Sample records for flux density frequency

  1. Measurement of Flux Density of Cas A at Low Frequencies

    NASA Astrophysics Data System (ADS)

    Patil, Ajinkya; Fisher, R.

    2012-01-01

    Cas A is used as a flux calibrator throughout the radio spectrum. Therefore it is important to know the spectral and secular variations in its flux density. Earlier observations by Scott et. al. (1969) and Baars et. al. (1972) suggested a secular decrease in flux density of Cas A at a rate of about 1% per year at all frequencies. However later observations by Erickson & Perley (1975) and Read (1977) indicated anomalously high flux from Cas A at 38 MHz. Also, these observations suggested that the original idea of faster decay of the flux density rate at low frequencies may be in error or that something more complex than simple decay is affecting the flux density at low frequencies. The source changes at 38 MHz still remains a mystery. We intend to present the results of follow up observations made from 1995 to 1998 with a three element interferometer in Green Bank operating in frequency range 30 to 120 MHz. We will discuss the problems at such low frequencies due to large beamwidth and unstable ionosphere. We will also discuss the strategies we have used so far to to find the flux density of Cas A by calculating the ratio of flux density of Cas A to that of Cyg A, assuming flux density of Cyg A to be constant. Above mentioned work was performed in summer student program sponsored by National Radio Astronomy Observatory.

  2. Using Solar Radio Burst Integrated Fluxes to Predict Energetic Proton Flux Increases.

    DTIC Science & Technology

    1982-08-31

    Energy Density, ET, of the radio burst, an integration across the frequency interval of the time-integrated radio fluxes at each frequency, was found to...integrated flux or energy at five frequencies in the 600- to 8800-MHz frequency interval and related them to the peak proton flux of the associated... energy of the burst normalized to its peak flux. One other characteristic of the radio burst to which Croom 13 referred was the total energy density, ET

  3. Soft magnetic characteristics of laminated magnetic block cores assembled with a high Bs nanocrystalline alloy

    NASA Astrophysics Data System (ADS)

    Yao, Atsushi; Inoue, Masaki; Tsukada, Kouhei; Fujisaki, Keisuke

    2018-05-01

    This paper focuses on an evaluation of core losses in laminated magnetic block cores assembled with a high Bs nanocrystalline alloy in high magnetic flux density region. To discuss the soft magnetic properties of the high Bs block cores, the comparison with amorphous (SA1) block cores is also performed. In the high Bs block core, both low core losses and high saturation flux densities Bs are satisfied in the low frequency region. Furthermore, in the laminated block core made of the high Bs alloy, the rate of increase of iron losses as a function of the magnetic flux density remains small up to around 1.6 T, which cannot be realized in conventional laminated block cores based on amorphous alloy. The block core made of the high Bs alloy exhibits comparable core loss with that of amorphous alloy core in the high-frequency region. Thus, it is expected that this laminated high Bs block core can achieve low core losses and high saturation flux densities in the high-frequency region.

  4. Magnetic and Electrical Characteristics of Cobalt-Based Amorphous Materials and Comparison to a Permalloy Type Polycrystalline Material

    NASA Technical Reports Server (NTRS)

    Wieserman, William R.; Schwarze, Gene E.; Niedra, Janis M.

    2005-01-01

    Magnetic component designers are always looking for improved soft magnetic core materials to increase the efficiency, temperature rating and power density of transformers, motors, generators and alternators, and energy density of inductors. In this paper, we report on the experimental investigation of commercially available cobalt-based amorphous alloys which, in their processing, were subjected to two different types of magnetic field anneals: A longitudinal magnetic field anneal or a transverse magnetic field anneal. The longitudinal field annealed material investigated was Metglas 2714A. The electrical and magnetic characteristics of this material were investigated over the frequency range of 1 to 200 kHz and temperature range of 23 to 150 C for both sine and square wave voltage excitation. The specific core loss was lower for the square than the sine wave voltage excitation for the same maximum flux density, frequency and temperature. The transverse magnetic field annealed core materials include Metglas 2714AF and Vacuumschmelze 6025F. These two materials were experimentally characterized over the frequency range of 10 to 200 kHz for sine wave voltage excitation and 23 C only. A comparison of the 2174A to 2714AF found that 2714AF always had lower specific core loss than 2714A for any given magnetic flux density and frequency and the ratio of specific core loss of 2714A to 2714AF was dependent on both magnetic flux density and frequency. A comparison was also made of the 2714A, 2714AF, and 6025F materials to two different tape thicknesses of the polycrystalline Supermalloy material and the results show that 2714AF and 6025F have the lowest specific core loss at 100 kHz over the magnetic flux density range of 0.1 to 0.4 Tesla.

  5. THE CELESTIAL REFERENCE FRAME AT 24 AND 43 GHz. II. IMAGING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charlot, P.; Boboltz, D. A.; Fey, A. L.

    2010-05-15

    We have measured the submilliarcsecond structure of 274 extragalactic sources at 24 and 43 GHz in order to assess their astrometric suitability for use in a high-frequency celestial reference frame (CRF). Ten sessions of observations with the Very Long Baseline Array have been conducted over the course of {approx}5 years, with a total of 1339 images produced for the 274 sources. There are several quantities that can be used to characterize the impact of intrinsic source structure on astrometric observations including the source flux density, the flux density variability, the source structure index, the source compactness, and the compactness variability.more » A detailed analysis of these imaging quantities shows that (1) our selection of compact sources from 8.4 GHz catalogs yielded sources with flux densities, averaged over the sessions in which each source was observed, of about 1 Jy at both 24 and 43 GHz, (2) on average the source flux densities at 24 GHz varied by 20%-25% relative to their mean values, with variations in the session-to-session flux density scale being less than 10%, (3) sources were found to be more compact with less intrinsic structure at higher frequencies, and (4) variations of the core radio emission relative to the total flux density of the source are less than 8% on average at 24 GHz. We conclude that the reduction in the effects due to source structure gained by observing at higher frequencies will result in an improved CRF and a pool of high-quality fiducial reference points for use in spacecraft navigation over the next decade.« less

  6. Nanolaminated Permalloy Core for High-Flux, High-Frequency Ultracompact Power Conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, J; Kim, M; Galle, P

    2013-09-01

    Metallic magnetic materials have desirable magnetic properties, including high permeability, and high saturation flux density, when compared with their ferrite counterparts. However, eddy-current losses preclude their use in many switching converter applications, due to the challenge of simultaneously achieving sufficiently thin laminations such that eddy currents are suppressed (e.g., 500 nm-1 mu m for megahertz frequencies), while simultaneously achieving overall core thicknesses such that substantial power can be handled. A CMOS-compatible fabrication process based on robot-assisted sequential electrodeposition followed by selective chemical etching has been developed for the realization of a core of substantial overall thickness (tens to hundreds ofmore » micrometers) comprised of multiple, stacked permalloy (Ni80Fe20) nanolaminations. Tests of toroidal inductors with nanolaminated cores showed negligible eddy-current loss relative to total core loss even at a peak flux density of 0.5 T in the megahertz frequency range. To illustrate the use of these cores, a buck power converter topology is implemented with switching frequencies of 1-2 MHz. Power conversion efficiency greater than 85% with peak operating flux density of 0.3-0.5 T in the core and converter output power level exceeding 5 W was achieved.« less

  7. LOFAR 150-MHz observations of the Boötes field: catalogue and source counts

    NASA Astrophysics Data System (ADS)

    Williams, W. L.; van Weeren, R. J.; Röttgering, H. J. A.; Best, P.; Dijkema, T. J.; de Gasperin, F.; Hardcastle, M. J.; Heald, G.; Prandoni, I.; Sabater, J.; Shimwell, T. W.; Tasse, C.; van Bemmel, I. M.; Brüggen, M.; Brunetti, G.; Conway, J. E.; Enßlin, T.; Engels, D.; Falcke, H.; Ferrari, C.; Haverkorn, M.; Jackson, N.; Jarvis, M. J.; Kapińska, A. D.; Mahony, E. K.; Miley, G. K.; Morabito, L. K.; Morganti, R.; Orrú, E.; Retana-Montenegro, E.; Sridhar, S. S.; Toribio, M. C.; White, G. J.; Wise, M. W.; Zwart, J. T. L.

    2016-08-01

    We present the first wide area (19 deg2), deep (≈120-150 μJy beam-1), high-resolution (5.6 × 7.4 arcsec) LOFAR High Band Antenna image of the Boötes field made at 130-169 MHz. This image is at least an order of magnitude deeper and 3-5 times higher in angular resolution than previously achieved for this field at low frequencies. The observations and data reduction, which includes full direction-dependent calibration, are described here. We present a radio source catalogue containing 6 276 sources detected over an area of 19 deg2, with a peak flux density threshold of 5σ. As the first thorough test of the facet calibration strategy, introduced by van Weeren et al., we investigate the flux and positional accuracy of the catalogue. We present differential source counts that reach an order of magnitude deeper in flux density than previously achieved at these low frequencies, and show flattening at 150-MHz flux densities below 10 mJy associated with the rise of the low flux density star-forming galaxies and radio-quiet AGN.

  8. Study of extremely low frequency electromagnetic fields in infant incubators.

    PubMed

    Cermáková, Eleonora

    2003-01-01

    The aim of the work was to present the results of measurements of extremely low frequency electromagnetic fields (ELF EMF), namely the magnetic flux density, inside infant incubators, and to compare these results with the data published by other authors who point out to a possible association between leukemia or other diseases observed in newborns kept in incubators after the birth and the ELF EMF exposure in the incubator. The measured magnetic flux densities were compared with the reference values for this frequency range indicated in the European Union (EU) recommendations. The repeated measurements in incubators were made with a calibrated magnetometer EFA 300 in the frequency range of 5-30 kHz. Effective values of magnetic flux densities of ELF EMF were determined taking account of the reference values. The results of many repeated measurements showing the values of magnetic flux density in modern incubators with plastic supporting frame, were compared with those obtained in old type incubators with iron skeleton. A power frequency of 50 Hz was detected in the incubator and the ELF EMF values were by over two orders lower than the EU reference values. The paper emphasizes the need to take a special care of newborns kept in incubators even if only the sub-reference values are detected. The EU reference values are intended for the adult human population. A baby in an incubator has much smaller dimensions, higher electric conductivity and maybe trigger another mechanism of response to ELF EMF than that indicated in this paper.

  9. Surface flux density distribution characteristics of bulk high- Tc superconductor in external magnetic field

    NASA Astrophysics Data System (ADS)

    Torii, S.; Yuasa, K.

    2004-10-01

    Various magnetic levitation systems using oxide superconductors are developed as strong pinning forces are obtained in melt-processed bulk. However, the trapped flux of superconductor is moved by flux creep and fluctuating magnetic field. Therefore, to examine the internal condition of superconductor, the authors measure the dynamic surface flux density distribution of YBCO bulk. Flux density measurement system has a structure with the air-core coil and the Hall sensors. Ten Hall sensors are arranged in series. The YBCO bulk, which has 25 mm diameter and 13 mm thickness, is field cooled by liquid nitrogen. After that, magnetic field is changed by the air-core coil. This paper describes about the measured results of flux density distribution of YBCO bulk in the various frequencies of air-core coils currents.

  10. Studies of velocity fluctuations in the lower atmosphere using the MU radar. I - Azimuthal anisotropy. II - Momentum fluxes and energy densities

    NASA Technical Reports Server (NTRS)

    Vanzandt, T. E.; Smith, S. A.; Tsuda, T.; Sato, T.; Fritts, D. C.

    1990-01-01

    Results are presented from a six-day campaign to observe velocity fluctuations in the lower atmosphere using the MU radar (Fukao et al., 1985) in Shigaraki, Japan in March, 1986. Consideration is given to the azimuthal anisotropy, the frequency spectra, the vertical profiles of energy density, and the momentum flux of the motion field. It is found that all of the observed azimuthal variations are probably caused by a gravity wave field whose parameters vary with time. The results show significant differences between the mean zonal and meridional frequency spectra and different profiles of mean energy density with height for different frequency bands and for zonal and meridional components.

  11. Wavelet Based Characterization of Low Radio Frequency Solar Emissions

    NASA Astrophysics Data System (ADS)

    Suresh, A.; Sharma, R.; Das, S. B.; Oberoi, D.; Pankratius, V.; Lonsdale, C.

    2016-12-01

    Low-frequency solar radio observations with the Murchison Widefield Array (MWA) have revealed the presence of numerous short-lived, narrow-band weak radio features, even during quiet solar conditions. In their appearance in in the frequency-time plane, they come closest to the solar type III bursts, but with much shorter spectral spans and flux densities, so much so that they are not detectable with the usual swept frequency radio spectrographs. These features occur at rates of many thousand features per hour in the 30.72 MHz MWA bandwidth, and hence necessarily require an automated approach to determine robust statistical estimates of their properties, e.g., distributions of spectral widths, temporal spans, flux densities, slopes in the time-frequency plane and distribution over frequency. To achieve this, a wavelet decomposition approach has been developed for feature recognition and subsequent parameter extraction from the MWA dynamic spectrum. This work builds on earlier work by the members of this team to achieve a reliable flux calibration in a computationally efficient manner. Preliminary results show that the distribution of spectral span of these features peaks around 3 MHz, most of them last for less than two seconds and are characterized by flux densities of about 60% of the background solar emission. In analogy with the solar type III bursts, this non-thermal emission is envisaged to arise via coherent emission processes. There is also an exciting possibility that these features might correspond to radio signatures of nanoflares, hypothesized (Gold, 1964; Parker, 1972) to explain coronal heating.

  12. Drift-Alfven wave mediated particle transport in an elongated density depression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vincena, Stephen; Gekelman, Walter

    Cross-field particle transport due to drift-Alfven waves is measured in an elongated density depression within an otherwise uniform, magnetized helium plasma column. The depression is formed by drawing an electron current to a biased copper plate with cross-field dimensions of 28x0.24 ion sound-gyroradii {rho}{sub s}=c{sub s}/{omega}{sub ci}. The process of density depletion and replenishment via particle flux repeats in a quasiperiodic fashion for the duration of the current collection. The mode structure of the wave density fluctuations in the plane perpendicular to the background magnetic field is revealed using a two-probe correlation technique. The particle flux as a function ofmore » frequency is measured using a linear array of Langmuir probes and the only significant transport occurs for waves with frequencies between 15%-25% of the ion cyclotron frequency (measured in the laboratory frame) and with perpendicular wavelengths k{sub perpendicular}{rho}{sub s}{approx}0.7. The frequency-integrated particle flux is in rough agreement with observed increases in density in the center of the depletion as a function of time. The experiments are carried out in the Large Plasma Device (LAPD) [Gekelman et al., Rev. Sci. Instrum. 62, 2875 (1991)] at the Basic Plasma Science Facility located at the University of California, Los Angeles.« less

  13. The brightness temperature of Venus and the absolute flux-density scale at 608 MHz.

    NASA Technical Reports Server (NTRS)

    Muhleman, D. O.; Berge, G. L.; Orton, G. S.

    1973-01-01

    The disk temperature of Venus was measured at 608 MHz near the inferior conjunction of 1972, and a value of 498 plus or minus 33 K was obtained using a nominal CKL flux-density scale. The result is consistent with earlier measurements, but has a much smaller uncertainty. Our theoretical model prediction is larger by a factor of 1.21 plus or minus 0.09. This discrepancy has been noticed previously for frequencies below 1400 MHz, but was generally disregarded because of the large observational uncertainties. No way could be found to change the model to produce agreement without causing a conflict with well-established properties of Venus. Thus it is suggested that the flux-density scale may require an upward revision, at least near this frequency, in excess of what has previously been considered likely.

  14. Evaluation of Density Corrections to Methane Fluxes Measured by Open-Path Eddy Covariance over Contrasting Landscapes

    NASA Astrophysics Data System (ADS)

    Chamberlain, Samuel D.; Verfaillie, Joseph; Eichelmann, Elke; Hemes, Kyle S.; Baldocchi, Dennis D.

    2017-11-01

    Corrections accounting for air density fluctuations due to heat and water vapour fluxes must be applied to the measurement of eddy-covariance fluxes when using open-path sensors. Experimental tests and ecosystem observations have demonstrated the important role density corrections play in accurately quantifying carbon dioxide (CO2) fluxes, but less attention has been paid to evaluating these corrections for methane (CH4) fluxes. We measured CH4 fluxes with open-path sensors over a suite of sites with contrasting CH4 emissions and energy partitioning, including a pavement airfield, two negligible-flux ecosystems (drained alfalfa and pasture), and two high-flux ecosystems (flooded wetland and rice). We found that density corrections successfully re-zeroed fluxes in negligible-flux sites; however, slight overcorrection was observed above pavement. The primary impact of density corrections varied over negligible- and high-flux ecosystems. For negligible-flux sites, corrections led to greater than 100% adjustment in daily budgets, while these adjustments were only 3-10% in high-flux ecosystems. The primary impact to high-flux ecosystems was a change in flux diel patterns, which may affect the evaluation of relationships between biophysical drivers and fluxes if correction bias exists. Additionally, accounting for density effects to high-frequency CH4 fluctuations led to large differences in observed CH4 flux cospectra above negligible-flux sites, demonstrating that similar adjustments should be made before interpreting CH4 cospectra for comparable ecosystems. These results give us confidence in CH4 fluxes measured by open-path sensors, and demonstrate that density corrections play an important role in adjusting flux budgets and diel patterns across a range of ecosystems.

  15. Planck intermediate results. LII. Planet flux densities

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Basak, S.; Benabed, K.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Carron, J.; Chiang, H. C.; Colombo, L. P. L.; Comis, B.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Di Valentino, E.; Dickinson, C.; Diego, J. M.; Doré, O.; Ducout, A.; Dupac, X.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Fantaye, Y.; Finelli, F.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frolov, A.; Galeotta, S.; Galli, S.; Ganga, K.; Génova-Santos, R. T.; Gerbino, M.; González-Nuevo, J.; Górski, K. M.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Helou, G.; Henrot-Versillé, S.; Herranz, D.; Hivon, E.; Jaffe, A. H.; Jones, W. C.; Keihänen, E.; Keskitalo, R.; Kiiveri, K.; Kim, J.; Kisner, T. S.; Krachmalnicoff, N.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Le Jeune, M.; Lellouch, E.; Levrier, F.; Liguori, M.; Lilje, P. B.; Lindholm, V.; López-Caniego, M.; Ma, Y.-Z.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Maris, M.; Martin, P. G.; Martínez-González, E.; Matarrese, S.; Mauri, N.; McEwen, J. D.; Melchiorri, A.; Mennella, A.; Migliaccio, M.; Miville-Deschênes, M.-A.; Molinari, D.; Moneti, A.; Montier, L.; Moreno, R.; Morgante, G.; Natoli, P.; Oxborrow, C. A.; Paoletti, D.; Partridge, B.; Patanchon, G.; Patrizii, L.; Perdereau, O.; Piacentini, F.; Plaszczynski, S.; Polenta, G.; Rachen, J. P.; Racine, B.; Reinecke, M.; Remazeilles, M.; Renzi, A.; Rocha, G.; Romelli, E.; Rosset, C.; Roudier, G.; Rubiño-Martín, J. A.; Ruiz-Granados, B.; Salvati, L.; Sandri, M.; Savelainen, M.; Scott, D.; Sirri, G.; Spencer, L. D.; Suur-Uski, A.-S.; Tauber, J. A.; Tavagnacco, D.; Tenti, M.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Trombetti, T.; Valiviita, J.; Van Tent, F.; Vielva, P.; Villa, F.; Wehus, I. K.; Zacchei, A.

    2017-11-01

    Measurements of flux density are described for five planets, Mars, Jupiter, Saturn, Uranus, and Neptune, across the six Planck High Frequency Instrument frequency bands (100-857 GHz) and these are then compared with models and existing data. In our analysis, we have also included estimates of the brightness of Jupiter and Saturn at the three frequencies of the Planck Low Frequency Instrument (30, 44, and 70 GHz). The results provide constraints on the intrinsic brightness and the brightness time-variability of these planets. The majority of the planet flux density estimates are limited by systematic errors, but still yield better than 1% measurements in many cases. Applying data from Planck HFI, the Wilkinson Microwave Anisotropy Probe (WMAP), and the Atacama Cosmology Telescope (ACT) to a model that incorporates contributions from Saturn's rings to the planet's total flux density suggests a best fit value for the spectral index of Saturn's ring system of βring = 2.30 ± 0.03 over the 30-1000 GHz frequency range. Estimates of the polarization amplitude of the planets have also been made in the four bands that have polarization-sensitive detectors (100-353 GHz); this analysis provides a 95% confidence level upper limit on Mars's polarization of 1.8, 1.7, 1.2, and 1.7% at 100, 143, 217, and 353 GHz, respectively. The average ratio between the Planck-HFI measurements and the adopted model predictions for all five planets (excluding Jupiter observations for 353 GHz) is 1.004, 1.002, 1.021, and 1.033 for 100, 143, 217, and 353 GHz, respectively. Model predictions for planet thermodynamic temperatures are therefore consistent with the absolute calibration of Planck-HFI detectors at about the three-percent level. We compare our measurements with published results from recent cosmic microwave background experiments. In particular, we observe that the flux densities measured by Planck HFI and WMAP agree to within 2%. These results allow experiments operating in the mm-wavelength range to cross-calibrate against Planck and improve models of radiative transport used in planetary science.

  16. Frequency spectra from current vs. magnetic flux density measurements for mobile phones and other electrical appliances.

    PubMed

    Straume, Aksel; Johnsson, Anders; Oftedal, Gunnhild; Wilén, Jonna

    2007-10-01

    The frequency spectra of electromagnetic fields have to be determined to evaluate human exposure in accordance to ICNIRP guidelines. In the literature, comparisons with magnetic field guidelines have been performed by using the frequency distribution of the current drawn from the battery. In the present study we compared the frequency spectrum in the range 217 Hz to 2.4 kHz of the magnetic flux density measured near the surface of a mobile phone with the frequency spectrum of the supply current. By using the multiple frequency rule, recommended in the ICNIRP guidelines, we estimated the magnetic field exposure in the two cases. Similar measurements and estimations were done for an electric drill, a hair dryer, and a fluorescent desk lamp. All the devices have a basic frequency of 50 Hz, and the frequency spectra were evaluated up to 550 Hz. We also mapped the magnetic field in 3D around three mobile phones. The frequency distributions obtained from the two measurement methods are not equal. The frequency content of the current leads to an overestimation of the magnetic field exposure by a factor up to 2.2 for the mobile phone. For the drill, the hair dryer, and the fluorescent lamp, the supply current signal underestimated the exposure by a factor up to 2.3. In conclusion, an accurate exposure evaluation requires the magnetic flux density spectrum of the device to be measured directly. There was no indication that the devices studied would exceed the reference levels at the working distances normally used.

  17. Real-time plasma control in a dual-frequency, confined plasma etcher

    NASA Astrophysics Data System (ADS)

    Milosavljević, V.; Ellingboe, A. R.; Gaman, C.; Ringwood, J. V.

    2008-04-01

    The physics issues of developing model-based control of plasma etching are presented. A novel methodology for incorporating real-time model-based control of plasma processing systems is developed. The methodology is developed for control of two dependent variables (ion flux and chemical densities) by two independent controls (27 MHz power and O2 flow). A phenomenological physics model of the nonlinear coupling between the independent controls and the dependent variables of the plasma is presented. By using a design of experiment, the functional dependencies of the response surface are determined. In conjunction with the physical model, the dependencies are used to deconvolve the sensor signals onto the control inputs, allowing compensation of the interaction between control paths. The compensated sensor signals and compensated set-points are then used as inputs to proportional-integral-derivative controllers to adjust radio frequency power and oxygen flow to yield the desired ion flux and chemical density. To illustrate the methodology, model-based real-time control is realized in a commercial semiconductor dielectric etch chamber. The two radio frequency symmetric diode operates with typical commercial fluorocarbon feed-gas mixtures (Ar/O2/C4F8). Key parameters for dielectric etching are known to include ion flux to the surface and surface flux of oxygen containing species. Control is demonstrated using diagnostics of electrode-surface ion current, and chemical densities of O, O2, and CO measured by optical emission spectrometry and/or mass spectrometry. Using our model-based real-time control, the set-point tracking accuracy to changes in chemical species density and ion flux is enhanced.

  18. Synoptic observations of Jupiter's radio emissions: Average Statistical properties observed by Voyager

    NASA Technical Reports Server (NTRS)

    Alexander, J. K.; Carr, T. D.; Thieman, J. R.; Schauble, J. J.; Riddle, A. C.

    1980-01-01

    Observations of Jupiter's low frequency radio emissions collected over one month intervals before and after each Voyager encounter were analyzed. Compilations of occurrence probability, average power flux density and average sense of circular polarization are presented as a function of central meridian longitude, phase of Io, and frequency. The results are compared with ground based observations. The necessary geometrical conditions are preferred polarization sense for Io-related decametric emission observed by Voyager from above both the dayside and nightside hemispheres are found to be essentially the same as are observed in Earth based studies. On the other hand, there is a clear local time dependence in the Io-independent decametric emission. Io appears to have an influence on average flux density of the emission down to below 2 MHz. The average power flux density spectrum of Jupiter's emission has a broad peak near 9MHz. Integration of the average spectrum over all frequencies gives a total radiated power for an isotropic source of 4 x 10 to the 11th power W.

  19. MEMS cantilever based magnetic field gradient sensor

    NASA Astrophysics Data System (ADS)

    Dabsch, Alexander; Rosenberg, Christoph; Stifter, Michael; Keplinger, Franz

    2017-05-01

    This paper describes major contributions to a MEMS magnetic field gradient sensor. An H-shaped structure supported by four arms with two circuit paths on the surface is designed for measuring two components of the magnetic flux density and one component of the gradient. The structure is produced from silicon wafers by a dry etching process. The gold leads on the surface carry the alternating current which interacts with the magnetic field component perpendicular to the direction of the current. If the excitation frequency is near to a mechanical resonance, vibrations with an amplitude within the range of 1-103 nm are expected. Both theoretical (simulations and analytic calculations) and experimental analysis have been carried out to optimize the structures for different strength of the magnetic gradient. In the same way the impact of the coupling structure on the resonance frequency and of different operating modes to simultaneously measure two components of the flux density were tested. For measuring the local gradient of the flux density the structure was operated at the first symmetrical and the first anti-symmetrical mode. Depending on the design, flux densities of approximately 2.5 µT and gradients starting from 1 µT mm-1 can be measured.

  20. Variable dual-frequency electrostatic wave launcher for plasma applications.

    PubMed

    Jorns, Benjamin; Sorenson, Robert; Choueiri, Edgar

    2011-12-01

    A variable tuning system is presented for launching two electrostatic waves concurrently in a magnetized plasma. The purpose of this system is to satisfy the wave launching requirements for plasma applications where maximal power must be coupled into two carefully tuned electrostatic waves while minimizing erosion to the launching antenna. Two parallel LC traps with fixed inductors and variable capacitors are used to provide an impedance match between a two-wave source and a loop antenna placed outside the plasma. Equivalent circuit analysis is then employed to derive an analytical expression for the normalized, average magnetic flux density produced by the antenna in this system as a function of capacitance and frequency. It is found with this metric that the wave launcher can couple to electrostatic modes at two variable frequencies concurrently while attenuating noise from the source signal at undesired frequencies. An example based on an experiment for plasma heating with two electrostatic waves is used to demonstrate a procedure for tailoring the wave launcher to accommodate the frequency range and flux densities of a specific two-wave application. This example is also used to illustrate a method based on averaging over wave frequencies for evaluating the overall efficacy of the system. The wave launcher is shown to be particularly effective for the illustrative example--generating magnetic flux densities in excess of 50% of the ideal case at two variable frequencies concurrently--with a high adaptability to a number of plasma dynamics and heating applications.

  1. A search for long-time-scale, low-frequency radio transients

    NASA Astrophysics Data System (ADS)

    Murphy, Tara; Kaplan, David L.; Croft, Steve; Lynch, Christene; Callingham, J. R.; Bannister, Keith; Bell, Martin E.; Hurley-Walker, Natasha; Hancock, Paul; Line, Jack; Rowlinson, Antonia; Lenc, Emil; Intema, H. T.; Jagannathan, P.; Ekers, Ronald D.; Tingay, Steven; Yuan, Fang; Wolf, Christian; Onken, Christopher A.; Dwarakanath, K. S.; For, B.-Q.; Gaensler, B. M.; Hindson, L.; Johnston-Hollitt, M.; Kapińska, A. D.; McKinley, B.; Morgan, J.; Offringa, A. R.; Procopio, P.; Staveley-Smith, L.; Wayth, R.; Wu, C.; Zheng, Q.

    2017-04-01

    We present a search for transient and highly variable sources at low radio frequencies (150-200 MHz) that explores long time-scales of 1-3 yr. We conducted this search by comparing the TIFR GMRT Sky Survey Alternative Data Release 1 (TGSS ADR1) and the GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) survey catalogues. To account for the different completeness thresholds in the individual surveys, we searched for compact GLEAM sources above a flux density limit of 100 mJy that were not present in the TGSS ADR1; and also for compact TGSS ADR1 sources above a flux density limit of 200 mJy that had no counterpart in GLEAM. From a total sample of 234 333 GLEAM sources and 275 612 TGSS ADR1 sources in the overlap region between the two surveys, there were 99 658 GLEAM sources and 38 978 TGSS ADR sources that passed our flux density cut-off and compactness criteria. Analysis of these sources resulted in three candidate transient sources. Further analysis ruled out two candidates as imaging artefacts. We analyse the third candidate and show it is likely to be real, with a flux density of 182 ± 26 mJy at 147.5 MHz. This gives a transient surface density of ρ = (6.2 ± 6) × 10-5 deg-2. We present initial follow-up observations and discuss possible causes for this candidate. The small number of spurious sources from this search demonstrates the high reliability of these two new low-frequency radio catalogues.

  2. A miniaturized human-motion energy harvester using flux-guided magnet stacks

    NASA Astrophysics Data System (ADS)

    Halim, M. A.; Park, J. Y.

    2016-11-01

    We present a miniaturized electromagnetic energy harvester (EMEH) using two flux-guided magnet stacks to harvest energy from human-generated vibration such as handshaking. Each flux-guided magnet stack increases (40%) the magnetic flux density by guiding the flux lines through a soft magnetic material. The EMEH has been designed to up-convert the applied human-motion vibration to a high-frequency oscillation by mechanical impact of a spring-less structure. The high-frequency oscillator consists of the analyzed 2-magnet stack and a customized helical compression spring. A standard AAA battery sized prototype (3.9 cm3) can generate maximum 203 μW average power from human hand-shaking vibration. It has a maximum average power density of 52 μWcm-3 which is significantly higher than the current state-of-the-art devices. A 6-stage multiplier and rectifier circuit interfaces the harvester with a wearable electronic load (wrist watch) to demonstrate its capability of powering small- scale electronic systems from human-generated vibration.

  3. Role of turbulence regime on determining the local density gradient

    DOE PAGES

    Wang, X.; Mordijck, Saskia; Doyle, E. J.; ...

    2017-11-16

    In this study we show that the local density gradient in the plasma core depends on the calculated mode-frequency of the most unstable linear mode and reaches a maximum when this frequency is close to zero. Previous theoretical and experimental work on AUG has shown that the ratio of electron to ion temperature, and as such the frequency of the dominant linear gyrokinetic mode, affects the local density gradient close to ρ = 0.3 [1, 2]. On DIII-D we find that by adding Electron Cyclotron Heating (ECH), we modify the dominant unstable linear gyro kinetic mode from an Ion Temperaturemore » Gradient (ITG) mode to a Trapped Electron Mode (TEM), which means that the frequency of the dominant mode changes sign (from the ion to the electron direction). Local density peaking around mid-radius increases by 50% right around the cross-over between the ITG and TEM regimes. By comparing how the particle flux changes, through the derivative of the electron density, n e, with respect to time, ∂n e/∂t, we find that the particle flux also exhibits the same trend versus mode frequency. As a result, we find that the changes in local particle transport are inversely proportional to the changes in electron density, indicating that the changes are driven by a change in thermo-diffusive pinch.« less

  4. EVLA observations of radio-loud quasars selected to study radio orientation

    NASA Astrophysics Data System (ADS)

    Maithil, Jaya; Brotherton, Michael S.; Runnoe, Jessie; Wardle, John F. C.; DiPompeo, Michael; De Breuck, Carlos; Wills, Beverley J.

    2018-06-01

    We present preliminary work to develop an unbiased sample of radio-loud quasars to test orientation indicators. We have obtained radio data of 147 radio-loud quasars using EVLA at 10 GHz and with the A-array. With this high-resolution data we have measured the uncontaminated core flux density to determine orientation indicators based on radio core dominance. The radio cores of quasars have a flat spectrum over a broad range of frequencies, so we expect that the core flux density at the FIRST and the observed frequencies should be the same in the absence of variability. Jackson & Brown (2012) pointed out that the survey measurements of core flux density, like FIRST, often doesn't have the spatial resolution to distinguish cores from extended emission. Our measurements show that at FIRST spatial resolution, core flux measurements are indeed systematically high. Our results establish that orientation studies need high-resolution radio data as compared to survey data, and that the optical emission is a better normalization than the extended radio emission for a core dominance parameter to track orientation.

  5. Magnetic and Electrical Characteristics of Permalloy Thin Tape Bobbin Cores

    NASA Technical Reports Server (NTRS)

    Schwarze, Gene E.; Wieserman, William R.; Niedra, Janis M.

    2005-01-01

    The core loss, that is, the power loss, of a soft ferromagnetic material is a function of the flux density, frequency, temperature, excitation type (voltage or current), excitation waveform (sine, square, etc.) and lamination or tape thickness. In previously published papers we have reported on the specific core loss and dynamic B-H loop results for several polycrystalline, nanocrystalline, and amorphous soft magnetic materials. In this previous research we investigated the effect of flux density, frequency, temperature, and excitation waveform for voltage excitation on the specific core loss and dynamic B-H loop. In this paper, we will report on an experimental study to investigate the effect of tape thicknesses of 1, 1/2, 1/4, and 1/8-mil Permalloy type magnetic materials on the specific core loss. The test cores were fabricated by winding the thin tapes on ceramic bobbin cores. The specific core loss tests were conducted at room temperature and over the frequency range of 10 kHz to 750 kHz using sine wave voltage excitation. The results of this experimental investigation will be presented primarily in graphical form to show the effect of tape thickness, frequency, and magnetic flux density on the specific core loss. Also, the experimental results when applied to power transformer design will be briefly discussed.

  6. 47 CFR 5.85 - Frequencies and policy governing frequency assignment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... (including the radio astronomy service). Stations authorized under subparts E and F are subject to additional... flux density assuming a free space characteristic impedance of 120π ohms) at the reference coordinates...

  7. 47 CFR 5.85 - Frequencies and policy governing frequency assignment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... (including the radio astronomy service). Stations authorized under subparts E and F are subject to additional... flux density assuming a free space characteristic impedance of 120π ohms) at the reference coordinates...

  8. A LOFAR census of non-recycled pulsars: average profiles, dispersion measures, flux densities, and spectra

    NASA Astrophysics Data System (ADS)

    Bilous, A. V.; Kondratiev, V. I.; Kramer, M.; Keane, E. F.; Hessels, J. W. T.; Stappers, B. W.; Malofeev, V. M.; Sobey, C.; Breton, R. P.; Cooper, S.; Falcke, H.; Karastergiou, A.; Michilli, D.; Osłowski, S.; Sanidas, S.; ter Veen, S.; van Leeuwen, J.; Verbiest, J. P. W.; Weltevrede, P.; Zarka, P.; Grießmeier, J.-M.; Serylak, M.; Bell, M. E.; Broderick, J. W.; Eislöffel, J.; Markoff, S.; Rowlinson, A.

    2016-06-01

    We present first results from a LOFAR census of non-recycled pulsars. The census includes almost all such pulsars known (194 sources) at declinations Dec > 8° and Galactic latitudes |Gb| > 3°, regardless of their expected flux densities and scattering times. Each pulsar was observed for ≥20 min in the contiguous frequency range of 110-188 MHz. Full-Stokes data were recorded. We present the dispersion measures, flux densities, and calibrated total intensity profiles for the 158 pulsars detected in the sample. The median uncertainty in census dispersion measures (1.5 × 10-3 pc cm-3) is ten times smaller, on average, than in the ATNF pulsar catalogue. We combined census flux densities with those in the literature and fitted the resulting broadband spectra with single or broken power-law functions. For 48 census pulsars such fits are being published for the first time. Typically, thechoice between single and broken power-laws, as well as the location of the spectral break, were highly influenced by the spectral coverage of the available flux density measurements. In particular, the inclusion of measurements below 100 MHz appears essential for investigating the low-frequency turnover in the spectra for most of the census pulsars. For several pulsars, we compared the spectral indices from different works and found the typical spread of values to be within 0.5-1.5, suggesting a prevailing underestimation of spectral index errors in the literature. The census observations yielded some unexpected individual source results, as we describe in the paper. Lastly, we will provide this unique sample of wide-band, low-frequency pulse profiles via the European Pulsar Network Database. Tables B.1-B.4 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/591/A134

  9. ALMACAL IV: A catalogue of ALMA calibrator continuum observations

    NASA Astrophysics Data System (ADS)

    Bonato, M.; Liuzzo, E.; Giannetti, A.; Massardi, M.; De Zotti, G.; Burkutean, S.; Galluzzi, V.; Negrello, M.; Baronchelli, I.; Brand, J.; Zwaan, M. A.; Rygl, K. L. J.; Marchili, N.; Klitsch, A.; Oteo, I.

    2018-05-01

    We present a catalogue of ALMA flux density measurements of 754 calibrators observed between August 2012 and September 2017, for a total of 16,263 observations in different bands and epochs. The flux densities were measured reprocessing the ALMA images generated in the framework of the ALMACAL project, with a new code developed by the Italian node of the European ALMA Regional Centre. A search in the online databases yielded redshift measurements for 589 sources (˜78 per cent of the total). Almost all sources are flat-spectrum, based on their low-frequency spectral index, and have properties consistent with being blazars of different types. To illustrate the properties of the sample we show the redshift and flux density distributions as well as the distributions of the number of observations of individual sources and of time spans in the source frame for sources observed in bands 3 (84-116 GHz) and 6 (211-275 GHz). As examples of the scientific investigations allowed by the catalogue we briefly discuss the variability properties of our sources in ALMA bands 3 and 6 and the frequency spectra between the effective frequencies of these bands. We find that the median variability index steadily increases with the source-frame time lag increasing from 100 to 800 days, and that the frequency spectra of BL Lacs are significantly flatter than those of flat-spectrum radio quasars. We also show the global spectral energy distributions of our sources over 17 orders of magnitude in frequency.

  10. New methods to constrain the radio transient rate: results from a survey of four fields with LOFAR.

    PubMed

    Carbone, D; van der Horst, A J; Wijers, R A M J; Swinbank, J D; Rowlinson, A; Broderick, J W; Cendes, Y N; Stewart, A J; Bell, M E; Breton, R P; Corbel, S; Eislöffel, J; Fender, R P; Grießmeier, J-M; Hessels, J W T; Jonker, P; Kramer, M; Law, C J; Miller-Jones, J C A; Pietka, M; Scheers, L H A; Stappers, B W; van Leeuwen, J; Wijnands, R; Wise, M; Zarka, P

    2016-07-01

    We report on the results of a search for radio transients between 115 and 190 MHz with the LOw-Frequency ARray (LOFAR). Four fields have been monitored with cadences between 15 min and several months. A total of 151 images were obtained, giving a total survey area of 2275 deg 2 . We analysed our data using standard LOFAR tools and searched for radio transients using the LOFAR Transients Pipeline. No credible radio transient candidate has been detected; however, we are able to set upper limits on the surface density of radio transient sources at low radio frequencies. We also show that low-frequency radio surveys are more sensitive to steep-spectrum coherent transient sources than GHz radio surveys. We used two new statistical methods to determine the upper limits on the transient surface density. One is free of assumptions on the flux distribution of the sources, while the other assumes a power-law distribution in flux and sets more stringent constraints on the transient surface density. Both of these methods provide better constraints than the approach used in previous works. The best value for the upper limit we can set for the transient surface density, using the method assuming a power-law flux distribution, is 1.3 × 10 -3  deg -2 for transients brighter than 0.3 Jy with a time-scale of 15 min, at a frequency of 150 MHz. We also calculated for the first time upper limits for the transient surface density for transients of different time-scales. We find that the results can differ by orders of magnitude from previously reported, simplified estimates.

  11. Electron Densities Near Io from Galileo Plasma Wave Observations

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Persoon, A. M.; Kurth, W. S.; Roux, A.; Bolton, S. J.

    2001-01-01

    This paper presents an overview of electron densities obtained near Io from the Galileo plasma wave instrument during the first four flybys of Io. These flybys were Io, which was a downstream wake pass that occurred on December 7, 1995; I24, which was an upstream pass that occurred on October 11, 1999; I25, which was a south polar pass that occurred on November 26, 1999; and I27, which was an upstream pass that occurred on February 22, 2000. Two methods were used to measure the electron density. The first was based on the frequency of upper hybrid resonance emissions, and the second was based on the low-frequency cutoff of electromagnetic radiation at the electron plasma frequency. For three of the flybys, Io, I25, and I27, large density enhancements were observed near the closest approach to Io. The peak electron densities ranged from 2.1 to 6.8 x 10(exp 4) per cubic centimeters. These densities are consistent with previous radio occultation measurements of Io's ionosphere. No density enhancement was observed during the I24 flyby, most likely because the spacecraft trajectory passed too far upstream to penetrate Io's ionosphere. During two of the flybys, I25 and I27, abrupt step-like changes were observed at the outer boundaries of the region of enhanced electron density. Comparisons with magnetic field models and energetic particle measurements show that the abrupt density steps occur as the spacecraft penetrated the boundary of the Io flux tube, with the region of high plasma density on the inside of the flux tube. Most likely the enhanced electron density within the Io flux tube is associated with magnetic field lines that are frozen to Io by the high conductivity of Io's atmosphere, thereby enhancing the escape of plasma along the magnetic field lines that pass through Io's ionosphere.

  12. Comparison of high temperature, high frequency core loss and dynamic B-H loops of a 2V-49Fe-49Co and a grain oriented 3Si-Fe alloy

    NASA Technical Reports Server (NTRS)

    Wieserman, W. R.; Schwarze, G. E.; Niedra, J. M.

    1992-01-01

    The design of power magnetic components such as transformers, inductors, motors, and generators, requires specific knowledge about the magnetic and electrical characteristics of the magnetic materials used in these components. Limited experimental data exists that characterizes the performance of soft magnetic materials for the combined conditions of high temperature and high frequency over a wide flux density range. An experimental investigation of a 2V-49-Fe-49Co (Supermendur) and a grain oriented 3 Si-Fe (Magnesil) alloy was conducted over the temperature range of 23 to 300 C and frequency range of 0.1 to 10 kHz. The effects of temperature, frequency, and maximum flux density on the core loss and dynamic B-H loops for sinusoidal voltage excitation conditions are examined for each of these materials. A comparison of the core loss of these two materials is also made over the temperature and frequency range investigated.

  13. Estimating Evapotranspiration Of Orange Orchards Using Surface Renewal And Remote Sensing Techniques

    NASA Astrophysics Data System (ADS)

    Consoli, S.; Russo, A.; Snyder, R.

    2006-08-01

    Surface renewal (SR) analysis was utilized to calculate sensible heat flux density from high frequency temperature measurements above orange orchard canopies during 2005 in eastern Sicily (Italy). The H values were employed to estimate latent heat flux density (LE) using measured net radiation (Rn) and soil heat flux density (G) in the energy balance (EB) equation. Crop coefficients were determined by calculating the ratio Kc=ETa/ETo, with reference ETo derived from the daily Penman-Monteith equation. The estimated daily Kc values showed an average of about 0.75 for canopy covers having about 70% ground shading and 80% of PAR light interception. Remote sensing estimates of Kc and ET fluxes were compared with those measured by SR-EB. IKONOS satellite estimates of Kc and NDVI were linearly correlated for the orchard stands.

  14. Detection of macrophages in atherosclerotic tissue using magnetic nanoparticles and differential phase optical coherence tomography.

    PubMed

    Oh, Junghwan; Feldman, Marc D; Kim, Jihoon; Sanghi, Pramod; Do, Dat; Mancuso, J Jacob; Kemp, Nate; Cilingiroglu, Mehmet; Milner, Thomas E

    2008-01-01

    We demonstrate the detection of iron oxide nanoparticles taken up by macrophages in atherosclerotic plaque with differential phase optical coherence tomography (DP-OCT). Magneto mechanical detection of nanoparticles is demonstrated in hyperlipidemic Watanabe and balloon-injured fat-fed New Zealand white rabbits injected with monocrystalline iron oxide nanoparticles (MIONs) of < 40 nm diam. MIONs taken up by macrophages was excited by an oscillating magnetic flux density and resulting nanometer tissue surface displacement was detected by DP-OCT. Frequency response of tissue surface displacement in response to an externally applied magnetic flux density was twice the stimulus frequency as expected from the equations of motion for the nanoparticle cluster.

  15. Optimization of magnetic flux density measurement using multiple RF receiver coils and multi-echo in MREIT.

    PubMed

    Jeong, Woo Chul; Chauhan, Munish; Sajib, Saurav Z K; Kim, Hyung Joong; Serša, Igor; Kwon, Oh In; Woo, Eung Je

    2014-09-07

    Magnetic Resonance Electrical Impedance Tomography (MREIT) is an MRI method that enables mapping of internal conductivity and/or current density via measurements of magnetic flux density signals. The MREIT measures only the z-component of the induced magnetic flux density B = (Bx, By, Bz) by external current injection. The measured noise of Bz complicates recovery of magnetic flux density maps, resulting in lower quality conductivity and current-density maps. We present a new method for more accurate measurement of the spatial gradient of the magnetic flux density gradient (∇ Bz). The method relies on the use of multiple radio-frequency receiver coils and an interleaved multi-echo pulse sequence that acquires multiple sampling points within each repetition time. The noise level of the measured magnetic flux density Bz depends on the decay rate of the signal magnitude, the injection current duration, and the coil sensitivity map. The proposed method uses three key steps. The first step is to determine a representative magnetic flux density gradient from multiple receiver coils by using a weighted combination and by denoising the measured noisy data. The second step is to optimize the magnetic flux density gradient by using multi-echo magnetic flux densities at each pixel in order to reduce the noise level of ∇ Bz and the third step is to remove a random noise component from the recovered ∇ Bz by solving an elliptic partial differential equation in a region of interest. Numerical simulation experiments using a cylindrical phantom model with included regions of low MRI signal to noise ('defects') verified the proposed method. Experimental results using a real phantom experiment, that included three different kinds of anomalies, demonstrated that the proposed method reduced the noise level of the measured magnetic flux density. The quality of the recovered conductivity maps using denoised ∇ Bz data showed that the proposed method reduced the conductivity noise level up to 3-4 times at each anomaly region in comparison to the conventional method.

  16. Flux pinning characteristics in cylindrical ingot niobium used in superconducting radio frequency cavity fabrication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhavale Ashavai, Pashupati Dhakal, Anatolii A Polyanskii, Gianluigi Ciovati

    We present the results of from DC magnetization and penetration depth measurements of cylindrical bulk large-grain (LG) and fine-grain (FG) niobium samples used for the fabrication of superconducting radio frequency (SRF) cavities. The surface treatment consisted of electropolishing and low temperature baking as they are typically applied to SRF cavities. The magnetization data were fitted using a modified critical state model. The critical current density Jc and pinning force Fp are calculated from the magnetization data and their temperature dependence and field dependence are presented. The LG samples have lower critical current density and pinning force density compared to FGmore » samples which implies a lower flux trapping efficiency. This effect may explain the lower values of residual resistance often observed in LG cavities than FG cavities.« less

  17. [Membranotropic effects of electromagnetic radiation of extremely high frequency on Escherichia coli].

    PubMed

    Trchunian, A; Ogandzhanian, E; Sarkisian, E; Gonian, S; Oganesian, A; Oganesian, S

    2001-01-01

    It was found that "sound" electromagnetic radiations of extremely high frequencies (53.5-68 GHz) or millimeter waves (wavelength range of 4.2-5.6 mm) of low intensity (power density 0.01 mW) have a bactericidal effect on Escherichia coli bacteria. It was shown that exposure to irradiation of extremely high frequencies increases the electrokinetic potential and surface change density of bacteria and decreases of membrane potential. The total secretion of hydrogen ions was suppressed, the H+ flux from the cytoplasm to medium decreased, and the flux of N,N'-dicyclohexylcarbodiimide-sensitive potassium ions increased, which was accompanied by changes in the stoichiometry of these fluxes and an increase in the sensitivity of H+ ions to N,N'-dicyclohexylcarbodiimide. The effects depended on duration of exposure: as the time of exposure increased, the bactericidal effect increased, whereas the membranotropic effects decreased. The effects also depended on growth phase of bacteria: the irradiation affected the cells in the stationary but not in the logarithmic phase. It is assumed that the H(+)-ATPase complex F0F1 is involved in membranotropic effects of electromagnetic radiation of extremely high frequencies. Presumably, there are some compensatory mechanisms that eliminate the membranotropic effects.

  18. Observations of rich clusters of galaxies at metre wavelengths

    NASA Technical Reports Server (NTRS)

    Cane, H. V.; Erickson, W. C.; Hanisch, R. J.; Turner, P. J.

    1981-01-01

    Observations have been made at 10 frequencies between 50 and 120 MHz of 17 rich, X-ray emitting clusters of galaxies with the 78 x 156 m dipole array al Llanherne. The observed flux densities were compared to the flux densities expected on the basis of the known discrete sources in the fields. In no case was a significant flux excess found that might have indicated the presence of a diffuse halo component of radio emission in the cluster. For those clusters in which spectral indices could be determined, the spectra all tend to be much steeper than is normal for extragalactic radio sources, although a strict correlation between the X-ray luminosity and the low-frequency radio luminosity or spectral index is not found. The occurrence of large halo sources such as that which is present in the Coma cluster seems to be quite unusual.

  19. A tale of two theories: How the adiabatic response and ULF waves affect relativistic electrons

    NASA Astrophysics Data System (ADS)

    Green, J. C.; Kivelson, M. G.

    2001-11-01

    Using data from the Comprehensive Energetic Particle and Pitch Angle Distribution (CEPPAD)-High Sensitivity Telescope (HIST) instrument on the Polar spacecraft and ground magnetometer data from the 210 meridian magnetometer chain, we test the ULF wave drift resonance theory proposed to explain relativistic electron phase space density enhancements. We begin by investigating changes in electron flux due to the ``Dst effect.'' The Dst effect refers to the adiabatic response of relativistic electrons to changes in the magnetic field characterized by the Dst index. The Dst effect, assuming no loss or addition of new electrons, produces reversible order of magnitude changes in relativistic electrons flux measured at fixed energy, but it cannot account for the flux enhancement that occurs in the recovery phase of most storms. Liouville's theorem states that phase space density expressed in terms of constant adiabatic invariants is unaffected by adiabatic field changes and thus is insensitive to the Dst effect. It is therefore useful to express flux measurements in terms of phase space densities at constant first, second and third adiabatic invariants. The phase space density is determined from the CEPPAD-HIST electron detector that measures differential directional flux of electrons from 0.7 to 9 MeV and the Tsyganenko 96 field model. The analysis is done for January to June 1997. The ULF wave drift resonance theory that we test proposes that relativistic electrons are accelerated by an m=2 toroidal or poloidal mode wave whose frequency equals the drift frequency of the electron. The theory is tested by comparing the relativistic electron phase space densities to wave power determined at three ground stations with L* values of 4.0, 5.7 and 6.2. Comparison of the wave data to the phase space densities shows that five out of nine storm events are consistent with the ULF wave drift resonance mechanism, three out of nine give ambiguous support to the model, and one event has high ULF wave power at the drift frequency of the electrons but no corresponding phase space density enhancement suggesting that ULF wave power alone is not sufficient to cause an electron response. Two explanations of the anomalous event are investigated including excessive loss of electrons to the magnetopause and wave duration.

  20. Distribution of flux-pinning energies in YBa2Cu3O(7-delta) and Bi2Sr2CaCu2O(8+delta) from flux noise

    NASA Astrophysics Data System (ADS)

    Ferrari, M. J.; Johnson, Mark; Wellstood, Frederick C.; Clarke, John; Mitzi, D.

    1990-01-01

    The spectral density of the magnetic flux noise measured in high-temperature superconductors in low magnetic fields scales approximately as the inverse of the frequency and increases with temperature. The temperature and frequency dependence of the noise are used to determine the pinning energies of individual flux vortices in thermal equilibrium. The distribution of pinning energies below 0.1 eV in YBa(2)Cu(3)O(7-delta) and near 0.2 eV in Bi(2)Sr(2)CaCu(2)O(8+delta). The noise power is proportional to the ambient magnetic field, indicating that the vortex motion is uncorrelated.

  1. Design of PCB search coils for AC magnetic flux density measurement

    NASA Astrophysics Data System (ADS)

    Ulvr, Michal

    2018-04-01

    This paper presents single-layer, double-layer and ten-layer planar square search coils designed for AC magnetic flux density amplitude measurement up to 1 T in the low frequency range in a 10 mm air gap. The printed-circuit-board (PCB) method was used for producing the search coils. Special attention is given to a full characterization of the PCB search coils including a comparison between the detailed analytical design method and the finite integration technique method (FIT) on the one hand, and experimental results on the other. The results show very good agreement in the resistance, inductance and search coil constant values (the area turns) and also in the frequency dependence of the search coil constant.

  2. The impact of the driving frequency on the output flux of high-power InGaAlP-LEDs during high-current pulsed operation

    NASA Astrophysics Data System (ADS)

    Schulz, Benjamin; Morgott, Stefan

    2017-09-01

    Direct red light-emitting diodes based on InGaAlP comprise a strong temperature sensitivity regarding their output flux. In étendue-limited applications, like digital projectors, these LEDs are usually driven at current densities exceeding 3 A/mm2 in pulsed mode. The losses inside the semiconductor lead to a large amount of heat, which has to be removed most efficiently by a heatsink to keep the junction temperature as low as possible and therefore to obtain the maximum output flux. One important performance parameter is the thermal resistance Rth of the LED, which has been improved during the last few years, e.g. by the development of new high-power chips and packages. In our present approach, we investigated the influence of the driving frequency - which is closely related to the thermal impedance Zth - on the luminous and the radiant flux of red LEDs. A simulation model based on the electro-thermal analogies was implemented in SPICE and the optical and electrical characteristics of one LED type (OSRAM OSTAR Projection Power LE A P1W) were measured under application-related driving conditions while varying the parameters frequency, duty cycle, forward current, and heatsink temperature. The experimental results show clearly that the luminous and the radiant flux go up when the driving frequency is increased while the other parameters are maintained. Moreover, it can be noticed that the degree of this effect depends on the other parameters. The largest impact can be observed at the lowest tested duty cycle (30 %) and the highest tested current density (4 A/mm2) and heatsink temperature (80 °C). At this operating point, the luminous and the radiant flux increase by 20 % and 14 % respectively when raising the frequency from 240 Hz to 1920 Hz.

  3. The influence of surface roughness and solution concentration on pool boiling process in Diethanolamine aqueous solution

    NASA Astrophysics Data System (ADS)

    Khoshechin, Mohsen; Salimi, Farhad; Jahangiri, Alireza

    2018-04-01

    In this research, the effect of surface roughness and concentration of solution on bubble departing frequency and nucleation site density for pool boiling of water/diethanolamine (DEA) binary solution were investigated experimentally. In this investigation, boiling heat transfer coefficient, bubble departing frequency and nucleation site density have been experimentally investigated in various concentrations and heat fluxes. Microstructured surfaces with a wide range of well-defined surface roughness were fabricated, and a heat flux between 1.5-86 kW/m2 was achieved under atmospheric conditions. The Results indicated that surface roughness and concentration of solution increase the bubble departing frequency and nucleation site density with increasing heat flux. The boiling heat transfer coefficient in mixtures of water/DEA increases with increasing concentration of DEA in water. The experimental results were compared with predictions of several used correlations in the literatures. Results showed that the boiling heat transfer coefficients of this case study are much higher than the predicted values by major existing correlations and models. The excellent agreement for bubble departing frequency found between the models of Jackob and Fritz (1966) and experimental data and also the nucleation site density were in close agreement with the model of Paul (1983) data. f bubble departure frequency, 1/s or Hz N Number of nucleation sites per area per time R c Minimum cavity size, m D c critical diameter, m g gravitational acceleration, m/s2 ρ density, kg/m3 T temperature, °c ΔT temperature difference, °c d d vapor bubble diameter, m h fg enthalpy of vaporization, J/kg R Roughness, μm Ja Jakob number cp specific heat, J/kg °c Pr Prandtl number Ar Archimedes number h Heat transfer coefficient, J/(m2 °c) tg time it takes to grow a bubble, s q/A heat flux (kW/m2) tw time required to heat the layer, s gc Correction coefficient of incompatible units R a Surface roughness A heated surface area d departure ONB onset of nucleate boiling w surface wall s saturation v vapor l liquid θ groove angle (o) γ influence parameter of heating surface material σ surface tension, N/m.

  4. THE KCAL VERA 22 GHz CALIBRATOR SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrov, L.; Honma, M.; Shibata, S. M., E-mail: Leonid.Petrov@lpetrov.net

    2012-02-15

    We observed a sample of 1536 sources with correlated flux densities brighter than 200 mJy at 8 GHz with the very long baseline interferometry (VLBI) array VLBI Exploration of Radio Astrometry at 22 GHz. One half of the target sources has been detected. The detection limit was around 200 mJy. We derived the correlated flux densities of 877 detected sources in three ranges of projected baseline lengths. The objective of these observations was to determine the suitability of given sources as phase calibrators for dual-beam and phase-referencing observations at high frequencies. Preliminary results indicate that the number of compact extragalacticmore » sources at 22 GHz brighter than a given correlated flux density level is two times less than that at 8 GHz.« less

  5. 47 CFR 25.208 - Power flux density limits.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... from all co-frequency space stations of a single non-geostationary-satellite orbit (NGSO) system... geostationary satellite orbit (GSO) by the emissions from all co-frequency earth stations in a non-geostationary... single non-geostationary-satellite orbit (NGSO) system operating in the Fixed-Satellite Service (FSS...

  6. 47 CFR 25.208 - Power flux density limits.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... emissions from all co-frequency space stations of a single non-geostationary-satellite orbit (NGSO) system... point on the geostationary satellite orbit (GSO) by the emissions from all co-frequency earth stations in a non-geostationary satellite orbit fixed-satellite service (NGSO FSS) system, for all conditions...

  7. 47 CFR 25.208 - Power flux density limits.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... emissions from all co-frequency space stations of a single non-geostationary-satellite orbit (NGSO) system... point on the geostationary satellite orbit (GSO) by the emissions from all co-frequency earth stations in a non-geostationary satellite orbit fixed-satellite service (NGSO FSS) system, for all conditions...

  8. 47 CFR 25.208 - Power flux density limits.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... emissions from all co-frequency space stations of a single non-geostationary-satellite orbit (NGSO) system... point on the geostationary satellite orbit (GSO) by the emissions from all co-frequency earth stations in a non-geostationary satellite orbit fixed-satellite service (NGSO FSS) system, for all conditions...

  9. Solar Radiation Measurements Onboard the Research Aircraft HALO

    NASA Astrophysics Data System (ADS)

    Lohse, I.; Bohn, B.; Werner, F.; Ehrlich, A.; Wendisch, M.

    2014-12-01

    Airborne measurements of the separated upward and downward components of solar spectral actinic flux densities for the determination of photolysis frequencies and of upward nadir spectral radiance were performed with the HALO Solar Radiation (HALO-SR) instrument package onboard the High Altitude and Long Range Research Aircraft (HALO). The instrumentation of HALO-SR is characterized and first measurement data from the Next-generation Aircraft Remote-Sensing for Validation Studies (NARVAL) campaigns in 2013 and 2014 are presented. The measured data are analyzed in the context of the retrieved microphysical and optical properties of clouds which were observed underneath the aircraft. Detailed angular sensitivities of the two optical actinic flux receivers were determined in the laboratory. The effects of deviations from the ideal response are investigated using radiative transfer calculations of atmospheric radiance distributions under various atmospheric conditions and different ground albedos. Corresponding correction factors are derived. Example photolysis frequencies are presented, which were sampled in the free troposphere and lower stratosphere over the Atlantic Ocean during the 2013/14 HALO NARVAL campaigns. Dependencies of photolysis frequencies on cloud cover, flight altitude and wavelength range of the photolysis process are investigated. Calculated actinic flux densities in the presence of clouds benefit from the measured spectral radiances. Retrieved cloud optical thicknesses and effective droplet radii are used as model input for the radiative transfer calculations. By comparison with the concurrent measurements of actinic flux densities the retrieval approach is validated. Acknowledgements: Funding by the Deutsche Forschungsgemeinschaft within the priority program HALO (BO 1580/4-1, WE 1900/21-1) is gratefully acknowledged.

  10. Electrodeposited Nanolaminated CoNiFe Cores for Ultracompact DC-DC Power Conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, J; Kim, M; Herrault, F

    2015-09-01

    Laminated metallic alloy cores (i.e., alternating layers of thin film metallic alloy and insulating material) of appropriate lamination thickness enable suppression of eddy current losses at high frequencies. Magnetic cores comprised of many such laminations yield substantial overall magnetic volume, thereby enabling high-power operation. Previously, we reported nanolaminated permalloy (Ni-80 Fe-20) cores based on a sequential electrodeposition technique, demonstrating negligible eddy current losses at peak flux densities up to 0.5 T and operating at megahertz frequencies. This paper demonstrates improved performance of nanolaminated cores comprising tens to hundreds of layers of 300-500-nm-thick CoNiFe films that exhibit superior magnetic properties (e.g.,more » higher saturation flux density and lower coercivity) than permalloy. Nanolaminated CoNiFe cores can be operated up to a peak flux density of 0.9 T, demonstrating improved power handling capacity and exhibiting 30% reduced volumetric core loss, attributed to lowered hysteresis losses compared to the nanolaminated permalloy core of the same geometry. Operating these cores in a buck dc-dc power converter at a switching frequency of 1 MHz, the nanolaminated CoNiFe cores achieved a conversion efficiency exceeding 90% at output power levels up to 7 W, compared to an achieved permalloy core conversion efficiency below 86% at 6 W.« less

  11. Korean VLBI Network Calibrator Survey (KVNCS). 1. Source Catalog of KVN Single-dish Flux Density Measurement in the K and Q Bands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jeong Ae; Sohn, Bong Won; Jung, Taehyun

    We present the catalog of the KVN Calibrator Survey (KVNCS). This first part of the KVNCS is a single-dish radio survey simultaneously conducted at 22 ( K band) and 43 GHz ( Q band) using the Korean VLBI Network (KVN) from 2009 to 2011. A total of 2045 sources are selected from the VLBA Calibrator Survey with an extrapolated flux density limit of 100 mJy at the K  band. The KVNCS contains 1533 sources in the K band with a flux density limit of 70 mJy and 553 sources in the Q band with a flux density limit of 120more » mJy; it covers the whole sky down to −32.°5 in decl. We detected 513 sources simultaneously in the K and Q bands; ∼76% of them are flat-spectrum sources (−0.5 ≤ α ≤ 0.5). From the flux–flux relationship, we anticipated that most of the radiation of many of the sources comes from the compact components. The sources listed in the KVNCS therefore are strong candidates for high-frequency VLBI calibrators.« less

  12. Assessment of the magnetic field exposure due to the battery current of digital mobile phones.

    PubMed

    Jokela, Kari; Puranen, Lauri; Sihvonen, Ari-Pekka

    2004-01-01

    Hand-held digital mobile phones generate pulsed magnetic fields associated with the battery current. The peak value and the waveform of the battery current were measured for seven different models of digital mobile phones, and the results were applied to compute approximately the magnetic flux density and induced currents in the phone-user's head. A simple circular loop model was used for the magnetic field source and a homogeneous sphere consisting of average brain tissue equivalent material simulated the head. The broadband magnetic flux density and the maximal induced current density were compared with the guidelines of ICNIRP using two various approaches. In the first approach the relative exposure was determined separately at each frequency and the exposure ratios were summed to obtain the total exposure (multiple-frequency rule). In the second approach the waveform was weighted in the time domain with a simple low-pass RC filter and the peak value was divided by a peak limit, both derived from the guidelines (weighted peak approach). With the maximum transmitting power (2 W) the measured peak current varied from 1 to 2.7 A. The ICNIRP exposure ratio based on the current density varied from 0.04 to 0.14 for the weighted peak approach and from 0.08 to 0.27 for the multiple-frequency rule. The latter values are considerably greater than the corresponding exposure ratios 0.005 (min) to 0.013 (max) obtained by applying the evaluation based on frequency components presented by the new IEEE standard. Hence, the exposure does not seem to exceed the guidelines. The computed peak magnetic flux density exceeded substantially the derived peak reference level of ICNIRP, but it should be noted that in a near-field exposure the external field strengths are not valid indicators of exposure. Currently, no biological data exist to give a reason for concern about the health effects of magnetic field pulses from mobile phones.

  13. Rms-flux relation and fast optical variability simulations of the nova-like system MV Lyr

    NASA Astrophysics Data System (ADS)

    Dobrotka, A.; Mineshige, S.; Ness, J.-U.

    2015-03-01

    The stochastic variability (flickering) of the nova-like system (subclass of cataclysmic variable) MV Lyr yields a complicated power density spectrum with four break frequencies. Scaringi et al. analysed high-cadence Kepler data of MV Lyr, taken almost continuously over 600 d, giving the unique opportunity to study multicomponent Power Density Spectra (PDS) over a wide frequency range. We modelled this variability with our statistical model based on disc angular momentum transport via discrete turbulent bodies with an exponential distribution of the dimension scale. Two different models were used, a full disc (developed from the white dwarf to the outer radius of ˜1010 cm) and a radially thin disc (a ring at a distance of ˜1010 cm from the white dwarf) that imitates an outer disc rim. We succeed in explaining the two lowest observed break frequencies assuming typical values for a disc radius of 0.5 and 0.9 times the primary Roche lobe and an α parameter of 0.1-0.4. The highest observed break frequency was also modelled, but with a rather small accretion disc with a radius of 0.3 times the primary Roche lobe and a high α value of 0.9 consistent with previous findings by Scaringi. Furthermore, the simulated light curves exhibit the typical linear rms-flux proportionality linear relation and the typical log-normal flux distribution. As the turbulent process is generating fluctuations in mass accretion that propagate through the disc, this confirms the general knowledge that the typical rms-flux relation is mainly generated by these fluctuations. In general, a higher rms is generated by a larger amount of superposed flares which is compatible with a higher mass accretion rate expressed by a larger flux.

  14. Radio outbursts in extragalactic sources

    NASA Astrophysics Data System (ADS)

    Kinzel, Wayne Morris

    Three aspects of the flux density variability of extragalactic radio sources were examined: millimeter wavelength short timescale variability, the spectral evolution of outbursts, and whether the outbursts are periodically spaced. Observations of extragalactic radio sources were conducted using the Five College Radio Astronomy Observatory between January and June 1985 at 88.2 GHz and during June and July 1985 at 40.0 GHz. Many of the sources exhibited significant flux density variations during the observing span. In addition, the most rapid variations observed were comparable with those reported in previous works. Two sources, 0355+50 and OJ287, both exhibited outbursts whose rise and fall timescales were less than a month. An anomalous flux density dropout was observed in 3C446 and was interpreted as an occultation event. Data at five frequencies between 2.7 and 89.6 GHz from the Dent-Balonek monitoring program were used to investigate the spectral evolution of eight outbursts. Outburst profile fitting was used to deconvolve the individual outbursts from one another at each frequency. The fit profiles were used to generate multiple epoch spectra to investigate the evolution of the outbursts. A phase residual minimization method was used to examine four sources for periodic behavior.

  15. 84 gigahertz observations of five Crab-like supernova remnants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salter, C. J.; Reynolds, S. P.; Hogg, D. E.

    1989-03-01

    Flux density measurements at 3.6 mm have been made to extend the frequency coverage for three Crablike remnants and two Crablike components within remnants whose large-scale morphologies show shell-type structure. All five objects show flat, polarized, nonthermal radio spectra and associated X-ray emission characteristic of this class. The flux density is found to be lower than expected on the basis of an extrapolation of the spectrum from lower frequencies. If this is due to steepening caused by evolutionary effects, severe constraints can be put on the characteristics of the objects showing spectral steepening: all must be less than 2000 yrmore » old, and the supernovae in which they were born must all have had very unusual properties. 30 refs.« less

  16. Development and validation of a low-frequency modeling code for high-moment transmitter rod antennas

    NASA Astrophysics Data System (ADS)

    Jordan, Jared Williams; Sternberg, Ben K.; Dvorak, Steven L.

    2009-12-01

    The goal of this research is to develop and validate a low-frequency modeling code for high-moment transmitter rod antennas to aid in the design of future low-frequency TX antennas with high magnetic moments. To accomplish this goal, a quasi-static modeling algorithm was developed to simulate finite-length, permeable-core, rod antennas. This quasi-static analysis is applicable for low frequencies where eddy currents are negligible, and it can handle solid or hollow cores with winding insulation thickness between the antenna's windings and its core. The theory was programmed in Matlab, and the modeling code has the ability to predict the TX antenna's gain, maximum magnetic moment, saturation current, series inductance, and core series loss resistance, provided the user enters the corresponding complex permeability for the desired core magnetic flux density. In order to utilize the linear modeling code to model the effects of nonlinear core materials, it is necessary to use the correct complex permeability for a specific core magnetic flux density. In order to test the modeling code, we demonstrated that it can accurately predict changes in the electrical parameters associated with variations in the rod length and the core thickness for antennas made out of low carbon steel wire. These tests demonstrate that the modeling code was successful in predicting the changes in the rod antenna characteristics under high-current nonlinear conditions due to changes in the physical dimensions of the rod provided that the flux density in the core was held constant in order to keep the complex permeability from changing.

  17. Numerical assessment of low-frequency dosimetry from sampled magnetic fields

    NASA Astrophysics Data System (ADS)

    Freschi, Fabio; Giaccone, Luca; Cirimele, Vincenzo; Canova, Aldo

    2018-01-01

    Low-frequency dosimetry is commonly assessed by evaluating the electric field in the human body using the scalar potential finite difference method. This method is effective only when the sources of the magnetic field are completely known and the magnetic vector potential can be analytically computed. The aim of the paper is to present a rigorous method to characterize the source term when only the magnetic flux density is available at discrete points, e.g. in case of field measurements. The method is based on the solution of the discrete magnetic curl equation. The system is restricted to the independent set of magnetic fluxes and circulations of magnetic vector potential using the topological information of the computational mesh. The solenoidality of the magnetic flux density is preserved using a divergence-free interpolator based on vector radial basis functions. The analysis of a benchmark problem shows that the complexity of the proposed algorithm is linearly dependent on the number of elements with a controllable accuracy. The method proposed in this paper also proves to be useful and effective when applied to a real world scenario, where the magnetic flux density is measured in proximity of a power transformer. A 8 million voxel body model is then used for the numerical dosimetric analysis. The complete assessment is completed in less than 5 min, that is more than acceptable for these problems.

  18. Numerical assessment of low-frequency dosimetry from sampled magnetic fields.

    PubMed

    Freschi, Fabio; Giaccone, Luca; Cirimele, Vincenzo; Canova, Aldo

    2017-12-29

    Low-frequency dosimetry is commonly assessed by evaluating the electric field in the human body using the scalar potential finite difference method. This method is effective only when the sources of the magnetic field are completely known and the magnetic vector potential can be analytically computed. The aim of the paper is to present a rigorous method to characterize the source term when only the magnetic flux density is available at discrete points, e.g. in case of field measurements. The method is based on the solution of the discrete magnetic curl equation. The system is restricted to the independent set of magnetic fluxes and circulations of magnetic vector potential using the topological information of the computational mesh. The solenoidality of the magnetic flux density is preserved using a divergence-free interpolator based on vector radial basis functions. The analysis of a benchmark problem shows that the complexity of the proposed algorithm is linearly dependent on the number of elements with a controllable accuracy. The method proposed in this paper also proves to be useful and effective when applied to a real world scenario, where the magnetic flux density is measured in proximity of a power transformer. A 8 million voxel body model is then used for the numerical dosimetric analysis. The complete assessment is completed in less than 5 min, that is more than acceptable for these problems.

  19. Uncertainties in (E)UV model atmosphere fluxes

    NASA Astrophysics Data System (ADS)

    Rauch, T.

    2008-04-01

    Context: During the comparison of synthetic spectra calculated with two NLTE model atmosphere codes, namely TMAP and TLUSTY, we encounter systematic differences in the EUV fluxes due to the treatment of level dissolution by pressure ionization. Aims: In the case of Sirius B, we demonstrate an uncertainty in modeling the EUV flux reliably in order to challenge theoreticians to improve the theory of level dissolution. Methods: We calculated synthetic spectra for hot, compact stars using state-of-the-art NLTE model-atmosphere techniques. Results: Systematic differences may occur due to a code-specific cutoff frequency of the H I Lyman bound-free opacity. This is the case for TMAP and TLUSTY. Both codes predict the same flux level at wavelengths lower than about 1500 Å for stars with effective temperatures (T_eff) below about 30 000 K only, if the same cutoff frequency is chosen. Conclusions: The theory of level dissolution in high-density plasmas, which is available for hydrogen only should be generalized to all species. Especially, the cutoff frequencies for the bound-free opacities should be defined in order to make predictions of UV fluxes more reliable.

  20. Mitigation of divertor heat flux by high-frequency ELM pacing with non-fuel pellet injection in DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bortolon, A.; Maingi, R.; Mansfield, D. K.

    Experiments have been conducted on DIII-D investigating high repetition rate injection of non-fuel pellets as a tool for pacing Edge Localized Modes (ELMs) and mitigating their transient divertor heat loads. Effective ELM pacing was obtained with injection of Li granules in different H-mode scenarios, at frequencies 3–5 times larger than the natural ELM frequency, with subsequent reduction of strike-point heat flux. However, in scenarios with high pedestal density (~6 × 10 19 m –3), the magnitude of granule triggered ELMs shows a broad distribution, in terms of stored energy loss and peak heat flux, challenging the effectiveness of ELM mitigation.more » Furthermore, transient heat-flux deposition correlated with granule injections was observed far from the strike-points. As a result, field line tracing suggest this phenomenon to be consistent with particle loss into the mid-plane far scrape-off layer, at toroidal location of the granule injection.« less

  1. Mitigation of divertor heat flux by high-frequency ELM pacing with non-fuel pellet injection in DIII-D

    DOE PAGES

    Bortolon, A.; Maingi, R.; Mansfield, D. K.; ...

    2017-03-23

    Experiments have been conducted on DIII-D investigating high repetition rate injection of non-fuel pellets as a tool for pacing Edge Localized Modes (ELMs) and mitigating their transient divertor heat loads. Effective ELM pacing was obtained with injection of Li granules in different H-mode scenarios, at frequencies 3–5 times larger than the natural ELM frequency, with subsequent reduction of strike-point heat flux. However, in scenarios with high pedestal density (~6 × 10 19 m –3), the magnitude of granule triggered ELMs shows a broad distribution, in terms of stored energy loss and peak heat flux, challenging the effectiveness of ELM mitigation.more » Furthermore, transient heat-flux deposition correlated with granule injections was observed far from the strike-points. As a result, field line tracing suggest this phenomenon to be consistent with particle loss into the mid-plane far scrape-off layer, at toroidal location of the granule injection.« less

  2. Oxygen Pickup Ions Measured by MAVEN Outside the Martian Bow Shock

    NASA Astrophysics Data System (ADS)

    Rahmati, A.; Cravens, T.; Larson, D. E.; Lillis, R. J.; Dunn, P.; Halekas, J. S.; Connerney, J. E. P.; Eparvier, F. G.; Thiemann, E.; Mitchell, D. L.; Jakosky, B. M.

    2015-12-01

    The MAVEN (Mars Atmosphere and Volatile EvolutioN) spacecraft entered orbit around Mars on September 21, 2014 and has since been detecting energetic oxygen pickup ions by its SEP (Solar Energetic Particles) and SWIA (Solar Wind Ion Analyzer) instruments. The oxygen pickup ions detected outside the Martian bowshock and in the upstream solar wind are associated with the extended hot oxygen exosphere of Mars, which is created mainly by the dissociative recombination of molecular oxygen ions with electrons in the ionosphere. We use analytic solutions to the equations of motion of pickup ions moving in the undisturbed upstream solar wind magnetic and motional electric fields and calculate the flux of oxygen pickup ions at the location of MAVEN. Our model calculates the ionization rate of oxygen atoms in the exosphere based on the hot oxygen densities predicted by Rahmati et al. (2014), and the sources of ionization include photo-ionization, charge exchange, and electron impact ionization. The photo-ionization frequency is calculated using the FISM (Flare Irradiance Spectral Model) solar flux model, based on MAVEN EUVM (Extreme Ultra-Violet Monitor) measurements. The frequency of charge exchange between a solar wind proton and an oxygen atom is calculated using MAVEN SWIA solar wind proton flux measurements, and the electron impact ionization frequency is calculated based on MAVEN SWEA (Solar Wind Electron Analyzer) solar wind electron flux measurements. The solar wind magnetic field used in the model is from the measurements taken by MAVEN MAG (magnetometer) in the upstream solar wind. The good agreement between our predicted pickup oxygen fluxes and the MAVEN SEP and SWIA measured ones confirms detection of oxygen pickup ions and these model-data comparisons can be used to constrain models of hot oxygen densities and photochemical escape flux.

  3. High Frequency Radio Observations of the Reactivated Magnetar PSR J1622-4950

    NASA Astrophysics Data System (ADS)

    Pearlman, Aaron B.; Majid, Walid A.; Prince, Thomas A.; Horiuchi, Shinji; Kocz, Jonathon; Lazio, T. J. W.; Naudet, Charles J.

    2017-07-01

    Radio emission from the magnetar PSR J1622-4950 was recently reported to have resumed (Camilo et al., ATel #10346). We have carried out Target of Opportunity (ToO) radio observations of PSR J1622-4950 at S-band (2.3 GHz) and X-band (8.4 GHz) using the 70-m diameter Deep Space Network (DSN) radio dish (DSS-43) in Canberra, Australia. We report on our single polarization mode observations of PSR J1622-4950 spanning 5 hours on 23 May 2017 starting at 16:03:32 UTC. Pulsations were detected at a period of 4.327308(1) s. We measure a mean flux density of 3.8(8)/0.41(8) mJy at S/X-band, from which we derive a spectral index of -1.7(2). We note that PSR J1622-4950's spectral behavior is now consistent with the majority of pulsars, which have a mean spectral index of -1.8(2) (Maron et al. (2000)). The result by Maron et al. (2000) is used here because they included more high frequency pulsar spectra than other studies to characterize the underlying spectral index distribution over a wide frequency range. The mean flux density at S-band has now increased by an order of magnitude compared to previous flux density measurements by Scholz et al. (2017) during the magnetar's quiescent state. Furthermore, the spectral index has steepened compared to a nearly flat spectral index from flux density measurements between 1.4 and 24 GHz prior to the disappearance of the radio emission (Levin et al. (2010); Keith et al. (2011); Levin et al. (2012); Anderson et al. (2012); Scholz et al. (2017)). We are continuing to monitor changes in PSR J1622-4950's radio spectrum at both S-band and X-band. We thank the DSN (Deep Space Network) and Canberra Deep Space Communication Complex (CDSCC) teams for scheduling these observations.

  4. Field evaluation of open and closed-path CO2 flux systems over asphalt surface

    NASA Astrophysics Data System (ADS)

    Bogoev, I.; Santos, E.

    2016-12-01

    Eddy covariance (EC) is a widely used method for quantifying surface fluxes of heat, water vapor and carbon dioxide between ecosystems and the atmosphere. A typical EC system consists of an ultrasonic anemometer measuring the 3D wind vector and a fast-response infrared gas analyzer for sensing the water vapor and CO2 density in the air. When using an open-path analyzer that detects the constituent's density in situ a correction for concurrent air temperature and humidity fluctuations must be applied, Webb et al. (1980). In environments with small magnitudes of CO2 flux (<5µmol m-2 s-1) and in the presence of high sensible heat flux, like wintertime over boreal forest, open-path flux measurements have been challenging since the magnitude of the density corrections are as large as the uncorrected CO2 flux itself. A new technology merging the sensing paths of the gas analyzer and the sonic anemometer has been recently developed. This new integrated instrument allows a direct measurement of CO2 mixing ratio in the open air and has the potential to improve the quality of the temperature related density corrections by synchronously measuring the sensible heat flux in the optical path of the gas analyzer. We evaluate the performance and the accuracy of this new sensor over a large parking lot with an asphalt surface where the CO2 fluxes are considered low and the interfering sensible heat fluxes are above 200 Wm-2. A co-located closed-path EC system is used as a reference measurement to examine any systematic biases and apparent CO2 uptake observed with open-path sensors under high sensible heat flux regimes. Half-hour mean and variance of CO2 and water vapor concentrations are evaluated. The relative spectral responses, covariances and corrected turbulent fluxes using a common sonic anemometer are analyzed. The influence of sensor separation and frequency response attenuation on the density corrections is discussed.

