Science.gov

Sample records for flux loop final

  1. Boosted Fast Flux Loop Final Report

    SciTech Connect

    Boosted Fast Flux Loop Project Staff

    2009-09-01

    The Boosted Fast Flux Loop (BFFL) project was initiated to determine basic feasibility of designing, constructing, and installing in a host irradiation facility, an experimental vehicle that can replicate with reasonable fidelity the fast-flux test environment needed for fuels and materials irradiation testing for advanced reactor concepts. Originally called the Gas Test Loop (GTL) project, the activity included (1) determination of requirements that must be met for the GTL to be responsive to potential users, (2) a survey of nuclear facilities that may successfully host the GTL, (3) conceptualizing designs for hardware that can support the needed environments for neutron flux intensity and energy spectrum, atmosphere, flow, etc. needed by the experimenters, and (4) examining other aspects of such a system, such as waste generation and disposal, environmental concerns, needs for additional infrastructure, and requirements for interfacing with the host facility. A revised project plan included requesting an interim decision, termed CD-1A, that had objectives of' establishing the site for the project at the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL), deferring the CD 1 application, and authorizing a research program that would resolve the most pressing technical questions regarding GTL feasibility, including issues relating to the use of booster fuel in the ATR. Major research tasks were (1) hydraulic testing to establish flow conditions through the booster fuel, (2) mini-plate irradiation tests and post-irradiation examination to alleviate concerns over corrosion at the high heat fluxes planned, (3) development and demonstration of booster fuel fabrication techniques, and (4) a review of the impact of the GTL on the ATR safety basis. A revised cooling concept for the apparatus was conceptualized, which resulted in renaming the project to the BFFL. Before the subsequent CD-1 approval request could be made, a decision was made in April 2006

  2. Fast flux locked loop

    DOEpatents

    Ganther, Jr., Kenneth R.; Snapp, Lowell D.

    2002-09-10

    A flux locked loop for providing an electrical feedback signal, the flux locked loop employing radio-frequency components and technology to extend the flux modulation frequency and tracking loop bandwidth. The flux locked loop of the present invention has particularly useful application in read-out electronics for DC SQUID magnetic measurement systems, in which case the electrical signal output by the flux locked loop represents an unknown magnetic flux applied to the DC SQUID.

  3. High heat flux loop heat pipes

    NASA Technical Reports Server (NTRS)

    North, Mark T.; Sarraf, David B.; Rosenfeld, John H.; Maidanik, Yuri F.; Vershinin, Sergey

    1997-01-01

    Loop heat pipes (LHPs) can transport very large thermal power loads over long distances, through flexible, small diameter tubes against gravitational heads. In order to overcome the evaporator limit of LHPs, which is of about 0.07 MW/sq m, work was carried out to improve the efficiency by threefold to tenfold. The vapor passage geometry for the high heat flux conditions is shown. A bidisperse wick material within the circumferential vapor passages was used. Along with heat flux enhancement, several underlying issues were demonstrated, including the fabrication of bidisperse powder with controlled properties and the fabrication of a device geometry capable of replacing vapor passages with bidisperse powder.

  4. High heat flux loop heat pipes

    NASA Astrophysics Data System (ADS)

    North, Mark T.; Sarraf, David B.; Rosenfeld, John H.; Maidanik, Yuri F.; Vershinin, Sergey

    1997-01-01

    Loop Heat Pipes (LHPs) can transport very large thermal power loads, over long distances, through flexible, small diameter tubes and against high gravitational heads. While recent LHPs have transported as much as 1500 W, the peak heat flux through a LHP's evaporator has been limited to about 0.07 MW/m2. This limitation is due to the arrangement of vapor passages next to the heat load which is one of the conditions necessary to ensure self priming of the device. This paper describes work aimed at raising this limit by threefold to tenfold. Two approaches were pursued. One optimized the vapor passage geometry for the high heat flux conditions. The geometry improved the heat flow into the wick and working fluid. This approach also employed a finer pored wick to support higher vapor flow losses. The second approach used a bidisperse wick material within the circumferential vapor passages. The bidisperse material increased the thermal conductivity and the evaporative surface area in the region of highest heat flux, while providing a flow path for the vapor. Proof-of-concept devices were fabricated and tested for each approach. Both devices operated as designed and both demonstrated operation at a heat flux of 0.70 MW/m2. This performance exceeded the known state of the art by a factor of more than six for both conventional heat pipes and for loop heat pipes using ammonia. In addition, the bidisperse-wick device demonstrated boiling heat transfer coefficients up to 100,000 W/m2.K, and the fine pored device demonstrated an orientation independence with its performance essentially unaffected by whether its evaporator was positioned above, below or level with the condenser.

  5. Boosted Fast Flux Loop Alternative Cooling Assessment

    SciTech Connect

    Glen R. Longhurst; Donna Post Guillen; James R. Parry; Douglas L. Porter; Bruce W. Wallace

    2007-08-01

    The Gas Test Loop (GTL) Project was instituted to develop the means for conducting fast neutron irradiation tests in a domestic radiation facility. It made use of booster fuel to achieve the high neutron flux, a hafnium thermal neutron absorber to attain the high fast-to-thermal flux ratio, a mixed gas temperature control system for maintaining experiment temperatures, and a compressed gas cooling system to remove heat from the experiment capsules and the hafnium thermal neutron absorber. This GTL system was determined to provide a fast (E > 0.1 MeV) flux greater than 1.0E+15 n/cm2-s with a fast-to-thermal flux ratio in the vicinity of 40. However, the estimated system acquisition cost from earlier studies was deemed to be high. That cost was strongly influenced by the compressed gas cooling system for experiment heat removal. Designers were challenged to find a less expensive way to achieve the required cooling. This report documents the results of the investigation leading to an alternatively cooled configuration, referred to now as the Boosted Fast Flux Loop (BFFL). This configuration relies on a composite material comprised of hafnium aluminide (Al3Hf) in an aluminum matrix to transfer heat from the experiment to pressurized water cooling channels while at the same time providing absorption of thermal neutrons. Investigations into the performance this configuration might achieve showed that it should perform at least as well as its gas-cooled predecessor. Physics calculations indicated that the fast neutron flux averaged over the central 40 cm (16 inches) relative to ATR core mid-plane in irradiation spaces would be about 1.04E+15 n/cm2-s. The fast-to-thermal flux ratio would be in excess of 40. Further, the particular configuration of cooling channels was relatively unimportant compared with the total amount of water in the apparatus in determining performance. Thermal analyses conducted on a candidate configuration showed the design of the water coolant and

  6. Fractional flux plateau in magnetization curve of multicomponent superconductor loop

    NASA Astrophysics Data System (ADS)

    Huang, Zhao; Hu, Xiao

    2015-12-01

    Time-reversal symmetry (TRS) may be broken in superconductors with three or more condensates interacting repulsively, yielding two degenerate states specified by chirality of gap functions. We consider a loop of such a superconductor with two halves occupied by the two states with opposite chiralities. Fractional flux plateaus are found in a magnetization curve associated with free-energy minima, where the two domain walls between the two halves of loop accommodate different intercomponent phase kinks leading to finite winding numbers around the loop only in a part of all condensates. Fractional flux plateaus form pairs related by the flux quantum Φ0=h c /2 e , although they individually take arbitrary values depending on material parameters and temperature. This phenomenon is a clear evidence of TRS broken superconductivity, and in a general point of view it provides a novel chance to explore relative phase difference, phase kink and soliton in ubiquitous multicomponent superconductivity such as that in iron pnicitides.

  7. System having unmodulated flux locked loop for measuring magnetic fields

    DOEpatents

    Ganther, Jr., Kenneth R.; Snapp, Lowell D.

    2006-08-15

    A system (10) for measuring magnetic fields, wherein the system (10) comprises an unmodulated or direct-feedback flux locked loop (12) connected by first and second unbalanced RF coaxial transmission lines (16a, 16b) to a superconducting quantum interference device (14). The FLL (12) operates for the most part in a room-temperature or non-cryogenic environment, while the SQUID (14) operates in a cryogenic environment, with the first and second lines (16a, 16b) extending between these two operating environments.

  8. Flux formulation of loop quantum gravity: classical framework

    NASA Astrophysics Data System (ADS)

    Dittrich, Bianca; Geiller, Marc

    2015-07-01

    We recently introduced a new representation for loop quantum gravity (LQG), which is based on the BF vacuum and is in this sense much nearer to the spirit of spin foam dynamics. In the present paper we lay out the classical framework underlying this new formulation. The central objects in our construction are the so-called integrated fluxes, which are defined as the integral of the electric field variable over surfaces of codimension one, and related in turn to Wilson surface operators. These integrated flux observables will play an important role in the coarse graining of states in LQG, and can be used to encode in this context the notion of curvature-induced torsion. We furthermore define a continuum phase space as the modified projective limit of a family of discrete phase spaces based on triangulations. This continuum phase space yields a continuum (holonomy-flux) algebra of observables. We show that the corresponding Poisson algebra is closed by computing the Poisson brackets between the integrated fluxes, which have the novel property of being allowed to intersect each other.

  9. Geothermal Loop Experimental Facility. Final report

    SciTech Connect

    Not Available

    1980-04-01

    Research at the Geothermal Loop Experimental Facility was successfully concluded in September 1979. In 13,000 hours of operation over a three and one half year period, the nominal 10 megawatt electrical equivalent GLEF provided the opportunity to identify problems in working with highly saline geothermal fluids and to develop solutions that could be applied to a commercial geothermal power plant producing electricity. A seven and one half year period beginning in April 1972, with early well flow testing and ending in September 1979, with the completion of extensive facility and reservoir operations is covered. During this period, the facility was designed, constructed and operated in several configurations. A comprehensive reference document, addressing or referencing documentation of all the key areas investigated is presented.

  10. RE-FLARING OF A POST-FLARE LOOP SYSTEM DRIVEN BY FLUX ROPE EMERGENCE AND TWISTING

    SciTech Connect

    Cheng, X.; Ding, M. D.; Guo, Y.; Zhang, J.; Jing, J.; Wiegelmann, T.

    2010-06-10

    In this Letter, we study in detail the evolution of the post-flare loops on 2005 January 15 that occurred between two consecutive solar eruption events, both of which generated a fast halo coronal mass ejection (CME) and a major flare. The post-flare loop system, formed after the first CME/flare eruption, evolved rapidly, as manifested by the unusual accelerating rise motion of the loops. Through nonlinear force-free field models, we obtain the magnetic structure over the active region. It clearly shows that the flux rope below the loops also kept rising, accompanied with increasing twist and length. Finally, the post-flare magnetic configuration evolved to a state that resulted in the second CME/flare eruption. This is an event in which the post-flare loops can re-flare in a short period of {approx}16 hr following the first CME/flare eruption. The observed re-flaring at the same location is likely driven by the rapid evolution of the flux rope caused by the magnetic flux emergence and the rotation of the sunspot. This observation provides valuable information on CME/flare models and their prediction.

  11. A cryo-amplifier working in a double loop-flux locked loop scheme for SQUID readout of TES detectors

    NASA Astrophysics Data System (ADS)

    Torrioli, Guido; Bastia, Paolo; Piro, Luigi; Macculi, Claudio; Colasanti, Luca

    2010-07-01

    In this paper we report on a novel SQUID readout scheme, called Double Loop-Flux Locked loop (DL-FLL), that we are investigating in the frame of ASI and ESA technological development contracts. This scheme is based on the realization of a cryogenic amplifier which is used in order to readout TES detectors in the Frequency Division Multiplexing technique, where high loop-gain is required up to few MHz. Loop-gain in feedback systems is, usually, limited by the propagation delay of the signals traveling in the loop because of the distance between the feedback loop elements. This problem is particularly evident in the case of SQUID systems, where the elements of the feedback loop are placed both at cryogenic and room temperature. To solve this issue we propose a low power dissipation cryo-amplifier capable to work at cryogenic temperatures so that it can be placed close to the SQUID realizing a local cryogenic loop. The adoption of the DL-FLL scheme allows to simplify considerably the cryo-amplifier which, being AC-coupled, don't require the features of a precision DC-coupled amplifier and can be made with a limited number of electronic components and with a consequent reduction of power dissipation.

  12. Relationship of edge localized mode burst times with divertor flux loop signal phase in JET

    SciTech Connect

    Chapman, S. C.; Dendy, R. O.; Todd, T. N.; Webster, A. J.; Morris, J.; Watkins, N. W.; Calderon, F. A.

    2014-06-15

    A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM.

  13. Chesapeake Bay sediment flux model. Final report

    SciTech Connect

    Di Toro, D.M.; Fitzpatrick, J.J.

    1993-06-01

    Formulation and application of a predictive diagenetic sediment model are described in this report. The model considers two benthic sediment layers: a thin aerobic layer in contact with the water column and a thicker anaerobic layer. Processes represented include diagenesis, diffusion, particle mixing, and burial. Deposition of organic matter, water column concentrations, and temperature are treated as independent variables that influence sediment-water fluxes. Sediment oxygen demand and sediment-water fluxes of sulfide, ammonium, nitrate, phosphate, and silica are predicted. The model was calibrated using sediment-water flux observations collected in Chesapeake Bay 1985-1988. When independent variables were specified based on observations, the model correctly represented the time series of sediment-water fluxes observed at eight stations in the Bay and tributaries.... Chesapeake Bay, Models, Sediments, Dissolved oxygen, Nitrogen Eutrophication, Phosphorus.

  14. Frequency multiplexed flux locked loop architecture providing an array of DC SQUIDS having both shared and unshared components

    DOEpatents

    Ganther, Jr., Kenneth R.; Snapp, Lowell D.

    2002-01-01

    Architecture for frequency multiplexing multiple flux locked loops in a system comprising an array of DC SQUID sensors. The architecture involves dividing the traditional flux locked loop into multiple unshared components and a single shared component which, in operation, form a complete flux locked loop relative to each DC SQUID sensor. Each unshared flux locked loop component operates on a different flux modulation frequency. The architecture of the present invention allows a reduction from 2N to N+1 in the number of connections between the cryogenic DC SQUID sensors and their associated room temperature flux locked loops. Furthermore, the 1.times.N architecture of the present invention can be paralleled to form an M.times.N array architecture without increasing the required number of flux modulation frequencies.

  15. Half-integer flux quantization in a superconducting loop with a ferromagnetic π-junction

    NASA Astrophysics Data System (ADS)

    Bauer, A.; Bentner, J.; Aprili, M.; Della Rocca, M.; Reinwald, M.; Wegscheider, W.; Strunk, C.

    2006-09-01

    Superconducting loops containing a π-junction are predicted to show a spontaneous magnetic moment in zero external magnetic field. In order to confirm this longstanding prediction experimentally we performed magnetization measurements on individual mesoscopic superconducting niobium loops with a ferromagnetic (PdNi) π-junction. The loops are prepared on top of the active area of a micro Hall-sensor based on high mobility GaAs/AlGaAs heterostructures. We observe switching of the loop between different magnetization states at very low magnetic fields, which is asymmetric for positive and negative sweep direction. This is evidence for a spontaneous current induced by the intrinsic phase shift of the π-junction. In addition, the presence of the spontaneous current at zero applied field is directly revealed by an increase of the magnetic moment with decreasing temperature, which results in half integer flux quantization in the loop at low temperatures.

  16. Heat flux in a non-Maxwellian plasma. [in realistic solar coronal loop

    NASA Technical Reports Server (NTRS)

    Ljepojevic, N. N.; Macneice, P.

    1989-01-01

    A hybrid numerical scheme is applied to solve the Landau equation for the electron distribution function over all velocity space. Evidence is presented for the first time of the degree and character of the failure of the classical Spitzer-Haerm heat flux approximation in a realistic solar coronal loop structure. In the loop model used, the failure is so severe at some points that the role of the heat flux in the plasma's energy balance is completely misinterpreted. In the lower corona the Spitzer-Haerm approximation predicts that the heat flux should act as an energy source, whereas the more accurate distribution functions calculated here show this to be an energy sink.

  17. SIGMOID-TO-FLUX-ROPE TRANSITION LEADING TO A LOOP-LIKE CORONAL MASS EJECTION

    SciTech Connect

    Liu Rui; Liu Chang; Wang Shuo; Deng Na; Wang Haimin

    2010-12-10

    Sigmoids are one of the most important precursor structures for solar eruptions. In this Letter, we study a sigmoid eruption on 2010 August 1 with EUV data obtained by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamic Observatory (SDO). In AIA 94 A (Fe XVIII; 6 MK), topological reconfiguration due to tether-cutting reconnection is unambiguously observed for the first time, i.e., two opposite J-shaped loops reconnect to form a continuous S-shaped loop, whose central portion is dipped and aligned along the magnetic polarity inversion line (PIL), and a compact loop crossing the PIL. A causal relationship between photospheric flows and coronal tether-cutting reconnections is evidenced by the detection of persistent converging flows toward the PIL using line-of-sight magnetograms obtained by the Helioseismic and Magnetic Imager on board SDO. The S-shaped loop remains in quasi-equilibrium in the lower corona for about 50 minutes, with the central dipped portion rising slowly at {approx}10 km s{sup -1}. The speed then increases to {approx}60 km s{sup -1} about 10 minutes prior to the onset of a GOES-class C3.2 flare, as the S-shaped loop speeds up its transformation into an arch-shaped loop, which eventually leads to a loop-like coronal mass ejection. The AIA observations combined with H{alpha} filtergrams as well as hard X-ray imaging and spectroscopy are consistent with most flare loops being formed by reconnection of the stretched legs of less-sheared J-shaped loops that envelopes the rising flux rope, in agreement with the standard tether-cutting scenario.

  18. Experimental Study of a Nitrogen Natural Circulation Loop at Low Heat Flux

    NASA Astrophysics Data System (ADS)

    Baudouy, B.

    2010-04-01

    A natural convection circulation loop in liquid nitrogen, i.e. an open thermosiphon flow configuration, has been investigated experimentally near atmospheric pressure. The experiments were conducted on a 2 m high loop with a copper tube of 10 mm inner diameter uniformly heated over a length of 0.95 m. Evolution of the total mass flow rate of the loop and the pressure difference along the tube are described. We also report the boiling curves where single phase and two-phase flows are identified with increasing heat flux. We focus our heat transfer analysis on the single phase regime where mixed convection is encountered. A heat transfer coefficient correlation is proposed. We also examine the boiling incipience as a function of the tube height.

  19. Measurement of plasma diamagnetism in the SINP tokamak by a flux loop system inside the vacuum vessel

    NASA Astrophysics Data System (ADS)

    Saha, S. K.; Kumar, R.; Hui, A. K.

    2001-11-01

    Plasma diamagnetism has been measured in the SINP tokamak by a toroidal flux loop placed inside the vacuum vessel. The flux due to the strong toroidal field has been compensated for by a coplaner annular loop which encircles but does not contain the plasma column. The influence of the eddy currents in the vacuum vessel and the conducting shell in these loops has been calculated analytically by a circuit model using the theory of linear networks and compensated accordingly. This method has been shown to yield an almost exact compensation for toroidal flux (˜0.01%) as well as pickups from other fields. Typical results with plasma shots have been presented.

  20. Measuring electrically charged particle fluxes in space using a fiber optic loop sensor

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The purpose of this program was to demonstrate the potential of a fiber optic loop sensor for the measurement of electrically charged particle fluxes in space. The key elements of the sensor are a multiple turn loop of low birefringence, single mode fiber, with a laser diode light source, and a low noise optical receiver. The optical receiver is designed to be shot noise limited, with this being the limiting sensitivity factor for the sensor. The sensing element is the fiber optic loop. Under a magnetic field from an electric current flowing along the axis of the loop, there is a non-vanishing line integral along the fiber optic loop. This causes a net birefringence producing two states of polarization whose phase difference is correlated to magnetic field strength and thus, current in the optical receiver electronic processing. The objectives in this program were to develop a prototype laser diode powered fiber optic sensor. The performance specification of a minimum detectable current density of 1 (mu)amp/sq m-(radical)Hz, should be at the shot noise limit of the detection electronics. OPTRA has successfully built and tested a 3.2 m diameter loop with 137 turns of low birefringence optical fiber and achieved a minimum detectable current density of 5.4 x 10(exp-5) amps/(radical)Hz. If laboratory space considerations were not an issue, with the length of optical fiber available to us, we would have achieved a minimum detectable current density of 4 x 10(exp -7) amps/(radical)Hz.

  1. Quantum magnetic flux lines, BPS vortex zero modes, and one-loop string tension shifts

    NASA Astrophysics Data System (ADS)

    Alonso-Izquierdo, A.; Mateos Guilarte, J.; de la Torre Mayado, M.

    2016-08-01

    Spectral heat kernel/zeta function regularization procedures are employed in this paper to control the divergences arising from vacuum fluctuations of Bogomolnyi-Prasad-Sommerfield vortices in the Abelian Higgs model. Zero modes of vortex fluctuations are the source of difficulties appearing when the standard Gilkey-de Witt expansion is the tool used in the calculations of one-loop shifts of vortex masses and string tensions. A modified GdW expansion is developed to diminish the impact of the infrared divergences due to the vortex zero modes of fluctuation. With this new technique at our disposal we compute the one-loop vortex mass shifts in the planar AHM and the quantum corrections to the string tension of the magnetic flux tubes living in three dimensions. In both cases it is observed that weak repulsive forces surge between these classically noninteracting topological defects caused by vacuum quantum fluctuations.

  2. Fast Flux Test Facility final safety analysis report. Amendment 73

    SciTech Connect

    Gantt, D.A.

    1993-08-01

    This report provides Final Safety Analysis Report (FSAR) Amendment 73 for incorporation into the Fast Flux Test Facility (FFTR) FSAR set. This page change incorporates Engineering Change Notices (ECNs) issued subsequent to Amendment 72 and approved for incorparoration before May 6, 1993. These changes include: Chapter 3, design criteria structures, equipment, and systems; chapter 5B, reactor coolant system; chapter 7, instrumentation and control systems; chapter 9, auxiliary systems; chapter 11, reactor refueling system; chapter 12, radiation protection and waste management; chapter 13, conduct of operations; chapter 17, technical specifications; chapter 20, FFTF criticality specifications; appendix C, local fuel failure events; and appendix Fl, operation at 680{degrees}F inlet temperature.

  3. Non-contact main cable NDE technique for suspension bridge using magnetic flux-based B-H loop measurements

    NASA Astrophysics Data System (ADS)

    Park, Seunghee; Kim, Ju-Won; Moon, Dae-Joong

    2015-04-01

    In this study, a noncontact main cable NDE method has been developed. This cable NDE method utilizes the direct current (DC) magnetization and a searching coil-based total flux measurement. A total flux sensor head prototype was fabricated that consists of an electro-magnet yoke and a searching coil sensor. To obtain a B-H loop, a magnetic field was generated by applying a cycle of low frequency direct current to the electro-magnet yoke. During the magnetization, a search coil sensor measures the electromotive force from magnetized cable. During the magnetization process, a search coil sensor was measured the magnetic flux density. Total flux was calculated by integrating the measured magnetic flux using a fluxmeter. A B-H loop is obtained by using relationship between a cycle of input DC voltage and measured total flux. The B-H loop can reflect the property of the ferromagnetic materials. Therefore, the cross-sectional loss of cable can be detected using variation of features from the B-H curve. To verify the feasibility of the proposed steel cable NDE method, a series of experimental studies using a main-cable mock-up specimen has been performed in this study.

  4. Discrepant asymmetry stars: The role of unsteady magnetic flux loops in the atmospheres of late-type giant stars

    NASA Technical Reports Server (NTRS)

    Mullan, D. J.; Stencel, R. E.

    1982-01-01

    A number of spectroscopic peculiarities of K giants and other stars which lie in a wedge in the HR diagram are discussed. These peculiarities can be understood in terms of unsteady magnetic flux loops emerging into the stellar atmosphere from beneath the surface.

  5. Aqueous cleaning of flux residue from solder joints. Final report

    SciTech Connect

    Krska, C.M.

    1992-08-01

    Solder joints have traditionally been cleaned using chlorinated or fluorinated solvents. This study addressed alternate processing. One process involved using a saponifier/water solution to remove rosin flux residues; the other process involved using a water-soluble flux and water to remove the residues. Although both processes were satisfactory, the water-soluble flux with water cleaning proved to be the best.

  6. Fast Flux Test Facility final safety analysis report. Amendment 72

    SciTech Connect

    Gantt, D. A.

    1992-08-01

    This document provides the Final Safety Analysis Report (FSAR) Amendment 72 for incorporation into the Fast Flux Test Facility (FFTF) FSAR set. This amendment change incorporates Engineering Change Notices issued subsequent to Amendment 71 and approved for incorporation before June 24, 1992. These include changes in: Chapter 2, Site Characteristics; Chapter 3, Design Criteria Structures, Equipment, and Systems; Chapter 5B, Reactor Coolant System; Chapter 7, Instrumentation and Control Systems; Chapter 8, Electrical Systems - The description of the Class 1E, 125 Vdc systems is updated for the higher capacity of the newly installed, replacement batteries; Chapter 9, Auxiliary Systems - The description of the inert cell NASA systems is corrected to list the correct number of spare sample points; Chapter 11, Reactor Refueling System; Chapter 12, Radiation Protection and Waste Management; Chapter 13, Conduct of Operations; Chapter 16, Quality Assurance; Chapter 17, Technical Specifications; Chapter 19, FFTF Fire Specifications for Fire Detection, Alarm, and Protection Systems; Chapter 20, FFTF Criticality Specifications; and Appendix B, Primary Piping Integrity Evaluation.

  7. 77 FR 55896 - Notice of Final Federal Agency Actions on Loop 1 in Texas

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-11

    ..., Section 401, Section 319) ; Land and Water Conservation Fund (LWCF) ; Safe Drinking Water Act (SDWA) [42 U... Federal Highway Administration Notice of Final Federal Agency Actions on Loop 1 in Texas AGENCY: Federal..., Texas. Those actions grant licenses, permits, and approvals for the project. DATES: By this notice,...

  8. The behavior of transverse waves in nonuniform solar flux tubes. II. Implications for coronal loop seismology

    SciTech Connect

    Soler, Roberto; Terradas, Jaume; Oliver, Ramón; Goossens, Marcel

    2014-02-01

    The seismology of coronal loops using observations of damped transverse oscillations in combination with results from theoretical models is a tool to indirectly infer physical parameters in the solar atmospheric plasma. Existing seismology schemes based on approximations of the period and damping time of kink oscillations are often used beyond their theoretical range of applicability. These approximations assume that the variation of density across the loop is confined to a nonuniform layer much thinner than the radius of the loop, but the results of the inversion problem often do not satisfy this preliminary hypothesis. Here, we determine the accuracy of the analytic approximations of the period and damping time, and the impact on seismology estimates when largely nonuniform loops are considered. We find that the accuracy of the approximations when used beyond their range of applicability is strongly affected by the form of the density profile across the loop, that is observationally unknown and so must be arbitrarily imposed as part of the theoretical model. The error associated with the analytic approximations can be larger than 50% even for relatively thin nonuniform layers. This error directly affects the accuracy of approximate seismology estimates compared to actual numerical inversions. In addition, assuming different density profiles can produce noncoincident intervals of the seismic variables in inversions of the same event. The ignorance about the true shape of density variation across the loop is an important source of error that may dispute the reliability of parameters seismically inferred assuming an ad hoc density profile.

  9. Floating Refrigerant Loop Based on R-134a Refrigerant Cooling of High-Heat Flux Electronics

    SciTech Connect

    Lowe, K.T.

    2005-10-07

    The Oak Ridge National Laboratory (ORNL) Power Electronics and Electric Machinery Research Center (PEEMRC) have been developing technologies to address the thermal issues associated with hybrid vehicles. Removal of the heat generated from electrical losses in traction motors and their associated power electronics is essential for the reliable operation of motors and power electronics. As part of a larger thermal control project, which includes shrinking inverter size and direct cooling of electronics, ORNL has developed U.S. Patent No. 6,772,603 B2, ''Methods and Apparatus for Thermal Management of Vehicle Systems and Components'' [1], and patent pending, ''Floating Loop System for Cooling Integrated Motors and Inverters Using Hot Liquid Refrigerant'' [2]. The floating-loop system provides a large coefficient of performance (COP) for hybrid-drive component cooling. This loop (based on R-134a) is integrated with a vehicle's existing air-conditioning (AC) condenser, which dissipates waste heat to the ambient air. Because the temperature requirements for cooling of power electronics and electric machines are not as low as that required for passenger compartment air, this adjoining loop can operate on the high-pressure side of the existing AC system. This arrangement also allows the floating loop to run without the need for the compressor and only needs a small pump to move the liquid refrigerant. For the design to be viable, the loop must not adversely affect the existing system. The loop should also provide a high COP, a flat-temperature profile, and low-pressure drop. To date, the floating-loop test prototype has successfully removed 2 kW of heat load in a 9 kW automobile passenger AC system with and without the automotive AC system running. The COP for the tested floating-loop system ranges from 40-45, as compared to a typical AC system COP of about 2-4. The estimated required waste-heat load for future hybrid applications is 5.5 kW and the existing system could be

  10. Thermal Control Utilizing an Thermal Control Utilizing an Two-Phase Loop with High Heat Flux Source

    NASA Technical Reports Server (NTRS)

    Jeong, Seong-Il; Didion, Jeffrey

    2004-01-01

    The electric field applied in dielectric fluids causes an imbalance in the dissociation-recombination reaction generated free space charges. The generated charges are redistributed by the applied electric field resulting in the heterocharge layers in the Vicinity of the electrodes. Proper design of the electrodes generates net axial flow motion pumping the fluid. The electrohydrodynamic (EHD) conduction pump is a new device that pumps dielectric fluids utilizing heterocharge layers formed by imposition of electrostatic fields. This paper evaluates the experimental performance of a two-phase breadboard thermal control loop consisting of an EHD conduction pump, condenser, pre-heater, high heat flux evaporator (HE), transport lines, and reservoir (accumulator). The generated pressure head and the maximum applicable heat flux are experimentally determined at various applied voltages and sink temperatures. Recovery from dryout condition by increasing the applied voltage to the pump is also demonstrated.

  11. Linear state feedback, quadratic weights, and closed loop eigenstructures. M.S. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Thompson, P. M.

    1980-01-01

    Equations are derived for the angles of general multivariable root loci and linear quadratic optimal root loci, including angles of departure and approach. The generalized eigenvalue problem is used to compute angles of approach. Equations are also derived to find the sensitivity of closed loop eigenvalue and the directional derivatives of closed loop eigenvectors. An equivalence class of quadratic weights that produce the same asymptotic eigenstructure is defined, a canonical element is defined, and an algorithm to find it is given. The behavior of the optimal root locus in the nonasymptotic region is shown to be different for quadratic weights with the same asymptotic properties. An algorithm is presented that can be used to select a feedback gain matrix for the linear state feedback problem which produces a specified asymptotic eigenstructure. Another algorithm is given to compute the asymptotic eigenstructure properties inherent in a given set of quadratic weights. Finally, it is shown that optimal root loci for nongeneric problems can be approximated by generic ones in the nonasymptotic region.

  12. Diamagnetic measurements in the STOR-M tokamak by a flux loop system exterior to the vacuum vessel

    NASA Astrophysics Data System (ADS)

    Trembach, Dallas; Xiao, Chijin; Dreval, Mykola; Hirose, Akira

    2009-05-01

    Diamagnetic measurements of poloidal beta have been performed in the STOR-M tokamak by a flux loop placed exterior to the vacuum chamber with compensation for the vacuum toroidal field using a nonenclosing coplanar coil, and vibrational compensation from auxiliary coils. It was found that in STOR-M conditions (20% toroidal magnetic field decay over discharge) there is significant influence on the diamagnetic flux measurements from strong residual signals, presumably from image currents being induced by the toroidal field coils, requiring further compensation. A blank (nonplasma) shot is used specifically to eliminate the residual component which is not proportional to the toroidal magnetic field. Data from normal Ohmic discharge operation is presented and calculations of poloidal beta from coil data (βθ˜0.5) is found to be in reasonable agreement with the values of poloidal beta obtained from measurements of electron density and Spitzer temperature with neoclassical corrections for trapped electrons. Contributions present in the blank shot (residual) signal and the limitations of this method are discussed.

  13. A digital flux-locked loop for high temperature SQUID magnetometer and gradiometer systems with field cancellation

    SciTech Connect

    Kraus, R.H. Jr.; Bracht, R.; Flynn, E.R.

    1996-12-01

    The SQUID sensor is typically operated in a null detector mode where an analogue flux-locked-loop, FLL, provides a negative feedback to maintain linear operation. The modulated SQUID signal is amplified, filtered, demodulated, and integrated in the FLL. The resulting analog signal is a measure of the magnetic field and noise at the SQUID and is also fed back to the modulation and feedback (M & F) coil to null the flux at the SQUID to maintain the linear operating point. Thus, the FLL output signal is proportional to the change in magnetic field at the SQUID pickup coil, provided the slew rate and dynamic range of the SQUID and FLL system are not exceeded. The goal of the work is to advance technologies needed for a practical fieldable SQUID biomagnetic sensor. We used HTC SQUIDs to realize the benefits noted above. We also implemented the FLL algorithm on a digital-signal-processor (DSP) to realize a number of benefits including (1) software control of noise filtering and background rejection to enable unshielded use of SQUID sensors, (2) flux quanta countin and resetting SQUID operating point to increase system slew rate and dynamic range, (3) programmable FLL adaptable to numerous specific applications, (4) digital signal output (up to 32-bit precision), and (5) reduced FLL package cost. This paper presents results of external signal rejection for a sensor system using HTC SQUIDs, preamplifier circuit, and DSP FLL designed and built at our laboratory. We also note a companion paper in these proceedings and other references to the use of DSP in SQUID applications.

  14. Advantages of dynamic "closed loop" stable isotope flux phenotyping over static "open loop" clamps in detecting silent genetic and dietary phenotypes.

    PubMed

    Vaitheesvaran, Bhavapriya; Chueh, Fu-Yu; Xu, Jun; Trujillo, Chuck; Saad, M F; Lee, W N P; McGuinness, Owen P; Kurland, Irwin J

    2010-06-01

    In vivo insulin sensitivity can be assessed using "open loop" clamp or "closed loop" methods. Open loop clamp methods are static, and fix plasma glucose independently from plasma insulin. Closed loop methods are dynamic, and assess glucose disposal in response to a stable isotope labeled glucose tolerance test. Using PPARalpha(-/-) mice, open and closed loop assessments of insulin sensitivity/glucose disposal were compared. Indirect calorimetry done for the assessment of diurnal substrate utilization/metabolic flexibility showed that chow fed PPARalpha(-/-) mice had increased glucose utilization during the light (starved) cycle. Euglycemic clamps showed no differences in insulin stimulated glucose disposal, whether for chow or high fat diets, but did show differences in basal glucose clearance for chow fed PPARalpha(-/-) versus SV129J-wt mice. In contrast, the dynamic stable isotope labeled glucose tolerance tests reveal enhanced glucose disposal for PPARalpha(-/-) versus SV129J-wt, for chow and high fat diets. Area under the curve for plasma labeled and unlabeled glucose for PPARalpha(-/-) was approximately 1.7-fold lower, P < 0.01 during the stable isotope labeled glucose tolerance test for both diets. Area under the curve for plasma insulin was 5-fold less for the chow fed SV129J-wt (P < 0.01) but showed no difference on a high fat diet (0.30 +/- 0.1 for SV129J-wt vs. 0.13 +/- 0.10 for PPARalpha(-/-), P = 0.28). This study demonstrates that dynamic stable isotope labeled glucose tolerance test can assess "silent" metabolic phenotypes, not detectable by the static, "open loop", euglycemic or hyperglycemic clamps. Both open loop and closed loop methods may describe different aspects of metabolic inflexibility and insulin sensitivity. PMID:20445758

  15. Phenylnaphthalene Derivatives as Heat Transfer Fluids for Concentrating Solar Power: Loop Experiments and Final Report

    SciTech Connect

    McFarlane, Joanna; Bell, Jason R; Felde, David K; Joseph III, Robert Anthony; Qualls, A L; Weaver, Samuel P

    2013-02-01

    ORNL and subcontractor Cool Energy completed an investigation of higher-temperature, organic thermal fluids for solar thermal applications. Although static thermal tests showed promising results for 1-phenylnaphthalene, loop testing at temperatures to 450 C showed that the material isomerized at a slow rate. In a loop with a temperature high enough to drive the isomerization, the higher melting point byproducts tended to condense onto cooler surfaces. So, as experienced in loop operation, eventually the internal channels of cooler components such as the waste heat rejection exchanger may become coated or clogged and loop performance will decrease. Thus, pure 1-phenylnaphthalene does not appear to be a fluid that would have a sufficiently long lifetime (years to decades) to be used in a loop at the increased temperatures of interest. Hence a decision was made not to test the ORNL fluid in the loop at Cool Energy Inc. Instead, Cool Energy tested and modeled power conversion from a moderate-temperature solar loop using coupled Stirling engines. Cool Energy analyzed data collected on third and fourth generation SolarHeart Stirling engines operating on a rooftop solar field with a lower temperature (Marlotherm) heat transfer fluid. The operating efficiencies of the Stirling engines were determined at multiple, typical solar conditions, based on data from actual cycle operation. Results highlighted the advantages of inherent thermal energy storage in the power conversion system.

  16. Application of Karhunen-Loève Expansions for the Dynamic Analysis of a Natural Convection Loop for Known Heat Flux

    NASA Astrophysics Data System (ADS)

    Hummel, Tobias; Pacheco-Vega, Arturo

    2012-11-01

    In the present study we use Karhunen-Loève (KL) expansions to model the dynamic behavior of a single-phase natural convection loop. The loop is filled with an incompressible fluid that exchanges heat through the walls of its toroidal shape. Influx and efflux of energy take place at different parts of the loop. The focus here is a sinusoidal variation of the heat flux exchanged with the environment for three different scenarios; i.e., stable, limit cycles and chaos. For the analysis, one-dimensional models, in which the tilt angle and the amplitude of the heat flux are used as parameters, were first developed under suitable assumptions and then solved numerically to generate the data from which the KL-based models could be constructed. The method of snapshots, along with a Galerkin projection, was then used to find the basis functions and corresponding constants of each expansion, thus producing the optimal representation of the system. Results from this study indicate that the dimension of the KL-based dynamical system depends on the linear stability of the steady states; the number of basis functions necessary to describe the system increases with increased complexity of the system operation. When compared to typical dynamical systems based on Fourier expansions the KL-based models are, in general, more compact and equally accurate in the dynamic description of the natural convection loop.

  17. Performance of the Extravehicular Mobility Unit (EMU) Airlock Coolant Loop Remediation (A/L CLR) Hardware - Final

    NASA Technical Reports Server (NTRS)

    Steele, John W.; Rector, Tony; Gazda, Daniel; Lewis, John

    2011-01-01

    An EMU water processing kit (Airlock Coolant Loop Recovery -- A/L CLR) was developed as a corrective action to Extravehicular Mobility Unit (EMU) coolant flow disruptions experienced on the International Space Station (ISS) in May of 2004 and thereafter. A conservative duty cycle and set of use parameters for A/L CLR use and component life were initially developed and implemented based on prior analysis results and analytical modeling. Several initiatives were undertaken to optimize the duty cycle and use parameters of the hardware. Examination of post-flight samples and EMU Coolant Loop hardware provided invaluable information on the performance of the A/L CLR and has allowed for an optimization of the process. The intent of this paper is to detail the evolution of the A/L CLR hardware, efforts to optimize the duty cycle and use parameters, and the final recommendations for implementation in the post-Shuttle retirement era.

  18. String theory in Ad{{S}_{3}}\\times {{S}^{3}}\\times {{T}^{4}} with mixed flux: semiclassical and 1-loop phase in the S-matrix

    NASA Astrophysics Data System (ADS)

    Stepanchuk, A.

    2015-05-01

    We present a semiclassical derivation of the tree-level and 1-loop dressing phases in the massive sector of string theory on Ad{{S}3}× {{S}3}× {{T}4} supplemented by Ramond-Ramond and Neveu-Schwarz-Neveu-Schwarz 3-form fluxes. In analogy with the Ad{{S}5}× {{S}5} case, we use the dressing method to obtain scattering solutions for dyonic giant magnons which allows us to determine the semiclassical bound-state S-matrix and its 1-loop correction. We also find that the 1-loop correction to the dyonic giant magnon energy vanishes. Looking at the relation between the bound-state picture and elementary magnons in terms of the fusion procedure we deduce the elementary dressing phases. In both the semiclassical and 1-loop cases we find agreement with recent proposals from finite-gap equations and unitarity cut methods. Further, we find consistency with the finite-gap picture by determining the resolvent for the dyonic giant magnon from the semiclassical bosonic scattering data.

  19. Evaluation of cobalt sources in Westinghouse-designed three- and four-loop plants. Final report

    SciTech Connect

    Bergmann, C.A.

    1982-10-01

    Sources of cobalt input in two typical Westinghouse-designed three- and four-loop plants are identified. Quantification of the sources was based on a detailed analysis of the construction materials. The best available information was used to establish the corrosion and wear release rates. This analysis concludes that approximately 70% of the cobalt input arises from corrosion release of Inconel steam generator tubing. Corrosion and wear of high-cobalt alloys account for about 25%. Recommendations are made concerning cobalt reduction options based on a cost-benefit analysis.

  20. Critical Heat Flux Phenomena at HighPressure & Low Mass Fluxes: NEUP Final Report Part I: Experiments

    SciTech Connect

    Corradini, Michael; Wu, Qiao

    2015-04-30

    This report is a preliminary document presenting an overview of the Critical Heat Flux (CHF) phenomenon, the High Pressure Critical Heat Flux facility (HPCHF), preliminary CHF data acquired, and the future direction of the research. The HPCHF facility has been designed and built to study CHF at high pressure and low mass flux ranges in a rod bundle prototypical of conceptual Small Modular Reactor (SMR) designs. The rod bundle is comprised of four electrically heated rods in a 2x2 square rod bundle with a prototypic chopped-cosine axial power profile and equipped with thermocouples at various axial and circumferential positions embedded in each rod for CHF detection. Experimental test parameters for CHF detection range from pressures of ~80 – 160 bar, mass fluxes of ~400 – 1500 kg/m2s, and inlet water subcooling from ~30 – 70°C. The preliminary data base established will be further extended in the future along with comparisons to existing CHF correlations, models, etc. whose application ranges may be applicable to the conditions of SMRs.

  1. Evaluation of contaminant flux rates from sediments of Sinclair Inlet, WA, using a benthic flux sampling device. Final report

    SciTech Connect

    Chadwick, D.B.; Lieberman, S.H.; Reimers, C.E.; Young, D.

    1993-02-01

    A Benthic Flux Sampling Device (BFSD) was demonstrated on site to determine the mobility of contaminants in sediments off the Puget Sound Naval Shipyard (PSNS) in Sinclair Inlet, WA. Quantification of toxicant flux from the sediments will support ongoing assessment studies and facilitate the design of appropriate remediation strategies, if required. In general, where release of contaminants was found, the measured rates do not represent a significant source relative to other major inputs such as sewer discharges, nonpoint source runoff, and marinas. They may, however, represent an exposure pathway for benthic biota with a subsequent potential for toxicological effects and/or bioaccumulation. Environmental assessment, CIVAPP:Toxicity, CIVAPP:Marine chemistry, Hazardous waste.

  2. Steady state boiling crisis in a helium vertically heated natural circulation loop - Part 1: Critical heat flux, boiling crisis onset and hysteresis

    NASA Astrophysics Data System (ADS)

    Furci, H.; Baudouy, B.; Four, A.; Meuris, C.

    2016-01-01

    Experiments were conducted on a 2-m high two-phase helium natural circulation loop operating at 4.2 K and 1 atm. The same loop was used in two experiments with different heated section internal diameter (10 and 6 mm). The power applied on the heated section wall was controlled in increasing and decreasing sequences, and temperature along the section, mass flow rate and pressure drop evolutions were recorded. The values of critical heat flux (CHF) were found at different positions of the test section, and the post-CHF regime was studied. The predictions of CHF by existing correlations were good in the downstream portion of the section, however CHF anomalies have been observed near the entrance, in the low quality region. In resonance with this, the re-wetting of the surface has distinct hysteresis behavior in each of the two CHF regions. Furthermore, hydraulics effects of crisis, namely on friction, were studied (Part 2). This research is the starting point to future works addressing transients conducing to boiling crisis in helium natural circulation loops.

  3. Freeze-protection loop for direct solar-water-heating systems. Final report

    SciTech Connect

    Not Available

    1981-11-04

    Even a one-time freeze condition can do destructive damage to a direct solar water heating system. The project funded under grant DE-FG4480R4, 1-1-80 to 8-1-81, proposed to demonstrate a simple installation procedure whereby thermosiphoning warm water from storage would prevent solar collectors from freezing. Installing the freeze protection loop in owner maintained solar systems was inconclusive. Owners were not attentive to freeze warnings or did not understand the simple instructions. A controlled situation was established using a refrigerator to produce below freezing temperatures. Experiments conducted with this equipment showed that the thermosiphoning principle could not be relied on to prevent freezing. Thermosiphoning cannot be relied on to prevent freezing in a direct solar water heating system. The direct system is an effective means of heating water in north Florida, but the system must be drained, either manually or automatically, to provide reliable system protection.

  4. Studies on the closed-loop digital control of multi-modular reactors. Final report

    SciTech Connect

    Bernard, J.A.; Henry, A.F.; Lanning, D.D.; Meyer, J.E.

    1992-11-01

    This report describes the theoretical development and the evaluation via both experiment and simulation of digital methods for the closed-loop control of power, temperature, and steam generator level in multi-modular reactors. The major conclusion of the research reported here is that the technology is currently available to automate many aspects of the operation of multi-modular plants. This will in turn minimize the number of required personnel and thus contain both operating and personnel costs, allow each module to be operated at a different power level thereby staggering the times at which refuelings would be needed, and maintain the competitiveness of US industry relative to foreign vendors who are developing and applying advanced control concepts. The technology described in this report is appropriate to the proposed multi-modular reactor designs and to present-generation pressurized water reactors. Its extension to boiling water reactors is possible provided that the commitment is made to create a real-time model of a BWR. The work reported here was performed by the Massachusetts Institute of Technology (MIT) under contract to the Oak Ridge National Laboratory (ORNL) and to the United States Department of Energy (Division of Industry and University Programs, Contract No. DE-FG07-90ER12930.)

  5. One-loop correction effects on supernova neutrino fluxes: a new possible probe for Beyond Standard Models

    SciTech Connect

    Gava, J.

    2010-05-01

    We present the consequences of a large radiative correction term coming from Supersymmetry (SUSY) upon the electron neutrino fluxes streaming off a core-collapse supernova using a 3-flavour neutrino-neutrino interaction code. We explore the interplay between the neutrino-neutrino interaction and the effects of the resonance associated with the μ−τ neutrino index of refraction. We find that sizeable effects may be visible in the flux on Earth and, consequently, on the number of events upon the energy signal of electron neutrinos in a liquid argon detector. Such effects could lead to a probe for Beyond Standard Model (BSM) physics and, ideally, to constraints in the SUSY parameter space.

  6. Effects of temperature, frequency, flux density, and excitation waveform on the core loss and dynamic B-H loops of supermalloy

    NASA Technical Reports Server (NTRS)

    Schwarze, Gene E.; Wieserman, William R.; Niedra, Janis M.

    1995-01-01

    The availability of experimental data which characterize the performance of soft magnetic materials for the combined conditions of temperature and frequency over a wide flux density range for different types of excitation is almost nonexistent. An experimental investigation of an 80-20 Ni-Fe alloy (Supermalloy) was conducted over the temperature (T) range of 23 to 300 C, frequency (f) range of 1 to 50 kHz, and maximum flux densities (B(sub M)) from 0.1 T up to 0.7 T for both sine and square wave voltage excitation. The investigation focused on the effects of (B(sub M)), f, T, and excitation waveform on the specific core loss (SCL) and dynamic B-H loops. The results show that the ratio (R) of sine to square wave excitation specific core loss was always greater than unity for a given f and T and identical values of B(sub M). The values of R ranged from 1.07 to 1.34. The classical theory of core loss separation into a hysteresis and eddy current loss component was used to theoretically determine the lower and upper bounds on R, against which the experimental R-values were compared. The experimental R-values were also used to make a comparison of the core loss of a sine and square wave voltage driven transformer.

  7. Satellite measurements of Magnetospheric Poynting flux. Final report, August 1968-March 1990

    SciTech Connect

    Vickrey, J.F.; Kelley, M.C.; Knudsen, D.J.

    1990-03-09

    The first satellite observations of the Magnetospheric Poynting flux are presented for two presented for two passes of the HILAT satellite over the northern polar regions. The simultaneously measured energy input due to precipitating particles is also presented. The Poynting flux is in general agreement with an independent estimate of the Joule dissipation in the upper atmosphere. However, there are localized regions in both orbits of net upward Poynting flux, suggesting a neutral wind dynamo. Evidence for the existence of propagating Alfven waves as well as steady state current systems closed in the ionosphere are also presented.

  8. Measurement of emission fluxes from Technical Area 54, Area G and L. Final report

    SciTech Connect

    Eklund, B.

    1995-03-15

    The emission flux (mass/time-area) of tritiated water from TA-54 was measured to support the characterization of radioactive air emissions from waste sites for the Radioactive Air Emissions Management (RAEM) program and for the Area G Performance Assessment. Measurements were made at over 180 locations during the summers of 1993 and 1994, including randomly selected locations across Area G, three suspected areas of contamination at Area G, and the property surrounding TA-54. The emission fluxes of radon were measured at six locations and volatile organic compounds (VOCs) at 30 locations. Monitoring was performed at each location over a several-hour period using the U.S. EPA flux chamber approach. Separate samples for tritiated water, radon, and VOCs were collected and analyzed in off-site laboratories. The measured tritiated water emission fluxes varied over several orders of magnitude, from background levels of about 3 pCi/m{sup 2}-min to 9.69 x 10{sup 6} pCi/m{sup 2}-min near a disposal shaft. Low levels of tritiated water were found to have migrated into Pajarito Canyon, directly south of Area G. The tritium flux data were used to generate an estimated annual emission rate of 14 Curies/yr for all of Area G, with the majority of this activity being emitted from relatively small areas adjacent to several disposal shafts. The estimated total annual release is less than 1% of the total tritium release from all LANL in 1992 and results in a negligible off-site dose. Based on the limited data available, the average emission flux of radon from Area G is estimated to be 8.1 pCi/m{sup 2}-min. The measured emission fluxes of VOCs were < 100 {mu}g/m{sup 2}-min, which is small compared with fluxes typically measured at hazardous waste landfills. The air quality impacts of these releases were evaluated in a separate report.

  9. TRANSVERSE OSCILLATIONS OF A LONGITUDINALLY STRATIFIED CORONAL LOOP SYSTEM

    SciTech Connect

    Fathalian, N.; Safari, H. E-mail: safari@znu.ac.i

    2010-11-20

    Collective transverse coronal loop oscillations seem to be detected in observational studies. In this regard, Luna et al. modeled the collective kink-like normal modes of several cylindrical loop systems using the T-matrix theory. This paper investigates the effects of longitudinal density stratification along the loop axis on the collective kink-like modes of the system of coronal loops. The coronal loop system is modeled as cylinders of parallel flux tubes, with two ends of each loop at the dense photosphere. The flux tubes are considered as uniform magnetic fields, with stratified density along the loop axis which changes discontinuously at the lateral surface of each cylinder. The MHD equations are reduced to solve a set of two coupled dispersion relations for frequencies and wavenumbers, in the presence of a stratification parameter. The fundamental and first overtone frequencies and longitudinal wavenumbers are computed. The previous results are verified for an unstratified coronal loop system. Finally, we conclude that an increased longitudinal density stratification parameter will result in an increase of the frequencies. The frequency ratios, first overtones to fundamentals, are very sensitive functions of the density scale height parameter. Therefore, stratification should be included in dynamics of coronal loop systems. For unstratified coronal loop systems, these ratios are the same as monoloop ones.

  10. Final report of the HFIR (High Flux Isotope Reactor) irradiation facilities improvement project

    SciTech Connect

    Montgomery, B.H.; Thoms, K.R.; West, C.D.

    1987-09-01

    The High-Flux Isotope Reactor (HFIR) has outstanding neutronics characteristics for materials irradiation, but some relatively minor aspects of its mechanical design severely limited its usefulness for that purpose. In particular, though the flux trap region in the center of the annular fuel elements has a very high neutron flux, it had no provision for instrumentation access to irradiation capsules. The irradiation positions in the beryllium reflector outside the fuel elements also have a high flux; however, although instrumented, they were too small and too few to replace the facilities of a materials testing reactor. To address these drawbacks, the HFIR Irradiation Facilities Improvement Project consisted of modifications to the reactor vessel cover, internal structures, and reflector. Two instrumented facilities were provided in the flux trap region, and the number of materials irradiation positions in the removable beryllium (RB) was increased from four to eight, each with almost twice the available experimental space of the previous ones. The instrumented target facilities were completed in August 1986, and the RB facilities were completed in June 1987.

  11. Computational Platform for Flux Analysis Using 13C-Label Tracing- Phase I SBIR Final Report

    SciTech Connect

    Van Dien, Stephen J.

    2005-04-12

    Isotopic label tracing is a powerful experimental technique that can be combined with metabolic models to quantify metabolic fluxes in an organism under a particular set of growth conditions. In this work we constructed a genome-scale metabolic model of Methylobacterium extorquens, a facultative methylotroph with potential application in the production of useful chemicals from methanol. A series of labeling experiments were performed using 13C-methanol, and the resulting distribution of labeled carbon in the proteinogenic amino acids was determined by mass spectrometry. Algorithms were developed to analyze this data in context of the metabolic model, yielding flux distributions for wild-type and several engineered strains of M. extorquens. These fluxes were compared to those predicted by model simulation alone, and also integrated with microarray data to give an improved understanding of the metabolic physiology of this organism.

  12. Vaporization, dispersion, and radiant fluxes from LPG spills. Final technical report

    SciTech Connect

    Not Available

    1982-05-01

    Both burning and non-burning spills of LPG (primarily propane) were studied. Vaporization rates for propane spills on soil, concrete, insulating concrete, asphalt, sod, wood, and polymer foams were measured. Thermal conductivity, heat transfer coefficients, and steady state vaporization rates were determined. Vapor concentrations were measured downwind of open propane pools and a Gaussian dispersion model modified for area sources provided a good correlation of measured concentrations. Emitted and incident radiant fluxes from propane fires were measured. Simplified flame radiation models were adequate for predicting radiant fluxes. Tests in which propane was sprayed into the air showed that at moderately high spray rates all the propane flashed to vapor or atomized; no liquid collected on the ground.

  13. High flux film and transition boiling. Final report, April 1988--January 1993

    SciTech Connect

    Witte, L.C.

    1993-02-01

    An investigation was conducted on the potential for altering the boiling curve through effects of high velocity and high subcooling. Experiments using water and Freon-113 flowing over cylindrical electrical heaters in crossflow were made to see how velocity and subcooling affect the boiling curve, especially the film and transition boiling regions. We sought subcooling levels down to near the freezing points of these two liquids to prove the concept that the critical heat flux and the minimum heat flux could be brought together, thereby averting the transition region altogether. Another emphasis was to gain insight into how the various boiling regions could be represented mathematically on various parts of heating surface. Motivation for the research grew out of a realization that the effects of very high subcooling and velocity might be to avert the transition boiling altogether so that the unstable part of the boiling curve would not limit the application of high flux devices to temperatures less than the burnout temperatures. Summaries of results from the study are described. It shows that the potential for averting, the transition region is good, and points the way to further research that is needed to demonstrate the potential.

  14. Loop-to-loop coupling.

    SciTech Connect

    Warne, Larry Kevin; Lucero, Larry Martin; Langston, William L.; Salazar, Robert Austin; Coleman, Phillip Dale; Basilio, Lorena I.; Bacon, Larry Donald

    2012-05-01

    This report estimates inductively-coupled energy to a low-impedance load in a loop-to-loop arrangement. Both analytical models and full-wave numerical simulations are used and the resulting fields, coupled powers and energies are compared. The energies are simply estimated from the coupled powers through approximations to the energy theorem. The transmitter loop is taken to be either a circular geometry or a rectangular-loop (stripline-type) geometry that was used in an experimental setup. Simple magnetic field models are constructed and used to estimate the mutual inductance to the receiving loop, which is taken to be circular with one or several turns. Circuit elements are estimated and used to determine the coupled current and power (an equivalent antenna picture is also given). These results are compared to an electromagnetic simulation of the transmitter geometry. Simple approximate relations are also given to estimate coupled energy from the power. The effect of additional loads in the form of attached leads, forming transmission lines, are considered. The results are summarized in a set of susceptibility-type curves. Finally, we also consider drives to the cables themselves and the resulting common-to-differential mode currents in the load.

  15. Sediment flux, east Greenland margin. Final report, 1 October 1988-1 September 1991

    SciTech Connect

    Andrews, J.T.; Williams, K.M.

    1991-09-17

    We investigated sediment flux across an ice-dominated, high latitude continental margin, using cores from the East Greenland Shelf (ca. 68 deg N). Density, weight percentages of the various sediment components, and sediment/age relations (AMS C- 14 dates) were investigated from cores collected 1988 and 1990. High-resolution DTS Huntec surveys indicated 10-20 m of acoustically transparent sediment. Maximum core length was 3 m and most of the gravity cores were between 1-2 m. The radiocarbon assays show that basal core sediments date between ca. 9,000 and 14,500 BP. The acoustic characteristics, the low dry volume densities (ca. 600 kg/m3 and the faunal and floral assemblages) suggest ice-distal conditions between ca. 14,500 and the present. Net sediment flux in the Kangerdlugssuaq Trough during the last 14,500 years has been low; this might be explained by either (1) cold-based glaciological conditions of the East Greenland ice sheet; and/or (2) efficient sediment trap(s) lying along the inner shelf/fjords of East Greenland.

  16. 76 FR 56493 - Notice of Final Federal Agency Actions on State Loop 375 From Interstate Highway 10 to the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-13

    ... Conservation Fund (LWCF), 16 U.S.C. 4601-4604; Safe Drinking Water Act (SDWA), 42 U.S.C. 300(f)-300(j)(6... Interstate Highway 10 to the Franklin Mountains State Park in Texas AGENCY: Federal Highway Administration..., upgrades to Texas State Loop 375 from Interstate Highway 10 to 0.479 Mile East of the Tom Mays Unit of...

  17. A novel technique of using a thyristor driven pump as the final control element and flow indicator of a flow control loop.

    PubMed

    Bera, S C; Mandal, N; Sarkar, R

    2011-07-01

    In the present paper, design of a flow control loop using a thyristor driven pump as final control element has been described. In this technique, the load current of a thyristor driven pump motor has been utilized as a mass flow sensing parameter of a fluid passing through a pipeline. This thyristor driven pump has been utilized as a final control element of a flow control loop and the speed of the pump has been selected as the manipulated variable. The non-linearity between the thyristor input signal and pump output has been eliminated by using a modified PID control technique with inverse derivative control action. Thus without using any conventional flow meter and control valve only the thyristor driven pump has been utilized both as the final control element and flow indicating device by using the proposed technique. The whole system has been designed, fabricated and tested by using tap water as the flowing liquid through a pipe line. The experimental results along with the theoretical analysis are compared and reported in the paper.

  18. Development of the Radiation Stabilized Distributed Flux Burner, Phase II Final Report

    SciTech Connect

    Webb, A.; Sullivan, J.D.

    1997-06-01

    This report covers progress made during Phase 2 of a three-phase DOE-sponsored project to develop and demonstrate the Radiation Stabilized Distributed Flux burner (also referred to as the Radiation Stabilized Burner, or RSB) for use in industrial watertube boilers and process heaters. The goal of the DOE-sponsored work is to demonstrate an industrial boiler burner with NOx emissions below 9 ppm and CO emissions below 50 ppm (corrected to 3% stack oxygen). To be commercially successful, these very low levels of NOx and CO must be achievable without significantly affecting other measures of burner performance such as reliability, turndown, and thermal efficiency. Phase 1 of the project demonstrated that sub-9 ppm NOx emissions and sub-50 ppm CO emissions (corrected to 3% oxygen) could be achieved with the RSB in a 3 million Btu/Hr laboratory boiler using several methods of NOx reduction. The RSB was also tested in a 60 million Btu/hr steam generator used by Chevron for Thermally Enhanced Oil Recovery (TEOR). In the larger scale tests, fuel staging was demonstrated, with the RSB consistently achieving sub-20 ppm NOx and as low as 10 ppm NOx. Large-scale steam generator tests also demonstrated that flue gas recirculation (FGR) provided a more predictable and reliable method of achieving sub-9 ppm NOx levels. Based on the results of tests at San Francisco Thermal and Chevron, the near-term approach selected by Alzeta for achieving low NOx is to use FGR. This decision was based on a number of factors, with the most important being that FGR has proved to be an easier approach to transfer to different facilities and boiler designs. In addition, staging has proved difficult to implement in a way that allows good combustion and emissions performance in a fully modulating system. In Phase 3 of the project, the RSB will be demonstrated as a very low emissions burner product suitable for continuous operation in a commercial installation. As such, the Phase 3 field demonstration

  19. Regulative Loops, Step Loops and Task Loops

    ERIC Educational Resources Information Center

    VanLehn, Kurt

    2016-01-01

    This commentary suggests a generalization of the conception of the behavior of tutoring systems, which the target article characterized as having an outer loop that was executed once per task and an inner loop that was executed once per step of the task. A more general conception sees these two loops as instances of regulative loops, which…

  20. The flow-chart loop: temperature, density, and cooling observables supporting nanoflare coronal heating models

    SciTech Connect

    Schmelz, J. T.; Pathak, S.; Dhaliwal, R. S.; Christian, G. M.; Fair, C. B.

