Science.gov

Sample records for flux measurement sites

  1. Recommended Procedures for Measuring Radon Fluxes from Disposal Sites of Residual Radioactive Materials

    SciTech Connect

    Young, J. A.; Thomas, V. W.; Jackson, P. O.

    1983-03-01

    This report recommends instrumentation and methods suitable for measuring radon fluxes emanating from covered disposal sites of residual radioactive materials such as uranium mill tailings. Problems of spatial and temporal variations in radon flux are discussed and the advantages and disadvantages of several instruments are examined. A year-long measurement program and a two month measurement methodology are then presented based on the inherent difficulties of measuring average radon flux over a cover using the recommended instrumentation.

  2. Comparison of surface fluxes and boundary-layer measurements at Arctic terrestrial sites

    NASA Astrophysics Data System (ADS)

    Grachev, Andrey; Uttal, Taneil; Persson, Ola; Stone, Robert; Crepinsek, Sara; Albee, Robert; Makshtas, Alexander; Kustov, Vasily; Repina, Irina; Artamonov, Arseniy

    2014-05-01

    Observational evidence suggests that atmospheric energy fluxes are a major contributor to the decrease of the Arctic pack ice, seasonal land snow cover and the warming of the surrounding land areas and permafrost layers. To better understand the atmosphere-surface exchange mechanisms, improve models, and to diagnose climate variability in the Arctic, accurate measurements are required of all components of the net surface energy budget and the carbon dioxide cycle over representative areas and over multiple years. This study analyzes and discusses variability of surface fluxes and basic meteorological parameters based on measurements made at several long-term research observatories near the coast of the Arctic Ocean located in USA (Barrow), Canada (Eureka), and Russia (Tiksi). Tower-based eddy covariance and solar radiation measurements provide a long-term near continuous temporal record of hourly average mass and energy fluxes respectively. The turbulent fluxes of the momentum, sensible heat, water vapor, and carbon dioxide are supported by additional atmospheric and surface/snow/permafrost measurements (mean wind speed, air temperature and humidity, upwelling and downwelling short-wave and long-wave atmospheric and surface radiation, snow depth, surface albedo, soil heat flux, active layer temperature profiles etc.) In this study we compare annual cycles of surface fluxes including solar radiation and other ancillary data to describe four seasons in the Arctic including spring onset of melt and fall onset of snow accumulation. Particular interest is a transition through freezing point, i.e. during transition from winter to spring and from summer to fall, when the carbon dioxide and/or water vapor turbulent fluxes change their direction. According to our data, in a summer period observed temporal variability of the carbon dioxide flux was generally in anti-phase with water vapor flux (downward CO2 flux and upward H2O flux). On average the turbulent flux of carbon

  3. A Carbon Flux Super Site. New Insights and Innovative Atmosphere-Terrestrial Carbon Exchange Measurements and Modeling

    SciTech Connect

    Leclerc, Monique Y.

    2014-11-17

    This final report presents the main activities and results of the project “A Carbon Flux Super Site: New Insights and Innovative Atmosphere-Terrestrial Carbon Exchange Measurements and Modeling” from 10/1/2006 to 9/30/2014. It describes the new AmeriFlux tower site (Aiken) at Savanna River Site (SC) and instrumentation, long term eddy-covariance, sodar, microbarograph, soil and other measurements at the site, and intensive field campaigns of tracer experiment at the Carbon Flux Super Site, SC, in 2009 and at ARM-CF site, Lamont, OK, and experiments in Plains, GA. The main results on tracer experiment and modeling, on low-level jet characteristics and their impact on fluxes, on gravity waves and their influence on eddy fluxes, and other results are briefly described in the report.

  4. Integration of Flux-Based Methods and Triad Principles for DNAPL Site Management, Part II: Review of Flux Measurement Methods

    EPA Science Inventory

    Managing dense nonaqueous phase liquid (DNAPL) contaminated sites continues to be among the most pressing environmental problems currently faced. One approach that has recently been investigated for use in DNAPL site characterization and remediation is mass flux (mass per unit ar...

  5. Lead precipitation fluxes at tropical oceanic sites determined from /sup 210/Pb measurements

    SciTech Connect

    Settle, D.M.; Patterson, C.C.; Turekian, K.K.; Cochran, J.K.

    1982-02-20

    Concentrations of lead, /sup 210/Pb, and /sup 210/Po were measured in rain selected for least influence by local sources of contamination at several tropical and subtropical islands (Enewetak; Pigeon Key, Florida; and American Samoa) and shipboard stations (near Bermuda and Tahiti). Ratios expressed as ng Pb/dpm /sup 210/Pb in rain were 250--900 for Pigeon Key (assuming 12% adsorption for /sup 210/Pb and no adsorption for lead), depending on whether the air masses containing the analyzed rain came from the Caribbean or from the continent, respectively; about 390 for the northern Sargasso Sea downwind from emissions of industrial lead in North America; 65 for Enewetak, remote from continental emissions of industrial lead in the northern hemisphere; and 14 near Tahiti, a remote location in the southern hemisphere where industrial lead emissions to the atmosphere are much less than in the northern hemisphere. (The American Samoa sample yielded a higher ratio than Tahiti; the reason for this is not clear but may be due to local Pb sources). The corresponding fluxes of lead to the oceans, based on measured or modeled /sup 210/Pb precipitation fluxes, are about 4 ng Pb/cm/sup 2/y for Tahiti, 10 for Enewetak, and 270 for the Sargasso Sea site, and between 110 to 390 at Pigeon Key.

  6. Enhancing the precision and accuracy within and among AmeriFlux site measurements

    SciTech Connect

    Law, Bev

    2013-11-25

    This is the final report for AmeriFlux QA/QC at Oregon State University. The major objective of this project is to contribute to the AmeriFlux network by continuing to build consistency in AmeriFlux measurements by addressing objectives stated in the AmeriFlux strategic plan and self evaluation, the North American Carbon Program, and the US Carbon Cycle Science Program. The project directly contributes to NACP and CCSP goals to establish an integrated, near-real time network of observations to inform climate change science.

  7. Measurement uncertainties in quantifying aeolian mass flux: evidence from wind tunnel and field site data.

    PubMed

    Poortinga, Ate; Keijsers, Joep G S; Maroulis, Jerry; Visser, Saskia M

    2014-01-01

    Aeolian sediment traps are widely used to estimate the total volume of wind-driven sediment transport, but also to study the vertical mass distribution of a saltating sand cloud. The reliability of sediment flux estimations from such measurements are dependent upon the specific configuration of the measurement compartments and the analysis approach used. In this study, we analyse the uncertainty of these measurements by investigating the vertical cumulative distribution and relative sediment flux derived from both wind tunnel and field studies. Vertical flux data was examined using existing data in combination with a newly acquired dataset; comprising meteorological data and sediment fluxes from six different events, using three customized catchers at Ameland beaches in northern Netherlands. Fast-temporal data collected in a wind tunnel shows that the median transport height has a scattered pattern between impact and fluid threshold, that increases linearly with shear velocities above the fluid threshold. For finer sediment, a larger proportion was transported closer to the surface compared to coarser sediment fractions. It was also shown that errors originating from the distribution of sampling compartments, specifically the location of the lowest sediment trap relative to the surface, can be identified using the relative sediment flux. In the field, surface conditions such as surface moisture, surface crusts or frozen surfaces have a more pronounced but localized effect than shear velocity. Uncertainty in aeolian mass flux estimates can be reduced by placing multiple compartments in closer proximity to the surface.

  8. Measurement uncertainties in quantifying aeolian mass flux: evidence from wind tunnel and field site data

    PubMed Central

    Keijsers, Joep G.S.; Maroulis, Jerry; Visser, Saskia M.

    2014-01-01

    Aeolian sediment traps are widely used to estimate the total volume of wind-driven sediment transport, but also to study the vertical mass distribution of a saltating sand cloud. The reliability of sediment flux estimations from such measurements are dependent upon the specific configuration of the measurement compartments and the analysis approach used. In this study, we analyse the uncertainty of these measurements by investigating the vertical cumulative distribution and relative sediment flux derived from both wind tunnel and field studies. Vertical flux data was examined using existing data in combination with a newly acquired dataset; comprising meteorological data and sediment fluxes from six different events, using three customized catchers at Ameland beaches in northern Netherlands. Fast-temporal data collected in a wind tunnel shows that the median transport height has a scattered pattern between impact and fluid threshold, that increases linearly with shear velocities above the fluid threshold. For finer sediment, a larger proportion was transported closer to the surface compared to coarser sediment fractions. It was also shown that errors originating from the distribution of sampling compartments, specifically the location of the lowest sediment trap relative to the surface, can be identified using the relative sediment flux. In the field, surface conditions such as surface moisture, surface crusts or frozen surfaces have a more pronounced but localized effect than shear velocity. Uncertainty in aeolian mass flux estimates can be reduced by placing multiple compartments in closer proximity to the surface. PMID:25071984

  9. A New Tool for Automated Data Collection and Complete On-site Flux Data Processing for Eddy Covariance Measurements

    NASA Astrophysics Data System (ADS)

    Begashaw, I. G.; Kathilankal, J. C.; Li, J.; Beaty, K.; Ediger, K.; Forgione, A.; Fratini, G.; Johnson, D.; Velgersdyk, M.; Hupp, J. R.; Xu, L.; Burba, G. G.

    2014-12-01

    The eddy covariance method is widely used for direct measurements of turbulent exchange of gases and energy between the surface and atmosphere. In the past, raw data were collected first in the field and then processed back in the laboratory to achieve fully corrected publication-ready flux results. This post-processing consumed significant amount of time and resources, and precluded researchers from accessing near real-time final flux results. A new automated measurement system with novel hardware and software designs was developed, tested, and deployed starting late 2013. The major advancements with this automated flux system include: 1) Enabling logging high-frequency, three-dimensional wind speeds and multiple gas densities (CO2, H2O and CH4), low-frequency meteorological data, and site metadata simultaneously through a specially designed file format 2) Conducting fully corrected, real-time on-site flux computations using conventional as well as user-specified methods, by implementing EddyPro Software on a small low-power microprocessor 3) Providing precision clock control and coordinate information for data synchronization and inter-site data comparison by incorporating a GPS and Precision Time Protocol. Along with these innovations, a data management server application was also developed to chart fully corrected real-time fluxes to assist remote system monitoring, to send e-mail alerts, and to automate data QA/QC, transfer and archiving at individual stations or on a network level. Combination of all of these functions was designed to help save substantial amount of time and costs associated with managing a research site by eliminating the post-field data processing, reducing user errors and facilitating real-time access to fully corrected flux results. The design, functionality, and test results from this new eddy covariance measurement tool will be presented.

  10. Use of Temperature and Surface Gas Flux as Novel Measures of Microbial Activity at a Crude Oil Spill Site

    NASA Astrophysics Data System (ADS)

    Bekins, B. A.; Warren, E.; Sihota, N. J.; Hostettler, F. D.

    2012-12-01

    Degradation of crude oil in the subsurface has been studied for over 30 years at a spill site located near Bemidji, Minnesota, USA. The well-characterized site is being used to experiment with the use of surface gas flux and temperature measurements as novel methods for quantifying microbial activity. In the largest subsurface oil body, a 2-m-thick smear zone spans the water table 6-8 m below the surface. Methane produced from degradation of the oil diffuses upward and mixes with oxygen from the surface supporting aerobic methanotrophy at 2-4 m depth. The methane oxidation produces CO2 and heat at rates which are hypothetically proportional to other measures of subsurface microbial activity. To test this hypothesis, vertical profiles of temperature and microbial populations, surface CO2 flux, and oil degradation state were measured at three sites in the oil body and one background site. Temperature increases in the oil zone near the water table were 1-4°C above the background site. The site with the highest temperature increase at the water table also had the highest concentrations of gene copy numbers for methanogens (mcrA) and methanotrophs (pmoA) along with the most degraded oil. Surface CO2 flux over the oil sites averaged more than twice that at the background site but was not consistently highest over the site with the highest activity by other measures. One possible explanation for this discrepancy is variation in the effective diffusion coefficient of the vadose zone between the methanotrophic zone and the surface. At the level of the methanotrophic zone, temperatures were elevated 2-6°C over the background values but again the site with greatest average annual temperature increase was not at the most active site. This may be due to enhanced recharge at the most active site, which lies at the center of a local topographic depression where focused recharge occurs. Overall, the temperature and flux data showed significant increases at the oil sites compared

  11. Estimating Energy Expenditure Using Heat Flux Measured at Single Body Site

    PubMed Central

    Lyden, Kate; Swibas, Tracy; Catenacci, Victoria; Guo, Ruixin; Szuminsky, Neil; Melanson, Edward L.

    2014-01-01

    Introduction The Personal Calorie Monitor (PCM) is a portable direct calorimeter that estimates energy expenditure (EE) from measured heat flux (i.e. the sum of conductive, convective, radiative, and evaporative). Purpose The primary aim of this study was to compare EE estimated from measures of heat flux to indirect calorimetry in a thermoneutral environment (26°C). A secondary aim was to determine if exposure to ambient temperature below thermoneutral (19°C) influences the accuracy of the PCM. Methods 34 Adults (mean±SD, age = 28±5 y, body mass index = 22.9±2.6 kg.m2) were studied for 5 h in a whole-room indirect calorimeter (IC) in thermoneutral and cool conditions. Participants wore the PCM on their upper arm and completed two, 20-minute treadmill-walking bouts (0% grade, 3 mph). The remaining time was spent sedentary (e.g., watching television, using a computer). Results In thermoneutral, EE (mean (95% CI)) measured by IC and PCM was 560.0 (526.5, 593.5) and 623.3 (535.5, 711.1) kcals, respectively. In cool, EE measured by IC and PCM was 572.5 (540.9, 604.0) and 745.5 (668.1, 822.8) kcals, respectively. Under thermoneutral conditions, mean PCM minute-by-minute EE tracked closely with IC, resulting in a small, non-significant bias (63 kcals (−5.8, 132.4)). During cool conditions, mean PCM minute-by-minute EE did not track IC, resulting in a large bias (173.0 (93.9, 252.1)) (p<0.001). Conclusion This study demonstrated the validity of using measured heat flux to estimate EE. However, accuracy may be impaired in cool conditions, possibly due to excess heat loss from the exposed limbs. PMID:24811326

  12. Pulse flux measuring device

    DOEpatents

    Riggan, William C.

    1985-01-01

    A device for measuring particle flux comprises first and second photodiode detectors for receiving flux from a source and first and second outputs for producing first and second signals representing the flux incident to the detectors. The device is capable of reducing the first output signal by a portion of the second output signal, thereby enhancing the accuracy of the device. Devices in accordance with the invention may measure distinct components of flux from a single source or fluxes from several sources.

  13. Measuring and modeling near-surface reflected and emitted radiation fluxes at the FIFE site

    NASA Technical Reports Server (NTRS)

    Blad, Blaine L.; Walter-Shea, Elizabeth A.; Starks, Patrick J.; Vining, Roel C.; Hays, Cynthia J.; Mesarch, Mark A.

    1990-01-01

    Information is presented pertaining to the measurement and estimation of reflected and emitted components of the radiation balance. Information is included about reflectance and transmittance of solar radiation from and through the leaves of some grass and forb prairie species, bidirectional reflectance from a prairie canopy is discussed and measured and estimated fluxes are described of incoming and outgoing longwave and shortwave radiation. Results of the study showed only very small differences in reflectances and transmittances for the adaxial and abaxial surfaces of grass species in the visible and infrared wavebands, but some differences in the infrared wavebands were noted for the forbs. Reflectance from the prairie canopy changed as a function of solar and view zenith angles in the solar principal plane with definite asymmetry about nadir. The surface temperature of prairie canopies was found to vary by as much as 5 C depending on view zenith and azimuth position and on the solar azimuth. Aerodynamic temperature calculated from measured sensible heat fluxes ranged from 0 to 3 C higher than nadir-viewed temperatures. Models were developed to estimate incoming and reflected shortwave radiation from data collected with a Barnes Modular Multiband Radiometer. Several algorithms for estimating incoming longwave radiation were evaluated and compared to actual measures of that parameter. Net radiation was calculated using the estimated components of the shortwave radiation streams, determined from the algorithms developed, and from the longwave radiation streams provided by the Brunt, modified Deacon, and the Stefan-Boltzmann models. Estimates of net radiation were compared to measured values and found to be within the measurement error of the net radiometers used in the study.

  14. Measurement and Modeling of Vertically Resolved Aerosol Optical Properties and Radiative Fluxes Over the ARM SGP Site

    NASA Technical Reports Server (NTRS)

    Schmid, B.; Arnott, P.; Bucholtz, A.; Colarco, P.; Covert, D.; Eilers, J.; Elleman, R.; Ferrare, R.; Flagan, R.; Jonsson, H.

    2003-01-01

    In order to meet one of its goals - to relate observations of radiative fluxes and radiances to the atmospheric composition - the Department of Energy's Atmospheric Radiation Measurement (ARM) program has pursued measurements and modeling activities that attempt to determine how aerosols impact atmospheric radiative transfer, both directly and indirectly. However, significant discrepancies between aerosol properties measured in situ or remotely remain. One of the objectives of the Aerosol Intensive Operational Period (TOP) conducted by ARM in May 2003 at the ARM Southern Great Plains (SGP) site in north central Oklahoma was to examine and hopefully reduce these differences. The IOP involved airborne measurements from two airplanes over the heavily instrumented SGP site. We give an overview of airborne results obtained aboard the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft. The Twin Otter performed 16 research flights over the SGP site. The aircraft carried instrumentation to perform in-situ measurements of aerosol absorption, scattering, extinction and particle size. This included such novel techniques as the photoacoustic and cavity ring-down methods for in-situ absorption (675 nm) and extinction (675 and 1550 nm) and a new multiwavelength, filter-based absorption photometer (467, 530, 660 nm). A newly developed instrument measured cloud condensation nucleus concentration (CCN) concentrations at two supersaturation levels. Aerosol optical depth and extinction (354-2139 nm) were measured with the NASA Ames Airborne Tracking 14-channel sunphotometer. Furthermore, up-and downwelling solar (broadband and spectral) and infrared radiation were measured using seven individual radiometers. Three up-looking radiometers werer mounted on a newly developed stabilized platform, keeping the instruments level up to aircraft pitch and roll angles of approximately 10(exp 0). This resulted in unprecedented continuous vertical profiles

  15. BOREAS RSS-17 Xylem Flux Density Measurements at the SSA-OBS Site

    NASA Technical Reports Server (NTRS)

    Zimmerman, Reiner; Way, JoBea; McDonald, Kyle; Nickeson, Jaime (Editor); Hall, Forrest G. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    As part of its efforts to determine environmental and phenological states from radar imagery, the Boreal Ecosystem-Atmosphere Study (BOREAS) Remote Sensing Science (RSS)-17 team collected in situ tree xylem flow measurements for one growing season on five Picea mariana (black spruce) trees. The data were collected to obtain information on the temporal and spatial variability in water uptake by trees in the Southern Study Area-Old Black Spruce (SSA-OBS) stand in the BOREAS SSA. Temporally, the data were collected in 30-minute intervals for 120 days from 31 May 1994 until 27 September 1994. The data are stored in tabular ASCII files. The xylem flux data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  16. Eddy Covariance Measurements of Methane Flux at Remote Sites with New Low-Power Lightweight Fast Gas Analyzer

    NASA Astrophysics Data System (ADS)

    Xu, Liukang; Burba, George; Schedlbauer, Jessica; Zona, Donatella; McDermitt, Dayle K.; Anderson, Tyler; Oberbauer, Steven; Oechel, Walter; Komissarov, Anatoly; Riensche, Brad

    2010-05-01

    Majority of natural methane production happens at remote unpopulated areas in ecosystems with little or no infrastructure or easily available grid power, such as arctic and boreal wetlands, tropical mangroves, etc. Present approaches for direct measurements of CH4 fluxes rely on fast closed-path analyzers, which have to work under significantly reduced pressures, and require powerful pumps and grid power. Power and labor demands may be reasons why CH4 flux is often measured at locations with good infrastructure and grid power, and not with high CH4 production. An instrument was developed to allow Eddy Covariance measurements of CH4 flux with power consumption 30-150 times below presently available technologies. This instrument, LI-7700, uses <10W of power, and can easily be run on solar panel, or with small portable generator, while present technologies require 300-1500 Watts of the grid power. The proposed extremely low-power technology would allows placing methane Eddy Covariance stations in the middle of the source (wetland, rice paddy, forest, etc.) in the absence of the grid power. This could significantly expand the Eddy Covariance CH4 flux measurements coverage, and possibly, significantly improve the budget estimates of world CH4 emissions and budget. Various prototypes of the LI-7700 were field-tested for three seasons at the remote site in middle of Everglades National Park (Florida, USA) using solar panels, at three stationary and several mobile sites during three seasons at remote Arctic wetlands near Barrow (Alaska, USA), in the tropical mangroves near La Paz (Mexico) using portable generator, and in bare agricultural field near Mead (Nebraska, USA) during 2005 through 2010. Latest data on CH4 concentration, co-spectra and fluxes, and latest details of instrumental design are examined in this presentation. Overall, hourly methane fluxes ranged from near-zero at night to about 4 mg m-2 h-1 in midday in arctic tundra. Observed fluxes were within the

  17. Heat flux measurements

    NASA Technical Reports Server (NTRS)

    Liebert, Curt H.; Weikle, Donald H.

    1989-01-01

    A new automated, computer controlled heat flux measurement facility is described. Continuous transient and steady-state surface heat flux values varying from about 0.3 to 6 MW/sq m over a temperature range of 100 to 1200 K can be obtained in the facility. An application of this facility is the development of heat flux gauges for continuous fast transient surface heat flux measurement on turbine blades operating in space shuttle main engine turbopumps. The facility is useful for durability testing at fast temperature transients.

  18. Comparison of N2O fluxes measured using flux-gradient, eddy-covariance, and chamber methods from an agricultural site

    NASA Astrophysics Data System (ADS)

    Brown, S. E.; Sargent, S.; Machado, P.; Freemantle, V.; Carvalho de Sena Rabelo, L.; Wagner-Riddle, C.

    2015-12-01

    Nitrous oxide emissions from agricultural lands occur as pulses at short intervals during various times throughout a given year, with the timing and magnitude dependent on management, soil, and climatic conditions. A thorough assessment of N2O emissions from fertilized fields requires methods capable of measuring fluxes at large temporal and spatial scales. A study investigating the effect of fertilizer treatment on the total annual N2O emissions from cornfields in Southern, Ontario, Canada provided the setting to analyze three methods for measuring N2O fluxes. Four 2-ha plots within a homogeneous 30-ha area were each subject to different nitrogen fertilizer source and timing treatments. N2O fluxes were measured using eddy-covariance (EC), multi-plot flux gradient (FG), and chamber techniques. Each method has advantages and disadvantages. Eddy-covariance is a standard method for measuring fluxes at the resolutions required to assess trace gas emissions, but the erratic nature of agricultural N2O fluxes necessitates testing of N2O analyzers, and the application of the EC method to N2O fluxes. This study acted as a field test of the Campbell Scientific TGA200A tunable diode trace gas analyzer. Testing the TGA200A against a TGA100A provided two simultaneous EC-flux measurements of N2O for one plot. Multi-plot FG measurements have the advantage of providing year-round, spatiality integrated, semi-continuous fluxes for side-by-side comparisons of N2O fluxes from separate treatments under similar climatic and soil conditions, but is a less common practice. Chambers have the advantage of being the most direct means of measuring soil fluxes; however, spatial resolution is low, and winter measurements are often impossible. Preliminary results showed that temporal patterns measured by each of the methods matched for three post-fertilizer N2O emission events of one plot. EC fluxes of N2O measured by each of the TGA analyzers correlated well (r2 = 0.90) and values were on

  19. Can we distinguish autotrophic respiration from heterotrophic respiration in a field site using high temporal resolution CO2 flux measurements?

    NASA Astrophysics Data System (ADS)

    Biro, Beatrice; Berger, Sina; Praetzel, Leandra; Blodau, Christian

    2016-04-01

    The processes behind C-cycling in peatlands are important to understand for assessing the vulnerability of peatlands as carbon sinks under changing climate conditions. Especially boreal peatlands are likely to underlie strong alterations in the future. It is expected that C-pools that are directly influenced by vegetation and water table fluctuations can be easily destabilized. The CO2 efflux through respiration underlies autotrophic and heterotrophic processes that show different feedbacks on changing environmental conditions. In order to understand the respiration fluxes better for more accurate modelling and prognoses, the determination of the relative importance of different respiration sources is necessary. Earlier studies used e.g. exfoliation experiments, incubation experiments or modelling approaches to estimate the different respiration sources for the total ecosystem respiration (Reco). To further the understanding in this topic, I want to distinguish autotrophic and heterotrophic respiration using high temporal resolution measurements. The study site was selected along a hydrological gradient in a peatland in southern Ontario (Canada) and measurements were conducted from May to September 2015 once per month. Environmental controls (water table, soil temperature and soil moisture) that effect the respiration sources were recorded. In my study I used a Li-COR 6400XT and a Los Gatos greenhouse gas analyzer (GGA). Reco was determined by chamber flux measurements with the GGA, while simultaneously CO2 respiration measurements on different vegetation compartments like roots, leaves and mosses were conducted using the Li-COR 6400XT. The difference between Reco and autotrophic respiration equals heterotrophic respiration. After the measurements, the vegetation plots were harvested and separated for all compartments (leaves, roots, mosses, soil organic matter), dried and weighed. The weighted respiration rates from all vegetation compartments sum up to

  20. Eddy correlation measurements of methane fluxes using a tunable diode laser at the Kinosheo Lake tower site during the Northern Wetlands Study (NOWES)

    NASA Technical Reports Server (NTRS)

    Edwards, G. C.; Neumann, H. H.; Den Hartog, G.; Thurtell, G. W.; Kidd, G.

    1994-01-01

    As part of the Canadian Northern Wetlands Study (NOWES) measurements of methane flux were made at the Kinosheo Lake tower site for a 1-month period during the 1990 summer intensive. The measurements were made with a diode-laser-based methane sensor using the eddy correlation technique. Measurements of the methane fluxes were made at two levels, 5 or 18 m. Approximately 900 half-hour average methane flux measurements were obtained. Weak temporal and diurnal trends were observed in the data. Fluxes averaged over the study period showed an overall methane emission of 16 mg CH4 m(exp -2)/d with a daytime average of 20 mg CH4 m(exp -2)/d and a nighttime average of 9 mg CH4 m(exp -2)/d. The effect of emission footprint was evident in the data. A strong relationship between the daily average methane flux and wet bog temperature at 20-cm depth was observed.

  1. Inter-annual comparison of measured turbulent fluxes over snow at a wind-sheltered and wind-exposed site using eddy covariance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Measurements of sensible and latent heat fluxes using eddy covariance (EC) instrumentation over snow in complex terrain have become more common in the past decade. Analysis of EC measurements at two sites, wind-exposed and wind-protected, for three consecutive years is presented. The analysis focu...

  2. Inter-annual comparision of measured turbulent fluxes over snow at a wind-sheltered and wind-exposed site using eddy covariance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Measurements of sensible and latent heat fluxes using eddy covariance (EC) instrumentation over snow in complex terrain have become more common in the past decade. Analysis of EC measurements at two sites, wind-exposed and wind-protected, for three consecutive years is presented. The analysis focuse...

  3. Flux and turbulence measurements at a densely built-up site in Marseille: Heat, mass (water and carbon dioxide), and momentum

    NASA Astrophysics Data System (ADS)

    Grimmond, C. S. B.; Salmond, J. A.; Oke, T. R.; Offerle, B.; Lemonsu, A.

    2004-12-01

    Eddy covariance (EC) observations above the densely built-up center of Marseille during the Expérience sur site pour contraindre les modèles de pollution atmosphérique et de transport d'émissions (ESCOMPTE) summertime measurement campaign extend current understanding of surface atmosphere exchanges in cities. The instrument array presented opportunities to address issues of the representativeness of local-scale fluxes in urban settings. Separate EC systems operated at two levels, and a telescoping tower allowed the pair to be exposed at two different sets of heights. The flux and turbulence observations taken at the four heights, stratified by wind conditions (mistral wind and sea breeze), are used to address the partitioning of the surface energy balance in an area with large roughness elements. The turbulent sensible heat flux dominates in the daytime, although the storage heat flux is a significant term that peaks before solar noon. The turbulent latent heat flux is small but not negligible. Carbon dioxide fluxes show that this central city district is almost always a source, but the vegetation reduces the magnitude of the fluxes in the afternoon. The atmosphere in such a heavily developed area is rarely stable. The turbulence characteristics support the empirical functions proposed by M. Roth.

  4. Field Demonstration and Validation of a New Device for Measuring Water and Solute Fluxes NASA LC-34 SITE

    DTIC Science & Technology

    2006-02-01

    more a reliable assessment of the water flux. During biostimulation and after bioaugmentation, contaminant flux estimates varied significantly with...yield correct results? Issue 2: Can the flux meter yield reliable results in the presence of biodegradation? Issue 3: Are monitoring costs of the flux...CRITERIA (Qualitative) Reliability (CU) No failures Record keeping Safety (all) 3) Hazards 4) Protective clothing Contaminated sorbents Level D

  5. Combined measurement and modeling of the hydrological impact of hydraulic redistribution using CLM4.5 at eight AmeriFlux sites

    NASA Astrophysics Data System (ADS)

    Fu, Congsheng; Wang, Guiling; Goulden, Michael L.; Scott, Russell L.; Bible, Kenneth; Cardon, Zoe G.

    2016-05-01

    Effects of hydraulic redistribution (HR) on hydrological, biogeochemical, and ecological processes have been demonstrated in the field, but the current generation of standard earth system models does not include a representation of HR. Though recent studies have examined the effect of incorporating HR into land surface models, few (if any) have done cross-site comparisons for contrasting climate regimes and multiple vegetation types via the integration of measurement and modeling. Here, we incorporated the HR scheme of Ryel et al. (2002) into the NCAR Community Land Model Version 4.5 (CLM4.5), and examined the ability of the resulting hybrid model to capture the magnitude of HR flux and/or soil moisture dynamics from which HR can be directly inferred, to assess the impact of HR on land surface water and energy budgets, and to explore how the impact may depend on climate regimes and vegetation conditions. Eight AmeriFlux sites with contrasting climate regimes and multiple vegetation types were studied, including the Wind River Crane site in Washington State, the Santa Rita Mesquite savanna site in southern Arizona, and six sites along the Southern California Climate Gradient. HR flux, evapotranspiration (ET), and soil moisture were properly simulated in the present study, even in the face of various uncertainties. Our cross-ecosystem comparison showed that the timing, magnitude, and direction (upward or downward) of HR vary across ecosystems, and incorporation of HR into CLM4.5 improved the model-measurement matches of evapotranspiration, Bowen ratio, and soil moisture particularly during dry seasons. Our results also reveal that HR has important hydrological impact in ecosystems that have a pronounced dry season but are not overall so dry that sparse vegetation and very low soil moisture limit HR.

  6. Combined measurement and modeling of the hydrological impact of hydraulic redistribution using CLM4.5 at eight AmeriFlux sites

    SciTech Connect

    Fu, Congsheng; Wang, Guiling; Goulden, Michael L.; Scott, Russell L.; Bible, Kenneth; G. Cardon, Zoe

    2016-05-17

    Effects of hydraulic redistribution (HR) on hydrological, biogeochemical, and ecological processes have been demonstrated in the field, but the current generation of standard earth system models does not include a representation of HR. Though recent studies have examined the effect of incorporating HR into land surface models, few (if any) have done cross-site comparisons for contrasting climate regimes and multiple vegetation types via the integration of measurement and modeling. Here, we incorporated the HR scheme of Ryel et al. (2002) into the NCAR Community Land Model Version 4.5 (CLM4.5), and examined the ability of the resulting hybrid model to capture the magnitude of HR flux and/or soil moisture dynamics from which HR can be directly inferred, to assess the impact of HR on land surface water and energy budgets, and to explore how the impact may depend on climate regimes and vegetation conditions. Eight AmeriFlux sites with contrasting climate regimes and multiple vegetation types were studied, including the Wind River Crane site in Washington State, the Santa Rita Mesquite savanna site in southern Arizona, and six sites along the Southern California Climate Gradient. HR flux, evapotranspiration (ET), and soil moisture were properly simulated in the present study, even in the face of various uncertainties. Our cross-ecosystem comparison showed that the timing, magnitude, and direction (upward or downward) of HR vary across ecosystems, and incorporation of HR into CLM4.5 improved the model-measurement matches of evapotranspiration, Bowen ratio, and soil moisture particularly during dry seasons. Lastly, our results also reveal that HR has important hydrological impact in ecosystems that have a pronounced dry season but are not overall so dry that sparse vegetation and very low soil moisture limit HR.

  7. Combined measurement and modeling of the hydrological impact of hydraulic redistribution using CLM4.5 at eight AmeriFlux sites

    DOE PAGES

    Fu, Congsheng; Wang, Guiling; Goulden, Michael L.; ...

    2016-05-17

    Effects of hydraulic redistribution (HR) on hydrological, biogeochemical, and ecological processes have been demonstrated in the field, but the current generation of standard earth system models does not include a representation of HR. Though recent studies have examined the effect of incorporating HR into land surface models, few (if any) have done cross-site comparisons for contrasting climate regimes and multiple vegetation types via the integration of measurement and modeling. Here, we incorporated the HR scheme of Ryel et al. (2002) into the NCAR Community Land Model Version 4.5 (CLM4.5), and examined the ability of the resulting hybrid model to capture themore » magnitude of HR flux and/or soil moisture dynamics from which HR can be directly inferred, to assess the impact of HR on land surface water and energy budgets, and to explore how the impact may depend on climate regimes and vegetation conditions. Eight AmeriFlux sites with contrasting climate regimes and multiple vegetation types were studied, including the Wind River Crane site in Washington State, the Santa Rita Mesquite savanna site in southern Arizona, and six sites along the Southern California Climate Gradient. HR flux, evapotranspiration (ET), and soil moisture were properly simulated in the present study, even in the face of various uncertainties. Our cross-ecosystem comparison showed that the timing, magnitude, and direction (upward or downward) of HR vary across ecosystems, and incorporation of HR into CLM4.5 improved the model-measurement matches of evapotranspiration, Bowen ratio, and soil moisture particularly during dry seasons. Lastly, our results also reveal that HR has important hydrological impact in ecosystems that have a pronounced dry season but are not overall so dry that sparse vegetation and very low soil moisture limit HR.« less

  8. Flux-Based Site Management

    EPA Science Inventory

    Managing DNAPL contaminated sites continues to be among the most pressing environmental problems currently faced. In particular, the benefits of partial DNAPL mass depletion due to remedial activity are unclear. Recent work conducted by an inter-agency research team has been in...

  9. Assessing Ecosystem Drought Response in CLM 4.5 Using Site-Level Flux and Carbon-Isotope Measurements: Results From a Pacific Northwest Coniferous Forest

    NASA Astrophysics Data System (ADS)

    Duarte, H.; Raczka, B. M.; Koven, C. D.; Ricciuto, D. M.; Lin, J. C.; Bowling, D. R.; Ehleringer, J. R.

    2015-12-01

    The frequency, extent, and severity of droughts are expected to increase in the western United States as climate changes occur. The combination of warmer temperature, larger vapor pressure deficit, reduced snowfall and snow pack, earlier snow melt, and extended growing seasons is expected to lead to an intensification of summer droughts, with a direct impact on ecosystem productivity and therefore on the carbon budget of the region. In this scenario, an accurate representation of ecosystem drought response in land models becomes fundamental, but the task is challenging, especially in regards to stomatal response to drought. In this study we used the most recent release of the Community Land Model (CLM 4.5), which now includes photosynthetic carbon isotope discrimination and revised photosynthesis and hydrology schemes, among an extensive list of updates. We evaluated the model's performance at a coniferous forest site in the Pacific northwest (Wind River AmeriFlux Site), characterized by a climate that has a strong winter precipitation component followed by a summer drought. We ran the model in offline mode (i.e., decoupled from an atmospheric model), forced by observed meteorological data, and used site observations (e.g., surface fluxes, biomass values, and carbon isotope data) to assess the model. Previous field observations indicated a significant negative correlation between soil water content and the carbon isotope ratio of ecosystem respiration (δ13CR), suggesting that δ13CR was closely related to the photosynthetic discrimination against 13CO2 as controlled by stomatal conductance. We used these observations and latent-heat flux measurements to assess the modeled stomatal conductance values and their responses to extended summer drought. We first present the model results, followed by a discussion of potential CLM model improvements in stomatal conductance responses and in the representation of soil water stress (parameter βt) that would more precisely

  10. Radiation fluxes at the FIFE site

    NASA Technical Reports Server (NTRS)

    Walter-Shea, Elizabeth A.; Blad, Blaine L.; Zara, Pedro; Vining, Roel; Hays, Cynthia J.; Mesarch, Mark A.

    1993-01-01

    The main objective of the International Satellite Land Surface Climatology Project (ISLSCP) has been stated as 'the development of techniques that may be applied to satellite observations of the radiation reflected and emitted from the Earth to yield quantitative information concerning land surface climatological conditions'. The major field study, FIFE (the First ISLSCP Field Experiment), was conducted in 1987-89 to accomplish this objective. Four intensive field campaigns (IFC's) were carried out in 1987 and one in 1989. Factors contributing to observed reflected radiation from the FIFE site must be understood before the radiation observed by satellites can be used to quantify surface processes. Our last report (Walter-Shea et al., 1992b) focused on slope effects on incoming and outgoing shortwave radiation and net radiation from data collected in 1989. We report here on the final analysis of the slope data as well as results from thermal radiation studies conducted during the FIFE experiment. The specific areas reported are the following: (1) analysis of slope effects on measured reflectance values and estimates of surface albedo; (2) using remotely-measured surface temperatures as a means of estimating sensible heat flux from the Konza Prairie; (3) extracting canopy temperatures from remotely-measured composite surface temperatures; (4) modeling the measured composite temperature of partially vegetated surfaces; and (5) estimating gap distribution in partially vegetated surfaces from reflectance measurements.

  11. AmeriFlux Site and Data Exploration System

    NASA Astrophysics Data System (ADS)

    Krassovski, M.; Boden, T.; Yang, B.; Jackson, B.

    2011-12-01

    The AmeriFlux network was established in 1996. The network provides continuous observations of ecosystem-level exchanges of CO2, water, energy and momentum spanning diurnal, synoptic, seasonal, and interannual time scales. The current network, including both active and inactive sites, consists of 141 sites in North, Central, and South America. The Carbon Dioxide Information Analysis Center (CDIAC) at Oak Ridge National Laboratory (ORNL) provides data management support for the AmeriFlux network including long-term data storage and dissemination. AmeriFlux offers a broad suite of value-added data products: Level 1 data products at 30 minute or hourly time intervals provided by the site teams, Level 2 data processed by CDIAC and Level 3 and 4 files created using CarboEurope algorithms. CDIAC has developed a relational database to house the vast array of AmeriFlux data and information and a web-based interface to the database, the AmeriFlux Site and Data Exploration System (http://ameriflux.ornl.gov), to help users worldwide identify, and more recently, download desired AmeriFlux data. AmeriFlux and CDIAC offer numerous value-added AmeriFlux data products (i.e., Level 1-4 data products, biological data) and most of these data products are or will be available through the new data system. Vital site information (e.g., location coordinates, dominant species, land-use history) is also displayed in the new system. The data system provides numerous ways to explore and extract data. Searches can be done by site, location, measurement status, available data products, vegetation types, and by reported measurements just to name a few. Data can be accessed through the links to full data sets reported by a site, organized by types of data products, or by creating customized datasets based on user search criteria. The new AmeriFlux download module contains features intended to ease compliance of the AmeriFlux fair-use data policy, acknowledge the contributions of submitting

  12. Beta ray flux measuring device

    DOEpatents

    Impink, Jr., Albert J.; Goldstein, Norman P.

    1990-01-01

    A beta ray flux measuring device in an activated member in-core instrumentation system for pressurized water reactors. The device includes collector rings positioned about an axis in the reactor's pressure boundary. Activated members such as hydroballs are positioned within respective ones of the collector rings. A response characteristic such as the current from or charge on a collector ring indicates the beta ray flux from the corresponding hydroball and is therefore a measure of the relative nuclear power level in the region of the reactor core corresponding to the specific exposed hydroball within the collector ring.

  13. Quantifying Representativeness Importance Values for AmeriFlux Sites

    NASA Astrophysics Data System (ADS)

    Hargrove, W. W.; Hoffman, F. M.