  5. Low frequency spectra of type III solar radio bursts

    NASA Technical Reports Server (NTRS)

    Weber, R. R.

    1978-01-01

    Flux density spectra have been determined for 91 simple type III solar bursts observed by the Goddard Space Flight Center radio astronomy experiment on the IMP-6 spacecraft during 1971 and 1972. Spectral peaks were found to occur at frequencies ranging from 44 kHz up to 2500 kHz. Half of the bursts peaked between 250 kHz and 900 kHz, corresponding to emission at solar distances of about 0.3 to 0.1 AU. Maximum burst flux density sometimes exceeds 10 to the -14th W/sq m/Hz. The primary factor controlling the spectral peak frequency of these bursts appears to be a variation in intrinsic power radiated by the source as the exciter moves outward from the sun, rather than radio propagation effects between the source and IMP-6. Thus, a burst spectrum strongly reflects the evolution of the properties of the exciting electron beam, and according to current theory, beam deceleration could help account for the observations.

  6. A Case For Free-free Absorption In The GPS Sources 1321+410 And 0026+346

    NASA Astrophysics Data System (ADS)

    Marr, Jonathan M.; Perry, T. M.; Read, J. W.; Taylor, G. B.

    2010-05-01

    We report on the results of VLBI observations of two gigahertz-peaked spectrum sources, 1321+410 and 0026+346, at five frequencies bracketing the spectral peaks. By comparing the three lower-frequency flux-density maps with extrapolations of the high frequency spectra we obtained maps of the optical depths as a function of frequency. The morphologies of the optical depth maps of 1321+410, at all frequencies, are strikingly uniform, consistent with there being a foreground screen of absorbing gas. We also find that the flux densities across the map fit free-free absorption spectra within the uncertainties. The required free-free optical depths are satisfied with reasonable gas parameters (ne 4000 cm-3, T 104 K, and L 1 pc). We conclude that the case for free-free absorption in 1321+410 is strong. In 0026+346, there is a compact feature with an inverted spectrum at the highest frequencies which we take to be the core. The optical depth maps, even excluding the possible core component, exhibit a noticeable amount of structure, but the morphology does not correlate with that in the flux-density maps, as would be expected if the absorption was due to synchrotron self-absorption. Additionally, the spectra (except at the core component) are consistent with free-free absorption, to within the uncertainties, and require column depths about one half of that in 1321+410. We conclude that free-free absorption by a relatively thin amount of gas with structure apparent on the scale of our maps in 0026+346 is likely, although the case is weaker than in 1321+410. This research was supported by an award from the Research Corporation, a NASA NY Space Grant, and by a Booth-Ferris Research Fellowship. The VLBA is operated by the National Radio Astronomy Observatory, a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

  7. Magneto-motive detection of tissue-based macrophages by differential phase optical coherence tomography.

    PubMed

    Oh, Junghwan; Feldman, Marc D; Kim, Jihoon; Kang, Hyun Wook; Sanghi, Pramod; Milner, Thomas E

    2007-03-01

    A novel method to detect tissue-based macrophages using a combination of superparamagnetic iron oxide (SPIO) nanoparticles and differential phase optical coherence tomography (DP-OCT) with an external oscillating magnetic field is reported. Magnetic force acting on iron-laden tissue-based macrophages was varied by applying a sinusoidal current to a solenoid containing a conical iron core that substantially focused and increased magnetic flux density. Nanoparticle motion was detected with DP-OCT, which can detect tissue movement with nanometer resolution. Frequency response of iron-laden tissue movement was twice the modulation frequency since the magnetic force is proportional to the product of magnetic flux density and gradient. Results of our experiments indicate that DP-OCT can be used to identify tissue-based macrophage when excited by an external focused oscillating magnetic field. (c) 2007 Wiley-Liss, Inc

  8. VizieR Online Data Catalog: Spectral properties of 441 radio pulsars (Jankowski+, 2018)

    NASA Astrophysics Data System (ADS)

    Jankowski, F.; van Straten, W.; Keane, E. F.; Bailes, M.; Barr, E. D.; Johnston, S.; Kerr, M.

    2018-03-01

    We present spectral parameters for 441 radio pulsars. These were obtained from observations centred at 728, 1382 and 3100MHz using the 10-50cm and the 20cm multibeam receiver at the Parkes radio telescope. In particular, we list the pulsar names (J2000), the calibrated, band-integrated flux densities at 728, 1382 and 3100MHz, the spectral classifications, the frequency ranges the spectral classifications were performed over, the spectral indices for pulsars with simple power-law spectra and the robust modulation indices at all three centre frequencies for pulsars of which we have at least six measurement epochs. The flux density uncertainties include scintillation and a systematic contribution, in addition to the statistical uncertainty. Upper limits are reported at the 3σ level and all other uncertainties at the 1σ level. (1 data file).

  9. Electron transport fluxes in potato plateau regime

    NASA Astrophysics Data System (ADS)

    Shaing, K. C.; Hazeltine, R. D.

    1997-12-01

    Electron transport fluxes in the potato plateau regime are calculated from the solutions of the drift kinetic equation and fluid equations. It is found that the bootstrap current density remains finite in the region close to the magnetic axis, although it decreases with increasing collision frequency. This finite amount of the bootstrap current in the relatively collisional regime is important in modeling tokamak startup with 100% bootstrap current.

  10. Stochastic Geomorphology: A Framework for Creating General Principles on Erosion and Sedimentation in River Basins (Invited)

    NASA Astrophysics Data System (ADS)

    Benda, L. E.

    2009-12-01

    Stochastic geomorphology refers to the interaction of the stochastic field of sediment supply with hierarchically branching river networks where erosion, sediment flux and sediment storage are described by their probability densities. There are a number of general principles (hypotheses) that stem from this conceptual and numerical framework that may inform the science of erosion and sedimentation in river basins. Rainstorms and other perturbations, characterized by probability distributions of event frequency and magnitude, stochastically drive sediment influx to channel networks. The frequency-magnitude distribution of sediment supply that is typically skewed reflects strong interactions among climate, topography, vegetation, and geotechnical controls that vary between regions; the distribution varies systematically with basin area and the spatial pattern of erosion sources. Probability densities of sediment flux and storage evolve from more to less skewed forms downstream in river networks due to the convolution of the population of sediment sources in a watershed that should vary with climate, network patterns, topography, spatial scale, and degree of erosion asynchrony. The sediment flux and storage distributions are also transformed downstream due to diffusion, storage, interference, and attrition. In stochastic systems, the characteristically pulsed sediment supply and transport can create translational or stationary-diffusive valley and channel depositional landforms, the geometries of which are governed by sediment flux-network interactions. Episodic releases of sediment to the network can also drive a system memory reflected in a Hurst Effect in sediment yields and thus in sedimentological records. Similarly, discreet events of punctuated erosion on hillslopes can lead to altered surface and subsurface properties of a population of erosion source areas that can echo through time and affect subsequent erosion and sediment flux rates. Spatial patterns of probability densities have implications for the frequency and magnitude of sediment transport and storage and thus for the formation of alluvial and colluvial landforms throughout watersheds. For instance, the combination and interference of probability densities of sediment flux at confluences creates patterns of riverine heterogeneity, including standing waves of sediment with associated age distributions of deposits that can vary from younger to older depending on network geometry and position. Although the watershed world of probability densities is rarified and typically confined to research endeavors, it has real world implications for the day-to-day work on hillslopes and in fluvial systems, including measuring erosion, sediment transport, mapping channel morphology and aquatic habitats, interpreting deposit stratigraphy, conducting channel restoration, and applying environmental regulations. A question for the geomorphology community is whether the stochastic framework is useful for advancing our understanding of erosion and sedimentation and whether it should stimulate research to further develop, refine and test these and other principles. For example, a changing climate should lead to shifts in probability densities of erosion, sediment flux, storage, and associated habitats and thus provide a useful index of climate change in earth science forecast models.

  11. A new method to determine magnetic properties of the unsaturated-magnetized rotor of a novel gyro

    NASA Astrophysics Data System (ADS)

    Li, Hai; Liu, Xiaowei; Dong, Changchun; Zhang, Haifeng

    2016-06-01

    A new method is proposed to determine magnetic properties of the unsaturated-magnetized, small and irregular shaped rotor of a novel gyro. The method is based on finite-element analysis and the measurements of the magnetic flux density distribution, determining magnetic parameters by comparing the magnetic flux intensity distribution differences between the modeling results under different parameters and the measured ones. Experiment on a N30 Grade NdFeB magnet shows that its residual magnetic flux density is 1.10±0.01 T, and coercive field strength is 801±3 kA/m, which are consistent with the given parameters of the material. The method was applied to determine the magnetic properties of the rotor of the gyro, and the magnetic properties acquired were used to predict the open-loop gyro precession frequency. The predicted precession frequency should be larger than 12.9 Hz, which is close to the experimental result 13.5 Hz. The result proves that the method is accurate in estimating the magnetic properties of the rotor of the gyro.

  12. The Most Compact Bright Radio-loud AGNs. II. VLBA Observations of 10 Sources at 43 and 86 GHz

    NASA Astrophysics Data System (ADS)

    Cheng, X.-P.; An, T.; Hong, X.-Y.; Yang, J.; Mohan, P.; Kellermann, K. I.; Lister, M. L.; Frey, S.; Zhao, W.; Zhang, Z.-L.; Wu, X.-C.; Li, X.-F.; Zhang, Y.-K.

    2018-01-01

    Radio-loud active galactic nuclei (AGNs), hosting powerful relativistic jet outflows, provide an excellent laboratory for studying jet physics. Very long baseline interferometry (VLBI) enables high-resolution imaging on milli-arcsecond (mas) and sub-mas scales, making it a powerful tool to explore the inner jet structure, shedding light on the formation, acceleration, and collimation of AGN jets. In this paper, we present Very Long Baseline Array observations of 10 radio-loud AGNs at 43 and 86 GHz that were selected from the Planck catalog of compact sources and are among the brightest in published VLBI images at and below 15 GHz. The image noise levels in our observations are typically 0.3 and 1.5 mJy beam‑1 at 43 and 86 GHz, respectively. Compared with the VLBI data observed at lower frequencies from the literature, our observations with higher resolutions (with the highest resolution being up to 0.07 mas at 86 GHz and 0.18 mas at 43 GHz) and at higher frequencies detected new jet components at sub-parsec scales, offering valuable data for studies of the physical properties of the innermost jets. These include the compactness factor of the radio structure (the ratio of core flux density to total flux density), and core brightness temperature ({T}{{b}}). In all these sources, the compact core accounts for a significant fraction (> 60 % ) of the total flux density. Their correlated flux density at the longest baselines is higher than 0.16 Jy. The compactness of these sources make them good phase calibrators of millimeter-wavelength ground-based and space VLBI.

  13. Imaging Jupiter's radiation belts down to 127 MHz with LOFAR

    NASA Astrophysics Data System (ADS)

    Girard, J. N.; Zarka, P.; Tasse, C.; Hess, S.; de Pater, I.; Santos-Costa, D.; Nenon, Q.; Sicard, A.; Bourdarie, S.; Anderson, J.; Asgekar, A.; Bell, M. E.; van Bemmel, I.; Bentum, M. J.; Bernardi, G.; Best, P.; Bonafede, A.; Breitling, F.; Breton, R. P.; Broderick, J. W.; Brouw, W. N.; Brüggen, M.; Ciardi, B.; Corbel, S.; Corstanje, A.; de Gasperin, F.; de Geus, E.; Deller, A.; Duscha, S.; Eislöffel, J.; Falcke, H.; Frieswijk, W.; Garrett, M. A.; Grießmeier, J.; Gunst, A. W.; Hessels, J. W. T.; Hoeft, M.; Hörandel, J.; Iacobelli, M.; Juette, E.; Kondratiev, V. I.; Kuniyoshi, M.; Kuper, G.; van Leeuwen, J.; Loose, M.; Maat, P.; Mann, G.; Markoff, S.; McFadden, R.; McKay-Bukowski, D.; Moldon, J.; Munk, H.; Nelles, A.; Norden, M. J.; Orru, E.; Paas, H.; Pandey-Pommier, M.; Pizzo, R.; Polatidis, A. G.; Reich, W.; Röttgering, H.; Rowlinson, A.; Schwarz, D.; Smirnov, O.; Steinmetz, M.; Swinbank, J.; Tagger, M.; Thoudam, S.; Toribio, M. C.; Vermeulen, R.; Vocks, C.; van Weeren, R. J.; Wijers, R. A. M. J.; Wucknitz, O.

    2016-03-01

    Context. With the limited amount of in situ particle data available for the innermost region of Jupiter's magnetosphere, Earth-based observations of the giant planets synchrotron emission remain the sole method today of scrutinizing the distribution and dynamical behavior of the ultra energetic electrons magnetically trapped around the planet. Radio observations ultimately provide key information about the origin and control parameters of the harsh radiation environment. Aims: We perform the first resolved and low-frequency imaging of the synchrotron emission with LOFAR. At a frequency as low as 127 MHz, the radiation from electrons with energies of ~1-30 MeV are expected, for the first time, to be measured and mapped over a broad region of Jupiter's inner magnetosphere. Methods: Measurements consist of interferometric visibilities taken during a single 10-hour rotation of the Jovian system. These visibilities were processed in a custom pipeline developed for planetary observations, combining flagging, calibration, wide-field imaging, direction-dependent calibration, and specific visibility correction for planetary targets. We produced spectral image cubes of Jupiter's radiation belts at the various angular, temporal, and spectral resolutions from which flux densities were measured. Results: The first resolved images of Jupiter's radiation belts at 127-172 MHz are obtained with a noise level ~20-25 mJy/beam, along with total integrated flux densities. They are compared with previous observations at higher frequencies. A greater extent of the synchrotron emission source (≥4 RJ) is measured in the LOFAR range, which is the signature - as at higher frequencies - of the superposition of a "pancake" and an isotropic electron distribution. Asymmetry of east-west emission peaks is measured, as well as the longitudinal dependence of the radial distance of the belts, and the presence of a hot spot at λIII = 230° ± 25°. Spectral flux density measurements are on the low side of previous (unresolved) ones, suggesting a low-frequency turnover and/or time variations of the Jovian synchrotron spectrum. Conclusions: LOFAR proves to be a powerful and flexible planetary imager. In the case of Jupiter, observations at 127 MHz depict the distribution of ~1-30 MeV energy electrons up to ~4-5 planetary radii. The similarities of the observations at 127 MHz with those at higher frequencies reinforce the conclusion that the magnetic field morphology primarily shapes the brightness distribution features of Jupiter's synchrotron emission, as well as how the radiating electrons are likely radially and latitudinally distributed inside about 2 planetary radii. Nonetheless, the detection of an emission region that extends to larger distances than at higher frequencies, combined with the overall lower flux density, yields new information on Jupiter's electron distribution, and this information may ultimately shed light on the origin and mode of transport of these particles.

  14. Interactive Database of Pulsar Flux Density Measurements

    NASA Astrophysics Data System (ADS)

    Koralewska, O.; Krzeszowski, K.; Kijak, J.; Lewandowski, W.

    2012-12-01

    The number of astronomical observations is steadily growing, giving rise to the need of cataloguing the obtained results. There are a lot of databases, created to store different types of data and serve a variety of purposes, e. g. databases providing basic data for astronomical objects (SIMBAD Astronomical Database), databases devoted to one type of astronomical object (ATNF Pulsar Database) or to a set of values of the specific parameter (Lorimer 1995 - database of flux density measurements for 280 pulsars on the frequencies up to 1606 MHz), etc. We found that creating an online database of pulsar flux measurements, provided with facilities for plotting diagrams and histograms, calculating mean values for a chosen set of data, filtering parameter values and adding new measurements by the registered users, could be useful in further studies on pulsar spectra.

  15. Suppression of 1/f Flux Noise in Superconducting Quantum Circuits

    NASA Astrophysics Data System (ADS)

    Kumar, Pradeep; Freeland, John; Yu, Clare; Wu, Ruqian; Wang, Zhe; Wang, Hui; Shi, Chuntai; Pappas, David; McDermott, Robert

    Low frequency 1/f magnetic flux noise is a dominant contributor to dephasing in superconducting quantum circuits. It is believed that the noise is due to a high density of unpaired magnetic defect states at the surface of the superconducting thin films. We have performed X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD) experiments that point to adsorbed molecular oxygen as the dominant source of magnetism in these films. By improving the vacuum environment of our superconducting devices, we have achieved a significant reduction in surface magnetic susceptibility and 1/f flux noise power spectral density. These results open the door to realization of superconducting qubits with improved dephasing times. State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, China.

  16. Radio synchrotron spectra of star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Klein, U.; Lisenfeld, U.; Verley, S.

    2018-03-01

    We investigated the radio continuum spectra of 14 star-forming galaxies by fitting nonthermal (synchrotron) and thermal (free-free) radiation laws. The underlying radio continuum measurements cover a frequency range of 325 MHz to 24.5 GHz (32 GHz in case of M 82). It turns out that most of these synchrotron spectra are not simple power-laws, but are best represented by a low-frequency spectrum with a mean slope αnth = 0.59 ± 0.20 (Sν ∝ ν-α), and by a break or an exponential decline in the frequency range of 1-12 GHz. Simple power-laws or mildly curved synchrotron spectra lead to unrealistically low thermal flux densities, and/or to strong deviations from the expected optically thin free-free spectra with slope αth = 0.10 in the fits. The break or cutoff energies are in the range of 1.5-7 GeV. We briefly discuss the possible origin of such a cutoff or break. If the low-frequency spectra obtained here reflect the injection spectrum of cosmic-ray electrons, they comply with the mean spectral index of Galactic supernova remnants. A comparison of the fitted thermal flux densities with the (foreground-corrected) Hα fluxes yields the extinction, which increases with metallicity. The fraction of thermal emission is higher than believed hitherto, especially at high frequencies, and is highest in the dwarf galaxies of our sample, which we interpret in terms of a lack of containment in these low-mass systems, or a time effect caused by a very young starburst.

  17. Assessment of extremely low frequency magnetic field exposure from GSM mobile phones.

    PubMed

    Calderón, Carolina; Addison, Darren; Mee, Terry; Findlay, Richard; Maslanyj, Myron; Conil, Emmanuelle; Kromhout, Hans; Lee, Ae-kyoung; Sim, Malcolm R; Taki, Masao; Varsier, Nadège; Wiart, Joe; Cardis, Elisabeth

    2014-04-01

    Although radio frequency (RF) electromagnetic fields emitted by mobile phones have received much attention, relatively little is known about the extremely low frequency (ELF) magnetic fields emitted by phones. This paper summarises ELF magnetic flux density measurements on global system for mobile communications (GSM) mobile phones, conducted as part of the MOBI-KIDS epidemiological study. The main challenge is to identify a small number of generic phone models that can be used to classify the ELF exposure for the different phones reported in the study. Two-dimensional magnetic flux density measurements were performed on 47 GSM mobile phones at a distance of 25 mm. Maximum resultant magnetic flux density values at 217 Hz had a geometric mean of 221 (+198/-104) nT. Taking into account harmonic data, measurements suggest that mobile phones could make a substantial contribution to ELF exposure in the general population. The maximum values and easily available variables were poorly correlated. However, three groups could be defined on the basis of field pattern indicating that manufacturers and shapes of mobile phones may be the important parameters linked to the spatial characteristics of the magnetic field, and the categorization of ELF magnetic field exposure for GSM phones in the MOBI-KIDS study may be achievable on the basis of a small number of representative phones. Such categorization would result in a twofold exposure gradient between high and low exposure based on type of phone used, although there was overlap in the grouping. © 2013 Wiley Periodicals, Inc.

  18. Optimization of magnetic flux density for fast MREIT conductivity imaging using multi-echo interleaved partial fourier acquisitions.

    PubMed

    Chauhan, Munish; Jeong, Woo Chul; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je

    2013-08-27

    Magnetic resonance electrical impedance tomography (MREIT) has been introduced as a non-invasive method for visualizing the internal conductivity and/or current density of an electrically conductive object by externally injected currents. The injected current through a pair of surface electrodes induces a magnetic flux density distribution inside the imaging object, which results in additional magnetic flux density. To measure the magnetic flux density signal in MREIT, the phase difference approach in an interleaved encoding scheme cancels out the systematic artifacts accumulated in phase signals and also reduces the random noise effect by doubling the measured magnetic flux density signal. For practical applications of in vivo MREIT, it is essential to reduce the scan duration maintaining spatial-resolution and sufficient contrast. In this paper, we optimize the magnetic flux density by using a fast gradient multi-echo MR pulse sequence. To recover the one component of magnetic flux density Bz, we use a coupled partial Fourier acquisitions in the interleaved sense. To prove the proposed algorithm, we performed numerical simulations using a two-dimensional finite-element model. For a real experiment, we designed a phantom filled with a calibrated saline solution and located a rubber balloon inside the phantom. The rubber balloon was inflated by injecting the same saline solution during the MREIT imaging. We used the multi-echo fast low angle shot (FLASH) MR pulse sequence for MRI scan, which allows the reduction of measuring time without a substantial loss in image quality. Under the assumption of a priori phase artifact map from a reference scan, we rigorously investigated the convergence ratio of the proposed method, which was closely related with the number of measured phase encode set and the frequency range of the background field inhomogeneity. In the phantom experiment with a partial Fourier acquisition, the total scan time was less than 6 seconds to measure the magnetic flux density Bz data with 128×128 spacial matrix size, where it required 10.24 seconds to fill the complete k-space region. Numerical simulation and experimental results demonstrated that the proposed method reduces the scanning time and provides the recovered Bz data comparable to what we obtained by measuring complete k-space data.

  19. Numerical study of plasma generation process and internal antenna heat loadings in J-PARC RF negative ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shibata, T., E-mail: shibat@post.j-parc.jp; Ueno, A.; Oguri, H.

    A numerical model of plasma transport and electromagnetic field in the J-PARC (Japan Proton Accelerator Research Complex) radio frequency ion source has been developed to understand the relation between antenna coil heat loadings and plasma production/transport processes. From the calculation, the local plasma density increase is observed in the region close to the antenna coil. Electrons are magnetized by the magnetic field line with absolute magnetic flux density 30–120 Gauss which leads to high local ionization rate. The results suggest that modification of magnetic configuration can be made to reduce plasma heat flux onto the antenna.

  20. Internal wave energy flux from density perturbations in nonlinear stratifications

    NASA Astrophysics Data System (ADS)

    Lee, Frank M.; Allshouse, Michael R.; Swinney, Harry L.; Morrison, P. J.

    2017-11-01

    Tidal flow over the topography at the bottom of the ocean, whose density varies with depth, generates internal gravity waves that have a significant impact on the energy budget of the ocean. Thus, understanding the energy flux (J = p v) is important, but it is difficult to measure simultaneously the pressure and velocity perturbation fields, p and v . In a previous work, a Green's-function-based method was developed to calculate the instantaneous p, v , and thus J , given a density perturbation field for a constant buoyancy frequency N. Here we extend the previous analytic Green's function work to include nonuniform N profiles, namely the tanh-shaped and linear cases, because background density stratifications that occur in the ocean and some experiments are nonlinear. In addition, we present a finite-difference method for the general case where N has an arbitrary profile. Each method is validated against numerical simulations. The methods we present can be applied to measured density perturbation data by using our MATLAB graphical user interface EnergyFlux. PJM was supported by the U.S. Department of Energy Contract DE-FG05-80ET-53088. HLS and MRA were supported by ONR Grant No. N000141110701.

  1. High-frequency predictions for number counts and spectral properties of extragalactic radio sources. New evidence of a break at mm wavelengths in spectra of bright blazar sources

    NASA Astrophysics Data System (ADS)

    Tucci, M.; Toffolatti, L.; de Zotti, G.; Martínez-González, E.

    2011-09-01

    We present models to predict high-frequency counts of extragalactic radio sources using physically grounded recipes to describe the complex spectral behaviour of blazars that dominate the mm-wave counts at bright flux densities. We show that simple power-law spectra are ruled out by high-frequency (ν ≥ 100 GHz) data. These data also strongly constrain models featuring the spectral breaks predicted by classical physical models for the synchrotron emission produced in jets of blazars. A model dealing with blazars as a single population is, at best, only marginally consistent with data coming from current surveys at high radio frequencies. Our most successful model assumes different distributions of break frequencies, νM, for BL Lacs and flat-spectrum radio quasars (FSRQs). The former objects have substantially higher values of νM, implying that the synchrotron emission comes from more compact regions; therefore, a substantial increase of the BL Lac fraction at high radio frequencies and at bright flux densities is predicted. Remarkably, our best model is able to give a very good fit to all the observed data on number counts and on distributions of spectral indices of extragalactic radio sources at frequencies above 5 and up to 220 GHz. Predictions for the forthcoming sub-mm blazar counts from Planck, at the highest HFI frequencies, and from Herschel surveys are also presented. Appendices are available in electronic form at http://www.aanda.org

  2. Controlling plasma properties under differing degrees of electronegativity using odd harmonic dual frequency excitation

    NASA Astrophysics Data System (ADS)

    Gibson, Andrew R.; Gans, Timo

    2017-11-01

    The charged particle dynamics in low-pressure oxygen plasmas excited by odd harmonic dual frequency waveforms (low frequency of 13.56 MHz and high frequency of 40.68 MHz) are investigated using a one-dimensional numerical simulation in regimes of both low and high electronegativity. In the low electronegativity regime, the time and space averaged electron and negative ion densities are approximately equal and plasma sustainment is dominated by ionisation at the sheath expansion for all combinations of low and high frequency and the phase shift between them. In the high electronegativity regime, the negative ion density is a factor of 15-20 greater than the low electronegativity cases. In these cases, plasma sustainment is dominated by ionisation inside the bulk plasma and at the collapsing sheath edge when the contribution of the high frequency to the overall voltage waveform is low. As the high frequency component contribution to the waveform increases, sheath expansion ionisation begins to dominate. It is found that the control of the average voltage drop across the plasma sheath and the average ion flux to the powered electrode are similar in both regimes of electronegativity, despite the differing electron dynamics using the considered dual frequency approach. This offers potential for similar control of ion dynamics under a range of process conditions, independent of the electronegativity. This is in contrast to ion control offered by electrically asymmetric waveforms where the relationship between the ion flux and ion bombardment energy is dependent upon the electronegativity.

  3. Calibration and evaluation of CCD spectroradiometers for ground-based and airborne measurements of spectral actinic flux densities

    NASA Astrophysics Data System (ADS)

    Bohn, Birger; Lohse, Insa

    2017-09-01

    The properties and performance of charge-coupled device (CCD) array spectroradiometers for the measurement of atmospheric spectral actinic flux densities (280-650 nm) and photolysis frequencies were investigated. These instruments are widely used in atmospheric research and are suitable for aircraft applications because of high time resolutions and high sensitivities in the UV range. The laboratory characterization included instrument-specific properties like the wavelength accuracy, dark signal, dark noise and signal-to-noise ratio (SNR). Spectral sensitivities were derived from measurements with spectral irradiance standards. The calibration procedure is described in detail, and a straightforward method to minimize the influence of stray light on spectral sensitivities is introduced. From instrument dark noise, minimum detection limits ≈ 1 × 1010 cm-2 s-1 nm-1 were derived for spectral actinic flux densities at wavelengths around 300 nm (1 s integration time). As a prerequisite for the determination of stray light under field conditions, atmospheric cutoff wavelengths were defined using radiative transfer calculations as a function of the solar zenith angle (SZA) and total ozone column (TOC). The recommended analysis of field data relies on these cutoff wavelengths and is also described in detail taking data from a research flight on HALO (High Altitude and Long Range Research Aircraft) as an example. An evaluation of field data was performed by ground-based comparisons with a double-monochromator-based, highly sensitive reference spectroradiometer. Spectral actinic flux densities were compared as well as photolysis frequencies j(NO2) and j(O1D), representing UV-A and UV-B ranges, respectively. The spectra expectedly revealed increased daytime levels of stray-light-induced signals and noise below atmospheric cutoff wavelengths. The influence of instrument noise and stray-light-induced noise was found to be insignificant for j(NO2) and rather limited for j(O1D), resulting in estimated detection limits of 5 × 10-7 and 1 × 10-7 s-1, respectively, derived from nighttime measurements on the ground (0.3 s integration time, 10 s averages). For j(O1D) the detection limit could be further reduced by setting spectral actinic flux densities to zero below atmospheric cutoff wavelengths. The accuracies of photolysis frequencies were determined from linear regressions with data from the double-monochromator reference instrument. The agreement was typically within ±5 %. Because optical-receiver aspects are not specific for the CCD spectroradiometers, they were widely excluded in this work and will be treated in a separate paper, in particular with regard to airborne applications.

  4. Powerful actuation of magnetized microtools by focused magnetic field for particle sorting in a chip.

    PubMed

    Yamanishi, Yoko; Sakuma, Shinya; Onda, Kazuhisa; Arai, Fumihito

    2010-08-01

    This paper describes a novel powerful noncontact actuation of a magnetically driven microtool (MMT), achieved by magnetization of the MMT and focusing of the magnetic field in a microfluidic chip for particle sorting. The following are the highlights of this study: (1) an MMT was successfully fabricated from a mixture of neodymium powder and polydimethylsiloxane; the MMT was magnetized such that it acted as an elastic micromagnet with a magnetic flux density that increased by about 100 times after magnetization, and (2) a pair of sharp magnetic needles was fabricated adjacent to a microchannel in a chip by electroplating, in order to focus the magnetic flux density generated by the electromagnetic coils below the biochip; these needles contribute to miniaturization of an actuation module that would enable the integration of multiple functions in the limited area of a chip. FEM analysis of the magnetic flux density around the MMT showed that the magnetic flux density in the setup with the magnetic needles was around 8 times better than that in the setup without the needles. By magnetization, the drive frequency of the MMT improved by about 10 times--from 18 Hz to 180 Hz. We successfully demonstrated the separation of copolymer beads of a particular size in a chip by image sensing.

  5. Operation of the ORNL High Particle Flux Helicon Plasma Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goulding, R. H.; Biewer, T. M.; Caughman, J. B. O.

    2011-12-23

    A high power, high particle flux rf-based helicon plasma source has been constructed at ORNL and operated at power levels up to 30 kW. High-density hydrogen and helium plasmas have been produced. The source has been designed as the basis for a linear plasma materials interaction (PMI) test facility that will generate particle fluxes {Gamma}{sub p}10{sup 23} m{sup -3} s{sup -1}, and utilize additional ion and electron cyclotron heating to produce high parallel (to the magnetic field) heat fluxes of {approx}10 MW/m{sup 2}. An rf-based source for PMI research is of interest because high plasma densities are generated with nomore » internal electrodes, allowing true steady state operation with minimal impurity generation. The ORNL helicon source has a diameter of 15 cm and to-date has operated at a frequency f = 13.56 MHz, with magnetic field strength |B| in the antenna region up to {approx}0.15 T. Maximum densities of 3x10{sup 19} m{sup -3} in He and 2.5x10{sup 19} m{sup -3} in H have been achieved. Radial density profiles have been seen to be dependent on the axial |B| profile.« less

  6. Operation of the ORNL High Particle Flux Helicon Plasma Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goulding, Richard Howell; Biewer, Theodore M; Caughman, John B

    2011-01-01

    A high power, high particle flux rf-based helicon plasma source has been constructed at ORNL and operated at power levels up to 30 kW. High-density hydrogen and helium plasmas have been produced. The source has been designed as the basis for a linear plasma materials interaction (PMI) test facility that will generate particle fluxes Gamma(p) > 10(23) M-3 s(-1), and utilize additional ion and electron cyclotron heating to produce high parallel (to the magnetic field) heat fluxes of similar to 10 MW/m(2). An rf-based source for PMI research is of interest because high plasma densities are generated with no internalmore » electrodes, allowing true steady state operation with minimal impurity generation. The ORNL helicon source has a diameter of 15 cm and to-date has operated at a frequency f = 13.56 MHz, with magnetic field strength vertical bar B vertical bar in the antenna region up to similar to 0.15 T. Maximum densities of 3 x 10(19) M-3 in He and 2.5 x 10(19) m(-3) in H have been achieved. Radial density profiles have been seen to be dependent on the axial vertical bar B vertical bar profile.« less

  7. Turbulent, Extreme Multi-zone Model for Simulating Flux and Polarization Variability in Blazars

    NASA Astrophysics Data System (ADS)

    Marscher, Alan P.

    2014-01-01

    The author presents a model for variability of the flux and polarization of blazars in which turbulent plasma flowing at a relativistic speed down a jet crosses a standing conical shock. The shock compresses the plasma and accelerates electrons to energies up to γmax >~ 104 times their rest-mass energy, with the value of γmax determined by the direction of the magnetic field relative to the shock front. The turbulence is approximated in a computer code as many cells, each with a uniform magnetic field whose direction is selected randomly. The density of high-energy electrons in the plasma changes randomly with time in a manner consistent with the power spectral density of flux variations derived from observations of blazars. The variations in flux and polarization are therefore caused by continuous noise processes rather than by singular events such as explosive injection of energy at the base of the jet. Sample simulations illustrate the behavior of flux and linear polarization versus time that such a model produces. The variations in γ-ray flux generated by the code are often, but not always, correlated with those at lower frequencies, and many of the flares are sharply peaked. The mean degree of polarization of synchrotron radiation is higher and its timescale of variability shorter toward higher frequencies, while the polarization electric vector sometimes randomly executes apparent rotations. The slope of the spectral energy distribution exhibits sharper breaks than can arise solely from energy losses. All of these results correspond to properties observed in blazars.

  8. Planck intermediate results. VII. Statistical properties of infrared and radio extragalactic sources from the Planck Early Release Compact Source Catalogue at frequencies between 100 and 857 GHz

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Argüeso, F.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed, K.; Benoît, A.; Bernard, J.-P.; Bersanelli, M.; Bethermin, M.; Bhatia, R.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Burigana, C.; Cabella, P.; Cardoso, J.-F.; Catalano, A.; Cayón, L.; Chamballu, A.; Chary, R.-R.; Chen, X.; Chiang, L.-Y.; Christensen, P. R.; Clements, D. L.; Colafrancesco, S.; Colombi, S.; Colombo, L. P. L.; Coulais, A.; Crill, B. P.; Cuttaia, F.; Danese, L.; Davis, R. J.; de Bernardis, P.; de Gasperis, G.; de Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Dörl, U.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Fosalba, P.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Harrison, D.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Jaffe, T. R.; Jaffe, A. H.; Jagemann, T.; Jones, W. C.; Juvela, M.; Keihänen, E.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurinsky, N.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lawrence, C. R.; Leonardi, R.; Lilje, P. B.; López-Caniego, M.; Macías-Pérez, J. F.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Mazzotta, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Mitra, S.; Miville-Deschènes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sajina, A.; Sandri, M.; Savini, G.; Scott, D.; Smoot, G. F.; Starck, J.-L.; Sudiwala, R.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Türler, M.; Valenziano, L.; Van Tent, B.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; White, M.; Yvon, D.; Zacchei, A.; Zonca, A.

    2013-02-01

    We make use of the Planck all-sky survey to derive number counts and spectral indices of extragalactic sources - infrared and radio sources - from the Planck Early Release Compact Source Catalogue (ERCSC) at 100 to 857 GHz (3 mm to 350 μm). Three zones (deep, medium and shallow) of approximately homogeneous coverage are used to permit a clean and controlled correction for incompleteness, which was explicitly not done for the ERCSC, as it was aimed at providing lists of sources to be followed up. Our sample, prior to the 80% completeness cut, contains between 217 sources at 100 GHz and 1058 sources at 857 GHz over about 12 800 to 16 550 deg2 (31 to 40% of the sky). After the 80% completeness cut, between 122 and 452 and sources remain, with flux densities above 0.3 and 1.9 Jy at 100 and 857 GHz. The sample so defined can be used for statistical analysis. Using the multi-frequency coverage of the Planck High Frequency Instrument, all the sources have been classified as either dust-dominated (infrared galaxies) or synchrotron-dominated (radio galaxies) on the basis of their spectral energy distributions (SED). Our sample is thus complete, flux-limited and color-selected to differentiate between the two populations. We find an approximately equal number of synchrotron and dusty sources between 217 and 353 GHz; at 353 GHz or higher (or 217 GHz and lower) frequencies, the number is dominated by dusty (synchrotron) sources, as expected. For most of the sources, the spectral indices are also derived. We provide for the first time counts of bright sources from 353 to 857 GHz and the contributions from dusty and synchrotron sources at all HFI frequencies in the key spectral range where these spectra are crossing. The observed counts are in the Euclidean regime. The number counts are compared to previously published data (from earlier Planck results, Herschel, BLAST, SCUBA, LABOCA, SPT, and ACT) and models taking into account both radio or infrared galaxies, and covering a large range of flux densities. We derive the multi-frequency Euclidean level - the plateau in the normalised differential counts at high flux-density - and compare it to WMAP, Spitzer and IRAS results. The submillimetre number counts are not well reproduced by current evolution models of dusty galaxies, whereas the millimetre part appears reasonably well fitted by the most recent model for synchrotron-dominated sources. Finally we provide estimates of the local luminosity density of dusty galaxies, providing the first such measurements at 545 and 857 GHz. Appendices are available in electronic form at http://www.aanda.orgCorresponding author: herve.dole@ias.u-psud.fr

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uryupin, S A; Frolov, A A

    We have developed a theory of generation of low-frequency radiation and surface waves under the pondermotive action of a femtosecond laser pulse irradiating a conductor along the normal and focused by a cylindrical lens. It is shown that for the chosen focusing method and specified values of laser pulse duration and flux density it is possible to significantly increase the total energy of both surface waves and low-frequency radiation. (terahertz radiation)

  10. Jeans instability in a universe with dissipation

    NASA Astrophysics Data System (ADS)

    Kremer, Gilberto M.; Richarte, Martín G.; Teston, Felipe

    2018-01-01

    The problem of Jeans gravitational instability is investigated for static and expanding universes within the context of the five and thirteen field theories which account for viscous and thermal effects. For the five-field theory a general dispersion relation has been derived with the help of relevant linearized perturbation equations, showing that the shear viscosity parameter alters the propagating modes for large and small wavelengths. The behavior of density and temperature contrasts are analyzed for the hard-sphere model in detail. In the small wavelengths regime, increasing the amount of shear viscosity into the system forces the harmonic perturbations to damp faster, however, in the opposite limit larger values of shear viscosity lead to smaller values of density and temperature contrasts. We also consider the hyperbolic case associated with the thirteen-field theory which involves two related parameters, namely the shear viscosity and the collision frequency, the last one is due to the production terms which appear in the Grad method. The dispersion relation becomes a polynomial in the frequency with two orders higher in relation to the five-field theory, indicating that the effects associated with the shear viscosity and heat flux are nontrivial. The profile of Jeans mass in terms of the temperature and number density is explored by contrasting with several data of molecular clouds. Regarding the dynamical evolution of the density, temperature, stress and heat flux contrasts for a universe dominated by pressureless matter, we obtain also damped harmonic waves for small wavelengths. In the case of large wavelengths, the density and temperature contrasts grow with time (due to the Jeans mechanism) while the stress and heat flux contrasts heavily decay with time. For an expanding universe, the Jeans mass and Jeans length are obtained and their physical consequences are explored.

  11. Scientific Research Program for Power, Energy, and Thermal Technologies. Task Order 0001: Power, Thermal and Control Technologies and Processes Experimental Research

    DTIC Science & Technology

    2015-08-01

    and (b) physical property data collection Following film deposition (via PLD or radio frequency magnetron sputtering), to prevent unwanted...carried out using an in-house radio frequency induction hot press under vacuum at ~1 mTorr and temperatures of 650, 750 and 850 °C. Sintering time was 2...tape thickness 23 µm, lamination stack thickness 11 mm). Simulated magnetic flux density inside the core was ~0.1 T, and operating frequency was

  12. Monitoring crop coefficient of orange orchards using energy balance and the remote sensed NDVI

    NASA Astrophysics Data System (ADS)

    Consoli, Simona; Cirelli, Giuseppe Luigi; Toscano, Attilio

    2006-09-01

    The structure of vegetation is paramount in regulating the exchange of mass and energy across the biosphereatmosphere interface. In particular, changes in vegetation density affected the partitioning of incoming solar energy into sensible and latent heat fluxes that may result in persistent drought through reductions in agricultural productivity and in the water resources availability. Limited research with citrus orchards has shown improvements to irrigation scheduling due to better water-use estimation and more appropriate timing of irrigation when crop coefficient (Kc) estimate, derived from remotely sensed multispectral vegetation indices (VIs), are incorporated into irrigation-scheduling algorithms. The purpose of this article is the application of an empirical reflectance-based model for the estimation of Kc and evapotranspiration fluxes (ET) using ground observations on climatic data and high-resolution VIs from ASTER TERRA satellite imagery. The remote sensed Kc data were used in developing the relationship with the normalized difference vegetation index (NDVI) for orange orchards during summer periods. Validation of remote sensed data on ET, Kc and vegetation features was deal through ground data observations and the resolution of the energy balance to derive latent heat flux density (λE), using measures of net radiation (Rn) and soil heat flux density (G) and estimate of sensible heat flux density (H) from high frequency temperature measurements (Surface Renewal technique). The chosen case study is that of an irrigation area covered by orange orchards located in Eastern Sicily, Italy) during the irrigation seasons 2005 and 2006.

  13. Transient Response of Arc Temperature and Iron Vapor Concentration Affected by Current Frequency with Iron Vapor in Pulsed Arc

    NASA Astrophysics Data System (ADS)

    Tanaka, Tatsuro; Maeda, Yoshifumi; Yamamoto, Shinji; Iwao, Toru

    2016-10-01

    TIG arc welding is chemically a joining technology with melting the metallic material and it can be high quality. However, this welding should not be used in high current to prevent cathode melting. Thus, the heat transfer is poor. Therefore, the deep penetration cannot be obtained and the weld defect sometimes occurs. The pulsed arc welding has been used for the improvement of this defect. The pulsed arc welding can control the heat flux to anode. The convention and driving force in the weld pool are caused by the arc. Therefore, it is important to grasp the distribution of arc temperature. The metal vapor generate from the anode in welding. In addition, the pulsed current increased or decreased periodically. Therefore, the arc is affected by such as a current value and current frequency, the current rate of increment and the metal vapor. In this paper, the transient response of arc temperature and the iron vapor concentration affected by the current frequency with iron vapor in pulsed arc was elucidated by the EMTF (ElectroMagnetic Thermal Fluid) simulation. As a result, the arc temperature and the iron vapor were transient response as the current frequency increase. Thus, the temperature and the electrical conductivity decreased. Therefore, the electrical field increased in order to maintain the current continuity. The current density and electromagnetic force increased at the axial center. In addition, the electronic flow component of the heat flux increased at the axial center because the current density increased. However, the heat conduction component of the heat flux decreased.

  14. The low-frequency radio eclipses of the black widow pulsar J1810+1744

    NASA Astrophysics Data System (ADS)

    Polzin, E. J.; Breton, R. P.; Clarke, A. O.; Kondratiev, V. I.; Stappers, B. W.; Hessels, J. W. T.; Bassa, C. G.; Broderick, J. W.; Grießmeier, J.-M.; Sobey, C.; ter Veen, S.; van Leeuwen, J.; Weltevrede, P.

    2018-05-01

    We have observed and analysed the eclipses of the black widow pulsar J1810+1744 at low radio frequencies. Using LOw-Frequency ARray (LOFAR) and Westerbork Synthesis Radio Telescope observations between 2011 and 2015, we have measured variations in flux density, dispersion measure, and scattering around eclipses. High-time resolution, simultaneous beamformed, and interferometric imaging LOFAR observations show concurrent disappearance of pulsations and total flux from the source during the eclipses, with a 3σ upper limit of 36 mJy ( < 10 per cent of the pulsar's averaged out-of-eclipse flux density). The dispersion measure variations are highly asymmetric, suggesting a tail of material swept back due to orbital motion. The egress deviations are variable on time-scales shorter than the 3.6 h orbital period and are indicative of a clumpy medium. Additional pulse broadening detected during egress is typically < 20 per cent of the pulsar's spin period, showing no evidence of scattering the pulses beyond detectability in the beamformed data. The eclipses, lasting ˜ 13 per cent of the orbit at 149 MHz, are shown to be frequency-dependent with total duration scaling as ∝ ν-0.41 ± 0.03. The results are discussed in the context of the physical parameters of the system, and an examination of eclipse mechanisms reveals cyclotron-synchrotron absorption as the most likely primary cause, although non-linear scattering mechanisms cannot be quantitatively ruled out. The inferred mass-loss rate is a similar order of magnitude to the mean rate required to fully evaporate the companion in a Hubble time.

  15. Some characteristics of the international space channel

    NASA Technical Reports Server (NTRS)

    Noack, T. L.; Poland, W. B., Jr.

    1975-01-01

    Some physical characteristics of radio transmission links and the technology of PCM modulation combine with the Radio Regulations of the International Telecommunications Union to define a communications channel having a determinable channel capacity, error rate, and sensitivity to interference. These characteristics and the corresponding limitations on EIRP, power flux density, and power spectral density for space service applications are described. The ITU regulations create a critical height of 1027 km where some parameters of the limitation rules change. The nature of restraints on power spectral density are discussed and an approach to a standardized representation of Necessary Bandwidth for the Space Services is described. It is shown that, given the PFD (power flux density) and PSD (power spectral density) limitations of radio regulations, the channel performance is determined by the ratio of effective receiving antenna aperture to system noise temperature. Based on this approach, the method for a quantitative trade-off between spectrum spreading and system performance is presented. Finally, the effects of radio frequency interference between standard systems is analyzed.

  16. IRIA State-of-the-Art Report: Optical-Mechanical, Active/Passive Imaging Systems. Volume I.

    DTIC Science & Technology

    1982-05-01

    mostly nonimage -forming. With few exceptions, these devices used reflective optical systems, similar detectors (thermistor bolometers), and oscillating...diffraction-limited circular optics appears as a bright circular disk surrounded by concentric rings of diminishing flux density. The central disk...bar target is heavily concentrated in frequencies lower than the basic frequency of the bar target. The MTF of a reflective optical system varies as a

  17. Effects of photosynthetic photon flux density, frequency, duty ratio, and their interactions on net photosynthetic rate of cos lettuce leaves under pulsed light: explanation based on photosynthetic-intermediate pool dynamics.

    PubMed

    Jishi, Tomohiro; Matsuda, Ryo; Fujiwara, Kazuhiro

    2018-06-01

    Square-wave pulsed light is characterized by three parameters, namely average photosynthetic photon flux density (PPFD), pulsed-light frequency, and duty ratio (the ratio of light-period duration to that of the light-dark cycle). In addition, the light-period PPFD is determined by the averaged PPFD and duty ratio. We investigated the effects of these parameters and their interactions on net photosynthetic rate (P n ) of cos lettuce leaves for every combination of parameters. Averaged PPFD values were 0-500 µmol m -2  s -1 . Frequency values were 0.1-1000 Hz. White LED arrays were used as the light source. Every parameter affected P n and interactions between parameters were observed for all combinations. The P n under pulsed light was lower than that measured under continuous light of the same averaged PPFD, and this difference was enhanced with decreasing frequency and increasing light-period PPFD. A mechanistic model was constructed to estimate the amount of stored photosynthetic intermediates over time under pulsed light. The results indicated that all effects of parameters and their interactions on P n were explainable by consideration of the dynamics of accumulation and consumption of photosynthetic intermediates.

  18. New structures of power density spectra for four Kepler active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Dobrotka, A.; Antonuccio-Delogu, V.; Bajčičáková, I.

    2017-09-01

    Many nearby active galactic nuclei display a significant short-term variability. In this work, we reanalyse photometric data of four active galactic nuclei observed by Kepler in order to study the flickering activity, with our main goal to search for multiple components in the power density spectra. We find that all four objects have similar characteristics, with two break frequencies at approximately log( f /Hz) = -5.2 and -4.7. We consider some physical phenomena whose characteristic time-scales are consistent with those observed, in particular mass accretion fluctuations in the inner geometrically thick disc (hot X-ray corona) and unstable relativistic Rayleigh-Taylor modes. The former is supported by detection of the same break frequencies in the Swift X-ray data of ZW229-15. We also discuss rms-flux relations, and we detect a possible typical linear trend at lower flux levels. Our findings support the hypothesis of a multiplicative character of variability, in agreement with the propagating accretion fluctuation model.

  19. Integrated Power Adapter: Isolated Converter with Integrated Passives and Low Material Stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-09-01

    ADEPT Project: CPES at Virginia Tech is developing an extremely efficient power converter that could be used in power adapters for small, lightweight laptops and other types of mobile electronic devices. Power adapters convert electrical energy into useable power for an electronic device, and they currently waste a lot of energy when they are plugged into an outlet to power up. CPES at Virginia Tech is integrating high-density capacitors, new magnetic materials, high-frequency integrated circuits, and a constant-flux transformer to create its efficient power converter. The high-density capacitors enable the power adapter to store more energy. The new magnetic materialsmore » also increase energy storage, and they can be precisely dispensed using a low-cost ink-jet printer which keeps costs down. The high-frequency integrated circuits can handle more power, and they can handle it more efficiently. And, the constant-flux transformer processes a consistent flow of electrical current, which makes the converter more efficient.« less

  20. Imaging spectroscopy of type U and J solar radio bursts with LOFAR

    NASA Astrophysics Data System (ADS)

    Reid, Hamish A. S.; Kontar, Eduard P.

    2017-10-01

    Context. Radio U-bursts and J-bursts are signatures of electron beams propagating along magnetic loops confined to the corona. The more commonly observed type III radio bursts are signatures of electron beams propagating along magnetic loops that extend into interplanetary space. Given the prevalence of solar magnetic flux to be closed in the corona, why type III bursts are more frequently observed than U-bursts or J-bursts is an outstanding question. Aims: We use Low-Frequency Array (LOFAR) imaging spectroscopy between 30-80 MHz of low-frequency U-bursts and J-bursts, for the first time, to understand why electron beams travelling along coronal loops produce radio emission less often. Radio burst observations provide information not only about the exciting electron beams but also about the structure of large coronal loops with densities that are too low for standard extreme ultraviolet (EUV) or X-ray analysis. Methods: We analysed LOFAR images of a sequence of two J-bursts and one U-burst. The different radio source positions were used to model the spatial structure of the guiding magnetic flux tube and then deduce the energy range of the exciting electron beams without the assumption of a standard density model. We also estimated the electron density along the magnetic flux rope and compared it to coronal models. Results: The radio sources infer a magnetic loop that is 1 solar radius in altitude with the highest frequency sources starting around 0.6 solar radii. Electron velocities were found between 0.13 c and 0.24 c with the front of the electron beam travelling faster than the back of the electron beam. The velocities correspond to energy ranges within the beam from 0.7-11 keV to 0.7-43 keV. The density along the loop is higher than typical coronal density models and the density gradient is smaller. Conclusions: We found that a more restrictive range of accelerated beam and background plasma parameters can result in U-bursts or J-bursts, causing type III bursts to be more frequently observed. The large instability distances required before Langmuir waves are produced by some electron beams, and the small magnitude of the background density gradients makes closed loops less facilitative for radio emission than loops that extend into interplanetary space.

  1. Prediction of high frequency core loss for electrical steel using the data provided by manufacturer

    NASA Astrophysics Data System (ADS)

    Roy, Rakesh; Dalal, Ankit; Kumar, Praveen

    2016-07-01

    This paper describes a technique to determine the core loss data, at high frequencies, using the loss data provided by the lamination manufacturer. Steinmetz equation is used in this proposed method to determine core loss at high frequency. This Steinmetz equation consists of static hysteresis and eddy current loss. The presented technique considers the coefficients of Steinmetz equation as variable with frequency and peak magnetic flux density. The high frequency core loss data, predicted using this model is compared with the catalogue data given by manufacturer and very good accuracy has been obtained for a wide range of frequency.

  2. Origin and Reduction of 1 / f Magnetic Flux Noise in Superconducting Devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, P.; Sendelbach, S.; Beck, M. A.

    2016-10-01

    Magnetic flux noise is a dominant source of dephasing and energy relaxation in superconducting qubits. The noise power spectral density varies with frequency as 1=fα, with α ≲ 1, and spans 13 orders of magnitude. Recent work indicates that the noise is from unpaired magnetic defects on the surfaces of the superconducting devices. Here, we demonstrate that adsorbed molecular O2 is the dominant contributor to magnetism in superconducting thin films. We show that this magnetism can be reduced by appropriate surface treatment or improvement in the sample vacuum environment. We observe a suppression of static spin susceptibility by more thanmore » an order of magnitude and a suppression of 1=f magnetic flux noise power spectral density of up to a factor of 5. These advances open the door to the realization of superconducting qubits with improved quantum coherence.« less

  3. Origin and Reduction of 1 /f Magnetic Flux Noise in Superconducting Devices

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Sendelbach, S.; Beck, M. A.; Freeland, J. W.; Wang, Zhe; Wang, Hui; Yu, Clare C.; Wu, R. Q.; Pappas, D. P.; McDermott, R.

    2016-10-01

    Magnetic flux noise is a dominant source of dephasing and energy relaxation in superconducting qubits. The noise power spectral density varies with frequency as 1 /fα, with α ≲1 , and spans 13 orders of magnitude. Recent work indicates that the noise is from unpaired magnetic defects on the surfaces of the superconducting devices. Here, we demonstrate that adsorbed molecular O2 is the dominant contributor to magnetism in superconducting thin films. We show that this magnetism can be reduced by appropriate surface treatment or improvement in the sample vacuum environment. We observe a suppression of static spin susceptibility by more than an order of magnitude and a suppression of 1 /f magnetic flux noise power spectral density of up to a factor of 5. These advances open the door to the realization of superconducting qubits with improved quantum coherence.

  4. EARLY SCIENCE WITH THE KOREAN VLBI NETWORK: THE QCAL-1 43 GHz CALIBRATOR SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrov, Leonid; Lee, Sang-Sung; Kim, Jongsoo

    2012-11-01

    This paper presents the catalog of correlated flux densities in three ranges of baseline projection lengths of 637 sources from a 43 GHz (Q band) survey observed with the Korean VLBI Network. Of them, 14 objects used as calibrators were previously observed, but 623 sources have not been observed before in the Q band with very long baseline interferometry (VLBI). The goal of this work in the early science phase of the new VLBI array is twofold: to evaluate the performance of the new instrument that operates in a frequency range of 22-129 GHz and to build a list ofmore » objects that can be used as targets and as calibrators. We have observed the list of 799 target sources with declinations down to -40 Degree-Sign . Among them, 724 were observed before with VLBI at 22 GHz and had correlated flux densities greater than 200 mJy. The overall detection rate is 78%. The detection limit, defined as the minimum flux density for a source to be detected with 90% probability in a single observation, was in the range of 115-180 mJy depending on declination. However, some sources as weak as 70 mJy have been detected. Of 623 detected sources, 33 objects are detected for the first time in VLBI mode. We determined their coordinates with a median formal uncertainty of 20 mas. The results of this work set the basis for future efforts to build the complete flux-limited sample of extragalactic sources at frequencies of 22 GHz and higher at 3/4 of the celestial sphere.« less

  5. Exploring the Variability of the Flat-spectrum Radio Source 1633+382. II. Physical Properties

    NASA Astrophysics Data System (ADS)

    Algaba, Juan-Carlos; Lee, Sang-Sung; Rani, Bindu; Kim, Dae-Won; Kino, Motoki; Hodgson, Jeffrey; Zhao, Guang-Yao; Byun, Do-Young; Gurwell, Mark; Kang, Sin-Cheol; Kim, Jae-Young; Kim, Jeong-Sook; Kim, Soon-Wook; Park, Jong-Ho; Trippe, Sascha; Wajima, Kiyoaki

    2018-06-01

    The flat-spectrum radio quasar 1633+382 (4C 38.41) showed a significant increase of its radio flux density during the period 2012 March–2015 August, which correlates with γ-ray flaring activity. Multi-frequency simultaneous very long baseline interferometry (VLBI) observations were conducted as part of the interferometric monitoring of gamma-ray bright active galactic nuclei (iMOGABA) program and supplemented with additional radio monitoring observations with the OVRO 40 m telescope, the Boston University VLBI program, and the Submillimeter Array. The epochs of the maxima for the two largest γ-ray flares coincide with the ejection of two respective new VLBI components. Analysis of the spectral energy distribution indicates a higher turnover frequency after the flaring events. The evolution of the flare in the turnover frequency-turnover flux density plane probes the adiabatic losses in agreement with the shock-in-jet model. The derived synchrotron self-absorption magnetic fields, of the order of 0.1 mG, do not seem to change dramatically during the flares, and are much weaker, by a factor 104, than the estimated equipartition magnetic fields, indicating that the source of the flare may be associated with a particle-dominated emitting region.

  6. Generating an AC amplitude magnetic flux density value up to 150 μT at a frequency up to 100 kHz

    NASA Astrophysics Data System (ADS)

    Ulvr, Michal; Polonský, Jakub

    2017-05-01

    AC magnetic field analyzers with a triaxial coil probe are widely used by health and safety professionals, in manufacturing, and in service industries. For traceable calibration of these analyzers, it is important to be able to generate a stable, homogeneous reference AC magnetic flux density (MFD). In this paper, the generating of AC amplitude MFD value of 150 μT by single-layer Helmholtz type solenoid, described in previous work, was expanded up to a frequency of 100 kHz using the effect of serial resonance. A programmable capacitor array has been developed with a range of adjustable values from 50 pF to 51225 pF. In addition, the multi-layer search coil with a nominal area turns value of 1.3m2, used for adjusting AC MFD in the solenoid, has been modified by a transimpedance amplifier for use in a wider frequency range than up to 3 kHz. The possibility of using the programmable capacitor array up to 150 kHz has also been tested. An AC amplitude MFD value of 150 μT can be generated with expanded uncertainty better than 0.6% up to 100 kHz.

  7. High–frequency cluster radio galaxies: Luminosity functions and implications for SZE–selected cluster samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Nikhel; Saro, A.; Mohr, J. J.

    We study the overdensity of point sources in the direction of X-ray-selected galaxy clusters from the meta-catalogue of X-ray-detected clusters of galaxies (MCXC; < z > = 0.14) at South Pole Telescope (SPT) and Sydney University Molonglo Sky Survey (SUMSS) frequencies. Flux densities at 95, 150 and 220 GHz are extracted from the 2500 deg 2 SPT-SZ survey maps at the locations of SUMSS sources, producing a multifrequency catalogue of radio galaxies. In the direction of massive galaxy clusters, the radio galaxy flux densities at 95 and 150 GHz are biased low by the cluster Sunyaev–Zel’dovich Effect (SZE) signal, whichmore » is negative at these frequencies. We employ a cluster SZE model to remove the expected flux bias and then study these corrected source catalogues. We find that the high-frequency radio galaxies are centrally concentrated within the clusters and that their luminosity functions (LFs) exhibit amplitudes that are characteristically an order of magnitude lower than the cluster LF at 843 MHz. We use the 150 GHz LF to estimate the impact of cluster radio galaxies on an SPT-SZ like survey. The radio galaxy flux typically produces a small bias on the SZE signal and has negligible impact on the observed scatter in the SZE mass–observable relation. If we assume there is no redshift evolution in the radio galaxy LF then 1.8 ± 0.7 per cent of the clusters with detection significance ξ ≥ 4.5 would be lost from the sample. As a result, allowing for redshift evolution of the form (1 + z) 2.5 increases the incompleteness to 5.6 ± 1.0 per cent. Improved constraints on the evolution of the cluster radio galaxy LF require a larger cluster sample extending to higher redshift.« less

  8. High–frequency cluster radio galaxies: Luminosity functions and implications for SZE–selected cluster samples

    DOE PAGES

    Gupta, Nikhel; Saro, A.; Mohr, J. J.; ...

    2017-01-15

    We study the overdensity of point sources in the direction of X-ray-selected galaxy clusters from the meta-catalogue of X-ray-detected clusters of galaxies (MCXC; < z > = 0.14) at South Pole Telescope (SPT) and Sydney University Molonglo Sky Survey (SUMSS) frequencies. Flux densities at 95, 150 and 220 GHz are extracted from the 2500 deg 2 SPT-SZ survey maps at the locations of SUMSS sources, producing a multifrequency catalogue of radio galaxies. In the direction of massive galaxy clusters, the radio galaxy flux densities at 95 and 150 GHz are biased low by the cluster Sunyaev–Zel’dovich Effect (SZE) signal, whichmore » is negative at these frequencies. We employ a cluster SZE model to remove the expected flux bias and then study these corrected source catalogues. We find that the high-frequency radio galaxies are centrally concentrated within the clusters and that their luminosity functions (LFs) exhibit amplitudes that are characteristically an order of magnitude lower than the cluster LF at 843 MHz. We use the 150 GHz LF to estimate the impact of cluster radio galaxies on an SPT-SZ like survey. The radio galaxy flux typically produces a small bias on the SZE signal and has negligible impact on the observed scatter in the SZE mass–observable relation. If we assume there is no redshift evolution in the radio galaxy LF then 1.8 ± 0.7 per cent of the clusters with detection significance ξ ≥ 4.5 would be lost from the sample. As a result, allowing for redshift evolution of the form (1 + z) 2.5 increases the incompleteness to 5.6 ± 1.0 per cent. Improved constraints on the evolution of the cluster radio galaxy LF require a larger cluster sample extending to higher redshift.« less

  9. Spectral Index Properties of millijansky Radio Sources in ATLAS

    NASA Astrophysics Data System (ADS)

    Randall, Kate; Hopkins, A. M.; Norris, R. P.; Zinn, P.; Middelberg, E.; Mao, M. Y.; Sharp, R. G.

    2012-01-01

    At the faintest radio flux densities (S1.4GHz < 10 milliJansky (mJy)), the spectral index properties of radio sources are not well constrained. The bright radio source population (S1.4GHz > 10 mJy) is well studied and is predominantly comprised of AGN. At fainter flux densities, particularly into the microJansky regime, star-forming galaxies begin to dominate the radio source population. Understanding these faint radio source populations is essential for understanding galaxy evolution, and the link between AGN and star formation. Conflicting results have recently arisen regarding whether there is a flattening of the average spectral index between a low radio frequency (325 or 610 MHz) and 1.4 GHz at these faint flux densities. To explore this issue, we have investigated the spectral index properties of a new catalogue of 843 MHz radio sources in the ELAIS-S1 (the European Large Area ISO Survey - South 1 Region) field. Our results support previous work showing a tendency towards flatter radio spectra at fainter flux densities. This catalogue is cross-matched to the Australia Telescope Large Area Survey (ATLAS), the widest deep radio survey to date at 1.4 GHz, with complementary 2.3 GHz, optical and infrared Spitzer Wide-area Infra-Red Extragalactic data. The variation of spectral index properties have been explored as a function of redshift, luminosity and flux density. [These new measurements have been used to identify a population of faint Compact Steep Spectrum sources, thought to be one of the earliest stages of the AGN life-cycle. Exploring this population will aid us in understanding the evolution of AGN as a whole.

  10. Genotoxic Effects of Superconducting Static Magnetic Fields (SMFs) on Wheat (Triticum aestivum) Pollen Mother Cells (PMCs)

    NASA Astrophysics Data System (ADS)

    Zhang, Pingping; Yin, Ruochun; Chen, Zhiyou; Wu, Lifang; Yu, Zengliang

    2007-04-01

    The effects of superconducting static magnetic fields (SMFs) on the pollen mother cells (PMCs) of wheat were investigated in order to evaluate the possible genotoxic effect of such non-ionizing radiation. The seeds of wheat were exposed to static magnetic fields with either different magnetic flux densities (0, 1, 3, 5 and 7 Tesla) for 5 h or different durations (1, 3 and 5 h) at a magnetic flux density of 7 Tesla. The seeds were germinated at 23oC after exposure and the seedlings were transplanted into the field. The PMCs from young wheat ears were taken and slides were made following the conventional method. The genotoxic effect was evaluated in terms of micronucleus (MN), chromosomal bridge, lagging chromosome and fragments in PMCs. Although the exposed groups of a low field intensity (below 5 Tesla) showed no statistically significant difference in the aberration frequency compared with the unexposed control groups and sham exposed groups, a significant increase in the chromosomal bridge, lagging chromosome, triple-polar segregation or micronucleus was observed at a field strength of 5 Tesla or 7 Tesla, respectively. The analysis of dose-effect relationships indicated that the increased frequency of meiotic abnormal cells correlated with the flux density of the magnetic field and duration, but no linear relationship was observed. Such statistically significant differences indicated a potential genotoxic effect of high static magnetic fields above 5 T.

  11. A one-parametric formula relating the frequencies of twin-peak quasi-periodic oscillations

    NASA Astrophysics Data System (ADS)

    Török, Gabriel; Goluchová, Kateřina; Šrámková, Eva; Horák, Jiří; Bakala, Pavel; Urbanec, Martin

    2017-12-01

    Timing analysis of X-ray flux in more than a dozen low-mass X-ray binary systems containing a neutron star reveals remarkable correlations between frequencies of two characteristic peaks present in the power-density spectra. We find a simple analytic relation that well reproduces all these individual correlations. We link this relation to a physical model which involves accretion rate modulation caused by an oscillating torus.

  12. Exfoliated BN shell-based high-frequency magnetic core-shell materials.

    PubMed

    Zhang, Wei; Patel, Ketan; Ren, Shenqiang

    2017-09-14

    The miniaturization of electric machines demands high frequency magnetic materials with large magnetic-flux density and low energy loss to achieve a decreased dimension of high rotational speed motors. Herein, we report a solution-processed high frequency magnetic composite (containing a nanometal FeCo core and a boron nitride (BN) shell) that simultaneously exhibits high electrical resistivity and magnetic permeability. The frequency dependent complex initial permeability and the mechanical robustness of nanocomposites are intensely dependent on the content of BN insulating phase. The results shown here suggest that insulating magnetic nanocomposites have potential for application in next-generation high-frequency electric machines with large electrical resistivity and permeability.

  13. On the importance of high-frequency air-temperature fluctuations for spectroscopic corrections of open-path carbon dioxide flux measurements

    NASA Astrophysics Data System (ADS)

    Bogoev, Ivan; Helbig, Manuel; Sonnentag, Oliver

    2015-04-01

    A growing number of studies report systematic differences in CO2 flux estimates obtained with the two main types of gas analyzers: compared to eddy-covariance systems based on closed-path (CP) gas analyzers, systems with open-path (OP) gas analyzers systematically overestimate CO2 uptake during daytime periods with high positive sensible heat fluxes, while patterns for differences in nighttime CO2 exchange are less obvious. These biases have been shown to correlate with the sign and the magnitude of the sensible heat flux and to introduce large uncertainties when calculating annual CO2 budgets. In general, CP and OP gas analyzers commonly used to measure the CO2 density in the atmosphere operate on the principle of infrared light absorption approximated by Beer-Lambert's law. Non-dispersive interference-based optical filter elements are used to select spectral bands with strong attenuation of light transmission, characteristic to the gas of interest. The intensity of the light passing through the optical sensing path depends primarily on the amount of absorber gas in the measurement volume. Besides the density of the gas, barometric pressure and air temperature are additional factors affecting the strength and the half-width of the absorption lines. These so-called spectroscopic effects are accounted for by measuring barometric pressure and air temperature in the sensing path and scaling the light-intensity measurements before applying the calibration equation. This approach works well for CP gas analyzers with an intake tube that acts as a low-pass filter on fast air-temperature fluctuations. Low-frequency response temperature sensors in the measurement cell are therefore sufficient to account for spectroscopic temperature effects. In contrast, OP gas analyzers are exposed to high-frequency air-temperature fluctuations associated with the atmospheric surface-layer turbulent heat exchange. If not corrected adequately, these fast air-temperature variations can cause systematic errors in the CO2 density measurements. Under conditions of high positive or negative sensible heat flux, air-temperature fluctuations are correlated with fluctuations of the vertical wind component and can lead to significant biases in the CO2 flux estimates. This study demonstrates that sonically derived fast-response air temperature in the optical sensing path of an OP gas analyzer can replace the slow-response measurements from the temperature sensor as a scaling parameter in the calibration model to correct for these air temperature-induced spectroscopic effects. Our approach is evaluated by comparison between different OP and CP gas analyzer-based eddy-covariance systems in ecosystems with low CO2 uptake under a range of sensible heat flux regimes and varying meteorological parameters. We show that ignoring high-frequency spectroscopic effects can lead to false interpretations of net ecosystem CO2 exchange for specific site and environmental conditions.

  14. Effect of enhanced x-ray flux on the ionosphere over Cyprus during solar flares

    NASA Astrophysics Data System (ADS)

    Mostafa, Md. Golam; Haralambous, Haris

    2015-06-01

    In this work we study the effect of solar flares on the ionosphere over Cyprus. Solar flares are impulsive solar activity events usually coupled with Coronal Mass Ejection (CME). The arrival and the subsequent impact of solar flares on geospace, following an eruption on the Sun's surface is almost immediate (around 9 min) whereas the impact of CMEs is rather delayed (2-3 days) as the former is based on X-ray radiation whereas the latter phenomenon is related with particles and magnetic fields travelling at lower speeds via the Solar Wind. The penetration of X-rays down to the Dregion following such an event enhances the electron density. This increase can be monitored by ionosondes, which measure the electron density up to the maximum electron density NmF2. The significance of this increase lies on the increase of signal absorption causing limited window of operating frequencies for HF communications. In this study the effect of enhanced X-ray flux on the ionosphere over Cyprus during solar flares has been investigated. To establish the correlation and extent of impact on different layers, data of X-ray intensity from Geostationary Operational Environmental Satellite (GOES) and ionospheric characteristics (D & F layer) over Nicosia station (35° N, 33° E) were examined for all solar flares during the period 2011-2014. The analysis revealed a positive and good correlation between frequency of minimum reflection, fmin and X-ray intensity for D layer demonstrating that X-rays play a dominant role in the ionization of lower ionosphere. Hence, X-ray flux can be used as a good proxy for studying the solar flare effects on lower ionosphere. The correlation coefficient between maximum electron density of F layer, NmF2 and X-ray intensity was found to be poor.

  15. VizieR Online Data Catalog: The Super-CLASS GMRT catalogue - SCG (Riseley+, 2016)

    NASA Astrophysics Data System (ADS)

    Riseley, C. J.; Scaife, A. M. M.; Hales, C. A.; Harrison, I.; Birkinshaw, M.; Battye, R. A.; Beswick, R. J.; Brown, M. L.; Casey, C. M.; Chapman, S. C.; Demetroullas, C.; Hung, C.-L.; Jackson, N. J.; Muxlow, T.; Watson, B.

    2016-06-01

    The Super-CLASS GMRT (SCG) catalogue is the low-frequency counterpart of the Super-Cluster Assisted Shear Survey. It is a survey at 13-arcsec resolution, with a limiting 5σ flux density of 170uJy. The catalogue comprises 3257 sources. (1 data file).

  16. Momentum flux parasitic to free-energy transfer

    DOE PAGES

    Stoltzfus-Dueck, T.; Scott, B.

    2017-05-11

    An often-neglected portion of the radialmore » $$\\boldsymbol{E}\\times \\boldsymbol{B}$$ drift is shown to drive an outward flux of co-current momentum when free energy is transferred from the electrostatic potential to ion parallel flows. This symmetry breaking is fully nonlinear, not quasilinear, necessitated simply by free-energy balance in parameter regimes for which significant energy is dissipated via ion parallel flows. The resulting rotation peaking is counter-current and has a scaling and order of magnitude that are comparable with experimental observations. Finally, the residual stress becomes inactive when frequencies are much higher than the ion transit frequency, which may explain the observed relation of density peaking and counter-current rotation peaking in the core.« less

  17. The LBA Calibrator Survey of Southern Compact Extragalactic Radio Sources - LCS1

    NASA Technical Reports Server (NTRS)

    Petrov, Leonid; Phillips, Chris; Bertarini, Alessandra; Murphy, Tara; Sadler, Elaine M.

    2011-01-01

    We present a catalogue of accurate positions and correlated flux densities for 410 flat-spectrum, compact extragalactic radio sources previously detected in the Australia Telescope 20 GHz (AT20G) survey. The catalogue spans the declination range [-90deg, -40deg] and was constructed from four 24-h very long baseline interferometry (VLBI) observing sessions with the Australian Long Baseline Array at 8.3 GHz. The VLBI detection rate in these experiments is 97 per cent, the median uncertainty of the source positions is 2.6 mas and the median correlated flux density on projected baselines longer than 1000 km is 0.14 Jy. The goals of this work are (1) to provide a pool of southern sources with positions accurate to a few milliarcsec, which can be used for phase-referencing observations, geodetic VLBI and space navigation; (2) to extend the complete flux-limited sample of compact extragalactic sources to the Southern hemisphere; and (3) to investigate the parsec-scale properties of high-frequency selected sources from the AT20G survey. As a result of this VLBI campaign, the number of compact radio sources south of declination -40deg which have measured VLBI correlated flux densities and positions known to milliarcsec accuracy has increased by a factor of 3.5.

  18. The intercrater plains of Mercury and the Moon: Their nature, origin and role in terrestrial planet evolution. Cratering histories of the intercrater plains. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Leake, M. A.

    1982-01-01

    The intercrater plains of Mercury and the Moon are defined, in part, by their high densities of small craters. The crater size frequency statistics presented in this chapter may help constrain the relative ages and origins of these surfaces. To this end, the effects of common geologic processes on crater frequency statistics are compared with the diameter frequency distributions of the intercrater regions of the Moon and Mercury. Such analyses may determine whether secondary craters dominate the distribution at small diameters, and whether volcanic plains or ballistic deposits form the intercrater surface. Determining the mass frequency distribution and flux of the impacting population is a more difficult problem. The necessary information such as scaling relationships between projectile energy and crater diameter, the relative fluxes of solar system objects, and the absolute ages of surface units is model dependent and poorly constrained, especially for Mercury.

  19. Ion flux enhancements and oscillations in spatially confined laser produced aluminum plasmas

    NASA Astrophysics Data System (ADS)

    Singh, S. C.; Fallon, C.; Hayden, P.; Mujawar, M.; Yeates, P.; Costello, J. T.

    2014-09-01

    Ion signals from laser produced plasmas (LPPs) generated inside aluminum rectangular cavities at a fixed depth d = 2 mm and varying width, x = 1.0, 1.6, and 2.75 mm were obtained by spatially varying the position of a negatively biased Langmuir probe. Damped oscillatory features superimposed on Maxwellian distributed ion signals were observed. Depending on the distance of the probe from the target surface, three to twelve fold enhancements in peak ion density were observed via confinement of the LPP, generated within rectangular cavities of varying width which constrained the plasma plume to near one dimensional expansion in the vertical plane. The effects of lateral spatial confinement on the expansion velocity of the LPP plume front, the temperature, density and expansion velocity of ions, enhancement of ion flux, and ion energy distribution were recorded. The periodic behavior of ion signals was analyzed and found to be related to the electron plasma frequency and electron-ion collision frequency. The effects of confinement and enhancement of various ion parameters and expansion velocities of the LPP ion plume are explained on the basis of shock wave theory.

  20. GMRT Galactic Plane Pulsar and Transient Survey and the Discovery of PSR J1838+1523

    NASA Astrophysics Data System (ADS)

    Surnis, Mayuresh P.; Joshi, Bhal Chandra; McLaughlin, Maura A.; Lorimer, Duncan R.; M A, Krishnakumar; Manoharan, P. K.; Naidu, Arun

    2018-05-01

    We report the results of a blind pulsar survey carried out with the Giant Metrewave Radio Telescope (GMRT) at 325 MHz. The survey covered about 10% of the region between Galactic longitude 45° < l < 135° and Galactic latitude 1°< |b| < 10° with a dwell time of 1800 s, resulting in the detection of 28 pulsars. One of these, PSR J1838+1523, was previously unknown and has a period of 549 ms and a dispersion measure of 68 pc cm-3. We also present the timing solution of this pulsar obtained from multi-frequency timing observations carried out with the GMRT and the Ooty Radio Telescope. The measured flux density of this pulsar is 4.3±1.8 and 1.2±0.7 mJy at 325 and 610 MHz, respectively. This implies a spectral index of -2 ±0.8, thus making the expected flux density at 1.4 GHz to be about 0.2 mJy, which would be just detectable in the high frequency pulsar surveys like the Northern High Time Resolution Universe pulsar survey. This discovery underlines the importance of low frequency pulsar surveys in detecting steep spectrum pulsars, thus providing complementary coverage of the pulsar population.

  1. Non-closure of the surface energy balance explained by phase difference between vertical velocity and scalars of large atmospheric eddies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Zhongming; Liu, Heping; Katul, Gabriel G.

    It is now accepted that large-scale turbulent eddies impact the widely reported non-closure of the surface energy balance when latent and sensible heat fluxes are measured using the eddy covariance method in the atmospheric surface layer (ASL). However, a mechanistic link between large eddies and non-closure of the surface energy balance remains a subject of inquiry. Here, measured 10 Hz time series of vertical velocity, air temperature, and water vapor density collected in the ASL are analyzed for conditions where entrainment and/or horizontal advection separately predominate. The series are decomposed into small- and large- eddies based on a frequency cutoffmore » and their contributions to turbulent fluxes are analyzed. Phase difference between vertical velocity and water vapor density associated with large eddies reduces latent heat fluxes, especially in conditions where advection prevails. Furthermore, enlarged phase difference of large eddies linked to entrainment or advection occurrence leads to increased residuals of the surface energy balance.« less

  2. Non-closure of the surface energy balance explained by phase difference between vertical velocity and scalars of large atmospheric eddies

    DOE PAGES

    Gao, Zhongming; Liu, Heping; Katul, Gabriel G.; ...

    2017-03-16

    It is now accepted that large-scale turbulent eddies impact the widely reported non-closure of the surface energy balance when latent and sensible heat fluxes are measured using the eddy covariance method in the atmospheric surface layer (ASL). However, a mechanistic link between large eddies and non-closure of the surface energy balance remains a subject of inquiry. Here, measured 10 Hz time series of vertical velocity, air temperature, and water vapor density collected in the ASL are analyzed for conditions where entrainment and/or horizontal advection separately predominate. The series are decomposed into small- and large- eddies based on a frequency cutoffmore » and their contributions to turbulent fluxes are analyzed. Phase difference between vertical velocity and water vapor density associated with large eddies reduces latent heat fluxes, especially in conditions where advection prevails. Furthermore, enlarged phase difference of large eddies linked to entrainment or advection occurrence leads to increased residuals of the surface energy balance.« less

  3. Eddy Covariance Measurements of Methane Flux Using an Open-Path Gas Analyzer

    NASA Astrophysics Data System (ADS)

    Burba, G.; Anderson, T.; Zona, D.; Schedlbauer, J.; Anderson, D.; Eckles, R.; Hastings, S.; Ikawa, H.; McDermitt, D.; Oberbauer, S.; Oechel, W.; Riensche, B.; Starr, G.; Sturtevant, C.; Xu, L.

    2008-12-01

    Methane is an important greenhouse gas with a warming potential of about 23 times that of carbon dioxide over a 100-year cycle (Houghton et al., 2001). Measurements of methane fluxes from the terrestrial biosphere have mostly been made using flux chambers, which have many advantages, but are discrete in time and space and may disturb surface integrity and air pressure. Open-path analyzers offer a number of advantages for measuring methane fluxes, including undisturbed in- situ flux measurements, spatial integration using the Eddy Covariance approach, zero frequency response errors due to tube attenuation, confident water and thermal density terms from co-located fast measurements of water and sonic temperature, and remote deployment due to lower power demands in the absence of a pump. The prototype open-path methane analyzer is a VCSEL (vertical-cavity surface-emitting laser)-based instrument. It employs an open Herriott cell and measures levels of methane with RMS noise below 6 ppb at 10 Hz sampling in controlled laboratory environment. Field maintenance is minimized by a self-cleaning mechanism to keep the lower mirror free of contamination. Eddy Covariance measurements of methane flux using the prototype open-path methane analyzer are presented for the period between 2006 and 2008 in three ecosystems with contrasting weather and moisture conditions: (1) Fluxes over a short-hydroperiod sawgrass wetland in the Florida Everglades were measured in a warm and humid environment with temperatures often exceeding 25oC, variable winds, and frequent heavy dew at night; (2) Fluxes over coastal wetlands in an Arctic tundra were measured in an environment with frequent sub-zero temperatures, moderate winds, and ocean mist; (3) Fluxes over pacific mangroves in Mexico were measured in an environment with moderate air temperatures high winds, and sea spray. Presented eddy covariance flux data were collected from a co-located prototype open-path methane analyzer, LI-7500, and sonic anemometer at a 10 Hz rate. Data were processed using EdiRe software following standard FluxNet methodology, including stationarity tests, frequency response, and Webb- Pearman-Leuning density terms. Further details are provided in the extended conference paper at: ftp://ftp.licor.com/public/GBurba/AGU LI- 7700 Paper-2008.pdf

  4. Heat flux viscosity in collisional magnetized plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, C., E-mail: cliu@pppl.gov; Fox, W.; Bhattacharjee, A.