    2014-11-10

    We have tested three controversial properties for a target loop observed with the Atmospheric Imaging Assembly: (1) overdense loops; (2) long-lifetime loops; and (3) multithermal loops. Our loop is overdense by a factor of about 10 compared to results expected from steady uniform heating models. If this were the only inconsistency, our loop could still be modeled as a single strand, but the density mismatch would imply that the heating must be impulsive. Moving on to the second observable, however, we find that the loop lifetime is at least an order of magnitude greater than the predicted cooling time. This implies that the loop cannot be composed of a single flux tube, even if the heating were dynamic, and must be multi-stranded. Finally, differential emission measure analysis shows that the cross-field temperature of the target loop is multithermal in the early and middle phases of its lifetime, but effectively isothermal before it fades from view. If these multithermal cooling results are found to be widespread, our results could resolve the original coronal loop controversy of 'isothermal' versus 'multithermal' cross-field temperatures. That is, the cross-field temperature is not always 'multithermal' nor is it always 'isothermal', but might change as the loop cools. We find that the existence and evolution of this loop is consistent with predictions of nanoflare heating.

  1. Phase I Final Report: New Technology Platform to Measure Atmospheric Fluxes and Concentrations of Carbon Isotopes in CO2

    SciTech Connect

    Miles J. Weida, Ph.D. Senior Scientist, Applications Development

    2009-03-24

    There were four goals of the Phase I research carried out to develop the basis for a new technology platform to measure atmospheric fluxes and concentrations of carbon isotopes in CO2. The first was to extend the Daylight Solutions external cavity quantum cascade laser (ECqcL) package to allow continuous, rapid (<10 msec) sweeping of the laser wavelength to acquire spectra. This involved developing a rapid tuning mechanism for our broadly tunable quantum cascade (QC) lasers that meets the requirements of a CO2 isotopologue sensing application. The second goal was to undertake QC device development to procure QC devices capable of lasing in the 4.3 to 4.5 μm spectral region necessary for CO2 isotopologue detection. Final devices procured from this process were to be mounted, coated, and tested to demonstrate their suitability for scanning from 4.3 to 4.5 μm. The third goal was to develop spectral acquisition and analysis algorithms to enable real-time data acquisition and spectral fitting to determine gas temperature and isotopologue concentrations. This involved determining the best spectral analysis algorithm for retrieving CO2 isotopologue temperature and concentration information based on a targeted (i.e. 5% to 10% of center wavelength) scan of CO2 isotopologue absorption features. The culminating goal of Phase I was integration of these three components into a bench-top prototype that can measure CO2 isotopologue ratios in the laboratory.

  2. Canonical transformations and loop formulation of SU(N) lattice gauge theories

    NASA Astrophysics Data System (ADS)

    Mathur, Manu; Sreeraj, T. P.

    2015-12-01

    We construct canonical transformations to reformulate SU(N) Kogut-Susskind lattice gauge theory in terms of a set of fundamental loop and string flux operators along with their canonically conjugate loop and string electric fields. The canonical relations between the initial SU(N) link operators and the final SU(N) loop and string operators, consistent with SU(N) gauge transformations, are explicitly constructed over the entire lattice. We show that as a consequence of SU(N) Gauss laws all SU(N) string degrees of freedom become cyclic and decouple from the physical Hilbert space Hp. The Kogut-Susskind Hamiltonian rewritten in terms of the fundamental physical loop operators has global SU(N) invariance. There are no gauge fields. We further show that the (1 /g2 ) magnetic field terms on plaquettes create and annihilate the fundamental plaquette loop fluxes while the (g2 ) electric field terms describe all their interactions. In the weak coupling (g2→0 ) continuum limit the SU(N) loop dynamics is described by SU(N) spin Hamiltonian with nearest neighbor interactions. In the simplest SU(2) case, where the canonical transformations map the SU(2) loop Hilbert space into the Hilbert spaces of hydrogen atoms, we analyze the special role of the hydrogen atom dynamical symmetry group S O (4 ,2 ) in the loop dynamics and the spectrum. A simple tensor network ansatz in the SU(2) gauge invariant hydrogen atom loop basis is discussed.

  3. An experimental evaluation of the instrumented flux synthesis method for the real-time estimation of reactivity. Final report

    SciTech Connect

    Hughes, J.C.; Henry, A.F.; Lanning, D.D.; Bernard, J.A.

    1996-01-01

    One method of determining the flux density is flux synthesis which approximates the flux in the core by linear combinations of precomputed shape functions. In traditional flux synthesis, the unknown mixing coefficients are determined using a weighted residual method of solving the diffusion equation. In the instrumented synthesis method, the mixing coefficients are determined using count rates from neutron detectors in the core. In this way the mixing coefficients are linked to conditions in the reactor. Using the synthesized flux, kinetics parameters, notably reactivity, can be calculated in real time. An experimental evaluation has been performed in the Massachusetts Institute of Technology Reactor, MITR-II. Detector measurements have been collected using fission chambers placed at the periphery of the core. The reactor was put into a number of various conditions, both static and transient, and data were collected using a digital acquisition system for later combination with shape functions. Transients included increasing power, decreasing power, and a reactor scram. The shape functions were generated using Version 3.0 of the QUARTZ code, a quadratic nodal diffusion theory code in triangular-Z geometry. Supernodal analysis algorithms have been added to the original program, along with subroutines to guarantee diagonal dominance of the leakage matrix in the finite difference or quadratic current approximations in the coarse mesh. The agreement between coarse mesh and fine mesh in all cases is excellent, with finite difference coarse mesh solutions generally slightly better. The synthesis method has been shown to accurately reflect the changes from an initial condition by combining representative flux shapes. It can be concluded that, with proper calibration of the measurement system and inclusion of representative flux shapes, the instrumented synthesis method will properly predict the flux in the core under a number of conditions.

  4. Final Report Independent Verification Survey of the High Flux Beam Reactor, Building 802 Fan House Brookhaven National Laboratory Upton, New York

    SciTech Connect

    Harpeneau, Evan M.

    2011-06-24

    On May 9, 2011, ORISE conducted verification survey activities including scans, sampling, and the collection of smears of the remaining soils and off-gas pipe associated with the 802 Fan House within the HFBR (High Flux Beam Reactor) Complex at BNL. ORISE is of the opinion, based on independent scan and sample results obtained during verification activities at the HFBR 802 Fan House, that the FSS (final status survey) unit meets the applicable site cleanup objectives established for as left radiological conditions.

  5. Treatment of FGD plant wastewater by enhancing microfiltration fluxes. Final report, September 1, 1992--December 31, 1993

    SciTech Connect

    Ilias, S.

    1994-03-24

    In coal-fired boilers, the wet limestone-gypsum based flue gas desulfurization (FGD) plants produce large volumes of wastewater containing dissolved salts and heavy metals. Before discharging these wastes to the environment, the heavy metals must be removed. One of the preferred methods for removal of heavy metals is by co-precipitation of hydroxides and sulfides of heavy metals, followed by coagulation and flocculation techniques. As a post-treatment of the resulting wastewater stream, crossflow microfiltration is being considered as a cost effective and environmentally acceptable method. However, membrane `fouling` and `concentration polarization` in such applications remain serious problems and result in flux decline of product during filtration. In this exploratory research, we investigated a novel concept: flow oscillation as a means of controlling fouling and concentration polarization. The treatment of FGD plants wastewater (simulated) by enhancing microfiltration fluxes was studied here as an example to demonstrate the oscillatory flow system in combating concentration polarization and membrane fouling in crossflow filtration. Microfiltration experiments were conducted in a tubular membrane module. From limited experimental data, it was found that flow oscillation increases the transmembrane flux when compared with the non-oscillatory flow condition. A mathematical model has been developed to evaluate the performance of a tubular membrane module under oscillatory flow condition. Results are presented for both hydrodynamics and transmembrane fluxes for such factors as amplitudes and frequencies of oscillatory flow, membrane permeability, and operating transmembrane pressure.

  6. TRANSVERSE OSCILLATIONS OF A COOLING CORONAL LOOP

    SciTech Connect

    Morton, R. J.; Erdelyi, R. E-mail: Robertus@sheffield.ac.u

    2009-12-10

    Here we present an investigation into how cooling of the plasma influences the oscillation properties (e.g., eigenfunctions and eigenfrequencies) of transverse (i.e., kink) magnetohydrodynamic (MHD) waves in a compressible magnetic flux tube embedded in a gravitationally stratified and uniformly magnetized atmosphere. The cooling is introduced via a temperature-dependent density profile. A time-dependent governing equation is derived and an approximate zeroth-order solution is then obtained. From this the influence of cooling on the behavior of the eigenfrequencies and eigenfunctions of the transverse MHD waves is determined for representative cooling timescales. It is shown analytically, as the loop cools, how the amplitude of the perturbations is found to decrease as time increases. For cooling timescales of 900-2000 s (as observed in typical EUV loops), it is shown that the cooling has important and relevant influence on the damping times of loop oscillations. Next, the theory is put to the test. The damping due to cooling is fitted to a representative observation of standing kink oscillation of EUV loops. It is also shown with an explicit approximate analytical form, how the period of the fundamental and first harmonic of the kink mode changes with time as the loop cools. A consequence of this is that the value of the period ratio P {sub 1}/P {sub 2}, a tool that is popular in magneto-seismological studies in coronal diagnostics, decreases from the value of a uniform loop, 2, as the temperature decreases. The rate of change in P {sub 1}/P {sub 2} is dependent upon the cooling timescale and is well within the observable range for typical EUV loops. Further to this, the magnitude of the anti-node shift of the eigenfunctions of the first harmonic is shown to continually increase as the loop cools, giving additional impetus to the use of spatial magneto-seismology of the solar atmosphere. Finally, we suggest that measurements of the rate of change in the

  7. The flux and recycling of bioactive substances in the surface sediments of the deep basins off southern California. Final report

    SciTech Connect

    Jahnke, R.A.

    1992-03-18

    We have used pore water gradients and in situ benthic flux chamber measurements to assess the total and down-core variations in the organic carbon remineralization rate. To augment standard pore water extractions, we developed techniques to extract pore water samples at 2mm sampling intervals, greatly improving our assessment of near- surface vertical gradients. In addition, much emphasis was placed on directly measuring the exchange of chemicals between the bottom waters and sediment pore waters via in situ benthic flux chamber incubations. The latter were performed with the MANOP bottom lander, and in later expeditions, the Benthic Experimental chamber Instrument (BECI). Results from these measurements were used to assess the several aspects of seafloor organic matter diagenesis.

  8. Modeling and experimental investigating loop heat pipes

    SciTech Connect

    Kiseev, V.M.; Pogorelov, N.P.; Nouroutdinov, V.A.

    1995-12-31

    Design variants of two-phase systems of thermal control with heat flux inversion and experimental data are presented. Simplified functional dependence of heat flux for loop heat pipes with heat flux inversion versus effective pore radius of capillary structures under various external conditions are obtained.

  9. Design and demonstration of an analysis Information system for magnetic flux leakage inspection of natural gas pipeline. Final letter report

    SciTech Connect

    Schuster, G.J.; Saffell, B.A.

    1996-10-01

    A staff exchange was conducted for the mutual benefit of the Department of Energy, the Gas Research Institute (GRI), Vetco Pipeline Services Inc. (VPSI), and the Pacific Northwest National Laboratory. This staff exchange provided direct exposure by a Laboratory staff member knowledgeable in inspection, integrity assessment, and robotic capabilities of the Laboratory to the needs of the natural gas pipeline industry. The project included an assignment to the GRI Pipeline Simulation Facility (PSF) during the period preceding the commissioning of the flow loop. GRI is interested in exploiting advanced technology at the National Laboratories. To provide a sense of the market impact, it is estimated that $3 billion was spent in 1993 for the repair, renovation, and replacement of distribution piping. GRI has goals of saving the distribution industry $500 million in Operations and Maintenance costs and having an additional $250M savings impact on transmission pipelines. The objectives of the project included: (1) For PNNL staff to present technology to GRI and PSF staff on non- destructive evaluation, robotics, ground penetrating radar, and risk based inspection guidelines for application to the operation and maintenance of natural gas pipelines. (2) For GRI and PSF staff to discuss with PNNL staff opportunities for improving the industrial competitiveness of operation and maintenance services. (3) To explore the basis for partnership with GRI and PSF staff on technology transfer topics. In this project, staff exchanges were conducted to GRI`s Pipeline Simulation Facility and to VPSI. PNNL . staff had access to the $10M GRI Pipeline Simulation Facility (PSF) at West Jefferson, Ohio. The facility has a 4,700-ft. long pipe loop, an NDE laboratory, and a data analysis laboratory. PNNL staff had access to the VPSI`s facility in Houston, TX. VPSI has developed some of the most sophisticated inspection tools currently used in the pipeline inspection industry.

  10. Wilson-loop instantons

    NASA Technical Reports Server (NTRS)

    Lee, Kimyeong; Holman, Richard; Kolb, Edward W.

    1987-01-01

    Wilson-loop symmetry breaking is considered on a space-time of the form M4 x K, where M4 is a four-dimensional space-time and K is an internal space with nontrivial and finite fundamental group. It is shown in a simple model that the different vacua obtained by breaking a non-Abelian gauge group by Wilson loops are separated in the space of gauge potentials by a finite energy barrier. An interpolating gauge configuration is then constructed between these vacua and shown to have minimum energy. Finally some implications of this construction are discussed.

  11. Influence of grown-in defects on final oxygen precipitates during heat treatment of Cz-Si wafer analyzed by a coupled model with the interaction of point defects, oxygen precipitates, and dislocation loops

    NASA Astrophysics Data System (ADS)

    Gao, Bing; Juel, Mari; Mhamdi, Mohammed

    2016-11-01

    To illuminate the role of crystal growth process on final oxygen precipitates during heat treatment of Cz-Si wafer, a coupled model, including the interaction of oxygen precipitates, point defects, and dislocation loops, has been used to test the influence of grown-in defects generated during crystal growth process. Several grown-in defect parameters such as density and size of oxygen precipitates and concentration of net silicon interstitials were checked. Results show that it is essential to control grown-in oxygen precipitate size and density, and net Si vacancy. By well controlling the three parameters less than some values, it is possible to remove the influence of crystal growth process on the final oxygen precipitates after heat treatment of Cz-Si wafer. Simple 1D results clearly demonstrates that it is feasible to control grown-in oxygen precipitates during crystal growth process.

  12. Design of Test Loops for Forced Convection Heat Transfer Studies at Supercritical State

    NASA Astrophysics Data System (ADS)

    Balouch, Masih N.

    Worldwide research is being conducted to improve the efficiency of nuclear power plants by using supercritical water (SCW) as the working fluid. One such SCW reactor considered for future development is the CANDU-Supercritical Water Reactor (CANDU-SCWR). For safe and accurate design of the CANDU-SCWR, a detailed knowledge of forced-convection heat transfer in SCW is required. For this purpose, two supercritical fluid loops, i.e. a SCW loop and an R-134a loop are developed at Carleton University. The SCW loop is designed to operate at pressures as high as 28 MPa, temperatures up to 600 °C and mass fluxes of up to 3000 kg/m2s. The R-134a loop is designed to operate at pressures as high as 6 MPa, temperatures up to 140 °C and mass fluxes in the range of 500-6000 kg/m2s. The test loops designs allow for up to 300 kW of heating power to be imparted to the fluid. Both test loops are of the closed-loop design, where flow circulation is achieved by a centrifugal pump in the SCW loop and three parallel-connected gear pumps in the R-134a loop, respectively. The test loops are pressurized using a high-pressure nitrogen cylinder and accumulator assembly, which allows independent control of the pressure, while simultaneously dampening pump induced pressure fluctuations. Heat exchangers located upstream of the pumps control the fluid temperature in the test loops. Strategically located measuring instrumentation provides information on the flow rate, pressure and temperature in the test loops. The test loops have been designed to accommodate a variety of test-section geometries, ranging from a straight circular tube to a seven-rod bundle, achieving heat fluxes up to 2.5 MW/m2 depending on the test-section geometry. The design of both test loops allows for easy reconfiguration of the test-section orientation relative to the gravitational direction. All the test sections are of the directly-heated design, where electric current passing through the pressure retaining walls of the

  13. Gravitational radiation from realistic cosmic string loops

    NASA Astrophysics Data System (ADS)

    Casper, Paul; Allen, Bruce

    1995-10-01

    We examine the rates at which energy and momentum are radiated into gravitational waves by a large set of realistic cosmic string loops. The string loops are generated by numerically evolving parent loops with different initial conditions forward in time until they self-intersect, fragmenting into two child loops. The fragmentation of the child loops is followed recursively until only non-self-intersecting loops remain. The properties of the final non-self-intersecting loops are found to be independent of the initial conditions of the parent loops. We have calculated the radiated energy and momentum for a total of 11 625 stable child loops. We find that the majority of the final loops do not radiate significant amounts of spatial momentum. The velocity gained due to the rocket effect is typically small compared to the center-of-mass velocity of the fragmented loops. The distribution of gravitatoinal radiation rates in the center of mass frame of the loops, γ0≡(Gμ2)-1ΔE/Δτ, is strongly peaked in the range γ0=45-55 however, there are no loops found with γ0<40. Because the radiated spatial momentum is small, the distribution of gravitational radiation rates appears roughly the same in any reference frame. We conjecture that in the center-of-mass frame there is a lower bound γ0min>0 for the radiation rate from cosmic string loops. In a second conjecture, we identify a candidate for the loop with the minimal radiation rate and suggest that γ0min~=39.003.

  14. Permanent magnet flux-biased magnetic actuator with flux feedback

    NASA Technical Reports Server (NTRS)

    Groom, Nelson J. (Inventor)

    1991-01-01

    The invention is a permanent magnet flux-biased magnetic actuator with flux feedback for adjustably suspending an element on a single axis. The magnetic actuator includes a pair of opposing electromagnets and provides bi-directional forces along the single axis to the suspended element. Permanent magnets in flux feedback loops from the opposing electromagnets establish a reference permanent magnet flux-bias to linearize the force characteristics of the electromagnets to extend the linear range of the actuator without the need for continuous bias currents in the electromagnets.

  15. Waves in Solar Coronal Loops

    NASA Astrophysics Data System (ADS)

    Wang, T. J.

    2016-02-01

    The corona is visible in the optical band only during a total solar eclipse or with a coronagraph. Coronal loops are believed to be plasma-filled closed magnetic flux anchored in the photosphere. Based on the temperature regime, they are generally classified into cool, warm, and hot loops. The magnetized coronal structures support propagation of various types of magnetohydrodynamics (MHD) waves. This chapter reviews the recent progress made in studies based on observations of four types of wave phenomena mainly occurring in coronal loops of active regions, including: flare-excited slow-mode waves; impulsively excited kink-mode waves; propagating slow magnetoacoustic waves; and ubiquitous propagating kink (Alfvénic) waves. This review not only comprehensively discusses these waves and coronal seismology but also topics that are newly emerging or hotly debated in order to provide the reader with useful guidance on further studies.

  16. Dual approach to circuit quantization using loop charges

    NASA Astrophysics Data System (ADS)

    Ulrich, Jascha; Hassler, Fabian

    2016-09-01

    The conventional approach to circuit quantization is based on node fluxes and traces the motion of node charges on the islands of the circuit. However, for some devices, the relevant physics can be best described by the motion of polarization charges over the branches of the circuit that are in general related to the node charges in a highly nonlocal way. Here, we present a method, dual to the conventional approach, for quantizing planar circuits in terms of loop charges. In this way, the polarization charges are directly obtained as the differences of the two loop charges on the neighboring loops. The loop charges trace the motion of fluxes through the circuit loops. We show that loop charges yield a simple description of the flux transport across phase-slip junctions. We outline a concrete construction of circuits based on phase-slip junctions that are electromagnetically dual to arbitrary planar Josephson junction circuits. We argue that loop charges also yield a simple description of the flux transport in conventional Josephson junctions shunted by large impedances. We show that a mixed circuit description in terms of node fluxes and loop charges yields an insight into the flux decompactification of a Josephson junction shunted by an inductor. As an application, we show that the fluxonium qubit is well approximated as a phase-slip junction for the experimentally relevant parameters. Moreover, we argue that the 0 -π qubit is effectively the dual of a Majorana Josephson junction.

  17. Rollercoaster loop shapes

    NASA Astrophysics Data System (ADS)

    Pendrill, Ann-Marie

    2005-11-01

    Many modern rollercoasters feature loops. Although textbook loops are often circular, real rollercoaster loops are not. In this paper, we look into the mathematical description of various possible loop shapes, as well as their riding properties. We also discuss how a study of loop shapes can be used in physics education.

  18. Water Stream "Loop-the-Loop"

    ERIC Educational Resources Information Center

    Jefimenko, Oleg

    1974-01-01

    Discusses the design of a modified loop-the-loop apparatus in which a water stream is used to illustrate centripetal forces and phenomena of high-velocity hydrodynamics. Included are some procedures of carrying out lecture demonstrations. (CC)

  19. EVIDENCE OF SOLAR FLARE TRIGGERING DUE TO LOOP-LOOP INTERACTION CAUSED BY FOOTPOINT SHEAR MOTION

    SciTech Connect

    Kumar, Pankaj; Srivastava, A. K.; Uddin, Wahab; Somov, B. V.; Manoharan, P. K.; Erdelyi, R. E-mail: aks@aries.res.i

    2010-11-10

    We analyze multi-wavelength data of an M7.9/1N class solar flare which occurred on 2006 April 27 in AR NOAA 10875. GOES soft X-ray images provide the most likely signature of two interacting loops and their reconnection, which triggers the solar flare. TRACE 195 A images also reveal the loop-loop interaction and the formation of 'X' points with converging motion ({approx}30 km s{sup -1}) at the reconnection site in between this interacting loop system. This provides evidence of progressive reconnection and flare maximization at the interaction site in the active region. The absence of type III radio bursts during this time period indicates no opening of magnetic field lines during the flare energy release, which implies that the change of field line connectivity/orientation occurred only during the loop-loop interaction and reconnection process. The Ondrejov dynamic radio spectrum shows an intense decimetric (DCIM) radio burst (2.5-4.5 GHz, duration {approx}3 minutes) during the flare initiation, which reveals the signature of particle acceleration from the reconnection site during loop-loop interaction. The double-peak structures at 4.9 and 8.8 GHz provide the most likely confirmatory signature of the loop-loop interaction at the flare site in the active region. RHESSI hard X-ray images also show the loop-top and footpoint sources of the corresponding two-loop system, which act like current-carrying flux tubes with resultant opposite magnetic fields and net force of attraction, and their coalescence during the flare maximum. We also suggest that the shear motion/rotation of the footpoint of the smaller loop, which is anchored in the opposite polarity spot, may be responsible for the flare energy buildup and its eventual release due to the loop-loop interaction.

  20. Modeling Magnetic Flux Ropes

    NASA Astrophysics Data System (ADS)

    Xia, Chun; Keppens, Rony

    2014-01-01

    The magnetic configuration hosting prominences can be a large-scale helical magnetic flux rope. As a necessary step towards future prominence formation studies, we report on a stepwise approach to study flux rope formation. We start with summarizing our recent three-dimensional (3D) isothermal magnetohydrodynamic (MHD) simulation where a flux rope is formed, including gas pressure and gravity. This starts from a static corona with a linear force-free bipolar magnetic field, altered by lower boundary vortex flows around the main polarities and converging flows towards the polarity inversion. The latter flows induce magnetic reconnection and this forms successive new helical loops so that a complete flux rope grows and ascends. After stopping the driving flows, the system relaxes to a stable helical magnetic flux rope configuration embedded in an overlying arcade. Starting from this relaxed isothermal endstate, we next perform a thermodynamic MHD simulation with a chromospheric layer inserted at the bottom. As a result of a properly parametrized coronal heating, and due to radiative cooling and anisotropic thermal conduction, the system further relaxes to an equilibrium where the flux rope and the arcade develop a fully realistic thermal structure. This paves the way to future simulations for 3D prominence formation.

  1. Scaling laws of coronal loops compared to a 3D MHD model of an active region

    NASA Astrophysics Data System (ADS)

    Bourdin, Ph.-A.; Bingert, S.; Peter, H.

    2016-05-01

    Context. The structure and heating of coronal loops have been investigated for decades. Established scaling laws relate fundamental quantities like the loop apex temperature, pressure, length, and coronal heating. Aims: We test these scaling laws against a large-scale 3D magneto-hydrodynamics (MHD) model of the solar corona, which became feasible with current high-performance computing. Methods: We drove an active region simulation with photospheric observations and find strong similarities to the observed coronal loops in X-rays and extreme-ultraviolet (EUV) wavelength. A 3D reconstruction of stereoscopic observations shows that our model loops have a realistic spatial structure. We compared scaling laws to our model data extracted along an ensemble of field lines. Finally, we fit a new scaling law that represents hot loops and also cooler structures, which was not possible before based only on observations. Results: Our model data gives some support for scaling laws that were established for hot and EUV-emissive coronal loops. For the Rosner-Tucker-Vaiana (RTV) scaling law we find an offset to our model data, which can be explained by 1D considerations of a static loop with a constant heat input and conduction. With a fit to our model data we set up a new scaling law for the coronal heat input along magnetic field lines. Conclusions: RTV-like scaling laws were fitted to hot loops and therefore do not predict well the coronal heat input for cooler structures that are barely observable. The basic differences between 1D and self-consistent 3D modeling account for deviations between earlier scaling laws and ours. We also conclude that a heating mechanism by MHD-turbulent dissipation within a braided flux tube would heat the corona stronger than is consistent with our model corona.

  2. PHOTOSPHERIC PROPERTIES OF WARM EUV LOOPS AND HOT X-RAY LOOPS

    SciTech Connect

    Kano, R.; Ueda, K.; Tsuneta, S.

    2014-02-20

    We investigate the photospheric properties (vector magnetic fields and horizontal velocity) of a well-developed active region, NOAA AR 10978, using the Hinode Solar Optical Telescope specifically to determine what gives rise to the temperature difference between ''warm loops'' (1-2 MK), which are coronal loops observed in EUV wavelengths, and ''hot loops'' (>3 MK), coronal loops observed in X-rays. We found that outside sunspots, the magnetic filling factor in the solar network varies with location and is anti-correlated with the horizontal random velocity. If we accept that the observed magnetic features consist of unresolved magnetic flux tubes, this anti-correlation can be explained by the ensemble average of flux-tube motion driven by small-scale random flows. The observed data are consistent with a flux tube width of ∼77 km and horizontal flow at ∼2.6 km s{sup –1} with a spatial scale of ∼120 km. We also found that outside sunspots, there is no significant difference between warm and hot loops either in the magnetic properties (except for the inclination) or in the horizontal random velocity at their footpoints, which are identified with the Hinode X-Ray Telescope and the Transition Region and Coronal Explorer. The energy flux injected into the coronal loops by the observed photospheric motion of the magnetic fields is estimated to be 2 × 10{sup 6} erg s{sup –1} cm{sup –2}, which is the same for both warm and hot loops. This suggests that coronal properties (e.g., loop length) play a more important role in giving rise to temperature differences of active-region coronal loops than photospheric parameters.

  3. Study of the Open Loop and Closed Loop Oscillator Techniques

    SciTech Connect

    Imel, George R.; Baker, Benjamin; Riley, Tony; Langbehn, Adam; Aryal, Harishchandra; Benzerga, M. Lamine

    2015-04-11

    This report presents the progress and completion of a five-year study undertaken at Idaho State University of the measurement of very small worth reactivity samples comparing open and closed loop oscillator techniques.The study conclusively demonstrated the equivalency of the two techniques with regard to uncertainties in reactivity values, i.e., limited by reactor noise. As those results are thoroughly documented in recent publications, in this report we will concentrate on the support work that was necessary. For example, we describe in some detail the construction and calibration of a pilot rod for the closed loop system. We discuss the campaign to measure the required reactor parameters necessary for inverse-kinetics. Finally, we briefly discuss the transfer of the open loop technique to other reactor systems.

  4. Look before You Loop.

    ERIC Educational Resources Information Center

    Bellis, Marilyn

    1999-01-01

    Explores looping, which involves one teacher staying with the same group of children for more than one year. Recognizes that, with today's changing demographics, looping can be a way to foster a family-like classroom atmosphere. Discusses advantages and disadvantages to looping. Includes a chart of looping opportunities and considerations;…

  5. Determination of ocean/atmosphere carbon dioxide flux within OMP survey area. Final technical progress report, June, 1 1993--May 31, 1995

    SciTech Connect

    Chipman, D.W.; Takahashi, T.

    1995-10-17

    Determination of the net flux of atmospheric CO{sub 2} with the ocean at the continental margin is one of the three principal goals of the Ocean Margins Program. The work reported here represents the initial phase of that determination, as carried out during two cruises within the OMP survey area in 1993 and 1994. The interannual variability was addressed through the occupation of hydrographic stations of nearly identical location one year apart, while the spatial variability in the air-sea PCO{sub 2} difference (ApCO{sub 2}), representing the driving force for net CO{sub 2} flux, was addressed during a survey of much of the continental shelf between the survey area off North Carolina and Georges Bank. Not addressed by the initial cruises was the seasonal variability of the net CO{sub 2} flux, since both scoping cruises were mounted during the same season of the respective years.

  6. OPE for super loops

    NASA Astrophysics Data System (ADS)

    Sever, Amit; Vieira, Pedro; Wang, Tianheng

    2011-11-01

    We extend the Operator Product Expansion for Null Polygon Wilson loops to the Mason-Skinner-Caron-Huot super loop dual to non MHV gluon amplitudes. We explain how the known tree level amplitudes can be promoted into an infinite amount of data at any loop order in the OPE picture. As an application, we re-derive all one loop NMHV six gluon amplitudes by promoting their tree level expressions. We also present some new all loops predictions for these amplitudes.

  7. The preprocessed doacross loop

    NASA Technical Reports Server (NTRS)

    Saltz, Joel H.; Mirchandaney, Ravi

    1990-01-01

    Dependencies between loop iterations cannot always be characterized during program compilation. Doacross loops typically make use of a-priori knowledge of inter-iteration dependencies to carry out required synchronizations. A type of doacross loop is proposed that allows the scheduling of iterations of a loop among processors without advance knowledge of inter-iteration dependencies. The method proposed for loop iterations requires that parallelizable preprocessing and postprocessing steps be carried out during program execution.

  8. SLOW MAGNETOACOUSTIC WAVE OSCILLATION OF AN EXPANDING CORONAL LOOP

    SciTech Connect

    Schmidt, J. M.; Ofman, L.

    2011-10-01

    We simulated an expanding loop or slow coronal mass ejection (CME) in the solar corona dimensioned with size parameters taken from real coronal expanding loops observed with the STEREO spacecraft. We find that the loop expands to Sun's size within about one hour, consistent with slow CME observations. At the top of the loop, plasma is being blown off the loop, enabled with the reconnection between the loop's flux rope magnetic field and the radial magnetic field of the Sun, thus yielding feeding material for the formation of the slow solar wind. This mechanism is in accordance with the observed blob formation of the slow solar wind. We find wave packets traveling with local sound speed downward toward the footpoints of the loop, already seen in coronal seismology observations and simulations of stationary coronal loops. Here, we generalize these results for an expanding medium. We also find a reflection of the wave packets, identified as slow magnetoacoustic waves, at the footpoints of the loop. This confirms the formation of standing waves within the coronal loop. In particular, the reflected waves can partly escape the loop top and contribute to the heating of the solar wind. The present study improves our understanding on how loop material can emerge to form blobs, major ingredients of slow CMEs, and how the release of the wave energy stored in slow magnetoacoustic waves, and transported away from the Sun within expanding loops, contributes to the acceleration and formation of the slow solar wind.

  9. Closing the loop.

    PubMed

    Dassau, E; Atlas, E; Phillip, M

    2011-02-01

    Closed-loop algorithms can be found in every aspect of everyday modern life. Automation and control are used constantly to provide safety and to improve quality of life. Closed-loop systems and algorithms can be found in home appliances, automobiles, aviation and more. Can one imagine nowadays driving a car without ABS, cruise control or even anti-sliding control? Similar principles of automation and control can be used in the management of diabetes mellitus (DM). The idea of an algorithmic/technological way to control glycaemia is not new and has been researched for more than four decades. However, recent improvements in both glucose-sensing technology and insulin delivery together with advanced control and systems engineering made this dream of an artificial pancreas possible. The artificial pancreas may be the next big step in the treatment of DM since the use of insulin analogues. An artificial pancreas can be described as internal or external devices that use continuous glucose measurements to automatically manage exogenous insulin delivery with or without other hormones in an attempt to restore glucose regulation in individuals with DM using a control algorithm. This device as described can be internal or external; can use different types of control algorithms with bi-hormonal or uni-hormonal design; and can utilise different ways to administer them. The different designs and implementations have transitioned recently from in silico simulations to clinical evaluation stage with practical applications in mind. This may mark the beginning of a new era in diabetes management with the introduction of semi-closed-loop systems that can prevent or minimise nocturnal hypoglycaemia, to hybrid systems that will manage blood glucose (BG) levels with minimal user intervention to finally fully automated systems that will take the user out of the loop. More and more clinical trials will be needed for the artificial pancreas to become a reality but initial encouraging

  10. In What Magnetic Environment Are Coronal Loop Plasmas Located?

    NASA Astrophysics Data System (ADS)

    Lim, Daye; Choe, Gwangson; Yi, Sibaek

    2016-04-01

    Coronal loop plasmas are often regarded to be confined within magnetic flux ropes as in the case of laboratory plasmas. However, a plasma pressure profile, which decreases from the center of a flux rope to its periphery, can be ideal MHD interchange unstable if individual flux tubes constituting the flux rope are freely movable. In the solar corona, the strong line-tying condition impedes the interchange of flux tube positions, but ubiquitous magnetic reconnection processes can change plasma distribution in such a way that the system moves to a possible lower energy state. In this paper, we present a 2.5D MHD simulation study of the plasma redistribution in the merging process of many small flux ropes possibly representing loop strands. We have found that the redistributed plasma is more concentrated between flux ropes rather than near the center of flux ropes. When flux ropes initially have different amounts of twists, the plasma tends to accumulate in less twisted regions. As larger and larger flux ropes are formed by successive merging processes, the toroidal field of the flux ropes become stronger and stronger, i.e., field lines are less and less twisted. Our study may explain why the observed coronal loops appear very little twisted and quite well ordered in spite of continuous entangling motions in the photosphere and below.

  11. A magnetohydrodynamic theory of coronal loop transients

    NASA Technical Reports Server (NTRS)

    Yeh, T.

    1982-01-01

    The physical and geometrical characteristics of solar coronal loop transients are described in an MHD model based on Archimedes' MHD buoyancy force. The theory was developed from interpretation of coronagraphic data, particularly from Skylab. The brightness of a loop is taken to indicate the electron density, and successive pictures reveal the electron enhancement in different columns. The forces which lift the loop off the sun surface are analyzed as an MHD buoyancy force affecting every mass element by imparting an inertial force necessary for heliocentrifugal motion. Thermal forces are responsible for transferring the ambient stress to the interior of the loop to begin the process. The kinematic and hydrostatic buoyancy overcome the gravitational force, and a flux rope can then curve upward, spiralling like a corkscrew with varying cross section around the unwinding solar magnetic field lines.

  12. Final Report for DOE grant no. DE-FG02-04ER63883: Can soil genomics predict the impact of precipitation on nitrous oxide flux from soil

    SciTech Connect

    Egbert Schwartz

    2008-12-15

    Nitrous oxide is a potent greenhouse gas that is released by microorganisms in soil. However, the production of nitrous oxide in soil is highly variable and difficult to predict. Future climate change may have large impacts on nitrous oxide release through alteration of precipitation patterns. We analyzed DNA extracted from soil in order to uncover relationships between microbial processes, abundance of particular DNA sequences and net nitrous oxide fluxes from soil. Denitrification, a microbial process in which nitrate is used as an electron acceptor, correlated with nitrous oxide flux from soil. The abundance of ammonia oxidizing archaea correlated positively, but weakly, with nitrous oxide production in soil. The abundance of bacterial genes in soil was negatively correlated with gross nitrogen mineralization rates and nitrous oxide release from soil. We suggest that the most important control over nitrous oxide production in soil is the growth and death of microorganisms. When organisms are growing nitrogen is incorporated into their biomass and nitrous oxide flux is low. In contrast, when microorganisms die, due to predation or infection by viruses, inorganic nitrogen is released into the soil resulting in nitrous oxide release. Higher rates of precipitation increase access to microorganisms by predators or viruses through filling large soil pores with water and therefore can lead to large releases of nitrous oxide from soil. We developed a new technique, stable isotope probing with 18O-water, to study growth and mortality of microorganisms in soil.

  13. ) Mold Fluxes

    NASA Astrophysics Data System (ADS)

    Seo, Myung-Duk; Shi, Cheng-Bin; Cho, Jung-Wook; Kim, Seon-Hyo

    2014-10-01

    The effects of basicity (CaO/SiO2), B2O3, and Li2O addition on the crystallization behaviors of lime-silica-based mold fluxes have been investigated by non-isothermal differential scanning calorimetry (DSC), field emission scanning electron microscopy, X-ray diffraction (XRD), and single hot thermocouple technique. It was found that the crystallization temperature of cuspidine increased with increasing the basicity of mold fluxes. The crystallization of wollastonite was suppressed with increasing the mold flux basicity due to the enhancement of cuspidine crystallization. The addition of B2O3 suppresses the crystallization of mold flux. The crystallization temperature of mold flux decreases with Li2O addition. The size of cuspidine increases, while the number of cuspidine decreases with increasing mold flux basicity. The morphology of cuspidine in mold fluxes with lower basicity is largely dendritic. The dendritic cuspidine in mold fluxes is composed of many fine cuspidine crystals. On the contrary, in mold fluxes with higher basicity, the cuspidine crystals are larger in size with mainly faceted morphology. The crystalline phase evolution was also calculated using a thermodynamic database, and compared with the experimental results determined by DSC and XRD. The results of thermodynamic calculation of crystalline phase formation are in accordance with the results determined by DSC and XRD.

  14. Development of a fuel-rod simulator and small-diameter thermocouples for high-temperature, high-heat-flux tests in the Gas-Cooled Fast Reactor Core Flow Test Loop

    SciTech Connect

    McCulloch, R.W.; MacPherson, R.E.

    1983-03-01

    The Core Flow Test Loop was constructed to perform many of the safety, core design, and mechanical interaction tests in support of the Gas-Cooled Fast Reactor (GCFR) using electrically heated fuel rod simulators (FRSs). Operation includes many off-normal or postulated accident sequences including transient, high-power, and high-temperature operation. The FRS was developed to survive: (1) hundreds of hours of operation at 200 W/cm/sup 2/, 1000/sup 0/C cladding temperature, and (2) 40 h at 40 W/cm/sup 2/, 1200/sup 0/C cladding temperature. Six 0.5-mm type K sheathed thermocouples were placed inside the FRS cladding to measure steady-state and transient temperatures through clad melting at 1370/sup 0/C.

  15. CORONAL LOOP EXPANSION PROPERTIES EXPLAINED USING SEPARATORS

    SciTech Connect

    Plowman, Joseph E.; Kankelborg, Charles C.; Longcope, Dana W.

    2009-11-20

    One puzzling observed property of coronal loops is that they are of roughly constant thickness along their length. Various studies have found no consistent pattern of width variation along the length of loops observed by TRACE and SOHO. This is at odds with expectations of magnetic flux tube expansion properties, which suggests that loops are widest at their tops, and significantly narrower at their footpoints. Coronal loops correspond to areas of the solar corona which have been preferentially heated by some process, so this observed property might be connected to the mechanisms that heat the corona. One means of energy deposition is magnetic reconnection, which occurs along field lines called separators. These field lines begin and end on magnetic null points, and loops forming near them can therefore be relatively wide at their bases. Thus, coronal energization by magnetic reconnection may replicate the puzzling expansion properties observed in coronal loops. We present results of a Monte Carlo survey of separator field line expansion properties, comparing them to the observed properties of coronal loops.

  16. Atmospheric 14CO2 Constraints on and Modeling of Net Carbon Fluxes 06-ERD-031 An LLNL Exploratory Research in the Directorate's Final Report

    SciTech Connect

    Guilderson, T P; Cameron-Smith, P; Bergmann, D; Graven, H D; Keeling, R; Boering, K; Caldeira, K

    2009-03-18

    A critical scientific question is: 'what are the present day sources and sinks of carbon dioxide (CO{sub 2}) in the natural environment, and how will these sinks evolve under rising CO{sub 2} concentrations and expected climate change and ecosystem response'? Sources and sinks of carbon dioxide impart their signature on the distribution, concentration, and isotopic composition of CO{sub 2}. Spatial and temporal trends (variability) provide information on the net surface (atmosphere to ocean, atmosphere to terrestrial biosphere) fluxes. The need to establish more reliable estimates of sources and sinks of CO{sub 2} has lead to an expansion of CO{sub 2} measurement programs over the past decade and the development of new methodologies for tracing carbon flows. These methodologies include high-precision pCO{sub 2}, {delta}{sup 13}CO{sub 2}, and [O{sub 2}/N{sub 2}] measurements on atmospheric constituents that, when combined, have allowed estimates of the net terrestrial and oceanic fluxes at decadal timescales. Major gaps in our understanding remain however, and resulting flux estimates have large errors and are comparatively unconstrained. One potentially powerful approach to tracking carbon flows is based on observations of the {sup 14}C/{sup 12}C ratio of atmospheric CO{sub 2}. This ratio can be used to explicitly distinguish fossil-fuel CO{sub 2} from other sources of CO{sub 2} and also provide constraints on the mass and turnover times of carbon in land ecosystems and on exchange rates of CO{sub 2} between air and sea. Here we demonstrated measurement of {sup 14}C/{sup 12}C ratios at 1-2{per_thousand} on archived and currently collected air samples. In parallel we utilized the LLNL-IMPACT global atmospheric chemistry transport model and the TransCom inversion algorithm to utilize these data in inversion estimates of carbon fluxes. This project has laid the foundation for a more expanded effort in the future, involving collaborations with other air

  17. Free convection in a partially submerged fluid loop

    SciTech Connect

    Britt, T.E.; Wood, D.C.

    1982-01-01

    Several natural convection loop systems are studied in order to determine the operational characteristics for a multiple loop container which is used to cool failed nuclear reactor assemblies. Both analytical and experimental studies were undertaken to examine flow in both circular and rectangular flow loops. It was found that when a circular loop is heated at the bottom and cooled at the top, recirculation cells form at all input power fluxes. At fluxes between 0.1 W/cm/sup 2/ and 0.7 W/cm/sup 2/ the cells caused flow oscillations and reversals. With the circular loop heated from the side, no recirculation cells were observed at the power fluxes up to 1.5 W/cm. Boiling did not occur in the circular loop. For a rectangular loop heated and cooled on its vertical sides, no recirculation cells or flow reversals were seen. At input power fluxes above 1.2 W/cm/sup 2/, periodic boiling in the heated side caused flow oscillations.

  18. Formation of Chromosomal Domains by Loop Extrusion.

    PubMed

    Fudenberg, Geoffrey; Imakaev, Maxim; Lu, Carolyn; Goloborodko, Anton; Abdennur, Nezar; Mirny, Leonid A

    2016-05-31

    Topologically associating domains (TADs) are fundamental structural and functional building blocks of human interphase chromosomes, yet the mechanisms of TAD formation remain unclear. Here, we propose that loop extrusion underlies TAD formation. In this process, cis-acting loop-extruding factors, likely cohesins, form progressively larger loops but stall at TAD boundaries due to interactions with boundary proteins, including CTCF. Using polymer simulations, we show that this model produces TADs and finer-scale features of Hi-C data. Each TAD emerges from multiple loops dynamically formed through extrusion, contrary to typical illustrations of single static loops. Loop extrusion both explains diverse experimental observations-including the preferential orientation of CTCF motifs, enrichments of architectural proteins at TAD boundaries, and boundary deletion experiments-and makes specific predictions for the depletion of CTCF versus cohesin. Finally, loop extrusion has potentially far-ranging consequences for processes such as enhancer-promoter interactions, orientation-specific chromosomal looping, and compaction of mitotic chromosomes. PMID:27210764

  19. A closer look at a coronal loop rooted in a sunspot umbra

    NASA Astrophysics Data System (ADS)

    Chitta, L. P.; Peter, H.; Young, P. R.

    2016-03-01

    Context. Extreme UV (EUV) and X-ray loops in the solar corona connect regions of enhanced magnetic activity, but they are not usually rooted in the dark umbrae of sunspots because the strong magnetic field found there suppresses convection. This means that the Poynting flux of magnetic energy into the upper atmosphere is not significant within the umbra as long as there are no light bridges or umbral dots. Aims: Here we report a rare observation of a coronal loop rooted in the dark umbra of a sunspot without any traces of light bridges or umbral dots. This allows us to investigate the loop without much confusion from background or line-of-sight integration effects. Methods: We used the slit-jaw images and spectroscopic data from the Interface Region Imaging Spectrograph (IRIS) and concentrate on the line profiles of O iv and Si iv that show persistent strong redshifted components in the loop rooted in the umbra. Using the ratios of O iv, we can estimate the density and thus investigate the mass flux. The coronal context and temperature diagnostics of these observations is provided through the EUV channels of the Atmospheric Imaging Assembly (AIA). Results: The coronal loop, embedded within cooler downflows, hosts supersonic downflows. The speed of more than 100 km s-1 is on the same order of magnitude in the transition region lines of O iv and Si iv, and is even seen at comparable speed in the chromospheric Mg ii lines. At a projected distance of within 1'' of the footpoint, we see a shock transition to smaller downflow speeds of about 15 km s-1 being consistent with mass conservation across a stationary isothermal shock. Conclusions: We see no direct evidence for energy input into the loop because the loop is rooted in the dark uniform part of the umbra with no light bridges or umbral dots near by. Thus one might conclude that we are seeing a siphon flow driven from the footpoint at the other end of the loop. However, for a final result data of similar quality at

  20. Spontaneous fluxoid formation in superconducting loops

    SciTech Connect

    Monaco, R.; Mygind, J.; Rivers, R. J.; Koshelets, V. P.

    2009-11-01

    We report on the experimental verification of the Zurek-Kibble scenario in an isolated superconducting ring over a wide parameter range. The probability of creating a single flux quantum spontaneously during the fast normal-superconducting phase transition of a wide Nb loop clearly follows a scaling relation on the quenching time {tau}{sub Q}, as one would expect if the transition took place as fast as causality permits. However, the observed Zurek-Kibble scaling exponent {sigma}=0.62{+-}0.15 is two times larger than anticipated for large loops. Assuming Gaussian winding number densities we show that this doubling is well founded for small annuli.

  1. Optical assessment of large marine particles: Development of an imaging and analysis system for quantifying large particle distributions and fluxes. Final report, June 1992--May 1996

    SciTech Connect

    Walsh, I.D.; Gardner, W.D.

    1997-04-01

    The central goal of DOE`s Ocean Margin Program (OMP) has been to determine whether continental shelves are quantitatively significant in removing carbon dioxide from the atmosphere and isolating it via burial in sediments or exporting it to the open ocean. The overall objective of this work within OMP was to develop an instrument package to measure the large aggregate population of particles in the shelf/slope environment at a rate sufficient to integrate the observed particle distributions into the coupled physical and biogeochemical models necessary to understand the shelf and slope as a system. Pursuant to this the authors have developed a video and optical instrument package (LAPS: Large Aggregate Profiling System) and assembled the computer and software methods to routinely measure a wide spectrum of the large aggregate population of particles in the shelf/slope environment. This particle population, encompassing the `marine snow` size particles (dia. > 0.5 mm), is thought to be the major pathway of material flux in the ocean. The instrument package collects aggregate abundance and size spectrum data using two video camera/strobe subsystems with a third subsystem collecting CTD, beam attenuation and fluorescence data. Additionally, measurements of particle flux were made with sediment traps deployed on the continental slope in conjunction with the physical oceanography mooring program. The authors envisioned a three stages development of the instrument package: (1) design, assembly, and laboratory testing of all components and the package as a whole, (2) a short period of laboratory and field testing of the instrument package to determine the best operational parameters, and (3) operations within a framework of complementary analytical sampling such as an appropriate process study funded under the OMP. The first two stages were covered by this proposal and completed. The third stage was limited to scoping work with the LAPS and deployment of sediment traps.

  2. Magnetic flux conversion and relaxation toward a minimum-energy state in S-1 spheromak plasmas

    SciTech Connect

    Janos, A.

    1985-09-01

    S-1 Spheromak currents and magnetic fluxes have been measured with Rogowski coils and flux loops external to the plasma. Toroidal plasma currents up to 350 kA and spheromak configuration lifetimes over 1.0 msec have been achieved at moderate power levels. The plasma formation in the S-1 Spheromak device is based on an inductive transfer of poloidal and toroidal magnetic flux from a toroidal ''flux core'' to the plasma. Formation is programmed to guide the configuration into a force-free, minimum-energy Taylor state. Properly detailed programming of the formation process is found not to be essential since plasmas adjust themselves during formation to a final equilibrium near the Taylor state. After formation, if the plasma evolves away from the stable state, then distinct relaxation oscillation events occur which restore the configuration to that stable state. The relaxation process involves reconnection of magnetic field lines, and conversion of poloidal to toroidal magnetic flux (and vice versa) has been observed and documented. The scaling of toroidal plasma current and toroidal magnetic flux in the plasma with externally applied currents is consistent with the establishment of a Taylor state after formation. In addition, the magnetic helicity is proportional to that injected from the flux core, independent of how that helicity is generated.

  3. Energy propagation by transverse waves in multiple flux tube systems using filling factors

    SciTech Connect

    Van Doorsselaere, T.; Gijsen, S. E.; Andries, J.; Verth, G. E-mail: stief.gijsen@wis.kuleuven.be E-mail: g.verth@sheffield.ac.uk

    2014-11-01

    In the last few years, it has been found that transverse waves are present at all times in coronal loops or spicules. Their energy has been estimated with an expression derived for bulk Alfvén waves in homogeneous media, with correspondingly uniform wave energy density and flux. The kink mode, however, is localized in space with the energy density and flux dependent on the position in the cross-sectional plane. The more relevant quantities for the kink mode are the integrals of the energy density and flux over the cross-sectional plane. The present paper provides an approximation to the energy propagated by kink modes in an ensemble of flux tubes by means of combining the analysis of single flux tube kink oscillations with a filling factor for the tube cross-sectional area. This finally allows one to compare the expressions for energy flux of Alfvén waves with an ensemble of kink waves. We find that the correction factor for the energy in kink waves, compared to the bulk Alfvén waves, is between f and 2f, where f is the density filling factor of the ensemble of flux tubes.

  4. Simulations of Magnetic Flux Emergence

    NASA Astrophysics Data System (ADS)

    Stein, Robert; Nordlund, Aake

    Magnetic flux emerges from the solar surface on a wide range of scales. We review recent simulations of both large and small scale flux emergence. In our own simulations, we represent the magnetic flux produced by the global dynamo as uniform, untwisted, horizontal field advected into the simulation domain by supergranule scale inflows at the bottom. Our computational domain extends from the temperature minimum (half a megameter above the visible surface) to 20 Mm below the surface, which is 10% of the depth of the convection zone, but contains 2/3 of its scale heights. We investigate how magnetic flux rises through the upper solar convection zone and emerges through the surface. Convective up-flows and magnetic buoyancy bring field toward the surface. Convective down-flows pin down field and prevent its rise. Most of the field gets pumped downward by the convection, but some field rises to the surface. The convective motions both confine the flux concentrations (without the need for twist) and shred them. This process creates a hierarchy of magnetic loops with smaller loops riding "piggy-back", in a serpentine pattern, on larger loops. As a result, magnetic flux emerges in a mixed polarity, "pepper and salt" pattern. The small loops appear as horizontal field over granules with their vertical legs in the bounding intergranular lanes. The fields are quickly swept into the intergranular lanes. As the larger, parent, flux concentrations reach the surface with their legs rooted in the the downflow boundaries of the underlying, supergranule-scale, convective cells near the bottom of the simulation domain, the surface field counter-streams into separate, opposite polarity concentrations, creating pores and spots. The subsurface magnetic field lines of the pores and spots formed by the magneto-convection (without being imposed as an initial condition) are braided, some tightly, some loosely and they connect in complicated ways to the surrounding field at large depths

  5. FAST FLUX TEST FACILITY (FFTF) A HISTORY OF SAFETY & OPERATIONAL EXCELLENCE

    SciTech Connect

    NIELSEN, D L

    2004-02-26

    The Fast Flux Test Facility (FFTF) is a 400-megawatt (thermal) sodium-cooled, high temperature, fast neutron flux, loop-type test reactor. The facility was constructed to support development and testing of fuels, materials and equipment for the Liquid Metal Fast Breeder Reactor program. FFTF began operation in 1980 and over the next 10 years demonstrated its versatility to perform experiments and missions far beyond the original intent of its designers. The reactor had several distinctive features including its size, flux, core design, extensive instrumentation, and test features that enabled it to simultaneously carry out a significant array of missions while demonstrating its features that contributed to a high level of plant safety and availability. FFTF is currently being deactivated for final closure.

  6. Helicity charging and eruption of magnetic flux from the Sun

    NASA Technical Reports Server (NTRS)

    Rust, David M.; Kumar, A.

    1994-01-01

    The ejection of helical toroidal fields from the solar atmosphere and their detection in interplanetary space are described. The discovery that solar magnetic fields are twisted and that they are segregated by hemisphere according to their chirality has important implications for the escape process. The roles played by erupting prominences, coronal mass ejections (CME's) and active region (AR) loops in expressing the escape of magnetic flux and helicity are discussed. Sporadic flux escape associated with filament eruptions accounts for less than one-tenth the flux loss. Azimuthal flux loss by CME's could account for more, but the major contributor to flux escape may be AR loop expansion. It is shown how the transfer of magnetic helicity from the sun's interior into emerged loops ('helicity charging') could be the effective driver of solar eruptions and of flux loss from the sun.

  7. Final Report, 2011-2014. Forecasting Carbon Storage as Eastern Forests Age. Joining Experimental and Modeling Approaches at the UMBS AmeriFlux Site

    SciTech Connect

    Curtis, Peter; Bohrer, Gil; Gough, Christopher; Nadelhoffer, Knute

    2015-03-12

    At the University of Michigan Biological Station (UMBS) AmeriFlux sites (US-UMB and US-UMd), long-term C cycling measurements and a novel ecosystem-scale experiment are revealing physical, biological, and ecological mechanisms driving long-term trajectories of C cycling, providing new data for improving modeling forecasts of C storage in eastern forests. Our findings provide support for previously untested hypotheses that stand-level structural and biological properties constrain long-term trajectories of C storage, and that remotely sensed canopy structural parameters can substantially improve model forecasts of forest C storage. Through the Forest Accelerated Succession ExperimenT (FASET), we are directly testing the hypothesis that forest C storage will increase due to increasing structural and biological complexity of the emerging tree communities. Support from this project, 2011-2014, enabled us to incorporate novel physical and ecological mechanisms into ecological, meteorological, and hydrological models to improve forecasts of future forest C storage in response to disturbance, succession, and current and long-term climate variation

  8. Thermoelectric power generator with intermediate loop

    DOEpatents

    Bell, Lon E; Crane, Douglas Todd

    2013-05-21

    A thermoelectric power generator is disclosed for use to generate electrical power from heat, typically waste heat. An intermediate heat transfer loop forms a part of the system to permit added control and adjustability in the system. This allows the thermoelectric power generator to more effectively and efficiently generate power in the face of dynamically varying temperatures and heat flux conditions, such as where the heat source is the exhaust of an automobile, or any other heat source with dynamic temperature and heat flux conditions.

  9. Uniqueness of measures in loop quantum cosmology

    SciTech Connect

    Hanusch, Maximilian

    2015-09-15

    In Ashtekar and Campiglia [Classical Quantum Gravity 29, 242001 (2012)], residual diffeomorphisms have been used to single out the standard representation of the reduced holonomy-flux algebra in homogeneous loop quantum cosmology (LQC). We show that, in the homogeneous isotropic case, unitarity of the translations with respect to the extended ℝ-action (exponentiated reduced fluxes in the standard approach) singles out the Bohr measure on both the standard quantum configuration space ℝ{sub Bohr} as well as on the Fleischhack one (ℝ⊔ℝ{sub Bohr}). Thus, in both situations, the same condition singles out the standard kinematical Hilbert space of LQC.

  10. Thermoelectric power generator with intermediate loop

    DOEpatents

    Bel,; Lon E.; Crane, Douglas Todd

    2009-10-27

    A thermoelectric power generator is disclosed for use to generate electrical power from heat, typically waste heat. An intermediate heat transfer loop forms a part of the system to permit added control and adjustability in the system. This allows the thermoelectric power generator to more effectively and efficiently generate power in the face of dynamically varying temperatures and heat flux conditions, such as where the heat source is the exhaust of an automobile, or any other heat source with dynamic temperature and heat flux conditions.

  11. Three-loop hard-thermal-loop free energy for QED

    SciTech Connect

    Andersen, Jens O.; Strickland, Michael; Su, Nan

    2009-10-15

    We calculate the free energy of a hot gas of electrons and photons to three loops using the hard-thermal-loop perturbation theory reorganization of finite-temperature perturbation theory. We calculate the free energy through three loops by expanding in a power series in m{sub D}/T, m{sub f}/T, and e{sup 2}, where m{sub D} and m{sub f} are thermal masses and e is the coupling constant. We demonstrate that the hard-thermal-loop perturbation reorganization improves the convergence of the successive approximations to the QED free energy at large coupling, e{approx}2. The reorganization is gauge invariant by construction, and due to cancellation among various contributions, we obtain a completely analytic result for the resummed thermodynamic potential at three loops. Finally, we compare our result with similar calculations that use the {phi}-derivable approach.

  12. Pressure drop, heat transfer, critical heat flux, and flow stability of two-phase flow boiling of water and ethylene glycol/water mixtures - final report for project "Efficent cooling in engines with nucleate boiling."

    SciTech Connect

    Yu, W.; France, D. M.; Routbort, J. L.

    2011-01-19

    Because of its order-of-magnitude higher heat transfer rates, there is interest in using controllable two-phase nucleate boiling instead of conventional single-phase forced convection in vehicular cooling systems to remove ever increasing heat loads and to eliminate potential hot spots in engines. However, the fundamental understanding of flow boiling mechanisms of a 50/50 ethylene glycol/water mixture under engineering application conditions is still limited. In addition, it is impractical to precisely maintain the volume concentration ratio of the ethylene glycol/water mixture coolant at 50/50. Therefore, any investigation into engine coolant characteristics should include a range of volume concentration ratios around the nominal 50/50 mark. In this study, the forced convective boiling heat transfer of distilled water and ethylene glycol/water mixtures with volume concentration ratios of 40/60, 50/50, and 60/40 in a 2.98-mm-inner-diameter circular tube has been investigated in both the horizontal flow and the vertical flow. The two-phase pressure drop, the forced convective boiling heat transfer coefficient, and the critical heat flux of the test fluids were determined experimentally over a range of the mass flux, the vapor mass quality, and the inlet subcooling through a new boiling data reduction procedure that allowed the analytical calculation of the fluid boiling temperatures along the experimental test section by applying the ideal mixture assumption and the equilibrium assumption along with Raoult's law. Based on the experimental data, predictive methods for the two-phase pressure drop, the forced convective boiling heat transfer coefficient, and the critical heat flux under engine application conditions were developed. The results summarized in this final project report provide the necessary information for designing and implementing nucleate-boiling vehicular cooling systems.

  13. Two-loop quantum gravity

    NASA Astrophysics Data System (ADS)

    van de Ven, Anton E. M.

    1992-07-01

    We prove the existence of a nonrenormalizable infinity in the two-loop effective action of perturbative quantum gravity by means of an explicit calculation. Our final result agrees with that obtained by earlier authors. We use the background-field method in coordinate space, combined with dimensional regularization and a heat kernel representation for the propagators. General covariance is manifestly preserved. Only vacuum graphs in the presence of an on-shell background metric need to be calculated. We extend the background covariant harmonic gauge to include terms nonlinear in the quantum gravitational fields and allow for general reparametrizations of those fields. For a particular gauge choice and field parametrization only two three-graviton and six four-graviton vertices are present in the action. Calculational labor is further reduced by restricting to backgrounds, which are not only Ricci-flat, but satisfy an additional constraint bilinear in the Weyl tensor. To handle the still formidable amount of algebra, we use the symbolic manipulation program FORM. We checked that the on-shell two-loop effective action is in fact independent of all gauge and field redefinition parameters. A two-loop analysis for Yang-Mills fields is included as well, since in that case we can give full details as well as simplify earlier analyses.

  14. Analog simulation of flux-summing servo-model, phases 1 and 2

    NASA Technical Reports Server (NTRS)

    Hriber, E. J.

    1984-01-01

    The analog simulation was developed for a closed-loop system having an electrohydraulic flux-summing servo valve and actuator with associated inertial load. One-fourth of the system's total forward gain is carried by each of four channels. The present study successfully applied failure mode management techniques to the problem of channel failure. Digital logic circuitry was developed to maintain the overall forward gain of the system at a constant value, in the presence of channel failure. Finally, the stability of the system was verified, and performance characteristics were determined through the use of frequency response methods.

  15. An adaptive human response mechanism controlling the V/STOL aircraft. Appendix 3: The adaptive control model of a pilot in V/STOL aircraft control loops. M.S. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Kucuk, Senol

    1988-01-01

    Importance of the role of human operator in control systems has led to the particular area of manual control theory. Human describing functions were developed to model human behavior for manual control studies to take advantage of the successful and safe human operations. A single variable approach is presented that can be extended for multi-variable tasks where a low order human response model is used together with its rules, to adapt the model on-line, being capable of responding to the changes in the controlled element dynamics. Basic control theory concepts are used to combine the model, constrained with the physical observations, particularly, for the case of aircraft control. Pilot experience is represented as the initial model parameters. An adaptive root-locus method is presented as the adaptation law of the model where the closed loop bandwidth of the system is to be preserved in a stable manner with the adjustments of the pilot handling qualities which relate the latter to the closed loop bandwidth and damping of the closed loop pilot aircraft combination. A Kalman filter parameter estimator is presented as the controlled element identifier of the adaptive model where any discrepancies of the open loop dynamics from the presented one, are sensed to be compensated.