    2005-12-01

    We are using a multivariate statistical clustering analysis to determine how well the current distribution of sites in the AmeriFlux network is representative of the dominant combinations of vegetation, soils, and climate which are present in the conterminous US. Statistical indices based on multivariate representativeness and site importance indicate how well the current network of towers "samples" the population of flux environments within the nation. The same empirical approach provides a repeatable rationale for the selection of additional flux tower sites by determining any number of additional locations such that the representation of the overall network is maximized by their addition. A representativeness importance value for each existing eddy covariance tower to the AmeriFlux network can be calculated. We have statistically created a series of nine sets of flux-relevant ecoregions which divide the conterminous U.S. into a set of areas within which the carbon flux from terrestrial ecosystems is expected to be relatively uniform and homogeneous. Starting with digital GIS layers of factors deemed important in regulating carbon fixation and loss from terrestrial ecosystems, we assembled a set of maps of multivariate factors which describe and characterize the flux environment in each map cell. Then, we used a k-means clustering procedure to classify each map cell into a particular group whose cells have sufficiently similar environments. Because there were as many as 30 environmental descriptors, each with nearly 8 million cells, it was necessary to perform the clustering process on a parallel supercomputer. Because the statistical process is quantitative, the similarity of a selected flux-ecoregion to every other ecoregion in the map can be calculated. Maps can be produced that show the degree of similarity to the chosen flux-ecoregion as a series of gray shades. By sequentially selecting flux ecoregions currently containing an AmeriFlux tower, maps showing

  14. Eddy Correlation Flux Measurement System Handbook

    SciTech Connect

    Cook, D. R.

    2016-01-01

    The eddy correlation (ECOR) flux measurement system provides in situ, half-hour measurements of the surface turbulent fluxes of momentum, sensible heat, latent heat, and carbon dioxide (CO2) (and methane at one Southern Great Plains extended facility (SGP EF) and the North Slope of Alaska Central Facility (NSA CF). The fluxes are obtained with the eddy covariance technique, which involves correlation of the vertical wind component with the horizontal wind component, the air temperature, the water vapor density, and the CO2 concentration. The instruments used are: • a fast-response, three-dimensional (3D) wind sensor (sonic anemometer) to obtain the orthogonal wind components and the speed of sound (SOS) (used to derive the air temperature) • an open-path infrared gas analyzer (IRGA) to obtain the water vapor density and the CO2 concentration, and • an open-path infrared gas analyzer (IRGA) to obtain methane density and methane flux at one SGP EF and at the NSA CF. The ECOR systems are deployed at the locations where other methods for surface flux measurements (e.g., energy balance Bowen ratio [EBBR] systems) are difficult to employ, primarily at the north edge of a field of crops. A Surface Energy Balance System (SEBS) has been installed collocated with each deployed ECOR system in SGP, NSA, Tropical Western Pacific (TWP), ARM Mobile Facility 1 (AMF1), and ARM Mobile Facility 2 (AMF2). The surface energy balance system consists of upwelling and downwelling solar and infrared radiometers within one net radiometer, a wetness sensor, and soil measurements. The SEBS measurements allow the comparison of ECOR sensible and latent heat fluxes with the energy balance determined from the SEBS and provide information on wetting of the sensors for data quality purposes. The SEBS at one SGP and one NSA site also support upwelling and downwelling PAR measurements to qualify those two locations as Ameriflux sites.

  15. Final Technical Report. Supporting carbon cycle and earth systems modeling with measurements and analysis from the Howland AmeriFlux Site

    SciTech Connect

    Hollinger, David; Davidson, E.; Dail, D. B.; Richardson, A.

    2016-01-11

    This report provides and overview of the work carried out and lists the products produced under the terms of agreement SC0005578 with the USDA Forest Service. This relates to scientific investigation of the carbon cycle at the Howland Forest AmeriFlux site located in central Maine, USDA. The overall goal of this work was to understand the various (and interacting) impacts of a changing climate on carbon cycling at the Howland AmeriFlux site, representative of an important component of the North American boreal forest.

  16. Shortwave flux profile analysis at the Cabauw BSRN site

    NASA Astrophysics Data System (ADS)

    Wang, P.; Baltink, H. Klein; Knap, W. H.; Stammes, P.

    2013-05-01

    The vertical distribution of the shortwave flux in the atmosphere is important for understanding the energy budget and the validation of climate models. We calculated shortwave flux profiles for cloudy cases by using the Doubling-Adding KNMI radiative transfer model with water vapour and cloud liquid water profiles derived from the Integrated Profiling Technique (IPT). As an example, we will show the approach for 3 March 2012. The calculated downward flux at the surface for this day compares well with measurements made at the Cabauw Baseline Surface Radiation Network (BSRN) site (51.97°N, 4.93°E), the Netherlands.

  17. Using model analyses and surface-atmosphere exchange measurements from the Howland AmeriFlux Site in Maine, USA, to improve understanding of forest ecosystem C cycling

    SciTech Connect

    Hollinger, David Y.; Davidson, Eric A.; Richardson, Andrew D.; Dail, D. B.; Scott, N.

    2013-03-25

    Summary of research carried out under Interagency Agreement DE-AI02-07ER64355 with the USDA Forest Service at the Howland Forest AmeriFlux site in central Maine. Includes a list of publications resulting in part or whole from this support.

  18. Instrumentation for Surface Flux Measurements

    DTIC Science & Technology

    2012-05-10

    National Park , she used the sonic and a Li-Cor C02-H20 analyzer at a height of 3 m to measure the vertical turbulent flux of C02 downwind of...SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) U. S. Army Research Office P.O. Box 12211 Research Triangle Park , NC 27709-2211 3. REPORT TYPE...and subgrid-scale array measurements In summer 2000 we lent 7 of the CSAT3 sonics to the National Center for Atmo- spheric Research (NCAR) for use in

  19. BOREAS TGB-1 CH4 Concentration and Flux Data from NSA Tower Sites

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Conrad, Sara K. (Editor); Crill, Patrick; Varner, Ruth K.

    2000-01-01

    The BOREAS TGB-1 team made numerous measurements of trace gas concentrations and fluxes at various NSA sites. This data set contains half-hourly averages of ambient methane (CH4) measurements and calculated fluxes for the NSA-Fen in 1996 and the NSA-BP and NSA-OJP tower sites in 1994. The purpose of this study was to determine the CH4 flux from the study area by measuring ambient CH 4 concentrations. This flux can then be compared to the chamber flux measurements taken at the same sites. The data are provided in tabular ASCII files.

  20. Spatial Representativeness of Flux Tower Sites: A Comparison Between Tower and Aircraft Eddy-Covariance Fluxes

    NASA Astrophysics Data System (ADS)

    Caulton, D.; Shepson, P. B.; Munger, J. W.; Hollinger, D. Y.; Saatchi, S. S.; Moghaddam, M.; Stirm, B. H.

    2013-12-01

    Development and testing of regional and global scale ecosystem models rely on analysis of data from flux towers that have footprint scales (~1 km2) that are much smaller and contain relatively homogeneous land use types. This approach tends to assume that the patchwork approach appropriately represents regions that are, especially on larger scale, much more heterogeneous in terms of land cover, soil moisture, topography and climatology, etc. While aircraft platforms provide snapshot views of NEE, they have access to essentially any environment and can access difficult and heterogeneous environments. We used an instrumented aircraft platform equipped with a 50 Hz wind probe and GPS/INS and a 10 Hz Picarro CO2/H2O analyzer to measure eddy covariance fluxes over larger spatial scales (~20 km2) over and near Howland Forest, ME, Harvard Forest, MA and Duke Forest, NC, as part of the Airborne Observatory of Subcanopy and Subsurface (AirMOSS) mission campaigns. Flux measurements were conducted for varying land cover types in these forests in July, 2012 and June-August, 2013. Measured fluxes will be compared with tower fluxes from each of the three sites to investigate the quality of the aircraft data, and the ability to assess local-regional scale variability and the spatial representativeness of these towers, with respect to the larger scale fluxes. In addition, soil moisture data from a NASA G-III aircraft will be used to investigate spatial representativeness and the soil moisture dependence of the fluxes.

  1. Dry deposition fluxes and deposition velocities of seven trace metal species at five sites in central Taiwan - a summary of surrogate surface measurements and a comparison with model estimations

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Fang, G. C.; Liu, C. K.; Huang, Y. L.; Huang, J. H.; Huang, C. S.

    2012-04-01

    Daily air concentrations and dry deposition fluxes of seven metal species were monitored at five sites in central Taiwan for five or six days every month from September 2009 to August 2010. Annual average concentrations at the five sites were in the range of 2.8 to 3.6 ng m-3 for As, 25 to 82 ng m-3 for Mn, 1900 to 2800 ng m-3 for Fe, 69 to 109 ng m-3 for Zn, 18 to 33 ng m-3 for Cr, 60 to 110 ng m-3 for Cu, and 25 to 40 ng m-3 for Pb. Annual average dry deposition fluxes were on the order of 3, 20, 400, 50, 25, 50, and 50 μg m-2 day-1 for As, Mn, Fe, Zn, Cr, Cu, and Pb, respectively. Annual average dry deposition velocities (Vd) for the seven metal species ranged from 0.18 to 2.22 cm s-1 at these locations. Small seasonal and geographical variations, e.g. from a few percent to a factor of 2 for different species and/or at different locations, were found in the measured concentrations, fluxes, and Vds. The measured fluxes and air concentrations had moderate to good correlations for several of the species at several of the sites (e.g. Fe, Zn, and Mn at most of the sites), but had either weak or no correlations for the other species or at the other sites (e.g. As at Sites I and III, Zn and Cr at Site IV, and Cu at most of the sites). The latter cases were believed to have large uncertainties in the flux measurements using surrogate surfaces. Sensitivity tests were conducted for particle Vds using a size-segregated particle dry deposition model, assuming various combinations of three lognormal size distributions representing fine particles (PM2.5), coarse particles (PM2.5-10), and super-sized particles (PM10+), respectively. It was found that the measured dry deposition fluxes can be reproduced reasonably well using the size-segregated particle dry deposition model if the mass fractions of the metal species in PM2.5, PM2.5-10 and PM10+ were known. Significant correlations between the modeled and the measured daily fluxes were found for those cases that were believed

  2. Cosmic Ray Neutron Flux Measurements

    NASA Astrophysics Data System (ADS)

    Dayananda, Mathes

    2009-11-01

    Cosmic rays are high-energetic particles originating from outer space that bombard the upper atmosphere of the Earth. Almost 90% of cosmic ray particles consist of protons, electrons and heavy ions. When these particles hit the Earth's atmosphere, cascade of secondary particles are formed. The most abundant particles reach to the surface of the Earth are muons, electrons and neutrons. In recent years many research groups are looking into potential applications of the effects of cosmic ray radiation at the surface of the Earth [1, 2]. At Georgia State University we are working on a long-term measurement of cosmic ray flux distribution. This study includes the simultaneous measurement of cosmic ray muons, neutrons and gamma particles at the Earth surface in downtown Atlanta. The initial effort is focusing on the correlation studies of the cosmic ray particle flux distribution and the atmospheric weather conditions. In this presentation, I will talk about the development of a cosmic ray detector using liquid scintillator and the preliminary results. [4pt] [1] K.Borozdin, G.Hogan, C.Morris, W.Priedhorsky, A.Saunders, L.Shultz, M.Teasdale, ``Radiographic imaging with cosmic-ray muons'', Nature, Vol.422, p.277, Mar.2003[0pt] [2] Svensmark Henrik, Physical Review 81, 3, (1998)

  3. AmeriFlux Measurement Network: Science Team Research

    SciTech Connect

    Law, B E

    2012-12-12

    Research involves analysis and field direction of AmeriFlux operations, and the PI provides scientific leadership of the AmeriFlux network. Activities include the coordination and quality assurance of measurements across AmeriFlux network sites, synthesis of results across the network, organizing and supporting the annual Science Team Meeting, and communicating AmeriFlux results to the scientific community and other users. Objectives of measurement research include (i) coordination of flux and biometric measurement protocols (ii) timely data delivery to the Carbon Dioxide Information and Analysis Center (CDIAC); and (iii) assurance of data quality of flux and ecosystem measurements contributed by AmeriFlux sites. Objectives of integration and synthesis activities include (i) integration of site data into network-wide synthesis products; and (ii) participation in the analysis, modeling and interpretation of network data products. Communications objectives include (i) organizing an annual meeting of AmeriFlux investigators for reporting annual flux measurements and exchanging scientific information on ecosystem carbon budgets; (ii) developing focused topics for analysis and publication; and (iii) developing data reporting protocols in support of AmeriFlux network goals.

  4. AmeriFlux US-Bo2 Bondville (companion site)

    DOE Data Explorer

    Bernacchi, Carl [University of Illinois, Urbana-Champaign

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Bo2 Bondville (companion site). Site Description - Located 400m north of Tilden Meyer's site and planted with opposite crop in corn/soybean rotation

  5. Carbon Dioxide Flux Measurement Systems (CO2Flux) Handbook

    SciTech Connect

    Fischer, M

    2005-01-01

    The Southern Great Plains (SGP) carbon dioxide flux (CO2 flux) measurement systems provide half-hour average fluxes of CO2, H2O (latent heat), and sensible heat. The fluxes are obtained by the eddy covariance technique, which computes the flux as the mean product of the vertical wind component with CO2 and H2O densities, or estimated virtual temperature. A three-dimensional sonic anemometer is used to obtain the orthogonal wind components and the virtual (sonic) temperature. An infrared gas analyzer is used to obtain the CO2 and H2O densities. A separate sub-system also collects half-hour average measures of meteorological and soil variables from separate 4-m towers.

  6. Latent Heat in Soil Heat Flux Measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The surface energy balance includes a term for soil heat flux. Soil heat flux is difficult to measure because it includes conduction and convection heat transfer processes. Accurate representation of soil heat flux is an important consideration in many modeling and measurement applications. Yet, the...

  7. Apparatus for measuring a flux of neutrons

    DOEpatents

    Stringer, James L.

    1977-01-01

    A flux of neutrons is measured by disposing a detector in the flux and applying electronic correlation techniques to discriminate between the electrical signals generated by the neutron detector and the unwanted interfering electrical signals generated by the incidence of a neutron flux upon the cables connecting the detector to the electronic measuring equipment at a remote location.

  8. Hydrothermal Fluxes at the Turtle Pits Vent Site, southern MAR

    NASA Astrophysics Data System (ADS)

    Köhler, J.; Walter, M.; Mertens, C.; Sültenfuß, J.; Rhein, M.

    2009-04-01

    The Turtle Pits vent fields are located in a north-south orientated rift valley at the Mid-Atlantic Ridge (MAR) near 5oS. The site consists of three known hydrothermal fields: Turtle Pits, Comfortless Cove, and Red Lion. Data collected during a Meteor cruise in May 2006 and a L' Atalante cruise in January 2008 are used to calculate the total emission of volume, heat, and helium of the site. The data sets consist of vertical profiles and towed transsects of temperature, salinity, and turbidity, as well as direct velocity measurements with a lowered acoustic Doppler current profiler (LADCP) and water samples for Helium isotope analysis. Vent fluid samples for noble gas analysis where taken with an ROV. The particle plume is confined to the rift valley since the depth of the valley exceeds the rise height of the plume. Therefore the fluxes of heat and volume can be estimated from the helium fluxes at the vent sites in comparison with the horizontal helium transport in the valley. The comparison of the 3He concentration measured south of the hydrothermal vents with the 3He signal north of the hydrothermal vents suggests a rather strong northward flow. This is confirmed by the tide corrected velocities observed with the LADCP during the Meteor cruise. The northward volume transport has been calculated using the local bathymetry and tide corrected velocities from the Meteor cruise. In combination with the 3He concentrations and an average 3He end member concentration a flux of 900 l/s is estimated, which corresponds to a heat flux of 450 MW. The rise height of the particle plume estimated from the turbidity data combined with the known background stratification yields an estimate of the total flux of the hydrothermal vents which is one order of magnitude lower.

  9. Radon fluxes measured with the MANOP bottom lander

    NASA Astrophysics Data System (ADS)

    Berelson, W. M.; Buchholtz, M. R.; Hammond, D. E.; Santschi, P. H.

    1987-07-01

    At five Pacific Ocean sites, radon fluxes were determined from water samples collected by the MANOP Lander, from measurements of 222Rn and 226Ra concentrations in Lander-collected box core sediments, and from measurements of excess radon in the water column. At MANOP sites H and M, fluxes (all in atoms m -2 s -1) determined with Lander water samples (2200 and 1540 ± 480) agree within the measurement uncertainty with water column standing crop measurements (2220 ± 450, 2040 ± 470). At MANOP site C, the diffusive flux calculated from measurements of 226Ra in box core sediments (550 ± 20), the integrated deficiency of 222Rn in the sediments (720 ± 90), and the water column standing crop (500 ± 160) are in agreement, but all are about twice as large as the single Lander water measurement of the radon flux (330). At MANOP site S radon fluxes from measurements of Lander water (3000 ± 260) are in agreement with the predicted diffusive flux from site S sediments (2880), and both fluxes are close to the lower end of the range of water column standing crop measurements (3000-5170). In San Clemente Basin, California, the Lander water flux measurements at four different sites vary by a factor of 3 due to variability in the sediment radium distribution, but the average (1030 ± 190) is close to the water column standing crop value (780 ± 230). Because there is excellent agreement between the fluxes measured with Lander water samples and the predicted diffusive fluxes in most cases, diffusion must be the primary process controlling benthic exchange of radon at the sites studied. The agreement between the Lander water flux estimates and the water column standing crop estimates indicates that the MANOP Lander functions as an accurate benthic flux chamber in water depths ranging from 1900 to 4900 m. In San Clemente Basin, surficial sediments are enriched in manganese and radium, due to manganese cycling near the sediment-water interface. Molecular diffusion of radon from

  10. Neutrino flux predictions for cross section measurements

    SciTech Connect

    Hartz, Mark

    2015-05-15

    Experiments that measure neutrino interaction cross sections using accelerator neutrino sources require a prediction of the neutrino flux to extract the interaction cross section from the measured neutrino interaction rate. This article summarizes methods of estimating the neutrino flux using in-situ and ex-situ measurements. The application of these methods by current and recent experiments is discussed.

  11. Eddy covariance measurements of methane fluxes over grazed native and improved prairies in Oklahoma

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although several studies have reported eddy covariance (EC) measurements at several tallgrass prairie sites to investigate the dynamics of carbon and water vapor fluxes, the EC measurements of methane (CH4) fluxes over grazed tallgrass prairie sites are lacking. CH4 fluxes were measured during the 2...

  12. MEASUREMENT AND INTERPRETATION OF ISOPRENE FLUXES AND ISOPRENE, METHACROLEIN, AND METHYL VINYL KETONE MIXING RATIOS AT THE PROPHET SITE DURING THE 1998 INTENSIVE

    EPA Science Inventory

    Mixing ratios of isoprene, methyl vinyl ketone (MVK), and methacrolein (MACR) were determined continuously during an 8-day period in the summer of 1998 at a rural forested site located within the University of Michigan Biological Station (UMBS). The measurements were obtained as ...

  13. Simultaneous measurements of the magnetopause and flux transfer events at widely separated sites by AMPTE UKS and ISEE 1 and 2

    NASA Technical Reports Server (NTRS)

    Elphic, R. C.; Southwood, D. J.

    1987-01-01

    On September 19, 1984, the ISEE 1 and 2 and AMPTE UKS and IRM spacecraft pairs crossed the dayside magnetopause at nearly the same universal time and magnetic local time but at much different latitudes. This fortuitous ocurrence allows the magnetopause and flux transfer events (FTEs) to be studied at two widely separated sites simultaneously. FTEs are observed at both locations, those at UKS having standard normal component signatures, while those at ISEE have reverse signatures. The FTEs at UKS, closer to the equator, appear to have less helicity, or 'twistedness' than those at ISEE far to the south. By identifying FTEs using the stringent Rijnbeek et al. (1984) criterion for the bipolar B(n) signature it might be concluded that FTEs are not necessarily detected simultaneously at UKS and ISEE. However, careful analysis of the field strength behavior at ISEE does reveal evidence that FTEs are indeed observed at both sites simultaneously. While within the magnetosphere, AMPTE and ISEE both observe a coherent field rarefaction coupled with a tilt; it is speculated that the signature is associated with time-dependent dayside magnetopause reconnection.

  14. Pyrolytic graphite gauge for measuring heat flux

    NASA Technical Reports Server (NTRS)

    Bunker, Robert C. (Inventor); Ewing, Mark E. (Inventor); Shipley, John L. (Inventor)

    2002-01-01

    A gauge for measuring heat flux, especially heat flux encountered in a high temperature environment, is provided. The gauge includes at least one thermocouple and an anisotropic pyrolytic graphite body that covers at least part of, and optionally encases the thermocouple. Heat flux is incident on the anisotropic pyrolytic graphite body by arranging the gauge so that the gauge surface on which convective and radiative fluxes are incident is perpendicular to the basal planes of the pyrolytic graphite. The conductivity of the pyrolytic graphite permits energy, transferred into the pyrolytic graphite body in the form of heat flux on the incident (or facing) surface, to be quickly distributed through the entire pyrolytic graphite body, resulting in small substantially instantaneous temperature gradients. Temperature changes to the body can thereby be measured by the thermocouple, and reduced to quantify the heat flux incident to the body.

  15. Diamagnetic flux measurement in Aditya tokamak

    SciTech Connect

    Kumar, Sameer; Jha, Ratneshwar; Lal, Praveen; Hansaliya, Chandresh; Gopalkrishna, M. V.; Kulkarni, Sanjay; Mishra, Kishore

    2010-12-15

    Measurements of diamagnetic flux in Aditya tokamak for different discharge conditions are reported for the first time. The measured diamagnetic flux in a typical discharge is less than 0.6 mWb and therefore it has required careful compensation for various kinds of pick-ups. The hardware and software compensations employed in this measurement are described. We introduce compensation of a pick-up due to plasma current of less than 20 kA in short duration discharges, in which plasma pressure gradient is supposed to be negligible. The flux measurement during radio frequency heating is also presented in order to validate compensation.

  16. Diamagnetic flux measurement in Aditya tokamak.

    PubMed

    Kumar, Sameer; Jha, Ratneshwar; Lal, Praveen; Hansaliya, Chandresh; Gopalkrishna, M V; Kulkarni, Sanjay; Mishra, Kishore

    2010-12-01

    Measurements of diamagnetic flux in Aditya tokamak for different discharge conditions are reported for the first time. The measured diamagnetic flux in a typical discharge is less than 0.6 mWb and therefore it has required careful compensation for various kinds of pick-ups. The hardware and software compensations employed in this measurement are described. We introduce compensation of a pick-up due to plasma current of less than 20 kA in short duration discharges, in which plasma pressure gradient is supposed to be negligible. The flux measurement during radio frequency heating is also presented in order to validate compensation.

  17. FLUXNET. Database of fluxes, site characteristics, and flux-community information

    SciTech Connect

    Olson, R. J.; Holladay, S. K.; Cook, R. B.; Falge, E.; Baldocchi, D.; Gu, L.

    2004-02-28

    FLUXNET is a “network of regional networks” created by international scientists to coordinate regional and global analysis of observations from micrometeorological tower sites. The flux tower sites use eddy covariance methods to measure the exchanges of carbon dioxide (CO2), water vapor, and energy between terrestrial ecosystems and the atmosphere. FLUXNET’S goals are to aid in understanding the mechanisms controlling the exchanges of CO2, water vapor, and energy across a range of time (0.5 hours to annual periods) and space scales. FLUXNET provides an infrastructure for the synthesis and analysis of world-wide, long-term flux data compiled from various regional flux networks. Information compiled by the FLUXNET project is being used to validate remote sensing products associated with the National Aeronautics and Space Administration (NASA) Terra and Aqua satellites. FLUXNET provides access to ground information for validating estimates of net primary productivity, and energy absorption that are being generated by the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors. In addition, this information is also used to develop and validate ecosystem models.

  18. Uncertainties Associated with Flux Measurements Due to Heterogeneous Contaminant Distributions

    EPA Science Inventory

    Mass flux and mass discharge measurements at contaminated sites have been applied to assist with remedial management, and can be divided into two broad categories: point-scale measurement techniques and pumping methods. Extrapolation across un-sampled space is necessary when usi...

  19. AmeriFlux US-MOz Missouri Ozark Site

    DOE Data Explorer

    Gu, Lianhong [Oak Ridge National Laboratory

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-MOz Missouri Ozark Site. Site Description - The site is located in the University of Missouri Baskett Wildlife Research area, situated in the Ozark region of central Missouri. The site is uniquely located in the ecologically important transitional zone between the central hardwood region and the central grassland region of the US. The land has been publically owned since the 1930s, and is on a land tract that was forested with the same dominant species before settlement in the early 1800s.

  20. Eddy Correlation Flux Measurement System (ECOR) Handbook

    SciTech Connect

    Cook, DR

    2011-01-31

    The eddy correlation (ECOR) flux measurement system provides in situ, half-hour measurements of the surface turbulent fluxes of momentum, sensible heat, latent heat, and carbon dioxide (CO2) (and methane at one Southern Great Plains extended facility (SGP EF) and the North Slope of Alaska Central Facility (NSA CF). The fluxes are obtained with the eddy covariance technique, which involves correlation of the vertical wind component with the horizontal wind component, the air temperature, the water vapor density, and the CO2 concentration.

  1. Measuring flux of soil fumigants using the aerodynamic and dynamic flux chamber methods.

    PubMed

    van Wesenbeeck, I J; Knuteson, J A; Barnekow, D E; Phillips, A M

    2007-01-01

    Methods for measuring and estimating flux density of soil fumigants under field conditions are important for the purpose of providing inputs to air dispersion models and for comparing the effects of management practices on emission reduction. The objective of this study was to measure the flux of 1,3-dichloropropene (1,3-D) and chloropicrin at a site in Georgia (GA) using the aerodynamic method and the dynamic flux chamber (FC) method. A secondary objective was to compare the effects of high density polyethylene (HDPE), and virtually impermeable film (VIF) tarps on fumigant flux at a site in Florida (FL). Chloropicrin and 1,3-D were applied by surface drip application of In-Line soil fumigant on vegetable beds covered by low density polyethylene (LDPE), HDPE, or VIF. The surface drip fumigation using In-Line and LDPE tarp employed in this study resulted in volatilization of 26.5% of applied 1,3-D and 11.2% of the applied chloropicrin at the GA site, as determined using the aerodynamic method. Estimates of mass loss obtained from dynamic FCs were 23.6% for 1,3-D and 18.0% for chloropicrin at the GA site. Flux chamber trials at the FL site indicate significant additional reduction in flux density, and cumulative mass loss when VIF tarp is used. This study supports the use of dynamic FCs as a valuable tool for estimating gas flux density from agricultural soils, and evaluating best management practices for reducing fumigant emissions to the atmosphere.

  2. AmeriFlux Measurement Component (AMC) Handbook

    SciTech Connect

    Reichl, K.; Biraud, S. C.

    2016-01-01

    An AMC system was installed at the Atmospheric Radiation Measurement (ARM) Climate Research Facility’s North Slope Alaska (NSA) Barrow site, also known as NSA C1 at the ARM Data Archive, in August 2012. A second AMC system was installed at the third ARM Mobile Facility deployment at Oliktok Point, also known as NSA M1. This in situ system consists of 12 combination soil temperature and volumetric water content (VWC) reflectometers and one set of upwelling and downwelling PAR sensors, all deployed within the fetch of the Eddy Correlation Flux Measurement System. Soil temperature and VWC sensors placed at two depths (10 and 30 cm below the vegetation layer) at six locations (or microsites) allow soil property inhomogeneity to be monitored across a landscape. The soil VWC and temperature sensors used at NSA C1 are the Campbell Scientific CS650L and the sensors at NSA M1 use the Campbell Scientific CS655. The two sensors are nearly identical in function, and vendor specifications are based on the CS650 unless otherwise stated.

  3. AmeriFlux US-MRf Mary's River (Fir) site

    DOE Data Explorer

    Law, Bev [Oregon State University

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-MRf Mary's River (Fir) site. Site Description - The Marys River Fir site is part of the "Synthesis of Remote Sensing and Field Observations to Model and Understand Disturbance and Climate Effects on the Carbon Balance of Oregon and Northern California (ORCA)". Located in the western region of Oregon the Marys River site represents the western extent of the climate gradient that spans eastward into the semi-arid basin of central Oregon. The sites that make up the eastern extent of the ORCA climate gradient is the Metolius site network (US-Me1, US-ME2, US-ME4, US-Me5) all of which are part of the TERRA PNW project at Oregon State University.

  4. AmeriFlux US-Wrc Wind River Crane Site

    SciTech Connect

    Bible, Ken; Wharton, Sonia

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Wrc Wind River Crane Site. Site Description - Wind River Field Station flux tower site is located in the T.T. Munger Research Area of the Wind River Ranger District in the Gifford Pinchot National Forest. Protected since 1926, the T.T. Munger Research Natural Area (RNA) is administered by the USDA Forest Service Pacific Northwest Research Station and Gifford Pinchot National Forest. The Douglas-fir/western hemlock dominant stand is approximately 500 years old and represents end points of several ecological gradients including age, biomass, structural complexity, and density of the dominant overstory species. A complete stand replacement fire, approximately 450-500 years ago, resulted in the initial establishment. No significant disturbances have occurred since the fire aside from those confined to small groups of single trees, such as overturn from high wind activity and mechanical damage from winter precipitation.

  5. Experimental flux measurements on a network scale

    SciTech Connect

    Schwender, J.

    2011-10-11

    Metabolic flux is a fundamental property of living organisms. In recent years, methods for measuring metabolic flux in plants on a network scale have evolved further. One major challenge in studying flux in plants is the complexity of the plant's metabolism. In particular, in the presence of parallel pathways in multiple cellular compartments, the core of plant central metabolism constitutes a complex network. Hence, a common problem with the reliability of the contemporary results of {sup 13}C-Metabolic Flux Analysis in plants is the substantial reduction in complexity that must be included in the simulated networks; this omission partly is due to limitations in computational simulations. Here, I discuss recent emerging strategies that will better address these shortcomings.

  6. Fundamentals of heat measurement. [heat flux transducers

    NASA Technical Reports Server (NTRS)

    Gerashchenko, O. A.

    1979-01-01

    Various methods and devices for obtaining experimental data on heat flux density over wide ranges of temperature and pressure are examined. Laboratory tests and device fabrication details are supplemented by theoretical analyses of heat-conduction and thermoelectric effects, providing design guidelines and information relevant to further research and development. A theory defining the measure of correspondence between transducer signal and the measured heat flux is established for individual (isolated) heat flux transducers subject to space and time-dependent loading. An analysis of the properties of stacked (series-connected) transducers of various types (sandwich-type, plane, and spiral) is used to derive a similarity theory providing general governing relationships. The transducers examined are used in 36 types of derivative devices involving direct heat loss measurements, heat conduction studies, radiation pyrometry, calorimetry in medicine and industry and nuclear reactor dosimetry.

  7. Dual neutron flux/temperature measurement sensor

    DOEpatents

    Mihalczo, John T.; Simpson, Marc L.; McElhaney, Stephanie A.

    1994-01-01

    Simultaneous measurement of neutron flux and temperature is provided by a single sensor which includes a phosphor mixture having two principal constituents. The first constituent is a neutron sensitive 6LiF and the second is a rare-earth activated Y203 thermophosphor. The mixture is coated on the end of a fiber optic, while the opposite end of the fiber optic is coupled to a light detector. The detected light scintillations are quantified for neutron flux determination, and the decay is measured for temperature determination.

  8. Long Term Isoprene Flux Measurements Above a Northern Hardwood Forest

    NASA Astrophysics Data System (ADS)

    Pressley, S. N.; Lamb, B.; Westberg, H.; Hatten, G.; Flaherty, J.

    2002-12-01

    Canopy scale emissions of isoprene from a northern hardwood forest in Michigan were measured using the eddy covariance technique during the summer growing periods from 1999 through 2001. The goal of this work was to improve our understanding of isoprene emissions from forest ecosystems to better describe the role of isoprene in local and regional atmospheric chemical cycles. A second objective of this work was to contribute to the Program for Research on Oxidants: PHotochemistry, Emissions, and Transport (PROPHET) goal of characterizing the role of biogenic emissions in processing atmospheric nitrogen. Isoprene is one of the most abundant hydrocarbons in the atmosphere, and it is very reactive in the atmosphere. Long-term flux measurements are important for investigating the interannual variability in emissions due to interannual variability in climate. In addition, continuous flux data are useful for verifying canopy scale models that are used to generate emission inventories for regional photochemical models. Measurements were made in collaboration with the AmeriFlux site located at the University of Michigan Biological Station (UMBS) and the (PROPHET) site located within 100 m of the AmeriFlux Tower. The site is a 90-year old stand classified as mid-aged conifer and deciduous, with aspen and oak two of the dominant species. Fluxes of isoprene, CO2, H2O, and sensible heat were measured using a fast response isoprene sensor (FIS), an open-path infrared gas analyzer, and a 3-D sonic anemometer. Concurrent measurements of these canopy scale fluxes are useful for understanding the physiological controls on isoprene emissions and potential links between isoprene emissions and other forest ecosystem dynamics. The multi-year data set will be presented and year-to-year variations in isoprene emissions will be explored in the context of interannual variations among the other canopy scale parameters.

  9. Suspended-solids flux at a shallow-water site in south San Francisco Bay, California

    USGS Publications Warehouse

    Lacy, Jessica R.; Schoellhamer, David H.; Burau, Jon R.

    1996-01-01

    Time series measurements of current velocity and suspended solids-concentration (SSC) made during December 1993 and March 1994 at a shallow-water site in South San Francisco Bay were used to estimate and compare suspended-solids flux during the two periods. In December, the average residual flux at the site was 2.88 g/m/s, to the northeast, whereas in March the average residual flux was four times greater, 12.2 g/m/s, and was directed to the southeast, the direction of flood tide. Residual flux was decomposed and the three components that accounted for most of the flux were analyzed: residual advective flux (Stokes drift flux (u'h'c), and dispersive flux, which is the tidal cycle correlation between velocity and SSC (u'h'c). During both periods, the Stokes drift flux was to the north, and the dispersive flux was to the southeast. In December, these two components, with nearly opposite directions, had the greatest magnitudes, resulting in a lower total residual flux. In March, the residual advective flux was greater than the Stokes drift flux and was in the same direction as the dispersive flux because of a southeasterly residual current. Wind data indicate that the residual current in March was induced by persistent northwest winds. The southeasterly dispersive flux in March and December was due to generally higher SSC on flood than ebb tides. Increases in SSC frequently occurred at low water (before flood tides). Comparison of calculated bottom orbital velocities to SSC identified wind waves as a mechanism of resuspension.

  10. Instruments for measuring radiant thermal fluxes

    NASA Technical Reports Server (NTRS)

    Gerashenko, O. A.; Sazhina, S. A.

    1974-01-01

    An absolute two-sided radiometer, designed on the principle of replacing absorbed radiant energy with electrical energy, is described. The sensitive element of the detector is a thermoelectric transducer of thermal flux. The fabrication technology, methods of measurement, technical characteristics, and general operation of the instrument are presented.

  11. Contrasting ecosystem drivers of mass and energy fluxes at upper and lower elevation sagebrush steppe sites

    NASA Astrophysics Data System (ADS)

    Reed, D. E.; Ewers, B. E.; Pendall, E.; Kwon, H.

    2012-12-01

    The sagebrush steppe ecosystem covers nearly 15% of Western North America, and its productivity is sensitive to warming and increasingly variable precipitation. Previous work has shown that soil moisture below 45cm is an important control over net ecosystem exchange NEE for sagebrush ecosystems while shallower soil moisture controls ET. We seek to expand on that work by using multiple site years from eddy covariance sites near the upper and lower elevation range of sagebrush to answer the question "How do changing water availability affect the ecosystem controls of carbon, water, and energy fluxes from rocky mountain sagebrush ecosystems". We are answering this question by quantifying ecosystem scale carbon, water, and energy cycling using eddy covariance measurements and a standard suite of atmospheric, soil and vegetation monitoring instruments. The two sites were active from 2006 to 2010 and were located at elevations of 2069m and 2469m at Saratoga, WY and Walden, CO, with mean annual temperatures of 5.9C and 4.5, respectively. The relationship of drivers to ecosystem fluxes is hypothesized to have stronger controls at the high elevation sagebrush site relative to the low elevation site. Our work shows a strong relationship between deep soil moisture and ecosystem fluxes, but that one driver alone does not explain all of the seasonal and interannual variation in the fluxes. Other drives of the water and carbon cycles include vapor pressure deficit, net radiation and soil temperature. Fluxes from the high elevation site have a 40% reduction of carbon and a 70% reduction of water flux relative to the low elevation site over the same time period, due to a higher frequency of short duration, larger flux events at the lower elevation site. Ecosystem models that attempt to capture the dynamics of carbon, water and energy fluxes from sagebrush steppe ecosystems must account for the variation in controls of those fluxes and their variations in time and elevation.

  12. Distributed Sensible Heat Flux Measurements for Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Huwald, H.; Brauchli, T.; Lehning, M.; Higgins, C. W.

    2015-12-01

    The sensible heat flux component of the surface energy balance is typically computed using eddy covariance or two point profile measurements while alternative approaches such as the flux variance method based on convective scaling has been much less explored and applied. Flux variance (FV) certainly has a few limitations and constraints but may be an interesting and competitive method in low-cost and power limited wireless sensor networks (WSN) with the advantage of providing spatio-temporal sensible heat flux over the domain of the network. In a first step, parameters such as sampling frequency, sensor response time, and averaging interval are investigated. Then we explore the applicability and the potential of the FV method for use in WSN in a field experiment. Low-cost sensor systems are tested and compared against reference instruments (3D sonic anemometers) to evaluate the performance and limitations of the sensors as well as the method with respect to the standard calculations. Comparison experiments were carried out at several sites to gauge the flux measurements over different surface types (gravel, grass, water) from the low-cost systems. This study should also serve as an example of spatially distributed sensible heat flux measurements.

  13. Plasma momentum meter for momentum flux measurements

    DOEpatents

    Zonca, Fulvio; Cohen, Samuel A.; Bennett, Timothy; Timberlake, John R.

    1993-01-01

    Invention comprises an instrument in which momentum flux onto a biasable target plate is transferred via a suspended quartz tube onto a sensitive force transducer--a capacitance-type pressure gauge. The transducer is protected from thermal damage, arcing and sputtering, and materials used in the target and pendulum are electrically insulating, rigid even at elevated temperatures, and have low thermal conductivity. The instrument enables measurement of small forces (10.sup.-5 to 10.sup.3 N) accompanied by high heat fluxes which are transmitted by energetic particles with 10's of eV of kinetic energy in a intense magnetic field and pulsed plasma environment.

  14. The AmeriFlux Network of Long-Term CO{sub 2} Flux Measurement Stations: Methodology and Intercomparability

    SciTech Connect

    Hollinger, D. Y.; Evans, R. S.

    2003-05-20

    A portable flux measurement system has been used within the AmeriFlux network of CO{sub 2} flux measurement stations to enhance the comparability of data collected across the network. No systematic biases were observed in a comparison between portable system and site H, LE, or CO{sub 2} flux values although there were biases observed between the portable system and site measurement of air temperature and PPFD. Analysis suggests that if values from two stations differ by greater than 26% for H, 35% for LE, and 32% for CO{sub 2} flux they are likely to be significant. Methods for improving the intercomparability of the network are also discussed.

  15. Interactive Database of Pulsar Flux Density Measurements

    NASA Astrophysics Data System (ADS)

    Koralewska, O.; Krzeszowski, K.; Kijak, J.; Lewandowski, W.

    2012-12-01

    The number of astronomical observations is steadily growing, giving rise to the need of cataloguing the obtained results. There are a lot of databases, created to store different types of data and serve a variety of purposes, e. g. databases providing basic data for astronomical objects (SIMBAD Astronomical Database), databases devoted to one type of astronomical object (ATNF Pulsar Database) or to a set of values of the specific parameter (Lorimer 1995 - database of flux density measurements for 280 pulsars on the frequencies up to 1606 MHz), etc. We found that creating an online database of pulsar flux measurements, provided with facilities for plotting diagrams and histograms, calculating mean values for a chosen set of data, filtering parameter values and adding new measurements by the registered users, could be useful in further studies on pulsar spectra.

  16. A REVIEW OF FLUX CONSIDERATIONS FOR IN VIVO NEUROCHEMICAL MEASUREMENTS

    PubMed Central

    Paul, David W.; Stenken, Julie A.