    2015-05-15

    Momentum transport in collisional magnetized plasmas due to gradients in the heat flux, a “heat flux viscosity,” is demonstrated. Even though no net particle flux is associated with a heat flux, in a plasma there can still be momentum transport owing to the velocity dependence of the Coulomb collision frequency, analogous to the thermal force. This heat-flux viscosity may play an important role in numerous plasma environments, in particular, in strongly driven high-energy-density plasma, where strong heat flux can dominate over ordinary plasma flows. The heat flux viscosity can influence the dynamics of the magnetic field in plasmas through themore » generalized Ohm's law and may therefore play an important role as a dissipation mechanism allowing magnetic field line reconnection. The heat flux viscosity is calculated directly using the finite-difference method of Epperlein and Haines [Phys. Fluids 29, 1029 (1986)], which is shown to be more accurate than Braginskii's method [S. I. Braginskii, Rev. Plasma Phys. 1, 205 (1965)], and confirmed with one-dimensional collisional particle-in-cell simulations. The resulting transport coefficients are tabulated for ease of application.« less

  5. Study of RCR Catalogue Radio Source Integral Spectra

    NASA Astrophysics Data System (ADS)

    Zhelenkova, O. P.; Majorova, E. K.

    2018-04-01

    We present the characteristics of the sources found on the averaged scans of the "Cold" experiment 1980-1999 surveys in the right-ascension interval 2h< RA < 7h. Thereby, a refinement of the parameters of the RC catalog sources (RATANCold) for this interval is complete. To date, the RCR catalog (RATAN Cold Refined) covers the right-ascension interval 2h< RA < 17h and includes 830 sources. The spectra are built for them with the use of new data in the range of 70-230 MHz. The dependence between the spectral indices α 0.5, α 3.94 and integral flux density at the frequencies of 74 and 150 MHz, at 1.4, 3.94 and 4.85 GHz is discussed.We found that at 150 MHz in most sources the spectral index α 0.5 gets steeper with increasing flux density. In general, the sources with flat spectra are weaker in terms of flux density than the sources with steep spectra, which especially differs at 150 MHz. We believe that this is due to the brightness of their extended components, which can be determined by the type of accretion and the neighborhood of the source.

  6. Turbulent fluctuations during pellet injection into a dipole confined plasma torus

    NASA Astrophysics Data System (ADS)

    Garnier, D. T.; Mauel, M. E.; Roberts, T. M.; Kesner, J.; Woskov, P. P.

    2017-01-01

    We report measurements of the turbulent evolution of the plasma density profile following the fast injection of lithium pellets into the Levitated Dipole Experiment (LDX) [Boxer et al., Nat. Phys. 6, 207 (2010)]. As the pellet passes through the plasma, it provides a significant internal particle source and allows investigation of density profile evolution, turbulent relaxation, and turbulent fluctuations. The total electron number within the dipole plasma torus increases by more than a factor of three, and the central density increases by more than a factor of five. During these large changes in density, the shape of the density profile is nearly "stationary" such that the gradient of the particle number within tubes of equal magnetic flux vanishes. In comparison to the usual case, when the particle source is neutral gas at the plasma edge, the internal source from the pellet causes the toroidal phase velocity of the fluctuations to reverse and changes the average particle flux at the plasma edge. An edge particle source creates an inward turbulent pinch, but an internal particle source increases the outward turbulent particle flux. Statistical properties of the turbulence are measured by multiple microwave interferometers and by an array of probes at the edge. The spatial structures of the largest amplitude modes have long radial and toroidal wavelengths. Estimates of the local and toroidally averaged turbulent particle flux show intermittency and a non-Gaussian probability distribution function. The measured fluctuations, both before and during pellet injection, have frequency and wavenumber dispersion consistent with theoretical expectations for interchange and entropy modes excited within a dipole plasma torus having warm electrons and cool ions.

  7. Wavelet-based Characterization of Small-scale Solar Emission Features at Low Radio Frequencies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suresh, A.; Sharma, R.; Oberoi, D.

    Low radio frequency solar observations using the Murchison Widefield Array have recently revealed the presence of numerous weak short-lived narrowband emission features, even during moderately quiet solar conditions. These nonthermal features occur at rates of many thousands per hour in the 30.72 MHz observing bandwidth, and hence necessarily require an automated approach for their detection and characterization. Here, we employ continuous wavelet transform using a mother Ricker wavelet for feature detection from the dynamic spectrum. We establish the efficacy of this approach and present the first statistically robust characterization of the properties of these features. In particular, we examine distributionsmore » of their peak flux densities, spectral spans, temporal spans, and peak frequencies. We can reliably detect features weaker than 1 SFU, making them, to the best of our knowledge, the weakest bursts reported in literature. The distribution of their peak flux densities follows a power law with an index of −2.23 in the 12–155 SFU range, implying that they can provide an energetically significant contribution to coronal and chromospheric heating. These features typically last for 1–2 s and possess bandwidths of about 4–5 MHz. Their occurrence rate remains fairly flat in the 140–210 MHz frequency range. At the time resolution of the data, they appear as stationary bursts, exhibiting no perceptible frequency drift. These features also appear to ride on a broadband background continuum, hinting at the likelihood of them being weak type-I bursts.« less

  8. LOFAR 150-MHz observations of SS 433 and W 50

    NASA Astrophysics Data System (ADS)

    Broderick, J. W.; Fender, R. P.; Miller-Jones, J. C. A.; Trushkin, S. A.; Stewart, A. J.; Anderson, G. E.; Staley, T. D.; Blundell, K. M.; Pietka, M.; Markoff, S.; Rowlinson, A.; Swinbank, J. D.; van der Horst, A. J.; Bell, M. E.; Breton, R. P.; Carbone, D.; Corbel, S.; Eislöffel, J.; Falcke, H.; Grießmeier, J.-M.; Hessels, J. W. T.; Kondratiev, V. I.; Law, C. J.; Molenaar, G. J.; Serylak, M.; Stappers, B. W.; van Leeuwen, J.; Wijers, R. A. M. J.; Wijnands, R.; Wise, M. W.; Zarka, P.

    2018-04-01

    We present Low-Frequency Array (LOFAR) high-band data over the frequency range 115-189 MHz for the X-ray binary SS 433, obtained in an observing campaign from 2013 February to 2014 May. Our results include a deep, wide-field map, allowing a detailed view of the surrounding supernova remnant W 50 at low radio frequencies, as well as a light curve for SS 433 determined from shorter monitoring runs. The complex morphology of W 50 is in excellent agreement with previously published higher frequency maps; we find additional evidence for a spectral turnover in the eastern wing, potentially due to foreground free-free absorption. Furthermore, SS 433 is tentatively variable at 150 MHz, with both a debiased modulation index of 11 per cent and a χ2 probability of a flat light curve of 8.2 × 10-3. By comparing the LOFAR flux densities with contemporaneous observations carried out at 4800 MHz with the RATAN-600 telescope, we suggest that an observed ˜0.5-1 Jy rise in the 150-MHz flux density may correspond to sustained flaring activity over a period of approximately 6 months at 4800 MHz. However, the increase is too large to be explained with a standard synchrotron bubble model. We also detect a wealth of structure along the nearby Galactic plane, including the most complete detection to date of the radio shell of the candidate supernova remnant G 38.7-1.4. This further demonstrates the potential of supernova remnant studies with the current generation of low-frequency radio telescopes.

  9. Heat-Flux Measurements from Collective Thomson-Scattering Spectra

    NASA Astrophysics Data System (ADS)

    Henchen, R. J.; Hu, S. X.; Katz, J.; Froula, D. H.; Rozmus, W.

    2015-11-01

    Collective Thomson scattering was used to measure heat flux in coronal plasmas. The relative amplitude of the Thomson-scattered power into the up- and downshifted electron plasma wave features was used to determine the flux of electrons moving along the temperature gradient at three to four times the electron thermal velocity. Simultaneously, the ion-acoustic wave features were measured. Their relative amplitude is used to measure the flux of the return-current electrons. The frequencies of these ion-acoustic and electron plasma wave features provide local measurements of the electron temperature and density. These spectra were obtained at five locations along the temperature gradient in a laser-produced blowoff plasma. These measurements of plasma parameters are used to infer the Spitzer -Härm flux qSH = - κ∇Te and are in good agreement with the values of the heat flux measured from the scattering-feature asymmetries. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  10. Quantifying Weak Nonthermal Solar Radio Emission at Low Radio Frequencies

    NASA Astrophysics Data System (ADS)

    Sharma, Rohit; Oberoi, Divya; Arjunwadkar, Mihir

    2018-01-01

    The recent availability of fine-grained high-sensitivity data from the new generation of low radio frequency instruments such as the Murchison Widefield Array (MWA) has opened up opportunities for using novel techniques for characterizing the nature of solar emission at these frequencies. Here we use this opportunity to look for evidence for the presence of weak nonthermal emissions in the 100–240 MHz band, at levels weaker than have been probed so far. The presence of such features is believed to be a necessary consequence of nanoflare-based coronal and chromospheric heating theories. We separate the calibrated MWA solar dynamic spectra into a slowly varying and an impulsive, and hence nonthermal, component. We demonstrate that Gaussian mixture modeling can be used to robustly model the latter, and we estimate the flux density distribution as well as the prevalence of impulsive nonthermal emission in the frequency-time plane. Evidence for the presence of nonthermal emission at levels down to ∼0.2 SFU (1 SFU = 104 Jy) is reported, making them the weakest reported emissions of this nature. Our work shows the fractional occupancy of the nonthermal impulsive emission to lie in the 17%–45% range during a period of medium solar activity. We also find that the flux density radiated in the impulsive nonthermal emission is very similar in strength to that of the slowly varying component, which is dominated by thermal bremsstrahlung. Such significant prevalence and strength of the weak impulsive nonthermal emission has not been appreciated before.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garnier, D. T.; Mauel, M. E.; Roberts, T. M.

    Here, we report measurements of the turbulent evolution of the plasma density profile following the fast injection of lithium pellets into the Levitated Dipole Experiment (LDX) [Boxer et al., Nat. Phys. 6, 207 (2010)]. As the pellet passes through the plasma, it provides a significant internal particle source and allows investigation of density profile evolution, turbulent relaxation, and turbulent fluctuations. The total electron number within the dipole plasma torus increases by more than a factor of three, and the central density increases by more than a factor of five. During these large changes in density, the shape of the densitymore » profile is nearly “stationary” such that the gradient of the particle number within tubes of equal magnetic flux vanishes. In comparison to the usual case, when the particle source is neutral gas at the plasma edge, the internal source from the pellet causes the toroidal phase velocity of the fluctuations to reverse and changes the average particle flux at the plasma edge. An edge particle source creates an inward turbulent pinch, but an internal particle source increases the outward turbulent particle flux. Statistical properties of the turbulence are measured by multiple microwave interferometers and by an array of probes at the edge. The spatial structures of the largest amplitude modes have long radial and toroidal wavelengths. Estimates of the local and toroidally averaged turbulent particle flux show intermittency and a non-Gaussian probability distribution function. The measured fluctuations, both before and during pellet injection, have frequency and wave number dispersion consistent with theoretical expectations for interchange and entropy modes excited within a dipole plasma torus having warm electrons and cool ions.« less

  12. Sensing magnetic flux density of artificial neurons with a MEMS device.

    PubMed

    Tapia, Jesus A; Herrera-May, Agustin L; García-Ramírez, Pedro J; Martinez-Castillo, Jaime; Figueras, Eduard; Flores, Amira; Manjarrez, Elías

    2011-04-01

    We describe a simple procedure to characterize a magnetic field sensor based on microelectromechanical systems (MEMS) technology, which exploits the Lorentz force principle. This sensor is designed to detect, in future applications, the spiking activity of neurons or muscle cells. This procedure is based on the well-known capability that a magnetic MEMS device can be used to sense a small magnetic flux density. In this work, an electronic neuron (FitzHugh-Nagumo) is used to generate controlled spike-like magnetic fields. We show that the magnetic flux density generated by the hardware of this neuron can be detected with a new MEMS magnetic field sensor. This microdevice has a compact resonant structure (700 × 600 × 5 μm) integrated by an array of silicon beams and p-type piezoresistive sensing elements, which need an easy fabrication process. The proposed microsensor has a resolution of 80 nT, a sensitivity of 1.2 V.T(-1), a resonant frequency of 13.87 kHz, low power consumption (2.05 mW), quality factor of 93 at atmospheric pressure, and requires a simple signal processing circuit. The importance of our study is twofold. First, because the artificial neuron can generate well-controlled magnetic flux density, we suggest it could be used to analyze the resolution and performance of different magnetic field sensors intended for neurobiological applications. Second, the introduced MEMS magnetic field sensor may be used as a prototype to develop new high-resolution biomedical microdevices to sense magnetic fields from cardiac tissue, nerves, spinal cord, or the brain.

  13. High frequency, high temperature specific core loss and dynamic B-H hysteresis loop characteristics of soft magnetic alloys

    NASA Technical Reports Server (NTRS)

    Wieserman, W. R.; Schwarze, G. E.; Niedra, J. M.

    1990-01-01

    Limited experimental data exists for the specific core loss and dynamic B-H loops for soft magnetic materials for the combined conditions of high frequency and high temperature. This experimental study investigates the specific core loss and dynamic B-H loop characteristics of Supermalloy and Metglas 2605SC over the frequency range of 1 to 50 kHz and temperature range of 23 to 300 C under sinusoidal voltage excitation. The experimental setup used to conduct the investigation is described. The effects of the maximum magnetic flux density, frequency, and temperature on the specific core loss and on the size and shape of the B-H loops are examined.

  14. Low-energy ion distribution functions on a magnetically quiet day at geostationary altitude /L = 7/

    NASA Technical Reports Server (NTRS)

    Singh, N.; Raitt, W. J.; Yasuhara, F.

    1982-01-01

    Ion energy and pitch angle distribution functions are examined for a magnetically quiet day using averaged data from ATS 6. For both field-aligned and perpendicular fluxes, the populations have a mixture of characteristic energies, and the distribution functions can be fairly well approximated by Maxwellian distributions over three different energy bands in the range 3-600 eV. Pitch angle distributions varying with local time, and energy distributions are used to compute total ion density. Pitch angle scattering mechanisms responsible for the observed transformation of pitch angle distribution are examined, and it is found that a magnetic noise of a certain power spectral density belonging to the electromagnetic ion cyclotron mode near the ion cyclotron frequency can be effective in trapping the field aligned fluxes by pitch angle scattering.

  15. High-resolution imaging of SNR IC443 and W44 with the Sardinia Radio Telescope

    NASA Astrophysics Data System (ADS)

    Egron, E.; Pellizzoni, A.; Iacolina, M. N.; Loru, S.; Marongiu, M.; Righini, S.; Cardillo, M.; Giuliani, A.; Mulas, S.; Murtas, G.; Simeone, D.

    2017-02-01

    We present single-dish imaging of the well-known Supernova Remnants (SNRs) IC443 and W44 at 1.5 GHz and 7 GHz with the recently commissioned 64-m diameter Sardinia Radio Telescope (SRT). Our images were obtained through on-the-fly mapping techniques, providing antenna beam oversampling, automatic baseline subtraction and radio-frequency interference removal. It results in high-quality maps of the SNRs at 7 GHz, which are usually lacking and not easily achievable through interferometry at this frequency due to the very large SNR structures. SRT continuum maps of our targets are consistent with VLA maps carried out at lower frequencies (at 324 MHz and 1.4 GHz), providing a view of the complex filamentary morphology. New estimates of the total flux density are given within 3% and 5% error at 1.5 GHz and 7 GHz respectively, in addition to flux measurements in different regions of the SNRs.

  16. The formation of arcs in the dynamic spectra of Jovian decameter bursts

    NASA Technical Reports Server (NTRS)

    Goldstein, M. L.; Thieman, J. R.

    1980-01-01

    A model is presented that can account for several features of the dynamic spectral arcs observed at decameter wavelengths by the planetary radio astronomy experiment on Voyagers 1 and 2. It is shown that refraction of an extraordinary mode wave initially excited nearly orthogonal to the local magnetic field is significantly influenced by the local plasma density, being greater the higher the density. It is assumed that the source of the decameter radiation lies along the L = 6 flux tube and that the highest frequencies are produced at the lowest altitudes, where both the plasma density and magnetic field gradients are largest. It is further assumed that the decameter radiation is emitted into a thin conical sheet, consistent with both observation and theory. In the model the emission cone angle of the sheet is chosen to vary with frequency so that it is relatively small at both high and low frequencies, but approximately 80 deg at intermediate frequencies. The resulting emission pattern as seen by a distant observer is shown to resemble the observed arc pattern. The model is compared and contrasted with examples of Voyager radio data.

  17. Imaging of SNR IC443 and W44 with the Sardinia Radio Telescope at 1.5 and 7 GHz

    NASA Astrophysics Data System (ADS)

    Egron, E.; Pellizzoni, A.; Iacolina, M. N.; Loru, S.; Marongiu, M.; Righini, S.; Cardillo, M.; Giuliani, A.; Mulas, S.; Murtas, G.; Simeone, D.; Concu, R.; Melis, A.; Trois, A.; Pilia, M.; Navarrini, A.; Vacca, V.; Ricci, R.; Serra, G.; Bachetti, M.; Buttu, M.; Perrodin, D.; Buffa, F.; Deiana, G. L.; Gaudiomonte, F.; Fara, A.; Ladu, A.; Loi, F.; Marongiu, P.; Migoni, C.; Pisanu, T.; Poppi, S.; Saba, A.; Urru, E.; Valente, G.; Vargiu, G. P.

    2017-09-01

    Observations of supernova remnants (SNRs) are a powerful tool for investigating the later stages of stellar evolution, the properties of the ambient interstellar medium and the physics of particle acceleration and shocks. For a fraction of SNRs, multiwavelength coverage from radio to ultra-high energies has been provided, constraining their contributions to the production of Galactic cosmic rays. Although radio emission is the most common identifier of SNRs and a prime probe for refining models, high-resolution images at frequencies above 5 GHz are surprisingly lacking, even for bright and well-known SNRs such as IC443 and W44. In the frameworks of the Astronomical Validation and Early Science Program with the 64-m single-dish Sardinia Radio Telescope, we provided, for the first time, single-dish deep imaging at 7 GHz of the IC443 and W44 complexes coupled with spatially resolved spectra in the 1.5-7 GHz frequency range. Our images were obtained through on-the-fly mapping techniques, providing antenna beam oversampling and resulting in accurate continuum flux density measurements. The integrated flux densities associated with IC443 are S1.5 GHz = 134 ± 4 Jy and S7 GHz = 67 ± 3 Jy. For W44, we measured total flux densities of S1.5 GHz = 214 ± 6 Jy and S7 GHz = 94 ± 4 Jy. Spectral index maps provide evidence of a wide physical parameter scatter among different SNR regions: a flat spectrum is observed from the brightest SNR regions at the shock, while steeper spectral indices (up to ˜ 0.7) are observed in fainter cooling regions, disentangling in this way different populations and spectra of radio/gamma-ray-emitting electrons in these SNRs.

  18. Independent control of electron energy and density using a rotating magnetic field in inductively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Kondo, Takahiro; Ohta, Masayuki; Ito, Tsuyohito; Okada, Shigefumi

    2013-09-01

    Effects of a rotating magnetic field (RMF) on the electron energy distribution function (EEDF) and on the electron density are investigated with the aim of controlling the radical composition of inductively coupled plasmas. By adjusting the RMF frequency and generation power, the desired electron density and electron energy shift are obtained. Consequently, the amount and fraction of high-energy electrons, which are mostly responsible for direct dissociation processes of raw molecules, will be controlled externally. This controllability, with no electrode exposed to plasma, will enable us to control radical components and their flux during plasma processing.

  19. Metal Amorphous Nanocomposite Soft Magnetic Material-Enabled High Power Density, Rare Earth Free Rotational Machines [Metal Amorphous Nanocomposite (MANC) Soft Magnetic Material (SMM) Enabled High Power Density, Rare Earth Free Rotational Machines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simizu, Satoru; Ohodnicki, Paul R.; McHenry, Michael E.

    Metal amorphous nanocomposites (MANCs) are promising soft magnetic materials (SMMs) for power electronic applications offering low power loss at high frequency and maintaining a relatively high flux density. While applications in certain motor designs have been recently modeled, their widespread application awaits scaled manufacturing of MANC materials and proliferation of new higher speed motor designs. A hybrid motor design based on permanent magnets and doubly salient stator and rotor is reported here to develop a compact (a factor of 10 smaller than currently possible in Si steels), high-speed (>1 kHz, electrical), high-power (>2.5 kW) motor by incorporating low loss (<10more » W/kg at 1 kHz) MANCs such as recently reported Fe-Ni-based alloys. A feature of this motor design is flux focusing from the permanent magnet allowing use of lower energy permanent magnet chosen from among non-rare earth containing compositions and attractive due to constraints posed by rare earth criticality. A 2-D finite element analysis model reported here indicates that a 2.5 kW hybrid motor may be built with a permanent magnet with a 0.4 T remanence at a rotor speed of 6000 rpm. At a magnetic switching frequency of 1.4 kHz, the core loss may be limited to <3 W by selecting an appropriate MANC SMM. The projected efficiency exceeds 96% not including power loss in the controller. Under full load conditions, the flux density distributions for the SMM stay predominantly <1.3 T, the saturation magnetization of optimized FeNi-based MANC alloys. As a result, the maximum demagnetizing field in the permanent magnet is less than 2.2 × 10 5 A/m sustainable, for example, with a high-grade hard ferrite magnet.« less

  20. Metal Amorphous Nanocomposite Soft Magnetic Material-Enabled High Power Density, Rare Earth Free Rotational Machines [Metal Amorphous Nanocomposite (MANC) Soft Magnetic Material (SMM) Enabled High Power Density, Rare Earth Free Rotational Machines

    DOE PAGES

    Simizu, Satoru; Ohodnicki, Paul R.; McHenry, Michael E.

    2018-02-27

    Metal amorphous nanocomposites (MANCs) are promising soft magnetic materials (SMMs) for power electronic applications offering low power loss at high frequency and maintaining a relatively high flux density. While applications in certain motor designs have been recently modeled, their widespread application awaits scaled manufacturing of MANC materials and proliferation of new higher speed motor designs. A hybrid motor design based on permanent magnets and doubly salient stator and rotor is reported here to develop a compact (a factor of 10 smaller than currently possible in Si steels), high-speed (>1 kHz, electrical), high-power (>2.5 kW) motor by incorporating low loss (<10more » W/kg at 1 kHz) MANCs such as recently reported Fe-Ni-based alloys. A feature of this motor design is flux focusing from the permanent magnet allowing use of lower energy permanent magnet chosen from among non-rare earth containing compositions and attractive due to constraints posed by rare earth criticality. A 2-D finite element analysis model reported here indicates that a 2.5 kW hybrid motor may be built with a permanent magnet with a 0.4 T remanence at a rotor speed of 6000 rpm. At a magnetic switching frequency of 1.4 kHz, the core loss may be limited to <3 W by selecting an appropriate MANC SMM. The projected efficiency exceeds 96% not including power loss in the controller. Under full load conditions, the flux density distributions for the SMM stay predominantly <1.3 T, the saturation magnetization of optimized FeNi-based MANC alloys. As a result, the maximum demagnetizing field in the permanent magnet is less than 2.2 × 10 5 A/m sustainable, for example, with a high-grade hard ferrite magnet.« less

  1. Method for determining transport critical current densities and flux penetration depth in bulk superconductors

    NASA Technical Reports Server (NTRS)

    Israelsson, Ulf E. (Inventor); Strayer, Donald M. (Inventor)

    1992-01-01

    A contact-less method for determining transport critical current density and flux penetration depth in bulk superconductor material. A compressor having a hollow interior and a plunger for selectively reducing the free space area for distribution of the magnetic flux therein are formed of superconductor material. Analytical relationships, based upon the critical state model, Maxwell's equations and geometrical relationships define transport critical current density and flux penetration depth in terms of the initial trapped magnetic flux density and the ratio between initial and final magnetic flux densities whereby data may be reliably determined by means of the simple test apparatus for evaluating the current density and flux penetration depth.

  2. Evaluation of a lower-powered analyzer and sampling system for eddy-covariance measurements of nitrous oxide fluxes

    NASA Astrophysics Data System (ADS)

    Brown, Shannon E.; Sargent, Steve; Wagner-Riddle, Claudia

    2018-03-01

    Nitrous oxide (N2O) fluxes measured using the eddy-covariance method capture the spatial and temporal heterogeneity of N2O emissions. Most closed-path trace-gas analyzers for eddy-covariance measurements have large-volume, multi-pass absorption cells that necessitate high flow rates for ample frequency response, thus requiring high-power sample pumps. Other sampling system components, including rain caps, filters, dryers, and tubing, can also degrade system frequency response. This field trial tested the performance of a closed-path eddy-covariance system for N2O flux measurements with improvements to use less power while maintaining the frequency response. The new system consists of a thermoelectrically cooled tunable diode laser absorption spectrometer configured to measure both N2O and carbon dioxide (CO2). The system features a relatively small, single-pass sample cell (200 mL) that provides good frequency response with a lower-powered pump ( ˜ 250 W). A new filterless intake removes particulates from the sample air stream with no additional mixing volume that could degrade frequency response. A single-tube dryer removes water vapour from the sample to avoid the need for density or spectroscopic corrections, while maintaining frequency response. This eddy-covariance system was collocated with a previous tunable diode laser absorption spectrometer model to compare N2O and CO2 flux measurements for two full growing seasons (May 2015 to October 2016) in a fertilized cornfield in Southern Ontario, Canada. Both spectrometers were placed outdoors at the base of the sampling tower, demonstrating ruggedness for a range of environmental conditions (minimum to maximum daily temperature range: -26.1 to 31.6 °C). The new system rarely required maintenance. An in situ frequency-response test demonstrated that the cutoff frequency of the new system was better than the old system (3.5 Hz compared to 2.30 Hz) and similar to that of a closed-path CO2 eddy-covariance system (4.05 Hz), using shorter tubing and no dryer, that was also collocated at the site. Values of the N2O fluxes were similar between the two spectrometer systems (slope = 1.01, r2 = 0.96); CO2 fluxes as measured by the short-tubed eddy-covariance system and the two spectrometer systems correlated well (slope = 1.03, r2 = 0.998). The new lower-powered tunable diode laser absorption spectrometer configuration with the filterless intake and single-tube dryer showed promise for deployment in remote areas.

  3. Narrow-band, slowly varying decimetric radiation from the dwarf M flare star YZ Canis Minoris

    NASA Technical Reports Server (NTRS)

    Lang, K. R.; Willson, R. F.

    1986-01-01

    Observations of slowly varying radiation from the dwarf M star YZ Canis Minoris with a maximum flux density of 20 mJy and narrow-band frequency structure at frequencies near 1465 MHz are presented. Possible explanations for this radiation are examined. Thermal gyroresonant radiation would require impossibly large coronal loops and magnetic field strengths. The narrow-band structure cannot be explained by continuum emission processes such as thermal bremsstrahlung, thermal gyroresonant radiation, or nonthermal gyrosynchrotron radiation. Coherent burst mechanisms seem to be required.

  4. Evidence for shock-shock interaction in the jet of CTA 102

    NASA Astrophysics Data System (ADS)

    Fromm, C. M.; Perucho, M.; Savolainen, T.; Ros, E.; Lobanov, A. P.; Zensus, J. A.; Lähteenmäki, A.

    2011-02-01

    We have found evidence for interaction between a standing and a traveling shock in the jet of the blazar CTA 102. Our result is based in the study of the spectral evolution of the turnover frequency-turnover flux density (νm, Sm) plane. The radio/mm light curves were taken during a major radio outburst in April 2006.

  5. 47 CFR 27.53 - Emission limits.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... operations shall be limited to a maximum power flux density of −197 dBW/m2/4 kHz in the 2370-2390 MHz band at... displacement from the channel center frequency and measurement bandwidth. In the following tables, “(s... section of the printed volume and on GPO Access. Effective Date Note: At 79 FR 48539, Aug. 15, 2014, § 27...

  6. 47 CFR 25.142 - Licensing provisions for the non-voice, non-geostationary Mobile-Satellite Service.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... must identify the power flux density produced at the Earth's surface by each space station of their... § 25.202(f) (1), (2) and (3), as calculated for a fixed point on the Earth's surface in the plane of... transceivers subject to blanket licensing under § 25.115(d)) through the frequency assignment and coordination...

  7. Spin-down Evolution and Radio Disappearance of the Magnetar PSR J1622-4950

    NASA Astrophysics Data System (ADS)

    Scholz, P.; Camilo, F.; Sarkissian, J.; Reynolds, J. E.; Levin, L.; Bailes, M.; Burgay, M.; Johnston, S.; Kramer, M.; Possenti, A.

    2017-06-01

    We report on 2.4 yr of radio timing measurements of the magnetar PSR J1622-4950 using the Parkes Observatory, between 2011 November and 2014 March. During this period the torque on the neutron star (inferred from the rotational frequency derivative) varied greatly, though much less erratically than during the 2 yr following its discovery in 2009. During the last year of our measurements the frequency derivative decreased in magnitude monotonically by 20%, to a value of -1.3 × 10-13 s-2, a factor of 8 smaller than when it was discovered. The flux density continued to vary greatly during our monitoring through 2014 March, reaching a relatively steady low level after late 2012. The pulse profile varied secularly on a similar timescale as the flux density and torque. A relatively rapid transition in all three properties was evident in early 2013. After PSR J1622-4950 was detected in all of our 87 observations up to 2014 March, we did not detect the magnetar in our resumed monitoring starting in 2015 January and have not detected it in any of the 30 observations conducted through 2016 September.

  8. Plasma flow measurements in the Prototype-Material Plasma Exposure eXperiment (Proto-MPEX) and comparison with B2.5-Eirene modeling

    NASA Astrophysics Data System (ADS)

    Kafle, N.; Owen, L. W.; Caneses, J. F.; Biewer, T. M.; Caughman, J. B. O.; Donovan, D. C.; Goulding, R. H.; Rapp, J.

    2018-05-01

    The Prototype Material Plasma Exposure eXperiment (Proto-MPEX) at Oak Ridge National Laboratory is a linear plasma device that combines a helicon plasma source with additional microwave and radio frequency heating to deliver high plasma heat and particle fluxes to a target. Double Langmuir probes and Thomson scattering are being used to measure local electron temperature and density at various radial and axial locations. A recently constructed Mach-double probe provides the added capability of simultaneously measuring electron temperatures ( T e), electron densities ( n e), and Mach numbers (M). With this diagnostic, it is possible to infer the plasma flow, particle flux, and heat flux at different locations along the plasma column in Proto-MPEX. Preliminary results show Mach numbers of 0.5 (towards the dump plate) and 1.0 (towards the target plate) downstream from the helicon source, and a stagnation point (no flow) near the source for the case where the peak magnetic field was 1.3 T. Measurements of particle flow and ne and Te profiles are discussed. The extensive coverage provided by these diagnostics permits data-constrained B2.5-Eirene modeling of the entire plasma column, and comparison with results of modeling in the high-density helicon plasmas will be presented.

  9. A high sensitivity momentum flux measuring instrument for plasma thruster exhausts and diffusive plasmas.

    PubMed

    West, Michael D; Charles, Christine; Boswell, Rod W

    2009-05-01

    A high sensitivity momentum flux measuring instrument based on a compound pendulum has been developed for use with electric propulsion devices and radio frequency driven plasmas. A laser displacement system, which builds upon techniques used by the materials science community for surface stress measurements, is used to measure with high sensitivity the displacement of a target plate placed in a plasma thruster exhaust. The instrument has been installed inside a vacuum chamber and calibrated via two different methods and is able to measure forces in the range of 0.02-0.5 mN with a resolution of 15 microN. Measurements have been made of the force produced from the cold gas flow and with a discharge ignited using argon propellant. The plasma is generated using a Helicon Double Layer Thruster prototype. The instrument target is placed about 1 mean free path for ion-neutral charge exchange collisions downstream of the thruster exit. At this position, the plasma consists of a low density ion beam (10%) and a much larger downstream component (90%). The results are in good agreement with those determined from the plasma parameters measured with diagnostic probes. Measurements at various flow rates show that variations in ion beam velocity and plasma density and the resulting momentum flux can be measured with this instrument. The instrument target is a simple, low cost device, and since the laser displacement system used is located outside the vacuum chamber, the measurement technique is free from radio frequency interference and thermal effects. It could be used to measure the thrust in the exhaust of other electric propulsion devices and the momentum flux of ion beams formed by expanding plasmas or fusion experiments.

  10. Radial distribution of compressive waves in the solar corona revealed by Akatsuki radio occultation observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyamoto, Mayu; Imamura, Takeshi; Ando, Hiroki

    Radial variations of the amplitude and the energy flux of compressive waves in the solar corona were explored for the first time using a spacecraft radio occultation technique. By applying wavelet analysis to the frequency time series taken at heliocentric distances of 1.5-20.5 R{sub S} (solar radii), quasi-periodic density disturbances were detected at almost all distances. The period ranges from 100 to 2000 s. The amplitude of the fractional density fluctuation increases with distance and reaches ∼30% around 5 R{sub S} , implying that nonlinearity of the wave field is potentially important. We further estimate the wave energy flux onmore » the assumption that the observed periodical fluctuations are manifestations of acoustic waves. The energy flux increases with distance below ∼6 R{sub S} and seems to saturate above this height, suggesting that the acoustic waves do not propagate from the low corona but are generated in the extended corona, probably through nonlinear dissipation of Alfvén waves. The compressive waves should eventually dissipate through shock generation to heat the corona.« less

  11. Intramolecular Nuclear Flux Densities

    NASA Astrophysics Data System (ADS)

    Barth, I.; Daniel, C.; Gindensperger, E.; Manz, J.; PéRez-Torres, J. F.; Schild, A.; Stemmle, C.; Sulzer, D.; Yang, Y.

    The topic of this survey article has seen a renaissance during the past couple of years. Here we present and extend the results for various phenomena which we have published from 2012-2014, with gratitude to our coauthors. The new phenomena include (a) the first reduced nuclear flux densities in vibrating diatomic molecules or ions which have been deduced from experimental pump-probe spectra; these "experimental" nuclear flux densities reveal several quantum effects including (b) the "quantum accordion", i.e., during the turn from bond stretch to bond compression, the diatomic system never stands still — instead, various parts of it with different bond lengths flow into opposite directions. (c) Wavepacket interferometry has been extended from nuclear densities to flux densities, again revealing new phenomena: For example, (d) a vibrating nuclear wave function with compact initial shape may split into two partial waves which run into opposite directions, thus causing interfering flux densities. (e) Tunneling in symmetric 1-dimensional double-well systems yields maximum values of the associated nuclear flux density just below the potential barrier; this is in marked contrast with negligible values of the nuclear density just below the barrier. (f) Nuclear flux densities of pseudorotating nuclei may induce huge magnetic fields. A common methodologic theme of all topics is the continuity equation which connects the time derivative of the nuclear density to the divergence of the flux density, subject to the proper boundary conditions. (g) Nearly identical nuclear densities with different boundary conditions may be related to entirely different flux densities, e.g., during tunneling in cyclic versus non-cyclic systems. The original continuity equation, density and flux density of all nuclei, or of all nuclear degrees of freedom, may be reduced to the corresponding quantities for just a single nucleus, or just a single degree of freedom.

  12. Kinetic Alfven wave with density variation and loss-cone distribution function of multi-ions in PSBL region

    NASA Astrophysics Data System (ADS)

    Tamrakar, Radha; Varma, P.; Tiwari, M. S.

    2018-05-01

    Kinetic Alfven wave (KAW) generation due to variation of loss-cone index J and density of multi-ions (H+, He+ and O+) in the plasma sheet boundary layer region (PSBL) is investigated. Kinetic approach is used to derive dispersion relation of wave using Vlasov equation. Variation of frequency with respect to wide range of k⊥ρi (where k⊥ is wave vector across the magnetic field, ρi is gyroradius of ions and i denotes H+, He+ and O+ ions) is analyzed. It is found that each ion gyroradius and number density shows different effect on wave generation with varying width of loss-cone. KAW is generated with multi-ions (H+, He+ and O+) over wide regime for J=1 and shows dissimilar effect for J=2. Frequency is reduced with increasing density of gyrating He+ and O+ ions. Wave frequency is obtained within the reported range which strongly supports generation of kinetic Alfven waves. A sudden drop of frequency is also observed for H+ and He+ ion which may be due to heavy penetration of these ions through the loss-cone. The parameters of PSBL region are used for numerical calculation. The application of these results are in understanding the effect of gyrating multi-ions in transfer of energy and Poynting flux losses from PSBL region towards ionosphere and also describing the generation of aurora.

  13. Study of Saturn Electrostatic Discharges in a Wide Range of Timec SCALES

    NASA Astrophysics Data System (ADS)

    Mylostna, K.; Zakharenko, V.; Konovalenko, A.; Kolyadin, V.; Zarka, P.; Griemeier, J.-M.; Litvinenko, G.; Sidorchuk, M.; Rucker, H.; Fischer, G.; Cecconi, B.; Coffre, A.; Denis, L.; Nikolaenko, V.; Shevchenko, V.

    Saturn Electrostatic discharges (SED) are sporadic broadband impulsive radio bursts associated with lightning in Saturnian atmosphere. After 25 years of space investigations in 2006 the first successful observations of SED on the UTR-2 radio telescope were carried out [1]. Since 2007 a long-term program of ED search and study in the Solar system has started. As a part of this program the unique observations with high time resolution were taken in 2010. New possibilities of UTR-2 radio telescope allowed to provide a long-period observations and study with high temporal resolution. This article presents the results of SED study in a wide range of time scales: from seconds to microseconds. For the first time there were obtained a low frequency spectrum of SED. We calculated flux densities of individual bursts at the maximum achievable time resolution. Flux densities of most intensive bursts reach 4200 Jy.

  14. Turbulent fluctuations during pellet injection into a dipole confined plasma torus

    DOE PAGES

    Garnier, D. T.; Mauel, M. E.; Roberts, T. M.; ...

    2017-01-01

    Here, we report measurements of the turbulent evolution of the plasma density profile following the fast injection of lithium pellets into the Levitated Dipole Experiment (LDX) [Boxer et al., Nat. Phys. 6, 207 (2010)]. As the pellet passes through the plasma, it provides a significant internal particle source and allows investigation of density profile evolution, turbulent relaxation, and turbulent fluctuations. The total electron number within the dipole plasma torus increases by more than a factor of three, and the central density increases by more than a factor of five. During these large changes in density, the shape of the densitymore » profile is nearly “stationary” such that the gradient of the particle number within tubes of equal magnetic flux vanishes. In comparison to the usual case, when the particle source is neutral gas at the plasma edge, the internal source from the pellet causes the toroidal phase velocity of the fluctuations to reverse and changes the average particle flux at the plasma edge. An edge particle source creates an inward turbulent pinch, but an internal particle source increases the outward turbulent particle flux. Statistical properties of the turbulence are measured by multiple microwave interferometers and by an array of probes at the edge. The spatial structures of the largest amplitude modes have long radial and toroidal wavelengths. Estimates of the local and toroidally averaged turbulent particle flux show intermittency and a non-Gaussian probability distribution function. The measured fluctuations, both before and during pellet injection, have frequency and wave number dispersion consistent with theoretical expectations for interchange and entropy modes excited within a dipole plasma torus having warm electrons and cool ions.« less

  15. Spectral Evolution of Intensive Microwave Bursts at Centimeter-Millimeter Wavelengths

    NASA Astrophysics Data System (ADS)

    Melnikov, V. F.; Magun, A.

    The dynamics of the frequency spectrum of intensive broad band microwave bursts with one spectral maximum and simple time profiles are investigated. The aim of the study is to correlate the temporal evolution of the microwave burst spectrum above and below the spectral peak frequency f_p, as well as to compare these features with theoretical expectations. The analysis was carried out by using the data from the patrol instruments of IAP, Bern University and NIRFI, Nizhnii Novgorod (10 fixed frequencies in the range 1-50 GHz). It has been found for the majority of these bursts that: a) during the rise phase of the burst flux there is an anticorrelation of the absolute values of the spectral indices above and below peak frequency whereas a good correlation during the decay phase was found; b) time delays between flux profiles at neighbouring frequencies change sign under the transition from low to high frequencies. As a rule the lower frequency emission is delayed at frequencies below f_p whereas at high frequencies (f>f_p) the higher frequency emission is delayed (see also Melnikov and Magun, 1998). Qualitatively these results fit well the calculated spectral evolution of the gyrosynchrotron if one takes into account the flattening of the electron energy spectrum in a flare loop (Melnikov and Magun, 1996) due to Coulomb collisions (Vilmer et al., 1982), and uses values for the background plasma density derived from hard X-ray data (Aschwanden et al., 1997). For some of the bursts, however, quantitative discrepancies with the predictions of the homogeneous model have been found. For these bursts the absolute value of the spectral index at low frequencies is remarkably smaller, and the time delay remarkably higher than expected. We have investigated several possibilities to obtain an agremeent between theory and observations. Special attention is paid to model calculations taking into account the dynamics of energetic electrons in flare loops with an inhomogeneous magnetic field and plasma density. In this context the capabilities of the models for the diagnostics of the physical conditions in flare loops using observations with high spatial

  16. Airfoil-based electromagnetic energy harvester containing parallel array motion between moving coil and multi-pole magnets towards enhanced power density.

    PubMed

    Leung, Chung Ming; Wang, Ya; Chen, Wusi

    2016-11-01

    In this letter, the airfoil-based electromagnetic energy harvester containing parallel array motion between moving coil and trajectory matching multi-pole magnets was investigated. The magnets were aligned in an alternatively magnetized formation of 6 magnets to explore enhanced power density. In particular, the magnet array was positioned in parallel to the trajectory of the tip coil within its tip deflection span. The finite element simulations of the magnetic flux density and induced voltages at an open circuit condition were studied to find the maximum number of alternatively magnetized magnets that was required for the proposed energy harvester. Experimental results showed that the energy harvester with a pair of 6 alternatively magnetized linear magnet arrays was able to generate an induced voltage (V o ) of 20 V, with an open circuit condition, and 475 mW, under a 30 Ω optimal resistance load operating with the wind speed (U) at 7 m/s and a natural bending frequency of 3.54 Hz. Compared to the traditional electromagnetic energy harvester with a single magnet moving through a coil, the proposed energy harvester, containing multi-pole magnets and parallel array motion, enables the moving coil to accumulate a stronger magnetic flux in each period of the swinging motion. In addition to the comparison made with the airfoil-based piezoelectric energy harvester of the same size, our proposed electromagnetic energy harvester generates 11 times more power output, which is more suitable for high-power-density energy harvesting applications at regions with low environmental frequency.

  17. Formation of Ion Beam from High Density Plasma of ECR Discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izotov, I.; Razin, S.; Sidorov, A.

    2005-03-15

    One of the most promising directions of ECR multicharged ion sources evolution is related with increase in frequency of microwave pumping. During last years microwave generators of millimeter wave range - gyrotrons have been used more frequently. Creation of plasma with density 1013 cm-3 with medium charged ions and ion flux density through a plug of a magnetic trap along magnetic field lines on level of a few A/cm2 is possible under pumping by powerful millimeter wave radiation and quasigasdynamic (collisional) regime of plasma confinement in the magnetic trap. Such plasma has great prospects for application in plasma based ionmore » implantation systems for processing of surfaces with complicated and petit relief. Use it for ion beam formation seams to be difficult because of too high ion current density. This paper continues investigations described elsewhere and shows possibility to arrange ion extraction in zone of plasma expansion from the magnetic trap along axis of system and magnetic field lines.Plasma was created at ECR gas discharge by means of millimeter wave radiation of a gyrotron with frequency 37.5 GHz, maximum power 100 kW, pulse duration 1.5 ms. Two and three electrode quasi-Pierce extraction systems were used for ion beam formation.It is demonstrated that there is no changes in ion charge state distribution along expansion routing of plasma under collisional confinement. Also ion flux density decreases with distance from plug of the trap, it allows to control extracting ion current density. Multicharged ion beam of Nitrogen with total current up to 2.5 mA at diameter of extracting hole 1 mm, that corresponds current density 320 mA/cm2, was obtained. Magnitude of total ion current was limited due to extracting voltage (60 kV). Under such conditions characteristic transversal dimension of plasma equaled 4 cm, magnetic field value in extracting zone was about 0.1 T at axisymmetrical configuration.« less

  18. Semi-physical parameter identification for an iron-loss formula allowing loss-separation

    NASA Astrophysics Data System (ADS)

    Steentjes, S.; Leßmann, M.; Hameyer, K.

    2013-05-01

    This paper presents a semi-physical parameter identification for a recently proposed enhanced iron-loss formula, the IEM-Formula. Measurements are performed on a standardized Epstein frame by the conventional field-metric method under sinusoidal magnetic flux densities up to high magnitudes and frequencies. Quasi-static losses are identified on the one hand by point-by-point dc-measurements using a flux-meter and on the other hand by extrapolating higher frequency measurements to dc magnetization using the statistical loss-separation theory (Jacobs et al., "Magnetic material optimization for hybrid vehicle PMSM drives," in Inductica Conference, CD-Rom, Chicago/USA, 2009). Utilizing this material information, possibilities to identify the parameter of the IEM-Formula are analyzed. Along with this, the importance of excess losses in present-day non-grain oriented Fe-Si laminations is investigated. In conclusion, the calculated losses are compared to the measured losses.

  19. The 32-GHz performance of the DSS-14 70-meter antenna: 1989 configuration

    NASA Technical Reports Server (NTRS)

    Gatti, M. S.; Klein, M. J.; Kuiper, T. B. H.

    1989-01-01

    The results of preliminary 32 GHz calibrations of the 70 meter antenna at Goldstone are presented. Measurements were done between March and July 1989 using Virgo A and Venus as the primary efficiency calibrators. The flux densites of theses radio sources at 32 GHz are not known with high accuracy, but were extrapolated from calibrated data at lower frequencies. The measured value of efficiency (0.35) agreed closely with the predicted value (0.32), and the results are very repeatable. Flux densities of secondary sources used in the observations were subsequently derived. These measurements were performed using a beamswitching radiometer that employed an uncooled high-electron mobility transistor (HEMT) low-noise amplifier. This system was installed primarily to determine the performance of the antenna in its 1989 configuration, but the experience will also aid in successful future calibration of the Deep Space Network (DSN) at this frequency.

  20. Low-pressure hydrogen discharge maintenance in a large-size plasma source with localized high radio-frequency power deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Todorov, D.; Shivarova, A., E-mail: ashiva@phys.uni-sofia.bg; Paunska, Ts.

    2015-03-15

    The development of the two-dimensional fluid-plasma model of a low-pressure hydrogen discharge, presented in the study, is regarding description of the plasma maintenance in a discharge vessel with the configuration of the SPIDER source. The SPIDER source, planned for the neutral-beam-injection plasma-heating system of ITER, is with localized high RF power deposition to its eight drivers (cylindrical-coil inductive discharges) and a large-area second chamber, common for all the drivers. The continuity equations for the charged particles (electrons and the three types of positive ions) and for the neutral species (atoms and molecules), their momentum equations, the energy balance equations formore » electrons, atoms and molecules and the Poisson equations are involved in the discharge description. In addition to the local processes in the plasma volume, the surface processes of particle reflection and conversion on the walls as well as for a heat exchange with the walls are included in the model. The analysis of the results stresses on the role of the fluxes (particle and energy fluxes) in the formation of the discharge structure. The conclusion is that the discharge behavior is completely obeyed to non-locality. The latter is displayed by: (i) maximum values of plasma parameters (charged particle densities and temperatures of the neutral species) outside the region of the RF power deposition, (ii) shifted maxima of the electron density and temperature, of the plasma potential and of the electron production, (iii) an electron flux, with a vortex structure, strongly exceeding the total ion flux which gives evidence of a discharge regime of non-ambipolarity and (iv) a spatial distribution of the densities of the neutral species resulting from their fluxes.« less

  1. A new hydrodynamic prediction of the peak heat flux from horizontal cylinders in low speed upflow

    NASA Technical Reports Server (NTRS)

    Ungar, E. K.; Eichhorn, R.

    1988-01-01

    Flow-boiling data have been obtained for horizontal cylinders in saturated acetone, isopropanol, and water, yielding heat flux vs. wall superheat boiling curves for the organic liquids. A region of low speed upflow is identified in which long cylindrical bubbles break off from the wake with regular frequency. The Strouhal number of bubble breakoff is a function only of the Froude number in any liquid, and the effective wake thickness in all liquids is a function of the density ratio and the Froude number. A low speed flow boiling burnout prediction procedure is presented which yields accurate results in widely dissimilar liquids.

  2. 47 CFR 25.208 - Power flux density limits.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... COMMUNICATIONS Technical Standards § 25.208 Power flux density limits. (a) In the band 3650-4200 MHz, the power flux density at the Earth's surface produced by emissions from a space station for all conditions and... and 10.7-11.7 GHz for NGSO FSS space stations, the power flux-density at the Earth's surface produced...

  3. On the Evolution of the Cores of Radio Sources and Their Extended Radio Emission

    NASA Astrophysics Data System (ADS)

    Yuan, Zunli; Wang, Jiancheng

    2012-01-01

    The work in this paper aims at determining the evolution and possible co-evolution of radio-loud active galactic nuclei (AGNs) and their cores via their radio luminosity functions (i.e., total and core RLFs, respectively). Using a large combined sample of 1063 radio-loud AGNs selected at low radio frequency, we investigate the RLF at 408 MHz of steep-spectrum radio sources. Our results support a luminosity-dependent evolution. Using core flux density data of the complete sample 3CRR, we investigate the core RLF at 5.0 GHz. Based on the combined sample with incomplete core flux data, we also estimate the core RLF using a modified factor of completeness. Both results are consistent and show that the comoving number density of radio cores displays a persistent decline with redshift, implying a negative density evolution. We find that the core RLF is obviously different from the total RLF at the 408 MHz band which is mainly contributed by extended lobes, implying that the cores and extended lobes could not be co-evolving at radio emission.

  4. The Energy-Dependent X-Ray Timing Characteristics of the Narrow Line Seyfert 1 MKN 766

    NASA Technical Reports Server (NTRS)

    Markowitz, A.; Papadakis, I.; Arevalo, P.; Turner, T. J.; Miller, L.; Reeves, J. N.

    2007-01-01

    We present the energy-dependent power spectral density (PSD) and cross-spectral properties of Mkn 766, obtained from combining data obtained during an XMM-Newton observation spanning six revolutions in 2005 with data obtained from an XMM-Newton long-look in 2001. The PSD shapes and rms-flux relations are found to be consistent between the 2001 and 2005 observations, suggesting the 2005 observation is simply a low-flux extension of the 2001 observation and permitting us to combine the two data sets. The resulting PSD has the highest temporal frequency resolution for any AGN PSD measured to date. Applying a broken power-law model yields break frequencies which increase in temporal frequency with photon energy. Obtaining a good fit when assuming energy-independent break frequencies requires the presence of a Lorentzian at 4.6 +/- 0.4 x 10(exp -4)Hz whose strength increases with photon energy, a behavior seen in black hole X-ray binaries. The cross-spectral properties are measured; temporal frequency-dependent soft-to-hard time lags are detected in this object for the first time. Cross-spectral results are consistent with those for other accreting black hole systems. The results are discussed in the context of several variability models, including those based on inwardly-propagating viscosity variations in the accretion disk.

  5. Surface flux processes and evolution of characteristic eddy scales above a young Middle Rio Grande forest

    NASA Astrophysics Data System (ADS)

    Cleverly, J. R.; Thibault, J. R.; Slusher, M.; Hipps, L.; Prueger, J.; Dahm, C. N.

    2003-12-01

    The extended drought throughout the Southwest has brought water budgets and policy decisions into public purview. It is often presumed that riparian restoration, i.e. removal of non-native species, presents a water salvage panacea. The cost of such operations can be prohibitive, making reliable estimates of phreatophytic ET a crucial piece of information. This study has taken a long-term approach to monitoring ET water flux from a variety of these forests. ET monitoring towers have been established at 5 sites along the Middle Rio Grande -- 2 over mature cottonwood forests, 2 over mature saltcedar forests, and 1 over a young mixed stand of Russian olive and willow. Because there is yet no infallible method for determining ET fluxes, eddy covariance technology provides the best method for evaluating those processes in the surface layer by provided data directly into surface layer similarity relationships. ET, energy, and carbon flux were measured during the 2003 growing season from towers using the 3-dimensional sonic eddy covariance (3SEC) method. Scalar flux sensors included a 3-D sonic anemometer, Krypton hygrometer, 12.7 μ m type E fine wire thermocouple (Campbell Scientific, Inc), and LI-7500 open-path IRGA (Licor, Inc). An averaging period of 30 min was chosen based as a period of low cospectral density. The following corrections were applied to these fluxes: coordinate rotation; correction of frequency-specific signal attenuation due to instrument separation, instrument line averaging, and signal path length (Massman 2000 & 2001); krypton hygrometer calibration as a function of humidity; oxygen contribution to the krypton hygrometer signal; and flux effects on measured densities (Webb et al 1980). These corrections reduced the closure error by 5 percent. Closure was then forced using the measured Bowen Ratio as the weighting factor. Measured ET, along with leaf area index, was reduced as much as 35 percent during the prolonged drought in the southwestern U.S. At the end of the season, younger cottonwood, willow, and Russian olive forests were developing severe chlorosis (< 100 mg m{-2} at some locations), and ET rates fell from 8.5 mm day-1 to 4.4 mm day-1 due to a record-breaking hot July. Evaluation of the 10-Hz raw data from the 3SEC system was performed using cospectral and wavelet time series analyses. Of particular interest are the low frequency harmonics between the turbulent scales and the spectral gap. Correlation of intermittent flux variations with variations in net radiation preceding summer monsoon precipitation illustrates the relative roles of vegetative homeostasis and advection in explaining remaining closure error following turbulence corrections. This time series analysis of physical turbulent Monin-Obukhov scales and surface fluxes illustrates the frequency-temporal relationships between surface processes, stomatal control, and mesoscale forcing events.

  6. Measurements of crossed-field demagnetisation rate of trapped field magnets at high frequencies and below 77 K

    NASA Astrophysics Data System (ADS)

    Baskys, A.; Patel, A.; Glowacki, B. A.

    2018-06-01

    Design requirements of the next generation of electric aircraft place stringent requirements on the power density required from electric motors. A future prototype planned in the scope of the European project ‘Advanced Superconducting Motor Experimental Demonstrator’ (ASuMED) considers a permanent magnet synchronous motor, where the conventional ferromagnets are replaced with superconducting trapped field magnets, which promise higher flux densities and thus higher output power without adding weight. Previous work has indicated that stacks of tape show lower cross-field demagnetisation rates to bulk (RE)BCO whilst retaining similar performance for their size, however the crossed-field demagnetisation rate has not been studied in the temperature, the magnetic field and frequency range that are relevant for the operational prototype motor. This work investigates crossed-field demagnetisation in 2G high temperature superconducting stacks at temperatures below 77 K and a frequency range above 10 Hz. This information is crucial in developing designs and determining operational time before re-magnetisation could be required.

  7. Computational studies on scattering of radio frequency waves by density filaments in fusion plasmas

    NASA Astrophysics Data System (ADS)

    Ioannidis, Zisis C.; Ram, Abhay K.; Hizanidis, Kyriakos; Tigelis, Ioannis G.

    2017-10-01

    In modern magnetic fusion devices, such as tokamaks and stellarators, radio frequency (RF) waves are commonly used for plasma heating and current profile control, as well as for certain diagnostics. The frequencies of the RF waves range from ion cyclotron frequency to the electron cyclotron frequency. The RF waves are launched from structures, like waveguides and current straps, placed near the wall in a very low density, tenuous plasma region of a fusion device. The RF electromagnetic fields have to propagate through this scrape-off layer before coupling power to the core of the plasma. The scrape-off layer is characterized by turbulent plasmas fluctuations and by blobs and filaments. The variations in the edge density due to these fluctuations and filaments can affect the propagation characteristics of the RF waves—changes in density leading to regions with differing plasma permittivity. Analytical full-wave theories have shown that scattering by blobs and filaments can alter the RF power flow into the core of the plasma in a variety of ways, such as through reflection, refraction, diffraction, and shadowing [see, for example, Ram and Hizanidis, Phys. Plasmas 23, 022504 (2016), and references therein]. There are changes in the wave vectors and the distribution of power-scattering leading to coupling of the incident RF wave to other plasma waves, side-scattering, surface waves, and fragmentation of the Poynting flux in the direction towards the core. However, these theoretical models are somewhat idealized. In particular, it is assumed that there is step-function discontinuity in the density between the plasma inside the filament and the background plasma. In this paper, results from numerical simulations of RF scattering by filaments using a commercial full-wave code are described. The filaments are taken to be cylindrical with the axis of the cylinder aligned along the direction of the ambient magnetic field. The plasma inside and outside the filament is assumed to be cold. There are three primary objectives of these studies. The first objective is to validate the numerical simulations by comparing with the analytical results for the same plasma description—a step-function discontinuity in density. A detailed comparison of the Poynting flux shows that numerical simulations lead to the same results as those from the theoretical model. The second objective is to extend the simulations to take into account a smooth transition in density from the background plasma to the interior of the filament. The ensuing comparison shows that the deviations from the results of the theoretical model are quite small. The third objective is to consider the scattering process for situations well beyond a reasonable theoretical analysis. This includes scattering off multiple filaments with different densities and sizes. Simulations for these complex arrangements of filaments show that, in spite of the obvious limitations, the essential physics of RF scattering is captured by the analytical theory for a single filament.

  8. Gas Flux and Density Surrounding a Cylindrical Aperture in the Free Molecular Flow Regime

    NASA Technical Reports Server (NTRS)

    Soulas, George C.

    2011-01-01

    The equations for rigorously calculating the particle flux and density surrounding a cylindrical aperture in the free molecular flow regime are developed and presented. The fundamental equations for particle flux and density from a reservoir and a diffusely reflecting surface will initially be developed. Assumptions will include a Maxwell-Boltzmann speed distribution, equal particle and wall temperatures, and a linear flux distribution along the cylindrical aperture walls. With this information, the equations for axial flux and density surrounding a cylindrical aperture will be developed. The cylindrical aperture will be divided into multiple volumes and regions to rigorously determine the surrounding axial flux and density, and appropriate limits of integration will be determined. The results of these equations will then be evaluated. The linear wall flux distribution assumption will be assessed. The axial flux and density surrounding a cylindrical aperture with a thickness-to-radius ratio of 1.25 will be presented. Finally, the equations determined in this study will be verified using multiple methods.

  9. Classical Heat-Flux Measurements in Coronal Plasmas from Collective Thomson-Scattering Spectra

    NASA Astrophysics Data System (ADS)

    Henchen, R. J.; Hu, S. X.; Katz, J.; Froula, D. H.; Rozmus, W.

    2016-10-01

    Collective Thomson scattering was used to measure heat flux in coronal plasmas. The relative amplitude of the Thomson-scattered power into the up- and downshifted electron plasma wave features was used to determine the flux of electrons moving along the temperature gradient at three to four times the electron thermal velocity. Simultaneously, the ion-acoustic wave features were measured. Their relative amplitude was used to measure the flux of the return-current electrons. The frequencies of these ion-acoustic and electron plasma wave features provide local measurements of the electron temperature and density. These spectra were obtained at five locations along the temperature gradient in a laser-produced blowoff plasma. These measurements of plasma parameters are used to infer the Spitzer-Härm flux (qSH = - κ∇Te ) and are in good agreement with the values of the heat flux measured from the scattering-feature asymmetries. Additional experiments probed plasma waves perpendicular to the temperature gradient. The data show small effects resulting from heat flux compared to probing waves along the temperature gradient. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  10. Predictions of ion energy distributions and radical fluxes in radio frequency biased inductively coupled plasma etching reactors

    NASA Astrophysics Data System (ADS)

    Hoekstra, Robert J.; Kushner, Mark J.

    1996-03-01

    Inductively coupled plasma (ICP) reactors are being developed for low gas pressure (<10s mTorr) and high plasma density ([e]≳1011 cm-3) microelectronics fabrication. In these reactors, the plasma is generated by the inductively coupled electric field while an additional radio frequency (rf) bias is applied to the substrate. One of the goals of these systems is to independently control the magnitude of the ion flux by the inductively coupled power deposition, and the acceleration of ions into the substrate by the rf bias. In high plasma density reactors the width of the sheath above the wafer may be sufficiently thin that ions are able to traverse it in approximately 1 rf cycle, even at 13.56 MHz. As a consequence, the ion energy distribution (IED) may have a shape typically associated with lower frequency operation in conventional reactive ion etching tools. In this paper, we present results from a computer model for the IED incident on the wafer in ICP etching reactors. We find that in the parameter space of interest, the shape of the IED depends both on the amplitude of the rf bias and on the ICP power. The former quantity determines the average energy of the IED. The latter quantity controls the width of the sheath, the transit time of ions across the sheath and hence the width of the IED. In general, high ICP powers (thinner sheaths) produce wider IEDs.

  11. Ionospheric modifications in high frequency heating experiments

    NASA Astrophysics Data System (ADS)

    Kuo, Spencer P.

    2015-01-01

    Featured observations in high-frequency (HF) heating experiments conducted at Arecibo, EISCAT, and high frequency active auroral research program are discussed. These phenomena appearing in the F region of the ionosphere include high-frequency heater enhanced plasma lines, airglow enhancement, energetic electron flux, artificial ionization layers, artificial spread-F, ionization enhancement, artificial cusp, wideband absorption, short-scale (meters) density irregularities, and stimulated electromagnetic emissions, which were observed when the O-mode HF heater waves with frequencies below foF2 were applied. The implication and associated physical mechanism of each observation are discussed and explained. It is shown that these phenomena caused by the HF heating are all ascribed directly or indirectly to the excitation of parametric instabilities which instigate anomalous heating. Formulation and analysis of parametric instabilities are presented. The results show that oscillating two stream instability and parametric decay instability can be excited by the O-mode HF heater waves, transmitted from all three heating facilities, in the regions near the HF reflection height and near the upper hybrid resonance layer. The excited Langmuir waves, upper hybrid waves, ion acoustic waves, lower hybrid waves, and field-aligned density irregularities set off subsequent wave-wave and wave-electron interactions, giving rise to the observed phenomena.

  12. EPR Imaging at a Few Megahertz Using SQUID Detectors

    NASA Technical Reports Server (NTRS)

    Hahn, Inseob; Day, Peter; Penanen, Konstantin; Eom, Byeong Ho

    2010-01-01

    An apparatus being developed for electron paramagnetic resonance (EPR) imaging operates in the resonance-frequency range of about 1 to 2 MHz well below the microwave frequencies used in conventional EPR. Until now, in order to obtain sufficient signal-to-noise radios (SNRs) in conventional EPR, it has been necessary to place both detectors and objects to be imaged inside resonant microwave cavities. EPR imaging has much in common with magnetic resonance imaging (MRI), which is described briefly in the immediately preceding article. In EPR imaging as in MRI, one applies a magnetic pulse to make magnetic moments (in this case, of electrons) precess in an applied magnetic field having a known gradient. The magnetic moments precess at a resonance frequency proportional to the strength of the local magnetic field. One detects the decaying resonance-frequency magnetic- field component associated with the precession. Position is encoded by use of the known relationship between the resonance frequency and the position dependence of the magnetic field. EPR imaging has recently been recognized as an important tool for non-invasive, in vivo imaging of free radicals and reduction/oxidization metabolism. However, for in vivo EPR imaging of humans and large animals, the conventional approach is not suitable because (1) it is difficult to design and construct resonant cavities large enough and having the required shapes; (2) motion, including respiration and heartbeat, can alter the resonance frequency; and (3) most microwave energy is absorbed in the first few centimeters of tissue depth, thereby potentially endangering the subject and making it impossible to obtain adequate signal strength for imaging at greater depth. To obtain greater penetration depth, prevent injury to the subject, and avoid the difficulties associated with resonant cavities, it is necessary to use lower resonance frequencies. An additional advantage of using lower resonance frequencies is that one can use weaker applied magnetic fields: For example, for a resonance frequency of 1.4 MHz, one needs a magnetic flux density of 0.5 Gauss approximately the flux density of the natural magnetic field of the Earth.

  13. Study of Pulsed vs. RF Plasma Properties for Surface Processing Applications

    NASA Astrophysics Data System (ADS)

    Tang, Ricky; Hopkins, Matthew; Barnat, Edward; Miller, Paul

    2015-09-01

    The ability to manipulate the plasma parameters (density, E/N) was previously demonstrated using a double-pulsed column discharge. Experiments extending this to large-surface plasmas of interest to the plasma processing community were conducted. Differences between an audio-frequency pulsed plasma and a radio-frequency (rf) discharge, both prevalent in plasma processing applications, were studied. Optical emission spectroscopy shows higher-intensity emission in the UV/visible range for the pulsed plasma comparing to the rf plasma at comparable powers. Data suggest that the electron energy is higher for the pulsed plasma leading to higher ionization, resulting in increased ion density and ion flux. Diode laser absorption measurements of the concentration of the 1S5 metastable and 1S4 resonance states of argon (correlated with the plasma E/N) provide comparisons between the excitation/ionization states of the two plasmas. Preliminary modeling efforts suggest that the low-frequency polarity switch causes a much more abrupt potential variation to support interesting transport phenomena, generating a ``wave'' of higher temperature electrons leading to more ionization, as well as ``sheath capture'' of a higher density bolus of ions that are then accelerated during polarity switch.

  14. X-ray Variability Characteristics of the Narrow line SEYFERT 1 MKN 766 I: Energy Dependent Timing Properties

    NASA Technical Reports Server (NTRS)

    Markowitz, A.; Turner, T. J.; Papadakis, I.; Arevalo, P.; Reeves, J. N.; Miller, L.

    2007-01-01

    We present the energy-dependent power spectral density (PSD) and cross-spectral properties of Mkn 766 obtained from a six-revolution XMM-Newton observation in 2005. The resulting PSDs, which have highest temporal frequency resolution for an AGN PSD to date, show breaks which increase in temporal frequency as photon energy increases; break frequencies differ by an average of approx.0.4 in the log between the softest and hardest bands. The consistency of the 2001 and 2005 observations variability properties, namely PSD shapes and the linear rms-flux relation, suggests the 2005 observation is simply a low-flux extension of the 2001 observation. The coherence function is measured to be approx.0.6-0.9 at temporal frequencies below the PSD break, and is lower for relatively larger energy band separation; coherence also drops significantly towards zero above the PSD break frequency. Temporal frequency-dependent soft-to-hard time lags are detected in this object for the first time: lags increase towards longer time scales and as energy separation increases. Cross-spectral properties are the thus consistent with previous measurements for Mkn 766 (Vaughan & Fabian 2003) and other accreting black hole systems. The results are discussed in the context of several variability models, including those based on inwardly-propagating viscosity variations in the accretion disk.

  15. Spillage and flux density on a receiver aperture lip. [of solar thermal collector

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.

    1985-01-01

    In a dish-type point-focusing solar thermal collector, the spillage and the flux density on the receiver aperture lip are related in a very simple way, if the aperture is circular and centered on the optical axis. Specifically, the flux density on the lip is equal to the spillage times the peak flux density in the plane of the lip.

  16. Demagnetization of a complete superconducting radiofrequency cryomodule: Theory and practice

    DOE PAGES

    Crawford, Anthony C.; Chandrasekaran, Saravan K.

    2016-12-07

    Here, a significant advance in magnetic field management in a fully assembled superconducting radiofrequency (SRF) cryomodule has been achieved and is reported here. Demagnetization of the entire cryomodule after assembly is a crucial step toward the goal of average magnetic flux density less than 0.5 μT at the location of the superconducting radio frequency cavities. An explanation of the physics of demagnetization and experimental results are presented.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaing, K.C.; Hazeltine, R.D.

    Electron transport fluxes in the potato plateau regime are calculated from the solutions of the drift kinetic equation and fluid equations. It is found that the bootstrap current density remains finite in the region close to the magnetic axis, although it decreases with increasing collision frequency. This finite amount of the bootstrap current in the relatively collisional regime is important in modeling tokamak startup with 100{percent} bootstrap current. {copyright} {ital 1997 American Institute of Physics.}

  18. Design and investigations of the superconducting magnet system for the multipurpose superconducting electron cyclotron resonance ion source.

    PubMed

    Tinschert, K; Lang, R; Mäder, J; Rossbach, J; Spädtke, P; Komorowski, P; Meyer-Reumers, M; Krischel, D; Fischer, B; Ciavola, G; Gammino, S; Celona, L

    2012-02-01

    The production of intense beams of heavy ions with electron cyclotron resonance ion sources (ECRIS) is an important request at many accelerators. According to the ECR condition and considering semi-empirical scaling laws, it is essential to increase the microwave frequency together with the magnetic flux density of the ECRIS magnet system. A useful frequency of 28 GHz, therefore, requires magnetic flux densities above 2.2 T implying the use of superconducting magnets. A cooperation of European institutions initiated a project to build a multipurpose superconducting ECRIS (MS-ECRIS) in order to achieve an increase of the performances in the order of a factor of ten. After a first design of the superconducting magnet system for the MS-ECRIS, the respective cold testing of the built magnet system reveals a lack of mechanical performance due to the strong interaction of the magnetic field of the three solenoids with the sextupole field and the magnetization of the magnetic iron collar. Comprehensive structural analysis, magnetic field calculations, and calculations of the force pattern confirm thereafter these strong interactions, especially of the iron collar with the solenoidal fields. The investigations on the structural analysis as well as suggestions for a possible mechanical design solution are given.

  19. Spin-down Evolution and Radio Disappearance of the Magnetar PSR J1622–4950

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scholz, P.; Camilo, F.; Sarkissian, J.

    2017-06-01

    We report on 2.4 yr of radio timing measurements of the magnetar PSR J1622−4950 using the Parkes Observatory, between 2011 November and 2014 March. During this period the torque on the neutron star (inferred from the rotational frequency derivative) varied greatly, though much less erratically than during the 2 yr following its discovery in 2009. During the last year of our measurements the frequency derivative decreased in magnitude monotonically by 20%, to a value of −1.3 × 10{sup −13} s{sup −2}, a factor of 8 smaller than when it was discovered. The flux density continued to vary greatly during ourmore » monitoring through 2014 March, reaching a relatively steady low level after late 2012. The pulse profile varied secularly on a similar timescale as the flux density and torque. A relatively rapid transition in all three properties was evident in early 2013. After PSR J1622−4950 was detected in all of our 87 observations up to 2014 March, we did not detect the magnetar in our resumed monitoring starting in 2015 January and have not detected it in any of the 30 observations conducted through 2016 September.« less

  20. Evaluation of biological effects of intermediate frequency magnetic field on differentiation of embryonic stem cell.

    PubMed

    Yoshie, Sachiko; Ogasawara, Yuki; Ikehata, Masateru; Ishii, Kazuyuki; Suzuki, Yukihisa; Wada, Keiji; Wake, Kanako; Nakasono, Satoshi; Taki, Masao; Ohkubo, Chiyoji

    2016-01-01

    The embryotoxic effect of intermediate frequency (IF) magnetic field (MF) was evaluated using murine embryonic stem (ES) cells and fibroblast cells based on the embryonic stem cell test (EST). The cells were exposed to 21 kHz IF-MF up to magnetic flux density of 3.9 mT during the cell proliferation process (7 days) or the cell differentiation process (10 days) during which an embryonic body differentiated into myocardial cells. As a result, there was no significant difference in the cell proliferation between sham- and IF-MF-exposed cells for both ES and fibroblast cells. Similarly, the ratio of the number of ES-derived cell aggregates differentiated to myocardial cells to total number of cell aggregates was not changed by IF-MF exposure. In addition, the expressions of a cardiomyocytes-specific gene, Myl2 , and an early developmental gene, Hba-x , in the exposed cell aggregate were not altered. Since the magnetic flux density adopted in this study is much higher than that generated by an inverter of the electrical railway, an induction heating (IH) cooktop, etc . in our daily lives, these results suggested that IF-MF in which the public is exposed to in general living environment would not have embryotoxic effect.

  1. A Study of the Long-Term Spectral Variations of 3C 66A Observed with the Fermi and Kanata Telescopes

    DOE PAGES

    Itoh, Ryosuke; Fukazawa, Yasushi; Chiang, James; ...

    2013-02-25

    3C 66A is an intermediate-frequency-peaked BL Lac object detected by the Large Area Telescope onboard the Fermi Gamma-ray Space Telescope. Here, we present a study of the long-term variations of this blazar seen over ~ 2 yr at GeV energies with Fermi and in the optical (flux and polarization) and near infrared with the Kanata telescope. In 2008, the first year of the study, we find a correlation between the gamma-ray flux and the measurements taken with the Kanata telescope. This is in contrast to the later measurements performed during 2009–2010 which show only a weak correlation along with amore » gradual increase of the optical flux. We calculate an external seed photon energy density assuming that the gamma-ray emission is due to external Compton scattering. The energy density of the external photons is found to be higher by a factor of two in 2008 compared to 2009–2010. Finally, we conclude that the different behaviors observed between the first year and the later years might be explained by postulating two different emission components.« less

  2. INTERFEROMETRIC MONITORING OF GAMMA-RAY BRIGHT AGNs. I. THE RESULTS OF SINGLE-EPOCH MULTIFREQUENCY OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sang-Sung; Wajima, Kiyoaki; Algaba, Juan-Carlos

    2016-11-01

    We present results of single-epoch very long baseline interferometry (VLBI) observations of gamma-ray bright active galactic nuclei (AGNs) using the Korean VLBI Network (KVN) at the 22, 43, 86, and 129 GHz bands, which are part of a KVN key science program, Interferometric Monitoring of Gamma-Ray Bright AGNs. We selected a total of 34 radio-loud AGNs of which 30 sources are gamma-ray bright AGNs with flux densities of >6 × 10{sup −10} ph cm{sup −2} s{sup −1}. Single-epoch multifrequency VLBI observations of the target sources were conducted during a 24 hr session on 2013 November 19 and 20. All observed sources weremore » detected and imaged at all frequency bands, with or without a frequency phase transfer technique, which enabled the imaging of 12 faint sources at 129 GHz, except for one source. Many of the target sources are resolved on milliarcsecond scales, yielding a core-jet structure, with the VLBI core dominating the synchrotron emission on a milliarcsecond scale. CLEAN flux densities of the target sources are 0.43–28 Jy, 0.32–21 Jy, 0.18–11 Jy, and 0.35–8.0 Jy in the 22, 43, 86, and 129 GHz bands, respectively. Spectra of the target sources become steeper at higher frequency, with spectral index means of −0.40, −0.62, and −1.00 in the 22–43 GHz, 43–86 GHz and 86–129 GHz bands, respectively, implying that the target sources become optically thin at higher frequencies (e.g., 86–129 GHz).« less

  3. Torque shudder protection device and method

    DOEpatents

    King, Robert D.; De Doncker, Rik W. A. A.; Szczesny, Paul M.

    1997-01-01

    A torque shudder protection device for an induction machine includes a flux command generator for supplying a steady state flux command and a torque shudder detector for supplying a status including a negative status to indicate a lack of torque shudder and a positive status to indicate a presence of torque shudder. A flux adapter uses the steady state flux command and the status to supply a present flux command identical to the steady state flux command for a negative status and different from the steady state flux command for a positive status. A limiter can receive the present flux command, prevent the present flux command from exceeding a predetermined maximum flux command magnitude, and supply the present flux command to a field oriented controller. After determining a critical electrical excitation frequency at which a torque shudder occurs for the induction machine, a flux adjuster can monitor the electrical excitation frequency of the induction machine and adjust a flux command to prevent the monitored electrical excitation frequency from reaching the critical electrical excitation frequency.

  4. Torque shudder protection device and method

    DOEpatents

    King, R.D.; Doncker, R.W.A.A. De.; Szczesny, P.M.

    1997-03-11

    A torque shudder protection device for an induction machine includes a flux command generator for supplying a steady state flux command and a torque shudder detector for supplying a status including a negative status to indicate a lack of torque shudder and a positive status to indicate a presence of torque shudder. A flux adapter uses the steady state flux command and the status to supply a present flux command identical to the steady state flux command for a negative status and different from the steady state flux command for a positive status. A limiter can receive the present flux command, prevent the present flux command from exceeding a predetermined maximum flux command magnitude, and supply the present flux command to a field oriented controller. After determining a critical electrical excitation frequency at which a torque shudder occurs for the induction machine, a flux adjuster can monitor the electrical excitation frequency of the induction machine and adjust a flux command to prevent the monitored electrical excitation frequency from reaching the critical electrical excitation frequency. 5 figs.

  5. Electron Scattering by High-Frequency Whistler Waves at Earth's Bow Shock

    NASA Technical Reports Server (NTRS)

    Oka, M.; Wilson, L. B., III; Phan, T. D.; Hull, A. J.; Amano, T.; Hoshino, M.; Argall, M. R.; Le Contel, O.; Agapitov, O.; Gersham, D. J.; hide

    2017-01-01

    Electrons are accelerated to non-thermal energies at shocks in space and astrophysical environments. While different mechanisms of electron acceleration have been proposed, it remains unclear how non-thermal electrons are produced out of the thermal plasma pool. Here, we report in situ evidence of pitch-angle scattering of non-thermal electrons by whistler waves at Earths bow shock. On 2015 November 4, the Magnetospheric Multiscale (MMS) mission crossed the bow shock with an Alfvn Mach number is approximately 11 and a shock angle of approximately 84deg. In the ramp and overshoot regions, MMS revealed bursty enhancements of non-thermal (0.52 keV) electron flux, correlated with high-frequency (0.2 - 0.4 Omega(sub ce), where Omega(sub ce) is the cyclotron frequency) parallel-propagating whistler waves. The electron velocity distribution (measured at 30 ms cadence) showed an enhanced gradient of phase-space density at and around the region where the electron velocity component parallel to the magnetic field matched the resonant energy inferred from the wave frequency range. The flux of 0.5 keV electrons (measured at 1ms cadence) showed fluctuations with the same frequency. These features indicate that non-thermal electrons were pitch-angle scattered by cyclotron resonance with the high-frequency whistler waves. However, the precise role of the pitch-angle scattering by the higher-frequency whistler waves and possible nonlinear effects in the electron acceleration process remains unclear.

  6. Electron Scattering by High-frequency Whistler Waves at Earth’s Bow Shock

    NASA Astrophysics Data System (ADS)

    Oka, M.; Wilson, L. B., III; Phan, T. D.; Hull, A. J.; Amano, T.; Hoshino, M.; Argall, M. R.; Le Contel, O.; Agapitov, O.; Gershman, D. J.; Khotyaintsev, Y. V.; Burch, J. L.; Torbert, R. B.; Pollock, C.; Dorelli, J. C.; Giles, B. L.; Moore, T. E.; Saito, Y.; Avanov, L. A.; Paterson, W.; Ergun, R. E.; Strangeway, R. J.; Russell, C. T.; Lindqvist, P. A.

    2017-06-01

    Electrons are accelerated to non-thermal energies at shocks in space and astrophysical environments. While different mechanisms of electron acceleration have been proposed, it remains unclear how non-thermal electrons are produced out of the thermal plasma pool. Here, we report in situ evidence of pitch-angle scattering of non-thermal electrons by whistler waves at Earth’s bow shock. On 2015 November 4, the Magnetospheric Multiscale (MMS) mission crossed the bow shock with an Alfvén Mach number ˜11 and a shock angle ˜84°. In the ramp and overshoot regions, MMS revealed bursty enhancements of non-thermal (0.5-2 keV) electron flux, correlated with high-frequency (0.2-0.4 {{{Ω }}}{ce}, where {{{Ω }}}{ce} is the cyclotron frequency) parallel-propagating whistler waves. The electron velocity distribution (measured at 30 ms cadence) showed an enhanced gradient of phase-space density at and around the region where the electron velocity component parallel to the magnetic field matched the resonant energy inferred from the wave frequency range. The flux of 0.5 keV electrons (measured at 1 ms cadence) showed fluctuations with the same frequency. These features indicate that non-thermal electrons were pitch-angle scattered by cyclotron resonance with the high-frequency whistler waves. However, the precise role of the pitch-angle scattering by the higher-frequency whistler waves and possible nonlinear effects in the electron acceleration process remains unclear.