  16. Saccade learning with concurrent cortical and subcortical basal ganglia loops

    PubMed Central

    N'Guyen, Steve; Thurat, Charles; Girard, Benoît

    2014-01-01

    The Basal Ganglia (BG) is a central structure involved in multiple cortical and subcortical loops. Some of these loops are believed to be responsible for saccade target selection. We study here how the very specific structural relationships of these saccadic loops can affect the ability of learning spatial and feature-based tasks. We propose a model of saccade generation with reinforcement learning capabilities based on our previous BG and superior colliculus models. It is structured around the interactions of two parallel cortico-basal loops and one tecto-basal loop. The two cortical loops separately deal with spatial and non-spatial information to select targets in a concurrent way. The subcortical loop is used to make the final target selection leading to the production of the saccade. These different loops may work in concert or disturb each other regarding reward maximization. Interactions between these loops and their learning capabilities are tested on different saccade tasks. The results show the ability of this model to correctly learn basic target selection based on different criteria (spatial or not). Moreover the model reproduces and explains training dependent express saccades toward targets based on a spatial criterion. Finally, the model predicts that in absence of prefrontal control, the spatial loop should dominate. PMID:24795615

  17. Thermal power loops

    NASA Technical Reports Server (NTRS)

    Gottschlich, Joseph M.; Richter, Robert

    1991-01-01

    The concept of a thermal power loop (TPL) to transport thermal power over relatively large distances is presented as an alternative to heat pipes and their derivatives. The TPL is compared to heat pipes, and capillary pumped loops with respect to size, weight, conservation of thermal potential, start-up, and 1-g testing capability. Test results from a proof of feasibility demonstrator at the NASA JPL are discussed. This analysis demonstrates that the development of specific thermal power loops will result in substantial weight and cost savings for many spacecraft.

  18. Multiprotein DNA Looping

    NASA Astrophysics Data System (ADS)

    Vilar, Jose M. G.; Saiz, Leonor

    2006-06-01

    DNA looping plays a fundamental role in a wide variety of biological processes, providing the backbone for long range interactions on DNA. Here we develop the first model for DNA looping by an arbitrarily large number of proteins and solve it analytically in the case of identical binding. We uncover a switchlike transition between looped and unlooped phases and identify the key parameters that control this transition. Our results establish the basis for the quantitative understanding of fundamental cellular processes like DNA recombination, gene silencing, and telomere maintenance.

  19. A terraced scanning superconducting quantum interference device susceptometer with submicron pickup loops

    SciTech Connect

    Koshnick, Nicholas C.; Bert, Julie A.; Hicks, Clifford W.; Huber, Martin E.; Moler, Kathryn A.; Large, Jeff; Edwards, Hal

    2008-12-15

    Superconducting quantum interference devices (SQUIDs) can have excellent spin sensitivity depending on their magnetic flux noise, pickup loop diameter, and distance from the sample. We report a family of scanning SQUID susceptometers with terraced tips that position the pickup loops 300 nm from the sample. The 600 nm-2 {mu}m pickup loops, defined by focused ion beam, are integrated into a 12-layer optical lithography process allowing flux-locked feedback, in situ background subtraction and optimized flux noise. These features enable a sensitivity of {approx}70 electron spins per root hertz at 4 K.

  20. Natively Unstructured Loops Differ from Other Loops

    PubMed Central

    Schlessinger, Avner; Liu, Jinfeng; Rost, Burkhard

    2007-01-01

    Natively unstructured or disordered protein regions may increase the functional complexity of an organism; they are particularly abundant in eukaryotes and often evade structure determination. Many computational methods predict unstructured regions by training on outliers in otherwise well-ordered structures. Here, we introduce an approach that uses a neural network in a very different and novel way. We hypothesize that very long contiguous segments with nonregular secondary structure (NORS regions) differ significantly from regular, well-structured loops, and that a method detecting such features could predict natively unstructured regions. Training our new method, NORSnet, on predicted information rather than on experimental data yielded three major advantages: it removed the overlap between testing and training, it systematically covered entire proteomes, and it explicitly focused on one particular aspect of unstructured regions with a simple structural interpretation, namely that they are loops. Our hypothesis was correct: well-structured and unstructured loops differ so substantially that NORSnet succeeded in their distinction. Benchmarks on previously used and new experimental data of unstructured regions revealed that NORSnet performed very well. Although it was not the best single prediction method, NORSnet was sufficiently accurate to flag unstructured regions in proteins that were previously not annotated. In one application, NORSnet revealed previously undetected unstructured regions in putative targets for structural genomics and may thereby contribute to increasing structural coverage of large eukaryotic families. NORSnet found unstructured regions more often in domain boundaries than expected at random. In another application, we estimated that 50%–70% of all worm proteins observed to have more than seven protein–protein interaction partners have unstructured regions. The comparative analysis between NORSnet and DISOPRED2 suggested that long

  1. Natively unstructured loops differ from other loops.

    PubMed

    Schlessinger, Avner; Liu, Jinfeng; Rost, Burkhard

    2007-07-01

    Natively unstructured or disordered protein regions may increase the functional complexity of an organism; they are particularly abundant in eukaryotes and often evade structure determination. Many computational methods predict unstructured regions by training on outliers in otherwise well-ordered structures. Here, we introduce an approach that uses a neural network in a very different and novel way. We hypothesize that very long contiguous segments with nonregular secondary structure (NORS regions) differ significantly from regular, well-structured loops, and that a method detecting such features could predict natively unstructured regions. Training our new method, NORSnet, on predicted information rather than on experimental data yielded three major advantages: it removed the overlap between testing and training, it systematically covered entire proteomes, and it explicitly focused on one particular aspect of unstructured regions with a simple structural interpretation, namely that they are loops. Our hypothesis was correct: well-structured and unstructured loops differ so substantially that NORSnet succeeded in their distinction. Benchmarks on previously used and new experimental data of unstructured regions revealed that NORSnet performed very well. Although it was not the best single prediction method, NORSnet was sufficiently accurate to flag unstructured regions in proteins that were previously not annotated. In one application, NORSnet revealed previously undetected unstructured regions in putative targets for structural genomics and may thereby contribute to increasing structural coverage of large eukaryotic families. NORSnet found unstructured regions more often in domain boundaries than expected at random. In another application, we estimated that 50%-70% of all worm proteins observed to have more than seven protein-protein interaction partners have unstructured regions. The comparative analysis between NORSnet and DISOPRED2 suggested that long

  2. Introduction to Loop Heat Pipes

    NASA Technical Reports Server (NTRS)

    Ku, Jentung

    2015-01-01

    This is the presentation file for the short course Introduction to Loop Heat Pipes, to be conducted at the 2015 Thermal Fluids and Analysis Workshop, August 3-7, 2015, Silver Spring, Maryland. This course will discuss operating principles and performance characteristics of a loop heat pipe. Topics include: 1) pressure profiles in the loop; 2) loop operating temperature; 3) operating temperature control; 4) loop startup; 4) loop shutdown; 5) loop transient behaviors; 6) sizing of loop components and determination of fluid inventory; 7) analytical modeling; 8) examples of flight applications; and 9) recent LHP developments.

  3. Loop modeling: Sampling, filtering, and scoring

    PubMed Central

    Soto, Cinque S; Fasnacht, Marc; Zhu, Jiang; Forrest, Lucy; Honig, Barry

    2008-01-01

    We describe a fast and accurate protocol, LoopBuilder, for the prediction of loop conformations in proteins. The procedure includes extensive sampling of backbone conformations, side chain addition, the use of a statistical potential to select a subset of these conformations, and, finally, an energy minimization and ranking with an all-atom force field. We find that the Direct Tweak algorithm used in the previously developed LOOPY program is successful in generating an ensemble of conformations that on average are closer to the native conformation than those generated by other methods. An important feature of Direct Tweak is that it checks for interactions between the loop and the rest of the protein during the loop closure process. DFIRE is found to be a particularly effective statistical potential that can bias conformation space toward conformations that are close to the native structure. Its application as a filter prior to a full molecular mechanics energy minimization both improves prediction accuracy and offers a significant savings in computer time. Final scoring is based on the OPLS/SBG-NP force field implemented in the PLOP program. The approach is also shown to be quite successful in predicting loop conformations for cases where the native side chain conformations are assumed to be unknown, suggesting that it will prove effective in real homology modeling applications. Proteins 2008. © 2007 Wiley-Liss, Inc. PMID:17729286

  4. Hawking fluxes, back reaction and covariant anomalies

    NASA Astrophysics Data System (ADS)

    Kulkarni, Shailesh

    2008-11-01

    Starting from the chiral covariant effective action approach of Banerjee and Kulkarni (2008 Phys. Lett. B 659 827), we provide a derivation of the Hawking radiation from a charged black hole in the presence of gravitational back reaction. The modified expressions for charge and energy flux, due to the effect of one-loop back reaction are obtained.

  5. Blind loop syndrome

    MedlinePlus

    ... operations for extreme obesity As a complication of inflammatory bowel disease Diseases such as diabetes or scleroderma may slow down movement in a segment of the intestine, leading to blind loop syndrome.

  6. Choking loops on surfaces.

    PubMed

    Feng, Xin; Tong, Yiying

    2013-08-01

    We present a method for computing "choking" loops--a set of surface loops that describe the narrowing of the volumes inside/outside of the surface and extend the notion of surface homology and homotopy loops. The intuition behind their definition is that a choking loop represents the region where an offset of the original surface would get pinched. Our generalized loops naturally include the usual 2g handles/tunnels computed based on the topology of the genus-g surface, but also include loops that identify chokepoints or bottlenecks, i.e., boundaries of small membranes separating the inside or outside volume of the surface into disconnected regions. Our definition is based on persistent homology theory, which gives a measure to topological structures, thus providing resilience to noise and a well-defined way to determine topological feature size. More precisely, the persistence computed here is based on the lower star filtration of the interior or exterior 3D domain with the distance field to the surface being the associated 3D Morse function. PMID:23744260

  7. Magnetic flux amplification by Lenz lenses

    NASA Astrophysics Data System (ADS)

    Schoenmaker, J.; Pirota, K. R.; Teixeira, J. C.

    2013-08-01

    Tailoring magnetic flux distribution is highly desirable in a wide range of applications such as magnetic sensors and biomedicine. In this paper we study the manipulation of induced currents in passive devices in order to engineer the distribution of magnetic flux intensity in a given region. We propose two different approaches, one based on especially designed wire loops (Lenz law) and the other based on solid conductive pieces (eddy currents). The gain of such devices is mainly determined by geometry giving perspective of high amplification. We consistently modeled, simulated, and executed the proposed devices. Doubled magnetic flux intensity is demonstrated experimentally for a moderate aspect ratio.

  8. High flux heat exchanger

    NASA Astrophysics Data System (ADS)

    Flynn, Edward M.; Mackowski, Michael J.

    1993-01-01

    This interim report documents the results of the first two phases of a four-phase program to develop a high flux heat exchanger for cooling future high performance aircraft electronics. Phase 1 defines future needs for high flux heat removal in advanced military electronics systems. The results are sorted by broad application categories: (1) commercial digital systems, (2) military data processors, (3) power processors, and (4) radar and optical systems. For applications expected to be fielded in five to ten years, the outlook is for steady state flux levels of 30-50 W/sq cm for digital processors and several hundred W/sq cm for power control applications. In Phase 1, a trade study was conducted on emerging cooling technologies which could remove a steady state chip heat flux of 100 W/sq cm while holding chip junction temperature to 90 C. Constraints imposed on heat exchanger design, in order to reflect operation in a fighter aircraft environment, included a practical lower limit on coolant supply temperature, the preference for a nontoxic, nonflammable, and nonfreezing coolant, the need to minimize weight and volume, and operation in an accelerating environment. The trade study recommended the Compact High Intensity Cooler (CHIC) for design, fabrication, and test in the final two phases of this program.

  9. Magnetic balltracking: Tracking the photospheric magnetic flux

    NASA Astrophysics Data System (ADS)

    Attie, R.; Innes, D. E.

    2015-02-01

    Context. One aspect of understanding the dynamics of the quiet Sun is to quantify the evolution of the flux within small-scale magnetic features. These features are routinely observed in the quiet photosphere and were given various names, such as pores, knots, magnetic patches. Aims: This work presents a new algorithm for tracking the evolution of the broad variety of small-scale magnetic features in the photosphere, with a precision equal to the instrumental resolution. Methods: We have developed a new technique to track the evolution of the individual magnetic features from magnetograms, called "magnetic balltracking". It quantifies the flux of the tracked features, and it can track the footpoints of magnetic field lines inferred from magnetic field extrapolation. The algorithm can detect and quantify flux emergence, as well as flux cancellation. Results: The capabilities of magnetic balltracking are demonstrated with the detection and the tracking of two cases of magnetic flux emergence that lead to the brightening of X-ray loops. The maximum emerged flux ranges from 1018 Mx to 1019 Mx (unsigned flux) when the X-ray loops are observed. Movies associated to Figs. 6 and 18 are available in electronic form at http://www.aanda.org

  10. LINE-OF-SIGHT SHELL STRUCTURE OF THE CYGNUS LOOP

    SciTech Connect

    Uchida, Hiroyuki; Tsunemi, Hiroshi; Katsuda, Satoru; Kimura, Masashi; Kosugi, Hiroko; Takahashi, Hiroaki

    2009-11-10

    We conducted a comprehensive study on the shell structure of the Cygnus Loop using 41 observation data obtained by the Suzaku and the XMM-Newton satellites. To investigate the detailed plasma structure of the Cygnus Loop, we divided our fields of view into 1042 box regions. From the spectral analysis, the spectra obtained from the limb of the Loop are well fitted by the single-component non-equilibrium ionization plasma model. On the other hand, the spectra obtained from the inner regions are well fitted by the two-component model. As a result, we confirmed that the low-temperature and high-temperature components originated from the surrounding interstellar matter (ISM) and the ejecta of the Loop, respectively. From the best-fit results, we showed a flux distribution of the ISM component. The distribution clearly shows the limb-brightening structure, and we found out some low-flux regions. Among them, the south blowout region has the lowest flux. We also found other large low-flux regions at slightly west and northeast from the center. We estimated the former thin shell region to be approx1.{sup 0}3 in diameter and concluded that there exists a blowout along the line of sight in addition to the south blowout. We also calculated the emission measure distribution of the ISM component and showed that the Cygnus Loop is far from the result obtained by a simple Sedov evolution model. From the results, we support that the Cygnus Loop originated from a cavity explosion. The emission measure distribution also suggests that the cavity-wall density is higher in the northeast than that in the southwest. These results suggest that the thickness of the cavity wall surrounding the Cygnus Loop is not uniform.

  11. Loop Integrands for Scattering Amplitudes from the Riemann Sphere

    NASA Astrophysics Data System (ADS)

    Geyer, Yvonne; Mason, Lionel; Monteiro, Ricardo; Tourkine, Piotr

    2015-09-01

    The scattering equations on the Riemann sphere give rise to remarkable formulas for tree-level gauge theory and gravity amplitudes. Adamo, Casali, and Skinner conjectured a one-loop formula for supergravity amplitudes based on scattering equations on a torus. We use a residue theorem to transform this into a formula on the Riemann sphere. What emerges is a framework for loop integrands on the Riemann sphere that promises to have a wide application, based on off-shell scattering equations that depend on the loop momentum. We present new formulas, checked explicitly at low points, for supergravity and super-Yang-Mills amplitudes and for n -gon integrands at one loop. Finally, we show that the off-shell scattering equations naturally extend to arbitrary loop order, and we give a proposal for the all-loop integrands for supergravity and planar super-Yang-Mills theory.

  12. The temperature structure and pressure balance of magnetic loops in active regions. [in solar atmosphere

    NASA Technical Reports Server (NTRS)

    Foukal, P.

    1975-01-01

    EUV observations show many active region loops in lines formed at temperatures between 10,000 and 2,000,000 K. The brightest loops are associated with flux tubes leading to the umbrae of sunspots. It is shown that the high visibility of certain loops in transition region lines is due principally to a sharp radial decrease of temperature to chromospheric values toward the loop axis. The plasma density of these cool loops is not significantly greater than in the hot gas immediately surrounding it. Consequently, the internal gas pressure of the cool material is clearly lower. The hot material immediately surrounding the cool loops is generally denser than the external corona by a factor 3-4. When the active region is examined in coronal lines, this hot high pressure plasma shows up as loops that are generally parallel to the cool loops but significantly displaced laterally.

  13. In-situ Condition Monitoring of Components in Small Modular Reactors Using Process and Electrical Signature Analysis. Final report, volume 1. Development of experimental flow control loop, data analysis and plant monitoring

    SciTech Connect

    Upadhyaya, Belle; Hines, J. Wesley; Damiano, Brian; Mehta, Chaitanya; Collins, Price; Lish, Matthew; Cady, Brian; Lollar, Victor; de Wet, Dane; Bayram, Duygu

    2015-12-15

    The research and development under this project was focused on the following three major objectives: Objective 1: Identification of critical in-vessel SMR components for remote monitoring and development of their low-order dynamic models, along with a simulation model of an integral pressurized water reactor (iPWR). Objective 2: Development of an experimental flow control loop with motor-driven valves and pumps, incorporating data acquisition and on-line monitoring interface. Objective 3: Development of stationary and transient signal processing methods for electrical signatures, machinery vibration, and for characterizing process variables for equipment monitoring. This objective includes the development of a data analysis toolbox. The following is a summary of the technical accomplishments under this project: - A detailed literature review of various SMR types and electrical signature analysis of motor-driven systems was completed. A bibliography of literature is provided at the end of this report. Assistance was provided by ORNL in identifying some key references. - A review of literature on pump-motor modeling and digital signal processing methods was performed. - An existing flow control loop was upgraded with new instrumentation, data acquisition hardware and software. The upgrading of the experimental loop included the installation of a new submersible pump driven by a three-phase induction motor. All the sensors were calibrated before full-scale experimental runs were performed. - MATLAB-Simulink model of a three-phase induction motor and pump system was completed. The model was used to simulate normal operation and fault conditions in the motor-pump system, and to identify changes in the electrical signatures. - A simulation model of an integral PWR (iPWR) was updated and the MATLAB-Simulink model was validated for known transients. The pump-motor model was interfaced with the iPWR model for testing the impact of primary flow perturbations (upsets) on

  14. ISOTHERMAL AND MULTITHERMAL ANALYSIS OF CORONAL LOOPS OBSERVED WITH AIA

    SciTech Connect

    Schmelz, J. T.; Jenkins, B. S.; Worley, B. T.; Anderson, D. J.; Pathak, S.; Kimble, J. A.

    2011-04-10

    The coronal filters in the Atmospheric Imaging Assembly (AIA) aboard the Solar Dynamics Observatory peak at different temperatures; the series covers the entire active region temperature range, making AIA ideal for multithermal analysis. Here, we analyze coronal loops from several active regions that have been observed by AIA. We have specifically targeted cool loops (or at least loops with a cool component) that were chosen in the 171 A channel of AIA, which has a peak response temperature of log T = 5.8. We wanted to determine if the loops could be described as isothermal or multithermal. We find that several of our 12 loops have narrow temperature distributions, which may be consistent with isothermal plasma; these can be modeled with a single flux tube. Other loops have intermediate-width temperature distributions, appear well-constrained, and should be multi-stranded. The remaining loops, however, have unrealistically broad differential emission measures. We find that this problem is the result of missing low-temperature lines in the AIA 131 A channel. If we repeat the analysis without the 131 A data, these loops also appear to be well-constrained and multi-stranded.

  15. Ultrahigh-energy particle flux from cosmic strings

    SciTech Connect

    Bhattacharjee, P. . Enrico Fermi Inst. Fermi National Accelerator Lab., Batavia, IL )

    1990-04-01

    We estimate the expected flux of ultrahigh-energy (> 10{sup 18}eV) protons in the present epoch due to a process which involves collapse or multiple self-intersections of a special class of closed cosmic string loops in the universe. We compare this flux with the observed flux of ultrahigh-energy cosmic rays, and discuss the implications. 19 refs., 1 fig.

  16. A new vacuum for loop quantum gravity

    NASA Astrophysics Data System (ADS)

    Dittrich, Bianca; Geiller, Marc

    2015-06-01

    We construct a new vacuum and representation for loop quantum gravity. Because the new vacuum is based on BF theory, it is physical for (2+1)-dimensional gravity, and much closer to the spirit of spin foam quantization in general. To construct this new vacuum and the associated representation of quantum observables, we introduce a modified holonomy-flux algebra that is cylindrically consistent with respect to the notion of refinement by time evolution suggested in Dittrich and Steinhaus (2013 arXiv:1311.7565). This supports the proposal for a construction of the physical vacuum made in Dittrich and Steinhaus (2013 arXiv:1311.7565) and Dittrich (2012 New J. Phys. 14 123004), and for (3+1)-dimensional gravity. We expect that the vacuum introduced here will facilitate the extraction of large scale physics and cosmological predictions from loop quantum gravity.

  17. The Anderson Current Loop

    NASA Technical Reports Server (NTRS)

    Anderson, Karl F.

    1994-01-01

    Four-wire-probe concept applied to electrical-resistance transducers. Anderson current loop is excitation-and-signal-conditioning circuit suitable for use with strain gauges, resistance thermometers, and other electrical-resistance transducers mounted in harsh environments. Used as alternative to Wheatstone bridge. Simplifies signal-conditioning problem, enabling precise measurement of small changes in resistance of transducer. Eliminates some uncertainties in Wheatstone-bridge resistance-change measurements in flight research. Current loop configuration makes effects of lead-wire and contact resistances insignificantly small. Also provides output voltage that varies linearly with change in gauge resistance, and does so at double sensitivity of Wheatstone bridge.

  18. Loop quantum gravity

    NASA Astrophysics Data System (ADS)

    Chiou, Dah-Wei

    2015-12-01

    This paper presents an "in-a-nutshell" yet self-contained introductory review on loop quantum gravity (LQG) — a background-independent, nonperturbative approach to a consistent quantum theory of gravity. Instead of rigorous and systematic derivations, it aims to provide a general picture of LQG, placing emphasis on the fundamental ideas and their significance. The canonical formulation of LQG, as the central topic of the paper, is presented in a logically orderly fashion with moderate details, while the spin foam theory, black hole thermodynamics, and loop quantum cosmology are covered briefly. Current directions and open issues are also summarized.

  19. Flux Quantization Without Cooper Pairs

    NASA Astrophysics Data System (ADS)

    Kadin, Alan

    2013-03-01

    It is universally accepted that the superconducting flux quantum h/2e requires the existence of a phase-coherent macroscopic wave function of Cooper pairs, each with charge 2e. On the contrary, we assert that flux quantization can be better understood in terms of single-electron quantum states, localized on the scale of the coherence length and organized into a real-space phase-antiphase structure. This packing configuration is consistent with the Pauli exclusion principle for single-electron states, maintains long-range phase coherence, and is compatible with much of the BCS formalism. This also accounts for h/2e in the Josephson effect, without Cooper pairs. Experimental evidence for this alternative picture may be found in deviations from h/2e in loops and devices much smaller than the coherence length. A similar phase-antiphase structure may also account for superfluids, without the need for boson condensation.

  20. Flux growth utilizing the reaction between flux and crucible

    DOE PAGESBeta

    Yan, J. -Q.

    2015-01-22

    Flux growth involves dissolving the components of the target compound in an appropriate flux at high temperatures and then crystallizing under supersaturation controlled by cooling or evaporating the flux. A refractory crucible is generally used to contain the high temperature melt. Moreover, the reaction between the melt and crucible materials can modify the composition of the melt, which typically results in growth failure, or contaminates the crystals. Thus one principle in designing a flux growth is to select suitable flux and crucible materials thus to avoid any reaction between them. In this paper, we review two cases of flux growthmore » in which the reaction between flux and Al2O3 crucible tunes the oxygen content in the melt and helps the crystallization of desired compositions. For the case of La5Pb3O, the Al2O3 crucible oxidizes La to form a passivating La2O3 layer which not only prevents further oxidization of La in the melt but also provides [O] to the melt. Finally, in the case of La0.4Na0.6Fe2As2, it is believed that the Al2O3 crucible reacts with NaAsO2 and the reaction consumes oxygen in the melt thus maintaining an oxygen-free environment.« less

  1. Livermore Compiler Analysis Loop Suite

    2013-03-01

    LCALS is designed to evaluate compiler optimizations and performance of a variety of loop kernels and loop traversal software constructs. Some of the loop kernels are pulled directly from "Livermore Loops Coded in C", developed at LLNL (see item 11 below for details of earlier code versions). The older suites were used to evaluate floating-point performances of hardware platforms prior to porting larger application codes. The LCALS suite is geared toward assissing C++ compiler optimizationsmore » and platform performance related to SIMD vectorization, OpenMP threading, and advanced C++ language features. LCALS contains 20 of 24 loop kernels from the older Livermore Loop suites, plus various others representative of loops found in current production appkication codes at LLNL. The latter loops emphasize more diverse loop constructs and data access patterns than the others, such as multi-dimensional difference stencils. The loops are included in a configurable framework, which allows control of compilation, loop sampling for execution timing, which loops are run and their lengths. It generates timing statistics for analysis and comparing variants of individual loops. Also, it is easy to add loops to the suite as desired.« less

  2. Livermore Compiler Analysis Loop Suite

    SciTech Connect

    Hornung, R. D.

    2013-03-01

    LCALS is designed to evaluate compiler optimizations and performance of a variety of loop kernels and loop traversal software constructs. Some of the loop kernels are pulled directly from "Livermore Loops Coded in C", developed at LLNL (see item 11 below for details of earlier code versions). The older suites were used to evaluate floating-point performances of hardware platforms prior to porting larger application codes. The LCALS suite is geared toward assissing C++ compiler optimizations and platform performance related to SIMD vectorization, OpenMP threading, and advanced C++ language features. LCALS contains 20 of 24 loop kernels from the older Livermore Loop suites, plus various others representative of loops found in current production appkication codes at LLNL. The latter loops emphasize more diverse loop constructs and data access patterns than the others, such as multi-dimensional difference stencils. The loops are included in a configurable framework, which allows control of compilation, loop sampling for execution timing, which loops are run and their lengths. It generates timing statistics for analysis and comparing variants of individual loops. Also, it is easy to add loops to the suite as desired.

  3. Interstitial loop transformations in FeCr

    SciTech Connect

    Béland, Laurent Karim; Osetsky, Yuri N.; Stoller, Roger E.; Xu, Haixuan

    2015-03-27

    Here, we improve the Self-Evolving Atomistic Kinetic Monte Carlo (SEAKMC) algorithm by integrating the Activation Relaxation Technique nouveau (ARTn), a powerful open-ended saddle-point search method, into the algorithm. We use it to investigate the reaction of 37-interstitial 1/2[1 1 1] and 1/2[View the MathML source] loops in FeCr at 10 at.% Cr. They transform into 1/2[1 1 1], 1/2[View the MathML source], [1 0 0] and [0 1 0] 74-interstitial clusters with an overall barrier of 0.85 eV. We find that Cr decoration locally inhibits the rotation of crowdions, which dictates the final loop orientation. Moreover, the final loop orientation depends on the details of the Cr decoration. Generally, a region of a given orientation is favored if Cr near its interface with a region of another orientation is able to inhibit reorientation at this interface more than the Cr present at the other interfaces. Also, we find that substitutional Cr atoms can diffuse from energetically unfavorable to energetically favorable sites within the interlocked 37-interstitial loops conformation with barriers of less than 0.35 eV.

  4. Interstitial loop transformations in FeCr

    DOE PAGESBeta

    Béland, Laurent Karim; Osetsky, Yuri N.; Stoller, Roger E.; Xu, Haixuan

    2015-03-27

    Here, we improve the Self-Evolving Atomistic Kinetic Monte Carlo (SEAKMC) algorithm by integrating the Activation Relaxation Technique nouveau (ARTn), a powerful open-ended saddle-point search method, into the algorithm. We use it to investigate the reaction of 37-interstitial 1/2[1 1 1] and 1/2[View the MathML source] loops in FeCr at 10 at.% Cr. They transform into 1/2[1 1 1], 1/2[View the MathML source], [1 0 0] and [0 1 0] 74-interstitial clusters with an overall barrier of 0.85 eV. We find that Cr decoration locally inhibits the rotation of crowdions, which dictates the final loop orientation. Moreover, the final loop orientationmore » depends on the details of the Cr decoration. Generally, a region of a given orientation is favored if Cr near its interface with a region of another orientation is able to inhibit reorientation at this interface more than the Cr present at the other interfaces. Also, we find that substitutional Cr atoms can diffuse from energetically unfavorable to energetically favorable sites within the interlocked 37-interstitial loops conformation with barriers of less than 0.35 eV.« less

  5. Quenching phenomena in natural circulation loop

    SciTech Connect

    Umekawa, Hisashi; Ozawa, Mamoru; Ishida, Naoki

    1995-09-01

    Quenching phenomena has been investigated experimentally using circulation loop of liquid nitrogen. During the quenching under natural circulation, the heat transfer mode changes from film boiling to nucleate boiling, and at the same time flux changes with time depending on the vapor generation rate and related two-phase flow characteristics. Moreover, density wave oscillations occur under a certain operating condition, which is closely related to the dynamic behavior of the cooling curve. The experimental results indicates that the occurrence of the density wave oscillation induces the deterioration of effective cooling of the heat surface in the film and the transition boiling regions, which results in the decrease in the quenching velocity.

  6. Closing the Loop Sampler.

    ERIC Educational Resources Information Center

    California Integrated Waste Management Board, Sacramento.

    Closing the Loop (CTL) is a science curriculum designed to introduce students to integrated waste management through awareness. This document presents five lesson plans focusing on developing an understanding of natural resources, solid wastes, conservation, and the life of landfills. Contents include: (1) "What Are Natural Resources?"; (2)…

  7. Loop Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Piguet, O.

    2014-09-01

    In this talk, I give a short general introduction to Loop Quantum Gravity (LQG), beginning with some motivations for quantizing General Relativity, listing various attempts and then focusing on the case of LQG. Work supported in part by the Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq (Brazil).

  8. NETL - Chemical Looping Reactor

    ScienceCinema

    None

    2016-07-12

    NETL's Chemical Looping Reactor unit is a high-temperature integrated CLC process with extensive instrumentation to improve computational simulations. A non-reacting test unit is also used to study solids flow at ambient temperature. The CLR unit circulates approximately 1,000 pounds per hour at temperatures around 1,800 degrees Fahrenheit.

  9. NETL - Chemical Looping Reactor

    SciTech Connect

    2013-07-24

    NETL's Chemical Looping Reactor unit is a high-temperature integrated CLC process with extensive instrumentation to improve computational simulations. A non-reacting test unit is also used to study solids flow at ambient temperature. The CLR unit circulates approximately 1,000 pounds per hour at temperatures around 1,800 degrees Fahrenheit.

  10. A Looping Journey.

    ERIC Educational Resources Information Center

    Chapman, Janet

    1999-01-01

    Recounts a teacher's experiences staying with the same group of children for more than one year (looping) as they progress through kindergarten and first grade. Discusses advantages of more stability and less trauma for the child, and more instructional time and less stress for the teacher. Addresses possible disadvantages of children having…

  11. Influence of the shielding currents lengthscale and anisotropy effects on the magnetic flux profiles of high-temperature superconductors

    NASA Astrophysics Data System (ADS)

    Vanderbemden, P.; Lovchinov, V.

    2012-12-01

    The so-called "magnetic flux profile" AC inductive technique is a powerful method for determining the critical current density Jc of bulk superconductors. In this work we aim at reporting analytical expressions for magnetic flux profiles of superconducting rectangular samples exhibiting a critical current density anisotropy. The results are used for examining the error resulting from approximating a rectangular cross-section by an "infinite cylinder" or "infinite slab" geometry. It is found that such approximations can lead to an artificial curvature of the flux profiles and errors of 10%-20% in the determination of Jc. Next, the effects of how planar defects (cracks, platelet boundaries,...) affect the magnetic flux profile signal are discussed. It is found that the magnetic flux profiles are much sensitive to the lengthscale of shielding currents, thereby providing means of investigation of the typical size of induced current loops in bulk superconductors. Finally some illustrative flux profile data measured on a bulk, large grain melt-processed YBCO single domain exhibiting Jc anisotropy are presented and discussed in relation with theoretical predictions.

  12. ON THE ERUPTION OF CORONAL FLUX ROPES

    SciTech Connect

    Fan, Y.

    2010-08-10

    We present three-dimensional MHD simulations of the evolution of the magnetic field in the corona where the emergence of a twisted magnetic flux tube is driven at the lower boundary into a pre-existing coronal potential arcade field. Through a sequence of simulations in which we vary the amount of twisted flux transported into the corona before the emergence is stopped, we investigate the conditions that lead to a dynamic eruption of the resulting coronal flux rope. It is found that the critical condition for the onset of eruption is for the center of the flux rope to reach a critical height at which the corresponding potential field declines with height at a sufficiently steep rate, consistent with the onset of the torus instability of the flux rope. In some cases, immediately after the emergence is stopped, the coronal flux rope first settles into a quasi-static rise with an underlying sigmoid-shaped current layer developing. Preferential heating of field lines going through this current layer may give rise to the observed quiescent X-ray sigmoid loops before eruption. Reconnections in the current layer during the initial quasi-static stage is found to add detached flux to the coronal flux rope, allowing it to rise quasi-statically to the critical height and dynamic eruption of the flux rope then ensues. By identifying field lines whose tops are in the most intense part of the current layer during the eruption, we deduce the evolution and morphology of the post-flare X-ray loops and the flare ribbons at their footpoints.

  13. Escape behavior of a quantum particle in a loop coupled to a lead

    SciTech Connect

    Jacquet, Ph. A.

    2011-12-15

    We consider a one-dimensional loop of circumference L crossed by a constant magnetic flux {Phi} and connected to an infinite lead with coupling parameter {epsilon}. Assuming that the initial state {psi}{sub 0} of the particle is confined inside the loop and evolves freely, we analyze the time evolution of the nonescape probability P({psi}{sub 0},L,{Phi},{epsilon},t), which is the probability that the particle will still be inside the loop at some later time t. In appropriate units, we found that P({psi}{sub 0},L,{Phi},{epsilon},t)=P{sub {infinity}}({psi}{sub 0},{Phi})+{Sigma}{sub k=1}{sup {infinity}}C{sub k}({psi}{sub 0},L,{Phi},{epsilon})/t{sup k}. The constant P{sub {infinity}}({psi}{sub 0},{Phi}) is independent of L and {epsilon}, and vanishes if {psi}{sub 0} has no bound state components or if |cos({Phi})|{ne}1. The coefficients C{sub 1}({psi}{sub 0},L,{Phi},{epsilon}) and C{sub 3}({psi}{sub 0},L,{Phi},{epsilon}) depend on the initial state {psi}{sub 0} of the particle, but only the momentum k={Phi}/L is involved. There are initial states {psi}{sub 0} for which P({psi}{sub 0},L,{Phi},{epsilon},t){approx}C{sub {delta}}({psi}{sub 0},L,{Phi},{epsilon})/t{sup {delta}}, as t{yields}{infinity}, where {delta}=1 if cos({Phi})=1 and {delta}=3 if cos({Phi}){ne}1. Thus, by submitting the loop to an external magnetic flux, one may induce a radical change in the asymptotic decay rate of P({psi}{sub 0},L,{Phi},{epsilon},t). Interestingly, if cos({Phi})=1, then C{sub 1}({psi}{sub 0},L,{Phi},{epsilon}) decreases with {epsilon} (i.e., the particle escapes faster in the long run) while in the case cos({Phi}){ne}1, the coefficient C{sub 3}({psi}{sub 0},L,{Phi},{epsilon}) increases with {epsilon} (i.e., the particle escapes slower in the long run). Assuming the particle to be initially in a bound state of the loop with {Phi}=0, we compute explicit relations and present some numerical results showing a global picture in time of P({psi}{sub 0},L,{Phi},{epsilon},t). Finally, by using

  14. Coherent state operators in loop quantum gravity

    NASA Astrophysics Data System (ADS)

    Alesci, Emanuele; Dapor, Andrea; Lewandowski, Jerzy; Mäkinen, Ilkka; Sikorski, Jan

    2015-11-01

    We present a new method for constructing operators in loop quantum gravity. The construction is an application of the general idea of "coherent state quantization," which allows one to associate a unique quantum operator with every function on a classical phase space. Using the heat kernel coherent states of Hall and Thiemann, we show how to construct operators corresponding to functions depending on holonomies and fluxes associated with a fixed graph. We construct the coherent state versions of the fundamental holonomy and flux operators, as well as the basic geometric operators of area, angle, and volume. Our calculations show that the corresponding canonical operators are recovered from the coherent state operators in the limit of large spins.

  15. Gas Test Loop Functional and Technical Requirements

    SciTech Connect

    Glen R. Longhurst; Soli T. Khericha; James L. Jones

    2004-09-01

    This document defines the technical and functional requirements for a gas test loop (GTL) to be constructed for the purpose of providing a high intensity fast-flux irradiation environment for developers of advanced concept nuclear reactors. This capability is needed to meet fuels and materials testing requirements of the designers of Generation IV (GEN IV) reactors and other programs within the purview of the Advanced Fuel Cycle Initiative (AFCI). Space nuclear power development programs may also benefit by the services the GTL will offer. The overall GTL technical objective is to provide developers with the means for investigating and qualifying fuels and materials needed for advanced reactor concepts. The testing environment includes a fast-flux neutron spectrum of sufficient intensity to perform accelerated irradiation testing. Appropriate irradiation temperature, gaseous environment, test volume, diagnostics, and access and handling features are also needed. This document serves to identify those requirements as well as generic requirements applicable to any system of this kind.

  16. COLD TEST LOOP INTEGRATED TEST LOOP RESULTS

    SciTech Connect

    Abraham, TJ

    2003-10-22

    A testing facility (Cold Test Loop) was constructed and operated to demonstrate the efficacy of the Accelerated Waste Retrieval (AWR) Project's planned sluicing approach to the remediation of Silos 1 and 2 at the Fernald Environmental Management Project near Cincinnati, Ohio. The two silos contain almost 10,000 tons of radium-bearing low-level waste, which consists primarily of solids of raffinates from processing performed on ores from the Democratic Republic of Congo (commonly referred to as ''Belgium Congo ores'') for the recovery of uranium. These silos are 80 ft in diameter, 36 ft high to the center of the dome, and 26.75 ft to the top of the vertical side walls. The test facility contained two test systems, each designed for a specific purpose. The first system, the Integrated Test Loop (ITL), a near-full-scale plant including the actual equipment to be installed at the Fernald Site, was designed to demonstrate the sluicing operation and confirm the selection of a slurry pump, the optimal sluicing nozzle operation, and the preliminary design material balance. The second system, the Component Test Loop (CTL), was designed to evaluate many of the key individual components of the waste retrieval system over an extended run. The major results of the initial testing performed during July and August 2002 confirmed that the AWR approach to sluicing was feasible. The ITL testing confirmed the following: (1) The selected slurry pump (Hazleton 3-20 type SHW) performed well and is suitable for AWR application. However, the pump's motor should be upgraded to a 200-hp model and be driven by a 150-hp variable-frequency drive (VFD). A 200-hp VFD is not much more expensive and would allow the pump to operate at full speed. (2) The best nozzle performance was achieved by using 15/16-in. nozzles operated alternately. This configuration appeared to most effectively mine the surrogate. (3) The Solartron densitometer, which was tested as an alternative mass flow measurement

  17. A simple laboratory system for diffusive radon flux measurements

    NASA Astrophysics Data System (ADS)

    Kranrod, C.; Chanyotha, S.; Tonlublao, S.; Burnett, W. C.

    2015-05-01

    This study designed a simple, custom-made system to estimate the diffusive radon flux from solid materials (e.g., sediments, soils, building materials). Determination of the radon flux is based on the measurement of the radon activity in the air over time inside a closed loop system. For sediments, the system consists of wet sediment and water inside a gas-tight flask connected in a closed loop to a drying system and a radon analyzer (Durridge RAD7). The flux is determined based on an initial slope method in which the slope of radon activities vs. time plot during the first 12 h is evaluated. The slope is then multiplied by the total air volume and divided by the exposed sediment area to obtain the radon flux. The minimal thickness or mass of wet sediment should be about 4 cm or (equivalent to approximately 150 g of wet sediment) to obtain a reliable radon diffusive flux in this study.

  18. Inner mappings of Bruck loops

    NASA Astrophysics Data System (ADS)

    Kreuzer, Alexander

    1998-01-01

    K-loops have their origin in the theory of sharply 2-transitive groups. In this paper a proof is given that K-loops and Bruck loops are the same. For the proof it is necessary to show that in a (left) Bruck loop the left inner mappings L(b)L(a) L(ab)[minus sign]1 are automorphisms. This paper generalizes results of Glauberman [3], Kist [8] and Kreuzer [9].

  19. Flux Sampling Errors for Aircraft and Towers

    NASA Technical Reports Server (NTRS)

    Mahrt, Larry

    1998-01-01

    Various errors and influences leading to differences between tower- and aircraft-measured fluxes are surveyed. This survey is motivated by reports in the literature that aircraft fluxes are sometimes smaller than tower-measured fluxes. Both tower and aircraft flux errors are larger with surface heterogeneity due to several independent effects. Surface heterogeneity may cause tower flux errors to increase with decreasing wind speed. Techniques to assess flux sampling error are reviewed. Such error estimates suffer various degrees of inapplicability in real geophysical time series due to nonstationarity of tower time series (or inhomogeneity of aircraft data). A new measure for nonstationarity is developed that eliminates assumptions on the form of the nonstationarity inherent in previous methods. When this nonstationarity measure becomes large, the surface energy imbalance increases sharply. Finally, strategies for obtaining adequate flux sampling using repeated aircraft passes and grid patterns are outlined.

  20. Loop Heat Pipes and Capillary Pumped Loops: An Applications Perspective

    NASA Technical Reports Server (NTRS)

    Butler, Dan; Ku, Jentung; Swanson, Theodore; Obenschain, Arthur F. (Technical Monitor)

    2001-01-01

    Capillary pumped loops (CPLS) and loop heat pipes (LHPS) are versatile two-phase heat transfer devices which have recently gained increasing acceptance in space applications. Both systems work based on the same principles and have very similar designs. Nevertheless, some differences exist in the construction of the evaporator and the hydro-accumulator, and these differences lead to very distinct operating characteristics for each loop. This paper presents comparisons of the two loops from an applications perspective, and addresses their impact on spacecraft design, integration, and test. Some technical challenges and issues for both loops are also addressed.

  1. Closed-loop anesthesia.

    PubMed

    LE Guen, Morgan; Liu, Ngai; Chazot, Thierry; Fischler, Marc

    2016-05-01

    Automated anesthesia which may offer to the physician time to control hemodynamic and to supervise neurological outcome and which may offer to the patient safety and quality was until recently consider as a holy grail. But this field of research is now increasing in every component of general anesthesia (hypnosis, nociception, neuromuscular blockade) and literature describes some successful algorithms - single or multi closed-loop controller. The aim of these devices is to control a predefined target and to continuously titrate anesthetics whatever the patients' co morbidities and surgical events to reach this target. Literature contains many randomized trials comparing manual and automated anesthesia and shows feasibility and safety of this system. Automation could quickly concern other aspects of anesthesia as fluid management and this review proposes an overview of closed-loop systems in anesthesia.

  2. Determinants of RNA hairpin loop-loop complex stability.

    PubMed

    Gregorian, R S; Crothers, D M

    1995-05-19

    Complexes formed by RNA hairpin loops with complementary loop sequences derived from Escherichia coli RNA I and RNA II, which are involved in the control of DNA replication of plasmid ColE1, have been analyzed to determine the sequence and structural elements required to achieve full affinity. Of particular interest is the origin of the enhanced stability of the complex formed by hairpin loops whose loop sequences have been inverted 5' to 3' with respect to wild-type sequences. Full complementarity of the two interacting loops is required to achieve full or enhanced affinity, while the stems of the two hairpins can differ. The major determinant of enhanced affinity lies in the base-pairs formed at positions 1 and 7 of the loops, together with the two base-pairs of each stem which are closest to the loop. Sequence variation in the middle of the loops, or further down the stem away from the loops, exerts only a modest influence on complex stability. We incorporate these results into a model for the loop-loop interaction which accounts for the importance of positions one and seven and the first two nucleotides of the stem, while providing potentially unique structures for recognition by the RNA one modulator protein. PMID:7539081

  3. Determinants of RNA hairpin loop-loop complex stability.

    PubMed

    Gregorian, R S; Crothers, D M

    1995-05-19

    Complexes formed by RNA hairpin loops with complementary loop sequences derived from Escherichia coli RNA I and RNA II, which are involved in the control of DNA replication of plasmid ColE1, have been analyzed to determine the sequence and structural elements required to achieve full affinity. Of particular interest is the origin of the enhanced stability of the complex formed by hairpin loops whose loop sequences have been inverted 5' to 3' with respect to wild-type sequences. Full complementarity of the two interacting loops is required to achieve full or enhanced affinity, while the stems of the two hairpins can differ. The major determinant of enhanced affinity lies in the base-pairs formed at positions 1 and 7 of the loops, together with the two base-pairs of each stem which are closest to the loop. Sequence variation in the middle of the loops, or further down the stem away from the loops, exerts only a modest influence on complex stability. We incorporate these results into a model for the loop-loop interaction which accounts for the importance of positions one and seven and the first two nucleotides of the stem, while providing potentially unique structures for recognition by the RNA one modulator protein.

  4. Chemical Looping Combustion Kinetics

    SciTech Connect

    Edward Eyring; Gabor Konya

    2009-03-31

    One of the most promising methods of capturing CO{sub 2} emitted by coal-fired power plants for subsequent sequestration is chemical looping combustion (CLC). A powdered metal oxide such as NiO transfers oxygen directly to a fuel in a fuel reactor at high temperatures with no air present. Heat, water, and CO{sub 2} are released, and after H{sub 2}O condensation the CO{sub 2} (undiluted by N{sub 2}) is ready for sequestration, whereas the nickel metal is ready for reoxidation in the air reactor. In principle, these processes can be repeated endlessly with the original nickel metal/nickel oxide participating in a loop that admits fuel and rejects ash, heat, and water. Our project accumulated kinetic rate data at high temperatures and elevated pressures for the metal oxide reduction step and for the metal reoxidation step. These data will be used in computational modeling of CLC on the laboratory scale and presumably later on the plant scale. The oxygen carrier on which the research at Utah is focused is CuO/Cu{sub 2}O rather than nickel oxide because the copper system lends itself to use with solid fuels in an alternative to CLC called 'chemical looping with oxygen uncoupling' (CLOU).

  5. Microbial Activity and Volatile Fluxes in Seafloor Hydrothermal Systems

    NASA Astrophysics Data System (ADS)

    Corrigan, R. S.; Lowell, R. P.

    2013-12-01

    Understanding geographically and biologically the production or utilization of volatile chemical species such as CO2, CH4, and H2 is crucial not only for understanding hydrothermal processes but also for understanding life processes in the oceanic crust. To estimate the microbial effect on the transport of these volatiles, we consider a double-loop single pass model as shown in Figure 1 to estimate the mass fluxes shown. We then use a simple mixing formulation: C4Q4 = C3 (Q1 -Q3)+ C2Q2, where C2 is the concentration of the chemical in seawater, C3 is the average concentration of the chemical in high temperature focused flow, C4 is the expected concentration of the chemical as a result of mixing, and the relevant mass flows are as shown in Figure 1. Finally, we compare the calculated values of CO2, CH4, and H2 in diffuse flow fluids to those observed. The required data are available for both the Main Endeavour Field on the Juan de Fuca Ridge and the East Pacific Rise 9°50' N systems. In both cases we find that, although individual diffuse flow sites have observed concentrations of some elements that are greater than average, the average concentration of these volatiles is smaller in all cases than the concentration that would be expected from simple mixing. This indicates that subsurface microbes are net utilizers of these chemical constituents at the Main Endeavour Field and at EPR 9°50' N on the vent field scale. Figure 1. Schematic of a 'double-loop' single-pass model above a convecting, crystallizing, replenished AMC (not to scale). Heat transfer from the vigorously convecting, cooling, and replenished AMC across the conductive boundary layer δ drives the overlying hydrothermal system. The deep circulation represented by mass flux Q1 and black smoker temperature T3 induces shallow circulation noted by Q2. Some black smoker fluid mixes with seawater resulting in diffuse discharge Q4, T4, while the direct black smoker mass flux with temperature T3 is reduced

  6. Standing Kink modes in three-dimensional coronal loops

    SciTech Connect

    Pascoe, D. J.; De Moortel, I.

    2014-04-01

    So far, the straight flux tube model proposed by Edwin and Roberts is the most commonly used tool in practical coronal seismology, in particular, to infer values of the (coronal) magnetic field from observed, standing kink mode oscillations. In this paper, we compare the period predicted by this basic model with three-dimensional (3D) numerical simulations of standing kink mode oscillations, as the period is a crucial parameter in the seismological inversion to determine the magnetic field. We perform numerical simulations of standing kink modes in both straight and curved 3D coronal loops and consider excitation by internal and external drivers. The period of oscillation for the displacement of dense coronal loops is determined by the loop length and the kink speed, in agreement with the estimate based on analytical theory for straight flux tubes. For curved coronal loops embedded in a magnetic arcade and excited by an external driver, a secondary mode with a period determined by the loop length and external Alfvén speed is also present. When a low number of oscillations is considered, these two periods can result in a single, non-resolved (broad) peak in the power spectrum, particularly for low values of the density contrast for which the two periods will be relatively similar. In that case (and for this particular geometry), the presence of this additional mode would lead to ambiguous seismological estimates of the magnetic field strength.

  7. Localising Dehn's lemma and the loop theorem in 3-manifolds

    NASA Astrophysics Data System (ADS)

    Aitchison, I. R.; Hyam Rubinstein, J.

    2004-09-01

    We give a new proof of Dehn's lemma and the loop theorem. This is a fundamental tool in the topology of 3-manifolds. Dehn's lemma was originally formulated by Dehn, where an incorrect proof was given. A proof was finally given by Papakyriakopolous in his famous 1957 paper where the fundamental idea of towers of coverings was introduced. This was later extended to the loop theorem, and the version used most frequently was given by Stallings.

  8. Institute for High Heat Flux Removal (IHHFR). Phases I, II, and III

    SciTech Connect

    Boyd, Ronald D.

    2014-08-31

    The IHHFR focused on interdisciplinary applications as it relates to high heat flux engineering issues and problems which arise due to engineering systems being miniaturized, optimized, or requiring increased high heat flux performance. The work in the IHHFR focused on water as a coolant and includes: (1) the development, design, and construction of the high heat flux flow loop and facility; (2) test section development, design, and fabrication; and, (3) single-side heat flux experiments to produce 2-D boiling curves and 3-D conjugate heat transfer measurements for single-side heated test sections. This work provides data for comparisons with previously developed and new single-side heated correlations and approaches that address the single-side heated effect on heat transfer. In addition, this work includes the addition of single-side heated circular TS and a monoblock test section with a helical wire insert. Finally, the present work includes: (1) data base expansion for the monoblock with a helical wire insert (only for the latter geometry), (2) prediction and verification using finite element, (3) monoblock model and methodology development analyses, and (4) an alternate model development for a hypervapotron and related conjugate heat transfer controlling parameters.

  9. Gas Test Loop Booster Fuel Hydraulic Testing

    SciTech Connect

    Gas Test Loop Hydraulic Testing Staff

    2006-09-01

    The Gas Test Loop (GTL) project is for the design of an adaptation to the Advanced Test Reactor (ATR) to create a fast-flux test space where fuels and materials for advanced reactor concepts can undergo irradiation testing. Incident to that design, it was found necessary to make use of special booster fuel to enhance the neutron flux in the reactor lobe in which the Gas Test Loop will be installed. Because the booster fuel is of a different composition and configuration from standard ATR fuel, it is necessary to qualify the booster fuel for use in the ATR. Part of that qualification is the determination that required thermal hydraulic criteria will be met under routine operation and under selected accident scenarios. The Hydraulic Testing task in the GTL project facilitates that determination by measuring flow coefficients (pressure drops) over various regions of the booster fuel over a range of primary coolant flow rates. A high-fidelity model of the NW lobe of the ATR with associated flow baffle, in-pile-tube, and below-core flow channels was designed, constructed and located in the Idaho State University Thermal Fluids Laboratory. A circulation loop was designed and constructed by the university to provide reactor-relevant water flow rates to the test system. Models of the four booster fuel elements required for GTL operation were fabricated from aluminum (no uranium or means of heating) and placed in the flow channel. One of these was instrumented with Pitot tubes to measure flow velocities in the channels between the three booster fuel plates and between the innermost and outermost plates and the side walls of the flow annulus. Flow coefficients in the range of 4 to 6.5 were determined from the measurements made for the upper and middle parts of the booster fuel elements. The flow coefficient for the lower end of the booster fuel and the sub-core flow channel was lower at 2.3.

  10. DNA Looping in Prokaryotes: Experimental and Theoretical Approaches

    PubMed Central

    Cournac, Axel

    2013-01-01

    Transcriptional regulation is at the heart of biological functions such as adaptation to a changing environment or to new carbon sources. One of the mechanisms which has been found to modulate transcription, either positively (activation) or negatively (repression), involves the formation of DNA loops. A DNA loop occurs when a protein or a complex of proteins simultaneously binds to two different sites on DNA with looping out of the intervening DNA. This simple mechanism is central to the regulation of several operons in the genome of the bacterium Escherichia coli, like the lac operon, one of the paradigms of genetic regulation. The aim of this review is to gather and discuss concepts and ideas from experimental biology and theoretical physics concerning DNA looping in genetic regulation. We first describe experimental techniques designed to show the formation of a DNA loop. We then present the benefits that can or could be derived from a mechanism involving DNA looping. Some of these are already experimentally proven, but others are theoretical predictions and merit experimental investigation. Then, we try to identify other genetic systems that could be regulated by a DNA looping mechanism in the genome of Escherichia coli. We found many operons that, according to our set of criteria, have a good chance to be regulated with a DNA loop. Finally, we discuss the proposition recently made by both biologists and physicists that this mechanism could also act at the genomic scale and play a crucial role in the spatial organization of genomes. PMID:23292776

  11. Shortcomings of the big bounce derivation in loop quantum cosmology

    SciTech Connect

    Cianfrani, Francesco; Montani, Giovanni

    2010-07-15

    We give a prescription to define in loop quantum gravity the electric field operator related to the scale factor of a homogeneous and isotropic cosmological space-time. This procedure allows us to link the fundamental theory with its cosmological implementation. In view of the conjugate relation existing between holonomies and fluxes, the edge length and the area of surfaces in the fiducial metric satisfy a duality condition. As a consequence, the area operator has a discrete spectrum also in loop quantum cosmology. This feature makes the super-Hamiltonian regularization an open issue of the whole formulation.

  12. SOLA-LOOP. Two-Phase Flow Network Analysis

    SciTech Connect

    Hirt, C.W.; Oliphant, T.A.; Rivard, W.C.; Romero, N.C.; Torrey, M.D.

    1992-01-13

    SOLA-LOOP is designed for the solution of transient two-phase flow in networks composed of one-dimensional components. The fluid dynamics is described by a nonequilibrium, drift-flux formulation of the fluid conservation laws. Although developed for nuclear reactor safety analysis, SOLA-LOOP may be used as the basis for other types of special-purpose network codes. The program can accommodate almost any set of constitutive relations, property tables, or other special features required for different applications.

  13. Coupled dual loop absorption heat pump

    DOEpatents

    Sarkisian, Paul H.; Reimann, Robert C.; Biermann, Wendell J.

    1985-01-01

    A coupled dual loop absorption system which utilizes two separate complete loops. Each individual loop operates at three temperatures and two pressures. This low temperature loop absorber and condenser are thermally coupled to the high temperature loop evaporator, and the high temperature loop condenser and absorber are thermally coupled to the low temperature generator.

  14. OBSERVATION OF HIGH-SPEED OUTFLOWS IN CORONAL LOOPS ASSOCIATED WITH PHOTOSPHERIC MAGNETIC FIELD EVOLUTION

    SciTech Connect

    Su, J. T.; Liu, S.; Mao, X. J.; Liu, Y.; Shen, Y. D.

    2012-11-20

    Using SDO/AIA instruments, we provide an EUV observation of two adjacent loop strands (Loops 1 and 2) with one side of their footpoints rooted in the boundaries of active region (AR) NOAA 11158 and the other side in the quiet-Sun regions. The AR footpoints of Loop 1 were located in monopolar magnetic areas and those of Loop 2 in mixed polar areas (SDO/HMI magnetograms). There were no apparent outflows found in Loop 1 in 10 hr of observations, whereas in Loop 2, the outflows were detected throughout the whole observation with an average speed of 120-150 km s{sup -1}. We find clear evidence of magnetic reconnections occurring in the AR footpoints of Loop 2 (the opposite magnetic polarities came close and then a part of them disappeared) and magnetic flux dispersal in the quiet-Sun footpoints (a patch of positive polarities decayed with time). Furthermore, with Hinode/SOT observations, there were no significant Ca II H brightenings detected at the loop footpoints of Loop 2 at the chromospheric heights in response to those of the AIA 171 A and 304 A channels when four strong outflow events took place in the loops, which seem to differ from the conclusions of previous studies. In other studies, the rapid coronal outflows along the coronal loops were found to originate from the chromosphere through transient events (e.g., type II spicules).

  15. On the forced flow of salty water in a loop

    NASA Astrophysics Data System (ADS)

    Dewar, W. K.; Huang, R. X.

    1996-04-01

    The buoyancy-driven flow of salty water in a loop is computed. This problem belongs to the general class of the convective behavior of solutal fluids, a specific example of which is the oceanic thermohaline circulation. The two cases of freshwater flux forcing and so-called virtual salt flux forcing are compared and contrasted. The former is an exact statement of the saline forcing of the ocean by the atmosphere, while the latter is an approximation used in many climate models. Analytical solutions appropriate to both cases are presented for broad parameter ranges and ultimately encapsulated in the form of bifurcation maps. These allow for comparisons between the behaviors predicted for the two cases. Furthermore, the solutions are supported by means of numerical experimentation. It is found that a simple loop model, forced by a steady flux, can possess multiple solutions, either stationary solutions and limit cycles or distinctly different limit cycles. This result is closely related to climate models. In addition, this study transcends climate applications and applies to the more general classical problem of convection in a loop. The novel aspect here is the application of freshwater flux to a salty fluid. The effect on density of this forcing is different from that due to the application of heat to a thermally sensitive fluid. Surprising and counter-intuitive behaviors have been found which reflect these differences. As an example, in the limit where diffusion is weak relative to freshwater flux, a δ-function-like salinity profile appears if freshwater flux conditions are used. Models using a virtual salt flux approximation, or a relaxation condition, yield a low mode solution for these parameters. In contrast, the virtual salt flux equations can be obtained from the freshwater-forced equations by a systematic expansion in one limit where diffusion dominates freshwater flux. Numerical experiments are used to examine the comparisons between virtual salt flux and

  16. Quantifying the dynamic evolution of individual arched magnetic flux tubes

    NASA Astrophysics Data System (ADS)

    Stenson, E. V.; Bellan, P. M.

    2012-12-01

    Highly dynamic arched ‘loops’ of plasma were created in the laboratory with a magnetized plasma gun. The magnetic structure of the loops was found to be consistent with that of an expanding flux tube subject to a kink instability. High-speed flows were found to transport plasma along the loop axis, from both footpoints toward the apex of the arched loop. Two complementary MHD models were used to explain the expansion and axial flows, both of which scale in proportion to a ‘toroidal Alfven speed’.

  17. Two loop divergences studied with one loop constrained differential renormalization

    SciTech Connect

    Seijas, Cesar . E-mail: cesar@fpaxp1.usc.es

    2007-08-15

    In the context of differential renormalization, using constrained differential renormalization rules at one-loop, we show how to obtain concrete results in two-loop calculations without making use of Ward identities. In order to do that, we obtain a list of integrals with overlapping divergences compatible with CDR that can be applied to various two-loop background field calculations. As an example, we obtain the two-loop coefficient of the beta function of QED, SuperQED and Yang-Mills theory.

  18. ArchPRED: a template based loop structure prediction server.

    PubMed

    Fernandez-Fuentes, Narcis; Zhai, Jun; Fiser, András

    2006-07-01

    ArchPRED server (http://www.fiserlab.org/servers/archpred) implements a novel fragment-search based method for predicting loop conformations. The inputs to the server are the atomic coordinates of the query protein and the position of the loop. The algorithm selects candidate loop fragments from a regularly updated loop library (Search Space) by matching the length, the types of bracing secondary structures of the query and by satisfying the geometrical restraints imposed by the stem residues. Subsequently, candidate loops are inserted in the query protein framework where their side chains are rebuilt and their fit is assessed by the root mean square deviation (r.m.s.d.) of stem regions and by the number of rigid body clashes with the environment. In the final step remaining candidate loops are ranked by a Z-score that combines information on sequence similarity and fit of predicted and observed [/psi] main chain dihedral angle propensities. The final loop conformation is built in the protein structure and annealed in the environment using conjugate gradient minimization. The prediction method was benchmarked on artificially prepared search datasets where all trivial sequence similarities on the SCOP superfamily level were removed. Under these conditions it was possible to predict loops of length 4, 8 and 12 with coverage of 98, 78 and 28% with at least of 0.22, 1.38 and 2.47 A of r.m.s.d. accuracy, respectively. In a head to head comparison on loops extracted from freshly deposited new protein folds the current method outperformed in a approximately 5:1 ratio an earlier developed database search method. PMID:16844985

  19. Flux growth utilizing the reaction between flux and crucible

    SciTech Connect

    Yan, J. -Q.

