boundary, becomes finite. We show that in odd spacetime dimensions the fermionic fields realizing two inequivalent representations of the Clifford algebra and having equal phases in the periodicity conditions give the same contribution to the VEV of the current density. Combining the contributions from these fields, the current density in odd-dimensional C -,P - and T -symmetric models are obtained. As an application, we consider the ground state current density in curved carbon nanotubes described in terms of a (2 +1 )-dimensional effective Dirac model.
Shaped superconductor cylinder retains intense magnetic field
NASA Technical Reports Server (NTRS)
Hildebrandt, A. F.; Wahlquist, H.
1964-01-01
The curve of the inner walls of a superconducting cylinder is plotted from the flux lines of the magnetic field to be contained. This shaping reduces maximum flux densities and permits a stronger and more uniform magnetic field.
Effects of Convection Electric Fields on Modeled Plasmaspheric Densities and ccc Temperatures
NASA Technical Reports Server (NTRS)
Comfort, Richard H.; Richards, Phil G.; Liao, Jin-Hua; Craven, Paul D.
1998-01-01
This paper examines the effects of convection electric fields on plasmaspheric H+, O+, He+, and N+ densities and electron and ion temperatures. These effects are studied with the aid of the Field Line Interhemispheric Plasma (FLIP) model, which has recently been extended to include the effects of ExB drifts. The FLIP model solves the continuity and momentum equations for the major ion species as well as the energy equations for ions and electrons along entire drifting flux tubes from 100 km altitude in the northern hemisphere to 100 km altitude in the southern hemisphere. Electron heating in the ionosphere and plasmasphere is provided by the solution of two-stream equations for photoelectrons. The dawn-dusk electric field imposed by the solar wind causes changes in plasmaspheric density and temperature as the plasma drifts onto flux tubes having different volumes. In an idealized convection model, outward drifts in the afternoon cause decreases in the plasmasphere density and temperature while inward drifts in the evening cause increases in plasmasphere density and temperature. In this paper we examine the effects of convection electric fields on the rate of refilling of flux tubes and investigate the hypothesis that convection electric fields are responsible for the unusually high evening electron temperatures and the post-midnight density maxima often observed in the winter ionosphere above Millstone Hill.
NASA Astrophysics Data System (ADS)
Settar, Abdelhakim; Abboudi, Saïd; Madani, Brahim; Nebbali, Rachid
2018-02-01
Due to the endothermic nature of the steam methane reforming reaction, the process is often limited by the heat transfer behavior in the reactors. Poor thermal behavior sometimes leads to slow reaction kinetics, which is characterized by the presence of cold spots in the catalytic zones. Within this framework, the present work consists on a numerical investigation, in conjunction with an experimental one, on the one-dimensional heat transfer phenomenon during the heat supply of a catalytic-wall reactor, which is designed for hydrogen production. The studied reactor is inserted in an electric furnace where the heat requirement of the endothermic reaction is supplied by electric heating system. During the heat supply, an unknown heat flux density, received by the reactive flow, is estimated using inverse methods. In the basis of the catalytic-wall reactor model, an experimental setup is engineered in situ to measure the temperature distribution. Then after, the measurements are injected in the numerical heat flux estimation procedure, which is based on the Function Specification Method (FSM). The measured and estimated temperatures are confronted and the heat flux density which crosses the reactor wall is determined.
NASA Technical Reports Server (NTRS)
Weaver, W. L.; House, F. B.
1979-01-01
Six months of data from the wide-field-of-view low resolution infrared radiometers on the Environmental Science Services Administration (ESSA) 7 satellite were analyzed. Earth emitted and earth reflected irradiances were computed at satellite altitude using data from a new in-flight calibration technique. Flux densitites and albedos were computed for the top of the earth's atmosphere. Monthly averages of these quantities over 100 latitude zones, each hemisphere, and the globe are presented for each month analyzed, and global distributions are presented for typical months. Emitted flux densities are generally lower and albedos higher than those of previous studies. This may be due, in part, to the fact that the ESSA 7 satellite was in a 3 p.m. Sun-synchronous orbit and some of the comparison data were obtained from satellites in 12 noon sun-synchronous orbits. The ESSA 7 detectors seem to smooth out spatial flux density variations more than scanning radiometers or wide-field-of-view fixed-plate detectors. Significant longitudinal and latitudinal variations of emitted flux density and albedo were identified in the tropics in a zone extending about + or - 25 deg in latitude.
One-point fitting of the flux density produced by a heliostat
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collado, Francisco J.
Accurate and simple models for the flux density reflected by an isolated heliostat should be one of the basic tools for the design and optimization of solar power tower systems. In this work, the ability and the accuracy of the Universidad de Zaragoza (UNIZAR) and the DLR (HFCAL) flux density models to fit actual energetic spots are checked against heliostat energetic images measured at Plataforma Solar de Almeria (PSA). Both the fully analytic models are able to acceptably fit the spot with only one-point fitting, i.e., the measured maximum flux. As a practical validation of this one-point fitting, the interceptmore » percentage of the measured images, i.e., the percentage of the energetic spot sent by the heliostat that gets the receiver surface, is compared with the intercept calculated through the UNIZAR and HFCAL models. As main conclusions, the UNIZAR and the HFCAL models could be quite appropriate tools for the design and optimization, provided the energetic images from the heliostats to be used in the collector field were previously analyzed. Also note that the HFCAL model is much simpler and slightly more accurate than the UNIZAR model. (author)« less
Etching in Chlorine Discharges Using an Integrated Feature Evolution-Plasma Model
NASA Technical Reports Server (NTRS)
Hwang, Helen H.; Bose, Deepak; Govindan, T. R.; Meyyappan, M.; Biegel, Bryan (Technical Monitor)
2001-01-01
Etching of semiconductor materials is reliant on plasma properties. Quantities such as ion and neutral fluxes, both in magnitude and in direction, are often determined by reactor geometry (height, radius, position of the coils, etc.) In order to obtain accurate etching profiles, one must also model the plasma as a whole to obtain local fluxes and distributions. We have developed a set of three models that simulates C12 plasmas for etching of silicon, ion and neutral trajectories in the plasma, and feature profile evolution. We have found that the location of the peak in the ion densities in the reactor plays a major role in determining etching uniformity across the wafer. For a stove top coil inductively coupled plasma (ICP), the ion density is peaked at the top of the reactor. This leads to nearly uniform neutral and ion fluxes across the wafer. A side coil configuration causes the ion density to peak near the sidewalls. Ion fluxes are thus greater toward the wall's and decrease toward the center. In addition, the ions bombard the wafer at a slight angle. This angle is sufficient to cause slanted profiles, which is highly undesirable.
Characterizing the Early Impact Bombardment
NASA Technical Reports Server (NTRS)
Bogard, Donald D.
2005-01-01
The early bombardment revealed in the larger impact craters and basins on the moon was a major planetary process that affected all bodies in the inner solar system, including the Earth and Mars. Understanding the nature and timing of this bombardment is a fundamental planetary problem. The surface density of lunar impact craters within a given size range on a given lunar surface is a measure of the age of that surface relative to other lunar surfaces. When crater densities are combined with absolute radiometric ages determined on lunar rocks returned to Earth, the flux of large lunar impactors through time can be estimated. These studies suggest that the flux of impactors producing craters greater than 1 km in diameter has been approximately constant over the past approx. 3 Gyr. However, prior to 3.0 - 3.5 Gyr the impactor flux was much larger and defines an early bombardment period. Unfortunately, no lunar surface feature older than approx. 4 Gyr is accurately dated, and the surface density of craters are saturated in most of the lunar highlands. This means that such data cannot define the impactor flux between lunar formation and approx. 4 Gyr ago.
NASA Astrophysics Data System (ADS)
Shibataki, Takuya; Takahashi, Yasuhito; Fujiwara, Koji
2018-04-01
This paper discusses a measurement method for saturation magnetizations of iron core materials using an electromagnet, which can apply an extremely large magnetic field strength to a specimen. It is said that electrical steel sheets are completely saturated at such a large magnetic field strength over about 100 kA/m. The saturation magnetization can be obtained by assuming that the completely saturated specimen shows a linear change of the flux density with the magnetic field strength because the saturation magnetization is constant. In order to accurately evaluate the flux density in the specimen, an air flux between the specimen and a winding of B-coil for detecting the flux density is compensated by utilizing an ideal condition that the incremental permeability of saturated specimen is equal to the permeability of vacuum. An error of magnetic field strength caused by setting a sensor does not affect the measurement accuracy of saturation magnetization. The error is conveniently cancelled because the saturation magnetization is a function of a ratio of the magnetic field strength to its increment. It may be concluded that the saturation magnetization can be easily measured with high accuracy by using the proposed method.
Nanolaminated Permalloy Core for High-Flux, High-Frequency Ultracompact Power Conversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, J; Kim, M; Galle, P
2013-09-01
Metallic magnetic materials have desirable magnetic properties, including high permeability, and high saturation flux density, when compared with their ferrite counterparts. However, eddy-current losses preclude their use in many switching converter applications, due to the challenge of simultaneously achieving sufficiently thin laminations such that eddy currents are suppressed (e.g., 500 nm-1 mu m for megahertz frequencies), while simultaneously achieving overall core thicknesses such that substantial power can be handled. A CMOS-compatible fabrication process based on robot-assisted sequential electrodeposition followed by selective chemical etching has been developed for the realization of a core of substantial overall thickness (tens to hundreds ofmore » micrometers) comprised of multiple, stacked permalloy (Ni80Fe20) nanolaminations. Tests of toroidal inductors with nanolaminated cores showed negligible eddy-current loss relative to total core loss even at a peak flux density of 0.5 T in the megahertz frequency range. To illustrate the use of these cores, a buck power converter topology is implemented with switching frequencies of 1-2 MHz. Power conversion efficiency greater than 85% with peak operating flux density of 0.3-0.5 T in the core and converter output power level exceeding 5 W was achieved.« less
Nuclear fluxes during coherent tunnelling in asymmetric double well potentials
NASA Astrophysics Data System (ADS)
Liu, ChunMei; Manz, Jörn; Yang, Yonggang
2015-08-01
Previous results for nuclear fluxes during coherent tunnelling of molecules with symmetric double well potentials are extended to fluxes in asymmetric double well potentials. The theory is derived using the two-state approximation (TSA). The symmetric system serves as a reference. As an example, we consider the one-dimensional model of the tunnelling inversion of oriented ammonia, with semiclassical dipole coupling to an electric field. The tunnelling splitting increases with the dipole coupling by a factor f≥slant 1. The tunnelling time decreases by 1/f. The nuclear density appears as the sum of two parts: The tunnelling part decreases as {1/f}2 times the density of the symmetric reference, whereas the non-tunnelling part is the initial density times ≤ft({{1-1}/f}2\\right). Likewise, the nuclear flux decreases by 1/f, with essentially the same shape as for the symmetric reference, with maximum value at the potential barrier. Coherent nuclear tunnellings starting from the upper or lower wells of the asymmetric potential are equivalent. The results are universal, in the frame of the TSA, hence they allow straightforward extrapolations from one system to others. This is demonstrated by the prediction of isotope effects for five isotopomers of ammonia.
A first determination of the surface density of galaxy clusters at very low x-ray fluxes
NASA Technical Reports Server (NTRS)
Rosati, Piero; Della Ceca, Roberta; Burg, Richard; Norman, Colin; Giacconi, Riccardo
1995-01-01
We present the first results of a serendipitous search for clusters of galaxies in deep ROSAT position sensitive proportional counter (PSPC) pointed observations at high Galactic latitude. The survey is being carried out using a wavelet-based detection algorithm which is not biased against extended, low surface brightness sources. A new flux-diameter limited sample of 10 cluster candidates has been created from approximately 3 deg(exp 2) surveyed area. Preliminary CCD observations have revealed that a large fraction of these candidates correspond to a visible enhancement in the galaxy surface density, and several others have been identified from other surveys. We believe these sources to be either low- to moderate-redshift groups or intermediate- to high-redshift clusters. We show X-ray and optical images of some of the clusters identified to date. We present, for the first time, the derived number density of the galaxy clusters to a flux limit of 1 x 10(exp -14) ergs cm(exp -2) s(exp -1) (0.5-2.0 keV). This extends the log N-log S of previous cluster surveys by more than one decade in flux. Results are compared to theoretical predictions for cluster number counts.
THE VLA-COSMOS SURVEY. IV. DEEP DATA AND JOINT CATALOG
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schinnerer, E.; Sargent, M. T.; Bondi, M.
2010-06-15
In the context of the VLA-COSMOS Deep project, additional VLA A array observations at 1.4 GHz were obtained for the central degree of the COSMOS field and combined with the existing data from the VLA-COSMOS Large project. A newly constructed Deep mosaic with a resolution of 2.''5 was used to search for sources down to 4{sigma} with 1{sigma} {approx} 12 {mu}Jy beam{sup -1} in the central 50' x 50'. This new catalog is combined with the catalog from the Large project (obtained at 1.''5 x 1.''4 resolution) to construct a new Joint catalog. All sources listed in the new Jointmore » catalog have peak flux densities of {>=}5{sigma} at 1.''5 and/or 2.''5 resolution to account for the fact that a significant fraction of sources at these low flux levels are expected to be slightly resolved at 1.''5 resolution. All properties listed in the Joint catalog, such as peak flux density, integrated flux density, and source size, are determined in the 2.''5 resolution Deep image. In addition, the Joint catalog contains 43 newly identified multi-component sources.« less
NASA Astrophysics Data System (ADS)
Bilous, A. V.; Kondratiev, V. I.; Kramer, M.; Keane, E. F.; Hessels, J. W. T.; Stappers, B. W.; Malofeev, V. M.; Sobey, C.; Breton, R. P.; Cooper, S.; Falcke, H.; Karastergiou, A.; Michilli, D.; Osłowski, S.; Sanidas, S.; ter Veen, S.; van Leeuwen, J.; Verbiest, J. P. W.; Weltevrede, P.; Zarka, P.; Grießmeier, J.-M.; Serylak, M.; Bell, M. E.; Broderick, J. W.; Eislöffel, J.; Markoff, S.; Rowlinson, A.
2016-06-01
We present first results from a LOFAR census of non-recycled pulsars. The census includes almost all such pulsars known (194 sources) at declinations Dec > 8° and Galactic latitudes |Gb| > 3°, regardless of their expected flux densities and scattering times. Each pulsar was observed for ≥20 min in the contiguous frequency range of 110-188 MHz. Full-Stokes data were recorded. We present the dispersion measures, flux densities, and calibrated total intensity profiles for the 158 pulsars detected in the sample. The median uncertainty in census dispersion measures (1.5 × 10-3 pc cm-3) is ten times smaller, on average, than in the ATNF pulsar catalogue. We combined census flux densities with those in the literature and fitted the resulting broadband spectra with single or broken power-law functions. For 48 census pulsars such fits are being published for the first time. Typically, thechoice between single and broken power-laws, as well as the location of the spectral break, were highly influenced by the spectral coverage of the available flux density measurements. In particular, the inclusion of measurements below 100 MHz appears essential for investigating the low-frequency turnover in the spectra for most of the census pulsars. For several pulsars, we compared the spectral indices from different works and found the typical spread of values to be within 0.5-1.5, suggesting a prevailing underestimation of spectral index errors in the literature. The census observations yielded some unexpected individual source results, as we describe in the paper. Lastly, we will provide this unique sample of wide-band, low-frequency pulse profiles via the European Pulsar Network Database. Tables B.1-B.4 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/591/A134
Wang, Xiaojun; Jia, Mingsheng; Lin, Xiangyu; Xu, Ying; Ye, Xin; Kao, Chih Ming; Chen, Shaohua
2017-04-01
High-density polyethylene (HDPE) membranes are commonly used as a cover component in sanitary landfills, although only limited evaluations of its effect on greenhouse gas (GHG) emissions have been completed. In this study, field GHG emission were investigated at the Dongbu landfill, using three different cover systems: HDPE covering; no covering, on the working face; and a novel material-Oreezyme Waste Cover (OWC) material as a trial material. Results showed that the HDPE membrane achieved a high CH 4 retention, 99.8% (CH 4 mean flux of 12 mg C m -2 h -1 ) compared with the air-permeable OWC surface (CH4 mean flux of 5933 mg C m -2 h -1 ) of the same landfill age. Fresh waste at the working face emitted a large fraction of N 2 O, with average fluxes of 10 mg N m -2 h -2 , while N 2 O emissions were small at both the HDPE and the OWC sections. At the OWC section, CH 4 emissions were elevated under high air temperatures but decreased as landfill age increased. N 2 O emissions from the working face had a significant negative correlation with air temperature, with peak values in winter. A massive presence of CO 2 was observed at both the working face and the OWC sections. Most importantly, the annual GHG emissions were 4.9 Gg yr -1 in CO 2 equivalents for the landfill site, of which the OWC-covered section contributed the most CH 4 (41.9%), while the working face contributed the most N 2 O (97.2%). HDPE membrane is therefore, a recommended cover material for GHG control. Monitoring of GHG emissions at three different cover types in a municipal solid waste landfill during a 1-year period showed that the working face was a hotspot of N 2 O, which should draw attention. High CH 4 fluxes occurred on the permeable surface covering a 1- to 2-year-old landfill. In contrast, the high-density polyethylene (HDPE) membrane achieved high CH 4 retention, and therefore is a recommended cover material for GHG control.