  7. The Revised Electromagnetic Fields Directive and Worker Exposure in Environments With High Magnetic Flux Densities

    PubMed Central

    Stam, Rianne

    2014-01-01

    Some of the strongest electromagnetic fields (EMF) are found in the workplace. A European Directive sets limits to workers’ exposure to EMF. This review summarizes its origin and contents and compares magnetic field exposure levels in high-risk workplaces with the limits set in the revised Directive. Pubmed, Scopus, grey literature databases, and websites of organizations involved in occupational exposure measurements were searched. The focus was on EMF with frequencies up to 10 MHz, which can cause stimulation of the nervous system. Selected studies had to provide individual maximum exposure levels at the workplace, either in terms of the external magnetic field strength or flux density or as induced electric field strength or current density. Indicative action levels and the corresponding exposure limit values for magnetic fields in the revised European Directive will be higher than those in the previous version. Nevertheless, magnetic flux densities in excess of the action levels for peripheral nerve stimulation are reported for workers involved in welding, induction heating, transcranial magnetic stimulation, and magnetic resonance imaging (MRI). The corresponding health effects exposure limit values for the electric fields in the worker’s body can be exceeded for welding and MRI, but calculations for induction heating and transcranial magnetic stimulation are lacking. Since the revised European Directive conditionally exempts MRI-related activities from the exposure limits, measures to reduce exposure may be necessary for welding, induction heating, and transcranial nerve stimulation. Since such measures can be complicated, there is a clear need for exposure databases for different workplace scenarios with significant EMF exposure and guidance on good practices. PMID:24557933

  8. Magnetic Flux Density of Different Types of New Generation Magnetic Attachment Systems.

    PubMed

    Akin, Hakan

    2015-07-01

    The purpose of this study was to analyze the static magnetic flux density of different types of new generation laser-welded magnetic attachments in the single position and the attractive position and to determine the effect of different corrosive environments on magnetic flux density. Magnetic flux densities of four magnetic attachment systems (Hyper slim, Hicorex slim, Dyna, and Steco) were measured with a gaussmeter. Then magnetic attachment systems were immersed in two different media, namely 1% lactic acid solution (pH 2.3), and 0.9% NaCl solution (pH 7.3). Magnetic flux densities of the attachment systems were measured with a gaussmeter after immersion to compare with measurements before immersion (α = 0.05). The data were statistically evaluated with one-way ANOVA, paired-samples t-test, and post hoc Tukey-Kramer multiple comparisons tests (α = 0.05). The highest magnetic flux density was found in Dyna magnets for both single and attractive positions. In addition, after the magnets were in the corrosive environments for 2 weeks, they had a significant decrease in magnetic flux density (p < 0.05). No significant differences were found between corrosive environments (p > 0.05). The leakage flux of all the magnetic attachments did not exceed the WHO's guideline of 40 mT. The magnets exhibited a significant decrease in magnetic flux density after aging in corrosive environments including lactic acid and NaCl. © 2014 by the American College of Prosthodontists.

  9. A search for radio emission from flare stars in the Pleiades

    NASA Technical Reports Server (NTRS)

    Bastian, T. S.; Dulk, G. A.; Slee, O. B.

    1988-01-01

    The VLA has been used to search for radio emission from flare stars in the Pleiades. Two observational strategies were employed. First, about 1/2 sq deg of cluster, containing about 40 known flare stars, was mapped at 1.4 GHz at two epochs. More than 120 sources with flux densities greater than 0.3 mJy exist on the maps. Detailed analysis shows that all but two of these sources are probably extragalactic. The two sources identified as stellar are probably not Pleiades members as judged by their proper motions; rather, based on their colors and magnitudes, they seem to be foreground G stars. One is a known X-ray source. The second observational strategy, where five rapidly rotating flare stars were observed at three frequencies, yielded no detections. The 0.3 mJy flux-density limit of this survey is such that only the most intense outbursts of flare stars in the solar neighborhood could have been detected if those stars were at the distance of the Pleiades.

  10. [Effects of quantum nonlocality in the water activation process].

    PubMed

    Zatsepina, O V; Stekhin, A A; Yakovleva, G V

    2014-01-01

    The dynamic alterations of the magnetic flux density of the water volume, activated with structurally stressed calcium carbonate in micellar form have been investigated. The phase of the associated water was established to exhibit electrical and magnetic properties, recorded by in B&E meter in the frequency range of 5Hz - 2kHz. Alterations in water Eh (redox) potential and the magnetic flux density B testify to synchronous auto-oscillatory changes. This gives evidence of non-linearity of the relationship between auto-oscillatory processes excited in the water; and reflects the nonlocal in time the relationship between the states of water, manifesting in a change of water activity on the 1st and 2nd day in negative time. The mechanism of action of associated water phase is shown to be described by de Broglie concept of matter waves with taking into account delocalized in time states of phase of electron wave packet in accordance with the transactional interpretation of quantum physics.

  11. Correlations Between Magnetic Flux and Levitation Force of HTS Bulk Above a Permanent Magnet Guideway

    NASA Astrophysics Data System (ADS)

    Huang, Huan; Zheng, Jun; Zheng, Botian; Qian, Nan; Li, Haitao; Li, Jipeng; Deng, Zigang

    2017-10-01

    In order to clarify the correlations between magnetic flux and levitation force of the high-temperature superconducting (HTS) bulk, we measured the magnetic flux density on bottom and top surfaces of a bulk superconductor while vertically moving above a permanent magnet guideway (PMG). The levitation force of the bulk superconductor was measured simultaneously. In this study, the HTS bulk was moved down and up for three times between field-cooling position and working position above the PMG, followed by a relaxation measurement of 300 s at the minimum height position. During the whole processes, the magnetic flux density and levitation force of the bulk superconductor were recorded and collected by a multipoint magnetic field measurement platform and a self-developed maglev measurement system, respectively. The magnetic flux density on the bottom surface reflected the induced field in the superconductor bulk, while on the top, it reveals the penetrated magnetic flux. The results show that the magnetic flux density and levitation force of the bulk superconductor are in direct correlation from the viewpoint of inner supercurrent. In general, this work is instructive for understanding the connection of the magnetic flux density, the inner current density and the levitation behavior of HTS bulk employed in a maglev system. Meanwhile, this magnetic flux density measurement method has enriched present experimental evaluation methods of maglev system.

  12. Frequency-Agile LIDAR Receiver for Chemical and Biological Agent Sensing

    DTIC Science & Technology

    2010-06-01

    transimpedance preamplifier architecture was optimized around the selected IR detector diode – Input-referenced noise density of 0.8 nV/ Hz0.5  A portion of...objectives: • Reduce baseline (background) photon flux on detector : Tunable Fabry-Perot etalon in optical train • Reduce input-referenced amplifier noise ...custom amplifier • Reduce detector dark current: High impedance detector  Performance Metrics: – Noise equivalent power of receiver system (NEP

  13. Pure-iron/iron-based-alloy hybrid soft magnetic powder cores compacted at ultra-high pressure

    NASA Astrophysics Data System (ADS)

    Saito, Tatsuya; Tsuruta, Hijiri; Watanabe, Asako; Ishimine, Tomoyuki; Ueno, Tomoyuki

    2018-04-01

    We developed Fe/FeSiAl soft magnetic powder cores (SMCs) for realizing the miniaturization and high efficiency of an electromagnetic conversion coil in the high-frequency range (˜20 kHz). We found that Fe/FeSiAl SMCs can be formed with a higher density under higher compaction pressure than pure-iron SMCs. These SMCs delivered a saturation magnetic flux density of 1.7 T and iron loss (W1/20k) of 158 kW/m3. The proposed SMCs exhibited similar excellent characteristics even in block shapes, which are closer to the product shapes.

  14. Predictions for Uranus from a radiometric Bode's law. [planetary magnetic moment estimated from radio emission flux density

    NASA Technical Reports Server (NTRS)

    Desch, M. D.; Kaiser, M. L.

    1984-01-01

    Determinations by spacecraft of the low-frequency radio spectra and radiation beam geometry of the magnetospheres of earth, Jupiter, and Saturn now permit a reliable assessment of the overall efficiency of the solar wind in stimulating intense, nonthermal radio bursts from these magnetospheres. It is found that earlier estimates of how magnetospheric radio output scales with the solar wind energy input must be greatly revised, with the result that, while the efficiency is much lower than previously thought, it is remarkably uniform from planet to planet. A 'radimetric Bode's law' is formulated from which a planet's magnetic moment can be estimated from its radio emission output. This law is applied to estimate the low-frequency radio power likely to be measured for Uranus by Voyager 2. It is shown how measurements of Uranus's radio flux can be used to estimate the planetary magnetic moment and solar wind stand-off distance before the in situ measurements.

  15. Nonadiabatic effect on the quantum heat flux control.

    PubMed

    Uchiyama, Chikako

    2014-05-01

    We provide a general formula of quantum transfer that includes the nonadiabatic effect under periodic environmental modulation by using full counting statistics in Hilbert-Schmidt space. Applying the formula to an anharmonic junction model that interacts with two bosonic environments within the Markovian approximation, we find that the quantum transfer is divided into the adiabatic (dynamical and geometrical phases) and nonadiabatic contributions. This extension shows the dependence of quantum transfer on the initial condition of the anharmonic junction just before the modulation, as well as the characteristic environmental parameters such as interaction strength and cut-off frequency of spectral density. We show that the nonadiabatic contribution represents the reminiscent effect of past modulation including the transition from the initial condition of the anharmonic junction to a steady state determined by the very beginning of the modulation. This enables us to tune the frequency range of modulation, whereby we can obtain the quantum flux corresponding to the geometrical phase by setting the initial condition of the anharmonic junction.

  16. Flux-driven algebraic damping of diocotron modes

    NASA Astrophysics Data System (ADS)

    Chim, Chi Yung; O'Neil, Thomas M.

    2015-06-01

    Recent experiments with pure electron plasmas in a Malmberg-Penning trap have observed the algebraic damping of m = 1 and m = 2 diocotron modes. Transport due to small field asymmetries produces a low density halo of electrons moving radially outward from the plasma core, and the mode damping begins when the halo reaches the resonant radius Rm, where there is a matching of ωm = mωE (Rm) for the mode frequency ωm and E × B-drift rotation frequency ωE. The damping rate is proportional to the flux of halo particles through the resonant layer. The damping is related to, but distinct from, spatial Landau damping, in which a linear wave-particle resonance produces exponential damping. This new mechanism of damping is due to transfer of canonical angular momentum from the mode to halo particles, as they are swept around the "cat's eye" orbits of the resonant wave-particle interaction. This paper provides a simple derivation of the time dependence of the mode amplitudes.

  17. UHF Radar observations at HAARP with HF pump frequencies near electron gyro-harmonics and associated ionospheric effects

    NASA Astrophysics Data System (ADS)

    Watkins, Brenton; Fallen, Christopher; Secan, James

    Results for HF modification experiments at the HAARP facility in Alaska are presented for experiments with the HF pump frequency near third and fourth electron gyro-harmonics. A UHF diagnostic radar with range resolution of 600 m was used to determine time-dependent altitudes of scattering from plasma turbulence during heating experiments. Experiments were conducted with multiple HF frequencies stepped by 20 kHz above and below the gyro-harmonic values. During times of HF heating the HAARP facility has sufficient power to enhance large-scale ionospheric densities in the lower ionosphere (about 150-200 km altitude) and also in the topside ionosphere (above about 350 km). In the lower ionosphere, time-dependent decreases of the altitude of radar scatter result from electron density enhancements. The effects are substantially different even for relatively small frequency steps of 20 kHz. In all cases the time-varying altitude decrease of radar scatter stops about 5-10 km below the gyro-harmonic altitude that is frequency dependent; we infer that electron density enhancements stop at this altitude where the radar signals stop decreasing with altitude. Experiments with corresponding total electron content (TEC) data show that for HF interaction altitudes above about 170 km there is substantial topside electron density increases due to upward electron thermal conduction. For lower altitudes of HF interaction the majority of the thermal energy is transferred to the neutral gas and no significant topside density increases are observed. By selecting an appropriate HF frequency a little greater than the gyro-harmonic value we have demonstrated that the ionospheric response to HF heating is a self-oscillating mode where the HF interaction altitude moves up and down with a period of several minutes. If the interaction region is above about 170 km this also produces a continuously enhanced topside electron density and upward plasma flux. Experiments using an FM scan with the HF frequency increasing near the gyro-harmonic value were conducted. The FM scan rate was sufficiently slow that the electron density was approximately in an equilibrium state. For these experiments the altitude of the HF interaction follows a near straight line downward parallel to the altitude-dependent gyro-harmonic level.

  18. Magnetic materials selection for static inverter and converter transformers

    NASA Technical Reports Server (NTRS)

    Mclyman, C. W. T.

    1971-01-01

    Different magnetic alloys best suited for high-frequency and high-efficiency applications were comparatively investigated together with an investigation of each alloy's inherent characteristics. One of the characteristics in magnetic materials deterimental in transformer design is the residual flux density, which can be additive on turn-on and cause the transformer to saturate. Investigation of this problem led to the design of a transformer with a very low residual flux. Tests were performed to determine the dc and ac magnetic properties at 2400 Hz using square-wave excitation. These tests were performed on uncut cores, which were then cut for comparison of the gapped and ungapped magnetic properties. The optimum transformer was found to be that with the lowest residual flux and a small amount of air gap in the magnetic material. The data obtained from these tests are described, and the potential uses for the materials are discussed.

  19. Abell 1367: a high fraction of late-type galaxies displaying H I morphological and kinematic perturbations

    NASA Astrophysics Data System (ADS)

    Scott, T. C.; Brinks, E.; Cortese, L.; Boselli, A.; Bravo-Alfaro, H.

    2018-04-01

    To investigate the effects the cluster environment has on late-type galaxies (LTGs), we studied H I perturbation signatures for all Abell 1367 LTGs with H I detections. We used new Very Large Array H I observations combined with AGES single-dish blind survey data. Our study indicates that the asymmetry between the high- and low-velocity wings of the characteristic double-horn-integrated H I spectrum as measured by the asymmetry parameter, A_{flux}, can be a useful diagnostic for ongoing and/or recent H I stripping. 26 per cent of A1367 LTGs have an A_{flux} ratio, more asymmetrical than 3 times the 1σ spread in the A_{flux} ratio distribution of an undisturbed sample of isolated galaxies (2 per cent) and samples from other denser environments (10 per cent-20 per cent). Over half of the A1367 LTGs, which are members of groups or pairs, have an A_{flux} ratio larger than twice the 1σ spread found in the isolated sample. This suggests intergroup/pair interactions could be making a significant contribution to the LTGs displaying such A_{flux} ratios. The study also demonstrates that the definition of the H I offset from the optical centre of LTGs is resolution dependent, suggesting that unresolved AGES H I offsets that are significantly larger than the pointing uncertainties (>2σ), reflect interactions which have asymmetrically displaced, significant masses of lower density H I, while having minimal impact on the location of the highest density H I in resolved maps. The distribution of A_{flux} from a comparable sample of Virgo galaxies provides a clear indication that the frequency of H I profile perturbations is lower than in A1367.

  20. Global Model for Asymmetric, Diode-Type Dual Frequency Capacitive Discharge

    NASA Astrophysics Data System (ADS)

    Kim, Jisoo; Lieberman, M. A.; Lichtenberg, A. J.

    2003-10-01

    Dual frequency capacitive reactors can have desirable properties for dielectric etch: low cost, robust uniformity over large areas, and control of dissociation. In the ideal case, the high frequency power controls the plasma density (ion flux) and the low frequency voltage controls the ion bombarding energy. Typical operating conditions are: discharge radius 15-30 cm, length 1-3 cm, pressure 30-200 mTorr, high frequency 27.1-160 MHz, low frequency 2-13.6 MHz, and powers of 500-3000 W for both high and low frequencies. The decoupling of the high and low frequencies is an important feature of dual frequency capacitive discharges. In this work, we describe a global (volume-averaged) model having different top and bottom plate areas that incorporates particle balance, and ohmic and stochastic heating for high and low frequencies. The model is used to obtain the decoupling of high and low frequencies and to investigate limitations to ideal decoupling. Support provided by Lam Research, NSF Grant ECS-0139956, California industries, and UC-SMART Contract SM99-10051.

  1. Amazon peatlands: quantifying ecosytem's stocks, GHG fluxes and their microbial connections

    NASA Astrophysics Data System (ADS)

    Cadillo-Quiroz, Hinsby; Lähteenoja, Outi; Buessecker, Steffen; van Haren, Joost

    2017-04-01

    Reports of hundreds of peatlands across basins in the West and Central Amazon suggest they play an important, previously not considered regional role in organic carbon (OC) and GHG dynamics. Amazon peatlands store ˜3-6 Gt of OC in their waterlogged soils with strong potential for conversion and release of GHG, in fact our recent, and others', efforts have confirmed variable levels of GHG emissions (CO2, N2O, CH4), as well as variable microbial communities across rich to poor soil peatlands. Here, we report early results of quantification of different components making up the aboveground C stocks, the rates and paths for GHG release, and microbial organisms occurring in three ecologically distinct peatland types in the Pastaza-Marañon region of the Peruvian Amazon. Evaluations were done in duplicated continuous monitoring plots established since 2015 at a "palm swamp" (PS), poor "pole forest" (pPF) and a rich "forested" (rF) peatlands. Although overall vegetation "structure" with a few dominant plus several low frequency species was common across the three sites, their botanical composition and tree density was highly contrasting. Aboveground C stocks content showed the following order among sites: rF>PS>pPF, and hence we tested whether this differences can have a direct effect on CH4 emissions rates. CH4 emissions rates from soils were observed in average at 11, 6, and 0.8 mg-C m-2 h-1for rF, PS, and pPF respectively. However, these estimated fluxes needed to be revised when we develop quantifications of CH4 emissions from tree stems. Tree stem fluxes were detected showing a broad variation with nearly nill emissions in some species all the way to maximum fluxes near to ˜90 mg-C m-2 h-1 in other species. Mauritia flexuosa, a highly dominant palm species in PS and ubiquitous to the region, showed the highest ranges of CH4 flux. In the PS site, overall CH4 flux estimate increased by ˜50% when including stem emission weighted by trees' species, density and heights. Flux estimates in p PF did not had a significant change. Analysis across species in the study sites, plus other satellite sites, suggest that in sites stem flux emissions might be conserved with some genera in the Aracaceae, Euphorbiaceae, and Sapotaceae families showing a large emitters capacity. Further characterization also showed that CH4 flux emission from the stems decreases generally with height, suggesting a diffusion constrained stem flux, which seems limited by soil CH4 concentration and wood density. Finally, microbial community composition and methanogenic activity also showed contrasting patterns across sites, with pH being one of the major determinants. GHG producing organisms were detected in different proportions and types across study sites, and importantly methanogenic Archaea closely tracked observed differences of CH4 flux among sites. Nevertheless, the link between vegetation type and density still remain under assessment in our efforts

  2. A Measurement of the Millimeter Emission and the Sunyaev-zel'dovich Effect Associated with Low-frequency Radio Sources

    NASA Technical Reports Server (NTRS)

    Gralla, Megan B.; Crichton, Devin; Marriage, Tobias A.; Mo, Wenli; Aguirre, Paula; Addison, Graeme E.; Asboth, V.; Battaglia, Nick; Bock, James; Bond, J. Richard; hide

    2013-01-01

    We present a statistical analysis of the millimeter-wavelength properties of 1.4 GHz-selected sources and a detection of the Sunyaev-Zel'dovich Effect associated with the halos that host them. The Atacama Cosmology Telescope (ACT) has conducted a survey at 148 GHz, 218 GHz and 277 GHz along the celestial equator. Using samples of radio sources selected at 1.4 GHz from the Faint Images of the Radio Sky at Twenty-Centimeters (FIRST) Survey and the National Radio Astronomy Observatory Very Large Array Sky Survey (NVSS), we measure the stacked 148, 218 and 277 GHz flux densities for sources with 1.4 GHz flux densities ranging from 5 to 200 mJy. At these flux densities, the radio source population is dominated by active galactic nuclei (AGN), with both steep and at spectrum populations, which have combined radio-to-millimeter spectral indices ranging from 0.5 to 0.95, reecting the prevalence of steep spectrum sources at high flux densities and the presence of at spectrum sources at lower flux densities. The thermal Sunyaev-Zelapos;dovich (SZ) eect associated with the halos that host the AGN is detected at the 5 level through its spectral signature. When we compare the SZ eect with weak lensing measurements of radio galaxies, we find that the relation between the two is consistent with that measured by Planck for local bright galaxies. We present a detection of the SZ eect in some of the lowest mass halos (average M(sub 200) approx. equals 10(exp 13) solar M h(sup-1) (sub 70) ) studied to date. This detection is particularly important in the context of galaxy evolution models, as it confirms that galaxies with radio AGN also typically support hot gaseous halos. With Herschel* observations, we show that the SZ detection is not significantly contaminated by dusty galaxies or by dust associated with the AGN or galaxies hosting the AGN. We show that 5 mJy < S(sub 1:4) < 200 mJy radio sources contribute l(l +1)C(sub l)/(2 pi ) = 0:37+/- 0:03 micro K(exp 2) to the angular power spectrum at l = 3000 at 148 GHz, after accounting for the SZ effect associated with their host halos.

  3. Artificial Ionization and UHF Radar Response Associated with HF Frequencies near Electron Gyro-Harmonics (Invited)

    NASA Astrophysics Data System (ADS)

    Watkins, B. J.; Fallen, C. T.; Secan, J. A.

    2013-12-01

    We present new results from O-mode ionospheric heating experiments at the HAARP facility in Alaska to demonstrate that the magnitude of artificial ionization production is critically dependent on the choice of HF frequency near gyro-harmonics. For O-mode heating in the lower F-region ionosphere, typically about 200 km altitude, artificial ionization enhancements are observed in the lower ionosphere (about 150 - 220 km) and also in the topside ionosphere above about 500 km. Lower ionosphere density enhancements are inferred from HF-enhanced ion and plasma-line signals observed with UHF radar. Upper ionospheric density enhancements have been observed with TEC (total electron content) experiments by monitoring satellite radio beacons where signal paths traverse the HF-modified ionosphere. Both density enhancements and corresponding upward plasma fluxes have also been observed in the upper ionosphere via in-situ satellite observations. The data presented focus mainly on observations near the third and fourth gyro-harmonics. The specific values of the height-dependent gyro-harmonics have been computed from a magnetic model of the field line through the HF heated volume. Experiments with several closely spaced HF frequencies around the gyro-harmonic frequency region show that the magnitude of the lower-ionosphere artificial ionization production maximizes for HF frequencies about 1.0 - 1.5 MHz above the gyro-harmonic frequency. The response is progressively larger as the HF frequency is increased in the frequency region near the gyro-harmonics. For HF frequencies that are initially greater than the gyro-harmonic value the UHF radar scattering cross-section is relatively small, and non-existent or very weak signals are observed; as the signal returns drop in altitude due to density enhancements the HF interaction region passes through lower altitudes where the HF frequency is less than the gyro-harmonic value, for these conditions the radar scattering cross-section is significantly increased and strong signals persist while the high-power HF is present . Simultaneous observations of topside TEC measurements and lower-ionosphere UHF radar observations suggest there is an optimum altitude region to heat the lower F-region in order to produce topside ionosphere density enhancements. The observations are dependent on HF power levels and we show several examples where heating results are only observed for the high-power levels attainable with the HAARP facility.

  4. Frequency multiplexed flux locked loop architecture providing an array of DC SQUIDS having both shared and unshared components

    DOEpatents

    Ganther, Jr., Kenneth R.; Snapp, Lowell D.

    2002-01-01

    Architecture for frequency multiplexing multiple flux locked loops in a system comprising an array of DC SQUID sensors. The architecture involves dividing the traditional flux locked loop into multiple unshared components and a single shared component which, in operation, form a complete flux locked loop relative to each DC SQUID sensor. Each unshared flux locked loop component operates on a different flux modulation frequency. The architecture of the present invention allows a reduction from 2N to N+1 in the number of connections between the cryogenic DC SQUID sensors and their associated room temperature flux locked loops. Furthermore, the 1.times.N architecture of the present invention can be paralleled to form an M.times.N array architecture without increasing the required number of flux modulation frequencies.

  5. Simulation of density fluctuations before the L-H transition for Hydrogen and Deuterium plasmas in the DIII-D tokamak using the BOUT++ code

    NASA Astrophysics Data System (ADS)

    Wang, Y. M.; Xu, X. Q.; Yan, Z.; Mckee, G. R.; Grierson, B. A.; Xia, T. Y.; Gao, X.

    2018-02-01

    A six-field two-fluid model has been used to simulate density fluctuations. The equilibrium is generated by experimental measurements for both Deuterium (D) and Hydrogen (H) plasmas at the lowest densities of DIII-D low to high confinement (L-H) transition experiments. In linear simulations, the unstable modes are found to be resistive ballooning modes with the most unstable mode number n  =  30 or k_θρ_i˜0.12 . The ion diamagnetic drift and E× B convection flow are balanced when the radial electric field (E r ) is calculated from the pressure profile without net flow. The curvature drift plays an important role in this stage. Two poloidally counter propagating modes are found in the nonlinear simulation of the D plasma at electron density n_e˜1.5×1019 m-3 near the separatrix while a single ion mode is found in the H plasma at the similar lower density, which are consistent with the experimental results measured by the beam emission spectroscopy (BES) diagnostic on the DIII-D tokamak. The frequency of the electron modes and the ion modes are about 40 kHz and 10 kHz respectively. The poloidal wave number k_θ is about 0.2 cm -1 (k_θρ_i˜0.05 ) for both ion and electron modes. The particle flux, ion and electron heat fluxes are  ˜3.5-6 times larger for the H plasma than the D plasma, which makes it harder to achieve H-mode for the same heating power. The change of the atomic mass number A from 2 to 1 using D plasma equilibrium make little difference on the flux. Increase the electric field will suppress the density fluctuation. The electric field scan and ion mass scan results show that the dual-mode results primarily from differences in the profiles rather than the ion mass.

  6. 10C survey of radio sources at 15.7 GHz - II. First results

    NASA Astrophysics Data System (ADS)

    AMI Consortium; Davies, Mathhew L.; Franzen, Thomas M. O.; Waldram, Elizabeth M.; Grainge, Keith J. B.; Hobson, Michael P.; Hurley-Walker, Natasha; Lasenby, Anthony; Olamaie, Malak; Pooley, Guy G.; Riley, Julia M.; Rodríguez-Gonzálvez, Carmen; Saunders, Richard D. E.; Scaife, Anna M. M.; Schammel, Michel P.; Scott, Paul F.; Shimwell, Timothy W.; Titterington, David J.; Zwart, Jonathan T. L.

    2011-08-01

    In a previous paper (Paper I), the observational, mapping and source-extraction techniques used for the Tenth Cambridge (10C) Survey of Radio Sources were described. Here, the first results from the survey, carried out using the Arcminute Microkelvin Imager Large Array (LA) at an observing frequency of 15.7 GHz, are presented. The survey fields cover an area of ≈27 deg2 to a flux-density completeness of 1 mJy. Results for some deeper areas, covering ≈12 deg2, wholly contained within the total areas and complete to 0.5 mJy, are also presented. The completeness for both areas is estimated to be at least 93 per cent. The 10C survey is the deepest radio survey of any significant extent (≳0.2 deg2) above 1.4 GHz. The 10C source catalogue contains 1897 entries and is available online. The source catalogue has been combined with that of the Ninth Cambridge Survey to calculate the 15.7-GHz source counts. A broken power law is found to provide a good parametrization of the differential count between 0.5 mJy and 1 Jy. The measured source count has been compared with that predicted by de Zotti et al. - the model is found to display good agreement with the data at the highest flux densities. However, over the entire flux-density range of the measured count (0.5 mJy to 1 Jy), the model is found to underpredict the integrated count by ≈30 per cent. Entries from the source catalogue have been matched with those contained in the catalogues of the NRAO VLA Sky Survey and the Faint Images of the Radio Sky at Twenty-cm survey (both of which have observing frequencies of 1.4 GHz). This matching provides evidence for a shift in the typical 1.4-GHz spectral index to 15.7-GHz spectral index of the 15.7-GHz-selected source population with decreasing flux density towards sub-mJy levels - the spectra tend to become less steep. Automated methods for detecting extended sources, developed in Paper I, have been applied to the data; ≈5 per cent of the sources are found to be extended relative to the LA-synthesized beam of ≈30 arcsec. Investigations using higher resolution data showed that most of the genuinely extended sources at 15.7 GHz are classical doubles, although some nearby galaxies and twin-jet sources were also identified.

  7. On the Role of Solar Wind Discontinuities in the ULF Power Spectral Density at the Earth's Outer Radiation Belt: a Case Study

    NASA Astrophysics Data System (ADS)

    Lago, A.; Alves, L. R.; Braga, C. R.; Mendonca, R. R. S.; Jauer, P. R.; Medeiros, C.; Souza, V. M. C. E. S.; Mendes, O., Jr.; Marchezi, J.; da Silva, L.; Vieira, L.; Rockenbach, M.; Sibeck, D. G.; Kanekal, S. G.; Baker, D. N.; Wygant, J. R.; Kletzing, C.

    2016-12-01

    The solar wind incident upon the Earth's magnetosphere can produce either enhancement, depletion or no change in the flux of relativistic electrons at the outer radiation belt. During geomagnetic storms progress, solar wind parameters may change significantly, and occasionally relativistic electron fluxes at the outer radiation belt show dropouts in a range of energy and L-shells. Wave-particle interactions observed within the Van Allen belts have been claimed to play a significant role in energetic particle flux changes. The relation between changes on the solar wind parameters and the radiation belt is still a hot topic nowadays, particularly the role played by the solar wind on sudden electron flux decreases. The twin satellite Van Allen Probes measured a relativistic electron flux dropout concurrent to broad band Ultra-low frequency (ULF) waves, i.e. from 1 mHz to 10 Hz, on October 2, 2013. Magnetic field and plasma data from both ACE and WIND satellites allowed the characterization of this event as being an interplanetary coronal mass ejection in conjunction with shock. The interaction of this event with the Earth's magnetosphere was modeled using a global magnetohydrodynamic simulation and the magnetic field perturbation deep in magnetosphere could be analyzed from the model outputs. Results show the contribution of time-varying solar wind parameters to the generation of ULF waves. The power spectral densities, as a function of L-shell, were evaluated considering changes in the input parameters, e.g. magnitude and duration of dynamic pressure and magnetic field. The modeled power spectral densities are compared with Van Allen Probes data. The results provide us a clue on the solar wind characteristics that might be able to drive ULF waves in the inner magnetosphere, and also which wave modes are expected to be excited under a specific solar wind driving.

  8. Detection of a Millimeter Flare from Proxima Centauri

    NASA Astrophysics Data System (ADS)

    MacGregor, Meredith A.; Weinberger, Alycia J.; Wilner, David J.; Kowalski, Adam F.; Cranmer, Steven R.

    2018-03-01

    We present new analyses of ALMA 12 m and Atacama Compact Array (ACA) observations at 233 GHz (1.3 mm) of the Proxima Centauri system with sensitivities of 9.5 and 47 μJy beam‑1, respectively, taken from 2017 January 21 through April 25. These analyses reveal that the star underwent a significant flaring event during one of the ACA observations on 2017 March 24. The complete event lasted for approximately 1 minute and reached a peak flux density of 100 ± 4 mJy, nearly a factor of 1000 times brighter than the star’s quiescent emission. At the flare peak, the continuum emission is characterized by a steeply falling spectral index with frequency F ν ∝ ν α with α = ‑1.77 ± 0.45, and a lower limit on the fractional linear polarization of | Q/I| =0.19+/- 0.02. Because the ACA observations do not show any quiescent excess emission, we conclude that there is no need to invoke the presence of a dust belt at 1–4 au. We also posit that the slight excess flux density of 101 ± 9 μJy observed in the 12 m observations, compared to the photospheric flux density of 74 ± 4 μJy extrapolated from infrared wavelengths, may be due to coronal heating from continual smaller flares, as is seen for AU Mic, another nearby well-studied M dwarf flare star. If this is true, then the need for warm dust at ∼0.4 au is also removed.

  9. Magnetic flux density measurement with balanced steady state free precession pulse sequence for MREIT: a simulation study.

    PubMed

    Minhas, Atul S; Woo, Eung Je; Lee, Soo Yeol

    2009-01-01

    Magnetic Resonance Electrical Impedance Tomography (MREIT) utilizes the magnetic flux density B(z), generated due to current injection, to find conductivity distribution inside an object. This B(z) can be measured from MR phase images using spin echo pulse sequence. The SNR of B(z) and the sensitivity of phase produced by B(z) in MR phase image are critical in deciding the resolution of MREIT conductivity images. The conventional spin echo based data acquisition has poor phase sensitivity to current injection. Longer scan time is needed to acquire data with higher SNR. We propose a balanced steady state free precession (b-SSFP) based pulse sequence which is highly sensitive to small off-resonance phase changes. A procedure to reconstruct B(z) from MR signal obtained with b-SSFP sequence is described. Phases for b-SSFP signals for two conductivity phantoms of TX 151 and Gelatin are simulated from the mathematical models of b-SSFP signal. It was observed that the phase changes obtained from b-SSFP pulse sequence are highly sensitive to current injection and hence would produce higher magnetic flux density. However, the b-SSFP signal is dependent on magnetic field inhomogeneity and the signal deteriorated highly for small offset from resonance frequency. The simulation results show that the b-SSFP sequence can be utilized for conductivity imaging of a local region where magnetic field inhomogeneity is small. A proper shimming of magnet is recommended before using the b-SSFP sequence.

  10. Study of the Effect of Solar Flares and the Solar Position on the NRK - Algiers VLF Signal Path

    NASA Astrophysics Data System (ADS)

    Bouderba, Yasmina; Tribeche, Mouloud; Amor Samir, Nait

    X-ray and UV radiations emitted from the sun during solar flares, may cause enhancement of the ionization in the lower ionosphere. To study the effect of solar flares and their occurrence in the daytime on the D layer of the ionosphere (60-90 Km), we used Very Low Frequency (VLF) data of the NRK-ALG GCP (NRK: 63.85 N, 22.45 W, 37.5 KHz; Algiers: 36.16 N, 3.13 E; Distance: 3495 Km). Since any ionospheric electron density change, VLF signal perturbations in both of amplitude (ΔA) and phase (Δϕ) are measured. However, from the measured ΔA and Δϕ, the ionospheric parameters: H’ (the reflecting height in Km) and β (the increasing conductivity in Km-1) are then deduced using the Long wave probability code (LWPC). The results show that the signal perturbations parameters (ΔA and Δϕ) increased with the X-ray flux. Thus, as a function of the solar flux, H’ decreases to lower altitudes, but B increases up to a saturation value. From the H’ and β parameters, the electron density enhancement is then deduced. In addition to the experimental results, a numerical simulation of the D region disturbances due to solar flares was developed. Therefore, a comparison between the experimentally measured electron density and numerically determined is done as function of the solar flux and the solar zenith angle.

  11. SQUID magnetometers for low-frequency applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryhaenen, T.; Seppae, H.; Ilmoniemi, R.

    1989-09-01

    The authors present a novel formulation for SQUID operation, which enables them to evaluate and compare the sensitivity and applicability of different devices. SQUID magnetometers for low-frequency applications are analyzed, taking into account the coupling circuits and electronics. They discuss nonhysteretic and hysteretic single-junction rf SQUIDs, but the main emphasis is on the dynamics, sensitivity, and coupling considerations of dc-SQUID magnetometers. A short review of current ideas on thin-film, dc-SQUID design presents the problems in coupling and the basic limits of sensitivity. The fabrication technology of tunnel-junction devices is discussed with emphasis on how it limits critical current densities, specificmore » capacitances of junctions, minimum linewidths, conductor separations, etc. Properties of high-temperature superconductors are evaluated on the basis of recently published results on increased flux creep, low density of current carriers, and problems in fabricating reliable junctions. The optimization of electronics for different types of SQUIDs is presented. Finally, the most important low-frequency applications of SQUIDs in biomagnetism, metrology, geomagnetism, and some physics experiments demonstrate the various possibilities that state-of-the-art SQUIDs can provide.« less

  12. Edge localized mode characteristics during edge localized mode mitigation by supersonic molecular beam injection in Korea Superconducting Tokamak Advanced Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, H. Y.; Hong, J. H.; Jang, J. H.

    It has been reported that supersonic molecular beam injection (SMBI) is an effective means of edge localized mode (ELM) mitigation. This paper newly reports the changes in the ELM, plasma profiles, and fluctuation characteristics during ELM mitigation by SMBI in Korea Superconducting Tokamak Advanced Research. During the mitigated ELM phase, the ELM frequency increased by a factor of 2–3 and the ELM size, which was estimated from the D{sub α} amplitude, the fractional changes in the plasma-stored energy and the line-averaged electron density, and divertor heat flux during an ELM burst, decreased by a factor of 0.34–0.43. Reductions in themore » electron and ion temperatures rather than in the electron density were observed during the mitigated ELM phase. In the natural ELM phase, frequency chirping of the plasma fluctuations was observed before the ELM bursts; however, the ELM bursts occurred without changes in the plasma fluctuation frequency in the mitigated ELM phase.« less

  13. PKS 1954-388: RadioAstron Detection on 80,000 km Baselines and Multiwavelength Observations

    NASA Astrophysics Data System (ADS)

    Edwards, P. G.; Kovalev, Y. Y.; Ojha, R.; An, H.; Bignall, H.; Carpenter, B.; Hovatta, T.; Stevens, J.; Voytsik, P.; Andrianov, A. S.; Dutka, M.; Hase, H.; Horiuchi, S.; Jauncey, D. L.; Kadler, M.; Lisakov, M.; Lovell, J. E. J.; McCallum, J.; Müller, C.; Phillips, C.; Plötz, C.; Quick, J.; Reynolds, C.; Schulz, R.; Sokolovsky, K. V.; Tzioumis, A. K.; Zuga, V.

    2017-04-01

    We present results from a multiwavelength study of the blazar PKS 1954-388 at radio, UV, X-ray, and gamma-ray energies. A RadioAstron observation at 1.66 GHz in June 2012 resulted in the detection of interferometric fringes on baselines of 6.2 Earth-diameters. This suggests a source frame brightness temperature of greater than 2 × 1012 K, well in excess of both equipartition and inverse Compton limits and implying the existence of Doppler boosting in the core. An 8.4-GHz TANAMI VLBI image, made less than a month after the RadioAstron observations, is consistent with a previously reported superluminal motion for a jet component. Flux density monitoring with the Australia Telescope Compact Array confirms previous evidence for long-term variability that increases with observing frequency. A search for more rapid variability revealed no evidence for significant day-scale flux density variation. The ATCA light-curve reveals a strong radio flare beginning in late 2013, which peaks higher, and earlier, at higher frequencies. Comparison with the Fermi gamma-ray light-curve indicates this followed 9 months after the start of a prolonged gamma-ray high-state-a radio lag comparable to that seen in other blazars. The multiwavelength data are combined to derive a Spectral Energy Distribution, which is fitted by a one-zone synchrotron-self-Compton (SSC) model with the addition of external Compton (EC) emission.

  14. Dynamic Power Spectral Analysis of Solar Measurements from Photospheric, Chromospheric, and Coronal Sources

    NASA Technical Reports Server (NTRS)

    Bouwer, S. D.; Pap, J.; Donnelly, R. F.

    1990-01-01

    An important aspect in the power spectral analysis of solar variability is the quasistationary and quasiperiodic nature of solar periodicities. In other words, the frequency, phase, and amplitude of solar periodicities vary on time scales ranging from active region lifetimes to solar cycle time scales. Here, researchers employ a dynamic, or running, power spectral density analysis to determine many periodicities and their time-varying nature in the projected area of active sunspot groups (S sub act). The Solar Maximum Mission/Active Cavity Radiometer Irradiance Monitor (SMM/ACRIM) total solar irradiance (S), the Nimbus-7 MgII center-to-wing ratio (R (MgII sub c/w)), the Ottawa 10.7 cm flux (F sub 10.7), and the GOES background x ray flux (X sub b) for the maximum, descending, and minimum portions of solar cycle 21 (i.e., 1980 to 1986) are used. The technique dramatically illustrates several previously unrecognized periodicities. For example, a relatively stable period at about 51 days has been found in those indices which are related to emerging magnetic fields. The majority of solar periodicities, particularly around 27, 150 and 300 days, are quasiperiodic because they vary in amplitude and frequency throughout the solar cycle. Finally, it is shown that there are clear differences between the power spectral densities of solar measurements from photospheric, chromospheric, and coronal sources.

  15. Characteristics of Low-latitude Coronal Holes near the Maximum of Solar Cycle 24

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hofmeister, Stefan J.; Veronig, Astrid; Reiss, Martin A.

    We investigate the statistics of 288 low-latitude coronal holes extracted from SDO /AIA-193 filtergrams over the time range of 2011 January 01–2013 December 31. We analyze the distribution of characteristic coronal hole properties, such as the areas, mean AIA-193 intensities, and mean magnetic field densities, the local distribution of the SDO /AIA-193 intensity and the magnetic field within the coronal holes, and the distribution of magnetic flux tubes in coronal holes. We find that the mean magnetic field density of all coronal holes under study is 3.0 ± 1.6 G, and the percentaged unbalanced magnetic flux is 49 ± 16%.more » The mean magnetic field density, the mean unsigned magnetic field density, and the percentaged unbalanced magnetic flux of coronal holes depend strongly pairwise on each other, with correlation coefficients cc > 0.92. Furthermore, we find that the unbalanced magnetic flux of the coronal holes is predominantly concentrated in magnetic flux tubes: 38% (81%) of the unbalanced magnetic flux of coronal holes arises from only 1% (10%) of the coronal hole area, clustered in magnetic flux tubes with field strengths >50 G (10 G). The average magnetic field density and the unbalanced magnetic flux derived from the magnetic flux tubes correlate with the mean magnetic field density and the unbalanced magnetic flux of the overall coronal hole (cc>0.93). These findings give evidence that the overall magnetic characteristics of coronal holes are governed by the characteristics of the magnetic flux tubes.« less

  16. The revised electromagnetic fields directive and worker exposure in environments with high magnetic flux densities.

    PubMed

    Stam, Rianne

    2014-06-01

    Some of the strongest electromagnetic fields (EMF) are found in the workplace. A European Directive sets limits to workers' exposure to EMF. This review summarizes its origin and contents and compares magnetic field exposure levels in high-risk workplaces with the limits set in the revised Directive. Pubmed, Scopus, grey literature databases, and websites of organizations involved in occupational exposure measurements were searched. The focus was on EMF with frequencies up to 10 MHz, which can cause stimulation of the nervous system. Selected studies had to provide individual maximum exposure levels at the workplace, either in terms of the external magnetic field strength or flux density or as induced electric field strength or current density. Indicative action levels and the corresponding exposure limit values for magnetic fields in the revised European Directive will be higher than those in the previous version. Nevertheless, magnetic flux densities in excess of the action levels for peripheral nerve stimulation are reported for workers involved in welding, induction heating, transcranial magnetic stimulation, and magnetic resonance imaging (MRI). The corresponding health effects exposure limit values for the electric fields in the worker's body can be exceeded for welding and MRI, but calculations for induction heating and transcranial magnetic stimulation are lacking. Since the revised European Directive conditionally exempts MRI-related activities from the exposure limits, measures to reduce exposure may be necessary for welding, induction heating, and transcranial nerve stimulation. Since such measures can be complicated, there is a clear need for exposure databases for different workplace scenarios with significant EMF exposure and guidance on good practices. © The Author 2014. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  17. Observation of improved and degraded confinement with driven flow on the LAPD

    NASA Astrophysics Data System (ADS)

    Schaffner, David

    2012-10-01

    External continuous control over azimuthal flow and flow shear has been achieved in a linear plasma device for the first time allowing for a careful study of the effect of flow shear on pressure-gradient-driven turbulence and transport in the edge of the Large Plasma Device (LAPD). The flow is controlled using biasable iris-like limiters situated axially between the cathode source and main plasma chamber. LAPD rotates spontaneously in the ion diamagnetic direction (IDD); positive limiter bias first reduces, then minimizes (producing a near-zero shear state), and finally reverses the flow into the electron diamagnetic direction (EDD). Degradation of particle confinement is observed in the minimum shearing state and reduction in turbulent particle flux is observed with increasing shearing in both flow directions. Near-complete suppression of turbulent particle flux is observed for shearing rates comparable to the turbulent autocorrelation rate measured in the minimum shear state. Turbulent flux suppression is dominated by amplitude reduction in low-frequency (>10kHz) density fluctuations and a reduction in the radial correlation length. An increase in fluctuations for the highest shearing states is observed with the emergence of a coherent mode which does not lead to net particle transport. Magnetic field is varied in order to explore whether and how field effects transport modification. Calculations of transport equations are used to predict density profiles given source and temperature profiles and can show the level of transport predicted to be necessary in order to produce the experimental density profiles observed. Finally, the variations of density fluctuations and radial correlation length are fit well with power-laws and compare favorably to simple models of shear suppression of transport.

  18. Satellite Investigation of Atmospheric Metal Deposition During Meteor Showers

    NASA Astrophysics Data System (ADS)

    Correira, J.; Aikin, A. C.; Grebowsky, J. M.

    2008-12-01

    Using the nadir-viewing Global Ozone Measuring Experiment (GOME) UV/VIS spectrometer on the ERS-2 satellite, we investigate short term variations in the magnesium column densities and any connection to possible enhanced mass deposition during a meteor shower. We derive a time dependent mass flux rate due to meteor showers using published estimates of mass density and activity profiles of meteor showers. An average daily mass flux rate is also calculated and used as a baseline against which calculated shower mass flux rates are compared. These theoretical mass flux rates are then compared with GOME derived metal column densities from the years 1996 - 2001.There appears to be little correlation between theoretical mass flux rates and changes in the Mg and Mg+ metal column densities. A possible explanation for the lack of a shower related increase in metal concentrations may be differences in the mass regimes dominating the average background mass flux and shower mass flux.

  19. Theory of flux cutting and flux transport at the critical current of a type-II superconducting cylindrical wire

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clem, John R

    2011-02-17

    I introduce a critical-state theory incorporating both flux cutting and flux transport to calculate the magnetic-field and current-density distributions inside a type-II superconducting cylinder at its critical current in a longitudinal applied magnetic field. The theory is an extension of the elliptic critical-state model introduced by Romero-Salazar and Pérez-Rodríguez. The vortex dynamics depend in detail on two nonlinear effective resistivities for flux cutting (ρ{sub ∥}) and flux flow (ρ{sub ⊥}), and their ratio r=ρ{sub ∥}/ρ{sub ⊥}. When r<1, the low relative efficiency of flux cutting in reducing the magnitude of the internal magnetic-flux density leads to a paramagnetic longitudinal magneticmore » moment. As a model for understanding the experimentally observed interrelationship between the critical currents for flux cutting and depinning, I calculate the forces on a helical vortex arc stretched between two pinning centers when the vortex is subjected to a current density of arbitrary angle Φ. Simultaneous initiation of flux cutting and flux transport occurs at the critical current density J{sub c}(Φ) that makes the vortex arc unstable.« less

  20. Theory of flux cutting and flux transport at the critical current of a type-II superconducting cylindrical wire

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clem, John R.

    2011-02-17

    I introduce a critical-state theory incorporating both flux cutting and flux transport to calculate the magnetic-field and current-density distributions inside a type-II superconducting cylinder at its critical current in a longitudinal applied magnetic field. The theory is an extension of the elliptic critical-state model introduced by Romero-Salazar and Perez-Rodriguez. The vortex dynamics depend in detail on two nonlinear effective resistivities for flux cutting ({rho}{parallel}) and flux flow ({rho}{perpendicular}), and their ratio r = {rho}{parallel}/{rho}{perpendicular}. When r < 1, the low relative efficiency of flux cutting in reducing the magnitude of the internal magnetic-flux density leads to a paramagnetic longitudinal magneticmore » moment. As a model for understanding the experimentally observed interrelationship between the critical currents for flux cutting and depinning, I calculate the forces on a helical vortex arc stretched between two pinning centers when the vortex is subjected to a current density of arbitrary angle {phi}. Simultaneous initiation of flux cutting and flux transport occurs at the critical current density J{sub c}({phi}) that makes the vortex arc unstable.« less

  1. Theory of flux cutting and flux transport at the critical current of a type-II superconducting cylindrical wire

    NASA Astrophysics Data System (ADS)

    Clem, John R.

    2011-06-01

    I introduce a critical-state theory incorporating both flux cutting and flux transport to calculate the magnetic-field and current-density distributions inside a type-II superconducting cylinder at its critical current in a longitudinal applied magnetic field. The theory is an extension of the elliptic critical-state model introduced by Romero-Salazar and Pérez-Rodríguez. The vortex dynamics depend in detail on two nonlinear effective resistivities for flux cutting (ρ∥) and flux flow (ρ⊥), and their ratio r=ρ∥/ρ⊥. When r<1, the low relative efficiency of flux cutting in reducing the magnitude of the internal magnetic-flux density leads to a paramagnetic longitudinal magnetic moment. As a model for understanding the experimentally observed interrelationship between the critical currents for flux cutting and depinning, I calculate the forces on a helical vortex arc stretched between two pinning centers when the vortex is subjected to a current density of arbitrary angle ϕ. Simultaneous initiation of flux cutting and flux transport occurs at the critical current density Jc(ϕ) that makes the vortex arc unstable.

  2. A model of heat transfer in sapwood and implications for sap flux density measurements using thermal dissipation probes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wullschleger, Stan D; Childs, Kenneth W; King, Anthony Wayne

    2011-01-01

    A variety of thermal approaches are used to estimate sap flux density in stems of woody plants. Models have proven valuable tools for interpreting the behavior of heat pulse, heat balance, and heat field deformation techniques, but have seldom been used to describe heat transfer dynamics for the heat dissipation method. Therefore, to better understand the behavior of heat dissipation probes, a model was developed that takes into account the thermal properties of wood, the physical dimensions and thermal characteristics of the probes, and the conductive and convective heat transfer that occurs due to water flow in the sapwood. Probesmore » were simulated as aluminum tubes 20 mm in length and 2 mm in diameter, whereas sapwood, heartwood, and bark each had a density and water fraction that determined their thermal properties. Base simulations assumed a constant sap flux density with sapwood depth and no wounding or physical disruption of xylem beyond the 2 mm diameter hole drilled for probe installation. Simulations across a range of sap flux densities showed that the dimensionless quantity k defined as ( Tm T)/ T where Tm is the temperature differential ( T) between the heated and unheated probe under zero flow conditions was dependent on the thermal conductivity of the sapwood. The relationship between sap flux density and k was also sensitive to radial gradients in sap flux density and to xylem disruption near the probe. Monte Carlo analysis in which 1000 simulations were conducted while simultaneously varying thermal conductivity and wound diameter revealed that sap flux density and k showed considerable departure from the original calibration equation used with this technique. The departure was greatest for abrupt patterns of radial variation typical of ring-porous species. Depending on the specific combination of thermal conductivity and wound diameter, use of the original calibration equation resulted in an 81% under- to 48% over-estimation of sap flux density at modest flux rates. Future studies should verify these simulations and assess their utility in estimating sap flux density for this widely used technique.« less

  3. Variability in radial sap flux density patterns and sapwood area among seven co-occurring temperate broad-leaved tree species.

    PubMed

    Gebauer, Tobias; Horna, Viviana; Leuschner, Christoph

    2008-12-01

    Forest transpiration estimates are frequently based on xylem sap flux measurements in the outer sections of the hydro-active stem sapwood. We used Granier's constant-heating technique with heating probes at various xylem depths to analyze radial patterns of sap flux density in the sapwood of seven broad-leaved tree species differing in wood density and xylem structure. Study aims were to (1) compare radial sap flux density profiles between diffuse- and ring-porous trees and (2) analyze the relationship between hydro-active sapwood area and stem diameter. In all investigated species except the diffuse-porous beech (Fagus sylvatica L.) and ring-porous ash (Fraxinus excelsior L.), sap flux density peaked at a depth of 1 to 4 cm beneath the cambium, revealing a hump-shaped curve with species-specific slopes. Beech and ash reached maximum sap flux densities immediately beneath the cambium in the youngest annual growth rings. Experiments with dyes showed that the hydro-active sapwood occupied 70 to 90% of the stem cross-sectional area in mature trees of diffuse-porous species, whereas it occupied only about 21% in ring-porous ash. Dendrochronological analyses indicated that vessels in the older sapwood may remain functional for 100 years or more in diffuse-porous species and for up to 27 years in ring-porous ash. We conclude that radial sap flux density patterns are largely dependent on tree species, which may introduce serious bias in sap-flux-derived forest transpiration estimates, if non-specific sap flux profiles are assumed.

  4. Gas dynamics and heat transfer in a packed pebble-bed reactor for the 4th generation nuclear energy

    NASA Astrophysics Data System (ADS)

    Abdulmohsin, Rahman

    For over three decades, the presence of magnetic flux noise with a power spectral density scaling roughly as S phi ( f) ∝ 1/falpha where a≲1, has been known to limit the low-frequency performance of dc superconducting quantum interference devices (SQUIDs). In recent years, experiments indicate that this same noise persists to frequencies up to 1 GHz and is a dominant source of dephasing in flux-sensitive superconducting quantum bits (qubits). Thus, the reduction of flux noise presents a major hurdle towards the successful realization of scalable quantum computers that are based on flux-based qubits. In this thesis, we present experimental measurements, theoretical analyses, and numerical simulations that support a more detailed understanding of both the microscopic and macroscopic properties of flux n. Our experimental work begins with flux noise measurements of a large number of SQUIDs in the temperature range from 0.1 K to 4 K. We report on measurements of ten SQUIDs with systematically varied geometries and show that alpha increases as the temperature is lowered; in so doing, each spectrum pivots about a nearly constant frequency. The mean square flux noise, inferred by integrating the power spectra, grows rapidly with temperature and at a given temperature is approximately independent of the outer dimension of a given SQUID washer. We show that these results are incompatible with a model based on the random reversal of independent, spins that are located at the surface of the SQUID washer. In the course of our flux noise measurements, we became aware of a spurious contribution to low-frequency critical current noise in Josephson junctions normally attributed to charge trapping in the barrier arising from temperature instabilities inherent in cryogenic systems. These temperature fluctuations modify the critical current via its temperature dependence. By computing cross-correlations between measured temperature and critical current noise in Al-AlOx-Al junctions, we show that, despite excellent temperature stability, temperature fluctuations induce observable critical current fluctuations. Particularly, becuase 1/ f critical current noise has decreased with improved fabrication techniques in recent years, it is important to understand and eliminate this additional noise source. Next, we introduce a numerical method of calculating the mean square flux noise F2 from independently fluctuating spins on the surface of thin-film loops of arbitrary geometry. By reciprocity, F2 is proportional to Br2 , where B(r) is the magnetic field generated by a circulating current around the loop and r varies over the loop surface. By discretizing the loop nonuniformly, we efficiently and accurately compute the current distribution and resulting magnetic field, which may vary rapidly across the loop. We use this method to compute F2 in a number of scenarios in which we systematically vary physical parameters of the loop. We compare our simulations to an earlier analytic result predicting that F2 ∝ R/W in the limit where the loop radius R is much greater than the linewidth W. We further show that the previously neglected contribution of edge spins to F2 is significant---even dominant---in narrow-linewidth loops. To calculate theoretical dephasing rates in qubits, we consider flux noise with a spectral density Sphi( f) = A2/ (f/1 Hz) alpha, where A is of the order of 1 muphi 0 Hz--1/2 and 0.6 ≤ alpha ≤ 1.2; applied flux, our calculations of the dependence of the pure dephasing time tau φ Ramsey and echo pulse sequences on alpha for fixed A show that tauφ decreases rapidly as alpha is reduced. We find that tauφ is relatively insensitive to the noise bandwidth, f1 ≤ f ≤ f2 for all alpha provided the ultraviolet cutoff frequency f2 > 1/tauφ. We calculate the ratio tauφ,E/tau φ, R of the echo (E) and Ramsey (R) sequences, and the dependence of the decay function on alpha and f2. We investigate the case in which S phi(f0) is fixed at the "pivot frequency" f0 ≠ 1 Hz while alpha is varied, and find that the choice of f 0 can greatly influence the sensitivity of tauφ, E and tauφ, R to the value of alpha. Finally, we conclude with a brief review of our principal results and conclusions. We also comment on promising avenues of future research.

  5. Fast flux locked loop

    DOEpatents

    Ganther, Jr., Kenneth R.; Snapp, Lowell D.

    2002-09-10

    A flux locked loop for providing an electrical feedback signal, the flux locked loop employing radio-frequency components and technology to extend the flux modulation frequency and tracking loop bandwidth. The flux locked loop of the present invention has particularly useful application in read-out electronics for DC SQUID magnetic measurement systems, in which case the electrical signal output by the flux locked loop represents an unknown magnetic flux applied to the DC SQUID.

  6. OBSERVATIONS OF ROTATING RADIO TRANSIENTS WITH THE FIRST STATION OF THE LONG WAVELENGTH ARRAY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, G. B.; Stovall, K.; McCrackan, M.

    2016-11-10

    Rotating radio transients (RRATs) are a subclass of pulsars first identified in 2006 that are detected only in searches for single pulses and not through their time averaged emission. Here, we present the results of observations of 19 RRATs using the first station of the Long Wavelength Array (LWA1) at frequencies between 30 and 88 MHz. The RRATs observed here were first detected in higher frequency pulsar surveys. Of the 19 RRATs observed, two sources were detected and their dispersion measures, periods, pulse profiles, and flux densities are reported and compared to previous higher frequency measurements. We find a lowmore » detection rate (11%), which could be a combination of the lower sensitivity of LWA1 compared to higher frequency telescopes, and the result of scattering by the interstellar medium or a spectral turnover.« less

  7. Correlated flux densities from VLBI observations with the DSN

    NASA Technical Reports Server (NTRS)

    Coker, R. F.

    1992-01-01

    Correlated flux densities of extragalactic radio sources in the very long baseline interferometry (VLBI) astrometric catalog are required for the VLBI tracking of Galileo, Mars Observer, and future missions. A system to produce correlated and total flux density catalogs was developed to meet these requirements. A correlated flux density catalog of 274 sources, accurate to about 20 percent, was derived from more than 5000 DSN VLBI observations at 2.3 GHz (S-band) and 8.4 GHz (X-band) using 43 VLBI radio reference frame experiments during the period 1989-1992. Various consistency checks were carried out to ensure the accuracy of the correlated flux densities. All observations were made on the California-Spain and California-Australia DSN baselines using the Mark 3 wideband data acquisition system. A total flux density catalog, accurate to about 20 percent, with data on 150 sources, was also created. Together, these catalogs can be used to predict source strengths to assist in the scheduling of VLBI tracking passes. In addition, for those sources with sufficient observations, a rough estimate of source structure parameters can be made.

  8. Unusual energy properties of leaky backward Lamb waves in a submerged plate.

    PubMed

    Nedospasov, I A; Mozhaev, V G; Kuznetsova, I E

    2017-05-01

    It is found that leaky backward Lamb waves, i.e. waves with negative energy-flux velocity, propagating in a plate submerged in a liquid possess extraordinary energy properties distinguishing them from any other type of waves in isotropic media. Namely, the total time-averaged energy flux along the waveguide axis is equal to zero for these waves due to opposite directions of the longitudinal energy fluxes in the adjacent media. This property gives rise to the fundamental question of how to define and calculate correctly the energy velocity in such an unusual case. The procedure of calculation based on incomplete integration of the energy flux density over the plate thickness alone is applied. The derivative of the angular frequency with respect to the wave vector, usually referred to as the group velocity, happens to be close to the energy velocity defined by this mean in that part of the frequency range where the backward mode exists in the free plate. The existence region of the backward mode is formally increased for the submerged plate in comparison to the free plate as a result of the liquid-induced hybridization of propagating and nonpropagating (evanescent) Lamb modes. It is shown that the Rayleigh's principle (i.e. equipartition of total time-averaged kinetic and potential energies for time-harmonic acoustic fields) is violated due to the leakage of Lamb waves, in spite of considering nondissipative media. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Stabilization of electron-scale turbulence by electron density gradient in national spherical torus experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruiz Ruiz, J.; White, A. E.; Ren, Y.

    2015-12-15

    Theory and experiments have shown that electron temperature gradient (ETG) turbulence on the electron gyro-scale, k{sub ⊥}ρ{sub e} ≲ 1, can be responsible for anomalous electron thermal transport in NSTX. Electron scale (high-k) turbulence is diagnosed in NSTX with a high-k microwave scattering system [D. R. Smith et al., Rev. Sci. Instrum. 79, 123501 (2008)]. Here we report on stabilization effects of the electron density gradient on electron-scale density fluctuations in a set of neutral beam injection heated H-mode plasmas. We found that the absence of high-k density fluctuations from measurements is correlated with large equilibrium density gradient, which ismore » shown to be consistent with linear stabilization of ETG modes due to the density gradient using the analytical ETG linear threshold in F. Jenko et al. [Phys. Plasmas 8, 4096 (2001)] and linear gyrokinetic simulations with GS2 [M. Kotschenreuther et al., Comput. Phys. Commun. 88, 128 (1995)]. We also found that the observed power of electron-scale turbulence (when it exists) is anti-correlated with the equilibrium density gradient, suggesting density gradient as a nonlinear stabilizing mechanism. Higher density gradients give rise to lower values of the plasma frame frequency, calculated based on the Doppler shift of the measured density fluctuations. Linear gyrokinetic simulations show that higher values of the electron density gradient reduce the value of the real frequency, in agreement with experimental observation. Nonlinear electron-scale gyrokinetic simulations show that high electron density gradient reduces electron heat flux and stiffness, and increases the ETG nonlinear threshold, consistent with experimental observations.« less

  10. Nanoelectronics and Plasma Processing---The Next 15 Years and Beyond

    NASA Astrophysics Data System (ADS)

    Lieberman, Michael A.

    2006-10-01

    The number of transistors per chip has doubled every 2 years since 1959, and this doubling will continue over the next 15 years as transistor sizes shrink. There has been a 25 million-fold decrease in cost for the same performance, and in 15 years a desktop computer will be hundreds of times more powerful than one today. Transistors now have 37 nm (120 atoms) gate lengths and 1.5 nm (5 atoms) gate oxide thicknesses. The smallest working transistor has a 5 nm (17 atoms) gate length, close to the limiting gate length, from simulations, of about 4 nm. Plasma discharges are used to fabricate hundreds of billions of these nano-size transistors on a silicon wafer. These discharges have evolved from a first generation of ``low density'' reactors capacitively driven by a single source, to a second generation of ``high density'' reactors (inductive and electron cyclotron resonance) having two rf power sources, in order to control independently the ion flux and ion bombarding energy to the substrate. A third generation of ``moderate density'' reactors, driven capacitively by one high and one low frequency rf source, is now widely used. Recently, triple frequency and combined dc/dual frequency discharges have been investigated, to further control processing characteristics, such as ion energy distributions, uniformity, and plasma etch selectivities. There are many interesting physics issues associated with these discharges, including stochastic heating of discharge electrons by dual frequency sheaths, nonlinear frequency interactions, powers supplied by the multi-frequency sources, and electromagnetic effects such as standing waves and skin effects. Beyond the 4 nm transistor limit lies a decade of further performance improvements for conventional nanoelectronics, and beyond that, a dimly-seen future of spintronics, single-electron transistors, cross-bar latches, and molecular electronics.

  11. The Kepler Light Curves of AGN: A Detailed Analysis

    DOE PAGES

    Smith, Krista Lynne; Mushotzky, Richard F.; Boyd, Patricia T.; ...

    2018-04-25

    Here, we present a comprehensive analysis of 21 light curves of Type 1 active galactic nuclei (AGN) from the Kepler spacecraft. First, we describe the necessity and development of a customized pipeline for treating Kepler data of stochastically variable sources like AGN. We then present the light curves, power spectral density functions (PSDs), and flux histograms. The light curves display an astonishing variety of behaviors, many of which would not be detected in ground-based studies, including switching between distinct flux levels. Six objects exhibit PSD flattening at characteristic timescales that roughly correlate with black hole mass. These timescales are consistentmore » with orbital timescales or free-fall accretion timescales. We check for correlations of variability and high-frequency PSD slope with accretion rate, black hole mass, redshift, and luminosity. We find that bolometric luminosity is anticorrelated with both variability and steepness of the PSD slope. We do not find evidence of the linear rms–flux relationships or lognormal flux distributions found in X-ray AGN light curves, indicating that reprocessing is not a significant contributor to optical variability at the 0.1%–10% level.« less

  12. The Kepler Light Curves of AGN: A Detailed Analysis

    NASA Astrophysics Data System (ADS)

    Smith, Krista Lynne; Mushotzky, Richard F.; Boyd, Patricia T.; Malkan, Matt; Howell, Steve B.; Gelino, Dawn M.

    2018-04-01

    We present a comprehensive analysis of 21 light curves of Type 1 active galactic nuclei (AGN) from the Kepler spacecraft. First, we describe the necessity and development of a customized pipeline for treating Kepler data of stochastically variable sources like AGN. We then present the light curves, power spectral density functions (PSDs), and flux histograms. The light curves display an astonishing variety of behaviors, many of which would not be detected in ground-based studies, including switching between distinct flux levels. Six objects exhibit PSD flattening at characteristic timescales that roughly correlate with black hole mass. These timescales are consistent with orbital timescales or free-fall accretion timescales. We check for correlations of variability and high-frequency PSD slope with accretion rate, black hole mass, redshift, and luminosity. We find that bolometric luminosity is anticorrelated with both variability and steepness of the PSD slope. We do not find evidence of the linear rms–flux relationships or lognormal flux distributions found in X-ray AGN light curves, indicating that reprocessing is not a significant contributor to optical variability at the 0.1%–10% level.

  13. The Kepler Light Curves of AGN: A Detailed Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Krista Lynne; Mushotzky, Richard F.; Boyd, Patricia T.

    Here, we present a comprehensive analysis of 21 light curves of Type 1 active galactic nuclei (AGN) from the Kepler spacecraft. First, we describe the necessity and development of a customized pipeline for treating Kepler data of stochastically variable sources like AGN. We then present the light curves, power spectral density functions (PSDs), and flux histograms. The light curves display an astonishing variety of behaviors, many of which would not be detected in ground-based studies, including switching between distinct flux levels. Six objects exhibit PSD flattening at characteristic timescales that roughly correlate with black hole mass. These timescales are consistentmore » with orbital timescales or free-fall accretion timescales. We check for correlations of variability and high-frequency PSD slope with accretion rate, black hole mass, redshift, and luminosity. We find that bolometric luminosity is anticorrelated with both variability and steepness of the PSD slope. We do not find evidence of the linear rms–flux relationships or lognormal flux distributions found in X-ray AGN light curves, indicating that reprocessing is not a significant contributor to optical variability at the 0.1%–10% level.« less

  14. What Does a Submillimeter Galaxy Selection Actually Select? The Dependence of Submillimeter Flux Density on Star Formation Rate and Dust Mass

    NASA Astrophysics Data System (ADS)

    Hayward, Christopher C.; Kereš, Dušan; Jonsson, Patrik; Narayanan, Desika; Cox, T. J.; Hernquist, Lars

    2011-12-01

    We perform three-dimensional dust radiative transfer (RT) calculations on hydrodynamic simulations of isolated and merging disk galaxies in order to quantitatively study the dependence of observed-frame submillimeter (submm) flux density on galaxy properties. We find that submm flux density and star formation rate (SFR) are related in dramatically different ways for quiescently star-forming galaxies and starbursts. Because the stars formed in the merger-induced starburst do not dominate the bolometric luminosity and the rapid drop in dust mass and more compact geometry cause a sharp increase in dust temperature during the burst, starbursts are very inefficient at boosting submm flux density (e.g., a >~ 16 × boost in SFR yields a <~ 2 × boost in submm flux density). Moreover, the ratio of submm flux density to SFR differs significantly between the two modes; thus one cannot assume that the galaxies with highest submm flux density are necessarily those with the highest bolometric luminosity or SFR. These results have important consequences for the bright submillimeter-selected galaxy (SMG) population. Among them are: (1) The SMG population is heterogeneous. In addition to merger-driven starbursts, there is a subpopulation of galaxy pairs, where two disks undergoing a major merger but not yet strongly interacting are blended into one submm source because of the large (gsim 15" or ~130 kpc at z = 2) beam of single-dish submm telescopes. (2) SMGs must be very massive (M sstarf >~ 6 × 1010 M ⊙). (3) The infall phase makes the SMG duty cycle a factor of a few greater than what is expected for a merger-driven starburst. Finally, we provide fitting functions for SCUBA and AzTEC submm flux densities as a function of SFR and dust mass and bolometric luminosity and dust mass; these should be useful for calculating submm flux density in semi-analytic models and cosmological simulations when performing full RT is computationally not feasible.

  15. The Imprint of the Extragalactic Background Light in the Gamma-Ray Spectra of Blazars

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Ajello, M.; Allafort, A.; Schady, P.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bellazzini, R; Blandford, R. D.; hide

    2012-01-01

    The light emitted by stars and accreting compact objects through the history of the universe is encoded in the intensity of the extragalactic background light (EBL). Knowledge of the EBL isimportant to understand the nature of star formation and galaxy evolution, but direct measurements of the EBL are limited by galactic and other foreground emissions. Here, we report an absorption feature seen in the combined spectra of a sample of gamma-ray blazars out to a redshift of z approx. 1.6. This feature is caused by attenuation of gamma rays by the EBL at optical to ultraviolet frequencies and allowed us to measure the EBL flux density in this frequency band.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoltzfus-Dueck, T.; Scott, B.

    An often-neglected portion of the radialmore » $$\\boldsymbol{E}\\times \\boldsymbol{B}$$ drift is shown to drive an outward flux of co-current momentum when free energy is transferred from the electrostatic potential to ion parallel flows. This symmetry breaking is fully nonlinear, not quasilinear, necessitated simply by free-energy balance in parameter regimes for which significant energy is dissipated via ion parallel flows. The resulting rotation peaking is counter-current and has a scaling and order of magnitude that are comparable with experimental observations. Finally, the residual stress becomes inactive when frequencies are much higher than the ion transit frequency, which may explain the observed relation of density peaking and counter-current rotation peaking in the core.« less

  17. 18 centimeter VLBI observations of the quasar NRAO 140 during and after a low-frequency outburst

    NASA Astrophysics Data System (ADS)

    Marscher, Alan P.; Broderick, John J.; Padrielli, Lucia; Bartel, Norbert; Romney, Jonathan D.

    1987-08-01

    The authors have observed the quasar NRAO 140 using an eight station very long baseline array at 18 cm in 1984 April and a seven station array at 6 cm in 1984 May. They compare both the map and the data at 18 cm with those obtained by Marscher and Broderick in 1981 October. The latter coincided with a ≡25% outburst in flux density at wavelengths greater than ≡30 cm. The analysis indicates that a component ≡5 milli-arc seconds southeast of the "core" dropped significantly in brightness between 1981 October and 1984 April. The authors identify this component as the likely site of the low-frequency variations.

  18. Acoustic energy in ducts - Further observations

    NASA Technical Reports Server (NTRS)

    Eversman, W.

    1979-01-01

    The transmission of acoustic energy in uniform ducts carrying uniform flow is investigated with the purpose of clarifying two points of interest. The two commonly used definitions of acoustic 'energy' flux are shown to be related by a Legendre transformation of the Lagrangian density exactly as in deriving the Hamiltonian density in mechanics. In the acoustic case the total energy density and the Hamiltonian density are not the same which accounts for two different 'energy' fluxes. When the duct has acoustically absorptive walls neither of the two flux expressions gives correct results. A reevaluation of the basis of derivation of the energy density and energy flux provides forms which yield consistent results for soft walled ducts.

  19. The effect of electron cyclotron heating on density fluctuations at ion and electron scales in ITER baseline scenario discharges on the DIII-D tokamak

    NASA Astrophysics Data System (ADS)

    Marinoni, A.; Pinsker, R. I.; Porkolab, M.; Rost, J. C.; Davis, E. M.; Burrell, K. H.; Candy, J.; Staebler, G. M.; Grierson, B. A.; McKee, G. R.; Rhodes, T. L.; The DIII-D Team

    2017-12-01

    Experiments simulating the ITER baseline scenario on the DIII-D tokamak show that torque-free pure electron heating, when coupled to plasmas subject to a net co-current beam torque, affects density fluctuations at electron scales on a sub-confinement time scale, whereas fluctuations at ion scales change only after profiles have evolved to a new stationary state. Modifications to the density fluctuations measured by the phase contrast imaging diagnostic (PCI) are assessed by analyzing the time evolution following the switch-off of electron cyclotron heating (ECH), thus going from mixed beam/ECH to pure neutral beam heating at fixed βN . Within 20 ms after turning off ECH, the intensity of fluctuations is observed to increase at frequencies higher than 200 kHz in contrast, fluctuations at lower frequency are seen to decrease in intensity on a longer time scale, after other equilibrium quantities have evolved. Non-linear gyro-kinetic modeling at ion and electron scales scales suggest that, while the low frequency response of the diagnostic is consistent with the dominant ITG modes being weakened by the slow-time increase in flow shear, the high frequency response is due to prompt changes to the electron temperature profile that enhance electron modes and generate a larger heat flux and an inward particle pinch. These results suggest that electron heated regimes in ITER will feature multi-scale fluctuations that might affect fusion performance via modifications to profiles.

  20. Multiband VLBI Observations of CTA102

    NASA Technical Reports Server (NTRS)

    Rantakyro, F. T.; Baath, L. B.; Dallacasa, D.; Jones, D. L.; Wehrle, A. E.

    1995-01-01

    The source CTA102, known to exhibit low frequency variability, has been observed at six epochs (three at lambda 32 cm, two at lambda 18 cm, and one at lambda l.3 cm) with intercontinental VLBI arrays. On the basis of the changes observed in the structure, we believe that the flux density variations at these wavelengths are due to intrinsic processes and not due to interstellar scintillation. This source exhibits behaviour suggestive of being expanding with a very high apparent transverse velocity.

  1. Voyager detection of nonthermal radio emission from Saturn

    NASA Technical Reports Server (NTRS)

    Kaiser, M. L.; Desch, M. D.; Warwick, J. W.; Pearce, J. B.

    1980-01-01

    The detection of bursts of nonthermal radio noise from Saturn by the planetary radio astonomy experiment onboard the Voyager spacecraft is discussed. The emissions occur near 200 kHz with a peak flux density comparable to higher frequency Jovian emissions. The radiation is right-hand polarized and is most likely emitted in the extraordinary magnetoionic mode from Saturn's northern hemisphere. Modulation is apparent in the data which is consistent with a planetary rotation period of 10 hr 39.9 min.

  2. Numerical approach for ECT by using boundary element method with Laplace transform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enokizono, M.; Todaka, T.; Shibao, K.

    1997-03-01

    This paper presents an inverse analysis by using BEM with Laplace transform. The method is applied to a simple problem in the eddy current testing (ECT). Some crack shapes in a conductive specimen are estimated from distributions of the transient eddy current on its sensing surface and magnetic flux density in the liftoff space. Because the transient behavior includes information on various frequency components, the method is applicable to the shape estimation of a comparative small crack.

  3. An analysis and implications of alternative methods of deriving the density (WPL) terms for eddy covariance flux measurements

    Treesearch

    W. J. Massman; J. -P. Tuovinen

    2006-01-01

    We explore some of the underlying assumptions used to derive the density or WPL terms (Webb et al. (1980) Quart J RoyMeteorol Soc 106:85-100) required for estimating the surface exchange fluxes by eddy covariance. As part of this effort we recast the origin of the density terms as an assumption regarding the density fluctuations rather than as a (dry air) flux...

  4. 47 CFR 25.146 - Licensing and operating authorization provisions for the non-geostationary satellite orbit fixed...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... following: (1) Single-entry validation equivalent power flux-density, in the space-to-Earth direction, (EPFD down) limits. (i) Provide a set of power flux-density (pfd) masks, on the surface of the Earth, for... section. (2) Single-entry validation equivalent power flux-density, in the Earth-to-space direction, EPFD...

  5. 47 CFR 25.146 - Licensing and operating authorization provisions for the non-geostationary satellite orbit fixed...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... following: (1) Single-entry validation equivalent power flux-density, in the space-to-Earth direction, (EPFD down) limits. (i) Provide a set of power flux-density (pfd) masks, on the surface of the Earth, for... section. (2) Single-entry validation equivalent power flux-density, in the Earth-to-space direction, EPFD...

  6. 47 CFR 25.146 - Licensing and operating authorization provisions for the non-geostationary satellite orbit fixed...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... following: (1) Single-entry validation equivalent power flux-density, in the space-to-Earth direction, (EPFD down) limits. (i) Provide a set of power flux-density (pfd) masks, on the surface of the Earth, for... section. (2) Single-entry validation equivalent power flux-density, in the Earth-to-space direction, EPFD...

  7. RF magnetized ring-shaped plasma for target utilization obtained with circular magnet monopole arrangement

    NASA Astrophysics Data System (ADS)

    Amzad Hossain, Md.; Ohtsu, Yasunori

    2018-01-01

    We proposed a new setup for generating outer ring-shaped radio frequency (RF) magnetized plasma near the chamber wall using monopole magnet setups. Three monopole magnet setups with (a) R = 5 mm, (b) R = 20 mm, and (c) R = 35 mm were investigated, where R is the gap between the magnets in consecutive circles. The distributions of the two dimensional magnetic flux lines, the absolute value of the horizontal magnetic flux density, and the discharge voltage were investigated for the proposed setups to produce outer ring-shaped plasma. A highly luminous ring-shaped plasma was observed for the setup (a), whereas multi-ring discharges were observed for the setups (b) and (c). It was found that the electron temperature decreases with increasing gas pressure for all cases. The electron temperatures were 2.42, 1.71, and 1.15 eV at an Ar gas pressure of 4 Pa for setups (a), (b), and (c), respectively. The plasma density was approximately the same for setups (b) and (c) at all gas pressures. The highest plasma densities were 6.26 × 1015, 1.06 × 1016, and 1.11 × 1016 m-3 at 5 Pa for setups (a), (b), and (c), respectively. It was found that the electron mean free path was 41.4, 63.17, and 84.66 mm at an Ar gas pressure of 5 Pa for setups (a), (b), and (c), respectively. The electron neutral collision frequency for setup (a) was higher than those for setups (b) and (c) at a constant RF power of 40 W and an axial distance of z = 13 mm from the target surface. The radial profile of the ion saturation current for setup (b) was more uniform than those for setups (a) and (c).

  8. Toward validation of a 3-D plasma turbulence model using LAPD data

    NASA Astrophysics Data System (ADS)

    Umansky, M. V.

    2010-11-01

    Detailed results from a 3-D fluid simulation of plasma turbulence are compared with experimental data from the Large Plasma Device (LAPD) at UCLA. LAPD is a magnetized plasma column experiment with a high repetition rate, allowing detailed time-and-space resolved probe data on plasma turbulence and transport. The large amount of data allows a thorough comparison with the simulation results. For the observed drift-type modes, LAPD plasmas are strongly collisional (φ*/νei1 and λei/L1), providing justification for a fluid treatment. Accordingly, the model is based on reduced Braginskii equations and is implemented in the framework of the BOUT code, originally developed at LLNL for tokamak edge plasmas. Analysis of linear plasma instabilities shows that resistive drift modes, rotation-driven interchange modes, and Kelvin-Helmholtz modes can all be important in LAPD and have comparable frequencies and growth rates. In nonlinear simulations using measured LAPD density profiles, evolution of instabilities and self-generated zonal flows results in a saturated turbulent state. Comparisons of these simulations with measurements in LAPD plasmas reveal good agreement, in particular in the frequency spectrum, spatial correlation, and amplitude probability distribution function of density fluctuations. Also, consistent with the experiment, the simulations indicate a great deal of similarity between plasma turbulence in LAPD and some features of tokamak edge turbulence. Similar to tokamak edge plasmas, density transport appears to be predominantly carried by large particle-flux events. Despite the intermittent character of the calculated turbulence, as indicated by fluctuation statistics, the turbulent particle flux is consistent with a diffusive model with diffusion coefficient close to the Bohm value.

  9. HESS J1943+213: A Non-classical High-frequency-peaked BL Lac Object

    NASA Astrophysics Data System (ADS)

    Straal, S. M.; Gabányi, K. É.; van Leeuwen, J.; Clarke, T. E.; Dubner, G.; Frey, S.; Giacani, E.; Paragi, Z.

    2016-05-01

    HESS J1943+213 is an unidentified TeV source that is likely a high-frequency-peaked BL Lac (HBL) object, but that is also compatible with a pulsar wind nebula (PWN) nature. Each of these enormously different astronomical interpretations is supported by some of the observed unusual characteristics. In order to finally classify and understand this object, we took a three-pronged approach, through time-domain, high angular resolution, and multi-frequency radio studies. First, our deep time-domain observations with the Arecibo telescope failed to uncover the putative pulsar powering the proposed PWN. We conclude with ˜70% certainty that HESS J1943+213 does not host a pulsar. Second, long-baseline interferometry of the source with e-MERLIN at 1.5 and 5 GHz shows only a core, that is, a point source at ˜ 1-100 mas resolution. Its 2013 flux density is about one-third lower than that detected in the 2011 observations with similar resolution. This radio variability of the core strengthens the HBL object hypothesis. Third, additional evidence against the PWN scenario comes from the radio spectrum we compiled. The extended structure follows a power-law behavior with spectral index α \\=\\-0.54+/- 0.04 while the core component displays a flat spectrum (α \\=\\-0.03+/- 0.03). In contrast, the radio synchrotron emission of PWNe predicts a single power-law distribution. Overall, we rule out the PWN hypothesis and conclude that the source is a BL Lac object. The consistently high fraction (70%) of the flux density from the extended structure then leads us to conclude that HESS J1943+213 must be a non-classical HBL object.