    2015-01-22

    Flux growth involves dissolving the components of the target compound in an appropriate flux at high temperatures and then crystallizing under supersaturation controlled by cooling or evaporating the flux. A refractory crucible is generally used to contain the high temperature melt. Moreover, the reaction between the melt and crucible materials can modify the composition of the melt, which typically results in growth failure, or contaminates the crystals. Thus one principle in designing a flux growth is to select suitable flux and crucible materials thus to avoid any reaction between them. In this paper, we review two cases of flux growth in which the reaction between flux and Al2O3 crucible tunes the oxygen content in the melt and helps the crystallization of desired compositions. For the case of La5Pb3O, the Al2O3 crucible oxidizes La to form a passivating La2O3 layer which not only prevents further oxidization of La in the melt but also provides [O] to the melt. Finally, in the case of La0.4Na0.6Fe2As2, it is believed that the Al2O3 crucible reacts with NaAsO2 and the reaction consumes oxygen in the melt thus maintaining an oxygen-free environment.

  20. HEATING OF FLARE LOOPS WITH OBSERVATIONALLY CONSTRAINED HEATING FUNCTIONS

    SciTech Connect

    Qiu Jiong; Liu Wenjuan; Longcope, Dana W.

    2012-06-20

    We analyze high-cadence high-resolution observations of a C3.2 flare obtained by AIA/SDO on 2010 August 1. The flare is a long-duration event with soft X-ray and EUV radiation lasting for over 4 hr. Analysis suggests that magnetic reconnection and formation of new loops continue for more than 2 hr. Furthermore, the UV 1600 Angstrom-Sign observations show that each of the individual pixels at the feet of flare loops is brightened instantaneously with a timescale of a few minutes, and decays over a much longer timescale of more than 30 minutes. We use these spatially resolved UV light curves during the rise phase to construct empirical heating functions for individual flare loops, and model heating of coronal plasmas in these loops. The total coronal radiation of these flare loops are compared with soft X-ray and EUV radiation fluxes measured by GOES and AIA. This study presents a method to observationally infer heating functions in numerous flare loops that are formed and heated sequentially by reconnection throughout the flare, and provides a very useful constraint to coronal heating models.

  1. Magnetic-flux pump

    NASA Technical Reports Server (NTRS)

    Hildebrandt, A. F.; Elleman, D. D.; Whitmore, F. C. (Inventor)

    1966-01-01

    A magnetic flux pump is described for increasing the intensity of a magnetic field by transferring flux from one location to the magnetic field. The device includes a pair of communicating cavities formed in a block of superconducting material, and a piston for displacing the trapped magnetic flux into the secondary cavity producing a field having an intense flux density.

  2. Closed Loop Welding Controller for Manufacturing Process

    NASA Astrophysics Data System (ADS)

    Bonaccorso, F.; Bruno, C.; Cantelli, L.; Longo, D.; Muscato, G.; Rapisarda, S.

    2011-12-01

    The aim of this paper is to investigate on the closed loop welding controller of a rapid manufacturing Shaped Metal Deposition (SMD) process. SMD was developed and patented by Rolls-Royce in order to produce mechanical parts directly from a CAD model. A simplified SMD plant has been set up in order to investigate the welding dynamics and parameters and to develop a SMD automatic controller. On the basis of the experience acquired, some basic control laws have been developed, and a closed loop controller has been implemented. This controller permits to find and to maintain the process stability condition, so that the final process results totally automatic. The control is performed adjusting the welding conditions on the basis of arc voltage information obtained from the welding machine during the deposition. The experimental results reported confirm the validity of the proposed strategy.

  3. Accelerating the loop expansion

    SciTech Connect

    Ingermanson, R.

    1986-07-29

    This thesis introduces a new non-perturbative technique into quantum field theory. To illustrate the method, I analyze the much-studied phi/sup 4/ theory in two dimensions. As a prelude, I first show that the Hartree approximation is easy to obtain from the calculation of the one-loop effective potential by a simple modification of the propagator that does not affect the perturbative renormalization procedure. A further modification then susggests itself, which has the same nice property, and which automatically yields a convex effective potential. I then show that both of these modifications extend naturally to higher orders in the derivative expansion of the effective action and to higher orders in the loop-expansion. The net effect is to re-sum the perturbation series for the effective action as a systematic ''accelerated'' non-perturbative expansion. Each term in the accelerated expansion corresponds to an infinite number of terms in the original series. Each term can be computed explicitly, albeit numerically. Many numerical graphs of the various approximations to the first two terms in the derivative expansion are given. I discuss the reliability of the results and the problem of spontaneous symmetry-breaking, as well as some potential applications to more interesting field theories. 40 refs.

  4. Ekpyrotic loop quantum cosmology

    SciTech Connect

    Wilson-Ewing, Edward

    2013-08-01

    We consider the ekpyrotic paradigm in the context of loop quantum cosmology. In loop quantum cosmology the classical big-bang singularity is resolved due to quantum gravity effects, and so the contracting ekpyrotic branch of the universe and its later expanding phase are connected by a smooth bounce. Thus, it is possible to explicitly determine the evolution of scalar perturbations, from the contracting ekpyrotic phase through the bounce and to the post-bounce expanding epoch. The possibilities of having either one or two scalar fields have been suggested for the ekpyrotic universe, and both cases will be considered here. In the case of a single scalar field, the constant mode of the curvature perturbations after the bounce is found to have a blue spectrum. On the other hand, for the two scalar field ekpyrotic model where scale-invariant entropy perturbations source additional terms in the curvature perturbations, the power spectrum in the post-bounce expanding cosmology is shown to be nearly scale-invariant and so agrees with observations.

  5. High temperature storage loop :

    SciTech Connect

    Gill, David Dennis; Kolb, William J.

    2013-07-01

    A three year plan for thermal energy storage (TES) research was created at Sandia National Laboratories in the spring of 2012. This plan included a strategic goal of providing test capability for Sandia and for the nation in which to evaluate high temperature storage (>650ÀC) technology. The plan was to scope, design, and build a flow loop that would be compatible with a multitude of high temperature heat transfer/storage fluids. The High Temperature Storage Loop (HTSL) would be reconfigurable so that it was useful for not only storage testing, but also for high temperature receiver testing and high efficiency power cycle testing as well. In that way, HTSL was part of a much larger strategy for Sandia to provide a research and testing platform that would be integral for the evaluation of individual technologies funded under the SunShot program. DOEs SunShot program seeks to reduce the price of solar technologies to 6/kWhr to be cost competitive with carbon-based fuels. The HTSL project sought to provide evaluation capability for these SunShot supported technologies. This report includes the scoping, design, and budgetary costing aspects of this effort

  6. Magnetic flux cancellation and Doppler shifts in flaring active regions

    NASA Astrophysics Data System (ADS)

    Burtseva, Olga; Petrie, Gordon

    2016-05-01

    Flux cancellation plays an important role in some theories of solar eruptions. The mechanism of flux cancellation is suggested by many models to be a necessary condition of flare initiation as a part of slow reconnection processes in the lower atmosphere. In our earlier work we analyzed flux cancellation events during major flares using GONG line-of-sight magnetograms. In this work we use vector magnetic field data from SDO/HMI for better interpretation of the longitudinal field changes. We also compute Doppler velocity shifts at the cancellation sites in attempt to distinguish between the three physical processes that could stand behind flux removal from the photosphere: submergence of U-shaped loops, emergence of Ω-shaped loops and magnetic reconnection.

  7. The double loop mattress suture

    PubMed Central

    Biddlestone, John; Samuel, Madan; Creagh, Terry; Ahmad, Tariq

    2014-01-01

    An interrupted stitch type with favorable tissue characteristics will reduce local wound complications. We describe a novel high-strength, low-tension repair for the interrupted closure of skin, cartilage, and muscle, the double loop mattress stitch, and compare it experimentally with other interrupted closure methods. The performance of the double loop mattress technique in porcine cartilage and skeletal muscle is compared with the simple, mattress, and loop mattress interrupted sutures in both a novel porcine loading chamber and mechanical model. Wound apposition is assessed by electron microscopy. The performance of the double loop mattress in vivo was confirmed using a series of 805 pediatric laparotomies/laparoscopies. The double loop mattress suture is 3.5 times stronger than the loop mattress in muscle and 1.6 times stronger in cartilage (p ≤ 0.001). Additionally, the double loop mattress reduces tissue tension by 66% compared with just 53% for the loop mattress (p ≤ 0.001). Wound gapping is equal, and wound eversion appears significantly improved (p ≤ 0.001) compared with the loop mattress in vitro. In vivo, the double loop mattress performs as well as the loop mattress and significantly better than the mattress stitch in assessments of wound eversion and dehiscence. There were no episodes of stitch extrusion in our series of patients. The mechanical advantage of its intrinsic pulley arrangement gives the double loop mattress its favorable properties. Wound dehiscence is reduced because this stitch type is stronger and exerts less tension on the tissue than the mattress stitch. We advocate the use of this novel stitch wherever a high-strength, low-tension repair is required. These properties will enhance wound repair, and its application will be useful to surgeons of all disciplines. PMID:24698436

  8. Parity Protection in Flux-Pairing Qubits

    NASA Astrophysics Data System (ADS)

    Zhang, Wenyuan; Bell, Matthew; Jin, Xiaoyue; Ioffe, Lev; Gershenson, Michael

    2015-03-01

    We have studied a novel qubit whose logical states are decoupled from the environment due to parity protection. The flux-pairing qubit (FPQ) is a superconducting loop consisting of a 4 π periodic Josephson element (a Cooper pair box with the e charge on the central island) and a superinductor. This device is dual to the charge-pairing qubit. The FPQ design suppresses tunneling of single flux lines through the junctions in the Cooper pair box and enforces simultaneous tunneling of pairs of flux lines. The lowest-energy quantum states of the FPQ are encoded in the parity of the magnetic flux quanta inside the loop. Parity protection prohibits the mixing of these states, and reduces both the decay and dephasing rates. We will discuss the experimental aspects of the FPQ optimization and the possibility of fault-tolerant operations with these qubits. The work was supported in part by grants from the Templeton Foundation (40381) and the NSF (DMR-1006265).

  9. Loop Heat Pipe Startup Behaviors

    NASA Technical Reports Server (NTRS)

    Ku, Jentung

    2016-01-01

    A loop heat pipe must start successfully before it can commence its service. The startup transient represents one of the most complex phenomena in the loop heat pipe operation. This paper discusses various aspects of loop heat pipe startup behaviors. Topics include the four startup scenarios, the initial fluid distribution between the evaporator and reservoir that determines the startup scenario, factors that affect the fluid distribution between the evaporator and reservoir, difficulties encountered during the low power startup, and methods to enhance the startup success. Also addressed are the pressure spike and pressure surge during the startup transient, and repeated cycles of loop startup and shutdown under certain conditions.

  10. Designing a Gas Test Loop for the Advanced Test Reactor

    SciTech Connect

    James R. Parry

    2005-11-01

    The Generation IV Reactor Program and the Advanced Fuel Cycle Initiative are investigating some new reactor concepts which require extensive materials and fuels testing in a fast neutron spectrum. The capability to test materials and fuels in a fast neutron flux in the United States is very limited to non-existent. It has been proposed to install a gas test loop (GTL) in one of the lobes of the Advanced Test Reactor (ATR) at the Idaho National Laboratory and harden the spectrum to provide some fast neutron flux testing capabilities in the United States. This paper describes the neutronics investigation into the design of the GTL for the ATR.

  11. Formation of Torus-Unstable Flux Ropes and Electric Currents in Erupting Sigmoids

    NASA Astrophysics Data System (ADS)

    Aulanier, G.; Török, T.; Démoulin, P.; DeLuca, E. E.

    2010-01-01

    brightens due to the formation of a vertical current layer in the wake of the erupting flux rope. Slip-running reconnection in this layer yields the formation of flare loops. A rapid decrease of currents due to field line expansion, together with the increase of narrow currents in the reconnecting QSL, yields the sigmoid hooks to thin in the early stages of the eruption. Finally, a slightly rotating erupting loop-like feature (ELLF) detaches from the center of the sigmoid. Most of this ELLF is not associated with the erupting flux rope, but with a current shell that develops within expanding field lines above the rope. Only the short, curved end of the ELLF corresponds to a part of the flux rope. We argue that the features found in the simulation are generic for the formation and eruption of soft X-ray sigmoids.

  12. Loop-the-Loop: Bringing Theory into Practice

    ERIC Educational Resources Information Center

    Suwonjandee, N.; Asavapibhop, B.

    2012-01-01

    During the Thai high-school physics teacher training programme, we used an aluminum loop-the-loop system built by the Institute for the Promotion of Teaching Science and Technology (IPST) to demonstrate a circular motion and investigate the concept of the conservation of mechanical energy. There were 27 high-school teachers from three provinces,…

  13. Vector Magnetic Field in Emerging Flux Regions

    NASA Astrophysics Data System (ADS)

    Schmieder, B.; Pariat, E.

    A crucial phase in magnetic flux emergence is the rise of magnetic flux tubes through the solar photosphere, which represents a severe transition between the very different environments of the solar interior and corona. Multi-wavelength observations with Flare Genesis, TRACE, SoHO, and more recently with the vector magnetographs at THEMIS and Hida (DST) led to the following conclusions. The fragmented magnetic field in the emergence region - with dipped field lines or bald patches - is directly related with Ellerman bombs, arch filament systems, and overlying coronal loops. Measurements of vector magnetic fields have given evidence that undulating "serpentine" fields are present while magnetic flux tubes cross the photosphere. See the sketch below, and for more detail see Pariat et al. (2004, 2007); Watanabe et al. (2008):

  14. Simulating Weyl points and nodal loops in an optical superlattice

    NASA Astrophysics Data System (ADS)

    Zhang, Dan-Wei

    2016-08-01

    We propose a scheme to simulate Weyl points and nodal loops with ultracold atoms in an optical lattice that is subjected to realizable synthetic magnetic field and synthetic dimension. We show that a Hofstadter-like Hamiltonian with a cyclically parameterized on-site energy term can be realized in a tunable two-dimensional optical superlattice, based on the laser-assisted atomic tunneling method. This model effectively describes a three-dimensional periodic lattice system under magnetic fluxes, where a synthetic dimension is encoded by a cyclical phase of the optical lattice potential. For different atomic hopping configurations, the single-particle bands are demonstrated to, respectively, exhibit Weyl points and nodal loops in the extended three-dimensional Brillouin zone. Furthermore, we illustrate that the mimicked Weyl points and nodal loops can be experimentally detected by measuring the atomic transfer fraction in Bloch-Zener oscillations.

  15. Dynamic PID loop control

    SciTech Connect

    Pei, L.; Klebaner, A.; Theilacker, J.; Soyars, W.; Martinez, A.; Bossert, R.; DeGraff, B.; Darve, C.; /Fermilab

    2011-06-01

    The Horizontal Test Stand (HTS) SRF Cavity and Cryomodule 1 (CM1) of eight 9-cell, 1.3GHz SRF cavities are operating at Fermilab. For the cryogenic control system, how to hold liquid level constant in the cryostat by regulation of its Joule-Thompson JT-valve is very important after cryostat cool down to 2.0 K. The 72-cell cryostat liquid level response generally takes a long time delay after regulating its JT-valve; therefore, typical PID control loop should result in some cryostat parameter oscillations. This paper presents a type of PID parameter self-optimal and Time-Delay control method used to reduce cryogenic system parameters oscillation.

  16. Pulse thermal loop

    NASA Technical Reports Server (NTRS)

    Weislogel, Mark M. (Inventor)

    2002-01-01

    A pulse thermal loop heat transfer system includes a means to use pressure rises in a pair of evaporators to circulate a heat transfer fluid. The system includes one or more valves that iteratively, alternately couple the outlets the evaporators to the condenser. While flow proceeds from one of the evaporators to the condenser, heating creates a pressure rise in the other evaporator, which has its outlet blocked to prevent fluid from exiting the other evaporator. When the flow path is reconfigured to allow flow from the other evaporator to the condenser, the pressure in the other evaporator is used to circulate a pulse of fluid through the system. The reconfiguring of the flow path, by actuating or otherwise changing the configuration of the one or more valves, may be triggered when a predetermined pressure difference between the evaporators is reached.

  17. Vortex loops and Majoranas

    SciTech Connect

    Chesi, Stefano; Jaffe, Arthur; Loss, Daniel; Pedrocchi, Fabio L.

    2013-11-15

    We investigate the role that vortex loops play in characterizing eigenstates of interacting Majoranas. We give some general results and then focus on ladder Hamiltonian examples as a test of further ideas. Two methods yield exact results: (i) A mapping of certain spin Hamiltonians to quartic interactions of Majoranas shows that the spectra of these two examples coincide. (ii) In cases with reflection-symmetric Hamiltonians, we use reflection positivity for Majoranas to characterize vortices in the ground states. Two additional methods suggest wider applicability of these results: (iii) Numerical evidence suggests similar behavior for certain systems without reflection symmetry. (iv) A perturbative analysis also suggests similar behavior without the assumption of reflection symmetry.

  18. The Loop Algorithm

    NASA Astrophysics Data System (ADS)

    Evertz, Hans Gerd

    1998-03-01

    Exciting new investigations have recently become possible for strongly correlated systems of spins, bosons, and fermions, through Quantum Monte Carlo simulations with the Loop Algorithm (H.G. Evertz, G. Lana, and M. Marcu, Phys. Rev. Lett. 70, 875 (1993).) (For a recent review see: H.G. Evertz, cond- mat/9707221.) and its generalizations. A review of this new method, its generalizations and its applications is given, including some new results. The Loop Algorithm is based on a formulation of physical models in an extended ensemble of worldlines and graphs, and is related to Swendsen-Wang cluster algorithms. It performs nonlocal changes of worldline configurations, determined by local stochastic decisions. It overcomes many of the difficulties of traditional worldline simulations. Computer time requirements are reduced by orders of magnitude, through a corresponding reduction in autocorrelations. The grand-canonical ensemble (e.g. varying winding numbers) is naturally simulated. The continuous time limit can be taken directly. Improved Estimators exist which further reduce the errors of measured quantities. The algorithm applies unchanged in any dimension and for varying bond-strengths. It becomes less efficient in the presence of strong site disorder or strong magnetic fields. It applies directly to locally XYZ-like spin, fermion, and hard-core boson models. It has been extended to the Hubbard and the tJ model and generalized to higher spin representations. There have already been several large scale applications, especially for Heisenberg-like models, including a high statistics continuous time calculation of quantum critical exponents on a regularly depleted two-dimensional lattice of up to 20000 spatial sites at temperatures down to T=0.01 J.

  19. Uranyl Nitrate Flow Loop

    SciTech Connect

    Ladd-Lively, Jennifer L

    2008-10-01

    The objectives of the work discussed in this report were to: (1) develop a flow loop that would simulate the purified uranium-bearing aqueous stream exiting the solvent extraction process in a natural uranium conversion plant (NUCP); (2) develop a test plan that would simulate normal operation and disturbances that could be anticipated in an NUCP; (3) use the flow loop to test commercially available flowmeters for use as safeguards monitors; and (4) recommend a flowmeter for production-scale testing at an NUCP. There has been interest in safeguarding conversion plants because the intermediate products [uranium dioxide (UO{sub 2}), uranium tetrafluoride (UF{sub 4}), and uranium hexafluoride (UF{sub 6})] are all suitable uranium feedstocks for producing special nuclear materials. Furthermore, if safeguards are not applied virtually any nuclear weapons program can obtain these feedstocks without detection by the International Atomic Energy Agency (IAEA). Historically, IAEA had not implemented safeguards until the purified UF{sub 6} product was declared as feedstock for enrichment plants. H. A. Elayat et al. provide a basic definition of a safeguards system: 'The function of a safeguards system on a chemical conversion plant is in general terms to verify that no useful nuclear material is being diverted to use in a nuclear weapons program'. The IAEA now considers all highly purified uranium compounds as candidates for safeguarding. DOE is currently interested in 'developing instruments, tools, strategies, and methods that could be of use to the IAEA in the application of safeguards' for materials found in the front end of the nuclear fuel cycle-prior to the production of the uranium hexafluoride or oxides that have been the traditional starting point for IAEA safeguards. Several national laboratories, including Oak Ridge, Los Alamos, Lawrence Livermore, and Brookhaven, have been involved in developing tools or techniques for safeguarding conversion plants. This study

  20. Flux-p: automating metabolic flux analysis.

    PubMed

    Ebert, Birgitta E; Lamprecht, Anna-Lena; Steffen, Bernhard; Blank, Lars M

    2012-11-12

    Quantitative knowledge of intracellular fluxes in metabolic networks is invaluable for inferring metabolic system behavior and the design principles of biological systems. However, intracellular reaction rates can not often be calculated directly but have to be estimated; for instance, via 13C-based metabolic flux analysis, a model-based interpretation of stable carbon isotope patterns in intermediates of metabolism. Existing software such as FiatFlux, OpenFLUX or 13CFLUX supports experts in this complex analysis, but requires several steps that have to be carried out manually, hence restricting the use of this software for data interpretation to a rather small number of experiments. In this paper, we present Flux-P as an approach to automate and standardize 13C-based metabolic flux analysis, using the Bio-jETI workflow framework. Exemplarily based on the FiatFlux software, it demonstrates how services can be created that carry out the different analysis steps autonomously and how these can subsequently be assembled into software workflows that perform automated, high-throughput intracellular flux analysis of high quality and reproducibility. Besides significant acceleration and standardization of the data analysis, the agile workflow-based realization supports flexible changes of the analysis workflows on the user level, making it easy to perform custom analyses.

  1. Cosmic string formation by flux trapping

    SciTech Connect

    Blanco-Pillado, Jose J.; Olum, Ken D.; Vilenkin, Alexander

    2007-11-15

    We study the formation of cosmic strings by confining a stochastic magnetic field into flux tubes in a numerical simulation. We use overdamped evolution in a potential that is minimized when the flux through each face in the simulation lattice is a multiple of the fundamental flux quantum. When the typical number of flux quanta through a correlation-length-sized region is initially about 1, we find a string network similar to that generated by the Kibble-Zurek mechanism. With larger initial flux, the loop distribution and the Brownian shape of the infinite strings remain unchanged, but the fraction of length in infinite strings is increased. A 2D slice of the network exhibits bundles of strings pointing in the same direction, as in earlier 2D simulations. We find, however, that strings belonging to the same bundle do not stay together in 3D for much longer than the correlation length. As the initial flux per correlation length is decreased, there is a point at which infinite strings disappear, as in the Hagedorn transition.

  2. CURRENT BUILDUP IN EMERGING SERPENTINE FLUX TUBES

    SciTech Connect

    Pariat, E.; Masson, S.; Aulanier, G.

    2009-08-20

    The increase of magnetic flux in the solar atmosphere during active-region formation involves the transport of the magnetic field from the solar convection zone through the lowest layers of the solar atmosphere, through which the plasma {beta} changes from >1 to <1 with altitude. The crossing of this magnetic transition zone requires the magnetic field to adopt a serpentine shape also known as the sea-serpent topology. In the frame of the resistive flux-emergence model, the rising of the magnetic flux is believed to be dynamically driven by a succession of magnetic reconnections which are commonly observed in emerging flux regions as Ellerman bombs. Using a data-driven, three-dimensional (3D) magnetohydrodynamic numerical simulation of flux emergence occurring in active region 10191 on 2002 November 16-17, we study the development of 3D electric current sheets. We show that these currents buildup along the 3D serpentine magnetic-field structure as a result of photospheric diverging horizontal line-tied motions that emulate the observed photospheric evolution. We observe that reconnection can not only develop following a pinching evolution of the serpentine field line, as usually assumed in two-dimensional geometry, but can also result from 3D shearing deformation of the magnetic structure. In addition, we report for the first time on the observation in the UV domain with the Transition Region and Coronal Explorer (TRACE) of extremely transient loop-like features, appearing within the emerging flux domain, which link several Ellermam bombs with one another. We argue that these loop transients can be explained as a consequence of the currents that build up along the serpentine magnetic field.

  3. The Evolution of Transition Region Loops Using IRIS and AIA

    NASA Technical Reports Server (NTRS)

    Winebarger, Amy R.; DePontieu, Bart

    2014-01-01

    Over the past 50 years, the model for the structure of the solar transition region has evolved from a simple transition layer between the cooler chromosphere to the hotter corona to a complex and diverse region that is dominated by complete loops that never reach coronal temperatures. The IRIS slitjaw images show many complete transition region loops. Several of the "coronal" channels in the SDO AIA instrument include contributions from weak transition region lines. In this work, we combine slitjaw images from IRIS with these channels to determine the evolution of the loops. We develop a simple model for the temperature and density evolution of the loops that can explain the simultaneous observations. Finally, we estimate the percentage of AIA emission that originates in the transition region.

  4. Loops and Self-Reference in the Construction of Dictionaries

    NASA Astrophysics Data System (ADS)

    Levary, David; Eckmann, Jean-Pierre; Moses, Elisha; Tlusty, Tsvi

    2012-07-01

    Dictionaries link a given word to a set of alternative words (the definition) which in turn point to further descendants. Iterating through definitions in this way, one typically finds that definitions loop back upon themselves. We demonstrate that such definitional loops are created in order to introduce new concepts into a language. In contrast to the expectations for a random lexical network, in graphs of the dictionary, meaningful loops are quite short, although they are often linked to form larger, strongly connected components. These components are found to represent distinct semantic ideas. This observation can be quantified by a singular value decomposition, which uncovers a set of conceptual relationships arising in the global structure of the dictionary. Finally, we use etymological data to show that elements of loops tend to be added to the English lexicon simultaneously and incorporate our results into a simple model for language evolution that falls within the “rich-get-richer” class of network growth.

  5. Superstring one-loop and gravitino contributions to planckian scattering

    NASA Astrophysics Data System (ADS)

    Bellini, Alessandro; Ademollo, Marco; Ciafaloni, Marcello

    1993-03-01

    Corrections to the semiclassical approximation in nearly forward planckian energy collisions are reconsidered. Starting from the one-loop superstring amplitude, we are able to disentangle the first subleading high-energy contribution at large impact parameters, and we thus directly compute the one-loop correction to the superstring eikonal. By comparing this result with previous ones by Amati, Ciafaloni and Veneziano (ACV) for pure gravity, we identify one-loop gravitino contributions which agree with previous results by Lipatov. We finally argue, on the basis of analyticity and unitarity, that gravitinos do not contribute at all the large-distance two-loop ACV correction, which thus acquires a universal "classical" interpretation.

  6. Implementation of a Comprehensive On-Line Closed-Loop Diagnostic System for Roll-to-Roll Amorphous Silicon Solar Cell Production: Final Subcontract Report, 23 April 2003 - 30 September 2006

    SciTech Connect

    Ellison, T.

    2007-05-01

    This report summarizes Energy Conversion Devices' diagnostic systems that were developed in this program, as well as ECD's other major accomplishments. This report concentrates on work carried out in the final (third) phase of this program, beginning in the fall of 2004 and ending in the fall of 2006. ECD has developed a comprehensive in-situ diagnostic system that: Reduces the time between deposition in the a-Si machine and device characterization from about 200 h to about 1 h; The Photovoltaic Capacitive Diagnostic systems measure the open-circuit voltage and charging rate (a measure of the short-circuit current) and intra-cell series resistance for each cell in the triple-junction device prior to deposition of the top conductive-oxide coating in a subsequent deposition machine. These systems operate with an rms precision of about 0.03% and have operated for almost 4 years with no need for servicing of the electronics or for calibration; Spectrometers are used to measure the ZnO thickness of the backreflector, a Si thickness, and top conductive-oxide, coatings.

  7. 3D MHD modeling of twisted coronal loops

    NASA Astrophysics Data System (ADS)

    Reale, F.; Orlando, S.; Guarrasi, M.; Mignone, A.; Peres, G.; Hood, A. W.; Priest, E. R.

    2016-10-01

    We perform MHD modeling of a single bright coronal loop to include the interaction with a non-uniform magnetic field. The field is stressed by random footpoint rotation in the central region and its energy is dissipated into heating by growing currents through anomalous magnetic diffusivity that switches on in the corona above a current density threshold. We model an entire single magnetic flux tube in the solar atmosphere extending from the high-β chromosphere to the low-β corona through the steep transition region. The magnetic field expands from the chromosphere to the corona. The maximum resolution is ∼30 km. We obtain an overall evolution typical of loop models and realistic loop emission in the EUV and X-ray bands. The plasma confined in the flux tube is heated to active region temperatures (∼3 MK) after ∼2/3 hr. Upflows from the chromosphere up to ∼100 km s‑1 fill the core of the flux tube to densities above 109 cm‑3. More heating is released in the low corona than the high corona and is finely structured both in space and time.

  8. RCD+: Fast loop modeling server.

    PubMed

    López-Blanco, José Ramón; Canosa-Valls, Alejandro Jesús; Li, Yaohang; Chacón, Pablo

    2016-07-01

    Modeling loops is a critical and challenging step in protein modeling and prediction. We have developed a quick online service (http://rcd.chaconlab.org) for ab initio loop modeling combining a coarse-grained conformational search with a full-atom refinement. Our original Random Coordinate Descent (RCD) loop closure algorithm has been greatly improved to enrich the sampling distribution towards near-native conformations. These improvements include a new workflow optimization, MPI-parallelization and fast backbone angle sampling based on neighbor-dependent Ramachandran probability distributions. The server starts by efficiently searching the vast conformational space from only the loop sequence information and the environment atomic coordinates. The generated closed loop models are subsequently ranked using a fast distance-orientation dependent energy filter. Top ranked loops are refined with the Rosetta energy function to obtain accurate all-atom predictions that can be interactively inspected in an user-friendly web interface. Using standard benchmarks, the average root mean squared deviation (RMSD) is 0.8 and 1.4 Å for 8 and 12 residues loops, respectively, in the challenging modeling scenario in where the side chains of the loop environment are fully remodeled. These results are not only very competitive compared to those obtained with public state of the art methods, but also they are obtained ∼10-fold faster. PMID:27151199

  9. RCD+: Fast loop modeling server

    PubMed Central

    López-Blanco, José Ramón; Canosa-Valls, Alejandro Jesús; Li, Yaohang; Chacón, Pablo

    2016-01-01

    Modeling loops is a critical and challenging step in protein modeling and prediction. We have developed a quick online service (http://rcd.chaconlab.org) for ab initio loop modeling combining a coarse-grained conformational search with a full-atom refinement. Our original Random Coordinate Descent (RCD) loop closure algorithm has been greatly improved to enrich the sampling distribution towards near-native conformations. These improvements include a new workflow optimization, MPI-parallelization and fast backbone angle sampling based on neighbor-dependent Ramachandran probability distributions. The server starts by efficiently searching the vast conformational space from only the loop sequence information and the environment atomic coordinates. The generated closed loop models are subsequently ranked using a fast distance-orientation dependent energy filter. Top ranked loops are refined with the Rosetta energy function to obtain accurate all-atom predictions that can be interactively inspected in an user-friendly web interface. Using standard benchmarks, the average root mean squared deviation (RMSD) is 0.8 and 1.4 Å for 8 and 12 residues loops, respectively, in the challenging modeling scenario in where the side chains of the loop environment are fully remodeled. These results are not only very competitive compared to those obtained with public state of the art methods, but also they are obtained ∼10-fold faster. PMID:27151199

  10. Flux-vector splitting for the 1990s

    NASA Technical Reports Server (NTRS)

    Vanleer, Bram

    1991-01-01

    The development of flux-vector splitting through the 1970s and 1980s is reviewed. Attention is given to the diffusive nature of flux-vector splitting, which makes it an undesirable technique for approximating the inviscid fluxes in a Navier-Stokes solver. Several proposed improvements, including a brand new one, are discussed and illustrated by a simple, yet revealing, numerical test case. Finally, an outlook for flux-vector splitting in the 1990s is presented.

  11. Quantum black holes in loop quantum gravity

    NASA Astrophysics Data System (ADS)

    Olmedo, Javier

    2016-03-01

    In this contribution I will comment on the last advances in relation to the loop quantization of spherically symmetric spacetimes. I will briefly summarize the vacuum case, where the physical states and observables are known explicitly. The main physical consequences are i) a genuine discretization of the geometry and ii) singularity resolution. Afterwards I will consider the coupling with a thin spherically symmetric null-dust shell. This is one of the simplest collapse scenarios with nontrivial dynamics. I will provide a representation for the scalar constraint that is consistent with the Dirac quantization approach, and the quantum observables of the model. Finally, I comment on the possible physical consequences of this model.

  12. Higher dimensional loop quantum cosmology

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangdong

    2016-07-01

    Loop quantum cosmology (LQC) is the symmetric sector of loop quantum gravity. In this paper, we generalize the structure of loop quantum cosmology to the theories with arbitrary spacetime dimensions. The isotropic and homogeneous cosmological model in n+1 dimensions is quantized by the loop quantization method. Interestingly, we find that the underlying quantum theories are divided into two qualitatively different sectors according to spacetime dimensions. The effective Hamiltonian and modified dynamical equations of n+1 dimensional LQC are obtained. Moreover, our results indicate that the classical big bang singularity is resolved in arbitrary spacetime dimensions by a quantum bounce. We also briefly discuss the similarities and differences between the n+1 dimensional model and the 3+1 dimensional one. Our model serves as a first example of higher dimensional loop quantum cosmology and offers the possibility to investigate quantum gravity effects in higher dimensional cosmology.

  13. Wilson Loop Diagrams and Positroids

    NASA Astrophysics Data System (ADS)

    Agarwala, Susama; Marin-Amat, Eloi

    2016-07-01

    In this paper, we study a new application of the positive Grassmannian to Wilson loop diagrams (or MHV diagrams) for scattering amplitudes in N= 4 Super Yang-Mill theory (N = 4 SYM). There has been much interest in studying this theory via the positive Grassmannians using BCFW recursion. This is the first attempt to study MHV diagrams for planar Wilson loop calculations (or planar amplitudes) in terms of positive Grassmannians. We codify Wilson loop diagrams completely in terms of matroids. This allows us to apply the combinatorial tools in matroid theory used to identify positroids (non-negative Grassmannians) to Wilson loop diagrams. In doing so, we find that certain non-planar Wilson loop diagrams define positive Grassmannians. While non-planar diagrams do not have physical meaning, this finding suggests that they may have value as an algebraic tool, and deserve further investigation.

  14. Loop-bed combustion apparatus

    DOEpatents

    Shang, Jer-Yu; Mei, Joseph S.; Slagle, Frank D.; Notestein, John E.

    1984-01-01

    The present invention is directed to a combustion apparatus in the configuration of a oblong annulus defining a closed loop. Particulate coal together with a sulfur sorbent such as sulfur or dolomite is introduced into the closed loop, ignited, and propelled at a high rate of speed around the loop. Flue gas is withdrawn from a location in the closed loop in close proximity to an area in the loop where centrifugal force imposed upon the larger particulate material maintains these particulates at a location spaced from the flue gas outlet. Only flue gas and smaller particulates resulting from the combustion and innerparticle grinding are discharged from the combustor. This structural arrangement provides increased combustion efficiency due to the essentially complete combustion of the coal particulates as well as increased sulfur absorption due to the innerparticle grinding of the sorbent which provides greater particle surface area.

  15. Loop Heat Pipe Startup Behaviors

    NASA Technical Reports Server (NTRS)

    Ku, Jentung

    2014-01-01

    A loop heat pipe must start successfully before it can commence its service. The start-up transient represents one of the most complex phenomena in the loop heat pipe operation. This paper discusses various aspects of loop heat pipe start-up behaviors. Topics include the four start-up scenarios, the initial fluid distribution between the evaporator and reservoir that determines the start-up scenario, factors that affect the fluid distribution between the evaporator and reservoir, difficulties encountered during the low power start-up, and methods to enhance the start-up success. Also addressed are the thermodynamic constraint between the evaporator and reservoir in the loop heat pipe operation, the superheat requirement for nucleate boiling, pressure spike and pressure surge during the start-up transient, and repeated cycles of loop start-up andshutdown under certain conditions.

  16. Triggering an Eruptive Flare by Emerging Flux in a Solar Active-Region Complex

    NASA Astrophysics Data System (ADS)

    Louis, Rohan E.; Kliem, Bernhard; Ravindra, B.; Chintzoglou, Georgios

    2015-12-01

    A flare and fast coronal mass ejection originated between solar active regions NOAA 11514 and 11515 on 2012 July 1 (SOL2012-07-01) in response to flux emergence in front of the leading sunspot of the trailing region 11515. Analyzing the evolution of the photospheric magnetic flux and the coronal structure, we find that the flux emergence triggered the eruption by interaction with overlying flux in a non-standard way. The new flux neither had the opposite orientation nor a location near the polarity inversion line, which are favorable for strong reconnection with the arcade flux under which it emerged. Moreover, its flux content remained significantly smaller than that of the arcade ({≈} 40 %). However, a loop system rooted in the trailing active region ran in part under the arcade between the active regions, passing over the site of flux emergence. The reconnection with the emerging flux, leading to a series of jet emissions into the loop system, caused a strong but confined rise of the loop system. This lifted the arcade between the two active regions, weakening its downward tension force and thus destabilizing the considerably sheared flux under the arcade. The complex event was also associated with supporting precursor activity in an enhanced network near the active regions, acting on the large-scale overlying flux, and with two simultaneous confined flares within the active regions.

  17. On the structure of solar and stellar coronae - Loops and loop heat transport

    NASA Technical Reports Server (NTRS)

    Litwin, Christof; Rosner, Robert

    1993-01-01

    We discuss the principal constraints on mechanisms for structuring and heating the outer atmospheres - the coronae - of stars. We argue that the essential cause of highly localized heating in the coronae of stars like the sun is the spatially intermittent nature of stellar surface magnetic fields, and that the spatial scale of the resulting coronal structures is related to the spatial structure of the photospheric fields. We show that significant constraints on coronal heating mechanisms derive from the observed variations in coronal emission, and, in addition, show that the observed structuring perpendicular to coronal magnetic fields imposes severe constraints on mechanisms for heat dispersal in the low-beta atmosphere. In particular, we find that most of commonly considered mechanisms for heat dispersal, such as anomalous diffusion due to plasma turbulence or magnetic field line stochasticity, are much too slow to account for the observed rapid heating of coronal loops. The most plausible mechanism appears to be reconnection at the interface between two adjacent coronal flux bundles. Based on a model invoking hyperresistivity, we show that such a mechanism naturally leads to dominance of isolated single bright coronal loops and to bright coronal plasma structures whose spatial scale transverse to the local magnetic field is comparable to observed dimensions of coronal X-ray loops.

  18. Landau singularities and symbology: one- and two-loop MHV amplitudes in SYM theory

    DOE PAGESBeta

    Dennen, Tristan; Spradlin, Marcus; Volovich, Anastasia

    2016-03-14

    We apply the Landau equations, whose solutions parameterize the locus of possible branch points, to the one- and two-loop Feynman integrals relevant to MHV amplitudes in planar N = 4 super-Yang-Mills theory. We then identify which of the Landau singularities appear in the symbols of the amplitudes, and which do not. Finally, we observe that all of the symbol entries in the two-loop MHV amplitudes are already present as Landau singularities of one-loop pentagon integrals.

  19. Three-dimensional magnetohydrodynamics of the emerging magnetic flux in the solar atmosphere

    NASA Astrophysics Data System (ADS)

    Matsumoto, R.; Tajima, T.; Shibata, K.; Kaisig, M.

    1993-09-01

    The nonlinear evolution of an emerging magnetic flux tube or sheet in the solar atmosphere is studied through 3D MHD simulations. In the initial state, a horizontal magnetic flux sheet or tube is assumed to be embedded at the bottom of MHD two isothermal gas layers, which approximate the solar photosphere/chromosphere and the corona. The magnetic flux sheet or tube is unstable against the undular mode of the magnetic buoyancy instability. The magnetic loop rises due to the linear and then later nonlinear instabilities caused by the buoyancy enhanced by precipitating the gas along magnetic field lines. We find by 3D simulation that during the ascendance of loops the bundle of flux tubes or even the flux sheet develops into dense gas filaments pinched between magnetic loops. The interchange modes help produce a fine fiber flux structure perpendicular to the magnetic field direction in the linear stage, while the undular modes determine the overall buoyant loop structure. The expansion of such a bundle of magnetic loops follows the self-similar behavior observed in 2D cases studied earlier. Our study finds the threshold flux for arch filament system (AFS) formation to be about 0.3 x 10 exp 20 Mx.

  20. Causal Loop Analysis of coastal geomorphological systems

    NASA Astrophysics Data System (ADS)

    Payo, Andres; Hall, Jim W.; French, Jon; Sutherland, James; van Maanen, Barend; Nicholls, Robert J.; Reeve, Dominic E.

    2016-03-01

    As geomorphologists embrace ever more sophisticated theoretical frameworks that shift from simple notions of evolution towards single steady equilibria to recognise the possibility of multiple response pathways and outcomes, morphodynamic modellers are facing the problem of how to keep track of an ever-greater number of system feedbacks. Within coastal geomorphology, capturing these feedbacks is critically important, especially as the focus of activity shifts from reductionist models founded on sediment transport fundamentals to more synthesist ones intended to resolve emergent behaviours at decadal to centennial scales. This paper addresses the challenge of mapping the feedback structure of processes controlling geomorphic system behaviour with reference to illustrative applications of Causal Loop Analysis at two study cases: (1) the erosion-accretion behaviour of graded (mixed) sediment beds, and (2) the local alongshore sediment fluxes of sand-rich shorelines. These case study examples are chosen on account of their central role in the quantitative modelling of geomorphological futures and as they illustrate different types of causation. Causal loop diagrams, a form of directed graph, are used to distil the feedback structure to reveal, in advance of more quantitative modelling, multi-response pathways and multiple outcomes. In the case of graded sediment bed, up to three different outcomes (no response, and two disequilibrium states) can be derived from a simple qualitative stability analysis. For the sand-rich local shoreline behaviour case, two fundamentally different responses of the shoreline (diffusive and anti-diffusive), triggered by small changes of the shoreline cross-shore position, can be inferred purely through analysis of the causal pathways. Explicit depiction of feedback-structure diagrams is beneficial when developing numerical models to explore coastal morphological futures. By explicitly mapping the feedbacks included and neglected within a

  1. BAYESIAN MAGNETOHYDRODYNAMIC SEISMOLOGY OF CORONAL LOOPS

    SciTech Connect

    Arregui, I.; Asensio Ramos, A. E-mail: aasensio@iac.es

    2011-10-10

    We perform a Bayesian parameter inference in the context of resonantly damped transverse coronal loop oscillations. The forward problem is solved in terms of parametric results for kink waves in one-dimensional flux tubes in the thin tube and thin boundary approximations. For the inverse problem, we adopt a Bayesian approach to infer the most probable values of the relevant parameters, for given observed periods and damping times, and to extract their confidence levels. The posterior probability distribution functions are obtained by means of Markov Chain Monte Carlo simulations, incorporating observed uncertainties in a consistent manner. We find well-localized solutions in the posterior probability distribution functions for two of the three parameters of interest, namely the Alfven travel time and the transverse inhomogeneity length scale. The obtained estimates for the Alfven travel time are consistent with previous inversion results, but the method enables us to additionally constrain the transverse inhomogeneity length scale and to estimate real error bars for each parameter. When observational estimates for the density contrast are used, the method enables us to fully constrain the three parameters of interest. These results can serve to improve our current estimates of unknown physical parameters in coronal loops and to test the assumed theoretical model.

  2. Slow Magnetosonic Waves and Fast Flows in Active Region Loops

    NASA Technical Reports Server (NTRS)

    Ofman, L.; Wang, T. J.; Davila, J. M.

    2012-01-01

    Recent extreme ultraviolet spectroscopic observations indicate that slow magnetosonic waves are present in active region (AR) loops. Some of the spectral data were also interpreted as evidence of fast (approx 100-300 km/s) quasiperiodic flows. We have performed three-dimensional magnetohydrodynamic (3D MHD) modeling of a bipolar AR that contains impulsively generated waves and flows in coronal loops. The model AR is initiated with a dipole magnetic field and gravitationally stratified density, with an upflow-driven steadily or periodically in localized regions at the footpoints of magnetic loops. The resulting flows along the magnetic field lines of the AR produce higher density loops compared to the surrounding plasma by injection of material into the flux tubes and the establishment of siphon flow.We find that the impulsive onset of flows with subsonic speeds result in the excitation of damped slow magnetosonic waves that propagate along the loops and coupled nonlinearly driven fast-mode waves. The phase speed of the slow magnetosonic waves is close to the coronal sound speed. When the amplitude of the driving pulses is increased we find that slow shock-like wave trains are produced. When the upflows are driven periodically, undamped oscillations are produced with periods determined by the periodicity of the upflows. Based on the results of the 3D MHD model we suggest that the observed slow magnetosonic waves and persistent upflows may be produced by the same impulsive events at the bases of ARs.

  3. SLOW MAGNETOSONIC WAVES AND FAST FLOWS IN ACTIVE REGION LOOPS

    SciTech Connect

    Ofman, L.; Wang, T. J.; Davila, J. M.

    2012-08-01

    Recent extreme ultraviolet spectroscopic observations indicate that slow magnetosonic waves are present in active region (AR) loops. Some of the spectral data were also interpreted as evidence of fast ({approx}100-300 km s{sup -1}) quasi-periodic flows. We have performed three-dimensional magnetohydrodynamic (3D MHD) modeling of a bipolar AR that contains impulsively generated waves and flows in coronal loops. The model AR is initiated with a dipole magnetic field and gravitationally stratified density, with an upflow-driven steadily or periodically in localized regions at the footpoints of magnetic loops. The resulting flows along the magnetic field lines of the AR produce higher density loops compared to the surrounding plasma by injection of material into the flux tubes and the establishment of siphon flow. We find that the impulsive onset of flows with subsonic speeds result in the excitation of damped slow magnetosonic waves that propagate along the loops and coupled nonlinearly driven fast-mode waves. The phase speed of the slow magnetosonic waves is close to the coronal sound speed. When the amplitude of the driving pulses is increased we find that slow shock-like wave trains are produced. When the upflows are driven periodically, undamped oscillations are produced with periods determined by the periodicity of the upflows. Based on the results of the 3D MHD model we suggest that the observed slow magnetosonic waves and persistent upflows may be produced by the same impulsive events at the bases of ARs.

  4. Characterization of magnetic degradation mechanism in a high-neutron-flux environment

    NASA Astrophysics Data System (ADS)

    Samin, Adib; Qiu, Jie; Hattrick-Simpers, Jason; Dai-Hattrick, Liyang; Zheng, Yuan F.; Cao, Lei

    2014-09-01

    Radiation-induced demagnetization of permanent magnets can result in the failure of magnet-based devices operating in high-radiation environments. To understand the mechanism underlying demagnetization, Nd-Fe-B magnets were irradiated with fast and fast plus thermal neutrons at fluences of 1012, 1013, 1014, and 1015 n/cm2, respectively. After irradiation, magnetic flux losses were shown to increase with the fluence. Compared with samples irradiated only with fast neutrons, the samples exposed to the fast plus thermal neutrons have higher magnetic flux losses, which is attributed to the thermal neutron capture reaction of boron. Hysteresis loops of the Nd-Fe-B magnets reveal a slightly increase in the coercivity after irradiation. Full remagnetization of the samples after irradiation was possible, which indicates that structural damage is unlikely an important factor in the demagnetization process at these levels of neutron flux and fluence. Finally, we performed a preliminary Molecular Dynamic (MD) simulation on a cube of ions to obtain a better understanding of the thermal spike mechanism.

  5. Modeling loop entropy.

    PubMed

    Chirikjian, Gregory S

    2011-01-01

    Proteins fold from a highly disordered state into a highly ordered one. Traditionally, the folding problem has been stated as one of predicting "the" tertiary structure from sequential information. However, new evidence suggests that the ensemble of unfolded forms may not be as disordered as once believed, and that the native form of many proteins may not be described by a single conformation, but rather an ensemble of its own. Quantifying the relative disorder in the folded and unfolded ensembles as an entropy difference may therefore shed light on the folding process. One issue that clouds discussions of "entropy" is that many different kinds of entropy can be defined: entropy associated with overall translational and rotational Brownian motion, configurational entropy, vibrational entropy, conformational entropy computed in internal or Cartesian coordinates (which can even be different from each other), conformational entropy computed on a lattice, each of the above with different solvation and solvent models, thermodynamic entropy measured experimentally, etc. The focus of this work is the conformational entropy of coil/loop regions in proteins. New mathematical modeling tools for the approximation of changes in conformational entropy during transition from unfolded to folded ensembles are introduced. In particular, models for computing lower and upper bounds on entropy for polymer models of polypeptide coils both with and without end constraints are presented. The methods reviewed here include kinematics (the mathematics of rigid-body motions), classical statistical mechanics, and information theory.

  6. Coronal mass ejections and magnetic flux ropes in interplanetary space

    NASA Technical Reports Server (NTRS)

    Gosling, J. T.

    1990-01-01

    Coronal mass ejections (CMEs) are formed in the solar corona by the ejection of material from closed field regions that were not previously participating in the solar wind expansion. CMEs commonly exhibit a signature consisting of a counterstreaming flux of suprathermal electrons with energies above about 80 eV, indicating closed field structures that are either rooted at both ends in the sun or entirely disconnected from it. About 30 percent of all CME events at 1 AU exhibit large, coherent internal field rotations typical of magnetic flux ropes. It is suggested that interplanetary magnetic flux ropes form as a result of reconnection within rising, previously sheared coronal magnetic loops.

  7. Rogowski Loop design for NSTX

    SciTech Connect

    McCormack, B.; Kaita, R.; Kugel, H.; Hatcher, R.

    2000-01-06

    The Rogowski Loop is one of the most basic diagnostics for tokamak operations. On the National Spherical Torus Experiment (NSTX), the plasma current Rogowski Loop had the constraints of the very limited space available on the center stack, 5,000 volt isolation, flexibility requirements as it remained a part of the Center Stack assembly after the first phase of operation, and a +120 C temperature requirement. For the second phase of operation, four Halo Current Rogowski Loops under the Center Stack tiles will be installed having +600 C and limited space requirements. Also as part of the second operational phase, up to ten Rogowski Loops will installed to measure eddy currents in the Passive Plate support structures with +350 C, restricted space, and flexibility requirements. This presentation will provide the details of the material selection, fabrication techniques, testing, and installation results of the Rogowski Loops that were fabricated for the high temperature operational and bakeout requirements, high voltage isolation requirements, and the space and flexibility requirements imposed upon the Rogowski Loops. In the future operational phases of NSTX, additional Rogowski Loops could be anticipated that will measure toroidal plasma currents in the vacuum vessel and in the Passive Plate assemblies.

  8. Impaired intestinal sodium and chloride transport in the blind loop syndrome of the rat.

    PubMed

    Schulzke, J D; Fromm, M; Menge, H; Riecken, E O

    1987-03-01

    Self-filling blind loops of rat jejunum were used as a model for the blind loop syndrome in humans. Electrical resistance, short circuit current, and unidirectional sodium and chloride fluxes were measured using the Ussing technique. Whereas net fluxes for sodium and chloride did not differ significantly from zero in the blind loop or in the control, unidirectional fluxes of either direction were decreased and electrical resistance was increased, indicating an increase in the tightness of the intestinal wall. Measurements of alternating current impedance and micropuncture experiments revealed that this was due to an increase in epithelial resistance from 9 +/- 1 omega X cm2 (n = 15, results of both methods) to 27 +/- 4 omega X cm2 (n = 15) and in subepithelial resistance from 40 +/- 2 omega X cm2 (n = 15) to 76 +/- 7 omega X cm2 (n = 15). As the ratio of epithelial to subepithelial resistance was similar in the blind loop and in the control, lower transport rates in the blind loop are indicative of impaired epithelial transport function. Subsequently, two different transport systems were characterized. First, the 3-o-methyl-glucose-induced, phlorizin-reversible increase in short circuit current, representing glucose-coupled sodium absorption, showed a 77% decrease in maximum velocity in the blind loop and no change in Km. Second, the chloride-induced, bumetanide-reversible increase in short circuit current in tissues stimulated simultaneously by prostaglandin E1 and theophylline, representing rheogenic chloride secretion, also showed a decrease in maximum velocity (of 83%) and no change in Km. A morphometric analysis revealed that the crypt surface area increased by 100% in the blind loop, whereas the villous surface area was not significantly different between blind loops and controls. We conclude that the jejunal self-filling blind loop is characterized by impaired active ion transport processes and an increase in epithelial and subepithelial resistance.

  9. Patterns of Flux Emergence

    NASA Astrophysics Data System (ADS)

    Title, A.; Cheung, M.

    2008-05-01

    The high spatial resolution and high cadence of the Solar Optical Telescope on the JAXA Hinode spacecraft have allowed capturing many examples of magnetic flux emergence from the scale of granulation to active regions. The observed patterns of emergence are quite similar. Flux emerges as a array of small bipoles on scales from 1 to 5 arc seconds throughout the region that the flux eventually condenses. Because the fields emerging from the underlying flux rope my appear many in small segments and the total flux (absolute sum) is not a conserved quantity the amount of total flux on the surface may vary significantly during the emergence process. Numerical simulations of flux emergence exhibit patterns similar to observations. Movies of both observations and numerical simulations will be presented.

  10. Covariant Loop Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Rovelli, Carlo; Vidotto, Francesca

    2014-11-01

    Preface; Part I. Foundations: 1. Spacetime as a quantum object; 2. Physics without time; 3. Gravity; 4. Classical discretization; Part II. The 3D Theory: 5. 3D Euclidean theory; 6. Bubbles and cosmological constant; Part III. The Real World: 7. The real world: 4D Lorentzian theory; 8. Classical limit; 9. Matter; Part IV. Physical Applications: 10. Black holes; 11. Cosmology; 12. Scattering; 13. Final remarks; References; Index.

  11. Performance of the Dsa's Subcarrier Demodulation Digital Loop

    NASA Technical Reports Server (NTRS)

    Simon, M. K.; Mileant, A.

    1985-01-01

    The subcarrier demodulation digital loop is part of the baseband assembly. The subcarrier demodulator is a fourth-order Costas-type loop corresponding to a type 2 analog loop in terms of steady state response. The expected value and the variance of the error signal are determined as functions of the input SNR. A Nyquist sampling rate of the input signal is assumed. From the integro-difference equations a mixed s/z domain block diagram is obtained. From the loop's transfer function a set of gains for the loop filter is obtained. Also, a set of state equations is presented for future reference. Finally, the noise-equivalent bandwidths are calculated for normalized computation times of 0, 0.25 and 0.5. The subcarrier demodulator analyzed tracks a parabolic phase input with finite steady state error. Since at each update instant the loop gains are adjusted to compensate for the variations in SNR of the input signal, the noise-equivalent bandwidth is maintained constant.

  12. Performance of the DSA's subcarrier demodulation digital loop

    NASA Astrophysics Data System (ADS)

    Simon, M. K.; Mileant, A.

    1985-02-01

    The subcarrier demodulation digital loop is part of the baseband assembly. The subcarrier demodulator is a fourth-order Costas-type loop corresponding to a type 2 analog loop in terms of steady state response. The expected value and the variance of the error signal are determined as functions of the input SNR. A Nyquist sampling rate of the input signal is assumed. From the integro-difference equations a mixed s/z domain block diagram is obtained. From the loop's transfer function a set of gains for the loop filter is obtained. Also, a set of state equations is presented for future reference. Finally, the noise-equivalent bandwidths are calculated for normalized computation times of 0, 0.25 and 0.5. The subcarrier demodulator analyzed tracks a parabolic phase input with finite steady state error. Since at each update instant the loop gains are adjusted to compensate for the variations in SNR of the input signal, the noise-equivalent bandwidth is maintained constant.

  13. SDO Sees Flourishing Magnetic Loops

    NASA Video Gallery

    A bright set of loops near the edge of the sun’s face grew and shifted quickly after the magnetic field was disrupted by a small eruption on Nov. 25, 2015. Charged particles emitting light in extre...

  14. Automatic blocking of nested loops

    NASA Technical Reports Server (NTRS)

    Schreiber, Robert; Dongarra, Jack J.

    1990-01-01

    Blocked algorithms have much better properties of data locality and therefore can be much more efficient than ordinary algorithms when a memory hierarchy is involved. On the other hand, they are very difficult to write and to tune for particular machines. The reorganization is considered of nested loops through the use of known program transformations in order to create blocked algorithms automatically. The program transformations used are strip mining, loop interchange, and a variant of loop skewing in which invertible linear transformations (with integer coordinates) of the loop indices are allowed. Some problems are solved concerning the optimal application of these transformations. It is shown, in a very general setting, how to choose a nearly optimal set of transformed indices. It is then shown, in one particular but rather frequently occurring situation, how to choose an optimal set of block sizes.

  15. SDO Sees Brightening Magnetic Loops

    NASA Video Gallery

    Two active regions sprouted arches of bundled magnetic loops in this video from NASA’s Solar Dynamics Observatory taken on Nov. 11-12, 2015. Charged particles spin along the magnetic field, tracing...

  16. Loop Electrosurgical Excision Procedure (LEEP)

    MedlinePlus

    ... that acts like a scalpel (surgical knife). An electric current is passed through the loop, which cuts away ... A procedure in which an instrument works with electric current to destroy tissue. Local Anesthesia: The use of ...

  17. Number of cosmic string loops

    NASA Astrophysics Data System (ADS)

    Blanco-Pillado, Jose J.; Olum, Ken D.; Shlaer, Benjamin

    2014-01-01

    Using recent simulation results, we provide the mass and speed spectrum of cosmic string loops. This is the quantity of primary interest for many phenomenological signatures of cosmic strings, and it can be accurately predicted using recently acquired detailed knowledge of the loop production function. We emphasize that gravitational smoothing of long strings plays a negligible role in determining the total number of existing loops. We derive a bound on the string tension imposed by recent constraints on the stochastic gravitational wave background from pulsar timing arrays, finding Gμ ≤2.8×10-9. We also provide a derivation of the Boltzmann equation for cosmic string loops in the language of differential forms.

  18. Method and apparatus for balancing the magnetic field detecting loops of a cryogenic gradiometer using trimming coils and superconducting disks

    SciTech Connect

    Lutes, C.L.

    1982-03-16

    An apparatus for and a method of measuring the difference in intensity between two coplanar magnetic field vector components at two different points in space. The device is comprised of two interconnected, relatively large, loop patterns of opposite, flux cancelling, winding sense. One or both loops include a trimming element that is itself formed of two interconnected, relatively small, loop patterns of opposite, flux cancelling, winding sense. The device is analyzed for imbalance between the two large loops and is then balanced by placing a balancing superconducting disk of the proper characteristic in or near one of the two small loops of the trimming element. The so-trimmed apparatus forms a gradiometer of substantially improved mensuration.

  19. Observations of loops and prominences

    NASA Technical Reports Server (NTRS)

    Strong, Keith T.

    1994-01-01

    We review recent observations by the Yohkoh-SXT (Soft X-ray Telescope) in collaboration with other spacecraft and ground-based observatories of coronal loops and prominences. These new results point to problems that SoHO will be able to address. With a unique combination of rapid-cadence digital imaging (greater than or equal to 32 s full-disk and greater than or equal to 2 s partial-frame images), high spatial resolution (greater than or equal to 2.5 arcsec pixels), high sensitivity (EM less than or equal to 10(exp 42) cm(exp -3)), a low-scatter mirror, and large dynamic range, SXT can observe a vast range of targets on the Sun. Over the first 21 months of Yohkoh operations SXT has taken over one million images of the corona and so is building up an invaluable long-term database on the large-scale corona and loop geometry. The most striking thing about the SXT images is the range of loop sizes and shapes. The active regions are a bright tangle of magnetic field lines, surrounded by a network of large-scale quiet-Sun loops stretching over distances in excess of 105 km. The cross-section of most loops seems to be constant. Loops displaying significant Gamma's are the exception, not the rule, implying the presence of widespread currents in the corona. All magnetic structures show changes. Time scales range from seconds to months. The question of how these structures are formed, become filled with hot plasma, and are maintained is still open. While we see the propagation of brightenings along the length of active-region loops and in X-ray jets with velocities of several hundred km/s, much higher velocities are seen in the quiet Sun. In XBP flares, for example, velocities of over 1000 km/s are common. Active-region loops seem to be in constant motion, moving slowly outward, carrying plasma with them. During flares, loops often produce localized brightenings at the base and later at the apex of the loop. Quiescent filaments and prominences have been observed regularly

  20. Effects of heat losses (or gains) from insulated portions of closed-loop thermosyphons with vertical heat transfer sections

    NASA Astrophysics Data System (ADS)

    Bernier, M. A.; Baliga, B. R.

    1993-05-01

    The effect of heat losses or gains in the modeling of thermosyphons is investigated analytically using a closed-loop model where the circulating liquid is heated by a constant and uniform heat flux in the heated section of the loop and is cooled in a cooling section maintained at a constant wall temperature; elsewhere the pipes are insulated from the ambient fluid. The results of the analysis indicate that the performance of a closed-loop thermosyphon can be markedly affected by heat gains or losses in the insulated sections of the loop.

  1. FINAL REPORT: EDDY-COVARIANCE FLUX TOWER AND TRACER TECHNOLOGY SUPPORT FOR THE UNIVERSITY OF GEORGIA PROPOSAL: FROM TOWER TO PIXEL: INTEGRATION OF PATCH-SIZE NEE USING EXPERIMENTAL MODELING FOOTPRINT ANALYSIS.

    SciTech Connect

    LEWIN,K.F.; NAGY, J.; WATSON, T.B.

    2007-09-01

    Brookhaven National Laboratory has been funded since October of 2000 to provide assistance to the University of Georgia in conducting footprint analyses of individual towers based on meteorology and trace gas measurements. Brookhaven researchers conducted air flow measurements using perfluorocarbon tracers and meteorological instrumentation for three experimental campaigns at an AmeriFlux research site maintained by Dr. Monique Leclerc near Gainesville, FL. In addition, BNL provided assistance with remote data collection and distribution from remote field sites operated by Dr. John Hom of the US Forest Service in the Pine Barrens of New Jersey and at FACE research sites in North Carolina and Wisconsin.

  2. Dynamical behaviour in coronal loops

    NASA Technical Reports Server (NTRS)

    Haisch, Bernhard M.

    1986-01-01

    Rapid variability has been found in two active region coronal loops observed by the X-ray Polychromator (XRP) and the Hard X-ray Imaging Spectrometer (HXIS) onboard the Solar Maximum Mission (SMM). There appear to be surprisingly few observations of the short-time scale behavior of hot loops, and the evidence presented herein lends support to the hypothesis that coronal heating may be impulsive and driven by flaring.