Variable density mixing in turbulent jets with coflow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charonko, John James; Prestridge, Katherine Philomena
Two sets of experiments are performed to study variable-density effects in turbulent round jets with co flow at density ratios, s = 4.2 and s = 1.2. 10,000 instantaneous realisations of simultaneous 2-D PIV and PLIF at three axial locations in the momentumdominated region of the jet allow us to calculate the full t.k.e. budgets, providing insights into the mechanisms of density fluctuation correlations both axially and radially in a non- Boussinesq flow. The strongest variable-density effects are observed within the velocity half-width of the jet, r ~u1/2 . Variable density effects decrease the Reynolds stresses via increased turbulent massmore » flux in the heavy jet, as shown by previous jet centreline measurements. Radial pro les of turbulent flux show that in the lighter jet t.k.e. is moving away from the centreline, while in the heavy jet it is being transported both inwards towards the centreline and radially outwards. Negative t.k.e. production is observed in the heavy jet, and we demonstrate that this is caused by both reduced gradient stretching in the axial direction and increased turbulent mass fluxes. Large differences in advection are also observed between the two jets. The air jet has higher total advection caused by strong axial components, while density fluctuations in the heavy jet reduce the axial advection signi cantly. The budget mechanisms in the non-Boussinesq regime are best understood using effective density and velocity half-width, ρeff ¯u 3 1,CL/r ~u1/2,eff , a modi cation of previous scaling.« less
Variable density mixing in turbulent jets with coflow
Charonko, John James; Prestridge, Katherine Philomena
2017-07-24
Two sets of experiments are performed to study variable-density effects in turbulent round jets with co flow at density ratios, s = 4.2 and s = 1.2. 10,000 instantaneous realisations of simultaneous 2-D PIV and PLIF at three axial locations in the momentumdominated region of the jet allow us to calculate the full t.k.e. budgets, providing insights into the mechanisms of density fluctuation correlations both axially and radially in a non- Boussinesq flow. The strongest variable-density effects are observed within the velocity half-width of the jet, r ~u1/2 . Variable density effects decrease the Reynolds stresses via increased turbulent massmore » flux in the heavy jet, as shown by previous jet centreline measurements. Radial pro les of turbulent flux show that in the lighter jet t.k.e. is moving away from the centreline, while in the heavy jet it is being transported both inwards towards the centreline and radially outwards. Negative t.k.e. production is observed in the heavy jet, and we demonstrate that this is caused by both reduced gradient stretching in the axial direction and increased turbulent mass fluxes. Large differences in advection are also observed between the two jets. The air jet has higher total advection caused by strong axial components, while density fluctuations in the heavy jet reduce the axial advection signi cantly. The budget mechanisms in the non-Boussinesq regime are best understood using effective density and velocity half-width, ρeff ¯u 3 1,CL/r ~u1/2,eff , a modi cation of previous scaling.« less
Rain Splash Dispersal of Gibberella zeae Within Wheat Canopies in Ohio.
Paul, P A; El-Allaf, S M; Lipps, P E; Madden, L V
2004-12-01
ABSTRACT Rain splash dispersal of Gibberella zeae, causal agent of Fusarium head blight of wheat, was investigated in field studies in Ohio between 2001 and 2003. Samplers placed at 0, 30, and 100 cm above the soil surface were used to collect rain splash in wheat fields with maize residue on the surface and fields with G. zeae-infested maize kernels. Rain splash was collected during separate rain episodes throughout the wheat-growing seasons. Aliquots of splashed rain were transferred to petri dishes containing Komada's selective medium, and G. zeae was identified based on colony and spore morphology. Dispersed spores were measured in CFU/ml. Intensity of splashed rain was highest at 100 cm and ranged from 0.2 to 10.2 mm h(-1), depending on incident rain intensity and sampler height. Spores were recovered from splash samples at all heights in both locations for all sampled rain events. Both macroconidia and ascospores were found based on microscopic examination of random samples of splashed rain. Spore density and spore flux density per rain episode ranged from 0.4 to 40.9 CFU cm(-2) and 0.4 to 84.8 CFU cm(-2) h(-1), respectively. Spore flux density was higher in fields with G. zeae-infested maize kernels than in fields with maize debris, and generally was higher at 0 and 30 cm than at 100 cm at both locations. However, on average, spore flux density was only 30% lower at 100 cm (height of wheat spikes) than at the other heights. The log of spore flux density was linearly related to the log of splashed rain intensity and the log of incident rain intensity. The regression slopes were not significantly affected by year, location, height, and their interactions, but the intercepts were significantly affected by both sampler height and location. Thus, our results show that spores of G. zeae were consistently splash dispersed to spike heights within wheat canopies, and splashed rain intensity and spore flux density could be predicted based on incident rain intensity in order to estimate inoculum dispersal within the wheat canopy.
Cosmic Ray Flux in the Presence of a Neutral Background
NASA Technical Reports Server (NTRS)
Wilson, Thomas L.; Lodhi, Arfin; Diaz, Abel
2007-01-01
The study of cosmic rays (CRs) is a very mature subject developed around the concept of radiative particle flux phi as a mono-variant function of energy E, that is phi = phi(E). This is based on the notion of the cosmos as being filled with cosmic radiation in the form of a collisionless exosphere of plasma. Neutrals, however, are likewise ubiquitous in space and planetary trapped-radiation belts. It will be shown that in the presence of a neutral background of density rho, flux phi is actually bivariant in energy E and rho, creating a surface phi(E,rho). This is an intrinsic property of charged-particle flux, that flux is not merely a function of E but is dependent upon density rho when a background of neutrals is present. The effect is produced by multiple scattering of charged particles off neutral and ionized atoms along with ionization loss where charged and neutral populations interact. For the harder portion of CR spectra, flux is mono-variant but at nonrelativistic energies (below approx, 350 MeV) it becomes sensitive to the presence of neutral backgrounds. The dependence of phi(E,rho) upon background neutrals is helpful in discussing the anomalous CR (ACR) flux made up of ionized components of the heliospheric neutral atmosphere.
Storage of Renewable Energy by Reduction of CO2 with Hydrogen.
Züttel, Andreas; Mauron, Philippe; Kato, Shunsuke; Callini, Elsa; Holzer, Marco; Huang, Jianmei
2015-01-01
The main difference between the past energy economy during the industrialization period which was mainly based on mining of fossil fuels, e.g. coal, oil and methane and the future energy economy based on renewable energy is the requirement for storage of the energy fluxes. Renewable energy, except biomass, appears in time- and location-dependent energy fluxes as heat or electricity upon conversion. Storage and transport of energy requires a high energy density and has to be realized in a closed materials cycle. The hydrogen cycle, i.e. production of hydrogen from water by renewable energy, storage and use of hydrogen in fuel cells, combustion engines or turbines, is a closed cycle. However, the hydrogen density in a storage system is limited to 20 mass% and 150 kg/m(3) which limits the energy density to about half of the energy density in fossil fuels. Introducing CO(2) into the cycle and storing hydrogen by the reduction of CO(2) to hydrocarbons allows renewable energy to be converted into synthetic fuels with the same energy density as fossil fuels. The resulting cycle is a closed cycle (CO(2) neutral) if CO(2) is extracted from the atmosphere. Today's technology allows CO(2) to be reduced either by the Sabatier reaction to methane, by the reversed water gas shift reaction to CO and further reduction of CO by the Fischer-Tropsch synthesis (FTS) to hydrocarbons or over methanol to gasoline. The overall process can only be realized on a very large scale, because the large number of by-products of FTS requires the use of a refinery. Therefore, a well-controlled reaction to a specific product is required for the efficient conversion of renewable energy (electricity) into an easy to store liquid hydrocarbon (fuel). In order to realize a closed hydrocarbon cycle the two major challenges are to extract CO(2) from the atmosphere close to the thermodynamic limit and to reduce CO(2) with hydrogen in a controlled reaction to a specific hydrocarbon. Nanomaterials with nanopores and the unique surface structures of metallic clusters offer new opportunities for the production of synthetic fuels.
2015-08-01
and (b) physical property data collection Following film deposition (via PLD or radio frequency magnetron sputtering), to prevent unwanted...carried out using an in-house radio frequency induction hot press under vacuum at ~1 mTorr and temperatures of 650, 750 and 850 °C. Sintering time was 2...tape thickness 23 µm, lamination stack thickness 11 mm). Simulated magnetic flux density inside the core was ~0.1 T, and operating frequency was
NASA Technical Reports Server (NTRS)
Walker, Paul N.
1989-01-01
Two luminaires were evaluated to determine the light flux density pattern on a horizontal plane surface. NASA supplied both luminaires; one was made by NASA and the other is commercially available. Tests were made for three combinations of luminaire height and luminaire lens material using the NASA luminaire; only one configuration of the commercial luminaire was tested. Measurements were made using four sensors with different wavelength range capabilities. The data are presented in graphical and tabular formats.
Spectrum and density of neutron flux in the irradiation beam line no. 3 of the IBR-2 reactor
NASA Astrophysics Data System (ADS)
Shabalin, E. P.; Verkhoglyadov, A. E.; Bulavin, M. V.; Rogov, A. D.; Kulagin, E. N.; Kulikov, S. A.
2015-03-01
Methodology and results of measuring the differential density of the neutron flux in irradiation beam line no. 3 of the IBR-2 reactor using neutron activation analysis (NAA) are presented in the paper. The results are compared to the calculation performed on the basis of the 3D MCNP model. The data that are obtained are required to determine the integrated radiation dose of the studied samples at various distances from the reactor.
Dual-rotor, radial-flux, toroidally-wound, permanent-magnet machine
Qu, Ronghai; Lipo, Thomas A.
2005-08-02
The present invention provides a novel dual-rotor, radial-flux, toroidally-wound, permanent-magnet machine. The present invention improves electrical machine torque density and efficiency. At least one concentric surface-mounted permanent magnet dual-rotor is located inside and outside of a torus-shaped stator with back-to-back windings, respectively. The machine substantially improves machine efficiency by reducing the end windings and boosts the torque density by at least doubling the air gap and optimizing the machine aspect ratio.
Plasma-based wakefield accelerators as sources of axion-like particles
NASA Astrophysics Data System (ADS)
Burton, David A.; Noble, Adam
2018-03-01
We estimate the average flux density of minimally-coupled axion-like particles (ALPs) generated by a laser-driven plasma wakefield propagating along a constant strong magnetic field. Our calculations suggest that a terrestrial source based on this approach could generate a pulse of ALPs whose flux density is comparable to that of solar ALPs at Earth. This mechanism is optimal for ALPs with mass in the range of interest of contemporary experiments designed to detect dark matter using microwave cavities.
Runaway electrons and mitigation studies in MST tokamak plasmas
NASA Astrophysics Data System (ADS)
Goetz, J. A.; Chapman, B. E.; Almagri, A. F.; Cornille, B. S.; Dubois, A.; McCollam, K. J.; Munaretto, S.; Sovinec, C. R.
2016-10-01
Studies of runaway electrons generated in low-density MST tokamak plasmas are being undertaken. The plasmas have Bt <= 0.14 T, Ip <= 50 kA, q (a) = 2.2 , and an electron density and temperature of about 5 ×1017m-3 and 150 eV. Runaway electrons are detected via x-ray bremsstrahlung emission. The density and electric field thresholds for production and suppression have been previously explored with variations in gas puffing for density control. Runaway electrons are now being probed with resonant magnetic perturbations (RMP's). An m = 3 RMP strongly suppresses the runaway electrons and initial NIMROD modeling shows that this may be due to degradation of flux surfaces. The RMP is produced by a poloidal array of 32 saddle coils at the narrow vertical insulated cut in MST's thick conducting shell, with each RMP having a single m but a broad n spectrum. While a sufficiently strong m = 3 RMP suppresses the runaway electrons, an RMP with m = 1 and comparable amplitude has little effect. The impact of the RMP's on the magnetic topology of these plasmas is being studied with the nonlinear MHD code NIMROD. With an m = 3 RMP, stochasticity is introduced in the outer third of the plasma but no such flux surface degradation is observed with an m = 1 RMP. NIMROD also predicts regularly occurring MHD activity similar to that observed in the experiment. These studies have also been done in q (a) = 2.7 plasmas and analysis and modeling is ongoing. This work supported by USDoE.
Spatial variability of the Arctic Ocean's double-diffusive staircase
NASA Astrophysics Data System (ADS)
Shibley, N. C.; Timmermans, M.-L.; Carpenter, J. R.; Toole, J. M.
2017-02-01
The Arctic Ocean thermohaline stratification frequently exhibits a staircase structure overlying the Atlantic Water Layer that can be attributed to the diffusive form of double-diffusive convection. The staircase consists of multiple layers of O(1) m in thickness separated by sharp interfaces, across which temperature and salinity change abruptly. Through a detailed analysis of Ice-Tethered Profiler measurements from 2004 to 2013, the double-diffusive staircase structure is characterized across the entire Arctic Ocean. We demonstrate how the large-scale Arctic Ocean circulation influences the small-scale staircase properties. These staircase properties (layer thicknesses and temperature and salinity jumps across interfaces) are examined in relation to a bulk vertical density ratio spanning the staircase stratification. We show that the Lomonosov Ridge serves as an approximate boundary between regions of low density ratio (approximately 3-4) on the Eurasian side and higher density ratio (approximately 6-7) on the Canadian side. We find that the Eurasian Basin staircase is characterized by fewer, thinner layers than that in the Canadian Basin, although the margins of all basins are characterized by relatively thin layers and the absence of a well-defined staircase. A double-diffusive 4/3 flux law parametrization is used to estimate vertical heat fluxes in the Canadian Basin to be O(0.1) W m-2. It is shown that the 4/3 flux law may not be an appropriate representation of heat fluxes through the Eurasian Basin staircase. Here molecular heat fluxes are estimated to be between O(0.01) and O(0.1) W m-2. However, many uncertainties remain about the exact nature of these fluxes.
Dynamics of zonal shear collapse with hydrodynamic electrons
NASA Astrophysics Data System (ADS)
Hajjar, R. J.; Diamond, P. H.; Malkov, M. A.
2018-06-01
This paper presents a theory for the collapse of the edge zonal shear layer, as observed at the density limit at low β. This paper investigates the scaling of the transport and mean profiles with the adiabaticity parameter α, with special emphasizes on fluxes relevant to zonal flow (ZF) generation. We show that the adiabaticity parameter characterizes the strength of production of zonal flows and so determines the state of turbulence. A 1D reduced model that self-consistently describes the spatiotemporal evolution of the mean density n ¯ , the azimuthal flow v¯ y , and the turbulent potential enstrophy ɛ=⟨(n˜ -∇2ϕ˜ ) 2/2 ⟩ —related to fluctuation intensity—is presented. Quasi-linear analysis determines how the particle flux Γn and vorticity flux Π=-χy∇2vy+Πre s scale with α, in both hydrodynamic and adiabatic regimes. As the plasma response passes from adiabatic (α > 1) to hydrodynamic (α < 1), the particle flux Γn is enhanced and the turbulent viscosity χy increases. However, the residual flux Πres—which drives the flow—drops with α. As a result, the mean vorticity gradient ∇2v¯ y=Πre s/χy —representative of the strength of the shear—also drops. The shear layer then collapses and turbulence is enhanced. The collapse is due to a decrease in ZF production, not an increase in damping. A physical picture for the onset of collapse is presented. The findings of this paper are used to motivate an explanation of the phenomenology of low β density limit evolution. A change from adiabatic ( α=kz2vth 2/(|ω|νei)>1 ) to hydrodynamic (α < 1) electron dynamics is associated with the density limit.
Improved Statistical Model Of 10.7-cm Solar Radiation
NASA Technical Reports Server (NTRS)
Vedder, John D.; Tabor, Jill L.
1993-01-01
Improved mathematical model simulates short-term fluctuations of flux of 10.7-cm-wavelength solar radiation during 91-day averaging period. Called "F10.7 flux", important as measure of solar activity and because it is highly correlated with ultraviolet radiation causing fluctuations in heating and density of upper atmosphere. F10.7 flux easily measureable at surface of Earth.
Dislocation confinement in the growth of Na flux GaN on metalorganic chemical vapor deposition-GaN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takeuchi, S., E-mail: takeuchi@ee.es.osaka-u.ac.jp; Asazu, H.; Nakamura, Y.
2015-12-28
We have demonstrated a GaN growth technique in the Na flux method to confine c-, (a+c)-, and a-type dislocations around the interface between a Na flux GaN crystal and a GaN layer grown by metalorganic chemical vapor deposition (MOCVD) on a (0001) sapphire substrate. Transmission electron microscopy (TEM) clearly revealed detailed interface structures and dislocation behaviors that reduced the density of vertically aligned dislocations threading to the Na flux GaN surface. Submicron-scale voids were formed at the interface above the dislocations with a c component in MOCVD-GaN, while no such voids were formed above the a-type dislocations. The penetration ofmore » the dislocations with a c component into Na flux GaN was, in most cases, effectively blocked by the presence of the voids. Although some dislocations with a c component in the MOCVD-GaN penetrated into the Na flux GaN, their propagation direction changed laterally through the voids. On the other hand, the a-type dislocations propagated laterally and collectively near the interface, when these dislocations in the MOCVD-GaN penetrated into the Na flux GaN. These results indicated that the dislocation propagation behavior was highly sensitive to the type of dislocation, but all types of dislocations were confined to within several micrometers region of the Na flux GaN from the interface. The cause of void formation, the role of voids in controlling the dislocation behavior, and the mechanism of lateral and collective dislocation propagation are discussed on the basis of TEM results.« less
NASA Astrophysics Data System (ADS)
Farrell, Patricio; Koprucki, Thomas; Fuhrmann, Jürgen
2017-10-01
We compare three thermodynamically consistent numerical fluxes known in the literature, appearing in a Voronoï finite volume discretization of the van Roosbroeck system with general charge carrier statistics. Our discussion includes an extension of the Scharfetter-Gummel scheme to non-Boltzmann (e.g. Fermi-Dirac) statistics. It is based on the analytical solution of a two-point boundary value problem obtained by projecting the continuous differential equation onto the interval between neighboring collocation points. Hence, it serves as a reference flux. The exact solution of the boundary value problem can be approximated by computationally cheaper fluxes which modify certain physical quantities. One alternative scheme averages the nonlinear diffusion (caused by the non-Boltzmann nature of the problem), another one modifies the effective density of states. To study the differences between these three schemes, we analyze the Taylor expansions, derive an error estimate, visualize the flux error and show how the schemes perform for a carefully designed p-i-n benchmark simulation. We present strong evidence that the flux discretization based on averaging the nonlinear diffusion has an edge over the scheme based on modifying the effective density of states.