  10. Giant Metrewave Radio Telescope Monitoring of the Black Hole X-Ray Binary, V404 Cygni during Its 2015 June Outburst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandra, Poonam; Kanekar, Nissim

    We report results from a Giant Metrewave Radio Telescope (GMRT) monitoring campaign of the black hole X-ray binary V404 Cygni during its 2015 June outburst. The GMRT observations were carried out at observing frequencies of 1280, 610, 325, and 235 MHz, and extended from June 26.89 UT (a day after the strongest radio/X-ray outburst) to July 12.93 UT. We find the low-frequency radio emission of V404 Cygni to be extremely bright and fast-decaying in the outburst phase, with an inverted spectrum below 1.5 GHz and an intermediate X-ray state. The radio emission settles to a weak, quiescent state ≈11 daysmore » after the outburst, with a flat radio spectrum and a soft X-ray state. Combining the GMRT measurements with flux density estimates from the literature, we identify a spectral turnover in the radio spectrum at ≈1.5 GHz on ≈ June 26.9 UT, indicating the presence of a synchrotron self-absorbed emitting region. We use the measured flux density at the turnover frequency with the assumption of equipartition of energy between the particles and the magnetic field to infer the jet radius (≈4.0 × 10{sup 13} cm), magnetic field (≈0.5 G), minimum total energy (≈7 × 10{sup 39} erg), and transient jet power (≈8 × 10{sup 34} erg s{sup −1}). The relatively low value of the jet power, despite V404 Cygni’s high black hole spin parameter, suggests that the radio jet power does not correlate with the spin parameter.« less

  11. Novel Reactor Relevant RF Actuator Schemes for the Lower Hybrid and the Ion Cyclotron Range of Frequencies

    NASA Astrophysics Data System (ADS)

    Bonoli, Paul

    2014-10-01

    This paper presents a fresh physics perspective on the onerous problem of coupling and successfully utilizing ion cyclotron range of frequencies (ICRF) and lower hybrid range of frequencies (LHRF) actuators in the harsh environment of a nuclear fusion reactor. The ICRF and LH launchers are essentially first wall components in a fusion reactor and as such will be subjected to high heat fluxes. The high field side (HFS) of the plasma offers a region of reduced heat flux together with a quiescent scrape off layer (SOL). Placement of the ICRF and LHRF launchers on the tokamak HFS also offers distinct physics advantages: The higher toroidal magnetic field makes it possible to couple faster phase velocity LH waves that can penetrate farther into the plasma core and be absorbed by higher energy electrons, thereby increasing the current drive efficiency. In addition, re-location of the LH launcher off the mid-plane (i.e., poloidal ``steering'') allows further control of the deposition location. Also ICRF waves coupled from the HFS couple strongly to mode converted ion Bernstein waves and ion cyclotron waves waves as the minority density is increased, thus opening the possibility of using this scheme for flow drive and pressure control. Finally the quiescent nature of the HFS scrape off layer should minimize the effects of RF wave scattering from density fluctuations. Ray tracing / Fokker Planck simulations will be presented for LHRF applications in devices such as the proposed Advanced Divertor Experiment (ADX) and extending to ITER and beyond. Full-wave simulations will also be presented which demonstrate the possible combinations of electron and ion heating via ICRF mode conversion. Work supported by the US DoE under Contract Numbers DE-FC02-01ER54648 and DE-FC02-99ER54512.

  12. Simulation study of geometric shape factor approach to estimating earth emitted flux densities from wide field-of-view radiation measurements

    NASA Technical Reports Server (NTRS)

    Weaver, W. L.; Green, R. N.

    1980-01-01

    A study was performed on the use of geometric shape factors to estimate earth-emitted flux densities from radiation measurements with wide field-of-view flat-plate radiometers on satellites. Sets of simulated irradiance measurements were computed for unrestricted and restricted field-of-view detectors. In these simulations, the earth radiation field was modeled using data from Nimbus 2 and 3. Geometric shape factors were derived and applied to these data to estimate flux densities on global and zonal scales. For measurements at a satellite altitude of 600 km, estimates of zonal flux density were in error 1.0 to 1.2%, and global flux density errors were less than 0.2%. Estimates with unrestricted field-of-view detectors were about the same for Lambertian and non-Lambertian radiation models, but were affected by satellite altitude. The opposite was found for the restricted field-of-view detectors.

  13. Numerical Study of Hydrothermal Wave Suppression in Thermocapillary Flow Using a Predictive Control Method

    NASA Astrophysics Data System (ADS)

    Muldoon, F. H.

    2018-04-01

    Hydrothermal waves in flows driven by thermocapillary and buoyancy effects are suppressed by applying a predictive control method. Hydrothermal waves arise in the manufacturing of crystals, including the "open boat" crystal growth process, and lead to undesirable impurities in crystals. The open boat process is modeled using the two-dimensional unsteady incompressible Navier-Stokes equations under the Boussinesq approximation and the linear approximation of the surface thermocapillary force. The flow is controlled by a spatially and temporally varying heat flux density through the free surface. The heat flux density is determined by a conjugate gradient optimization algorithm. The gradient of the objective function with respect to the heat flux density is found by solving adjoint equations derived from the Navier-Stokes ones in the Boussinesq approximation. Special attention is given to heat flux density distributions over small free-surface areas and to the maximum admissible heat flux density.

  14. High-energy sources at low radio frequency: the Murchison Widefield Array view of Fermi blazars

    DOE PAGES

    Giroletti, M.; Massaro, F.; D’Abrusco, R.; ...

    2016-04-01

    Low-frequency radio arrays are opening a new window for the study of the sky, both to study new phenomena and to better characterize known source classes. Being flat-spectrum sources, blazars are so far poorly studied at low radio frequencies. In this paper, we characterize the spectral properties of the blazar population at low radio frequency, compare the radio and high-energy properties of the gamma-ray blazar population, and search for radio counterparts of unidentified gamma-ray sources. We cross-correlated the 6100 deg 2 Murchison Widefield Array Commissioning Survey catalogue with the Roma blazar catalogue, the third catalogue of active galactic nuclei detectedmore » by Fermi-LAT, and the unidentified members of the entire third catalogue of gamma-ray sources detected by Fermi-LAT. When available, we also added high-frequency radio data from the Australia Telescope 20 GHz catalogue. We find low-frequency counterparts for 186 out of 517 (36%) blazars, 79 out of 174 (45%) gamma-ray blazars, and 8 out of 73 (11%) gamma-ray blazar candidates. The mean low-frequency (120–180 MHz) blazar spectral index is (α low) = 0.57 ± 0.02: blazar spectra are flatter than the rest of the population of low-frequency sources, but are steeper than at ~GHz frequencies. Low-frequency radio flux density and gamma-ray energy flux display a mildly significant and broadly scattered correlation. Ten unidentified gamma-ray sources have a (probably fortuitous) positional match with low radio frequency sources. Low-frequency radio astronomy provides important information about sources with a flat radio spectrum and high energy. However, the relatively low sensitivity of the present surveys still misses a significant fraction of these objects. Finally, upcoming deeper surveys, such as the GaLactic and Extragalactic All-Sky MWA (GLEAM) survey, will provide further insight into this population.« less

  15. High-energy sources at low radio frequency: the Murchison Widefield Array view of Fermi blazars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giroletti, M.; Massaro, F.; D’Abrusco, R.

    Low-frequency radio arrays are opening a new window for the study of the sky, both to study new phenomena and to better characterize known source classes. Being flat-spectrum sources, blazars are so far poorly studied at low radio frequencies. In this paper, we characterize the spectral properties of the blazar population at low radio frequency, compare the radio and high-energy properties of the gamma-ray blazar population, and search for radio counterparts of unidentified gamma-ray sources. We cross-correlated the 6100 deg 2 Murchison Widefield Array Commissioning Survey catalogue with the Roma blazar catalogue, the third catalogue of active galactic nuclei detectedmore » by Fermi-LAT, and the unidentified members of the entire third catalogue of gamma-ray sources detected by Fermi-LAT. When available, we also added high-frequency radio data from the Australia Telescope 20 GHz catalogue. We find low-frequency counterparts for 186 out of 517 (36%) blazars, 79 out of 174 (45%) gamma-ray blazars, and 8 out of 73 (11%) gamma-ray blazar candidates. The mean low-frequency (120–180 MHz) blazar spectral index is (α low) = 0.57 ± 0.02: blazar spectra are flatter than the rest of the population of low-frequency sources, but are steeper than at ~GHz frequencies. Low-frequency radio flux density and gamma-ray energy flux display a mildly significant and broadly scattered correlation. Ten unidentified gamma-ray sources have a (probably fortuitous) positional match with low radio frequency sources. Low-frequency radio astronomy provides important information about sources with a flat radio spectrum and high energy. However, the relatively low sensitivity of the present surveys still misses a significant fraction of these objects. Finally, upcoming deeper surveys, such as the GaLactic and Extragalactic All-Sky MWA (GLEAM) survey, will provide further insight into this population.« less

  16. Turn-over in pulsar spectra: From young pulsars to millisecond ones

    NASA Astrophysics Data System (ADS)

    Kijak, J.; Lewandowski, W.; Serylak, M.

    2008-02-01

    The evidence for turn-over in young pulsar radio spectra at high frequencies is presented. The frequency at which a spectrum shows the maximum flux density is called the peak frequency. This peak frequency appears to depend on pulsar age and dispersion measure. A possible relation with pulsar age is interesting. Millisecond pulsars, which are very old objects, may show no evidence for spectral turn-over down to 100 MHz. Some studied pulsars with turn-over at high frequencies have been shown to have very interesting interstellar environments. This could suggest that the turn-over phenomenon is associated with the enviromental conditions around the neutron stars, rahter than being related intrinsically with the radio emission mechanism. Although there are no earlier reports of such a connection, a more detailed study on larger sample of pulsars is needed to address this idea more quantitatively. In this context, future observations below 200 MHz using LOFAR will allow us to investigate turn-over in radio pulsar spectra.

  17. Effects of a chirped bias voltage on ion energy distributions in inductively coupled plasma reactors

    NASA Astrophysics Data System (ADS)

    Lanham, Steven J.; Kushner, Mark J.

    2017-08-01

    The metrics for controlling reactive fluxes to wafers for microelectronics processing are becoming more stringent as feature sizes continue to shrink. Recent strategies for controlling ion energy distributions to the wafer involve using several different frequencies and/or pulsed powers. Although effective, these strategies are often costly or present challenges in impedance matching. With the advent of matching schemes for wide band amplifiers, other strategies to customize ion energy distributions become available. In this paper, we discuss results from a computational investigation of biasing substrates using chirped frequencies in high density, electronegative inductively coupled plasmas. Depending on the frequency range and chirp duration, the resulting ion energy distributions exhibit components sampled from the entire frequency range. However, the chirping process also produces transient shifts in the self-generated dc bias due to the reapportionment of displacement and conduction with frequency to balance the current in the system. The dynamics of the dc bias can also be leveraged towards customizing ion energy distributions.

  18. High Temperature Superconducting Magnets with Active Control for Attraction Levitation Transport Applications

    NASA Technical Reports Server (NTRS)

    Jones, Harry; Jenkins, Richard G.; Goodall, Roger M.; Macleod, Colin; ElAbbar, Abdallah A.; Campbell, Archie M.

    1996-01-01

    A research program, involving 3 British universities, directed at quantifying the controllability of High Temperature Superconducting (HTS) magnets for use in attraction levitation transport systems will be described. The work includes measurement of loss mechanisms for iron cored HTS magnets which need to produce a flux density of approx. 1 tesla in the airgap between the magnet poles and a ferromagnetic rail. This flux density needs to be maintained and this is done by introducing small variations of the magnet current using a feedback loop, at frequencies up to 10 Hz to compensate for load changes, track variation etc. The test magnet assemblies constructed so far will be described and the studies and modelling of designs for a practical levitation demonstrator (using commercially obtained HTS tape) will be discussed with particular emphasis on how the field distribution and its components, e.g., the component vector normal to the broad face of the tape, can radically affect design philosophy compared to the classical electrical engineering approach. Although specifically aimed at levitation transport the controllability data obtained have implications for a much wider range of applications.

  19. A radio telescope for the calibration of radio sources at 32 gigahertz

    NASA Technical Reports Server (NTRS)

    Gatti, M. S.; Stewart, S. R.; Bowen, J. G.; Paulsen, E. B.

    1994-01-01

    A 1.5-m-diameter radio telescope has been designed, developed, and assembled to directly measure the flux density of radio sources in the 32-GHz (Ka-band) frequency band. The main goal of the design and development was to provide a system that could yield the greatest absolute accuracy yet possible with such a system. The accuracy of the measurements have a heritage that is traceable to the National Institute of Standards and Technology. At the present time, the absolute accuracy of flux density measurements provided by this telescope system, during Venus observations at nearly closest approach to Earth, is plus or minus 5 percent, with an associated precision of plus or minus 2 percent. Combining a cooled high-electron mobility transistor low-noise amplifier, twin-beam Dicke switching antenna, and accurate positioning system resulted in a state-of-the-art system at 32 GHz. This article describes the design and performance of the system as it was delivered to the Owens Valley Radio Observatory to support direct calibrations of the strongest radio sources at Ka-band.

  20. Flux-driven algebraic damping of m = 1 diocotron mode

    NASA Astrophysics Data System (ADS)

    Chim, Chi Yung; O'Neil, Thomas M.

    2016-07-01

    Recent experiments with pure electron plasmas in a Malmberg-Penning trap have observed the algebraic damping of m = 1 diocotron modes. Transport due to small field asymmetries produces a low density halo of electrons moving radially outward from the plasma core, and the mode damping begins when the halo reaches the resonant radius r = Rw at the wall of the trap. The damping rate is proportional to the flux of halo particles through the resonant layer. The damping is related to, but distinct from, spatial Landau damping, in which a linear wave-particle resonance produces exponential damping. This paper explains with analytic theory the new algebraic damping due to particle transport by both mobility and diffusion. As electrons are swept around the "cat's eye" orbits of the resonant wave-particle interaction, they form a dipole (m = 1) density distribution. From this distribution, the electric field component perpendicular to the core displacement produces E × B-drift of the core back to the axis, that is, damps the m = 1 mode. The parallel component produces drift in the azimuthal direction, that is, causes a shift in the mode frequency.

  1. Scanning micro-Hall probe mapping of magnetic flux distributions and current densities in YBa2Cu3O7 thin films

    NASA Technical Reports Server (NTRS)

    Xing, W.; Heinrich, B.; Zhou, HU; Fife, A. A.; Cragg, A. R.; Grant, P. D.

    1995-01-01

    Mapping of the magnetic flux density B(sub z) (perpendicular to the film plane) for a YBa2Cu3O7 thin-film sample was carried out using a scanning micro-Hall probe. The sheet magnetization and sheet current densities were calculated from the B(sub z) distributions. From the known sheet magnetization, the tangential (B(sub x,y)) and normal components of the flux density B were calculated in the vicinity of the film. It was found that the sheet current density was mostly determined by 2B(sub x,y)/d, where d is the film thickness. The evolution of flux penetration as a function of applied field will be shown.

  2. Mercury's magnetosphere after MESSENGER's first flyby.

    PubMed

    Slavin, James A; Acuña, Mario H; Anderson, Brian J; Baker, Daniel N; Benna, Mehdi; Gloeckler, George; Gold, Robert E; Ho, George C; Killen, Rosemary M; Korth, Haje; Krimigis, Stamatios M; McNutt, Ralph L; Nittler, Larry R; Raines, Jim M; Schriver, David; Solomon, Sean C; Starr, Richard D; Trávnícek, Pavel; Zurbuchen, Thomas H

    2008-07-04

    Observations by MESSENGER show that Mercury's magnetosphere is immersed in a comet-like cloud of planetary ions. The most abundant, Na+, is broadly distributed but exhibits flux maxima in the magnetosheath, where the local plasma flow speed is high, and near the spacecraft's closest approach, where atmospheric density should peak. The magnetic field showed reconnection signatures in the form of flux transfer events, azimuthal rotations consistent with Kelvin-Helmholtz waves along the magnetopause, and extensive ultralow-frequency wave activity. Two outbound current sheet boundaries were observed, across which the magnetic field decreased in a manner suggestive of a double magnetopause. The separation of these current layers, comparable to the gyro-radius of a Na+ pickup ion entering the magnetosphere after being accelerated in the magnetosheath, may indicate a planetary ion boundary layer.

  3. Overcoming limits to near-field radiative heat transfer in uniform planar media through multilayer optimization.

    PubMed

    Jin, Weiliang; Messina, Riccardo; Rodriguez, Alejandro W

    2017-06-26

    Radiative heat transfer between uniform plates is bounded by the narrow range and limited contribution of surface waves. Using a combination of analytical calculations and numerical gradient-based optimization, we show that such a limitation can be overcome in complicated multilayer geometries, allowing the scattering and coupling rates of slab resonances to be altered over a broad range of evanescent wavevectors. We conclude that while the radiative flux between two inhomogeneous slabs can only be weakly enhanced, the flux between a dipolar particle and an inhomogeneous slab-proportional to the local density of states-can be orders of magnitude larger, albeit at the expense of increased frequency selectivity. A brief discussion of hyperbolic metamaterials shows that they provide far less enhancement than optimized inhomogeneous slabs.

  4. The integrated radio continuum spectrum of M33 - Evidence for free-free absorption by cool ionized gas

    NASA Technical Reports Server (NTRS)

    Israel, F. P.; Mahoney, M. J.; Howarth, N.

    1992-01-01

    We present measurements of the integrated radio continuum flux density of M33 at frequencies between 22 and 610 MHz and discuss the radio continuum spectrum of M33 between 22 MHz and 10 GHz. This spectrum has a turnover between 500 and 900 MHz, depending on the steepness of the high frequency radio spectrum of M33. Below 500 MHz the spectrum is relatively flat. We discuss possible mechanisms to explain this spectral shape and consider efficient free-free absorption of nonthermal emission by a cool (not greater than 1000 K) ionized gas to be a very likely possibility. The surface filling factor of both the nonthermal and the thermal material appears to be small (of order 0.001), which could be explained by magnetic field/density fluctuations in the M 33 interstellar medium. We briefly speculate on the possible presence of a nuclear radio source with a steep spectrum.

  5. Sensitivity of Climate to Changes in NDVI

    NASA Technical Reports Server (NTRS)

    Bounoua, L.; Collatz, G. J.; Los, S. O.; Sellers, P. J.; Dazlich, D. A.; Tucker, C. J.; Randall, D. A.

    1999-01-01

    The sensitivity of global and regional climate to changes in vegetation density is investigated using a coupled biosphere-atmosphere model. The magnitude of the vegetation changes and their spatial distribution are based on natural decadal variability of the normalized difference vegetation index (ndvi). Different scenarios using maximum and minimum vegetation cover were derived from satellite records spanning the period 1982-1990. Albedo decreased in the northern latitudes and increased in the tropics with increased ndvi. The increase in vegetation density revealed that the vegetation's physiological response was constrained by the limits of the available water resources. The difference between the maximum and minimum vegetation scenarios resulted in a 46% increase in absorbed visible solar radiation and a similar increase in gross photosynthetic C02 uptake on a global annual basis. This caused the canopy transpiration and interception fluxes to increase, and reduced those from the soil. The redistribution of the surface energy fluxes substantially reduced the Bowen ratio during the growing season, resulting in cooler and moister near-surface climate, except when soil moisture was limiting. Important effects of increased vegetation on climate are : (1) A cooling of about 1.8 K in the northern latitudes during the growing season and a slight warming during the winter, which is primarily due to the masking of high albedo of snow by a denser canopy. and (2) A year round cooling of 0.8 K in the tropics. These results suggest that increases in vegetation density could partially compensate for parallel increases in greenhouse warming . Increasing vegetation density globally caused both evapotranspiration and precipitation to increase. Evapotranspiration, however increased more than precipitation resulting in a global soil-water deficit of about 15 %. A spectral analysis on the simulated results showed that changes in the state of vegetation could affect the low-frequency modes of the precipitation distribution and might reduce its low frequency variability in the tropics while increasing it in northern latitudes.

  6. Fourier transform magnetic resonance current density imaging (FT-MRCDI) from one component of magnetic flux density.

    PubMed

    Ider, Yusuf Ziya; Birgul, Ozlem; Oran, Omer Faruk; Arikan, Orhan; Hamamura, Mark J; Muftuler, L Tugan

    2010-06-07

    Fourier transform (FT)-based algorithms for magnetic resonance current density imaging (MRCDI) from one component of magnetic flux density have been developed for 2D and 3D problems. For 2D problems, where current is confined to the xy-plane and z-component of the magnetic flux density is measured also on the xy-plane inside the object, an iterative FT-MRCDI algorithm is developed by which both the current distribution inside the object and the z-component of the magnetic flux density on the xy-plane outside the object are reconstructed. The method is applied to simulated as well as actual data from phantoms. The effect of measurement error on the spatial resolution of the current density reconstruction is also investigated. For 3D objects an iterative FT-based algorithm is developed whereby the projected current is reconstructed on any slice using as data the Laplacian of the z-component of magnetic flux density measured for that slice. In an injected current MRCDI scenario, the current is not divergence free on the boundary of the object. The method developed in this study also handles this situation.

  7. Prospects for high-precision pulsar timing with the new Effelsberg PSRIX backend

    NASA Astrophysics Data System (ADS)

    Lazarus, P.; Karuppusamy, R.; Graikou, E.; Caballero, R. N.; Champion, D. J.; Lee, K. J.; Verbiest, J. P. W.; Kramer, M.

    2016-05-01

    The PSRIX backend is the primary pulsar timing instrument of the Effelsberg 100 m radio telescope since early 2011. This new ROACH-based system enables bandwidths up to 500 MHz to be recorded, significantly more than what was possible with its predecessor, the Effelsberg-Berkeley Pulsar Processor (EBPP). We review the first four years of PSRIX timing data for 33 pulsars collected as part of the monthly European Pulsar Timing Array (EPTA) observations. We describe the automated data analysis pipeline, COASTGUARD, that we developed to reduce these observations. We also introduce TOASTER, the EPTA timing data base, used to store timing results, processing information and observation metadata. Using these new tools, we measure the phase-averaged flux densities at 1.4 GHz of all 33 pulsars. For seven of these pulsars, our flux density measurements are the first values ever reported. For the other 26 pulsars, we compare our flux density measurements with previously published values. By comparing PSRIX data with EBPP data, we find an improvement of ˜2-5 times in signal-to-noise ratio, which translates to an increase of ˜2-5 times in pulse time-of-arrival (TOA) precision. We show that such an improvement in TOA precision will improve the sensitivity to the stochastic gravitational wave background. Finally, we showcase the flexibility of the new PSRIX backend by observing several millisecond-period pulsars (MSPs) at 5 and 9 GHz. Motivated by our detections, we discuss the potential for complementing existing pulsar timing array data sets with MSP monitoring campaigns at these higher frequencies.

  8. T-RaMiSu: the Two-meter Radio Mini Survey. I. The Boötes Field

    NASA Astrophysics Data System (ADS)

    Williams, W. L.; Intema, H. T.; Röttgering, H. J. A.

    2013-01-01

    We present wide area, deep, high-resolution 153 MHz GMRT observations of the NOAO Boötes field, adding to the extensive, multi-wavelength data of this region. The observations, data reduction, and catalogue construction and description are described here. The seven pointings produced a final mosaic covering 30 square degrees with a resolution of 25″. The rms noise is 2 mJy beam-1 in the centre of the image, rising to 4-5 mJy beam-1 on the edges, with an average of 3 mJy beam-1. Seventy-five per cent of the area has an rms <4 mJy beam-1. The extracted source catalogue contains 1289 sources detected at 5σ, of which 453 are resolved. We estimate the catalogue to be 92 per cent reliable and 95 per cent complete at an integrated flux density limit of 14 mJy. The flux densities and astrometry have been corrected for systematic errors. We calculate the differential source counts, which are in good agreement with those in the literature and provide an important step forward in quantifying the source counts at these low frequencies and low flux densities. The GMRT 153 MHz sources have been matched to the 1.4 GHz NVSS and 327 MHz WENSS catalogues and spectral indices were derived. Table A.1 (Catalogue) is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/549/A55

  9. Probing the Martian Exosphere and Neutral Escape Using Pickup Ions Measured by MAVEN

    NASA Astrophysics Data System (ADS)

    Rahmati, A.; Larson, D. E.; Cravens, T.; Halekas, J. S.; Lillis, R. J.; McFadden, J. P.; Mitchell, D. L.; Thiemann, E.; Connerney, J. E. P.; Dunn, P.; DiBraccio, G. A.; Espley, J. R.; Eparvier, F. G.; Jakosky, B. M.

    2016-12-01

    Soon after the MAVEN (Mars Atmosphere and Volatile EvolutioN) spacecraft started orbiting Mars in September 2014, the SEP (Solar Energetic Particle), SWIA (Solar Wind Ion Analyzer), and STATIC (Supra-Thermal and Thermal Ion Composition) instruments onboard the spacecraft started detecting planetary pickup ions. SEP can measure energetic (>50 keV) oxygen pickup ions, the source of which is the extended hot oxygen exosphere of Mars. Model results show that these pickup ions originate from tens of Martian radii upstream of Mars and are energized by the solar wind motional electric field as they gyrate back towards Mars. SEP is blind to pickup hydrogen, as the low energy threshold for detection of hydrogen in SEP is 20 keV; well above the maximum pickup hydrogen energy, which is four times the solar wind proton energy. SWIA and STATIC, on the other hand, can detect both pickup oxygen and pickup hydrogen with energies below 30 keV and created closer to Mars. During the times when MAVEN is outside the Martian bow shock and in the upstream undisturbed solar wind, the solar wind velocity measured by SWIA and the solar wind (or interplanetary) magnetic field measured by the MAG (magnetometer) instrument can be used to model pickup oxygen and hydrogen fluxes near Mars. Solar wind flux measurements of the SWIA instrument are used in calculating charge-exchange frequencies, and data from the EUVM (Extreme Ultraviolet Monitor) and SWEA (Solar Wind Electron Analyzer) instruments are also used in calculating photo-ionization and electron impact frequencies of neutral species in the Martian exosphere. By comparing SEP, SWIA, and STATIC measured pickup ion fluxes with model results, the Martian thermal hydrogen and hot oxygen neutral densities can be probed outside the bow shock, which would place constraints on estimates of oxygen and hydrogen neutral escape rates. We will present model-data comparisons of pickup ions measured outside the Martian bow shock. Our analysis reveals an order of magnitude density change with Mars season in the hydrogen exosphere, whereas the hot oxygen exosphere densities vary less than a factor of 2.

  10. Ion Dynamics Model for Collisionless Radio Frequency Sheaths

    NASA Technical Reports Server (NTRS)

    Bose, Deepak; Govindan, T.R.; Meyyappan, M.

    2000-01-01

    Full scale reactor model based on fluid equations is widely used to analyze high density plasma reactors. It is well known that the submillimeter scale sheath in front of a biased electrode supporting the wafer is difficult to resolve in numerical simulations, and the common practice is to use results for electric field from some form of analytical sheath model as boundary conditions for full scale reactor simulation. There are several sheath models in the literature ranging from Child's law to a recent unified sheath model [P. A. Miller and M. E. Riley, J. Appl. Phys. 82, 3689 (1997)l. In the present work, the cold ion fluid equations in the radio frequency sheath are solved numerically to show that the spatiotemporal variation of ion flux inside the sheath, commonly ignored in analytical models, is important in determining the electric field and ion energy at the electrode. Consequently, a semianalytical model that includes the spatiotemporal variation of ion flux is developed for use as boundary condition in reactor simulations. This semianalytical model is shown to yield results for sheath properties in close agreement with numerical solutions.

  11. Energy Spectra and High Frequency Oscillations in 4U 0614+091

    NASA Technical Reports Server (NTRS)

    Ford, E. C.; Kaaret, P.; Chen, K.; Tavani, M.; Barret, D.; Bloser, P.; Grindlay, J.; Harmon, B. A.; Paciesas, W. S.; Zhang, S. N.

    1997-01-01

    We investigate the behavior of the high frequency quasi-periodic oscillations (QPOs) in 4U 0614+091, combining timing and spectral analysis of RXTE (Rossi X-ray Timing Explorer) observations. The energy spectrum of the source can be described by a power law plus a blackbody component. The blackbody has a variable temperature (kT approximately 0.8 to 1.4 keV) and accounts for 10 to 25% of the total energy flux. The power law flux and photon index also vary (F approximately 0.8 to 1.6 x 10(exp -9) erg/sq cm.s and alpha approximately 2.0 to 2.8 respectively). We find a robust correlation of the frequency of the higher frequency QPO with the flux of the blackbody. The source follows the same relation even in observations separated by several months. The QPO frequency does not have a similarly unique correlation with the total flux or the flux of the power law component. The RMS amplitudes of the higher frequency QPO rise with energy but are consistent with a constant for the lower frequency QPO. These results may be interpreted in terms of a beat frequency model for the production of the high frequency QPOs.

  12. Very low frequency waves stimulated by an electron accelerator in the auroral ionosphere

    NASA Technical Reports Server (NTRS)

    Holtet, J. A.; Pran, B. K.; Egeland, A.; Grandal, B.; Jacobsen, T. A.; Maehlum, B. N.; Troim, J.

    1981-01-01

    The sounding rocket, Polar 5, carrying a 10 keV electron accelerator in a mother-daughter configuration and other diagnostic instruments, was launched into a slightly disturbed ionosphere with weak auroral activity on February 1, 1976 from Northern Norway to study VLF wave phenomena. The rocket trajectory crossed two auroral regions: one, between 86 and 111 s flight time, and a secondary region between 230 and 330 s. The daughter, carrying the accelerator, was separated axially from the mother in a forward direction at an altitude of 90 km. The VLF experiment, carried by the mother payload, recorded both electromagnetic and electrostatic waves. The receiving antenna was an electric dipole, 0.3 m tip-to-tip, oriented 90 degrees to the rocket spin axis. The onboard particle detector recorded increased electron fluxes in the two auroral regions. A double peaked structure was observed in the fluxes of 4-5 and 12-27 keV electrons within the northern auroral form. The number density of thermal plasma varied during the flight, with maximum density within the main auroral region. To the north of this aurora a slow, steady decrease in the density was observed, with no enhancement in the region of the second aurora.

  13. Afterglow model for the radio emission from the jetted tidal disruption candidate Swift J1644+57

    NASA Astrophysics Data System (ADS)

    Metzger, Brian D.; Giannios, Dimitrios; Mimica, Petar

    2012-03-01

    The recent transient event Swift J1644+57 has been interpreted as emission from a collimated relativistic jet, powered by the sudden onset of accretion on to a supermassive black hole following the tidal disruption of a star. Here we model the radio-microwave emission as synchrotron radiation produced by the shock interaction between the jet and the gaseous circumnuclear medium (CNM). At early times after the onset of the jet (t≲ 5-10 d) a reverse shock propagates through and decelerates the ejecta, while at later times the outflow approaches the Blandford-McKee self-similar evolution (possibly modified by additional late energy injection). The achromatic break in the radio light curve of Swift J1644+57 is naturally explained as the transition between these phases. We show that the temporal indices of the pre- and post-break light curve are consistent with those predicted if the CNM has a wind-type radial density profile n∝r-2. The observed synchrotron frequencies and self-absorbed flux constrain the fraction of the post-shock thermal energy in relativistic electrons ɛe≈ 0.03-0.1, the CNM density at 1018 cm n18≈ 1-10 cm-3 and the initial Lorentz factor Γj≈ 10-20 and opening angle ? of the jet. Radio modelling thus provides robust independent evidence for a narrowly collimated outflow. Extending our model to the future evolution of Swift J1644+57, we predict that the radio flux at low frequencies (ν≲ few GHz) will begin to brighten more rapidly once the characteristic frequency νm crosses below the radio band after it decreases below the self-absorption frequency on a time-scale of months (indeed, such a transition may already have begun). Our results demonstrate that relativistic outflows from tidal disruption events provide a unique probe of the conditions in distant, previously inactive galactic nuclei, complementing studies of normal active galactic nuclei.

  14. Stellar Mixing: I. Formalism

    NASA Technical Reports Server (NTRS)

    Canuto, V .M.

    2011-01-01

    In this paper we use the Reynolds stress models (RSM) to derive algebraic expressions for the following variables: a) heat fluxes; b) J.l fluxes; and c) momentum fluxes. These relations, which are fully 3D, include: 1) stable and unstable stratification, represented by the Brunt-Vaislila frequency, N(exp 2) =-g/H(sub p_(del - del(sub ad))(1 - RI(sub mu)); 2) double diffusion, salt-fingers, and semi-convection, represented by the density ratio R(sub mu) = del(sub mu)/(del - del(sub ad)); 3) shear (differential rotation), represented by the mean squared shear Sigma(exp 2) or by the Richardson number, Ri =N(exp 2)Sigma(exp -2); 4) radiative losses represented by a Peclet number, Pe; 5) a complete analytical solution of the ID version of the model. In general, the model requires the solution of two differential equations for the eddy kinetic energy K and its rate of dissipation, epsilon. In the local and stationary cases, when production equals dissipation, the model equations are all algebraic.

  15. On the constancy of the lunar cratering flux over the past 3.3 billion yr

    NASA Technical Reports Server (NTRS)

    Guinness, E. A.; Arvidson, R. E.

    1977-01-01

    Utilizing a method that minimizes random fluctuations in sampling crater populations, it can be shown that the ejecta deposit of Tycho, the floor of Copernicus, and the region surrounding the Apollo 12 landing site have incremental crater size-frequency distributions that can be expressed as log-log linear functions over the diameter range from 0.1 to 1 km. Slopes are indistinguishable for the three populations, probably indicating that the surfaces are dominated by primary craters. Treating the crater populations of Tycho, the floor of Copernicus, and Apollo 12 as primary crater populations contaminated, but not overwhelmed, with secondaries, allows an attempt at calibration of the post-heavy bombardment cratering flux. Using the age of Tycho as 109 m.y., Copernicus as 800 m.y., and Apollo 12 as 3.26 billion yr, there is no basis for assuming that the flux has changed over the past 3.3 billion yr. This result can be used for dating intermediate aged surfaces by crater density.

  16. Van Allen Probes Observations of Second Harmonic Poloidal Standing Alfvén Waves

    NASA Astrophysics Data System (ADS)

    Takahashi, Kazue; Oimatsu, Satoshi; Nosé, Masahito; Min, Kyungguk; Claudepierre, Seth G.; Chan, Anthony; Wygant, John; Kim, Hyomin

    2018-01-01

    Long-lasting second-harmonic poloidal standing Alfvén waves (P2 waves) were observed by the twin Van Allen Probes (Radiation Belt Storm Probes, or RBSP) spacecraft in the noon sector of the plasmasphere, when the spacecraft were close to the magnetic equator and had a small azimuthal separation. Oscillations of proton fluxes at the wave frequency (˜10 mHz) were also observed in the energy (W) range 50-300 keV. Using the unique RBSP orbital configuration, we determined the phase delay of magnetic field perturbations between the spacecraft with a 2nπ ambiguity. We then used finite gyroradius effects seen in the proton flux oscillations to remove the ambiguity and found that the waves were propagating westward with an azimuthal wave number (m) of ˜-200. The phase of the proton flux oscillations relative to the radial component of the wave magnetic field progresses with W, crossing 0 (northward moving protons) or 180° (southward moving protons) at W ˜ 120 keV. This feature is explained by drift-bounce resonance (mωd ˜ ωb) of ˜120 keV protons with the waves, where ωd and ωb are the proton drift and bounce frequencies. At lower energies, the proton phase space density (FH+) exhibits a bump-on-tail structure with ∂FH+/∂W>0 occurring in the 1-10 keV energy range. This FH+ is unstable and can excite P2 waves through bounce resonance (ω ˜ ωb), where ω is the wave frequency.

  17. On one-parametric formula relating the frequencies of twin-peak quasi-periodic oscillations

    NASA Astrophysics Data System (ADS)

    Török, Gabriel; Goluchová, Kateřina; Šrámková, Eva; Horák, Jiří; Bakala, Pavel; Urbanec, Martin

    2018-01-01

    Twin-peak quasi-periodic oscillations (QPOs) are observed in several low-mass X-ray binary systems containing neutron stars. Timing the analysis of X-ray fluxes of more than dozen of such systems reveals remarkable correlations between the frequencies of two characteristic peaks present in the power density spectra. The individual correlations clearly differ, but they roughly follow a common individual pattern. High values of measured QPO frequencies and strong modulation of the X-ray flux both suggest that the observed correlations are connected to orbital motion in the innermost part of an accretion disc. Several attempts to model these correlations with simple geodesic orbital models or phenomenological relations have failed in the past. We find and explore a surprisingly simple analytic relation that reproduces individual correlations for a group of several sources through a single parameter. When an additional free parameter is considered within our relation, it well reproduces the data of a large group of 14 sources. The very existence and form of this simple relation support the hypothesis of the orbital origin of QPOs and provide the key for further development of QPO models. We discuss a possible physical interpretation of our relation's parameters and their links to concrete QPO models.

  18. Frequency dispersion of sound propagation in Rouse polymer melts via generalized dynamic random phase approximation.

    PubMed

    Erukhimovich, I Ya; Kudryavtsev, Ya V

    2003-08-01

    An extended generalization of the dynamic random phase approximation (DRPA) for L-component polymer systems is presented. Unlike the original version of the DRPA, which relates the (LxL) matrices of the collective density-density time correlation functions and the corresponding susceptibilities of concentrated polymer systems to those of the tracer macromolecules and so-called broken-links system (BLS), our generalized DRPA solves this problem for the (5xL) x (5xL) matrices of the coupled susceptibilities and time correlation functions of the component number, kinetic energy and flux densities. The presented technique is used to study propagation of sound and dynamic form-factor in disentangled (Rouse) monodisperse homopolymer melt. The calculated ultrasonic velocity and absorption coefficient reveal substantial frequency dispersion. The relaxation time tau is proportional to the degree of polymerization N, which is N times less than the Rouse time and evidences strong dynamic screening because of interchain interaction. We discuss also some peculiarities of the Brillouin scattering in polymer melts. Besides, a new convenient expression for the dynamic structure function of the single Rouse chain in (q,p) representation is found.

  19. 47 CFR 25.262 - Licensing and domestic coordination requirements for 17/24 GHz BSS space stations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... degree or less from an appendix F location, and may operate at the maximum power flux density limits defined in §§ 25.208(c) and (w) of this part, without coordinating its power flux density levels with... BSS U.S. licensee or permittee that does not comply with the power flux-density limits set forth in...

  20. Arc Deflection Length Affected by Transverse Rotating Magnetic Field with Lateral Gas

    NASA Astrophysics Data System (ADS)

    Shiino, Toru; Ishii, Yoko; Yamamoto, Shinji; Iwao, Toru; High Current Energy Laboratory (HiCEL) Team

    2016-10-01

    Gas metal arc welding using shielding gas is often used in the welding industry. However, the arc deflection affected by lateral gas is problem because of inappropriate heat transfer. Shielding gas is used in order to prevent the instability affected by the arc deflection. However, the shielding gas causes turbulence, then blowhole of weld defect occurs because the arc affected by the instability is contaminated by the air. Thus, the magnetic field is applied to the arc in order to stabilize the arc using low amount of shielding gas. The method of applying the transverse rotating magnetic field (RMF) to the arc is one of the methods to prevent the arc instability. The RMF drives the arc because of electromagnetic force. The driven arc is considered to be prevented to arc deflection of lateral gas because the arc is restrained by the magnetic field because of the driven arc. In addition, it is assume the RMF prevented to the arc deflection of lateral gas from the multiple directions. In this paper, the arc deflection length affected by the RMF with lateral gas was elucidated in order to know the effect of the RMF for arc stabilization. Specifically, the arc deflection length affected by the magnetic frequency and the magnetic flux density is measured by high speed video camera. As a result, the arc deflection length decreases with increasing magnetic frequency, and the arc deflection length increases with increasing the magnetic flux density.

  1. PKS 1954–388: RadioAstron detection on 80,000 km baselines and multiwavelength observations

    DOE PAGES

    Edwards, P. G.; Kovalev, Y. Y.; Ojha, R.; ...

    2017-04-26

    Here, we present results from a multiwavelength study of the blazar PKS 1954–388 at radio, UV, X-ray, and gamma-ray energies. A RadioAstron observation at 1.66 GHz in June 2012 resulted in the detection of interferometric fringes on baselines of 6.2 Earth-diameters. This suggests a source frame brightness temperature of greater than 2 × 10 12 K, well in excess of both equipartition and inverse Compton limits and implying the existence of Doppler boosting in the core. An 8.4-GHz TANAMI VLBI image, made less than a month after the RadioAstron observations, is consistent with a previously reported superluminal motion for amore » jet component. Flux density monitoring with the Australia Telescope Compact Array confirms previous evidence for long-term variability that increases with observing frequency. A search for more rapid variability revealed no evidence for significant day-scale flux density variation. The ATCA light-curve reveals a strong radio flare beginning in late 2013, which peaks higher, and earlier, at higher frequencies. Comparison with the Fermi gamma-ray light-curve indicates this followed ~ 9 months after the start of a prolonged gamma-ray high-state—a radio lag comparable to that seen in other blazars. The multiwavelength data are combined to derive a Spectral Energy Distribution, which is fitted by a one-zone synchrotron-self-Compton (SSC) model with the addition of external Compton (EC) emission.« less

  2. Effects of pulsed and sinusoid electromagnetic fields on human chondrocytes cultivated in a collagen matrix.

    PubMed

    Schmidt-Rohlfing, Bernhard; Silny, Jiri; Woodruff, Seth; Gavenis, Karsten

    2008-08-01

    Although several effects of electromagnetic fields (EMFs) on articular cartilage have been reported in recent studies, the use of EMFs to treat osteoarthritis remains a matter of debate. In an in vitro study, human chondrocytes harvested from osteoarthritic knee joints were released from their surrounding matrix and transferred in defined concentration into a 3D matrix (type-I collagen gel). The cultivation, performed under standard conditions, lasted up to 14 days. During this time, treatment groups were continuously exposed to either sinusoid or pulsed electromagnetic fields (PEMFs). The PEMFs revealed the following characteristics: maximum magnetic flux density of 2 mT, frequency of the bursts of 16.7 Hz with each burst consisting of 20 pulses. Similarly, the sinusoid EMFs also induced a maximum flux density of 2 mT with a frequency of 50 Hz. Control groups consisting of equal number of samples were not exposed to EMF. Immunohistological examinations of formalin-fixed, paraffin-embedded samples revealed positive staining for type-II collagen and proteoglycans in the immediate pericellular region with no differences between the two different treatment groups and the control groups. With increasing cultivation time, both type-II collagen and aggrecan gene expression declined, but no significant differences in gene expression were found between the treatment and control groups. In conclusion, using our in vitro setting, we were unable to detect any effects of pulsed and sinusoidal magnetic fields on human adult osteoarthritic chondrocytes.

  3. High-frequency measurements of aeolian saltation flux: Field-based methodology and applications

    NASA Astrophysics Data System (ADS)

    Martin, Raleigh L.; Kok, Jasper F.; Hugenholtz, Chris H.; Barchyn, Thomas E.; Chamecki, Marcelo; Ellis, Jean T.

    2018-02-01

    Aeolian transport of sand and dust is driven by turbulent winds that fluctuate over a broad range of temporal and spatial scales. However, commonly used aeolian transport models do not explicitly account for such fluctuations, likely contributing to substantial discrepancies between models and measurements. Underlying this problem is the absence of accurate sand flux measurements at the short time scales at which wind speed fluctuates. Here, we draw on extensive field measurements of aeolian saltation to develop a methodology for generating high-frequency (up to 25 Hz) time series of total (vertically-integrated) saltation flux, namely by calibrating high-frequency (HF) particle counts to low-frequency (LF) flux measurements. The methodology follows four steps: (1) fit exponential curves to vertical profiles of saltation flux from LF saltation traps, (2) determine empirical calibration factors through comparison of LF exponential fits to HF number counts over concurrent time intervals, (3) apply these calibration factors to subsamples of the saltation count time series to obtain HF height-specific saltation fluxes, and (4) aggregate the calibrated HF height-specific saltation fluxes into estimates of total saltation fluxes. When coupled to high-frequency measurements of wind velocity, this methodology offers new opportunities for understanding how aeolian saltation dynamics respond to variability in driving winds over time scales from tens of milliseconds to days.

  4. Characterisation of SOL density fluctuations in front of the LHCD PAM launcher in Tore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oosako, T.; Ekedahl, A.; Goniche, M.

    2011-12-23

    The density fluctuations, modified by Lower Hybrid Wave (LHW), is analyzed in Tore Supra with reference to the injected LHW power, density and the gap between LCFS (Last Closed Flux Surface) and the PAM (passive-active-multijunction) launcher. The density fluctuations are measured with RF probes installed at the PAM launcher front. A density scan at nominal toroidal field (3.8 T) shows that the fluctuations rate stays nearly constant ({approx}50%) for <3.5x10{sup 19}m{sup -3} and with LHW power up to 2MW. However, when increasing the density above <{approx}4.2x10{sup 19}m{sup -3}, using strong gas puffing, the fluctuation rate increases to >70%more » and is characterized by strong negative spikes, with typical frequency >100kHz. These are most likely originating from acceleration of electrons in the LHW near field due to parasitic absorption, as evidenced on the IR images, showing hot spots on the side limiters.« less

  5. Effects of the Venusian atmosphere on incoming meteoroids and the impact crater population

    NASA Technical Reports Server (NTRS)

    Herrick, Robert R.; Phillips, Roger J.

    1994-01-01

    The dense atmosphere on Venus prevents craters smaller than about 2 km in daimater from forming and also causes formation of several crater fields and multiple-floored craters (collectively referred to as multiple impacts). A model has been constructed that simulates the behavior of a meteoroid in a dense planetary atmosphere. This model was then combined with an assumed flux of incoming meteoroids in an effort to reproduce the size-frequency distribution of impact craters and several aspects of the population of the crater fields and multiple-floored craters on Venus. The modeling indicates that it is plausible that the observed rollover in the size-frequency curve for Venus is due entirely to atmospheric effects on incoming meteoroids. However, there must be substantial variation in the density and behavior of incoming meteoroids in the atmosphere. Lower-density meteoroids must be less likely to survive atmospheric passage than simple density differences can account for. Consequently, it is likely that the percentage of craters formed by high-density meteoroids is very high at small crater diameters, and this percentage decreases substantially with increasing crater diameter. Overall, high-density meteoroids created a disproportionately large percentage of the impact craters on Venus. Also, our results indicate that a process such as meteoroid flattening or atmospheric explosion of meteoroids must be invoked to prevent craters smaller than the observed minimum diameter (2 km) from forming. In terms of using the size-frequency distribution to age-date the surface, the model indicates that the observed population has at least 75% of the craters over 32 km in diameter that would be expected on an atmosphereless Venus; thus, this part of the curve is most suitable for comparison with calibrated curves for the Moon.

  6. No evidence of persisting unrepaired nuclear DNA single strand breaks in distinct types of cells in the brain, kidney, and liver of adult mice after continuous eight-week 50 Hz magnetic field exposure with flux density of 0.1 mT or 1.0 mT.

    PubMed

    Korr, Hubert; Angstman, Nicholas B; Born, Tatjana B; Bosse, Kerstin; Brauns, Birka; Demmler, Martin; Fueller, Katja; Kántor, Orsolya; Kever, Barbara M; Rahimyar, Navida; Salimi, Sepideh; Silny, Jiri; Schmitz, Christoph

    2014-01-01

    It has been hypothesized in the literature that exposure to extremely low frequency electromagnetic fields (50 or 60 Hz) may lead to human health effects such as childhood leukemia or brain tumors. In a previous study investigating multiple types of cells from brain and kidney of the mouse (Acta Neuropathologica 2004; 107: 257-264), we found increased unrepaired nuclear DNA single strand breaks (nDNA SSB) only in epithelial cells of the choroid plexus in the brain using autoradiographic methods after a continuous eight-week 50 Hz magnetic field (MF) exposure of adult mice with flux density of 1.5 mT. In the present study we tested the hypothesis that MF exposure with lower flux densities (0.1 mT, i.e., the actual exposure limit for the population in most European countries, and 1.0 mT) shows similar results to those in the previous study. Experiments and data analysis were carried out in a similar way as in our previous study. Continuous eight-week 50 Hz MF exposure with 0.1 mT or 1.0 mT did not result in increased persisting unrepaired nDNA SSB in distinct types of cells in the brain, kidney, and liver of adult mice. MF exposure with 1.0 mT led to reduced unscheduled DNA synthesis (UDS) in epithelial cells in the choroid plexus of the fourth ventricle in the brain (EC-CP) and epithelial cells of the cortical collecting duct in the kidney, as well as to reduced mtDNA synthesis in neurons of the caudate nucleus in the brain and in EC-CP. No evidence was found for increased persisting unrepaired nDNA SSB in distinct types of cells in the brain, kidney, and liver of adult mice after continuous eight-week 50 Hz magnetic field exposure with flux density of 0.1 mT or 1.0 mT.

  7. The synchrotron-self-Compton process in spherical geometries. I - Theoretical framework

    NASA Technical Reports Server (NTRS)

    Band, D. L.; Grindlay, J. E.

    1985-01-01

    Both spatial and spectral accuracies are stressed in the present method for the calculation of the synchrotron-self-Compton model in spherical geometries, especially in the partially opaque regime of the synchrotron spectrum of inhomogeneous sources that can span a few frequency decades and contribute a significant portion of the scattered flux. A formalism is developed that permits accurate calculation of incident photon density throughout an optically thin sphere. An approximation to the Klein-Nishina cross section is used to model the effects of variable electron and incident photon cutoffs, as well as the decrease in the cross section at high energies. General results are derived for the case of inhomogeneous sources with power law profiles in both electron density and magnetic field.

  8. Minnealloy: a new magnetic material with high saturation flux density and low magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Mehedi, Md; Jiang, Yanfeng; Suri, Pranav Kumar; Flannigan, David J.; Wang, Jian-Ping

    2017-09-01

    We are reporting a new soft magnetic material with high saturation magnetic flux density, and low magnetic anisotropy. The new material is a compound of iron, nitrogen and carbon, α‧-Fe8(NC), which has saturation flux density of 2.8  ±  0.15 T and magnetic anisotropy of 46 kJ m-3. The saturation flux density is 27% higher than pure iron, a widely used soft magnetic material. Soft magnetic materials are very important building blocks of motors, generators, inductors, transformers, sensors and write heads of hard disk. The new material will help in the miniaturization and efficiency increment of the next generation of electronic devices.

  9. Modelling radiation fluxes in simple and complex environments: basics of the RayMan model.

    PubMed

    Matzarakis, Andreas; Rutz, Frank; Mayer, Helmut

    2010-03-01

    Short- and long-wave radiation flux densities absorbed by people have a significant influence on their energy balance. The heat effect of the absorbed radiation flux densities is parameterised by the mean radiant temperature. This paper presents the physical basis of the RayMan model, which simulates the short- and long-wave radiation flux densities from the three-dimensional surroundings in simple and complex environments. RayMan has the character of a freely available radiation and human-bioclimate model. The aim of the RayMan model is to calculate radiation flux densities, sunshine duration, shadow spaces and thermo-physiologically relevant assessment indices using only a limited number of meteorological and other input data. A comparison between measured and simulated values for global radiation and mean radiant temperature shows that the simulated data closely resemble measured data.

  10. VLBI observations of the nucleus of Centaurus A

    NASA Technical Reports Server (NTRS)

    Preston, R. A.; Wehrle, A. E.; Morabito, D. D.; Jauncey, D. L.; Batty, M. J.; Haynes, R. F.; Wright, A. E.; Nicolson, G. D.

    1983-01-01

    VLBI observations of the nucleus of Centaurus A made at 2.3 GHz on baselines with minimum fringe spacings of 0.15 and 0.0027 arcsec are presented. Results show that the nuclear component is elongated with a maximum extent of approximately 0.05 arcsec which is equivalent to a size of approximately 1 pc at the 5 Mpc distance of Centaurus A. The position angle of the nucleus is found to be 30 + or - 20 degrees, while the ratio of nuclear jet length to width is less than or approximately equal to 20. The nuclear flux density is determined to be 6.8 Jy, while no core component is found with an extent less than or approximately equal to 0.001 (less than or approximately equal to 0.02 pc) with a flux density of greater than or approximately equal to 20 mJy. A model of the Centaurus A nucleus composed of at least two components is developed on the basis of these results in conjunction with earlier VLBI and spectral data. The first component is an elongated source of approximately 0.05 arcsec (approximately 1 pc) size which contains most of the 2.3 GHz nuclear flux, while the second component is a source of approximately 0.0005 arcsec (approximately 0.01 pc) size which is nearly completely self-absorbed at 2.3 GHz but strengthens at higher frequencies.

  11. Quiescence near the X-point of MAST measured by high speed visible imaging

    NASA Astrophysics Data System (ADS)

    Walkden, N. R.; Harrison, J.; Silburn, S. A.; Farley, T.; Henderson, S. S.; Kirk, A.; Militello, F.; Thornton, A.; The MAST Team

    2017-12-01

    Using high speed imaging of the divertor volume, the region close to the X-point in MAST is shown to be quiescent. This is confirmed by three different analysis techniques and the quiescent X-point region (QXR) spans from the separatrix to the \\psiN = 1.02 flux surface. Local reductions to the atomic density and effects associated with the camera viewing geometry are ruled out as causes of the QXR, leaving quiescence in the local plasma conditions as being the most likely cause. The QXR is found to be ubiquitous across a significant operational space in MAST including L-mode and H-mode discharges across maximal ranges of 9.8×1019~m-2 in line integrated density, 0.36 MA in plasma current, 0.11 T in toroidal magnetic field and 3.2 MW in NBI power. When mapped to the divertor target the QXR occupies approximately an e-folding length of the heat-flux profile, containing  ∼60% of the total heat flux to the target, and also shows a tendency towards higher frequency shorter lived fluctuations in the ion-saturation current. This is consistent with short-lived divertor localised filamentary structures observed further down the outer divertor leg in the camera images, and suggests a complex multi-region picture of filamentary transport in the divertor.

  12. TEMPEST simulations of the neoclassical transport in a single-null tokamak geometry

    NASA Astrophysics Data System (ADS)

    Xu, X. Q.; Cohen, R. H.; Rognlien, T. D.

    2009-05-01

    TEMPEST simulations were carried out for plasma transport and flow dynamics in a single-null tokamak geometry. The core radial boundary ion distribution is a fixed Maxwellian FM with N0=N(ψ0) and Ti0=Ti(ψ0)=300eV, and exterior radial boundary ion distribution is Neumann boundary condition with Fi(,,μ)/ψ|ψw=0 during a simulation. Given boundary conditions and initial profiles, the interior plasmas in the simulations should evolve into a neoclassical steady state. A volume source term in the private flux region is included, representing the ionization in the private flux region to achieve the neoclassical steady state. A series of TEMPEST simulations are conducted to investigate the scaling characteristics of the neoclassical transport and flow as a function of ν*i via a density scan. Here ν*i is the effective collision frequency, defined by ν*i=&-3/2circ;νii√2qR0/vTi, νii is the ion-ion collision, and vTi the ion thermal velocity. Simulation results show significant poloidal variation of density and ion temperature profiles due to the endloss machanism at the divertor plates. Each region (Edge, the SOL and private flux) achieves the dynamical steady state at its own time scale due to the different physical processes. The impact of self-consistent electric field on transport and flow will be presented.

  13. Water Use Patterns of Four Tropical Bamboo Species Assessed with Sap Flux Measurements.

    PubMed

    Mei, Tingting; Fang, Dongming; Röll, Alexander; Niu, Furong; Hendrayanto; Hölscher, Dirk

    2015-01-01

    Bamboos are grasses (Poaceae) that are widespread in tropical and subtropical regions. We aimed at exploring water use patterns of four tropical bamboo species (Bambusa vulgaris, Dendrocalamus asper, Gigantochloa atroviolacea, and G. apus) with sap flux measurement techniques. Our approach included three experimental steps: (1) a pot experiment with a comparison of thermal dissipation probes (TDPs), the stem heat balance (SHB) method and gravimetric readings using potted B. vulgaris culms, (2) an in situ calibration of TDPs with the SHB method for the four bamboo species, and (3) field monitoring of sap flux of the four bamboo species along with three tropical tree species (Gmelina arborea, Shorea leprosula, and Hevea brasiliensis) during a dry and a wet period. In the pot experiment, it was confirmed that the SHB method is well suited for bamboos but that TDPs need to be calibrated. In situ, species-specific parameters for such calibration formulas were derived. During field monitoring we found that some bamboo species reached high maximum sap flux densities. Across bamboo species, maximal sap flux density increased with decreasing culm diameter. In the diurnal course, sap flux densities in bamboos peaked much earlier than radiation and vapor pressure deficit (VPD), and also much earlier than sap flux densities in trees. There was a pronounced hysteresis between sap flux density and VPD in bamboos, which was less pronounced in trees. Three of the four bamboo species showed reduced sap flux densities at high VPD values during the dry period, which was associated with a decrease in soil moisture content. Possible roles of internal water storage, root pressure and stomatal sensitivity are discussed.

  14. Water Use Patterns of Four Tropical Bamboo Species Assessed with Sap Flux Measurements

    PubMed Central

    Mei, Tingting; Fang, Dongming; Röll, Alexander; Niu, Furong; Hendrayanto; Hölscher, Dirk

    2016-01-01

    Bamboos are grasses (Poaceae) that are widespread in tropical and subtropical regions. We aimed at exploring water use patterns of four tropical bamboo species (Bambusa vulgaris, Dendrocalamus asper, Gigantochloa atroviolacea, and G. apus) with sap flux measurement techniques. Our approach included three experimental steps: (1) a pot experiment with a comparison of thermal dissipation probes (TDPs), the stem heat balance (SHB) method and gravimetric readings using potted B. vulgaris culms, (2) an in situ calibration of TDPs with the SHB method for the four bamboo species, and (3) field monitoring of sap flux of the four bamboo species along with three tropical tree species (Gmelina arborea, Shorea leprosula, and Hevea brasiliensis) during a dry and a wet period. In the pot experiment, it was confirmed that the SHB method is well suited for bamboos but that TDPs need to be calibrated. In situ, species-specific parameters for such calibration formulas were derived. During field monitoring we found that some bamboo species reached high maximum sap flux densities. Across bamboo species, maximal sap flux density increased with decreasing culm diameter. In the diurnal course, sap flux densities in bamboos peaked much earlier than radiation and vapor pressure deficit (VPD), and also much earlier than sap flux densities in trees. There was a pronounced hysteresis between sap flux density and VPD in bamboos, which was less pronounced in trees. Three of the four bamboo species showed reduced sap flux densities at high VPD values during the dry period, which was associated with a decrease in soil moisture content. Possible roles of internal water storage, root pressure and stomatal sensitivity are discussed. PMID:26779233

  15. Simulation of density fluctuations before the L-H transition for Hydrogen and Deuterium plasmas in the DIII-D tokamak using the BOUT++ code

    DOE PAGES

    Wang, Y. M.; Xu, X. Q.; Yan, Z.; ...

    2018-01-05

    A six-field two-fluid model has been used to simulate density fluctuations. The equilibrium is generated by experimental measurements for both Deuterium (D) and Hydrogen (H) plasmas at the lowest densities of DIII-D low to high confinement (L-H) transition experiments. In linear simulations, the unstable modes are found to be resistive ballooning modes with the most unstable mode number n=30 ormore » $$k_\\theta\\rho_i\\sim0.12$$ . The ion diamagnetic drift and $$E\\times B$$ convection flow are balanced when the radial electric field (E r) is calculated from the pressure profile without net flow. The curvature drift plays an important role in this stage. Two poloidally counter propagating modes are found in the nonlinear simulation of the D plasma at electron density $$n_e\\sim1.5\\times10^{19}$$ m -3 near the separatrix while a single ion mode is found in the H plasma at the similar lower density, which are consistent with the experimental results measured by the beam emission spectroscopy (BES) diagnostic on the DIII-D tokamak. The frequency of the electron modes and the ion modes are about 40kHz and 10 kHz respectively. The poloidal wave number $$k_\\theta$$ is about 0.2 cm -1 ($$k_\\theta\\rho_i\\sim0.05$$ ) for both ion and electron modes. The particle flux, ion and electron heat fluxes are~3.5–6 times larger for the H plasma than the D plasma, which makes it harder to achieve H-mode for the same heating power. The change of the atomic mass number A from 2 to 1 using D plasma equilibrium make little difference on the flux. Increase the electric field will suppress the density fluctuation. In conclusion, the electric field scan and ion mass scan results show that the dual-mode results primarily from differences in the profiles rather than the ion mass.« less

  16. Simulation of density fluctuations before the L-H transition for Hydrogen and Deuterium plasmas in the DIII-D tokamak using the BOUT++ code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Y. M.; Xu, X. Q.; Yan, Z.

    A six-field two-fluid model has been used to simulate density fluctuations. The equilibrium is generated by experimental measurements for both Deuterium (D) and Hydrogen (H) plasmas at the lowest densities of DIII-D low to high confinement (L-H) transition experiments. In linear simulations, the unstable modes are found to be resistive ballooning modes with the most unstable mode number n=30 ormore » $$k_\\theta\\rho_i\\sim0.12$$ . The ion diamagnetic drift and $$E\\times B$$ convection flow are balanced when the radial electric field (E r) is calculated from the pressure profile without net flow. The curvature drift plays an important role in this stage. Two poloidally counter propagating modes are found in the nonlinear simulation of the D plasma at electron density $$n_e\\sim1.5\\times10^{19}$$ m -3 near the separatrix while a single ion mode is found in the H plasma at the similar lower density, which are consistent with the experimental results measured by the beam emission spectroscopy (BES) diagnostic on the DIII-D tokamak. The frequency of the electron modes and the ion modes are about 40kHz and 10 kHz respectively. The poloidal wave number $$k_\\theta$$ is about 0.2 cm -1 ($$k_\\theta\\rho_i\\sim0.05$$ ) for both ion and electron modes. The particle flux, ion and electron heat fluxes are~3.5–6 times larger for the H plasma than the D plasma, which makes it harder to achieve H-mode for the same heating power. The change of the atomic mass number A from 2 to 1 using D plasma equilibrium make little difference on the flux. Increase the electric field will suppress the density fluctuation. In conclusion, the electric field scan and ion mass scan results show that the dual-mode results primarily from differences in the profiles rather than the ion mass.« less

  17. Energy propagation by transverse waves in multiple flux tube systems using filling factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Doorsselaere, T.; Gijsen, S. E.; Andries, J.

    2014-11-01

    In the last few years, it has been found that transverse waves are present at all times in coronal loops or spicules. Their energy has been estimated with an expression derived for bulk Alfvén waves in homogeneous media, with correspondingly uniform wave energy density and flux. The kink mode, however, is localized in space with the energy density and flux dependent on the position in the cross-sectional plane. The more relevant quantities for the kink mode are the integrals of the energy density and flux over the cross-sectional plane. The present paper provides an approximation to the energy propagated bymore » kink modes in an ensemble of flux tubes by means of combining the analysis of single flux tube kink oscillations with a filling factor for the tube cross-sectional area. This finally allows one to compare the expressions for energy flux of Alfvén waves with an ensemble of kink waves. We find that the correction factor for the energy in kink waves, compared to the bulk Alfvén waves, is between f and 2f, where f is the density filling factor of the ensemble of flux tubes.« less

  18. A more fundamental approach to the derivation of nonlinear acoustic wave equations with fractional loss operators (L).

    PubMed

    Prieur, Fabrice; Vilenskiy, Gregory; Holm, Sverre

    2012-10-01

    A corrected derivation of nonlinear wave propagation equations with fractional loss operators is presented. The fundamental approach is based on fractional formulations of the stress-strain and heat flux definitions but uses the energy equation and thermodynamic identities to link density and pressure instead of an erroneous fractional form of the entropy equation as done in Prieur and Holm ["Nonlinear acoustic wave equations with fractional loss operators," J. Acoust. Soc. Am. 130(3), 1125-1132 (2011)]. The loss operator of the obtained nonlinear wave equations differs from the previous derivations as well as the dispersion equation, but when approximating for low frequencies the expressions for the frequency dependent attenuation and velocity dispersion remain unchanged.

  19. VizieR Online Data Catalog: Second Planck Catalogue of Compact Sources (PCCS2) (Planck+, 2016)

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Argueso, F.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Battaner, E.; Beichman, C.; Benabed, K.; Benoit, A.; Benoit-Levy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bohringer, H.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Carvalho, P.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chiang, H. C.; Christensen, P. R.; Clemens, M.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; De Rosa, A.; de Zotti, G.; Delabrouille, J.; Desert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Dore, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Ensslin, T. A.; Eriksen, H. K.; Falgarone, E.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejse, L. A.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giraud-Heraud, Y.; Gjerlow, E.; Gonzalez-Nuevo, J.; Gorski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Helou, G.; Henrot-Versille, S.; Hernandez-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihanen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lahteenmaki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; Leon-Tavares, J.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vornle, M.; Lopez-Caniego, M.; Lubin, P. M.; Macias-Perez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martinez-Gonzalez, E.; Masi, S.; Matarrese, S.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschenes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Negrello, M.; Netterfield, C. B.; Norgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Pratt, G. W.; Prezeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rowan-Robinson, M.; Rubino-Martin, J. A.; Rusholme, B.; Sandri, M.; Sanghera, H. S.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Stolyarov, V.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Torni Koski, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Turler, M.; Umana, G.; Valenziano, L.; Valiviita, J.; van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Walter, B.; Wandelt, B. D.; Wehus, I. K.; Yvon, D.; Zacchei, A.; Zonca, A.

    2017-01-01

    The Low Frequency Instrument (LFI) DPC produced the 30, 44, and 70GHz maps after the completion of eight full surveys (spanning the period 12 August 2009 to 3 August 2013). In addition, special LFI maps covering the period 1 April 2013 to 30 June 2013 were produced in order to compare the Planck flux-density scales with those of the Very Large Array and the Australia Telescope Compact Array, by performing simultaneous observations of a sample of sources over that period. The High Frequency Instrument (HFI) DPC produced the 100, 143, 217, 353, 545, and 857GHz maps after five full surveys (2009 August 12 to 2012 January 11). (16 data files).

  20. Evolution and Spectrum of the Radio Emission of Tycho's Supernova Remnant

    NASA Astrophysics Data System (ADS)

    Vinyaikin, E. N.

    2018-02-01

    The radio spectrum of Tycho's Supernova Remnant is constructed at frequencies 12.6-143 000 MHz for epoch 2010.3, taking into account the secular decrease in the radio flux density of the remnant at the rate d = -(0.46 ± 0.03)%/year: S_ν ^{3C10} (t = 2010.3) = (43.1 ± 1.8 Jy)(ν [GHz])^{ - (0.592 ± 0.019) + (0.041 ± 0.012)log (ν [GHz])} . The spectrum has positive curvature. The presence of a low-frequency turnover in the spectrum of the radio source 3C10 with its maximum at 7.7 MHz is predicted, due to absorption in the interstellar medium in the direction toward the source.

  1. The Imprint of the Extragalactic Background Light in the Gamma-Ray Spectra of Blazars

    DOE PAGES

    Ackermann, M.; Ajello, M.; Allafort, A.; ...

    2012-11-30

    The light emitted by stars and accreting compact objects through the history of the universe is encoded in the intensity of the extragalactic background light (EBL). Knowledge of the EBL is important to understand the nature of star formation and galaxy evolution, but direct measurements of the EBL are limited by galactic and other foreground emissions. In this paper, we report an absorption feature seen in the combined spectra of a sample of gamma-ray blazars out to a redshift of z ~ 1.6. Finally, this feature is caused by attenuation of gamma rays by the EBL at optical to ultravioletmore » frequencies and allowed us to measure the EBL flux density in this frequency band.« less

  2. Groundwater/Seawater Exchange over Multiple Time Scales: Two Years of High-Frequency Data from the Coastal Seabed

    NASA Astrophysics Data System (ADS)

    Karam, H. N.; Mulligan, A. E.; Abarca, E.; Gardner, A.; Hemond, H.; Harvey, C. F.

    2013-12-01

    We present time series of vertical pressure gradients in the sea floor at Waquoit Bay, MA, collected along a transect of locations perpendicular to shore, with a 10-minute resolution over two years. The custom-made instruments used for data collection measure pressure differences with an accuracy of 0.5 mm freshwater head, and record pore water and surface water salinities, allowing a robust calculation of the direction and magnitude of flux across the sediment-water interface given an estimate of sediment permeability. Distinct processes of seawater circulation in the subsurface driven by different forcings, including storms, tides, variations in fresh groundwater head, and salinity gradients in coastal groundwater, are manifest as different frequency components in the time series. We characterize the relative contributions of these different forcings to seafloor fluxes at our site, as a function of the time of year and the distance from shore. We find that: 1) Sea level variations drive variations in seafloor flux at time scales of hours to weeks, around a mean flux that is produced by processes with longer time scales, including the seasonal cycle in fresh groundwater head and the density-driven circulation of seawater through the coastal aquifer. 2) Seafloor flux responds non-linearly to shifts in seawater level. Furthermore, this response is asymmetric, with very low tides producing an amplified response in submarine groundwater discharge relative to the recharge produced by equivalently high tides. 3) The amplitude of seafloor pressure gradients shows a three-fold increase during winters relative to summers. We present a model to explain this effect based on the increase in shallow pore water viscosity at colder temperatures. We generalize our findings to help guide the design of sampling studies of seafloor fluxes at other sites. Finally, we present the distribution of subsurface residence times for seawater in Waquoit Bay, derived from our pressure gradient data sets, and discuss the implications for surface water and sediment chemistry.

  3. Automated calculation of surface energy fluxes with high-frequency lake buoy data

    USGS Publications Warehouse

    Woolway, R. Iestyn; Jones, Ian D; Hamilton, David P.; Maberly, Stephen C; Muroaka, Kohji; Read, Jordan S.; Smyth, Robyn L; Winslow, Luke A.

    2015-01-01

    Lake Heat Flux Analyzer is a program used for calculating the surface energy fluxes in lakes according to established literature methodologies. The program was developed in MATLAB for the rapid analysis of high-frequency data from instrumented lake buoys in support of the emerging field of aquatic sensor network science. To calculate the surface energy fluxes, the program requires a number of input variables, such as air and water temperature, relative humidity, wind speed, and short-wave radiation. Available outputs for Lake Heat Flux Analyzer include the surface fluxes of momentum, sensible heat and latent heat and their corresponding transfer coefficients, incoming and outgoing long-wave radiation. Lake Heat Flux Analyzer is open source and can be used to process data from multiple lakes rapidly. It provides a means of calculating the surface fluxes using a consistent method, thereby facilitating global comparisons of high-frequency data from lake buoys.

  4. Measurements of a Lee Wave in the Southern Ocean: Energy and Momentum Fluxes and Mixing

    NASA Astrophysics Data System (ADS)

    Cusack, J. M.; Naveira Garabato, A.; Smeed, D.; Girton, J. B.

    2016-02-01

    Lee waves, internal waves generated by stratified flow over topographic features are thought to break and generate a significant proportion of the turbulent mixing required to close the abyssal overturning circulation. A lack of observations means that there is large uncertainty in the magnitude of contribution that lee waves make to turbulent transformations, as well as their importance in local and global momentum and energy budgets. Two EM-APEX profiling floats deployed in the Drake Passage during the Diapycnal and Isopycnal Mixing Experiment (DIMES) independently measured a large lee wave over the Shackleton Fracture Zone. A model for steady EM-APEX motion is presented and used to calculate absolute vertical water velocity in addition to horizontal velocity measurements made by the floats. The wave is observed to have velocity fluctuations in all three directions of over 15 cm s-1 and a frequency close to the local buoyancy frequency. Furthermore, the wave has a measured peak vertical flux of horizontal momentum of 6 N m-2, a value that is two orders of magnitude larger than the time mean wind forcing on the Southern Ocean. Linear internal wave theory was used to estimate wave energy density and fluxes, while a mixing parameterisation was used to estimate the magnitude of turbulent kinetic energy dissipation, which was found to be elevated above typical background levels by two orders of magnitude. This work provides the first direct measurement of a lee wave generated by ACC flow over topography with simultaneous estimates of energy fluxes and mixing.

  5. Radio-frequency-assisted current startup in the fusion engineering device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borowski, S. K.; Peng, Yueng Kay Martin; Kammash, T.

    1984-01-01

    Auxiliary radio-frequency (RF) heating of electrons before and during the current rise phase of a large tokamak, such as the Fusion Engineering Device (FED) (R{sub 0} = 4.8 m, a = 1.3 m, sigma = 1.6, B(R{sub 0}) = 3.62 T), is examined as a means of reducing both the initiation loop voltage and resistive flux expenditure during startup. Prior to current initiation, 1 to 2 MW of electron cyclotron resonance heating power at about90 GHz is used to create a small volume of high conductivity plasma (T {sub e} approx. = 100 eV, n {sub e} approx. = 10{supmore » 19} m{sup -3}) near the upper hybrid resonance (UHR) region. This plasma conditioning, referred to as preheating, permits a small radius (a{sub 0} approx. = 0.2 to 0.4 m) current channel to be established with a relatively low initial loop voltage (less than or equal to 25 V as opposed to about 100 V without rf assist). During the subsequent plasma expansion and current rise phase, a combination of rf heating (up to 5 MW) and linear current ramping leads to a substantial savings in voltseconds by (a) minimizing the resistive flux consumption and (b) producing broad current density profiles. (With such broad profiles, the internal flux requirements are maintained at or near the flat profile limit.)« less

  6. Radio-frequency-assisted current startup in the Fusion Engineering Device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borowski, S.K.; Kammash, T.; Martin Peng, Y.K.

    1984-07-01

    Auxiliary radio-frequency (RF) heating of electrons before and during the current rise phase of a large tokamak, such as the Fusion Engineering Device (FED) (R/sub 0/ = 4.8 m, a = 1.3 m, sigma = 1.6, B(R/sub 0/) = 3.62 T), is examined as a means of reducing both the initiation loop voltage and resistive flux expenditure during startup. Prior to current initiation, 1 to 2 MW of electron cyclotron resonance heating power at about90 GHz is used to create a small volume of high conductivity plasma (T /sub e/ approx. = 100 eV, n /sub e/ approx. = 10/supmore » 19/ m/sup -3/) near the upper hybrid resonance (UHR) region. This plasma conditioning, referred to as preheating, permits a small radius (a/sub 0/ approx. = 0.2 to 0.4 m) current channel to be established with a relatively low initial loop voltage (less than or equal to 25 V as opposed to about 100 V without rf assist). During the subsequent plasma expansion and current rise phase, a combination of rf heating (up to 5 MW) and linear current ramping leads to a substantial savings in voltseconds by (a) minimizing the resistive flux consumption and (b) producing broad current density profiles. (With such broad profiles, the internal flux requirements are maintained at or near the flat profile limit.)« less

  7. Simulation of the energy distribution of relativistic electron precipitation caused by quasi-linear interactions with EMIC waves.

    PubMed

    Li, Zan; Millan, Robyn M; Hudson, Mary K

    2013-12-01

    [1]Previous studies on electromagnetic ion cyclotron (EMIC) waves as a possible cause of relativistic electron precipitation (REP) mainly focus on the time evolution of the trapped electron flux. However, directly measured by balloons and many satellites is the precipitating flux as well as its dependence on both time and energy. Therefore, to better understand whether pitch angle scattering by EMIC waves is an important radiation belt electron loss mechanism and whether quasi-linear theory is a sufficient theoretical treatment, we simulate the quasi-linear wave-particle interactions for a range of parameters and generate energy spectra, laying the foundation for modeling specific events that can be compared with balloon and spacecraft observations. We show that the REP energy spectrum has a peaked structure, with a lower cutoff at the minimum resonant energy. The peak moves with time toward higher energies and the spectrum flattens. The precipitating flux, on the other hand, first rapidly increases and then gradually decreases. We also show that increasing wave frequency can lead to the occurrence of a second peak. In both single- and double-peak cases, increasing wave frequency, cold plasma density or decreasing background magnetic field strength lowers the energies of the peak(s) and causes the precipitation to increase at low energies and decrease at high energies at the start of the precipitation.

  8. Concerning the measurement of atmospheric trace gas fluxes with open- and closed-path eddy covariance systems: The density terms and spectral attenuation [Chapter 7

    Treesearch

    W. J. Massman

    2004-01-01

    Atmospheric trace gas fluxes measured with an eddy covariance sensor that detects a constituent's density fluctuations within the in situ air need to include terms resulting from concurrent heat and moisture fluxes, the so called 'density' or 'WPL corrections' (Webb et al. 1980). The theory behind these additional terms is well established. But...

  9. Surface radiant flux densities inferred from LAC and GAC AVHRR data

    NASA Astrophysics Data System (ADS)

    Berger, F.; Klaes, D.

    To infer surface radiant flux densities from current (NOAA-AVHRR, ERS-1/2 ATSR) and future meteorological (Envisat AATSR, MSG, METOP) satellite data, the complex, modular analysis scheme SESAT (Strahlungs- und Energieflüsse aus Satellitendaten) could be developed (Berger, 2001). This scheme allows the determination of cloud types, optical and microphysical cloud properties as well as surface and TOA radiant flux densities. After testing of SESAT in Central Europe and the Baltic Sea catchment (more than 400scenes U including a detailed validation with various surface measurements) it could be applied to a large number of NOAA-16 AVHRR overpasses covering the globe.For the analysis, two different spatial resolutions U local area coverage (LAC) andwere considered. Therefore, all inferred results, like global area coverage (GAC) U cloud cover, cloud properties and radiant properties, could be intercompared. Specific emphasis could be made to the surface radiant flux densities (all radiative balance compoments), where results for different regions, like Southern America, Southern Africa, Northern America, Europe, and Indonesia, will be presented. Applying SESAT, energy flux densities, like latent and sensible heat flux densities could also be determined additionally. A statistical analysis of all results including a detailed discussion for the two spatial resolutions will close this study.

  10. IR-thermography-based investigation of critical heat flux in subcooled flow boiling of water at atmospheric and high pressure conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bucci, Matteo; Seong, Jee H.; Buongiorno, Jdacopo

    Here we report on MIT’s THM work in Q4 2016 and Q1 2017. The goal of this project is to design, construct and execute tests of flow boiling critical heat flux (CHF) at high-pressure using high-resolution and high-speed video and infrared (IR) thermometry, to generate unique data to inform the development of and validate mechanistic boiling heat transfer and CHF models. In FY2016, a new test section was designed and fabricated. Data was collected at atmospheric conditions at 10, 25 and 50 K subcoolings, and three mass fluxes, i.e. 500, 750 and 1000 kg/m2/s. Starting in Q4 2016 and continuingmore » forward, new post-processing techniques have been developed to analyze the data collected. These new algorithms analyze the time-dependent temperature and heat flux distributions to calculate nucleation site density, nucleation frequency, growth and wait time, dry area fraction, and the complete heat flux partitioning. In Q1 2017 a new flow boiling loop was designed and constructed to support flow boiling tests up 10 bar pressure and 180 °C. Initial shakedown and testing has been completed. The flow loop and test section are now ready to begin high-pressure flow boiling testing.« less

  11. Metal concentrations in the upper atmosphere during meteor showers

    NASA Astrophysics Data System (ADS)

    Correira, J.; Aikin, A. C.; Grebowsky, J. M.; Burrows, J. P.

    2010-02-01

    Using the nadir-viewing Global Ozone Measuring Experiment (GOME) UV/VIS spectrometer on the ERS-2 satellite, we investigate short term variations in the vertical magnesium column densities in the atmosphere and any connection to possible enhanced mass deposition during a meteor shower. Time-dependent mass influx rates are derived for all the major meteor showers using published estimates of mass density and temporal profiles of meteor showers. An average daily sporadic background mass flux rate is also calculated and used as a baseline against which calculated shower mass flux rates are compared. These theoretical mass flux rates are then compared with GOME derived metal vertical column densities of Mg and Mg+ from the years 1996-2001. There is no correlation between theoretical mass flux rates and changes in the Mg and Mg+ metal column densities. A possible explanation for the lack of a shower related increase in metal concentrations may be differences in the mass regimes dominating the average background mass flux and shower mass flux.

  12. Metal concentrations in the upper atmosphere during meteor showers

    NASA Astrophysics Data System (ADS)

    Correira, J.; Aikin, A. C.; Grebowsky, J. M.; Burrows, J. P.