  3. Simulating Idealized Flux Ropes with the Flux Rope Insertion Method: A Parameter Space Exploration of Currents and Topology

    NASA Astrophysics Data System (ADS)

    Savcheva, Antonia; Tassev, Svetlin; DeLuca, Edward E.; Gibson, Sarah; Fan, Yuhong

    2016-05-01

    Knowledge of the 3D magnetic filed structure at the time of major solar eruptions is vital to the understanding of the space weather effects of these eruptions. Multiple data-constrained techniques that reconstruct the 3D coronal field based on photospheric magnetograms have been used to achieve this goal. In particular, we have used the flux rope insertion method to obtain the coronal magnetic field of multiple regions containing flux ropes or sheared arcades based on line-of-sight magnetograms and X-ray and EUV observations of coronal loops. For the purpose of developing statistical measures of the goodness of fit of these models to the observations, here we present our modeling of flux ropes based on synthetic magnetograms obtained from aFan & Gibson emerging flux rope simulation. The goal is to study the effect of of different input flux rope parameters on the geometry of currents, field line connectivity, and topology, in a controled setting. For this purpose we create a large grid of models with the flux rope insertion method with different combinations of axial and poloidal flux, which give us different morphology of the flux rope. We create synthetic images of these flux ropes in AIA passbands with the FORWARD forward-fitting code. The present parametric study will later be used to get a better handle on the initial condition for magnetofrictional and MHD simulations of observed regions containing flux ropes, such as sigmoids and polar-crown filaments.

  4. Direct Optical Ice Sensing and Closed-Loop Controller Design for Active De-icing of Wind Turbines Using Distributed Heating

    NASA Astrophysics Data System (ADS)

    Shajiee, Shervin

    numerically that high intensity pulsed thermal actuation slightly improves ice melting but relatively increases the amount of applied thermal stress to the blade structure. This thesis includes: (1) A literature study on different methods of ice detection and a review on passive and active anti/de-icing techniques on wind turbines, (2) Development of an optical ice sensing method for direct detection of ice on the blade including experimental results, (3) Description of an aero/thermodynamic model, which predicts how much heat flux is needed locally for de-icing under variable atmospheric conditions, (4) Experimental results showing the proof-of-concept of closed-loop de-icing using distributed optical ice sensing, distributed temperature sensing, and resistive heating, and (5) Numerical modeling of ice melting on a blade for different distributed heater layouts and geometries in order to optimize thermal actuation strategy, improve de-icing efficiency, and finally (6) Development of a computational framework for closed-loop active de-icing using distributed localized heating and sensing.

  5. THE CORONAL LOOP INVENTORY PROJECT

    SciTech Connect

    Schmelz, J. T.; Pathak, S.; Christian, G. M.; Dhaliwal, R. S. S.; Paul, K. S.

    2015-11-01

    Most coronal physicists now seem to agree that loops are composed of tangled magnetic strands and have both isothermal and multithermal cross-field temperature distributions. As yet, however, there is no information on the relative importance of each of these categories, and we do not know how common one is with respect to the other. In this paper, we investigate these temperature properties for all loop segments visible in the 171-Å image of AR 11294, which was observed by the Atmospheric Imaging Assembly (AIA) on 2011 September 15. Our analysis revealed 19 loop segments, but only 2 of these were clearly isothermal. Six additional segments were effectively isothermal, that is, the plasma emission to which AIA is sensitive could not be distinguished from isothermal emission, within measurement uncertainties. One loop had both isothermal transition region and multithermal coronal solutions. Another five loop segments require multithermal plasma to reproduce the AIA observations. The five remaining loop segments could not be separated reliably from the background in the crucial non-171-Å AIA images required for temperature analysis. We hope that the direction of coronal heating models and the efforts modelers spend on various heating scenarios will be influenced by these results.

  6. The Coronal Loop Inventory Project

    NASA Astrophysics Data System (ADS)

    Schmelz, J. T.; Pathak, S.; Christian, G. M.; Dhaliwal, R. S. S.; Paul, K. S.

    2015-11-01

    Most coronal physicists now seem to agree that loops are composed of tangled magnetic strands and have both isothermal and multithermal cross-field temperature distributions. As yet, however, there is no information on the relative importance of each of these categories, and we do not know how common one is with respect to the other. In this paper, we investigate these temperature properties for all loop segments visible in the 171-Å image of AR 11294, which was observed by the Atmospheric Imaging Assembly (AIA) on 2011 September 15. Our analysis revealed 19 loop segments, but only 2 of these were clearly isothermal. Six additional segments were effectively isothermal, that is, the plasma emission to which AIA is sensitive could not be distinguished from isothermal emission, within measurement uncertainties. One loop had both isothermal transition region and multithermal coronal solutions. Another five loop segments require multithermal plasma to reproduce the AIA observations. The five remaining loop segments could not be separated reliably from the background in the crucial non-171-Å AIA images required for temperature analysis. We hope that the direction of coronal heating models and the efforts modelers spend on various heating scenarios will be influenced by these results.

  7. Coupling between feedback loops in autoregulatory networks affects bistability range, open-loop gain and switching times

    NASA Astrophysics Data System (ADS)

    Tiwari, Abhinav; Igoshin, Oleg A.

    2012-10-01

    Biochemical regulatory networks governing diverse cellular processes such as stress-response, differentiation and cell cycle often contain coupled feedback loops. We aim at understanding how features of feedback architecture, such as the number of loops, the sign of the loops and the type of their coupling, affect network dynamical performance. Specifically, we investigate how bistability range, maximum open-loop gain and switching times of a network with transcriptional positive feedback are affected by additive or multiplicative coupling with another positive- or negative-feedback loop. We show that a network's bistability range is positively correlated with its maximum open-loop gain and that both quantities depend on the sign of the feedback loops and the type of feedback coupling. Moreover, we find that the addition of positive feedback could decrease the bistability range if we control the basal level in the signal-response curves of the two systems. Furthermore, the addition of negative feedback has the capacity to increase the bistability range if its dissociation constant is much lower than that of the positive feedback. We also find that the addition of a positive feedback to a bistable network increases the robustness of its bistability range, whereas the addition of a negative feedback decreases it. Finally, we show that the switching time for a transition from a high to a low steady state increases with the effective fold change in gene regulation. In summary, we show that the effect of coupled feedback loops on the bistability range and switching times depends on the underlying mechanistic details.

  8. Return flux experiment

    NASA Technical Reports Server (NTRS)

    Tveekrem, June L.

    1992-01-01

    All spacecraft emit molecules via outgassing, thruster plumes, vents, etc. The return flux is the portion of those molecules that scatter from the ambient atmosphere and return to the spacecraft. Return flux allows critical spacecraft surfaces to become contaminated even when there is no direct line of sight between the contamination source and the critical surface. Data from the Long Duration Exposure Facility (LDEF) show that contamination of LDEF surfaces could not have come entirely from direct flux. The data suggest significant return flux. Several computer models have been developed to simulate return flux, but the predictions have never been verified in orbit. Large uncertainties in predictions lead to overly conservative spacecraft designs. The purpose of the REturn FLux EXperiment (REFLEX) is to fly a controlled experiment that can be directly compared with predictions from several models.

  9. Return flux experiment

    NASA Astrophysics Data System (ADS)

    Tveekrem, June L.

    All spacecraft emit molecules via outgassing, thruster plumes, vents, etc. The return flux is the portion of those molecules that scatter from the ambient atmosphere and return to the spacecraft. Return flux allows critical spacecraft surfaces to become contaminated even when there is no direct line of sight between the contamination source and the critical surface. Data from the Long Duration Exposure Facility (LDEF) show that contamination of LDEF surfaces could not have come entirely from direct flux. The data suggest significant return flux. Several computer models have been developed to simulate return flux, but the predictions have never been verified in orbit. Large uncertainties in predictions lead to overly conservative spacecraft designs. The purpose of the REturn FLux EXperiment (REFLEX) is to fly a controlled experiment that can be directly compared with predictions from several models.

  10. The distribution of maximum temperatures of coronal active region loops

    NASA Technical Reports Server (NTRS)

    Mayfield, E. B.; Teske, R. G.

    1980-01-01

    The emission measure distribution across the range 4.5 log T 6.5 was derived for several coronal active regions by combining EUV line fluxes with broadband X-ray fluxes. The distributions of the maximum temperature was then derived using a numerical model. It is shown that the emission measure distribution can be represented over the full range 5.6 log Tm 6.5 by the superposition of simple loop models, if the models incorporate a substantial rise in their individual emission measure distributions near the maximum temperature. The unresolved loops may have substantial area ratios, since it is this ratio that fixes the extent of the rise in the emission measure distribution. Since the bulk of the emission measure is then contributed from the loop tops, the distribution of maximum temperatures has approximately the same shape as does the integrated emission measure distributions. The EUV and X-ray data used were obtained by from two separate experiments on ATM/Skylab.

  11. The visual corticostriatal loop through the tail of the caudate: circuitry and function

    PubMed Central

    Seger, Carol A.

    2013-01-01

    Although high level visual cortex projects to a specific region of the striatum, the tail of the caudate, and participates in corticostriatal loops, the function of this visual corticostriatal system is not well understood. This article first reviews what is known about the anatomy of the visual corticostriatal loop across mammals, including rodents, cats, monkeys, and humans. Like other corticostriatal systems, the visual corticostriatal system includes both closed loop components (recurrent projections that return to the originating cortical location) and open loop components (projections that terminate in other neural regions). The article then reviews what previous empirical research has shown about the function of the tail of the caudate. The article finally addresses the possible functions of the closed and open loop connections of the visual loop in the context of theories and computational models of corticostriatal function. PMID:24367300

  12. The quantum 1/2 BPS Wilson loop in {N}=4 Chern-Simons-matter theories

    NASA Astrophysics Data System (ADS)

    Bianchi, Marco S.; Griguolo, Luca; Leoni, Matias; Mauri, Andrea; Penati, Silvia; Seminara, Domenico

    2016-09-01

    In three dimensional {N}=4 Chern-Simons-matter theories two independent fermionic Wilson loop operators can be defined, which preserve half of the supersymmetry charges and are cohomologically equivalent at classical level. We compute their three-loop expectation value in a convenient color sector and prove that the degeneracy is uplifted by quantum corrections. We expand the matrix model prediction in the same regime and by comparison we conclude that the quantum 1/2 BPS Wilson loop is the average of the two operators. We provide an all-loop argument to support this claim at any order. As a by-product, we identify the localization result at three loops as a correction to the framing factor induced by matter interactions. Finally, we comment on the quantum properties of the non-1/2 BPS Wilson loop operator defined as the difference of the two fermionic ones.

  13. The quantum 1/2 BPS Wilson loop in N=4 Chern-Simons-matter theories

    NASA Astrophysics Data System (ADS)

    Bianchi, Marco S.; Griguolo, Luca; Leoni, Matias; Mauri, Andrea; Penati, Silvia; Seminara, Domenico

    2016-09-01

    In three dimensional N=4 Chern-Simons-matter theories two independent fermionic Wilson loop operators can be defined, which preserve half of the supersymmetry charges and are cohomologically equivalent at classical level. We compute their three-loop expectation value in a convenient color sector and prove that the degeneracy is uplifted by quantum corrections. We expand the matrix model prediction in the same regime and by comparison we conclude that the quantum 1/2 BPS Wilson loop is the average of the two operators. We provide an all-loop argument to support this claim at any order. As a by-product, we identify the localization result at three loops as a correction to the framing factor induced by matter interactions. Finally, we comment on the quantum properties of the non-1/2 BPS Wilson loop operator defined as the difference of the two fermionic ones.

  14. Heat flux measurements

    NASA Technical Reports Server (NTRS)

    Liebert, Curt H.; Weikle, Donald H.

    1989-01-01

    A new automated, computer controlled heat flux measurement facility is described. Continuous transient and steady-state surface heat flux values varying from about 0.3 to 6 MW/sq m over a temperature range of 100 to 1200 K can be obtained in the facility. An application of this facility is the development of heat flux gauges for continuous fast transient surface heat flux measurement on turbine blades operating in space shuttle main engine turbopumps. The facility is useful for durability testing at fast temperature transients.

  15. Aspects of flux compactification

    NASA Astrophysics Data System (ADS)

    Liu, Tao

    In this thesis, we study three main aspects of flux compactifications: (1) classify supergravity solutions from flux compactification; (2) construct flux-deformed geometry and 4D low-energy theory to describe these flux vacua; and (3) study 4D particle phenomenology and cosmology of flux vacua. In the first part, we review G-structure, the basic tool to study supersymmetric flux solutions, and some typical solutions obtained in heterotic, type IIA and type IIB string theories. Then we present a comprehensive classification of supersymmetric vacua of M-theory compactification on 7D manifolds with general four-form fluxes. We analyze the cases where the resulting four-dimensional vacua have N = 1, 2, 3, 4 supersymmetry and the internal space allows for SU(2)-, SU(3)- or G 2-structures. In particular, we find for N = 2 supersymmetry, that the external space-time is Minkowski and the base manifold of the internal space is conformally Kahler for SU(2) structures, while for SU(3) structures the internal space has to be Einstein-Sasaki and no internal fluxes are allowed. Moreover, we provide a new vacuum with N = 1 supersymmetry and SU(3) structure, where all fluxes are non-zero and the first order differential equations are solved. In the second part, we simply review the methods used to construct one subclass of fluxed-deformed geometry or the so-called "twisted manifold", and the associated 4D effective theory describing these flux vacua. Then by employing (generalized) Scherk-Schwarz reduction, we construct the geometric twisting for Calabi-Yau manifolds of Voisin-Borcea type (K 3 x T2)/ Z2 and study the superpotential in a type IIA orientifold based on this geometry. The twists modify the direct product by fibering the K 3 over T2 while preserving the Z2 involution. As an important application, the Voisin-Borcea class contains T6/( Z2 x Z2 ), the usual setting for intersecting D6 brane model building. Past work in this context considered only those twists inherited

  16. Kalman Orbit Optimized Loop Tracking

    NASA Technical Reports Server (NTRS)

    Young, Lawrence E.; Meehan, Thomas K.

    2011-01-01

    Under certain conditions of low signal power and/or high noise, there is insufficient signal to noise ratio (SNR) to close tracking loops with individual signals on orbiting Global Navigation Satellite System (GNSS) receivers. In addition, the processing power available from flight computers is not great enough to implement a conventional ultra-tight coupling tracking loop. This work provides a method to track GNSS signals at very low SNR without the penalty of requiring very high processor throughput to calculate the loop parameters. The Kalman Orbit-Optimized Loop (KOOL) tracking approach constitutes a filter with a dynamic model and using the aggregate of information from all tracked GNSS signals to close the tracking loop for each signal. For applications where there is not a good dynamic model, such as very low orbits where atmospheric drag models may not be adequate to achieve the required accuracy, aiding from an IMU (inertial measurement unit) or other sensor will be added. The KOOL approach is based on research JPL has done to allow signal recovery from weak and scintillating signals observed during the use of GPS signals for limb sounding of the Earth s atmosphere. That approach uses the onboard PVT (position, velocity, time) solution to generate predictions for the range, range rate, and acceleration of the low-SNR signal. The low- SNR signal data are captured by a directed open loop. KOOL builds on the previous open loop tracking by including feedback and observable generation from the weak-signal channels so that the MSR receiver will continue to track and provide PVT, range, and Doppler data, even when all channels have low SNR.

  17. N/sub 2/O fluxes at the soil-atmosphere interface in various ecosystems and the global N/sub 2/O budget. Final report, 1 October 1985-30 June 1987

    SciTech Connect

    Banin, A.

    1987-01-01

    The overall purpose of this research task is to study the effects of soil properties and ecosystem variables on N/sub 2/O exchanges at the soil-atmosphere interface, and to assess their effects on the globle N/sub 2/O budget. Experimental procedures are implemented in various sites to measure the source/sink relations of N/sub 2/O at the soil-atmosphere interface over prolonged periods of time as part of the research of biogeochemical cycling in terrestrial ecosystems. A data-base for establishing quantitative correlations between N/sub 2/O fluxes and soil and environmental parameters that are of potential use for remote sensing, is being developed.

  18. Video Meteor Fluxes

    NASA Technical Reports Server (NTRS)

    Campbell-Brown, M. D.; Braid, D.

    2011-01-01

    The flux of meteoroids, or number of meteoroids per unit area per unit time, is critical for calibrating models of meteoroid stream formation and for estimating the hazard to spacecraft from shower and sporadic meteors. Although observations of meteors in the millimetre to centimetre size range are common, flux measurements (particularly for sporadic meteors, which make up the majority of meteoroid flux) are less so. It is necessary to know the collecting area and collection time for a given set of observations, and to correct for observing biases and the sensitivity of the system. Previous measurements of sporadic fluxes are summarized in Figure 1; the values are given as a total number of meteoroids striking the earth in one year to a given limiting mass. The Gr n et al. (1985) flux model is included in the figure for reference. Fluxes for sporadic meteoroids impacting the Earth have been calculated for objects in the centimeter size range using Super-Schmidt observations (Hawkins & Upton, 1958); this study used about 300 meteors, and used only the physical area of overlap of the cameras at 90 km to calculate the flux, corrected for angular speed of meteors, since a large angular speed reduces the maximum brightness of the meteor on the film, and radiant elevation, which takes into account the geometric reduction in flux when the meteors are not perpendicular to the horizontal. They bring up corrections for both partial trails (which tends to increase the collecting area) and incomplete overlap at heights other than 90 km (which tends to decrease it) as effects that will affect the flux, but estimated that the two effects cancelled one another. Halliday et al. (1984) calculated the flux of meteorite-dropping fireballs with fragment masses greater than 50 g, over the physical area of sky accessible to the MORP fireball cameras, counting only observations in clear weather. In the micron size range, LDEF measurements of small craters on spacecraft have been used to

  19. The Effects of Disturbance and Climate on Carbon Storage and the Exchanges of CO2 Water Vapor and Energy Exchange of Evergreen Coniferous Forests in the Pacific Northwest: Integration of Eddy Flux, Plant and Soil Measurements at a Cluster of Supersites. Final report

    SciTech Connect

    Beverly E. Law; Thomas, Christoph K.

    2011-09-20

    This is the final technical report containing a summary of all findings with regard to the following objectives of the project: (1) To quantify and understand the effects of wildfire on carbon storage and the exchanges of energy, CO2, and water vapor in a chronosequence of ponderosa pine (disturbance gradient); (2) To investigate the effects of seasonal and interannual variation in climate on carbon storage and the exchanges of energy, CO2, and water vapor in mature conifer forests in two climate zones: mesic 40-yr old Douglas-fir and semi-arid 60-yr old ponderosa pine (climate gradient); (3) To reduce uncertainty in estimates of CO2 feedbacks to the atmosphere by providing an improved model formulation for existing biosphere-atmosphere models; and (4) To provide high quality data for AmeriFlux and the NACP on micrometeorology, meteorology, and biology of these systems. Objective (1): A study integrating satellite remote sensing, AmeriFlux data, and field surveys in a simulation modeling framework estimated that the pyrogenic carbon emissions, tree mortality, and net carbon exchange associated with four large wildfires that burned ~50,000 hectares in 2002-2003 were equivalent to 2.4% of Oregon statewide anthropogenic carbon emissions over the same two-year period. Most emissions were from the combustion of the forest floor and understory vegetation, and only about 1% of live tree mass was combusted on average. Objective (2): A study of multi-year flux records across a chronosequence of ponderosa pine forests yielded that the net carbon uptake is over three times greater at a mature pine forest compared with young pine. The larger leaf area and wetter and cooler soils of the mature forest mainly caused this effect. A study analyzing seven years of carbon and water dynamics showed that interannual and seasonal variability of net carbon exchange was primarily related to variability in growing season length, which was a linear function of plant-available soil moisture

  20. Steady and nonsteady siphon flow in hot coronal loops

    SciTech Connect

    Robb, T.D.; Cally, P.S. High Altitude Observatory, Boulder, CO )

    1992-09-01

    Siphon flow in hot coronal loops is examined, in both its steady and dynamic states, in the latter case using a flux-corrected transport simulation. We find that such flows are inhibited by (1) low heating rates, (2) high pressures, (3) short loop lengths, and (4) turbulence. In accordance with expectations, we find that small footpoint pressure asymmetries produce steady subsonic flow. However, the standard picture that larger values yield standing shocks is shown to be valid only for sufficiently high heating, long loops, or low pressure. Values of these parameters more characteristic of active regions produce instead a quasi-periodic surge flow when the pressure asymmetry exceeds a critical value at which the temperature gradient at the inflow end reverses sign. These flows are normally subsonic, though examples can be found where the surge is supersonic for a part of each period. The difficulty of driving substantial siphon flows for realistic hot loop models is in accordance with the comparative rarity of observations of these flows. 37 refs.

  1. Automated event generation for loop-induced processes

    DOE PAGESBeta

    Hirschi, Valentin; Mattelaer, Olivier

    2015-10-22

    We present the first fully automated implementation of cross-section computation and event generation for loop-induced processes. This work is integrated in the MadGraph5_aMC@NLO framework. We describe the optimisations implemented at the level of the matrix element evaluation, phase space integration and event generation allowing for the simulation of large multiplicity loop-induced processes. Along with some selected differential observables, we illustrate our results with a table showing inclusive cross-sections for all loop-induced hadronic scattering processes with up to three final states in the SM as well as for some relevant 2 → 4 processes. Furthermore, many of these are computed heremore » for the first time.« less

  2. Automated event generation for loop-induced processes

    NASA Astrophysics Data System (ADS)

    Hirschi, Valentin; Mattelaer, Olivier

    2015-10-01

    We present the first fully automated implementation of cross-section computation and event generation for loop-induced processes. This work is integrated in the M adG raph5_ aMC@NLO framework. We describe the optimisations implemented at the level of the matrix element evaluation, phase space integration and event generation allowing for the simulation of large multiplicity loop-induced processes. Along with some selected differential observables, we illustrate our results with a table showing inclusive cross-sections for all loop-induced hadronic scattering processes with up to three final states in the SM as well as for some relevant 2 → 4 processes. Many of these are computed here for the first time.

  3. Automated event generation for loop-induced processes

    SciTech Connect

    Hirschi, Valentin; Mattelaer, Olivier

    2015-10-22

    We present the first fully automated implementation of cross-section computation and event generation for loop-induced processes. This work is integrated in the MadGraph5_aMC@NLO framework. We describe the optimisations implemented at the level of the matrix element evaluation, phase space integration and event generation allowing for the simulation of large multiplicity loop-induced processes. Along with some selected differential observables, we illustrate our results with a table showing inclusive cross-sections for all loop-induced hadronic scattering processes with up to three final states in the SM as well as for some relevant 2 → 4 processes. Furthermore, many of these are computed here for the first time.

  4. LCLS Spectral Flux Viewer

    2005-10-25

    This application (FluxViewer) is a tool for displaying spectral flux data for the Linac Coherent Light Source (LCLS). This tool allows the user to view sliced spatial and energy distributions of the photons selected for specific energies and positions transverse to the beam axis.

  5. Criteria for saturated magnetization loop

    NASA Astrophysics Data System (ADS)

    Harres, A.; Mikhov, M.; Skumryev, V.; Andrade, A. M. H. de; Schmidt, J. E.; Geshev, J.

    2016-03-01

    Proper estimation of magnetization curve parameters is vital in studying magnetic systems. In the present article, criteria for discrimination non-saturated (minor) from saturated (major) hysteresis loops are proposed. These employ the analysis of (i) derivatives of both ascending and descending branches of the loop, (ii) remanent magnetization curves, and (iii) thermomagnetic curves. Computational simulations are used in order to demonstrate their validity. Examples illustrating the applicability of these criteria to well-known real systems, namely Fe3O4 and Ni fine particles, are provided. We demonstrate that the anisotropy-field value estimated from a visual examination of an only apparently major hysteresis loop could be more than two times lower than the real one.

  6. Digital phase-lock loop

    NASA Technical Reports Server (NTRS)

    Thomas, Jr., Jess B. (Inventor)

    1991-01-01

    An improved digital phase lock loop incorporates several distinctive features that attain better performance at high loop gain and better phase accuracy. These features include: phase feedback to a number-controlled oscillator in addition to phase rate; analytical tracking of phase (both integer and fractional cycles); an amplitude-insensitive phase extractor; a more accurate method for extracting measured phase; a method for changing loop gain during a track without loss of lock; and a method for avoiding loss of sampled data during computation delay, while maintaining excellent tracking performance. The advantages of using phase and phase-rate feedback are demonstrated by comparing performance with that of rate-only feedback. Extraction of phase by the method of modeling provides accurate phase measurements even when the number-controlled oscillator phase is discontinuously updated.

  7. Engineering flat electronic bands in quasiperiodic and fractal loop geometries

    NASA Astrophysics Data System (ADS)

    Nandy, Atanu; Chakrabarti, Arunava

    2015-11-01

    Exact construction of one electron eigenstates with flat, non-dispersive bands, and localized over clusters of various sizes is reported for a class of quasi-one-dimensional looped networks. Quasiperiodic Fibonacci and Berker fractal geometries are embedded in the arms of the loop threaded by a uniform magnetic flux. We work out an analytical scheme to unravel the localized single particle states pinned at various atomic sites or over clusters of them. The magnetic field is varied to control, in a subtle way, the extent of localization and the location of the flat band states in energy space. In addition to this we show that an appropriate tuning of the field can lead to a re-entrant behavior of the effective mass of the electron in a band, with a periodic flip in its sign.

  8. Novel Numerical Approaches to Loop Quantum Cosmology

    NASA Astrophysics Data System (ADS)

    Diener, Peter

    2015-04-01

    Loop Quantum Gravity (LQG) is an (as yet incomplete) approach to the quantization of gravity. When applied to symmetry reduced cosmological spacetimes (Loop Quantum Cosmology or LQC) one of the predictions of the theory is that the Big Bang is replaced by a Big Bounce, i.e. a previously existing contracting universe underwent a bounce at finite volume before becoming our expanding universe. The evolution equations of LQC take the form of difference equations (with the discretization given by the theory) that in the large volume limit can be approximated by partial differential equations (PDEs). In this talk I will first discuss some of the unique challenges encountered when trying to numerically solve these difference equations. I will then present some of the novel approaches that have been employed to overcome the challenges. I will here focus primarily on the Chimera scheme that takes advantage of the fact that the LQC difference equations can be approximated by PDEs in the large volume limit. I will finally also briefly discuss some of the results that have been obtained using these numerical techniques by performing simulations in regions of parameter space that were previously unreachable. This work is supported by a grant from the John Templeton Foundation and by NSF grant PHYS1068743.

  9. Loop quantization of the Schwarzschild interior revisited

    NASA Astrophysics Data System (ADS)

    Corichi, Alejandro; Singh, Parampreet

    2016-03-01

    The loop quantization of the Schwarzschild interior region, as described by a homogeneous anisotropic Kantowski-Sachs model, is re-examined. As several studies of different—inequivalent—loop quantizations have shown, to date there exists no fully satisfactory quantum theory for this model. This fact poses challenges to the validity of some scenarios to address the black hole information problem. Here we put forward a novel viewpoint to construct the quantum theory that builds from some of the models available in the literature. The final picture is a quantum theory that is both independent of any auxiliary structure and possesses a correct low curvature limit. It represents a subtle but non-trivial modification of the original prescription given by Ashtekar and Bojowald. It is shown that the quantum gravitational constraint is well defined past the singularity and that its effective dynamics possesses a bounce into an expanding regime. The classical singularity is avoided, and a semiclassical spacetime satisfying vacuum Einstein’s equations is recovered on the ‘other side’ of the bounce. We argue that such a metric represents the interior region of a white-hole spacetime, but for which the corresponding ‘white hole mass’ differs from the original black hole mass. Furthermore, we find that the value of the white hole mass is proportional to the third power of the starting black hole mass.

  10. Many Ways to Loop DNA

    PubMed Central

    Griffith, Jack D.

    2013-01-01

    In the 1960s, I developed methods for directly visualizing DNA and DNA-protein complexes using an electron microscope. This made it possible to examine the shape of DNA and to visualize proteins as they fold and loop DNA. Early applications included the first visualization of true nucleosomes and linkers and the demonstration that repeating tracts of adenines can cause a curvature in DNA. The binding of DNA repair proteins, including p53 and BRCA2, has been visualized at three- and four-way junctions in DNA. The trombone model of DNA replication was directly verified, and the looping of DNA at telomeres was discovered. PMID:24005675

  11. Mechanism of promoter repression by Lac repressor-DNA loops.

    PubMed

    Becker, Nicole A; Peters, Justin P; Maher, L James; Lionberger, Troy A

    2013-01-01

    The Escherichia coli lactose (lac) operon encodes the first genetic switch to be discovered, and lac remains a paradigm for studying negative and positive control of gene expression. Negative control is believed to involve competition of RNA polymerase and Lac repressor for overlapping binding sites. Contributions to the local Lac repressor concentration come from free repressor and repressor delivered to the operator from remote auxiliary operators by DNA looping. Long-standing questions persist concerning the actual role of DNA looping in the mechanism of promoter repression. Here, we use experiments in living bacteria to resolve four of these questions. We show that the distance dependence of repression enhancement is comparable for upstream and downstream auxiliary operators, confirming the hypothesis that repressor concentration increase is the principal mechanism of repression loops. We find that as few as four turns of DNA can be constrained in a stable loop by Lac repressor. We show that RNA polymerase is not trapped at repressed promoters. Finally, we show that constraining a promoter in a tight DNA loop is sufficient for repression even when promoter and operator do not overlap. PMID:23143103

  12. Loop quantum cosmology of Bianchi type I models

    SciTech Connect

    Ashtekar, Abhay; Wilson-Ewing, Edward

    2009-04-15

    The ''improved dynamics'' of loop quantum cosmology is extended to include anisotropies of the Bianchi type I model. As in the isotropic case, a massless scalar field serves as a relational time parameter. However, the extension is nontrivial because one has to face several conceptual subtleties as well as technical difficulties. These include a better understanding of the relation between loop quantum gravity and loop quantum cosmology, handling novel features associated with the nonlocal field strength operator in presence of anisotropies, and finding dynamical variables that make the action of the Hamiltonian constraint manageable. Our analysis provides a conceptually complete description that overcomes limitations of earlier works. We again find that the big-bang singularity is resolved by quantum geometry effects but, because of the presence of Weyl curvature, Planck scale physics is now much richer than in the isotropic case. Since the Bianchi I models play a key role in the Belinskii, Khalatnikov, Lifshitz conjecture on the nature of generic spacelike singularities in general relativity, the quantum dynamics of Bianchi I cosmologies is likely to provide considerable intuition about the fate of generic spacelike singularities in quantum gravity. Finally, we show that the quantum dynamics of Bianchi I cosmologies projects down exactly to that of the Friedmann model. This opens a new avenue to relate more complicated models to simpler ones, thereby providing a new tool to relate the quantum dynamics of loop quantum gravity to that of loop quantum cosmology.

  13. Wilson loop OPE, analytic continuation and multi-Regge limit

    NASA Astrophysics Data System (ADS)

    Hatsuda, Yasuyuki

    2014-10-01

    We explore a direct connection between the collinear limit and the multi-Regge limit for scattering amplitudes in the = 4 super Yang-Mills theory. Starting with the collinear expansion for the six-gluon amplitude in the Euclidean kinematic region, we perform an analytic continuation term by term to the so-called Mandelstam region. We find that the result coincides with the collinear expansion of the analytically continued amplitude. We then take the multi-Regge limit, and conjecture that the final result precisely reproduces the one from the BFKL approach. Combining this procedure with the OPE for null polygonal Wilson loops, we explicitly compute the leading contribution in the "collinear-Regge" limit up to five loops. Our results agree with all the known results up to four loops. At five-loop, our results up to the next-to-next-to-leading logarithmic approximation (NNLLA) also reproduce the known results, and for the N3LLA and the N4LLA give non-trivial predictions. We further present an all-loop prediction for the imaginary part of the next-to-double-leading logarithmic approximation. Our procedure has a possibility of an interpolation from weak to strong coupling in the multi-Regge limit with the help of the OPE.

  14. Performance Analysis of Digital Tracking Loops for Telemetry Ranging Applications

    NASA Astrophysics Data System (ADS)

    Vilnrotter, V.; Hamkins, J.; Xie, H.; Ashrafi, S.

    2015-08-01

    In this article, we analyze mathematical models of digital loops used to track the phase and timing of communications and navigation signals. The limits on the accuracy of phase and timing estimates play a critical role in the accuracy achievable in telemetry ranging applications. We describe in detail a practical algorithm to compute the loop parameters for discrete update (DU) and continuous update (CU) loop formulations, and we show that a simple power-series approximation to the DU model is valid over a large range of time-bandwidth product . Several numerical examples compare the estimation error variance of the DU and CU models to each other and to Cramer-Rao lower bounds. Finally, the results are applied to the problem of ranging, by evaluating the performance of a phase-locked loop designed to track a typical ambiguity-resolving pseudonoise (PN) code received and demodulated at the spacecraft on the uplink part of the two-way ranging link, and a data transition tracking loop (DTTL) on the downlink part.

  15. UPFLOWS IN FUNNEL-LIKE LEGS OF CORONAL MAGNETIC LOOPS

    SciTech Connect

    Tian Hui; Marsch, Eckart; Curdt, Werner; He, Jiansen

    2009-10-10

    The prominent blueshifts of Ne VIII associated with the junctions of the magnetic network in the quiet Sun are still not well understood. By comparing the coronal magnetic-field structures as obtained by a potential-field reconstruction with the conspicuous blueshift patches on the Dopplergram of Ne VIII as observed in an equatorial quiet-Sun region, we find that most of the regions with significant upflow are associated with the funnel-like legs of magnetic loops and cospatial with increments of the line width. These quasi-steady upflows can be regarded as the signatures of mass supply to coronal loops. By using the square root of the line intensity as a proxy for the plasma density, the mass flux of the upflow in each funnel can be estimated. We find that the mass flux is anti-correlated with the funnel's expansion factor as determined from the extrapolated magnetic field. One of the loop systems is associated with a coronal bright point, which was observed by several instruments and exhibited various morphologies in different wavelengths and viewing directions. A remarkable agreement between its magnetic structure and the associated EUV emission pattern was found, suggesting an almost potential-field nature of the coronal magnetic field. We also report the direct detection of a small-scale siphon flow by both STEREO satellites. However, this transient siphon flow occurred in a weak mixed-polarity-field region, which was outside the adjacent magnetic funnel, and thus it is perhaps not related to plasma upflow in the funnel. Based on these observations, we suggest that at upper transition region (TR) temperatures the dominant flows in quiet-Sun coronal loops are long-lasting upflows rather than siphon flows. We also discuss the implications of our results for coronal heating and unresolved magnetic structures.

  16. Simulation of Neutrino Flux in NO νA

    NASA Astrophysics Data System (ADS)

    Maan, Kuldeep; Duyang, Hongyue; Mishra, Sanjib; NOvA Collaboration Collaboration

    2015-04-01

    We present the status of the simulation of the neutrino flux in NO νA. Effects of various error conditions in the beam-transport on the νμ and νe flux at the near (ND) and far (FD) detectors is evaluated. The NDOS data are used to constrain the Kaon contribution to the νe flux. Finally, the ND data are used to constrain the muon-induced νe. NO νA Collaboration, Fermilab.

  17. Scale without conformal invariance at three loops

    NASA Astrophysics Data System (ADS)

    Fortin, Jean-François; Grinstein, Benjamín; Stergiou, Andreas

    2012-08-01

    We carry out a three-loop computation that establishes the existence of scale without conformal invariance in dimensional regularization with the MS scheme in unitary theories in d = 4 - ɛ spacetime dimensions. We also comment on the effects of scheme changes in theories with many couplings, as well as in theories that live on non-conformal scale-invariant renormalization group trajectories. Stability properties of such trajectories are analyzed, revealing both attractive and repulsive directions in a specific example. We explain how our results are in accord with those of Jack & Osborn on a c-theorem in d = 4 (and d = 4 - ɛ) dimensions. Finally, we point out that limit cycles with turning points are unlike limit cycles with continuous scale invariance.

  18. A Lagrangian approach to the Loop Current eddy separation

    NASA Astrophysics Data System (ADS)

    Andrade-Canto, F.; Sheinbaum, J.; Zavala Sansón, L.

    2013-01-01

    Determining when and how a Loop Current eddy (LCE) in the Gulf of Mexico will finally separate is a difficult task, since several detachment re-attachment processes can occur during one of these events. Separation is usually defined based on snapshots of Eulerian fields such as sea surface height (SSH) but here we suggest that a Lagrangian view of the LCE separation process is more appropriate and objective. The basic idea is very simple: separation should be defined whenever water particles from the cyclonic side of the Loop Current move swiftly from the Yucatan Peninsula to the Florida Straits instead of penetrating into the NE Gulf of Mexico. The properties of backward-time finite time Lyapunov exponents (FTLE) computed from a numerical model of the Gulf of Mexico and Caribbean Sea are used to estimate the "skeleton" of flow and the structures involved in LCE detachment events. An Eulerian metric is defined, based on the slope of the strain direction of the instantaneous hyperbolic point of the Loop Current anticyclone that provides useful information to forecast final LCE detachments. We highlight cases in which an LCE separation metric based on SSH contours (Leben, 2005) suggests there is a separated LCE that later reattaches, whereas the slope method and FTLE structure indicate the eddy remains dynamically connected to the Loop Current during the process.

  19. Intramolecular Nuclear Flux Densities

    NASA Astrophysics Data System (ADS)

    Barth, I.; Daniel, C.; Gindensperger, E.; Manz, J.; PéRez-Torres, J. F.; Schild, A.; Stemmle, C.; Sulzer, D.; Yang, Y.

    The topic of this survey article has seen a renaissance during the past couple of years. Here we present and extend the results for various phenomena which we have published from 2012-2014, with gratitude to our coauthors. The new phenomena include (a) the first reduced nuclear flux densities in vibrating diatomic molecules or ions which have been deduced from experimental pump-probe spectra; these "experimental" nuclear flux densities reveal several quantum effects including (b) the "quantum accordion", i.e., during the turn from bond stretch to bond compression, the diatomic system never stands still — instead, various parts of it with different bond lengths flow into opposite directions. (c) Wavepacket interferometry has been extended from nuclear densities to flux densities, again revealing new phenomena: For example, (d) a vibrating nuclear wave function with compact initial shape may split into two partial waves which run into opposite directions, thus causing interfering flux densities. (e) Tunneling in symmetric 1-dimensional double-well systems yields maximum values of the associated nuclear flux density just below the potential barrier; this is in marked contrast with negligible values of the nuclear density just below the barrier. (f) Nuclear flux densities of pseudorotating nuclei may induce huge magnetic fields. A common methodologic theme of all topics is the continuity equation which connects the time derivative of the nuclear density to the divergence of the flux density, subject to the proper boundary conditions. (g) Nearly identical nuclear densities with different boundary conditions may be related to entirely different flux densities, e.g., during tunneling in cyclic versus non-cyclic systems. The original continuity equation, density and flux density of all nuclei, or of all nuclear degrees of freedom, may be reduced to the corresponding quantities for just a single nucleus, or just a single degree of freedom.

  20. Directed flux motor

    NASA Technical Reports Server (NTRS)

    Wilson, Andrew (Inventor); Punnoose, Andrew (Inventor); Strausser, Katherine (Inventor); Parikh, Neil (Inventor)

    2011-01-01

    A directed flux motor described utilizes the directed magnetic flux of at least one magnet through ferrous material to drive different planetary gear sets to achieve capabilities in six actuated shafts that are grouped three to a side of the motor. The flux motor also utilizes an interwoven magnet configuration which reduces the overall size of the motor. The motor allows for simple changes to modify the torque to speed ratio of the gearing contained within the motor as well as simple configurations for any number of output shafts up to six. The changes allow for improved manufacturability and reliability within the design.

  1. Heat Flux Sensor

    NASA Technical Reports Server (NTRS)

    1994-01-01

    A heat flux microsensor developed under a NASP Small Business Innovation Research (SBIR) has a wide range of potential commercial applications. Vatell Corporation originally designed microsensors for use in very high temperatures. The company then used the technology to develop heat flux sensors to measure the rate of heat energy flowing in and out of a surface as well as readings on the surface temperature. Additional major advantages include response to heat flux in less than 10 microseconds and the ability to withstand temperatures up to 1,200 degrees centigrade. Commercial applications are used in high speed aerodynamics, supersonic combustion, blade cooling, and mass flow measurements, etc.

  2. Radio diagnostic of loop oscillations with wavy zebra patterns

    NASA Astrophysics Data System (ADS)

    Zlotnik, E. Ya.; Zaitsev, V. V.; Aurass, H.

    The possible reasons for the wave-like frequency drift of zebra stripes in solar radio emission are analysed. For the event of October 25, 1994 recorded by the radio spectrograph of the Astrophysical Institute Potsdam (AIP) it is shown that if the zebra pattern is due to the effect of the double plasma resonance in an inhomogeneous coronal loop, then the oscillating change of zebra stripes frequencies may be associated with fast magneto-sonic (FMS) oscillations of the magnetic flux tube. Such a conclusion is based on the agreement of the theoretically predicted FMS-mode period and its dependence on the harmonic number with the observed values.

  3. Aharonov-Bohm effect without closing a loop

    SciTech Connect

    Retzker, A.; Nussinov, S.; Reznik, B.; Aharonov, Y.; Botero, A.

    2006-03-15

    We discuss the consequences of the Aharonov-Bohm (AB) effect in setups involving several charged particles, wherein none of the charged particles encloses a closed loop around the magnetic flux. We show that in such setups, the AB phase is encoded either in the relative phase of a bipartite or multipartite entangled photons states, or alternatively, gives rise to an overall AB phase that can be measured relative to another reference system. These setups involve processes of annihilation or creation of electron-hole pairs. We discuss the relevance of such effects in 'vacuum birefringence' in QED, and comment on their connection to other known effects.

  4. Closed-Loop Neuromorphic Benchmarks.

    PubMed

    Stewart, Terrence C; DeWolf, Travis; Kleinhans, Ashley; Eliasmith, Chris

    2015-01-01

    Evaluating the effectiveness and performance of neuromorphic hardware is difficult. It is even more difficult when the task of interest is a closed-loop task; that is, a task where the output from the neuromorphic hardware affects some environment, which then in turn affects the hardware's future input. However, closed-loop situations are one of the primary potential uses of neuromorphic hardware. To address this, we present a methodology for generating closed-loop benchmarks that makes use of a hybrid of real physical embodiment and a type of "minimal" simulation. Minimal simulation has been shown to lead to robust real-world performance, while still maintaining the practical advantages of simulation, such as making it easy for the same benchmark to be used by many researchers. This method is flexible enough to allow researchers to explicitly modify the benchmarks to identify specific task domains where particular hardware excels. To demonstrate the method, we present a set of novel benchmarks that focus on motor control for an arbitrary system with unknown external forces. Using these benchmarks, we show that an error-driven learning rule can consistently improve motor control performance across a randomly generated family of closed-loop simulations, even when there are up to 15 interacting joints to be controlled. PMID:26696820

  5. Closing the Loop with Exercises

    ERIC Educational Resources Information Center

    Altizer, Andy

    2008-01-01

    Conducting exercises provides a critical bridge between the theory of an Emergency Action Plan and its effective implementation. When conducted properly, exercises can fill the gap between training and after-action review to close the preparedness loop--before an actual emergency occurs. Often exercises are planned and conducted on campus based on…

  6. Telomeres thrown for a loop.

    PubMed

    Haber, James E

    2004-11-19

    A remarkable paper from the de Lange lab (Wang et al., 2004) in a recent issue of Cell reveals that homologous recombination can result in the abrupt shortening of telomeres in a process that appears to involve reciprocal crossing over within the t-loop structure that protects chromosome ends.

  7. Closed-Loop Neuromorphic Benchmarks

    PubMed Central

    Stewart, Terrence C.; DeWolf, Travis; Kleinhans, Ashley; Eliasmith, Chris

    2015-01-01

    Evaluating the effectiveness and performance of neuromorphic hardware is difficult. It is even more difficult when the task of interest is a closed-loop task; that is, a task where the output from the neuromorphic hardware affects some environment, which then in turn affects the hardware's future input. However, closed-loop situations are one of the primary potential uses of neuromorphic hardware. To address this, we present a methodology for generating closed-loop benchmarks that makes use of a hybrid of real physical embodiment and a type of “minimal” simulation. Minimal simulation has been shown to lead to robust real-world performance, while still maintaining the practical advantages of simulation, such as making it easy for the same benchmark to be used by many researchers. This method is flexible enough to allow researchers to explicitly modify the benchmarks to identify specific task domains where particular hardware excels. To demonstrate the method, we present a set of novel benchmarks that focus on motor control for an arbitrary system with unknown external forces. Using these benchmarks, we show that an error-driven learning rule can consistently improve motor control performance across a randomly generated family of closed-loop simulations, even when there are up to 15 interacting joints to be controlled. PMID:26696820

  8. Design of set-point weighting PIλ + Dμ controller for vertical magnetic flux controller in Damavand tokamak.

    PubMed

    Rasouli, H; Fatehi, A

    2014-12-01

    In this paper, a simple method is presented for tuning weighted PI(λ) + D(μ) controller parameters based on the pole placement controller of pseudo-second-order fractional systems. One of the advantages of this controller is capability of reducing the disturbance effects and improving response to input, simultaneously. In the following sections, the performance of this controller is evaluated experimentally to control the vertical magnetic flux in Damavand tokamak. For this work, at first a fractional order model is identified using output-error technique in time domain. For various practical experiments, having desired time responses for magnetic flux in Damavand tokamak, is vital. To approach this, at first the desired closed loop reference models are obtained based on generalized characteristic ratio assignment method in fractional order systems. After that, for the identified model, a set-point weighting PI(λ) + D(μ) controller is designed and simulated. Finally, this controller is implemented on digital signal processor control system of the plant to fast/slow control of magnetic flux. The practical results show appropriate performance of this controller.

  9. Numerical simulations of transverse oscillations in radiatively cooling coronal loops

    NASA Astrophysics Data System (ADS)

    Magyar, Norbert; Van Doorsselaere, Tom; Marcu, Alexandru

    2016-05-01

    We aim to study the influence of radiative cooling on the standing kink oscillations of coronal loops. To solve the 3D MHD ideal problem, we use the FLASH code. Our model consists of a straight, density enhanced and gravitationally stratified magnetic flux tube. We perturbed the system initially, leading to a transverse oscillation of the structure, and followed its evolution for a number of periods. A realistic radiative cooling is implemented. Results are compared to available analytical theory. We find that in the linear regime (i.e. low amplitude perturbation and slow cooling) the obtained period and damping time are in good agreement with theory. The cooling leads to an amplification of the oscillation amplitude. However, the difference between the cooling and non-cooling cases is small (around 6% after 6 oscillations). In high amplitude runs with realistic cooling, instabilities deform the loop, leading to increased damping. In this case, the difference between cooling and non-cooling is still negligible at around 12%. A set of simulations with higher density loops are also performed, to explore what happens when the cooling takes place in a very short time (t cool ≈ 100 s). In this case, the difference in amplitude after nearly 3 oscillation periods for the low amplitude case is 21% between cooling and non-cooling cases. We strengthen the results of previous analytical studies that state that the amplification due to cooling is ineffective, and its influence on the oscillation characteristics is small, at least for the cases shown here. Furthermore, the presence of a relatively strong damping in the high amplitude runs even in the fast cooling case indicates that it is unlikely that cooling could alone account for the observed, flare-related undamped oscillations of coronal loops. These results may be significant in the field of coronal seismology, allowing its application to coronal loop oscillations with observed fading-out or cooling behaviour.

  10. Digital signal processing control of induction machine`s torque and stator flux utilizing the direct stator flux field orientation method

    SciTech Connect

    Seiz, J.B.

    1997-04-01

    This paper presents a review of the Direct Stator Flux Field Orientation control method. This method can be used to control an induction motor`s torque and flux directly and is the application of interest for this thesis. This control method is implemented without the traditional feedback loops and associated hardware. Predictions are made, by mathematical calculations, of the stator voltage vector. The voltage vector is determined twice a switching period. The switching period is fixed throughout the analysis. The three phase inverter duty cycle necessary to control the torque and flux of the induction machine is determined by the voltage space vector Pulse Width Modulation (PWM) technique. Transient performance of either the flux or torque requires an alternate modulation scheme which is also addressed in this thesis. A block diagram of this closed loop system is provided. 22 figs., 7 tabs.

  11. MHD waves on solar magnetic flux tubes - Tutorial review

    NASA Technical Reports Server (NTRS)

    Hollweg, Joseph V.

    1990-01-01

    Some of the highly simplified models that have been developed for solar magnetic flux tubes, which are intense photospheric-level fields confined by external gas pressure but able to vary rapidly with height, are presently discussed with emphasis on the torsional Alfven mode's propagation, reflection, and non-WKB properties. The 'sausage' and 'kink' modes described by the thin flux-tube approximation are noted. Attention is also given to the surface waves and resonance absorption of X-ray-emitting loops, as well as to the results of recent work on the resonant instabilities that occur in the presence of bulk flows.

  12. Loop corrections to the antibrane potential

    NASA Astrophysics Data System (ADS)

    Bena, Iosif; Blåbäck, Johan; Turton, David

    2016-07-01

    Antibranes provide some of the most generic ways to uplift Anti-de Sitter flux compactifications to de Sitter, and there is a growing body of evidence that antibranes placed in long warped throats such as the Klebanov-Strassler warped deformed conifold solution have a brane-brane-repelling tachyon. This tachyon was first found in the regime of parameters in which the backreaction of the antibranes is large, and its existence was inferred from a highly nontrivial cancellation of certain terms in the inter-brane potential. We use a brane effective action approach, similar to that proposed by Michel, Mintun, Polchinski, Puhm and Saad in [29], to analyze antibranes in Klebanov-Strassler when their backreaction is small, and find a regime of parameters where all perturbative contributions to the action can be computed explicitly. We find that the cancellation found at strong coupling is also present in the weak-coupling regime, and we establish its existence to all loops. Our calculation indicates that the spectrum of the antibrane worldvolume theory is not gapped, and may generically have a tachyon. Hence uplifting mechanisms involving antibranes remain questionable even when backreaction is small.

  13. Loop quantum cosmology from quantum reduced loop gravity

    NASA Astrophysics Data System (ADS)

    Alesci, Emanuele; Cianfrani, Francesco

    2015-08-01

    We show how loop quantum cosmology can be derived as an effective semiclassical description of loop quantum gravity. Using the tools of QRLG, a gauge fixed version of LQG, we take the coherent states of the fundamental microscopic theory suitable to describe a Bianchi I Universe and we find a mapping between the expectation value of the Hamiltonian and the dynamics of LQC. Our results are in agreement with a lattice refinement framework for LQC, thus the so-called “old” and “improved-dynamics” regularization schemes can be reproduced. These amount to different choices of relations between local variables and the smeared ones entering the definition of the coherent states. The leading order of the fundamental theory corresponds to LQC, but we also find different inverse volume corrections, that depend on a purely quantum observable, namely the number of nodes of the states.

  14. Planar thin film SQUID with integral flux concentrator

    NASA Technical Reports Server (NTRS)

    Peters, Palmer N. (Inventor); Sisk, Robert C. (Inventor)

    1988-01-01

    A thin film SQUID is disclosed having improved flux concentration combined with simplicity of design and fabrication. The SQUID starts with a wafer like substrate having simple planar geometry. A large area of superconducting film is coated on the substrate, with a small open or uncoated area remaining at its center to define a SQUID loop, and a gap in the film formed, beginning at the outer circumferential edge of the substrate and extending radially inward to the open area. A Josephson junction is formed across the gap near the open area to interrupt the electrical continuity of the SQUID loop. A coil is attached to the surface of the substrate, electrically insulated from the superconducting film, and is energized to induce flux within the SQUID which is concentrated within the open area.

  15. Flux Rope Formation Preceding Coronal Mass Ejection Onset

    NASA Astrophysics Data System (ADS)

    Kliem, Bernhard; Green, L. M.

    2009-12-01

    We analyse the evolution of a sigmoidal (S shaped) active region toward eruption, which includes a coronal mass ejection (CME) but leaves part of the filament in place. The X-ray sigmoid is found to trace out three different magnetic topologies in succession: a highly sheared arcade of coronal loops in its long-lived phase, a bald-patch separatrix surface (BPSS) in the hours before the CME, and the first flare loops in its major transient intensity enhancement. The coronal evolution is driven by photospheric changes which involve the convergence and cancellation of flux elements under the sigmoid and filament. The data yield unambiguous evidence for the existence of a BPSS, and hence a flux rope, in the corona prior to the onset of the CME.

  16. FLUX ROPE FORMATION PRECEDING CORONAL MASS EJECTION ONSET

    SciTech Connect

    Green, L. M.; Kliem, B. E-mail: bhk@mssl.ucl.ac.uk

    2009-08-01

    We analyze the evolution of a sigmoidal (S-shaped) active region toward eruption, which includes a coronal mass ejection (CME) but leaves part of the filament in place. The X-ray sigmoid is found to trace out three different magnetic topologies in succession: a highly sheared arcade of coronal loops in its long-lived phase, a bald-patch separatrix surface (BPSS) in the hours before the CME, and the first flare loops in its major transient intensity enhancement. The coronal evolution is driven by photospheric changes which involve the convergence and cancellation of flux elements under the sigmoid and filament. The data yield unambiguous evidence for the existence of a BPSS, and hence a flux rope, in the corona prior to the onset of the CME.

  17. Hard thermal loops with a background plasma velocity

    NASA Astrophysics Data System (ADS)

    Metaxas, D.

    2003-03-01

    I consider the calculation of the two- and three-point functions for QED at finite temperature in the presence of a background plasma velocity. The final expressions are consistent with Lorentz invariance, gauge invariance and current conservation, pointing to a straightforward generalization of the hard-thermal-loop formalism to this physical situation. I also give the resulting expression for the effective action and identify the various terms.

  18. Evolution in a Braided Loop Ensemble

    NASA Video Gallery

    This braided loop has several loops near the 'base' that appear to be unwinding with significant apparent outflow. This is evidence of untwisting, and the braided structure also seeming to unwind w...

  19. Noise Performance Of A Digital Tanlock Loop

    NASA Technical Reports Server (NTRS)

    Hurd, W. J.; Pomalaza-Raez, C. A.

    1988-01-01

    Slight improvement over sinusoidal phase-lock loop achieved. Report discusses theoretical studies and numerical simulations of performance of digital tangent phase-lock loop (DTL), in presence of noise.

  20. Evaporation on/in Capillary Structures of High Heat Flux Two-Phase Devices

    NASA Technical Reports Server (NTRS)

    Faghri, Amir; Khrustalev, Dmitry

    1996-01-01

    Two-phase devices (heat pipes, capillary pumped loops, loop heat pipes, and evaporators) have become recognized as key elements in thermal control systems of space platforms. Capillary and porous structures are necessary and widely used in these devices, especially in high heat flux and zero-g applications, to provide fluid transport and enhanced heat transfer during vaporization and condensation. However, some unexpected critical phenomena, such as dryout in long heat pipe evaporators and high thermal resistance of loop heat pipe evaporators with high heat fluxes, are possible and have been encountered in the use of two-phase devices in the low gravity environment. Therefore, a detailed fundamental investigation is proposed to better understand the fluid behavior in capillary-porous structures during vaporization at high heat fluxes. The present paper addresses some theoretical aspects of this investigation.

  1. MODEL FOR ALFVEN WAVE TURBULENCE IN SOLAR CORONAL LOOPS: HEATING RATE PROFILES AND TEMPERATURE FLUCTUATIONS

    SciTech Connect

    Asgari-Targhi, M.; Van Ballegooijen, A. A.

    2012-02-10

    It has been suggested that the solar corona may be heated by dissipation of Alfven waves that propagate up from the solar photosphere. According to this theory, counterpropagating Alfven waves are subject to nonlinear interactions that lead to turbulent decay of the waves and heating of the chromospheric and coronal plasma. To test this theory, better models for the dynamics of Alfven waves in coronal loops are required. In this paper, we consider wave heating in an active region observed with the Solar Dynamics Observatory in 2010 May. First a three-dimensional (3D) magnetic model of the region is constructed, and ten magnetic field lines that match observed coronal loops are selected. For each loop we construct a 3D magnetohydrodynamic model of the Alfven waves near the selected field line. The waves are assumed to be generated by footpoint motions inside the kilogauss magnetic flux elements at the two ends of the loop. Based on such models, we predict the spatial and temporal profiles of the heating along the selected loops. We also estimate the temperature fluctuations resulting from such heating. We find that the Alfven wave turbulence model can reproduce the observed characteristics of the hotter loops in the active region core, but the loops at the periphery of the region have large expansion factors and are predicted to be thermally unstable.

  2. Fragmentation of cosmic-string loops

    NASA Technical Reports Server (NTRS)

    York, Thomas

    1989-01-01

    The fragmentation of cosmic string loops is discussed, and the results of a simulation of this process are presented. The simulation can evolve any of a large class of loops essentially exactly, including allowing fragments that collide to join together. Such reconnection enhances the production of small fragments, but not drastically. With or without reconnections, the fragmentation process produces a collection of nonself-intersecting loops whose typical length is on the order of the persistence length of the initial loop.

  3. THE RISE OF ACTIVE REGION FLUX TUBES IN THE TURBULENT SOLAR CONVECTIVE ENVELOPE

    SciTech Connect

    Weber, Maria A.; Fan Yuhong; Miesch, Mark S.

    2011-11-01

    We use a thin flux tube model in a rotating spherical shell of turbulent convective flows to study how active region scale flux tubes rise buoyantly from the bottom of the convection zone to near the solar surface. We investigate toroidal flux tubes at the base of the convection zone with field strengths ranging from 15 kG to 100 kG at initial latitudes ranging from 1{sup 0} to 40{sup 0} with a total flux of 10{sup 22} Mx. We find that the dynamic evolution of the flux tube changes from convection dominated to magnetic buoyancy dominated as the initial field strength increases from 15 kG to 100 kG. At 100 kG, the development of {Omega}-shaped rising loops is mainly controlled by the growth of the magnetic buoyancy instability. However, at low field strengths of 15 kG, the development of rising {Omega}-shaped loops is largely controlled by convective flows, and properties of the emerging loops are significantly changed compared to previous results in the absence of convection. With convection, rise times are drastically reduced (from years to a few months), loops are able to emerge at low latitudes, and tilt angles of emerging loops are consistent with Joy's law for initial field strengths of {approx}>40 kG. We also examine other asymmetries that develop between the leading and following legs of the emerging loops. Taking all the results together, we find that mid-range field strengths of {approx}40-50 kG produce emerging loops that best match the observed properties of solar active regions.

  4. Dynamics of flux tubes in accretion disks

    NASA Technical Reports Server (NTRS)

    Vishniac, E. T.; Duncan, R. C.

    1994-01-01

    The study of magnetized plasmas in astrophysics is complicated by a number of factors, not the least of which is that in considering magnetic fields in stars or accretion disks, we are considering plasmas with densities well above those we can study in the laboratory. In particular, whereas laboratory plasmas are dominated by the confining magnetic field pressure, stars, and probably accretion disks, have magnetic fields whose beta (ratio of gas pressure to magnetic field pressure) is much greater than 1. Observations of the Sun suggest that under such circumstances the magnetic field breaks apart into discrete flux tubes with a small filling factor. On the other hand, theoretical treatments of MHD turbulence in high-beta plasmas tend to assume that the field is more or less homogeneously distributed throughout the plasma. Here we consider a simple model for the distribution of magnetic flux tubes in a turbulent medium. We discuss the mechanism by which small inhomogeneities evolve into discrete flux tubes and the size and distribution of such flux tubes. We then apply the model to accretion disks. We find that the fibrilation of the magnetic field does not enhance magnetic buoyancy. We also note that the evolution of an initially diffuse field in a turbulent medium, e.g., any uniform field in a shearing flow, will initially show exponential growth as the flux tubes form. This growth saturates when the flux tube formation is complete and cannot be used as the basis for a self-sustaining dynamo effect. Since the typical state of the magnetic field is a collection of intense flux tubes, this effect is of limited interest. However, it may be important early in the evolution of the galactic magnetic field, and it will play a large role in numerical simulations. Finally, we note that the formation of flux tubes is an essential ingredient in any successful dynamo model for stars or accretion disks.

  5. Force-free fields in thin coronal loops

    NASA Technical Reports Server (NTRS)

    Emslie, A. Gordon; Wilkinson, L. K.

    1994-01-01

    We solve the force-free equation J x B = 0 for fields which are toroidally symmetric. The technique utilizes an expansion about a cylindrical field and is therefore valid or tori with a large aspect ratio such as long, thin, coronal loops. The calculation is performed in spatial toroidal coordinates, rather than in the flux coordinates used by previous authors; this allows direct calculation of the loci of flux surfaces and of surfaces of constant magnetic pressure. Our solutions differ significantly from toroidal fields in laboratories, which are in general not force-free. They are characterized by field lines whose projections in the poloidal planes are circles with centers displaced by varying distances from the axis of the torus. In general, flux surfaces do not correspond to surfaces of constant magnetic pressure. We have examined solutions corresponding to simple analytic zero-order cylindrical fields. For moderate twists in the zero-order (cylindrical) field, the magnetic pressure is larger on the inner toroidal radius. However, this effect diminishes with twist angle and in fact, for extreme initial twists, the magnetic pressure can be larger on the outer radius. We compare our results with previous work utilizing flux coordinates.

  6. Hard thermal loops in static external fields

    SciTech Connect

    Frenkel, J.; Takahashi, N.; Pereira, S. H.

    2009-04-15

    We examine, in the imaginary-time formalism, the high temperature behavior of n-point thermal loops in static Yang-Mills and gravitational fields. We show that in this regime, any hard thermal loop gives the same leading contribution as the one obtained by evaluating the loop integral at zero external energies and momenta.