    2016-01-01

    The mass transport or flux of neurochemicals in the brain and how this flux affects chemical measurements and their interpretation is reviewed. For all endogenous neurochemicals found in the brain, the flux of each of these neurochemicals exists between sources that produce them and the sites that consume them all within μm distances. Principles of convective-diffusion are reviewed with a significant emphasis on the tortuous paths and discrete point sources and sinks. The fundamentals of the primary methods of detection, microelectrodes and microdialysis sampling of brain neurochemicals are included in the review. Special attention is paid to the change in the natural flux of the neurochemicals caused by implantation and consumption at microelectrodes and uptake by microdialysis. The detection of oxygen, nitric oxide, glucose, lactate, and glutamate, and catecholamines by both methods are examined and where possible the two techniques (electrochemical vs. microdialysis) are compared. Non-invasive imaging methods: magnetic resonance, isotopic fluorine MRI, electron paramagnetic resonance, and positron emission tomography are also used for different measurements of the above-mentioned solutes and these are briefly reviewed. Although more sophisticated, the imaging techniques are unable to track neurochemical flux on short time scales, and lack spatial resolution. Where possible, determinations of flux using imaging are compared to the more classical techniques of microdialysis and microelectrodes. PMID:25977941

  17. The Airborne Measurements of Methane Fluxes (AIRMETH) Arctic Campaign (Invited)

    NASA Astrophysics Data System (ADS)

    Serafimovich, A.; Metzger, S.; Hartmann, J.; Kohnert, K.; Sachs, T.

    2013-12-01

    One of the most pressing questions with regard to climate feedback processes in a warming Arctic is the regional-scale methane release from Arctic permafrost areas. The Airborne Measurements of Methane Fluxes (AIRMETH) campaign is designed to quantitatively and spatially explicitly address this question. Ground-based eddy covariance (EC) measurements provide continuous in-situ observations of the surface-atmosphere exchange of methane. However, these observations are rare in the Arctic permafrost zone and site selection is bound by logistical constraints among others. Consequently, these observations cover only small areas that are not necessarily representative of the region of interest. Airborne measurements can overcome this limitation by covering distances of hundreds of kilometers over time periods of a few hours. Here, we present the potential of environmental response functions (ERFs) for quantitatively linking methane flux observations in the atmospheric surface layer to meteorological and biophysical drivers in the flux footprints. For this purpose thousands of kilometers of AIRMETH data across the Alaskan North Slope are utilized, with the aim to extrapolate the airborne EC methane flux observations to the entire North Slope. The data were collected aboard the research aircraft POLAR 5, using its turbulence nose boom and fast response methane and meteorological sensors. After thorough data pre-processing, Reynolds averaging is used to derive spatially integrated fluxes. To increase spatial resolution and to derive ERFs, we then use wavelet transforms of the original high-frequency data. This enables much improved spatial discretization of the flux observations, and the quantification of continuous and biophysically relevant land cover properties in the flux footprint of each observation. A machine learning technique is then employed to extract and quantify the functional relationships between the methane flux observations and the meteorological and

  18. AmeriFlux US-ARc ARM Southern Great Plains control site- Lamont

    SciTech Connect

    Torn, Margaret

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-ARc ARM Southern Great Plains control site- Lamont. Site Description - The ARM SGP Control site is located in the native tallgrass prairies of the USDA Grazinglands Research Laboratory near El Reno, OK. One of two adjacent 35 ha plots with identical towers, measurements at the US-ARc unburned plot are used as the experimental control. The second plot, US-Arb, was burned on 2005/03/08. Measurement comparisons between the control and burn plot are used to address questions regarding the effects of burning activities on carbon fluxes. The region evaded burning activities for at least 15 years. Current disturbances consist of only light grazing activities.

  19. Novel Sensor for the In Situ Measurement of Uranium Fluxes

    SciTech Connect

    Hatfield, Kirk

    2015-02-10

    The goal of this project was to develop a sensor that incorporates the field-tested concepts of the passive flux meter to provide direct in situ measures of flux for uranium and groundwater in porous media. Measurable contaminant fluxes [J] are essentially the product of concentration [C] and groundwater flux or specific discharge [q ]. The sensor measures [J] and [q] by changes in contaminant and tracer amounts respectively on a sorbent. By using measurement rather than inference from static parameters, the sensor can directly advance conceptual and computational models for field scale simulations. The sensor was deployed in conjunction with DOE in obtaining field-scale quantification of subsurface processes affecting uranium transport (e.g., advection) and transformation (e.g., uranium attenuation) at the Rifle IFRC Site in Rifle, Colorado. Project results have expanded our current understanding of how field-scale spatial variations in fluxes of uranium, groundwater and salient electron donor/acceptors are coupled to spatial variations in measured microbial biomass/community composition, effective field-scale uranium mass balances, attenuation, and stability. The coupling between uranium, various nutrients and micro flora can be used to estimate field-scale rates of uranium attenuation and field-scale transitions in microbial communities. This research focuses on uranium (VI), but the sensor principles and design are applicable to field-scale fate and transport of other radionuclides. Laboratory studies focused on sorbent selection and calibration, along with sensor development and validation under controlled conditions. Field studies were conducted at the Rifle IFRC Site in Rifle, Colorado. These studies were closely coordinated with existing SBR (formerly ERSP) projects to complement data collection. Small field tests were conducted during the first two years that focused on evaluating field-scale deployment procedures and validating sensor performance under

  20. Estimating terrestrial uranium and thorium by antineutrino flux measurements.

    PubMed

    Dye, Stephen T; Guillian, Eugene H

    2008-01-08

    Uranium and thorium within the Earth produce a major portion of terrestrial heat along with a measurable flux of electron antineutrinos. These elements are key components in geophysical and geochemical models. Their quantity and distribution drive the dynamics, define the thermal history, and are a consequence of the differentiation of the Earth. Knowledge of uranium and thorium concentrations in geological reservoirs relies largely on geochemical model calculations. This article describes the methods and criteria to experimentally determine average concentrations of uranium and thorium in the continental crust and in the mantle by using site-specific measurements of the terrestrial antineutrino flux. Optimal, model-independent determinations involve significant exposures of antineutrino detectors remote from nuclear reactors at both a midcontinental and a midoceanic site. This would require major, new antineutrino detection projects. The results of such projects could yield a greatly improved understanding of the deep interior of the Earth.

  1. Comparison of measured and modeled radiation, heat and water vapor fluxes: FIFE pilot study

    NASA Technical Reports Server (NTRS)

    Blad, Blaine L.; Hubbard, Kenneth G.; Verma, Shashi B.; Starks, Patrick; Norman, John M.; Walter-Shea, Elizabeth

    1987-01-01

    The feasibility of using radio frequency receivers to collect data from automated weather stations to model fluxes of latent heat, sensible heat, and radiation using routine weather data collected by automated weather stations was tested and the estimated fluxes were compared with fluxes measured over wheat. The model Cupid was used to model the fluxes. Two or more automated weather stations, interrogated by radio frequency and other means, were utilized to examine some of the climatic variability of the First ISLSCP (International Satellite Land-Surface Climatology Project) Field Experiment (FIFE) site, to measure and model reflected and emitted radiation streams from various locations at the site and to compare modeled latent and sensible heat fluxes with measured values. Some bidirectional reflected and emitted radiation data were collected from 23 locations throughout the FIFE site. Analysis of these data along with analysis of the measured sensible and latent heat fluxes is just beginning.

  2. An ecosystem-scale perspective of the net land methanol flux. Synthesis of micrometeorological flux measurements

    SciTech Connect

    Wohlfahrt, G.; Amelynck, C.; Ammann, C.; Arneth, A.; Bamberger, I.; Goldstein, A. H.; Gu, L.; Guenther, A.; Hansel, A.; Heinesch, B.; Holst, T.; Hörtnagl, L.; Karl, T.; Laffineur, Q.; Neftel, A.; McKinney, K.; Munger, J. W.; Pallardy, S. G.; Schade, G. W.; Seco, R.; Schoon, N.

    2015-07-09

    Methanol is the second most abundant volatile organic compound in the troposphere and plays a significant role in atmospheric chemistry. While there is consensus about the dominant role of living plants as the major source and the reaction with OH as the major sink of methanol, global methanol budgets diverge considerably in terms of source/sink estimates, reflecting uncertainties in the approaches used to model and the empirical data used to separately constrain these terms. Here we compiled micrometeorological methanol flux data from eight different study sites and reviewed the corresponding literature in order to provide a first cross-site synthesis of the terrestrial ecosystem-scale methanol exchange and present an independent data-driven view of the land–atmosphere methanol exchange. Our study shows that the controls of plant growth on production, and thus the methanol emission magnitude, as well as stomatal conductance on the hourly methanol emission variability, established at the leaf level, hold across sites at the ecosystem level. Unequivocal evidence for bi-directional methanol exchange at the ecosystem scale is presented. Deposition, which at some sites even exceeds methanol emissions, represents an emerging feature of ecosystem-scale measurements and is likely related to environmental factors favouring the formation of surface wetness. Methanol may adsorb to or dissolve in this surface water and eventually be chemically or biologically removed from it. Management activities in agriculture and forestry are shown to increase local methanol emission by orders of magnitude; however, they are neglected at present in global budgets. While contemporary net land methanol budgets are overall consistent with the grand mean of the micrometeorological methanol flux measurements, we caution that the present approach of simulating methanol emission and deposition separately is prone to opposing systematic errors and does not allow for full advantage to be taken of

  3. An ecosystem-scale perspective of the net land methanol flux: synthesis of micrometeorological flux measurements

    PubMed Central

    Wohlfahrt, G.; Amelynck, C.; Ammann, C.; Arneth, A.; Bamberger, I.; Goldstein, A. H.; Gu, L.; Guenther, A.; Hansel, A.; Heinesch, B.; Holst, T.; Hörtnagl, L.; Karl, T.; Laffineur, Q.; Neftel, A.; McKinney, K.; Munger, J. W.; Pallardy, S. G.; Schade, G. W.; Seco, R.; Schoon, N.

    2015-01-01

    Methanol is the second most abundant volatile organic compound in the troposphere and plays a significant role in atmospheric chemistry. While there is consensus about the dominant role of living plants as the major source and the reaction with OH as the major sink of methanol, global methanol budgets diverge considerably in terms of source/sink estimates reflecting uncertainties in the approaches used to model, and the empirical data used to separately constrain these terms. Here we compiled micrometeorological methanol flux data from eight different study sites and reviewed the corresponding literature in order to provide a first cross-site synthesis of the terrestrial ecosystem-scale methanol exchange and present an independent data-driven view of the land–atmosphere methanol exchange. Our study shows that the controls of plant growth on the production, and thus the methanol emission magnitude, and stomatal conductance on the hourly methanol emission variability, established at the leaf level, hold across sites at the ecosystem-level. Unequivocal evidence for bi-directional methanol exchange at the ecosystem scale is presented. Deposition, which at some sites even exceeds methanol emissions, represents an emerging feature of ecosystem-scale measurements and is likely related to environmental factors favouring the formation of surface wetness. Methanol may adsorb to or dissolve in this surface water and eventually be chemically or biologically removed from it. Management activities in agriculture and forestry are shown to increase local methanol emission by orders of magnitude; they are however neglected at present in global budgets. While contemporary net land methanol budgets are overall consistent with the grand mean of the micrometeorological methanol flux measurements, we caution that the present approach of simulating methanol emission and deposition separately is prone to opposing systematic errors and does not allow taking full advantage of the rich

  4. An ecosystem-scale perspective of the net land methanol flux: synthesis of micrometeorological flux measurements

    NASA Astrophysics Data System (ADS)

    Wohlfahrt, G.; Amelynck, C.; Ammann, C.; Arneth, A.; Bamberger, I.; Goldstein, A. H.; Gu, L.; Guenther, A.; Hansel, A.; Heinesch, B.; Holst, T.; Hörtnagl, L.; Karl, T.; Laffineur, Q.; Neftel, A.; McKinney, K.; Munger, J. W.; Pallardy, S. G.; Schade, G. W.; Seco, R.; Schoon, N.

    2015-01-01

    Methanol is the second most abundant volatile organic compound in the troposphere and plays a significant role in atmospheric chemistry. While there is consensus about the dominant role of living plants as the major source and the reaction with OH as the major sink of methanol, global methanol budgets diverge considerably in terms of source/sink estimates reflecting uncertainties in the approaches used to model, and the empirical data used to separately constrain these terms. Here we compiled micrometeorological methanol flux data from eight different study sites and reviewed the corresponding literature in order to provide a first cross-site synthesis of the terrestrial ecosystem-scale methanol exchange and present an independent data-driven view of the land-atmosphere methanol exchange. Our study shows that the controls of plant growth on the production, and thus the methanol emission magnitude, and stomatal conductance on the hourly methanol emission variability, established at the leaf level, hold across sites at the ecosystem-level. Unequivocal evidence for bi-directional methanol exchange at the ecosystem scale is presented. Deposition, which at some sites even exceeds methanol emissions, represents an emerging feature of ecosystem-scale measurements and is likely related to environmental factors favouring the formation of surface wetness. Methanol may adsorb to or dissolve in this surface water and eventually be chemically or biologically removed from it. Management activities in agriculture and forestry are shown to increase local methanol emission by orders of magnitude; they are however neglected at present in global budgets. While contemporary net land methanol budgets are overall consistent with the grand mean of the micrometeorological methanol flux measurements, we caution that the present approach of simulating methanol emission and deposition separately is prone to opposing systematic errors and does not allow taking full advantage of the rich

  5. An ecosystem-scale perspective of the net land methanol flux: synthesis of micrometeorological flux measurements

    NASA Astrophysics Data System (ADS)

    Wohlfahrt, G.; Amelynck, C.; Ammann, C.; Arneth, A.; Bamberger, I.; Goldstein, A. H.; Gu, L.; Guenther, A.; Hansel, A.; Heinesch, B.; Holst, T.; Hörtnagl, L.; Karl, T.; Laffineur, Q.; Neftel, A.; McKinney, K.; Munger, J. W.; Pallardy, S. G.; Schade, G. W.; Seco, R.; Schoon, N.

    2015-07-01

    Methanol is the second most abundant volatile organic compound in the troposphere and plays a significant role in atmospheric chemistry. While there is consensus about the dominant role of living plants as the major source and the reaction with OH as the major sink of methanol, global methanol budgets diverge considerably in terms of source/sink estimates, reflecting uncertainties in the approaches used to model and the empirical data used to separately constrain these terms. Here we compiled micrometeorological methanol flux data from eight different study sites and reviewed the corresponding literature in order to provide a first cross-site synthesis of the terrestrial ecosystem-scale methanol exchange and present an independent data-driven view of the land-atmosphere methanol exchange. Our study shows that the controls of plant growth on production, and thus the methanol emission magnitude, as well as stomatal conductance on the hourly methanol emission variability, established at the leaf level, hold across sites at the ecosystem level. Unequivocal evidence for bi-directional methanol exchange at the ecosystem scale is presented. Deposition, which at some sites even exceeds methanol emissions, represents an emerging feature of ecosystem-scale measurements and is likely related to environmental factors favouring the formation of surface wetness. Methanol may adsorb to or dissolve in this surface water and eventually be chemically or biologically removed from it. Management activities in agriculture and forestry are shown to increase local methanol emission by orders of magnitude; however, they are neglected at present in global budgets. While contemporary net land methanol budgets are overall consistent with the grand mean of the micrometeorological methanol flux measurements, we caution that the present approach of simulating methanol emission and deposition separately is prone to opposing systematic errors and does not allow for full advantage to be taken of

  6. An ecosystem-scale perspective of the net land methanol flux. Synthesis of micrometeorological flux measurements

    DOE PAGES

    Wohlfahrt, G.; Amelynck, C.; Ammann, C.; ...

    2015-07-09

    Methanol is the second most abundant volatile organic compound in the troposphere and plays a significant role in atmospheric chemistry. While there is consensus about the dominant role of living plants as the major source and the reaction with OH as the major sink of methanol, global methanol budgets diverge considerably in terms of source/sink estimates, reflecting uncertainties in the approaches used to model and the empirical data used to separately constrain these terms. Here we compiled micrometeorological methanol flux data from eight different study sites and reviewed the corresponding literature in order to provide a first cross-site synthesis ofmore » the terrestrial ecosystem-scale methanol exchange and present an independent data-driven view of the land–atmosphere methanol exchange. Our study shows that the controls of plant growth on production, and thus the methanol emission magnitude, as well as stomatal conductance on the hourly methanol emission variability, established at the leaf level, hold across sites at the ecosystem level. Unequivocal evidence for bi-directional methanol exchange at the ecosystem scale is presented. Deposition, which at some sites even exceeds methanol emissions, represents an emerging feature of ecosystem-scale measurements and is likely related to environmental factors favouring the formation of surface wetness. Methanol may adsorb to or dissolve in this surface water and eventually be chemically or biologically removed from it. Management activities in agriculture and forestry are shown to increase local methanol emission by orders of magnitude; however, they are neglected at present in global budgets. While contemporary net land methanol budgets are overall consistent with the grand mean of the micrometeorological methanol flux measurements, we caution that the present approach of simulating methanol emission and deposition separately is prone to opposing systematic errors and does not allow for full advantage to be

  7. An ecosystem-scale perspective of the net land methanol flux: synthesis of micrometeorological flux measurements.

    PubMed

    Wohlfahrt, G; Amelynck, C; Ammann, C; Arneth, A; Bamberger, I; Goldstein, A H; Gu, L; Guenther, A; Hansel, A; Heinesch, B; Holst, T; Hörtnagl, L; Karl, T; Laffineur, Q; Neftel, A; McKinney, K; Munger, J W; Pallardy, S G; Schade, G W; Seco, R; Schoon, N

    2015-01-27

    Methanol is the second most abundant volatile organic compound in the troposphere and plays a significant role in atmospheric chemistry. While there is consensus about the dominant role of living plants as the major source and the reaction with OH as the major sink of methanol, global methanol budgets diverge considerably in terms of source/sink estimates reflecting uncertainties in the approaches used to model, and the empirical data used to separately constrain these terms. Here we compiled micrometeorological methanol flux data from eight different study sites and reviewed the corresponding literature in order to provide a first cross-site synthesis of the terrestrial ecosystem-scale methanol exchange and present an independent data-driven view of the land-atmosphere methanol exchange. Our study shows that the controls of plant growth on the production, and thus the methanol emission magnitude, and stomatal conductance on the hourly methanol emission variability, established at the leaf level, hold across sites at the ecosystem-level. Unequivocal evidence for bi-directional methanol exchange at the ecosystem scale is presented. Deposition, which at some sites even exceeds methanol emissions, represents an emerging feature of ecosystem-scale measurements and is likely related to environmental factors favouring the formation of surface wetness. Methanol may adsorb to or dissolve in this surface water and eventually be chemically or biologically removed from it. Management activities in agriculture and forestry are shown to increase local methanol emission by orders of magnitude; they are however neglected at present in global budgets. While contemporary net land methanol budgets are overall consistent with the grand mean of the micrometeorological methanol flux measurements, we caution that the present approach of simulating methanol emission and deposition separately is prone to opposing systematic errors and does not allow taking full advantage of the rich

  8. Evaluation of the Community Land Model simulated carbon and water fluxes against observations over ChinaFLUX sites

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Mao, J.; Shi, X.; Ricciuto, D. M.; He, H.; Thornton, P. E.; Yu, G.; Han, S.; Li, Y.; Yan, J.; Hao, Y.; Wang, H.

    2014-12-01

    The Community Land Model (CLM) is an advanced process-based land surface model that simulates the complicated carbon, water vapor and energy exchanges between the terrestrial ecosystem and the atmosphere at various spatial-temporal scales. We for the first time use eddy-covariance observations of CO2 and water vapor exchange and soil respiration measurements at five representative Chinese Terrestrial Ecosystem Flux Observational Network (ChinaFLUX) tower sites to systematically evaluate the latest versions of CLM, the CLM4.0 and CLM4.5, and comprehensively examine the similarities and differences between the observational and simulated results. The CLM4.5 underestimates annual carbon sink at three forest sites and one alpine grassland site but overestimates the carbon sink at a semi-arid grassland site. The underestimation in annual carbon sink at a deciduous dominated forest site is resulted from underestimated daytime carbon sequestration in summer and overestimated nighttime carbon emission in spring and autumn. Compared with the CLM4.0, the bias of annual Gross Primary Production (GPP) is reduced by 24% and 28% in CLM4.5 at two subtropical forest sites. However, CLM4.5 still has a large positive bias in annual GPP. The improvement in NEE is limited, although the bias of soil respiration decreases by 16%-43% at three forest sites. The CLM4.5 has lower soil water content in dry season than this simulated by the CLM4.0 at two grassland sites. These lead to the significant drop in leaf area index and GPP, and the increase in respiration for the CLM4.5. The new fire parameterization in CLM4.5 causes incorrect fire estimation at Changbaishan forest site, which results in unexpected underestimation of NEE, vegetation carbon, and soil organic carbon by 46%, 95%, and 87%, respectively. Our study with the ChinaFLUX sites indicates a significant improvement of the CLM4.5 than the CLM4, and suggests further developments on the parameterization of seasonal GPP and

  9. Estimating CO(2) flux from snowpacks at three sites in the Rocky Mountains.

    PubMed

    McDowell, Nate G.; Marshall, John D.; Hooker, Toby D.; Musselman, Robert

    2000-06-01

    Soil surface CO(2) flux (F(s)) is the dominant respiratory flux in many temperate forest ecosystems. Snowpacks increase this dominance by insulating the soil against the low temperature to which aboveground components are exposed. However, measurement of F(s) in winter may be impeded by snow cover. Likewise, developing annual F(s) models is complicated by seasonal variation in root and microbial metabolism. We compared three methods of measuring sub-snow F(s): (1) dynamic chamber measurements at the upper snowpack surface (F(snow)), (2) dynamic chamber measurements at the soil surface via snowpits (F(soil)), and (3) static estimates based on measured concentrations of carbon dioxide ([CO(2)]) and conductance properties of the snowpack (F(diffusional)). Methods were compared at a mid-elevation forest in northeastern Washington, a mid-elevation forest in northern Idaho, and a high-elevation forest and neighboring meadow in Wyoming. The methods that minimized snowpack disturbance, F(diffusional) and F(snow), yielded similar estimates of F(s). In contrast, F(soil) yielded rates two to three times higher than F(snow) at the forested sites, and seven times higher at the subalpine meadow. The ratio F(soil)/F(snow) increased with increasing snow depth when compared across all sites. Snow removal appears to induce elevated soil flux as a result of lateral CO(2) diffusion into the pit. We chose F(snow) as our preferred method and used it to estimate annual CO(2) fluxes. The snowpack was present for 36% of the year at this site, during which time 132 g C m(-2), or 17% of the annual flux, occurred. We conclude that snowpack CO(2) flux is quantitatively important in annual carbon budgets for these forests and that the static and dynamic methods yield similar and reasonable estimates of the flux, as long as snowpack disturbance is minimized.

  10. Reducing measurement scale mismatch to improve surface energy flux estimation

    NASA Astrophysics Data System (ADS)

    Iwema, Joost; Rosolem, Rafael; Rahman, Mostaquimur; Blyth, Eleanor; Wagener, Thorsten

    2016-04-01

    Soil moisture importantly controls land surface processes such as energy and water partitioning. A good understanding of these controls is needed especially when recognizing the challenges in providing accurate hyper-resolution hydrometeorological simulations at sub-kilometre scales. Soil moisture controlling factors can, however, differ at distinct scales. In addition, some parameters in land surface models are still often prescribed based on observations obtained at another scale not necessarily employed by such models (e.g., soil properties obtained from lab samples used in regional simulations). To minimize such effects, parameters can be constrained with local data from Eddy-Covariance (EC) towers (i.e., latent and sensible heat fluxes) and Point Scale (PS) soil moisture observations (e.g., TDR). However, measurement scales represented by EC and PS still differ substantially. Here we use the fact that Cosmic-Ray Neutron Sensors (CRNS) estimate soil moisture at horizontal footprint similar to that of EC fluxes to help answer the following question: Does reduced observation scale mismatch yield better soil moisture - surface fluxes representation in land surface models? To answer this question we analysed soil moisture and surface fluxes measurements from twelve COSMOS-Ameriflux sites in the USA characterized by distinct climate, soils and vegetation types. We calibrated model parameters of the Joint UK Land Environment Simulator (JULES) against PS and CRNS soil moisture data, respectively. We analysed the improvement in soil moisture estimation compared to uncalibrated model simulations and then evaluated the degree of improvement in surface fluxes before and after calibration experiments. Preliminary results suggest that a more accurate representation of soil moisture dynamics is achieved when calibrating against observed soil moisture and further improvement obtained with CRNS relative to PS. However, our results also suggest that a more accurate

  11. Flux measurements using the BATSE spectroscopic detectors

    NASA Technical Reports Server (NTRS)

    Mcnamara, Bernard

    1993-01-01

    Among the Compton Gama-Ray Observatory instruments, the BATSE Spectroscopic Detectors (SD) have the distinction of being able to detect photons of energies less than about 20 keV. This is an interesting energy range for the examination of low mass X-ray binaries (LMXB's). In fact, Sco X-1, the prototype LMXB, is easily seen even in the raw BATSE spectroscopic data. The all-sky coverage afforded by these detectors offers a unique opportunity to monitor this source over time periods never before possible. The aim of this investigation was to test a number of ways in which both continous and discrete flux measurements can be obtained using the BATSE spectroscopic datasets. A instrumental description of a SD can be found in the Compton Workshop of Apr. 1989, this report will deal only with methods which can be used to analyze its datasets. Many of the items discussed below, particularly in regard to the earth occultation technique, have been developed, refined, and applied by the BATSE team to the reduction of BATSE LAD data. Code written as part of this project utilizes portions of that work. The following discussions will first address issues related to the reduction of SD datasets using the earth occultation technique. It will then discuss methods for the recovery of the flux history of strong sources while they are above the earth's limb. The report will conclude with recommended reduction procedures.

  12. Use of single-well tracer dilution tests to evaluate LNAPL flux at seven field sites.

    PubMed

    Mahler, Nicholas; Sale, Tom; Smith, Tim; Lyverse, Mark

    2012-01-01

    Petroleum liquids, referred to as light non-aqueous phase liquids (LNAPLs), are commonly found beneath petroleum facilities. Concerns with LNAPLs include migration into clean soils, migration beyond property boundaries, and discharges to surface water. Single-well tracer dilution techniques were used to measure LNAPL fluxes through 50 wells at 7 field sites. A hydrophobic tracer was mixed into LNAPL in a well. Intensities of fluorescence associated with the tracer were measured over time using a spectrometer and a fiber optic cable. LNAPL fluxes were estimated using observed changes in the tracer concentrations over time. Measured LNAPL fluxes range from 0.006 to 2.6 m/year with a mean and median of 0.15 and 0.064 m/year, respectively. Measured LNAPL fluxes are two to four orders of magnitude smaller than a common groundwater flux of 30 m/year. Relationships between LNAPL fluxes and possible governing parameters were evaluated. Observed LNAPL fluxes are largely independent of LNAPL thickness in wells. Natural losses of LNAPL through dissolution, evaporation, and subsequent biodegradation, were estimated using a simple mass balance, measured LNAPL fluxes in wells, and an assumed stable LNAPL extent. The mean and median of the calculated loss rates were found to be 24.0 and 5.0 m3/ha/year, respectively. Mean and median losses are similar to values reported by others. Coupling observed LNAPL fluxes to observed rates of natural LNAPL depletion suggests that natural losses of LNAPL may be an important parameter controlling the overall extent of LNAPL bodies.

  13. Plasma momentum meter for momentum flux measurements

    DOEpatents

    Zonca, F.; Cohen, S.A.; Bennett, T.; Timberlake, J.R.

    1993-08-24

    An apparatus is described for measuring momentum flux from an intense plasma stream, comprising: refractory target means oriented normal to the flow of said plasma stream for bombardment by said plasma stream where said bombardment by said plasma stream applies a pressure to said target means, pendulum means for communicating a translational displacement of said target to a force transducer where said translational displacement of said target is transferred to said force transducer by an elongated member coupled to said target, where said member is suspended by a pendulum configuration means and where said force transducer is responsive to said translational displacement of said member, and force transducer means for outputting a signal representing pressure data corresponding to said displacement.

  14. Plastic scintillator detector for pulsed flux measurements

    NASA Astrophysics Data System (ADS)

    Kadilin, V. V.; Kaplun, A. A.; Taraskin, A. A.

    2017-01-01

    A neutron detector, providing charged particle detection capability, has been designed. The main purpose of the detector is to measure pulsed fluxes of both charged particles and neutrons during scientific experiments. The detector consists of commonly used neutron-sensitive ZnS(Ag) / 6LiF scintillator screens wrapping a layer of polystyrene based scintillator (BC-454, EJ-254 or equivalent boron loaded plastic). This type of detector design is able to log a spatial distribution of events and may be scaled to any size. Different variations of the design were considered and modelled in specialized toolkits. The article presents a review of the detector design features as well as simulation results.

  15. Large Area Lunar Dust Flux Measurement Instrument

    NASA Technical Reports Server (NTRS)

    Corsaro, R.; Giovane, F.; Liou, Jer-Chyi; Burchell, M.; Stansbery, Eugene; Lagakos, N.

    2009-01-01

    The instrument under development is designed to characterize the flux and size distribution of the lunar micrometeoroid and secondary ejecta environment. When deployed on the lunar surface, the data collected will benefit fundamental lunar science as well as enabling more reliable impact risk assessments for human lunar exploration activities. To perform this task, the instrument requirements are demanding. It must have as large a surface area as possible to sample the very sparse population of the larger potentially damage-inducing micrometeorites. It must also have very high sensitivity to enable it to measure the flux of small (<10 micron) micrometeorite and secondary ejecta dust particles. To be delivered to the lunar surface, it must also be very low mass, rugged and stow compactly. The instrument designed to meet these requirements is called FOMIS. It is a large-area thin film under tension (i.e. a drum) with multiple fiber optic displacement (FOD) sensors to monitor displacements of the film. This sensor was chosen since it can measure displacements over a wide dynamic range: 1 cm to sub-Angstrom. A prototype system was successfully demonstrated using the hypervelocity impact test facility at the University of Kent (Canterbury, UK). Based on these results, the prototype system can detect hypervelocity (approx.5 km/s) impacts by particles as small as 2 microns diameter. Additional tests using slow speeds find that it can detect secondary ejecta particles (which do not penetrate the film) with momentums as small as 15 pico-gram 100m/s, or nominally 5 microns diameter at 100 m/s.

  16. Integrated Cropland and Grassland Flux Tower Observation Sites over Grazinglands for Quantifying Surface-Atmosphere Exchange

    NASA Astrophysics Data System (ADS)

    Mahan, H. R.; Wagle, P.; Bajgain, R.; Zhou, Y.; Basara, J. B.; Xiao, X.; Duckles, J. M.; Steiner, J. L.; Starks, P. J.; Northup, B. K.

    2014-12-01

    Quantifying methane (CH4), carbon dioxide (CO2), and water vapor fluxes between land surface and boundary layer using the eddy covariance method have many applicable uses across several disciplines. Three eddy flux towers have been established over no-till winter wheat (Triticum aestivum L.), and native and improved pastures at the USDA ARS Grazinglands Research Laboratory, El Reno, OK. An additional tower will be established in fall 2014 over till winter wheat. Each flux site is equipped with an eddy covariance system, PhenoCam, COSMOS, and in-situ observations of soil and atmospheric state variables. The objective of this research is to measure, compare, and model the land-atmosphere exchange of CO2, water vapor, and CH4 in different land cover types and management practices (till vs no-till, grazing vs no-grazing, native vs improved pasture). Models that focus on net ecosystem CO2 exchange (NEE), gross primary production (GPP), evapotranspiration (ET), and CH4 fluxes can be improved by the cross verification of these measurements. Another application will be to link the in-situ measurements with satellite remote sensing in order to scale-up flux measurements from small spatial scales to local and regional scales. Preliminary data analysis from the native grassland site revealed that CH4 concentration was negligible (~ 0), and it increased significantly when cattle were introduced into the site. In summer 2014, daily ET magnitude was about 4-5 mm day-1 and the NEE magnitude was 4-5 g C day-1 at the native grassland site. Further analysis of data for all the sites for longer temporal periods will enhance understanding of biotic and abiotic factors that govern carbon, water, and energy exchanges between the land surface and atmosphere under different land cover and management systems. The research findings will help predict the responses of these ecosystems to management practices and global environmental change in the future.

  17. Latent heat sink in soil heat flux measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The surface energy balance includes a term for soil heat flux. Soil heat flux is difficult to measure because it includes conduction and convection heat transfer processes. Accurate representation of soil heat flux is an important consideration in many modeling and measurement applications. Yet, the...

  18. A highly portable, rapidly deployable system for eddy covariance measurements of CO2 fluxes

    SciTech Connect

    Billesbach, David P.; Fischer, Marc L.; Torn, Margaret S.; Berry, Joe A.

    2001-09-19

    To facilitate the study of flux heterogeneity within a region, the authors have designed, built, and field-tested a highly portable, rapidly deployable, eddy covariance CO{sub 2} flux measurement system. The system is built from off-the-shelf parts and was assembled at a minimal cost. The unique combination of features of this system allow for a very rapid deployment with a minimal number of field personnel. The system is capable of making high precision, unattended measurements of turbulent CO{sub 2} fluxes, latent heat (LE) fluxes, sensible heat fluxes (H), and momentum transfer fluxes. In addition, many of the meteorological and ecosystem variables necessary for quality control of the fluxes and for running ecosystem models are measured. A side-by-side field comparison of the system at a pair of established AmeriFlux sites has verified that, for single measurements, the system is capable of CO{sub 2} flux accuracy of about {+-} 1.2 {micro}mole/m{sup 2}/sec, LE flux accuracy of about {+-} 15 Watts/m{sup 2}, H flux accuracy of about {+-} 7 Watts/m{sup 2}, and momentum transfer flux accuracy of about {+-} 11 gm-m/sec/sec. System deployment time is between 2 and 4 hours by a single person. The system was measured to draw between 30 and 35 Watts of power and may be run from available line power, storage batteries, or solar panels.

  19. Absolute flux measurements for swift atoms

    NASA Technical Reports Server (NTRS)

    Fink, M.; Kohl, D. A.; Keto, J. W.; Antoniewicz, P.

    1987-01-01

    While a torsion balance in vacuum can easily measure the momentum transfer from a gas beam impinging on a surface attached to the balance, this measurement depends on the accommodation coefficients of the atoms with the surface and the distribution of the recoil. A torsion balance is described for making absolute flux measurements independent of recoil effects. The torsion balance is a conventional taut suspension wire design and the Young modulus of the wire determines the relationship between the displacement and the applied torque. A compensating magnetic field is applied to maintain zero displacement and provide critical damping. The unique feature is to couple the impinging gas beam to the torsion balance via a Wood's horn, i.e., a thin wall tube with a gradual 90 deg bend. Just as light is trapped in a Wood's horn by specular reflection from the curved surfaces, the gas beam diffuses through the tube. Instead of trapping the beam, the end of the tube is open so that the atoms exit the tube at 90 deg to their original direction. Therefore, all of the forward momentum of the gas beam is transferred to the torsion balance independent of the angle of reflection from the surfaces inside the tube.

  20. Anthropogenic and biogenic influence on VOC fluxes at an urban background site in Helsinki, Finland

    NASA Astrophysics Data System (ADS)

    Rantala, Pekka; Järvi, Leena; Taipale, Risto; Laurila, Terhi K.; Patokoski, Johanna; Kajos, Maija K.; Kurppa, Mona; Haapanala, Sami; Siivola, Erkki; Petäjä, Tuukka; Ruuskanen, Taina M.; Rinne, Janne

    2016-07-01

    We measured volatile organic compounds (VOCs), carbon dioxide (CO2) and carbon monoxide (CO) at an urban background site near the city centre of Helsinki, Finland, northern Europe. The VOC and CO2 measurements were obtained between January 2013 and September 2014 whereas for CO a shorter measurement campaign in April-May 2014 was conducted. Both anthropogenic and biogenic sources were identified for VOCs in the study. Strong correlations between VOC fluxes and CO fluxes and traffic rates indicated anthropogenic source of many VOCs. The VOC with the highest emission rate to the atmosphere was methanol, which originated mostly from traffic and other anthropogenic sources. The traffic was also a major source for aromatic compounds in all seasons whereas isoprene was mostly emitted from biogenic sources during summer. Some amount of traffic-related isoprene emissions were detected during other seasons but this might have also been an instrumental contamination from cycloalkane products. Generally, the observed VOC fluxes were found to be small in comparison with previous urban VOC flux studies. However, the differences were probably caused by lower anthropogenic activities as the CO2 fluxes were also relatively small at the site.

  1. The impact of broadleaved woodland on water resources in lowland UK: II. Evaporation estimates from sensible heat flux measurements over beech woodland and grass on chalk sites in Hampshire

    NASA Astrophysics Data System (ADS)

    Roberts, J.; Rosier, P.; Smith, D. M.

    2005-12-01

    The impact on recharge to the Chalk aquifer of substitution of broadleaved woodland for pasture is a matter of concern in the UK. Hence, measurements of energy balance components were made above beech woodland and above pasture, both growing on shallow soils over chalk in Hampshire. Latent heat flux (evaporation) was calculated as the residual from these measurements of energy balances in which sensible heat flux was measured with an eddy correlation instrument that determined fast response vertical wind speeds and associated temperature changes. Assessment of wind turbulence statistics confirmed that the eddy correlation device performed satisfactorily in both wet and dry conditions. There was excellent agreement between forest transpiration measurements made by eddy correlation and stand level tree transpiration measured with sap flow devices. Over the period of the measurements, from March 1999 to late summer 2000, changes in soil water content were small and grassland evaporation and transpiration estimated from energy balance-eddy flux measurements were in excellent agreement with Penman estimates of potential evaporation. Over the 18-month measurement period, the cumulative difference between broadleaved woodland and grassland was small but evaporation from the grassland was 3% higher than that from the woodland. In the springs of 1999 and 2000, evaporation from the grassland was greater than that from the woodland. However, following leaf emergence in the woodland, the difference in cumulative evaporation diminished until the following spring.

  2. Productivity and carbon dioxide exchange of the leguminous crops: Estimates from flux tower measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Net CO2 exchange data on legume crops at 17 flux tower sites in North America and 3 sites in Europe representing 29 site-years of measurements were partitioned into gross photosynthesis and ecosystem respiration using a light-response function method, resulting in new estimates of ecosystem-scale ec...

  3. Seasonal spectral dynamics and carbon fluxes at core EOS sites using EO-1 Hyperion images

    NASA Astrophysics Data System (ADS)

    Lagomasino, D.; Campbell, P.; Price, R. M.

    2010-12-01

    Fluxes of water and carbon into the atmosphere are critical components in order to monitor and predict climate change. Spatial heterogeneity and seasonal changes in vegetation contribute to ambiguities in regional and global CO2 and water cycle dynamics. Satellite remote sensing is essential for monitoring the spatial and temporal dynamics of various vegetation types for the purposes of determining carbon and water fluxes. Satellite data from the EO-1 Hyperion sensor was acquired for five Earth Observing Satellite (EOS) sites, Mongu (Zambia, Africa), Konza Prairie (Kansas, USA), Duke Forest (North Carolina, USA), Barrow (Alaska, USA) and Sevilleta (New Mexico, USA). Each EOS site represented a distinct vegetative ecosystem type; hardwood forest, grassland, evergreen forest, lichens, and shrubland/grassland respectively. Satellite data was atmospherically corrected using the Atmosphere CORrection Now (ACORN) model and subsequently, the spectral reflectance data was extracted in the vicinity of existing flux towers. The EO-1 Hyperion sensor proved advantageous because of its high and continuous spectral resolution (10 nm intervals from 355 to 2578 nm wavelengths). The high spectral resolution allowed us calculate biophysical indices based on specific wavelengths in the electromagnetic spectrum that are associated with alterations in foliar chemistry and plant membrane structure (i.e., vegetation stress) brought upon by many environmental factors. Previous studies have focused on relationships within a specific site or vegetation community. This study however, incorporated many sites with different vegetation types and various geographic locations throughout the world. Monitoring the fluctuations in vegetation stress with contemporaneous environmental conditions and carbon flux measurements from each site will provide better insight into water and carbon flux dynamics in many different biomes. Noticeable spectral signatures were identified based on site specific

  4. AmeriFlux US-Br3 Brooks Field Site 11- Ames

    DOE Data Explorer

    Parkin, Tim [USDA; Prueger, John [National Laboratory for Agriculture and the Environment

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Br3 Brooks Field Site 11- Ames. Site Description - The Brooks Field Site 11 - Ames Site is one of three sites (Brooks Field Site 10 and Brooks Field Site 1011) located in a corn/soybean agricultural landscape of central Iowa. The farming systems, associated tillage, and nutrient management practices for soybean/corn production are typical of those throughout Upper Midwest Corn Belt. All three sites are members of the AmeriFlux network. Information for all three can be found in synchronous pages of this website.

  5. AmeriFlux US-Br1 Brooks Field Site 10- Ames

    DOE Data Explorer

    Parkin, Tim [USDA; Prueger, John [National Laboratory for Agriculture and the Environment

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Br1 Brooks Field Site 10- Ames. Site Description - The Brooks Field Site 10 - Ames Site is one of three sites (Brooks Field Site 11 and Brooks Field Site 1011) located in a corn/soybean agricultural landscape of central Iowa. The farming systems, associated tillage, and nutrient management practices for soybean/corn production are typical of those throughout Upper Midwest Corn Belt. All three sites are members of the AmeriFlux network. Information for all three can be found in synchronous pages of this website.