    2009-09-01

    Using the nadir-viewing Global Ozone Measuring Experiment (GOME) UV/VIS spectrometer on the ERS-2 satellite, we investigate short term variations in the vertical magnesium column densities in the atmosphere and any connection to possible enhanced mass deposition during a meteor shower. Time-dependent mass influx rates are derived for all the major meteor showers using published estimates of mass density and temporal profiles of meteor showers. An average daily sporadic background mass flux rate is also calculated and used as a baseline against which calculated shower mass flux rates are compared. These theoretical mass flux rates are then compared with GOME derived metal vertical column densities of Mg and Mg+ from the years 1996-2001. There is no correlation between theoretical mass flux rates and changes in the Mg and Mg+ metal column densities. A possible explanation for the lack of a shower related increase in metal concentrations may be differences in the mass regimes dominating the average background mass flux and shower mass flux.

  13. Interior Permanent Magnet Reluctance Machine with Brushless Field Excitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiles, R.H.

    2005-10-07

    In a conventional permanent magnet (PM) machine, the air-gap flux produced by the PM is fixed. It is difficult to enhance the air-gap flux density due to limitations of the PM in a series-magnetic circuit. However, the air-gap flux density can be weakened by using power electronic field weakening to the limit of demagnetization of the PMs. This paper presents the test results of controlling the PM air-gap flux density through the use of a stationary brushless excitation coil in a reluctance interior permanent magnet with brushless field excitation (RIPM-BFE) motor. Through the use of this technology the air-gap fluxmore » density can be either enhanced or weakened. There is no concern with demagnetizing the PMs during field weakening. The leakage flux of the excitation coil through the PMs is blocked. The prototype motor built on this principle confirms the concept of flux enhancement and weakening through the use of excitation coils.« less

  14. Comparison between measured and computed magnetic flux density distribution of simulated transformer core joints assembled from grain-oriented and non-oriented electrical steel

    NASA Astrophysics Data System (ADS)

    Shahrouzi, Hamid; Moses, Anthony J.; Anderson, Philip I.; Li, Guobao; Hu, Zhuochao

    2018-04-01

    The flux distribution in an overlapped linear joint constructed in the central region of an Epstein Square was studied experimentally and results compared with those obtained using a computational magnetic field solver. High permeability grain-oriented (GO) and low permeability non-oriented (NO) electrical steels were compared at a nominal core flux density of 1.60 T at 50 Hz. It was found that the experimental results only agreed well at flux densities at which the reluctance of different paths of the flux are similar. Also it was revealed that the flux becomes more uniform when the working point of the electrical steel is close to the knee point of the B-H curve of the steel.

  15. Evaluation and characterization of fetal exposures to low frequency magnetic fields generated by laptop computers.

    PubMed

    Zoppetti, Nicola; Andreuccetti, Daniele; Bellieni, Carlo; Bogi, Andrea; Pinto, Iole

    2011-12-01

    Portable - or "laptop" - computers (LCs) are widely and increasingly used all over the world. Since LCs are often used in tight contact with the body even by pregnant women, fetal exposures to low frequency magnetic fields generated by these units can occur. LC emissions are usually characterized by complex waveforms and are often generated by the main AC power supply (when connected) and by the display power supply sub-system. In the present study, low frequency magnetic field emissions were measured for a set of five models of portable computers. For each of them, the magnetic flux density was characterized in terms not just of field amplitude, but also of the so called "weighted peak" (WP) index, introduced in the 2003 ICNIRP Statement on complex waveforms and confirmed in the 2010 ICNIRP Guidelines for low frequency fields. For the model of LC presenting the higher emission, a deeper analysis was also carried out, using numerical dosimetry techniques to calculate internal quantities (current density and in-situ electric field) with reference to a digital body model of a pregnant woman. Since internal quantities have complex waveforms too, the concept of WP index was extended to them, considering the ICNIRP basic restrictions defined in the 1998 Guidelines for the current density and in the 2010 Guidelines for the in-situ electric field. Induced quantities and WP indexes were computed using an appropriate original formulation of the well known Scalar Potential Finite Difference (SPFD) numerical method for electromagnetic dosimetry in quasi-static conditions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. The effect of Electron Cyclotron Heating on density fluctuations at ion and electron scales in ITER Baseline Scenario discharges on the DIII-D tokamak

    DOE PAGES

    Marinoni, Alessandro; Pinsker, Robert I.; Porkolab, Miklos; ...

    2017-08-01

    Experiments simulating the ITER Baseline Scenario on the DIII-D tokamak show that torque-free pure electron heating, when coupled to plasmas subject to a net co-current beam torque, affects density fluctuations at electron scales on a sub-confinement time scale, whereas fluctuations at ion scales change only after profiles have evolved to a new stationary state. Modifications to the density fluctuations measured by the Phase Contrast Imaging diagnostic (PCI) are assessed by analyzing the time evolution following the switch-off of Electron Cyclotron Heating (ECH), thus going from mixed beam/ECH to pure neutral beam heating at fixed β N . Within 20 msmore » after turning off ECH, the intensity of fluctuations is observed to increase at frequencies higher than 200 kHz; in contrast, fluctuations at lower frequency are seen to decrease in intensity on a longer time scale, after other equilibrium quantities have evolved. Non-linear gyro-kinetic modeling at ion and electron scales scales suggest that, while the low frequency response of the diagnostic is consistent with the dominant ITG modes being weakened by the slow-time increase in flow shear, the high frequency response is due to prompt changes to the electron temperature profile that enhance electron modes and generate a larger heat flux and an inward particle pinch. Furthermore, these results suggest that electron heated regimes in ITER will feature multi-scale fluctuations that might affect fusion performance via modifications to profiles.« less

  17. Inverse modeling of Asian (222)Rn flux using surface air (222)Rn concentration.

    PubMed

    Hirao, Shigekazu; Yamazawa, Hiromi; Moriizumi, Jun

    2010-11-01

    When used with an atmospheric transport model, the (222)Rn flux distribution estimated in our previous study using soil transport theory caused underestimation of atmospheric (222)Rn concentrations as compared with measurements in East Asia. In this study, we applied a Bayesian synthesis inverse method to produce revised estimates of the annual (222)Rn flux density in Asia by using atmospheric (222)Rn concentrations measured at seven sites in East Asia. The Bayesian synthesis inverse method requires a prior estimate of the flux distribution and its uncertainties. The atmospheric transport model MM5/HIRAT and our previous estimate of the (222)Rn flux distribution as the prior value were used to generate new flux estimates for the eastern half of the Eurasian continent dividing into 10 regions. The (222)Rn flux densities estimated using the Bayesian inversion technique were generally higher than the prior flux densities. The area-weighted average (222)Rn flux density for Asia was estimated to be 33.0 mBq m(-2) s(-1), which is substantially higher than the prior value (16.7 mBq m(-2) s(-1)). The estimated (222)Rn flux densities decrease with increasing latitude as follows: Southeast Asia (36.7 mBq m(-2) s(-1)); East Asia (28.6 mBq m(-2) s(-1)) including China, Korean Peninsula and Japan; and Siberia (14.1 mBq m(-2) s(-1)). Increase of the newly estimated fluxes in Southeast Asia, China, Japan, and the southern part of Eastern Siberia from the prior ones contributed most significantly to improved agreement of the model-calculated concentrations with the atmospheric measurements. The sensitivity analysis of prior flux errors and effects of locally exhaled (222)Rn showed that the estimated fluxes in Northern and Central China, Korea, Japan, and the southern part of Eastern Siberia were robust, but that in Central Asia had a large uncertainty.

  18. Axial Structure of High-Vacuum Planar Magnetron Discharge Space

    NASA Astrophysics Data System (ADS)

    Miura, Tsutomu

    1999-09-01

    The spatial structure of high-vacuum planar magnetron discharge is theoretically investigated taking into account the electron confinement. The boundary xes of the electron confinement region depends on BA with Ea/BA as the parameter (BA: the magnetic flux density at the anode, Ea: the average electric field strength). The location at which the frequency of ionization events takes the maximum is expressed as CnNxiep (CnN: a factor related to the electron density distribution, xiep: the distance of the location from the cathode at which the ionization is most efficient). With increasing Ea and BA at a fixed Ea/BA, the density of the confined energetic electrons increases. With increasing Ea, the region where ionization is efficient shifts to the cathode side to give a high efficiency of the magnet. The boundary xes as determined by the probe method agreed with the theoretical prediction.

  19. Scanning micro-Hall probe mapping of magnetic flux distributions and current densities in YBa{sub 2}Cu{sub 3}O{sub 7}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xing, W.; Heinrich, B.; Zhou, H.

    1994-12-31

    Mapping of the magnetic flux density B{sub z} (perpendicular to the film plane) for a YBa{sub 2}Cu{sub 3}O{sub 7} thin-film sample was carried out using a scanning micro-Hall probe. The sheet magnetization and sheet current densities were calculated from the B{sub z} distributions. From the known sheet magnetization, the tangential (B{sub x,y}) and normal components of the flux density B were calculated in the vicinity of the film. It was found that the sheet current density was mostly determined by 2B{sub x,y}/d, where d is the film thickness. The evolution of flux penetration as a function of applied field willmore » be shown.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Breton, R. P.; Kaspi, V. M.; McLaughlin, M. A.

    The double pulsar PSR J0737-3039A/B displays short, 30 s eclipses that arise around conjunction when the radio waves emitted by pulsar A are absorbed as they propagate through the magnetosphere of its companion pulsar B. These eclipses offer a unique opportunity to directly probe the magnetospheric structure and the plasma properties of pulsar B. We have performed a comprehensive analysis of the eclipse phenomenology using multi-frequency radio observations obtained with the Green Bank Telescope. We have characterized the periodic flux modulations previously discovered at 820 MHz by McLaughlin et al. and investigated the radio frequency dependence of the duration andmore » depth of the eclipses. Based on their weak radio frequency evolution, we conclude that the plasma in pulsar B's magnetosphere requires a large multiplicity factor ({approx}10{sup 5}). We also found that, as expected, flux modulations are present at all radio frequencies in which eclipses can be detected. Their complex behavior is consistent with the confinement of the absorbing plasma in the dipolar magnetic field of pulsar B as suggested by Lyutikov and Thompson and such a geometric connection explains that the observed periodicity is harmonically related to pulsar B's spin frequency. We observe that the eclipses require a sharp transition region beyond which the plasma density drops off abruptly. Such a region defines a plasmasphere that would be well inside the magnetospheric boundary of an undisturbed pulsar. It is also two times smaller than the expected standoff radius calculated using the balance of the wind pressure from pulsar A and the nominally estimated magnetic pressure of pulsar B.« less

  1. WHAT DOES A SUBMILLIMETER GALAXY SELECTION ACTUALLY SELECT? THE DEPENDENCE OF SUBMILLIMETER FLUX DENSITY ON STAR FORMATION RATE AND DUST MASS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayward, Christopher C.; Keres, Dusan; Jonsson, Patrik

    2011-12-20

    We perform three-dimensional dust radiative transfer (RT) calculations on hydrodynamic simulations of isolated and merging disk galaxies in order to quantitatively study the dependence of observed-frame submillimeter (submm) flux density on galaxy properties. We find that submm flux density and star formation rate (SFR) are related in dramatically different ways for quiescently star-forming galaxies and starbursts. Because the stars formed in the merger-induced starburst do not dominate the bolometric luminosity and the rapid drop in dust mass and more compact geometry cause a sharp increase in dust temperature during the burst, starbursts are very inefficient at boosting submm flux densitymore » (e.g., a {approx}> 16 Multiplication-Sign boost in SFR yields a {approx}< 2 Multiplication-Sign boost in submm flux density). Moreover, the ratio of submm flux density to SFR differs significantly between the two modes; thus one cannot assume that the galaxies with highest submm flux density are necessarily those with the highest bolometric luminosity or SFR. These results have important consequences for the bright submillimeter-selected galaxy (SMG) population. Among them are: (1) The SMG population is heterogeneous. In addition to merger-driven starbursts, there is a subpopulation of galaxy pairs, where two disks undergoing a major merger but not yet strongly interacting are blended into one submm source because of the large ({approx}> 15'' or {approx}130 kpc at z = 2) beam of single-dish submm telescopes. (2) SMGs must be very massive (M{sub *} {approx}> 6 Multiplication-Sign 10{sup 10} M{sub Sun }). (3) The infall phase makes the SMG duty cycle a factor of a few greater than what is expected for a merger-driven starburst. Finally, we provide fitting functions for SCUBA and AzTEC submm flux densities as a function of SFR and dust mass and bolometric luminosity and dust mass; these should be useful for calculating submm flux density in semi-analytic models and cosmological simulations when performing full RT is computationally not feasible.« less

  2. Spitzer Mid-to-Far-Infrared Flux Densities of Distant Galaxies

    NASA Astrophysics Data System (ADS)

    Papovich, Casey J.; Rudnick, G.; Le Floc'h, E.; van Dokkum, P. G.; Rieke, G. H.; Taylor, E. N.; Armus, L.; Gawiser, E.; Marcillac, D.; Huang, J.; Franx, M.

    2007-05-01

    We study the 24, 70, and 160 μm properties of high-redshift galaxies. Our primary interest is to improve the constraints on the total infrared (IR) luminosities, L(IR), of these galaxies. We combine Spitzer data in the southern Extended Chandra Deep Field with a Ks-band-selected galaxy sample with photometric redshifts from the Multiwavelength Survey by Yale-Chile. We used a stacking analysis to measure the average 70 and 160 μm flux densities of 1.5 < zph < 2.5 galaxies as a function of 24 μm flux density, X-ray activity, and rest-frame near-IR color. Galaxies with 1.5 < zph < 2.5 and S(24) = 54-250 μJy have L(IR) derived from their average 24-160 μm flux densities within factors of 2-3 of those derived from the 24 μm flux densities only. However, L(IR) derived from the average 24-160 μm flux densities for galaxies with S(24) > 250 μJy and 1.5 < zph < 2.5 are lower than those derived using only the 24 μm flux density by factors of 2-6. Galaxies with S(24) > 250 μJy have S(70)/S(24) flux ratios comparable to sources with X-ray detections or red rest-frame IR colors, suggesting that warm dust possibly heated by AGN produces high 24 μm emission. Based on the average 24-160 μm flux densities, 24 μm-selected galaxies at 1.5 < zph < 2.5 have an upper envelope of L(IR) < 6 × 1012 L⊙, which if attributed to star formation corresponds to < 1000 M⊙ yr-1. This envelope is similar to the maximal star formation rate observed in low redshift galaxies, suggesting that high redshift galaxies have star formation efficiencies and feedback processes comparable to lower redshift analogs. Support for this work was provided by NASA through the Spitzer Space Telescope Fellowship Program, through a contract issued by JPL, Caltech under a contract with NASA.

  3. Velocimetry using scintillation of a laser beam for a laser-based gas-flux monitor

    NASA Astrophysics Data System (ADS)

    Kagawa, Naoki; Wada, Osami; Koga, Ryuji

    1999-05-01

    This paper describes a velocimetry system using scintillation of a laser-beam with spatial filters based on sensor arrays for a laser- based gas flux monitor. In the eddy correlation method, gas flux is obtained by mutual relation between the gas density and the flow velocity. The velocimetry system is developed to support the flow velocity monitor portion of the laser-based gas flux monitor with a long span for measurement. In order to sense not only the flow velocity but also the flow direction, two photo diode arrays are arranged with difference of a quarter period of the weighting function between them; the two output signals from the sensor arrays have phase difference of either (pi) /2 or -(pi) /2 depending on the sense of flow direction. In order to obtain the flow velocity and the flow direction instantly, an electronic apparatus built by the authors extracts frequency and phase from crude outputs of the pair of sensors. A feasibility of the velocimetry was confirmed indoors by measurement of the flow- velocity vector of the convection. Measured flow-velocity vector of the upward flow agreed comparatively with results of an ultrasonic anemometer.

  4. Polarization Observations of Giant Radio Pulses from the Millisecond Pulsar B1937+21 at a Frequency of 600 MHz

    NASA Astrophysics Data System (ADS)

    Popov, M. V.; Soglasnov, V. A.; Kondrat'ev, V. I.; Kostyuk, S. V.

    2004-02-01

    We performed polarization observations of giant radio pulses from the millisecond pulsar B1937+21. The observations were carried out in July 2002 with the 64-m Kalyazin radio telescope at a frequency of 600 MHz in two polarization channels with left- and right-hand circular polarizations (RCP and LCP). We used the S2 data acquisition system with a time resolution of 125 ns. The duration of an observing session was 20 min. We detected twelve giant radio pulses with peak flux densities higher than 1000 Jy; five and seven of these pulses appeared in the RCP and LCP channels, respectively. We found no event that exceeded the established detection threshold simultaneously in the two polarization channels. Thus, we may conclude that the detected giant pulses have a high degree of circular polarization, with the frequency of occurrence of RCP and LCP pulses being the same.

  5. Electricity resonance-induced fast transport of water through nanochannels.

    PubMed

    Kou, Jianlong; Lu, Hangjun; Wu, Fengmin; Fan, Jintu; Yao, Jun

    2014-09-10

    We performed molecular dynamics simulations to study water permeation through a single-walled carbon nanotube with electrical interference. It was found that the water net flux across the nanochannel is greatly affected by the external electrical interference, with the maximal net flux occurred at an electrical interference frequency of 16670 GHz being about nine times as high as the net flux at the low or high frequency range of (<1000 GHz or >80,000 GHz). The above phenomena can be attributed to the breakage of hydrogen bonds as the electrical interference frequency approaches to the inherent resonant frequency of hydrogen bonds. The new mechanism of regulating water flux across nanochannels revealed in this study provides an insight into the water transportation through biological water channels and has tremendous potential in the design of high-flux nanofluidic systems.

  6. New radio detections of early-type pre-main-sequence stars

    NASA Technical Reports Server (NTRS)

    Skinner, Stephen L.; Brown, Alexander; Linsky, Jeffrey L.

    1990-01-01

    Results of VLA radio continuum observations of 13 early-type pre-main-sequence stars selected from the 1984 catalog of Finkenzeller and Mundt are presented. The stars HD 259431 and MWC 1080 were detected at 3.6 cm, while HD 200775 and TY CrA were detected at both 3.6 and 6 cm. The flux density of HD 200775 has a frequency dependence consistent with the behavior expected for free-free emission originating in a fully ionized wind. However, an observation in A configuration suggests that the source geometry may not be spherically symmetric. In contrast, the spectral index of TY CrA is negative with a flux behavior implying nonthermal emission. The physical mechanism responsible for the nonthermal emission has not yet been identified, although gyrosynchrotron and synchrotron processes cannot be ruled out.

  7. FLARES ON A-TYPE STARS: EVIDENCE FOR HEATING OF SOLAR CORONA BY NANOFLARES?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Švanda, Michal; Karlický, Marian, E-mail: michal@astronomie.cz

    We analyzed the occurrence rates of flares on stars of spectral types K, G, F, and A, observed by Kepler . We found that the histogram of occurrence frequencies of stellar flares is systematically shifted toward a high-energy tail for A-type stars compared to stars of cooler spectral types. We extrapolated the fitted power laws toward flares with smaller energies (nanoflares) and made estimates for total energy flux to stellar atmospheres by flares. We found that, for A-type stars, the total energy flux density was at least four-times smaller than for G stars. We speculate that this deficit in energymore » supply may explain the lack of hot coronae on A-type stars. Our results indicate the importance of nanoflares for heating and formation of the solar corona.« less

  8. Abnormal changes in the density of thermal neutron flux in biocenoses near the earth surface.

    PubMed

    Plotnikova, N V; Smirnov, A N; Kolesnikov, M V; Semenov, D S; Frolov, V A; Lapshin, V B; Syroeshkin, A V

    2007-04-01

    We revealed an increase in the density of thermal neutron flux in forest biocenoses, which was not associated with astrogeophysical events. The maximum spike of this parameter in the biocenosis reached 10,000 n/(sec x m2). Diurnal pattern of the density of thermal neutron flux depended only on the type of biocenosis. The effects of biomodulation of corpuscular radiation for balneology are discussed.

  9. Optimization of Magneto-Rheological Damper for Maximizing Magnetic Flux Density in the Fluid Flow Gap Through FEA and GA Approaches

    NASA Astrophysics Data System (ADS)

    Krishna, Hemanth; Kumar, Hemantha; Gangadharan, Kalluvalappil

    2017-08-01

    A magneto rheological (MR) fluid damper offers cost effective solution for semiactive vibration control in an automobile suspension. The performance of MR damper is significantly depends on the electromagnetic circuit incorporated into it. The force developed by MR fluid damper is highly influenced by the magnetic flux density induced in the fluid flow gap. In the present work, optimization of electromagnetic circuit of an MR damper is discussed in order to maximize the magnetic flux density. The optimization procedure was proposed by genetic algorithm and design of experiments techniques. The result shows that the fluid flow gap size less than 1.12 mm cause significant increase of magnetic flux density.

  10. Changes in divertor conditions in response to changing core density with RMPs

    DOE PAGES

    Briesemeister, Alexis R.; Ahn, Joon -Wook; Canik, John M.; ...

    2017-06-07

    The effects of changes in core density on divertor electron temperature, density and heat flux when resonant magnetic perturbations (RMPs) are applied are presented, notably a reduction in RMP induced secondary radial peaks in the electron temperature profile at the target plate is observed when the core density is increased, which is consistent with modeling. RMPs is used here to indicated non-axisymmetric magnetic field perturbations, created using in-vessel control coils, which have components which has at least one but typically many resonances with the rotational transform of the plasma. RMPs are found to alter inter-ELM heat flux to the divertormore » by modifying the core plasma density. It is shown that applying RMPs reduces the core density and increases the inter-ELM heat flux to both the inner and outer targets. Using gas puffing to return the core density to the pre-RMP levels more than eliminates the increase in inter-ELM heat flux, but a broadening of the heat flux to the outer target remains. These measurements were made at a single toroidal location, but the peak in the heat flux profile was found near the outer strike point where simulations indicate little toroidal variation should exist and tangentially viewing diagnostics showed no evidence of strong asymmetries. In experiments where divertor Thomson scattering measurements were available it is shown that, local secondary peaks in the divertor electron temperature profile near the target plate are reduced as the core density is increased, while peaks in the divertor electron density profile near the target are increased. Furthermore, these trends observed in the divertor electron temperature and density are qualitatively reproduced by scanning the upstream density in EMC3-Eirene modeling. Measurements are presented showing that higher densities are needed to induce detachment of the outer strike point in a case where an increase in electron temperature, likely due to a change in MHD activity, is seen after RMPs are applied.« less

  11. Changes in divertor conditions in response to changing core density with RMPs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Briesemeister, Alexis R.; Ahn, Joon -Wook; Canik, John M.

    The effects of changes in core density on divertor electron temperature, density and heat flux when resonant magnetic perturbations (RMPs) are applied are presented, notably a reduction in RMP induced secondary radial peaks in the electron temperature profile at the target plate is observed when the core density is increased, which is consistent with modeling. RMPs is used here to indicated non-axisymmetric magnetic field perturbations, created using in-vessel control coils, which have components which has at least one but typically many resonances with the rotational transform of the plasma. RMPs are found to alter inter-ELM heat flux to the divertormore » by modifying the core plasma density. It is shown that applying RMPs reduces the core density and increases the inter-ELM heat flux to both the inner and outer targets. Using gas puffing to return the core density to the pre-RMP levels more than eliminates the increase in inter-ELM heat flux, but a broadening of the heat flux to the outer target remains. These measurements were made at a single toroidal location, but the peak in the heat flux profile was found near the outer strike point where simulations indicate little toroidal variation should exist and tangentially viewing diagnostics showed no evidence of strong asymmetries. In experiments where divertor Thomson scattering measurements were available it is shown that, local secondary peaks in the divertor electron temperature profile near the target plate are reduced as the core density is increased, while peaks in the divertor electron density profile near the target are increased. Furthermore, these trends observed in the divertor electron temperature and density are qualitatively reproduced by scanning the upstream density in EMC3-Eirene modeling. Measurements are presented showing that higher densities are needed to induce detachment of the outer strike point in a case where an increase in electron temperature, likely due to a change in MHD activity, is seen after RMPs are applied.« less

  12. Simulation of Shock-Shock Interaction in Parsec-Scale Jets

    NASA Astrophysics Data System (ADS)

    Fromm, Christian M.; Perucho, Manel; Ros, Eduardo; Mimica, Petar; Savolainen, Tuomas; Lobanov, Andrei P.; Zensus, J. Anton

    The analysis of the radio light curves of the blazar CTA 102 during its 2006 flare revealed a possible interaction between a standing shock wave and a traveling one. In order to better understand this highly non-linear process, we used a relativistic hydrodynamic code to simulate the high energy interaction and its related emission. The calculated synchrotron emission from these simulations showed an increase in turnover flux density, Sm, and turnover frequency, νm, during the interaction and decrease to its initial values after the passage of the traveling shock wave.

  13. Remote radio observations of solar wind parameters upstream of planetary bow shocks

    NASA Technical Reports Server (NTRS)

    Macdowall, R. J.; Stone, R. G.; Gaffey, J. D., Jr.

    1992-01-01

    Radio emission is frequently produced at twice the electron plasma frequency 2fp in the foreshock region upstream of the terrestrial bow shock. Observations of this emission provide a remote diagnostic of solar wind parameters in the foreshock. Using ISEE-3 radio data, we present the first evidence that the radio intensity is proportional to the kinetic energy flux and to other parameters correlated with solar wind density. We provide a qualitative explanation of this intensity behavior and predict the detection of similar emission at Jupiter by the Ulysses spacecraft.

  14. Magnetic Design Guidelines for Electronic Power Supplies.

    DTIC Science & Technology

    1986-09-30

    henries ",= peak flux density in gauss d = wire (conductor) dia in mils CM = d2 = circular mi’s Irms = RMS current in amperes Idc = DC current in...component lac = RMS ac current in the inductor f = minimum frequency in hertz L = inductance in henries Then Eac 2 16.83 x 2, x 760 x .05 10 Eac 1 168.3 x 2...duty cycle x 1/f L inductance in henries *permeability in gauss/oersted H magnetizing force in oersteds ’. i g length of air gap in cm ic length of

  15. Neutrino Oscillations as a Probe of Light Scalar Dark Matter.

    PubMed

    Berlin, Asher

    2016-12-02

    We consider a class of models involving interactions between ultralight scalar dark matter and standard model neutrinos. Such couplings modify the neutrino mass splittings and mixing angles to include additional components that vary in time periodically with a frequency and amplitude set by the mass and energy density of the dark matter. Null results from recent searches for anomalous periodicities in the solar neutrino flux strongly constrain the dark matter-neutrino coupling to be orders of magnitude below current and projected limits derived from observations of the cosmic microwave background.

  16. A low-frequency wave motion mechanism enables efficient energy transport in carbon nanotubes at high heat fluxes.

    PubMed

    Zhang, Xiaoliang; Hu, Ming; Poulikakos, Dimos

    2012-07-11

    The great majority of investigations of thermal transport in carbon nanotubes (CNTs) in the open literature focus on low heat fluxes, that is, in the regime of validity of the Fourier heat conduction law. In this paper, by performing nonequilibrium molecular dynamics simulations we investigated thermal transport in a single-walled CNT bridging two Si slabs under constant high heat flux. An anomalous wave-like kinetic energy profile was observed, and a previously unexplored, wave-dominated energy transport mechanism is identified for high heat fluxes in CNTs, originated from excited low frequency transverse acoustic waves. The transported energy, in terms of a one-dimensional low frequency mechanical wave, is quantified as a function of the total heat flux applied and is compared to the energy transported by traditional Fourier heat conduction. The results show that the low frequency wave actually overtakes traditional Fourier heat conduction and efficiently transports the energy at high heat flux. Our findings reveal an important new mechanism for high heat flux energy transport in low-dimensional nanostructures, such as one-dimensional (1-D) nanotubes and nanowires, which could be very relevant to high heat flux dissipation such as in micro/nanoelectronics applications.

  17. Turbulence-induced anomalous electron diffusion in the plume of the VASIMR VX-200

    NASA Astrophysics Data System (ADS)

    Olsen, Christopher; Ballenger, Maxwell; Squire, Jared; Longmier, Benjamin; Carter, Mark; Glover, Tim

    2012-10-01

    The separation of electrons from magnetic nozzles is critical to the function of the VASIMR engine and is of general importance to the field of electric propulsion. Separation of electrons by means of anomalous cross field diffusion is considered. Plume measurements using spectral analysis of custom high frequency probes characterizes the nature of oscillating electric fields in the expanding magnetic nozzle. The oscillating electric field results in frequency dependent density variations that can lead to anomalously high transport in the absence of collisions mimicking collisional transport. The spatial structure of the fluctuating fields is consistent with turbulence caused by separation of energetic (> 100 eV) non-magnetized ions and low energy magnetized electrons via the modified two-stream instability (MTSI) and generalized lower hybrid drift instability (GLHDI). Electric fields as high as 300 V/m are observed at frequencies up to an order of magnitude above the lower hybrid frequency. The electric field fluctuations dissipate with increasing axial distance consistent with changes in ion flux streamlines as plasma detachment occurs.

  18. An amorphous alloy core medium frequency magnetic-link for medium voltage photovoltaic inverters

    NASA Astrophysics Data System (ADS)

    Rabiul Islam, Md.; Guo, Youguang; Wei Lin, Zhi; Zhu, Jianguo

    2014-05-01

    The advanced magnetic materials with high saturation flux density and low specific core loss have led to the development of an efficient, compact, and lightweight multiple-input multiple-output medium frequency magnetic-link. It offers a new route to eliminate some critical limitations of recently proposed medium voltage photovoltaic inverters. In this paper, a medium frequency magnetic-link is developed with Metglas amorphous alloy 2605S3A. The common magnetic-link generates isolated and balanced multiple DC supplies for all of the H-bridge inverter cells of the medium voltage inverter. The design and implementation of the prototype, test platform, and the experimental test results are analyzed and discussed. The medium frequency non-sinusoidal excitation electromagnetic characteristics of alloy 2605S3A are also compared with that of alloy 2605SA1. It is expected that the proposed new technology will have great potential for future renewable power generation systems and smart grid applications.

  19. A LOW FREQUENCY SURVEY OF GIANT PULSES FROM THE CRAB PULSAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eftekhari, T.; Stovall, K.; Dowell, J.

    2016-10-01

    We present a large survey of giant pulses from the Crab Pulsar as observed with the first station of the Long Wavelength Array. Automated methods for detecting giant pulses at low frequencies where scattering becomes prevalent are also explored. More than 1400 pulses were detected across four frequency bands between 20 and 84 MHz over a seven-month period beginning in 2013, with additional followup observations in late 2014 and early 2015. A handful of these pulses were detected simultaneously across all four frequency bands. We examine pulse characteristics, including pulse broadening and power law indices for amplitude distributions. We findmore » that the flux density increases toward shorter wavelengths, consistent with a spectral turnover at 100 MHz. Our observations uniquely span multiple scattering epochs, manifesting as a notable trend in the number of detections per observation. These results are characteristic of the variable interface between the synchrotron nebula and the surrounding interstellar medium.« less

  20. Radio Transients and their Environments

    NASA Astrophysics Data System (ADS)

    Rajwade, Kaustubh

    The interstellar medium is the principal ingredient for star formation and hence, it is necessary to study the properties of the interstellar medium. Radio sources in our Galaxy and beyond can be used as a probe of the intervening medium. In this dissertation, I present an attempt to use radio transients like pulsars and fast radio bursts and their interactions with the environment around them to study interstellar medium. We show that radio emission from pulsars is absorbed by dense ionized gas in their surroundings, causing a turnover in their flux density spectrum that can be used to reveal information about the absorbing medium. We carried out a multi-wavelength observation campaign of PSR B0611+22. The pulsar shows peculiar emission variability that is broadband in nature. Moreover, we show that the flux density spectrum of B0611+22 is unusual which can be attributed to the environment it lies in. We also present predictions of fast radio burst detections from upcoming low frequency surveys. We show that future surveys with the Canadian Hydrogen Intensity Mapping Experiment (CHIME) will be able to detect 1 radio burst per hour even if the radio burst undergoes significant absorption and scattering. Finally, we present our results of pulsar population synthesis to understand the pulsar population in the Galactic Centre (GC) and place conservative upper limits on the GC pulsar population. We obtain an upper limit of 52 CPs and 10,000 MSPs in the GC. The dense, ionized environment of the GC gives us the opportunity to predict the probability of detection by considering scattering and absorption as the principle sources of flux mitigation. Our results suggest that the optimal frequency range for a pulsar survey in the GC is 9-14 GHz. A larger sample of absorbed spectrum pulsars and fast radio bursts will be beneficial not only for the study of emission processes but also for discerning the properties of the material permeating through space.

  1. Spatiotemporal dynamics of charged species in the afterglow of plasmas containing negative ions.

    PubMed

    Kaganovich, I D; Ramamurthi, B N; Economou, D J

    2001-09-01

    The spatiotemporal evolution of charged species densities and wall fluxes during the afterglow of an electronegative discharge has been investigated. The decay of a plasma with negative ions consists of two stages. During the first stage of the afterglow, electrons dominate plasma diffusion and negative ions are trapped inside the vessel by the static electric field; the flux of negative ions to the walls is nearly zero. During this stage, the electron escape frequency increases considerably in the presence of negative ions, and can eventually approach free electron diffusion. During the second stage of the afterglow, electrons have disappeared, and positive and negative ions diffuse to the walls with the ion-ion ambipolar diffusion coefficient. Theories for plasma decay have been developed for equal and strongly different ion (T(i)) and electron (T(e)) temperatures. In the case T(i)=T(e), the species spatial profiles are similar and an analytic solution exists. When detachment is important in the afterglow (weakly electronegative gases, e.g., oxygen) the plasma decay crucially depends on the product of negative ion detachment frequency (gamma(d)) and diffusion time (tau(d)). If gamma(d)tau(d)>2, negative ions convert to electrons during their diffusion towards the walls. The presence of detached electrons results in "self-trapping" of the negative ions, due to emerging electric fields, and the negative ion flux to the walls is extremely small. In the case T(i)

  2. On the modelling of scalar and mass transport in combustor flows

    NASA Technical Reports Server (NTRS)

    Nikjooy, M.; So, R. M. C.

    1989-01-01

    Results are presented of a numerical study of swirling and nonswirling combustor flows with and without density variations. Constant-density arguments are used to justify closure assumptions invoked for the transport equations for turbulent momentum and scalar fluxes, which are written in terms of density-weighted variables. Comparisons are carried out with measurements obtained from three different axisymmetric model combustor experiments covering recirculating flow, swirling flow, and variable-density swirling flow inside the model combustors. Results show that the Reynolds stress/flux models do a credible job of predicting constant-density swirling and nonswirling combustor flows with passive scalar transport. However, their improvements over algebraic stress/flux models are marginal. The extension of the constant-density models to variable-density flow calculations shows that the models are equally valid for such flows.

  3. Extensive Broadband X-Ray Monitoring During the Formation of a Giant Radio Jet Base in Cyg X-3 with AstroSat

    NASA Astrophysics Data System (ADS)

    Pahari, Mayukh; Yadav, J. S.; Verdhan Chauhan, Jai; Rawat, Divya; Misra, Ranjeev; Agrawal, P. C.; Chandra, Sunil; Bagri, Kalyani; Jain, Pankaj; Manchanda, R. K.; Chitnis, Varsha; Bhattacharyya, Sudip

    2018-01-01

    We present X-ray spectral and timing behavior of Cyg X-3 as observed by AstroSat during the onset of a giant radio flare on 2017 April 1–2. Within a timescale of a few hours, the source shows a transition from the hypersoft state (HPS) to a more luminous state (we termed as the very high state), which coincides with the time of the steep rise in radio flux density by an order of magnitude. Modeling the Soft X-ray Telescope (SXT) and Large Area X-ray Proportional Counter (LAXPC) spectra jointly in 0.5–70.0 keV, we found that the first few hours of the observation is dominated by the HPS with no significant counts above 17 keV. Later, an additional flat power-law component suddenly appeared in the spectra that extends to very high energies with the power-law photon index of {1.49}-0.03+0.04. Such a flat power-law component has never been reported from Cyg X-3. Interestingly the fitted power-law model in 25–70 keV, when extrapolated to the radio frequency, predicts the radio flux density to be consistent with the trend measured from the RATAN-600 telescope at 11.2 GHz. This provides direct evidence of the synchrotron origin of flat X-ray power-law component and the most extensive monitoring of the broadband X-ray behavior at the moment of decoupling the giant radio jet base from the compact object in Cyg X-3. Using SXT and LAXPC observations, we determine the giant flare ejection time as MJD 57845.34 ± 0.08 when 11.2 GHz radio flux density increases from ∼100 to ∼478 mJy.

  4. The radio properties of infrared-faint radio sources

    NASA Astrophysics Data System (ADS)

    Middelberg, E.; Norris, R. P.; Hales, C. A.; Seymour, N.; Johnston-Hollitt, M.; Huynh, M. T.; Lenc, E.; Mao, M. Y.

    2011-02-01

    Context. Infrared-faint radio sources (IFRS) are objects that have flux densities of several mJy at 1.4 GHz, but that are invisible at 3.6 μm when using sensitive Spitzer observations with μJy sensitivities. Their nature is unclear and difficult to investigate since they are only visible in the radio. Aims: High-resolution radio images and comprehensive spectral coverage can yield constraints on the emission mechanisms of IFRS and can give hints to similarities with known objects. Methods: We imaged a sample of 17 IFRS at 4.8 GHz and 8.6 GHz with the Australia Telescope Compact Array to determine the structures on arcsecond scales. We added radio data from other observing projects and from the literature to obtain broad-band radio spectra. Results: We find that the sources in our sample are either resolved out at the higher frequencies or are compact at resolutions of a few arcsec, which implies that they are smaller than a typical galaxy. The spectra of IFRS are remarkably steep, with a median spectral index of -1.4 and a prominent lack of spectral indices larger than -0.7. We also find that, given the IR non-detections, the ratio of 1.4 GHz flux density to 3.6 μm flux density is very high, and this puts them into the same regime as high-redshift radio galaxies. Conclusions: The evidence that IFRS are predominantly high-redshift sources driven by active galactic nuclei (AGN) is strong, even though not all IFRS may be caused by the same phenomenon. Compared to the rare and painstakingly collected high-redshift radio galaxies, IFRS appear to be much more abundant, but less luminous, AGN-driven galaxies at similar cosmological distances.

  5. Observations of Near-Bed Deposition and Resuspension Processes at the Fluvial-Tidal Transition Using High Resolution Adcp, Adv, and Lisst

    NASA Astrophysics Data System (ADS)

    Haught, D. R.; Stumpner, P.

    2012-12-01

    Processes that determine deposition and resuspension of sediment in fluvial and tidal systems are complicated and difficult to predict because of turbulence-sediment interaction. In fluvial systems net sediment deposition rates near the bed are determined by shear stresses that occur when turbulence interacts with the bed and the entrained sediment above. In tidal systems, processes are driven primarily by the confounding factors of slack water and reversing flow. In this study we investigate near-bed sediment fluxes, settling velocities and sediment size distributions during a change from a fluvial signal to a tidal signal. In order to examine these processes a high resolution, high frequency ADCP, ADV, water quality sonde and LISST data were collocated at the fluvial-tidal transition in the Sacramento River at Freeport, CA. Data were collected at 15-30 minute increments for a month`. Data were dissevered into fluvial and tidal components. Acoustic backscatterence was used as a surrogate to sediment concentration and sediment flux () was calculated from the turbulence properties. Settling velocities were computed from the diffusion-advection equation assuming equilibrium of settling and re-suspension fluxes. Particle density was back-calculated from median particle diameter and calculated settling velocities (Reynolds number<0.5) using Stokes' law. Preliminary results suggest that during peak fluvial discharge that the diffusion-advection gives poor estimates of settling velocities as inferred from particle densities above 3500 kg/m3. During the transition from fluvial to tidal signal and throughout the tidal signal particle densities range from 2650 kg/m3 to 1000 kg/m3, suggesting that settling velocities were accurately estimated. Thus the equilibrium assumption appears poor during high fluvial discharge and reasonable during low fluvial discharge when tidal signal is dominant.

  6. Three-dimensional forward solver and its performance analysis for magnetic resonance electrical impedance tomography (MREIT) using recessed electrodes.

    PubMed

    Lee, Byung Il; Oh, Suk Hoon; Woo, Eung Je; Lee, Soo Yeol; Cho, Min Hyoung; Kwon, Ohin; Seo, Jin Keun; Lee, June-Yub; Baek, Woon Sik

    2003-07-07

    In magnetic resonance electrical impedance tomography (MREIT), we try to reconstruct a cross-sectional resistivity (or conductivity) image of a subject. When we inject a current through surface electrodes, it generates a magnetic field. Using a magnetic resonance imaging (MRI) scanner, we can obtain the induced magnetic flux density from MR phase images of the subject. We use recessed electrodes to avoid undesirable artefacts near electrodes in measuring magnetic flux densities. An MREIT image reconstruction algorithm produces cross-sectional resistivity images utilizing the measured internal magnetic flux density in addition to boundary voltage data. In order to develop such an image reconstruction algorithm, we need a three-dimensional forward solver. Given injection currents as boundary conditions, the forward solver described in this paper computes voltage and current density distributions using the finite element method (FEM). Then, it calculates the magnetic flux density within the subject using the Biot-Savart law and FEM. The performance of the forward solver is analysed and found to be enough for use in MREIT for resistivity image reconstructions and also experimental designs and validations. The forward solver may find other applications where one needs to compute voltage, current density and magnetic flux density distributions all within a volume conductor.

  7. Macroscopic resonant tunneling in the presence of low frequency noise.

    PubMed

    Amin, M H S; Averin, Dmitri V

    2008-05-16

    We develop a theory of macroscopic resonant tunneling of flux in a double-well potential in the presence of realistic flux noise with a significant low-frequency component. The rate of incoherent flux tunneling between the wells exhibits resonant peaks, the shape and position of which reflect qualitative features of the noise, and can thus serve as a diagnostic tool for studying the low-frequency flux noise in SQUID qubits. We show, in particular, that the noise-induced renormalization of the first resonant peak provides direct information on the temperature of the noise source and the strength of its quantum component.

  8. Tango

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, Jeffrey

    Tango enables the accelerated numerical solution of the multiscale problem of self-consistent transport and turbulence. Fast turbulence results in fluxes of heat and particles that slowly change the mean profiles of temperature and density. The fluxes are computed by separate turbulence simulation codes; Tang solves for the self-consistent change in mean temperature or density given those fluxes.

  9. Determination of meteor flux distribution over the celestial sphere

    NASA Technical Reports Server (NTRS)

    Andreev, V. V.; Belkovich, O. I.; Filimonova, T. K.; Sidorov, V. V.

    1992-01-01

    A new method of determination of meteor flux density distribution over the celestial sphere is discussed. The flux density was derived from observations by radar together with measurements of angles of arrival of radio waves reflected from meteor trails. The role of small meteor showers over the sporadic background is shown.

  10. Planck intermediate results: XXXI. Microwave survey of Galactic supernova remnants

    DOE PAGES

    Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; ...

    2016-02-09

    The all-sky Planck survey in 9 frequency bands was used in this paper to search for emission from all 274 known Galactic supernova remnants. Of these, 16 were detected in at least two Planck frequencies. The radio-through-microwave spectral energy distributions were compiled to determine the mechanism for microwave emission. In only one case, IC 443, is there high-frequency emission clearly from dust associated with the supernova remnant. In all cases, the low-frequency emission is from synchrotron radiation. As predicted for a population of relativistic particles with energy distribution that extends continuously to high energies, a single power law is evidentmore » for many sources, including the Crab and PKS 1209-51/52. A decrease in flux density relative to the extrapolation of radio emission is evident in several sources. Their spectral energy distributions can be approximated as broken power laws, S ν ∝ ν -α, with the spectral index, α, increasing by 0.5–1 above a break frequency in the range 10–60 GHz. Finally, the break could be due to synchrotron losses.« less

  11. The Material Plasma Exposure eXperiment (MPEX)

    NASA Astrophysics Data System (ADS)

    Rapp, J.; Biewer, T. M.; Bigelow, T. S.; Canik, J.; Caughman, J. B. O.; Duckworth, R. C.; Goulding, R. H.; Hillis, D. L.; Lore, J. D.; Lumsdaine, A.; McGinnis, W. D.; Meitner, S. J.; Owen, L. W.; Shaw, G. C.; Luo, G.-N.

    2014-10-01

    Next generation plasma generators have to be able to access the plasma conditions expected on the divertor targets in ITER and future devices. The Material Plasma Exposure eXperiment (MPEX) will address this regime with electron temperatures of 1--10 eV and electron densities of 1021--1020 m-3. The resulting heat fluxes are about 10 MW/m2. MPEX is designed to deliver those plasma conditions with a novel Radio Frequency plasma source able to produce high density plasmas and heat electron and ions separately with Electron Bernstein Wave (EBW) heating and Ion Cyclotron Resonance Heating (ICRH). Preliminary modeling has been used for pre-design studies of MPEX. MPEX will be capable to expose neutron irradiated samples. In this concept targets will be irradiated in ORNL's High Flux Isotope Reactor (HFIR) or possibly at the Spallation Neutron Source (SNS) and then subsequently (after a sufficient long cool-down period) exposed to fusion reactor relevant plasmas in MPEX. The current state of the pre-design of MPEX including the concept of handling irradiated samples will be presented. ORNL is managed by UT-Battelle, LLC, for the U.S. DOE under Contract DE-AC-05-00OR22725.

  12. Open-Access, Low-Magnetic-Field MRI System for Lung Research

    NASA Technical Reports Server (NTRS)

    Mair, Ross W.; Rosen, Matthew S.; Tsai, Leo L.; Walsworth, Ronald L.; Hrovat, Mirko I.; Patz, Samuel; Ruset, Iullian C.; Hersman, F. William

    2009-01-01

    An open-access magnetic resonance imaging (MRI) system is being developed for use in research on orientational/gravitational effects on lung physiology and function. The open-access geometry enables study of human subjects in diverse orientations. This system operates at a magnetic flux density, considerably smaller than the flux densities of typical other MRI systems, that can be generated by resistive electromagnet coils (instead of the more-expensive superconducting coils of the other systems). The human subject inhales air containing He-3 or Xe-129 atoms, the nuclear spins of which have been polarized by use of a laser beam to obtain a magnetic resonance that enables high-resolution gas space imaging at the low applied magnetic field. The system includes a bi-planar, constant-current, four-coil electromagnet assembly and associated electronic circuitry to apply a static magnetic field of 6.5 mT throughout the lung volume; planar coils and associated circuitry to apply a pulsed magnetic-field-gradient for each spatial dimension; a single, detachable radio-frequency coil and associated circuitry for inducing and detecting MRI signals; a table for supporting a horizontal subject; and electromagnetic shielding surrounding the electromagnet coils.

  13. Propagation of electromagnetic waves parallel to the magnetic field in the nightside Venus ionosphere

    NASA Technical Reports Server (NTRS)

    Huba, J. D.; Rowland, H. L.

    1993-01-01

    The propagation of electromagnetic waves parallel to the magnetic field in the nightside Venus ionosphere is presented in a theoretical and numerical analysis. The model assumes a source of electromagnetic radiation in the Venus atmosphere, such as that produced by lightning. Specifically addressed is wave propagation in the altitude range z = 130-160 km at the four frequencies detectable by the Pioneer Venus Orbiter Electric Field Detector: 100 Hz, 730 Hz, 5.4 kHz, and 30 kHz. Parameterizations of the wave intensities, peak electron density, and Poynting flux as a function of magnetic field are presented. The waves are found to propagate most easily in conditions of low electron density and high magnetic field. The results of the model are consistent with observational data.

  14. A Theory of Density Layering in Stratified Turbulence using Statistical State Dynamics

    NASA Astrophysics Data System (ADS)

    Fitzgerald, J.; Farrell, B.

    2016-12-01

    Stably stratified turbulent fluids commonly develop density structures that are layered in the vertical direction (e.g., Manucharyan et al., 2015). Within layers, density is approximately constant and stratification is weak. Between layers, density varies rapidly and stratification is strong. A common explanation for the existence of layers invokes the negative diffusion mechanism of Phillips (1972) & Posmentier (1977). The physical principle underlying this mechanism is that the flux-gradient relationship connecting the turbulent fluxes of buoyancy to the background stratification must have the special property of weakening fluxes with strengthening gradient. Under these conditions, the evolution of the stratification is governed by a negative diffusion problem which gives rise to spontaneous layer formation. In previous work on stratified layering, this flux-gradient property is often assumed (e.g, Posmentier, 1977) or drawn from phenomenological models of turbulence (e.g., Balmforth et al., 1998).In this work we develop the theoretical underpinnings of layer formation by applying stochastic turbulence modeling and statistical state dynamics (SSD) to predict the flux-gradient relation and analyze layer formation directly from the equations of motion. We show that for stochastically-forced homogeneous 2D Boussinesq turbulence, the flux-gradient relation can be obtained analytically and indicates that the fluxes always strengthen with stratification. The Phillips mechanism thus does not operate in this maximally simplified scenario. However, when the problem is augmented to include a large scale background shear, we show that the flux-gradient relationship is modified so that the fluxes weaken with stratification. Sheared and stratified 2D Boussinesq turbulence thus spontaneously forms density layers through the Phillips mechanism. Using SSD (Farrell & Ioannou 2003), we obtain a closed, deterministic dynamics for the stratification and the statistical turbulent state. We show that density layers form as a linear instability of the sheared turbulence, associated with a supercritical bifurcation. We further show that SSD predicts the nonlinear equilibration and maintenance of the layers, and captures the phenomena of layer growth and mergers (Radko, 2007).

  15. Beta electron fluxes inside a magnetic plasma cavern: Calculation and comparison with experiment

    NASA Astrophysics Data System (ADS)

    Stupitskii, E. L.; Smirnov, E. V.; Kulikova, N. A.

    2010-12-01

    We study the possibility of electrostatic blanking of beta electrons in the expanding spherical blob of a radioactive plasma in a rarefied ionosphere. From numerical studies on the dynamics of beta electrons departing a cavern, we obtain the form of a function that determines the portion of departing electrons and calculate the flux density of beta electrons inside the cavern in relation to the Starfish Prime nuclear blast. We show that the flux density of electrons in geomagnetic flux tubes and inside the cavern depend on a correct allowance for the quantity of beta electrons returning to the cavern. On the basis of a physical analysis, we determine the approximate criterion for the return of electrons from a geomagnetic flux tube to the cavern. We compare calculation results in terms of the flux density of beta electrons inside the cavern with the recently published experimental results from operation Starfish Prime.

  16. High-Strength Undiffused Brushless (HSUB) Machine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, John S; Tolbert, Leon M; Lee, Seong T

    2007-01-01

    This paper introduces a new high-strength undiffused brushless machine that transfers the stationary excitation magnetomotive force to the rotor without any brushes. For a conventional permanent magnet (PM) machine, the air gap flux density cannot be enhanced effectively but can be weakened. In the new machine, both the stationary excitation coil and the PM in the rotor produce an enhanced air gap flux. The PM in the rotor prevents magnetic flux diffusion between the poles and guides the reluctance flux path. The pole flux density in the air gap can be much higher than what the PM alone can produce.more » A high-strength machine is thus obtained. The air gap flux density can be weakened through the stationary excitation winding. This type of machine is particularly suitable for electric and hybrid-electric vehicle applications. Patents of this new technology are either granted or pending.« less

  17. High-Strength Undiffused Brushless (HSUB) Machine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, John S; Lee, Seong T; Tolbert, Leon M

    2008-01-01

    This paper introduces a new high-strength undiffused brushless machine that transfers the stationary excitation magnetomotive force to the rotor without any brushes. For a conventional permanent magnet (PM) machine, the air-gap flux density cannot be enhanced effectively but can be weakened. In the new machine, both the stationary excitation coil and the PM in the rotor produce an enhanced air-gap flux. The PM in the rotor prevents magnetic-flux diffusion between the poles and guides the reluctance flux path. The pole flux density in the air gap can be much higher than what the PM alone can produce. A high-strength machinemore » is thus obtained. The air-gap flux density can be weakened through the stationary excitation winding. This type of machine is particularly suitable for electric and hybrid-electric vehicle applications. Patents of this new technology are either granted or pending.« less

  18. The Bright Gamma-Ray Burst 991208: Tight Constraints on Afterglow Models from Observations of the Early-Time Radio Evolution

    NASA Astrophysics Data System (ADS)

    Galama, T. J.; Bremer, M.; Bertoldi, F.; Menten, K. M.; Lisenfeld, U.; Shepherd, D. S.; Mason, B.; Walter, F.; Pooley, G. G.; Frail, D. A.; Sari, R.; Kulkarni, S. R.; Berger, E.; Bloom, J. S.; Castro-Tirado, A. J.; Granot, J.

    2000-10-01

    The millimeter wavelength emission from GRB 991208 is the second brightest ever detected, yielding a unique data set. We present here well-sampled spectra and light curves over more than two decades in frequency for a 2 week period. This data set has allowed us for the first time to trace the evolution of the characteristic synchrotron self-absorption frequency νa, peak frequency νm, and the peak flux density Fm; we obtain νa~t-0.15+/-0.23, νm~t-1.7+/-0.7, and Fm~t-0.47+/-0.20. From the radio data we find that models of homogeneous or wind-generated ambient media with a spherically symmetric outflow can be ruled out. A model in which the relativistic outflow is collimated (a jet) can account for the observed evolution of the synchrotron parameters, the rapid decay at optical wavelengths, and the observed radio-to-optical spectral flux distributions that we present here, provided that the jet transition has not been fully completed in the first 2 weeks after the event. These observations provide additional evidence that rapidly decaying optical/X-ray afterglows are due to jets and that such transitions either develop very slowly or perhaps never reach the predicted asymptotic decay F(t)~t-p.

  19. Entropy and climate. I - ERBE observations of the entropy production of the earth

    NASA Technical Reports Server (NTRS)

    Stephens, G. L.; O'Brien, D. M.

    1993-01-01

    An approximate method for estimating the global distributions of the entropy fluxes flowing through the upper boundary of the climate system is introduced, and an estimate of the entropy exchange between the earth and space and the entropy production of the planet is provided. Entropy fluxes calculated from the Earth Radiation Budget Experiment measurements show how the long-wave entropy flux densities dominate the total entropy fluxes at all latitudes compared with the entropy flux densities associated with reflected sunlight, although the short-wave flux densities are important in the context of clear sky-cloudy sky net entropy flux differences. It is suggested that the entropy production of the planet is both constant for the 36 months of data considered and very near its maximum possible value. The mean value of this production is 0.68 x 10 exp 15 W/K, and the amplitude of the annual cycle is approximately 1 to 2 percent of this value.

  20. Energy-flux characterization of conical and space-time coupled wave packets

    NASA Astrophysics Data System (ADS)

    Lotti, A.; Couairon, A.; Faccio, D.; Trapani, P. Di

    2010-02-01

    We introduce the concept of energy density flux as a characterization tool for the propagation of ultrashort laser pulses with spatiotemporal coupling. In contrast with calculations for the Poynting vector, those for energy density flux are derived in the local frame moving at the velocity of the envelope of the wave packet under examination and do not need knowledge of the magnetic field. We show that the energy flux defined from a paraxial propagation equation follows specific geometrical connections with the phase front of the optical wave packet, which demonstrates that the knowledge of the phase fronts amounts to the measurement of the energy flux. We perform a detailed numerical study of the energy density flux in the particular case of conical waves, with special attention paid to stationary-envelope conical waves (X or O waves). A full characterization of linear conical waves is given in terms of their energy flux. We extend the definition of this concept to the case of nonlinear propagation in Kerr media with nonlinear losses.

  1. Magnetic flux concentration and zonal flows in magnetorotational instability turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, Xue-Ning; Stone, James M., E-mail: xbai@cfa.harvard.edu

    2014-11-20

    Accretion disks are likely threaded by external vertical magnetic flux, which enhances the level of turbulence via the magnetorotational instability (MRI). Using shearing-box simulations, we find that such external magnetic flux also strongly enhances the amplitude of banded radial density variations known as zonal flows. Moreover, we report that vertical magnetic flux is strongly concentrated toward low-density regions of the zonal flow. Mean vertical magnetic field can be more than doubled in low-density regions, and reduced to nearly zero in high-density regions in some cases. In ideal MHD, the scale on which magnetic flux concentrates can reach a few diskmore » scale heights. In the non-ideal MHD regime with strong ambipolar diffusion, magnetic flux is concentrated into thin axisymmetric shells at some enhanced level, whose size is typically less than half a scale height. We show that magnetic flux concentration is closely related to the fact that the turbulent diffusivity of the MRI turbulence is anisotropic. In addition to a conventional Ohmic-like turbulent resistivity, we find that there is a correlation between the vertical velocity and horizontal magnetic field fluctuations that produces a mean electric field that acts to anti-diffuse the vertical magnetic flux. The anisotropic turbulent diffusivity has analogies to the Hall effect, and may have important implications for magnetic flux transport in accretion disks. The physical origin of magnetic flux concentration may be related to the development of channel flows followed by magnetic reconnection, which acts to decrease the mass-to-flux ratio in localized regions. The association of enhanced zonal flows with magnetic flux concentration may lead to global pressure bumps in protoplanetary disks that helps trap dust particles and facilitates planet formation.« less

  2. Dayside ionosphere of Titan: Impact on calculated plasma densities due to variations in the model parameters

    NASA Astrophysics Data System (ADS)

    Mukundan, Vrinda; Bhardwaj, Anil

    2018-01-01

    A one dimensional photochemical model for the dayside ionosphere of Titan has been developed for calculating the density profiles of ions and electrons under steady state photochemical equilibrium condition. We concentrated on the T40 flyby of Cassini orbiter and used the in-situ measurements from instruments onboard Cassini as input to the model. An energy deposition model is employed for calculating the attenuated photon flux and photoelectron flux at different altitudes in Titan's ionosphere. We used the Analytical Yield Spectrum approach for calculating the photoelectron fluxes. Volume production rates of major primary ions, like, N2+, N+ , CH4+, CH3+, etc due to photon and photoelectron impact are calculated and used as input to the model. The modeled profiles are compared with the Cassini Ion Neutral Mass Spectrometer (INMS) and Langmuir Probe (LP) measurements. The calculated electron density is higher than the observation by a factor of 2 to 3 around the peak. We studied the impact of different model parameters, viz. photoelectron flux, ion production rates, electron temperature, dissociative recombination rate coefficients, neutral densities of minor species, and solar flux on the calculated electron density to understand the possible reasons for this discrepancy. Recent studies have shown that there is an overestimation in the modeled photoelectron flux and N2+ ion production rates which may contribute towards this disagreement. But decreasing the photoelectron flux (by a factor of 3) and N2+ ion production rate (by a factor of 2) decreases the electron density only by 10 to 20%. Reduction in the measured electron temperature by a factor of 5 provides a good agreement between the modeled and observed electron density. The change in HCN and NH3 densities affects the calculated densities of the major ions (HCNH+ , C2H5+, and CH5+); however the overall impact on electron density is not appreciable ( < 20%). Even though increasing the dissociative recombination rate coefficients of the ions C2H5+ and CH5+ by a factor of 10 reduces the difference between modeled and observed densities of the major ions, the modeled electron density is still higher than the observation by ∼ 60% at the peak. We suggest that there might be some unidentified chemical reactions that may account for the additional loss of plasma in Titan's ionosphere.

  3. Superconducting-circuit quantum heat engine with frequency resolved thermal baths

    NASA Astrophysics Data System (ADS)

    Hofer, Patrick P.; Souquet, Jean-René; Clerk, Aashish A.

    The study of quantum heat engines promises to unravel deep, fundamental concepts in quantum thermodynamics. With this in mind, we propose a novel, realistic device that efficiently converts heat into work while maintaining reasonably large output powers. The key concept in our proposal is a highly peaked spectral density in both the thermal baths as well as the working fluid. This allows for a complete separation of the heat current from the working fluid. In our setup, Cooper pairs tunnelling across a Josephson junction serve as the the working fluid, while two resonant cavities coupled to the junction act as frequency-resolved thermal baths. The device is operated such that a heat flux carried entirely by the photons induces an electrical current against a voltage bias, providing work.

  4. Helicon mode formation and radio frequency power deposition in a helicon-produced plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niemi, K.; Kraemer, M.

    2008-07-15

    Time- and space-resolved magnetic (B-dot) probe measurements in combination with measurements of the plasma parameters were carried out to investigate the relationship between the formation and propagation of helicon modes and the radio frequency (rf) power deposition in the core of a helicon plasma. The Poynting flux and the absorbed power density are deduced from the measured rf magnetic field distribution in amplitude and phase. Special attention is devoted to the helicon absorption under linear and nonlinear conditions. The present investigations are attached to recent observations in which the nonlinear nature of the helicon wave absorption has been demonstrated bymore » showing that the strong absorption of helicon waves is correlated with parametric excitation of electrostatic fluctuations.« less

  5. Comparative Wide Temperature Core Loss Characteristics of Two Candidate Ferrites for the NASA/TRW 1500 W PEBB Converter

    NASA Technical Reports Server (NTRS)

    Niedra, Janis M.

    1999-01-01

    High frequency core loss and magnetization properties of commercial type MN8CX and PC40, high resistivity, MnZn based, power ferrites are presented over the temperature range of -l50 C to 150 C, at selected values of peak flux density (B (sub p)). Most of the data is at 100 kHz, with some data extended to 200 and 300 kHz for the MN8CX. Plots of the specific Core loss against temperature exhibit the minimal characteristic of such ferrites. These plots show that the MN8CX is optimized for minimum loss at about 25 C, whereas the PC40 is optimized at about 80 C. At the points of minimum loss and for the same B (sub p), the MN8CX has roughly half the losses of the PC40 at the lower flux densities. This loss ratio continues down to cryogenic temperatures. However, above about 80 C the losses are practically equal. The lowest 100 kHz loss recorded, 50 mW/cm3 for the MNGCX at a B (sub p) of 0.1T, equals that of a very low loss, Co based, transverse magnetically annealed, amorphous ribbon material. Except possibly at lower B (sub p) or much higher frequencies, these ferrites are not competitive for low losses over a wide temperature range with certain specialty amorphous materials. Permeability is computed from a linear model, plots against temperature are presented and again compared to the specialty amorphous materials.

  6. Radio emission in ultracool dwarfs: The nearby substellar triple system VHS 1256-1257

    NASA Astrophysics Data System (ADS)

    Guirado, J. C.; Azulay, R.; Gauza, B.; Pérez-Torres, M. A.; Rebolo, R.; Climent, J. B.; Zapatero Osorio, M. R.

    2018-02-01

    Aim. With the purpose of investigating the radio emission of new ultracool objects, we carried out a targeted search in the recently discovered system VHS J125601.92-125723.9 (hereafter VHS 1256-1257); this system is composed by an equal-mass M7.5 binary and a L7 low-mass substellar object located at only 15.8 pc. Methods: We observed in phase-reference mode the system VHS 1256-1257 with the Karl G. Jansky Very Large Array at X band and L band and with the European VLBI Network at L band in several epochs during 2015 and 2016. Results: We discovered radio emission at X band spatially coincident with the equal-mass M7.5 binary with a flux density of 60 μJy. We determined a spectral index α = ‑1.1 ± 0.3 between 8 and 12 GHz, suggesting that non-thermal, optically thin, synchrotron, or gyrosynchrotron radiation is responsible for the observed radio emission. Interestingly, no signal is seen at L band where we set a 3σ upper limit of 20 μJy. This might be explained by strong variability of the binary or self-absorption at this frequency. By adopting the latter scenario and gyrosynchrotron radiation, we constrain the turnover frequency to be in the interval 5-8.5 GHz, from which we infer the presence of kG-intense magnetic fields in the M7.5 binary. Our data impose a 3σ upper bound to the radio flux density of the L7 object of 9 μJy at 10 GHz.

  7. Wave propagation in pulsar magnetospheres - Refraction of rays in the open flux zone

    NASA Technical Reports Server (NTRS)

    Barnard, J. J.; Arons, J.

    1986-01-01

    The propagation of waves through a relativistically outflowing electron-positron plasma in a very strong dipolar magnetic field, conditions expected in pulsar magnetospheres, is investigated. Halmilton's equations is derived for the propagation of rays through a plasma which is inhomogeneous in density, magnetic field directions, and Lorentz factor. These equations are solved for rays propagating through the plasmas outflowing along the 'open' dipolar field lines in which the density decreases inversely as the radius cubed and in the case where gradients transverse to the radial direction exist. In the radial case, the effects of refraction on pulse profiles, spectrum, and polarization are examined, and the effects of a transverse gradient are indicated. Attention is given to models in which the observed broad bandwidth in the radio emission has its origin in a radius to frequency map. Models with broad-band emission at a single radius are also studied. These are compared to observations of pulse width and pulse component separation as a function of frequency. The origin of 'orthogonal modes' is discussed.

  8. Plasma source development for fusion-relevant material testing

    DOE PAGES

    Caughman, John B. O.; Goulding, Richard H.; Biewer, Theodore M.; ...

    2017-05-01

    Plasma facing materials in the divertor of a magnetic fusion reactor will have to tolerate steady-state plasma heat fluxes in the range of 10 MW/m2 for ~107 sec, in addition to fusion neutron fluences, which can damage the plasma facing materials to high displacements per atom (dpa) of ~50 dpa . Material solutions needed for the plasma facing components are yet to be developed and tested. The Materials Plasma Exposure eXperiment (MPEX) is a newly proposed steady state linear plasma device that is designed to deliver the necessary plasma heat flux to a target for this material testing, including themore » capability to expose a-priori neutron damaged material samples to those plasmas. The requirements of the plasma source needed to deliver this plasma heat flux are being developed on the Proto-MPEX device, which is a linear high-intensity radio frequency (RF) plasma source that combines a high-density helicon plasma generator with electron and ion heating sections. It is being used to study the physics of heating over-dense plasmas in a linear configuration. The helicon plasma is operated at 13.56 MHz with RF power levels up to 120 kW. Microwaves at 28 GHz (~30 kW) are coupled to the electrons in the over-dense helicon plasma via Electron Bernstein Waves (EBW), and ion cyclotron heating at 7-9 MHz (~30 kW) is via a magnetic beach approach. High plasma densities >6x1019/m3 have been produced in deuterium, with electron temperatures that can range from 2 to >10 eV. Operation with on-axis magnetic field strengths between 0.6 and 1.4 T is typical. The plasma heat flux delivered to a target can be > 10 MW/m2, depending on the operating conditions.« less

  9. Plasma source development for fusion-relevant material testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caughman, John B. O.; Goulding, Richard H.; Biewer, Theodore M.

    Plasma facing materials in the divertor of a magnetic fusion reactor will have to tolerate steady-state plasma heat fluxes in the range of 10 MW/m2 for ~107 sec, in addition to fusion neutron fluences, which can damage the plasma facing materials to high displacements per atom (dpa) of ~50 dpa . Material solutions needed for the plasma facing components are yet to be developed and tested. The Materials Plasma Exposure eXperiment (MPEX) is a newly proposed steady state linear plasma device that is designed to deliver the necessary plasma heat flux to a target for this material testing, including themore » capability to expose a-priori neutron damaged material samples to those plasmas. The requirements of the plasma source needed to deliver this plasma heat flux are being developed on the Proto-MPEX device, which is a linear high-intensity radio frequency (RF) plasma source that combines a high-density helicon plasma generator with electron and ion heating sections. It is being used to study the physics of heating over-dense plasmas in a linear configuration. The helicon plasma is operated at 13.56 MHz with RF power levels up to 120 kW. Microwaves at 28 GHz (~30 kW) are coupled to the electrons in the over-dense helicon plasma via Electron Bernstein Waves (EBW), and ion cyclotron heating at 7-9 MHz (~30 kW) is via a magnetic beach approach. High plasma densities >6x1019/m3 have been produced in deuterium, with electron temperatures that can range from 2 to >10 eV. Operation with on-axis magnetic field strengths between 0.6 and 1.4 T is typical. The plasma heat flux delivered to a target can be > 10 MW/m2, depending on the operating conditions.« less

  10. ORDEM 3.0 and the Risk of High-Density Debris

    NASA Technical Reports Server (NTRS)

    Matney, Mark; Anz-Meador, Philip

    2014-01-01

    NASA’s Orbital Debris Engineering Model was designed to calculate orbital debris fluxes on spacecraft in order to assess collision risk. The newest of these models, ORDEM 3.0, has a number of features not present in previous models. One of the most important is that the populations and fluxes are now broken out into material density groups. Previous models concentrated on debris size alone, but a particle’s mass and density also determine the amount of damage it can cause. ORDEM 3.0 includes a high-density component, primarily consisting of iron/steel particles that drive much of the risk to spacecraft. This paper will outline the methods that were used to separate and identify the different densities of debris, and how these new densities affect the overall debris flux and risk.

  11. A model for heliospheric flux-ropes

    NASA Astrophysics Data System (ADS)

    Nieves-Chinchilla, T.; Linton, M.; Vourlidas, A.; Hidalgo, M. A. U.

    2017-12-01

    This work is presents an analytical flux-rope model, which explores different levels of complexity starting from a circular-cylindrical geometry. The framework of this series of models was established by Nieves-Chinchilla et al. 2016 with the circular-cylindrical analytical flux rope model. The model attempts to describe the magnetic flux rope topology with distorted cross-section as a possible consequence of the interaction with the solar wind. In this model, the flux rope is completely described in a non-orthogonal geometry. The Maxwell equations are solved using tensor calculus consistent with the geometry chosen, invariance along the axial direction, and with the assumption of no radial current density. The model is generalized in terms of the radial and azimuthal dependence of the poloidal current density component and axial current density component. The misalignment between current density and magnetic field is studied in detail for several example profiles of the axial and poloidal current density components. This theoretical analysis provides a map of the force distribution inside of the flux-rope. For reconstruction of the heliospheric flux-ropes, the circular-cylindrical reconstruction technique has been adapted to the new geometry and applied to in situ ICMEs with a flux-rope entrained and tested with cases with clear in situ signatures of distortion. The model adds a piece in the puzzle of the physical-analytical representation of these magnetic structures that should be evaluated with the ultimate goal of reconciling in-situ reconstructions with imaging 3D remote sensing CME reconstructions. Other effects such as axial curvature and/or expansion could be incorporated in the future to fully understand the magnetic structure.

  12. A MODEL FOR THE SOURCES OF THE SLOWLY VARYING COMPONENT OF MICROWAVE SOLAR RADIATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swarup, G.; Kakinuma, T.

    1962-11-01

    A comparison of the observations of the slowly varying component of the solar radio emission made with highresolution interferometers operating at wavelengths of 3.2, strong sources are higher at the longer wavelengths than at 3 cm. The same conclusion is derived from eclipse and statistical investigations, which indicate further that the spectrum of the flux density has a peak around 6 cm. The decrease in flux density with frequency cannot be explained simply by assuming a greater optical thickness for the extraordinary wave near 10 cm in the million-degree corona, as given by the magneto-ionic theory, since the observed degreemore » of polarization at 7.5 or 9.1 cm is much lower than that at 3.2 cm. It is suggested that radiation at the gyrofrequency and its harmonics emitted by the thermal electrons in the dense region over a sunspot group should be raken into account to explain the spectrum of the slowly varying component. This mechanism of resonance absorption requires the average strength of the magnetic field over the sunspot group to be about 800 gauss at a height of 2 x 10/sup 4/ km above the photosphere and 250 gauss at a height of 4 x 10/sup 4/ km. In order to explain the observed values of brightness temperature of 1/-4 x 10/sup 6/ deg K near 10 cm by the magneto-ionic theory, it is necessary to assume values of electron density of up to 20 or 40 times the normal. However, these high values of densities are not required by the gyro-theory, and values of five to ten times the normal are sufficient for explaining simultaneously the observations of brightness temperature, flux density, and polarization. This theory also explains the small size of the source in the range 3-10 cm. The radio emission is considered to originate thermally, which requires that the value of the electron temperature in the region of the inner solar corona above a large sunspot group is about 2-4 x 10 deg K. (auth)« less

  13. Frequency dependence of trapped flux sensitivity in SRF cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Checchin, M.; Martinello, M.; Grassellino, A.

    In this paper, we present the frequency dependence of the vortex surface resistance of bulk niobium accelerating cavities as a function of different state-of-the-art surface treatments. Higher flux surface resistance per amount of trapped magnetic field - sensitivity - is observed for higher frequencies, in agreement with our theoretical model. Higher sensitivity is observed for N-doped cavities, which possess an intermediate value of electron mean-free-path, compared to 120° C and EP/BCP cavities. Experimental results from our study showed that the sensitivity has a non-monotonic trend as a function of the mean-free-path, including at frequencies other than 1.3 GHz, and thatmore » the vortex response to the rf field can be tuned from the pinning regime to flux-flow regime by manipulating the frequency and/or the mean-free-path of the resonator, as reported in our previous studies. The frequency dependence of the trapped flux sensitivity to the amplitude of the accelerating gradient is also highlighted.« less

  14. Frequency dependence of trapped flux sensitivity in SRF cavities

    DOE PAGES

    Checchin, M.; Martinello, M.; Grassellino, A.; ...

    2018-02-13

    In this paper, we present the frequency dependence of the vortex surface resistance of bulk niobium accelerating cavities as a function of different state-of-the-art surface treatments. Higher flux surface resistance per amount of trapped magnetic field - sensitivity - is observed for higher frequencies, in agreement with our theoretical model. Higher sensitivity is observed for N-doped cavities, which possess an intermediate value of electron mean-free-path, compared to 120° C and EP/BCP cavities. Experimental results from our study showed that the sensitivity has a non-monotonic trend as a function of the mean-free-path, including at frequencies other than 1.3 GHz, and thatmore » the vortex response to the rf field can be tuned from the pinning regime to flux-flow regime by manipulating the frequency and/or the mean-free-path of the resonator, as reported in our previous studies. The frequency dependence of the trapped flux sensitivity to the amplitude of the accelerating gradient is also highlighted.« less

  15. Meteoroid stream flux densities and the zenith exponent

    NASA Astrophysics Data System (ADS)

    Molau, Sirko; Barentsen, Geert

    2013-01-01

    The MetRec software was recently extended to measure the limiting magnitude in real-time, and to determine meteoroid stream flux densities. This paper gives a short overview of the applied algorithms. We introduce the MetRec Flux Viewer, a web tool to visualize activity profiles on- line. Starting from the Lyrids 2011, high-quality flux density profiles were derived from IMO Video Network observations for every major meteor shower. They are often in good agreement with visual data. Analyzing the 2011 Perseids, we found systematic daily variations in the flux density profile, which can be attributed to a zenith exponent gamma > 1.0. We analyzed a number of meteor showers in detail and found zenith exponent variations from shower to shower in the range between 1.55 and 2.0. The average value over all analyzed showers is gamma = 1.75. In order to determine the zenith exponent precisely, the observations must cover a large altitude range (at least 45 degrees).

  16. Experimental detection of upward-going cosmic particles and consequences for correction of density radiography of volcanoes

    NASA Astrophysics Data System (ADS)

    Jourde, Kevin; Gibert, Dominique; Marteau, Jacques; de Bremond d'Ars, Jean; Gardien, Serge; Girerd, Claude; Ianigro, Jean-Christophe; Carbone, Daniele

    2014-05-01

    Muon tomography measures the flux of cosmic muons crossing geological bodies to determine their density. Three acquisitions with different sights of view were made at la soufrière de Guadeloupe. All of them show important density fluctuations and reveal the volcano phreatic system. The telescopes used to perform these measurements are exposed to noise fluxes with high intensities relative to the tiny flux of interest. We give experimental evidences ofa so far never described source of noise caused by a flux of upward-going particles. Data acquired on La soufrière of Guadeloupe and Mount Etna reveal that upward-going particles are detected only when the rear side of the telescope is exposed to a wide volume of atmosphere located below the altitude of the telescope and with a rock obstruction less than several tens of meters. Biases produced on density muon radiographies by upward-going fluxes are quantified and correction procedures are applied to radiographies of la soufrière.

  17. A representation for the turbulent mass flux contribution to Reynolds-stress and two-equation closures for compressible turbulence

    NASA Technical Reports Server (NTRS)

    Ristorcelli, J. R.

    1993-01-01

    The turbulent mass flux, or equivalently the fluctuating Favre velocity mean, appears in the first and second moment equations of compressible kappa-epsilon and Reynolds stress closures. Mathematically it is the difference between the unweighted and density-weighted averages of the velocity field and is therefore a measure of the effects of compressibility through variations in density. It appears to be fundamental to an inhomogeneous compressible turbulence, in which it characterizes the effects of the mean density gradients, in the same way the anisotropy tensor characterizes the effects of the mean velocity gradients. An evolution equation for the turbulent mass flux is derived. A truncation of this equation produces an algebraic expression for the mass flux. The mass flux is found to be proportional to the mean density gradients with a tensor eddy-viscosity that depends on both the mean deformation and the Reynolds stresses. The model is tested in a wall bounded DNS at Mach 4.5 with notable results.

  18. Geometrical Effects in Noise Spectra of Superconducting Flux Qubits

    NASA Astrophysics Data System (ADS)

    Petukhov, Andre; Smelyanskiy, Vadim; Martinis, John

    We present theoretical study of geometrical effects related to spin diffusion in superconducting flux qubits. We adopt a model of a long superconducting wire surrounded by a thin oxide layer with spins distributed uniformly over cross-sectional area of the oxide layer. Using a continuous transformation from a round cylinder to a flat wire strip, we demonstrate that the noise spectral density tends to a power law S (ω) ~(ω / Γ) - s with s 3 / 4 , approaching s = 3 / 4 for very thin wires. The ω-s dependence is valid in a broad frequency range above ωΓ stretching up to four orders of magnitude in units of characteristic diffusion decay rate Γ ~ 1 -102 Hz. The effect is highly sensitive to a cross-sectional aspect ratio of a thin wire thus revealing its geometrical origin. We substantiate our findings by detailed comparison with available experimental data and conclude that 3 / 4 power law distinguishes spin diffusion flux noise from generic `` 1 / f '' family. Supported by the AFRL Information Directorate under Grant F4HBKC4162G001.

  19. Multi-channel transport experiments at Alcator C-Mod and comparison with gyrokinetic simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, A. E.; Howard, N. T.; Greenwald, M.

    2013-05-15

    Multi-channel transport experiments have been conducted in auxiliary heated (Ion Cyclotron Range of Frequencies) L-mode plasmas at Alcator C-Mod [Marmar and Alcator C-Mod Group, Fusion Sci. Technol. 51(3), 3261 (2007)]. These plasmas provide good diagnostic coverage for measurements of kinetic profiles, impurity transport, and turbulence (electron temperature and density fluctuations). In the experiments, a steady sawtoothing L-mode plasma with 1.2 MW of on-axis RF heating is established and density is scanned by 20%. Measured rotation profiles change from peaked to hollow in shape as density is increased, but electron density and impurity profiles remain peaked. Ion or electron heat fluxesmore » from the two plasmas are the same. The experimental results are compared directly to nonlinear gyrokinetic theory using synthetic diagnostics and the code GYRO [Candy and Waltz, J. Comput. Phys. 186, 545 (2003)]. We find good agreement with experimental ion heat flux, impurity particle transport, and trends in the fluctuation level ratio (T(tilde sign){sub e}/T{sub e})/(ñ{sub e}/n{sub e}), but underprediction of electron heat flux. We find that changes in momentum transport (rotation profiles changing from peaked to hollow) do not correlate with changes in particle transport, and also do not correlate with changes in linear mode dominance, e.g., Ion Temperature Gradient versus Trapped Electron Mode. The new C-Mod results suggest that the drives for momentum transport differ from drives for heat and particle transport. The experimental results are inconsistent with present quasilinear models, and the strong sensitivity of core rotation to density remains unexplained.« less

  20. Magnetic flux density reconstruction using interleaved partial Fourier acquisitions in MREIT.

    PubMed

    Park, Hee Myung; Nam, Hyun Soo; Kwon, Oh In

    2011-04-07

    Magnetic resonance electrical impedance tomography (MREIT) has been introduced as a non-invasive modality to visualize the internal conductivity and/or current density of an electrically conductive object by the injection of current. In order to measure a magnetic flux density signal in MREIT, the phase difference approach in an interleaved encoding scheme cancels the systematic artifacts accumulated in phase signals and also reduces the random noise effect. However, it is important to reduce scan duration maintaining spatial resolution and sufficient contrast, in order to allow for practical in vivo implementation of MREIT. The purpose of this paper is to develop a coupled partial Fourier strategy in the interleaved sampling in order to reduce the total imaging time for an MREIT acquisition, whilst maintaining an SNR of the measured magnetic flux density comparable to what is achieved with complete k-space data. The proposed method uses two key steps: one is to update the magnetic flux density by updating the complex densities using the partially interleaved k-space data and the other is to fill in the missing k-space data iteratively using the updated background field inhomogeneity and magnetic flux density data. Results from numerical simulations and animal experiments demonstrate that the proposed method reduces considerably the scanning time and provides resolution of the recovered B(z) comparable to what is obtained from complete k-space data.