  7. Microgyroscope with closed loop output

    NASA Technical Reports Server (NTRS)

    Challoner, A. Dorian (Inventor); Gutierrez, Roman C. (Inventor); Tang, Tony K. (Inventor); Cargille, Donald R. (Inventor)

    2002-01-01

    A micro-gyroscope (10) having closed loop operation by a control voltage (V.sub.TY), that is demodulated by an output signal of the sense electrodes (S1, S2), providing Coriolis torque rebalance to prevent displacement of the micro-gyroscope (10) on the output axis (y-axis). The present invention provides wide-band, closed-loop operation for a micro-gyroscope (10) and allows the drive frequency to be closely tuned to a high Q sense axis resonance. A differential sense signal (S1-S2) is compensated and fed back by differentially changing the voltage on the drive electrodes to rebalance Coriolis torque. The feedback signal is demodulated in phase with the drive axis signal (K.sub..omega..crclbar..sub.x) to produce a measure of the Coriolis force.

  8. The Statistical Loop Analyzer (SLA)

    NASA Technical Reports Server (NTRS)

    Lindsey, W. C.

    1985-01-01

    The statistical loop analyzer (SLA) is designed to automatically measure the acquisition, tracking and frequency stability performance characteristics of symbol synchronizers, code synchronizers, carrier tracking loops, and coherent transponders. Automated phase lock and system level tests can also be made using the SLA. Standard baseband, carrier and spread spectrum modulation techniques can be accomodated. Through the SLA's phase error jitter and cycle slip measurements the acquisition and tracking thresholds of the unit under test are determined; any false phase and frequency lock events are statistically analyzed and reported in the SLA output in probabilistic terms. Automated signal drop out tests can be performed in order to trouble shoot algorithms and evaluate the reacquisition statistics of the unit under test. Cycle slip rates and cycle slip probabilities can be measured using the SLA. These measurements, combined with bit error probability measurements, are all that are needed to fully characterize the acquisition and tracking performance of a digital communication system.

  9. Lock detection in Costas loops

    NASA Technical Reports Server (NTRS)

    Mileant, A.; Hinedi, S.

    1992-01-01

    Previous analyses of lock detector algorithms for Costas loops have ignored the effects of the inherent correlation between samples of the phase error process. In this paper, both analysis and simulations are used to quantify the effects of phase correlation on lock detection for the 'square law' and 'absolute value' type detectors. Results are obtained which depict the lock detection probability as a function of loop signal-to-noise ratio for a given false alarm rate. It is shown that the square law detector experiences less degradation due to phase jitter than the absolute value detector and that the degradation in detector signal-to-noise ratio is more pronounced for squarewave than for sinewave signals.

  10. Lock detection in Costas loops

    NASA Astrophysics Data System (ADS)

    Mileant, A.; Hinedi, S.

    1992-03-01

    Previous analyses of lock detector algorithms for Costas loops have ignored the effects of the inherent correlation between samples of the phase error process. In this paper, both analysis and simulations are used to quantify the effects of phase correlation on lock detection for the 'square law' and 'absolute value' type detectors. Results are obtained which depict the lock detection probability as a function of loop signal-to-noise ratio for a given false alarm rate. It is shown that the square law detector experiences less degradation due to phase jitter than the absolute value detector and that the degradation in detector signal-to-noise ratio is more pronounced for squarewave than for sinewave signals.

  11. Loop Diuretics in Clinical Practice.

    PubMed

    Oh, Se Won; Han, Sang Youb

    2015-06-01

    Diuretics are commonly used to control edema across various clinical fields. Diuretics inhibit sodium reabsorption in specific renal tubules, resulting in increased urinary sodium and water excretion. Loop diuretics are the most potent diuretics. In this article, we review five important aspects of loop diuretics, in particular furosemide, which must be considered when prescribing this medicine: (1) oral versus intravenous treatment, (2) dosage, (3) continuous versus bolus infusion, (4) application in chronic kidney disease patients, and (5) side effects. The bioavailability of furosemide differs between oral and intravenous therapy. Additionally, the threshold and ceiling doses of furosemide differ according to the particular clinical condition of the patient, for example in patients with severe edema or chronic kidney disease. To maximize the efficiency of furosemide, a clear understanding of how the mode of delivery will impact bioavailability and the required dosage is necessary.

  12. Loop Diuretics in Clinical Practice

    PubMed Central

    Oh, Se Won

    2015-01-01

    Diuretics are commonly used to control edema across various clinical fields. Diuretics inhibit sodium reabsorption in specific renal tubules, resulting in increased urinary sodium and water excretion. Loop diuretics are the most potent diuretics. In this article, we review five important aspects of loop diuretics, in particular furosemide, which must be considered when prescribing this medicine: (1) oral versus intravenous treatment, (2) dosage, (3) continuous versus bolus infusion, (4) application in chronic kidney disease patients, and (5) side effects. The bioavailability of furosemide differs between oral and intravenous therapy. Additionally, the threshold and ceiling doses of furosemide differ according to the particular clinical condition of the patient, for example in patients with severe edema or chronic kidney disease. To maximize the efficiency of furosemide, a clear understanding of how the mode of delivery will impact bioavailability and the required dosage is necessary. PMID:26240596

  13. Behavior of a Josephson Flux Qubit on a Sapphire Substrate

    NASA Astrophysics Data System (ADS)

    Przybysz, Anthony; Crowe, E.; Kwon, H.; Cooper, B. K.; Lewis, R. M.; Palmer, B. S.; Anderson, J. R.; Lobb, C. J.; Wellstood, F. C.

    2009-03-01

    We discuss the design, fabrication, and testing of a Nakamura- style [1] flux qubit. The device consists of a four-Josephson junction qubit loop that is directly coupled to a small dc SQUID, which is used for detection. The device was built on a sapphire substrate using electron beam lithography and double angle evaporation to form the Al/AlOx/Al tunnel junctions. A 200 nm thick layer of aluminum was deposited on the e-beam resist in order to counteract charging effects during the lithography. Three of the junctions in the qubit loop were 100 nm x 250 nm, and the fourth was 100 nm x 150 nm. The large junctions are the main contribution to the inductance of the qubit loop, and the smaller junction creates an energy splitting of 1-10 GHz between the two circulating current states. The SQUID junctions were 100 nm x 2000 nm, and the critical current of the detection SQUID was 240 nA. We present the results of ongoing measurements on the behavior of the device at 25 mK. This project was funded by the JQI, LPS, and CNAM. [1] F. Yoshihara, Y. Nakamura, et al.,``Decoherence of Flux Qubit Due to 1/f Flux Noise,'' PRL 97, 167001 (2006).

  14. Deconfinement and virtual quark loops

    NASA Astrophysics Data System (ADS)

    Çelik, T.; Engels, J.; Satz, H.

    1983-12-01

    We calculate paer Monte Carlo evaluation on an 83 × 3 lattice the energy density ɛG of the gluon sector of QCD, including virtual quark loops up to the fourth power in the hopping parameter expansion. For light quarks of one flavour, we observe at T/ΛL 95 +/- 10 a rapid variation of ɛG in T, accompanied by strong fluctuations from iteration to iteration. as clear signal of the deconfinement transition.

  15. DNA Looping, Supercoiling and Tension

    NASA Astrophysics Data System (ADS)

    Finzi, Laura

    2007-11-01

    In complex organisms, activation or repression of gene expression by proteins bound to enhancer or silencer elements located several kilobases away from the promoter is a well recognized phenomenon. However, a mechanistic understanding of any of these multiprotein interactions is still incomplete. Part of the difficulty in characterizing long-range interactions is the complexity of the regulatory systems and also an underestimation of the effect of DNA supercoiling and tension. Supercoiling is expected to promote interactions between DNA sites because it winds the DNA into compact plectonemes in which distant DNA segments more frequently draw close. The idea that DNA is also under various levels of tension is becoming more widely accepted. Forces that stretch the double helix in vivo are the electrostatic repulsion among the negatively charged phosphate groups along the DNA backbone, the action of motor enzymes perhaps acting upon a topologically constrained sequence of DNA or chromosome segregation during cell mitosis following DNA replication. Presently, little is known about the tension acting on DNA in vivo, but characterization of how physiological regulatory processes, such as loop formation, depend on DNA tension in vitro will indicate the stretching force regimes likely to exist in vivo. In this light, the well studied CI protein of bacteriophage l, which was recently found to cause a of 3.8 kbp loop in DNA, is an ideal system in which to characterize long-range gene regulation. The large size of the loop lends itself to single-molecule techniques, which allow characterization of the dynamics of CI-mediated l DNA looping under controlled levels of supercoiling and tension. Such experiments are being used to discover the principles of long-range interactions in l and in more complex systems.

  16. Quantum reduced loop gravity and the foundation of loop quantum cosmology

    NASA Astrophysics Data System (ADS)

    Alesci, Emanuele; Cianfrani, Francesco

    2016-06-01

    Quantum reduced loop gravity is a promising framework for linking loop quantum gravity and the effective semiclassical dynamics of loop quantum cosmology. We review its basic achievements and its main perspectives, outlining how it provides a quantum description of the Universe in terms of a cuboidal graph which constitutes the proper framework for applying loop techniques in a cosmological setting.

  17. Loops in inflationary correlation functions

    NASA Astrophysics Data System (ADS)

    Tanaka, Takahiro; Urakawa, Yuko

    2013-12-01

    We review the recent progress regarding the loop corrections to the correlation functions in the inflationary universe. A naive perturbation theory predicts that the loop corrections generated during inflation suffer from various infrared (IR) pathologies. Introducing an IR cutoff by hand is neither satisfactory nor enough to fix the problem of a secular growth, which may ruin the predictive power of inflation models if the inflation lasts sufficiently long. We discuss the origin of the IR divergences and explore the regularity conditions of the loop corrections for the adiabatic perturbation, the iso-curvature perturbation, and the tensor perturbation, in turn. These three kinds of perturbations have qualitative differences, but in discussing the IR regularity there is a feature common to all cases, which is the importance of the proper identification of observable quantities. Genuinely, observable quantities should respect the gauge invariance from the view point of a local observer. Interestingly, we find that the requirement of the IR regularity restricts the allowed quantum states.

  18. Hysteresis Loop for a No-loaded, Delta-connected Transformer Model Deduced from Measurements

    NASA Astrophysics Data System (ADS)

    Corrodi, Yves; Kamei, Kenji; Kohyama, Haruhiko; Ito, Hiroki

    At a transformer's steady-state condition, whereby a transformer and its load are constantly supplied by a sinusoidal source, the current-flux pair within the transformer core and its windings will cycle along a hysteresis loop. This nonlinear current-flux characteristic becomes important while at transformer gets reenergized. A remaining residual flux and the fact that a transformer is typically used up to its saturation level can lead to high-amplitude magnetizing inrush currents and associated voltage disturbances. These disturbances can be reduced by controlled transformer switching. In order to pre-evaluate the effect of a specific controlled transformer energization, pre-simulations can be applied. In that case the hysteresis loop and its saturation characteristic will become the most important model parameter. If the corresponding manufacturer specifications are not available a standard hysteresis loops can be used, but might come up with an inaccurate simulation result. Therefore, this paper analyses the measured 3-phase currents from two delta-connected power transformers by “Fourier Series” in order to deduce a single-phase hysteresis loop, which can be implemented into a typical 3-phase transformer model. Additionally, the saturation behavior of a power-transformer will be estimated and a comparison of ATP/EMTP simulations will conclude this paper.

  19. Wilson loops in noncompact U(1) gauge theories at criticality

    SciTech Connect

    Metlitski, Max A.

    2008-04-15

    We study the properties of Wilson loops in three-dimensional noncompact U(1) gauge theories with global Abelian symmetries. We use duality in the continuum and on the lattice to argue that, close to the critical point between the Higgs and Coulomb phases, all correlators of the Wilson loops are periodic functions of the Wilson loop charge, Q. The period depends on the global symmetry of the theory, which determines the magnetic flux carried by the dual particles. For single flavor scalar electrodynamics, the emergent period is Q=1. In the general case of N complex scalars with a U(1){sup N-1} global symmetry, the period is Q=N. We also give some arguments why this phenomenon does not generalize to theories with a full non-Abelian SU(N) symmetry, where no periodicity in Q is expected. Implications for lattice simulations, as well as for physical systems, such as easy-plane antiferromagnets and disordered superfluids, are noted.

  20. High frequency, high temperature specific core loss and dynamic B-H hysteresis loop characteristics of soft magnetic alloys

    NASA Technical Reports Server (NTRS)

    Wieserman, W. R.; Schwarze, G. E.; Niedra, J. M.

    1990-01-01

    Limited experimental data exists for the specific core loss and dynamic B-H loops for soft magnetic materials for the combined conditions of high frequency and high temperature. This experimental study investigates the specific core loss and dynamic B-H loop characteristics of Supermalloy and Metglas 2605SC over the frequency range of 1 to 50 kHz and temperature range of 23 to 300 C under sinusoidal voltage excitation. The experimental setup used to conduct the investigation is described. The effects of the maximum magnetic flux density, frequency, and temperature on the specific core loss and on the size and shape of the B-H loops are examined.

  1. Premeasured Chordal Loops for Mitral Valve Repair.

    PubMed

    Gillinov, Marc; Quinn, Reed; Kerendi, Faraz; Gaudiani, Vince; Shemin, Richard; Barnhart, Glenn; Raines, Edward; Gerdisch, Marc W; Banbury, Michael

    2016-09-01

    Premeasured expanded polytetrafluoroethylene chordal loops with integrated sutures for attachment to the papillary muscle and leaflet edges facilitate correction of mitral valve prolapse. Configured as a group of 3 loops (length range 12 to 24 mm), the loops are attached to a pledget that is passed through the papillary muscle and tied. Each of the loops has 2 sutures with attached needles; these needles are passed through the free edge of the leaflet and then the sutures are tied to each other, securing the chordal loop to the leaflet. PMID:27549563

  2. Superradiance and flux conservation

    NASA Astrophysics Data System (ADS)

    Boonserm, Petarpa; Ngampitipan, Tritos; Visser, Matt

    2014-09-01

    The theoretical foundations of the phenomenon known as superradiance still continue to attract considerable attention. Despite many valiant attempts at pedagogically clear presentations, the effect nevertheless still continues to generate some significant confusion. Part of the confusion arises from the fact that superradiance in a quantum field theory context is not the same as superradiance (superfluorescence) in some condensed matter contexts; part of the confusion arises from traditional but sometimes awkward normalization conventions, and part is due to sometimes unnecessary confusion between fluxes and probabilities. We shall argue that the key point underlying the effect is flux conservation (and, in the presence of dissipation, a controlled amount of flux nonconservation), and that attempting to phrase things in terms of reflection and transmission probabilities only works in the absence of superradiance. To help clarify the situation we present a simple exactly solvable toy model exhibiting both superradiance and damping.

  3. Flux amplification in SSPX

    NASA Astrophysics Data System (ADS)

    Lodestro, Lynda; Hooper, E. B.; Jayakumar, R. J.; Pearlstein, L. D.; Wood, R. D.; McLean, H. S.

    2007-11-01

    Flux amplification---the ratio of poloidal flux enclosed between the magnetic and geometric axes to that between the separatrix and the geometric axis---is a key measure of efficiency for edge-current-driven spheromaks. With the new, modular capacitor bank, permitting flexible programming of the gun current, studies of flux amplification under various drive scenarios can be performed. Analysis of recent results of pulsed operation with the new bank finds an efficiency ˜ 0.2, in selected shots, of the conversion of gun energy to confined magnetic energy during the pulses, and suggests a route toward sustained efficiency at 0.2. Results of experiments, a model calculation of field build-up, and NIMROD simulations exploring this newly suggested scenario will be presented.

  4. Soft X-ray emission in kink-unstable coronal loops

    NASA Astrophysics Data System (ADS)

    Pinto, Rui; Vilmer, Nicole; Brun, Allan Sacha

    Solar flares are associated with intense soft X-ray emission generated by the hot flaring plasma in coronal magnetic loops. We investigate the temporal, spectral and spatial evolution of the properties of the thermal X-ray emission produced in simulated kink-unstable magnetic flux-ropes. The numerical setup used consists of a highly twisted loop embedded in a region of uniform and untwisted background coronal magnetic field. The magnetic flux-rope reconnects with the background flux after the triggering of the kink instability and is then allowed to relax to a lower energy state. Strong ohmic heating leads to strong and quick heating (up to more than 15 MK), to a strong peak of X-ray emission and to the hardening of the thermal X-ray spectrum. The emission pattern is often filamentary and the amount of twist deduced from the X-ray emission alone is considerably lower than the maximum twist in the simulated flux-ropes. The flux-rope plasma becomes strongly multi-thermal during the flaring episode. The emission measure evolves into a bi-modal distribution as a function of temperature during the saturation phase, and later converges to the power-law distribution mathrm{EM}~ T(-4.2) (during the relaxation/cooling) phase. These soft X-ray emission properties are maintained for a large range of coronal magnetic field strength, plasma density and flux-rope twist values.

  5. Loop quantum cosmology with self-dual variables

    NASA Astrophysics Data System (ADS)

    Wilson-Ewing, Edward

    2015-12-01

    Using the complex-valued self-dual connection variables, the loop quantum cosmology of a closed Friedmann space-time coupled to a massless scalar field is studied. It is shown how the reality conditions can be imposed in the quantum theory by choosing a particular inner product for the kinematical Hilbert space. While holonomies of the self-dual Ashtekar connection are not well defined in the kinematical Hilbert space, it is possible to introduce a family of generalized holonomylike operators of which some are well defined; these operators in turn are used in the definition of the Hamiltonian constraint operator where the scalar field can be used as a relational clock. The resulting quantum theory is closely related, although not identical, to standard loop quantum cosmology constructed from the Ashtekar-Barbero variables with a real Immirzi parameter. Effective Friedmann equations are derived which provide a good approximation to the full quantum dynamics for sharply peaked states whose volume remains much larger than the Planck volume, and they show that for these states quantum gravity effects resolve the big-bang and big-crunch singularities and replace them by a nonsingular bounce. Finally, the loop quantization in self-dual variables of a flat Friedmann space-time is recovered in the limit of zero spatial curvature and is identical to the standard loop quantization in terms of the real-valued Ashtekar-Barbero variables.

  6. Optical heat flux gauge

    DOEpatents

    Noel, Bruce W.; Borella, Henry M.; Cates, Michael R.; Turley, W. Dale; MaCarthur, Charles D.; Cala, Gregory C.

    1991-01-01

    A heat flux gauge comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable.

  7. Optical heat flux gauge

    DOEpatents

    Noel, Bruce W.; Borella, Henry M.; Cates, Michael R.; Turley, W. Dale; MacArthur, Charles D.; Cala, Gregory C.

    1991-01-01

    A heat flux gauge comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator wherein each thermographic layer comprises a plurality of respective thermographic phosphors. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable.

  8. Optical heat flux gauge

    DOEpatents

    Noel, Bruce W.; Borella, Henry M.; Cates, Michael R.; Turley, W. Dale; MacArthur, Charles D.; Cala, Gregory C.

    1991-01-01

    A heat flux gauge comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator, wherein each thermographic layer comprises a plurality of respective thermographic sensors in a juxtaposed relationship with respect to each other. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable.

  9. Development of 2.8-GHz Solar Flux Receivers

    NASA Astrophysics Data System (ADS)

    Yun, Youngjoo; Park, Yong-Sun; Kim, Chang-Hee; Lee, Bangwon; Kim, Jung-Hoon; Yoo, Saeho; Lee, Chul-Hwan; Han, Jinwook; Kim, Young Yun

    2014-12-01

    We report the development of solar flux receivers operating at 2.8 GHz to monitor solar radio activity. Radio waves from the sun are amplified, filtered, and then transmitted to a power meter sensor without frequency down-conversion. To measure solar flux, a calibration scheme is designed with a noise source, an ambient load, and a hot load at 100° C. The receiver is attached to a 1.8 m parabolic antenna in Icheon, owned by National Radio Research Agency, and observation is being conducted during day time on a daily basis. We compare the solar fluxes measured for last seven months with solar fluxes obtained by DRAO in Penticton, Canada, and by the Hiraiso solar observatory in Japan, and finally establish equations to convert observed flux to the so-called Penticton flux with an accuracy better than 3.2 sfu.

  10. Chemical Looping Technology: Oxygen Carrier Characteristics.

    PubMed

    Luo, Siwei; Zeng, Liang; Fan, Liang-Shih

    2015-01-01

    Chemical looping processes are characterized as promising carbonaceous fuel conversion technologies with the advantages of manageable CO2 capture and high energy conversion efficiency. Depending on the chemical looping reaction products generated, chemical looping technologies generally can be grouped into two types: chemical looping full oxidation (CLFO) and chemical looping partial oxidation (CLPO). In CLFO, carbonaceous fuels are fully oxidized to CO2 and H2O, as typically represented by chemical looping combustion with electricity as the primary product. In CLPO, however, carbonaceous fuels are partially oxidized, as typically represented by chemical looping gasification with syngas or hydrogen as the primary product. Both CLFO and CLPO share similar operational features; however, the optimum process configurations and the specific oxygen carriers used between them can vary significantly. Progress in both CLFO and CLPO is reviewed and analyzed with specific focus on oxygen carrier developments that characterize these technologies.

  11. Chemical Looping Technology: Oxygen Carrier Characteristics.

    PubMed

    Luo, Siwei; Zeng, Liang; Fan, Liang-Shih

    2015-01-01

    Chemical looping processes are characterized as promising carbonaceous fuel conversion technologies with the advantages of manageable CO2 capture and high energy conversion efficiency. Depending on the chemical looping reaction products generated, chemical looping technologies generally can be grouped into two types: chemical looping full oxidation (CLFO) and chemical looping partial oxidation (CLPO). In CLFO, carbonaceous fuels are fully oxidized to CO2 and H2O, as typically represented by chemical looping combustion with electricity as the primary product. In CLPO, however, carbonaceous fuels are partially oxidized, as typically represented by chemical looping gasification with syngas or hydrogen as the primary product. Both CLFO and CLPO share similar operational features; however, the optimum process configurations and the specific oxygen carriers used between them can vary significantly. Progress in both CLFO and CLPO is reviewed and analyzed with specific focus on oxygen carrier developments that characterize these technologies. PMID:25898071

  12. High-temperature helium-loop facility

    SciTech Connect

    Tokarz, R.D.

    1981-09-01

    The high-temperature helium loop is a facility for materials testing in ultrapure helium gas at high temperatures. The closed loop system is capable of recirculating high-purity helium or helium with controlled impurities. The gas loop maximum operating conditions are as follows: 300 psi pressure, 500 lb/h flow rate, and 2100/sup 0/F temperature. The two test sections can accept samples up to 3.5 in. diameter and 5 ft long. The gas loop is fully instrumented to continuously monitor all parameters of loop operation as well as helium impurities. The loop is fully automated to operate continuously and requires only a daily servicing by a qualified operator to replenish recorder charts and helium makeup gas. Because of its versatility and high degree of parameter control, the helium loop is applicable to many types of materials research. This report describes the test apparatus, operating parameters, peripheral systems, and instrumentation system.

  13. Hyperstaticity and loops in frictional granular packings

    NASA Astrophysics Data System (ADS)

    Tordesillas, Antoinette; Lam, Edward; Metzger, Philip T.

    2009-06-01

    The hyperstatic nature of granular packings of perfectly rigid disks is analyzed algebraically and through numerical simulation. The elementary loops of grains emerge as a fundamental element in addressing hyperstaticity. Loops consisting of an odd number of grains behave differently than those with an even number. For odd loops, the latent stresses are exterior and are characterized by the sum of frictional forces around each loop. For even loops, the latent stresses are interior and are characterized by the alternating sum of frictional forces around each loop. The statistics of these two types of loop sums are found to be Gibbsian with a "temperature" that is linear with the friction coefficient μ when μ<1.

  14. Effect of helix stability on the formation of loop-loop complexes.

    PubMed

    Sehdev, Preeti; Crews, Gordon; Soto, Ana Maria

    2012-12-01

    Kissing loop complexes are loop-loop complexes where two RNA hairpins interact through their complementary loops. In this work, we have investigated the role of the helical stems on the ability of hairpins derived from the ColE1 plasmid to associate as kissing loop complexes in the presence and absence of divalent cations. Our results show that although kissing loop complexes form more readily in the presence of Mg(2+), they are able to form in the presence of 850 mM NaCl, as long as their stems contain at least six base-pairs. Formation of the Na(+) loop-loop complexes is facilitated by changing the sequence at the stem-loop interface to include less stable AU base pairs. We suggest that the conformation at the stem-loop interface is critical in the formation of kissing loop complexes and that in the absence of Mg(2+) the conformation at the stem-loop interface is packed more loosely than with Mg(2+), to allow for a lower charge density. Consistent with this hypothesis, shortening the stems to five base pairs results in unfolding of the hairpins and formation of an extended duplex rather than a kissing loop complex because the short stems are not stable enough to tolerate the necessary conformation at the stem-loop interface to allow the formation of a kissing loop complex. PMID:23094588

  15. [Research advances in ecosystem flux].

    PubMed

    Zhang, Xudong; Peng, Zhenhua; Qi, Lianghua; Zhou, Jinxing

    2005-10-01

    To develop the long-term localized observation and investigation on ecosystem flux is of great importance. On the basis of generalizing the concepts and connotations of ecosystem flux, this paper introduced the construction and development histories of Global Flux Networks, Regional Flux Networks (Ameri-Flux, Euro-Flux and Asia-Flux) and China-Flux, as well as the main methodologies, including micrometeorological methods (such as eddy correlation method, mass balance method, energy balance method and air dynamic method)and chamber methods (static and dynamic chamber methods), and their basic operation principles. The research achievements, approaches and advances of CO2, N2O, CH4, and heat fluxes in forest ecosystem, farmland ecosystem, grassland ecosystem and water ecosystem were also summarized. In accordance with the realities and necessities of ecosystem flux research in China, some suggestions and prospects were put forward.

  16. Influence of volume working fluid and ambient temperature on cooling efficiency of loop thermosyphon

    NASA Astrophysics Data System (ADS)

    Nemec, P.; Malcho, M.; Jandačka, J.; Matušov, J.

    2014-03-01

    Article deal with research of device for electrical component cooling used to heat transfer working fluid phase change. Amount of heat flux transferred by thermosyphon loop depend from amount working fluid and from ambient temperature where is heat removal too. In article is described proposal construction of thermosyphon loop, comparisons of his cooling efficiency if is filled 40 % and 50 % volume of working fluid and condenser (ambient) temperature from 20, 30 up to 40 °C at heat load from 40 to 360 W.

  17. Application of a two-phase thermosyphon loop with minichannels and a minipump in computer cooling

    NASA Astrophysics Data System (ADS)

    Bieliński, Henryk; Mikielewicz, Jarosław

    2016-03-01

    This paper focuses on the computer cooling capacity using the thermosyphon loop with minichannels and minipump. The one-dimensional separate model of two-phase flow and heat transfer in a closed thermosyphon loop with minichannels and minipump has been used in calculations. The latest correlations for minichannels available in literature have been applied. This model is based on mass, momentum, and energy balances in the evaporator, rising tube, condenser and the falling tube. A numerical analysis of the mass flux and heat transfer coefficient in the steady state has been presented.

  18. High-{Tc} DC SQUID and flux transformer development

    SciTech Connect

    Fife, A.A.; Angus, V.; Betts, K.

    1994-12-31

    A description is presented of the fabrication and properties of high {Tc} DC SQUIDS and flux transformers fabricated by dry processing of pulsed laser ablated YBa{sub 2}Cu{sub 3}O{sub 7{minus}x} (YBCO) thin films. SQUIDs have been fabricated with either bicrystal substrate or step edge junctions. For all devices fabricated thus far, measurements indicate a similar character to the flux noise spectra with a significant 1/f noise component below 100--500 Hz. The transfer function and energy sensitivities as a function of SQUID inductances in the range 60--200 pH have been measured for bicrystal DC SQUIDs and compared with estimates. Various techniques have been employed to improve the magnetic field sensitivity of the uncoupled DC SQUID toward more practical levels including the use of large area washers, single layer magnetometers and 3-level flux transformers fabricated from trilayers of YBCO/SrTiO{sub 3}/YBCO. The properties of open input coils are presented as well as the performance of closed loop transformers coupled via flip chip geometry to the SQUID washer. A white magnetic noise level of {approx} 130 fT rms/{radical}Hz above 200 Hz has been reached with a flux transformer with a 15 turn input coil and pick-up loop area of 13 mm{sup 2}.

  19. Radiative Flux Analysis

    DOE Data Explorer

    Long, Chuck [NOAA

    2008-05-14

    The Radiative Flux Analysis is a technique for using surface broadband radiation measurements for detecting periods of clear (i.e. cloudless) skies, and using the detected clear-sky data to fit functions which are then used to produce continuous clear-sky estimates. The clear-sky estimates and measurements are then used in various ways to infer cloud macrophysical properties.

  20. Muon and neutrino fluxes

    NASA Technical Reports Server (NTRS)

    Edwards, P. G.; Protheroe, R. J.

    1985-01-01

    The result of a new calculation of the atmospheric muon and neutrino fluxes and the energy spectrum of muon-neutrinos produced in individual extensive air showers (EAS) initiated by proton and gamma-ray primaries is reported. Also explained is the possibility of detecting atmospheric nu sub mu's due to gamma-rays from these sources.

  1. Incident meteoroid flux density

    NASA Technical Reports Server (NTRS)

    Badadjanov, P. B.; Bibarsov, R. SH.; Getman, V. S.; Kolmakov, V. M.

    1987-01-01

    Complex photographic and radar meteor observations were carried out. Using the available observational data, the density of incident flux of meteoroids was estimated over a wide mass range of 0.001 to 100 g. To avoid the influence of apparatus selectivity a special technique was applied. The main characteristics of this technique are given and discussed.

  2. Effect of Thermal Conduction on Acoustic Waves in Coronal Loops

    NASA Astrophysics Data System (ADS)

    Bogdan, T. J.

    2006-05-01

    The influence of classical (Spitzer) thermal conduction on longitudinal acoustic waves in a coronal loop is determined through an idealized but exactly solvable model. The model consists of an isothermal, stratified (constant gravity) atmosphere in which a monochromatic acoustic wave, traveling in the direction of decreasing density, is imposed throughout the lower half of the atmosphere. Based on the linearized equations of motion, the complete steady state (t-->∞) solution is obtained. In addition to the imposed driving wave, the solution also contains reflected and transmitted acoustic and thermal conduction waves. The mode transformation and mixing occurs in the vicinity of the atmospheric layer where the gas pressure passes through a critical value set by the magnitude of the thermal conduction and other model parameters. For 5 minute waves in a million degree loop, this critical pressure is on the order of 8×10-4 in cgs units. Since the apex gas pressure of many coronal loops of current interest is thought to be comfortably in excess of this value, mode mixing and transformation is not likely to be a relevant factor for understanding acoustic waves in these structures. On the other hand, enhanced thermal conductivity as a result of plasma instabilities, for example, could revive the importance of this mechanism for coronal loops. If this mixing layer is present, the calculations show that the pair of thermal conduction waves invariably gains the overwhelming majority of the energy flux of the incoming acoustic wave. This energy is rapidly dissipated in the neighborhood of the mixing layer.

  3. Capillary pumped loop application guide

    NASA Astrophysics Data System (ADS)

    Cullimore, Brent A.

    Capillary pumped loops (CPLs) have undergone extensive development since the late 1970's, and represent a maturing technology that is beginning to appear in spacecraft designs. Perhaps because most CPL literature is intended for CPL and heat pipe dedvelopers, or perhaps because of the myriad of component design and layout options available, many thermal control designers are either unfamiliar with the capabilities offered by CPLs, or are confused about their limitations. This survey paper is targeted toward thermal control designers who must decide when and where to use CPLs, or having chosen a CPL solution, must deal with system-level integration and test issues.

  4. Cygnus Loop: A double bubble?

    NASA Astrophysics Data System (ADS)

    West, J.; Safi-Harb, S.; Reichardt, I.; Stil, J.; Kothes, R.; Jaffe, T.; Galfacts Team

    2016-06-01

    The Cygnus Loop is a well-studied supernova remnant (SNR) that has been observed across the electromagnetic spectrum. Although widely believed to be an SNR shell with a blow-out region in the south, we consider the possibility that this object is two SNRs projected along the same line-of-sight by using multi-wavelength images and modelling. Our results show that a model of two objects including some overlap region/interaction between the two objects has the best match to the observed data.

  5. Singularities in loop quantum cosmology.

    PubMed

    Cailleteau, Thomas; Cardoso, Antonio; Vandersloot, Kevin; Wands, David

    2008-12-19

    We show that simple scalar field models can give rise to curvature singularities in the effective Friedmann dynamics of loop quantum cosmology (LQC). We find singular solutions for spatially flat Friedmann-Robertson-Walker cosmologies with a canonical scalar field and a negative exponential potential, or with a phantom scalar field and a positive potential. While LQC avoids big bang or big rip type singularities, we find sudden singularities where the Hubble rate is bounded, but the Ricci curvature scalar diverges. We conclude that the effective equations of LQC are not in themselves sufficient to avoid the occurrence of curvature singularities.

  6. Closed-Loop Neuroscience and Non-Invasive Brain Stimulation: A Tale of Two Loops.

    PubMed

    Zrenner, Christoph; Belardinelli, Paolo; Müller-Dahlhaus, Florian; Ziemann, Ulf

    2016-01-01

    Closed-loop neuroscience is receiving increasing attention with recent technological advances that enable complex feedback loops to be implemented with millisecond resolution on commodity hardware. We summarize emerging conceptual and methodological frameworks that are available to experimenters investigating a "brain in the loop" using non-invasive brain stimulation and briefly review the experimental and therapeutic implications. We take the view that closed-loop neuroscience in fact deals with two conceptually quite different loops: a "brain-state dynamics" loop, used to couple with and modulate the trajectory of neuronal activity patterns, and a "task dynamics" loop, that is the bidirectional motor-sensory interaction between brain and (simulated) environment, and which enables goal-directed behavioral tasks to be incorporated. Both loops need to be considered and combined to realize the full experimental and therapeutic potential of closed-loop neuroscience. PMID:27092055

  7. An Insight to the Modeling of 1 × 1 Rib Loop Formation Process on Circular Weft Knitting Machine using Computer

    NASA Astrophysics Data System (ADS)

    Ray, Sadhan Chandra

    2015-10-01

    The mechanics of single jersey loop formation is well-reported is literature. However, as the concept of any model of double jersey loop formation process is not available in accessible international literature. Therefore, it was planned to develop a model of 1 × 1 rib loop formation process on dial and cylinder machine using computer so that the influence of various input variables on the final loop length as well on the profile of tension on the yarn inside Knitting Zone (KZ) can be understood. The model provides an insight into the mechanics of 1 × 1 rib loop formation system on dial and cylinder machine. Besides, the degree of agreement between predicted and measured values of loop length and cam forces as well as theoretical analysis of the model have justified the acceptability of the model.

  8. A method for simulating a flux-locked DC SQUID

    NASA Technical Reports Server (NTRS)

    Gutt, G. M.; Kasdin, N. J.; Condron, M. R., II; Muhlfelder, B.; Lockhart, J. M.; Cromar, M. W.

    1993-01-01

    The authors describe a computationally efficient and accurate method for simulating a dc SQUID's V-Phi (voltage-flux) and I-V characteristics which has proven valuable in evaluating and improving various SQUID readout methods. The simulation of the SQUID is based on fitting of previously acquired data from either a real or a modeled device using the Fourier transform of the V-Phi curve. This method does not predict SQUID behavior, but rather is a way of replicating a known behavior efficiently with portability into various simulation programs such as SPICE. The authors discuss the methods used to simulate the SQUID and the flux-locking control electronics, and present specific examples of this approach. Results include an estimate of the slew rate and linearity of a simple flux-locked loop using a characterized dc SQUID.

  9. Turbulent fluxes by "Conditional Eddy Sampling"

    NASA Astrophysics Data System (ADS)

    Siebicke, Lukas

    2015-04-01

    for the field (one to two orders of magnitude lower compared to current closed-path laser based eddy covariance systems). Potential applications include fluxes of CO2, CH4, N2O, VOCs and other tracers. Finally we assess the flux accuracy of the Conditional Eddy Sampling (CES) approach as in our real implementation relative to alternative techniques including eddy covariance (EC) and relaxed eddy accumulation (REA). We further quantify various sources of instrument and method specific measurement errors. This comparison uses real measurements of 20 Hz turbulent time series of 3D wind velocity, sonic temperature and CO2 mixing ratio over a mixed decidious forest at the 'ICOS' flux tower site 'Hainich', Germany. Results from a simulation using real wind and CO2 timeseries from the Hainich site from 30 April to 3 November 2014 and real instrument performance suggest that the maximum flux estimates error (50% and 75% error quantiles) from Conditional Eddy Sampling (CES) relative to the true flux is 1.3% and 10%, respectively for monthly net fluxes, 1.6% and 7%, respectively for daily net fluxes and 8% and 35%, respectively for 30-minute CO2 flux estimates. Those results from CES are promising and outperform our REA estimates by about a factor of 50 assuming REA with constant b value. Results include flux time series from the EC, CES and REA approaches from 30-min to annual resolution.

  10. Numerical analysis of the big bounce in loop quantum cosmology

    SciTech Connect

    Laguna, Pablo

    2007-01-15

    Loop quantum cosmology (LQC) homogeneous models with a massless scalar field show that the big-bang singularity can be replaced by a big quantum bounce. To gain further insight on the nature of this bounce, we study the semidiscrete loop quantum gravity Hamiltonian constraint equation from the point of view of numerical analysis. For illustration purposes, we establish a numerical analogy between the quantum bounces and reflections in finite difference discretizations of wave equations triggered by the use of nonuniform grids or, equivalently, reflections found when solving numerically wave equations with varying coefficients. We show that the bounce is closely related to the method for the temporal update of the system and demonstrate that explicit time-updates in general yield bounces. Finally, we present an example of an implicit time-update devoid of bounces and show back-in-time, deterministic evolutions that reach and partially jump over the big-bang singularity.

  11. 2D quantum gravity at three loops: A counterterm investigation

    NASA Astrophysics Data System (ADS)

    Leduc, Lætitia; Bilal, Adel

    2016-02-01

    We analyze the divergences of the three-loop partition function at fixed area in 2D quantum gravity. Considering the Liouville action in the Kähler formalism, we extract the coefficient of the leading divergence ∼ AΛ2(ln ⁡ AΛ2) 2. This coefficient is non-vanishing. We discuss the counterterms one can and must add and compute their precise contribution to the partition function. This allows us to conclude that every local and non-local divergence in the partition function can be balanced by local counterterms, with the only exception of the maximally non-local divergence (ln ⁡ AΛ2) 3. Yet, this latter is computed and does cancel between the different three-loop diagrams. Thus, requiring locality of the counterterms is enough to renormalize the partition function. Finally, the structure of the new counterterms strongly suggests that they can be understood as a renormalization of the measure action.

  12. Black hole spectroscopy from loop quantum gravity models

    NASA Astrophysics Data System (ADS)

    Barrau, Aurelien; Cao, Xiangyu; Noui, Karim; Perez, Alejandro

    2015-12-01

    Using Monte Carlo simulations, we compute the integrated emission spectra of black holes in the framework of loop quantum gravity (LQG). The black hole emission rates are governed by the entropy whose value, in recent holographic loop quantum gravity models, was shown to agree at leading order with the Bekenstein-Hawking entropy. Quantum corrections depend on the Barbero-Immirzi parameter γ . Starting with black holes of initial horizon area A ˜102 in Planck units, we present the spectra for different values of γ . Each spectrum clearly decomposes into two distinct parts: a continuous background which corresponds to the semiclassical stages of the evaporation and a series of discrete peaks which constitutes a signature of the deep quantum structure of the black hole. We show that γ has an effect on both parts that we analyze in detail. Finally, we estimate the number of black holes and the instrumental resolution required to experimentally distinguish between the considered models.

  13. Methane Flux of Amazonian Peatland Ecosystems: Large Ecosystem Fluxes with Substantial Contribution from Palm (maritia Flexuosa) STEM Emissions

    NASA Astrophysics Data System (ADS)

    Van Haren, J. L. M.; Cadillo-Quiroz, H.

    2015-12-01

    Methane (CH4) emissions through plants have long been known in wetlands. However, most measurements have focused on stem tops and leaves. Recently, measurements at the lower parts of stems have shown that stem emissions can exceed soil CH4 emissions in Asian peatlands (Pangala et al. 2013). The addition of stem fluxes to soil fluxes for total ecosystem fluxes has the potential to bridge the discrepancy between modeled to measured and bottom-up to top-down flux estimates. Our measurements in peatlands of Peru show that especially Mauritia flexuosa, a palm species, can emit very large quantities of CH4, although most trees emitted at least some CH4. We used flexible stem chambers to adapt to stems of any size above 5cm in diameter. The chambers were sampled in closed loop with a Gasmet DX4015 for flux measurements, which lasted ~5 minutes after flushing with ambient air. We found that M. flexuosa stem fluxes decrease with height along the stem and were positively correlated with soil fluxes. Most likely CH4 is transported up the stem with the xylem water. Measured M. flexuosa stem fluxes below 1.5m averaged 11.2±1.5 mg-C m-2 h-1 (±95% CI) with a maximum of 123±3.5 mg-C m-2 h-1 (±SE), whereas soil fluxes averaged 6.7±1.7 mg-C m-2 h-1 (±95% CI) with a maximum of 31.6±0.4 mg-C m-2 h-1 (±SE). Significant CH4 fluxes were measured up to 5 m height along the stems. Combined with the high density of ~150 M. flexuosa individuals per hectare in these peatlands and the consistent diameter of ~30cm, the high flux rates add ~20% to the soil flux. With anywhere between 1 and 5 billion M. flexuosa stems across Amazon basin wetlands, stem fluxes from this palm species could represent a major addition to the overall Amazon basin CH4 flux.

  14. Three-dimensional prominence-hosting magnetic configurations: Creating a helical magnetic flux rope

    SciTech Connect

    Xia, C.; Keppens, R.; Guo, Y.

    2014-01-10

    The magnetic configuration hosting prominences and their surrounding coronal structure is a key research topic in solar physics. Recent theoretical and observational studies strongly suggest that a helical magnetic flux rope is an essential ingredient to fulfill most of the theoretical and observational requirements for hosting prominences. To understand flux rope formation details and obtain magnetic configurations suitable for future prominence formation studies, we here report on three-dimensional isothermal magnetohydrodynamic simulations including finite gas pressure and gravity. Starting from a magnetohydrostatic corona with a linear force-free bipolar magnetic field, we follow its evolution when introducing vortex flows around the main polarities and converging flows toward the polarity inversion line near the bottom of the corona. The converging flows bring the feet of different loops together at the polarity inversion line, where magnetic reconnection and flux cancellation happen. Inflow and outflow signatures of the magnetic reconnection process are identified, and thereby the newly formed helical loops wind around preexisting ones so that a complete flux rope grows and ascends. When a macroscopic flux rope is formed, we switch off the driving flows and find that the system relaxes to a stable state containing a helical magnetic flux rope embedded in an overlying arcade structure. A major part of the formed flux rope is threaded by dipped field lines that can stably support prominence matter, while the total mass of the flux rope is in the order of 4-5× 10{sup 14} g.

  15. SLIPPING MAGNETIC RECONNECTION TRIGGERING A SOLAR ERUPTION OF A TRIANGLE-SHAPED FLAG FLUX ROPE

    SciTech Connect

    Li, Ting; Zhang, Jun E-mail: zjun@nao.cas.cn

    2014-08-10

    We report the first simultaneous activities of the slipping motion of flare loops and a slipping eruption of a flux rope in 131 Å and 94 Å channels on 2014 February 2. The east hook-like flare ribbon propagated with a slipping motion at a speed of about 50 km s{sup –1}, which lasted about 40 minutes and extended by more than 100 Mm, but the west flare ribbon moved in the opposite direction with a speed of 30 km s{sup –1}. At the later phase of flare activity, there was a well developed ''bi-fan'' system of flare loops. The east footpoints of the flux rope showed an apparent slipping motion along the hook of the ribbon. Simultaneously, the fine structures of the flux rope rose up rapidly at a speed of 130 km s{sup –1}, much faster than that of the whole flux rope. We infer that the east footpoints of the flux rope are successively heated by a slipping magnetic reconnection during the flare, which results in the apparent slippage of the flux rope. The slipping motion delineates a ''triangle-shaped flag surface'' of the flux rope, implying that the topology of a flux rope is more complex than anticipated.

  16. Wilson loop from a Dyson equation

    SciTech Connect

    Pak, M.; Reinhardt, H.

    2009-12-15

    The Dyson equation proposed for planar temporal Wilson loops in the context of supersymmetric gauge theories is critically analyzed thereby exhibiting its ingredients and approximations involved. We reveal its limitations and identify its range of applicability in nonsupersymmetric gauge theories. In particular, we show that this equation is applicable only to strongly asymmetric planar Wilson loops (consisting of a long and a short pair of loop segments) and as a consequence the Wilsonian potential can be extracted only up to intermediate distances. By this equation the Wilson loop is exclusively determined by the gluon propagator. We solve the Dyson equation in Coulomb gauge for the temporal Wilson loop with the instantaneous part of the gluon propagator and for the spatial Wilson loop with the static gluon propagator obtained in the Hamiltonian approach to continuum Yang-Mills theory and on the lattice. In both cases we find a linearly rising color potential.

  17. Method for determining transport critical current densities and flux penetration depth in bulk superconductors

    NASA Technical Reports Server (NTRS)

    Israelsson, Ulf E. (Inventor); Strayer, Donald M. (Inventor)

    1992-01-01

    A contact-less method for determining transport critical current density and flux penetration depth in bulk superconductor material. A compressor having a hollow interior and a plunger for selectively reducing the free space area for distribution of the magnetic flux therein are formed of superconductor material. Analytical relationships, based upon the critical state model, Maxwell's equations and geometrical relationships define transport critical current density and flux penetration depth in terms of the initial trapped magnetic flux density and the ratio between initial and final magnetic flux densities whereby data may be reliably determined by means of the simple test apparatus for evaluating the current density and flux penetration depth.

  18. The folding of 5'-UTR human G-quadruplexes possessing a long central loop.

    PubMed

    Jodoin, Rachel; Bauer, Lubos; Garant, Jean-Michel; Mahdi Laaref, Abdelhamid; Phaneuf, Francis; Perreault, Jean-Pierre

    2014-07-01

    G-quadruplexes are widespread four-stranded structures that are adopted by G-rich regions of both DNA and RNA and are involved in essential biological processes such as mRNA translation. They are formed by the stacking of two or more G-quartets that are linked together by three loops. Although the maximal loop length is usually fixed to 7 nt in most G-quadruplex-predicting software, it has already been demonstrated that artificial DNA G-quadruplexes containing two distal loops that are limited to 1 nt each and a central loop up to 30 nt long are likely to form in vitro. This report demonstrates that such structures possessing a long central loop are actually found in the 5'-UTRs of human mRNAs. Firstly, 1453 potential G-quadruplex-forming sequences (PG4s) were identified through a bioinformatic survey that searched for sequences respecting the requirement for two 1-nt long distal loops and a long central loop of 2-90 nt in length. Secondly, in vitro in-line probing experiments confirmed and characterized the folding of eight candidates possessing central loops of 10-70 nt long. Finally, the biological effect of several G-quadruplexes with a long central loop on mRNA expression was studied in cellulo using a luciferase gene reporter assay. Clearly, the actual definition of G-quadruplex-forming sequences is too conservative and must be expanded to include the long central loop. This greatly expands the number of expected PG4s in the transcriptome. Consideration of these new candidates might aid in elucidating the potentially important biological implications of the G-quadruplex structure.

  19. EUV spectroscopy of cool stars. III. Interpretation of EUVE spectra in terms of quasi-static loops.

    NASA Astrophysics Data System (ADS)

    van den Oord, G. H. J.; Schrijver, C. J.; Camphens, M.; Mewe, R.; Kaastra, J. S.

    1997-10-01

    We discuss the limitations of coronal spectroscopy to derive physical parameters of stellar magnetic loops. We distinguish between the intrinsic non-uniqueness of emitted spectra for models of quasi-static coronal loops, and the supplemental ambiguity introduced by both instrumental effects and spectral line formation. We demonstrate that the spectrum emitted by loops with constant cross-sections is the same for a large range of values of the conductive flux at the base when the apex temperature is fixed. Because it is impossible to estimate the conductive flux at the base from observations, it is also impossible to determine the volume heating rate and the loop length uniquely. For geometrically expanding (tapered) loops, the emitted spectrum depends on the expansion and on the conductive flux at the base, and there is a trade off between them without significant changes in the spectrum. We show that loop length and heating rate can only be derived if the density is known, but that even then a large intrinsic uncertainty remains for these loop parameters. We conclude that there is no unambiguous relationship between loop parameters and emitted spectra: modeling the spectra as the sum of spectra from discrete loops cannot result in a unique determination of coronal structure. Based on spectra observed with the Extreme Ultra Violet Explorer (EUVE) we find that quasi-static loop models allow adequate modeling of stellar coronal spectra. We show that coronal loops on active cool stars must expand with height. The minimum required areal expansion between base and apex is not very large, lying between 2 and 5. For three stars (α Cen, Capella and ξ UMa) the observations suggest the presence of two distinct, dominant loop populations, while for χ^1^ Ori a single population, characterized by a single apex temperature, suffices. The high electron densities (10^12^-10^13^cm^-3^) for coronal components on Capella and ξ UMa require abnormally large heating rates. It is

  20. Optical heat flux gauge

    DOEpatents

    Noel, B.W.; Borella, H.M.; Cates, M.R.; Turley, W.D.; MacArthur, C.D.; Cala, G.C.

    1991-04-09

    A heat flux gauge is disclosed comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator, wherein each thermographic layer comprises a plurality of respective thermographic sensors in a juxtaposed relationship with respect to each other. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable. 9 figures.

  1. Loop anomalies in the causal approach

    NASA Astrophysics Data System (ADS)

    Grigore, Dan-Radu

    2015-01-01

    We consider gauge models in the causal approach and study one-loop contributions to the chronological products and the anomalies they produce. We prove that in order greater than 4 there are no one-loop anomalies. Next we analyze one-loop anomalies in the second- and third-order of the perturbation theory. We prove that the even parity contributions (with respect to parity) do not produce anomalies; for the odd parity contributions we reobtain the well-known result.

  2. Magnetic monopole in the loop representation

    SciTech Connect

    Leal, Lorenzo; Lopez, Alexander

    2006-01-15

    We quantize, within the Loop Representation formalism, the electromagnetic field in the presence of a static magnetic pole. It is found that the loop-dependent physical wave functionals of the quantum Maxwell theory become multivalued, through a topological phase factor depending on the solid angle subtended at the monopole by a surface bounded by the loop. It is discussed how this fact generalizes what occurs in ordinary quantum mechanics in multiply connected spaces.

  3. Costas loop analysis for coherent optical receivers

    NASA Astrophysics Data System (ADS)

    Hodgkinson, T. G.

    1986-03-01

    A homodyne Costas loop receiver is analyzed taking both shot and laser phase noise sources into acount. The reciever performance is compared with that of a heterodyne receiver using an electrical Costas loop and that of a coherent receiver using a pilot carrier phase-locked loop. It is shown that, to avoid large performance penalties, beat linewidth to bit-rate ratios smaller than 0.05 percent and 0.5 percent are needed for PSK homodyne and heterodyne systems, respectively.

  4. LMFBR with booster pump in pumping loop

    DOEpatents

    Rubinstein, H.J.

    1975-10-14

    A loop coolant circulation system is described for a liquid metal fast breeder reactor (LMFBR) utilizing a low head, high specific speed booster pump in the hot leg of the coolant loop with the main pump located in the cold leg of the loop, thereby providing the advantages of operating the main pump in the hot leg with the reliability of cold leg pump operation.

  5. Wilson loops in open string theory

    SciTech Connect

    Shiraishi, K.

    1988-02-01

    Wilson loop elements on torus are introduced into the partition function of open strings as Polyakov's path integral at one-loop level. Mass spectra from compactification and expected symmetry breaking are illustrated by choosing the correct weight for the contributions from annulus and Mobius strip. The authors show that Jacobi's imaginary transformation connects the mass spectra with the Wilson loops. The application to thermo-partition function and cosmological implications are briefly discussed.

  6. NEUTRON FLUX INTENSITY DETECTION

    DOEpatents

    Russell, J.T.

    1964-04-21

    A method of measuring the instantaneous intensity of neutron flux in the core of a nuclear reactor is described. A target gas capable of being transmuted by neutron bombardment to a product having a resonance absorption line nt a particular microwave frequency is passed through the core of the reactor. Frequency-modulated microwave energy is passed through the target gas and the attenuation of the energy due to the formation of the transmuted product is measured. (AEC)

  7. Reconnecting Flux Ropes

    NASA Astrophysics Data System (ADS)

    Gekelman, Walter; van Compernolle, Bart

    2012-10-01

    Magnetic flux ropes are due to helical currents and form a dense carpet of arches on the surface of the sun. Occasionally one tears loose as a coronal mass ejection and its rope structure is detected by satellites close to the earth. Current sheets can tear into filaments and these are nothing other than flux ropes. Ropes are not static, they exert mutual JxB forces causing them to twist about each other and merge. Kink instabilities cause them to violently smash into each other and reconnect at the point of contact. We report on experiments done in the large plasma device (LAPD) at UCLA (L=17m,dia=60cm,0.3<=B0z<=2.5kG,n˜2x10^12cm-3)on three dimensional flux ropes. Two, three or more magnetic flux ropes are generated from initially adjacent pulsed current channels in a background magnetized plasma. The currents and magnetic fields form exotic shapes with no ignorable direction and no magnetic nulls. Volumetric space-time data show multiple reconnection sites with time-dependent locations. The concept of a quasi-separatrix layer (QSL), a tool to understand 3D reconnection without null points. In our experiment the QSL is a narrow ribbon-like region(s) that twists between field lines. Within the QSL(s) field lines that start close to one another rapidly diverge as they pass through one or more reconnection regions. When the field lines are tracked they are observed to slip along the QSL when reconnection occurs. The Heating and other co-existing waves will be presented.

  8. Heat Flux Sensor Testing

    NASA Technical Reports Server (NTRS)

    Clark, D. W.

    2002-01-01

    This viewgraph presentation provides information on the following objectives: Developing secondary calibration capabilities for MSFC's (Marshall Space Flight Center) Hot Gas Facility (HGF), a Mach 4 Aerothermal Wind Tunnel; Evaluating ASTM (American Society for Testing and Materials) slug/ thinskin calorimeters against current HGF heat flux sensors; Providing verification of baselined AEDC (Arnold Engineering Development Center) / Medtherm gage calibrations; Addressing future calibration issues involving NIST (National Institute of Standards and Technology) certified radiant gages.

  9. Unified framework for systematic loop transformations

    SciTech Connect

    Lu, L.C.; Chen, M.

    1990-10-01

    This paper presents a formal mathematical framework which unifies the existing loop transformations. This framework also includes more general classes of loop transformations, which can extract more parallelism from a class of programs than the existing techniques. We classify schedules into three classes: uniform, subdomain-variant, and statement-variant. Viewing from the degree of parallelism to be gained by loop transformation, the schedules can also be classified as single-sequential level, multiple-sequential level, and mixed schedules. We also illustrate the usefulness of the more general loop transformation with an example program.

  10. Conservation law for linked cosmic string loops

    NASA Astrophysics Data System (ADS)

    Bekenstein, Jacob D.

    1992-05-01

    Taking a cue from the connection between fluid helicity and the linkage between closed vortices in ordinary turbulent flow, we examine topological restrictions on the linkage of cosmic string loops (or superfluid quantum vortex rings). The analog of helicity in these cases vanishes, but loops (and vortex rings) can link together, the extent of linkage (knotting included) being related to the contorsion of the loops or rings by a topological conservation law. This law is respected by intercommunication. One consequence is that total loop contorsion is quantized in integers.

  11. Multi-instrument observations of coronal loops

    NASA Astrophysics Data System (ADS)

    Scott, Jason Terrence

    This document exhibits results of analysis from data collected with multiple EUV satellites (SOHO, TRACE, STEREO, Hinode, and SDO). The focus is the detailed observation of coronal loops using multiple instruments, i.e. filter imagers and spectrometers. Techniques for comparing the different instruments and deriving loop parameters are demonstrated. Attention is given to the effects the different instruments may introduce into the data and their interpretation. The assembled loop parameters are compared to basic energy balance equations and scaling laws. Discussion of the blue-shifted, asymmetric, and line broadened spectral line profiles near the footpoints of coronal loops is made. The first quantitative analysis of the anti-correlation between intensity and spectral line broadening for isolated regions along loops and their footpoints is presented. A magnetic model of an active region shows where the separatrices meet the photospheric boundary. At the boundary, the spectral data reveal concentrated regions of increased blue-shifted outflows, blue wing asymmetry, and line broadening. This is found just outside the footpoints of bright loops. The intensity and line broadening in this region are anti-correlated. A comparison of the similarities in the spectroscopic structure near the footpoints of the arcade loops and more isolated loops suggests the notion of consistent structuring for the bright loops forming an apparent edge of an active region core.

  12. Double dither loop for pseudonoise code tracking

    NASA Technical Reports Server (NTRS)

    Hopkins, P. M.

    1977-01-01

    A new type of phase detector for pseudonoise code tracking is introduced and analyzed in comparison with the delay lock loop (DLL) and tau-dither loop (TDL) configurations. It is shown that the double dither loop (DDL) combines the best features of the DLL and the TDL in that the DDL is insensitive to gain and offset imbalances and does not suffer the 3-dB degradation in noise performance typically associated with the TDL. The double dither concept is applicable to other dual channel detectors such as in a Costas-type carrier tracking loop.

  13. Analysis Of Lock Detection In Costas Loops

    NASA Technical Reports Server (NTRS)

    Mileant, Alexander; Hinedi, Sami M.

    1991-01-01

    Report presents analysis of detection of phase lock in Costas loops, used in coherent binary-phase-shift-keying communication systems to track both subcarrier and suppressed carrier signals. Detection of phase lock important part of operation and monitoring of operation of Costas or other tracking loop, provides insight into behavior of loop in real time. Focuses on effects of phase jitter and correlation between samples of phase error in all-digital Costas loop, in which lock detection implemented via algorithm. Applicable to both sinusoidal and square-law carrier signals, incorporates new mathematical models of square-law and absolute-value detectors.

  14. Screened perturbation theory to three loops

    SciTech Connect

    Andersen, Jens O.; Braaten, Eric; Strickland, Michael

    2001-05-15

    The thermal physics of a massless scalar field with a {phi}{sup 4} interaction is studied within screened perturbation theory (SPT). In this method the perturbative expansion is reorganized by adding and subtracting a mass term in the Lagrangian. We consider several different mass prescriptions that generalize the one-loop gap equation to two-loop order. We calculate the pressure and entropy to three-loop order and the screening mass to two-loop order. In contrast with the weak-coupling expansion, the SPT-improved approximations appear to converge even for rather large values of the coupling constant.

  15. ON THE ANISOTROPY IN EXPANSION OF MAGNETIC FLUX TUBES IN THE SOLAR CORONA

    SciTech Connect

    Malanushenko, A.; Schrijver, C. J.

    2013-10-01

    Most one-dimensional hydrodynamic models of plasma confined to magnetic flux tubes assume circular tube cross sections. We use potential field models to show that flux tubes in circumstances relevant to the solar corona do not, in general, maintain the same cross-sectional shape through their length and therefore the assumption of a circular cross section is rarely true. We support our hypothesis with mathematical reasoning and numerical experiments. We demonstrate that lifting this assumption in favor of realistic, non-circular loops makes the apparent expansion of magnetic flux tubes consistent with that of observed coronal loops. We propose that in a bundle of ribbon-like loops, those that are viewed along the wide direction would stand out against those that are viewed across the wide direction due to the difference in their column depths. That result would impose a bias toward selecting loops that appear not to be expanding, seen projected in the plane of sky. An implication of this selection bias is that the preferentially selected non-circular loops would appear to have increased pressure scale heights even if they are resolved by current instruments.

  16. The distribution of solar magnetic fluxes and the nonlinearity of stellar flux-flux relations

    NASA Technical Reports Server (NTRS)

    Schrijver, C. J.; Harvey, K. L.

    1989-01-01

    Synoptic maps for the 1975-1984 period are used to determine the time-dependent distribution function of magnetic flux densities in the solar atmosphere. The distribution function depends only on the global level of magnetic activity, and it is used to study how relations between magnetic flux densities and radiative flux densities from different temperature regimes in the outer atmosphere (derived from spatially resolved solar observations) transform into relations between surface-averaged flux densities. It is found that the transformation to surface-averaged fluxes preserves the power-law character of relations between radiative and magnetic flux densities for spatially resolved data.

  17. Electronic and nuclear flux densities in the H2 molecule

    NASA Astrophysics Data System (ADS)

    Hermann, G.; Paulus, B.; Pérez-Torres, J. F.; Pohl, V.

    2014-05-01

    We present a theoretical study of the electronic and nuclear flux densities of a vibrating H2 molecule after an electronic excitation by a short femtosecond laser pulse. The final state, a coherent superposition of the electronic ground state X1Σg+ and the electronic excited state B1Σu+, evolves freely and permits the partition of the electronic flux density into two competing fluxes: the adiabatic and the transition flux density. The nature of the two fluxes allows us to identify two alternating dynamics of the electronic motion, occurring on the attosecond and the femtosecond time scales. In contradistinction to the adiabatic electronic flux density, the transition electronic flux density shows a dependence on the carrier-envelope phase of the laser field, encoding information of the interaction of the electrons with the electric field. Furthermore, the nuclear flux density displays multiple reversals, a quantum effect recently discovered by Manz et al. [J. Manz, J. F. Pérez-Torres, and Y. Yang, Phys. Rev. Lett. 111, 153004 (2013), 10.1103/PhysRevLett.111.153004], calling for investigation of the electronic flux density.

  18. Computing magnetic energy and helicity fluxes from series of magnetograms .

    NASA Astrophysics Data System (ADS)

    Démoulin, P.; Pariat, E.