  6. Measurement of Integrated Low Frequency Flux Noise in Superconducting Flux/Phase Qubits

    SciTech Connect

    Mao Bo; Qiu Wei; Han Siyuan

    2008-11-07

    We measured the integrated low frequency flux noise ({approx}1 m{phi}{sub 0}) of an rf SQUID as a flux qubit by fitting the resonant peaks from photon assistant tunneling (PAT). The energy relaxation time Tl between the ground and first excited states in the same potential well, measured directly in time domain, is 3 ns. From these results we identified low frequency flux noise as the dominant source of decoherence. In addition, we found that the measured values of integrated flux noise in three qubits of various sizes differ more than an order of magnitude.

  7. Flux measurements of benzene and toluene from landfill cover soils.

    PubMed

    Tassi, Franco; Montegrossi, Giordano; Vaselli, Orlando; Morandi, Andrea; Capecchiacci, Francesco; Nisi, Barbara

    2011-01-01

    Carbon dioxide and CH(4), C(6)H(6) and C(7)H(8) fluxes from the soil cover of Case Passerini landfill site (Florence, Italy) were measured using the accumulation and static closed chamber methods, respectively. Results show that the CH(4)/CO(2), CH(4)/C(6)H(6) and CH(4)/C(7)H(8) ratios of the flux values are relatively low when compared with those of the 'pristine' biogas produced by degradation processes acting on the solid waste material disposed in the landfill. This suggests that when biogas transits through the cover soil, CH(4) is affected by degradation processes activated by oxidizing bacteria at higher extent than both CO(2) and mono-aromatics. Among the investigated hydrocarbons, C(6)H(6) has shown the highest stability in a wide range of redox conditions. Toluene behaviour only partially resembles that of C(6)H(6), possibly because de-methylation processes require less energy than that necessary for the degradation of C(6)H(6), the latter likely occurring via benzoate at anaerobic conditions and/or through various aerobic metabolic pathways at relatively shallow depth in the cover soil where free oxygen is present. According to these considerations, aromatics are likely to play an important role in the environmental impact of biogas released into the atmosphere from such anthropogenic emission sites, usually only ascribed to CO(2) and CH(4). In this regard, flux measurements using accumulation and static closed chamber methods coupled with gas chromatography and gas chromatography-mass spectrometry analysis may properly be used to obtain a dataset for the estimation of the amount of volatile organic compounds dispersed from landfills.

  8. Software used with the flux mapper at the solar parabolic dish test site

    NASA Technical Reports Server (NTRS)

    Miyazono, C.

    1984-01-01

    Software for data archiving and data display was developed for use on a Digital Equipment Corporation (DEC) PDP-11/34A minicomputer for use with the JPL-designed flux mapper. The flux mapper is a two-dimensional, high radiant energy scanning device designed to measure radiant flux energies expected at the focal point of solar parabolic dish concentrators. Interfacing to the DEC equipment was accomplished by standard RS-232C serial lines. The design of the software was dicated by design constraints of the flux-mapper controller. Early attemps at data acquisition from the flux-mapper controller were not without difficulty. Time and personnel limitations result in an alternative method of data recording at the test site with subsequent analysis accomplished at a data evaluation location at some later time. Software for plotting was also written to better visualize the flux patterns. Recommendations for future alternative development are discussed. A listing of the programs used in the anaysis is included in an appendix.

  9. Sand Flux Results for Aeolian Dunes at Current and Candidate Landing Sites on Mars

    NASA Astrophysics Data System (ADS)

    Chojnacki, M.; Urso, A.; Yingling, W.

    2015-12-01

    It is now known unambiguously that wind-driven bedform activity is occurring on Mars today. It has also been demonstrated the rapid aeolian abrasion of sedimentary deposits that potentially host ancient habitable environments may provide the best mechanism for exposing samples containing relatively undegraded organics (Farley et al. 2014). Thus, current processes operating on the surface of Mars are highly relevant to our understanding of the past. Here, we discuss new sand flux results of active dune across Mars, including several current and candidate landing sites with Meridiani Planum, Gale crater, Valles Marineris, and Mawrth Vallis. For this task, we have utilized multi-temporal images acquired annually by the HiRISE camera (25 cm/pixel) along with co-located HiRISE Digital Terrain Models. Falling dunes in Coprates Chasma (Mars 2020 candidate landing site) measuring 6-10 meters in height were detected migrating on average 0.5 m per Earth year, yielding crest fluxes of 3.1 m3 m-1 yr-1 (units hereafter assumed). Barchans near the MSL rover at Gale crater have slightly lower fluxes of 1.2, while earlier work in Endeavour crater, the current site of the Opportunity Rover, showed dome dunes with fluxes as high as 13 (average of 6.8; Chojnacki et al. 2015). New results of Mawrth Vallis (Mars 2020 candidate) dunes suggest these high rates are not uncommon, as barchans there possess average fluxes of 11.5. Assuming ripple reptation rates are 1/10th that of crest fluxes, total flux (saltation plus reptation) would range 3.2 to 12.7 m3 m-1 yr-1 for all sites studied herein. Active dunes and the abrasion susceptibility (Sa) of local rocks are relevant to assess how sand fluxes modify the landscape. Using the methodology and assumptions (Sa for basalt, mean trajectory height etc.) described in Bridges et al. (2012), we estimated abrasion rates of local basaltic bedrock. For example, sand blasting at Mawrth Vallis is estimated to produce 2-8 μm/yr for flat ground and 15

  10. Heat flux measurements on ceramics with thin film thermocouples

    NASA Technical Reports Server (NTRS)

    Holanda, Raymond; Anderson, Robert C.; Liebert, Curt H.

    1993-01-01

    Two methods were devised to measure heat flux through a thick ceramic using thin film thermocouples. The thermocouples were deposited on the front and back face of a flat ceramic substrate. The heat flux was applied to the front surface of the ceramic using an arc lamp Heat Flux Calibration Facility. Silicon nitride and mullite ceramics were used; two thicknesses of each material was tested, with ceramic temperatures to 1500 C. Heat flux ranged from 0.05-2.5 MW/m2(sup 2). One method for heat flux determination used an approximation technique to calculate instantaneous values of heat flux vs time; the other method used an extrapolation technique to determine the steady state heat flux from a record of transient data. Neither method measures heat flux in real time but the techniques may easily be adapted for quasi-real time measurement. In cases where a significant portion of the transient heat flux data is available, the calculated transient heat flux is seen to approach the extrapolated steady state heat flux value as expected.

  11. Multi-year estimates of plant and ecosystem 13C discrimination at AmeriFlux sites

    NASA Astrophysics Data System (ADS)

    Dang, X.; Lai, C.; Hollinger, D. Y.; Bush, S.; Randerson, J. T.; Law, B. E.; Schauer, A. J.; Ehleringer, J.

    2011-12-01

    We estimated plant and ecosystem 13C discrimination continuously at 8 AmeriFlux sites (Howland Forest, Harvard Forest, Wind River Forest, Rannells Prairie, Freeman Ranch, Chestnut Ridge, Metolius, and Marys River fir) over 8 years (2002-2009). We used an observation-based approach from weekly measurements of eddy covariance CO2 fluxes and their 13C/12C ratios to estimate photosynthetic 13C discrimination (△A) and respiration (δ13CR) on seasonal and interannual time scales. The coordinated, systematic flask sampling across the AmeriFlux subnetwork were used for cross-site synthesis of monthly flux estimates [Dang et al. Combining tower mixing ratio and community model data to estimate regional-scale net ecosystem carbon exchange by boundary layer inversion over 4 flux towers in the U.S.A., Journal of Geophysical Research-Biogeosciences, in press]. Here, we evaluated environmental factors that also influenced temporal variability in △A and δ13CR from daily to interannual time scales, comparing atmospheric 13C/12C measurements, leaf and needle organic matter, and tree ring cellulose. Across these major biomes that dominate the continent, we show differential ecophysiological responses to environmental stresses, among which water availability appeared to be a dominant factor. Our decadal measurement period provided robust estimates of atmospheric 13C discrimination by terrestrial ecosystems, but also suggest regions where enhanced monitoring efforts are required (e.g., 13C/12C emission from fire and urban metabolism; increased temporal resolution of 13C measurements in stress-sensitive ecosystems) to make atmospheric 13C/12C measurements an effective constraint for continental-scale assessments of the terrestrial carbon cycle.

  12. Heat and Volume Fluxes at the Turtle Pits Vent Site, southern Mid Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Köhler, Janna; Walter, Maren; Mertens, Christian; Sültenfuß, Jürgen; Rhein, Monika

    2010-05-01

    The Turtle Pits vent site consists of eight known high temperature vents and several diffuse vent sites which are distributed over three hydrothermal fields: Turtle Pits, Comfortless Cove, and Red Lion. These vent fields are located in a north-south orientated rift valley at the Mid-Atlantic Ridge (MAR) near 5°S. The total volume and heat emissions of the entire Turtle Pits site have been calculated with three different approaches using data collected during a Meteor cruise in May 2006 and a L'Atalante cruise in January 2008. The data sets consist of vertical profiles and towed transects of temperature, salinity, and turbidity, as well as direct velocity measurements with a lowered acoustic Doppler current profiler (LADCP) and water samples for Helium isotope analysis. Vent fluid samples for noble gas analysis where taken with ROVs. Since the vent fluid is highly enriched in primordial 3He this noble gas can be used as a conservative tracer for vent fluid. The geographical setting of the vent site confines the particle plume to the rift valley since the depth of the valley exceeds the rise height of the plume. Therefore the fluxes of heat and volume can be estimated from the horizontal helium transport in the valley in combination with a mean 3He endmember concentration determined from the water samples taken with the ROVs. The comparison of the 3He concentrations measured south of the hydrothermal vents with the 3He signal north of the hydrothermal vents suggests a rather strong northward flow. This is confirmed by the tide corrected velocities observed with the LADCP during the Meteor cruise. The northward volume transport has been calculated using the local bathymetry and tide corrected velocities from the Meteor cruise. In combination with the 3He concentrations and the average 3He endmember concentration a flux of 1000 l/s is estimated, which corresponds to a heat flux of 1400 MW. The measured temperature anomalies within the plume combined with the known

  13. Evaluation of unsaturated zone water fluxes in heterogeneous alluvium at a Mojave Basin Site

    NASA Astrophysics Data System (ADS)

    Nimmo, John R.; Deason, Jeffrey A.; Izbicki, John A.; Martin, Peter

    2002-10-01

    Vertical and horizontal water fluxes in the unsaturated zone near intermittent streams critically affect ecosystems, water supply, and contaminant transport in arid and semiarid regions. The subsurface near the Oro Grande Wash is typical in having great textural diversity, pronounced layer contrasts, and extremely low hydraulic conductivities associated with nearly dry media. These features prevent a straightforward application of the Darcian method for recharge estimation, which has provided high-quality flux estimates at simpler, wetter sites. We have augmented the basic Darcian method with theoretical developments such that a small number of core sample unsaturated hydraulic property measurements, combined with additional, easily obtained data (e.g., drillers' logs) can provide useful flux estimates and knowledge of two-dimensional water behavior beneath the wash.

  14. Evaluation of unsaturated zone water fluxes in heterogeneous alluvium at a Mojave Basin site

    USGS Publications Warehouse

    Nimmo, J.R.; Deason, J.A.; Izbicki, J.A.; Martin, P.

    2002-01-01

    Vertical and horizontal water fluxes in the unsaturated zone near intermittent streams critically affect ecosystems, water supply, and contaminant transport in arid and semiarid regions. The subsurface near the Oro Grande Wash is typical in having great textural diversity, pronounced layer contrasts, and extremely low hydraulic conductivities associated with nearly dry media. These features prevent a straightforward application of the Darcian method for recharge estimation, which has provided high-quality flux estimates at simpler, wetter sites. We have augmented the basic Darcian method with theoretical developments such that a small number of core sample unsaturated hydraulic property measurements, combined with additional, easily obtained data (e.g., drillers' logs) can provide useful flux estimates and knowledge of two-dimensional water behavior beneath the wash.

  15. Eddy-covariance methane flux measurements over a European beech forest

    NASA Astrophysics Data System (ADS)

    Gentsch, Lydia; Siebicke, Lukas; Knohl, Alexander

    2015-04-01

    The role of forests in global methane (CH4) turnover is currently not well constrained, partially because of the lack of spatially integrative forest-scale measurements of CH4 fluxes. Soil chamber measurements imply that temperate forests generally act as CH4 sinks. Upscaling of chamber observations to the forest scale is however problematic, if the upscaling is not constrained by concurrent 'top-down' measurements, such as of the eddy-covariance type, which provide sufficient integration of spatial variations and of further potential CH4 flux components within forest ecosystems. Ongoing development of laser absorption-based optical instruments, resulting in enhanced measurement stability, precision and sampling speed, has recently improved the prospects for meaningful eddy-covariance measurements at sites with presumably low CH4 fluxes, hence prone to reach the flux detection limit. At present, we are launching eddy-covariance CH4 measurements at a long-running ICOS flux tower site (Hainich National Park, Germany), located in a semi natural, unmanaged, beech dominated forest. Eddy-covariance measurements will be conducted with a laser spectrometer for parallel CH4, H2Ov and CO2 measurements (FGGA, Los Gatos Research, USA). Independent observations of the CO2 flux by the FGGA and a standard Infrared Gas Analyser (LI-7200, LI-COR, USA) will allow to evaluate data quality of measured CH4 fluxes. Here, we want to present first results with a focus on uncertainties of the calculated CH4 fluxes with regard to instrument precision, data processing and site conditions. In future, we plan to compare eddy-covariance flux estimates to side-by-side turbulent flux observations from a novel eddy accumulation system. Furthermore, soil CH4 fluxes will be measured with four automated chambers situated within the tower footprint. Based on a previous soil chamber study at the same site, we expect the Hainich forest site to act as a CH4 sink. However, we hypothesize that our

  16. Measurement of Urban fluxes of CO2 and water

    NASA Astrophysics Data System (ADS)

    Grimmond, S.; Crawford, B.; Offerle, B.; Hom, J.

    2006-05-01

    Measurements of surface-atmosphere fluxes of carbon dioxide (FCO2) and latent heat in urban environments are rare even though cities are a major source of atmospheric CO2 and users of water. In this paper, an overview of urban FCO2 measurements will be presented to illustrate how and where such measurements are being conducted and emerging results to date. Most of these studies have been conducted over short periods of time; few studies have considered annual sources/sinks. More investigations have been conducted, and are planned, in European cities than elsewhere, most commonly in areas of medium density urban development. The most dense urban sites are significant net sources of carbon. However, in areas where there is large amounts of vegetation present, there is a net sink of carbon during the summertime. In the second part of the presentation, more detailed attention will be directed to an ongoing measurement program in Baltimore, MD (part of the Baltimore Ecosystem Study). Eddy covariance instrumentation mounted on a tall-tower at 41.2 m has continuously measured local-scale fluxes of carbon dioxide from a suburban environment since 2001. Several features make this particular study unique: 1) for an urban area, the study site is extensively vegetated, 2) the period of record (2001-2005) is among the longest available for urban FCO2 measurements, 3) both closed-path and open-path infrared gas analyzers are used for observations, and 4) several unique data quality control and gap-filling methods have been developed for use in an urban environment. Additionally, detailed surface datasets and GIS software are used to perform flux source area analysis. Results from Baltimore indicate that FCO2 is very dependent on source area land-cover characteristics, particularly the proportion of vegetated and built surfaces. Over the course of a year, the urban surface is a strong net source of CO2, though there is considerable inter-annual variability depending on

  17. The 3He flux gauge in the Sargasso Sea: a determination of physical nutrient fluxes to the euphotic zone at the Bermuda Atlantic time series site

    NASA Astrophysics Data System (ADS)

    Stanley, R. H. R.; Jenkins, W. J.; Doney, S. C.; Lott, D. E., III

    2015-03-01

    We provide a new determination of the annual mean physical supply of nitrate to the euphotic zone in the western subtropical North Atlantic based on a three year time-series of measurements of tritiugenic 3He from 2003 to 2006 in the surface ocean at the Bermuda Atlantic Time-series Study (BATS) site. We combine the 3He data with a sophisticated noble gas calibrated air-sea gas exchange model to constrain the 3He flux across the sea-air interface, which must closely balance the upward 3He flux into the euphotic zone. The product of the 3He flux and the observed subsurface nitrate-3He relationship provides an estimate of the minimum rate of new production in the BATS region. We also applied the gas model to an earlier time series of 3He measurements at BATS in order to recalculate new production fluxes for the 1985 to 1988 time period. The observations, despite an almost three-fold difference in the nitrate-3He relationship, yield a roughly consistent estimate of nitrate flux. In particular, the nitrate flux from 2003-2006 is estimated to be 0.65 ± 0.3 mol m-2 y-1, which is ~ 40% smaller than the calculated flux for the period from 1985 to 1988. The difference between the time periods, which is barely significant, may be due to a real difference in new production resulting from changes in subtropical mode water formation. Overall, the nitrate flux is larger than most estimates of export fluxes or net community production fluxes made locally for BATS site, which is likely a reflection of the larger spatial scale covered by the 3He technique and potentially also by decoupling of 3He and nitrate during obduction of water masses from the main thermocline into the upper ocean.

  18. Heat flux measurement in SSME turbine blade tester

    NASA Astrophysics Data System (ADS)

    Liebert, Curt H.

    1990-11-01

    Surface heat flux values were measured in the turbine blade thermal cycling tester located at NASA-Marshall. This is the first time heat flux has been measured in a space shuttle main engine turbopump environment. Plots of transient and quasi-steady state heat flux data over a range of about 0 to 15 MW/sq m are presented. Data were obtained with a miniature heat flux gage device developed at NASA-Lewis. The results from these tests are being incorporated into turbine design models. Also, these gages are being considered for airfoil surface heat flux measurement on turbine vanes mounted in SSME turbopump test bed engine nozzles at Marshall. Heat flux effects that might be observed on degraded vanes are discussed.

  19. Heat flux measurement in SSME turbine blade tester

    NASA Astrophysics Data System (ADS)

    Liebert, Curt H.

    Surface heat flux values were measured in the turbine blade thermal cycling tester located at NASA-Marshall. This is the first time heat flux has been measured in a space shuttle main engine turbopump environment. Plots of transient and quasi-steady state heat flux data over a range of about 0 to 15 MW/sq m are presented. Data were obtained with a miniature heat flux gage device developed at NASA-Lewis. The results from these tests are being incorporated into turbine design models. Also, these gages are being considered for airfoil surface heat flux measurement on turbine vanes mounted in SSME turbopump test bed engine nozzles at Marshall. Heat flux effects that might be observed on degraded vanes are discussed.

  20. Heat flux measurement in SSME turbine blade tester

    NASA Technical Reports Server (NTRS)

    Liebert, Curt H.

    1990-01-01

    Surface heat flux values were measured in the turbine blade thermal cycling tester located at NASA-Marshall. This is the first time heat flux has been measured in a space shuttle main engine turbopump environment. Plots of transient and quasi-steady state heat flux data over a range of about 0 to 15 MW/sq m are presented. Data were obtained with a miniature heat flux gage device developed at NASA-Lewis. The results from these tests are being incorporated into turbine design models. Also, these gages are being considered for airfoil surface heat flux measurement on turbine vanes mounted in SSME turbopump test bed engine nozzles at Marshall. Heat flux effects that might be observed on degraded vanes are discussed.

  1. BOREAS TGB-3 CH4 and CO2 Chamber Flux Data over NSA Upland Sites

    NASA Technical Reports Server (NTRS)

    Savage, Kathleen; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor); Moore, Tim R.

    2000-01-01

    The BOReal Ecosystem-Atmosphere Study Trace Gas Biogeochemistry (BOREAS TGB-3) team collected methane and carbon dioxide (CH4, CO2) chamber flux measurements at the Northern Study Area (NSA) Fen, Old Black Spruce (OBS), Young Jack Pine (YJP), and auxiliary sites along Gillam Road and the 1989 burn site. Gas samples were extracted from chambers and analyzed at the NSA lab facility approximately every 7 days during May to September 1994 and June to October 1996. The data are provided in tabular ASCII files.

  2. BOREAS TE-1 CO2 and CH4 Flux Data Over the SSA-OBS Site

    NASA Technical Reports Server (NTRS)

    Anderson, Darwin; Papagno, Andrea; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor)

    2000-01-01

    The BOREAS TE-1 team collected various data to characterize the soil-plant systems in the BOREAS SSA. Particular emphasis was placed on nutrient biochemistry, the stores and transfers of organic carbon, and how the characteristics were related to measured methane fluxes. The overall transect in the Prince Albert National Park (Saskatchewan, Canada) included the major plant communities and related soils that occurred in that section of the boreal forest. Soil physical, chemical, and biological measurements along the transect were used to characterize the static environment, which allowed them to be related to methane fluxes. Chamber techniques were used to provide a measure of methane production/uptake. Chamber measurements coupled with flask sampling were used to determine the seasonality of methane fluxes. This particular data set contains carbon dioxide and methane flux values from the SSA-OBS site. The data were collected from 09-Jun to 04-Sep-1994. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  3. A bottom-up perspective of the net land methanol flux: synthesis of global eddy covariance flux measurements

    NASA Astrophysics Data System (ADS)

    Wohlfahrt, Georg; Amelynck, Crist; Ammann, Christof; Arneth, Almut; Bamberger, Ines; Goldstein, Allen; Hansel, Armin; Heinesch, Bernhard; Holst, Thomas; Hörtnagl, Lukas; Karl, Thomas; Neftel, Albrecht; McKinney, Karena; Munger, William; Schade, Gunnar; Schoon, Niels

    2014-05-01

    Methanol (CH3OH) is, after methane, the second most abundant VOC in the troposphere and globally represents nearly 20% of the total biospheric VOC emissions. With typical concentrations of 1-10 ppb in the continental boundary layer, methanol plays a crucial role in atmospheric chemistry, which needs to be evaluated in the light of ongoing changes in land use and climate. Previous global methanol budgets have approached the net land flux by summing up the various emission terms (namely primary biogenic and anthropogenic emissions, plant decay and biomass burning) and by subtracting dry and wet deposition, resulting in a net land flux in the range of 75-245 Tg y-1. The data underlying these budget calculations largely stem from small-scale leaf gas exchange measurements and while recently column-integrated remotely sensed methanol concentrations have become available for constraining budget calculations, there have been few attempts to contrast model calculations with direct net ecosystem-scale methanol flux measurements. Here we use eddy covariance methanol flux measurements from 8 sites in Europe and North America to study the magnitude of and controls on the diurnal and seasonal variability in the net ecosystem methanol flux. In correspondence with leaf-level literature, our data show that methanol emission and its strong environmental and biotic control (by temperature and stomatal conductance) prevailed at the more productive (agricultural) sites and at a perturbed forest site. In contrast, at more natural, less productive sites substantial deposition of methanol occurred, in particular during periods of surface wetness. These deposition processes are poorly represented by currently available temperature/light and/or production-driven modelling algorithms. A new framework for modelling the bi-directional land-atmosphere methanol exchange is proposed which accounts for the production of methanol in leaves, the regulation of leaf methanol emission by stomatal

  4. How errors on meteorological variables impact simulated ecosystem fluxes: a case study for six French sites

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Ciais, P.; Peylin, P.; Viovy, N.; Longdoz, B.; Bonnefond, J. M.; Rambal, S.; Klumpp, K.; Olioso, A.; Cellier, P.; Maignan, F.; Eglin, T.; Calvet, J. C.

    2011-03-01

    We analyze how biases of meteorological drivers impact the calculation of ecosystem CO2, water and energy fluxes by models. To do so, we drive the same ecosystem model by meteorology from gridded products and by ''true" meteorology from local observation at eddy-covariance flux sites. The study is focused on six flux tower sites in France spanning across a 7-14 °C and 600-1040 mm yr-1 climate gradient, with forest, grassland and cropland ecosystems. We evaluate the results of the ORCHIDEE process-based model driven by four different meteorological models against the same model driven by site-observed meteorology. The evaluation is decomposed into characteristic time scales. The main result is that there are significant differences between meteorological models and local tower meteorology. The seasonal cycle of air temperature, humidity and shortwave downward radiation is reproduced correctly by all meteorological models (average R2=0.90). At sites located near the coast and influenced by sea-breeze, or located in altitude, the misfit of meteorological drivers from gridded dataproducts and tower meteorology is the largest. We show that day-to-day variations in weather are not completely well reproduced by meteorological models, with R2 between modeled grid point and measured local meteorology going from 0.35 (REMO model) to 0.70 (SAFRAN model). The bias of meteorological models impacts the flux simulation by ORCHIDEE, and thus would have an effect on regional and global budgets. The forcing error defined by the simulated flux difference resulting from prescribing modeled instead than observed local meteorology drivers to ORCHIDEE is quantified for the six studied sites and different time scales. The magnitude of this forcing error is compared to that of the model error defined as the modeled-minus-observed flux, thus containing uncertain parameterizations, parameter values, and initialization. The forcing error is the largest on a daily time scale, for which it is

  5. The Measurement of Air-Sea Fluxes

    DTIC Science & Technology

    1990-10-09

    induced by the motion of the wave (in a wave following coordinate system the rotor appears as an eddy in the wave trough). Strictly speaking, this is a...Droplet distribution and dispersion processes on breaking wind waves . jai. e . Tohoku University er. , Geophysics, 21, 1-25. Lai R.J. and O.H. Shemdin ...seaspray, Chapter 10 in Surface Waves and Fluxes: Current Theory ana Remote Sensing, G. Geernaert and W. Plant, Ed., Reidel, Holland. -4- 1 I 3. Fairall

  6. Flux measurements of greenhouse gases: A review and needs assessment

    SciTech Connect

    Batterman, S. )

    1991-01-01

    This paper reviews the theory and application of the major approaches used to measure emissive and depositional fluxes of greenhouse gases. Strengths, weaknesses and applications of the major approaches are discussed. Studies are proposed which would help validate the measurement approaches. A monitoring program and measurement strategy to measure regional and global fluxes is suggested. The major gases related to global warming are carbon dioxide and methane. Other gases, including water vapor, chlorofluorocarbons, nitrous oxide and some hydrocarbons are also radiatively important, as are ambient particulates, including carbon. The net vertical transfer or flux of chemicals from the atmosphere to the biosphere is referred to as deposition, while emission fluxes refer to transfers from surfaces to the atmosphere. The prediction and possible mitigation of climatic changes requires an understanding and quantification of both types of fluxes.

  7. Real-time diamagnetic flux measurements on ASDEX Upgrade.

    PubMed

    Giannone, L; Geiger, B; Bilato, R; Maraschek, M; Odstrčil, T; Fischer, R; Fuchs, J C; McCarthy, P J; Mertens, V; Schuhbeck, K H

    2016-05-01

    Real-time diamagnetic flux measurements are now available on ASDEX Upgrade. In contrast to the majority of diamagnetic flux measurements on other tokamaks, no analog summation of signals is necessary for measuring the change in toroidal flux or for removing contributions arising from unwanted coupling to the plasma and poloidal field coil currents. To achieve the highest possible sensitivity, the diamagnetic measurement and compensation coil integrators are triggered shortly before plasma initiation when the toroidal field coil current is close to its maximum. In this way, the integration time can be chosen to measure only the small changes in flux due to the presence of plasma. Two identical plasma discharges with positive and negative magnetic field have shown that the alignment error with respect to the plasma current is negligible. The measured diamagnetic flux is compared to that predicted by TRANSP simulations. The poloidal beta inferred from the diamagnetic flux measurement is compared to the values calculated from magnetic equilibrium reconstruction codes. The diamagnetic flux measurement and TRANSP simulation can be used together to estimate the coupled power in discharges with dominant ion cyclotron resonance heating.

  8. Chemically-resolved aerosol eddy covariance flux measurements in urban Mexico City during MILAGRO 2006

    NASA Astrophysics Data System (ADS)

    Zalakeviciute, R.; Alexander, M. L.; Allwine, E.; Jimenez, J. L.; Jobson, B. T.; Molina, L. T.; Nemitz, E.; Pressley, S. N.; VanReken, T. M.; Ulbrich, I. M.; Velasco, E.; Lamb, B. K.

    2012-08-01

    As part of the MILAGRO 2006 field campaign, the exchange of atmospheric aerosols with the urban landscape was measured from a tall tower erected in a heavily populated neighborhood of Mexico City. Urban submicron aerosol fluxes were measured using an eddy covariance method with a quadrupole aerosol mass spectrometer during a two week period in March, 2006. Nitrate and ammonium aerosol concentrations were elevated at this location near the city center compared to measurements at other urban sites. Significant downward fluxes of nitrate aerosol, averaging -0.2 μg m-2 s-1, were measured during daytime. The urban surface was not a significant source of sulfate aerosols. The measurements also showed that primary organic aerosol fluxes, approximated by hydrocarbon-like organic aerosols (HOA), displayed diurnal patterns similar to CO2 fluxes and anthropogenic urban activities. Overall, 47% of submicron organic aerosol emissions were HOA, 35% were oxygenated (OOA) and 18% were associated with biomass burning (BBOA). Organic aerosol fluxes were bi-directional, but on average HOA fluxes were 0.1 μg m-2 s-1, OOA fluxes were -0.03 μg m-2 s-1, and BBOA fluxes were -0.03 μg m-2 s-1. After accounting for size differences (PM1 vs PM2.5) and using an estimate of the black carbon component, comparison of the flux measurements with the 2006 gridded emissions inventory of Mexico City, showed that the daily-averaged total PM emission rates were essentially identical for the emission inventory and the flux measurements. However, the emission inventory included dust and metal particulate contributions, which were not included in the flux measurements. As a result, it appears that the inventory underestimates overall PM emissions for this location.

  9. Micro-scale modelling of energy fluxes over a small Fluxnet forest site in Denmark

    NASA Astrophysics Data System (ADS)

    Sogachev, A.; Dellwik, E.; Boegh, E.

    2012-12-01

    Most forests, especially in Europe, are too small to fulfil strict fetch requirements associated with idealized flux observations in undisturbed, homogeneous flow. As a consequence of limited fetch, the flux measured above the canopy will often deviate from the source strength underlying the measurements. Since representative measurements focused on heterogeneous effects are scarce because of demanding experimental arrangements the numerical modelling are often recruited for analysis of these deviations. During the last years the atmospheric boundary layer (ABL) model SCADIS (scalar distribution model; Sogachev et al., 2002, Tellus 54B, 784-819) has been successfully applied especially in the region adjacent to a forest edge in order to improve flux data interpretation. Most of the analyses were done for the neutral case and in two-dimensional mode. When analyzing the effect of a forest edge on both flow and passive scalar properties, numerical studies showed that sources located on a soil surface are major contributors to wave-like flux behavior downwind of the leading edge, and that it is important to distinguish the effects of ground sources from those of the foliage. In the present work, we apply the SCADIS model with enhanced turbulence closure including buoyancy for investigation of the daily course of energy fluxes over patchy forested terrain in Denmark, where the model is used in three-dimensional mode. The modelling results (with 50 m horizontal resolution) are in good qualitative agreement with high-resolution (60 m and 120 m) remote-sensing data of the effective surface temperature of the area near the site in focus: the forested areas are colder in daytime and warmer in night time than surrounding open areas. In contrast to the remote sensing approach, SCADIS provides the information about spatial distribution of latent and sensible heat vertical fluxes in the whole ABL. Topography and forest edge effects result in vertical turbulent fluxes that

  10. An inter-comparison of surface energy flux measurement systems used during FIFE, 1987

    NASA Technical Reports Server (NTRS)

    Nie, D.; Kanemasu, E. T.; Fritschen, L. J.; Weaver, H.; Smith, E. A.; Verma, S. B.; Field, R. T.; Kustas, W.; Stewart, J. B.

    1990-01-01

    During the first International Satellite Land Surface Climatology Program Field Experiment (FIFE-87), surface energy fluxes were measured at 22 flux sites by nine groups of scientists using different measuring systems. A rover Bowen ratio station was taken to nearly all the flux stations to serve as a reference for estimating the instrument related differences. The rover system was installed within a few meters from the host instrument of a site. Net radiation, Bowen ratio, and latent heat fluxes were compared between the rover and the host for the stations visited. Linear regression analysis was used to examine the relationship between rover measurements and host measurements. These inter-comparisons are needed to examine the influence of instrumentation on measurement uncertainty. Highly significant effects of instrument type were detected from these comparisons. Instruments of the same type showed average differences of less than 5 percent for net radiation, 10 percent for Bowen ratio, and 6 percent for latent heat flux. The corresponding average differences for different types of instruments can be up to 10, 30, and 20 percent respectively. The Didcot net radiometer gave higher net radiation while the Swissteco type showed lower values, as compared to the corrected REBS model. The 4-way components methed and the Thornswaite type give similar values to the REBS. The SERBS type Bowen ratio systems exhibit slightly lower Bowen ratios and thus higher latent heat fluxes, compared to the AZET systems. Eddy correlation systems showed slightly lower latent heat flux in comparison to the Bowen ratio systems.

  11. Quantifying the "chamber effect" in CO2 flux measurements

    NASA Astrophysics Data System (ADS)

    Vihermaa, Leena; Childs, Amy; Long, Hazel; Waldron, Susan

    2014-05-01

    The significance of aquatic CO2 emissions has received attention in recent years. For example annual aquatic emissions in the Amazon basin have been estimated as 500 Mt of carbon1. Methods for determining the flux rates include eddy covariance flux tower measurements, flux estimates calculated from partial pressure of CO2 (pCO2) in water and the use floating flux chambers connected to an infra-red gas analyser. The flux chamber method is often used because it is portable, cheaper and allows smaller scale measurements. It is also a direct method and hence avoids problems related to the estimation of the gas transfer coefficient that is required when fluxes are calculated from pCO2. However, the use of a floating chamber may influence the flux measurements obtained. The chamber shields the water underneath from effects of wind which could lead to lower flux estimates. Wind increases the flux rate by i) causing waves which increase the surface area for efflux, and ii) removing CO2 build up above the water surface, hence maintaining a higher concentration gradient. Many floating chambers have an underwater extension of the chamber below the float to ensure better seal to water surface and to prevent any ingress of atmospheric air when waves rock the chamber. This extension may cause additional turbulence in flowing water and hence lead to overestimation of flux rates. Some groups have also used a small fan in the chamber headspace to ensure thorough mixing of air in the chamber. This may create turbulence inside the chamber which could increase the flux rate. Here we present results on the effects of different chamber designs on the detected flux rates. 1Richey et al. 2002. Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. Nature 416: 617-620.

  12. The potential of carbonyl sulfide as a proxy for gross primary production at flux tower sites

    NASA Astrophysics Data System (ADS)

    Blonquist, J. Mark, Jr.

    Seasonal dynamics of atmospheric carbonyl sulfide (OCS) at regional and continental scales and plant OCS exchange at the leaf level have shown a close relationship with those for CO2. CO2 has both sinks and sources within terrestrial ecosystems, but the primary terrestrial exchange for OCS is thought to be leaf uptake, suggesting potential for OCS uptake as a proxy for gross primary production (GPP). The utility of OCS uptake as a GPP proxy in micrometeorological studies of biosphere-atmosphere CO2 exchange was explored by applying theoretical concepts from earlier OCS studies to estimate GPP. Measured net ecosystem exchange (NEE) was partitioned using the ratio of measured vertical mole fraction gradients of OCS and CO2. At the Harvard Forest AmeriFlux site, measured CO2 and OCS vertical gradients were correlated, and were related to NEE and GPP, respectively. Estimates of GPP from OCS-based NEE partitioning were similar to those from established regression techniques, providing evidence that OCS uptake can potentially serve as a GPP proxy. Measured vertical CO 2 mole fraction gradients at five other AmeriFlux sites were used to project anticipated vertical OCS mole fraction gradients to provide indication of potential OCS signal magnitudes at sites where no OCS measurements were made. Projected OCS gradients at sites with short canopies were greater than those in forests, including measured OCS gradients at Harvard Forest, indicating greater potential for OCS uptake as a GPP proxy at these sites. This exploratory study suggests that continued investigation of linkages between OCS and GPP is warranted.

  13. Calibration system for measuring the radon flux density.

    PubMed

    Onishchenko, A; Zhukovsky, M; Bastrikov, V

    2015-06-01

    The measurement of radon flux from soil surface is the useful tool for the assessment of radon-prone areas and monitoring of radon releases from uranium mining and milling residues. The accumulation chambers with hollow headspace and chambers with activated charcoal are the most used devices for these purposes. Systematic errors of the measurements strongly depend on the geometry of the chamber and diffusion coefficient of the radon in soil. The calibration system for the attestation of devices for radon flux measurements was constructed. The calibration measurements of accumulation chambers and chambers with activated charcoal were conducted. The good agreement between the results of 2D modelling of radon flux and measurements results was observed. It was demonstrated that reliable measurements of radon flux can be obtained by chambers with activated charcoal (equivalent volume ~75 l) or by accumulation chambers with hollow headspace of ~7-10 l and volume/surface ratio (height) of >15 cm.

  14. FLUX MEASUREMENTS FROM A TALL TOWER IN A COMPLEX LANDSCAPE

    SciTech Connect

    Kurzeja, R.; Weber, A.; Chiswell, S.; Parker, M.

    2010-07-22

    The accuracy and representativeness of flux measurements from a tall tower in a complex landscape was assessed by examining the vertical and sector variability of the ratio of wind speed to momentum flux and the ratio of vertical advective to eddy flux of heat. The 30-60 m ratios were consistent with theoretical predictions which indicate well mixed flux footprints. Some variation with sector was observed that were consistent with upstream roughness. Vertical advection was negligible compared with vertical flux except for a few sectors at night. This implies minor influence from internal boundary layers. Flux accuracy is a function of sector and stability but 30-60 m fluxes were found to be generally representative of the surrounding landscape. This paper will study flux data from a 300 m tower, with 4 levels of instruments, in a complex landscape. The surrounding landscape will be characterized in terms of the variation in the ratio of mean wind speed to momentum flux as a function of height and wind direction. The importance of local advection will be assessed by comparing vertical advection with eddy fluxes for momentum and heat.

  15. Metabolic flux analysis using 13C peptide label measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    13C metabolic flux analysis (MFA) has become the experimental method of choice to investigate cellular metabolism. MFA has established flux maps of central metabolism for dozens of microbes, cell cultures, and plant seeds. Steady-state MFA utilizes isotopic labeling measurements of amino acids obtai...

  16. Uncertainty analysis of the Operational Simplified Surface Energy Balance (SSEBop) model at multiple flux tower sites

    NASA Astrophysics Data System (ADS)

    Chen, Mingshi; Senay, Gabriel B.; Singh, Ramesh K.; Verdin, James P.

    2016-05-01

    Evapotranspiration (ET) is an important component of the water cycle - ET from the land surface returns approximately 60% of the global precipitation back to the atmosphere. ET also plays an important role in energy transport among the biosphere, atmosphere, and hydrosphere. Current regional to global and daily to annual ET estimation relies mainly on surface energy balance (SEB) ET models or statistical and empirical methods driven by remote sensing data and various climatological databases. These models have uncertainties due to inevitable input errors, poorly defined parameters, and inadequate model structures. The eddy covariance measurements on water, energy, and carbon fluxes at the AmeriFlux tower sites provide an opportunity to assess the ET modeling uncertainties. In this study, we focused on uncertainty analysis of the Operational Simplified Surface Energy Balance (SSEBop) model for ET estimation at multiple AmeriFlux tower sites with diverse land cover characteristics and climatic conditions. The 8-day composite 1-km MODerate resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) was used as input land surface temperature for the SSEBop algorithms. The other input data were taken from the AmeriFlux database. Results of statistical analysis indicated that the SSEBop model performed well in estimating ET with an R2 of 0.86 between estimated ET and eddy covariance measurements at 42 AmeriFlux tower sites during 2001-2007. It was encouraging to see that the best performance was observed for croplands, where R2 was 0.92 with a root mean square error of 13 mm/month. The uncertainties or random errors from input variables and parameters of the SSEBop model led to monthly ET estimates with relative errors less than 20% across multiple flux tower sites distributed across different biomes. This uncertainty of the SSEBop model lies within the error range of other SEB models, suggesting systematic error or bias of the SSEBop model is within the

  17. Uncertainty analysis of the Operational Simplified Surface Energy Balance (SSEBop) model at multiple flux tower sites

    USGS Publications Warehouse

    Chen, Mingshi; Senay, Gabriel B.; Singh, Ramesh K.; Verdin, James P.