  1. Intermittent electron density and temperature fluctuations and associated fluxes in the Alcator C-Mod scrape-off layer

    NASA Astrophysics Data System (ADS)

    Kube, R.; Garcia, O. E.; Theodorsen, A.; Brunner, D.; Kuang, A. Q.; LaBombard, B.; Terry, J. L.

    2018-06-01

    The Alcator C-Mod mirror Langmuir probe system has been used to sample data time series of fluctuating plasma parameters in the outboard mid-plane far scrape-off layer. We present a statistical analysis of one second long time series of electron density, temperature, radial electric drift velocity and the corresponding particle and electron heat fluxes. These are sampled during stationary plasma conditions in an ohmically heated, lower single null diverted discharge. The electron density and temperature are strongly correlated and feature fluctuation statistics similar to the ion saturation current. Both electron density and temperature time series are dominated by intermittent, large-amplitude burst with an exponential distribution of both burst amplitudes and waiting times between them. The characteristic time scale of the large-amplitude bursts is approximately 15 μ {{s}}. Large-amplitude velocity fluctuations feature a slightly faster characteristic time scale and appear at a faster rate than electron density and temperature fluctuations. Describing these time series as a superposition of uncorrelated exponential pulses, we find that probability distribution functions, power spectral densities as well as auto-correlation functions of the data time series agree well with predictions from the stochastic model. The electron particle and heat fluxes present large-amplitude fluctuations. For this low-density plasma, the radial electron heat flux is dominated by convection, that is, correlations of fluctuations in the electron density and radial velocity. Hot and dense blobs contribute only a minute fraction of the total fluctuation driven heat flux.

  2. Progress towards modeling tokamak boundary plasma turbulence and understanding its role in setting divertor heat flux widths

    NASA Astrophysics Data System (ADS)

    Chen, B.; Xu, X. Q.; Xia, T. Y.; Li, N. M.; Porkolab, M.; Edlund, E.; LaBombard, B.; Terry, J.; Hughes, J. W.; Ye, M. Y.; Wan, Y. X.

    2018-05-01

    The heat flux distributions on divertor targets in H-mode plasmas are serious concerns for future devices. We seek to simulate the tokamak boundary plasma turbulence and heat transport in the edge localized mode-suppressed regimes. The improved BOUT++ model shows that not only Ip but also the radial electric field Er plays an important role on the turbulence behavior and sets the heat flux width. Instead of calculating Er from the pressure gradient term (diamagnetic Er), it is calculated from the plasma transport equations with the sheath potential in the scrape-off layer and the plasma density and temperature profiles inside the separatrix from the experiment. The simulation results with the new Er model have better agreement with the experiment than using the diamagnetic Er model: (1) The electromagnetic turbulence in enhanced Dα H-mode shows the characteristics of quasi-coherent modes (QCMs) and broadband turbulence. The mode spectra are in agreement with the phase contrast imaging data and almost has no change in comparison to the cases which use the diamagnetic Er model; (2) the self-consistent boundary Er is needed for the turbulence simulations to get the consistent heat flux width with the experiment; (3) the frequencies of the QCMs are proportional to Er, while the divertor heat flux widths are inversely proportional to Er; and (4) the BOUT++ turbulence simulations yield a similar heat flux width to the experimental Eich scaling law and the prediction from the Goldston heuristic drift model.

  3. Ultrahigh Flux Thin Film Boiling Heat Transfer Through Nanoporous Membranes.

    PubMed

    Wang, Qingyang; Chen, Renkun

    2018-05-09

    Phase change heat transfer is fundamentally important for thermal energy conversion and management, such as in electronics with power density over 1 kW/cm 2 . The critical heat flux (CHF) of phase change heat transfer, either evaporation or boiling, is limited by vapor flux from the liquid-vapor interface, known as the upper limit of heat flux. This limit could in theory be greater than 1 kW/cm 2 on a planar surface, but its experimental realization has remained elusive. Here, we utilized nanoporous membranes to realize a new "thin film boiling" regime that resulted in an unprecedentedly high CHF of over 1.2 kW/cm 2 on a planar surface, which is within a factor of 4 of the theoretical limit, and can be increased to a higher value if mechanical strength of the membranes can be improved (demonstrated with 1.85 kW/cm 2 CHF in this work). The liquid supply is achieved through a simple nanoporous membrane that supports the liquid film where its thickness automatically decreases as heat flux increases. The thin film configuration reduces the conductive thermal resistance, leads to high frequency bubble departure, and provides separate liquid-vapor pathways, therefore significantly enhances the heat transfer. Our work provides a new nanostructuring approach to achieve ultrahigh heat flux in phase change heat transfer and will benefit both theoretical understanding and application in thermal management of high power devices of boiling heat transfer.

  4. Sensors for Metering Heat Flux Area Density and Metrological Equipment for the Heat Flux Density Measurement

    NASA Astrophysics Data System (ADS)

    Doronin, D. O.

    2018-04-01

    The demand in measuring and studies of heat conduction of various media is very urgent now. This article considers the problem of heat conduction monitoring and measurement in various media and materials in any industries and branches of science as well as metrological support of the heat flux measurement equipment. The main study objects are both the sensors manufactured and facilities onto which these sensors will be installed: different cladding structures of the buildings, awnings, rocket fairings, boiler units, internal combustion engines. The Company develops and manufactures different types of heat flux sensors: thermocouple, thin-film, heterogeneous gradient as well as metrological equipment for the gauging calibration of the heat flux density measurement. The calibration shall be performed using both referencing method in the unit and by fixed setting of the heat flux in the unit. To manufacture heterogeneous heat flux gradient sensors (HHFGS) the Company developed and designed a number of units: diffusion welding unit, HHFGS cutting unit. Rather good quality HHFGS prototypes were obtained. At this stage the factory tests on the equipment for the heat flux density measurement equipment are planned. A high-sensitivity heat flux sensor was produced, now it is tested at the Construction Physics Research Institute (Moscow). It became possible to create thin-film heat flux sensors with the sensitivity not worse than that of the sensors manufactured by Captec Company (France). The Company has sufficient premises to supply the market with a wide range of sensors, to master new sensor manufacture technologies which will enable their application range.

  5. Millimeter Wavelength Observations of Galactic Sources with the Mobile Anisotropy Telescope (MAT)

    NASA Astrophysics Data System (ADS)

    Cruz, K. L.; Caldwell, R.; Devlin, M. J.; Dorwart, W. B.; Herbig, T.; Miller, A. D.; Nolta, M. R.; Page, L. A.; Puchalla, J. L.; Torbet, E.; Tran, H. T.

    1999-12-01

    The Mobile Anisotropy Telescope (MAT) has completed two observing seasons (1997 and 1998) in Chile from the Cerro Toco site. Although the primary goal of MAT was to measure anisotropy in the Cosmic Microwave Background (CMB) radiation, the chosen observation scheme also allowed daily viewing of the Galactic Plane. We present filtered maps at 30, 40 and 144 GHz of a region of the Galactic Plane which contains several millimeter-bright regions including the Carinae nebula and IRAS 11097-6102. We report the best fit brightness temperatures as well as the total flux densities in the MAT beams (0.9, 0.6 and 0.2 degrees FWHM) . The data are calibrated with respect to Jupiter whose flux is known to better than 8% in all frequency bands. This work was funded by the National Science Foundation and the Packard Foundation.

  6. Chapman Enskog-maximum entropy method on time-dependent neutron transport equation

    NASA Astrophysics Data System (ADS)

    Abdou, M. A.

    2006-09-01

    The time-dependent neutron transport equation in semi and infinite medium with linear anisotropic and Rayleigh scattering is proposed. The problem is solved by means of the flux-limited, Chapman Enskog-maximum entropy for obtaining the solution of the time-dependent neutron transport. The solution gives the neutron distribution density function which is used to compute numerically the radiant energy density E(x,t), net flux F(x,t) and reflectivity Rf. The behaviour of the approximate flux-limited maximum entropy neutron density function are compared with those found by other theories. Numerical calculations for the radiant energy, net flux and reflectivity of the proposed medium are calculated at different time and space.

  7. Temperature dependence of single-crystal elastic constants of flux-grown alpha-GaPO(4).

    PubMed

    Armand, P; Beaurain, M; Rufflé, B; Menaert, B; Papet, P

    2009-06-01

    The lattice parameter change with respect to temperature (T) has been measured using high-temperature powder X-ray diffraction techniques for high-temperature flux-grown GaPO(4) single crystals with the alpha-quartz structure. The lattice and the volume linear thermal expansion coefficients in the temperature range 303-1173 K were computed from the X-ray data. The percentage linear thermal expansions along the a and c axes at 1173 K are 1.5 and 0.51, respectively. The temperature dependence of the mass density rho of flux-grown GaPO(4) single crystals was evaluated using the volume thermal expansion coefficient alpha(V)(T) = 3.291 x 10(-5) - 2.786 x 10(-8) [T] + 4.598 x 10(-11)[T](2). Single-crystal high-resolution Brillouin spectroscopy measurements have been carried out at ambient pressure from 303 to 1123 K to determine the elastic constants C(IJ) of high-temperature flux-grown GaPO(4) material. The single-crystal elastic moduli were calculated using the sound velocities via the measured Brillouin frequency shifts Deltanu(B). These are, to our knowledge, the highest temperatures at which single-crystal elastic constants of alpha-GaPO(4) have been measured. Most of the room-temperature elastic constant values measured on flux-grown GaPO(4) material are higher than the ones found for hydrothermally grown GaPO(4) single crystals. The fourth-order temperature coefficients of both the Brillouin frequency shifts T(nuB)((n)) and the single-crystal elastic moduli T(C(IJ))((n)) were obtained. The first-order temperature coefficients of the C(IJ) are in excellent agreement with previous reports on low-temperature hydrothermally grown alpha-GaPO(4) single crystals, while small discrepancies in the higher-order temperature coefficients are observed. This is explained in terms of the OH content in the GaPO(4) network, which is an important parameter in the crystal thermal behavior.

  8. Estimation of electrical conductivity distribution within the human head from magnetic flux density measurement.

    PubMed

    Gao, Nuo; Zhu, S A; He, Bin

    2005-06-07

    We have developed a new algorithm for magnetic resonance electrical impedance tomography (MREIT), which uses only one component of the magnetic flux density to reconstruct the electrical conductivity distribution within the body. The radial basis function (RBF) network and simplex method are used in the present approach to estimate the conductivity distribution by minimizing the errors between the 'measured' and model-predicted magnetic flux densities. Computer simulations were conducted in a realistic-geometry head model to test the feasibility of the proposed approach. Single-variable and three-variable simulations were performed to estimate the brain-skull conductivity ratio and the conductivity values of the brain, skull and scalp layers. When SNR = 15 for magnetic flux density measurements with the target skull-to-brain conductivity ratio being 1/15, the relative error (RE) between the target and estimated conductivity was 0.0737 +/- 0.0746 in the single-variable simulations. In the three-variable simulations, the RE was 0.1676 +/- 0.0317. Effects of electrode position uncertainty were also assessed by computer simulations. The present promising results suggest the feasibility of estimating important conductivity values within the head from noninvasive magnetic flux density measurements.

  9. A 1420 MHz Catalog of Compact Sources in the Northern Galactic Plane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, A. R.; Leahy, D. A.; Sunstrum, C.

    We present a catalog of compact sources of radio emission at 1420 MHz in the northern Galactic plane from the Canadian Galactic Plane Survey. The catalog contains 72,758 compact sources with an angular size less than 3′ within the Galactic longitude range 52° <  ℓ  < 192° down to a 5 σ detection level of ∼1.2 mJy. Linear polarization properties are included for 12,368 sources with signals greater than 4 σ{sub QU} in the Canadian Galactic Plane Survey (CGPS) Stokes Q and U images at the position of the total intensity peak. We compare CGPS flux densities with cataloged flux densities in themore » Northern VLA Sky Survey catalog for 10,897 isolated unresolved sources with CGPS flux density greater than 4 mJy to search for sources that show variable flux density on timescales of several years. We identify 146 candidate variables that exhibit high fractional variations between the two surveys. In addition, we identify 13 candidate transient sources that have CGPS flux density above 10 mJy but are not detected in the Northern VLA Sky Survey.« less

  10. 3-D density imaging with muon flux measurements from underground galleries

    NASA Astrophysics Data System (ADS)

    Lesparre, N.; Cabrera, J.; Marteau, J.

    2017-03-01

    Atmospheric muon flux measurements provide information on subsurface density distribution. In this study, muon flux was measured underground, in the Tournemire experimental platform (France). The objective was to image the medium between the galleries and the surface and evaluate the feasibility to detect the presence of discontinuities, for example, produced by secondary subvertical faults or by karstic networks. Measurements were performed from three different sites with a partial overlap of muon trajectories, offering the possibility to seek density variations at different depths. The conversion of the measured muon flux to average density values showed global variations further analysed through a 3-D nonlinear inversion procedure. Main results are the presence of a very low density region at the level of the upper aquifer, compatible with the presence of a karstic network hosting local cavities, and the absence of secondary faults. We discuss the validity of the present results and propose different strategies to improve the accuracy of such measurements and analysis.

  11. Ion Densities in the Nightside Ionosphere of Mars: Effects of Electron Impact Ionization

    NASA Astrophysics Data System (ADS)

    Girazian, Z.; Mahaffy, P.; Lillis, R. J.; Benna, M.; Elrod, M.; Fowler, C. M.; Mitchell, D. L.

    2017-11-01

    We use observations from the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission to show how superthermal electron fluxes and crustal magnetic fields affect ion densities in the nightside ionosphere of Mars. We find that due to electron impact ionization, high electron fluxes significantly increase the CO2+, O+, and O2+ densities below 200 km but only modestly increase the NO+ density. High electron fluxes also produce distinct peaks in the CO2+, O+, and O2+ altitude profiles. We also find that superthermal electron fluxes are smaller near strong crustal magnetic fields. Consequently, nightside ion densities are also smaller near strong crustal fields because they decay without being replenished by electron impact ionization. Furthermore, the NO+/O2+ ratio is enhanced near strong crustal fields because, in the absence of electron impact ionization, O2+ is converted into NO+ and not replenished. Our results show that electron impact ionization is a significant source of CO2+, O+, and O2+ in the nightside ionosphere of Mars.

  12. Solar Illumination Control of the Polar Wind

    NASA Astrophysics Data System (ADS)

    Maes, L.; Maggiolo, R.; De Keyser, J.; André, M.; Eriksson, A. I.; Haaland, S.; Li, K.; Poedts, S.

    2017-11-01

    Polar wind outflow is an important process through which the ionosphere supplies plasma to the magnetosphere. The main source of energy driving the polar wind is solar illumination of the ionosphere. As a result, many studies have found a relation between polar wind flux densities and solar EUV intensity, but less is known about their relation to the solar zenith angle at the ionospheric origin, certainly at higher altitudes. The low energy of the outflowing particles and spacecraft charging means it is very difficult to measure the polar wind at high altitudes. We take advantage of an alternative method that allows estimations of the polar wind flux densities far in the lobes. We analyze measurements made by the Cluster spacecraft at altitudes from 4 up to 20 RE. We observe a strong dependence on the solar zenith angle in the ion flux density and see that both the ion velocity and density exhibit a solar zenith angle dependence as well. We also find a seasonal variation of the flux density.

  13. Effects of variations of stage and flux at different frequencies on the estimates using river stage tomography

    NASA Astrophysics Data System (ADS)

    Wang, Y. L.; Yeh, T. C. J.; Wen, J. C.

    2017-12-01

    This study is to investigate the ability of river stage tomography to estimate the spatial distribution of hydraulic transmissivity (T), storage coefficient (S), and diffusivity (D) in groundwater basins using information of groundwater level variations induced by periodic variations of stream stage, and infiltrated flux from the stream boundary. In order to accomplish this objective, the sensitivity and correlation of groundwater heads with respect to the hydraulic properties is first conducted to investigate the spatial characteristics of groundwater level in response to the stream variations at different frequencies. Results of the analysis show that the spatial distributions of the sensitivity of heads at an observation well in response to periodic river stage variations are highly correlated despite different frequencies. On the other hand, the spatial patterns of the sensitivity of the observed head to river flux boundaries at different frequencies are different. Specifically, the observed head is highly correlated with T at the region between the stream and observation well when the high-frequency periodic flux is considered. On the other hand, it is highly correlated with T at the region between monitoring well and the boundary opposite to the stream when the low-frequency periodic flux is prescribed to the stream. We also find that the spatial distributions of the sensitivity of observed head to S variation are highly correlated with all frequencies in spite of heads or fluxes stream boundary. Subsequently, the differences of the spatial correlations of the observed heads to the hydraulic properties under the head and flux boundary conditions are further investigated by an inverse model (i.e., successive stochastic linear estimator). This investigation uses noise-free groundwater and stream data of a synthetic aquifer, where aquifer heterogeneity is known exactly. The ability of river stage tomography is then tested with these synthetic data sets to estimate T, S, and D distribution. The results reveal that boundary flux variations with different frequencies contain different information about the aquifer characteristics while the head boundary does not.

  14. Joint-inversion of gravity data and cosmic ray muon flux to detect shallow subsurface density structure beneath volcanoes: Testing the method at a well-characterized site

    NASA Astrophysics Data System (ADS)

    Roy, M.; Lewis, M.; George, N. K.; Johnson, A.; Dichter, M.; Rowe, C. A.; Guardincerri, E.

    2016-12-01

    The joint-inversion of gravity data and cosmic ray muon flux measurements has been utilized by a number of groups to image subsurface density structure in a variety of settings, including volcanic edifices. Cosmic ray muons are variably-attenuated depending upon the density structure of the material they traverse, so measuring muon flux through a region of interest provides an independent constraint on the density structure. Previous theoretical studies have argued that the primary advantage of combining gravity and muon data is enhanced resolution in regions not sampled by crossing muon trajectories, e.g. in sensing deeper structure or structure adjacent to the region sampled by muons. We test these ideas by investigating the ability of gravity data alone and the joint-inversion of gravity and muon flux to image subsurface density structure, including voids, in a well-characterized field location. Our study area is a tunnel vault located at the Los Alamos National Laboratory within Quaternary ash-flow tuffs on the Pajarito Plateau, flanking the Jemez Volcano in New Mexico. The regional geology of the area is well-characterized (with density measurements in nearby wells) and the geometry of the tunnel and the surrounding terrain is known. Gravity measurements were made using a Lacoste and Romberg D meter and the muon detector has a conical acceptance region of 45 degrees from the vertical and track resolution of several milliradians. We obtain individual and joint resolution kernels for gravity and muon flux specific to our experimental design and plan to combine measurements of gravity and muon flux both within and above the tunnel to infer density structure. We plan to compare our inferred density structure against the expected densities from the known regional hydro-geologic framework.

  15. A Distributed Lag Autoregressive Model of Geostationary Relativistic Electron Fluxes: Comparing the Influences of Waves, Seed and Source Electrons, and Solar Wind Inputs

    NASA Astrophysics Data System (ADS)

    Simms, Laura; Engebretson, Mark; Clilverd, Mark; Rodger, Craig; Lessard, Marc; Gjerloev, Jesper; Reeves, Geoffrey

    2018-05-01

    Relativistic electron flux at geosynchronous orbit depends on enhancement and loss processes driven by ultralow frequency (ULF) Pc5, chorus, and electromagnetic ion cyclotron (EMIC) waves, seed electron flux, magnetosphere compression, the "Dst effect," and substorms, while solar wind inputs such as velocity, number density, and interplanetary magnetic field Bz drive these factors and thus correlate with flux. Distributed lag regression models show the time delay of highest influence of these factors on log10 high-energy electron flux (0.7-7.8 MeV, Los Alamos National Laboratory satellites). Multiple regression with an autoregressive term (flux persistence) allows direct comparison of the magnitude of each effect while controlling other correlated parameters. Flux enhancements due to ULF Pc5 and chorus waves are of equal importance. The direct effect of substorms on high-energy electron flux is strong, possibly due to injection of high-energy electrons by the substorms themselves. Loss due to electromagnetic ion cyclotron waves is less influential. Southward Bz shows only moderate influence when correlated processes are accounted for. Adding covariate compression effects (pressure and interplanetary magnetic field magnitude) allows wave-driven enhancements to be more clearly seen. Seed electrons (270 keV) are most influential at lower relativistic energies, showing that such a population must be available for acceleration. However, they are not accelerated directly to the highest energies. Source electrons (31.7 keV) show no direct influence when other factors are controlled. Their action appears to be indirect via the chorus waves they generate. Determination of specific effects of each parameter when studied in combination will be more helpful in furthering modeling work than studying them individually.

  16. A STATISTICAL STUDY OF THE SOLAR WIND TURBULENCE AT ION KINETIC SCALES USING THE K-FILTERING TECHNIQUE AND CLUSTER DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, O. W.; Li, X.; Jeska, L., E-mail: o.wyn.roberts@gmail.com, E-mail: xxl@aber.ac.uk

    2015-03-20

    Plasma turbulence at ion kinetic scales in the solar wind is investigated using the multi-point magnetometer data from the Cluster spacecraft. By applying the k-filtering method, we are able to estimate the full three-dimensional power spectral density P(ω{sub sc}, k) at a certain spacecraft frequency ω{sub sc} in wavevector (k) space. By using the wavevector at the maximum power in P(ω{sub sc}, k) at each sampling frequency ω{sub sc} and the Doppler shifted frequency ω{sub pla} in the solar wind frame, the dispersion plot ω{sub pla} = ω{sub pla}(k) is found. Previous studies have been limited to very few intervalsmore » and have been hampered by large errors, which motivates a statistical study of 52 intervals of solar wind. We find that the turbulence is predominantly highly oblique to the magnetic field k >> k {sub ∥}, and propagates slowly in the plasma frame with most points having frequencies smaller than the proton gyrofrequency ω{sub pla} < Ω{sub p}. Weak agreement is found that turbulence at the ion kinetic scales consists of kinetic Alfvén waves and coherent structures advected with plasma bulk velocity plus some minor more compressible components. The results suggest that anti-sunward and sunward propagating magnetic fluctuations are of similar nature in both the fast and slow solar wind at ion kinetic scales. The fast wind has significantly more anti-sunward flux than sunward flux and the slow wind appears to be more balanced.« less

  17. [Measurements of the flux densities of static magnetic fields generated by two types of dental magnetic attachments and their retentive forces].

    PubMed

    Xu, Chun; Chao, Yong-lie; Du, Li; Yang, Ling

    2004-05-01

    To measure and analyze the flux densities of static magnetic fields generated by two types of commonly used dental magnetic attachments and their retentive forces, and to provide guidance for the clinical application of magnetic attachments. A digital Gaussmeter was used to measure the flux densities of static magnetic fields generated by two types of magnetic attachments, under four circumstances: open-field circuit; closed-field circuit; keeper and magnet slid laterally for a certain distance; and existence of air gap between keeper and magnet. The retentive forces of the magnetic attachments in standard closed-field circuit, with the keeper and magnet sliding laterally for a certain distance or with a certain air gap between keeper and magnet were measured by a tensile testing machine. There were flux leakages under both the open-field circuit and closed-field circuit of the two types of magnetic attachments. The flux densities on the surfaces of MAGNEDISC 800 (MD800) and MAGFIT EX600W (EX600) magnetic attachments under open-field circuit were 275.0 mT and 147.0 mT respectively. The flux leakages under closed-field circuit were smaller than those under open-field circuit. The respective flux densities on the surfaces of MD800 and EX600 magnetic attachments decreased to 11.4 mT and 4.5 mT under closed-field circuit. The flux density around the magnetic attachment decreased as the distance from the surface of the attachment increased. When keeper and magnet slid laterally for a certain distance or when air gap existed between keeper and magnet, the flux leakage increased in comparison with that under closed-field circuit. Under the standard closed-field circuit, the two types of magnetic attachments achieved the largest retentive forces. The retentive forces of MD800 and EX600 magnetic attachments under the standard closed-field circuit were 6.20 N and 4.80 N respectively. The retentive forces decreased with the sliding distance or with the increase of air gap between keeper and magnet. The magnetic attachments have flux leakages. When they are used in patients' oral cavities, if keeper and magnet are not attached accurately, the flux leakage will increase, and at the same time the retentive force will decrease. Therefore the keeper and magnet should be attached accurately in clinical application.

  18. Muon tomography of rock density using Micromegas-TPC telescope

    NASA Astrophysics Data System (ADS)

    Hivert, Fanny; Busto, José; Gaffet, Stéphane; Ernenwein, Jean-Pierre; Brunner, Jurgen; Salin, Pierre; Decitre, Jean-Baptiste; Lázaro Roche, Ignacio; Martin, Xavier

    2014-05-01

    The knowledge of the subsurface properties is essentially obtained by geophysical methods, e.g., seismic imaging, electric prospection or gravimetry. The current work is based on a recently developed method to investigate in situ the density of rocks using a measurement of the muon flux, whose attenuation depends on the quantity of matter the particles travel through and hence on the rock density and thickness. The present project (T2DM2) aims at performing underground muon flux measurements in order to characterize spatial and temporal rock massif density variations above the LSBB underground research facility in Rustrel (France). The muon flux will be measured with a new muon telescope device using Micromegas-Time Projection Chamber (TPC) detectors. The first step of the work presented covers the muon flux simulation based on the Gaisser model (Gaisser T., 1990), for the muon flux at the ground level, and on the MUSIC code (Kudryavtsev V. A., 2008) for the propagation of muons through the rock. The results show that the muon flux distortion caused by density variations is enough significant to be observed at 500 m depth for measurement times of about one month. This time-scale is compatible with the duration of the water transfer processes within the unsaturated Karst zone where LSBB is located. The work now focuses on the optimization of the detector layout along the LSBB galleries in order to achieve the best sensitivity.

  19. Effect of the target power density on high-power impulse magnetron sputtering of copper

    NASA Astrophysics Data System (ADS)

    Kozák, Tomáš

    2012-04-01

    We present a model analysis of high-power impulse magnetron sputtering of copper. We use a non-stationary global model based on the particle and energy conservation equations in two zones (the high density plasma ring above the target racetrack and the bulk plasma region), which makes it possible to calculate time evolutions of the averaged process gas and target material neutral and ion densities, as well as the fluxes of these particles to the target and substrate during a pulse period. We study the effect of the increasing target power density under conditions corresponding to a real experimental system. The calculated target current waveforms show a long steady state and are in good agreement with the experimental results. For an increasing target power density, an analysis of the particle densities shows a gradual transition to a metal dominated discharge plasma with an increasing degree of ionization of the depositing flux. The average fraction of target material ions in the total ion flux onto the substrate is more than 90% for average target power densities higher than 500 W cm-2 in a pulse. The average ionized fraction of target material atoms in the flux onto the substrate reaches 80% for a maximum average target power density of 3 kW cm-2 in a pulse.

  20. Extraterrestrial intelligence: an observational approach.

    PubMed

    Murray, B; Gulkis, S; Edelson, R E

    1978-02-03

    The microwave region of the electromagnetic spectrum, a plausible regime for signals from extraterrestrial intelligences, is largely unexplored. With new technology, particularly in data processing and low-noise reception, surveys can be conducted over broad regions of frequency and space with existing antennas at flux densities plausible for interstellar signals. An all-sky, broad-band survey lasting perhaps 5 years can be structured so that even negative results would establish significant boundaries on the regime in which such signals may be found. The technology and techniques developed and much of the data acquired would be applicable to radio astronomy and deep-space communications.

  1. Observations of ULF oscillations in the ion fluxes at small pitch angles with ATS 6. [low energy particle detection

    NASA Technical Reports Server (NTRS)

    Su, S.-Y.; Mcpherron, R. L.; Konradi, A.; Fritz, T. A.

    1980-01-01

    The ultra-low-frequency modulation of ion flux densities at small pitch angles observed by ATS 6 is examined, with particular attention given to a detailed analysis of a representative event. ULF modulation events with maximum modulation at small pitch angles were identified 14 times during the first eight months of operation of the NOAA low-energy particle detector on ATS 6. For the event of October 23, 1974, maximum flux modulation, with a maximum/minimum intensity ratio of 3.7, was observed in the 100 to 150 keV detector at an angle of 32 deg to the ambient field. Spectral analysis of magnetic field data reveals a right elliptically polarized magnetic perturbation with a 96-sec period and a 5-gamma rms amplitude, propagating in the dipole meridian at an angle of about 15 deg to the ambient field and the dipole axis. Proton flux modulation is found to lag the field by up to 180 deg for the lowest-energy channel. Observations are compared with the drift wave, MHD slow wave, and bounce resonant interaction associated with transverse wave models, and it is found that none of the wave models can adequately account for all of the correlated particle and field oscillations.

  2. Mass Spectrometric and Langmuir Probe Measurements in Inductively Coupled Plasmas in Ar, CHF3/Ar and CHF3/Ar/O2 Mixtures

    NASA Technical Reports Server (NTRS)

    Kim, J. S.; Rao, M. V. V. S.; Cappelli, M. A.; Sharma, S. P.; Meyyappan, M.; Arnold, Jim (Technical Monitor)

    2000-01-01

    Absolute fluxes and energy distributions of ions in inductively coupled plasmas of Ar, CHF3/Ar, and CHF3/Ar/O2 have been measured. These plasmas were generated in a Gaseous Electronics Conference (GEC) cell modified for inductive coupling at pressures 10-50 mTorr and 100-300 W of 13.56 MHz radio frequency (RF) power in various feedgas mixtures. In pure Ar plasmas, the Ar(+) flux increases linearly with pressure as well as RF-power. Total ion flux in CHF3 mixtures decreases with increase in pressure and also CHF3 concentration. Relative ion fluxes observed in the present studies are analyzed with the help of available cross sections for electron impact ionization and charge-exchange ion-molecule reactions. Measurements of plasma potential, electron and ion number densities, electron energy distribution function, and mean electron energy have also been made in the center of the plasma with a RF compensated Langmuir probe. Plasma potential values are compared with the mean ion energies determined from the measured ion energy distributions and are consistent. Electron temperature, plasma potential, and mean ion energy vary inversely with pressure, but increase with CHF3 content in the mixture.

  3. Apex Dips of Experimental Flux Ropes: Helix or Cusp?

    NASA Astrophysics Data System (ADS)

    Wongwaitayakornkul, Pakorn; Haw, Magnus A.; Li, Hui; Li, Shengtai; Bellan, Paul M.

    2017-10-01

    We present a new theory for the presence of apex dips in certain experimental flux ropes. Previously such dips were thought to be projections of a helical loop axis generated by the kink instability. However, new evidence from experiments and simulations suggest that the feature is a 2D cusp rather than a 3D helix. The proposed mechanism for cusp formation is a density pileup region generated by nonlinear interaction of neutral gas cones emitted from fast-gas nozzles. The results indicate that density perturbations can result in large distortions of an erupting flux rope, even in the absence of significant pressure or gravitational forces. The density pileup at the apex also suppresses the m = 1 kink mode by acting as a stationary node. Consequently, more accurate density profiles should be considered when attempting to model the stability and shape of solar and astrophysical flux ropes.

  4. Apex Dips of Experimental Flux Ropes: Helix or Cusp?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wongwaitayakornkul, Pakorn; Haw, Magnus A.; Bellan, Paul M.

    We present a new theory for the presence of apex dips in certain experimental flux ropes. Previously such dips were thought to be projections of a helical loop axis generated by the kink instability. However, new evidence from experiments and simulations suggest that the feature is a 2D cusp rather than a 3D helix. The proposed mechanism for cusp formation is a density pileup region generated by nonlinear interaction of neutral gas cones emitted from fast-gas nozzles. The results indicate that density perturbations can result in large distortions of an erupting flux rope, even in the absence of significant pressuremore » or gravitational forces. The density pileup at the apex also suppresses the m = 1 kink mode by acting as a stationary node. Consequently, more accurate density profiles should be considered when attempting to model the stability and shape of solar and astrophysical flux ropes.« less

  5. Magnetic properties measurement of soft magnetic composite material (SOMALOY 700) by using 3-D tester

    NASA Astrophysics Data System (ADS)

    Asari, Ashraf; Guo, Youguang; Zhu, Jianguo

    2017-08-01

    Core losses of rotating electrical machine can be predicted by identifying the magnetic properties of the magnetic material. The magnetic properties should be properly measured since there are some variations of vector flux density in the rotating machine. In this paper, the SOMALOY 700 material has been measured under x, y and z- axes flux density penetration by using the 3-D tester. The calibrated sensing coils are used in detecting the flux densities which have been generated by the Labview software. The measured sensing voltages are used in obtaining the magnetic properties of the sample such as magnetic flux density B, magnetic field strength H, hysteresis loop which can be used to calculate the total core loss of the sample. The results of the measurement are analyzed by using the Mathcad software before being compared to another material.

  6. High density operation for reactor-relevant power exhaust

    NASA Astrophysics Data System (ADS)

    Wischmeier, M.; ASDEX Upgrade Team; Jet Efda Contributors

    2015-08-01

    With increasing size of a tokamak device and associated fusion power gain an increasing power flux density towards the divertor needs to be handled. A solution for handling this power flux is crucial for a safe and economic operation. Using purely geometric arguments in an ITER-like divertor this power flux can be reduced by approximately a factor 100. Based on a conservative extrapolation of current technology for an integrated engineering approach to remove power deposited on plasma facing components a further reduction of the power flux density via volumetric processes in the plasma by up to a factor of 50 is required. Our current ability to interpret existing power exhaust scenarios using numerical transport codes is analyzed and an operational scenario as a potential solution for ITER like divertors under high density and highly radiating reactor-relevant conditions is presented. Alternative concepts for risk mitigation as well as strategies for moving forward are outlined.

  7. Lamination effects on a 3D model of the magnetic core of power transformers

    NASA Astrophysics Data System (ADS)

    Poveda-Lerma, Antonio; Serrano-Callergues, Guillermo; Riera-Guasp, Martin; Pineda-Sanchez, Manuel; Puche-Panadero, Ruben; Perez-Cruz, Juan

    2017-12-01

    In this paper the lamination effect on the model of a power transformer's core with stacked E-I structure is analyzed. The distribution of the magnetic flux in the laminations depends on the stacking method. In this work it is shown, using a 3D FEM model and an experimental prototype, that the non-uniform distribution of the flux in a laminated E-I core with alternate-lap joint stack increases substantially the average value of the magnetic flux density in the core, compared with a butt joint stack. Both the simulated model and the experimental tests show that the presence of constructive air-gaps in the E-I junctions gives rise to a zig-zag flux in the depth direction. This inter-lamination flux reduces the magnetic flux density in the I-pieces and increases substantially the magnetic flux density in the E-pieces, with highly saturated points that traditional 2D analysis cannot reproduce. The relation between the number of laminations included in the model, and the computational resourses needed to build it, is also evaluated in this work.

  8. Effect of an External Magnetic Flux on Antitumor Antibiotic Neocarzinostatin Yield by Streptomyces carzinostaticus var. F-41

    NASA Astrophysics Data System (ADS)

    Kudo, Kozo; Yoshida, Yuko; Yoshimura, Noboru; Ishida, Nakao

    1993-11-01

    The yield of the antitumor antibiotic neocarzinostatin (NCS), produced by Streptomyces carzinostaticus var. F-41, was sensitive to an external magnetic flux. When this strain was cultivated at 28°C in a NCS-producing medium under various magnetic flux densities, good NCS yield was observed at below 250 G magnetic flux density during the exponential growth phase as compared with that obtained in the same medium without magnetic flux, but was not observed at more than 500 G. However, no definite effect on the physiological characteristics and carbohydrate utilization of this strain, and primary physicochemical properties of NCS from magnetic flux could be detected.

  9. An Innovative Modeling and Measurement Approach to Improve Rice Water Use Efficiency in California

    NASA Astrophysics Data System (ADS)

    Montazar, A.; Little, C.; Rejmanek, H.; Tindula, G.; Snyder, R. L.

    2014-12-01

    California is amongst the top rice producing states in the USA, and more than 95 percent of California's rice is grown in the Sacramento Valley. Based on older literature, the rice water requirement (ETc), ranges between 914 and 1,100 mm. In this study, the actual rice water requirement was measured using the residual of the energy balance method over three paddy rice fields during 2011-2013 seasons in the Sacramento Valley. Net radiation and ground heat flux density were measured, and both eddy covariance (EC) and the surface renewal (SR) technique were employed to determine the sensible heat flux density. The surface renewal method uses high frequency temperature measurements from fine wire thermocouples above the canopy. Mean amplitude and duration of the ramps over half hour periods were determined using a structure function and the characteristics are employed to estimate the direction and magnitude of sensible heat flux using the ratio of the amplitude to the ramp duration as the change in temperature per unit time and the volumetric heat capacity of the air to estimate the magnitude of the heat flux. In the study, 76.2 mm diameter chromel-constantan thermocouples were used to measure high frequency temperature at 10 Hz. The results indicate that there is considerable variability in rice water use both spatially and temporally. The average three-year measured ET of the experimental fields located in Butte County was 734 and 725 mm; and in Colusa County was 771 mm. A typical crop coefficient (Kc) curve was derived from the measured ETc and reference ET (ETo) data. Spatial estimates of monthly climate data from the Sacramento Valley were used to calculate monthly mean ETo, and smooth curve fits of the monthly data gave estimates of typical daily ETo. The daily ETc was calculated as the product of ETo and Kc, and seasonal ETc was calculated by summing the daily ETc values. The results reveal that the seasonal rice ETc was less than earlier estimates. Surface renewal equipment is relatively inexpensive and it provides rice growers with remote monitoring of water consumption by tracking ETc of the paddy fields; and hence assists them to improve rice water use efficiency. The information provided here is useful for determining volumes of water for water transfers and insuring adequate water supplies for optimal production.

  10. Detection of air-gap eccentricity and broken-rotor bar conditions in a squirrel-cage induction motor using the radial flux sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, Don-Ha; Woo, Byung-Chul; Sun, Jong-Ho

    2008-04-01

    A new method for detecting eccentricity and broken rotor bar conditions in a squirrel-cage induction motor is proposed. Air-gap flux variation analysis is done using search coils, which are inserted at stator slots. Using this method, the leakage flux in radial direction can be directly detected. Using finite element method, the air-gap flux variation is accurately modeled and analyzed. From the results of the simulation, a motor under normal condition shows maximum magnetic flux density of 1.3 T. On the other hand, the eccentric air-gap condition displays about 1.1 T at 60 deg. and 1.6 T at 240 deg. Amore » difference of flux density is 0.5 T in the abnormal condition, whereas no difference is detected in the normal motor. In the broken rotor bar conditions, the flux densities at 65 deg. and 155 deg. are about 0.4 T and 0.8 T, respectively. These simulation results are coincided with those of experiment. Consequently, the measurement of the magnetic flux at air gap is one of effective ways to discriminate the faulted conditions of the eccentricity and broken rotor bars.« less

  11. INTERPRETING FLUX FROM BROADBAND PHOTOMETRY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Peter J.; Breeveld, Alice; Roming, Peter W. A.

    2016-10-01

    We discuss the transformation of observed photometry into flux for the creation of spectral energy distributions (SED) and the computation of bolometric luminosities. We do this in the context of supernova studies, particularly as observed with the Swift spacecraft, but the concepts and techniques should be applicable to many other types of sources and wavelength regimes. Traditional methods of converting observed magnitudes to flux densities are not very accurate when applied to UV photometry. Common methods for extinction and the integration of pseudo-bolometric fluxes can also lead to inaccurate results. The sources of inaccuracy, though, also apply to other wavelengths.more » Because of the complicated nature of translating broadband photometry into monochromatic flux densities, comparison between observed photometry and a spectroscopic model is best done by forward modeling the spectrum into the count rates or magnitudes of the observations. We recommend that integrated flux measurements be made using a spectrum or SED which is consistent with the multi-band photometry rather than converting individual photometric measurements to flux densities, linearly interpolating between the points, and integrating. We also highlight some specific areas where the UV flux can be mischaracterized.« less

  12. Atmospheric blocking as a traffic jam in the jet stream

    NASA Astrophysics Data System (ADS)

    Nakamura, N.; Huang, S. Y.

    2017-12-01

    It is demonstrated using the ERA-Interim product that synoptic to intraseasonal variabilities of extratropical circulation in the boreal storm track regions are strongly affected by the zonal convergence of the column-integrated eastward flux of local wave activity (LWA). In particular, from the multi-year daily samples of LWA fluxes, we find that the wintertime zonal LWA flux in the jet exit regions tends to maximize for an intermediate value of column-averaged LWA. This is because an increasing LWA decelerates the zonal flow, eventually weakening the eastward advection of LWA. From theory we argue that large wave events on the decreasing side of the flux curve with increasing LWA cannot be maintained as a stable steady state. Consistent with this argument, observed states corresponding to that side of flux curve often exhibit local wave breaking and blocking events. A close parallelism exists for the traffic flow problem, in which the traffic flux (traffic density times traffic speed) is often observed to maximize for an intermediate value of traffic density. This is because the traffic speed is controlled not only by the imposed speed limit but also by the traffic density — an increasingly heavy traffic slows down the flow naturally and eventually decreases the flux. Once the flux starts to decrease with an increasing traffic density, a traffic jam kicks in suddenly (Lighthill and Whitham 1955, Richards 1956). The above idea is demonstrated by a simple conceptual model based on the equivalent barotropic PV contour design (Nakamura and Huang 2017, JAS), which predicts a threshold of blocking onset. The idea also suggests that the LWA that gives the `flux capacity,' i.e., the maximum LWA flux at a given location, is a useful predictor of local wave breaking/block formation.

  13. An A-train climatology of extratropical cyclone clouds and precipitation

    NASA Astrophysics Data System (ADS)

    Naud, C. M.; Booth, J.; Del Genio, A. D.; van den Heever, S. C.; Posselt, D. J.

    2016-12-01

    It is demonstrated using the ERA-Interim product that synoptic to intraseasonal variabilities of extratropical circulation in the boreal storm track regions are strongly affected by the zonal convergence of the column-integrated eastward flux of local wave activity (LWA). In particular, from the multi-year daily samples of LWA fluxes, we find that the wintertime zonal LWA flux in the jet exit regions tends to maximize for an intermediate value of column-averaged LWA. This is because an increasing LWA decelerates the zonal flow, eventually weakening the eastward advection of LWA. From theory we argue that large wave events on the decreasing side of the flux curve with increasing LWA cannot be maintained as a stable steady state. Consistent with this argument, observed states corresponding to that side of flux curve often exhibit local wave breaking and blocking events. A close parallelism exists for the traffic flow problem, in which the traffic flux (traffic density times traffic speed) is often observed to maximize for an intermediate value of traffic density. This is because the traffic speed is controlled not only by the imposed speed limit but also by the traffic density — an increasingly heavy traffic slows down the flow naturally and eventually decreases the flux. Once the flux starts to decrease with an increasing traffic density, a traffic jam kicks in suddenly (Lighthill and Whitham 1955, Richards 1956). The above idea is demonstrated by a simple conceptual model based on the equivalent barotropic PV contour design (Nakamura and Huang 2017, JAS), which predicts a threshold of blocking onset. The idea also suggests that the LWA that gives the `flux capacity,' i.e., the maximum LWA flux at a given location, is a useful predictor of local wave breaking/block formation.

  14. Density Convection near Radiating ICRF Antennas and its Effect on the Coupling of Lower Hybrid Waves

    NASA Astrophysics Data System (ADS)

    Ekedahl, A.; Colas, L.; Mayoral, M.-L.; Beaumont, B.; Bibet, Ph.; Brémond, S.; Kazarian, F.; Mailloux, J.; Noterdaeme, J.-M.; Efda-Jet Contributors

    2003-12-01

    Combined operation of Lower Hybrid (LH) and Ion Cyclotron Resonance Frequency (ICRF) waves can result in a degradation of the LH wave coupling, as observed both in the Tore Supra and JET tokamaks. The reflection coefficient on the part of the LH launcher magnetically connected to the powered ICRF antenna increases, suggesting a local decrease in the electron density in the connecting flux tubes. This has been confirmed by Langmuir probe measurements on the LH launchers in the latest Tore Supra experiments. Moreover, recent experiments in JET indicate that the LH coupling degradation depends on the ICRF power and its launched k//-spectrum. The 2D density distribution around the Tore Supra ICRF antennas has been modelled with the CELLS-code, balancing parallel losses with diffusive transport and sheath induced E×B convection, obtained from RF field mapping using the ICANT-code. The calculations are in qualitative agreement with the experimental observations, i.e. density depletion is obtained, localised mainly in the antenna shadow, and dependent on ICRF power and antenna spectrum.

  15. Millisecond radio spikes from the dwarf M flare star AD Leonis

    NASA Technical Reports Server (NTRS)

    Lang, K. R.; Willson, R. F.

    1986-01-01

    Arecibo radio observations of millisec bursts of radio signals at 1415 MHz from AD Leonis are reported. The observed burst had an ellipticity of 0.95, 50-100 percent circular polarization, and a flux density maximum of 30 mJy. The 50 sec burst featured five quasi-periodic oscillations with a mean periodicity of about 3.2 sec. A second, less intense burst that occurred 20 sec later was 100 percent circularly polarized. The area emitting the bursts covered an estimated 0.005 of the radius of AD Leonis and had an electron density of 6 billion/cu cm and a longitudinal magnetic field strength of 250 gauss, if the source was an electron-cyclotron maser. A coherent plasma source would require, for the first harmonic, an electron density of 20 billion/cu cm and a magnetic field much less than 500 gauss. A second harmonic of the plasma frequency would require an electron density of 6 billion/cu cm and a field strength much less than 250 gauss. The possibility that the source was periodic oscillations in coronal loops is discussed.

  16. Aeolian transport in the field: A comparison of the effects of different surface treatments

    NASA Astrophysics Data System (ADS)

    Dong, Zhibao; Lv, Ping; Zhang, Zhengcai; Qian, Guangqiang; Luo, Wanyin

    2012-05-01

    Aeolian transport represents the result of wind-surface interactions, and therefore depends strongly on variations in the characteristics of the sediment surface. We conducted field observations of aeolian transport of typical dune sand in three 80 m × 80 m plots with different surface treatments: gravel-covered sand, enclosed shifting sand, and open (unprotected) shifting sand. The study was performed at the Shapotou Aeolian Experiment Site in the southeastern part of China's Tengger Desert to compare the effects of these different surface treatments on aeolian transport. To do so, we analyzed the flux density profiles and transport rates above each surface. The flux density profiles for all three treatments followed the exponential decay law that was proposed by most previous researchers to describe the saltation flux density profiles. Coefficients of the exponential decay function were defined as a function of the surface and the wind velocity. The enclosed and open plots with shifting sand had similar flux density profiles, but the flux density above gravel-covered plots showed that transport decayed more slowly with increasing height, producing flux density profiles with a higher average saltation height. The transport rate above the three treatment plots tended to increase proportionally with the cube of the mean wind velocity and with the maximum wind velocity during the observation period, but was more strongly correlated with the square of drift potential. Transport rates above the plot with open shifting sand were greater than those above the plots with enclosed shifting sand and the gravel-covered plot.

  17. Evidence for a continuous spectrum of equatorial waves in the Indian Ocean

    NASA Astrophysics Data System (ADS)

    Eriksen, Charles C.

    1980-06-01

    Seven-month records of current and temperature measurements from a moored array centered at 53°E on the equator in the Indian Ocean are consistent with a continuous spectrum of equatorially trapped internal inertial-gravity, mixed Rossby-gravity, and Kelvin waves. A model spectrum of free linear waves analogous to those for mid-latitude internal gravity waves is used to compute spectra of observed quantities at depths greater than about 2000 m. Model parameters are adjusted to fit general patterns in the observed spectra over periods from roughly 2 days to 1 month. Measurements at shallower depths presumably include forced motions which we have not attempted to model. This `straw-person' spectrum is consistent with the limited data available. The model spectru Ē (n, m, ω) = K · B(m) · C(n, ω), where Ē is an average local energy density in the equatorial wave guide which has amplitude K, wave number shape B(m) ∝ (1 + m/m*)-3, where m is vertical mode number and the bandwidth parameter m* is between 4 and 8, and frequency shape C(n, ω) ∝ [(2n + 1 + s2)½ · σ3]-1 where n is meridional mode number, and s and σ are dimensionless zonal wave number and frequency related by the usual dispersion relation. The scales are (β/cm)½ and (β · cm)½ for horizontal wave number and frequency, where cm is the Kelvin wave speed of the vertical mode m. At each frequency and vertical wave number, energy is partitioned equally among the available inertial gravity modes so that the field tends toward horizontal isotropy at high frequency. The transition between Kelvin and mixed Rossby-gravity motion at low frequency and inertial-gravity motion at high frequency occurs at a period of roughly 1 week. At periods in the range 1-3 weeks, the model spectrum which fits the observations suggests that mixed Rossby-gravity motion dominates; at shorter periods gravity motion dominates. The model results are consistent with the low vertical coherence lengths observed (roughly 80 m). Horizontal coherence over 2 km is consistent with isotropic energy flux. Evidence for net zontal energy flux is not found in this data, and the presence of a red wave number shape suggests that net flux will be difficult to observe from modest moored arrays. The equatorial wave spectrum does not match across the diurnal and semidiurnal tides to the high-frequency internal wave spectrum (the latter is roughly 1 decade higher).

  18. LETTER TO THE EDITOR: The quasi-coherent signature of enhanced Dα H-mode in Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Snipes, J. A.; La Bombard, B.; Greenwald, M.; Hutchinson, I. H.; Irby, J.; Lin, Y.; Mazurenko, A.; Porkolab, M.

    2001-04-01

    The steady-state H-mode regime found at moderate to high density in Alcator C-Mod, known as enhanced Dα (EDA) H-mode, appears to be maintained by a continuous quasi-coherent (QC) mode in the steep edge gradient region. Large amplitude density and magnetic fluctuations with typical frequencies of about 100 kHz are driven by the QC mode. These fluctuations are measured in the steep edge gradient region by inserting a fast-scanning probe containing two poloidally separated Langmuir probes and a poloidal field pick-up coil. As the probe approaches the plasma edge, clear magnetic fluctuations were measured within about 2 cm of the last-closed flux surface (LCFS). The mode amplitude falls off rapidly with distance from the plasma centre with an exponential decay length of kr≈1.5 cm-1, measured 10 cm above the outboard midplane. The root-mean-square amplitude of the fluctuation extrapolated to the LCFS was θ≈5 G. The density fluctuations, on the other hand, were visible on the Langmuir probe only when it was within a few millimetres of the LCFS. The potential and density fluctuations were sufficiently in phase to enhance particle transport at the QC mode frequency. These results show that the QC signature of the EDA H-mode is an electromagnetic mode that appears to be responsible for the enhanced particle transport in the plasma edge.

  19. Uncertainty of streamwater solute fluxes in five contrasting headwater catchments including model uncertainty and natural variability (Invited)

    NASA Astrophysics Data System (ADS)

    Aulenbach, B. T.; Burns, D. A.; Shanley, J. B.; Yanai, R. D.; Bae, K.; Wild, A.; Yang, Y.; Dong, Y.

    2013-12-01

    There are many sources of uncertainty in estimates of streamwater solute flux. Flux is the product of discharge and concentration (summed over time), each of which has measurement uncertainty of its own. Discharge can be measured almost continuously, but concentrations are usually determined from discrete samples, which increases uncertainty dependent on sampling frequency and how concentrations are assigned for the periods between samples. Gaps between samples can be estimated by linear interpolation or by models that that use the relations between concentration and continuously measured or known variables such as discharge, season, temperature, and time. For this project, developed in cooperation with QUEST (Quantifying Uncertainty in Ecosystem Studies), we evaluated uncertainty for three flux estimation methods and three different sampling frequencies (monthly, weekly, and weekly plus event). The constituents investigated were dissolved NO3, Si, SO4, and dissolved organic carbon (DOC), solutes whose concentration dynamics exhibit strongly contrasting behavior. The evaluation was completed for a 10-year period at five small, forested watersheds in Georgia, New Hampshire, New York, Puerto Rico, and Vermont. Concentration regression models were developed for each solute at each of the three sampling frequencies for all five watersheds. Fluxes were then calculated using (1) a linear interpolation approach, (2) a regression-model method, and (3) the composite method - which combines the regression-model method for estimating concentrations and the linear interpolation method for correcting model residuals to the observed sample concentrations. We considered the best estimates of flux to be derived using the composite method at the highest sampling frequencies. We also evaluated the importance of sampling frequency and estimation method on flux estimate uncertainty; flux uncertainty was dependent on the variability characteristics of each solute and varied for different reporting periods (e.g. 10-year, study period vs. annually vs. monthly). The usefulness of the two regression model based flux estimation approaches was dependent upon the amount of variance in concentrations the regression models could explain. Our results can guide the development of optimal sampling strategies by weighing sampling frequency with improvements in uncertainty in stream flux estimates for solutes with particular characteristics of variability. The appropriate flux estimation method is dependent on a combination of sampling frequency and the strength of concentration regression models. Sites: Biscuit Brook (Frost Valley, NY), Hubbard Brook Experimental Forest and LTER (West Thornton, NH), Luquillo Experimental Forest and LTER (Luquillo, Puerto Rico), Panola Mountain (Stockbridge, GA), Sleepers River Research Watershed (Danville, VT)

  20. Variability of fractal dimension of solar radio flux

    NASA Astrophysics Data System (ADS)

    Bhatt, Hitaishi; Sharma, Som Kumar; Trivedi, Rupal; Vats, Hari Om

    2018-04-01

    In the present communication, the variation of the fractal dimension of solar radio flux is reported. Solar radio flux observations on a day to day basis at 410, 1415, 2695, 4995, and 8800 MHz are used in this study. The data were recorded at Learmonth Solar Observatory, Australia from 1988 to 2009 covering an epoch of two solar activity cycles (22 yr). The fractal dimension is calculated for the listed frequencies for this period. The fractal dimension, being a measure of randomness, represents variability of solar radio flux at shorter time-scales. The contour plot of fractal dimension on a grid of years versus radio frequency suggests high correlation with solar activity. Fractal dimension increases with increasing frequency suggests randomness increases towards the inner corona. This study also shows that the low frequency is more affected by solar activity (at low frequency fractal dimension difference between solar maximum and solar minimum is 0.42) whereas, the higher frequency is less affected by solar activity (here fractal dimension difference between solar maximum and solar minimum is 0.07). A good positive correlation is found between fractal dimension averaged over all frequencies and yearly averaged sunspot number (Pearson's coefficient is 0.87).

  1. Horizontal density-gradient effects on simulation of flow and transport in the Potomac Estuary

    USGS Publications Warehouse

    Schaffranek, Raymond W.; Baltzer, Robert A.; ,

    1990-01-01

    A two-dimensional, depth-integrated, hydrodynamic/transport model of the Potomac Estuary between Indian Head and Morgantown, Md., has been extended to include treatment of baroclinic forcing due to horizontal density gradients. The finite-difference model numerically integrates equations of mass and momentum conservation in conjunction with a transport equation for heat, salt, and constituent fluxes. Lateral and longitudinal density gradients are determined from salinity distributions computed from the convection-diffusion equation and an equation of state that expresses density as a function of temperature and salinity; thus, the hydrodynamic and transport computations are directly coupled. Horizontal density variations are shown to contribute significantly to momentum fluxes determined in the hydrodynamic computation. These fluxes lead to enchanced tidal pumping, and consequently greater dispersion, as is evidenced by numerical simulations. Density gradient effects on tidal propagation and transport behavior are discussed and demonstrated.

  2. A Strong Radio Brightening at the Jet Base of M 87 during the Elevated Very High Energy Gamma-Ray State in 2012

    NASA Astrophysics Data System (ADS)

    Hada, K.; Giroletti, M.; Kino, M.; Giovannini, G.; D'Ammando, F.; Cheung, C. C.; Beilicke, M.; Nagai, H.; Doi, A.; Akiyama, K.; Honma, M.; Niinuma, K.; Casadio, C.; Orienti, M.; Krawczynski, H.; Gómez, J. L.; Sawada-Satoh, S.; Koyama, S.; Cesarini, A.; Nakahara, S.; Gurwell, M. A.

    2014-06-01

    We report our intensive, high angular resolution radio monitoring observations of the jet in M 87 with the VLBI Exploration of Radio Astrometry (VERA) and the European VLBI Network (EVN) from 2011 February to 2012 October, together with contemporaneous high-energy (100 MeV 100 GeV) γ rays by VERITAS. We detected a remarkable (up to ~70%) increase of the radio flux density from the unresolved jet base (radio core) with VERA at 22 and 43 GHz coincident with the VHE activity. Meanwhile, we confirmed with EVN at 5 GHz that the peculiar knot, HST-1, which is an alternative favored γ-ray production site located at gsim120 pc from the nucleus, remained quiescent in terms of its flux density and structure. These results in the radio bands strongly suggest that the VHE γ-ray activity in 2012 originates in the jet base within 0.03 pc or 56 Schwarzschild radii (the VERA spatial resolution of 0.4 mas at 43 GHz) from the central supermassive black hole. We further conducted VERA astrometry for the M 87 core at six epochs during the flaring period, and detected core shifts between 22 and 43 GHz, a mean value of which is similar to that measured in the previous astrometric measurements. We also discovered a clear frequency-dependent evolution of the radio core flare at 43, 22, and 5 GHz the radio flux density increased more rapidly at higher frequencies with a larger amplitude, and the light curves clearly showed a time-lag between the peaks at 22 and 43 GHz, the value of which is constrained to be within ~35-124 days. This indicates that a new radio-emitting component was created near the black hole in the period of the VHE event, and then propagated outward with progressively decreasing synchrotron opacity. By combining the obtained core shift and time-lag, we estimated an apparent speed of the newborn component propagating through the opaque region between the cores at 22 and 43 GHz. We derived a sub-luminal speed (less than ~0.2c) for this component. This value is significantly slower than the super-luminal (~1.1c) features that appeared from the core during the prominent VHE flaring event in 2008, suggesting that stronger VHE activity can be associated with the production of a higher Lorentz factor jet in M 87.

  3. A Strong Radio Brightening At The Jet Base Of M 87 During The Elevated Very High Energy Gamma-Ray State In 2012

    DOE PAGES

    Hada, K.; Giroletti, M.; Kino, M.; ...

    2014-06-04

    We report our intensive, high-angular-resolution radio monitoring observations of the jet in M 87 with the VLBI Exploration of Radio Astrometry (VERA) and the European VLBI Network (EVN) from February 2011 to October 2012, together with contemporaneous high-energy (HE; 100 MeV< E <100 GeV) -ray light curves obtained by the Fermi Large Area Telescope (LAT). During this period (specifically from February 2012 to March 2012), an elevated level of the M 87 flux is reported at very-high-energy (VHE; E > 100 GeV) -rays by VERITAS. We detected a remarkable (up to ~70%) increase of the radio flux density from themore » unresolved jet base (radio core) with VERA at 22 and 43 GHz coincident with the VHE activity. Meanwhile, we confirmed with EVN at 5 GHz that the peculiar knot HST-1, which is an alternative favored -ray production site located at &120 pc from the nucleus, remained quiescent in terms of its flux density and structure. These results in the radio bands strongly suggest that the VHE -ray activity in 2012 originates in the jet base within 0.03 pc or 56 Schwarzschild radii (the VERA spatial resolution of 0.4 mas at 43 GHz) from the central supermassive black hole. We further conducted VERA astrometry for the M 87 core at six epochs during the flaring period, and detected core shifts between 22 and 43 GHz, a mean value of which is similar to that measured in the previous astrometric measurements. We also discovered a clear frequency-dependent evolution of the radio core flare at 43, 22 and 5 GHz; the radio flux density increased more rapidly at higher frequencies with a larger amplitude, and the light curves clearly showed a time-lag between the peaks at 22 and 43 GHz, the value of which is constrained to be within ~ 35 - 124 days. This indicates that a new radio-emitting component was created near the black hole in the period of the VHE event, and then propagated outward with progressively decreasing synchrotron opacity. By combining the obtained core shift and time-lag, we estimated an apparent speed of the newborn component propagating through the opaque region between the cores at 22 and 43 GHz. We derived a sub-luminal speed (less than ~0.2c) for this component. This value is significantly slower than the super-luminal (~1.1c) features that appeared from the core during the prominent VHE flaring event in 2008, suggesting that the stronger VHE activity can be associated with the production of the higher Lorentz factor jet in M 87.« less

  4. Limits on fast radio bursts at 145 MHz with ARTEMIS, a real-time software backend

    NASA Astrophysics Data System (ADS)

    Karastergiou, A.; Chennamangalam, J.; Armour, W.; Williams, C.; Mort, B.; Dulwich, F.; Salvini, S.; Magro, A.; Roberts, S.; Serylak, M.; Doo, A.; Bilous, A. V.; Breton, R. P.; Falcke, H.; Grießmeier, J.-M.; Hessels, J. W. T.; Keane, E. F.; Kondratiev, V. I.; Kramer, M.; van Leeuwen, J.; Noutsos, A.; Osłowski, S.; Sobey, C.; Stappers, B. W.; Weltevrede, P.

    2015-09-01

    Fast radio bursts (FRBs) are millisecond radio signals that exhibit dispersion larger than what the Galactic electron density can account for. We have conducted a 1446 h survey for FRBs at 145 MHz, covering a total of 4193 deg2 on the sky. We used the UK station of the low frequency array (LOFAR) radio telescope - the Rawlings Array - accompanied for a majority of the time by the LOFAR station at Nançay, observing the same fields at the same frequency. Our real-time search backend, Advanced Radio Transient Event Monitor and Identification System - ARTEMIS, utilizes graphics processing units to search for pulses with dispersion measures up to 320 cm-3 pc. Previous derived FRB rates from surveys around 1.4 GHz, and favoured FRB interpretations, motivated this survey, despite all previous detections occurring at higher dispersion measures. We detected no new FRBs above a signal-to-noise threshold of 10, leading to the most stringent upper limit yet on the FRB event rate at these frequencies: 29 sky-1 d-1 for five ms-duration pulses above 62 Jy. The non-detection could be due to scatter-broadening, limitations on the volume and time searched, or the shape of FRB flux density spectra. Assuming the latter and that FRBs are standard candles, the non-detection is compatible with the published FRB sky rate, if their spectra follow a power law with frequency (∝ να), with α ≳ +0.1, demonstrating a marked difference from pulsar spectra. Our results suggest that surveys at higher frequencies, including the low frequency component of the Square Kilometre Array, will have better chances to detect, estimate rates and understand the origin and properties of FRBs.

  5. VLF and HF Plasma Waves Associated with Spread-F Plasma Depletions Observed on the C/NOFS Satellite

    NASA Technical Reports Server (NTRS)

    Pfaff, Robert; Freudenreich, H.; Schuck, P.; Klenzing, J.

    2011-01-01

    The C/NOFS spacecraft frequently encounters structured plasma depletions associated with equatorial spread-F along its trajectory that varies between 401 km perigee and 867 km apogee in the low latitude ionosphere. We report two classes of plasma waves detected with the Vector Electric Field Investigation (VEFI) that appear when the plasma frequency is less than the electron gyro frequency, as is common in spread-F depletions where the plasma number density typically decreases below 10(exp 4)/cu cm. In these conditions, both broadband VLF waves with a clear cutoff at the lower hybrid frequency and broadband HF waves with a clear cutoff at the plasma frequency are observed. We interpret these waves as "hiss-type" emissions possibly associated with the flow of suprathermal electrons within the inter-hemispherical magnetic flux tubes. We also report evidence of enhanced wave "transients" sometimes embedded in the broader band emissions that are associated with lightning sferics detected within the depleted plasma regions that appear in both the VLF and HF data. Theoretical implications of these observations are discussed.

  6. Electromagnetic Ion Cyclotron Waves in the Helium Branch Induced by Multiple Electromagnetic Ion Cyclotron Triggered Emissions

    NASA Astrophysics Data System (ADS)

    Shoji, M.; Omura, Y.; Grison, B.; Pickett, J. S.; Dandouras, I. S.; Engebretson, M. J.

    2011-12-01

    Electromagnetic ion cyclotron (EMIC) triggered emissions with rising tones between the H+ and He+ cyclotron frequencies were found in the inner magnetosphere by the recent Cluster observations. Another type of EMIC wave with a constant frequency is occasionally observed below the He+ cyclotron frequency after the multiple EMIC triggered emissions. We performed a self-consistent hybrid simulation with a one-dimensional cylindrical magnetic flux model approximating the dipole magnetic field of the Earth's inner magnetosphere. In the presence of energetic protons with a sufficient density and temperature anisotropy, multiple EMIC triggered emissions are reproduced due to the nonlinear wave growth mechanism of rising-tone chorus emissions, and a constant frequency wave in the He+ EMIC branch is subsequently generated. Through interaction with the multiple EMIC rising-tone emissions, the velocity distribution function of the energetic protons is strongly modified. Because of the pitch angle scattering of the protons, the gradient of the distribution in velocity phase space is enhanced along the diffusion curve of the He+ branch wave, resulting in the linear growth of the EMIC wave in the He+ branch.

  7. Electromagnetic ion cyclotron waves in the helium branch induced by multiple electromagnetic ion cyclotron triggered emissions

    NASA Astrophysics Data System (ADS)

    Shoji, Masafumi; Omura, Yoshiharu; Grison, Benjamin; Pickett, Jolene; Dandouras, Iannis; Engebretson, Mark

    2011-09-01

    Electromagnetic ion cyclotron (EMIC) triggered emissions with rising tones between the H+ and He+ cyclotron frequencies were found in the inner magnetosphere by the recent Cluster observations. Another type of EMIC wave with a constant frequency is occasionally observed below the He+ cyclotron frequency after the multiple EMIC triggered emissions. We performed a self-consistent hybrid simulation with a one-dimensional cylindrical magnetic flux model approximating the dipole magnetic field of the Earth's inner magnetosphere. In the presence of energetic protons with a sufficient density and temperature anisotropy, multiple EMIC triggered emissions are reproduced due to the nonlinear wave growth mechanism of rising-tone chorus emissions, and a constant frequency wave in the He+ EMIC branch is subsequently generated. Through interaction with the multiple EMIC rising-tone emissions, the velocity distribution function of the energetic protons is strongly modified. Because of the pitch angle scattering of the protons, the gradient of the distribution in velocity phase space is enhanced along the diffusion curve of the He+ branch wave, resulting in the linear growth of the EMIC wave in the He+ branch.

  8. No effects of pulsed radio frequency electromagnetic fields on melatonin, cortisol, and selected markers of the immune system in man.

    PubMed

    Radon, K; Parera, D; Rose, D M; Jung, D; Vollrath, L

    2001-05-01

    There is growing public concern that radio frequency electromagnetic fields may have adverse biological effects. In the present study eight healthy male students were tested to see whether or not radio frequency electromagnetic fields as used in modern digital wireless telecommunication (GSM standard) have noticeable effects on salivary melatonin, cortisol, neopterin, and immunoglobulin A (sIgA) levels during and several hours after exposure. In a specifically designed, shielded experimental chamber, the circularly polarized electromagnetic field applied was transmitted by an antenna positioned 10 cm behind the head of upright sitting test persons. The carrier frequency of 900 MHz was pulsed with 217 Hz (average power flux density 1 W/m2). In double blind trials, each test person underwent a total of 20 randomly allotted 4 hour periods of exposure and sham exposure, equally distributed at day and night. The results obtained show that the salivary concentrations of melatonin, cortisol, neopterin and sIgA did not differ significantly between exposure and sham exposure. Copyright 2001 Wiley-Liss, Inc.

  9. Atlantic bottlenose dolphin (Tursiops truncatus) hearing threshold for brief broadband signals.

    PubMed

    Au, Whitlow W L; Lemonds, David W; Vlachos, Stephanie; Nachtigall, Paul E; Roitblat, Herbert L

    2002-06-01

    The hearing sensitivity of an Atlantic bottlenose dolphin (Tursiops truncatus) to both pure tones and broadband signals simulating echoes from a 7.62-cm water-filled sphere was measured. Pure tones with frequencies between 40 and 140 kHz in increments of 20 kHz were measured along with broadband thresholds using a stimulus with a center frequency of 97.3 kHz and 88.2 kHz. The pure-tone thresholds were compared with the broadband thresholds by converting the pure-tone threshold intensity to energy flux density. The results indicated that dolphins can detect broadband signals slightly better than a pure-tone signal. The broadband results suggest that an echolocating bottlenose dolphin should be able to detect a 7.62-cm diameter water-filled sphere out to a range of 178 m in a quiet environment.

  10. Analysis of recoverable current from one component of magnetic flux density in MREIT and MRCDI.

    PubMed

    Park, Chunjae; Lee, Byung Il; Kwon, Oh In

    2007-06-07

    Magnetic resonance current density imaging (MRCDI) provides a current density image by measuring the induced magnetic flux density within the subject with a magnetic resonance imaging (MRI) scanner. Magnetic resonance electrical impedance tomography (MREIT) has been focused on extracting some useful information of the current density and conductivity distribution in the subject Omega using measured B(z), one component of the magnetic flux density B. In this paper, we analyze the map Tau from current density vector field J to one component of magnetic flux density B(z) without any assumption on the conductivity. The map Tau provides an orthogonal decomposition J = J(P) + J(N) of the current J where J(N) belongs to the null space of the map Tau. We explicitly describe the projected current density J(P) from measured B(z). Based on the decomposition, we prove that B(z) data due to one injection current guarantee a unique determination of the isotropic conductivity under assumptions that the current is two-dimensional and the conductivity value on the surface is known. For a two-dimensional dominating current case, the projected current density J(P) provides a good approximation of the true current J without accumulating noise effects. Numerical simulations show that J(P) from measured B(z) is quite similar to the target J. Biological tissue phantom experiments compare J(P) with the reconstructed J via the reconstructed isotropic conductivity using the harmonic B(z) algorithm.

  11. New results and techniques in space radio astronomy.

    NASA Technical Reports Server (NTRS)

    Alexander, J. K.

    1971-01-01

    The methods and results of early space radioastronomy experiments are reviewed, with emphasis on the RAE 1 spacecraft which was designed specifically and exclusively for radio astronomical studies. The RAE 1 carries two gravity-gradient-stabilized 229-m traveling-wave V-antennas, a 37-m dipole antenna, and a number of radiometer systems to provide measurements over the 0.2 to 9.2 MHz frequency range with a time resolution of 0.5 sec and an absolute accuracy of plus or minus 25%. Observations of solar bursts at frequencies down to 0.2 MHz provide new information on the density, plasma velocity, and dynamics of coronal streamers out to distances greater than 50 solar radii. New information on the distribution of the ionized component of the interstellar medium is being obtained from galactic continuum background maps at frequencies around 4 MHz. Cosmic noise background spectra measured down to 0.5 MHz produce new estimates on the interstellar flux of cosmic rays, on magnetic fields in the galactic halo, and on distant extragalactic radio sources.

  12. Limits on radio emission from meteors using the MWA

    NASA Astrophysics Data System (ADS)

    Zhang, Xiang; Hancock, Paul; Devillepoix, Hadrien A. R.; Wayth, Randall B.; Beardsley, A.; Crosse, B.; Emrich, D.; Franzen, T. M. O.; Gaensler, B. M.; Horsley, L.; Johnston-Hollitt, M.; Kaplan, D. L.; Kenney, D.; Morales, M. F.; Pallot, D.; Steele, K.; Tingay, S. J.; Trott, C. M.; Walker, M.; Williams, A.; Wu, C.; Ji, Jianghui; Ma, Yuehua

    2018-04-01

    Recently, low frequency, broadband radio emission has been observed accompanying bright meteors by the Long Wavelength Array (LWA). The broadband spectra between 20 and 60 MHz were captured for several events, while the spectral index (dependence of flux density on frequency, with Sν∝να) was estimated to be -4 ± 1 during the peak of meteor afterglows. Here we present a survey of meteor emission and other transient events using the Murchison Widefield Array (MWA) at 72-103 MHz. In our 322-hour survey, down to a 5σ detection threshold of 3.5 Jy/beam, no transient candidates were identified as intrinsic emission from meteors. We derived an upper limit of -3.7 (95% confidence limit) on the spectral index in our frequency range. We also report detections of other transient events, like reflected FM broadcast signals from small satellites, conclusively demonstrating the ability of the MWA to detect and track space debris on scales as small as 0.1 m in low Earth orbits.

  13. USING LEAKED POWER TO MEASURE INTRINSIC AGN POWER SPECTRA OF RED-NOISE TIME SERIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, S. F.; Xue, Y. Q., E-mail: zshifu@mail.ustc.edu.cn, E-mail: xuey@ustc.edu.cn

    Fluxes emitted at different wavebands from active galactic nuclei (AGNs) fluctuate at both long and short timescales. The variation can typically be characterized by a broadband power spectrum, which exhibits a red-noise process at high frequencies. The standard method of estimating the power spectral density (PSD) of AGN variability is easily affected by systematic biases such as red-noise leakage and aliasing, in particular when the observation spans a relatively short period and is gapped. Focusing on the high-frequency PSD that is strongly distorted due to red-noise leakage and usually not significantly affected by aliasing, we develop a novel and observablemore » normalized leakage spectrum (NLS), which sensitively describes the effects of leaked red-noise power on the PSD at different temporal frequencies. Using Monte Carlo simulations, we demonstrate how an AGN underlying PSD sensitively determines the NLS when there is severe red-noise leakage, and thereby how the NLS can be used to effectively constrain the underlying PSD.« less

  14. Role of density gradient driven trapped electron mode turbulence in the H-mode inner core with electron heating

    DOE PAGES

    Ernst, D. R.; Burrell, K. H.; Guttenfelder, W.; ...

    2016-05-10

    In a series of DIII-D [J. L. Luxon, Nucl. Fusion 42 614 (2002)] low torque quiescent H-mode experiments show that density gradient driven TEM (DGTEM) turbulence dominates the inner core of H-Mode plasmas during strong electron cyclotron heating (ECH). By adding 3.4 MW ECH doubles T e/T i from 0.5 to 1.0, which halves the linear DGTEM critical density gradient, locally reducing density peaking, while transport in all channels displays extreme stiffness in the density gradient. This then suggests fusion -heating may degrade inner core confinement in H-Mode plasmas with moderate density peaking and low collisionality, with equal electron andmore » ion temperatures, key conditions expected in burning plasmas. Gyrokinetic simulations using GYRO [J. Candy and R. E. Waltz, J. Comp. Phys. 186 545 (2003)] (and GENE [F. Jenko et al., Phys. Plasmas 7, 1904 (2000)]) closely match not only particle, energy, and momentum fluxes, but also density fluctuation spectra from Doppler Backscattering (DBS), with and without ECH. Inner core DBS density fluctuations display discrete frequencies with adjacent toroidal mode numbers, which we identify as DGTEMs. GS2 [W. Dorland et al., Phys. Rev. Lett. 85 5579 (2000)] predictions show the DGTEM can be suppressed, to avoid degradation with electron heating, by broadening the current density profile to attain q 0 > q min > 1.« less

  15. Cosmological flux noise and measured noise power spectra in SQUIDs

    PubMed Central

    Beck, Christian

    2016-01-01

    The understanding of the origin of 1/f magnetic flux noise commonly observed in superconducting devices such as SQUIDs and qubits is still a major unsolved puzzle. Here we discuss the possibility that a significant part of the observed low-frequency flux noise measured in these devices is ultimately seeded by cosmological fluctuations. We consider a theory where a primordial flux noise field left over in unchanged form from an early inflationary or quantum gravity epoch of the universe intrinsically influences the phase difference in SQUIDs and qubits. The perturbation seeds generated by this field can explain in a quantitatively correct way the form and amplitude of measured low-frequency flux noise spectra in SQUID devices if one takes as a source of fluctuations the primordial power spectrum of curvature fluctuations as measured by the Planck collaboration. Our theoretical predictions are in excellent agreement with recent low-frequency flux noise measurements of various experimental groups. Magnetic flux noise, so far mainly considered as a nuisance for electronic devices, may thus contain valuable information about fluctuation spectra in the very early universe. PMID:27320418

  16. Cosmological flux noise and measured noise power spectra in SQUIDs.

    PubMed

    Beck, Christian

    2016-06-20

    The understanding of the origin of 1/f magnetic flux noise commonly observed in superconducting devices such as SQUIDs and qubits is still a major unsolved puzzle. Here we discuss the possibility that a significant part of the observed low-frequency flux noise measured in these devices is ultimately seeded by cosmological fluctuations. We consider a theory where a primordial flux noise field left over in unchanged form from an early inflationary or quantum gravity epoch of the universe intrinsically influences the phase difference in SQUIDs and qubits. The perturbation seeds generated by this field can explain in a quantitatively correct way the form and amplitude of measured low-frequency flux noise spectra in SQUID devices if one takes as a source of fluctuations the primordial power spectrum of curvature fluctuations as measured by the Planck collaboration. Our theoretical predictions are in excellent agreement with recent low-frequency flux noise measurements of various experimental groups. Magnetic flux noise, so far mainly considered as a nuisance for electronic devices, may thus contain valuable information about fluctuation spectra in the very early universe.

  17. Influence of hydrological regime and land cover on traits and potential export capacity of adult aquatic insects from river channels.

    PubMed

    Greenwood, M J; Booker, D J

    2016-02-01

    Despite many studies highlighting the widespread occurrence and effects of resource movement between ecosystems, comparatively little is known about how anthropogenic alterations to ecosystems affect the strength, direction and importance of such fluxes. Hydrological regime and riparian land use cause well-documented changes in riverine larval invertebrate communities. Using a dataset from 66 sites collected over 20 years, we showed that such effects led to spatial and temporal differences in the density and type of larvae with winged adults within a river reach, altering the size and composition of the source pool from which adult aquatic insects can emerge. Mean annual larval densities varied 33-fold and the temporal range varied more than 20-fold between sites, associated with the hydrological regime and land cover and antecedent high and low flows, respectively. Densities of larvae with winged adults were greater in sites that had more algal coverage, agricultural land use, seasonally predictable flow regimes and faster water velocities. More interestingly, by influencing larval communities, riparian land use and the magnitude and frequency of high and low flows affected the size structure, dispersal ability and longevity of adults available to emerge from river reaches, potentially influencing the spatial extent and type of terrestrial consumers supported by aquatic prey. This suggests that anthropogenic alterations to land use or river flows will have both spatial and temporal effects on the flux and potential availability of adult aquatic insects to terrestrial consumers in many rivers.

  18. Assessing and correcting spatial representativeness of tower eddy-covariance flux measurements

    NASA Astrophysics Data System (ADS)

    Metzger, S.; Xu, K.; Desai, A. R.; Taylor, J. R.; Kljun, N.; Blanken, P.; Burns, S. P.; Scott, R. L.

    2014-12-01

    Estimating the landscape-scale exchange of ecologically relevant trace gas and energy fluxes from tower eddy-covariance (EC) measurements is often complicated by surface heterogeneity. For example, a tower EC measurement may represent less than 1% of a grid cell resolved by mechanistic models (order 100-1000 km2). In particular for data assimilation or comparison with large-scale observations, it is hence critical to assess and correct the spatial representativeness of tower EC measurements. We present a procedure that determines from a single EC tower the spatio-temporally explicit flux field of its surrounding. The underlying principle is to extract the relationship between biophysical drivers and ecological responses from measurements under varying environmental conditions. For this purpose, high-frequency EC flux processing and source area calculations (≈60 h-1) are combined with remote sensing retrievals of land surface properties and subsequent machine learning. Methodological details are provided in our companion presentation "Towards the spatial rectification of tower-based eddy-covariance flux observations". We apply the procedure to one year of data from each of four AmeriFlux sites under different climate and ecological environments: Lost Creek shrub fen wetland, Niwot Ridge subalpine conifer, Park Falls mixed forest, and Santa Rita mesquite savanna. We find that heat fluxes from the Park Falls 122-m-high EC measurement and from a surrounding 100 km2 target area differ up to 100 W m-2, or 65%. Moreover, 85% and 24% of the EC flux observations are adequate surrogates of the mean surface-atmosphere exchange and its spatial variability across a 900 km2 target area, respectively, at 5% significance and 80% representativeness levels. Alternatively, the resulting flux grids can be summarized as probability density functions, and used to inform mechanistic models directly with the mean flux value and its spatial variability across a model grid cell. Lastly, for each site we evaluate the applicability of the procedure based on a full bottom-up uncertainty budget.

  19. 47 CFR 25.146 - Licensing and operating rules for the non-geostationary satellite orbit Fixed-Satellite Service...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...-density, in the space-to-Earth direction, (EPFD down) limits. (i) Provide a set of power flux-density (PFD) masks, on the surface of the Earth, for each space station in the NGSO FSS system. The PFD masks shall.... (2) Single-entry additional operational equivalent power flux-density, in the space-to-Earth...

  20. Effect of Thermospheric Neutral Density upon Inner Trapped-belt Proton Flux

    NASA Technical Reports Server (NTRS)

    Wilson, Thomas L.; Lodhi, M. A. K.; Diaz, Abel B.