NASA Technical Reports Server (NTRS)
Snyder, A.; Patch, R. W.; Lauver, M. R.
1980-01-01
Hot-ion plasma experiments were conducted in the NASA Lewis SUMMA facility. A steady-state modified Penning discharge was formed by applying a radially inward dc electric field of several kilovolts near the magnetic mirror maxima. Results are reported for a hydrogen plasma covering a wide range in midplane magnetic flux densities from 0.5 to 3.37 T. Input power greater than 45 kW was obtained with water-cooled cathodes. Steady-state plasmas with ion kinetic temperatures from 18 to 830 eV were produced and measured spectroscopically. These ion temperatures were correlated with current, voltage, and magnetic flux density as the independent variables. Electron density measurements were made using an unusually sensitive Thomson scattering apparatus. The measured electron densities range from 2.1 x 10 to the 11th to 6.8 x 10 to the 12th per cu cm.
Plume propagation direction determination with SO2 cameras
NASA Astrophysics Data System (ADS)
Klein, Angelika; Lübcke, Peter; Bobrowski, Nicole; Kuhn, Jonas; Platt, Ulrich
2017-03-01
SO2 cameras are becoming an established tool for measuring sulfur dioxide (SO2) fluxes in volcanic plumes with good precision and high temporal resolution. The primary result of SO2 camera measurements are time series of two-dimensional SO2 column density distributions (i.e. SO2 column density images). However, it is frequently overlooked that, in order to determine the correct SO2 fluxes, not only the SO2 column density, but also the distance between the camera and the volcanic plume, has to be precisely known. This is because cameras only measure angular extents of objects while flux measurements require knowledge of the spatial plume extent. The distance to the plume may vary within the image array (i.e. the field of view of the SO2 camera) since the plume propagation direction (i.e. the wind direction) might not be parallel to the image plane of the SO2 camera. If the wind direction and thus the camera-plume distance are not well known, this error propagates into the determined SO2 fluxes and can cause errors exceeding 50 %. This is a source of error which is independent of the frequently quoted (approximate) compensation of apparently higher SO2 column densities and apparently lower plume propagation velocities at non-perpendicular plume observation angles.Here, we propose a new method to estimate the propagation direction of the volcanic plume directly from SO2 camera image time series by analysing apparent flux gradients along the image plane. From the plume propagation direction and the known location of the SO2 source (i.e. volcanic vent) and camera position, the camera-plume distance can be determined. Besides being able to determine the plume propagation direction and thus the wind direction in the plume region directly from SO2 camera images, we additionally found that it is possible to detect changes of the propagation direction at a time resolution of the order of minutes. In addition to theoretical studies we applied our method to SO2 flux measurements at Mt Etna and demonstrate that we obtain considerably more precise (up to a factor of 2 error reduction) SO2 fluxes. We conclude that studies on SO2 flux variability become more reliable by excluding the possible influences of propagation direction variations.
A tale of two theories: How the adiabatic response and ULF waves affect relativistic electrons
NASA Astrophysics Data System (ADS)
Green, J. C.; Kivelson, M. G.
2001-11-01
Using data from the Comprehensive Energetic Particle and Pitch Angle Distribution (CEPPAD)-High Sensitivity Telescope (HIST) instrument on the Polar spacecraft and ground magnetometer data from the 210 meridian magnetometer chain, we test the ULF wave drift resonance theory proposed to explain relativistic electron phase space density enhancements. We begin by investigating changes in electron flux due to the ``Dst effect.'' The Dst effect refers to the adiabatic response of relativistic electrons to changes in the magnetic field characterized by the Dst index. The Dst effect, assuming no loss or addition of new electrons, produces reversible order of magnitude changes in relativistic electrons flux measured at fixed energy, but it cannot account for the flux enhancement that occurs in the recovery phase of most storms. Liouville's theorem states that phase space density expressed in terms of constant adiabatic invariants is unaffected by adiabatic field changes and thus is insensitive to the Dst effect. It is therefore useful to express flux measurements in terms of phase space densities at constant first, second and third adiabatic invariants. The phase space density is determined from the CEPPAD-HIST electron detector that measures differential directional flux of electrons from 0.7 to 9 MeV and the Tsyganenko 96 field model. The analysis is done for January to June 1997. The ULF wave drift resonance theory that we test proposes that relativistic electrons are accelerated by an m=2 toroidal or poloidal mode wave whose frequency equals the drift frequency of the electron. The theory is tested by comparing the relativistic electron phase space densities to wave power determined at three ground stations with L* values of 4.0, 5.7 and 6.2. Comparison of the wave data to the phase space densities shows that five out of nine storm events are consistent with the ULF wave drift resonance mechanism, three out of nine give ambiguous support to the model, and one event has high ULF wave power at the drift frequency of the electrons but no corresponding phase space density enhancement suggesting that ULF wave power alone is not sufficient to cause an electron response. Two explanations of the anomalous event are investigated including excessive loss of electrons to the magnetopause and wave duration.
Dynamics of Single Flux Rope in the Reconnection Scaling Experiment
NASA Astrophysics Data System (ADS)
Feng, Y.; Sears, J.; Intrator, T.; Weber, T.; Swan, H.; Dunn, J. P.; Gao, K.; Chapdelaine, L.
2013-12-01
A magnetic flux tube threaded by current is a flux rope with helically twisted field lines. In the Reconnection Scaling Experiment (RSX) we use a plasma gun to generate a single flux rope with a choice of axial boundary conditions. If this flux rope is driven hard enough, i.e., when J●B /B2 is larger than the kink instability threshold, we measure a helically distorted kinked structure. Rather than exploding in an Alfvén time, this kink appears to saturate to a steady amplitude, helical, gyrating flux rope, which persists as long as the plasma gun sources the current. To understand it, we have experimentally measured three-dimensional (3D) profiles of various quantities of this flux rope. These quantities include magnetic field B, plasma density n and potential φ, ion flow velocity vi, so that current density J, electron flow velocity ve and electron pressure Pe can also be derived. Consequently we can analyze the single flux rope dynamics systematically in 3D. Besides gyrating (writhe), we also find the flux rope has a spin (twist) center, around which the J×B - ▽Pe ≠ 0 suggesting that there should be other forces for the radial balance. We also find that there is a reverse current moving around with the flux rope at some locations, i.e. there are local induced currents that are not at all apparent from measurements outside the 3D volume. Work supported by LANL-DOE, DOE Fusion Energy Sciences DE-AC52-06NA25396, NASA Geospace NNHIOA044I Basic, CMSO, SULI, NUF.
Toxic wavelength of blue light changes as insects grow.
Shibuya, Kazuki; Onodera, Shun; Hori, Masatoshi
2018-01-01
Short-wavelength visible light (blue light: 400-500 nm) has lethal effects on various insects, such as fruit flies, mosquitoes, and flour beetles. However, the most toxic wavelengths of blue light might differ across developmental stages. Here, we investigate how the toxicity of blue light changes with the developmental stages of an insect by irradiating Drosophila melanogaster with different wavelengths of blue light. Specifically, the lethal effect on eggs increased at shorter light wavelengths (i.e., toward 405 nm). In contrast, wavelengths from 405 to 466 nm had similar lethal effects on larvae. A wavelength of 466 nm had the strongest lethal effect on pupae; however, mortality declined as pupae grew. A wavelength of 417 nm was the most harmful to adults at low photon flux density, while 466 nm was the most harmful to adults at high photon flux density. These findings suggest that, as the morphology of D. melanogaster changes with growth, the most harmful wavelength also changes. In addition, our results indicated that reactive oxygen species influence the lethal effect of blue light. Our findings show that blue light irradiation could be used as an effective pest control method by adjusting the wavelength to target specific developmental stages.
Yan, Liang; Zhu, Bo; Jiao, Zongxia; Chen, Chin-Yin; Chen, I-Ming
2014-10-24
An orientation measurement method based on Hall-effect sensors is proposed for permanent magnet (PM) spherical actuators with three-dimensional (3D) magnet array. As there is no contact between the measurement system and the rotor, this method could effectively avoid friction torque and additional inertial moment existing in conventional approaches. Curved surface fitting method based on exponential approximation is proposed to formulate the magnetic field distribution in 3D space. The comparison with conventional modeling method shows that it helps to improve the model accuracy. The Hall-effect sensors are distributed around the rotor with PM poles to detect the flux density at different points, and thus the rotor orientation can be computed from the measured results and analytical models. Experiments have been conducted on the developed research prototype of the spherical actuator to validate the accuracy of the analytical equations relating the rotor orientation and the value of magnetic flux density. The experimental results show that the proposed method can measure the rotor orientation precisely, and the measurement accuracy could be improved by the novel 3D magnet array. The study result could be used for real-time motion control of PM spherical actuators.
Impact of resonant magnetic perturbations on nonlinearly driven modes in drift-wave turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leconte, M.; Diamond, P. H.; CMTFO and CASS, UCSD, California 92093
2012-05-15
In this work, we study the effects of resonant magnetic perturbations (RMPs) on turbulence, flows, and confinement in the framework of resistive drift wave turbulence. We extend the Hasegawa-Wakatani model to include RMP fields. The effect of the RMPs is to induce a linear coupling between the zonal electric field and the zonal density gradient, which drives the system to a state of electron radial force balance for large ({delta}B{sub r}/B{sub 0}). Both the vorticity flux (Reynolds stress) and particle flux are modulated. We derive an extended predator prey model which couples zonal potential and density dynamics to the evolutionmore » of turbulence intensity. This model has both turbulence drive and RMP amplitude as control parameters and predicts a novel type of transport bifurcation in the presence of RMPs. We find states that are similar to the ZF-dominated state of the standard predator-prey model, but for which the power threshold is now a function of the RMP strength. For small RMP amplitude, the energy of zonal flows decreases and the turbulence energy increases with ({delta}B{sub r}/B{sub 0}), corresponding to a damping of zonal flows.« less
Halbach array type focusing actuator for small and thin optical data storage device
NASA Astrophysics Data System (ADS)
Lee, Sung Q.; Park, Kang-Ho; Paek, Mun Chul
2004-09-01
The small form factor optical data storage devices are developing rapidly nowadays. Since it is designed for portable and compatibility with flesh memory, its components such as disk, head, focusing actuator, and spindle motor should be assembled within 5 mm. The thickness of focusing actuator is within 2 mm and the total working range is +/-100um, with the resolution of less than 1μm. Since the thickness is limited tightly, it is hard to place the yoke that closes the magnetic circuit and hard to make strong flux density without yoke. Therefore, Halbach array is adopted to increase the magnetic flux of one side without yoke. The proposed Halbach array type focusing actuator has the advantage of thin actuation structure with sacrificing less flex density than conventional magnetic array. The optical head unit is moved on the swing arm type tracking actuator. Focusing coil is attached to swing arm, and Halbach magnet array is positioned at the bottom of deck along the tracking line, and focusing actuator exerts force by the Fleming's left hand rule. The dynamics, working range, control resolution of focusing actuator are analyzed and performed.
Modifications to intermittent turbulent structures by sheared flow in LAPD
NASA Astrophysics Data System (ADS)
Rossi, Giovanni; Schaffner, David; Carter, Troy; Guice, Danny; Bengtson, Roger
2012-10-01
Turbulence in the edge of the Large Plasma Device is generally observed to be intermittent with the production of filamentary structures. Density-enhancement events (called ``blobs'') are localized to the region radially outside the edge of the cathode source while density-depletion events (called ``holes'') are localized to the region radially inward. A flow-shear layer is also observed to be localized to this same spatial region. Control over the edge flow and shear in LAPD is now possible using a biasable limiter. Edge intermittency is observed to be strongly affected by variations in the edge flow, with intermittency (as measured by skewness of the fluctuation amplitude PDF) increasing with edge flow (in either direction) and reaching a minimum when spontaneous edge flow is zeroed-out using biasing. This trend is counter to the observed changes in turbulent particle flux, which peaks at low flow/shear. Two-dimensional cross-conditional averaging confirms the blobs to be detached filamentary structures with a clear dipolar potential structure and a geometry also dependent on the magnitude of sheared flow. More detailed measurements are made to connect the occurrence of these blobs to observed flow-driven coherent modes and their contribution to radial particle flux.
Elementary surface processes during reactive magnetron sputtering of chromium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monje, Sascha; Corbella, Carles, E-mail: carles.corbella@rub.de; Keudell, Achim von
2015-10-07
The elementary surface processes occurring on chromium targets exposed to reactive plasmas have been mimicked in beam experiments by using quantified fluxes of Ar ions (400–800 eV) and oxygen atoms and molecules. For this, quartz crystal microbalances were previously coated with Cr thin films by means of high-power pulsed magnetron sputtering. The measured growth and etching rates were fitted by flux balance equations, which provided sputter yields of around 0.05 for the compound phase and a sticking coefficient of O{sub 2} of 0.38 on the bare Cr surface. Further fitted parameters were the oxygen implantation efficiency and the density of oxidationmore » sites at the surface. The increase in site density with a factor 4 at early phases of reactive sputtering is identified as a relevant mechanism of Cr oxidation. This ion-enhanced oxygen uptake can be attributed to Cr surface roughening and knock-on implantation of oxygen atoms deeper into the target. This work, besides providing fundamental data to control oxidation state of Cr targets, shows that the extended Berg's model constitutes a robust set of rate equations suitable to describe reactive magnetron sputtering of metals.« less
Electromagnetic Signal Feedback Control for Proximity Detection Systems
NASA Astrophysics Data System (ADS)
Smith, Adam K.
Coal is the most abundant fossil fuel in the United States and remains an essential source of energy. While more than half of coal production comes from surface mining, nearly twice as many workers are employed by underground operations. One of the key pieces of equipment used in underground coal mining is the continuous mining machine. These large and powerful machines are operated in confined spaces by remote control. Since 1984, 40 mine workers in the U. S. have been killed when struck or pinned by a continuous mining machine. It is estimated that a majority of these accidents could have been prevented with the application of proximity detection systems. While proximity detection systems can significantly increase safety around a continuous mining machine, there are some system limitations. Commercially available proximity warning systems for continuous mining machines use magnetic field generators to detect workers and establish safe work areas around the machines. Several environmental factors, however, can influence and distort the magnetic fields. To minimize these effects, a control system has been developed using electromagnetic field strength and generator current to stabilize and control field drift induced by internal and external environmental factors. A laboratory test set-up was built using a ferrite-core magnetic field generator to produce a stable magnetic field. Previous work based on a field-invariant magnetic flux density model, which generically describes the electromagnetic field, is expanded upon. The analytically established transferable shell-based flux density distribution model is used to experimentally validate the control system. By controlling the current input to the ferrite-core generator, a more reliable and consistent magnetic field is produced. Implementation of this technology will improve accuracy and performance of existing commercial proximity detection systems. These research results will help reduce the risk of traumatic injuries and improve overall safety in the mining workplace.
NASA Astrophysics Data System (ADS)
Baranov, O.; Bazaka, K.; Kersten, H.; Keidar, M.; Cvelbar, U.; Xu, S.; Levchenko, I.
2017-12-01
Given the vast number of strategies used to control the behavior of laboratory and industrially relevant plasmas for material processing and other state-of-the-art applications, a potential user may find themselves overwhelmed with the diversity of physical configurations used to generate and control plasmas. Apparently, a need for clearly defined, physics-based classification of the presently available spectrum of plasma technologies is pressing, and the critically summary of the individual advantages, unique benefits, and challenges against key application criteria is a vital prerequisite for the further progress. To facilitate selection of the technological solutions that provide the best match to the needs of the end user, this work systematically explores plasma setups, focusing on the most significant family of the processes—control of plasma fluxes—which determine the distribution and delivery of mass and energy to the surfaces of materials being processed and synthesized. A novel classification based on the incorporation of substrates into plasma-generating circuitry is also proposed and illustrated by its application to a wide variety of plasma reactors, where the effect of substrate incorporation on the plasma fluxes is emphasized. With the key process and material parameters, such as growth and modification rates, phase transitions, crystallinity, density of lattice defects, and others being linked to plasma and energy fluxes, this review offers direction to physicists, engineers, and materials scientists engaged in the design and development of instrumentation for plasma processing and diagnostics, where the selection of the correct tools is critical for the advancement of emerging and high-performance applications.
NASA Astrophysics Data System (ADS)
Woo, Byung-Chul; Hong, Do-Kwan; Lee, Ji-Young
The most distinctive advantage of transverse flux motor(TFM) is high torque density which has prompted many researches into studying various design variants. TFM is well suited for low speed direct drive applications due to its high torque density. This paper deals with simulation based comparisons between a surface permanent magnet transverse flux motor(SPM-TFM) and an interior permanent magnet transverse flux motor(IPM-TFM). A commercial finite element analysis(FEA) software Maxwell 3D is used for electromagnetic field computation to fully analyze complex geometry of the TFMs. General characteristics, such as cogging torque, rated torque and torque ripple characteristics of the two TFMs are analyzed and compared by extensive 3D FEA.
Transient thermal camouflage and heat signature control
NASA Astrophysics Data System (ADS)
Yang, Tian-Zhi; Su, Yishu; Xu, Weikai; Yang, Xiao-Dong
2016-09-01
Thermal metamaterials have been proposed to manipulate heat flux as a new way to cloak or camouflage objects in the infrared world. To date, however, thermal metamaterials only operate in the steady-state and exhibit detectable, transient heat signatures. In this letter, the theoretical basis for a thermal camouflaging technique with controlled transient diffusion is presented. This technique renders an object invisible in real time. More importantly, the thermal camouflaging device instantaneously generates a pre-designed heat signature and behaves as a perfect thermal illusion device. A metamaterial coating with homogeneous and isotropic thermal conductivity, density, and volumetric heat capacity was fabricated and very good camouflaging performance was achieved.