    Magnetic energy and helicity fluxes can now be derived from measurements of the photospheric magnetic and velocity fields. We show that only photospheric flux-tube motions are needed to estimate the full fluxes. The derived maps of flux densities permit to localize where energy and helicity input occurs in active regions (ARs). The precision of the energy flux density is dominantly limited by the precision obtained on the transverse component of the magnetic field. On the contrary, the helicity flux density requires only the measurement of the vertical component of the magnetic field. Previously, the magnetic helicity maps were strongly affected by a false definition of the helicity flux density involving the magnetic vector potential. Applied to observations, this approach introduces important fake polarities. We define a better helicity flux density; it reduces the fake polarities by more than an order of magnitude. The spatial distribution of helicity injected into the studied ARs is much more coherent than previously thought, and presents a dominant sign in each AR. Finally, the correct helicity flux density could be derived from magnetograms if coronal connectivities are known.

  19. Closed-Loop Neuroscience and Non-Invasive Brain Stimulation: A Tale of Two Loops

    PubMed Central

    Zrenner, Christoph; Belardinelli, Paolo; Müller-Dahlhaus, Florian; Ziemann, Ulf

    2016-01-01

    Closed-loop neuroscience is receiving increasing attention with recent technological advances that enable complex feedback loops to be implemented with millisecond resolution on commodity hardware. We summarize emerging conceptual and methodological frameworks that are available to experimenters investigating a “brain in the loop” using non-invasive brain stimulation and briefly review the experimental and therapeutic implications. We take the view that closed-loop neuroscience in fact deals with two conceptually quite different loops: a “brain-state dynamics” loop, used to couple with and modulate the trajectory of neuronal activity patterns, and a “task dynamics” loop, that is the bidirectional motor-sensory interaction between brain and (simulated) environment, and which enables goal-directed behavioral tasks to be incorporated. Both loops need to be considered and combined to realize the full experimental and therapeutic potential of closed-loop neuroscience. PMID:27092055

  20. Algebraic Flux Correction II. Compressible Euler Equations

    NASA Astrophysics Data System (ADS)

    Kuzmin, Dmitri; Möller, Matthias

    Algebraic flux correction schemes of TVD and FCT type are extended to systems of hyperbolic conservation laws. The group finite element formulation is employed for the treatment of the compressible Euler equations. An efficient algorithm is proposed for the edge-by-edge matrix assembly. A generalization of Roe's approximate Riemann solver is derived by rendering all off-diagonal matrix blocks positive semi-definite. Another usable low-order method is constructed by adding scalar artificial viscosity proportional to the spectral radius of the cumulative Roe matrix. The limiting of antidiffusive fluxes is performed using a transformation to the characteristic variables or a suitable synchronization of correction factors for the conservative ones. The outer defect correction loop is equipped with a block-diagonal preconditioner so as to decouple the discretized Euler equations and solve them in a segregated fashion. As an alternative, a strongly coupled solution strategy (global BiCGSTAB method with a block-Gauß-Seidel preconditioner) is introduced for applications which call for the use of large time steps. Various algorithmic aspects including the implementation of characteristic boundary conditions are addressed. Simulation results are presented for inviscid flows in a wide range of Mach numbers.

  1. Flow and Heat Transfer Characteristics in a Closed-Type Two-Phase Loop Thermosyphon

    NASA Astrophysics Data System (ADS)

    Imura, Hideaki; Saito, Yuji; Fujimoto, Hiromitsu

    A closed-loop two-phase thermosyphon can transport a large amount of thermal energy with small temperature differences without any external power supply. A fundamental investigation of flow and heat transfer characteristics was performed experimentally and theoretically using water, ethanol and R113 as the working liquids. Heat transfer coefficients in an evaporator and a condenser, and circulation flow rates were measured experimentally. The effects of liquid fill charge, rotation angle, pressure in the loop and heat flux on the heat transfer coefficients were examined. The heat transfer coefficients in the evaporator and the condenser were correlated by the expressions for pool boiling and film condensation respectively. As a result, the heat transfer coefficients in the evaporator were correlated by the Stephan-Abdelsalam equations within a±40% error. Theoretically, the circulation flow rate was predicted by calculating pressure, temperature, quality and void fraction along the loop. And, the comparison between the calculated and experimental results was made.

  2. Helium I heat transfer in a small natural circulation loop with self-sustaining recondensation

    NASA Astrophysics Data System (ADS)

    Song, Yu; Four, Aurélien; Baudouy, Bertrand

    2014-01-01

    Heat transfer of helium I in a natural circulation loop is experimentally studied around atmospheric pressure. The test section of the loop has an inner diameter of 4 mm and a height of 23 cm and can be uniformly heated by wire heater. On top of the loop, a condenser is mounted and thermally connected to the second-stage of a 1.5 W at 4.2 K GM cryocooler. Helium can be recondensed in the condenser, where the pressure is regulated around the atmospheric pressure. While the dissipated heat flux is increased from 0 to 1 W, one encounters the different heat transfer regimes as single phase liquid convection, two phase nucleate boiling and single phase vapor convection. The wall superheat varies up to 11 K in the single phase vapor convection regime. The wall temperature measurement allows obtaining the boiling curve and determining the heat transfer coefficient.

  3. The spatial distribution of 6 centimeter gyroresonance emission from a flaring X-ray loop

    NASA Technical Reports Server (NTRS)

    Kahler, S. W.; Webb, D. F.; Davis, J. M.; Kundu, M. R.

    1984-01-01

    Simultaneous high resolution soft X-ray, and 6-cm images of the decay phase of an M3 X-ray flare in Hale Region 16413 have been compared. The X-ray images were obtained with a sounding rocket flown on November 7, 1979 and the 6-cm observations were made with the VLA. A large loop system approximately 1.3 arc min in length, with an average temperature of about 8,000,000 K made up the X-ray flare structure. The peak 6-cm emission seemed to originate from a region below the X-ray loop, and its predicted flux due to thermal bremsstrahlung was approximately one order of magnitude less than observed. The expected gyroresonance absorption is examined through a loop geometry model, and it is found that thermal gyroresonance emission requiring large azimuthal or radial field components, or non-thermal gyrosynchrotron emission which involves continuous electron acceleration, may explain the observations.

  4. Closing the loop with blur

    NASA Astrophysics Data System (ADS)

    Tani, Jacopo

    A great variety of systems use image sensors to provide measurements for closed loop operation. A drawback of using image sensors in real-time feedback is that they provide measurements at slower sampling rates as compared to the actuators, typically around 30 Hz for CCD cameras, hence acting as the bottleneck for closed loop control bandwidths. While high speed cameras exist, higher frame rates imply an upper bound on exposures which lowers the signal-to-noise-ratio (SNR), reducing measurements accuracy. The integrative nature of image sensors though offers the opportunity to prolong the exposure window and collect motion blurred measurements. This research describes how to exploit the dynamic information of observed system outputs, encoded in motion blur, to control fast systems at the fast rate through slow rate image sensors. In order to achieve this objective it is necessary to (a) design a controller providing fast rate input to the system based on the slow image measurements. Ideally such a controller would require a fast rate estimate of the system's state variables in order to provide the necessary control action, therefore an (b) image blur based estimator is to be developed. State estimators typically need a model of the system in order to provide their estimates, so (c) a system identification problem has to be addressed, where a reliable model describing the frequency content of the system, up to frequencies corresponding to the fast rate, has to be determined through slow rate image sensor measurements. Alternatively when such a procedure is not possible for lack, e.g., of knowledge of the input to the system, then (d) a method to reconstruct the output signal frequency content up to frequencies above those set by the limitations of the sampling theorem is to be devised. Therefore in order to "close the loop with blur", this work describes how to pose and solve the problems of, namely: system identification , state estimation, closed loop control and

  5. UWB communication receiver feedback loop

    DOEpatents

    Spiridon, Alex; Benzel, Dave; Dowla, Farid U.; Nekoogar, Faranak; Rosenbury, Erwin T.

    2007-12-04

    A novel technique and structure that maximizes the extraction of information from reference pulses for UWB-TR receivers is introduced. The scheme efficiently processes an incoming signal to suppress different types of UWB as well as non-UWB interference prior to signal detection. Such a method and system adds a feedback loop mechanism to enhance the signal-to-noise ratio of reference pulses in a conventional TR receiver. Moreover, sampling the second order statistical function such as, for example, the autocorrelation function (ACF) of the received signal and matching it to the ACF samples of the original pulses for each transmitted bit provides a more robust UWB communications method and system in the presence of channel distortions.

  6. Closed loop steam cooled airfoil

    DOEpatents

    Widrig, Scott M.; Rudolph, Ronald J.; Wagner, Gregg P.

    2006-04-18

    An airfoil, a method of manufacturing an airfoil, and a system for cooling an airfoil is provided. The cooling system can be used with an airfoil located in the first stages of a combustion turbine within a combined cycle power generation plant and involves flowing closed loop steam through a pin array set within an airfoil. The airfoil can comprise a cavity having a cooling chamber bounded by an interior wall and an exterior wall so that steam can enter the cavity, pass through the pin array, and then return to the cavity to thereby cool the airfoil. The method of manufacturing an airfoil can include a type of lost wax investment casting process in which a pin array is cast into an airfoil to form a cooling chamber.

  7. Delay locked loop integrated circuit.

    SciTech Connect

    Brocato, Robert Wesley

    2007-10-01

    This report gives a description of the development of a Delay Locked Loop (DLL) integrated circuit (IC). The DLL was developed and tested as a stand-alone IC test chip to be integrated into a larger application specific integrated circuit (ASIC), the Quadrature Digital Waveform Synthesizer (QDWS). The purpose of the DLL is to provide a digitally programmable delay to enable synchronization between an internal system clock and external peripherals with unknown clock skew. The DLL was designed and fabricated in the IBM 8RF process, a 0.13 {micro}m CMOS process. It was designed to operate with a 300MHz clock and has been tested up to 500MHz.

  8. A New Method for Setting Calculation Sequence of Directional Relay Protection in Multi-Loop Networks

    NASA Astrophysics Data System (ADS)

    Haijun, Xiong; Qi, Zhang

    2016-08-01

    Workload of relay protection setting calculation in multi-loop networks may be reduced effectively by optimization setting calculation sequences. A new method of setting calculation sequences of directional distance relay protection in multi-loop networks based on minimum broken nodes cost vector (MBNCV) was proposed to solve the problem experienced in current methods. Existing methods based on minimum breakpoint set (MBPS) lead to more break edges when untying the loops in dependent relationships of relays leading to possibly more iterative calculation workloads in setting calculations. A model driven approach based on behavior trees (BT) was presented to improve adaptability of similar problems. After extending the BT model by adding real-time system characters, timed BT was derived and the dependency relationship in multi-loop networks was then modeled. The model was translated into communication sequence process (CSP) models and an optimization setting calculation sequence in multi-loop networks was finally calculated by tools. A 5-nodes multi-loop network was applied as an example to demonstrate effectiveness of the modeling and calculation method. Several examples were then calculated with results indicating the method effectively reduces the number of forced broken edges for protection setting calculation in multi-loop networks.

  9. Edge-on dislocation loop in anisotropic hcp zirconium thin foil

    NASA Astrophysics Data System (ADS)

    Wu, Wenwang; Xia, Re; Qian, Guian; Xu, Shucai; Zhang, Jinhuan

    2015-10-01

    Edge-on dislocation loops with < a > -type and < c > -type of Burgers vectors can be formed on prismatic or basel habit planes of hexagonal close-packed (hcp) zirconium alloys during in-situ ion irradiation and neutron irradiation experiments. In this work, an anisotropic image stress method was employed to analyze the free surface effects of dislocation loops within hcp Zr thin foils. Calculation results demonstrate that image stress has a remarkable effect on the distortion fields of dislocation loops within infinite medium, and the image energy becomes remarkable when dislocation loops are situated close to the free surfaces. Moreover, image forces of the 1 / 2 < 0001 > (0001) dislocation loop within (0001) thin foil is much stronger than that of the 1 / 3 < 11 2 bar 0 > (11 2 bar 0) dislocation loop within (11 2 bar 0) thin foil of identical geometrical configurations. Finally, image stress effect on the physical behaviors of loops during in-situ ion irradiation experiments is discussed.

  10. Stabilization of moduli by fluxes

    SciTech Connect

    Behrndt, Klaus

    2004-12-10

    In order to fix the moduli, non-trivial fluxes might the essential input. We summarize different aspects of compactifications in the presence of fluxes, as there is the relation to generalized Scherk-Schwarz reductions and gauged supergravity but also the description of flux-deformed geometries in terms of G-structures and intrinsic torsion.

  11. Design of set-point weighting PI{sup λ} + D{sup μ} controller for vertical magnetic flux controller in Damavand tokamak

    SciTech Connect

    Rasouli, H.; Fatehi, A.

    2014-12-15

    In this paper, a simple method is presented for tuning weighted PI{sup λ} + D{sup μ} controller parameters based on the pole placement controller of pseudo-second-order fractional systems. One of the advantages of this controller is capability of reducing the disturbance effects and improving response to input, simultaneously. In the following sections, the performance of this controller is evaluated experimentally to control the vertical magnetic flux in Damavand tokamak. For this work, at first a fractional order model is identified using output-error technique in time domain. For various practical experiments, having desired time responses for magnetic flux in Damavand tokamak, is vital. To approach this, at first the desired closed loop reference models are obtained based on generalized characteristic ratio assignment method in fractional order systems. After that, for the identified model, a set-point weighting PI{sup λ} + D{sup μ} controller is designed and simulated. Finally, this controller is implemented on digital signal processor control system of the plant to fast/slow control of magnetic flux. The practical results show appropriate performance of this controller.

  12. Quantitation of interactions between two DNA loops demonstrates loop domain insulation in E. coli cells.

    PubMed

    Priest, David G; Kumar, Sandip; Yan, Yan; Dunlap, David D; Dodd, Ian B; Shearwin, Keith E

    2014-10-21

    Eukaryotic gene regulation involves complex patterns of long-range DNA-looping interactions between enhancers and promoters, but how these specific interactions are achieved is poorly understood. Models that posit other DNA loops--that aid or inhibit enhancer-promoter contact--are difficult to test or quantitate rigorously in eukaryotic cells. Here, we use the well-characterized DNA-looping proteins Lac repressor and phage λ CI to measure interactions between pairs of long DNA loops in E. coli cells in the three possible topological arrangements. We find that side-by-side loops do not affect each other. Nested loops assist each other's formation consistent with their distance-shortening effect. In contrast, alternating loops, where one looping element is placed within the other DNA loop, inhibit each other's formation, thus providing clear support for the loop domain model for insulation. Modeling shows that combining loop assistance and loop interference can provide strong specificity in long-range interactions.

  13. Improved methods for the formation and stabilization of R-loops

    PubMed Central

    Kaback, David B.; Angerer, Lynne M.; Davidson, Norman

    1979-01-01

    Improved methods for the formation and stabilization of R-loops for visualization in the electron microscope are presented. The two complementary strands of a duplex DNA are photochemically crosslinked once every 1 to 3 kb using 4, 5', 8 trimethylpsoralen. R-loops are then formed by incubation with RNA in 70% formamide at a temperature above the DNA melting temperature. Finally, the R-loops are stabilized by modifying the free single strand of DNA with glyoxal, thus minimizing the displacement of the hybridized RNA by branch migration. In this manner R-loops can be formed and visualized at a high frequency irrespective of the base composition of the nucleic acid of interest. Images PMID:379821

  14. A novel double loop control model design for chemical unstable processes.

    PubMed

    Cong, Er-Ding; Hu, Ming-Hui; Tu, Shan-Tung; Xuan, Fu-Zhen; Shao, Hui-He

    2014-03-01

    In this manuscript, based on Smith predictor control scheme for unstable process in industry, an improved double loop control model is proposed for chemical unstable processes. Inner loop is to stabilize integrating the unstable process and transform the original process to first-order plus pure dead-time dynamic stable process. Outer loop is to enhance the performance of set point response. Disturbance controller is designed to enhance the performance of disturbance response. The improved control system is simple with exact physical meaning. The characteristic equation is easy to realize stabilization. Three controllers are separately design in the improved scheme. It is easy to design each controller and good control performance for the respective closed-loop transfer function separately. The robust stability of the proposed control scheme is analyzed. Finally, case studies illustrate that the improved method can give better system performance than existing design methods. PMID:24309506

  15. PARTICLES AND FIELDS Two loop electroweak corrections from heavy fermions to b → s + γ

    NASA Astrophysics Data System (ADS)

    Yang, Xiu-Yi; Feng, Tai-Fu

    2010-12-01

    Applying an effective Lagrangian method and an on-shell scheme, we analyze the electroweak corrections to the rare decay b → s + γ from some special two loop diagrams in which a closed heavy fermion loop is attached to the virtual charged gauge bosons or Higgs. At the decoupling limit where the virtual fermions in the inner loop are much heavier than the electroweak scale, we verify the final results satisfying the decoupling theorem explicitly when the interactions among Higgs and heavy fermions do not contain the nondecoupling couplings. Adopting the universal assumptions on the relevant couplings and mass spectrum of new physics, we find that the relative corrections from those two loop diagrams to the SM theoretical prediction on the branching ratio of B → Xsγ can reach 5% as the energy scale of new physics ΛNP = 200 GeV.

  16. Heavy fermions and two loop electroweak corrections to b → s + γ

    NASA Astrophysics Data System (ADS)

    Yang, Xiu-Yi; Feng, Tai-Fu

    2010-05-01

    Applying effective Lagrangian method and on-shell scheme, we analyze the electroweak corrections to the rare decay b → s + γ from some special two loop diagrams in which a closed heavy fermion loop is attached to the virtual charged gauge bosons or Higgs. At the decoupling limit where the virtual fermions in inner loop are much heavier than the electroweak scale, we verify the final results satisfying the decoupling theorem explicitly when the interactions among Higgs and heavy fermions do not contain the nondecoupling couplings. Adopting the universal assumptions on the relevant couplings and mass spectrum of new physics, we find that the relative corrections from those two loop diagrams to the SM theoretical prediction on the branching ratio of B → X s γ can reach 5% as the energy scale of new physics ΛNP = 200GeV.

  17. MPO B593110 - Final Report

    SciTech Connect

    Brooksby, C

    2011-07-25

    National Security Technologies, LLC (NSTec) shall provide one (1) Mechanical Engineer to support the Linear Collider Subsystem Development Program at Lawrence Livermore National Security, LLC (LLNS). The NSTec Mechanical Engineer's efforts will include engineering, design, and drawing support for the Vacuum Seal Test. NSTec will also provide a final report of the setup and input to LLNL's project management on project status. The NSTec Mechanical Engineer's efforts will also include engineering, design, and drawing support to the conceptual design for manufacturing of the Flux Concentrator Magnet. NSTec will also contribute to LLNS's final report on the Flux Concentrator Magnet. The deliverables are drawings, sketches, engineering documents, and final reports delivered to the LLNS Technical Representative.

  18. Noise properties of high-Tc superconducting flux transformers fabricated using chemical-mechanical polishing

    NASA Astrophysics Data System (ADS)

    Chukharkin, M.; Kalabukhov, A.; Schneiderman, J. F.; Öisjöen, F.; Snigirev, O.; Lai, Z.; Winkler, D.

    2012-07-01

    Reproducible high-temperature superconducting multilayer flux transformers were fabricated using chemical mechanical polishing. The measured magnetic field noise of the flip-chip magnetometer based on one such flux transformer with a 9 × 9 mm2 pickup loop coupled to a bicrystal dc SQUID was 15 fT/Hz1/2 above 2 kHz. We present an investigation of excess 1/f noise observed at low frequencies and its relationship with the microstructure of the interlayer connections within the flux transformer. The developed high-Tc SQUID magnetometers may be advantageous in ultra-low field magnetic resonance imaging and, with improved low frequency noise, magnetoencephalography applications.

  19. Heat Transfer in a Two-Phase Closed-Loop Thermosyphon

    NASA Astrophysics Data System (ADS)

    Imura, Hideaki; Saito, Yuji

    A two-phase closed-loop thermosyphon is a device which transports heat energy from a heat source to a sink under the body force field and has many practical applications. The critical heat flux of this thermosyphon is larger than that of a non-loop thermosyphon, because the flooding phenomenon occurring in the no-loop one does not occur. In addition, there is another merit that the evaporator and the condencer can be installed in comparatively arbitrary position because these are interconnected by piping. In most previous investigations of the two-phase closed-loop thermosyphons, overall heat resistances were measured. The overall heat resistance, however, consists of three heat resistances; the heat resistances in the evaporator and the condenser, and the transport resistance in the interconnecting pipe. Therefore, we should consider these heat resistances separately. In the present study, we took note of the heat resistances (or heat transfer coefficients) of the evaporator and the condenser. The experiment was performed using two experimental setups and three kinds of test liquid. And, the effects of rotation angle, heat flux, inside temperature (or inside pressure) and liquid charge on the heat transfer coefficients were investigated.

  20. Direct observations of plasma upflows and condensation in a catastrophically cooling solar transition region loop

    SciTech Connect

    Orange, N. B.; Chesny, D. L.; Oluseyi, H. M.; Hesterly, K.; Patel, M.; Champey, P.

    2013-12-01

    Minimal observational evidence exists for fast transition region (TR) upflows in the presence of cool loops. Observations of such occurrences challenge notions of standard solar atmospheric heating models as well as their description of bright TR emission. Using the EUV Imaging Spectrometer on board Hinode, we observe fast upflows (v {sub λ} ≤ –10 km s{sup –1}) over multiple TR temperatures (5.8 ≤log T ≤ 6.0) at the footpoint sites of a cool loop (log T ≤ 6.0). Prior to cool loop energizing, asymmetric flows of +5 km s{sup –1} and –60 km s{sup –1} are observed at footpoint sites. These flows, speeds, and patterns occur simultaneously with both magnetic flux cancellation (at the site of upflows only) derived from the Solar Dynamics Observatory's Helioseismic Magnetic Imager's line-of-sight magnetogram images, and a 30% mass influx at coronal heights. The incurred non-equilibrium structure of the cool loop leads to a catastrophic cooling event, with subsequent plasma evaporation indicating that the TR is the heating site. From the magnetic flux evolution, we conclude that magnetic reconnection between the footpoint and background field is responsible for the observed fast TR plasma upflows.

  1. Loop-Loop Interactions Regulate KaiA-Stimulated KaiC Phosphorylation in the Cyanobacterial KaiABC Circadian Clock

    SciTech Connect

    Egli, Martin; Pattanayek, Rekha; Sheehan, Jonathan H.; Xu, Yao; Mori, Tetsuya; Smith, Jarrod A.; Johnson, Carl H.

    2013-01-25

    We found that the Synechococcus elongatus KaiA, KaiB, and KaiC proteins in the presence of ATP generate a post-translational oscillator that runs in a temperature-compensated manner with a period of 24 h. KaiA dimer stimulates phosphorylation of KaiC hexamer at two sites per subunit, T432 and S431, and KaiB dimers antagonize KaiA action and induce KaiC subunit exchange. Neither the mechanism of KaiA-stimulated KaiC phosphorylation nor that of KaiB-mediated KaiC dephosphorylation is understood in detail at present. We demonstrate here that the A422V KaiC mutant sheds light on the former mechanism. It was previously reported that A422V is less sensitive to dark pulse-induced phase resetting and has a reduced amplitude of the KaiC phosphorylation rhythm in vivo. A422 maps to a loop (422-loop) that continues toward the phosphorylation sites. By pulling on the C-terminal peptide of KaiC (A-loop), KaiA removes restraints from the adjacent 422-loop whose increased flexibility indirectly promotes kinase activity. We found in the crystal structure that A422V KaiC lacks phosphorylation at S431 and exhibits a subtle, local conformational change relative to wild-type KaiC. Molecular dynamics simulations indicate higher mobility of the 422-loop in the absence of the A-loop and mobility differences in other areas associated with phosphorylation activity between wild-type and mutant KaiCs. Finally, the A-loop–422-loop relay that informs KaiC phosphorylation sites of KaiA dimer binding propagates to loops from neighboring KaiC subunits, thus providing support for a concerted allosteric mechanism of phosphorylation.

  2. Optimal flux patterns in cellular metabolic networks

    NASA Astrophysics Data System (ADS)

    Almaas, Eivind

    2007-06-01

    The availability of whole-cell-level metabolic networks of high quality has made it possible to develop a predictive understanding of bacterial metabolism. Using the optimization framework of flux balance analysis, I investigate the metabolic response and activity patterns to variations in the availability of nutrient and chemical factors such as oxygen and ammonia by simulating 30 000 random cellular environments. The distribution of reaction fluxes is heavy tailed for the bacteria H. pylori and E. coli, and the eukaryote S. cerevisiae. While the majority of flux balance investigations has relied on implementations of the simplex method, it is necessary to use interior-point optimization algorithms to adequately characterize the full range of activity patterns on metabolic networks. The interior-point activity pattern is bimodal for E. coli and S. cerevisiae, suggesting that most metabolic reactions are either in frequent use or are rarely active. The trimodal activity pattern of H. pylori indicates that a group of its metabolic reactions (20%) are active in approximately half of the simulated environments. Constructing the high-flux backbone of the network for every environment, there is a clear trend that the more frequently a reaction is active, the more likely it is a part of the backbone. Finally, I briefly discuss the predicted activity patterns of the central carbon metabolic pathways for the sample of random environments.

  3. Optimal flux patterns in cellular metabolic networks

    SciTech Connect

    Almaas, E

    2007-01-20

    The availability of whole-cell level metabolic networks of high quality has made it possible to develop a predictive understanding of bacterial metabolism. Using the optimization framework of flux balance analysis, I investigate metabolic response and activity patterns to variations in the availability of nutrient and chemical factors such as oxygen and ammonia by simulating 30,000 random cellular environments. The distribution of reaction fluxes is heavy-tailed for the bacteria H. pylori and E. coli, and the eukaryote S. cerevisiae. While the majority of flux balance investigations have relied on implementations of the simplex method, it is necessary to use interior-point optimization algorithms to adequately characterize the full range of activity patterns on metabolic networks. The interior-point activity pattern is bimodal for E. coli and S. cerevisiae, suggesting that most metabolic reaction are either in frequent use or are rarely active. The trimodal activity pattern of H. pylori indicates that a group of its metabolic reactions (20%) are active in approximately half of the simulated environments. Constructing the high-flux backbone of the network for every environment, there is a clear trend that the more frequently a reaction is active, the more likely it is a part of the backbone. Finally, I briefly discuss the predicted activity patterns of the central-carbon metabolic pathways for the sample of random environments.

  4. The Cygnus Loop: An Older Supernova Remnant.

    ERIC Educational Resources Information Center

    Straka, William

    1987-01-01

    Describes the Cygnus Loop, one of brightest and most easily studied of the older "remnant nebulae" of supernova outbursts. Discusses some of the historical events surrounding the discovery and measurement of the Cygnus Loop and makes some projections on its future. (TW)

  5. SP-100 liquid metal test loop design

    NASA Astrophysics Data System (ADS)

    Fallas, T. Ted; Kruger, Gordon B.; Wiltshire, Frank R.; Jensen, Grant C.; Clay, Harold; Upton, Hugh A.; Gamble, Robert E.; Kjaer-Olsen, Christian; Lee, Keith

    1992-01-01

    The SP-100 Power System Qualification (PSO) program validates the technology readiness of the SP-100 Generic Flight System (GFS). As part of the PSQ, the GFS reactor, heat transport and power generation systems are being validated, by test, in high temperature liquid metal test loops. The liquid metal test loop program consists of two test loops. The first, a natural circulation material test loop (MTL), has been successfully operating for the last year at GE's test facility in San Jose. The second, a forced circulation Component Test Loop (CTL) is in the preliminary design phase. Fabrication of the CTL and modifications to the Test Facility will be completed in FY94 with component testing scheduled to begin in FY95. The CTL is a Nb-1Zr test loop with an Electromagnetic (EM) pump providing forced circulation for the liquid lithium coolant. The CTL test program is comprised of a series of individual component tests. Test components containing thermoelectric cells will have their cold side ducts piped to an existing heat rejection loop external to the CTL vacuum vessel. The test assembly and test components are being designed by GE. The detail design of several loop components is being performed by Westinghouse Atomic Energy Systems (WAES). The CTL will be assembled and the test performed at GE's facilties in San Jose, California.

  6. Spring control of wire harness loops

    NASA Technical Reports Server (NTRS)

    Curcio, P. J.

    1979-01-01

    Negator spring control guides wire harness between movable and fixed structure. It prevents electrical wire harness loop from jamming or being severed as wire moves in response to changes in position of aircraft rudder. Spring-loaded coiled cable controls wire loop regardless of rudder movement.

  7. Feedback loop compensates for rectifier nonlinearity

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Signal processing circuit with two negative feedback loops rectifies two sinusoidal signals which are 180 degrees out of phase and produces a single full-wave rectified output signal. Each feedback loop incorporates a feedback rectifier to compensate for the nonlinearity of the circuit.

  8. Development of heat flux sensors for turbine airfoils

    NASA Astrophysics Data System (ADS)

    Atkinson, William H.; Cyr, Marcia A.; Strange, Richard R.

    1985-10-01

    The objectives of this program are to develop heat flux sensors suitable for installation in hot section airfoils of advanced aircraft turbine engines and to experimentally verify the operation of these heat flux sensors in a cylinder in a cross flow experiment. Embedded thermocouple and Gardon gauge sensors were developed and fabricated into both blades and vanes. These were then calibrated using a quartz lamp bank heat source and finally subjected to thermal cycle and thermal soak testing. These sensors were also fabricated into cylindrical test pieces and tested in a burner exhaust to verify heat flux measurements produced by these sensors. The results of the cylinder in cross flow tests are given.

  9. High flux reactor

    DOEpatents

    Lake, James A.; Heath, Russell L.; Liebenthal, John L.; DeBoisblanc, Deslonde R.; Leyse, Carl F.; Parsons, Kent; Ryskamp, John M.; Wadkins, Robert P.; Harker, Yale D.; Fillmore, Gary N.; Oh, Chang H.

    1988-01-01

    A high flux reactor is comprised of a core which is divided into two symetric segments housed in a pressure vessel. The core segments include at least one radial fuel plate. The spacing between the plates functions as a coolant flow channel. The core segments are spaced axially apart such that a coolant mixing plenum is formed between them. A channel is provided such that a portion of the coolant bypasses the first core section and goes directly into the mixing plenum. The outlet coolant from the first core segment is mixed with the bypass coolant resulting in a lower inlet temperature to the lower core segment.

  10. Thermal flux transfer system

    NASA Technical Reports Server (NTRS)

    Freggens, R. A. (Inventor)

    1973-01-01

    A thermal flux transfer system for use in maintaining the thrust chamber of an operative reaction motor at given temperatures is described. The system is characterized by an hermetically sealed chamber surrounding a thrust chamber to be cooled, with a plurality of parallel, longitudinally spaced, disk-shaped wick members formed of a metallic mesh and employed in delivering a working fluid, in its liquid state, radially toward the thrust chamber and delivering the working fluid, in its vapor state, away from the nozzle for effecting a cooling of the nozzle, in accordance with known principles of an operating heat pipe.

  11. Acquisition performance of various QPSK carrier tracking loops

    NASA Astrophysics Data System (ADS)

    Hinedi, S.; Shah, B.

    1992-09-01

    The frequency and phase acquisition performance of three quadrature phase shift keying (QPSK) carrier tracking loops, the MAP estimation loop, the Costas crossover loop, and the generalized Costas loop, is described. Acquisition time and probability of acquisition as a function of both loop signal-to-noise ratio and frequency offset to loop bandwidth ratio are obtained via computer simulations for type II and III loops. It is shown that the MAP loop, which results in the smallest squaring loss for all signal-to-noise ratios, is sometimes outperformed by the other two loops in terms of acquisition time and acquisition probability.

  12. Acquisition performance of various QPSK carrier tracking loops

    NASA Technical Reports Server (NTRS)

    Hinedi, S.; Shah, B.

    1992-01-01

    The frequency and phase acquisition performance of three quadrature phase shift keying (QPSK) carrier tracking loops, the MAP estimation loop, the Costas crossover loop, and the generalized Costas loop, is described. Acquisition time and probability of acquisition as a function of both loop signal-to-noise ratio and frequency offset to loop bandwidth ratio are obtained via computer simulations for type II and III loops. It is shown that the MAP loop, which results in the smallest squaring loss for all signal-to-noise ratios, is sometimes outperformed by the other two loops in terms of acquisition time and acquisition probability.

  13. Rupture loop annex ion exchange RLAIX vault deactivation

    SciTech Connect

    Ham, J.E.; Harris, D.L., Westinghouse Hanford

    1996-08-01

    This engineering report documents the deactivation, stabilization and final conditions of the Rupture Loop Annex Ion Exchange (RLAIX) Vault located northwest of the 309 Building`s Plutonium Recycle Test Reactor (PRTR). Twelve ion exchange columns, piping debris, and column liquid were removed from the vault, packaged and shipped for disposal. The vault walls and floor were decontaminated, and portions of the vault were painted to fix loose contamination. Process piping and drains were plugged, and the cover blocks and rain cover were installed. Upon closure,the vault was empty, stabilized, isolated.

  14. Witten's loop in the flipped SU(5) unification

    SciTech Connect

    Malinský, Michal; Rodríguez, Carolina Arbeláez

    2014-06-24

    We study a very simple, yet potentially realistic renormalizable flipped SU(5) scenario in which the right-handed neutrino masses are generated at very high energies by means of a two-loop diagram similar to that identified by E. Witten in the early 1980's in the SO(10) GUT framework. This mechanism leaves its traces in the baryon number violating signals such as the proton decay, especially in the 'clean' channels with a charged lepton and a neutral meson in the final state.

  15. Optimizing laboratory-based radon flux measurements for sediments.

    PubMed

    Chanyotha, Supitcha; Kranrod, Chutima; Kritsananuwat, Rawiwan; Lane-Smith, Derek; Burnett, William C

    2016-07-01

    Radon flux via diffusion from sediments and other materials may be determined in the laboratory by circulating air through the sample and a radon detector in a closed loop. However, this approach is complicated by the necessity of having to determine the total air volume in the system and accounting for any small air leaks that can arise if using extended measurement periods. We designed a simple open-loop configuration that includes a measured mass of wet sediment and water inside a gas-tight reaction flask connected to a drying system and a radon-in-air analyzer. Ambient air flows through two charcoal columns before entering the reaction vessel to eliminate incoming radon. After traveling through the reaction flask, the air passes the drier and the radon analyzer and is then vented. After some time, the radon activity will reach a steady state depending upon the airflow rate. With this approach, the radon flux via diffusion is simply the product of the steady-state radon activity (Bq/m(3)) multiplied by the airflow rate (mL/min). We demonstrated that this setup could produce good results for materials that produce relatively high radon fluxes. We also show that a modified closed system approach, including radon removal of the incoming air by charcoal filtration in a bypass, can produce very good results including samples with very low emission rates. PMID:27064564

  16. Damped transverse oscillations of interacting coronal loops

    NASA Astrophysics Data System (ADS)

    Soler, Roberto; Luna, Manuel

    2015-10-01

    Damped transverse oscillations of magnetic loops are routinely observed in the solar corona. This phenomenon is interpreted as standing kink magnetohydrodynamic waves, which are damped by resonant absorption owing to plasma inhomogeneity across the magnetic field. The periods and damping times of these oscillations can be used to probe the physical conditions of the coronal medium. Some observations suggest that interaction between neighboring oscillating loops in an active region may be important and can modify the properties of the oscillations. Here we theoretically investigate resonantly damped transverse oscillations of interacting nonuniform coronal loops. We provide a semi-analytic method, based on the T-matrix theory of scattering, to compute the frequencies and damping rates of collective oscillations of an arbitrary configuration of parallel cylindrical loops. The effect of resonant damping is included in the T-matrix scheme in the thin boundary approximation. Analytic and numerical results in the specific case of two interacting loops are given as an application.

  17. Loop quantum gravity coupled to a scalar field

    NASA Astrophysics Data System (ADS)

    Lewandowski, Jerzy; Sahlmann, Hanno

    2016-01-01

    We consider the model of gravity coupled to the Klein-Gordon time field. We do not deparametrize the theory using the scalar field before quantization, but quantize all degrees of freedom. Several new results for loop quantum gravity are obtained: (i) a Hilbert space for the gravity-matter system and a nonstandard representation of the scalar field thereon is constructed, (ii) a new operator for the scalar constraint of the coupled system is defined and investigated, (iii) methods for solving the constraint are developed. Commutators of the new quantum constraint operators correspond to the quantization of the Poisson bracket. This, however, poses problems for finding solutions. Hence the states we consider—and perhaps the whole setup—still needs some improvement. As a side result we describe a representation of the gravitational degrees of freedom in which the flux is diagonal. This representation is related to the BF theory vacuum of Dittrich and Geiller.

  18. Energy budget in the magnetic loops of the quiet Sun

    NASA Astrophysics Data System (ADS)

    Mac Cormack, C.; Nuevo, F. A.; Vásquez, A. M.; López Fuentes, M.; Frazin, R. A.; Landi, E.; Mandrini, C. H.

    2016-08-01

    The characteristic temperature of the solar corona is hotter than that of the photosphere. The causes for such heating are of a magnetic nature and several possible mechanisms have been proposed. Most studies on coronal heating focus on active regions, but the so called quiet sun, or diffuse corona, is also subject to heating phenomena. By combining differential emission measure tomography applied to EUV (Extreme Ultraviolet) images time series, with potential extrapolations of the coronal magnetic field, it is possible to estimate the radiative loss energy along coronal loops of the diffuse corona, and the energy flux at their foot-points that is required to maintain thermodynamically stable structures. In this work we show the first results of this technique.

  19. Chemical Looping Combustion Reactions and Systems

    SciTech Connect

    Sarofim, Adel; Lighty, JoAnn; Smith, Philip; Whitty, Kevin; Eyring, Edward; Sahir, Asad; Alvarez, Milo; Hradisky, Michael; Clayton, Chris; Konya, Gabor; Baracki, Richard; Kelly, Kerry

    2014-03-01

    , they performed a sensitivity analysis for velocity, height and polydispersity and compared results against literature data for experimental studies of CLC beds with no reaction. Finally, they present an optimization space using simple non-reactive configurations. In Subtask 5.3, through a series of experimental studies, behavior of a variety of oxygen carriers with different loadings and manufacturing techniques was evaluated under both oxidizing and reducing conditions. The influences of temperature, degree of carrier conversion and thermodynamic driving force resulting from the difference between equilibrium and system O{sub 2} partial pressures were evaluated through several experimental campaigns, and generalized models accounting for these influences were developed to describe oxidation and oxygen release. Conversion of three solid fuels with widely ranging reactivities was studied in a small fluidized bed system, and all but the least reactive fuel (petcoke) were rapidly converted by oxygen liberated from the CLOU carrier. Attrition propensity of a variety of carriers was also studied, and the carriers produced by freeze granulation or impregnation of preformed substrates displayed the lowest rates of attrition. Subtask 5.4 focused on gathering kinetic data for a copper-based oxygen carrier to assist with modeling of a functioning chemical looping reactor. The kinetics team was also responsible for the development and analysis of supported copper oxygen carrier material.

  20. 78 FR 45497 - Final Decision and Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-29

    ... connection with those two exports. See also In the Matter of: Aqua-Loop Cooling Towers, Co., 75 FR 16732 (Apr... Bureau of Industry and Security Final Decision and Order In the Matter of: Chan Heep Loong, 95 Havelock Road, 14-583, Singapore, 160095 SG; Respondent. This matter is before me upon a Recommended...

  1. Loop heat pipes and capillary pumped loops-an applications perspective

    NASA Astrophysics Data System (ADS)

    Butler, Dan; Ku, Jentung; Swanson, Theodore

    2002-01-01

    Capillary pumped loops (CPLs) and loop heat pipes (LHPs) are versatile two-phase heat transfer devices which have recently gained increasing acceptance in space applications. Both systems work based on the same principles and have very similar designs. Nevertheless, some differences exist in the construction of the evaporator and the hydro-accumulator, and these differences lead to very distinct operating characteristics for each loop. This paper presents comparisons of the two loops from an applications perspective, and addresses their impact on spacecraft design, integration, and test. Some technical challenges and issues for both loops are also addressed. .

  2. A communication scheme for the distrubted execution of loop nests with while loops

    SciTech Connect

    Griebl, M.; Lengauer, C.

    1995-10-01

    The mathematical model for the parallelization, or {open_quotes}space-time mapping,{close_quotes} of loop nests is the polyhedron model. The presence of while loops in the nest complicates matters for two reasons: (1) the parallelized loop nest does not correspond to a polyhedron but instead to a subset that resembles a (multi-dimensional) comb and (2) it is not clear when the entire loop nest has terminated. We describe a communication scheme which can deal with both problems and which can be added to the parallel target loop nest by a compiler.

  3. The matter bounce scenario in loop quantum cosmology

    SciTech Connect

    Wilson-Ewing, Edward

    2013-03-01

    In the matter bounce scenario, a dust-dominated contracting space-time generates scale-invariant perturbations that, assuming a nonsingular bouncing cosmology, propagate to the expanding branch and set appropriate initial conditions for the radiation-dominated era. Since this scenario depends on the presence of a bounce, it seems appropriate to consider it in the context of loop quantum cosmology where a bouncing universe naturally arises. For a pressureless collapsing universe in loop quantum cosmology, the predicted power spectrum of the scalar perturbations after the bounce is scale-invariant and the tensor to scalar ratio is negligibly small. A slight red tilt can be given to the scale-invariance of the scalar perturbations by a scalar field whose equation of state is P = −ερ, where ε is a small positive number. Then, the power spectrum for tensor perturbations is also almost scale-invariant with the same red tilt as the scalar perturbations, and the tensor to scalar ratio is expected to be r ≈ 9 × 10{sup −4}. Finally, for the predicted amplitude of the scalar perturbations to agree with observations, the critical density in loop quantum cosmology must be of the order ρ{sub c} ∼ 10{sup −9}ρ{sub Pl}.

  4. Hard matching for boosted tops at two loops

    NASA Astrophysics Data System (ADS)

    Hoang, André H.; Pathak, Aditya; Pietrulewicz, Piotr; Stewart, Iain W.

    2015-12-01

    Cross sections for top quarks provide very interesting physics opportunities, being both sensitive to new physics and also perturbatively tractable due to the large top quark mass. Rigorous factorization theorems for top cross sections can be derived in several kinematic scenarios, including the boosted regime in the peak region that we consider here. In the context of the corresponding factorization theorem for e + e - collisions we extract the last missing ingredient that is needed to evaluate the cross section differential in the jet-mass at two-loop order, namely the matching coefficient at the scale μ≃ m t . Our extraction also yields the final ingredients needed to carry out logarithmic re-summation at next-to-next-to-leading logarithmic order (or N3LL if we ignore the missing 4-loop cusp anomalous dimension). This coefficient exhibits an amplitude level rapidity logarithm starting at O({α}_s^2) due to virtual top quark loops, which we treat using rapidity renormalization group (RG) evolution. Interestingly, this rapidity RG evolution appears in the matching coefficient between two effective theories around the heavy quark mass scale μ ≃ m t .

  5. Connection stiffness and dynamical docking process of flux pinned spacecraft modules

    SciTech Connect

    Lu, Yong; Zhang, Mingliang Gao, Dong

    2014-02-14

    This paper describes a novel kind of potential flux pinned docking system that consists of guidance navigation and control system, the traditional extrusion type propulsion system, and a flux pinned docking interface. Because of characteristics of passive stability of flux pinning, the docking control strategy of flux pinned docking system only needs a series of sequential control rather than necessary active feedback control, as well as avoidance of hazardous collision accident. The flux pinned force between YBaCuO (YBCO) high temperature superconductor bulk and permanent magnet is able to be given vent based on the identical current loop model and improved image dipole model, which can be validated experimentally. Thus, the connection stiffness between two flux pinned spacecraft modules can be calculated based on Hooke's law. This connection stiffness matrix at the equilibrium position has the positive definite performance, which can validate the passively stable connection of two flux pinned spacecraft modules theoretically. Furthermore, the relative orbital dynamical equation of two flux pinned spacecraft modules can be established based on Clohessy-Wiltshire's equations and improved image dipole model. The dynamical docking process between two flux pinned spacecraft modules can be obtained by way of numerical simulation, which suggests the feasibility of flux pinned docking system.

  6. Connection stiffness and dynamical docking process of flux pinned spacecraft modules

    NASA Astrophysics Data System (ADS)

    Lu, Yong; Zhang, Mingliang; Gao, Dong

    2014-02-01

    This paper describes a novel kind of potential flux pinned docking system that consists of guidance navigation and control system, the traditional extrusion type propulsion system, and a flux pinned docking interface. Because of characteristics of passive stability of flux pinning, the docking control strategy of flux pinned docking system only needs a series of sequential control rather than necessary active feedback control, as well as avoidance of hazardous collision accident. The flux pinned force between YBaCuO (YBCO) high temperature superconductor bulk and permanent magnet is able to be given vent based on the identical current loop model and improved image dipole model, which can be validated experimentally. Thus, the connection stiffness between two flux pinned spacecraft modules can be calculated based on Hooke's law. This connection stiffness matrix at the equilibrium position has the positive definite performance, which can validate the passively stable connection of two flux pinned spacecraft modules theoretically. Furthermore, the relative orbital dynamical equation of two flux pinned spacecraft modules can be established based on Clohessy-Wiltshire's equations and improved image dipole model. The dynamical docking process between two flux pinned spacecraft modules can be obtained by way of numerical simulation, which suggests the feasibility of flux pinned docking system.

  7. Cygnus Loop Supernova Blast Wave

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This is an image of a small portion of the Cygnus Loop supernova remnant, which marks the edge of a bubble-like, expanding blast wave from a colossal stellar explosion, occurring about 15,000 years ago. The HST image shows the structure behind the shock waves, allowing astronomers for the first time to directly compare the actual structure of the shock with theoretical model calculations. Besides supernova remnants, these shock models are important in understanding a wide range of astrophysical phenomena, from winds in newly-formed stars to cataclysmic stellar outbursts. The supernova blast is slamming into tenuous clouds of insterstellar gas. This collision heats and compresses the gas, causing it to glow. The shock thus acts as a searchlight revealing the structure of the interstellar medium. The detailed HST image shows the blast wave overrunning dense clumps of gas, which despite HST's high resolution, cannot be resolved. This means that the clumps of gas must be small enough to fit inside our solar system, making them relatively small structures by interstellar standards. A bluish ribbon of light stretching left to right across the picture might be a knot of gas ejected by the supernova; this interstellar 'bullet' traveling over three million miles per hour (5 million kilometres) is just catching up with the shock front, which has slowed down by ploughing into interstellar material. The Cygnus Loop appears as a faint ring of glowing gases about three degrees across (six times the diameter of the full Moon), located in the northern constellation, Cygnus the Swan. The supernova remnant is within the plane of our Milky Way galaxy and is 2,600 light-years away. The photo is a combination of separate images taken in three colors, oxygen atoms (blue) emit light at temperatures of 30,000 to 60,000 degrees Celsius (50,000 to 100,000 degrees Farenheit). Hydrogen atoms (green) arise throughout the region of shocked gas. Sulfur atoms (red) form when the gas cools to

  8. Sequence–structure relationships in RNA loops: establishing the basis for loop homology modeling

    PubMed Central

    Schudoma, Christian; May, Patrick; Nikiforova, Viktoria; Walther, Dirk

    2010-01-01

    The specific function of RNA molecules frequently resides in their seemingly unstructured loop regions. We performed a systematic analysis of RNA loops extracted from experimentally determined three-dimensional structures of RNA molecules. A comprehensive loop-structure data set was created and organized into distinct clusters based on structural and sequence similarity. We detected clear evidence of the hallmark of homology present in the sequence–structure relationships in loops. Loops differing by <25% in sequence identity fold into very similar structures. Thus, our results support the application of homology modeling for RNA loop model building. We established a threshold that may guide the sequence divergence-based selection of template structures for RNA loop homology modeling. Of all possible sequences that are, under the assumption of isosteric relationships, theoretically compatible with actual sequences observed in RNA structures, only a small fraction is contained in the Rfam database of RNA sequences and classes implying that the actual RNA loop space may consist of a limited number of unique loop structures and conserved sequences. The loop-structure data sets are made available via an online database, RLooM. RLooM also offers functionalities for the modeling of RNA loop structures in support of RNA engineering and design efforts. PMID:19923230

  9. Quantitation of interactions between two DNA loops demonstrates loop domain insulation in E. coli cells

    PubMed Central

    Priest, David G.; Kumar, Sandip; Yan, Yan; Dunlap, David D.; Dodd, Ian B.; Shearwin, Keith E.

    2014-01-01

    Eukaryotic gene regulation involves complex patterns of long-range DNA-looping interactions between enhancers and promoters, but how these specific interactions are achieved is poorly understood. Models that posit other DNA loops—that aid or inhibit enhancer–promoter contact—are difficult to test or quantitate rigorously in eukaryotic cells. Here, we use the well-characterized DNA-looping proteins Lac repressor and phage λ CI to measure interactions between pairs of long DNA loops in E. coli cells in the three possible topological arrangements. We find that side-by-side loops do not affect each other. Nested loops assist each other’s formation consistent with their distance-shortening effect. In contrast, alternating loops, where one looping element is placed within the other DNA loop, inhibit each other’s formation, thus providing clear support for the loop domain model for insulation. Modeling shows that combining loop assistance and loop interference can provide strong specificity in long-range interactions. PMID:25288735

  10. SELF-ORGANIZED BRAIDING AND THE STRUCTURE OF CORONAL LOOPS

    SciTech Connect

    Berger, Mitchell A.; Asgari-Targhi, Mahboubeh E-mail: m.asgari@ucl.ac.u

    2009-11-01

    The Parker model for heating of the solar corona involves reconnection of braided magnetic flux elements. Much of this braiding is thought to occur at as yet unresolved scales, for example, braiding of threads within an extreme-ultraviolet or X-ray loop. However, some braiding may be still visible at scales accessible to TRACE or Hinode. We suggest that attempts to estimate the amount of braiding at these scales must take into account the degree of coherence of the braid structure. In this paper, we examine the effect of reconnection on the structure of a braided magnetic field. We demonstrate that simple models of braided magnetic fields which balance the input of topological structure with reconnection evolve to a self-organized critical state. An initially random braid can become highly ordered, with coherence lengths obeying power-law distributions. The energy released during reconnection also obeys a power law. Our model gives more frequent (but smaller) energy releases nearer to the ends of a coronal loop.

  11. The four-loop six-gluon NMHV ratio function

    DOE PAGESBeta

    Dixon, Lance J.; von Hippel, Matt; McLeod, Andrew J.

    2016-01-11

    We use the hexagon function bootstrap to compute the ratio function which characterizes the next-to-maximally-helicity-violating (NMHV) six-point amplitude in planar N=4 super-Yang-Mills theory at four loops. A powerful constraint comes from dual superconformal invariance, in the form of a Q¯ differential equation, which heavily constrains the first derivatives of the transcendental functions entering the ratio function. At four loops, it leaves only a 34-parameter space of functions. Constraints from the collinear limits, and from the multi-Regge limit at the leading-logarithmic (LL) and next-to-leading-logarithmic (NLL) order, suffice to fix these parameters and obtain a unique result. We test the result againstmore » multi-Regge predictions at NNLL and N3LL, and against predictions from the operator product expansion involving one and two flux-tube excitations; all cross-checks are satisfied. We study the analytical and numerical behavior of the parity-even and parity-odd parts on various lines and surfaces traversing the three-dimensional space of cross ratios. As part of this program, we characterize all irreducible hexagon functions through weight eight in terms of their coproduct. As a result, we also provide representations of the ratio function in particular kinematic regions in terms of multiple polylogarithms.« less

  12. Porous Foam Based Wick Structures for Loop Heat Pipes

    NASA Technical Reports Server (NTRS)

    Silk, Eric A.

    2012-01-01

    As part of an effort to identify cost efficient fabrication techniques for Loop Heat Pipe (LHP) construction, NASA Goddard Space Flight Center's Cryogenics and Fluids Branch collaborated with the U.S. Naval Academy s Aerospace Engineering Department in Spring 2012 to investigate the viability of carbon foam as a wick material within LHPs. The carbon foam was manufactured by ERG Aerospace and machined to geometric specifications at the U.S. Naval Academy s Materials, Mechanics and Structures Machine Shop. NASA GSFC s Fractal Loop Heat Pipe (developed under SBIR contract #NAS5-02112) was used as the validation LHP platform. In a horizontal orientation, the FLHP system demonstrated a heat flux of 75 Watts per square centimeter with deionized water as the working fluid. Also, no failed start-ups occurred during the 6 week performance testing period. The success of this study validated that foam can be used as a wick structure. Furthermore, given the COTS status of foam materials this study is one more step towards development of a low cost LHP.

  13. Flux qubit as a sensor of magnetic flux

    NASA Astrophysics Data System (ADS)

    Il'ichev, E.; Greenberg, Ya. S.

    2007-03-01

    A magnetometer based on the quantum properties of a superconducting flux qubit is proposed. The main advantage of this device is that its sensitivity can be below the so-called "standard quantum limit" (for an oscillator this is half of the Plank constant). Moreover its transfer functions relative to the measured flux can be made to be about 10 mV/Φ0, which is an order of magnitude more than the best value for a conventional DC SQUIDs with a direct readout. We analyze here the voltage-to-flux, the phase-to-flux transfer functions and the main noise sources. We show that the experimental characteristics of a flux qubit, obtained in recent experiments, allow the use of a flux qubit as magnetometer with energy resolution close to the Planck constant.

  14. PREFACE: Loops 11: Non-Perturbative / Background Independent Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Mena Marugán, Guillermo A.; Barbero G, J. Fernando; Garay, Luis J.; Villaseñor, Eduardo J. S.; Olmedo, Javier

    2012-05-01

    Loops 11 The international conference LOOPS'11 took place in Madrid from the 23-28 May 2011. It was hosted by the Instituto de Estructura de la Materia (IEM), which belongs to the Consejo Superior de Investigaciones Cientĺficas (CSIC). Like previous editions of the LOOPS meetings, it dealt with a wealth of state-of-the-art topics on Quantum Gravity, with special emphasis on non-perturbative background-independent approaches to spacetime quantization. The main topics addressed at the conference ranged from the foundations of Quantum Gravity to its phenomenological aspects. They encompassed different approaches to Loop Quantum Gravity and Cosmology, Polymer Quantization, Quantum Field Theory, Black Holes, and discrete approaches such as Dynamical Triangulations, amongst others. In addition, this edition celebrated the 25th anniversary of the introduction of the now well-known Ashtekar variables and the Wednesday morning session was devoted to this silver jubilee. The structure of the conference was designed to reflect the current state and future prospects of research on the different topics mentioned above. Plenary lectures that provided general background and the 'big picture' took place during the mornings, and the more specialised talks were distributed in parallel sessions during the evenings. To be more specific, Monday evening was devoted to Shape Dynamics and Phenomenology Derived from Quantum Gravity in Parallel Session A, and to Covariant Loop Quantum Gravity and Spin foams in Parallel Session B. Tuesday's three Parallel Sessions dealt with Black Hole Physics and Dynamical Triangulations (Session A), the continuation of Monday's session on Covariant Loop Quantum Gravity and Spin foams (Session B) and Foundations of Quantum Gravity (Session C). Finally, Thursday and Friday evenings were devoted to Loop Quantum Cosmology (Session A) and to Hamiltonian Loop Quantum Gravity (Session B). The result of the conference was very satisfactory and enlightening. Not

  15. Discovery of a Pulsar Wind Nebula Candidate in the Cygnus Loop

    NASA Technical Reports Server (NTRS)

    Katsuda, Satoru; Tsunemi, Hiroshi; Mori, Koji; Uchida, Hiroyuki; Petre, Robert; Yamada, Shin'ya; Tamagawa, Toru

    2012-01-01

    We report on a discovery of a diffuse nebula containing a point-like source in the southern blowout region of the Cygnus Loop supernova remnant, based on Suzaku and XMM-Newton observations. The X-ray spectra from the nebula and the point-like source are well represented by an absorbed power-law model with photon indices of 2.2+/-0.1 and 1.6+/-0.2, respectively. The photon indices as well as the flux ratio of F(sub nebula)/F(sub point-like) approx. 4 lead us to propose that the system is a pulsar wind nebula, although pulsations have not yet been detected. If we attribute its origin to the Cygnus Loop supernova, then the 0.5-8 keV luminosity of the nebula is computed to be 2.1x10(exp 31)(d/540pc)(exp 2)ergss/2, where d is the distance to the Loop. This implies a spin-down loss-energy E approx. 2.6x10(exp 35)(d/540pc)(exp 2)ergs/s. The location of the neutron star candidate, approx.2deg away from the geometric center of the Loop, implies a high transverse velocity of approx.1850(theta/2deg)(d/540pc)(t/10kyr)/k/s assuming the currently accepted age of the Cygnus Loop.

  16. COMBINING PARTICLE ACCELERATION AND CORONAL HEATING VIA DATA-CONSTRAINED CALCULATIONS OF NANOFLARES IN CORONAL LOOPS

    SciTech Connect

    Gontikakis, C.; Efthymiopoulos, C.; Georgoulis, M. K.; Patsourakos, S.; Anastasiadis, A.

    2013-07-10

    We model nanoflare heating of extrapolated active-region coronal loops via the acceleration of electrons and protons in Harris-type current sheets. The kinetic energy of the accelerated particles is estimated using semi-analytical and test-particle-tracing approaches. Vector magnetograms and photospheric Doppler velocity maps of NOAA active region 09114, recorded by the Imaging Vector Magnetograph, were used for this analysis. A current-free field extrapolation of the active-region corona was first constructed. The corresponding Poynting fluxes at the footpoints of 5000 extrapolated coronal loops were then calculated. Assuming that reconnecting current sheets develop along these loops, we utilized previous results to estimate the kinetic energy gain of the accelerated particles. We related this energy to nanoflare heating and macroscopic loop characteristics. Kinetic energies of 0.1-8 keV (for electrons) and 0.3-470 keV (for protons) were found to cause heating rates ranging from 10{sup -6} to 1 erg s{sup -1} cm{sup -3}. Hydrodynamic simulations show that such heating rates can sustain plasma in coronal conditions inside the loops and generate plasma thermal distributions that are consistent with active-region observations. We concluded the analysis by computing the form of X-ray spectra generated by the accelerated electrons using the thick-target approach. These spectra were found to be in agreement with observed X-ray spectra, thus supporting the plausibility of our nanoflare-heating scenario.

  17. Global Sausage Oscillation of Solar Flare Loops Detected by the Interface Region Imaging Spectrograph

    NASA Astrophysics Data System (ADS)

    Tian, Hui; Young, Peter R.; Reeves, Katharine K.; Wang, Tongjiang; Antolin, Patrick; Chen, Bin; He, Jiansen

    2016-05-01

    An observation from the Interface Region Imaging Spectrograph reveals coherent oscillations in the loops of an M1.6 flare on 2015 March 12. Both the intensity and Doppler shift of Fe xxi 1354.08 Å show clear oscillations with a period of ˜25 s. Remarkably similar oscillations were also detected in the soft X-ray flux recorded by the Geostationary Operational Environmental Satellites (GOES). With an estimated phase speed of ˜2420 km s-1 and a derived electron density of at least 5.4 × 1010 cm-3, the observed short-period oscillation is most likely the global fast sausage mode of a hot flare loop. We find a phase shift of ˜π/2 (1/4 period) between the Doppler shift oscillation and the intensity/GOES oscillations, which is consistent with a recent forward modeling study of the sausage mode. The observed oscillation requires a density contrast between the flare loop and coronal background of a factor ≥42. The estimated phase speed of the global mode provides a lower limit of the Alfvén speed outside the flare loop. We also find an increase of the oscillation period, which might be caused by the separation of the loop footpoints with time.

  18. Experiments in a single-phase natural circulation mini-loop

    SciTech Connect

    Misale, M.; Garibaldi, P.; Passos, J.C.; de Bitencourt, G. Ghisi

    2007-08-15

    This study reports an experimental investigation related to a rectangular single-phase natural circulation mini-loop, which consists of two horizontal copper tubes (heat transfer sections) and two vertical tubes (legs) made of copper, connected by means of four glass 90 bends. The loop inner diameter is 4 mm. The lower heating section consists of an electrical heating wire made of nicromel on the outside of the copper tube; the upper cooling system consists of a coaxial cylindrical heat exchanger with a water-glycol mixture, set at controlled temperature and flowing through the annulus. The loop has an imposed heat flux in the lower heating section and an imposed temperature in the cooler. The mini-loop was placed onto a table which can assume different inclinations. The parameters investigated during the experiments were: power transferred to the fluid and inclination of the loop. The preliminary results show a stable behaviour with a steady temperature difference across the heat sinks. It has been confirmed that the fluid velocity is very small (order of millimetres per second). (author)

  19. Impact of flux distribution on elementary heating events

    NASA Astrophysics Data System (ADS)

    O'Hara, J. P.; De Moortel, I.

    2016-10-01

    Context. The complex magnetic field on the solar surface has been shown to contain a range of sizes and distributions of magnetic flux structures. The dynamic evolution of this magnetic carpet by photospheric flows provides a continual source of free magnetic energy into the solar atmosphere, which can subsequently be released by magnetic reconnection. Aims: We investigate how the distribution and number of magnetic flux sources impact the energy release and locations of heating through magnetic reconnection driven by slow footpoint motions. Methods: 3D magnetohydrodynamic (MHD) simulations using Lare3D are carried out, where flux tubes are formed between positive and negative sources placed symmetrically on the lower and upper boundaries of the domain, respectively. The flux tubes are subjected to rotational driving velocities on the boundaries and are forced to interact and reconnect. Results: Initially, simple flux distributions with two and four sources are compared. In both cases, central current concentrations are formed between the flux tubes and Ohmic heating occurs. The reconnection and subsequent energy release is delayed in the four-source case and is shown to produce more locations of heating, but with smaller magnitudes. Increasing the values of the background field between the flux tubes is shown to delay the onset of reconnection and increases the efficiency of heating in both the two- and four-source cases. The cases with two flux tubes are always more energetic than the corresponding four flux tube cases, however the addition of the background field makes this disparity less significant. A final experiment with a larger number of smaller flux sources is considered and the field evolution and energetics are shown to be remarkably similar to the two-source case, indicating the importance of the size and separation of the flux sources relative to the spatial scales of the velocity driver.