    2016-01-01

    Evapotranspiration (ET) is an important component of the water cycle – ET from the land surface returns approximately 60% of the global precipitation back to the atmosphere. ET also plays an important role in energy transport among the biosphere, atmosphere, and hydrosphere. Current regional to global and daily to annual ET estimation relies mainly on surface energy balance (SEB) ET models or statistical and empirical methods driven by remote sensing data and various climatological databases. These models have uncertainties due to inevitable input errors, poorly defined parameters, and inadequate model structures. The eddy covariance measurements on water, energy, and carbon fluxes at the AmeriFlux tower sites provide an opportunity to assess the ET modeling uncertainties. In this study, we focused on uncertainty analysis of the Operational Simplified Surface Energy Balance (SSEBop) model for ET estimation at multiple AmeriFlux tower sites with diverse land cover characteristics and climatic conditions. The 8-day composite 1-km MODerate resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) was used as input land surface temperature for the SSEBop algorithms. The other input data were taken from the AmeriFlux database. Results of statistical analysis indicated that the SSEBop model performed well in estimating ET with an R2 of 0.86 between estimated ET and eddy covariance measurements at 42 AmeriFlux tower sites during 2001–2007. It was encouraging to see that the best performance was observed for croplands, where R2 was 0.92 with a root mean square error of 13 mm/month. The uncertainties or random errors from input variables and parameters of the SSEBop model led to monthly ET estimates with relative errors less than 20% across multiple flux tower sites distributed across different biomes. This uncertainty of the SSEBop model lies within the error range of other SEB models, suggesting systematic error or bias of the SSEBop model is within

  18. The 3He flux gauge in the Sargasso Sea: a determination of physical nutrient fluxes to the euphotic zone at the Bermuda Atlantic Time-series Site

    NASA Astrophysics Data System (ADS)

    Stanley, R. H. R.; Jenkins, W. J.; Doney, S. C.; Lott, D. E., III

    2015-09-01

    Significant rates of primary production occur in the oligotrophic ocean, without any measurable nutrients present in the mixed layer, fueling a scientific paradox that has lasted for decades. Here, we provide a new determination of the annual mean physical supply of nitrate to the euphotic zone in the western subtropical North Atlantic. We combine a 3-year time series of measurements of tritiugenic 3He from 2003 to 2006 in the surface ocean at the Bermuda Atlantic Time-series Study (BATS) site with a sophisticated noble gas calibrated air-sea gas exchange model to constrain the 3He flux across the sea-air interface, which must closely mirror the upward 3He flux into the euphotic zone. The product of the 3He flux and the observed subsurface nitrate-3He relationship provides an estimate of the minimum rate of new production in the BATS region. We also apply the gas model to an earlier time series of 3He measurements at BATS in order to recalculate new production fluxes for the 1985 to 1988 time period. The observations, despite an almost 3-fold difference in the nitrate-3He relationship, yield a roughly consistent estimate of nitrate flux. In particular, the nitrate flux from 2003 to 2006 is estimated to be 0.65 ± 0.14 mol m-2 yr-1, which is ~40 % smaller than the calculated flux for the period from 1985 to 1988. The difference in nitrate flux between the time periods may be signifying a real difference in new production resulting from changes in subtropical mode water formation. Overall, the nitrate flux is larger than most estimates of export fluxes or net community production fluxes made locally for the BATS site, which is likely a reflection of the larger spatial scale covered by the 3He technique and potentially also by the decoupling of 3He and nitrate during the obduction of water masses from the main thermocline into the upper ocean. The upward nitrate flux is certainly large enough to support observed rates of primary production at BATS and more generally

  19. Advances in the Surface Renewal Flux Measurement Method

    NASA Astrophysics Data System (ADS)

    Shapland, T. M.; McElrone, A.; Paw U, K. T.; Snyder, R. L.

    2011-12-01

    The measurement of ecosystem-scale energy and mass fluxes between the planetary surface and the atmosphere is crucial for understanding geophysical processes. Surface renewal is a flux measurement technique based on analyzing the turbulent coherent structures that interact with the surface. It is a less expensive technique because it does not require fast-response velocity measurements, but only a fast-response scalar measurement. It is therefore also a useful tool for the study of the global cycling of trace gases. Currently, surface renewal requires calibration against another flux measurement technique, such as eddy covariance, to account for the linear bias of its measurements. We present two advances in the surface renewal theory and methodology that bring the technique closer to becoming a fully independent flux measurement method. The first advance develops the theory of turbulent coherent structure transport associated with the different scales of coherent structures. A novel method was developed for identifying the scalar change rate within structures at different scales. Our results suggest that for canopies less than one meter in height, the second smallest coherent structure scale dominates the energy and mass flux process. Using the method for resolving the scalar exchange rate of the second smallest coherent structure scale, calibration is unnecessary for surface renewal measurements over short canopies. This study forms the foundation for analysis over more complex surfaces. The second advance is a sensor frequency response correction for measuring the sensible heat flux via surface renewal. Inexpensive fine-wire thermocouples are frequently used to record high frequency temperature data in the surface renewal technique. The sensible heat flux is used in conjunction with net radiation and ground heat flux measurements to determine the latent heat flux as the energy balance residual. The robust thermocouples commonly used in field experiments

  20. Sensible heat bias in open-path eddy covariance carbon dioxide flux measurements

    NASA Astrophysics Data System (ADS)

    Sonnentag, O.; Helbig, M.; Karoline, W.; Humphreys, E.; Quinton, W. L.; Bogoev, I.

    2015-12-01

    The widely observed differences between net carbon dioxide (CO2) flux estimates derived from eddy covariance systems deploying open- and closed-path infrared gas analyzers (IRGAs) pose a major challenge for site intercomparison studies. Our limited knowledge about potential systematic biases in the derivation of CO2 flux estimates by these two types of systems hampers our ability to detect significant differences in CO2 flux measurements made at contrasting ecosystems. Here we explore potential systematic biases in CO2 fluxes measured with two open-path IRGAs. Comparison of fluxes from open- (EC150 & IRGASON, Campbell Scientific Inc.) and (en)closed-path IRGAs (LI7000 & LI7200, LI-COR Biosciences) at a northern peatland and a northern boreal forest site revealed consistent differences in CO2 flux estimates across a wide range of environmental conditions. These differences directly scaled with the magnitude of the sensible heat flux indicating a selectively systematic bias in open-path CO2 flux measurements due to the temperature sensitivity of the CO2 density measurements. We present two empirical correction procedures: the "direct" approach requires data from a limited period of concurrent CO2 flux measurements by open- and closed-path IRGA-based eddy covariance systems, whereas the second approach only requires wintertime CO2 flux data from the open-path IRGA. The "direct" approach effectively removes the bias in the open-path CO2 flux measurements and results in remaining differences with the closed-path CO2 fluxes smaller than 0.5 µmol m-2 s-1. In contrast, the "wintertime" approach seems to overcompensate for the sensible heat effects with differences remaining between 0.9 µmol m-2 s-1 and 1.8 µmol m-2 s-1. When a high-frequency air temperature is used to compensate for the temperature sensitivity of the CO2 density measurements, open- and closed-path CO2 flux agree within ±0.5 µmol m-2 s-1, similar to the "direct" post-processing correction. These

  1. The Potential of Carbonyl Sulfide as a Tracer for Gross Primary Productivity at Flux Tower Sites

    NASA Astrophysics Data System (ADS)

    Blonquist, J.; Montzka, S. A.; Yakir, D.; Desai, A. R.; Dragoni, D.; Griffis, T. J.; Monson, R. K.; Munger, J. W.; Scott, R. L.; Bowling, D. R.

    2010-12-01

    Regional/continental scale studies of atmospheric carbonyl sulfide (OCS) seasonal dynamics and leaf level studies of plant OCS uptake have shown a close relationship to CO2 dynamics and uptake, suggesting potential for OCS as a tracer for gross primary productivity (GPP). Canopy CO2 and OCS differences (mole fraction within canopy minus that above canopy) at a temperate deciduous forest (Harvard Forest AmeriFlux site) were analyzed relative to net ecosystem exchange (NEE) and GPP, respectively. Canopy CO2 and OCS vertical gradients (CO2 and OCS differences divided by within and above canopy measurement height differences) were used to calculate ecosystem relative uptake (ERU; relative canopy OCS gradient divided by relative canopy CO2 gradient, where relative gradients are gradients normalized by above canopy mole fractions), from which GPP was estimated using an equation that assumes OCS follows the same physical pathway as CO2 into plant leaves and where GPP / NEE was proportional to OCS gradient / CO2 gradient. Additionally, canopy CO2 differences from five other AmeriFlux sites were analyzed, and OCS differences were projected from these differences (via an assumed ERU) to further evaluate OCS as a potential GPP tracer. At Harvard Forest, canopy CO2 differences were related to NEE (y = 0.041x + 0.046, r2 = 0.14, P < 0.025) and OCS differences were related to GPP (y = 0.43x - 2.0, r2 = 0.18, P < 0.1), indicating the influence of canopy uptake on canopy differences. Relative canopy OCS and CO2 gradients were linearly correlated (slope = 4.4, intercept = -0.00028, r2 = 0.69, P < 0.025), indicating CO2 and OCS dynamics were likely controlled by similar mechanisms. Estimates of GPP derived from OCS and from temperature-based NEE partitioning showed a strong linear relationship (slope = 1.2, intercept = 3.1, r2 = 0.99, P < 0.0005), indicating the potential of OCS as a GPP tracer. As with Harvard Forest, canopy CO2 differences at the other AmeriFlux sites were related

  2. Airflows and turbulent flux measurements in mountainous terrain: Part 1. Canopy and local effects

    USGS Publications Warehouse

    Turnipseed, Andrew A.; Anderson, Dean E.; Blanken, Peter D.; Baugh, William M.; Monson, Russell K.

    2003-01-01

    We have studied the effects of local topography and canopy structure on turbulent flux measurements at a site located in mountainous terrain within a subalpine, coniferous forest. Our primary aim was to determine whether the complex terrain of the site affects the accuracy of eddy flux measurements from a practical perspective. We observed displacement heights, roughness lengths, spectral peaks, turbulent length scales, and profiles of turbulent intensities that were comparable in magnitude and pattern to those reported for forest canopies in simpler terrain. We conclude that in many of these statistical measures, the local canopy exerts considerably more influence than does topographical complexity. Lack of vertical flux divergence and modeling suggests that the flux footprints for the site are within the standards acceptable for the application of flux statistics. We investigated three different methods of coordinate rotation: double rotation (DR), triple rotation (TR), and planar-fit rotation (PF). Significant variability in rotation angles at low wind speeds was encountered with the commonly used DR and TR methods, as opposed to the PF method, causing some overestimation of the fluxes. However, these differences in fluxes were small when applied to large datasets involving sensible heat and CO2 fluxes. We observed evidence of frequent drainage flows near the ground during stable, stratified conditions at night. Concurrent with the appearance of these flows, we observed a positive bias in the mean vertical wind speed, presumably due to subtle topographic variations inducing a flow convergence below the measurement sensors. In the presence of such drainage flows, advection of scalars and non-zero bias in the mean vertical wind speed can complicate closure of the mass conservation budget at the site.

  3. Key to GHG fluxes from organic soils: site characteristics, agricultural practices or water table management?

    NASA Astrophysics Data System (ADS)

    Tiemeyer, Bärbel

    2015-04-01

    Drained peatlands are hotspots of greenhouse gas (GHG) emissions. Agriculture is the major land use type for peatlands in Germany and other European countries, but strongly varies in its intensity regarding the groundwater level and the agricultural management. Although the mean annual water table depth is sometimes proposed as an overall predictor for GHG emissions, there is a strong variability of its effects on different peatlands. Furthermore, re-wetting measures generally decrease carbon dioxide emissions, but may strongly increase methane emissions. We synthesized 250 annual GHG budgets for 120 different sites in 13 German peatlands. Carbon dioxide (net ecosystem exchange and ecosystem respiration), nitrous oxide and methane fluxes were measured with transparent and opaque manual chambers. Land management ranged from very intensive use with arable land or grassland with up to five cuts per year to partially or completely re-wetted peatlands. Besides the GHG fluxes, biomass yield, fertilisation, groundwater level, climatic data, vegetation composition and soil properties were measured. Overall, we found a large variability of the total GHG budget ranging from small uptakes to extremely high emissions (> 70 t CO2-equivalents/(ha yr)). At nearly all sites, carbon dioxide was the major component of the GHG budget. Site conditions, especially the nitrogen content of the unsaturated zone and the intra-annual water level distribution, controlled the GHG emissions of the agricultural sites. Although these factors are influenced by natural conditions (peat type, regional hydrology), they could be modified by an improved water management. Agricultural management such as the number of cuts had only a minor influence on the GHG budgets. At the level of individual peatlands, higher water levels always decreased carbon dioxide emissions. In nearly all cases, the trade-off between reduced carbon dioxide and increased methane emissions turned out in favour of the re

  4. Flux Measurements of Volatile Organic Compounds from an Urban Landscape

    SciTech Connect

    Velasco, E.; Lamb, Brian K.; Pressley, S.; Allwine, Eugene J.; Westberg, Halvor; Jobson, B Tom T.; Alexander, M. Lizabeth; Prazeller, Peter; Molina, Luisa; Molina, Mario J.

    2005-10-19

    Direct measurements of volatile organic compound (VOC) emissions that include all anthropogenic and biogenic emission sources in urban areas are a missing requirement to evaluate emission inventories and constrain current photochemical modelling practices. Here we demonstrate the use of micrometeorological techniques coupled with fast-response sensors to measure urban VOC fluxes from a neighborhood of Mexico City, where the spatial variability of surface cover and roughness is high. Fluxes of olefins, methanol, acetone, toluene and C2-benzenes were measured and compared with the local gridded emission inventory. VOC fluxes exhibited a clear diurnal pattern with a strong relationship to vehicular traffic. Recent photochemical modeling results suggest that VOC emissions are significantly underestimated in Mexico City1, but the measured VOC fluxes described here indicate that the official emission inventory2 is essentially correct. Thus, other explanations are needed to explain the photochemical modelling results.

  5. Measurement of emission fluxes from Technical Area 54, Area G and L. Final report

    SciTech Connect

    Eklund, B.

    1995-03-15

    The emission flux (mass/time-area) of tritiated water from TA-54 was measured to support the characterization of radioactive air emissions from waste sites for the Radioactive Air Emissions Management (RAEM) program and for the Area G Performance Assessment. Measurements were made at over 180 locations during the summers of 1993 and 1994, including randomly selected locations across Area G, three suspected areas of contamination at Area G, and the property surrounding TA-54. The emission fluxes of radon were measured at six locations and volatile organic compounds (VOCs) at 30 locations. Monitoring was performed at each location over a several-hour period using the U.S. EPA flux chamber approach. Separate samples for tritiated water, radon, and VOCs were collected and analyzed in off-site laboratories. The measured tritiated water emission fluxes varied over several orders of magnitude, from background levels of about 3 pCi/m{sup 2}-min to 9.69 x 10{sup 6} pCi/m{sup 2}-min near a disposal shaft. Low levels of tritiated water were found to have migrated into Pajarito Canyon, directly south of Area G. The tritium flux data were used to generate an estimated annual emission rate of 14 Curies/yr for all of Area G, with the majority of this activity being emitted from relatively small areas adjacent to several disposal shafts. The estimated total annual release is less than 1% of the total tritium release from all LANL in 1992 and results in a negligible off-site dose. Based on the limited data available, the average emission flux of radon from Area G is estimated to be 8.1 pCi/m{sup 2}-min. The measured emission fluxes of VOCs were < 100 {mu}g/m{sup 2}-min, which is small compared with fluxes typically measured at hazardous waste landfills. The air quality impacts of these releases were evaluated in a separate report.

  6. A Preliminary Study of CO2 Flux Measurements by Lidar

    NASA Technical Reports Server (NTRS)

    Gibert, Fabien; Koch, Grady J.; Beyon, Jeffrey Y.; Hilton, T.; Davis, Kenneth J.; Andrews, Arlyn; Ismail, Syed; Singh, Upendra N.

    2008-01-01

    A mechanistic understanding of the global carbon cycle requires quantification of terrestrial ecosystem CO2 fluxes at regional scales. In this paper, we analyze the potential of a Doppler DIAL system to make flux measurements of atmospheric CO2 using the eddy-covariance and boundary layer budget methods and present results from a ground based experiment. The goal of this study is to put CO2 flux point measurements in a mesoscale context. In June 2007, a field experiment combining a 2-m Doppler Heterodyne Differential Absorption Lidar (HDIAL) and in-situ sensors of a 447-m tall tower (WLEF) took place in Wisconsin. The HDIAL measures simultaneously: 1) CO2 mixing ratio, 2) atmosphere structure via aerosol backscatter and 3) radial velocity. We demonstrate how to synthesize these data into regional flux estimates. Lidar-inferred fluxes are compared with eddy-covariance fluxes obtained in-situ at 396m AGL from the tower. In cases where the lidar was not yet able to measure the fluxes with acceptable precision, we discuss possible modifications to improve system performance.

  7. Estimation of surface heat and moisture fluxes over a prairie grassland. II - Two-dimensional time filtering and site variability

    NASA Technical Reports Server (NTRS)

    Crosson, William L.; Smith, Eric A.

    1992-01-01

    The behavior of in situ measurements of surface fluxes obtained during FIFE 1987 is examined by using correlative and spectral techniques in order to assess the significance of fluctuations on various time scales, from subdiurnal up to synoptic, intraseasonal, and annual scales. The objectives of this analysis are: (1) to determine which temporal scales have a significant impact on areal averaged fluxes and (2) to design a procedure for filtering an extended flux time series that preserves the basic diurnal features and longer time scales while removing high frequency noise that cannot be attributed to site-induced variation. These objectives are accomplished through the use of a two-dimensional cross-time Fourier transform, which serves to separate processes inherently related to diurnal and subdiurnal variability from those which impact flux variations on the longer time scales. A filtering procedure is desirable before the measurements are utilized as input with an experimental biosphere model, to insure that model based intercomparisons at multiple sites are uncontaminated by input variance not related to true site behavior. Analysis of the spectral decomposition indicates that subdiurnal time scales having periods shorter than 6 hours have little site-to-site consistency and therefore little impact on areal integrated fluxes.

  8. A calorimeter for neutron flux measurement. Final report

    SciTech Connect

    Chupp, T.E.

    1993-04-01

    A calorimeter for absolute neutron flux measurement has been built and tested. The calorimeter measures the heat produced in a 10{degrees}K thick LiPb target when neutrons are captured via the {sup 6}Li(n,{sup 3}H){sup 4}He reaction. The sensitivity achieved was 1.3x10{sup 6} n/s for a 1 hour measurement. Separate flux measurements with the calorimeter and a {sup 238}U fission chamber are in agreement and show that systematic errors are less than 3%. An improved calorimeter has been built which is sensitive to 10{sup 5} n/s for a 1 hour measurement.

  9. Error Evaluation of Methyl Bromide Aerodynamic Flux Measurements

    USGS Publications Warehouse

    Majewski, M.S.

    1997-01-01

    Methyl bromide volatilization fluxes were calculated for a tarped and a nontarped field using 2 and 4 hour sampling periods. These field measurements were averaged in 8, 12, and 24 hour increments to simulate longer sampling periods. The daily flux profiles were progressively smoothed and the cumulative volatility losses increased by 20 to 30% with each longer sampling period. Error associated with the original flux measurements was determined from linear regressions of measured wind speed and air concentration as a function of height, and averaged approximately 50%. The high errors resulted from long application times, which resulted in a nonuniform source strength; and variable tarp permeability, which is influenced by temperature, moisture, and thickness. The increase in cumulative volatilization losses that resulted from longer sampling periods were within the experimental error of the flux determination method.

  10. Unsaturated zone carbon dioxide flux, mixing, and isotopic composition at the USGS Amargosa Desert Research Site

    NASA Astrophysics Data System (ADS)

    Conaway, C. H.; Thordsen, J. J.; Thomas, B.; Haase, K.; Moreo, M. T.; Walvoord, M. A.; Andraski, B. J.; Stonestrom, D. A.

    2015-12-01

    Elevated concentrations of tritium, radiocarbon, and volatile organic compounds at the USGS Amargosa Desert Research Site, adjacent to a low-level radioactive waste disposal facility, have stimulated research on factors affecting transport of these contaminants. This research includes an examination of unsaturated zone carbon dioxide (CO2) fluxes, mixing, and isotopic composition, which can help in understanding these factors. In late April 2015 we collected 76 soil-gas samples in multi-layer foil bags from existing 1.5-m deep tubes, both inside and outside the low-level waste area, as well as from two 110-m-deep multilevel gas-sampling boreholes and a distant background site. These samples were analyzed for carbon dioxide concentration and isotopic composition by direct injection into a cavity ring-down spectrometer. Graphical analysis of results indicates mixing of CO2 characteristic of the root zone (δ13C -18 ‰ VPDB), deep soil gas of the capillary fringe (-20‰), and CO2 produced by microbial respiration of organic matter disposed in the waste area trenches (-28‰). Land-surface boundary conditions are being constrained by the application of a novel non-dispersive infrared sensor and traditional concentration and flux measurements, including discrete CO2 flux data using a gas chamber method to complement continuous data from surface- and tower-based CO2 sensors. These results shed light on radionuclide and VOC mobilization and transport mechanisms from this and similar waste disposal facilities.

  11. Airborne flux measurements of biogenic volatile organic compounds over California

    NASA Astrophysics Data System (ADS)

    Misztal, P. K.; Karl, T.; Weber, R.; Jonsson, H. H.; Guenther, A. B.; Goldstein, A. H.

    2014-03-01

    Biogenic Volatile Organic Compound (BVOC) fluxes were measured onboard the CIRPAS Twin Otter aircraft as part of the California Airborne BVOC Emission Research in Natural Ecosystem Transects (CABERNET) campaign during June 2011. The airborne virtual disjunct eddy covariance (AvDEC) approach used measurements from a PTR-MS and a wind radome probe to directly determine fluxes of isoprene, MVK + MAC, methanol, monoterpenes, and MBO over ∼10 000 km of flight paths focusing on areas of California predicted to have the largest emissions of isoprene. The Fast Fourier Transform (FFT) approach was used to calculate fluxes over long transects of more than 15 km, most commonly between 50 and 150 km. The Continuous Wavelet Transformation (CWT) approach was used over the same transects to also calculate "instantaneous" fluxes with localization of both frequency and time independent of non-stationarities. Vertical flux divergence of isoprene is expected due to its relatively short lifetime and was measured directly using "racetrack" profiles at multiple altitudes. It was found to be linear and in the range 5% to 30% depending on the ratio of aircraft altitude to PBL height (z / zi). Fluxes were generally measured by flying consistently at 400 ± 50 m (a.g.l.) altitude, and extrapolated to the surface according to the determined flux divergence. The wavelet-derived surface fluxes of isoprene averaged to 2 km spatial resolution showed good correspondence to Basal Emission Factor (BEF) landcover datasets used to drive biogenic VOC (BVOC) emission models. The surface flux of isoprene was close to zero over Central Valley crops and desert shrublands, but was very high (up to 15 mg m-2 h-1) above oak woodlands, with clear dependence of emissions on temperature and oak density. Isoprene concentrations of up to 8 ppb were observed at aircraft height on the hottest days and over the dominant source regions. While isoprene emissions from agricultural crop regions, shrublands, and

  12. The chemical composition and fluxes of atmospheric wet deposition at four sites in South Africa

    NASA Astrophysics Data System (ADS)

    Conradie, E. H.; Van Zyl, P. G.; Pienaar, J. J.; Beukes, J. P.; Galy-Lacaux, C.; Venter, A. D.; Mkhatshwa, G. V.

    2016-12-01

    deposition measurements at the South African IDAF sites indicated increases in the wet deposition fluxes of S and N, and more wet deposition events with lower pH. This could be ascribed to a significant increase in anthropogenic activities and population growth in this part of South Africa with an associated increase in energy demand.

  13. Comparison of measured and modeled radiation, heat and water vapor fluxes: FIFE pilot study

    NASA Technical Reports Server (NTRS)

    Blad, Blaine L.; Verma, Shashi B.; Hubbard, Kenneth G.; Starks, Patrick; Hays, Cynthia; Norman, John M.; Waltershea, Elizabeth

    1988-01-01

    The primary objectives of the 1985 study were to test the feasibility of using radio frequency receivers to collect data from automated weather stations and to evaluate the use of the data collected by the automated weather stations for modeling the fluxes of latent heat, sensible heat, and radiation over wheat. The model Cupid was used to calculate these fluxes which were compared with fluxes of these entities measured using micrometeorological techniques. The primary objectives of the 1986 study were to measure and model reflected and emitted radiation streams at a few locations within the First International Satellite Land-Surface Climatology Project Field Experiment (FIFE) site and to compare modeled and measured latent heat and sensible heat fluxes from the prairie vegetation.

  14. Attenuation of Scalar Fluxes Measured with Spatially-displaced Sensors

    NASA Astrophysics Data System (ADS)

    Horst, T. W.; Lenschow, D. H.

    2009-02-01

    Observations from the Horizontal Array Turbulence Study (HATS) field program are used to examine the attenuation of measured scalar fluxes caused by spatial separation between the vertical velocity and scalar sensors. The HATS data show that flux attenuation for streamwise, crosswind, and vertical sensor displacements are each a function of a dimensionless, stability-dependent parameter n m multiplied by the ratio of sensor displacement to measurement height. The scalar flux decays more rapidly with crosswind displacements than for streamwise displacements and decays more rapidly for stable stratification than for unstable stratification. The cospectral flux attenuation model of Kristensen et al. agrees well with the HATS data for streamwise sensor displacements, although it is necessary to include a neglected quadrature spectrum term to explain the observation that flux attenuation is often less with the scalar sensor downwind of the anemometer than for the opposite configuration. A simpler exponential decay model provides good estimates for crosswind sensor displacements, as well as for streamwise sensor displacements with stable stratification. A model similar to that of Lee and Black correctly predicts flux attenuation for a combination of streamwise and crosswind displacements, i.e. as a function of wind direction relative to the sensor displacement. The HATS data for vertical sensor displacements extend the near-neutral results of Kristensen et al. to diabatic stratification and confirm their finding that flux attenuation is less with the scalar sensor located below the anemometer than if the scalar sensor is displaced an equal distance either horizontally or above the anemometer.

  15. Cosmological flux noise and measured noise power spectra in SQUIDs.

    PubMed

    Beck, Christian

    2016-06-20

    The understanding of the origin of 1/f magnetic flux noise commonly observed in superconducting devices such as SQUIDs and qubits is still a major unsolved puzzle. Here we discuss the possibility that a significant part of the observed low-frequency flux noise measured in these devices is ultimately seeded by cosmological fluctuations. We consider a theory where a primordial flux noise field left over in unchanged form from an early inflationary or quantum gravity epoch of the universe intrinsically influences the phase difference in SQUIDs and qubits. The perturbation seeds generated by this field can explain in a quantitatively correct way the form and amplitude of measured low-frequency flux noise spectra in SQUID devices if one takes as a source of fluctuations the primordial power spectrum of curvature fluctuations as measured by the Planck collaboration. Our theoretical predictions are in excellent agreement with recent low-frequency flux noise measurements of various experimental groups. Magnetic flux noise, so far mainly considered as a nuisance for electronic devices, may thus contain valuable information about fluctuation spectra in the very early universe.

  16. Cosmological flux noise and measured noise power spectra in SQUIDs

    NASA Astrophysics Data System (ADS)

    Beck, Christian

    2016-06-01

    The understanding of the origin of 1/f magnetic flux noise commonly observed in superconducting devices such as SQUIDs and qubits is still a major unsolved puzzle. Here we discuss the possibility that a significant part of the observed low-frequency flux noise measured in these devices is ultimately seeded by cosmological fluctuations. We consider a theory where a primordial flux noise field left over in unchanged form from an early inflationary or quantum gravity epoch of the universe intrinsically influences the phase difference in SQUIDs and qubits. The perturbation seeds generated by this field can explain in a quantitatively correct way the form and amplitude of measured low-frequency flux noise spectra in SQUID devices if one takes as a source of fluctuations the primordial power spectrum of curvature fluctuations as measured by the Planck collaboration. Our theoretical predictions are in excellent agreement with recent low-frequency flux noise measurements of various experimental groups. Magnetic flux noise, so far mainly considered as a nuisance for electronic devices, may thus contain valuable information about fluctuation spectra in the very early universe.

  17. Cosmological flux noise and measured noise power spectra in SQUIDs

    PubMed Central

    Beck, Christian

    2016-01-01

    The understanding of the origin of 1/f magnetic flux noise commonly observed in superconducting devices such as SQUIDs and qubits is still a major unsolved puzzle. Here we discuss the possibility that a significant part of the observed low-frequency flux noise measured in these devices is ultimately seeded by cosmological fluctuations. We consider a theory where a primordial flux noise field left over in unchanged form from an early inflationary or quantum gravity epoch of the universe intrinsically influences the phase difference in SQUIDs and qubits. The perturbation seeds generated by this field can explain in a quantitatively correct way the form and amplitude of measured low-frequency flux noise spectra in SQUID devices if one takes as a source of fluctuations the primordial power spectrum of curvature fluctuations as measured by the Planck collaboration. Our theoretical predictions are in excellent agreement with recent low-frequency flux noise measurements of various experimental groups. Magnetic flux noise, so far mainly considered as a nuisance for electronic devices, may thus contain valuable information about fluctuation spectra in the very early universe. PMID:27320418

  18. Cosmic muon flux measurements at the Kimballton Underground Research Facility

    NASA Astrophysics Data System (ADS)

    Kalousis, L. N.; Guarnaccia, E.; Link, J. M.; Mariani, C.; Pelkey, R.

    2014-08-01

    In this article, the results from a series of muon flux measurements conducted at the Kimballton Underground Research Facility (KURF), Virginia, United States, are presented. The detector employed for these investigations, is made of plastic scintillator bars readout by wavelength shifting fibers and multianode photomultiplier tubes. Data was taken at several locations inside KURF, spanning rock overburden values from ~ 200 to 1450 m.w.e. From the extracted muon rates an empirical formula was devised, that estimates the muon flux inside the mine as a function of the overburden. The results are in good agreement with muon flux calculations based on analytical models and MUSIC.

  19. Annual and latitudinal variations of surface fluxes and meteorological variables at Arctic terrestrial sites

    NASA Astrophysics Data System (ADS)

    Grachev, Andrey; Uttal, Taneil; Persson, Ola; Konopleva-Akish, Elena; Crepinsek, Sara; Cox, Christopher; Fairall, Christopher; Makshtas, Alexander; Repina, Irina

    2016-04-01

    This study analyzes and discusses seasonal and latitudinal variations of surface fluxes (turbulent, radiative, and soil ground heat) and other ancillary surface/snow/permafrost data based on in-situ measurements made at two long-term research observatories near the coast of the Arctic Ocean located in Canada and Russia. The hourly averaged data collected at Eureka (Canadian territory of Nunavut) and Tiksi (East Siberia) located at two quite different latitudes (80.0 N and 71.6 N respectively) are analyzed in details to describe the seasons in the Arctic. Although Eureka and Tiksi are located at the different continents and at the different latitudes, the annual course of the surface meteorology and the surface fluxes are qualitatively very similar. The air and soil temperatures display the familiar strong seasonal trend with maximum of measured temperatures in mid-summer and minimum during winter. According to our data, variation in incoming short-wave solar radiation led the seasonal pattern of the air and soil temperatures, and the turbulent fluxes. During the dark Polar nights, air and ground temperatures are strongly controlled by long-wave radiation associated generally with cloud cover. Due to the fact that in average the higher latitudes receive less solar radiation than lower latitudes, a length of the convective atmospheric boundary layer (warm season) is shorter and middle-summer amplitude of the turbulent fluxes is generally less in Eureka than in Tiksi. However, since solar elevation angle at local midnight in the middle of Arctic summer is higher for Eureka as compared to Tiksi, stable stratification and upward turbulent flux for carbon dioxide is generally did not observed at Eureka site during summer seasons. It was found a high correlation between the turbulent fluxes of sensible and latent heat, carbon dioxide and the net solar radiation. A comprehensive evaluation of energy balance closure problem is performed based on the multi-year data sets

  20. FluxPro: Real time monitoring and simulation system for eddy covariance flux measurement

    NASA Astrophysics Data System (ADS)

    Kim, W.; Seo, H.; Mano, M.; Ono, K.; Miyata, A.; Yokozawa, M.

    2010-12-01

    To cope with unusual weather changes on crop cultivation in a field level, prompt and precise monitoring of photosynthesis and evapotranspiration, and those fast and reliable forecasting are indispensable. So we have developed FluxPro which is simultaneous operating system of the monitoring and the forecasting. The monitoring subsystem provides vapor and CO2 fluxes with uncertainty to understand the live condition of photosynthesis and evapotranspiration by open-path eddy covariance flux measurement (EC) system and self-developed EC tolerance analysis scheme. The forecasting subsystem serves the predicted fluxes with anomaly based on model parameter assimilation to estimate the hourly or daily water consumption and carbon assimilation during a week by multi-simulation package consisting of various models from simple to complicate. FluxPro is helpful not only to detect a critical condition of growing crop in terms of photosynthesis and evapotranspiration but also to decide time and amount of launching control for keeping those optimization condition when an unusual weather event is arisen. In our presentation, we will demonstrate the FluxPro operated at tangerine orchard in Jeju, Korea.

  1. Flux measurement and modeling in a typical mediterranean vineyard

    NASA Astrophysics Data System (ADS)

    Marras, Serena; Bellucco, Veronica; Pyles, David R.; Falk, Matthias; Sirca, Costantino; Duce, Pierpaolo; Snyder, Richard L.; Tha Paw U, Kyaw; Spano, Donatella

    2014-05-01

    Vineyard ecosystems are typical in the Mediterranean area, since wine is one of the most important economic sectors. Nevertheless, only a few studies have been conducted to investigate the interactions between this kind of vegetation and the atmosphere. These information are important both to understand the behaviour of such ecosystems in different environmental conditions, and are crucial to parameterize crop and flux simulation models. Combining direct measurements and modelling can obtain reliable estimates of surface fluxes and crop evapotranspiration. This study would contribute both to (1) directly measure energy fluxes and evapotranspiration in a typical Mediterranean vineyard, located in the South of Sardinia (Italy), through the application of the Eddy Covariance micrometeorological technique and to (2) evaluate the land surface model ACASA (Advanced-Canopy-Atmosphere-Soil Algorithm) in simulating energy fluxes and evapotranspiration over vineyard. Independent datasets of direct measurements were used to calibrate and validate model results during the growing period. Statistical analysis was performed to evaluate model performance and accuracy in predicting surface fluxes. Results will be showed as well as the model capability to be used for future studies to predict energy fluxes and crop water requirements under actual and future climate.

  2. High geothermal heat flux measured below the West Antarctic Ice Sheet

    PubMed Central

    Fisher, Andrew T.; Mankoff, Kenneth D.; Tulaczyk, Slawek M.; Tyler, Scott W.; Foley, Neil

    2015-01-01

    The geothermal heat flux is a critical thermal boundary condition that influences the melting, flow, and mass balance of ice sheets, but measurements of this parameter are difficult to make in ice-covered regions. We report the first direct measurement of geothermal heat flux into the base of the West Antarctic Ice Sheet (WAIS), below Subglacial Lake Whillans, determined from the thermal gradient and the thermal conductivity of sediment under the lake. The heat flux at this site is 285 ± 80 mW/m2, significantly higher than the continental and regional averages estimated for this site using regional geophysical and glaciological models. Independent temperature measurements in the ice indicate an upward heat flux through the WAIS of 105 ± 13 mW/m2. The difference between these heat flux values could contribute to basal melting and/or be advected from Subglacial Lake Whillans by flowing water. The high geothermal heat flux may help to explain why ice streams and subglacial lakes are so abundant and dynamic in this region. PMID:26601210

  3. High geothermal heat flux measured below the West Antarctic Ice Sheet.

    PubMed

    Fisher, Andrew T; Mankoff, Kenneth D; Tulaczyk, Slawek M; Tyler, Scott W; Foley, Neil

    2015-07-01

    The geothermal heat flux is a critical thermal boundary condition that influences the melting, flow, and mass balance of ice sheets, but measurements of this parameter are difficult to make in ice-covered regions. We report the first direct measurement of geothermal heat flux into the base of the West Antarctic Ice Sheet (WAIS), below Subglacial Lake Whillans, determined from the thermal gradient and the thermal conductivity of sediment under the lake. The heat flux at this site is 285 ± 80 mW/m(2), significantly higher than the continental and regional averages estimated for this site using regional geophysical and glaciological models. Independent temperature measurements in the ice indicate an upward heat flux through the WAIS of 105 ± 13 mW/m(2). The difference between these heat flux values could contribute to basal melting and/or be advected from Subglacial Lake Whillans by flowing water. The high geothermal heat flux may help to explain why ice streams and subglacial lakes are so abundant and dynamic in this region.

  4. Absolute photon-flux measurements in the vacuum ultraviolet

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.; Haddad, G. N.

    1974-01-01

    Absolute photon-flux measurements in the vacuum ultraviolet have extended to short wavelengths by use of rare-gas ionization chambers. The technique involves the measurement of the ion current as a function of the gas pressure in the ion chamber. The true value of the ion current, and hence the absolute photon flux, is obtained by extrapolating the ion current to zero gas pressure. Examples are given at 162 and 266 A. The short-wavelength limit is determined only by the sensitivity of the current-measuring apparatus and by present knowledge of the photoionization processes that occur in the rate gases.

  5. Accuracy of quantum sensors measuring yield photon flux and photosynthetic photon flux

    NASA Technical Reports Server (NTRS)

    Barnes, C.; Tibbitts, T.; Sager, J.; Deitzer, G.; Bubenheim, D.; Koerner, G.; Bugbee, B.; Knott, W. M. (Principal Investigator)

    1993-01-01

    Photosynthesis is fundamentally driven by photon flux rather than energy flux, but not all absorbed photons yield equal amounts of photosynthesis. Thus, two measures of photosynthetically active radiation have emerged: photosynthetic photon flux (PPF), which values all photons from 400 to 700 nm equally, and yield photon flux (YPF), which weights photons in the range from 360 to 760 nm according to plant photosynthetic response. We selected seven common radiation sources and measured YPF and PPF from each source with a spectroradiometer. We then compared these measurements with measurements from three quantum sensors designed to measure YPF, and from six quantum sensors designed to measure PPF. There were few differences among sensors within a group (usually <5%), but YPF values from sensors were consistently lower (3% to 20%) than YPF values calculated from spectroradiometric measurements. Quantum sensor measurements of PPF also were consistently lower than PPF values calculated from spectroradiometric measurements, but the differences were <7% for all sources, except red-light-emitting diodes. The sensors were most accurate for broad-band sources and least accurate for narrow-band sources. According to spectroradiometric measurements, YPF sensors were significantly less accurate (>9% difference) than PPF sensors under metal halide, high-pressure sodium, and low-pressure sodium lamps. Both sensor types were inaccurate (>18% error) under red-light-emitting diodes. Because both YPF and PPF sensors are imperfect integrators, and because spectroradiometers can measure photosynthetically active radiation much more accurately, researchers should consider developing calibration factors from spectroradiometric data for some specific radiation sources to improve the accuracy of integrating sensors.

  6. Constraining isoprene emission factors using airborne flux measurements during CABERNET

    NASA Astrophysics Data System (ADS)

    Misztal, P. K.; Karl, T.; Jiang, X.; Avise, J. C.; Scott, K.; Jonsson, H.; Guenther, A. B.; Goldstein, A. H.

    2012-12-01

    An aircraft flux study was conducted to assess biogenic volatile organic compound (BVOC) emissions from California ecosystems targeting oak woodlands and isoprene for most transects. The direct eddy covariance approach featured high speed proton transfer reaction mass spectrometry onboard a CIRPAS (Center for Interdisciplinary Remotely-Piloted Aircraft Studies) Twin Otter aircraft during June 2011 as part of the CABERNET (California Airborne BVOC Emission Research in Natural Ecosystem Transects) project. Isoprene fluxes were calculated using wavelet analysis and scaled to surface fluxes using a divergence term obtained by measuring fluxes at multiple altitudes over homogenous oak terrain. By normalization of fluxes to standard temperature and photosynthetically active radiation levels using standard BVOC modeling equations, the resulting emission factors could be directly compared with those used by MEGAN (Model of Emissions of Gases and Aerosols from Nature) and BEIGIS (Biogenic Emission Inventory Geographic Information System) models which are the most commonly used BVOC emission models for California. As expected, oak woodlands were found to be the dominant source of isoprene in all areas surrounding and in the Central Valley of California. The airborne fluxes averaged to 2 km spatial resolution matched remarkably well with current oak woodland distributions driving the models and hence the correspondence of modeled and aircraft derived emission factors was also good, although quantitative differences were encountered depending on the region and driving variables used. Fluxes measured from aircraft proved to be useful for the improvement of the accuracy of modeled predictions for isoprene and other important ozone and aerosol precursor compounds. These are the first regional isoprene flux measurements using direct eddy covariance on aircraft.