Katabira, Kenichi; Yoshida, Yu; Masuda, Atsuji; Watanabe, Akihito; Narita, Fumio
2018-01-01
The inverse magnetostrictive effect is an effective property for energy harvesting; the material needs to have large magnetostriction and ease of mass production. Fe–Co alloys being magnetostrictive materials have favorable characteristics which are high strength, ductility, and excellent workability, allowing easy fabrication of Fe–Co alloy fibers. In this study, we fabricated magnetostrictive polymer composites, in which Fe–Co fibers were woven into polyester fabric, and discussed their sensor performance. Compression and bending tests were carried out to measure the magnetic flux density change, and the effects of magnetization, bias magnetic field, and the location of the fibers on the performance were discussed. It was shown that magnetic flux density change due to compression and bending is related to the magnetization of the Fe–Co fiber and the bias magnetic field. The magnetic flux density change of Fe–Co fiber reinforced plastics was larger than that of the plastics with Terfenol-D particles. PMID:29522455
NASA Astrophysics Data System (ADS)
Grande, M.; Carter, M.; Perry, C. H.
2002-03-01
We briefly review the radiation belts, before moving on to a more detailed examination of the relationship between the Disturbance Storm Time Index (Dst) and relativistic electron flux. We show that there is a strong correlation between the growth phase of storms, as represented by Dst, and dropouts in electron flux. Recovery is accompanied by growth of the electron flux. We calculate Electron Phase Space Density (PSD) as a function of adiabatic invariants using electron particle mesurements from the Imaging Electron Sensor (IES) and the High Sensitivity Telescope (HIST) on the CEPPAD experiment onboard POLAR. We present the time history of the phase space density through the year 1998 as L-sorted plots and look in detail at the May 98 storm. Comparison with the Tsyganenko 96 magnetic field model prediction for the last closed field line suggests that the loss of electrons may be directly caused by the opening of drift shells.
Birgül, Ozlem; Eyüboğlu, B Murat; Ider, Y Ziya
2003-11-07
Magnetic resonance electrical impedance tomography (MR-EIT) is an emerging imaging technique that reconstructs conductivity images using magnetic flux density measurements acquired employing MRI together with conventional EIT measurements. In this study, experimental MR-EIT images from phantoms with conducting and insulator objects are presented. The technique is implemented using the 0.15 T Middle East Technical University MRI system. The dc current method used in magnetic resonance current density imaging is adopted. A reconstruction algorithm based on the sensitivity matrix relation between conductivity and only one component of magnetic flux distribution is used. Therefore, the requirement for object rotation is eliminated. Once the relative conductivity distribution is found, it is scaled using the peripheral voltage measurements to obtain the absolute conductivity distribution. Images of several insulator and conductor objects in saline filled phantoms are reconstructed. The L2 norm of relative error in conductivity values is found to be 13%, 17% and 14% for three different conductivity distributions.
Ding, Guoping; Zhang, Songchao; Cao, Hao; Gao, Bin; Zhang, Biyun
2017-06-10
The rotational magnetic field of radial magnetic bearings characterizes remarkable time and spatial nonlinearity due to the eddy current and induced electromagnetic field. It is significant to experimentally obtain the features of the rotational magnetic field of the radial magnetic bearings to validate the theoretical analysis and reveal the discipline of a rotational magnetic field. This paper developed thin-slice fiber Bragg grating-giant magnetostrictive material (FBG-GMM) magnetic sensors to measure air-gap flux density of a radial magnetic bearing with a rotating rotor; a radial magnetic bearing test rig was constructed and the rotational magnetic field with different rotation speed was measured. Moreover, the finite element method (FEM) was used to simulate the rotational magnetic field; the measurement results and FEM results were investigated, and it was concluded that the FBG-GMM sensors were capable of measuring the radial magnetic bearing's air gap flux density with a rotating rotor, and the measurement results showed a certain degree of accuracy.
NASA Technical Reports Server (NTRS)
Kyle, H. L.; Vasanth, K. L.
1986-01-01
Broad spectral band data derived from the Nimbus-7 Earth Radiation Budget experiment are analyzed for the top-of-the-atmosphere noon vs. midnight variations in the exitant longwave flux density, spectral variations in the regional albedos, and differences in land and ocean net radiation budgets. The data were studied for a year (June 1979 to May 1980) on a global scale and for five selected study areas. The annual global total, near-UV visible, and near-IR albedo values, obtained were 30.2, 34.6, and 25.9, respectively, with marked differences in behavior between oceanic and continental regions. Over the continents, clouds and snow sharply decreased the near-IR albedo. The over-the-continent noon-emitted flux density averages were 15-25 W/sq m larger than the midnight values, with large regional and seasonal variations. Over the oceans, the average noon and midnight outgoing longwave-flux densities were nearly identical, with regional aqnd seasonal differences of several watts per square meter.
Ascott, M J; Gooddy, D C; Lapworth, D J; Stuart, M E
2016-12-01
Understanding sources of phosphorus (P) to the environment is critical for the management of freshwater and marine ecosystems. Phosphate is added at water treatment works for a variety of reasons: to reduce pipe corrosion, to lower dissolved lead and copper concentrations at customer's taps and to reduce the formation of iron and manganese precipitates which can lead to deterioration in the aesthetic quality of water. However, the spatial distribution of leakage into the environment of phosphate added to mains water for plumbosolvency control has not been quantified to date. Using water company leakage rates, leak susceptibility and road network mapping, we quantify the total flux of P from leaking water mains in England and Wales at a 1km grid scale. This is validated against reported leaks for the UKs largest water utility. For 2014, we estimate the total flux of P from leaking mains to the environment to be c. 1.2ktP/year. Spatially, P flux is concentrated in urban areas where pipe density is highest, with major cities acting as a significant source of P (e.g. London into the Thames, with potentially 30% of total flux). The model suggests the majority (69%) of the P flux is likely to be to surface water. This is due to leakage susceptibility being a function of soil corrosivity and shrink-swell behaviour which are both controlled by presence of low-permeability clays. The location of major cities such as London close to the coast results in a potentially significant flux of P from mains leakage to estuarine environments. The contribution of leakage of phosphate dosed mains water should be considered in future source apportionment and ecosystem management. The methodology presented is generic and can be applied in other countries where phosphate dosing is undertaken or used prior to dosing during investment planning. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Biskup, B.; Maszl, C.; Breilmann, W.; Held, J.; Böke, M.; Benedikt, J.; von Keudell, A.
2018-03-01
High power impulse magnetron sputtering (HiPIMS) discharges are an excellent tool for deposition of thin films with superior properties. By adjusting the plasma parameters, an energetic metal and reactive species growth flux can be controlled. This control requires, however, a quantitative knowledge of the ion-to-neutral ratio in the growth flux and of the ion energy distribution function to optimize the deposited energy per incorporated atom in the film. This quantification is performed by combining two diagnostics, a quartz crystal microbalance (QCM) combined with an ion-repelling grid system (IReGS) to discriminate ions versus neutrals and a HIDEN EQP plasma monitor to measure the ion energy distribution function (IEDF). This approach yields the ionized metal flux fraction (IMFF) as the ionization degree in the growth flux. This is correlated to the plasma performance recorded by time resolved ICCD camera measurements, which allow to identify the formation of pronounced ionization zones, so called spokes, in the HiPIMS plasma. Thereby an automatic technique was developed to identify the spoke mode number. The data indicates two distinct regimes with respect to spoke formation that occur with increasing peak power, a stochastic regime with no spokes at low peak powers followed by a regime with distinct spokes at varying mode numbers at higher peak powers. The IMFF increases with increasing peak power reaching values of almost 80% at very high peak powers. The transition in between the two regimes coincides with a pronounced change in the IMFF. This change indicates that the formation of spokes apparently counteracts the return effect in HiPIMS. Based on the IMFF and the mean energy of the ions, the energy per deposited atom together with the overall energy flux onto the substrate is calculated. This allows us to determine an optimum for the peak power density around 0.5 kW cm-2 for chromium HiPIMS.
Eddy Correlation Flux Measurement System (ECOR) Handbook
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, DR
2011-01-31
The eddy correlation (ECOR) flux measurement system provides in situ, half-hour measurements of the surface turbulent fluxes of momentum, sensible heat, latent heat, and carbon dioxide (CO2) (and methane at one Southern Great Plains extended facility (SGP EF) and the North Slope of Alaska Central Facility (NSA CF). The fluxes are obtained with the eddy covariance technique, which involves correlation of the vertical wind component with the horizontal wind component, the air temperature, the water vapor density, and the CO2 concentration.
Jet outflow and gamma-ray emission correlations in S5 0716+714
Rani, B.; Krichbaum, T. P.; Marscher, A. P.; ...
2014-11-06
Here, using millimeter very long baseline interferometry (VLBI) observations of the BL Lac object S5 0716+714 from August 2008 to September 2013, we investigate variations in the core flux density and orientation of the sub-parsec scale jet, i.e. position angle. The γ-ray data obtained by the Fermi Large Area Telescope are used to investigate the high-energy flux variations over the same time period. For the first time in any blazar, we report a significant correlation between the γ-ray flux variations and the position angle variations in the VLBI jet. The cross-correlation analysis also indicates a positive correlation such that themore » mm-VLBI core flux density variations are delayed with respect to the γ-ray flux by 82±32 days. This suggests that the high-energy emission is coming from a region located ≥(3.8±1.9) parsecs upstream of the mm-VLBI core (closer to the central black hole). Lastly, these results imply that the observed inner jet morphology has a strong connection with the observed γ-ray flares.« less
A high-resolution optical measurement system for rapid acquisition of radiation flux density maps
NASA Astrophysics Data System (ADS)
Thelen, Martin; Raeder, Christian; Willsch, Christian; Dibowski, Gerd
2017-06-01
To identify the power and flux density of concentrated solar radiation the Institute of Solar Research at the German Aerospace Center (DLR - Deutsches Zentrum für Luft-und Raumfahrt e. V.) has used the camera-based measurement system FATMES (Flux and Temperature Measurement System) since 1995. The disadvantages of low resolution, difficult handling and poor computing power required a revision of the existing measurement system. The measurement system FMAS (Flux Mapping Acquisition system) is equipped with state-of-the-art-hardware, is compatible with computers off-the-shelf and is programmed in LabView. The expenditure of time for an image evaluation is reduced by the factor 60 compared to FATMES. The new measurement system is no longer associated with the facilities Solar Furnace and High Flux Solar Simulator at the DLR in Cologne but is also applicable as a mobile system. The data and the algorithms are transparent throughout the complete process. The measurement accuracy of FMAS is determined to at most ±3 % until now. The error of measurement of FATMES is at least 2 % higher according to the conducted comparison tests.
Jet outflow and gamma-ray emission correlations in S5 0716+714
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rani, B.; Krichbaum, T. P.; Marscher, A. P.
Here, using millimeter very long baseline interferometry (VLBI) observations of the BL Lac object S5 0716+714 from August 2008 to September 2013, we investigate variations in the core flux density and orientation of the sub-parsec scale jet, i.e. position angle. The γ-ray data obtained by the Fermi Large Area Telescope are used to investigate the high-energy flux variations over the same time period. For the first time in any blazar, we report a significant correlation between the γ-ray flux variations and the position angle variations in the VLBI jet. The cross-correlation analysis also indicates a positive correlation such that themore » mm-VLBI core flux density variations are delayed with respect to the γ-ray flux by 82±32 days. This suggests that the high-energy emission is coming from a region located ≥(3.8±1.9) parsecs upstream of the mm-VLBI core (closer to the central black hole). Lastly, these results imply that the observed inner jet morphology has a strong connection with the observed γ-ray flares.« less
NASA Astrophysics Data System (ADS)
Balankura, Tonnam; Qi, Xin; Zhou, Ya; Fichthorn, Kristen A.
2016-10-01
In the shape-controlled synthesis of colloidal Ag nanocrystals, structure-directing agents, particularly polyvinylpyrrolidone (PVP), are known to be a key additive in making nanostructures with well-defined shapes. Although many Ag nanocrystals have been successfully synthesized using PVP, the mechanism by which PVP actuates shape control remains elusive. Here, we present a multi-scale theoretical framework for kinetic Wulff shape predictions that accounts for the chemical environment, which we used to probe the kinetic influence of the adsorbed PVP film. Within this framework, we use umbrella-sampling molecular dynamics simulations to calculate the potential of mean force and diffusion coefficient profiles of Ag atom deposition onto Ag(100) and Ag(111) in ethylene glycol solution with surface-adsorbed PVP. We use these profiles to calculate the mean-first passage times and implement extensive Brownian dynamics simulations, which allows the kinetic effects to be quantitatively evaluated. Our results show that PVP films can regulate the flux of Ag atoms to be greater towards Ag(111) than Ag(100). PVP's preferential binding towards Ag(100) over Ag(111) gives PVP its flux-regulating capabilities through the lower free-energy barrier of Ag atoms to cross the lower-density PVP film on Ag(111) and enhanced Ag trapping by the extended PVP film on Ag(111). Under kinetic control, {100}-faceted nanocrystals will be formed when the Ag flux is greater towards Ag(111). The predicted kinetic Wulff shapes are in agreement with the analogous experimental system.
Electromagnetic energy flux vector for a dispersive linear medium.
Crenshaw, Michael E; Akozbek, Neset
2006-05-01
The electromagnetic energy flux vector in a dispersive linear medium is derived from energy conservation and microscopic quantum electrodynamics and is found to be of the Umov form as the product of an electromagnetic energy density and a velocity vector.
Quantum time crystal by decoherence: Proposal with an incommensurate charge density wave ring
NASA Astrophysics Data System (ADS)
Nakatsugawa, K.; Fujii, T.; Tanda, S.
2017-09-01
We show that time translation symmetry of a ring system with a macroscopic quantum ground state is broken by decoherence. In particular, we consider a ring-shaped incommensurate charge density wave (ICDW ring) threaded by a fluctuating magnetic flux: the Caldeira-Leggett model is used to model the fluctuating flux as a bath of harmonic oscillators. We show that the charge density expectation value of a quantized ICDW ring coupled to its environment oscillates periodically. The Hamiltonians considered in this model are time independent unlike "Floquet time crystals" considered recently. Our model forms a metastable quantum time crystal with a finite length in space and in time.
Comparison of entrainment in constant volume and constant flux dense currents over sloping bottoms
NASA Astrophysics Data System (ADS)
Bhaganagar, K.; Nayamatullah, M.; Cenedese, C.
2014-12-01
Three dimensional high resolution large eddy simulations (LES) are employed to simulate lock-exchange and constant flux dense flows over inclined surface with the aim of investigating, visualizing and describing the turbulent structure and the evolution of bottom-propagating compositional density current at the channel bottom. The understanding of dynamics of density current is largely determined by the amount of interfacial mixing or entrainment between the ambient and dense fluids. No previous experimental or numerical studies have been done to estimate entrainment in classical lock-exchange system. The differences in entrainment between the lock-exchange and constant flux are explored. Comparing the results of flat bed with inclined surface results, flow exhibits significant differences near the leading edge or nose of the front of the density currents due to inclination of surface. Further, the instabilities are remarkably enhanced resulting Kelvin-Helmholtz and lobe-cleft type of instabilities arises much earlier in time. In this study, a brief analysis of entrainment on lock-exchange density current is presented using different bed slopes and a set of reduced gravity values (g'). We relate the entrainment value with different flow parameters such as Froude number (Fr) and Reynolds number (Re).
Plasma diagnosis from thermal noise and limits on dust flux or mass in comet Giacobini-Zinner
NASA Technical Reports Server (NTRS)
Meyer-Vernet, N.; Couturier, P.; Hoang, S.; Perche, C.; Steinberg, J. L.; Fainberg, J.
1986-01-01
Thermal noise spectroscopy was used to measure the density and temperature of the main (cold) electron plasma population during two hours around the point of closest approach of the International Cometary Explorer (ICE) to comet Giacobini-Zinner. The time resolution was 18 seconds in the plasma tail and 54 seconds elsewhere. Near the tail axis, the maximum plasma density was 670/cu cm and the temperature slightly above one volt. Away from the axis, the plasma density dropped to 100/cu cm over 2000 km, then decreased to 10/cu cm over 15,000 km; at the plasma tail, the density fluctuated between 10 and 30/cu cm, and the temperature, between 100,000 and 400,000 K. No evidence was found of grain impact on the spacecraft or antennas in the plasma tail. This yields an upper limit for the dust flux or particle mass, indicating either fluxes or masses in the tail smaller than those implied by models or an anomalous grain structure. Outside the tail, and particularly near 100,000 km from its axis, impulsive noises indicating plasma turbulence were observed.
NASA Astrophysics Data System (ADS)
Garner, Grace; Malcolm, Iain A.; Sadler, Jonathan P.; Hannah, David M.
2017-10-01
A simulation experiment was used to understand the importance of riparian vegetation density, channel orientation and flow velocity for stream energy budgets and river temperature dynamics. Water temperature and meteorological observations were obtained in addition to hemispherical photographs along a ∼1 km reach of the Girnock Burn, a tributary of the Aberdeenshire Dee, Scotland. Data from nine hemispherical images (representing different uniform canopy density scenarios) were used to parameterise a deterministic net radiation model and simulate radiative fluxes. For each vegetation scenario, the effects of eight channel orientations were investigated by changing the position of north at 45° intervals in each hemispheric image. Simulated radiative fluxes and observed turbulent fluxes drove a high-resolution water temperature model of the reach. Simulations were performed under low and high water velocity scenarios. Both velocity scenarios yielded decreases in mean (≥1.6 °C) and maximum (≥3.0 °C) temperature as canopy density increased. Slow-flowing water resided longer within the reach, which enhanced heat accumulation and dissipation, and drove higher maximum and lower minimum temperatures. Intermediate levels of shade produced highly variable energy flux and water temperature dynamics depending on the channel orientation and thus the time of day when the channel was shaded. We demonstrate that in many reaches relatively sparse but strategically located vegetation could produce substantial reductions in maximum temperature and suggest that these criteria are used to inform future river management.