  20. Dynamical evolution of twisted magnetic flux tubes. I - Equilibrium and linear stability

    NASA Technical Reports Server (NTRS)

    Mikic, Zoran; Schnack, Dalton D.; Van Hoven, Gerard

    1990-01-01

    The three-dimensional dynamical evolution of twisted magnetic flux tubes is studied using a time-dependent magnetohydrodynamic (MHD) model. The flux tubes are intended to model solar coronal loops, and include the stabilizing effect of photospheric line tying. The model permits the complete evolution of flux tubes to be followed self-consistently, including the formation, equilibrium, linear instability, and nonlinear behavior. Starting from an initial uniform background magnetic field, a twisted flux tube is created by the application of slow, localized photospheric vortex flows. The flux tube evolves quasi-statically through sequences of equilibria with increasing twist, until it becomes linearly unstable to an ideal MHD kink mode. In this paper, the equilibrium properties and the linear stability behavior are discussed. The application of the method to the uniform-twist, Gold-Hoyle field confirms the previous stability threshold for kink instability and provides estimates of the resulting growth rate.

  1. Towards conformal loop quantum gravity

    NASA Astrophysics Data System (ADS)

    H-T Wang, Charles

    2006-03-01

    A discussion is given of recent developments in canonical gravity that assimilates the conformal analysis of gravitational degrees of freedom. The work is motivated by the problem of time in quantum gravity and is carried out at the metric and the triad levels. At the metric level, it is shown that by extending the Arnowitt-Deser-Misner (ADM) phase space of general relativity (GR), a conformal form of geometrodynamics can be constructed. In addition to the Hamiltonian and Diffeomorphism constraints, an extra first class constraint is introduced to generate conformal transformations. This phase space consists of York's mean extrinsic curvature time, conformal three-metric and their momenta. At the triad level, the phase space of GR is further enlarged by incorporating spin-gauge as well as conformal symmetries. This leads to a canonical formulation of GR using a new set of real spin connection variables. The resulting gravitational constraints are first class, consisting of the Hamiltonian constraint and the canonical generators for spin-gauge and conformorphism transformations. The formulation has a remarkable feature of being parameter-free. Indeed, it is shown that a conformal parameter of the Barbero-Immirzi type can be absorbed by the conformal symmetry of the extended phase space. This gives rise to an alternative approach to loop quantum gravity that addresses both the conceptual problem of time and the technical problem of functional calculus in quantum gravity.

  2. Deep mantle subduction flux

    NASA Astrophysics Data System (ADS)

    Porter, Katherine A.; White, William M.

    2009-12-01

    We assess the flux of incompatible trace elements into the deep mantle in the Aleutian, Central America, Izu-Bonin, Kurile, Lesser Antilles, Mariana, Sunda, and Tonga subduction zones. We use a simple mass balance approach in which we assume that all of the material lost from the subducting crust and sediment (the "slab") is incorporated into the magmas erupted above the subduction zone, and we use these assumptions to calculate a residual slab composition. The calculated residual slabs are enriched in incompatible elements compared to mid-ocean ridge basalts and highly enriched compared to primitive or depleted mantle. Almost all of the subducted Nb, Ta, and intermediate and heavy rare earths survive into the deep mantle, as do most of the light rare earths. On average, 73% of Th and Pb, 74% of K, 79% of U, 80% of Rb, 80% of Sr, and 82% of Ba survive into the deep mantle. Pb/Ce ratios are systematically lower, and Nb/U ratios are systematically higher, in the deep mantle flux than they are in the flux of material into the trench. Nevertheless, most residual slabs have Pb/Ce and Nb/U ratios outside the typical mantle range. Changes to U/Pb and Th/U ratios tend to be small and are not systematic. Rb/Sr ratios significantly decrease in some subduction zones but increase in others. In contrast, Sm/Nd ratios increase by small but significant amounts in most arcs. Based on these results, we attempt to predict the Sr, Nd, and Pb composition of anciently recycled material now in the mantle. We find that such material would most resemble enriched mantle II-type oceanic island basalts (OIB). None of our calculated residual slabs would evolve to Sr-Nd-Pb isotopic compositions similar to either high 238U/204Pb or enriched mantle I. The range of Sr and Pb isotope ratios in anciently recycled material is similar to that seen in modern OIB, but Nd isotopic compositions do not range to ɛNd values as low as those in some modern OIB. Neither radiogenic nor unradiogenic Pb isotope

  3. Fan-Spine Topology Formation Through Two-Step Reconnection Driven by Twisted Flux Emergence

    NASA Astrophysics Data System (ADS)

    Török, T.; Aulanier, G.; Schmieder, B.; Reeves, K. K.; Golub, L.

    2009-10-01

    We address the formation of three-dimensional nullpoint topologies in the solar corona by combining Hinode/X-ray Telescope (XRT) observations of a small dynamic limb event, which occurred beside a non-erupting prominence cavity, with a three-dimensional (3D) zero-β magnetohydrodynamics (MHD) simulation. To this end, we model the boundary-driven "kinematic" emergence of a compact, intense, and uniformly twisted flux tube into a potential field arcade that overlies a weakly twisted coronal flux rope. The expansion of the emerging flux in the corona gives rise to the formation of a nullpoint at the interface of the emerging and the pre-existing fields. We unveil a two-step reconnection process at the nullpoint that eventually yields the formation of a broad 3D fan-spine configuration above the emerging bipole. The first reconnection involves emerging fields and a set of large-scale arcade field lines. It results in the launch of a torsional MHD wave that propagates along the arcades, and in the formation of a sheared loop system on one side of the emerging flux. The second reconnection occurs between these newly formed loops and remote arcade fields, and yields the formation of a second loop system on the opposite side of the emerging flux. The two loop systems collectively display an anenome pattern that is located below the fan surface. The flux that surrounds the inner spine field line of the nullpoint retains a fraction of the emerged twist, while the remaining twist is evacuated along the reconnected arcades. The nature and timing of the features which occur in the simulation do qualititatively reproduce those observed by XRT in the particular event studied in this paper. Moreover, the two-step reconnection process suggests a new consistent and generic model for the formation of anemone regions in the solar corona.

  4. Temperature evolution of a magnetic flux rope in a failed solar eruption

    SciTech Connect

    Song, H. Q.; Chen, Y.; Li, B.; Zhang, J.; Cheng, X.; Liu, R.; Wang, Y. M.

    2014-03-20

    In this paper, we report for the first time the detailed temperature evolution process of the magnetic flux rope in a failed solar eruption. Occurring on 2013 January 05, the flux rope was impulsively accelerated to a speed of ∼400 km s{sup –1} in the first minute, then decelerated and came to a complete stop in two minutes. The failed eruption resulted in a large-size high-lying (∼100 Mm above the surface), high-temperature 'fire ball' sitting in the corona for more than two hours. The time evolution of the thermal structure of the flux rope was revealed through the differential emission measure analysis technique, which produced temperature maps using observations of the Atmospheric Imaging Assembly on board the Solar Dynamic Observatory. The average temperature of the flux rope steadily increased from ∼5 MK to ∼10 MK during the first nine minutes of the evolution, which was much longer than the rise time (about three minutes) of the associated soft X-ray flare. We suggest that the flux rope is heated by the energy release of the continuing magnetic reconnection, different from the heating of the low-lying flare loops, which is mainly produced by the chromospheric plasma evaporation. The loop arcade overlying the flux rope was pushed up by ∼10 Mm during the attempted eruption. The pattern of the velocity variation of the loop arcade strongly suggests that the failure of the eruption was caused by the strapping effect of the overlying loop arcade.

  5. FAN-SPINE TOPOLOGY FORMATION THROUGH TWO-STEP RECONNECTION DRIVEN BY TWISTED FLUX EMERGENCE

    SciTech Connect

    Toeroek, T.; Aulanier, G.; Schmieder, B.; Reeves, K. K.; Golub, L.

    2009-10-10

    We address the formation of three-dimensional nullpoint topologies in the solar corona by combining Hinode/X-ray Telescope (XRT) observations of a small dynamic limb event, which occurred beside a non-erupting prominence cavity, with a three-dimensional (3D) zero-beta magnetohydrodynamics (MHD) simulation. To this end, we model the boundary-driven 'kinematic' emergence of a compact, intense, and uniformly twisted flux tube into a potential field arcade that overlies a weakly twisted coronal flux rope. The expansion of the emerging flux in the corona gives rise to the formation of a nullpoint at the interface of the emerging and the pre-existing fields. We unveil a two-step reconnection process at the nullpoint that eventually yields the formation of a broad 3D fan-spine configuration above the emerging bipole. The first reconnection involves emerging fields and a set of large-scale arcade field lines. It results in the launch of a torsional MHD wave that propagates along the arcades, and in the formation of a sheared loop system on one side of the emerging flux. The second reconnection occurs between these newly formed loops and remote arcade fields, and yields the formation of a second loop system on the opposite side of the emerging flux. The two loop systems collectively display an anenome pattern that is located below the fan surface. The flux that surrounds the inner spine field line of the nullpoint retains a fraction of the emerged twist, while the remaining twist is evacuated along the reconnected arcades. The nature and timing of the features which occur in the simulation do qualititatively reproduce those observed by XRT in the particular event studied in this paper. Moreover, the two-step reconnection process suggests a new consistent and generic model for the formation of anemone regions in the solar corona.

  6. MHD Modelling of Coronal Loops: Injection of High-Speed Chromospheric Flows

    NASA Technical Reports Server (NTRS)

    Petralia, A.; Reale, F.; Orlando, S.; Klimchuk, J. A.

    2014-01-01

    Context. Observations reveal a correspondence between chromospheric type II spicules and bright upward-moving fronts in the corona observed in the extreme-ultraviolet (EUV) band. However, theoretical considerations suggest that these flows are probably not the main source of heating in coronal magnetic loops. Aims. We investigate the propagation of high-speed chromospheric flows into coronal magnetic flux tubes and the possible production of emission in the EUV band. Methods. We simulated the propagation of a dense 104 K chromospheric jet upward along a coronal loop by means of a 2D cylindrical MHD model that includes gravity, radiative losses, thermal conduction, and magnetic induction. The jet propagates in a complete atmosphere including the chromosphere and a tenuous cool (approximately 0.8 MK) corona, linked through a steep transition region. In our reference model, the jet initial speed is 70 km per second, its initial density is 10(exp 11) per cubic centimeter, and the ambient uniform magnetic field is 10 G. We also explored other values of jet speed and density in 1D and different magnetic field values in 2D, as well as the jet propagation in a hotter (approximately 1.5 MK) background loop. Results. While the initial speed of the jet does not allow it to reach the loop apex, a hot shock-front develops ahead of it and travels to the other extreme of the loop. The shock front compresses the coronal plasma and heats it to about 10(exp 6) K. As a result, a bright moving front becomes visible in the 171 Angstrom channel of the SDO/AIA mission. This result generally applies to all the other explored cases, except for the propagation in the hotter loop. Conclusions. For a cool, low-density initial coronal loop, the post-shock plasma ahead of upward chromospheric flows might explain at least part of the observed correspondence between type II spicules and EUV emission excess.

  7. Mitotic chromosome compaction via active loop extrusion

    NASA Astrophysics Data System (ADS)

    Goloborodko, Anton; Imakaev, Maxim; Marko, John; Mirny, Leonid; MIT-Northwestern Team

    During cell division, two copies of each chromosome are segregated from each other and compacted more than hundred-fold into the canonical X-shaped structures. According to earlier microscopic observations and the recent Hi-C study, chromosomes are compacted into arrays of consecutive loops of ~100 kilobases. Mechanisms that lead to formation of such loop arrays are largely unknown. Here we propose that, during cell division, chromosomes can be compacted by enzymes that extrude loops on chromatin fibers. First, we use computer simulations and analytical modeling to show that a system of loop-extruding enzymes on a chromatin fiber self-organizes into an array of consecutive dynamic loops. Second, we model the process of loop extrusion in 3D and show that, coupled with the topo II strand-passing activity, it leads to robust compaction and segregation of sister chromatids. This mechanism of chromosomal condensation and segregation does not require additional proteins or specific DNA markup and is robust against variations in the number and properties of such loop extruding enzymes. Work at NU was supported by the NSF through Grants DMR-1206868 and MCB-1022117, and by the NIH through Grants GM105847 and CA193419. Work at MIT was supported by the NIH through Grants GM114190 R01HG003143.

  8. Soft X-ray emission in kink-unstable coronal loops

    NASA Astrophysics Data System (ADS)

    Pinto, R. F.; Vilmer, N.; Brun, A. S.

    2015-04-01

    Context. Solar flares are associated with intense soft X-ray emission generated by the hot flaring plasma in coronal magnetic loops. Kink-unstable twisted flux-ropes provide a source of magnetic energy that can be released impulsively and may account for the heating of the plasma in flares. Aims: We investigate the temporal, spectral, and spatial evolution of the properties of the thermal continuum X-ray emission produced in such kink-unstable magnetic flux-ropes and discuss the results of the simulations with respect to solar flare observations. Methods: We computed the temporal evolution of the thermal X-ray emission in kink-unstable coronal loops based on a series of magnetohydrodynamical numerical simulations. The numerical setup consisted of a highly twisted loop embedded in a region of uniform and untwisted background coronal magnetic field. We let the kink instability develop, computed the evolution of the plasma properties in the loop (density, temperature) without accounting for mass exchange with the chromosphere. We then deduced the X-ray emission properties of the plasma during the whole flaring episode. Results: During the initial (linear) phase of the instability, plasma heating is mostly adiabatic (as a result of compression). Ohmic diffusion takes over as the instability saturates, leading to strong and impulsive heating (up to more than 20 MK), to a quick enhancement of X-ray emission, and to the hardening of the thermal X-ray spectrum. The temperature distribution of the plasma becomes broad, with the emission measure depending strongly on temperature. Significant emission measures arise for plasma at temperatures higher than 9 MK. The magnetic flux-rope then relaxes progressively towards a lower energy state as it reconnects with the background flux. The loop plasma suffers smaller sporadic heating events, but cools down globally by thermal conduction. The total thermal X-ray emission slowly fades away during this phase, and the high

  9. Canalization: what the flux?

    PubMed

    Bennett, Tom; Hines, Geneviève; Leyser, Ottoline

    2014-02-01

    Polarized transport of the hormone auxin plays crucial roles in many processes in plant development. A self-organizing pattern of auxin transport--canalization--is thought to be responsible for vascular patterning and shoot branching regulation in flowering plants. Mathematical modeling has demonstrated that membrane localization of PIN-FORMED (PIN)-family auxin efflux carriers in proportion to net auxin flux can plausibly explain canalization and possibly other auxin transport phenomena. Other plausible models have also been proposed, and there has recently been much interest in producing a unified model of all auxin transport phenomena. However, it is our opinion that lacunae in our understanding of auxin transport biology are now limiting progress in developing the next generation of models. Here we examine several key areas where significant experimental advances are necessary to address both biological and theoretical aspects of auxin transport, including the possibility of a unified transport model.

  10. Final Report

    SciTech Connect

    DeTar, Carleton

    2012-12-10

    This document constitutes the Final Report for award DE-FC02-06ER41446 as required by the Office of Science. It summarizes accomplishments and provides copies of scientific publications with significant contribution from this award.

  11. Final Report

    SciTech Connect

    Gurney, Kevin R.

    2015-01-12

    This document constitutes the final report under DOE grant DE-FG-08ER64649. The organization of this document is as follows: first, I will review the original scope of the proposed research. Second, I will present the current draft of a paper nearing submission to Nature Climate Change on the initial results of this funded effort. Finally, I will present the last phase of the research under this grant which has supported a Ph.D. student. To that end, I will present the graduate student’s proposed research, a portion of which is completed and reflected in the paper nearing submission. This final work phase will be completed in the next 12 months. This final workphase will likely result in 1-2 additional publications and we consider the results (as exemplified by the current paper) high quality. The continuing results will acknowledge the funding provided by DOE grant DE-FG-08ER64649.

  12. Open-Loop Acquisition Of Frequency In BPSK

    NASA Technical Reports Server (NTRS)

    Shah, Biren N.; Holmes, Jack K.

    1992-01-01

    Proposed open-loop analog/digital signal-processing system would be Costas-loop error detector functioning in closed-loop manner overall. Detector estimates difference between frequency of input signal and internal reference oscillator. Estimate used to close frequency-control loop. Precise symbol timing not necessary. Performance better than systems that effect open-loop acquisition using integrators instead of low-pass filters in arms of Costas loops and in which performance varies with symbol timing.

  13. Duality of gauge field singularities and the structure of the flux tube in Abelian-projected SU(2) gauge theory and the dual Abelian Higgs model

    NASA Astrophysics Data System (ADS)

    Koma, Y.; Koma, M.; Ilgenfritz, E.-M.; Suzuki, T.; Polikarpov, M. I.

    2003-11-01

    The structure of the flux-tube profile in Abelian-projected (AP) SU(2) gauge theory in the maximally Abelian gauge is studied. The connection between the AP flux tube and the classical flux-tube solution of the U(1) dual Abelian Higgs model is clarified in terms of the path-integral duality transformation. This connection suggests that the electric photon and the magnetic monopole parts of the Abelian Wilson loop can act as separate sources creating the Coulombic and the solenoidal electric field inside a flux tube. The conjecture is confirmed by a lattice simulation which shows that the AP flux tube is composed of these two contributions.

  14. Capillary-Pumped Heat-Transfer Loop

    NASA Technical Reports Server (NTRS)

    1989-01-01

    New type of capillary-pumped heat-transfer loop primes itself at startup. Removes substantial quantities of heat like that generated by people and equipment in rooms and vehicles. Creates continuous path for its working fluid; both vapor and liquid move in same direction. Key element in operation of loop is formation of slugs of liquid, condensed from vapor and moved along loop by vapor bubbles before and after it. Both evaporator and condenser contain axial arteries carrying water. Heat entering evaporator from heat source provides energy for transport of fluid and heat. Dimensions in inches.

  15. Loop-quantum-gravity vertex amplitude.

    PubMed

    Engle, Jonathan; Pereira, Roberto; Rovelli, Carlo

    2007-10-19

    Spin foam models are hoped to provide the dynamics of loop-quantum gravity. However, the most popular of these, the Barrett-Crane model, does not have the good boundary state space and there are indications that it fails to yield good low-energy n-point functions. We present an alternative dynamics that can be derived as a quantization of a Regge discretization of Euclidean general relativity, where second class constraints are imposed weakly. Its state space matches the SO(3) loop gravity one and it yields an SO(4)-covariant vertex amplitude for Euclidean loop gravity.

  16. Towards a Data-Optimized Coronal Magnetic Field Model (DOC-FM): Simulating Flux Ropes with the Flux Rope Insertion Method

    NASA Astrophysics Data System (ADS)

    Dalmasse, K.; DeLuca, E. E.; Savcheva, A. S.; Gibson, S. E.; Fan, Y.

    2015-12-01

    Knowledge of the 3D magnetic filed structure at the time of major solar eruptions is vital or understanding of the space weather effects of these eruptions. Multiple data-constrained techniques that reconstruct the 3D coronal field based on photospheric magnetograms have been used to achieve this goal. In particular, we have used the flux rope insertion method to obtain the coronal magnetic field of multiple regions containing flux ropes or sheared arcades based on line-of-sight magnetograms and X-ray and EUV observations of coronal loops. For the purpose of developing statistical measures of the goodness of fit of these models to the observations, here we present our modeling of flux ropes based on synthetic magnetograms obtained from Fan & Gibson emerging flux rope simulation. The goal is to reproduce the flux rope structure from a given time step of the MHD simulations based only on the photospheric magnetogram and synthetic forward modeled coronal emission obtained from the same step of the MHD simulation. For this purpose we create a large grid of models with the flux rope insertion method with different combinations of axial and poloidal flux, which give us different morphology of the flux rope. Then we compare the synthetic coronal emission with the shape of the current distribution and field lines from the models to come up with a best fit. This fit is then tested using the statistical methods developed by our team.

  17. Phase-field Model for Interstitial Loop Growth Kinetics and Thermodynamic and Kinetic Models of Irradiated Fe-Cr Alloys

    SciTech Connect

    Li, Yulan; Hu, Shenyang Y.; Sun, Xin; Khaleel, Mohammad A.

    2011-06-15

    Microstructure evolution kinetics in irradiated materials has strongly spatial correlation. For example, void and second phases prefer to nucleate and grow at pre-existing defects such as dislocations, grain boundaries, and cracks. Inhomogeneous microstructure evolution results in inhomogeneity of microstructure and thermo-mechanical properties. Therefore, the simulation capability for predicting three dimensional (3-D) microstructure evolution kinetics and its subsequent impact on material properties and performance is crucial for scientific design of advanced nuclear materials and optimal operation conditions in order to reduce uncertainty in operational and safety margins. Very recently the meso-scale phase-field (PF) method has been used to predict gas bubble evolution, void swelling, void lattice formation and void migration in irradiated materials,. Although most results of phase-field simulations are qualitative due to the lake of accurate thermodynamic and kinetic properties of defects, possible missing of important kinetic properties and processes, and the capability of current codes and computers for large time and length scale modeling, the simulations demonstrate that PF method is a promising simulation tool for predicting 3-D heterogeneous microstructure and property evolution, and providing microstructure evolution kinetics for higher scale level simulations of microstructure and property evolution such as mean field methods. This report consists of two parts. In part I, we will present a new phase-field model for predicting interstitial loop growth kinetics in irradiated materials. The effect of defect (vacancy/interstitial) generation, diffusion and recombination, sink strength, long-range elastic interaction, inhomogeneous and anisotropic mobility on microstructure evolution kinetics is taken into account in the model. The model is used to study the effect of elastic interaction on interstitial loop growth kinetics, the interstitial flux, and sink

  18. Quantum tunneling in flux compactifications

    NASA Astrophysics Data System (ADS)

    Blanco-Pillado, Jose J.; Schwartz-Perlov, Delia; Vilenkin, Alexander

    2009-12-01

    We identify instantons representing vacuum decay in a 6-dimensional toy model for string theory flux compactifications, with the two extra dimensions compactified on a sphere. We evaluate the instanton action for tunneling between different flux vacua, as well as for the decompactification decay channel. The bubbles resulting from flux tunneling have an unusual structure. They are bounded by two-dimensional branes, which are localized in the extra dimensions. This has important implications for bubble collisions.

  19. Untangling Autophagy Measurements: All Fluxed Up

    PubMed Central

    Gottlieb, Roberta A.; Andres, Allen M.; Sin, Jon; Taylor, David

    2015-01-01

    Autophagy is an important physiological process in the heart, and alterations in autophagic activity can exacerbate or mitigate injury during various pathological processes. Methods to assess autophagy have changed rapidly as the field of research has expanded. As with any new field, methods and standards for data analysis and interpretation evolve as investigators acquire experience and insight. The purpose of this review is to summarize current methods to measure autophagy, selective mitochondrial autophagy (mitophagy), and autophagic flux. We will examine several published studies where confusion arose in in data interpretation, in order to illustrate the challenges. Finally we will discuss methods to assess autophagy in vivo and in patients. PMID:25634973

  20. SOLAR MOSS PATTERNS: HEATING OF CORONAL LOOPS BY TURBULENCE AND MAGNETIC CONNECTION TO THE FOOTPOINTS

    SciTech Connect

    Kittinaradorn, R.; Ruffolo, D.; Matthaeus, W. H. E-mail: scdjr@mahidol.ac.th

    2009-09-10

    We address the origin of the patchy dark and bright emission structure, known as 'moss', observed by TRACE extreme ultraviolet observations of the solar disk. Here we propose an explanation based on turbulent, patchy heat conduction from the corona into the transition region. Computer simulations demonstrate that magnetic turbulence in coronal loops develops a flux rope structure with current sheets near the flux rope boundaries. Localized heating due to current sheet activity such as magnetic reconnection is followed by heat conduction along turbulent magnetic field lines. The field line trajectories tend to remain near the flux rope boundaries, resulting in selective heating of the plasma in the transition region. This can explain the network of bright regions in the observed moss morphology.

  1. Heat-Flux-Measuring Facility

    NASA Technical Reports Server (NTRS)

    Liebert, Curt H.; Weikle, Donald H.

    1990-01-01

    Apparatus simulates conditions in turbine engines. Automated facility generates and measures transient and steady-state heat fluxes at flux densities from 0.3 to 6 MW/m(Sup2) and temperatures from 100 to 1,200 K. Positioning arm holds heat-flux gauge at focal point of arc lamp. Arm previously chilled gauge in liquid nitrogen in Dewar flask. Cooling water flows through lamp to heat exchanger. Used to develop heat-flux gauges for turbine blades and to test materials for durability under rapidly changing temperatures.

  2. Measuring surface fluxes in CAPE

    NASA Technical Reports Server (NTRS)

    Kanemasu, E. T.; D-Shah, T.; Nie, Dalin

    1992-01-01

    Two stations (site 1612 and site 2008) were operated by the University of Georgia group from 6 July 1991 to 18 August 1991. The following data were collected continuously: surface energy fluxes (i.e., net radiation, soil heat fluxes, sensible heat flux and latent heat flux), air temperature, vapor pressure, soil temperature (at 1 cm depth), and precipitation. Canopy reflectance and light interception data were taken three times at each site between 6 July and 18 August. Soil moisture content was measured twice at each site.

  3. Drosophila melanogaster kl-3 and kl-5 Y-loops harbor triple-stranded nucleic acids.

    PubMed

    Piergentili, Roberto; Mencarelli, Caterina

    2008-05-15

    Primary spermatocyte nuclei of Drosophila melanogaster contain three prominent lampbrush-like loops. The development of these structures has been associated with the transcription of three fertility factors located on the Y chromosome, named kl-5, kl-3 and ks-1. These loci have huge physical dimensions and contain extremely long introns. In addition, kl-3 and kl-5 were shown to encode two putative dynein subunits required for the correct assembly of the sperm axoneme. Here, we show that both the kl-5 and kl-3 loops are intensely decorated by monoclonal antibodies recognizing triple-stranded nucleic acids, and that each loop presents a peculiar molecular organization of triplex structures. Moreover, immunostaining of Drosophila hydei primary spermatocytes revealed that also in this species - which diverged from D. melanogaster 58 million years ago - Y-loops are decorated by anti-triplex antibodies, strongly suggesting a conserved role of loop-associated triplexes. Finally, we showed that in D. melanogaster wild-type lines that are raised at the non-permissive temperature of 31+/-0.5 degrees C (which is known to induce male sterility in flies) both the triplex immunostaining and the axonemal dynein heavy chains encoded by kl-3 and kl-5 are no longer detectable, which suggests a functional correlation between loop-associated triplexes, the presence of axonemal proteins and male fertility in fly.

  4. The instability and non-existence of multi-stranded loops, when driven by transverse waves

    NASA Astrophysics Data System (ADS)

    Van Doorsselaere, Tom; Magyar, Norbert

    2016-05-01

    In recent years, omni-present transverse waves have been observed in all layers of the solar atmosphere. Coronal loops are often modeled as a collection of individual strands, in order to explain their thermal behaviour and appearance. We perform 3D ideal MHD simulations to study the effect of a continuous small amplitude transverse footpoint driving on the internal structure of a coronal loop composed of strands. The output is also converted to synthetic images, corresponding to the AIA 171Å and 193Å passbands, using FoMo. We show that the multi-stranded loop ceases to exist in the traditional sense of the word, because the plasma is efficiently mixed perpendicularly to the magnetic field, with the Kelvin-Helmholtz instability acting as the main mechanism. The final product of our simulation is mixed loop with density structures on a large range of scales, resembling a power-law. Thus, multi-stranded loops are unstable to driving by transverse waves, and this raises a strong doubt on the usability and applicability of coronal loop models consisting of independent strands.

  5. The Instability and Non-existence of Multi-stranded Loops When Driven by Transverse Waves

    NASA Astrophysics Data System (ADS)

    Magyar, N.; Van Doorsselaere, T.

    2016-06-01

    In recent years, omni-present transverse waves have been observed in all layers of the solar atmosphere. Coronal loops are often modeled as a collection of individual strands in order to explain their thermal behavior and appearance. We perform three-dimensional (3D) ideal magnetohydrodynamics simulations to study the effect of a continuous small amplitude transverse footpoint driving on the internal structure of a coronal loop composed of strands. The output is also converted into synthetic images, corresponding to the AIA 171 and 193 Å passbands, using FoMo. We show that the multi-stranded loop ceases to exist in the traditional sense of the word, because the plasma is efficiently mixed perpendicularly to the magnetic field, with the Kelvin–Helmholtz instability acting as the main mechanism. The final product of our simulation is a mixed loop with density structures on a large range of scales, resembling a power-law. Thus, multi-stranded loops are unstable to driving by transverse waves, and this raises strong doubts on the usability and applicability of coronal loop models consisting of independent strands.

  6. An Environmental for Hardware-in-the-Loop Formation Navigation and Control

    NASA Technical Reports Server (NTRS)

    Burns, Rich; Naasz, Bo; Gaylor, Dave; Higinbotham, John

    2004-01-01

    Recent interest in formation flying satellite systems has spurred a considerable amount of research in the relative navigation and control of satellites. Development in this area has included new estimation and control algorithms as well as sensor and actuator development specifically geared toward the relative control problem. This paper describes a simulation facility, the Formation Flying Test Bed (FFTB) at NASA Goddard Space Flight Center, which allows engineers to test new algorithms for the formation flying problem with relevant GN&C hardware in a closed loop simulation. The FFTB currently supports the inclusion of GPS receiver hardware in the simulation loop. Support for satellite crosslink ranging technology is at a prototype stage. This closed-loop, hardware inclusive simulation capability permits testing of navigation and control software in the presence of the actual hardware with which the algorithms must interact. This capability provides the navigation or control developer with a perspective on how the algorithms perform as part of the closed-loop system. In this paper, the overall design and evolution of the FFTB are presented. Each component of the FFTB is then described. Interfaces between the components of the FFTB are shown and the interfaces to and between navigation and control software are described. Finally, an example of closed-loop formation control with GPS receivers in the loop is presented.

  7. An Environment for Hardware-in-the-Loop Formation Navigation and Control Simulation

    NASA Technical Reports Server (NTRS)

    Burns, Rich

    2004-01-01

    Recent interest in formation flying satellite systems has spurred a considerable amount of research in the relative navigation and control of satellites. Development in this area has included new estimation and control algorithms as well as sensor and actuator development specifically geared toward the relative control problem. This paper describes a simulation facility, the Formation Flying Testbed (FFTB) at NASA's Goddard Space Flight Center, which allows engineers to test new algorithms for the formation flying problem with relevant GN&C hardware in a closed loop simulation. The FFTB currently supports the injection of GPS receiver hardware into the simulation loop, and support for satellite crosslink ranging technology is at a prototype stage. This closed-loop, hardware inclusive simulation capability permits testing of navigation and control software in the presence of the actual hardware with which the algorithms must interact. This capability provides the navigation or control developer with a perspective on how the algorithms perform as part of the closed-loop system. In this paper, the overall design and evolution of the FFTB are presented. Each component of the FFTB is then described in detail. Interfaces between the components of the FFTB are shown and the interfaces to and between navigation and control software are described in detail. Finally, an example of closed-loop formation control with GPS receivers in the loop is presented and results are analyzed.

  8. Black hole jets without large-scale net magnetic flux

    NASA Astrophysics Data System (ADS)

    Parfrey, Kyle; Giannios, Dimitrios; Beloborodov, Andrei M.

    2015-01-01

    We propose a scenario for launching relativistic jets from rotating black holes, in which small-scale magnetic flux loops, sustained by disc turbulence, are forced to inflate and open by differential rotation between the black hole and the accretion flow. This mechanism does not require a large-scale net magnetic flux in the accreting plasma. Estimates suggest that the process could operate effectively in many systems, and particularly naturally and efficiently when the accretion flow is retrograde. We present the results of general-relativistic force-free electrodynamic simulations demonstrating the time evolution of the black hole's magnetosphere, the cyclic formation of jets, and the effect of magnetic reconnection. The jets are highly variable on time-scales ˜10-103rg/c, where rg is the black hole's gravitational radius. The reconnecting current sheets observed in the simulations may be responsible for the hard X-ray emission from accreting black holes.

  9. Magneto-Acoustic Waves in Compressible Magnetically Twisted Flux Tubes

    NASA Astrophysics Data System (ADS)

    Erdélyi, Robert; Fedun, Viktor

    2010-05-01

    The oscillatory modes of a magnetically twisted compressible flux tube embedded in a compressible magnetic environment are investigated in cylindrical geometry. Solutions to the governing equations to linear wave perturbations are derived in terms of Whittaker’s functions. A general dispersion equation is obtained in terms of Kummer’s functions for the approximation of weak and uniform internal twist, which is a good initial working model for flux tubes in solar applications. The sausage, kink and fluting modes are examined by means of the derived exact dispersion equation. The solutions of this general dispersion equation are found numerically under plasma conditions representative of the solar photosphere and corona. Solutions for the phase speed of the allowed eigenmodes are obtained for a range of wavenumbers and varying magnetic twist. Our results generalise previous classical and widely applied studies of MHD waves and oscillations in magnetic loops without a magnetic twist. Potential applications to solar magneto-seismology are discussed.

  10. KoFlux: Korean Regional Flux Network in AsiaFlux

    NASA Astrophysics Data System (ADS)

    Kim, J.

    2002-12-01

    AsiaFlux, the Asian arm of FLUXNET, held the Second International Workshop on Advanced Flux Network and Flux Evaluation in Jeju Island, Korea on 9-11 January 2002. In order to facilitate comprehensive Asia-wide studies of ecosystem fluxes, the meeting launched KoFlux, a new Korean regional network of long-term micrometeorological flux sites. For a successful assessment of carbon exchange between terrestrial ecosystems and the atmosphere, an accurate measurement of surface fluxes of energy and water is one of the prerequisites. During the 7th Global Energy and Water Cycle Experiment (GEWEX) Asian Monsoon Experiment (GAME) held in Nagoya, Japan on 1-2 October 2001, the Implementation Committee of the Coordinated Enhanced Observing Period (CEOP) was established. One of the immediate tasks of CEOP was and is to identify the reference sites to monitor energy and water fluxes over the Asian continent. Subsequently, to advance the regional and global network of these reference sites in the context of both FLUXNET and CEOP, the Korean flux community has re-organized the available resources to establish a new regional network, KoFlux. We have built up domestic network sites (equipped with wind profiler and radiosonde measurements) over deciduous and coniferous forests, urban and rural rice paddies and coastal farmland. As an outreach through collaborations with research groups in Japan, China and Thailand, we also proposed international flux sites at ecologically and climatologically important locations such as a prairie on the Tibetan plateau, tropical forest with mixed and rapid land use change in northern Thailand. Several sites in KoFlux already begun to accumulate interesting data and some highlights are presented at the meeting. The sciences generated by flux networks in other continents have proven the worthiness of a global array of micrometeorological flux towers. It is our intent that the launch of KoFlux would encourage other scientists to initiate and

  11. SMALL MAGNETIC LOOPS CONNECTING THE QUIET SURFACE AND THE HOT OUTER ATMOSPHERE OF THE SUN

    SciTech Connect

    Martinez Gonzalez, M. J.; Manso Sainz, R.; Asensio Ramos, A.

    2010-05-01

    Sunspots are the most spectacular manifestation of solar magnetism, yet 99% of the solar surface remains 'quiet' at any time of the solar cycle. The quiet sun is not void of magnetic fields, though; they are organized at smaller spatial scales and evolve relatively fast, which makes them difficult to detect. Thus, although extensive quiet Sun magnetism would be a natural driver to a uniform, steady heating of the outer solar atmosphere, it is not clear what the physical processes involved would be, due to lack of observational evidence. We report on the topology and dynamics of the magnetic field in very quiet regions of the Sun from spectropolarimetric observations of the Hinode satellite, showing a continuous injection of magnetic flux with a well-organized topology of {omega}-loop from below the solar surface into the upper layers. At first stages, when the loop travels across the photosphere, it has a flattened (staple-like) geometry and a mean velocity ascent of {approx}3 km s{sup -1}. When the loop crosses the minimum temperature region, the magnetic fields at the footpoints become almost vertical and the loop topology resembles a potential field. The mean ascent velocity at chromospheric height is {approx}12 km s{sup -1}. The energy input rate of these small-scale loops in the lower boundary of the chromosphere is (at least) of 1.4 x 10{sup 6}-2.2 x 10{sup 7} erg cm{sup -2} s{sup -1}. Our findings provide empirical evidence for solar magnetism as a multi-scale system, in which small-scale low-flux magnetism plays a crucial role, at least as important as active regions, coupling different layers of the solar atmosphere and being an important ingredient for chromospheric and coronal heating models.

  12. Analytic three-loop static potential

    NASA Astrophysics Data System (ADS)

    Lee, Roman N.; Smirnov, Alexander V.; Smirnov, Vladimir A.; Steinhauser, Matthias

    2016-09-01

    We present analytic results for the three-loop static potential of two heavy quarks. The analytic calculation of the missing ingredients is outlined, and results for the singlet and octet potential are provided.

  13. Mathematical Modeling of Loop Heat Pipes

    NASA Technical Reports Server (NTRS)

    Kaya, Tarik; Ku, Jentung; Hoang, Triem T.; Cheung, Mark L.

    1998-01-01

    The primary focus of this study is to model steady-state performance of a Loop Heat Pipe (LHP). The mathematical model is based on the steady-state energy balance equations at each component of the LHP. The heat exchange between each LHP component and the surrounding is taken into account. Both convection and radiation environments are modeled. The loop operating temperature is calculated as a function of the applied power at a given loop condition. Experimental validation of the model is attempted by using two different LHP designs. The mathematical model is tested at different sink temperatures and at different elevations of the loop. Tbc comparison of the calculations and experimental results showed very good agreement (within 3%). This method proved to be a useful tool in studying steady-state LHP performance characteristics.

  14. The universal one-loop effective action

    NASA Astrophysics Data System (ADS)

    Drozd, Aleksandra; Ellis, John; Quevillon, Jérémie; You, Tevong

    2016-03-01

    We present the universal one-loop effective action for all operators of dimension up to six obtained by integrating out massive, non-degenerate multiplets. Our general expression may be applied to loops of heavy fermions or bosons, and has been checked against partial results available in the literature. The broad applicability of this approach simplifies one-loop matching from an ultraviolet model to a lower-energy effective field theory (EFT), a procedure which is now reduced to the evaluation of a combination of matrices in our universal expression, without any loop integrals to evaluate. We illustrate the relationship of our results to the Standard Model (SM) EFT, using as an example the supersymmetric stop and sbottom squark Lagrangian and extracting from our universal expression the Wilson coefficients of dimension-six operators composed of SM fields.

  15. Hierarchical loop detection for mobile outdoor robots

    NASA Astrophysics Data System (ADS)

    Lang, Dagmar; Winkens, Christian; Häselich, Marcel; Paulus, Dietrich

    2012-01-01

    Loop closing is a fundamental part of 3D simultaneous localization and mapping (SLAM) that can greatly enhance the quality of long-term mapping. It is essential for the creation of globally consistent maps. Conceptually, loop closing is divided into detection and optimization. Recent approaches depend on a single sensor to recognize previously visited places in the loop detection stage. In this study, we combine data of multiple sensors such as GPS, vision, and laser range data to enhance detection results in repetitively changing environments that are not sufficiently explained by a single sensor. We present a fast and robust hierarchical loop detection algorithm for outdoor robots to achieve a reliable environment representation even if one or more sensors fail.

  16. Loop Diuretics in the Treatment of Hypertension.

    PubMed

    Malha, Line; Mann, Samuel J

    2016-04-01

    Loop diuretics are not recommended in current hypertension guidelines largely due to the lack of outcome data. Nevertheless, they have been shown to lower blood pressure and to offer potential advantages over thiazide-type diuretics. Torsemide offers advantages of longer duration of action and once daily dosing (vs. furosemide and bumetanide) and more reliable bioavailability (vs. furosemide). Studies show that the previously employed high doses of thiazide-type diuretics lower BP more than furosemide. Loop diuretics appear to have a preferable side effect profile (less hyponatremia, hypokalemia, and possibly less glucose intolerance). Studies comparing efficacy and side effect profiles of loop diuretics with the lower, currently widely prescribed, thiazide doses are needed. Research is needed to fill gaps in knowledge and common misconceptions about loop diuretic use in hypertension and to determine their rightful place in the antihypertensive arsenal.

  17. Open-loop digital frequency multiplier

    NASA Technical Reports Server (NTRS)

    Moore, R. C.

    1977-01-01

    Monostable multivibrator is implemented by using digital integrated circuits where multiplier constant is too large for conventional phase-locked-loop integrated circuit. A 400 Hz clock is generated by divide-by-N counter from 1 Hz timing reference.

  18. A multiple-pass ring oscillator based dual-loop phase-locked loop

    NASA Astrophysics Data System (ADS)

    Danfeng, Chen; Junyan, Ren; Jingjing, Deng; Wei, Li; Ning, Li

    2009-10-01

    A dual-loop phase-locked loop (PLL) for wideband operation is proposed. The dual-loop architecture combines a coarse-tuning loop with a fine-tuning one, enabling a wide tuning range and low voltage-controlled oscillator (VCO) gain without poisoning phase noise and reference spur suppression performance. An analysis of the phase noise and reference spur of the dual-loop PLL is emphasized. A novel multiple-pass ring VCO is designed for the dual-loop application. It utilizes both voltage-control and current-control simultaneously in the delay cell. The PLL is fabricated in Jazz 0.18-μm RF CMOS technology. The measured tuning range is from 4.2 to 5.9 GHz. It achieves a low phase noise of -99 dBc/Hz @ 1 MHz offset from a 5.5 GHz carrier.

  19. Carbon Dioxide Flux Measurement Systems (CO2Flux) Handbook

    SciTech Connect

    Fischer, M

    2005-01-01

    The Southern Great Plains (SGP) carbon dioxide flux (CO2 flux) measurement systems provide half-hour average fluxes of CO2, H2O (latent heat), and sensible heat. The fluxes are obtained by the eddy covariance technique, which computes the flux as the mean product of the vertical wind component with CO2 and H2O densities, or estimated virtual temperature. A three-dimensional sonic anemometer is used to obtain the orthogonal wind components and the virtual (sonic) temperature. An infrared gas analyzer is used to obtain the CO2 and H2O densities. A separate sub-system also collects half-hour average measures of meteorological and soil variables from separate 4-m towers.

  20. Topological order from quantum loops and nets

    SciTech Connect

    Fendley, Paul

    2008-12-15

    I define models of quantum loops and nets that have ground states with topological order. These make possible excited states comprised of deconfined anyons with non-abelian braiding. With the appropriate inner product, these quantum loop models are equivalent to net models whose topological weight involves the chromatic polynomial. A simple Hamiltonian preserving the topological order is found by exploiting quantum self-duality. For the square lattice, this Hamiltonian has only four-spin interactions.

  1. Loop quantum cosmology in 2 +1 dimension

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangdong

    2014-12-01

    As a first step to generalize the structure of loop quantum cosmology to the theories with the spacetime dimension other than four, the isotropic model of loop quantum cosmology in 2 +1 dimension is studied in this paper. We find that the classical big bang singularity is again replaced by a quantum bounce in the model. The similarities and differences between the (2 +1 )-dimensional model and the (3 +1 )-dimensional one are also discussed.

  2. Cyclic universe from Loop Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Cianfrani, Francesco; Kowalski-Glikman, Jerzy; Rosati, Giacomo

    2016-02-01

    We discuss how a cyclic model for the flat universe can be constructively derived from Loop Quantum Gravity. This model has a lower bounce, at small values of the scale factor, which shares many similarities with that of Loop Quantum Cosmology. We find that Quantum Gravity corrections can be also relevant at energy densities much smaller than the Planckian one and that they can induce an upper bounce at large values of the scale factor.

  3. Deployable radiator with flexible line loop

    NASA Technical Reports Server (NTRS)

    Keeler, Bryan V. (Inventor); Lehtinen, Arthur Mathias (Inventor); McGee, Billy W. (Inventor)

    2003-01-01

    Radiator assembly (10) for use on a spacecraft (12) is provided including at least one radiator panel assembly (26) repeatably movable between a panel stowed position (28) and a panel deployed position (36), at least two flexible lines (40) in fluid communication with the at least one radiator panel assembly (26) and repeatably movable between a stowage loop (42) and a flattened deployed loop (44).

  4. Onset of inflation in loop quantum cosmology

    SciTech Connect

    Germani, Cristiano; Nelson, William; Sakellariadou, Mairi

    2007-08-15

    Using a Liouville measure, similar to the one proposed recently by Gibbons and Turok, we investigate the probability that single-field inflation with a polynomial potential can last long enough to solve the shortcomings of the standard hot big bang model, within the semiclassical regime of loop quantum cosmology. We conclude that, for such a class of inflationary models and for natural values of the loop quantum cosmology parameters, a successful inflationary scenario is highly improbable.

  5. Can Chemical Looping Combustion Use CFB Technology?

    SciTech Connect

    Gamwo, I.K.

    2006-11-01

    Circulating Fluidized Bed (CFB) technology has demonstrated an unparalleled ability to achieve low SO2 and NOx emissions for coal-fired power plants without CO2 capture. Chemical Looping combustion (CLC) is a novel fuel combustion technology which appears as a leading candidate in terms of competitiveness for CO2 removal from flue gas. This presentaion deals with the adaptation of circulating fluidized bed technology to Chemical looping combustion

  6. Tachyon matter in loop quantum cosmology

    NASA Astrophysics Data System (ADS)

    Sen, A. A.

    2006-08-01

    An analytical approach for studying the cosmological scenario with a homogeneous tachyon field within the framework of loop quantum gravity is developed. Our study is based on the semiclassical regime where space time can be approximated as a continuous manifold, but matter Hamiltonian gets nonperturbative quantum corrections. A formal correspondence between classical and loop quantum cosmology is also established. The Hamilton-Jacobi method for getting exact solutions is constructed and some exact power law as well as bouncing solutions are presented.

  7. Multiple Flow Loop SCADA System Implemented on the Production Prototype Loop

    SciTech Connect

    Baily, Scott A.; Dalmas, Dale Allen; Wheat, Robert Mitchell; Woloshun, Keith Albert; Dale, Gregory E.

    2015-11-16

    The following report covers FY 15 activities to develop supervisory control and data acquisition (SCADA) system for the Northstar Moly99 production prototype gas flow loop. The goal of this effort is to expand the existing system to include a second flow loop with a larger production-sized blower. Besides testing the larger blower, this system will demonstrate the scalability of our solution to multiple flow loops.

  8. Plasma Loops in the Solar Corona

    NASA Astrophysics Data System (ADS)

    Bray, R. J.; Cram, L. E.; Durrant, C.; Loughhead, R. E.

    1991-07-01

    A comprehensive account of the properties of plasma loops, the fundamental structural elements of the solar corona. Plasma loops cover a wide range of sizes and range in temperature from tens of thousands to millions of degrees. They not only define the structure of individual active regions but connect different active regions--even across the solar equator. Loops also play an integral and decisive role in the enormous solar explosions called flares. Over recent years a wealth of space and ground-based observations of loops has been obtained in various widely-spaced regions of the electromagnetic spectrum. In this book the authors have selected the best observational material from the literature on which to base a detailed account of the properties of flare and non-flare loops. The book also explores the larger implications of the loop structures for our understanding of solar and stellar coronae. The text is enhanced by a large number of illustrations and unique and beautiful photographs obtained from the ground and from space.

  9. Space Station evolution study oxygen loop closure

    NASA Technical Reports Server (NTRS)

    Wood, M. G.; Delong, D.

    1993-01-01

    In the current Space Station Freedom (SSF) Permanently Manned Configuration (PMC), physical scars for closing the oxygen loop by the addition of oxygen generation and carbon dioxide reduction hardware are not included. During station restructuring, the capability for oxygen loop closure was deferred to the B-modules. As such, the ability to close the oxygen loop in the U.S. Laboratory module (LAB A) and the Habitation A module (HAB A) is contingent on the presence of the B modules. To base oxygen loop closure of SSF on the funding of the B-modules may not be desirable. Therefore, this study was requested to evaluate the necessary hooks and scars in the A-modules to facilitate closure of the oxygen loop at or subsequent to PMC. The study defines the scars for oxygen loop closure with impacts to cost, weight and volume and assesses the effects of byproduct venting. In addition, the recommended scenarios for closure with regard to topology and packaging are presented.

  10. Flux Compression Magnetic Nozzle

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Schafer, Charles (Technical Monitor)

    2001-01-01

    In pulsed fusion propulsion schemes in which the fusion energy creates a radially expanding plasma, a magnetic nozzle is required to redirect the radially diverging flow of the expanding fusion plasma into a rearward axial flow, thereby producing a forward axial impulse to the vehicle. In a highly electrically conducting plasma, the presence of a magnetic field B in the plasma creates a pressure B(exp 2)/2(mu) in the plasma, the magnetic pressure. A gradient in the magnetic pressure can be used to decelerate the plasma traveling in the direction of increasing magnetic field, or to accelerate a plasma from rest in the direction of decreasing magnetic pressure. In principle, ignoring dissipative processes, it is possible to design magnetic configurations to produce an 'elastic' deflection of a plasma beam. In particular, it is conceivable that, by an appropriate arrangement of a set of coils, a good approximation to a parabolic 'magnetic mirror' may be formed, such that a beam of charged particles emanating from the focal point of the parabolic mirror would be reflected by the mirror to travel axially away from the mirror. The degree to which this may be accomplished depends on the degree of control one has over the flux surface of the magnetic field, which changes as a result of its interaction with a moving plasma.

  11. Plasmas fluxes to surfaces for an oblique magnetic field

    SciTech Connect

    Pitcher, C.S. ); Stangeby, P.C.; Elder, J.D. ); Bell, M.G.; Kilpatrick, S.J.; Manos, D.M.; Medley, S.S.; Owens, D.K.; Ramsey, A.T.; Ulrickson, M. . Plasma Physics Lab.)

    1992-07-01

    The poloidal and toroidal spatial distributions of D{sub {alpha}}, He I and C II emission have been obtained in the vicinity of the TFTR bumper limiter and are compared with models of ion flow to the surface. The distributions are found not to agree with a model (the Cosine'' model) which determines the incident flux density using only the parallel fluxes in the scrape-off layer and the projected area of the surface perpendicular to the field lines. In particular, the Cosine model is not able to explain the significant fluxes observed at locations on the surface which are oblique to the magnetic field. It is further shown that these fluxes cannot be explained by the finite Larmor radius of impinging ions. Finally, it is demonstrated, with the use of Monte Carlo codes, that the distributions can be explained by including both parallel and cross-field transport onto the limiter surface.

  12. Plasmas fluxes to surfaces for an oblique magnetic field

    SciTech Connect

    Pitcher, C.S.; Stangeby, P.C.; Elder, J.D.; Bell, M.G.; Kilpatrick, S.J.; Manos, D.M.; Medley, S.S.; Owens, D.K.; Ramsey, A.T.; Ulrickson, M.

    1992-07-01

    The poloidal and toroidal spatial distributions of D{sub {alpha}}, He I and C II emission have been obtained in the vicinity of the TFTR bumper limiter and are compared with models of ion flow to the surface. The distributions are found not to agree with a model (the ``Cosine`` model) which determines the incident flux density using only the parallel fluxes in the scrape-off layer and the projected area of the surface perpendicular to the field lines. In particular, the Cosine model is not able to explain the significant fluxes observed at locations on the surface which are oblique to the magnetic field. It is further shown that these fluxes cannot be explained by the finite Larmor radius of impinging ions. Finally, it is demonstrated, with the use of Monte Carlo codes, that the distributions can be explained by including both parallel and cross-field transport onto the limiter surface.

  13. Loops In Proteins (LIP)--a comprehensive loop database for homology modelling.

    PubMed

    Michalsky, E; Goede, A; Preissner, R

    2003-12-01

    One of the most important and challenging tasks in protein modelling is the prediction of loops, as can be seen in the large variety of existing approaches. Loops In Proteins (LIP) is a database that includes all protein segments of a length up to 15 residues contained in the Protein Data Bank (PDB). In this study, the applicability of LIP to loop prediction in the framework of homology modelling is investigated. Searching the database for loop candidates takes less than 1 s on a desktop PC, and ranking them takes a few minutes. This is an order of magnitude faster than most existing procedures. The measure of accuracy is the root mean square deviation (RMSD) with respect to the main-chain atoms after local superposition of target loop and predicted loop. Loops of up to nine residues length were modelled with a local RMSD <1 A and those of length up to 14 residues with an accuracy better than 2 A. The results were compared in detail with a thoroughly evaluated and tested ab initio method published recently and additionally with two further methods for a small loop test set. The LIP method produced very good predictions. In particular for longer loops it outperformed other methods.

  14. Hybrid Combustion-Gasification Chemical Looping

    SciTech Connect

    Herbert Andrus; Gregory Burns; John Chiu; Gregory Lijedahl; Peter Stromberg; Paul Thibeault

    2009-01-07

    For the past several years Alstom Power Inc. (Alstom), a leading world-wide power system manufacturer and supplier, has been in the initial stages of developing an entirely new, ultra-clean, low cost, high efficiency power plant for the global power market. This new power plant concept is based on a hybrid combustion-gasification process utilizing high temperature chemical and thermal looping technology The process consists of the oxidation, reduction, carbonation, and calcination of calcium-based compounds, which chemically react with coal, biomass, or opportunity fuels in two chemical loops and one thermal loop. The chemical and thermal looping technology can be alternatively configured as (i) a combustion-based steam power plant with CO{sub 2} capture, (ii) a hybrid combustion-gasification process producing a syngas for gas turbines or fuel cells, or (iii) an integrated hybrid combustion-gasification process producing hydrogen for gas turbines, fuel cells or other hydrogen based applications while also producing a separate stream of CO{sub 2} for use or sequestration. In its most advanced configuration, this new concept offers the promise to become the technology link from today's Rankine cycle steam power plants to tomorrow's advanced energy plants. The objective of this work is to develop and verify the high temperature chemical and thermal looping process concept at a small-scale pilot facility in order to enable AL to design, construct and demonstrate a pre-commercial, prototype version of this advanced system. In support of this objective, Alstom and DOE started a multi-year program, under this contract. Before the contract started, in a preliminary phase (Phase 0) Alstom funded and built the required small-scale pilot facility (Process Development Unit, PDU) at its Power Plant Laboratories in Windsor, Connecticut. Construction was completed in calendar year 2003. The objective for Phase I was to develop the indirect combustion loop with CO{sub 2

  15. Unsteady wandering magnetic field lines, turbulence and laboratory flux ropes

    NASA Astrophysics Data System (ADS)

    Intrator, T.; Sears, J.; Weber, T.; Liu, D.; Pulliam, D.; Lazarian, A.

    2011-12-01

    We describe earth bound laboratory experiment investigations of patchy, unsteady, bursty, patchy magnetic field structures that are unifying features of magnetic reconnection and turbulence in helio, space and astro physics. Macroscopic field lines occupy cross sectional areas, fill up three dimensional (3D) volumes as flux tubes. They contain mass with Newtonian dynamics that follow magneto-hydro-dynamic (MHD) equations of motion. Flux rope geometry can be ubiquitous in laminar reconnection sheet geometries that are themselves unstable to formation of secondary "islands" that in 3D are really flux ropes. Flux ropes are ubiquitous structures on the sun and the rest of the heliosphere. Understanding the dynamics of flux ropes and their mutual interactions offers the key to many important astrophysical phenomena, including magnetic reconnection and turbulence. We describe laboratory investigations on RSX, where 3D interaction of flux ropes can be studied in great detail. We use experimental probes inside the the flux ropes to measure the magnetic and electric fields, current density, density, temperatures, pressure, and electrostatic and vector plasma potentials. Macroscopic magnetic field lines, unsteady wandering characteristics, and dynamic objects with structure down to the dissipation scale length can be traced from data sets in a 3D volume. Computational approaches are finally able to tackle simple 3D systems and we sketch some intriguing simulation results that are consistent with 3D extensions of typical 2D cartoons for magnetic reconnection and turbulence.

  16. Errors in airborne flux measurements

    NASA Astrophysics Data System (ADS)

    Mann, Jakob; Lenschow, Donald H.

    1994-07-01

    We present a general approach for estimating systematic and random errors in eddy correlation fluxes and flux gradients measured by aircraft in the convective boundary layer as a function of the length of the flight leg, or of the cutoff wavelength of a highpass filter. The estimates are obtained from empirical expressions for various length scales in the convective boundary layer and they are experimentally verified using data from the First ISLSCP (International Satellite Land Surface Climatology Experiment) Field Experiment (FIFE), the Air Mass Transformation Experiment (AMTEX), and the Electra Radome Experiment (ELDOME). We show that the systematic flux and flux gradient errors can be important if fluxes are calculated from a set of several short flight legs or if the vertical velocity and scalar time series are high-pass filtered. While the systematic error of the flux is usually negative, that of the flux gradient can change sign. For example, for temperature flux divergence the systematic error changes from negative to positive about a quarter of the way up in the convective boundary layer.

  17. 2011 FEBRUARY 15: SUNQUAKES PRODUCED BY FLUX ROPE ERUPTION

    SciTech Connect

    Zharkov, S.; Green, L. M.; Matthews, S. A.; Zharkova, V. V.

    2011-11-10

    We present an analysis of the 2011 February 15 X-class solar flare, previously reported to produce the first sunquake in solar cycle 24. Using acoustic holography, we confirm the first, and report a second, weaker, seismic source associated with this flare. We find that the two sources are located at either end of a sigmoid, which indicates the presence of a flux rope. Contrary to the majority of previously reported sunquakes, the acoustic emission precedes the peak of major hard X-ray (HXR) sources by several minutes. Furthermore, the strongest HXR footpoints derived from RHESSI data are found to be located away from the seismic sources in the flare ribbons. We account for these discrepancies within the context of a phenomenological model of a flux rope eruption and accompanying two-ribbon flare. We propose that the sunquakes are triggered at the footpoints of the erupting flux rope at the start of the flare impulsive phase and eruption onset, while the main HXR sources appear later at the footpoints of the flare loops formed under the rising flux rope. Possible implications of this scenario for the theoretical interpretation of the forces driving sunquakes are discussed.

  18. TWO-STEP EMERGENCE OF THE MAGNETIC FLUX SHEET FROM THE SOLAR CONVECTION ZONE

    SciTech Connect

    Toriumi, S.; Yokoyama, T.

    2010-05-01

    We perform two-dimensional magnetodydrodynamic simulations of the flux emergence from the solar convection zone to the corona. The flux sheet is initially located moderately deep in the adiabatically stratified convection zone (-20,000 km) and is perturbed to trigger the Parker instability. The flux rises through the solar interior due to the magnetic buoyancy, but suffers a gradual deceleration and a flattening in the middle of the way to the surface since the plasma piled on the emerging loop cannot pass through the convectively stable photosphere. As the magnetic pressure gradient enhances, the flux becomes locally unstable to the Parker instability so that the further evolution to the corona occurs. The second-step nonlinear emergence is well described by the expansion law by Shibata et al. To investigate the condition for this 'two-step emergence' model, we vary the initial field strength and the total flux. When the initial field is too strong, the flux exhibits the emergence to the corona without a deceleration at the surface and reveals an unrealistically strong flux density at each footpoint of the coronal loop, while the flux either fragments within the convection zone or cannot pass through the surface when the initial field is too weak. The condition for the 'two-step emergence' is found to be 10{sup 21}-10{sup 22} Mx with 10{sup 4} G at z = -20,000 km. We present some discussions in connection with recent observations and the results of the thin-flux-tube model.

  19. Nonequilibrium, Drift-Flux Code System for Two-Phase Flow Network Analysis

    2000-08-01

    Version: 00 SOLA-LOOP is designed for the solution of transient two-phase flow in networks composed of one-dimensional components. The fluid dynamics is described by a nonequilibrium, drift-flux formulation of the fluid conservation laws. Although developed for nuclear reactor safety analysis, SOLA-LOOP may be used as the basis for other types of special-purpose network codes. The program can accommodate almost any set of constitutive relations, property tables, or other special features required for different applications.

  20. THREE-DIMENSIONAL NONLINEAR EVOLUTION OF A MAGNETIC FLUX TUBE IN A SPHERICAL SHELL: INFLUENCE OF TURBULENT CONVECTION AND ASSOCIATED MEAN FLOWS

    SciTech Connect

    Jouve, Laurene; Brun, Allan Sacha E-mail: sacha.brun@cea.fr

    2009-08-20

    We present the first three-dimensional magnetohydrodynamics study in spherical geometry of the nonlinear dynamical evolution of magnetic flux tubes in a turbulent rotating convection zone (CZ). These numerical simulations use the anelastic spherical harmonic code. We seek to understand the mechanism of emergence of strong toroidal fields through a turbulent layer from the base of the solar CZ to the surface as active regions. To do so, we study numerically the rise of magnetic toroidal flux ropes from the base of a modeled CZ up to the top of our computational domain where bipolar patches are formed. We compare the dynamical behavior of flux tubes in a fully convective shell possessing self-consistently generated mean flows such as meridional circulation (MC) and differential rotation, with reference calculations done in a quiet isentropic zone. We find that two parameters influence the tubes during their rise through the CZ: the initial field strength and amount of twist, thus confirming previous findings in Cartesian geometry. Further, when the tube is sufficiently strong with respect to the equipartition field, it rises almost radially independently of the initial latitude (either low or high). By contrast, weaker field cases indicate that downflows and upflows control the rising velocity of particular regions of the rope and could in principle favor the emergence of flux through {omega}-loop structures. For these latter cases, we focus on the orientation of bipolar patches and find that sufficiently arched structures are able to create bipolar regions with a predominantly east-west orientation. Meridional flow seems to determine the trajectory of the magnetic rope when the field strength has been significantly reduced near the top of the domain. Appearance of local magnetic field also feeds back on the horizontal flows thus perturbing the MC via Maxwell stresses. Finally differential rotation makes it more difficult for tubes introduced at low latitudes to