  7. Estimation of water flux in urban area using eddy covariance measurements in Riverside, Southern California

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Micrometeorological methods can direct measure the sensible and latent heat flux in specific sites and provide robust estimates of the evaporative fraction (EF), which is the fraction of available surface energy contained in latent heat. Across a vegetation coverage gradient in urban area, an empir...

  8. AmeriFlux US-Bn1 Bonanza Creek, 1920 Burn site near Delta Junction

    SciTech Connect

    Randerson, James

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Bn1 Bonanza Creek, 1920 Burn site near Delta Junction. Site Description - The Delta Junction 1920 Control site is located near Delta Junction, just to the north of the Alaska Range in interior Alaska. All three Delta Junction sites are within a 15-km radius of one another. Composed of a combination of alluvial outwashes, floodplains, and low terraces dissected by glacial streams originating in the nearby Alaska Range. In 2001, total aboveground biomass consisted almost entirely of black spruce (Picea mariana).

  9. AmeriFlux US-IB1 Fermi National Accelerator Laboratory- Batavia (Agricultural site)

    SciTech Connect

    Matamala, Roser

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-IB1 Fermi National Accelerator Laboratory- Batavia (Agricultural site). Site Description - Two eddy correlation systems are installed at Fermi National Accelerator Laboratory: one on a restored prairie (established October 2004) and one on a corn/soybean rotation agricultural field (established in July 2005). The prairie site had been farmed for more than 100 years, but was converted to prairie in 1989. The agricultural site has likely been farmed for more than 100 years, but the first documented instance of agricultural activity dates back to a picture taken in 1952.

  10. 3-D density imaging with muon flux measurements from underground galleries

    NASA Astrophysics Data System (ADS)

    Lesparre, N.; Cabrera, J.; Marteau, J.

    2017-03-01

    Atmospheric muon flux measurements provide information on subsurface density distribution. In this study, muon flux was measured underground, in the Tournemire experimental platform (France). The objective was to image the medium between the galleries and the surface and evaluate the feasibility to detect the presence of discontinuities, for example, produced by secondary subvertical faults or by karstic networks. Measurements were performed from three different sites with a partial overlap of muon trajectories, offering the possibility to seek density variations at different depths. The conversion of the measured muon flux to average density values showed global variations further analysed through a 3-D nonlinear inversion procedure. Main results are the presence of a very low density region at the level of the upper aquifer, compatible with the presence of a karstic network hosting local cavities, and the absence of secondary faults. We discuss the validity of the present results and propose different strategies to improve the accuracy of such measurements and analysis.

  11. Quality control of CarboEurope flux data - Part I: Footprint analyses to evaluate sites in forest ecosystems

    NASA Astrophysics Data System (ADS)

    Göckede, M.; Foken, T.; Aubinet, M.; Aurela, M.; Banza, J.; Bernhofer, C.; Bonnefond, J. M.; Brunet, Y.; Carrara, A.; Clement, R.; Dellwik, E.; Elbers, J.; Eugster, W.; Fuhrer, J.; Granier, A.; Grünwald, T.; Heinesch, B.; Janssens, I. A.; Knohl, A.; Koeble, R.; Laurila, T.; Longdoz, B.; Manca, G.; Marek, M.; Markkanen, T.; Mateus, J.; Matteucci, G.; Mauder, M.; Migliavacca, M.; Minerbi, S.; Moncrieff, J.; Montagnani, L.; Moors, E.; Ourcival, J.-M.; Papale, D.; Pereira, J.; Pilegaard, K.; Pita, G.; Rambal, S.; Rebmann, C.; Rodrigues, A.; Rotenberg, E.; Sanz, M. J.; Sedlak, P.; Seufert, G.; Siebicke, L.; Soussana, J. F.; Valentini, R.; Vesala, T.; Verbeeck, H.; Yakir, D.

    2007-11-01

    We applied a site evaluation approach combining Lagrangian Stochastic footprint modelling with a quality assessment approach for eddy-covariance data to 25 forested sites of the CarboEurope-IP network. The analysis addresses the spatial representativeness of the flux measurements, instrumental effects on data quality, spatial patterns in the data quality, and the performance of the coordinate rotation method. Our findings demonstrate that application of a footprint filter could strengthen the CarboEurope-IP flux database, since only one third of the sites is situated in truly homogeneous terrain. Almost half of the sites experience a significant reduction in eddy-covariance data quality under certain conditions, though these effects are mostly constricted to a small portion of the dataset. Reductions in data quality of the sensible heat flux are mostly induced by characteristics of the surrounding terrain, while the latent heat flux is subject to instrumentation-related problems. The Planar-Fit coordinate rotation proved to be a reliable tool for the majority of the sites using only a single set of rotation angles. Overall, we found a high average data quality for the CarboEurope-IP network, with good representativeness of the measurement data for the specified target land cover types.

  12. BOREAS TE-6 NPP For The Tower Flux, Carbon Evaluation, and Auxiliary Sites

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Gower, Stith T.; Vogel, Jason G.

    2000-01-01

    The BOREAS TE-6 team collected several data sets to examine the influence of vegetation, climate, and their interactions on the major carbon fluxes for boreal forest species. This data set contains estimates of the biomass produced by the plant species at the TF, CEV, and AUX sites in the SSA and NSA for a given year. Temporally, the data cover the years of 1985 to 1995. The plant biomass production (i.e., aboveground, belowground, understory, litterfall), spatial coverage, and temporal nature of measurements varied between the TF, CEV, and AUX sites as deemed necessary by BOREAS principal investigators. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distrobuted Activity Archive Center (DAAC).

  13. Continuous measurements of methane flux in two Japanese temperate forests based on the micrometeorological and chamber methods

    NASA Astrophysics Data System (ADS)

    Yoshikawa, K.; Ueyama, M.; Takagi, K.; Kominami, Y.

    2015-12-01

    Methane (CH4) budget in forest ecosystems have not been accurately quantified due to limited measurements and considerable spatiotemporal heterogeneity. In order to quantify CH4 fluxes at temperate forest at various spatiotemporal scales, we have continuously measured CH4 fluxes at two upland forests based on the micrometeorological hyperbolic relaxed eddy accumulation (HREA) and automated dynamic closed chamber methods.The measurements have been conducted at Teshio experimental forest (TSE) since September 2013 and Yamashiro forest meteorology research site (YMS) since November 2014. Three automated chambers were installed on each site. Our system can measure CH4 flux by the micrometeorological HREA, vertical concentration profile at four heights, and chamber measurements by a laser-based gas analyzer (FGGA-24r-EP, Los Gatos Research Inc., USA).Seasonal variations of canopy-scale CH4 fluxes were different in each site. CH4 was consumed during the summer, but was emitted during the fall and winter in TSE; consequently, the site acted as a net annual CH4 source. CH4 was steadily consumed during the winter, but CH4 fluxes fluctuated between absorption and emission during the spring and summer in YMS. YMS acted as a net annual CH4 sink. CH4 uptake at the canopy scale generally decreased with rising soil temperature and increased with drying condition for both sites. CH4 flux measured by most of chambers showed the consistent sensitivity examined for the canopy scale to the environmental variables. CH4 fluxes from a few chambers located at a wet condition were independent of variations in soil temperature and moisture at both sites. Magnitude of soil CH4 uptake was higher than the canopy-scale CH4 uptake. Our results showed that the canopy-scale CH4 fluxes were totally different with the plot-scale CH4 fluxes by chambers, suggesting the considerable spatial heterogeneity in CH4 flux at the temperate forests.

  14. How Well Can We Measure the Vertical Wind Speed? Implications for Fluxes of Energy and Mass

    NASA Astrophysics Data System (ADS)

    Kochendorfer, John; Meyers, Tilden P.; Frank, John; Massman, William J.; Heuer, Mark W.

    2012-11-01

    Sonic anemometers are capable of measuring the wind speed in all three dimensions at high frequencies (10-50 Hz), and are relied upon to estimate eddy-covariance-based fluxes of mass and energy over a wide variety of surfaces and ecosystems. In this study, wind-velocity measurement errors from a three-dimensional sonic anemometer with a non-orthogonal transducer orientation were estimated for over 100 combinations of angle-of-attack and wind direction using a novel technique to measure the true angle-of-attack and wind speed within the turbulent atmospheric surface layer. Corrections to the vertical wind speed varied from -5 to 37% for all angles-of-attack and wind directions examined. When applied to eddy-covariance data from three NOAA flux sites, the wind-velocity corrections increased the magnitude of CO2 fluxes, sensible heat fluxes, and latent heat fluxes by ≈11%, with the actual magnitude of flux corrections dependent upon sonic anemometer, surface type, and scalar. A sonic anemometer that uses vertically aligned transducers to measure the vertical wind speed was also tested at four angles-of-attack, and corrections to the vertical wind speed measured using this anemometer were within ±1% of zero. Sensible heat fluxes over a forest canopy measured using this anemometer were 15% greater than sensible heat fluxes measured using a sonic anemometer with a non-orthogonal transducer orientation. These results indicate that sensors with a non-orthogonal transducer orientation, which includes the majority of the research-grade three-dimensional sonic anemometers currently in use, should be redesigned to minimize sine errors by measuring the vertical wind speed using one pair of vertically aligned transducers.

  15. A True Eddy Accumulation - Eddy Covariance hybrid for measurements of turbulent trace gas fluxes

    NASA Astrophysics Data System (ADS)

    Siebicke, Lukas

    2016-04-01

    Eddy covariance (EC) is state-of-the-art in directly and continuously measuring turbulent fluxes of carbon dioxide and water vapor. However, low signal-to-noise ratios, high flow rates and missing or complex gas analyzers limit it's application to few scalars. True eddy accumulation, based on conditional sampling ideas by Desjardins in 1972, requires no fast response analyzers and is therefore potentially applicable to a wider range of scalars. Recently we showed possibly the first successful implementation of True Eddy Accumulation (TEA) measuring net ecosystem exchange of carbon dioxide of a grassland. However, most accumulation systems share the complexity of having to store discrete air samples in physical containers representing entire flux averaging intervals. The current study investigates merging principles of eddy accumulation and eddy covariance, which we here refer to as "true eddy accumulation in transient mode" (TEA-TM). This direct flux method TEA-TM combines true eddy accumulation with continuous sampling. The TEA-TM setup is simpler than discrete accumulation methods while avoiding the need for fast response gas analyzers and high flow rates required for EC. We implemented the proposed TEA-TM method and measured fluxes of carbon dioxide (CO2), methane (CH4) and water vapor (H2O) above a mixed beech forest at the Hainich Fluxnet and ICOS site, Germany, using a G2301 laser spectrometer (Picarro Inc., USA). We further simulated a TEA-TM sampling system using measured high frequency CO2 time series from an open-path gas analyzer. We operated TEA-TM side-by-side with open-, enclosed- and closed-path EC flux systems for CO2, H2O and CH4 (LI-7500, LI-7200, LI-6262, LI-7700, Licor, USA, and FGGA LGR, USA). First results show that TEA-TM CO2 fluxes were similar to EC fluxes. Remaining differences were similar to those between the three eddy covariance setups (open-, enclosed- and closed-path gas analyzers). Measured TEA-TM CO2 fluxes from our physical

  16. Heat flux measurement in a high enthalpy plasma flow

    NASA Astrophysics Data System (ADS)

    Löhle, Stefan; Battaglia, Jean-Luc; Gardarein, Jean-Laurent; Jullien, Pierre; van Ootegem, Bruno

    2008-11-01

    It is a widely used approach to measure heat flux in harsh environments like high enthalpy plasma flows, fusion plasma and rocket motor combustion chambers based on solving the inverse heat conduction problem in a semi-infinite environment. This approach strongly depends on model parameters and geometrical aspects of the sensor design. In this work the surface heat flux is determined by solving the inverse heat conduction problem using an identified system as a direct model. The identification of the system is performed using calibration measurements with modern laser technique and advanced data handling. The results of the identified thermo-physical system show that a non-integer model appears most adapted to this particular problem. It is concluded that the new method improves the heat flux sensor significantly and furthermore extend its application to very short measurement times.

  17. Seasonality of Overstory and Understory Fluxes in a Semi-Arid Oak Savanna: What can be Learned from Comparing Measured and Modeled Fluxes?

    NASA Astrophysics Data System (ADS)

    Raz-Yaseef, N.; Sonnentag, O.; Kobayashi, H.; Chen, J. M.; Verfaillie, J. G.; Ma, S.; Baldocchi, D. D.

    2011-12-01

    Semi-arid climates experience large seasonal and inter-annual variability in radiation and precipitation, creating natural conditions adequate to study how year-to-year changes affect atmosphere-biosphere fluxes. Especially, savanna ecosystems, that combine tree and below-canopy components, create a unique environment in which phenology dramatically changes between seasons. We used a 10-year flux database in order to define seasonal and interannual variability of climatic inputs and fluxes, and evaluate model capability to reproduce observed variability. This is based on the perception that model capability to construct the deviation, and not the average, is important in order to correctly predict ecosystem sensitivity to climate change. Our research site is a low density and low LAI (0.8) semi-arid savanna, located at Tonzi Ranch, Northern California. In this system, trees are active during the warm season (Mar - Oct), and grasses are active during the wet season (Dec - May). Measurements of carbon and water fluxes above and below the tree canopy using eddy covariance and supplementary measurements have been made since 2001. Fluxes were simulated using bio-meteorological process-oriented ecosystem models: BEPS and 3D-CAONAK. Models were partly capable of reproducing fluxes on daily scales (R2=0.66). We then compared model outputs for different ecosystem components and seasons, and found distinct seasons with high correlations while other seasons were purely represented. Comparison was much higher for ET than for GPP. The understory was better simulated than the overstory. CANOAK overestimated spring understory fluxes, probably due to the capability to directly calculated 3D radiative transfer. BEPS underestimated spring understory fluxes, following the pre-description of grass die-off. Both models underestimated peak spring overstory fluxes. During winter tree dormant, modeled fluxes were null, but occasional high fluxes of both ET and GPP were measured following

  18. Densitometric tomography using the measurement of muon flux

    NASA Astrophysics Data System (ADS)

    Hivert, F.; Busto, J.; Brunner, J.; Salin, P.; Gaffet, S.

    2013-12-01

    The knowledge of the subsurface properties is essentially obtained by geophysical methods, e.g. seismic imaging, electric prospection or gravimetry. The present work develops a recent method to investigate the in situ density of rocks using atmospheric the muon flux measurement , its attenuation depending on the rock density and thickness. This new geophysical technique have been mainly applied in volcanology (Lesparre N., 2011) using scintillator detectors. The present project (T2DM2) aims to realize underground muons flux measurements in order to characterizing the rock massif density variations above the LSBB underground research facility in Rustrel (France). The muon flux will be measure with a new Muon telescope instrumentation using Micromegas detectors in Time Projection Chambers (TPC) configuration. The first step of the work presented considers the muon flux simulation using the Gaisser model, for the interactions between muons and atmospheric particles, and the MUSIC code (Kudryavtsev V. A., 2008) for the muons/rock interactions. The results show that the muon flux attenuation caused by density variations are enough significant to be observed until around 500 m depth and for period of time in the order of one month. Such a duration scale and depth of investigation is compatible with the duration of the water transfer processes involved within the Karst unsaturated zone where LSBB is located. Our work now concentrates on the optimization of the spatial distribution of detectors that will be deployed in future.

  19. Observed and modeled carbon and energy fluxes for agricultural sites under North American Carbon Program site-level interim synthesis

    NASA Astrophysics Data System (ADS)

    Lokupitiya, E. Y.; Denning, A.

    2010-12-01

    Croplands are unique, man-made ecosystems with dynamics mostly dependent on human decisions. Crops uptake a significant amount of Carbon dioxide (CO2) during their short growing seasons. Reliability of the available models to predict the carbon exchanges by croplands is important in estimating the cropland contribution towards overall land-atmosphere carbon exchange and global carbon cycle. The energy exchanges from croplands include both sensible and latent heat fluxes. This study focuses on analyzing the performance of 19 land surface models across five agricultural sites under the site-level interim synthesis of North American Carbon Program (NACP). Model simulations were performed using a common simulation protocol and input data, including gap-filled meteorological data corresponding to each site. The net carbon fluxes (i.e. net ecosystem exchange; NEE) and energy fluxes (sensible and latent heat) predicted by 12 models with sub-hourly/hourly temporal resolution and 7 models with daily temporal resolution were compared against the site-specific gap-filled observed flux tower data. Comparisons were made by site and crop type (i.e. maize, soybean, and wheat), mainly focusing on the coefficient of determination, correlation, root mean square error, and standard deviation. Analyses also compared the diurnal, seasonal, and inter-annual variability of the modeled fluxes against the observed data and the mean modeled data.

  20. Interpretation of surface flux measurements in heterogeneous terrain during the Monsoon '90 experiment

    USGS Publications Warehouse

    Stannard, D.I.; Blanford, J.H.; Kustas, W.P.; Nichols, W.D.; Amer, S.A.; Schmugge, T.J.; Weltz, M.A.

    1994-01-01

    A network of 9-m-tall surface flux measurement stations were deployed at eight sparsely vegetated sites during the Monsoon '90 experiment to measure net radiation, Q, soil heat flux, G, sensible heat flux, H (using eddy correlation), and latent heat flux, λE (using the energy balance equation). At four of these sites, 2-m-tall eddy correlation systems were used to measure all four fluxes directly. Also a 2-m-tall Bowen ratio system was deployed at one site. Magnitudes of the energy balance closure (Q + G + H + λE) increased as the complexity of terrain increased. The daytime Bowen ratio decreased from about 10 before the monsoon season to about 0.3 during the monsoons. Source areas of the measurements are developed and compared to scales of heterogeneity arising from the sparse vegetation and the topography. There was very good agreement among simultaneous measurements of Q with the same model sensor at different heights (representing different source areas), but poor agreement among different brands of sensors. Comparisons of simultaneous measurements of G suggest that because of the extremely small source area, extreme care in sensor deployment is necessary for accurate measurement in sparse canopies. A recently published model to estimate fetch is used to interpret measurements of H at the 2 m and 9 m heights. Three sites were characterized by undulating topography, with ridgetops separated by about 200–600 m. At these sites, sensors were located on ridgetops, and the 9-m fetch included the adjacent valley, whereas the 2-m fetch was limited to the immediate ridgetop and hillside. Before the monsoons began, vegetation was mostly dormant, the watershed was uniformly hot and dry, and the two measurements of H were in close agreement. After the monsoons began and vegetation fully matured, the 2-m measurements of H were significantly greater than the 9-m measurements, presumably because the vegetation in the valleys was denser and cooler than on the ridgetops and

  1. A comparative study between the fluxes of trace elements in bulk atmospheric deposition at industrial, urban, traffic, and rural sites.

    PubMed

    Fernández-Olmo, I; Puente, M; Irabien, A

    2015-09-01

    The input of trace elements via atmospheric deposition towards industrial, urban, traffic, and rural areas is quite different and depends on the intensity of the anthropogenic activity. A comparative study between the element deposition fluxes in four sampling sites (industrial, urban, traffic, and rural) of the Cantabria region (northern Spain) has been performed. Sampling was carried out monthly using a bulk (funnel bottle) sampler. The trace elements, As, Cd, Cr, Cu, Mn, Mo, Ni, Pb, Ti, Zn, and V, were determined in the water soluble and insoluble fractions of bulk deposition samples. The element deposition fluxes at the rural, urban, and traffic sites followed a similar order (Zn > Mn> > Cu ≈ Ti > Pb > V ≈ Cr > Ni> > As ≈ Mo > Cd). The most enriched elements were Cd, Zn, and Cu, while V, Ni, and Cr were less enriched. An extremely high deposition of Mn was found at the industrial site, leading to high enrichment factor values, resulting from the presence of a ferro-manganese/silico-manganese production plant in the vicinity of the sampling site. Important differences were found in the element solubilities in the studied sites; the element solubilities were higher at the traffic and rural sites, and lower at the urban and industrial sites. For all sites, Zn and Cd were the most soluble elements, whereas Cr and Ti were less soluble. The inter-site correlation coefficients for each element were calculated to assess the differences between the sites. The rural and traffic sites showed some similarities in the sources of trace elements; however, the sources of these elements at the industrial and rural sites were quite different. Additionally, the element fluxes measured in the insoluble fraction of the bulk atmospheric deposition exhibited a good correlation with the daily traffic volume at the traffic site.

  2. AmeriFlux US-IB2 Fermi National Accelerator Laboratory- Batavia (Prairie site)

    DOE Data Explorer

    Matamala, Roser [Argonne National Laboratory

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-IB2 Fermi National Accelerator Laboratory- Batavia (Prairie site). Site Description - Two eddy correlation systems are installed at Fermi National Accelerator Laboratory: one on a restored prairie (established October 2004) and one on a corn/soybean rotation agricultural field (established in July 2005). The prairie site had been farmed for more than 100 years, but was converted to prairie in 1989. April annual to bi-annual prescribed burns have taken place from 1994 - 2007.

  3. AmeriFlux US-ARb ARM Southern Great Plains burn site- Lamont

    SciTech Connect

    Torn, Margaret

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-ARb ARM Southern Great Plains burn site- Lamont. Site Description - The ARM SGP Burn site is located in the native tallgrass prairies of the USDA Grazinglands Research Laboratory near El Reno, OK. One of two adjacent 35 ha plots, the US-ARb plot was burned on 2005/03/08. The second plot, US-ARc, was left unburned as the control for experimental purposes. Aside from 2005, the region evaded burning activities for at least 15 years. Current disturbances consist of only light grazing activities.

  4. CO{sub 2} flux measurements across portions of the Dixie Valley geothermal system, Nevada

    SciTech Connect

    Bergfeld, D.; Goff, F.; Janik, C.J.; Johnson, S.D.

    1998-12-31

    A map of the CO{sub 2} flux across a newly formed area of plant kill in the NW part of the Dixie Valley geothermal system was constructed to monitor potential growth of a fumarole field. Flux measurements were recorded using a LI-COR infrared analyzer. Sample locations were restricted to areas within and near the dead zone. The data delineate two areas of high CO{sub 2} flux in different topographic settings. Older fumaroles along the Stillwater range front produce large volumes of CO{sub 2} at high temperatures. High CO{sub 2} flux values were also recorded at sites along a series of recently formed ground fractures at the base of the dead zone. The two areas are connected by a zone of partial plant kill and moderate flux on an alluvial fan. Results from this study indicate a close association between the range front fumaroles and the dead zone fractures. The goals of this study are to characterize recharge to the geothermal system, provide geochemical monitoring of reservoir fluids and to examine the temporal and spatial distribution of the CO{sub 2} flux in the dead zone. This paper reports the results of the initial CO{sub 2} flux measurements taken in October, 1997.

  5. Evaluation of laser absorption spectroscopic techniques for eddy covariance flux measurements of ammonia.

    PubMed

    Whitehead, James D; Twigg, Marsailidh; Famulari, Daniela; Nemitz, Eiko; Sutton, Mark A; Gallagher, Martin W; Fowler, David

    2008-03-15

    An intercomparison was made between eddy covariance flux measurements of ammonia by a quantum cascade laser absorption spectrometer (QCLAS) and a lead-salt tunable diode laser absorption spectrometer (TDLAS). The measurements took place in September 2004 and again in April 2005 over a managed grassland site in Southern Scotland, U.K. These were also compared with a flux estimate derived from an "Ammonia Measurement by ANnular Denuder with online Analysis" (AMANDA), using the aerodynamic gradient method (AGM). The concentration and flux measurements from the QCLAS correlated well with those of the TDLAS and the AGM systems when emissions were high, following slurry application to the field. Both the QCLAS and TDLAS, however, underestimated the flux when compared with the AMANDA system, by 64%. A flux loss of 41% due to chemical reaction of ammonia in the QCLAS (and 37% in the TDLAS) sample tube walls was identified and characterized using laboratory tests but did not fully accountforthis difference. Recognizing these uncertainties, the agreement between the systems was nevertheless very close (R2 = 0.95 between the QCLAS and the TDLAS; R2 = 0.84 between the QCLAS and the AMANDA) demonstrating the suitability of the laser absorption methods for quantifying the temporal dynamics of ammonia fluxes.

  6. Testing the Need for Replication of Eddy Covariance Carbon Dioxide Flux Measurements over Agricultural Fields

    NASA Astrophysics Data System (ADS)

    Taylor, A. M.; Amiro, B. D.; Gervais, M.

    2015-12-01

    The eddy covariance method directly measures carbon dioxide (CO2) fluxes for long periods of time and with footprints up to hundreds of meters in size. Any ecosystem process that alters how gases and energy move between the atmosphere and soil/vegetation can affect these fluxes. Eddy covariance is vulnerable to systematic errors and uncertainy, particular through relying on assumptions about surface characteristics. Additionally, spatial variation within a site can cause more uncertainty in these measurements and lack of replication in many eddy covariance studies makes statistical analysis of carbon fluxes challenging. We tested if there are significant differences between co-located and simultaneous CO2 flux measurements over a uniform crop surface, and if the differences increase if we measure different flux footprint areas over the same field. During the summer of 2014, three matched instrumented 2.5-m high towers were co-located and then periodically separated by moving at 50 m intervals along a north-south transect on an alfalfa/trefoil field and a spring wheat field in Southern Manitoba, Canada to compare CO­2 fluxes. Georeferenced leaf area index measurements were taken in 50 m grid of each field to establish uniformity of the source/sink within a footprint. Diurnal differences of similar magnitude in the CO2 ­fluxes were found in both the co-located experiment and the spatially separated intervals. Despite rigorous calibration during the experiment, some differences were caused by the measurement systems rather than by variation within the field. Interpretation of the spatial variation in leaf area index is being used to determine the contribution caused by difference in source/sink contributions to the flux footprint areas when the towers were spatially separated.

  7. Measurement of neutrino flux from neutrino-electron elastic scattering

    SciTech Connect

    Park, J.; Aliaga, L.; Altinok, O.; Bellantoni, L.; Bercellie, A.; Betancourt, M.; Bodek, A.; Bravar, A.; Budd, H.; Cai, T.; Carneiro, M. F.; Christy, M. E.; Chvojka, J.; da Motta, H.; Dytman, S. A.; Díaz, G. A.; Eberly, B.; Felix, J.; Fields, L.; Fine, R.; Gago, A. M.; Galindo, R.; Ghosh, A.; Golan, T.; Gran, R.; Harris, D. A.; Higuera, A.; Kleykamp, J.; Kordosky, M.; Le, T.; Maher, E.; Manly, S.; Mann, W. A.; Marshall, C. M.; Martinez Caicedo, D. A.; McFarland, K. S.; McGivern, C. L.; McGowan, A. M.; Messerly, B.; Miller, J.; Mislivec, A.; Morfín, J. G.; Mousseau, J.; Naples, D.; Nelson, J. K.; Norrick, A.; Nuruzzaman,; Osta, J.; Paolone, V.; Patrick, C. E.; Perdue, G. N.; Rakotondravohitra, L.; Ramirez, M. A.; Ray, H.; Ren, L.; Rimal, D.; Rodrigues, P. A.; Ruterbories, D.; Schellman, H.; Solano Salinas, C. J.; Tagg, N.; Tice, B. G.; Valencia, E.; Walton, T.; Wolcott, J.; Wospakrik, M.; Zavala, G.; Zhang, D.

    2016-06-10

    Muon-neutrino elastic scattering on electrons is an observable neutrino process whose cross section is precisely known. Consequently, a measurement of this process in an accelerator-based νμ beam can improve the knowledge of the absolute neutrino flux impinging upon the detector; typically this knowledge is limited to ~10% due to uncertainties in hadron production and focusing. We also isolated a sample of 135±17 neutrino-electron elastic scattering candidates in the segmented scintillator detector of MINERvA, after subtracting backgrounds and correcting for efficiency. We show how this sample can be used to reduce the total uncertainty on the NuMI νμ flux from 9% to 6%. Finally, our measurement provides a flux constraint that is useful to other experiments using the NuMI beam, and this technique is applicable to future neutrino beams operating at multi-GeV energies.

  8. Measurement of neutrino flux from neutrino-electron elastic scattering

    DOE PAGES

    Park, J.; Aliaga, L.; Altinok, O.; ...

    2016-06-10

    Muon-neutrino elastic scattering on electrons is an observable neutrino process whose cross section is precisely known. Consequently, a measurement of this process in an accelerator-based νμ beam can improve the knowledge of the absolute neutrino flux impinging upon the detector; typically this knowledge is limited to ~10% due to uncertainties in hadron production and focusing. We also isolated a sample of 135±17 neutrino-electron elastic scattering candidates in the segmented scintillator detector of MINERvA, after subtracting backgrounds and correcting for efficiency. We show how this sample can be used to reduce the total uncertainty on the NuMI νμ flux from 9%more » to 6%. Finally, our measurement provides a flux constraint that is useful to other experiments using the NuMI beam, and this technique is applicable to future neutrino beams operating at multi-GeV energies.« less

  9. Measurement of neutrino flux from neutrino-electron elastic scattering

    NASA Astrophysics Data System (ADS)

    Park, J.; Aliaga, L.; Altinok, O.; Bellantoni, L.; Bercellie, A.; Betancourt, M.; Bodek, A.; Bravar, A.; Budd, H.; Cai, T.; Carneiro, M. F.; Christy, M. E.; Chvojka, J.; da Motta, H.; Dytman, S. A.; Díaz, G. A.; Eberly, B.; Felix, J.; Fields, L.; Fine, R.; Gago, A. M.; Galindo, R.; Ghosh, A.; Golan, T.; Gran, R.; Harris, D. A.; Higuera, A.; Kleykamp, J.; Kordosky, M.; Le, T.; Maher, E.; Manly, S.; Mann, W. A.; Marshall, C. M.; Martinez Caicedo, D. A.; McFarland, K. S.; McGivern, C. L.; McGowan, A. M.; Messerly, B.; Miller, J.; Mislivec, A.; Morfín, J. G.; Mousseau, J.; Naples, D.; Nelson, J. K.; Norrick, A.; Nuruzzaman; Osta, J.; Paolone, V.; Patrick, C. E.; Perdue, G. N.; Rakotondravohitra, L.; Ramirez, M. A.; Ray, H.; Ren, L.; Rimal, D.; Rodrigues, P. A.; Ruterbories, D.; Schellman, H.; Solano Salinas, C. J.; Tagg, N.; Tice, B. G.; Valencia, E.; Walton, T.; Wolcott, J.; Wospakrik, M.; Zavala, G.; Zhang, D.; Miner ν A Collaboration

    2016-06-01

    Muon-neutrino elastic scattering on electrons is an observable neutrino process whose cross section is precisely known. Consequently a measurement of this process in an accelerator-based νμ beam can improve the knowledge of the absolute neutrino flux impinging upon the detector; typically this knowledge is limited to ˜10 % due to uncertainties in hadron production and focusing. We have isolated a sample of 135 ±17 neutrino-electron elastic scattering candidates in the segmented scintillator detector of MINERvA, after subtracting backgrounds and correcting for efficiency. We show how this sample can be used to reduce the total uncertainty on the NuMI νμ flux from 9% to 6%. Our measurement provides a flux constraint that is useful to other experiments using the NuMI beam, and this technique is applicable to future neutrino beams operating at multi-GeV energies.

  10. Using "snapshot" measurements of CH4 fluxes from peatlands to estimate annual budgets: interpolation vs. modelling.

    NASA Astrophysics Data System (ADS)

    Green, Sophie M.; Baird, Andy J.

    2016-04-01

    There is growing interest in estimating annual budgets of peatland-atmosphere carbon dioxide (CO2) and methane (CH4) exchanges. Such budgeting is required for calculating peatland carbon balance and the radiative forcing impact of peatlands on climate. There have been multiple approaches used to estimate CO2 budgets; however, there is a limited literature regarding the modelling of annual CH4 budgets. Using data collected from flux chamber tests in an area of blanket peatland in North Wales, we compared annual estimates of peatland-atmosphere CH4 emissions using an interpolation approach and an additive and multiplicative modelling approach. Flux-chamber measurements represent a snapshot of the conditions on a particular site. In contrast to CO2, most studies that have estimated the time-integrated flux of CH4 have not used models. Typically, linear interpolation is used to estimate CH4 fluxes during the time periods between flux-chamber measurements. It is unclear how much error is involved with such a simple integration method. CH4 fluxes generally show a rise followed by a fall through the growing season that may be captured reasonably well by interpolation, provided there are sufficiently frequent measurements. However, day-to-day and week-to-week variability is also often evident in CH4 flux data, and will not necessarily be properly represented by interpolation. Our fits of the CH4 flux models yielded r2 > 0.5 in 38 of the 48 models constructed, with 55% of these having a weighted rw2 > 0.4. Comparison of annualised CH4 fluxes estimated by interpolation and modelling reveals no correlation between the two data sets; indeed, in some cases even the sign of the flux differs. The difference between the methods seems also to be related to the size of the flux - for modest annual fluxes there is a fairly even scatter of points around the 1:1 line, whereas when the modelled fluxes are high, the corresponding interpolated fluxes tend to be low. We consider the

  11. Long-term micrometeorological measurements of nitrous oxide fluxes from agro-ecosystems (Invited)

    NASA Astrophysics Data System (ADS)

    Wagner-Riddle, C.; Brown, S.; Snider, D.

    2013-12-01

    Year-round measurements of nitrous oxide fluxes are needed in order to better characterize emissions from agro-ecosystems, and devise mitigation strategies for emission reduction. This is particularly the case for agroecosystems in cold regions where freezing and thawing of soil often results in enhanced fluxes. In addition, nitrogen fertilizer application at crop planting in the spring will also result in emission events with high temporal variability. Micrometeorological methods do not interfere with soil conditions and hence, can be used quasi-continuously (at hourly to half-hourly intervals) to capture the highly intermittent nature of N2O emission episodes. Simultaneous flux measurements on multiple plots is desirable so that the effect of soil management practices on N2O emissions can be characterized. We have conducted several studies deploying the flux-gradient technique to measure surface N2O fluxes at a long-term in Elora, ON, Canada, a site established in 2000 with the objective of improving our understanding of how management affects N2O emissions. The experimental area consists of four 1.5-4 ha plots within a level and aerodynamically homogeneous 30-ha area, and half-hourly flux is measured sequentially providing up to 12 values per plot per day. A total of 521 monthly N2O emission rates were measured over the 2000-2013 period for a range of crops (e.g. soybeans, corn, wheat) and management (e.g. no-tillage, conventional). The aggregated analysis shows that extreme flux events tend to be concentrated in February/March and May/Jun/Jul (Fig. 1). The main thaw events tend to occur in February and March, and they events contribute on average 30% to the annual nitrous oxide emission total. Timely rains after fertilizer application at crop planting in May provide high soil water content for denitrification to take place and also lead to high emission events. Sixty-six percent of the annual emission occurred from Jan to Jun on average at this site. Emissions

  12. SO2 flux measurements at Mount Etna (Sicily)

    SciTech Connect

    Caltabiano, T.; Romano, R.; Budetta, G.

    1994-06-01

    Since 1987, over 220 measurements of the SO2 flux at Mount Etna have been carried out using a correlation spectrometer (COSPEC) with different measuring techniques (mainly with COSPEC mounted on ground-based vehicle). This paper reports and analyzes the data obtained between October 1987 and December 1991. During this period, three distinct time intervals characterized by particular SO2 emission patterns were identified. The first interval (A) showed a mean SO2 flux of 5500 t/d associated with relatively quiet summit crater eruptive activity. The second interval (B) included two eruptive periods, September-October 1989 and January-February 1990, associated with high fluxes reaching 10,000-25,000 t/d. The third interval (C) started in concert with a regional earthquake (December 13, 1990) and showed first a decrease and then an increase of SO2 emissions before the onset of the major 1991-1993 flank eruption. Analysis of the data reveals a cyclic pattern to the SO2 emissions over prolonged periods; a nearly constant supply of SO2 from the volcano`s main feeder system, especially evident in the long term; a two- to fivefold increase above mean flux values (from 10,000 to 25,000 t/d) when occurring with paroxysmal eruptive activity; and minimal flux values (approximately 1000 t/d) about 1 month prior to important eruptive events.

  13. Multiple-Point Mass Flux Measurement System Using Rayleigh Scattering

    NASA Technical Reports Server (NTRS)

    Mielke, Amy F.; Elam, Kristie A.; Clem, Michelle M.

    2009-01-01

    A multiple-point Rayleigh scattering diagnostic is being developed to provide mass flux measurements in gas flows. Spectroscopic Rayleigh scattering is an established flow diagnostic that has the ability to provide simultaneous density, temperature, and velocity measurements. Rayleigh scattered light from a focused 18 Watt continuous-wave laser beam is directly imaged through a solid Fabry-Perot etalon onto a CCD detector which permits spectral analysis of the light. The spatial resolution of the measurements is governed by the locations of interference fringes, which can be changed by altering the etalon characteristics. A prototype system has been used to acquire data in a Mach 0.56 flow to demonstrate feasibility of using this system to provide mass flux measurements. Estimates of measurement uncertainty and recommendations for system improvements are presented

  14. Estimating Deep Flux at a Humid Site in South Carolina Using Deterministic and Monte Carlo Modeling

    NASA Astrophysics Data System (ADS)

    Young, M. H.; Pohlmann, K. F.; Nichols, R. L.; Dixon, K. L.; Holmes-Burns, H.

    2002-05-01

    Estimates of deep flux of precipitation were needed for performance assessment calculations for a disposal site at the Savannah River Site, SC. The overall goal of the project was to estimate deep flux using laboratory analysis of soil texture and hydraulic properties, and field data from cone penetrometer tests and a vadose zone monitoring system installed at the site. The approach involved the following tasks: converting laboratory soil hydraulic property data into functional relationships; assigning these functional relationships to soil layers identified using CPT data; calibrating the models using observed meteorological conditions and subsurface instrument responses; and conducting deterministic and Monte Carlo modeling to estimate the range of potential flux values for short-term (207 day) and long-term (10 yr) simulations. Short-term Monte Carlo results indicate a median water flux rate of between 23 and 31 cm/yr, depending on how layer properties in the model were assigned; flux rates were highly sensitive to the hydraulic conductivity. Deterministic results for 10-yr simulations showed that fluxes were approximately 23 cm and 25 cm for the 1977-87 and 1987-97 simulations, respectively. Monte Carlo results (10-yr) indicated annualized flux rates between 21-25 cm/yr at the 90 percent confidence level for the 1987-1997 period. Modeling results were consistent with field observations. The results can be useful for guiding further site monitoring and modeling efforts as part of the SRS performance assessment.

  15. Burn site groundwater interim measures work plan.

    SciTech Connect

    Witt, Jonathan L.; Hall, Kevin A.

    2005-05-01

    This Work Plan identifies and outlines interim measures to address nitrate contamination in groundwater at the Burn Site, Sandia National Laboratories/New Mexico. The New Mexico Environment Department has required implementation of interim measures for nitrate-contaminated groundwater at the Burn Site. The purpose of interim measures is to prevent human or environmental exposure to nitrate-contaminated groundwater originating from the Burn Site. This Work Plan details a summary of current information about the Burn Site, interim measures activities for stabilization, and project management responsibilities to accomplish this purpose.

  16. Field intercomparison of four methane gas analyzers suitable for eddy covariance flux measurements

    NASA Astrophysics Data System (ADS)

    Peltola, O.; Mammarella, I.; Haapanala, S.; Burba, G.; Vesala, T.

    2013-06-01

    Performances of four methane gas analyzers suitable for eddy covariance measurements are assessed. The assessment and comparison was performed by analyzing eddy covariance data obtained during summer 2010 (1 April to 26 October) at a pristine fen, Siikaneva, Southern Finland. High methane fluxes with pronounced seasonality have been measured at this fen. The four participating methane gas analyzers are commercially available closed-path units TGA-100A (Campbell Scientific Inc., USA), RMT-200 (Los Gatos Research, USA), G1301-f (Picarro Inc., USA) and an early prototype open-path unit Prototype-7700 (LI-COR Biosciences, USA). The RMT-200 functioned most reliably throughout the measurement campaign, during low and high flux periods. Methane fluxes from RMT-200 and G1301-f had the smallest random errors and the fluxes agree remarkably well throughout the measurement campaign. Cospectra and power spectra calculated from RMT-200 and G1301-f data agree well with corresponding temperature spectra during a high flux period. None of the gas analyzers showed statistically significant diurnal variation for methane flux. Prototype-7700 functioned only for a short period of time, over one month, in the beginning of the measurement campaign during low flux period, and thus, its overall accuracy and season-long performance were not assessed. The open-path gas analyzer is a practical choice for measurement sites in remote locations due to its low power demand, whereas for G1301-f methane measurements interference from water vapor is straightforward to correct since the instrument measures both gases simultaneously. In any case, if only the performance in this intercomparison is considered, RMT-200 performed the best and is the recommended choice if a new fast response methane gas analyzer is needed.