Study of extremely low frequency electromagnetic fields in infant incubators.
Cermáková, Eleonora
2003-01-01
The aim of the work was to present the results of measurements of extremely low frequency electromagnetic fields (ELF EMF), namely the magnetic flux density, inside infant incubators, and to compare these results with the data published by other authors who point out to a possible association between leukemia or other diseases observed in newborns kept in incubators after the birth and the ELF EMF exposure in the incubator. The measured magnetic flux densities were compared with the reference values for this frequency range indicated in the European Union (EU) recommendations. The repeated measurements in incubators were made with a calibrated magnetometer EFA 300 in the frequency range of 5-30 kHz. Effective values of magnetic flux densities of ELF EMF were determined taking account of the reference values. The results of many repeated measurements showing the values of magnetic flux density in modern incubators with plastic supporting frame, were compared with those obtained in old type incubators with iron skeleton. A power frequency of 50 Hz was detected in the incubator and the ELF EMF values were by over two orders lower than the EU reference values. The paper emphasizes the need to take a special care of newborns kept in incubators even if only the sub-reference values are detected. The EU reference values are intended for the adult human population. A baby in an incubator has much smaller dimensions, higher electric conductivity and maybe trigger another mechanism of response to ELF EMF than that indicated in this paper.
Turbulent fluctuations during pellet injection into a dipole confined plasma torus
NASA Astrophysics Data System (ADS)
Garnier, D. T.; Mauel, M. E.; Roberts, T. M.; Kesner, J.; Woskov, P. P.
2017-01-01
We report measurements of the turbulent evolution of the plasma density profile following the fast injection of lithium pellets into the Levitated Dipole Experiment (LDX) [Boxer et al., Nat. Phys. 6, 207 (2010)]. As the pellet passes through the plasma, it provides a significant internal particle source and allows investigation of density profile evolution, turbulent relaxation, and turbulent fluctuations. The total electron number within the dipole plasma torus increases by more than a factor of three, and the central density increases by more than a factor of five. During these large changes in density, the shape of the density profile is nearly "stationary" such that the gradient of the particle number within tubes of equal magnetic flux vanishes. In comparison to the usual case, when the particle source is neutral gas at the plasma edge, the internal source from the pellet causes the toroidal phase velocity of the fluctuations to reverse and changes the average particle flux at the plasma edge. An edge particle source creates an inward turbulent pinch, but an internal particle source increases the outward turbulent particle flux. Statistical properties of the turbulence are measured by multiple microwave interferometers and by an array of probes at the edge. The spatial structures of the largest amplitude modes have long radial and toroidal wavelengths. Estimates of the local and toroidally averaged turbulent particle flux show intermittency and a non-Gaussian probability distribution function. The measured fluctuations, both before and during pellet injection, have frequency and wavenumber dispersion consistent with theoretical expectations for interchange and entropy modes excited within a dipole plasma torus having warm electrons and cool ions.
(abstract) Absolute Flux Calibrations of Venus and Jupiter at 32 GHz
NASA Technical Reports Server (NTRS)
Gatti, Mark S.; Klein, Michael J.
1994-01-01
The microwave flux densities of Venus and Jupiter at 32 GHz have been measured using a calibration standard radio telescope system at the Owens Valley Radio Observatory (OVRO) during April and May of 1993. These measurements are part of a joint JPL/Caltech program to accurately calibrate a catalog of other radio sources using the two bright planets as flux standards.
Electron Densities Near Io from Galileo Plasma Wave Observations
NASA Technical Reports Server (NTRS)
Gurnett, D. A.; Persoon, A. M.; Kurth, W. S.; Roux, A.; Bolton, S. J.
2001-01-01
This paper presents an overview of electron densities obtained near Io from the Galileo plasma wave instrument during the first four flybys of Io. These flybys were Io, which was a downstream wake pass that occurred on December 7, 1995; I24, which was an upstream pass that occurred on October 11, 1999; I25, which was a south polar pass that occurred on November 26, 1999; and I27, which was an upstream pass that occurred on February 22, 2000. Two methods were used to measure the electron density. The first was based on the frequency of upper hybrid resonance emissions, and the second was based on the low-frequency cutoff of electromagnetic radiation at the electron plasma frequency. For three of the flybys, Io, I25, and I27, large density enhancements were observed near the closest approach to Io. The peak electron densities ranged from 2.1 to 6.8 x 10(exp 4) per cubic centimeters. These densities are consistent with previous radio occultation measurements of Io's ionosphere. No density enhancement was observed during the I24 flyby, most likely because the spacecraft trajectory passed too far upstream to penetrate Io's ionosphere. During two of the flybys, I25 and I27, abrupt step-like changes were observed at the outer boundaries of the region of enhanced electron density. Comparisons with magnetic field models and energetic particle measurements show that the abrupt density steps occur as the spacecraft penetrated the boundary of the Io flux tube, with the region of high plasma density on the inside of the flux tube. Most likely the enhanced electron density within the Io flux tube is associated with magnetic field lines that are frozen to Io by the high conductivity of Io's atmosphere, thereby enhancing the escape of plasma along the magnetic field lines that pass through Io's ionosphere.
Density-Gradient-Driven trapped-electron-modes in improved-confinement RFP plasmas
NASA Astrophysics Data System (ADS)
Duff, James; Sarff, John; Ding, Weixing; Brower, David; Parke, Eli; Chapman, Brett; Terry, Paul; Pueschel, M. J.; Williams, Zach
2017-10-01
Short wavelength density fluctuations in improved-confinement MST plasmas exhibit multiple features characteristic of the trapped-electron-mode (TEM). Core transport in the RFP is normally governed by magnetic stochasticity stemming from long wavelength tearing modes that arise from current profile peaking, which are suppressed via inductive control for this work. The improved confinement is associated with an increase in the pressure gradient that can destabilize drift waves. The measured density fluctuations have f 50 kHz, kϕρs < 0.14 , and propagate in the electron drift direction. Their spectral emergence coincides with a sharp decrease in global tearing mode associated fluctuations, their amplitude increases with local density gradient, and they exhibit a density-gradient threshold at R /Ln 15 . The GENE code, modified for the RFP, predicts the onset of density-gradient-driven TEM for these strong-gradient plasma conditions. While nonlinear analysis shows a large Dimits shift associated with predicted strong zonal flows, the inclusion of residual magnetic fluctuations, comparable to experimental magnetic fluctuations, causes a collapse of the zonal flows and an increase in the predicted transport to a level close to the experimentally measured heat flux. Work supported by US DOE.
NASA Astrophysics Data System (ADS)
Point, D.; Monperrus, M.; Tessier, E.; Amouroux, D.; Chauvaud, L.; Thouzeau, G.; Jean, F.; Amice, E.; Grall, J.; Leynaert, A.; Clavier, J.; Donard, O. F. X.
2007-04-01
In situ benthic chamber experiments were conducted in the Thau Lagoon that allowed the simultaneous determination of the benthic exchanges of trace metals (Cd, Co, Cu, Mn, Pb and U) and mercury species (iHg and MMHg). Fluxes of organotin compounds (MBT, DBT and TBT) were also investigated for the first time. The benthic incubations were performed during two campaigns at four stations that presented different macrobenthic and macrophytic species distribution and abundance (see [Thouzeau, G., Grall, J., Clavier, J., Chauvaud, L., Jean, F., Leynaert, A., Longpuirt, S., Amice, E., Amouroux, D., 2007. Spatial and temporal variability of benthic biogeochemical fluxes associated with macrophytic and macrofaunal distributions in the Thau lagoon (France). Estuarine, Coastal and Shelf Science 72 (3), 432 446.]). The results indicate that most of the flux intensity as well as the temporal and spatial variability can be explained by the combined influence of microscale and macroscale processes. Microscale changes were identified using Mn flux as a good indicator of the redox conditions at the sediment water interface, and by extension, as an accurate proxy of benthic fluxes for most trace metals and mercury species. We also observed that the redox gradient at the interface is promoted by both microbial and macrobenthic species activity that governs O2 budgets. Macroscale processes have been investigated considering macrobenthic organisms activity (macrofauna and macroalgal cover). The density of such macroorganisms is able to explain most of the spatial and temporal variability of the benthic metal fluxes within a specific site. A tentative estimation of the flux of metals and organometals associated with deposit feeder and suspension feeder activity was found to be in the range of the flux determined within the chambers for most considered elements. Furthermore, a light/dark incubation investigating a dense macroalgal cover present at the sediment surface illustrates the role of photosynthetic activity in controlling benthic exchanges. Significant changes in benthic flux intensity and/or direction were reported for all redox sensitive elements (Cd, Co, Cu, Mn, Pb, U, and iHg). For MMHg and organotin species, other complimentary processes such as photodegradation/uptake and hydrophobic absorption/desorption need to be considered. This work demonstrates that the processes governing benthic exchanges are complex and that benthic organisms play a major role in the significant seasonal, diurnal and spatial variability of trace metals and organometals benthic fluxes in the lagoon.
Optimization of Layer Densities for Spacecraft Multilayered Insulation Systems
NASA Technical Reports Server (NTRS)
Johnson, W. L.
2009-01-01
Numerous tests of various multilayer insulation systems have indicated that there are optimal densities for these systems. However, the only method of calculating this optimal density was by a complex physics based algorithm developed by McIntosh. In the 1970's much data were collected on the performance of these insulation systems with many different variables analyzed. All formulas generated included number of layers and layer density as geometric variables in solving for the heat flux, none of them was in a differentiable form for a single geometric variable. It was recently discovered that by converting the equations from heat flux to thermal conductivity using Fourier's Law, the equations became functions of layer density, temperatures, and material properties only. The thickness and number of layers of the blanket were merged into a layer density. These equations were then differentiated with respect to layer density. By setting the first derivative equal to zero, and solving for the layer density, the critical layer density was determined. Taking a second derivative showed that the critical layer density is a minimum in the function and thus the optimum density for minimal heat leak, this is confirmed by plotting the original function. This method was checked and validated using test data from the Multipurpose Hydrogen Testbed which was designed using McIntosh's algorithm.
Deep ocean nutrients imply large latitudinal variation in particle transfer efficiency.
Weber, Thomas; Cram, Jacob A; Leung, Shirley W; DeVries, Timothy; Deutsch, Curtis
2016-08-02
The "transfer efficiency" of sinking organic particles through the mesopelagic zone and into the deep ocean is a critical determinant of the atmosphere-ocean partition of carbon dioxide (CO2). Our ability to detect large-scale spatial variations in transfer efficiency is limited by the scarcity and uncertainties of particle flux data. Here we reconstruct deep ocean particle fluxes by diagnosing the rate of nutrient accumulation along transport pathways in a data-constrained ocean circulation model. Combined with estimates of organic matter export from the surface, these diagnosed fluxes reveal a global pattern of transfer efficiency to 1,000 m that is high (∼25%) at high latitudes and low (∼5%) in subtropical gyres, with intermediate values in the tropics. This pattern is well correlated with spatial variations in phytoplankton community structure and the export of ballast minerals, which control the size and density of sinking particles. These findings accentuate the importance of high-latitude oceans in sequestering carbon over long timescales, and highlight potential impacts on remineralization depth as phytoplankton communities respond to a warming climate.
Deep ocean nutrients imply large latitudinal variation in particle transfer efficiency
Weber, Thomas; Cram, Jacob A.; Leung, Shirley W.; DeVries, Timothy; Deutsch, Curtis
2016-01-01
The “transfer efficiency” of sinking organic particles through the mesopelagic zone and into the deep ocean is a critical determinant of the atmosphere−ocean partition of carbon dioxide (CO2). Our ability to detect large-scale spatial variations in transfer efficiency is limited by the scarcity and uncertainties of particle flux data. Here we reconstruct deep ocean particle fluxes by diagnosing the rate of nutrient accumulation along transport pathways in a data-constrained ocean circulation model. Combined with estimates of organic matter export from the surface, these diagnosed fluxes reveal a global pattern of transfer efficiency to 1,000 m that is high (∼25%) at high latitudes and low (∼5%) in subtropical gyres, with intermediate values in the tropics. This pattern is well correlated with spatial variations in phytoplankton community structure and the export of ballast minerals, which control the size and density of sinking particles. These findings accentuate the importance of high-latitude oceans in sequestering carbon over long timescales, and highlight potential impacts on remineralization depth as phytoplankton communities respond to a warming climate. PMID:27457946
Deep ocean nutrients imply large latitudinal variation in particle transfer efficiency
NASA Astrophysics Data System (ADS)
Weber, Thomas; Cram, Jacob A.; Leung, Shirley W.; DeVries, Timothy; Deutsch, Curtis
2016-08-01
The “transfer efficiency” of sinking organic particles through the mesopelagic zone and into the deep ocean is a critical determinant of the atmosphere-ocean partition of carbon dioxide (CO2). Our ability to detect large-scale spatial variations in transfer efficiency is limited by the scarcity and uncertainties of particle flux data. Here we reconstruct deep ocean particle fluxes by diagnosing the rate of nutrient accumulation along transport pathways in a data-constrained ocean circulation model. Combined with estimates of organic matter export from the surface, these diagnosed fluxes reveal a global pattern of transfer efficiency to 1,000 m that is high (˜25%) at high latitudes and low (˜5%) in subtropical gyres, with intermediate values in the tropics. This pattern is well correlated with spatial variations in phytoplankton community structure and the export of ballast minerals, which control the size and density of sinking particles. These findings accentuate the importance of high-latitude oceans in sequestering carbon over long timescales, and highlight potential impacts on remineralization depth as phytoplankton communities respond to a warming climate.
An Atlas of Computed Equivalent Widths of Quasar Broad Emission Lines
NASA Astrophysics Data System (ADS)
Korista, Kirk; Baldwin, Jack; Ferland, Gary; Verner, Dima
We present graphically the results of several thousand photoionization calculations of broad emission-line clouds in quasars, spanning 7 orders of magnitude in hydrogen ionizing flux and particle density. The equivalent widths of 42 quasar emission lines are presented as contours in the particle density-ionizing flux plane for a typical incident continuum shape, solar chemical abundances, and cloud column density of N(H) = 1023 cm-2. Results are similarly given for a small subset of emission lines for two other column densities (1022 and 1024 cm-2), five other incident continuum shapes, and a gas metallicity of 5 Z⊙. These graphs should prove useful in the analysis of quasar emission-line data and in the detailed modeling of quasar broad emission-line regions. The digital results of these emission-line grids and many more are available over the Internet.
NASA Technical Reports Server (NTRS)
Fennelly, J. A.; Torr, D. G.; Richards, P. G.; Torr, M. R.
1994-01-01
We present a method to retrieve neutral thermospheric composition and the solar EUV flux from ground-based twilight optical measurements of the O(+) ((exp 2)P) 7320 A and O((exp 1)D) 6300 A airglow emissions. The parameters retrieved are the neutral temperature, the O, O2, N2 density profiles, and a scaling factor for the solar EUV flux spectrum. The temperature, solar EUV flux scaling factor, and atomic oxygen density are first retrieved from the 7320-A emission, which are then used with the 6300-A emission to retrieve the O2 and N2 densities. The retrieval techniques have been verified by computer simulations. We have shown that the retrieval technique is able to statistically retrieve values, between 200 and 400 km, within an average error of 3.1 + or - 0.6% for thermospheric temperature, 3.3 + or - 2.0% for atomic oxygen, 2.3 + or - 1.3% for molecular oxygen, and 2.4 + or - 1.3% for molecular nitrogen. The solar EUV flux scaling factor was found to have a retrieval error of 5.1 + or - 2.3%. All the above errors have a confidence level of 95%. The purpose of this paper is to prove the viability and usefulness of the retrieval technique by demonstrating the ability to retrieve known quantities under a realistic simulation of the measurement process, excluding systematic effects.
Suppression of turbulent particle flux during biased rotation in LAPD
NASA Astrophysics Data System (ADS)
Carter, T. A.
2005-10-01
The edge plasma in LAPD is rotated through the application of a bias voltage (typically 100V-200V) between the plasma source cathode and the vacuum vessel wall. Without bias, cross-field turbulent particle transport causes the density profile to extend well past the cathode edge, with a fairly gentle gradient (Ln˜10 cm). As the bias voltage is applied and increased past a threshold value, the measured density profile steepens dramatically (Ln˜2 cm) at a radius near the peak of the flow shear. Turbulent transport flux measurements in this region show that the flux is reduced and then suppressed completely as the threshold is approached. As the bias voltage is increased further, the measured turbulent transport flux reverses direction. The amplitude of the density and azimuthal electric field fluctuations is observed to decrease during biased rotation, the product of the amplitudes decreasing by a factor of 5. However the dominant change appears in the cross-phase, which is altered dramatically, leading to the observed suppression and reversal of the turbulent flux. Detailed two-dimensional turbulent correlation measurements have been performed using the high repetition rate (1 Hz) and high reproducibility of LAPD plasmas. In unbiased plasmas, the correlation is localized to around 5 cm radially and a slightly smaller distance azimuthally (ρs˜0.5-1 cm). During biased rotation, a dramatic increase in the azimuthal correlation is observed, however there is little change in the radial correlation length.
Characterization of an electrothermal plasma source for fusion transient simulations
NASA Astrophysics Data System (ADS)
Gebhart, T. E.; Baylor, L. R.; Rapp, J.; Winfrey, A. L.