    2007-01-01

    We wish to point out that a secular change in the Earth's atmospheric neutral density alters charged-particle lifetime in the inner trapped radiation belts, in addition to the changes recently reported as produced by greenhouse gases. Heretofore, changes in neutral density have been of interest primarily because of their effect on the orbital drag of satellites. We extend this to include the orbital lifetime of charged particles in the lower radiation belts. It is known that the charged-belt population is coupled to the neutral density of the atmosphere through changes induced by solar activity, an effect produced by multiple scattering off neutral and ionized atoms along with ionization loss in the thermosphere where charged and neutral populations interact. It will be shown here that trapped-belt flux J is bivariant in energy E and thermospheric neutral density , as J(E,rho). One can conclude that proton lifetimes in these belts are also directly affected by secular changes in the neutral species populating the Earth s thermosphere. This result is a consequence of an intrinsic property of charged-particle flux, that flux is not merely a function of E but is dependent upon density rho when a background of neutrals is present.

  1. DETECTION OF FLUX EMERGENCE, SPLITTING, MERGING, AND CANCELLATION OF NETWORK FIELD. I. SPLITTING AND MERGING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iida, Y.; Yokoyama, T.; Hagenaar, H. J.

    2012-06-20

    Frequencies of magnetic patch processes on the supergranule boundary, namely, flux emergence, splitting, merging, and cancellation, are investigated through automatic detection. We use a set of line-of-sight magnetograms taken by the Solar Optical Telescope (SOT) on board the Hinode satellite. We found 1636 positive patches and 1637 negative patches in the data set, whose time duration is 3.5 hr and field of view is 112'' Multiplication-Sign 112''. The total numbers of magnetic processes are as follows: 493 positive and 482 negative splittings, 536 positive and 535 negative mergings, 86 cancellations, and 3 emergences. The total numbers of emergence and cancellationmore » are significantly smaller than those of splitting and merging. Further, the frequency dependence of the merging and splitting processes on the flux content are investigated. Merging has a weak dependence on the flux content with a power-law index of only 0.28. The timescale for splitting is found to be independent of the parent flux content before splitting, which corresponds to {approx}33 minutes. It is also found that patches split into any flux contents with the same probability. This splitting has a power-law distribution of the flux content with an index of -2 as a time-independent solution. These results support that the frequency distribution of the flux content in the analyzed flux range is rapidly maintained by merging and splitting, namely, surface processes. We suggest a model for frequency distributions of cancellation and emergence based on this idea.« less

  2. Design comparison of single phase outer and inner-rotor hybrid excitation flux switching motor for hybrid electric vehicles

    NASA Astrophysics Data System (ADS)

    Mazlan, Mohamed Mubin Aizat; Sulaiman, Erwan; Husin, Zhafir Aizat; Othman, Syed Muhammad Naufal Syed; Khan, Faisal

    2015-05-01

    In hybrid excitation machines (HEMs), there are two main flux sources which are permanent magnet (PM) and field excitation coil (FEC). These HEMs have better features when compared with the interior permanent magnet synchronous machines (IPMSM) used in conventional hybrid electric vehicles (HEVs). Since all flux sources including PM, FEC and armature coils are located on the stator core, the rotor becomes a single piece structure similar with switch reluctance machine (SRM). The combined flux generated by PM and FEC established more excitation fluxes that are required to produce much higher torque of the motor. In addition, variable DC FEC can control the flux capabilities of the motor, thus the machine can be applied for high-speed motor drive system. In this paper, the comparisons of single-phase 8S-4P outer and inner rotor hybrid excitation flux switching machine (HEFSM) are presented. Initially, design procedures of the HEFSM including parts drawing, materials and conditions setting, and properties setting are explained. Flux comparisons analysis is performed to investigate the flux capabilities at various current densities. Then the flux linkages of PM with DC FEC of various DC FEC current densities are examined. Finally torque performances are analyzed at various armature and FEC current densities for both designs. As a result, the outer-rotor HEFSM has higher flux linkage of PM with DC FEC and higher average torque of approximately 10% when compared with inner-rotor HEFSM.

  3. Hazard zoning around electric substations of petrochemical industries by stimulation of extremely low-frequency magnetic fields.

    PubMed

    Hosseini, Monireh; Monazzam, Mohammad Reza; Farhang Matin, Laleh; Khosroabadi, Hossein

    2015-05-01

    Electromagnetic fields in recent years have been discussed as one of the occupational hazards at workplaces. Hence, control and assessment of these physical factors is very important to protect and promote the health of employees. The present study was conducted to determine hazard zones based on assessment of extremely low-frequency magnetic fields at electric substations of a petrochemical complex in southern Iran, using the single-axis HI-3604 device. In measurement of electromagnetic fields by the single-axis HI-3604 device, the sensor screen should be oriented in a way to be perpendicular to the field lines. Therefore, in places where power lines are located in different directions, it is required to keep the device towards three axes of x, y, and z. For further precision, the measurements should be repeated along each of the three axes. In this research, magnetic field was measured, for the first time, in three axes of x, y, and z whose resultant value was considered as the value of magnetic field. Measurements were done based on IEEE std 644-1994. Further, the spatial changes of the magnetic field surrounding electric substations were stimulated using MATLAB software. The obtained results indicated that the maximum magnetic flux density was 49.90 μT recorded from boiler substation, while the minimum magnetic flux density of 0.02 μT was measured at the control room of the complex. As the stimulation results suggest, the spaces around incoming panels, transformers, and cables were recognized as hazardous zones of indoor electric substations. Considering the health effects of chronic exposure to magnetic fields, it would be possible to minimize exposure to these contaminants at workplaces by identification of risky zones and observation of protective considerations.

  4. The Atacama Cosmology Telescope: Extragalactic Sources at 148 GHz in the 2008 Survey

    NASA Technical Reports Server (NTRS)

    Marriage, T. A.; Juin, J. B.; Lin, Y. T.; Marsden, D.; Nolta, M. R.; Partridge, B.; Ade, P. A. R.; Aguirre, P.; Amiri, M.; Appel, J. W.; hide

    2011-01-01

    We report on extragalactic sources detected in a 455 square-degree map of the southern sky made with data at a frequency of 148 GHz from the Atacama Cosmology Telescope 2008 observing season. We provide a catalog of 157 sources with flux densities spanning two orders of magnitude: from 15 mJy to 1500 mJy. Comparison to other catalogs shows that 98% of the ACT detections correspond to sources detected at lower radio frequencies. Three of the sources appear to be associated with the brightest cluster galaxies of low redshift X-ray selected galaxy clusters. Estimates of the radio to mm-wave spectral indices and differential counts of the sources further bolster the hypothesis that they are nearly all radio sources, and that their emission is not dominated by re-emission from warm dust. In a bright (> 50 mJy) 148 GHz-selected sample with complete cross-identifications from the Australia Telescope 20 GHz survey, we observe an average steepening of the spectra between .5, 20, and 148 GHz with median spectral indices of alp[ha (sub 5-20) = -0.07 +/- 0.06, alpha (sub 20-148) -0.39 +/- 0.04, and alpha (sub 5-148) = -0.20 +/- 0.03. When the measured spectral indices are taken into account, the 148 GHz differential source counts are consistent with previous measurements at 30 GHz in the context of a source count model dominated by radio sources. Extrapolating with an appropriately rescaled model for the radio source counts, the Poisson contribution to the spatial power spectrum from synchrotron-dominated sources with flux density less than 20 mJy is C(sup Sync) = (2.8 +/- 0.3) x 1O (exp-6) micro K(exp 2).

  5. Multiwavelength Variations of 3C 454.3 during the 2010 November to 2011 January Outburst

    NASA Astrophysics Data System (ADS)

    Wehrle, Ann E.; Marscher, Alan P.; Jorstad, Svetlana G.; Gurwell, Mark A.; Joshi, Manasvita; MacDonald, Nicholas R.; Williamson, Karen E.; Agudo, Iván; Grupe, Dirk

    2012-10-01

    We present multiwavelength data of the blazar 3C 454.3 obtained during an extremely bright outburst from 2010 November through 2011 January. These include flux density measurements with the Herschel Space Observatory at five submillimeter-wave and far-infrared bands, the Fermi Large Area Telescope at γ-ray energies, Swift at X-ray, ultraviolet (UV), and optical frequencies, and the Submillimeter Array at 1.3 mm. From this data set, we form a series of 52 spectral energy distributions (SEDs) spanning nearly two months that are unprecedented in time coverage and breadth of frequency. Discrete correlation analysis of the millimeter, far-infrared, and γ-ray light curves show that the variations were essentially simultaneous, indicative of cospatiality of the emission, at these wavebands. In contrast, differences in short-term fluctuations at various wavelengths imply the presence of inhomogeneities in physical conditions across the source. We locate the site of the outburst in the parsec-scale "core," whose flux density as measured on 7 mm Very Long Baseline Array images increased by 70% during the first five weeks of the outburst. Based on these considerations and guided by the SEDs, we propose a model in which turbulent plasma crosses a conical standing shock in the parsec-scale region of the jet. Here, the high-energy emission in the model is produced by inverse Compton scattering of seed photons supplied by either nonthermal radiation from a Mach disk, thermal emission from hot dust, or (for X-rays) synchrotron radiation from plasma that crosses the standing shock. For the two dates on which we fitted the model SED to the data, the model corresponds very well to the observations at all bands except at X-ray energies, where the spectrum is flatter than observed.

  6. Eddy current loss analysis of open-slot fault-tolerant permanent-magnet machines based on conformal mapping method

    NASA Astrophysics Data System (ADS)

    Ji, Jinghua; Luo, Jianhua; Lei, Qian; Bian, Fangfang

    2017-05-01

    This paper proposed an analytical method, based on conformal mapping (CM) method, for the accurate evaluation of magnetic field and eddy current (EC) loss in fault-tolerant permanent-magnet (FTPM) machines. The aim of modulation function, applied in CM method, is to change the open-slot structure into fully closed-slot structure, whose air-gap flux density is easy to calculate analytically. Therefore, with the help of Matlab Schwarz-Christoffel (SC) Toolbox, both the magnetic flux density and EC density of FTPM machine are obtained accurately. Finally, time-stepped transient finite-element method (FEM) is used to verify the theoretical analysis, showing that the proposed method is able to predict the magnetic flux density and EC loss precisely.

  7. Density variations of meteor flux along the Earth's orbit

    NASA Technical Reports Server (NTRS)

    Svetashkova, N. T.

    1987-01-01

    No model of distribution of meteor substance is known to explain the observed diurnal and annual variations of meteor rates, if that distribution is assumed to be constant during the year. Differences between the results of observations and the prediction of diurnal variation rates leads to the conclusion that the density of the orbits of meteor bodies changes with the motion of the Earth along its orbit. The distributions of the flux density over the celestial sphere are obtained by the method described previously by Svetashkova, 1984. The results indicate that the known seasonal and latitudinal variations of atmospheric conditions does not appear to significantly affect the value of the mean flux density of meteor bodies and the matter influx onto the Earth.

  8. Constant Switching Frequency DTC for Matrix Converter Fed Speed Sensorless Induction Motor Drive

    NASA Astrophysics Data System (ADS)

    Mir, Tabish Nazir; Singh, Bhim; Bhat, Abdul Hamid

    2018-05-01

    The paper presents a constant switching frequency scheme for speed sensorless Direct Torque Control (DTC) of Matrix Converter fed Induction Motor Drive. The use of matrix converter facilitates improved power quality on input as well as motor side, along with Input Power Factor control, besides eliminating the need for heavy passive elements. Moreover, DTC through Space Vector Modulation helps in achieving a fast control over the torque and flux of the motor, with added benefit of constant switching frequency. A constant switching frequency aids in maintaining desired power quality of AC mains current even at low motor speeds, and simplifies input filter design of the matrix converter, as compared to conventional hysteresis based DTC. Further, stator voltage estimation from sensed input voltage, and subsequent stator (and rotor) flux estimation is done. For speed sensorless operation, a Model Reference Adaptive System is used, which emulates the speed dependent rotor flux equations of the induction motor. The error between conventionally estimated rotor flux (reference model) and the rotor flux estimated through the adaptive observer is processed through PI controller to generate the rotor speed estimate.

  9. Controlling Radiative Heat Transfer Across the Mold Flux Layer by the Scattering Effect of the Borosilicate Mold Flux System with Metallic Iron

    NASA Astrophysics Data System (ADS)

    Yoon, Dae-Woo; Cho, Jung-Wook; Kim, Seon-Hyo

    2017-08-01

    The present study proposes a countermeasure for regulating total heat flux through the mold flux layer by designed mold flux with additive metallic iron particles. The heat flux through the B2O3-CaO-SiO2-Na2O-CaF2-Fe system was investigated using the infrared emitter technique to evaluate total flux density across the mold flux film. Both scanning electron microscope (SEM) and X-ray diffraction analysis were employed in order to identify the morphological and compositional changes of the crystalline phase, according to increasing iron contents in the mold flux. It was confirmed that the crystalline layer of studied mold fluxes does not have a meaningful effect on the total heat flux density due to the similar structure and fraction of the crystalline phase. The extinction coefficient was measured for glassy mold fluxes using an ultraviolet/visible and a Fourier transformation-infrared ray spectrometer in the range of 0.5 to 5 μm. For analyzing the scattering behavior of iron particles on the extinction coefficient, the number density and diameter of particles were observed by an automated SEM (auto-SEM). With these data, Mie scattering theory is adopted to define the scattering behavior of dispersed iron droplets in glassy matrix. It was found that the theoretical scattering coefficient demonstrated about 1623 to 3295 m-1, which is in accordance with the experimental results. In doing so, this study successfully achieves the strong scattering behavior that would contribute greatly to the optimization of overall heat flux through the mold flux film during the casting process.

  10. Study on magnetic circuit of moving magnet linear compressor

    NASA Astrophysics Data System (ADS)

    Xia, Ming; Chen, Xiaoping; Chen, Jun

    2015-05-01

    The moving magnet linear compressors are very popular in the tactical miniature stirling cryocoolers. The magnetic circuit of LFC3600 moving magnet linear compressor, manufactured by Kunming institute of Physics, was studied in this study. Three methods of the analysis theory, numerical calculation and experiment study were applied in the analysis process. The calculated formula of magnetic reluctance and magnetomotive force were given in theoretical analysis model. The magnetic flux density and magnetic flux line were analyzed in numerical analysis model. A testing method was designed to test the magnetic flux density of the linear compressor. When the piston of the motor was in the equilibrium position, the value of the magnetic flux density was at the maximum of 0.27T. The results were almost equal to the ones from numerical analysis.

  11. Cluster electric current density measurements within a magnetic flux rope in the plasma sheet

    NASA Technical Reports Server (NTRS)

    Slavin, J. A.; Lepping, R. P.; Gjerloev, J.; Goldstein, M. L.; Fairfield, D. H.; Acuna, M. H.; Balogh, A.; Dunlop, M.; Kivelson, M. G.; Khurana, K.

    2003-01-01

    On August 22, 2001 all 4 Cluster spacecraft nearly simultaneously penetrated a magnetic flux rope in the tail. The flux rope encounter took place in the central plasma sheet, Beta(sub i) approx. 1-2, near the leading edge of a bursty bulk flow. The "time-of-flight" of the flux rope across the 4 spacecraft yielded V(sub x) approx. 700 km/s and a diameter of approx.1 R(sub e). The speed at which the flux rope moved over the spacecraft is in close agreement with the Cluster plasma measurements. The magnetic field profiles measured at each spacecraft were first modeled separately using the Lepping-Burlaga force-free flux rope model. The results indicated that the center of the flux rope passed northward (above) s/c 3, but southward (below) of s/c 1, 2 and 4. The peak electric currents along the central axis of the flux rope predicted by these single-s/c models were approx.15-19 nA/sq m. The 4-spacecraft Cluster magnetic field measurements provide a second means to determine the electric current density without any assumption regarding flux rope structure. The current profile determined using the curlometer technique was qualitatively similar to those determined by modeling the individual spacecraft magnetic field observations and yielded a peak current density of 17 nA/m2 near the central axis of the rope. However, the curlometer results also showed that the flux rope was not force-free with the component of the current density perpendicular to the magnetic field exceeding the parallel component over the forward half of the rope, perhaps due to the pressure gradients generated by the collision of the BBF with the inner magnetosphere. Hence, while the single-spacecraft models are very successful in fitting flux rope magnetic field and current variations, they do not provide a stringent test of the force-free condition.

  12. Low temperature formation of electrode having electrically conductive metal oxide surface

    DOEpatents

    Anders, Simone; Anders, Andre; Brown, Ian G.; McLarnon, Frank R.; Kong, Fanping

    1998-01-01

    A low temperature process is disclosed for forming metal suboxides on substrates by cathodic arc deposition by either controlling the pressure of the oxygen present in the deposition chamber, or by controlling the density of the metal flux, or by a combination of such adjustments, to thereby control the ratio of oxide to metal in the deposited metal suboxide coating. The density of the metal flux may, in turn, be adjusted by controlling the discharge current of the arc, by adjusting the pulse length (duration of on cycle) of the arc, and by adjusting the frequency of the arc, or any combination of these parameters. In a preferred embodiment, a low temperature process is disclosed for forming an electrically conductive metal suboxide, such as, for example, an electrically conductive suboxide of titanium, on an electrode surface, such as the surface of a nickel oxide electrode, by such cathodic arc deposition and control of the deposition parameters. In the preferred embodiment, the process results in a titanium suboxide-coated nickel oxide electrode exhibiting reduced parasitic evolution of oxygen during charging of a cell made using such an electrode as the positive electrode, as well as exhibiting high oxygen overpotential, resulting in suppression of oxygen evolution at the electrode at full charge of the cell.

  13. Quantum wavepacket ab initio molecular dynamics: an approach for computing dynamically averaged vibrational spectra including critical nuclear quantum effects.

    PubMed

    Sumner, Isaiah; Iyengar, Srinivasan S

    2007-10-18

    We have introduced a computational methodology to study vibrational spectroscopy in clusters inclusive of critical nuclear quantum effects. This approach is based on the recently developed quantum wavepacket ab initio molecular dynamics method that combines quantum wavepacket dynamics with ab initio molecular dynamics. The computational efficiency of the dynamical procedure is drastically improved (by several orders of magnitude) through the utilization of wavelet-based techniques combined with the previously introduced time-dependent deterministic sampling procedure measure to achieve stable, picosecond length, quantum-classical dynamics of electrons and nuclei in clusters. The dynamical information is employed to construct a novel cumulative flux/velocity correlation function, where the wavepacket flux from the quantized particle is combined with classical nuclear velocities to obtain the vibrational density of states. The approach is demonstrated by computing the vibrational density of states of [Cl-H-Cl]-, inclusive of critical quantum nuclear effects, and our results are in good agreement with experiment. A general hierarchical procedure is also provided, based on electronic structure harmonic frequencies, classical ab initio molecular dynamics, computation of nuclear quantum-mechanical eigenstates, and employing quantum wavepacket ab initio dynamics to understand vibrational spectroscopy in hydrogen-bonded clusters that display large degrees of anharmonicities.

  14. TEM heat transport and fluctuations in the HSX stellarator: experiments and comparison with gyrokinetic simulation

    NASA Astrophysics Data System (ADS)

    Smoniewski, J.; Faber, B. J.; Sánchez, E.; Calvo, I.; Pueschel, M. J.; Likin, K. M.; Deng, C. B.; Talmadge, J. N.

    2017-10-01

    The Helically Symmetric eXperiment (HSX) has demonstrated reduced neoclassical transport in the plasma core with quasi-symmetry [Lore Thesis 2010], while outside this region the electron thermal diffusivity is well above the neoclassical level, likely due to the Trapped Electron Mode (TEM) [Weir PoP 2015, Faber PoP 2015]. We compare gyrokinetic simulations of the TEM to experimental heat flux and density fluctuation measurements for two configurations: Quasi-Helical Symmetry (QHS) and broken symmetry (Mirror). Both experiment and simulation show that the heat flux for Mirror is larger than for QHS by about a factor of two. Initial interferometer measurements provide evidence that density-gradient-driven TEMs are driving turbulence. Calculations of the collisionless damping of zonal flows provide another perspective into the difference between geometries. Similar to other stellarators [Monreal PPCF 2016], the zonal flow residual goes to zero at long wavelengths in both configurations. Additionally, the very short time decay of the zonal flow due to neoclassical polarization is constant between configurations. However, the collisionless damping time is longer and the zonal flow oscillation frequency is smaller in QHS than Mirror, consistent with reduced radial particle drifts. Work supported by the US DOE under Grant DE-FG02-93ER54222.

  15. Elliptic-cylindrical analytical flux-rope model for ICMEs

    NASA Astrophysics Data System (ADS)

    Nieves-Chinchilla, T.; Linton, M.; Hidalgo, M. A. U.; Vourlidas, A.

    2016-12-01

    We present an analytical flux-rope model for realistic magnetic structures embedded in Interplanetary Coronal Mass Ejections. The framework of this model was established by Nieves-Chinchilla et al. (2016) with the circular-cylindrical analytical flux rope model and under the concept developed by Hidalgo et al. (2002). Elliptic-cylindrical geometry establishes the first-grade of complexity of a series of models. The model attempts to describe the magnetic flux rope topology with distorted cross-section as a possible consequence of the interaction with the solar wind. In this model, the flux rope is completely described in the non-euclidean geometry. The Maxwell equations are solved using tensor calculus consistently with the geometry chosen, invariance along the axial component, and with the only assumption of no radial current density. The model is generalized in terms of the radial dependence of the poloidal current density component and axial current density component. The misalignment between current density and magnetic field is studied in detail for the individual cases of different pairs of indexes for the axial and poloidal current density components. This theoretical analysis provides a map of the force distribution inside of the flux-rope. The reconstruction technique has been adapted to the model and compared with in situ ICME set of events with different in situ signatures. The successful result is limited to some cases with clear in-situ signatures of distortion. However, the model adds a piece in the puzzle of the physical-analytical representation of these magnetic structures. Other effects such as axial curvature, expansion and/or interaction could be incorporated in the future to fully understand the magnetic structure. Finally, the mathematical formulation of this model opens the door to the next model: toroidal flux rope analytical model.

  16. Effects of charge density waves on flux dynamics in weak-pinning single crystals of NbSe2 : free flux flow, flux-core size effects, and unexpected doubling of Jc(H) `peak effect'

    NASA Astrophysics Data System (ADS)

    Favreau, Peter; Gapud, Albert A.; Moraes, Sunhee; Delong, Lance; Reyes, Arneil P.; Thompson, James R.; Christen, David K.

    2010-03-01

    The interaction of two different ordering schemes -- charge density waves (CDWs) and superconductivity -- is studied in high-quality samples of NbSe2, particularly in the motion of magnetic flux quanta. More specifically, the study is on the effect of ``switching off'' the CDW phase -- effected by doping with Ta -- on the magnetic-field H dependence of: (i) the Lorentz-force-driven free flux flow (FFF) resistivity ρf associated with the ordered motion of vortices, and (ii) critical current density Jc. FFF is achieved for the first time in this material. The field dependence of ρf deviates from traditional Bardeen-Stephen flux flow and is more consistent with effects of flux core size as predicted by Kogan and Zelezhina. However, the suppression of CDW's seems to have no significant effect on these properties. On the other hand, Jc(H) shows a surprising double peak for the CDW-suppressed sample --contrary to previous studies in which the Jc peak was shown to disappear. Possible mechanisms are discussed.

  17. A Search for Fast Radio Bursts with the GBNCC Pulsar Survey

    NASA Astrophysics Data System (ADS)

    Chawla, P.; Kaspi, V. M.; Josephy, A.; Rajwade, K. M.; Lorimer, D. R.; Archibald, A. M.; DeCesar, M. E.; Hessels, J. W. T.; Kaplan, D. L.; Karako-Argaman, C.; Kondratiev, V. I.; Levin, L.; Lynch, R. S.; McLaughlin, M. A.; Ransom, S. M.; Roberts, M. S. E.; Stairs, I. H.; Stovall, K.; Swiggum, J. K.; van Leeuwen, J.

    2017-08-01

    We report on a search for fast radio bursts (FRBs) with the Green Bank Northern Celestial Cap (GBNCC) Pulsar Survey at 350 MHz. Pointings amounting to a total on-sky time of 61 days were searched to a dispersion measure (DM) of 3000 pc cm-3, while the rest (23 days; 29% of the total time) were searched to a DM of 500 pc cm-3. No FRBs were detected in the pointings observed through 2016 May. We estimate a 95% confidence upper limit on the FRB rate of 3.6× {10}3 FRBs sky-1 day-1 above a peak flux density of 0.63 Jy at 350 MHz for an intrinsic pulse width of 5 ms. We place constraints on the spectral index α by running simulations for different astrophysical scenarios and cumulative flux density distributions. The nondetection with GBNCC is consistent with the 1.4 GHz rate reported for the Parkes surveys for α > +0.35 in the absence of scattering and free-free absorption and α > -0.3 in the presence of scattering, for a Euclidean flux distribution. The constraints imply that FRBs exhibit either a flat spectrum or a spectral turnover at frequencies above 400 MHz. These constraints also allow estimation of the number of bursts that can be detected with current and upcoming surveys. We predict that CHIME may detect anywhere from several to ˜50 FRBs per day (depending on model assumptions), making it well suited for interesting constraints on spectral index, the log N-log S slope, and pulse profile evolution across its bandwidth (400-800 MHz).

  18. Divertor heat flux mitigation in the National Spherical Torus Experimenta)

    NASA Astrophysics Data System (ADS)

    Soukhanovskii, V. A.; Maingi, R.; Gates, D. A.; Menard, J. E.; Paul, S. F.; Raman, R.; Roquemore, A. L.; Bell, M. G.; Bell, R. E.; Boedo, J. A.; Bush, C. E.; Kaita, R.; Kugel, H. W.; Leblanc, B. P.; Mueller, D.; NSTX Team

    2009-02-01

    Steady-state handling of divertor heat flux is a critical issue for both ITER and spherical torus-based devices with compact high power density divertors. Significant reduction of heat flux to the divertor plate has been achieved simultaneously with favorable core and pedestal confinement and stability properties in a highly shaped lower single null configuration in the National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40, 557 2000] using high magnetic flux expansion at the divertor strike point and the radiative divertor technique. A partial detachment of the outer strike point was achieved with divertor deuterium injection leading to peak flux reduction from 4-6MWm-2to0.5-2MWm-2 in small-ELM 0.8-1.0MA, 4-6MW neutral beam injection-heated H-mode discharges. A self-consistent picture of the outer strike point partial detachment was evident from divertor heat flux profiles and recombination, particle flux and neutral pressure measurements. Analytic scrape-off layer parallel transport models were used for interpretation of NSTX detachment experiments. The modeling showed that the observed peak heat flux reduction and detachment are possible with high radiated power and momentum loss fractions, achievable with divertor gas injection, and nearly impossible to achieve with main electron density, divertor neutral density or recombination increases alone.

  19. Radial diffusion with outer boundary determined by geosynchronous measurements: Storm and post-storm intervals

    NASA Astrophysics Data System (ADS)

    Chu, F.; Haines, P.; Hudson, M.; Kress, B.; Freidel, R.; Kanekal, S.

    2007-12-01

    Work is underway by several groups to quantify diffusive radial transport of radiation belt electrons, including a model for pitch angle scattering losses to the atmosphere. The radial diffusion model conserves the first and second adiabatic invariants and breaks the third invariant. We have developed a radial diffusion code which uses the Crank Nicholson method with a variable outer boundary condition. For the radial diffusion coefficient, DLL, we have several choices, including the Brautigam and Albert (JGR, 2000) diffusion coefficient parameterized by Kp, which provides an ad hoc measure of the power level at ULF wave frequencies in the range of electron drift (mHz), breaking the third invariant. Other diffusion coefficient models are Kp-independent, fixed in time but explicitly dependent on the first invariant, or energy at a fixed L, such as calculated by Elkington et al. (JGR, 2003) and Perry et al. (JGR, 2006) based on ULF wave model fields. We analyzed three periods of electron flux and phase space density (PSD) enhancements inside of geosynchronous orbit: March 31 - May 31, 1991, and July 2004 and Nov 2004 storm intervals. The radial diffusion calculation is initialized with a computed phase space density profile for the 1991 interval using differential flux values from the CRRES High Energy Electron Fluxmeter instrument, covering 0.65 - 7.5 MeV. To calculate the initial phase space density, we convert Roederer L* to McIlwain's L- parameter using the ONERA-DESP program. A time averaged model developed by Vampola1 from the entire 14 month CRRES data set is applied to the July 2004 and Nov 2004 storms. The online CRESS data for specific orbits and the Vampola-model flux are both expressed in McIlwain L-shell, while conversion to L* conserves phase space density in a distorted non-dipolar magnetic field model. A Tsyganenko (T04) magnetic field model is used for conversion between L* and L. The outer boundary PSD is updated using LANL GEO satellite fluxes. After calculating the phase space density time evolution for the two storms and post-injection interval (March 31 - May 31, 1991), we compare results with SAMPEX measurements. A better match with SAMPEX measurements is obtained with a variable outer boundary, also with a Kp-dependent diffusion coefficient, and finally with an energy and L-dependent loss term (Summers et al., JGR, 2004), than with a time-independent diffusion coefficient and a simple Kp-parametrized loss rate and location of the plasmapause. Addition of a varying outer boundary which incorporates measured fluxes at geosynchronous orbit using L* has the biggest effect of the three parametrized variations studied. 1Vampola, A.L., 1996, The ESA Outer Zone Electron Model Update, Environment Modelling for Spaced-based Applications, ESA SP-392, ESTEC, Nordwijk, NL, pp. 151-158, W. Burke and T.-D. Guyenne, eds.

  20. A Matched Filter Technique for Slow Radio Transient Detection and First Demonstration with the Murchison Widefield Array

    NASA Astrophysics Data System (ADS)

    Feng, L.; Vaulin, R.; Hewitt, J. N.; Remillard, R.; Kaplan, D. L.; Murphy, Tara; Kudryavtseva, N.; Hancock, P.; Bernardi, G.; Bowman, J. D.; Briggs, F.; Cappallo, R. J.; Deshpande, A. A.; Gaensler, B. M.; Greenhill, L. J.; Hazelton, B. J.; Johnston-Hollitt, M.; Lonsdale, C. J.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Oberoi, D.; Ord, S. M.; Prabu, T.; Udaya Shankar, N.; Srivani, K. S.; Subrahmanyan, R.; Tingay, S. J.; Wayth, R. B.; Webster, R. L.; Williams, A.; Williams, C. L.

    2017-03-01

    Many astronomical sources produce transient phenomena at radio frequencies, but the transient sky at low frequencies (<300 MHz) remains relatively unexplored. Blind surveys with new wide-field radio instruments are setting increasingly stringent limits on the transient surface density on various timescales. Although many of these instruments are limited by classical confusion noise from an ensemble of faint, unresolved sources, one can in principle detect transients below the classical confusion limit to the extent that the classical confusion noise is independent of time. We develop a technique for detecting radio transients that is based on temporal matched filters applied directly to time series of images, rather than relying on source-finding algorithms applied to individual images. This technique has well-defined statistical properties and is applicable to variable and transient searches for both confusion-limited and non-confusion-limited instruments. Using the Murchison Widefield Array as an example, we demonstrate that the technique works well on real data despite the presence of classical confusion noise, sidelobe confusion noise, and other systematic errors. We searched for transients lasting between 2 minutes and 3 months. We found no transients and set improved upper limits on the transient surface density at 182 MHz for flux densities between ˜20 and 200 mJy, providing the best limits to date for hour- and month-long transients.

  1. Fabrication and characterization of non-resonant magneto-mechanical low-frequency vibration energy harvester

    NASA Astrophysics Data System (ADS)

    Nammari, Abdullah; Caskey, Logan; Negrete, Johnny; Bardaweel, Hamzeh

    2018-03-01

    This article presents a non-resonant magneto-mechanical vibration energy harvester. When externally excited, the energy harvester converts vibrations into electric charge using a guided levitated magnet oscillating inside a multi-turn coil that is fixed around the exterior of the energy harvester. The levitated magnet is guided using four oblique mechanical springs. A prototype of the energy harvester is fabricated using additive manufacturing. Both experiment and model are used to characterize the static and dynamic behavior of the energy harvester. Measured restoring forces show that the fabricated energy harvester retains a mono-stable potential energy well with desired stiffness nonlinearities. Results show that magnetic spring results in hardening effect which increases the resonant frequency of the energy harvester. Additionally, oblique mechanical springs introduce geometric, negative, nonlinear stiffness which improves the harvester's response towards lower frequency spectrum. The unique design can produce a tunable energy harvester with multi-well potential energy characteristics. A finite element model is developed to estimate the average radial flux density experienced by the multi-turn coil. Also, a lumped parameter model of the energy harvester is developed and validated against measured data. Both upward and downward frequency sweeps are performed to determine the frequency response of the harvester. Results show that at higher excitation levels hardening effects become more apparent, and the system dynamic response turns into non-resonant. Frequency response curves exhibit frequency jump phenomena as a result of coexistence of multiple energy states at the frequency branch. The fabricated energy harvester is hand-held and measures approximately 100.5 [cm3] total volume. For a base excitation of 1.0 g [m/s2], the prototype generates a peak voltage and normalized power density of approximately 3.5 [V] and 0.133 [mW/cm3 g2], respectively, at 15.5 [Hz].

  2. LOW-POWER SOLUTION FOR EDDY COVARIANCE MEASUREMENTS OF METHANE FLUX

    NASA Astrophysics Data System (ADS)

    Anderson, T.; Burba, G. G.; Komissarov, A.; McDermitt, D. K.; Xu, L.; Zona, D.; Oechel, W. C.; Schedlbauer, J. L.; Oberbauer, S. F.; Riensche, B.; Allyn, D.

    2009-12-01

    Open-path analyzers offer a number of advantages for measuring methane fluxes, including undisturbed in-situ flux measurements, spatial integration using the Eddy Covariance approach, zero frequency response errors due to tube attenuation, confident water and thermal density terms from co-located fast measurements of water and sonic temperature, and possibility of remote and mobile solar-powered or small-generator-powered deployments due to lower power demands in the absence of a pump. The LI-7700 open-path methane analyzer is a VCSEL (vertical-cavity surface-emitting laser)-based instrument. It employs an open Herriott cell and measures levels of methane with RMS noise below 5 ppb at 10 Hz sampling in controlled laboratory conditions. The power consumption of the stand-alone LI-7700 in steady-state is about 8W, so it can be deployed in any methane-generating location of interest on a portable or mobile solar-powered tower, and it does not have to have grid power or permanent industrial generator. Eddy Covariance measurements of methane flux using the LI-7700 open-path methane analyzer were conducted in 2006-2009 in five ecosystems with contrasting weather and moisture conditions: (1) sawgrass wetland in the Florida Everglades; (2) coastal wetlands in an Arctic tundra; and (3) pacific mangroves in Mexico; (4) maize field and (5) ryegrass field in Nebraska. Methane co-spectra behaved in a manner similar to that of the co-spectra of carbon dioxide, water vapor, and air temperature, demonstrating that the LI-7700 adequately measured fluctuations in methane concentration across the whole spectrum of frequencies contributing to vertical atmospheric turbulent transport at the experimental sites. All co-spectra also closely followed the Kaimal model, and demonstrated good agreement with another methane co-spectrum obtained with a TDLS (Tunable Diode Laser Spectroscope; Unisearch Associates, Inc.) over a peatland. Overall, hourly methane fluxes ranged from near-zero at night to about 4 mg m-2 h-1 in midday in arctic tundra. Observed fluxes were within the ranges reported in the literature for a number of wetlands in North America, including the Everglades wetlands. Diurnal patterns were similar to those measured by closed-path sensors. The LI-7700 open-path analyzer is a valuable tool for measuring long-term eddy fluxes of methane due to the good frequency response and undisturbed in-situ sampling. It enables long-term deployment of permanent, portable or mobile CH4 flux stations at remote locations with high CH4 production, because it can be powered by a solar panels or a small generator. Authors appreciate help and support provided by the LI-COR Engineering Team, Barrow Arctic Science Consortium (BASC), and numerous colleagues involved in measurements, logistics, and maintenance of the experimental field sites. This project was supported by the Small Business Innovation Research (SBIR) and Small Business Technology Transfer Program (STTR) program of the Department of Energy (DOE), Grant Number DE-FG02-05ER84283.

  3. A multi-frequency analysis of possible dark matter contributions to M31 gamma-ray emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beck, G.; Colafrancesco, S., E-mail: geoffrey.beck@wits.ac.za, E-mail: sergio.colafrancesco@wits.ac.za

    We examine the possibility of a dark matter (DM) contribution to the recently observed gamma-ray spectrum seen in the M31 galaxy. In particular, we apply limits on Weakly Interacting Massive Particle DM annihilation cross-sections derived from the Coma galaxy cluster and the Reticulum II dwarf galaxy to determine the maximal flux contribution by DM annihilation to both the M31 gamma-ray spectrum and that of the Milky-Way Galactic Centre. We limit the energy range between 1 and 12 GeV in M31 and Galactic Centre spectra due to the limited range of former's data, as well as to encompass the high-energy gamma-raymore » excess observed in the latter target. In so doing, we will make use of Fermi-LAT data for all mentioned targets, as well as diffuse radio data for the Coma cluster. The multi-target strategy using both Coma and Reticulum II to derive cross-section limits, as well as multi-frequency data, ensures that our results are robust against the various uncertainties inherent in modelling of indirect DM emissions. Our results indicate that, when a Navarro-Frenk-White (or shallower) radial density profile is assumed, severe constraints can be imposed upon the fraction of the M31 and Galactic Centre spectra that can be accounted for by DM, with the best limits arising from cross-section constraints from Coma radio data and Reticulum II gamma-ray limits. These particular limits force all the studied annihilation channels to contribute 1% or less to the total integrated gamma-ray flux within both M31 and Galactic Centre targets. In contrast, considerably more, 10−100%, of the flux can be attributed to DM when a contracted Navarro-Frenk-White profile is assumed. This demonstrates how sensitive DM contributions to gamma-ray emissions are to the possibility of cored profiles in galaxies. The only channel consistently excluded for all targets and profiles (except for ∼ 10 GeV WIMPs) is the direct annihilation into photons. Finally, we discuss the ramifications of evidence in favour of cored halo density profiles for DM explanations of galactic gamma-ray emission.« less

  4. Radio Disappearance of the Magnetar XTE J1810-197 and Continued X-ray Timing

    NASA Astrophysics Data System (ADS)

    Camilo, F.; Ransom, S. M.; Halpern, J. P.; Alford, J. A. J.; Cognard, I.; Reynolds, J. E.; Johnston, S.; Sarkissian, J.; van Straten, W.

    2016-04-01

    We report on timing, flux density, and polarimetric observations of the transient magnetar and 5.54 s radio pulsar XTE J1810-197 using the Green Bank, Nançay, and Parkes radio telescopes beginning in early 2006, until its sudden disappearance as a radio source in late 2008. Repeated observations through 2016 have not detected radio pulsations again. The torque on the neutron star, as inferred from its rotation frequency derivative \\dot{ν }, decreased in an unsteady manner by a factor of three in the first year of radio monitoring, until approximately mid-2007. By contrast, during its final year as a detectable radio source, the torque decreased steadily by only 9%. The period-averaged flux density, after decreasing by a factor of 20 during the first 10 months of radio monitoring, remained relatively steady in the next 22 months, at an average of 0.7 ± 0.3 mJy at 1.4 GHz, while still showing day-to-day fluctuations by factors of a few. There is evidence that during this last phase of radio activity the magnetar had a steep radio spectrum, in contrast to earlier flat-spectrum behavior. No secular decrease presaged its radio demise. During this time, the pulse profile continued to display large variations; polarimetry, including of a new profile component, indicates that the magnetic geometry remained consistent with that of earlier times. We supplement these results with X-ray timing of the pulsar from its outburst in 2003 up to 2014. For the first 4 years, XTE J1810-197 experienced non-monotonic excursions in frequency derivative by at least a factor of eight. But since 2007, its \\dot{ν } has remained relatively stable near its minimum observed value. The only apparent event in the X-ray record that is possibly contemporaneous with the radio shutdown is a decrease of ≈20% in the hot-spot flux in 2008-2009, to a stable, minimum value. However, the permanence of the high-amplitude, thermal X-ray pulse, even after the (unexplained) radio demise, implies continuing magnetar activity.

  5. Determination of solar proton fluxes and energies at high solar latitudes by UV radiation measurements

    NASA Technical Reports Server (NTRS)

    Witt, N.; Blum, P. W.; Ajello, J. M.

    1981-01-01

    The latitudinal variation of the solar proton flux and energy causes a density increase at high solar latitudes of the neutral gas penetrating the heliosphere. Measurements of the neutral density by UV resonance radiation observations from interplanetary spacecraft thus permit deductions on the dependence of the solar proton flux on heliographic latitude. Using both the results of Mariner 10 measurements and of other off-ecliptic solar wind observations, the values of the solar proton fluxes and energies at polar heliographic latitudes are determined for several cases of interest. The Mariner 10 analysis, together with IPS results, indicate a significant decrease of the solar proton flux at polar latitudes.

  6. A phenomenological pulsar model

    NASA Technical Reports Server (NTRS)

    Michel, F. C.

    1978-01-01

    Particle injection energies and rates previously calculated for the stellar wind generation by rotating magnetized neutron stars are adopted. It is assumed that the ambient space-charge density being emitted to form this wind is bunched. These considerations immediately place the coherent radio frequency luminosity from such bunches near 10 to the 28th erg/s for typical pulsar parameters. A comparable amount of incoherent radiation is emitted for typical (1 second) pulsars. For very rapid pulsars, however, the latter component grows more rapidly than the available energy sources. The comparatively low radio luminosity of the Crab and Vela pulsars is attributed to both components being limited in the same ratio. The incoherent radiation essentially has a synchotron spectrum and extends to gamma-ray energies; consequently the small part of the total luminosity that is at optical wavelengths is unobservable. Assuming full coherence at all wavelengths short of a critical length gives a spectral index for the flux density of -8/3 at higher frequencies. The finite energy available from the injected particles would force the spectrum to roll over below about 100 MHz, although intrinsic morphological factors probably enter for any specific pulsar as well.

  7. Bone as an ion exchange system: evidence for a link between mechanotransduction and metabolic needs.

    PubMed

    Rubinacci, A; Covini, M; Bisogni, C; Villa, I; Galli, M; Palumbo, C; Ferretti, M; Muglia, M A; Marotti, G

    2002-04-01

    To detect whether the mutual interaction occurring between the osteocytes-bone lining cells system (OBLCS) and the bone extracellular fluid (BECF) is affected by load through a modification of the BECF-extracellular fluid (ECF; systemic extracellular fluid) gradient, mice metatarsal bones immersed in ECF were subjected ex vivo to a 2-min cyclic axial load of different amplitudes and frequencies. The electric (ionic) currents at the bone surface were measured by a vibrating probe after having exposed BECF to ECF through a transcortical hole. The application of different loads and different frequencies increased the ionic current in a dose-dependent manner. The postload current density subsequently decayed following an exponential pattern. Postload increment's amplitude and decay were dependent on bone viability. Dummy and static loads did not induce current density modifications. Because BECF is perturbed by loading, it is conceivable that OBLCS tends to restore BECF preload conditions by controlling ion fluxes at the bone-plasma interface to fulfill metabolic needs. Because the electric current reflects the integrated activity of OBLCS, its evaluation in transgenic mice engineered to possess genetic lesions in channels or matrix constituents could be helpful in the characterization of the mechanical and metabolic functions of bone.

  8. Measurement of Ohms Law and Transport with Two Interacting Flux Ropes

    NASA Astrophysics Data System (ADS)

    Gekelman, Walter; Dehaas, Tim; Vincena, Steve; Daughton, Bill

    2016-10-01

    Two flux ropes, which are kink unstable, and repeatedly collide, were generated in a laboratory magnetoplasma. All the electric field terms in Ohms law: - ∇ ϕ -∂/A-> ∂ t ,1/ne , J-> × B-> , -1/ne ∇ P , u-> × B-> were measured at 48,000 spatial locations and thousands of time steps. All quantities oscillate at the flux rope collision frequency. The resistivity was derived from these quantities and could locally be 30 times the classical value. The resistivity, which was evaluated by integrating the electric field and current along 3D magnetic field is not largest at the quasi-seperatrix layer (QSL) where reconnection occurs. The relative size and spatial distribution of the Ohms law terms will be presented. The reconnection rate, Ξ = ∫ E-> . dl-> was largest near the QSL and could be positive or negative. Regions of negative resistivity exists (the volume integrated resistivity is positive) indicating dynamo action or the possibility of a non-local Ohms law. Volumetric temperature and density measurements are used to estimate electron heat transport and particle diffusion across the magnetic field. Work supported by UC office of the President (LANL-UCLA Grant) and done at the BAPSF which is supported by NSF-DOE.

  9. De-blending deep Herschel surveys: A multi-wavelength approach

    NASA Astrophysics Data System (ADS)

    Pearson, W. J.; Wang, L.; van der Tak, F. F. S.; Hurley, P. D.; Burgarella, D.; Oliver, S. J.

    2017-07-01

    Aims: Cosmological surveys in the far-infrared are known to suffer from confusion. The Bayesian de-blending tool, XID+, currently provides one of the best ways to de-confuse deep Herschel SPIRE images, using a flat flux density prior. This work is to demonstrate that existing multi-wavelength data sets can be exploited to improve XID+ by providing an informed prior, resulting in more accurate and precise extracted flux densities. Methods: Photometric data for galaxies in the COSMOS field were used to constrain spectral energy distributions (SEDs) using the fitting tool CIGALE. These SEDs were used to create Gaussian prior estimates in the SPIRE bands for XID+. The multi-wavelength photometry and the extracted SPIRE flux densities were run through CIGALE again to allow us to compare the performance of the two priors. Inferred ALMA flux densities (FinferALMA), at 870 μm and 1250 μm, from the best fitting SEDs from the second CIGALE run were compared with measured ALMA flux densities (FmeasALMA) as an independent performance validation. Similar validations were conducted with the SED modelling and fitting tool MAGPHYS and modified black-body functions to test for model dependency. Results: We demonstrate a clear improvement in agreement between the flux densities extracted with XID+ and existing data at other wavelengths when using the new informed Gaussian prior over the original uninformed prior. The residuals between FmeasALMA and FinferALMA were calculated. For the Gaussian priors these residuals, expressed as a multiple of the ALMA error (σ), have a smaller standard deviation, 7.95σ for the Gaussian prior compared to 12.21σ for the flat prior; reduced mean, 1.83σ compared to 3.44σ; and have reduced skew to positive values, 7.97 compared to 11.50. These results were determined to not be significantly model dependent. This results in statistically more reliable SPIRE flux densities and hence statistically more reliable infrared luminosity estimates. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  10. Propagation of sound waves through a spatially homogeneous but smoothly time-dependent medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayrapetyan, A.G., E-mail: armen@physi.uni-heidelberg.de; Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg; Grigoryan, K.K.

    2013-06-15

    The propagation of sound through a spatially homogeneous but non-stationary medium is investigated within the framework of fluid dynamics. For a non-vortical fluid, especially, a generalized wave equation is derived for the (scalar) potential of the fluid velocity distribution in dependence of the equilibrium mass density of the fluid and the sound wave velocity. A solution of this equation for a finite transition period τ is determined in terms of the hypergeometric function for a phenomenologically realistic, sigmoidal change of the mass density and sound wave velocity. Using this solution, it is shown that the energy flux of the soundmore » wave is not conserved but increases always for the propagation through a non-stationary medium, independent of whether the equilibrium mass density is increased or decreased. It is found, moreover, that this amplification of the transmitted wave arises from an energy exchange with the medium and that its flux is equal to the (total) flux of the incident and the reflected wave. An interpretation of the reflected wave as a propagation of sound backward in time is given in close analogy to Feynman and Stueckelberg for the propagation of anti-particles. The reflection and transmission coefficients of sound propagating through a non-stationary medium is analyzed in more detail for hypersonic waves with transition periods τ between 15 and 200 ps as well as the transformation of infrasound waves in non-stationary oceans. -- Highlights: •Analytically exact study of sound propagation through a non-stationary medium. •Energy exchange between the non-stationary medium and the sound wave. •Transformation of hypersonic and ultrasound frequencies in non-stationary media. •Propagation of sound backward in time in close analogy to anti-particles. •Prediction of tsunamis both in spatially and temporally inhomogeneous oceans.« less

  11. Forecasting the Contribution of Polarized Extragalactic Radio Sources in CMB Observations

    NASA Astrophysics Data System (ADS)

    Puglisi, G.; Galluzzi, V.; Bonavera, L.; Gonzalez-Nuevo, J.; Lapi, A.; Massardi, M.; Perrotta, F.; Baccigalupi, C.; Celotti, A.; Danese, L.

    2018-05-01

    We combine the latest data sets obtained with different surveys to study the frequency dependence of polarized emission coming from extragalactic radio sources (ERS). We consider data over a very wide frequency range starting from 1.4 GHz up to 217 GHz. This range is particularly interesting since it overlaps the frequencies of the current and forthcoming cosmic microwave background (CMB) experiments. Current data suggest that at high radio frequencies (ν ≥ 20 GHz) the fractional polarization of ERS does not depend on the total flux density. Conversely, recent data sets indicate a moderate increase of polarization fraction as a function of frequency, physically motivated by the fact that Faraday depolarization is expected to be less relevant at high radio frequencies. We compute ERS number counts using updated models based on recent data, and we forecast the contribution of unresolved ERS in CMB polarization spectra. Given the expected sensitivities and the observational patch sizes of forthcoming CMB experiments, about ∼200 (up to ∼2000) polarized ERS are expected to be detected. Finally, we assess that polarized ERS can contaminate the cosmological B-mode polarization if the tensor-to-scalar ratio is <0.05 and they have to be robustly controlled to de-lens CMB B-modes at the arcminute angular scales.

  12. A turnkey data logger program for field-scale energy flux density measurements using eddy covariance and surface renewal

    USDA-ARS?s Scientific Manuscript database

    Micrometeorological methods and ecosystem-scale energy and mass flux density measurements have become increasingly important in soil, agricultural, and environmental sciences. For many scientists without formal training in atmospheric science, these techniques are relatively inaccessible. Eddy cov...

  13. Simulations of the Cleft Ion Fountain outflows resulting from the passage of Storm Enhanced Density (SED) plasma flux tubes through the dayside cleft auroral processes region

    NASA Astrophysics Data System (ADS)

    Horwitz, James; Zeng, Wen

    2007-10-01

    Foster et al. [2002] reported elevated ionospheric density regions convected from subauroral plasmaspheric regions toward noon, in association with convection of plasmaspheric tails. These Storm Enhanced Density (SED) regions could supply cleft ion fountain outflows. Here, we will utilize our Dynamic Fluid Kinetic (DyFK) model to simulate the entry of a high-density ``plasmasphere-like'' flux tube entering the cleft region and subjected to an episode of wave-driven transverse ion heating. It is found that the O^+ ion density at higher altitudes increases and the density at lower altitudes decreases, following this heating episode, indicating increased fluxes of O^+ ions from the ionospheric source gain sufficient energy to reach higher altitudes after the effects of transverse wave heating. Foster, J. C., P. J. Erickson, A. J. Coster, J. Goldstein, and F. J. Rich, Ionospheric signatures of plasmaspheric tails, Geophys. Res. Lett., 29(13), 1623, doi:10.1029/2002GL015067, 2002.

  14. Electromagnetic Properties Analysis on Hybrid-driven System of Electromagnetic Motor

    NASA Astrophysics Data System (ADS)

    Zhao, Jingbo; Han, Bingyuan; Bei, Shaoyi

    2018-01-01

    The hybrid-driven system made of permanent-and electromagnets applied in the electromagnetic motor was analyzed, equivalent magnetic circuit was used to establish the mathematical models of hybrid-driven system, based on the models of hybrid-driven system, the air gap flux, air-gap magnetic flux density, electromagnetic force was proposed. Taking the air-gap magnetic flux density and electromagnetic force as main research object, the hybrid-driven system was researched. Electromagnetic properties of hybrid-driven system with different working current modes is studied preliminary. The results shown that analysis based on hybrid-driven system can improve the air-gap magnetic flux density and electromagnetic force more effectively and can also guarantee the output stability, the effectiveness and feasibility of the hybrid-driven system are verified, which proved theoretical basis for the design of hybrid-driven system.

  15. Investigation of a tubular dual-stator flux-switching permanent-magnet linear generator for free-piston energy converter

    NASA Astrophysics Data System (ADS)

    Sui, Yi; Zheng, Ping; Tong, Chengde; Yu, Bin; Zhu, Shaohong; Zhu, Jianguo

    2015-05-01

    This paper describes a tubular dual-stator flux-switching permanent-magnet (PM) linear generator for free-piston energy converter. The operating principle, topology, and design considerations of the machine are investigated. Combining the motion characteristic of free-piston Stirling engine, a tubular dual-stator PM linear generator is designed by finite element method. Some major structural parameters, such as the outer and inner radii of the mover, PM thickness, mover tooth width, tooth width of the outer and inner stators, etc., are optimized to improve the machine performances like thrust capability and power density. In comparison with conventional single-stator PM machines like moving-magnet linear machine and flux-switching linear machine, the proposed dual-stator flux-switching PM machine shows advantages in higher mass power density, higher volume power density, and lighter mover.

  16. White-Light and Radioastronomical Remote-Sensing of Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Kooi, Jason E.; Spangler, Steven R.

    2017-01-01

    Coronal mass ejections (CMEs) are large-scale eruptions of plasma from the Sun that play an important role in space weather. Faraday rotation (FR) is the rotation of the plane of polarization that results when a linearly polarized signal passes through a magnetized plasma (such as a CME) and is proportional to the path integral through the plasma of the electron density and the line-of-sight component of the magnetic field. FR observations of a source near the Sun can provide information on the plasma structure of a CME shortly after launch; however, separating the contribution of the plasma density from the line-of-sight magnetic field is challenging.We report on simultaneous white-light and radio observations made of three CMEs in August 2012. We made radio observations using the Very Large Array (VLA) at 1 - 2 GHz frequencies of a "constellation" of radio sources through the solar corona at heliocentric distances that ranged from 6 - 15 solar radii: two sources (0842+1835 and 0900+1832) were occulted by a single CME and one source (0843+1547) was occulted by two CMEs. In addition to our radioastronomical observations, which represent one of the first active hunts for CME Faraday rotation since Bird et al. (1985) and the first active hunt using the VLA, we obtained white-light coronagraph images from the LASCO/C3 instrument to determine the Thomson scattering brightness (BT), providing a means to independently estimate the plasma density and determine its contribution to the observed Faraday rotation.A constant density force-free flux rope embedded in the background corona was used to model the effects of the CMEs on BT and FR and infer the plasma densities (6 - 22 x 103 cm-3) and axial magnetic field strengths (2 - 12 mG) for the three CMEs. A single flux rope model successfully reproduces the observed BT and FR profiles for 0842+1835 and 0900+1832; however 0843+1547 was occulted by two CMEs. Using the multiple viewpoints provided by LASCO/C3 and STEREO-A/COR2, we model observations of 0843+1547 using two flux ropes embedded in the background corona and demonstrate the model's ability to successfully reproduce both BT and FR profiles.

  17. Rocket observations of the ionosphere during the eclipse of 26 February 1979

    NASA Technical Reports Server (NTRS)

    Mcinerney, M. K.; Smith, L. G.

    1984-01-01

    Electron density profiles and energetic particle fluxes were determined from two rockets launched, respectively, at the beginning and end of totality during the solar eclipse of 26 February 1979. These, and one other rocket at the same time of day on 24 February 1979, were launched from near Red Lake, Ontario. The electron density profile from 24 February shows the electron density to be normal above 110 km, to rocket apogee. Below 110 km, the electron density is enhanced, by an order of magnitude in the D region, compared with data from Wallops Island at the same solar zenith angle (63 deg). The enhancement is qualitatively explained by the large flux of field aligned energetic particles observed on the same rocket. During totality (on 26 February) the electron density above 110 km to rocket apogee is reduced by a factor of about three. Below 110 km, the electron density is much greater than observed during previous eclipses. The particle flux measured on the 26 February was an order of magnitude less than that on the 24 February but showed greater variability, particularly at the higher energies (100 keV). A feature of the particle flux is that, for the two rockets that were separated horizontally by 38 km while above the absorbing region, the variations are uncorrelated.

  18. Modification of ordinary-mode reflectometry system to detect lower-hybrid waves in Alcator C-Mod

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baek, S. G.; Shiraiwa, S.; Parker, R. R.

    2012-10-15

    Backscattering experiments to detect lower-hybrid (LH) waves have been performed in Alcator C-Mod, using the two modified channels (60 GHz and 75 GHz) of an ordinary-mode reflectometry system with newly developed spectral recorders that can continuously monitor spectral power at a target frequency. The change in the baseline of the spectral recorder during the LH wave injection is highly correlated to the strength of the X-mode non-thermal electron cyclotron emission. In high density plasmas where an anomalous drop in the lower hybrid current drive efficiency is observed, the observed backscattered signals are expected to be generated near the last closedmore » flux surface, demonstrating the presence of LH waves within the plasma. This experimental technique can be useful in identifying spatially localized LH electric fields in the periphery of high-density plasmas.« less

  19. Analysis of a photon assisted field emission device

    NASA Astrophysics Data System (ADS)

    Jensen, K. L.; Lau, Y. Y.; McGregor, D. S.

    2000-07-01

    A field emitter array held at the threshold of emission by a dc gate potential from which current pulses are triggered by the application of a laser pulse on the backside of the semiconductor may produce electron bunches ("density modulation") at gigahertz frequencies. We develop an analytical model of such optically controlled emission from a silicon tip using a modified Wentzel-Kramers-Brillouin and Airy function approach to solving Schrödinger's equation. Band bending and an approximation to the exchange-correlation effects on the image charge potential are included for an array of hyperbolic emitters with a distribution in tip radii and work function. For a simple relationship between the incident photon flux and the resultant electron density at the emission site, an estimation of the tunneling current is made. An example of the operation and design of such a photon-assisted field emission device is given.

  20. Two dimensional radial gas flows in atmospheric pressure plasma-enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Kim, Gwihyun; Park, Seran; Shin, Hyunsu; Song, Seungho; Oh, Hoon-Jung; Ko, Dae Hong; Choi, Jung-Il; Baik, Seung Jae

    2017-12-01

    Atmospheric pressure (AP) operation of plasma-enhanced chemical vapor deposition (PECVD) is one of promising concepts for high quality and low cost processing. Atmospheric plasma discharge requires narrow gap configuration, which causes an inherent feature of AP PECVD. Two dimensional radial gas flows in AP PECVD induces radial variation of mass-transport and that of substrate temperature. The opposite trend of these variations would be the key consideration in the development of uniform deposition process. Another inherent feature of AP PECVD is confined plasma discharge, from which volume power density concept is derived as a key parameter for the control of deposition rate. We investigated deposition rate as a function of volume power density, gas flux, source gas partial pressure, hydrogen partial pressure, plasma source frequency, and substrate temperature; and derived a design guideline of deposition tool and process development in terms of deposition rate and uniformity.

  1. The Space Shuttle Orbiter molecular environment induced by the supplemental flash evaporator system

    NASA Technical Reports Server (NTRS)

    Ehlers, H. K. F.

    1985-01-01

    The water vapor environment of the Space Shuttle Orbiter induced by the supplemental flash evaporator during the on-orbit flight phase has been analyzed based on Space II model predictions and orbital flight measurements. Model data of local density, column density, and return flux are presented. Results of return flux measurements with a mass spectrometer during STS-2 and of direct flux measurements during STS-4 are discussed and compared with model predictions.

  2. Densitometric tomography using the measurement of muon flux

    NASA Astrophysics Data System (ADS)

    Hivert, F.; Busto, J.; Brunner, J.; Salin, P.; Gaffet, S.

    2013-12-01

    The knowledge of the subsurface properties is essentially obtained by geophysical methods, e.g. seismic imaging, electric prospection or gravimetry. The present work develops a recent method to investigate the in situ density of rocks using atmospheric the muon flux measurement , its attenuation depending on the rock density and thickness. This new geophysical technique have been mainly applied in volcanology (Lesparre N., 2011) using scintillator detectors. The present project (T2DM2) aims to realize underground muons flux measurements in order to characterizing the rock massif density variations above the LSBB underground research facility in Rustrel (France). The muon flux will be measure with a new Muon telescope instrumentation using Micromegas detectors in Time Projection Chambers (TPC) configuration. The first step of the work presented considers the muon flux simulation using the Gaisser model, for the interactions between muons and atmospheric particles, and the MUSIC code (Kudryavtsev V. A., 2008) for the muons/rock interactions. The results show that the muon flux attenuation caused by density variations are enough significant to be observed until around 500 m depth and for period of time in the order of one month. Such a duration scale and depth of investigation is compatible with the duration of the water transfer processes involved within the Karst unsaturated zone where LSBB is located. Our work now concentrates on the optimization of the spatial distribution of detectors that will be deployed in future.

  3. Power Electronic Transformer based Three-Phase PWM AC Drives

    NASA Astrophysics Data System (ADS)

    Basu, Kaushik

    A Transformer is used to provide galvanic isolation and to connect systems at different voltage levels. It is one of the largest and most expensive component in most of the high voltage and high power systems. Its size is inversely proportional to the operating frequency. The central idea behind a power electronic transformer (PET) also known as solid state transformer is to reduce the size of the transformer by increasing the frequency. Power electronic converters are used to change the frequency of operation. Steady reduction in the cost of the semiconductor switches and the advent of advanced magnetic materials with very low loss density and high saturation flux density implies economic viability and feasibility of a design with high power density. Application of PET is in generation of power from renewable energy sources, especially wind and solar. Other important application include grid tied inverters, UPS e.t.c. In this thesis non-resonant, single stage, bi-directional PET is considered. The main objective of this converter is to generate adjustable speed and magnitude pulse width modulated (PWM) ac waveforms from an ac or dc grid with a high frequency ac link. The windings of a high frequency transformer contains leakage inductance. Any switching transition of the power electronic converter connecting the inductive load and the transformer requires commutation of leakage energy. Commutation by passive means results in power loss, decrease in the frequency of operation, distortion in the output voltage waveform, reduction in reliability and power density. In this work a source based partially loss-less commutation of leakage energy has been proposed. This technique also results in partial soft-switching. A series of converters with novel PWM strategies have been proposed to minimize the frequency of leakage inductance commutation. These PETs achieve most of the important features of modern PWM ac drives including 1) Input power factor correction, 2) Common-mode voltage suppression at the load end, 3) High quality output voltage waveform (comparable to conventional space vector PWM modulated two level inverter) and 4) Minimization of output voltage loss, common-mode voltage switching and distortion of the load current waveform due to leakage inductance commutation. All of the proposed topologies along with the proposed control schemes have been analyzed and simulated in MATLABSimulink. A hardware prototype has been fabricated and tested. The simulation and experimental results verify the operation and advantages of the proposed topologies and their control.

  4. 3-D capacitance density imaging system

    DOEpatents

    Fasching, G.E.

    1988-03-18

    A three-dimensional capacitance density imaging of a gasified bed or the like in a containment vessel is achieved using a plurality of electrodes provided circumferentially about the bed in levels and along the bed in channels. The electrodes are individually and selectively excited electrically at each level to produce a plurality of current flux field patterns generated in the bed at each level. The current flux field patterns are suitably sensed and a density pattern of the bed at each level determined. By combining the determined density patterns at each level, a three-dimensional density image of the bed is achieved. 7 figs.

  5. 3-D capacitance density imaging of fluidized bed

    DOEpatents

    Fasching, George E.

    1990-01-01

    A three-dimensional capacitance density imaging of a gasified bed or the like in a containment vessel is achieved using a plurality of electrodes provided circumferentially about the bed in levels and along the bed in channels. The electrodes are individually and selectively excited electrically at each level to produce a plurality of current flux field patterns generated in the bed at each level. The current flux field patterns are suitably sensed and a density pattern of the bed at each level determined. By combining the determined density patterns at each level, a three-dimensional density image of the bed is achieved.

  6. Magnetic-flux pump

    NASA Technical Reports Server (NTRS)

    Hildebrandt, A. F.; Elleman, D. D.; Whitmore, F. C. (Inventor)

    1966-01-01

    A magnetic flux pump is described for increasing the intensity of a magnetic field by transferring flux from one location to the magnetic field. The device includes a pair of communicating cavities formed in a block of superconducting material, and a piston for displacing the trapped magnetic flux into the secondary cavity producing a field having an intense flux density.

  7. Model interpretation of type III radio burst characteristics. I - Spatial aspects

    NASA Technical Reports Server (NTRS)

    Reiner, M. J.; Stone, R. G.

    1988-01-01

    The ways that the finite size of the source region and directivity of the emitted radiation modify the observed characteristics of type III radio bursts as they propagate through the interplanetary medium are investigated. A simple model that simulates the radio source region is developed to provide insight into the spatial behavior of the parameters that characterize radio bursts. The model is used to demonstrate that observed radio azimuths are systematically displaced from the geometric centroid of the exciter electron beam in such a way as to cause trajectories of the radio bursts to track back to the observer at low frequencies, rather than to follow expected Archimedean spiral-like paths. The source region model is used to investigate the spatial behavior of the peak intensities of radio bursts, and it is found that the model can qualitatively account for both the frequency dependence and the east-west asymmetry of the observed peak flux densities.

  8. Application of low-frequency eddy current testing to the inspection of a double-walled tank in a reprocessing plant

    NASA Astrophysics Data System (ADS)

    Tajima, Naoki; Yusa, Noritaka; Hashizume, Hidetoshi

    2018-04-01

    This paper discusses the applicability of simple low-frequency eddy current testing to the detection of deeply embedded flaws. The study specifically considered a double tank in a reprocessing plant for extracting plutonium-uranium from spent nuclear fuels. The tank was modelled by two type 304 austenitic stainless steel plates situated with an air gap of 80 mm, and the change in the thickness of one of the plates was detected through the other plate and the air gap. Axisymmetric two-dimensional finite element simulations were conducted and found that a simple circular coil with a large diameter enabled to detect the thickness based on the magnetic flux density at the centre of the coil although the plates were as thick as 30 mm. The results of the numerical simulations were validated by experiments.

  9. The application of quasi-steady approximation in atomic kinetics in simulation of hohlraum radiation drive

    NASA Astrophysics Data System (ADS)

    Ren, Guoli; Pei, Wenbing; Lan, Ke; Gu, Peijun; Li, Xin; Institute of Applied Physics; Computional Mathematics Team

    2011-10-01

    In current routine 2D simulation of hohlraum physics, we adopt the principal-quantum- number(n-level) average atom model(AAM). However, the experimental frequency-dependant radiative drive differs from our n-level simulated drive, which reminds us the need of a more detailed atomic kinetics description. The orbital-quantum-number(nl-level) AAM is a natural consideration but the in-line calculation consumes much more resources. We use a new method to built up a nl-level bound electron distribution using in-line n-level calculated plasma condition (such as temperature, density, average ionization degree). We name this method ``quasi-steady approximation.'' Using the re-built nl-level bound electron distribution (Pnl) , we acquire a new hohlraum radiative drive by post-processing. Comparison with the n-level post-processed hohlraum drive shows that we get an almost identical radiation flux but with more-detailed frequency-dependant structures.

  10. The comptonization parameter from simulations of single-frequency, single-dish, dual-beam, cm-wave observations of galaxy clusters and mitigating CMB confusion using the Planck sky survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lew, Bartosz; Roukema, Boudewijn F., E-mail: blew@astro.uni.torun.pl, E-mail: boud@astro.uni.torun.pl

    2016-11-01

    Systematic effects in dual-beam, differential, radio observations of extended objects are discussed in the context of the One Centimeter Receiver Array (OCRA). We use simulated samples of Sunyaev-Zel'dovich (SZ) galaxy clusters at low ( z < 0.4) and intermediate (0.4 < z < 1.0) redshifts to study the implications of operating at a single frequency (30 GHz) on the accuracy of extracting SZ flux densities and of reconstructing comptonization parameters with OCRA. We analyze dependences on cluster mass, redshift, observation strategy, and telescope pointing accuracy. Using Planck data to make primary cosmic microwave background (CMB) templates, we test the feasibilitymore » of mitigating CMB confusion effects in observations of SZ profiles at angular scales larger than the separation of the receiver beams.« less

  11. Investigation of a High Voltage, High Frequency Power Conditioning System for Use with Flux Compression Generators

    DTIC Science & Technology

    2007-06-01

    missouri.edu Abstract The University of Missouri-Columbia is developing a compact pulsed power system to condition the high current signal from a...flux compression generator (FCG) to the high voltage, high frequency signal required for many pulsed power applications. The system consists of a...non-magnetic core, spiral-wound transformer, series exploding wire fuse, and an oscillating mesoband source. The flux compression generator is being

  12. Optical and X-ray studies of Compact X-ray Binaries in NGC 5904

    NASA Astrophysics Data System (ADS)

    Bhalotia, Vanshree; Beck-Winchatz, Bernhard

    2018-06-01

    Due to their high stellar densities, globular cluster systems trigger various dynamical interactions, such as the formation of compact X-ray binaries. Stellar collisional frequencies have been correlated to the number of X-ray sources detected in various clusters and we hope to measure this correlation for NGC 5904. Optical fluxes of sources from archival HST images of NGC 5904 have been measured using a DOLPHOT PSF photometry in the UV, optical and near-infrared. We developed a data analysis pipeline to process the fluxes of tens of thousands of objects using awk, python and DOLPHOT. We plot color magnitude diagrams in different photometric bands in order to identify outliers that could be X-ray binaries, since they do not evolve the same way as singular stars. Aligning previously measured astrometric data for X-ray sources in NGC 5904 from Chandra with archival astrometric data from HST will filter out the outlier objects that are not X-ray producing, and provide a sample of compact binary systems that are responsible for X-ray emission in NGC 5904. Furthermore, previously measured X-ray fluxes of NGC 5904 from Chandra have also been used to measure the X-ray to optical flux ratio and identify the types of compact X-ray binaries responsible for the X-ray emissions in NGC 5904. We gratefully acknowledge the support from the Illinois Space Grant Consortium.

  13. Control of unidirectional transport of single-file water molecules through carbon nanotubes in an electric field.

    PubMed

    Su, Jiaye; Guo, Hongxia

    2011-01-25

    The transport of water molecules through nanopores is not only crucial to biological activities but also useful for designing novel nanofluidic devices. Despite considerable effort and progress that has been made, a controllable and unidirectional water flow is still difficult to achieve and the underlying mechanism is far from being understood. In this paper, using molecular dynamics simulations, we systematically investigate the effects of an external electric field on the transport of single-file water molecules through a carbon nanotube (CNT). We find that the orientation of water molecules inside the CNT can be well-tuned by the electric field and is strongly coupled to the water flux. This orientation-induced water flux is energetically due to the asymmetrical water-water interaction along the CNT axis. The wavelike water density profiles are disturbed under strong field strengths. The frequency of flipping for the water dipoles will decrease as the field strength is increased, and the flipping events vanish completely for the relatively large field strengths. Most importantly, a critical field strength E(c) related to the water flux is found. The water flux is increased as E is increased for E ≤ E(c), while it is almost unchanged for E > E(c). Thus, the electric field offers a level of governing for unidirectional water flow, which may have some biological applications and provides a route for designing efficient nanopumps.

  14. Eddy Covariance Measurements of Methane Emissions from a Dairy Farm Waste Lagoon

    NASA Astrophysics Data System (ADS)

    Sokol, A. B.; Lauvaux, T.; Richardson, S.; Hlywiak, J.; Davis, K. J.; Hristov, A. N.

    2016-12-01

    Livestock manure management in dairy operations is a known source of methane (CH4), a potent greenhouse gas. Anaerobic waste lagoons are a common manure management technique; thus, their associated CH4 emissions are relevant to national greenhouse gas inventories and local air quality. Our objective was to characterize the variability of summertime CH4 emissions from a lagoon at a dairy facility in central Pennsylvania. Continuous flux measurements were taken over two weeks in July using the eddy covariance method, which uses high-frequency gas concentration and three-dimensional wind speed measurements to calculate turbulent fluxes from a source area. After data filtration based on turbulence characteristics and source area, the average CH4 flux density from the lagoon was estimated to be 99 μmol m-2 s-1. This implies daily lagoon emissions of 881 kg CH4, corresponding to an average emission rate of 340 g CH4 per cow per day. We observed no apparent relationship between emissions and air temperature or relative humidity, though an extended measurement period is needed to better quantify the relationship that is expected to exist between air and/or slurry temperature and CH4 flux. Our measured per-area emission rate is toward the high end of the range of estimates found in the literature. These results contribute to greenhouse gas inventory development and could have important implications for emission mitigation strategies.

  15. Diffusion in porous layers with memory

    NASA Astrophysics Data System (ADS)

    Caputo, Michele; Plastino, Wolfango

    2004-07-01

    The process of diffusion of fluid in porous media and biological membranes has usually been modelled with Darcy's constitutive equation, which states that the flux is proportional to the pressure gradient. However, when the permeability of the matrix changes during the process, solution of the equations governing the diffusion presents severe analytical difficulties because the variation of permeability is not known a priori. A diverse formulation of the constitutive law of diffusion is therefore needed and many authors have studied this problem using various methods and solutions. In this paper Darcy's constitutive equation is modified with the introduction of a memory formalism. We have also modified the second constitutive equation of diffusion which relates the density variations in the fluid to the pressure, introducing rheology in the fluid represented by memory formalisms operating on pressure variations as well as on density variations. The memory formalisms are then specified as derivatives of fractional order, solving the problem in the case of a porous layer when constant pressures are applied to its sides. For technical reasons many studies of diffusion are devoted to the flux rather than to the pressure; in this work we shall devote our attention to studying the pressure and compute the Green's function of the pressure in the layer when a constant pressure is applied to the boundary (Case A) for which we have found closed-form formulae. The described problem has already been considered for a half space (Caputo 2000); however, the results for a half space are mostly qualitative since in most practical problems the diffusion occurs in layers. The solution is also readily extended to the case when a periodic pressure is applied to one of the boundary planes while on the other the pressure is constant (Case B) which mimics the effect of the tides on sea coasts. In this case we have found a skin effect for the flux which limits the flux to a surface layer whose thickness decreases with increasing frequency. Regarding the effect of pressure due to tidal waters on the coast, it has been observed that when the medium is sand and the fluid is water, for a sinusoidal pressure of 2 × 104 Pa and a period of 24 hr at one of the boundaries and zero pressure at the other boundary, the flux is sinusoidal with the same period and amplitude decaying exponentially with distance to become negligible at a distance of a few hundred metres. A brief discussion is given concerning the mode of determination of the parameters of memory formalisms governing the diffusion using the observed pressure at several frequencies. We shall also see that, as in the classic case of pure Darcy's law behaviour, the equation governing the flux resulting in the diffusion through porous media with memory is the same as that governing the pressure.

  16. A high density field reversed configuration (FRC) target for magnetized target fusion: First internal profile measurements of a high density FRC

    NASA Astrophysics Data System (ADS)

    Intrator, T.; Zhang, S. Y.; Degnan, J. H.; Furno, I.; Grabowski, C.; Hsu, S. C.; Ruden, E. L.; Sanchez, P. G.; Taccetti, J. M.; Tuszewski, M.; Waganaar, W. J.; Wurden, G. A.

    2004-05-01

    Magnetized target fusion (MTF) is a potentially low cost path to fusion, intermediate in plasma regime between magnetic and inertial fusion energy. It requires compression of a magnetized target plasma and consequent heating to fusion relevant conditions inside a converging flux conserver. To demonstrate the physics basis for MTF, a field reversed configuration (FRC) target plasma has been chosen that will ultimately be compressed within an imploding metal liner. The required FRC will need large density, and this regime is being explored by the FRX-L (FRC-Liner) experiment. All theta pinch formed FRCs have some shock heating during formation, but FRX-L depends further on large ohmic heating from magnetic flux annihilation to heat the high density (2-5×1022m-3), plasma to a temperature of Te+Ti≈500 eV. At the field null, anomalous resistivity is typically invoked to characterize the resistive like flux dissipation process. The first resistivity estimate for a high density collisional FRC is shown here. The flux dissipation process is both a key issue for MTF and an important underlying physics question.

  17. Fast Radio Bursts’ Recipes for the Distributions of Dispersion Measures, Flux Densities, and Fluences

    NASA Astrophysics Data System (ADS)

    Niino, Yuu

    2018-05-01

    We investigate how the statistical properties of dispersion measure (DM) and apparent flux density/fluence of (nonrepeating) fast radio bursts (FRBs) are determined by unknown cosmic rate density history [ρ FRB(z)] and luminosity function (LF) of the transient events. We predict the distributions of DMs, flux densities, and fluences of FRBs taking account of the variation of the receiver efficiency within its beam, using analytical models of ρ FRB(z) and LF. Comparing the predictions with the observations, we show that the cumulative distribution of apparent fluences suggests that FRBs originate at cosmological distances and ρ FRB increases with redshift resembling the cosmic star formation history (CSFH). We also show that an LF model with a bright-end cutoff at log10 L ν (erg s‑1 Hz‑1) ∼ 34 are favored to reproduce the observed DM distribution if ρ FRB(z) ∝ CSFH, although the statistical significance of the constraints obtained with the current size of the observed sample is not high. Finally, we find that the correlation between DM and flux density of FRBs is potentially a powerful tool to distinguish whether FRBs are at cosmological distances or in the local universe more robustly with future observations.

  18. Plasma in Saturn's Nightside Magnetosphere and the Implications for Global Circulation

    NASA Technical Reports Server (NTRS)

    McAndrews, H.J.; Thomsen, M.F.; Arridge, C.S.; Jackman, C.M.; Wilson, R.J.; Henderson, M.G.; Tokar, R.L.; Khurana, K.K.; Sittler, E. C.; Coates, A.J.; hide

    2009-01-01

    We present a bulk ion flow map from the nightside, equatorial region of Saturn's magnetosphere derived from the Cassini CAPS ion mass spectrometer data. The map clearly demonstrates the dominance of corotation flow over radial flow and suggests that the flux tubes sampled are still closed and attached to the planet up to distances of 50RS. The plasma characteristics in the near-midnight region are described and indicate a transition between the region of the magnetosphere containing plasma on closed drift paths and that containing flux tubes which may not complete a full rotation around the planet. Data from the electron spectrometer reveal two plasma states of high and low density. These are attributed either to the sampling of mass-loaded and depleted flux tubes, respectively, or to the latitudinal structure of the plasma sheet. Depleted, returning flux tubes are not, in general, directly observed in the ions, although the electron observations suggest that such a process must take place in order to produce the low-density population. Flux-tube content is conserved below a limit defined by the mass-loading and magnetic field strength and indicates that the flux tubes sampled may survive their passage through the tail. The conditions for mass-release are evaluated using measured densities, angular velocities and magnetic field strength. The results suggest that for the relatively dense ion populations detectable by the ion mass spectrometer (IMS), the condition for flux-tube breakage has not yet been exceeded. However, the low-density regimes observed in the electron data suggest that loaded flux tubes at greater distances do exceed the threshold for mass-loss and subsequently return to the inner magnetosphere significantly depleted of plasma.

  19. Photoballistics of volcanic jet activity at Stromboli, Italy

    NASA Technical Reports Server (NTRS)

    Chouet, B.; Hamisevicz, N.; Mcgetchin, T. R.

    1974-01-01

    Two night eruptions of the volcano Stromboli were studied through 70-mm photography. Single-camera techniques were used. Particle sphericity, constant velocity in the frame, and radial symmetry were assumed. Properties of the particulate phase found through analysis include: particle size, velocity, total number of particles ejected, angular dispersion and distribution in the jet, time variation of particle size and apparent velocity distribution, averaged volume flux, and kinetic energy carried by the condensed phase. The frequency distributions of particle size and apparent velocities are found to be approximately log normal. The properties of the gas phase were inferred from the fact that it was the transporting medium for the condensed phase. Gas velocity and time variation, volume flux of gas, dynamic pressure, mass erupted, and density were estimated. A CO2-H2O mixture is possible for the observed eruptions. The flow was subsonic. Velocity variations may be explained by an organ pipe resonance. Particle collimation may be produced by a Magnus effect.

  20. The GLE-associated flare of 21 August, 1979. [ground level event

    NASA Technical Reports Server (NTRS)

    Cliver, E. W.; Kahler, S. W.; Cane, h. V.; Koomen, M. J.; Michels, D. J.; Howard, R. A.; Sheeley, N. R., Jr.

    1983-01-01

    A variety of ground-based and satellite measurements is to identify the source of the ground level event (GLE) beginning near 06:30 UT on 21 August, 1979 as the 2B flare with maximum at about 06:15 UT in McMath region 16218. This flare differed from previous GLE-associated flares in that it lacked a prominent impulsive phase, having a peak about 9 GHz burst flux density of only 27 sfu and a greater than 10 keV peak hard X-ray flux of less than about 3 x 10 to the -6th ergs/sq cm/s. Also, McMath 16218 was magnetically less complex than the active regions in which previous cosmic-ray flares have occurred, containing essentially only a single sunspot with a rudimentary penumbra. The flare was associated with a high speed mass ejection observed by the NRL white light coronagraph aboard P78-1 and a shock accelerated (SA) event observed by the low frequency radio astronomy experiment on ISEE-3.

Top