  17. Effect of site of starch digestion on portal nutrient net fluxes in steers.

    PubMed

    Nozière, Pierre; Rémond, Didier; Lemosquet, Sophie; Chauveau, Béatrice; Durand, Denys; Poncet, Claude

    2005-08-01

    Processing of maize grain is known to modulate the site of starch digestion, thus the nature and amount of nutrients delivered for absorption. We assessed the effect of site of starch digestion on nutrient net fluxes across portal-drained viscera (PDV). Three steers, fitted with permanent digestive cannulas and blood catheters, successively received two diets containing 35 % starch as dent maize grain. Diets differed according to maize presentation: dry and cracked (by-pass, BP) v. wet and ground (control, C). Ruminal physicochemical parameters were not significantly affected. Between C and BP, the decrease in ruminal starch digestion was compensated by an increase in starch digestion in the small intestine. The amount of glucose and soluble alpha-glucoside reaching the ileum was not affected. The amount of glucose disappearing in the small intestine increased from 238 to 531 g/d between C and BP, but portal net flux of glucose remained unchanged (-97 g/d). The portal O2 consumption and net energy release were not significantly affected, averaging 16 % and 57 % of metabolizable energy intake, respectively. The whole-body glucose appearance rate, measured by jugular infusion of [6,6-2H2]glucose, averaged 916 g/d. The present study shows that the increase in the amount of glucose disappearing in the small intestine of conventionally fed cattle at a moderate intake level induces no change in portal net flux of glucose, reflecting an increase in glucose utilization by PDV. That could contribute to the low response of whole-body glucose appearance rate observed at this moderate level of intestinal glucose supply.

  18. Evapotranspiration: Mass balance measurements compared with flux estimation methods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evapotranspiration (ET) may be measured by mass balance methods and estimated by flux sensing methods. The mass balance methods are typically restricted in terms of the area that can be represented (e.g., surface area of weighing lysimeter (LYS) or equivalent representative area of neutron probe (NP...

  19. Aerosol properties derived from spectral actinic flux measurements

    NASA Astrophysics Data System (ADS)

    Stark, H.; Schmidt, K. S.; Pilewskie, P.; Cozic, J.; Wollny, A. G.; Brock, C. A.; Baynard, T.; Lack, D.; Parrish, D. D.; Fehsenfeld, F. C.

    2008-12-01

    Measurement of aerosol properties is very important for understanding climate change. Aerosol optical properties influence solar radiation throughout the troposphere. According to the Working Group I report of the intergovernmental panel for climate change [IPCC, 2007], aerosols have a direct radiative forcing of - 0.5±0.4 W/m2 with a medium to low level of scientific understanding. This relatively large uncertainty indicates the need for more frequent and precise measurements of aerosol properties. We will show how actinic flux measurements can be used to derive important optical aerosol parameters such as aerosol optical thickness and depth, surface albedo, angstrom exponent, radiative forcing by clouds and aerosols, aerosol extinction, and others. The instrument used for this study is a combination of two spectroradiometers measuring actinic flux in the ultraviolet and visible radiation range from 280 to 690 nm with a resolution of 1 nm. Actinic flux is measured as the radiation incident on a spherical surface with sensitivity independent of direction. In contrast, irradiance is measured as the radiation incident on a plane surface, which depends on the cosine of the incident angle. Our goal is to assess the capabilities of using spectral actinic flux measurements to derive various aerosol properties. Here we will compare 1) actinic flux measurements to irradiance measurements from the spectral solar flux radiometer (SSFR), 2) derived aerosol size distributions with measurements from a white light optical particle counter (WLOPC) and ultra high sensitivity aerosol size spectrometer (UHSAS), and 3) derived aerosol optical extinction with measurements from a cavity ringdown aerosol extinction spectrometer (CRD-AES). These comparisons will utilize data from three recent field campaigns over New England and the Atlantic Ocean (ICARTT 2004), Texas and the Gulf of Mexico during (TexAQS/GoMACCS 2006), and Alaska and the Arctic Ocean (ARCPAC 2008) when the instruments

  20. Combining two complementary micrometeorological methods to measure CH4 and N2O fluxes over pasture

    NASA Astrophysics Data System (ADS)

    Laubach, J.; Barthel, M.; Fraser, A.; Hunt, J. E.; Griffith, D. W. T.

    2015-09-01

    New Zealand's largest industrial sector is pastoral agriculture, giving rise to a large fraction of the country's emissions of methane (CH4) and nitrous oxide (N2O). We designed a system to continuously measure CH4 and N2O fluxes at the field scale on two adjacent pastures that differed with respect to management. At the core of this system was a closed-cell Fourier-transform infrared spectrometer (FTIR), measuring the mole fractions of CH4, N2O and carbon dioxide (CO2) at two heights at each site. In parallel, CO2 fluxes were measured using eddy-covariance instrumentation. We applied two different micrometeorological ratio methods to infer the CH4 and N2O fluxes from their respective mole fractions and the CO2 fluxes. The first is a variant of the flux-gradient method, where it is assumed that the turbulent diffusivities of CH4 and N2O equal that of CO2. This method was reliable when the CO2 mole-fraction difference between heights was at least 4 times greater than the FTIR's resolution of differences. For the second method, the temporal increases of mole fractions in the stable nocturnal boundary layer, which are correlated for concurrently-emitted gases, are used to infer the unknown fluxes of CH4 and N2O from the known flux of CO2. This method was sensitive to "contamination" from trace gas sources other than the pasture of interest and therefore required careful filtering. With both methods combined, estimates of mean daily CH4 and N2O fluxes were obtained for 60 % of days at one site and 77 % at the other. Both methods indicated both sites as net sources of CH4 and N2O. Mean emission rates for one year at the unfertilised, winter-grazed site were 8.2 (± 0.91) nmol CH4 m-2 s-1 and 0.40 (± 0.018) nmol N2O m-2 s-1. During the same year, mean emission rates at the irrigated, fertilised and rotationally-grazed site were 7.0 (± 0.89) nmol CH4 m-2 s-1 and 0.57 (± 0.019) nmol N2O m-2 s-1. At this site, the N2O emissions amounted to 1.19 (± 0.15) % of the

  1. Combining two complementary micrometeorological methods to measure CH4 and N2O fluxes over pasture

    NASA Astrophysics Data System (ADS)

    Laubach, Johannes; Barthel, Matti; Fraser, Anitra; Hunt, John E.; Griffith, David W. T.

    2016-03-01

    New Zealand's largest industrial sector is pastoral agriculture, giving rise to a large fraction of the country's emissions of methane (CH4) and nitrous oxide (N2O). We designed a system to continuously measure CH4 and N2O fluxes at the field scale on two adjacent pastures that differed with respect to management. At the core of this system was a closed-cell Fourier transform infrared (FTIR) spectrometer, which measured the mole fractions of CH4, N2O and carbon dioxide (CO2) at two heights at each site. In parallel, CO2 fluxes were measured using eddy-covariance instrumentation. We applied two different micrometeorological ratio methods to infer the CH4 and N2O fluxes from their respective mole fractions and the CO2 fluxes. The first is a variant of the flux-gradient method, where it is assumed that the turbulent diffusivities of CH4 and N2O equal that of CO2. This method was reliable when the CO2 mole-fraction difference between heights was at least 4 times greater than the FTIR's resolution of differences. For the second method, the temporal increases of mole fractions in the stable nocturnal boundary layer, which are correlated for concurrently emitted gases, are used to infer the unknown fluxes of CH4 and N2O from the known flux of CO2. This method was sensitive to "contamination" from trace gas sources other than the pasture of interest and therefore required careful filtering. With both methods combined, estimates of mean daily CH4 and N2O fluxes were obtained for 56 % of days at one site and 73 % at the other. Both methods indicated both sites as net sources of CH4 and N2O. Mean emission rates for 1 year at the unfertilised, winter-grazed site were 8.9 (±0.79) nmol CH4 m-2 s-1 and 0.38 (±0.018) nmol N2O m-2 s-1. During the same year, mean emission rates at the irrigated, fertilised and rotationally grazed site were 8.9 (±0.79) nmol CH4 m-2 s-1 and 0.58 (±0.020) nmol N2O m-2 s-1. At this site, the N2O emissions amounted to 1.21 (±0.15) % of the nitrogen

  2. Airborne flux measurements of Biogenic Isoprene over California

    SciTech Connect

    Misztal, P.; Karl, Thomas G.; Weber, Robin; Jonsson, H. H.; Guenther, Alex B.; Goldstein, Allen H.

    2014-10-10

    Biogenic Volatile Organic Compound (BVOC) fluxes were measured onboard the CIRPAS Twin Otter aircraft as part of the California Airborne BVOC Emission Research in Natural Ecosystem Transects (CABERNET) campaign during June 2011. The airborne virtual disjunct eddy covariance (AvDEC) approach used measurements from a PTR-MS and a wind radome probe to directly determine fluxes of isoprene, MVK+MAC, methanol, monoterpenes, and MBO over ~10,000-km of flight paths focusing on areas of California predicted to have the largest emissions of isoprene. The Fast Fourier Transform (FFT) approach was used to calculate fluxes over long transects of more than 15 km, most commonly between 50 and 150 km. The Continuous Wavelet Transformation (CWT) approach was used over the same transects to also calculate "instantaneous" fluxes with localization of both frequency and time independent of non-stationarities. Vertical flux divergence of isoprene is expected due to its relatively short lifetime and was measured directly using "racetrack" profiles at multiple altitudes. It was found to be linear and in the range 5% to 30% depending on the ratio of aircraft altitude to PBL height (z/zi). Fluxes were generally measured by flying consistently 1 at 400 m ±50 m (a.g.l.) altitude, and extrapolated to the surface according to the determined flux divergence. The wavelet-derived surface fluxes of isoprene averaged to 2 km spatial resolution showed good correspondence to Basal Emission Factor (BEF) landcover datasets used to drive biogenic VOC (BVOC) emission models. The surface flux of isoprene was close to zero over Central Valley crops and desert shrublands, but was very high (up to 15 mg m-2 h-1) above oak woodlands, with clear dependence of emissions on temperature and oak density. Isoprene concentrations of up to 8 ppb were observed at aircraft height on the hottest days and over the dominant source regions. While isoprene emissions from agricultural crop regions, shrublands, and

  3. Evaluation of Site and Continental Terrestrial Carbon Cycle Simulations with North American Flux Tower Observations

    NASA Astrophysics Data System (ADS)

    Raczka, B. M.; Davis, K. J.; Regional-Interim Synthesis Participants, N.; Site Level Interim Synthesis, N.; Regional/Continental Interim Synthesis Team

    2010-12-01

    Terrestrial carbon models are widely used to diagnose past ecosystem-atmosphere carbon flux responses to climate variability, and are a critical component of coupled climate-carbon model used to predict global climate change. The North American Carbon Program (NACP) Interim Regional and Site Interim Synthesis activities collected a broad sampling of terrestrial carbon model results run at both regional and site level. The Regional Interim Synthesis Activity aims to determine our current knowledge of the carbon balance of North America by comparing the flux estimates provided by the various terrestrial carbon cycle models. Moving beyond model-model comparison is challenging, however, because no continental-scale reference values exist to validate modeled fluxes. This paper presents an effort to evaluate the continental-scale flux estimates of these models using North American flux tower observations brought together by the Site Interim Synthesis Activity. Flux towers present a standard for evaluation of the modeled fluxes, though this evaluation is challenging because of the mismatch in spatial scales between the spatial resolution of continental-scale model runs and the size of a flux tower footprint. We compare model performance with flux tower observations at monthly and annual integrals using the statistical criteria of normalized standard deviation, correlation coefficient, centered root mean square deviation and chi-squared. Models are evaluated individually and according to common model characteristics including spatial resolution, photosynthesis, soil carbon decomposition and phenology. In general all regional models are positively biased for GPP, Re and NEE at both annual and monthly time scales. Further analysis links this result to a positive bias in many solar radiation reanalyses. Positively biased carbon fluxes are also observed for enzyme-kinetic models and models using no nitrogen limitation for soil carbon decomposition. While the former result is

  4. Corrections for heat flux measurements taken on launch vehicles

    NASA Astrophysics Data System (ADS)

    Reinarts, Thomas R.; Matson, Monique L.; Walls, Laurie K.

    2002-01-01

    Knowledge of aerothermally induced convective heat transfer and plume induced radiative heat transfer loads is essential to the design of thermal protection systems for launch vehicles. Aerothermal and radiative models are typically calibrated via the data from cylindrical, in-flight, flush-mounted surface heat flux gauges that are exposed to the external thermal and velocity boundary layers as well as thermal radiation. Typically, Schmidt-Boelter gauges, taking advantage of the 1-Dimensional Fourier's law, measure the incident heat flux. This instrumentation, when surrounded by low-conductivity insulation, has an exposed surface temperature significantly lower than the insulation. As a result of this substantial disturbance to the thermal boundary layer, the heat flux incident on the gauge tends to be considerably higher (potentially by factors of 2 or more) than it would have been on the insulation had the calorimeter not been there. In addition, the gauge can receive energy radially from the hotter insulation, contributing to the increase of the indicated heat flux. This paper will present an overview of an effort to model the heat flux gauge under typical flight conditions that includes an installation surrounded by high temperature insulation. The goal is to correct the measurements to reflect the local heat flux on the insulation had the instrument not been present. The three major components of this effort include: 1) a 3-Dimensional computational thermal math model including the internal conduction heat transfer details of a Schmidt-Boelter gauge. 2) a CFD analysis to determine the effects on measurement of the rapidly changing thermal boundary layer over the near step changes in wall temperature, and 3) testing performed on flat plates exposed to an aerothermal environment in the Marshall Space Flight Center (MSFC) Improved Hot Gas Facility (IHGF). A summary of the analytical efforts will be presented, as well as early testing results and preliminary model

  5. Suggestions for the measurement and derivation of fluxes and flux divergences from a satellite

    SciTech Connect

    Man-Li C. Wu )

    1990-04-15

    The theoretical studies shown here indicate that the best bands to measure and derive the total outgoing longwave radiation (OLR), surface downward flux (SDF), and cooling rates (CRs) using linear regression are (1) the band between 800 and 1,200 cm{sup {minus}1} for OLR, (2) the band between 500 and 660 cm{sup {minus}1} or 660 and 800 cm{sup {minus}1} for SDF, and (3) the band between 660 and 800 cm{sup {minus}1} for CRs. These results are obtained from scatter plots of total fluxes and cooling rates associated with the various bands. The advanced very high resolution radiometer OLR is damped compared with the Nimbus 7 Earth radiation budget (ERB) OLR, which is derived from the broadband, narrow field of view ERB instrument, owing to its use of only one narrow band (centered around the 11-{mu}m window region) measurement.

  6. Measurement of the cosmic ray flux with the ANITA experiment

    NASA Astrophysics Data System (ADS)

    García-Fernández, Daniel; Alvarez-Muñiz, Jaime; Carvalho, Washington R.; Schoorlemmer, Harm; Zas, Enrique

    2017-03-01

    The ANITA experiment consists on an aerostatic balloon flying over Antarctica and carrying a payload with antennas. Although ANITA was designed to detect the electric field of netrino-induced showers in the ice cap, it has also detected 16 radio pulses coming from extensive air showers, and the ANITA collaboration has used these data to produce the first cosmic ray flux measurement obtained by employing radio as a stand-alone technique. We review the experimental results and its interpretation. We also focus on the simulations and the method used for obtaining the cosmic ray flux.

  7. AmeriFlux CA-NS5 UCI-1981 burn site

    SciTech Connect

    Goulden, Mike

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site CA-NS5 UCI-1981 burn site. Site Description - The UCI-1981 site is located in a continental boreal forest, dominated by black spruce trees, within the BOREAS northern study area in central Manitoba, Canada. The site is a member of a chronological series of sites that are representative secondary succession growth stages after large stand replacement fires. Black spruce trees undergo a slow growth process enabling the accurate determination of the chronosequence of stand age disturbance. Additionally, boreal forests make up approximately 25% of forest ecosystems on earth. With both of these in mind, the UCI sites provide an excellent location to study the CO2 exchange between the atmosphere and boreal forest ecosystems as a function of sequential wildfires.

  8. AmeriFlux CA-NS8 UCI-2003 burn site

    SciTech Connect

    Goulden, Mike

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site CA-NS8 UCI-2003 burn site. Site Description - The UCI-2003 site is located in a continental boreal forest, dominated by black spruce trees, within the BOREAS northern study area in central Manitoba, Canada. The site is a member of a chronological series of sites that are representative secondary succession growth stages after large stand replacement fires. Black spruce trees undergo a slow growth process enabling the accurate determination of the chronosequence of stand age disturbance. Additionally, boreal forests make up approximately 25% of forest ecosystems on earth. With both of these in mind, the UCI sites provide an excellent location to study the CO2 exchange between the atmosphere and boreal forest ecosystems as a function of sequential wildfires.

  9. AmeriFlux CA-NS2 UCI-1930 burn site

    SciTech Connect

    Goulden, Mike

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site CA-NS2 UCI-1930 burn site. Site Description - The UCI-1930 site is located in a continental boreal forest, dominated by black spruce trees, within the BOREAS northern study area in central Manitoba, Canada. The site is a member of a chronological series of sites that are representative secondary succession growth stages after large stand replacement fires. Black spruce trees undergo a slow growth process enabling the accurate determination of the chronosequence of stand age disturbance. Additionally, boreal forests make up approximately 25% of forest ecosystems on earth. With both of these in mind, the UCI sites provide an excellent location to study the CO2 exchange between the atmosphere and boreal forest ecosystems as a function of sequential wildfires.

  10. AmeriFlux CA-NS7 UCI-1998 burn site

    SciTech Connect

    Goulden, Mike

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site CA-NS7 UCI-1998 burn site. Site Description - The UCI-1998 site is located in a continental boreal forest, dominated by black spruce trees, within the BOREAS northern study area in central Manitoba, Canada. The site is a member of a chronological series of sites that are representative secondary succession growth stages after large stand replacement fires. Black spruce trees undergo a slow growth process enabling the accurate determination of the chronosequence of stand age disturbance. Additionally, boreal forests make up approximately 25% of forest ecosystems on earth. With both of these in mind, the UCI sites provide an excellent location to study the CO2 exchange between the atmosphere and boreal forest ecosystems as a function of sequential wildfires.

  11. AmeriFlux CA-NS3 UCI-1964 burn site

    SciTech Connect

    Goulden, Mike

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site CA-NS3 UCI-1964 burn site. Site Description - The UCI-1964 site is located in a continental boreal forest, dominated by black spruce trees, within the BOREAS northern study area in central Manitoba, Canada. The site is a member of a chronological series of sites that are representative secondary succession growth stages after large stand replacement fires. Black spruce trees undergo a slow growth process enabling the accurate determination of the chronosequence of stand age disturbance. Additionally, boreal forests make up approximately 25% of forest ecosystems on earth. With both of these in mind, the UCI sites provide an excellent location to study the CO2 exchange between the atmosphere and boreal forest ecosystems as a function of sequential wildfires.

  12. AmeriFlux CA-NS6 UCI-1989 burn site

    SciTech Connect

    Goulden, Mike

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site CA-NS6 UCI-1989 burn site. Site Description - The UCI-1989 site is located in a continental boreal forest, dominated by black spruce trees, within the BOREAS northern study area in central Manitoba, Canada. The site is a member of a chronological series of sites that are representative secondary succession growth stages after large stand replacement fires. Black spruce trees undergo a slow growth process enabling the accurate determination of the chronosequence of stand age disturbance. Additionally, boreal forests make up approximately 25% of forest ecosystems on earth. With both of these in mind, the UCI sites provide an excellent location to study the CO2 exchange between the atmosphere and boreal forest ecosystems as a function of sequential wildfires.

  13. AmeriFlux CA-NS4 UCI-1964 burn site wet

    SciTech Connect

    Goulden, Mike

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site CA-NS4 UCI-1964 burn site wet. Site Description - The UCI-1964 wet site is located in a continental boreal forest, dominated by black spruce trees, within the BOREAS northern study area in central Manitoba, Canada. The site is a member of a chronological series of sites that are representative secondary succession growth stages after large stand replacement fires. Black spruce trees undergo a slow growth process enabling the accurate determination of the chronosequence of stand age disturbance. Additionally, boreal forests make up approximately 25% of forest ecosystems on earth. With both of these in mind, the UCI sites provide an excellent location to study the CO2 exchange between the atmosphere and boreal forest ecosystems as a function of sequential wildfires.

  14. AmeriFlux CA-NS1 UCI-1850 burn site

    SciTech Connect

    Goulden, Mike

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site CA-NS1 UCI-1850 burn site. Site Description - The UCI-1850 site is located in a continental boreal forest, dominated by black spruce trees, within the BOREAS northern study area in central Manitoba, Canada. The site is a member of a chronological series of sites that are representative secondary succession growth stages after large stand replacement fires. Black spruce trees undergo a slow growth process enabling the accurate determination of the chronosequence of stand age disturbance. Additionally, boreal forests make up approximately 25% of forest ecosystems on earth. With both of these in mind, the UCI sites provide an excellent location to study the CO2 exchange between the atmosphere and boreal forest ecosystems as a function of sequential wildfires.

  15. AmeriFlux US-Ne3 Mead - rainfed maize-soybean rotation site

    DOE Data Explorer

    Suyker, Andy [University of Nebraska - Lincoln

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Ne3 Mead - rainfed maize-soybean rotation site. Site Description - The study site is one of three fields (all located within 1.6 km of each other) at the University of Nebraska Agricultural Research and Development Center near Mead, Nebraska. While the other two sites are equipped with irrigation systems, this site relies on rainfall. A tillage operation (disking) was done just prior to the 2001 planting to homogenize the top 0.1 m of soil, incorporate P and K fertilizers, as well as previously accumulated surface residues. Since initiation of the study in 2001, this site has been under no-till management.

  16. AmeriFlux US-Ne2 Mead - irrigated maize-soybean rotation site

    SciTech Connect

    Suyker, Andy

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Ne2 Mead - irrigated maize-soybean rotation site. Site Description - The study site is one of three fields (all located within 1.6 km of each other) at the University of Nebraska Agricultural Research and Development Center near Mead, Nebraska. This site is irrigated with a center pivot system. Prior to the initiation of the study, the irrigated site had a 10-yr history of maize-soybean rotation under no-till. A tillage operation (disking) was done just prior to the 2001 planting to homogenize the top 0.1 m of soil, incorporate P and K fertilizers, as well as previously accumulated surface residues. Since this tillage operation, the site has been under no-till management.

  17. Optimization of measurements of the Earth's radiation belt particle fluxes

    NASA Astrophysics Data System (ADS)

    Panasyuk, M. I.; Podzolko, M. V.; Kovtyukh, A. S.; Brilkov, I. A.; Vlasova, N. A.; Kalegaev, V. V.; Osedlo, V. I.; Tulupov, V. I.; Yashin, I. V.

    2017-03-01

    The Earth's radiation belts discovered at the end of the 1950s have great scientific and practical interest. Their main characteristics in magnetically quiet periods are well known. However, the dynamics of the Earth's radiation belts during magnetic storms and substorms, particularly the dynamics of relativistic electrons of the outer belt, when Earth's radiation belt particle fluxes undergo significant time variations, is studied insufficiently. At present, principally new experiments have been performed and planned with the intention to better study the dynamics of the Earth's radiation belts and to operationally control the space-energy distributions of the Earth's radiation belt particle fluxes. In this paper, for spacecraft designed to measure the fluxes of electrons and protons of the Earth's radiation belts at altitudes of 0.5-10000 km, the optimal versions for detector orientation and orbital parameters have been considered and selected.

  18. High-Fidelity Measurements of Long-Lived Flux Qubits

    NASA Astrophysics Data System (ADS)

    Hover, David; Macklin, Chris; O'Brien, Kevin; Sears, Adam; Yoder, Jonilyn; Gudmundsen, Ted; Kerman, Jamie; Bolkhovsky, Vladimir; Tolpygo, Sergey; Fitch, George; Weir, Terry; Kamal, Archana; Gustavsson, Simon; Yan, Fei; Birenbaum, Jeff; Siddiqi, Irfan; Orlando, Terry; Clarke, John; Oliver, Will

    2015-03-01

    We report on high-fidelity dispersive measurements of a long-lived flux qubit using a Josephson superconducting traveling wave parametric amplifier (JTWPA). A capacitively shunted flux qubit that incorporates high-Q MBE aluminum will have longer relaxation and dephasing times when compared to a conventional flux qubit, while also maintaining the large anharmonicity necessary for complex gate operations. The JTWPA relies on a Josephson junction embedded transmission line to deliver broadband, nonreciprocal gain with large dynamic range. This research was funded in part by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA); and by the Assistant Secretary of Defense for Research & Engineering under Air Force Contract number FA8721-05-C-0002. All statements of fact, opinion or conclusions contained herein are those of the authors and should not be construed as representing the official views or policies of

  19. Ecosystem photosynthesis inferred from measurements of carbonyl sulphide flux

    NASA Astrophysics Data System (ADS)

    Asaf, David; Rotenberg, Eyal; Tatarinov, Fyodor; Dicken, Uri; Montzka, Stephen A.; Yakir, Dan

    2013-03-01

    Limited understanding of carbon dioxide sinks and sources on land is often linked to the inability to distinguish between the carbon dioxide taken up by photosynthesis, and that released by respiration. Carbonyl sulphide, a sulphur-containing analogue of carbon dioxide, is also taken up by plants, and could potentially serve as a powerful proxy for photosynthetic carbon dioxide uptake, which cannot be directly measured above the leaf scale. Indeed, variations in atmospheric concentrations of carbonyl sulphide are closely related to those of carbon dioxide at regional, local and leaf scales. Here, we use eddy covariance and laser spectroscopy to estimate the net exchange of carbon dioxide and carbonyl sulphide across three pine forests, a cotton field and a wheat field in Israel. We estimate gross primary productivity--a measure of ecosystem photosynthesis--directly from the carbonyl sulphide fluxes, and indirectly from carbon dioxide fluxes. The two estimates agree within an error of +/-15%. The ratio of carbonyl sulphide to carbon dioxide flux at the ecosystem scale was consistent with the variability in mixing ratios observed on seasonal timescales in the background atmosphere. We suggest that atmospheric measurements of carbonyl sulphide flux could provide an independent constraint on estimates of gross primary productivity, key to projecting the response of the land biosphere to climate change.

  20. Contribution of Soil Surface CO2 Efflux to Boreal Forest Net Ecosystem Flux: Measurements and Modeling

    NASA Astrophysics Data System (ADS)

    Niinisto, S. M.; Kellomaki, S.

    2001-05-01

    The aims of the study are to assess the contribution of measured soil surface CO2 efflux to boreal forest net ecosystem flux and to test whether modeled component fluxes such as leaf and surface soil fluxes are consistent with the net flux measured from a tower over a forest stand. Net ecosystem flux was measured continuously in a boreal Scots pine forest in eastern Finland (62° 52'N, 30° 49'E) during the growing period in 2000. Height and diameter of trees in this 50-year-old stand ranged from 10 to 13 m and from 9 to 12 cm, respectively, for 80 % of trees. Eddy-flux measurements were made at the top of a 32-m tower, about 20 m above the canopy. Wind velocity and virtual temperature were measured with a three-axis sonic anemometer. CO2 fluctuations at 32 m were continuously monitored with a CO2 analyzer. Raw data were sampled at 10 Hz and 1/2 hr fluxes calculated. Soil surface CO2 efflux was measured on the top of a feather moss or lichen cover with an IRGA and four automated open dynamic chambers, each equipped with a PAR sensor and air temperature probe. Chambers of 19 cm diameter were made of transparent PMMA. Measurements were made twice per hr, lasting 1 min each. Periods considered in this study included both early and late season conditions, since data from the automated soil surface efflux measurements were available from May to June as well as from August to September. In this study, we aim to compare the measured soil surface CO2 efflux with simultaneously measured net ecosystem flux. The performance of the automated chambers will be tested by comparing with simultaneous measurements from a dark closed static chamber at the same site. A simple regression model, using soil surface temperature as an independent variable, will be built using the static dark chamber data from the previous years. A rough correction for the carbon uptake of moss will be made. This model could be validated later with automated measurements. To investigate further the

  1. Emission Flux Measurement Error with a Mobile DOAS System and Application to NOx Flux Observations.

    PubMed

    Wu, Fengcheng; Li, Ang; Xie, Pinhua; Chen, Hao; Hu, Zhaokun; Zhang, Qiong; Liu, Jianguo; Liu, Wenqing

    2017-01-25

    Mobile differential optical absorption spectroscopy (mobile DOAS) is an optical remote sensing method that can rapidly measure trace gas emission flux from air pollution sources (such as power plants, industrial areas, and cities) in real time. Generally, mobile DOAS is influenced by wind, drive velocity, and other factors, especially in the usage of wind field when the emission flux in a mobile DOAS system is observed. This paper presents a detailed error analysis and NOx emission with mobile DOAS system from a power plant in Shijiazhuang city, China. Comparison of the SO₂ emission flux from mobile DOAS observations with continuous emission monitoring system (CEMS) under different drive speeds and wind fields revealed that the optimal drive velocity is 30-40 km/h, and the wind field at plume height is selected when mobile DOAS observations are performed. In addition, the total errors of SO₂ and NO₂ emissions with mobile DOAS measurements are 32% and 30%, respectively, combined with the analysis of the uncertainties of column density, wind field, and drive velocity. Furthermore, the NOx emission of 0.15 ± 0.06 kg/s from the power plant is estimated, which is in good agreement with that from CEMS observations of 0.17 ± 0.07 kg/s. This study has significantly contributed to the measurement of the mobile DOAS system on emission from air pollution sources, thus improving estimation accuracy.

  2. Emission Flux Measurement Error with a Mobile DOAS System and Application to NOx Flux Observations

    PubMed Central

    Wu, Fengcheng; Li, Ang; Xie, Pinhua; Chen, Hao; Hu, Zhaokun; Zhang, Qiong; Liu, Jianguo; Liu, Wenqing

    2017-01-01

    Mobile differential optical absorption spectroscopy (mobile DOAS) is an optical remote sensing method that can rapidly measure trace gas emission flux from air pollution sources (such as power plants, industrial areas, and cities) in real time. Generally, mobile DOAS is influenced by wind, drive velocity, and other factors, especially in the usage of wind field when the emission flux in a mobile DOAS system is observed. This paper presents a detailed error analysis and NOx emission with mobile DOAS system from a power plant in Shijiazhuang city, China. Comparison of the SO2 emission flux from mobile DOAS observations with continuous emission monitoring system (CEMS) under different drive speeds and wind fields revealed that the optimal drive velocity is 30–40 km/h, and the wind field at plume height is selected when mobile DOAS observations are performed. In addition, the total errors of SO2 and NO2 emissions with mobile DOAS measurements are 32% and 30%, respectively, combined with the analysis of the uncertainties of column density, wind field, and drive velocity. Furthermore, the NOx emission of 0.15 ± 0.06 kg/s from the power plant is estimated, which is in good agreement with that from CEMS observations of 0.17 ± 0.07 kg/s. This study has significantly contributed to the measurement of the mobile DOAS system on emission from air pollution sources, thus improving estimation accuracy. PMID:28125054

  3. Automatic magnetic flux measurement of micro plastic-magnetic rotors

    NASA Astrophysics Data System (ADS)

    Wang, Qingdong; Lin, Mingxing; Song, Aiwei

    2015-07-01

    Micro plastic-magnetic rotors of various sizes and shapes are widely used in industry, their magnetic flux measurement is one of the most important links in the production process, and therefore some technologies should be adopted to improve the measurement precision and efficiency. In this paper, the automatic measurement principle of micro plastic-magnetic rotors is proposed and the integration time constant and the integrator drift’s suppression and compensation in the measurement circuit are analyzed. Two other factors influencing the measurement precision are also analyzed, including the relative angles between the rotor magnetic poles and the measurement coil, and the starting point of the rotors in the coil where the measurement begins. An instrument is designed to measure the magnetic flux of the rotors. Measurement results show that the measurement error is within  ±1%, which meets the basic requirements in industry application, and the measurement efficiency is increased by 10 times, which can cut down labor cost and management cost when compared with manual measurement.

  4. Understanding the representativeness of FLUXNET for upscaling carbon flux from eddy covariance measurements

    SciTech Connect

    Kumar, Jitendra; Hoffman, Forrest M.; Hargrove, William W.; Collier, Nathan

    2016-08-23

    Eddy covariance data from regional flux networks are direct in situ measurement of carbon, water, and energy fluxes and are of vital importance for understanding the spatio-temporal dynamics of the the global carbon cycle. FLUXNET links regional networks of eddy covariance sites across the globe to quantify the spatial and temporal variability of fluxes at regional to global scales and to detect emergent ecosystem properties. This study presents an assessment of the representativeness of FLUXNET based on the recently released FLUXNET2015 data set. We present a detailed high resolution analysis of the evolving representativeness of FLUXNET through time. Results provide quantitative insights into the extent that various biomes are sampled by the network of networks, the role of the spatial distribution of the sites on the network scale representativeness at any given time, and how that representativeness has changed through time due to changing operational status and data availability at sites in the network. To realize the full potential of FLUXNET observations for understanding emergent ecosystem properties at regional and global scales, we present an approach for upscaling eddy covariance measurements. Informed by the representativeness of observations at the flux sites in the network, the upscaled data reflects the spatio-temporal dynamics of the carbon cycle captured by the in situ measurements. In conclusion, this study presents a method for optimal use of the rich point measurements from FLUXNET to derive an understanding of upscaled carbon fluxes, which can be routinely updated as new data become available, and direct network expansion by identifying regions poorly sampled by the current network.

  5. Understanding the representativeness of FLUXNET for upscaling carbon flux from eddy covariance measurements

    DOE PAGES

    Kumar, Jitendra; Hoffman, Forrest M.; Hargrove, William W.; ...

    2016-08-23

    Eddy covariance data from regional flux networks are direct in situ measurement of carbon, water, and energy fluxes and are of vital importance for understanding the spatio-temporal dynamics of the the global carbon cycle. FLUXNET links regional networks of eddy covariance sites across the globe to quantify the spatial and temporal variability of fluxes at regional to global scales and to detect emergent ecosystem properties. This study presents an assessment of the representativeness of FLUXNET based on the recently released FLUXNET2015 data set. We present a detailed high resolution analysis of the evolving representativeness of FLUXNET through time. Results providemore » quantitative insights into the extent that various biomes are sampled by the network of networks, the role of the spatial distribution of the sites on the network scale representativeness at any given time, and how that representativeness has changed through time due to changing operational status and data availability at sites in the network. To realize the full potential of FLUXNET observations for understanding emergent ecosystem properties at regional and global scales, we present an approach for upscaling eddy covariance measurements. Informed by the representativeness of observations at the flux sites in the network, the upscaled data reflects the spatio-temporal dynamics of the carbon cycle captured by the in situ measurements. In conclusion, this study presents a method for optimal use of the rich point measurements from FLUXNET to derive an understanding of upscaled carbon fluxes, which can be routinely updated as new data become available, and direct network expansion by identifying regions poorly sampled by the current network.« less

  6. Carbon Flux to the Deep in three open sites of the Southern European Seas

    NASA Astrophysics Data System (ADS)

    Gogou*, A.; Sanchez-Vidal*, A.; Stavrakakis, S.; Durrieu de Madron, X.; Calafat, A. M.; Stabholz, M.; Psarra, S.; Canals, M.; Heussner, S.; Stavrakaki, I.; Papathanassiou, E.

    2012-04-01

    In this study we investigate the functioning of the biological pump in the Southern European Seas (SES). In order to constrain the rates of carbon production and export to depth, we combine estimations of satellite primary production data, algorithm-generated fluxes out of the euphotic layer and particulate organic carbon (POC) fluxes, as measured by sediment traps at the mesopelagic and bathypelagic layers in three sites located in the Western Mediterranean (WMED), the Eastern Mediterranean (EMED), and the Black Sea (BS). POC fluxes were monitored during one year period (Sept 2007 - Sept 2008) in the frame of SESAME project. Annual primary production by satellite estimations yielded values of 396 mg C m-2d-1 (EMED), 563 mg C m-2d-1 (WMED) and 617 mg C m-2d-1 (BS) (SeaWiFS; http://emis.jrc.ec.europa.eu). At the scale of the whole Mediterranean and the Black Sea basins, spatiotemporal variability of Chl-a concentrations during the time of our experiments revealed significant differences in the seasonal cycles. While the WMED site showed increased biomass centred around spring (March-April 2008), the EMED site showed higher values in mid-winter (January 2008), even thought almost one order of magnitude lower than those recorded in the western site. In contrast, the BS site showed increased Chl-a concentration in autumn (Nov 2007) and a lower increase in early spring (March 2008). Overall, the observed Chl-a seasonal patterns for the WMED and EMED sites match quite well the typical seasonal patterns ascribed to their hosting areas, corresponding to "blooming" and "non-blooming" biogeographic regions, respectively, as proposed by D'Ortenzio and Ribera d'Alcala (D'Ortenzio and Ribera d'Alcala, 2009). Moreover, based on the timing of the bloom (late fall) the seasonal pattern of the BS site is quite similar to that observed in Mediterranean regions having a "coastal" regime. Thus, specific physical and biogeochemical settings in the three contrasting sites affect the

  7. PERFORMING QUALITY FLOW MEASUREMENTS AT MINE SITES

    EPA Science Inventory

    Accurate flow measurement data is vital to research, monitoring, and remediation efforts at mining sites. This guidebook has been prepared to provide a summary of information relating to the performance of low measurements, and how this information can be applied at mining sites....

  8. AmeriFlux US-Ho3 Howland Forest (harvest site)

    DOE Data Explorer

    Hollinger, David [USDA Forest Service; Hollinger, David [USDA Forest Service

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Ho3 Howland Forest (harvest site). Site Description - Closed conifer forest, minimal disturbance. References: Fernandez et al. (1993), Canadian Journal of Soil Science 73 317-328. Hollinger et al. (1999), Global Change Biology 5: 891-902. Savage KE, Davidson EA (2001), Global Biogeochemical Cycles 15 337-350. Scott et al. (2004), Environmental Management, Vol. 33, Supplement 1, pp. S9-S22. Hollinger et al. (2004), Global Change Biology 10: 1689-1706.

  9. Field intercomparison of four methane gas analysers suitable for eddy covariance flux measurements

    NASA Astrophysics Data System (ADS)

    Peltola, O.; Mammarella, I.; Haapanala, S.; Burba, G.; Vesala, T.

    2012-12-01

    Performances of four methane gas analyzers suitable for eddy covariance measurements are assessed. The assessment and comparison was performed by analyzing eddy covariance data obtained during summer 2010 (1 April to 26 October) at a pristine fen, Siikaneva, Southern Finland. High methane fluxes with pronounced seasonality have been measured at this fen. The four participating methane gas analyzers are commercially available closed-path units TGA-100A (Campbell Scientific Inc., USA), RMT-200 (Los Gatos Research, USA), G1301-f (Picarro Inc., USA) and an early prototype open-path unit Prototype-7700 (LI-COR Biosciences, USA). The RMT-200 functioned most reliably throughout the measurement campaign, during low and high flux periods. Methane fluxes from RMT-200 and G1301-f had the smallest random errors and the fluxes agree remarkably well throughout the measurement campaign. Cospectra and power spectra calculated from RMT-200 and G1301-f data agree well with corresponding temperature spectra during a high flux period. None of the gas analysers showed statistically significant diurnal variation for methane flux. Prototype-7700 functioned only for a short period of time, over one month, in the beginning of the measurement campaign during low flux period, and thus, its overall accuracy and long-term performance were not assessed. Prototype-7700 is a practical choice for measurement sites in remote locations due to its low power demand, however if only the performance in this intercomparison is considered, RMT-200 performed the best and is the recommended choice if a new fast response methane gas analyser is needed.

  10. Eddy covariance methane flux measurements over a grazed pasture: effect of cows as moving point sources

    NASA Astrophysics Data System (ADS)

    Felber, R.; Münger, A.; Neftel, A.; Ammann, C.

    2015-02-01

    Methane (CH4) from ruminants contributes one third to global agricultural greenhouse gas emissions. Eddy covariance (EC) technique has been extensively used at various flux sites to investigate carbon dioxide exchange of ecosystems. Since the development of fast CH4 analysers the instrumentation at many flux sites have been amended for these gases. However the application of EC over pastures is challenging due to the spatial and temporal uneven distribution of CH4 point sources induced by the grazing animals. We applied EC measurements during one grazing season over a pasture with 20 dairy cows (mean milk yield: 22.7 kg d-1) managed in a rotational grazing system. Individual cow positions were recorded by GPS trackers to attribute fluxes to animal emissions using a footprint model. Methane fluxes with cows in the footprint were up to two orders of magnitude higher than ecosystem fluxes without cows. Mean cow emissions of 423 ± 24 g CH4 head-1 d-1 (best guess of this study) correspond well to animal respiration chamber measurements reported in the literature. However a systematic effect of the distance between source and EC tower on cow emissions was found which is attributed to the analytical footprint model used. We show that the EC method allows to determine CH4 emissions of grazing cows if the data evaluation is adjusted for this purpose and if some cow distribution information is available.