2018-01-01
The realization of fusion energy requires materials that can withstand high heat and particle fluxes at the plasma material interface. In this work, an electrothermal (ET) plasma source has been designed as a transient heat flux source for a linear plasma material interaction device. An ET plasma source operates in the ablative arc regime driven by a DC capacitive discharge. The current channel width is defined by the 4 mm bore of a boron nitride liner. At large plasma currents, the arc impacts the liner wall, leading to high particle and heat fluxes to the liner material, which subsequently ablates and ionizes. This results in a high density plasma with a large unidirectional bulk flow out of the source exit. The pulse length for the ET source has been optimized using a pulse forming network to have durations of 1 and 2 ms. The peak currents and maximum source energies seen in this system are 1.9 kA and 1.2 kJ for the 2 ms pulse and 3.2 kA and 2.1 kJ for the 1 ms pulse, respectively. This work is a proof of the principal project to show that an ET source produces electron densities and heat fluxes comparable to those anticipated in transient events in large future magnetic confinement fusion devices. Heat flux, plasma temperature, and plasma density were determined for each shot using infrared imaging and optical spectroscopy techniques. This paper will discuss the assumptions, methods, and results of the experiments.
Flux pinning characteristics and irreversibility line in high temperature superconductors
NASA Technical Reports Server (NTRS)
Matsushita, T.; Ihara, N.; Kiuchi, M.
1995-01-01
The flux pinning properties in high temperature superconductors are strongly influenced by thermally activated flux motion. The scaling relation of the pinning force density and the irreversibility line in various high temperature superconductors are numerically analyzed in terms of the flux creep model. The effect of two factors, i.e., the flux pinning strength and the dimensionality of the material, on these properties are investigated. It is speculated that the irreversibility line in Bi-2212 superconductors is one order of magnitude smaller than that in Y-123, even if the flux pinning strength in Bi-2212 is improved up to the level of Y-123. It is concluded that these two factors are equally important in determination of the flux pinning characteristics at high temperatures.
NASA Astrophysics Data System (ADS)
Pavan Kumar Naik, S.; Bai, V. Seshu
2017-02-01
In the present work, with the aim of improving the local flux pinning at the unit cell level in the YBa2Cu3O7-δ (YBCO) bulk superconductors, 20 wt% of nanoscale Sm2O3 and micron sized (Nd, Sm, Gd)2BaCuO5 secondary phase particles were added to YBCO and processed in oxygen controlled preform optimized infiltration growth process. Nano Dispersive Sol Casting method is employed to homogeneously distribute the nano Sm2O3 particles of 30-50 nm without any agglomeration in the precursor powder. Microstructural investigations on doped samples show the chemical fluctuations as annuli cores in the 211 phase particles. The introduction of mixed rare earth elements at Y-site resulted in compositional fluctuations in the superconducting matrix. The associated lattice mismatch defects have provided flux pinning up to large magnetic fields. Magnetic field dependence of current density (Jc(H)) at different temperatures revealed that the dominant pinning mechanism is caused by spatial variations of critical temperatures, due to the spatial fluctuations in the matrix composition. As the number of rare earth elements increased in the YBCO, the peak field position in the scaling of the normalized pinning force density (Fp/Fp max) significantly gets shifted towards the higher fields. The curves of Jc(H) and Fp/Fp max at different temperatures clearly indicate the LRE substitution for LRE' or Ba-sites for δTc pinning.
NASA Astrophysics Data System (ADS)
Hoekstra, Robert J.; Kushner, Mark J.
1996-03-01
Inductively coupled plasma (ICP) reactors are being developed for low gas pressure (<10s mTorr) and high plasma density ([e]≳1011 cm-3) microelectronics fabrication. In these reactors, the plasma is generated by the inductively coupled electric field while an additional radio frequency (rf) bias is applied to the substrate. One of the goals of these systems is to independently control the magnitude of the ion flux by the inductively coupled power deposition, and the acceleration of ions into the substrate by the rf bias. In high plasma density reactors the width of the sheath above the wafer may be sufficiently thin that ions are able to traverse it in approximately 1 rf cycle, even at 13.56 MHz. As a consequence, the ion energy distribution (IED) may have a shape typically associated with lower frequency operation in conventional reactive ion etching tools. In this paper, we present results from a computer model for the IED incident on the wafer in ICP etching reactors. We find that in the parameter space of interest, the shape of the IED depends both on the amplitude of the rf bias and on the ICP power. The former quantity determines the average energy of the IED. The latter quantity controls the width of the sheath, the transit time of ions across the sheath and hence the width of the IED. In general, high ICP powers (thinner sheaths) produce wider IEDs.
Numerical investigation of split flows by gravity currents into two-layered stratified water bodies
NASA Astrophysics Data System (ADS)
Cortés, A.; Wells, M. G.; Fringer, O. B.; Arthur, R. S.; Rueda, F. J.
2015-07-01
The behavior of a two-dimensional (2-D) gravity current impinging upon a density step in a two-layered stratified basin is analyzed using a high-resolution Reynolds-Averaged Navier-Stokes model. The gravity current splits at the density step, and the portion of the buoyancy flux becoming an interflow is largely controlled by the vertical distribution of velocity and density within the gravity current and the magnitude of the density step between the two ambient layers. This is in agreement with recent laboratory observations. The strongest changes in the ambient density profiles occur as a result of the impingement of supercritical currents with strong density contrasts, for which a large portion of the gravity current detaches from the bottom and becomes an interflow. We characterize the current partition process in the simulated experiments using the densimetric Froude number of the current (Fr) across the density step (upstream and downstream). When underflows are formed, more supercritical currents are observed downstream of the density step compared to upstream (Fru < Frd), and thus, stronger mixing of the current with the ambient water downstream. However, when split flows and interflows are formed, smaller Fr values are identified after the current crosses the density step (Fru > Frd), which indicates lower mixing between the current and ambient water after the impingement due to the significant stripping of interfacial material at the density step.
Comparison of measured and modeled solar EUV flux and its effect on the E-F1 region ionosphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buonsanto, M.J.; Solomon, S.C.; Tobiska, W.K.
The response of the E-F1 region ionosphere to different solar EUV flux models is investigated theoretically using two different photochemical schemes, and the results are compared with incoherent scatter radar electron density measurements taken at Millstone Hill. The latest EUV flux model (Tobiska, 1991), which incorporates more recent measurements, has generally more flux at short wavelengths compared to the Hinteregger et al. (1981) flux model based on AE-E satellite data. This results in better agreement with the measurements in the E-F1 region and above. The Tobiska flux model, however, gives a smaller E{prime} region peak density, due to the influencemore » of low Lyman {beta} flux in the November 10, 1988, rocket measurements of Woods and Rottman (1990). The photochemical scheme of Buonsanto (1990) has been improved and now gives results similar to the more comprehensive scheme of (Solomon et al., 1988; Solomon and Abreu, 1989; S.C. Solomon and R.G. Roble, Simulation of the global thermospheric airglow, 1, Methodology, submitted to Journal of Geophysical Research, 1992), provided that the ratios of photoelectron impact ionization to photoionization (pe/pi) given by this latter model are included. The pe/pi ratios calculated by this model and by the models of Lilensten et al. (1989) and Richards and Torr (1988) differ significantly, and work is needed to resolve these differences.« less
Ultra-high-energy cosmic rays from low-luminosity active galactic nuclei
NASA Astrophysics Data System (ADS)
Duţan, Ioana; Caramete, Laurenţiu I.
2015-03-01
We investigate the production of ultra-high-energy cosmic ray (UHECR) in relativistic jets from low-luminosity active galactic nuclei (LLAGN). We start by proposing a model for the UHECR contribution from the black holes (BHs) in LLAGN, which present a jet power Pj ⩽1046 erg s-1. This is in contrast to the opinion that only high-luminosity AGN can accelerate particles to energies ⩾ 50 EeV. We rewrite the equations which describe the synchrotron self-absorbed emission of a non-thermal particle distribution to obtain the observed radio flux density from sources with a flat-spectrum core and its relationship to the jet power. We found that the UHECR flux is dependent on the observed radio flux density, the distance to the AGN, and the BH mass, where the particle acceleration regions can be sustained by the magnetic energy extraction from the BH at the center of the AGN. We use a complete sample of 29 radio sources with a total flux density at 5 GHz greater than 0.5 Jy to make predictions for the maximum particle energy, luminosity, and flux of the UHECRs from nearby AGN. These predictions are then used in a semi-analytical code developed in Mathematica (SAM code) as inputs for the Monte-Carlo simulations to obtain the distribution of the arrival direction at the Earth and the energy spectrum of the UHECRs, taking into account their deflection in the intergalactic magnetic fields. For comparison, we also use the CRPropa code with the same initial conditions as for the SAM code. Importantly, to calculate the energy spectrum we also include the weighting of the UHECR flux per each UHECR source. Next, we compare the energy spectrum of the UHECRs with that obtained by the Pierre Auger Observatory.
The effect of low ceiling on the external combustion of the cabin fire
NASA Astrophysics Data System (ADS)
Su, Shichuan; Chen, Changyun; Wang, Liang; Wei, Chengyin; Cui, Haibing; Guo, Chengyu
2018-06-01
External combustion is a phenomenon where the flame flares out of the window and burns outside. Because of the particularity of the ship's cabin structure, there is a great danger in the external combustion. In this paper, the numerical calculation and analysis of three kinds of low ceiling ship cabin fire are analyzed based on the large eddy numerical simulation technique. Through the analysis of temperature, flue gas velocity, heat flux density and so on, the external combustion phenomenon of fire development is calculated. The results show that when external combustion occurs, the amount of fuel escaping decreases with the roof height. The temperature above the window increases with the height of the ceiling. The heat flux density in the external combustion flame is mainly provided by radiation, and convection is only a small part; In the plume area there is a time period, in this time period, the convective heat flux density is greater than the radiation heat flux, this time with the ceiling height increases. No matter which ceiling height, the external combustion will seriously damage the structure of the ship after a certain period of time. The velocity distribution of the three roof is similar, but with the height of the ceiling, the area size is also increasing.
The LBA Calibrator Survey of Southern Compact Extragalactic Radio Sources - LCS1
NASA Technical Reports Server (NTRS)
Petrov, Leonid; Phillips, Chris; Bertarini, Alessandra; Murphy, Tara; Sadler, Elaine M.
2011-01-01
We present a catalogue of accurate positions and correlated flux densities for 410 flat-spectrum, compact extragalactic radio sources previously detected in the Australia Telescope 20 GHz (AT20G) survey. The catalogue spans the declination range [-90deg, -40deg] and was constructed from four 24-h very long baseline interferometry (VLBI) observing sessions with the Australian Long Baseline Array at 8.3 GHz. The VLBI detection rate in these experiments is 97 per cent, the median uncertainty of the source positions is 2.6 mas and the median correlated flux density on projected baselines longer than 1000 km is 0.14 Jy. The goals of this work are (1) to provide a pool of southern sources with positions accurate to a few milliarcsec, which can be used for phase-referencing observations, geodetic VLBI and space navigation; (2) to extend the complete flux-limited sample of compact extragalactic sources to the Southern hemisphere; and (3) to investigate the parsec-scale properties of high-frequency selected sources from the AT20G survey. As a result of this VLBI campaign, the number of compact radio sources south of declination -40deg which have measured VLBI correlated flux densities and positions known to milliarcsec accuracy has increased by a factor of 3.5.
NASA Technical Reports Server (NTRS)
Richards, P. G.; Buonsanto, M. J.; Reinisch, B. W.; Holt, J.; Fennelly, J. A.; Scali, J. L.; Comfort, R. H.; Germany, G. A.; Spann, J.; Brittnacher, M.
1999-01-01
Measurements from a network of digisondes and an incoherent scatter radar In Eastern North American For January 6-12, 1997 have been compared with the Field Line Interhemispheric Plasma (FLIP) model which now includes the effects of electric field convective. With the exception of Bermuda, the model reproduces the daytime electron density very well most of the time. As is typical behavior for winter solar minimum on magnetically undisturbed nights, the measurements at Millstone Hill show high electron temperatures before midnight followed by a rapid decay, which is accompanied by a pronounced density enhancement in the early morning hours. The FLIP model reproduces the nighttime density enhancement well, provided the model is constrained to follow the topside electron temperature and the flux tube is full. Similar density enhancements are seen at Goose Bay, Wallops Island and Bermuda. However, the peak height variation and auroral images indicate the density enhancements at Goose Bay are most likely due to particle precipitation. Contrary to previously published work we find that the nighttime density variation at Millstone Hill is driven by the temperature behavior and not the other way around. Thus, in both the data and model, the overall nighttime density is lowered and the enhancement does not occur if the temperature remains high all night. Our calculations show that convections of plasma from higher magnetic latitudes does not cause the observed density maximum but it may enhance the density maximum if over-full flux tubes are convected over the station. On the other had, convection of flux tubes with high temperatures and depleted densities may prevent the density maximum from occurring. Despite the success in modeling the nighttime density enhancements, there remain two unresolved problems. First, the measured density decays much faster than the modeled density near sunset at Millstone Hill and Goose Bay though not at lower latitude stations. Second, we cannot fully explain the large temperatures before midnight nor the sudden decay near midnight.
On propagation of energy flux in de Sitter spacetime
NASA Astrophysics Data System (ADS)
Hoque, Sk Jahanur; Virmani, Amitabh
2018-04-01
In this paper, we explore propagation of energy flux in the future Poincaré patch of de Sitter spacetime. We present two results. First, we compute the flux integral of energy using the symplectic current density of the covariant phase space approach on hypersurfaces of constant radial physical distance. Using this computation we show that in the tt-projection, the integrand in the energy flux expression on the cosmological horizon is same as that on the future null infinity. This suggests that propagation of energy flux in de Sitter spacetime is sharp. Second, we relate our energy flux expression in tt-projection to a previously obtained expression using the Isaacson stress-tensor approach.
Results of the IMO Video Meteor Network - April 2016
NASA Astrophysics Data System (ADS)
Molau, S.; Crivello, S.; Goncalves, R.; Saraiva, C.; Stomeo, E.; Kac, J.
2016-10-01
In 2016 April, a total of 78 video cameras of the IMO Video Meteor Network recorded more than 16 000 meteors in almost 7 700 hours of observing time. The flux density profile of the Lyrids 2016 is presented and compared to the average for the years 2011-2015. The flux density increased significantly as twilight set in on the morning of 2016 April 22. A similar increase was also seen in 2012. The population index of the Lyrids is also derived from observations around the shower maximum.
A methodology for mapping forest latent heat flux densities using remote sensing
NASA Technical Reports Server (NTRS)
Pierce, Lars L.; Congalton, Russell G.
1988-01-01
Surface temperatures and reflectances of an upper elevation Sierran mixed conifer forest were monitored using the Thematic Mapper Simulator sensor during the summer of 1985 in order to explore the possibility of using remote sensing to determine the distribution of solar energy on forested watersheds. The results show that the method is capable of quantifying the relative energy allocation relationships between the two cover types defined in the study. It is noted that the method also has the potential to map forest latent heat flux densities.
Energy transfers in internal tide generation, propagation and dissipation in the deep ocean
NASA Astrophysics Data System (ADS)
Floor, J. W.; Auclair, F.; Marsaleix, P.
The energy transfers associated with internal tide (IT) generation by a semi-diurnal surface tidal wave impinging on a supercritical meridionally uniform deep ocean ridge on the f-plane, and subsequent IT-propagation are analysed using the Boussinesq, free-surface, terrain-following ocean model Symphonie. The energy diagnostics are explicitly based on the numerical formulation of the governing equations, permitting a globally conservative, high-precision analysis of all physical and numerical/artificial energy transfers in a sub-domain with open lateral boundaries. The net primary energy balances are quantified using a moving average of length two tidal periods in a simplified control simulation using a single time-step, minimal diffusion, and a no-slip sea floor. This provides the basis for analysis of enhanced vertical and horizontal diffusion and a free-slip bottom boundary condition. After a four tidal period spin-up, the tidally averaged (net) primary energy balance in the generation region, extending ±20 km from the ridge crest, shows that the surface tidal wave loses approximately C = 720 W/m or 0.3% of the mean surface tidal energy flux (2.506 × 10 5 W/m) in traversing the ridge. This corresponds mainly to the barotropic-to-baroclinic energy conversion due to stratified flow interaction with sloping topography. Combined with a normalised net advective flux of baroclinic potential energy of 0.9 × C this causes a net local baroclinic potential energy gain of 0.72 × C and a conversion into baroclinic kinetic energy through the baroclinic buoyancy term of 1.18 × C. Tidally averaged, about 1.14 × C is radiated into the abyssal ocean through the total baroclinic flux of internal pressure associated with the IT- and background density field. This total baroclinic pressure flux is therefore not only determined by the classic linear surface-to-internal tide conversion, but also by the net advection of baroclinic (background) potential energy, indicating the importance of local processes other than linear IT-motion. In the propagation region (PR), integrated over the areas between 20 and 40 km from the ridge crest, the barotropic and baroclinic tide are decoupled. The net incoming total baroclinic pressure flux is balanced by local potential energy gain and outward baroclinic flux of potential energy associated with the total baroclinic density. The primary net energy balances are robust to changes in the vertical diffusion coefficient, whereas relatively weak horizontal diffusion significantly reduces the outward IT energy flux. Diapycnal mixing due to vertical diffusion causes an available potential energy loss of about 1% of the total domain-averaged potential energy gain, which matches {km-1}/{km}ρ0KVN2 to within 0.5%, for km linearly distributed grid-levels and constant background density ρ0, vertical diffusivity ( KV) and buoyancy frequency ( N).
Non-linear gyrokinetic simulations of microturbulence in TCV electron internal transport barriers
NASA Astrophysics Data System (ADS)
Lapillonne, X.; Brunner, S.; Sauter, O.; Villard, L.; Fable, E.; Görler, T.; Jenko, F.; Merz, F.
2011-05-01
Using the local (flux-tube) version of the Eulerian code GENE (Jenko et al 2000 Phys. Plasmas 7 1904), gyrokinetic simulations of microturbulence were carried out considering parameters relevant to electron-internal transport barriers (e-ITBs) in the TCV tokamak (Sauter et al 2005 Phys. Rev. Lett. 94 105002), generated under conditions of low or negative shear. For typical density and temperature gradients measured in such barriers, the corresponding simulated fluctuation spectra appears to simultaneously contain longer wavelength trapped electron modes (TEMs, for typically k⊥ρi < 0.5, k⊥ being the characteristic perpendicular wavenumber and ρi the ion Larmor radius) and shorter wavelength ion temperature gradient modes (ITG, k⊥ρi > 0.5). The contributions to the electron particle flux from these two types of modes are, respectively, outward/inward and may cancel each other for experimentally realistic gradients. This mechanism may partly explain the feasibility of e-ITBs. The non-linear simulation results confirm the predictions of a previously developed quasi-linear model (Fable et al 2010 Plasma Phys. Control. Fusion 52 015007), namely that the stationary condition of zero particle flux is obtained through the competitive contributions of ITG and TEM. A quantitative comparison of the electron heat flux with experimental estimates is presented as well.
Amazon peatlands: quantifying ecosytem's stocks, GHG fluxes and their microbial connections
NASA Astrophysics Data System (ADS)
Cadillo-Quiroz, Hinsby; Lähteenoja, Outi; Buessecker, Steffen; van Haren, Joost
2017-04-01
Reports of hundreds of peatlands across basins in the West and Central Amazon suggest they play an important, previously not considered regional role in organic carbon (OC) and GHG dynamics. Amazon peatlands store ˜3-6 Gt of OC in their waterlogged soils with strong potential for conversion and release of GHG, in fact our recent, and others', efforts have confirmed variable levels of GHG emissions (CO2, N2O, CH4), as well as variable microbial communities across rich to poor soil peatlands. Here, we report early results of quantification of different components making up the aboveground C stocks, the rates and paths for GHG release, and microbial organisms occurring in three ecologically distinct peatland types in the Pastaza-Marañon region of the Peruvian Amazon. Evaluations were done in duplicated continuous monitoring plots established since 2015 at a "palm swamp" (PS), poor "pole forest" (pPF) and a rich "forested" (rF) peatlands. Although overall vegetation "structure" with a few dominant plus several low frequency species was common across the three sites, their botanical composition and tree density was highly contrasting. Aboveground C stocks content showed the following order among sites: rF>PS>pPF, and hence we tested whether this differences can have a direct effect on CH4 emissions rates. CH4 emissions rates from soils were observed in average at 11, 6, and 0.8 mg-C m-2 h-1for rF, PS, and pPF respectively. However, these estimated fluxes needed to be revised when we develop quantifications of CH4 emissions from tree stems. Tree stem fluxes were detected showing a broad variation with nearly nill emissions in some species all the way to maximum fluxes near to ˜90 mg-C m-2 h-1 in other species. Mauritia flexuosa, a highly dominant palm species in PS and ubiquitous to the region, showed the highest ranges of CH4 flux. In the PS site, overall CH4 flux estimate increased by ˜50% when including stem emission weighted by trees' species, density and heights. Flux estimates in p PF did not had a significant change. Analysis across species in the study sites, plus other satellite sites, suggest that in sites stem flux emissions might be conserved with some genera in the Aracaceae, Euphorbiaceae, and Sapotaceae families showing a large emitters capacity. Further characterization also showed that CH4 flux emission from the stems decreases generally with height, suggesting a diffusion constrained stem flux, which seems limited by soil CH4 concentration and wood density. Finally, microbial community composition and methanogenic activity also showed contrasting patterns across sites, with pH being one of the major determinants. GHG producing organisms were detected in different proportions and types across study sites, and importantly methanogenic Archaea closely tracked observed differences of CH4 flux among sites. Nevertheless, the link between vegetation type and density still remain under assessment in our efforts
A MODEL FOR THE ORIGIN OF HIGH DENSITY IN LOOPTOP X-RAY SOURCES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Longcope, D. W.; Guidoni, S. E.
Super-hot (SH) looptop sources, detected in some large solar flares, are compact sources of HXR emission with spectra matching thermal electron populations exceeding 30 MK. High observed emission measure (EM) and inference of electron thermalization within the small source region both provide evidence of high densities at the looptop, typically more than an order of magnitude above ambient. Where some investigators have suggested such density enhancement results from a rapid enhancement in the magnetic field strength, we propose an alternative model, based on Petschek reconnection, whereby looptop plasma is heated and compressed by slow magnetosonic shocks generated self-consistently through fluxmore » retraction following reconnection. Under steady conditions such shocks can enhance density by no more than a factor of four. These steady shock relations (Rankine-Hugoniot relations) turn out to be inapplicable to Petschek's model owing to transient effects of thermal conduction. The actual density enhancement can in fact exceed a factor of 10 over the entire reconnection outflow. An ensemble of flux tubes retracting following reconnection at an ensemble of distinct sites will have a collective EM proportional to the rate of flux tube production. This rate, distinct from the local reconnection rate within a single tube, can be measured separately through flare ribbon motion. Typical flux transfer rates and loop parameters yield EMs comparable to those observed in SH sources.« less
Drift-Alfven wave mediated particle transport in an elongated density depression
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vincena, Stephen; Gekelman, Walter
Cross-field particle transport due to drift-Alfven waves is measured in an elongated density depression within an otherwise uniform, magnetized helium plasma column. The depression is formed by drawing an electron current to a biased copper plate with cross-field dimensions of 28x0.24 ion sound-gyroradii {rho}{sub s}=c{sub s}/{omega}{sub ci}. The process of density depletion and replenishment via particle flux repeats in a quasiperiodic fashion for the duration of the current collection. The mode structure of the wave density fluctuations in the plane perpendicular to the background magnetic field is revealed using a two-probe correlation technique. The particle flux as a function ofmore » frequency is measured using a linear array of Langmuir probes and the only significant transport occurs for waves with frequencies between 15%-25% of the ion cyclotron frequency (measured in the laboratory frame) and with perpendicular wavelengths k{sub perpendicular}{rho}{sub s}{approx}0.7. The frequency-integrated particle flux is in rough agreement with observed increases in density in the center of the depletion as a function of time. The experiments are carried out in the Large Plasma Device (LAPD) [Gekelman et al., Rev. Sci. Instrum. 62, 2875 (1991)] at the Basic Plasma Science Facility located at the University of California, Los Angeles.« less
Interactive Database of Pulsar Flux Density Measurements
NASA Astrophysics Data System (ADS)
Koralewska, O.; Krzeszowski, K.; Kijak, J.; Lewandowski, W.
2012-12-01
The number of astronomical observations is steadily growing, giving rise to the need of cataloguing the obtained results. There are a lot of databases, created to store different types of data and serve a variety of purposes, e. g. databases providing basic data for astronomical objects (SIMBAD Astronomical Database), databases devoted to one type of astronomical object (ATNF Pulsar Database) or to a set of values of the specific parameter (Lorimer 1995 - database of flux density measurements for 280 pulsars on the frequencies up to 1606 MHz), etc. We found that creating an online database of pulsar flux measurements, provided with facilities for plotting diagrams and histograms, calculating mean values for a chosen set of data, filtering parameter values and adding new measurements by the registered users, could be useful in further studies on pulsar spectra.
Suppression of 1/f Flux Noise in Superconducting Quantum Circuits
NASA Astrophysics Data System (ADS)
Kumar, Pradeep; Freeland, John; Yu, Clare; Wu, Ruqian; Wang, Zhe; Wang, Hui; Shi, Chuntai; Pappas, David; McDermott, Robert
Low frequency 1/f magnetic flux noise is a dominant contributor to dephasing in superconducting quantum circuits. It is believed that the noise is due to a high density of unpaired magnetic defect states at the surface of the superconducting thin films. We have performed X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD) experiments that point to adsorbed molecular oxygen as the dominant source of magnetism in these films. By improving the vacuum environment of our superconducting devices, we have achieved a significant reduction in surface magnetic susceptibility and 1/f flux noise power spectral density. These results open the door to realization of superconducting qubits with improved dephasing times. State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, China.
High-flux beam source of fast neutral helium.
Fahey, D W; Schearer, L D; Parks, W F
1978-04-01
A high-flux beam source of fast neutral helium has been constructed by extending the designs of previous authors. The source is a dc or pulsed electric discharge in an expanding gas nozzle. The beam produced has a flux on the order of 10(15) atoms/s sr and a mean velocity on the order of 10(7) cm/s. The composition of the beam has been determined by the use of particle detectors and by the observation of the excitation of certain target gases. An upper bound of 3.7 x 10(-5) has been estimated for the He(2(3)S(1))/He((1)S(0))beam density ratio and a value of 0.2 found for the He(+)/He(1(1)S(0)) beam density ratio.
NASA Technical Reports Server (NTRS)
Ashrafi, S.; Roszman, L.
1991-01-01
A preliminary study of the limits to solar flux intensity prediction, and of whether the general lack of predictability in the solar flux arises from the nonlinear chaotic nature of the Sun's physical activity is presented. Statistical analysis of a chaotic signal can extract only its most gross features, and detailed physical models fail, since even the simplest equations of motion for a nonlinear system can exhibit chaotic behavior. A recent theory by Feigenbaum suggests that nonlinear systems that can be led into chaotic behavior through a sequence of period-doubling bifurcations will exhibit a universal behavior. As the control parameter is increased, the bifurcation points occur in such a way that a proper ratio of these will approach the universal Feigenbaum number. Experimental evidence supporting the applicability of the Feigenbaum scenario to solar flux data is sparse. However, given the hypothesis that the Sun's convection zones are similar to a Rayleigh-Bernard mechanism, we can learn a great deal from the remarkable agreement observed between the prediction by theory (period doubling - a universal route to chaos) and the amplitude decrease of the signal's regular subharmonics. It is shown that period-doubling-type bifurcation is a possible route to a chaotic pattern of solar flux that is distinguishable from the logarithm of its power spectral density. This conclusion is the first positive step toward a reformulation of solar flux by a nonlinear chaotic approach. The ultimate goal of this research is to be able to predict an estimate of the upper and lower bounds for solar flux within its predictable zones. Naturally, it is an important task to identify the time horizons beyond which predictability becomes incompatible with computability.
NASA Technical Reports Server (NTRS)
Ashrafi, S.; Roszman, L.
1991-01-01
Presented here is a preliminary study of the limits to solar flux intensity prediction, and of whether the general lack of predictability in the solar flux arises from the nonlinear chaotic nature of the Sun's physical activity. Statistical analysis of a chaotic signal can extract only its most gross features, and detailed physical models fail, since even the simplest equations of motion for a nonlinear system can exhibit chaotic behavior. A recent theory by Feigenbaum suggests that nonlinear systems that can be led into chaotic behavior through a sequence of period-doubling bifurcations will exhibit a universal behavior. As the control parameter is increased, the bifurcation points occur in such a way that a proper ratio of these will approach the universal Feigenbaum number. Experimental evidence supporting the applicability of the Feigenbaum scenario to solar flux data is sparse. However, given the hypothesis that the Sun's convection zones are similar to a Rayleigh-Bernard mechanism, we can learn a great deal from the remarkable agreement observed between the prediction by theory (period doubling - a universal route to chaos) and the amplitude decrease of the signal's regular subharmonics. The authors show that period-doubling-type bifurcation is a possible route to a chaotic pattern of solar flux that is distinguishable from the logarithm of its power spectral density. This conclusion is the first positive step toward a reformulation of solar flux by a nonlinear chaotic approach. The ultimate goal of this research is to be able to predict an estimate of the upper and lower bounds for solar flux within its predictable zones. Naturally, it is an important task to identify the time horizons beyond which predictability becomes incompatible with computability.
Density-driven transport of gas phase chemicals in unsaturated soils
NASA Astrophysics Data System (ADS)
Fen, Chiu-Shia; Sun, Yong-tai; Cheng, Yuen; Chen, Yuanchin; Yang, Whaiwan; Pan, Changtai
2018-01-01
Variations of gas phase density are responsible for advective and diffusive transports of organic vapors in unsaturated soils. Laboratory experiments were conducted to explore dense gas transport (sulfur hexafluoride, SF6) from different source densities through a nitrogen gas-dry soil column. Gas pressures and SF6 densities at transient state were measured along the soil column for three transport configurations (horizontal, vertically upward and vertically downward transport). These measurements and others reported in the literature were compared with simulation results obtained from two models based on different diffusion approaches: the dusty gas model (DGM) equations and a Fickian-type molar fraction-based diffusion expression. The results show that the DGM and Fickian-based models predicted similar dense gas density profiles which matched the measured data well for horizontal transport of dense gas at low to high source densities, despite the pressure variations predicted in the soil column were opposite to the measurements. The pressure evolutions predicted by both models were in trend similar to the measured ones for vertical transport of dense gas. However, differences between the dense gas densities predicted by the DGM and Fickian-based models were discernible for vertically upward transport of dense gas even at low source densities, as the DGM-based predictions matched the measured data better than the Fickian results did. For vertically downward transport, the dense gas densities predicted by both models were not greatly different from our experimental measurements, but substantially greater than the observations obtained from the literature, especially at high source densities. Further research will be necessary for exploring factors affecting downward transport of dense gas in soil columns. Use of the measured data to compute flux components of SF6 showed that the magnitudes of diffusive flux component based on the Fickian-type diffusion expressions in terms of molar concentration, molar fraction and mass density fraction gradient were almost the same. However, they were greater than the result computed with the mass fraction gradient for > 24% and the DGM-based result for more than one time. As a consequence, the DGM-based total flux of SF6 was in magnitude greatly less than the Fickian result not only for horizontal transport (diffusion-dominating) but also for vertical transport (advection and diffusion) of dense gas. Particularly, the Fickian-based total flux was more than two times in magnitude as much as the DGM result for vertically upward transport of dense gas.
Use of Vertically Integrated Ice in WRF-Based Forecasts of Lightning Threat
NASA Technical Reports Server (NTRS)
McCaul, E. W., jr.; Goodman, S. J.
2008-01-01
Previously reported methods of forecasting lightning threat using fields of graupel flux from WRF simulations are extended to include the simulated field of vertically integrated ice within storms. Although the ice integral shows less temporal variability than graupel flux, it provides more areal coverage, and can thus be used to create a lightning forecast that better matches the areal coverage of the lightning threat found in observations of flash extent density. A blended lightning forecast threat can be constructed that retains much of the desirable temporal sensitivity of the graupel flux method, while also incorporating the coverage benefits of the ice integral method. The graupel flux and ice integral fields contributing to the blended forecast are calibrated against observed lightning flash origin density data, based on Lightning Mapping Array observations from a series of case studies chosen to cover a wide range of flash rate conditions. Linear curve fits that pass through the origin are found to be statistically robust for the calibration procedures.
Design Considerations of a Transverse Flux Machine for Direct-Drive Wind Turbine Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Husain, Tausif; Hasan, Iftekhar; Sozer, Yilmaz
This paper presents the design considerations of a double-sided transverse flux machine (TFM) for direct-drive wind turbine applications. The proposed TFM has a modular structure with quasi-U stator cores and toroidal ring windings. The rotor is constructed with ferrite magnets in a flux-concentrating setup to achieve high air gap flux density. Pole number selection is critical in the design process of a TFM as it affects both the torque density and power factor under fixed magnetic and changing electrical loading. Several key design ratios are introduced to facilitate the initial design procedure. The effect of pole shaping on back-EMF andmore » inductance is also analyzed. These investigations provide guidance toward the required design of a TFM for direct-drive applications. The analyses are carried out using analytical and three-dimensional finite element analysis (FEA). A proof-of-concept prototype was developed to experimentally validate the FEA results.« less
Design Considerations of a Transverse Flux Machine for Direct-Drive Wind Turbine Applications
Husain, Tausif; Hasan, Iftekhar; Sozer, Yilmaz; ...
2018-03-12
This paper presents the design considerations of a double-sided transverse flux machine (TFM) for direct-drive wind turbine applications. The proposed TFM has a modular structure with quasi-U stator cores and toroidal ring windings. The rotor is constructed with ferrite magnets in a flux-concentrating setup to achieve high air gap flux density. Pole number selection is critical in the design process of a TFM as it affects both the torque density and power factor under fixed magnetic and changing electrical loading. Several key design ratios are introduced to facilitate the initial design procedure. The effect of pole shaping on back-EMF andmore » inductance is also analyzed. These investigations provide guidance toward the required design of a TFM for direct-drive applications. The analyses are carried out using analytical and three-dimensional finite element analysis (FEA). A proof-of-concept prototype was developed to experimentally validate the FEA results.« less
NASA Astrophysics Data System (ADS)
Kanki, T.; Nagata, M.
2014-10-01
Two-fluid dynamo relaxation is examined to understand sustainment mechanism of spherical torus (ST) plasmas by multi-pulsing CHI (M-CHI) in the HIST device. The steeper density gradient between the central open flux column (OFC) and closed flux regions by applying the second CHI pulse is observed to cause not only the
Eddy Correlation Flux Measurement System Handbook
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, D. R.
2016-01-01
The eddy correlation (ECOR) flux measurement system provides in situ, half-hour measurements of the surface turbulent fluxes of momentum, sensible heat, latent heat, and carbon dioxide (CO2) (and methane at one Southern Great Plains extended facility (SGP EF) and the North Slope of Alaska Central Facility (NSA CF). The fluxes are obtained with the eddy covariance technique, which involves correlation of the vertical wind component with the horizontal wind component, the air temperature, the water vapor density, and the CO2 concentration. The instruments used are: • a fast-response, three-dimensional (3D) wind sensor (sonic anemometer) to obtain the orthogonal wind componentsmore » and the speed of sound (SOS) (used to derive the air temperature) • an open-path infrared gas analyzer (IRGA) to obtain the water vapor density and the CO2 concentration, and • an open-path infrared gas analyzer (IRGA) to obtain methane density and methane flux at one SGP EF and at the NSA CF. The ECOR systems are deployed at the locations where other methods for surface flux measurements (e.g., energy balance Bowen ratio [EBBR] systems) are difficult to employ, primarily at the north edge of a field of crops. A Surface Energy Balance System (SEBS) has been installed collocated with each deployed ECOR system in SGP, NSA, Tropical Western Pacific (TWP), ARM Mobile Facility 1 (AMF1), and ARM Mobile Facility 2 (AMF2). The surface energy balance system consists of upwelling and downwelling solar and infrared radiometers within one net radiometer, a wetness sensor, and soil measurements. The SEBS measurements allow the comparison of ECOR sensible and latent heat fluxes with the energy balance determined from the SEBS and provide information on wetting of the sensors for data quality purposes. The SEBS at one SGP and one NSA site also support upwelling and downwelling PAR measurements to qualify those two locations as Ameriflux sites.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
G. S. Chang
2007-09-01
The Advanced Test Reactor (ATR) is a high power density and high neutron flux research reactor operating in the United States. Powered with highly enriched uranium (HEU), the ATR has a maximum thermal power rating of 250 MWth. Because of the large test volumes located in high flux areas, the ATR is an ideal candidate for assessing the feasibility of converting an HEU driven reactor to a low-enriched core. The present work investigates the necessary modifications and evaluates the subsequent operating effects of this conversion. A detailed plate-by-plate MCNP ATR 1/8th core model was developed and validated for a fuelmore » cycle burnup comparison analysis. Using the current HEU U 235 enrichment of 93.0 % as a baseline, an analysis can be performed to determine the low-enriched uranium (LEU) density and U-235 enrichment required in the fuel meat to yield an equivalent K-eff between the HEU core and the LEU core versus effective full power days (EFPD). The MCNP ATR 1/8th core model will be used to optimize the U-235 loading in the LEU core, such that the differences in K-eff and heat flux profile between the HEU and LEU core can be minimized. The depletion methodology MCWO was used to calculate K-eff versus EFPDs in this paper. The MCWO-calculated results for the LEU cases with foil (U-10Mo) types demonstrated adequate excess reactivity such that the K-eff versus EFPDs plot is similar to the reference ATR HEU case. Each HEU fuel element contains 19 fuel plates with a fuel meat thickness of 0.508 mm. In this work, the proposed LEU (U-10Mo) core conversion case with a nominal fuel meat thickness of 0.508 mm and the same U-235 enrichment (15.5 wt%) can be used to optimize the radial heat flux profile by varying the fuel plate thickness from 0.254 to 0.457 mm at the inner 4 fuel plates (1-4) and outer 4 fuel plates (16-19). In addition, a 0.7g of burnable absorber Boron-10 was added in the inner and outer plates to reduce the initial excess reactivity, and the inner/outer heat flux more effectively. The optimized LEU relative radial fission heat flux profile is bounded by the reference ATR HEU case. However, to demonstrate that the LEU core fuel cycle performance can meet the Updated Final Safety Analysis Report (UFSAR) safety requirements, additional studies will be necessary to evaluate and compare safety parameters such as void reactivity and Doppler coefficients, control components worth (outer shim control cylinders, safety rods and regulating rod), and shutdown margins between the HEU and LEU cores.« less
Quantification of seasonal biomass effects on cosmic-ray soil water content determination
NASA Astrophysics Data System (ADS)
Baatz, R.; Bogena, H. R.; Hendricks Franssen, H.; Huisman, J. A.; Qu, W.; Montzka, C.; Korres, W.; Vereecken, H.
2013-12-01
The novel cosmic-ray soil moisture probes (CRPs) measure neutron flux density close to the earth surface. High energy cosmic-rays penetrate the Earth's atmosphere from the cosmos and become moderated by terrestrial nuclei. Hydrogen is the most effective neutron moderator out of all chemical elements. Therefore, neutron flux density measured with a CRP at the earth surface correlates inversely with the hydrogen content in the CRP's footprint. A major contributor to the amount of hydrogen in the sensor's footprint is soil water content. The ability to measure changes in soil water content within the CRP footprint at a larger-than-point scale (~30 ha) and at high temporal resolution (hourly) make these sensors an appealing measurement instrument for hydrologic modeling purposes. Recent developments focus on the identification and quantification of major uncertainties inherent in CRP soil moisture measurements. In this study, a cosmic-ray soil moisture network for the Rur catchment in Western Germany is presented. It is proposed to correct the measured neutron flux density for above ground biomass yielding vegetation corrected soil water content from cosmic-ray measurements. The correction for above ground water equivalents aims to remove biases in soil water content measurements on sites with high seasonal vegetation dynamics such as agricultural fields. Above ground biomass is estimated as function of indices like NDVI and NDWI using regression equations. The regression equations were obtained with help of literature information, ground-based control measurements, a crop growth model and globally available data from the Moderate Resolution Imaging Spectrometer (MODIS). The results show that above ground biomass could be well estimated during the first half of the year. Seasonal changes in vegetation water content yielded biases in soil water content of ~0.05 cm3/cm3 that could be corrected for with the vegetation correction. The vegetation correction has particularly high potential when applied at long term cosmic-ray monitoring sites and the cosmic-ray rover.
Analysis of Orbital Lifetime Prediction Parameters in Preparation for Post-Mission Disposal
NASA Astrophysics Data System (ADS)
Choi, Ha-Yeon; Kim, Hae-Dong; Seong, Jae-Dong
2015-12-01
Atmospheric drag force is an important source of perturbation of Low Earth Orbit (LEO) orbit satellites, and solar activity is a major factor for changes in atmospheric density. In particular, the orbital lifetime of a satellite varies with changes in solar activity, so care must be taken in predicting the remaining orbital lifetime during preparation for post-mission disposal. In this paper, the System Tool Kit (STK®) Long-term Orbit Propagator is used to analyze the changes in orbital lifetime predictions with respect to solar activity. In addition, the STK® Lifetime tool is used to analyze the change in orbital lifetime with respect to solar flux data generation, which is needed for the orbital lifetime calculation, and its control on the drag coefficient control. Analysis showed that the application of the most recent solar flux file within the Lifetime tool gives a predicted trend that is closest to the actual orbit. We also examine the effect of the drag coefficient, by performing a comparative analysis between varying and constant coefficients in terms of solar activity intensities.
Performance prediction for a magnetostrictive actuator using a simplified model
NASA Astrophysics Data System (ADS)
Yoo, Jin-Hyeong; Jones, Nicholas J.
2018-03-01
Iron-Gallium alloys (Galfenol) are promising transducer materials that combine high magnetostriction, desirable mechanical properties, high permeability, and a wide operational temperature range. Most of all, the material is capable of operating under tensile stress, and is relatively resistant to shock. These materials are generally characterized using a solid, cylindrically-shaped specimen under controlled compressive stress and magnetization conditions. Because the magnetostriction strongly depends on both the applied stress and magnetization, the characterization of the material is usually conducted under controlled conditions so each parameter is varied independently of the other. However, in a real application the applied stress and magnetization will not be maintained constant during operation. Even though the controlled characterization measurement gives insight into standard material properties, usage of this data in an application, while possible, is not straight forward. This study presents an engineering modeling methodology for magnetostrictive materials based on a piezo-electric governing equation. This model suggests phenomenological, nonlinear, three-dimensional functions for strain and magnetic flux density responses as functions of applied stress and magnetic field. Load line performances as a function of maximum magnetic field input were simulated based on the model. To verify the modeling performance, a polycrystalline magnetostrictive rod (Fe-Ga alloy, Galfenol) was characterized under compressive loads using a dead-weight test setup, with strain gages on the rod and a magnetic field driving coil around the sample. The magnetic flux density through the Galfenol rod was measured with a sensing coil; the compressive loads were measured using a load cell on the bottom of the Galfenol rod. The experimental results are compared with the simulation results using the suggested model, showing good agreement.
Permeability of starch gel matrices and select films to solvent vapors.
Glenn, Gregory M; Klamczynski, Artur P; Ludvik, Charles; Shey, Justin; Imam, Syed H; Chiou, Bor-Sen; McHugh, Tara; DeGrandi-Hoffman, Gloria; Orts, William; Wood, Delilah; Offeman, Rick
2006-05-03
Volatile agrochemicals such as 2-heptanone have potential in safely and effectively controlling important agricultural pests provided that they are properly delivered. The present study reports the permeability of starch gel matrices and various coatings, some of which are agricultural-based, that could be used in controlled release devices. Low-density, microcellular starch foam was made from wheat, Dent corn, and high amylose corn starches. The foam density ranged from 0.14 to 0.34 g/cm3, the pore volume ranged from 74 to 89%, and the loading capacity ranged from 2.3 to 7.2 times the foam weight. The compressive properties of the foam were not markedly affected by saturating the pore volume with silicone oil. The vapor transmission rate (VTR) and vapor permeability (VP) were measured in dry, porous starch foam and silicone-saturated starch gels. VTR values were highest in foam samples containing solvents with high vapor pressures. Silicone oil-saturated gels had lower VTR and VP values as compared to the dry foam. However, the silicone oil gel did not markedly reduce the VP for 2-heptanone and an additional vapor barrier or coating was needed to adequately reduce the evaporation rate. The VP of films of beeswax, paraffin, ethylene vinyl alcohol, a fruit film, and a laminate comprised of beeswax and fruit film was measured. The fruit film had a relatively high VP for polar solvents and a very low VP for nonpolar solvents. The laminate film provided a low VP for polar and nonpolar solvents. Perforating the fruit film portion of the laminate provided a method of attaining the target flux rate of 2-heptanone. The results demonstrate that the vapor flux rate of biologically active solvents can be controlled using agricultural materials.
NASA Astrophysics Data System (ADS)
Clilverd, Mark A.; Cobbett, Neil; Rodger, Craig J.; Brundell, James B.; Denton, Michael H.; Hartley, David P.; Rodriguez, Juan V.; Danskin, Donald; Raita, Tero; Spanswick, Emma L.
2013-11-01
from two autonomous VLF radio receiver systems installed in a remote region of the Antarctic in 2012 is used to take advantage of the juxtaposition of the L = 4.6 contour, and the Hawaii-Halley, Antarctica, great circle path as it passes over thick Antarctic ice shelf. The ice sheet conductivity leads to high sensitivity to changing D region conditions, and the quasi constant L shell highlights outer radiation belt processes. The ground-based instruments observed several energetic electron precipitation events over a moderately active 24 h period, during which the outer radiation belt electron flux declined at most energies and subsequently recovered. Combining the ground-based data with low and geosynchronous orbiting satellite observations on 27 February 2012, different driving mechanisms were observed for three precipitation events with clear signatures in phase space density and electron anisotropy. Comparison between flux measurements made by Polar-orbiting Operational Environmental Satellites (POES) in low Earth orbit and by the Antarctic instrumentation provides evidence of different cases of weak and strong diffusion into the bounce loss cone, helping to understand the physical mechanisms controlling the precipitation of energetic electrons into the atmosphere. Strong diffusion events occurred as the <600 keV fluxes began to recover as a result of adiabatic transport of electrons. One event appeared to have a factor of about 10 to 100 times more flux than was reported by POES, consistent with weak diffusion into the bounce loss cone. Two events had a factor of about 3 to 10 times more >30 keV flux than was reported by POES, more consistent with strong diffusion conditions.
Development of a compact permanent magnet helicon plasma source for ion beam bioengineering.
Kerdtongmee, P; Srinoum, D; Nisoa, M
2011-10-01
A compact helicon plasma source was developed as a millimeter-sized ion source for ion beam bioengineering. By employing a stacked arrangement of annular-shaped permanent magnets, a uniform axial magnetic flux density up to 2.8 kG was obtained. A cost effective 118 MHz RF generator was built for adjusting forward output power from 0 to 40 W. The load impedance and matching network were then analyzed. A single loop antenna and circuit matching elements were placed on a compact printed circuit board for 50 Ω impedance matching. A plasma density up to 1.1 × 10(12) cm(-3) in the 10 mm diameter tube under the magnetic flux density was achieved with 35 W applied RF power.
Development of a compact permanent magnet helicon plasma source for ion beam bioengineering
NASA Astrophysics Data System (ADS)
Kerdtongmee, P.; Srinoum, D.; Nisoa, M.
2011-10-01
A compact helicon plasma source was developed as a millimeter-sized ion source for ion beam bioengineering. By employing a stacked arrangement of annular-shaped permanent magnets, a uniform axial magnetic flux density up to 2.8 kG was obtained. A cost effective 118 MHz RF generator was built for adjusting forward output power from 0 to 40 W. The load impedance and matching network were then analyzed. A single loop antenna and circuit matching elements were placed on a compact printed circuit board for 50 Ω impedance matching. A plasma density up to 1.1 × 1012 cm-3 in the 10 mm diameter tube under the magnetic flux density was achieved with 35 W applied RF power.
NASA Technical Reports Server (NTRS)
Vanzandt, T. E.; Smith, S. A.; Tsuda, T.; Sato, T.; Fritts, D. C.
1990-01-01
Results are presented from a six-day campaign to observe velocity fluctuations in the lower atmosphere using the MU radar (Fukao et al., 1985) in Shigaraki, Japan in March, 1986. Consideration is given to the azimuthal anisotropy, the frequency spectra, the vertical profiles of energy density, and the momentum flux of the motion field. It is found that all of the observed azimuthal variations are probably caused by a gravity wave field whose parameters vary with time. The results show significant differences between the mean zonal and meridional frequency spectra and different profiles of mean energy density with height for different frequency bands and for zonal and meridional components.
NASA Technical Reports Server (NTRS)
Mccomas, D. J.; Gosling, J. T.; Phillips, J. L.; Bame, S. J.; Luhmann, J. G.; Smith, E. J.
1989-01-01
An examination of ISEE-3 data from 1978 reveal 25 electron heat flux dropout events ranging in duration from 20 min to over 11 hours. The heat flux dropouts are found to occur in association with high plasma densities, low plasma velocities, low ion and electron temperatures, and low magnetic field magnitudes. It is suggested that the heat flux dropout intervals may indicate that the spacecraft is sampling plasma regimes which are magnetically disconnected from the sun and instead are connected to the outer heliosphere at both ends.
Relationships of a growing magnetic flux region to flares
NASA Technical Reports Server (NTRS)
Martin, S. F.; Bentley, R. D.; Schadee, A.; Antalova, A.; Kucera, A.; Dezso, L.; Gesztelyi, L.; Harvey, K. L.; Jones, H.; Livi, S. H. B.
1984-01-01
The evolution of flare sites at the boundaries of major new and growing magnetic flux regions within complexes of active regions has been analyzed using H-alpha images. A spectrum of possible relationships of growing flux regions to flares is described. An 'intimate' interaction between old and new flux and flare sites occurs at the boundaries of their regions. Forced or 'intimidated' interaction involves new flux pushing older, lower flux density fields toward a neighboring old polarity inversion line, followed by the occurrence of a flare. In 'influential' interaction, magnetic lines of force over an old polarity inversion line reconnect to new emerging flux, and a flare occurs when the magnetic field overlying the filament becomes too weak to prevent its eruption. 'Inconsequential' interaction occurs when a new flux region is too small or has the wrong orientation for creating flare conditions. 'Incidental' interaction involves a flare occurring without any significant relationship to new flux regions.
Thermally Driven One-Fluid Electron-Proton Solar Wind: Eight-Moment Approximation
NASA Astrophysics Data System (ADS)
Olsen, Espen Lyngdal; Leer, Egil
1996-05-01
In an effort to improve the "classical" solar wind model, we study an eight-moment approximation hydrodynamic solar wind model, in which the full conservation equation for the heat conductive flux is solved together with the conservation equations for mass, momentum, and energy. We consider two different cases: In one model the energy flux needed to drive the solar wind is supplied as heat flux from a hot coronal base, where both the density and temperature are specified. In the other model, the corona is heated. In that model, the coronal base density and temperature are also specified, but the temperature increases outward from the coronal base due to a specified energy flux that is dissipated in the corona. The eight-moment approximation solutions are compared with the results from a "classical" solar wind model in which the collision-dominated gas expression for the heat conductive flux is used. It is shown that the "classical" expression for the heat conductive flux is generally not valid in the solar wind. In collisionless regions of the flow, the eight-moment approximation gives a larger thermalization of the heat conductive flux than the models using the collision-dominated gas approximation for the heat flux, but the heat flux is still larger than the "saturation heat flux." This leads to a breakdown of the electron distribution function, which turns negative in the collisionless region of the flow. By increasing the interaction between the electrons, the heat flux is reduced, and a reasonable shape is obtained on the distribution function. By solving the full set of equations consistent with the eight-moment distribution function for the electrons, we are thus able to draw inferences about the validity of the eight-moment description of the solar wind as well as the validity of the very commonly used collision-dominated gas approximation for the heat conductive flux in the solar wind.
A full potential inverse method based on a density linearization scheme for wing design
NASA Technical Reports Server (NTRS)
Shankar, V.
1982-01-01
A mixed analysis inverse procedure based on the full potential equation in conservation form was developed to recontour a given base wing to produce density linearization scheme in applying the pressure boundary condition in terms of the velocity potential. The FL030 finite volume analysis code was modified to include the inverse option. The new surface shape information, associated with the modified pressure boundary condition, is calculated at a constant span station based on a mass flux integration. The inverse method is shown to recover the original shape when the analysis pressure is not altered. Inverse calculations for weakening of a strong shock system and for a laminar flow control (LFC) pressure distribution are presented. Two methods for a trailing edge closure model are proposed for further study.