  11. Eddy covariance methane flux measurements over a grazed pasture: effect of cows as moving point sources

    NASA Astrophysics Data System (ADS)

    Felber, R.; Münger, A.; Neftel, A.; Ammann, C.

    2015-06-01

    Methane (CH4) from ruminants contributes one-third of global agricultural greenhouse gas emissions. Eddy covariance (EC) technique has been extensively used at various flux sites to investigate carbon dioxide exchange of ecosystems. Since the development of fast CH4 analyzers, the instrumentation at many flux sites has been amended for these gases. However, the application of EC over pastures is challenging due to the spatially and temporally uneven distribution of CH4 point sources induced by the grazing animals. We applied EC measurements during one grazing season over a pasture with 20 dairy cows (mean milk yield: 22.7 kg d-1) managed in a rotational grazing system. Individual cow positions were recorded by GPS trackers to attribute fluxes to animal emissions using a footprint model. Methane fluxes with cows in the footprint were up to 2 orders of magnitude higher than ecosystem fluxes without cows. Mean cow emissions of 423 ± 24 g CH4 head-1 d-1 (best estimate from this study) correspond well to animal respiration chamber measurements reported in the literature. However, a systematic effect of the distance between source and EC tower on cow emissions was found, which is attributed to the analytical footprint model used. We show that the EC method allows one to determine CH4 emissions of cows on a pasture if the data evaluation is adjusted for this purpose and if some cow distribution information is available.

  12. A new frontier in CO2 flux measurements using a highly portable DIAL laser system.

    PubMed

    Queiβer, Manuel; Granieri, Domenico; Burton, Mike

    2016-09-22

    Volcanic CO2 emissions play a key role in the geological carbon cycle, and monitoring of volcanic CO2 fluxes helps to forecast eruptions. The quantification of CO2 fluxes is challenging due to rapid dilution of magmatic CO2 in CO2-rich ambient air and the diffuse nature of many emissions, leading to large uncertainties in the global magmatic CO2 flux inventory. Here, we report measurements using a new DIAL laser remote sensing system for volcanic CO2 (CO2DIAL). Two sites in the volcanic zone of Campi Flegrei (Italy) were scanned, yielding CO2 path-amount profiles used to compute fluxes. Our results reveal a relatively high CO2 flux from Campi Flegrei, consistent with an increasing trend. Unlike previous methods, the CO2DIAL is able to measure integrated CO2 path-amounts at distances up to 2000 m using virtually any solid surface as a reflector, whilst also being highly portable. This opens a new frontier in quantification of geological and anthropogenic CO2 fluxes.

  13. A new frontier in CO2 flux measurements using a highly portable DIAL laser system

    NASA Astrophysics Data System (ADS)

    Queiβer, Manuel; Granieri, Domenico; Burton, Mike

    2016-09-01

    Volcanic CO2 emissions play a key role in the geological carbon cycle, and monitoring of volcanic CO2 fluxes helps to forecast eruptions. The quantification of CO2 fluxes is challenging due to rapid dilution of magmatic CO2 in CO2-rich ambient air and the diffuse nature of many emissions, leading to large uncertainties in the global magmatic CO2 flux inventory. Here, we report measurements using a new DIAL laser remote sensing system for volcanic CO2 (CO2DIAL). Two sites in the volcanic zone of Campi Flegrei (Italy) were scanned, yielding CO2 path-amount profiles used to compute fluxes. Our results reveal a relatively high CO2 flux from Campi Flegrei, consistent with an increasing trend. Unlike previous methods, the CO2DIAL is able to measure integrated CO2 path-amounts at distances up to 2000 m using virtually any solid surface as a reflector, whilst also being highly portable. This opens a new frontier in quantification of geological and anthropogenic CO2 fluxes.

  14. A new frontier in CO2 flux measurements using a highly portable DIAL laser system

    PubMed Central

    Queiβer, Manuel; Granieri, Domenico; Burton, Mike

    2016-01-01

    Volcanic CO2 emissions play a key role in the geological carbon cycle, and monitoring of volcanic CO2 fluxes helps to forecast eruptions. The quantification of CO2 fluxes is challenging due to rapid dilution of magmatic CO2 in CO2-rich ambient air and the diffuse nature of many emissions, leading to large uncertainties in the global magmatic CO2 flux inventory. Here, we report measurements using a new DIAL laser remote sensing system for volcanic CO2 (CO2DIAL). Two sites in the volcanic zone of Campi Flegrei (Italy) were scanned, yielding CO2 path-amount profiles used to compute fluxes. Our results reveal a relatively high CO2 flux from Campi Flegrei, consistent with an increasing trend. Unlike previous methods, the CO2DIAL is able to measure integrated CO2 path-amounts at distances up to 2000 m using virtually any solid surface as a reflector, whilst also being highly portable. This opens a new frontier in quantification of geological and anthropogenic CO2 fluxes. PMID:27652775

  15. Measurements of Mass, Momentum and Energy fluxes over an ice/snow covered lake

    NASA Astrophysics Data System (ADS)

    Salgado, Rui; Potes, Miguel; Mammarella, Ivan; Provenzale, Maria

    2016-04-01

    A better understanding of the interactions between ice and snow and the atmosphere requires improved measurements of energy, mass and momentum fluxes, which continue to have a high degree of uncertainty. In this communication, observed near surface fluxes of momentum, heat and mass (H2O and CO2) over a boreal lake during a freezing period (winter 2015/2016) will be analysed and compared with observations over ice free lakes. Continuously measurements of near surface fluxes of momentum, heat and mass (H2O and CO2) are obtained with a new eddy covariance (EC) system, the Campbell Scientific's IRGASON Integrated Open-Path CO2/H2O Gas Analyzer and 3D Sonic Anemometer, over lake Vanajavesi in Finland. The measurement site is located in a tip of narrow peninsula on the lake (61.133935° N ; 24.259119° E), offering very good conditions for eddy covariance flux measurements. The EC system was installed at 2.5m height above the lake surface and was oriented against the prevailing wind direction in the site.

  16. Time and Space Resolved Heat Flux Measurements During Nucleate Boiling with Constant Heat Flux Boundary Conditions

    NASA Technical Reports Server (NTRS)

    Yerramilli, Vamsee K.; Myers, Jerry G.; Hussey, Sam W.; Yee, Glenda F.; Kim, Jungho

    2005-01-01

    The lack of temporally and spatially resolved measurements under nucleate bubbles has complicated efforts to fully explain pool-boiling phenomena. The objective of this current work was to acquire time and space resolved temperature distributions under nucleating bubbles on a constant heat flux surface using a microheater array with 100x 100 square microns resolution, then numerically determine the wall to liquid heat flux. This data was then correlated with high speed (greater than l000Hz) visual recordings of The bubble growth and departure from the heater surface acquired from below and from the side of the heater. The data indicate that microlayer evaporation and contact line heat transfer are not major heat transfer mechanisms for bubble growth. The dominant heat transfer mechanism appears to be transient conduction into the liquid as the liquid rewets the wall during the bubble departure process.

  17. Suggestions for the measurement and derivation of fluxes and flux divergences from a satellite

    NASA Technical Reports Server (NTRS)

    Wu, Man-Li C.

    1990-01-01

    Consideration is given to the determination of the optimal bands for measuring and deriving the total outgoing longwave radiation (OLR), surface downward flux (SDF), and cooling rates (CRs) using linear regression. The optimal bands are determined from scatter plots of total fluxes and cooling rates associated with the various bands. It is found that the best band for OLR is between 800 and 1200/cm, while the best band for SDF is between 500 and 660/cm or between 660 and 800/cm. For CRs, it is shown that the best band is also between 660 and 800/cm. It is noted that the AVHRR OLR is damped compared with the Nimbus-7 earth radiation budget (ERB) OLR derived from the broadband, narrow FOV ERB instrument.

  18. Airborne flux measurements of biogenic isoprene over California

    NASA Astrophysics Data System (ADS)

    Misztal, P. K.; Karl, T.; Weber, R.; Jonsson, H. H.; Guenther, A. B.; Goldstein, A. H.

    2014-10-01

    Biogenic isoprene fluxes were measured onboard the CIRPAS Twin Otter aircraft as part of the California Airborne Biogenic volatile organic compound (BVOC) Emission Research in Natural Ecosystem Transects (CABERNET) campaign during June 2011. The airborne virtual disjunct eddy covariance (AvDEC) approach used measurements from a proton transfer reaction mass spectrometer (PTR-MS) and a wind radome probe to directly determine fluxes of isoprene over 7400 km of flight paths focusing on areas of California predicted to have the largest emissions. The fast Fourier transform (FFT) approach was used to calculate fluxes of isoprene over long transects of more than 15 km, most commonly between 50 and 150 km. The continuous wavelet transformation (CWT) approach was used over the same transects to also calculate instantaneous isoprene fluxes with localization of both frequency and time independent of non-stationarities. Fluxes were generally measured by flying consistently at 400 m ± 50 m (a.g.l.) altitude, and extrapolated to the surface according to the determined flux divergence determined in the racetrack-stacked profiles. The wavelet-derived surface fluxes of isoprene averaged to 2 km spatial resolution showed good correspondence to basal emission factor (BEF) land-cover data sets used to drive BVOC emission models. The surface flux of isoprene was close to zero over Central Valley crops and desert shrublands, but was very high (up to 15 mg m-2 h-1) above oak woodlands, with clear dependence of emissions on temperature and oak density. Isoprene concentrations of up to 8 ppb were observed at aircraft height on the hottest days and over the dominant source regions. Even though the isoprene emissions from agricultural crop regions, shrublands, and coniferous forests were extremely low, observations at the Walnut Grove tower south of Sacramento demonstrate that isoprene oxidation products from the high emitting regions in the surrounding oak woodlands accumulate at night in

  19. Measurement of a surface heat flux and temperature

    NASA Technical Reports Server (NTRS)

    Davis, R. M.; Antoine, G. J.; Diller, T. E.; Wicks, A. L.

    1994-01-01

    The Heat Flux Microsensor is a new sensor which was recently patented by Virginia Tech and is just starting to be marketed by Vatell Corp. The sensor is made using the thin-film microfabrication techniques directly on the material that is to be measured. It consists of several thin-film layers forming a differential thermopile across a thermal resistance layer. The measured heat flux q is proportional to the temperature difference across the resistance layer q= k(sub g)/delta(sub g) x (t(sub 1) - T(sub 2)), where k(sub g) is the thermal conductivity and delta (sub g) is the thickness of the thermal resistance layer. Because the gages are sputter coated directly onto the surface, their total thickness is less than 2 micrometers, which is two orders of magnitude thinner than previous gages. The resulting temperature difference across the thermal resistance layer (delta is less than 1 micrometer) is very small even at high heat fluxes. To generate a measurable signal many thermocouple pairs are put in series to form a differential thermopile. The combination of series thermocouple junctions and thin-film design creates a gage with very attractive characteristics. It is not only physically non-intrusive to the flow, but also causes minimal disruption of the surface temperature. Because it is so thin, the response time is less than 20 microsec. Consequently, the frequency response is flat from 0 to over 50 kHz. Moreover, the signal of the Heat Flux Microsensor is directly proportional to the heat flux. Therefore, it can easily be used in both steady and transient flows, and it measures both the steady and unsteady components of the surface heat flux. A version of the Heat Flux Microsensor has been developed to meet the harsh demands of combustion environments. These gages use platinum and platinum-10 percent rhodium as the thermoelectric materials. The thermal resistance layer is silicon monoxide and a protective coating of Al2O3 is deposited on top of the sensor. The

  20. Radon-222 activity flux measurement using activated charcoal canisters: revisiting the methodology.

    PubMed

    Alharbi, Sami H; Akber, Riaz A

    2014-03-01

    The measurement of radon ((222)Rn) activity flux using activated charcoal canisters was examined to investigate the distribution of the adsorbed (222)Rn in the charcoal bed and the relationship between (222)Rn activity flux and exposure time. The activity flux of (222)Rn from five sources of varying strengths was measured for exposure times of one, two, three, five, seven, 10, and 14 days. The distribution of the adsorbed (222)Rn in the charcoal bed was obtained by dividing the bed into six layers and counting each layer separately after the exposure. (222)Rn activity decreased in the layers that were away from the exposed surface. Nevertheless, the results demonstrated that only a small correction might be required in the actual application of charcoal canisters for activity flux measurement, where calibration standards were often prepared by the uniform mixing of radium ((226)Ra) in the matrix. This was because the diffusion of (222)Rn in the charcoal bed and the detection efficiency as a function of the charcoal depth tended to counterbalance each other. The influence of exposure time on the measured (222)Rn activity flux was observed in two situations of the canister exposure layout: (a) canister sealed to an open bed of the material and (b) canister sealed over a jar containing the material. The measured (222)Rn activity flux decreased as the exposure time increased. The change in the former situation was significant with an exponential decrease as the exposure time increased. In the latter case, lesser reduction was noticed in the observed activity flux with respect to exposure time. This reduction might have been related to certain factors, such as absorption site saturation or the back diffusion of (222)Rn gas occurring at the canister-soil interface.

  1. Wet deposition of mercury at a remote site in the Tibetan Plateau: Concentrations, speciation, and fluxes

    NASA Astrophysics Data System (ADS)

    Huang, Jie; Kang, Shichang; Zhang, Qianggong; Yan, Haiyu; Guo, Junming; Jenkins, Matt G.; Zhang, Guoshuai; Wang, Kang

    2012-12-01

    Precipitation samples collected at a remote high elevation site (i.e., Nam Co Station, 4730 m a.s.l.) in the southern Tibetan Plateau were analyzed for total mercury (HgT) between July 2009 and 2011, particulate-bound mercury (HgP) between July 2010 and 2011 and methylmercury (MeHg) from July through August of 2009. The volume-weighted mean (VWM) concentrations and wet deposition fluxes of HgT and MeHg in precipitation were 4.8 ng L-1 and 1.75 μg m-2 yr-1, 0.031 ng L-1 and 0.01 μg m-2 yr-1, respectively. VWM HgT concentration was approximately two times higher during the non-monsoon season than during the monsoon season, while 83% of the HgT wet deposition fluxes occurred during the monsoon season. The HgT and MeHg concentrations are comparable to the reported data for some of the most remote alpine and polar regions worldwide (e.g., Churchill), but the wet deposition fluxes of HgT and MeHg were among the lowest in the world. Analysis of Hg speciation has presented that HgP and MeHg concentrations are high, making up 71.2% and 1.82% of the HgT on average (VWM), respectively. The high HgP%, as well as a significantly positive between HgT and HgP (R2 = 0.91; n = 44; p < 0.001), confirmed that atmospheric deposition of Hg in the Tibetan Plateau was occurring in the form of HgP. A decreasing trend in HgT concentrations with increasing amount of precipitation (R2 = 0.08; N = 101; p < 0.005) was found at Nam Co Station, indicative that scavenging of HgP from the atmosphere was an important mechanism contributing Hg to precipitation. The precipitation amount, rather than HgT concentration, was found to be the governing factor affecting HgT wet deposition flux. Moreover, a comparison between measured wet deposition flux of Hg at Nam Co Station and the estimates from environmental records indicated that both snowpits and lake sediments appear to be reliable archives for estimating historical Hg accumulation rates over the Tibetan Plateau.

  2. Eddy covariance measurement of carbon, latent and sensible heat fluxes from western Lake Erie

    NASA Astrophysics Data System (ADS)

    Shao, C.; Chen, J.; Stepien, C.; Bridgeman, T.; Czajkowski, K. P.; Becker, R.; Chu, H.; yang, Z.

    2013-12-01

    Long-term measurements of sensible and latent heat and carbon dioxide fluxes were performed over a boreal lake in northern American using the direct micrometeorological eddy covariance (EC) technique. Two permanent EC flux stations in western Lake Erie - Crib (41.7167N, 83.2667W, nearest distance from shore is 4.5 km) and Light (41.8314N, 83.2006W, nearest distance from shore > 12 km) sites have been operating since September, 2011. In 2012, in both sites, the sensible heat flux had its minimum in the afternoon (15:00-17:00) and peaked in the early morning (7:00-9:00) in August-November, varied from -4 W m-2 to +30 W m-2. The diurnal amplitude of H was largest in spring and in early fall (30 W m-2 in September) whereas it was smaller in July and August (20 W m-2). The latent heat flux had obvious seasonal pattern in both sites with higher values in the summer, while it did not show obvious daily courses, even did not have the day and night variation in both sites, only one trend from June to October was higher at night than during the daytime in Light site. The maximum latent heat of ~180 W m-2 in summer whereas the minimum -10 W m-2 in winter were observed. The latent heat flux dominated clearly over the sensible heat in spring and summer; that is, the Bowen ratio was less than 1 and most of the energy absorbed by the water was consumed in terms of evapotranspiration. A lookup table method was performed data gap-filling in our aquatic ecosystems in order to obtain the continuously daily, monthly and yearly carbon and water budgets. In 2012, for the annual cumulative total, the evapotranspiration was 820 and 700 mm (about 2000 and 1700 MJ m-2) in Crib and Light sites, respectively, comparing with the annual rainfall of 700 mm. The annual sensible heat was 480 and 300 MJ m-2 in Crib and Light sites, respectively. And there were four and five CO2 uptake months in Crib and Light sites, respectively. The maximum CO2 uptake month was in July in both sites, with -28 and

  3. DOE candidate site meteorological measurement program

    SciTech Connect

    Renne, D. S.; Sandusky, W. F.

    1980-01-01

    In March 1976, DOE issued an RFP to acquire, on a competitive basis, a group of candidate sites, proposed by utilities interested in the field testing program. A total of 17 candidate sites were selected from the 64 proposals submitted in response to the RFP. From these sites, five have been chosen thus far to receive turbines for field testing. This paper discusses the meteorological measurement activities at these sites and provides details of the measurement program as it exists in late 1979. In addition, the paper briefly discusses the directions this program will take in the near future, and the options interested electric service organizations have for participating in the program.

  4. Comparison of CO2 fluxes from eddy covariance and soil chambers measurements in a vineyard

    NASA Astrophysics Data System (ADS)

    Vendrame, Nadia; Tezza, Luca; Meggio, Franco; Pitacco, Andrea

    2015-04-01

    In order to study the processes involved in the carbon balance of a vineyard, we set up a long-term monitoring station of CO2, water vapour and energyfluxes. The experimental site is located in an extensive flat vineyard in the north-east of Italy. We measure the net ecosystem exchange with the eddy covariance (EC) technique using a Campbell Scientific closed-path IRGA and sonic anemometer, and the soil CO2 flux using a Li-Cor multiplexed system connected with six automatic dynamic chambers. Ancillary meteorological and soil variables are also measured. The vineyard is planted with north-south oriented rows spaced 2.2 m apart. Floor is grass covered, and a strip 0.6 m wide on the rows is chemically treated. To represent the different soil conditions existing in the EC footprint and to study the components of the CO2 soil flux, we placed dark soil chambers both on the vineyard rows and in the inter-row space. A well-known limit of the EC technique is the underestimation of fluxes during calm wind periods, mainly occurring at night. In the autumn/winter vine dormancy period, the EC and soil chambers CO2 fluxes should be similar. We compared the CO2 fluxes measured using the two methods to evaluate the reliability of EC measurements at different atmospheric turbulent mixing conditions and stability. The EC technique underestimates the ecosystem respiration during night time periods with friction velocity lower than 0.1 m/s. The present comparison could enable the assessment of a friction velocity threshold, representing the limit above which the EC fluxes can be considered representative of the vegetation-atmosphere exchanges at our specific site.

  5. Using Airborne Microwave Remotely Sensed Root-Zone Soil Moisture and Flux Measurements to Improve Regional Predictions of Carbon Fluxes in a Terrestrial Biosphere Model

    NASA Astrophysics Data System (ADS)

    Zhang, K.; Antonarakis, A. S.; Medvigy, D.; Burgin, M. S.; Crow, W. T.; Milak, S.; Jaruwatanadilok, S.; Truong-Loi, M.; Moghaddam, M.; Saatchi, S. S.; Cuenca, R. H.; Moorcroft, P. R.

    2013-12-01

    North American ecosystems are critical components of the global carbon cycle, exchanging large amounts of carbon dioxide and other gases with the atmosphere. Net ecosystem exchange (NEE) of CO2 between atmosphere and ecosystems quantifies these carbon fluxes, but current continental-scale estimates contain high levels of uncertainty. Root-zone soil moisture (RZSM) and its spatial and temporal heterogeneity influences NEE and improved estimates can help reduce uncertainty in NEE estimates. We used the RZSM measurements from the Airborne Microwave Observatory of Subcanopy and Subsurface (AirMOSS) mission, and the carbon, water and energy fluxes observed by the eddy-covariance flux towers to constrain the Ecosystem Demography Model 2.2 (ED2.2) to improve its predictions of carbon fluxes. The parameters of the ED2.2 model were first optimized at seven flux tower sites in North America, which represent six different biomes, by constraining the model against a suite of flux measurements and forest inventory measurements through a Bayesian Markov-Chain Monte Carlo framework. We further applied the AirMOSS RZSM products to constrain the ED2.2 model to achieve better estimates of regional NEE. Evaluation against flux tower measurements and forest dynamics measurements shows that the constrained ED2.2 model produces improved predictions of monthly to annual carbon fluxes. The remote sensing based RZSM can further help improve the spatial patterns and temporal variations of model NEE. The results demonstrate that model-data fusion can substantially improve model performance and highlight the important role of RZSM in regulating the spatial and temporal heterogeneities of carbon fluxes.

  6. Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms

    NASA Astrophysics Data System (ADS)

    Tramontana, Gianluca; Jung, Martin; Schwalm, Christopher R.; Ichii, Kazuhito; Camps-Valls, Gustau; Ráduly, Botond; Reichstein, Markus; Altaf Arain, M.; Cescatti, Alessandro; Kiely, Gerard; Merbold, Lutz; Serrano-Ortiz, Penelope; Sickert, Sven; Wolf, Sebastian; Papale, Dario

    2016-07-01

    Spatio-temporal fields of land-atmosphere fluxes derived from data-driven models can complement simulations by process-based land surface models. While a number of strategies for empirical models with eddy-covariance flux data have been applied, a systematic intercomparison of these methods has been missing so far. In this study, we performed a cross-validation experiment for predicting carbon dioxide, latent heat, sensible heat and net radiation fluxes across different ecosystem types with 11 machine learning (ML) methods from four different classes (kernel methods, neural networks, tree methods, and regression splines). We applied two complementary setups: (1) 8-day average fluxes based on remotely sensed data and (2) daily mean fluxes based on meteorological data and a mean seasonal cycle of remotely sensed variables. The patterns of predictions from different ML and experimental setups were highly consistent. There were systematic differences in performance among the fluxes, with the following ascending order: net ecosystem exchange (R2 < 0.5), ecosystem respiration (R2 > 0.6), gross primary production (R2> 0.7), latent heat (R2 > 0.7), sensible heat (R2 > 0.7), and net radiation (R2 > 0.8). The ML methods predicted the across-site variability and the mean seasonal cycle of the observed fluxes very well (R2 > 0.7), while the 8-day deviations from the mean seasonal cycle were not well predicted (R2 < 0.5). Fluxes were better predicted at forested and temperate climate sites than at sites in extreme climates or less represented by training data (e.g., the tropics). The evaluated large ensemble of ML-based models will be the basis of new global flux products.

  7. New tool for CO2 flux partitioning with soil chamber flux implementation as a solution for site in topographically complex terrain

    NASA Astrophysics Data System (ADS)

    Šigut, Ladislav; Mammarella, Ivan; Kolari, Pasi; Dařenová, Eva; Novosadová, Kateřina; Pietras, Justina; Pokorný, Radek; Sedlák, Pavel; Mauder, Matthias

    2014-05-01

    Eddy covariance method (EC) is one of the most accurate and direct approaches for measurements of fluxes of matter and energy on the level of an entire ecosystem. CO2 flux data acquired using the global network of EC flux towers help us to better understand the impacts of natural and anthropogenic phenomena on the global carbon balance. Comparisons among different sites are usually performed on annual sums of net ecosystem exchange (annual sums of NEE). Nowadays, EC is also used in complex terrain on the edge of its applicability (e.g. hills, cities) such as the mountain forest site at Bílý Kříž, Beskydy Mountains, Czech Republic. This requires revisiting of generally applied algorithms for computation of annual sums of NEE. The first aim of this study is the assessment of the performance and correctness of a newly developed tool for CO2 flux separation in comparison with standard algorithms. Simple models describing response of NEE to temperature and photosynthetic active radiation will be used for flux partitioning and a new approach to remove seasonality from datasets will be demonstrated. The second aim of this study will be to evaluate whether it is possible to estimate defensible annual sums of NEE for complex terrain site Bílý Kříž with the help of auxiliary biomass inventory and soil chamber measurements. Here the up-scaling of soil respiration to ecosystem respiration will be attempted and the resulting sums of NEE will be compared to independent biomass inventory estimates of net primary productivity. The importance of this research lies in extending the boundaries of EC application, thus contributing to better understanding of carbon balance in mountainous regions ecosystems which are not well represented within networks of EC flux towers. Acknowledgement This work was supported by CZ.1.05/1.1.00/02.0073, CZ.1.07/2.4.00/31.0056, OU SGS20/PřF/2014 grants and MICMoR graduate programme.

  8. Ground heat flux: An analytical review of 6 models evaluated at 88 sites and globally

    NASA Astrophysics Data System (ADS)

    Purdy, A. J.; Fisher, J. B.; Goulden, M. L.; Famiglietti, J. S.

    2016-12-01

    Uncertainty in ground heat flux (G) means that evaluation of the other terms in the surface energy balance (e.g., latent and sensible heat fluxes (LE and H)) remains problematic. Algorithms that calculate LE and H require available energy, the difference between net radiation, RNET, and G. There are a wide range of approaches to model G for large-scale applications, with a subsequent wide range of estimates and accuracies. We provide the largest review of these methods to date (N = 6), evaluating modeled G against measured G from 88 FLUXNET sites. The instantaneous midday variability in G is best captured by models forced with net radiation, while models forced by temperature show the least error at both instantaneous and daily time scales. We produce global decadal data sets of G to illustrate regional and seasonal sensitivities, as well as uncertainty. Global model mean midmorning instantaneous G is highest during September, October, and November at 63.42 (±16.84) Wm-2, while over December, January, and February G is lowest at 53.86 (±18.09) Wm-2 but shows greater intermodel uncertainty. Results from this work have the potential to improve evapotranspiration estimates and guide appropriate G model selection and development for various land uses.

  9. Eddy-Covariance Flux Measurements in the Complex Terrain of an Alpine Valley in Switzerland

    NASA Astrophysics Data System (ADS)

    Hiller, Rebecca; Zeeman, Matthias J.; Eugster, Werner

    2008-06-01

    We measured the surface energy budget of an Alpine grassland in highly complex terrain to explore possibilities and limitations for application of the eddy-covariance technique, also for CO2 flux measurements, at such non-ideal locations. This paper focuses on the influence of complex terrain on the turbulent energy measurements of a characteristic high Alpine grassland on Crap Alv (Alp Weissenstein) in the Swiss Alps during the growing season 2006. Measurements were carried out on a topographic terrace with a slope of 25◦ inclination. Flux data quality is assessed via the closure of the energy budget and the quality flag method used within the CarboEurope project. During 93% of the time the wind direction was along the main valley axis (43% upvalley and 50% downvalley directions). During the transition times of the typical twice daily wind direction changes in a mountain valley the fraction of high and good quality flux data reached a minimum of ≈50%, whereas during the early afternoon ≈70% of all records yielded good to highest quality (CarboEurope flags 0 and 1). The overall energy budget closure was 74 ± 2%. An angular correction for the shortwave energy input to the slope improved the energy budget closure slightly to 82 ± 2% for afternoon conditions. In the daily total, the measured turbulent energy fluxes are only underestimated by around 8% of net radiation. In summary, our results suggest that it is possible to yield realistic energy flux measurements under such conditions. We thus argue that the Crap Alv site and similar topographically complex locations with short-statured vegetation should be well suited also for CO2 flux measurements.

  10. Measurements of ocean surface kinematics and heat flux

    NASA Astrophysics Data System (ADS)

    Veron, Fabrice; Melville, Ken

    2003-11-01

    The top few meters of the oceanic boundary layer play a critical role in the transfers of momentum, gas, mass and heat between the atmosphere and the ocean. These exchanges must necessarily transfer through the surface, and presumably, the rates at which they do are influence by the dynamics of the surface layer. Heat flux in particular is regulated by the thin surface thermal layer which, at most, is only a few millimeter thick. We are specifically interested in the structure of the thermal layer and the influence of the surface turbulence on the flux of heat through the air-sea boundary. Using active and passive infrared imaging, we were able to collect high temporal and spatial resolution images, yielding the Lagrangian surface velocity and temperature fields over small areas of a few square meters. We have applied cross-correlation techniques (typically used for Particle Image Velocimetry) on the passive infrared images and obtained high-resolution surface velocity fields. Using the displacement and the distortion of the actively laid down heat pattern, we also have been able to recover the surface velocity, shear strain, vorticity, and divergence. In addition, the data show that the heat flux appears to be correlated the surface vorticity. With the penetration depth of infrared radiation at these wavelengths being a few microns, these techniques appear to be extremely promising for measuring ocean surface turbulence confined within the thermal boundary layer. We will discuss the results in the context of air sea heat flux and ocean surface turbulence.

  11. Soil heat flux measurements in an open forest

    NASA Astrophysics Data System (ADS)

    van der Meulen, M. W. J.; Klaassen, W.

    1996-05-01

    The soil surface heat flux in an open oak forest was determined at four locations to account for the heterogeneity of the forest. Soil temperatures and soil water content were measured at several depths and an integration method with three layers was used. The thickness of the bottom layer was determined with a spectral method. The soil surface heat flux was compared with the net radiation above the canopy for four typical days in 1995. These data were fitted linearly. The slope of this parameterisation was 0.092, with a leaf area index of 2.5 (fully-leafed canopy). This result was compared with four other studies. To produce an exponential fit of the slope against the leaf area index the Beer-Bouguer law for radiation extinction in canopies and a soil surface heat flux proportional to the net radiation at the forest floor was used. An extinction coefficient of 0.36 was found. This result is recommended for future studies, if soil surface heat flux is requested and net radiation data above the canopy as well as leaf area index are available.

  12. Fluxes through plant metabolic networks: measurements, predictions, insights and challenges.

    PubMed

    Kruger, Nicholas J; Ratcliffe, R George

    2015-01-01

    Although the flows of material through metabolic networks are central to cell function, they are not easy to measure other than at the level of inputs and outputs. This is particularly true in plant cells, where the network spans multiple subcellular compartments and where the network may function either heterotrophically or photoautotrophically. For many years, kinetic modelling of pathways provided the only method for describing the operation of fragments of the network. However, more recently, it has become possible to map the fluxes in central carbon metabolism using the stable isotope labelling techniques of metabolic flux analysis (MFA), and to predict intracellular fluxes using constraints-based modelling procedures such as flux balance analysis (FBA). These approaches were originally developed for the analysis of microbial metabolism, but over the last decade, they have been adapted for the more demanding analysis of plant metabolic networks. Here, the principal features of MFA and FBA as applied to plants are outlined, followed by a discussion of the insights that have been gained into plant metabolic networks through the application of these time-consuming and non-trivial methods. The discussion focuses on how a system-wide view of plant metabolism has increased our understanding of network structure, metabolic perturbations and the provision of reducing power and energy for cell function. Current methodological challenges that limit the scope of plant MFA are discussed and particular emphasis is placed on the importance of developing methods for cell-specific MFA.

  13. Corrections of Heat Flux Measurements on Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Reinarts, Thomas R.; Matson, Monique L.; Walls, Laurie K.

    2002-01-01

    Knowledge of aerothermally induced convective heat transfer is important in the design of thermal protection systems for launch vehicles. Aerothermal models are typically calibrated via the data from circular, in-flight, flush-mounted surface heat flux gauges exposed to the thermal and velocity boundary layers of the external flow. Typically, copper or aluminum Schmidt- Boelter gauges, which take advantage of the one-dimensional Fourier's law of heat conduction, are used to measure the incident heat flux. This instrumentation, when surrounded by low-conductivity insulation, has a wall temperature significantly lower than the insulation. As a result of this substantial disturbance to the thermal boundary layer, the heat flux incident on the gauge tends to be considerably higher than it would have been on the insulation had the calorimeter not been there. In addition, radial conductive heat transfer from the hotter insulation can cause the calorimeter to indicate heat fluxes higher than actual. An overview of an effort to develop and calibrate gauge correction techniques for both of these effects will be presented.

  14. CO2 uptake and ecophysiological parameters of the grain crops of midcontinent North America: estimates from flux tower measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We present net CO2 exchange data from 13 flux tower sites with 27 site-years of measurements over maize and wheat fields across midcontinent North America. A numerically robust “light-soil temperature-VPD”-based method was used to partition the data into photosynthetic assimilation and ecosystem re...

  15. Estimation of rainfall interception in grassland using eddy flux measurements

    NASA Astrophysics Data System (ADS)

    Maruyama, A.; Miyazawa, Y.; Inoue, A.

    2014-12-01

    Rainfall interception plays an important role in the water cycle in natural ecosystems. Interception by the forest canopies have been widely observed or estimated over various ecosystems, such as tropical rainforest, evergreen forest and deciduous forest. However interception by the short canopies, e.g. shrubby plant, grassland and crop, has been rarely observed since it has been difficult to obtain reliable precipitation measurements under the canopy. In this study, we estimated monthly and annual rainfall interception in grassland using evapotranspiration data of eddy flux measurements. Experiments were conducted in grassland (Italian ryegrass) from 2010 to 2012 growing season in Kumamoto, Japan. Evapotranspiration (latent heat flux) were observed throughout the year based on the eddy covariance technique. A three dimensional sonic anemometer and an open path CO2/H2O analyzer were used to calculate 30 min flux. Other meteorological factors, such as air temperature, humidity and solar radiation, were also observed. Rainfall interception was estimated as follows. 1) Using evapotranspiration data during dry period, environmental response of surface conductance (gc) was inversely calculated based on the big-leaf model. 2) Evapotranspiration without interception during precipitation period was estimated using above model and environmental response of gc. 3) Assuming that evaporation of intercepted rainfall is equal to the difference in evapotranspiration between above estimation and actual measurements, rainfall interception was estimated over experimental period. The account of rainfall interception in grassland using this technique will be presented at the meeting.

  16. AmeriFlux US-Bn3 Bonanza Creek, 1999 Burn site near Delta Junction

    SciTech Connect

    Randerson, James

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Bn3 Bonanza Creek, 1999 Burn site near Delta Junction. Site Description - The Delta Junction 1999 Burn site is located near Delta Junction, just to the north of the Alaska Range in interior Alaska. All three Delta Junction sites are within a 15-km radius of one another. Composed of a combination of alluvial outwashes, floodplains, and low terraces dissected by glacial streams originating in the nearby Alaska Range. The Donnelly Flats fire burned ~7,600 ha of black spruce (Picea mariana) during June 1999. The boles of the black spruce remained standing 3 years after the fire. 70% of the surface was not covered by vascular plants.

  17. AmeriFlux US-Bn2 Bonanza Creek, 1987 Burn site near Delta Junction

    SciTech Connect

    Randerson, James

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Bn2 Bonanza Creek, 1987 Burn site near Delta Junction. Site Description - The Delta Junction 1987 Burn site is located near Delta Junction, just to the north of the Alaska Range in interior Alaska. All three Delta Junction sites are within a 15-km radius of one another. Composed of a combination of alluvial outwashes, floodplains, and low terraces dissected by glacial streams originating in the nearby Alaska Range. The Granite Creek fire burned ~20,000 ha of black spruce (Picea mariana) during 1987. Approximately half of the dead boles remained upright in 2004, while the other half had fallen over or had become entangled with other boles.

  18. Modeling the impact of hydraulic redistribution on the carbon flux and storages using CLM4.5 at four AmeriFlux Sites

    NASA Astrophysics Data System (ADS)

    Fu, C.; Wang, G.; Cardon, Z. G.

    2015-12-01

    Effects of hydraulic redistribution (HR) on the hydrological cycle and ecosystem dynamics have been demonstrated in the field, but few modeling studies have compared HR's influences on the carbon cycle in different ecosystems and climate regions. The soil moisture changes associated with HR could influence plant carbon gain via two mechanisms: (1) improved plant water status supporting stomatal opening, and/or (2) enhanced nutrient availability to plants caused by enhanced soil microbial activity. In this study, using a modified version of the Community Land Model with Century-based soil carbon pool kinetics that includes the "Ryel et al. 2002" scheme for hydraulic redistribution (HR), the influence of HR on the carbon flux and storage is investigated at four Ameriflux sites where HR was detected from soil moisture measurements. The study sites include a Douglas-fir site (US-Wrc) in Washington State with a mediterranean climate, a savanna site (US-SRM) in Arizona with a semi-arid climate, an oak/pine forest site (US-SCf) in Southern California with a mediterranean climate, and an evergreen broadleaf forest site (BR-Sa1) with tropical monsoon climate. Simulations revealed that HR tended to enhance plant growth at all four sites, and incorporating HR into CLM4.5 reduces the temporal fluctuation of soil carbon storage at all four sites. Simulations with HR can capture the net carbon exchange between ecosystem and the atmosphere (NEE) at the US-Wrc, US-SRM, and BR-Sa1 sites over the annual cycle. Incorporation of HR into CLM4.5 clearly improved the weekly and sub-daily NEE simulation during dry periods at US-SCf and BR-Sa1 site. HR-induced increase in Net Primary Productivity (NPP) at the US-Wrc and US-SRM sites was driven approximately equally by the two distinct mechanisms we investigated: increased stomatal conductance and increased nutrient availability to plants.

  19. Corrections for Heat Flux Measurements Taken on Launch Vehicles

    NASA Astrophysics Data System (ADS)

    Reinarts, Thomas R.; Ford, Danielle M.

    2004-02-01

    Knowledge of aerothermally induced convective heat transfer and plume induced radiative heat transfer loads is essential to the design of thermal protection systems (TPS) for launch vehicles. Aerothermal and radiative models are typically calibrated via the data from cylindrical, in-flight, flush-mounted surface heat flux gauges that are exposed to the external thermal and velocity boundary layers as well as thermal radiation. Typically, Schmidt-Boelter gauges, taking advantage of the 1-Dimensional Fourier's law, measure the incident heat flux. This instrumentation, when surrounded by low-conductivity insulation, has an exposed surface temperature significantly lower than the insulation. As a result of this substantial disturbance to the thermal boundary layer, the heat flux incident on the gauge tends to be considerably higher (potentially by factors of 2 or more) than it would have been on the insulation had the calorimeter not been there. In addition, the gauge can receive energy radially from the hotter insulation, contributing to the increase of the indicated heat flux. This paper will present an overview of an effort to model the heat flux gauge under typical flight conditions that includes an installation surrounded by high temperature insulation. The goal is to correct the measurements to reflect the local heat flux on the insulation had the instrument not been present. The three major components of this effort include: 1) a three-dimensional computational thermal math model including the internal conduction heat transfer details of a Schmidt-Boelter gauge, 2) a two-dimensional Navier-Stokes computational fluid dynamics (CFD) analysis to determine the effects on measurement of the rapidly changing thermal boundary layer over the near step changes in wall temperature, and 3) testing performed on flat plates exposed to an aerothermal environment in the Marshall Space Flight Center (MSFC) Improved Hot Gas Facility (IHGF). A brief summary of calibration issues

  20. Flux measurements of energy and trace gases in urban Houston, Texas

    NASA Astrophysics Data System (ADS)

    Boedeker, I.; Schade, G. W.; Adams, S.; Park, C.

    2008-12-01

    We describe the setup and some first year results of a new flux measurements tower in an urban area. An existing radio communications tower 4 km north of downtown Houston was equipped with micrometeorological instrumentation and trace gas sampling lines in spring 2007. Wind speed, temperature and relative humidity are recorded at five levels between 12 and 60 m above ground; 3-D wind speed measurements, solar and net radiances, and trace gas sampling are established from the 60 m level. A closed path IRGA is used for CO2 and water vapor fluxes, and independent instrumentation for criteria pollutant and VOC fluxes. Two CSI data loggers and software control the measurements, and EdiRe software is used to analyze turbulence data and compute fluxes. A project description is provided at http://atmo.tamu.edu/yellowcabtower. Surface properties as calculated from the gradient measurements show the site to be surprisingly uniform, with displacement heights between 5 and 9 m and roughness lengths between 0.4 and 0.7 m, despite urban heterogeneity. The latter is investigated through visible/near IR orthoimagery and LIDAR data, which are incorporated into a local GIS. Net radiation was also only marginally affected by surface heterogeneity. At this urban location it is balanced by roughly equal amounts of sensible heat, latent heat, and storage fluxes. Latent heat flux, however, is smaller outside the growing season, with an equivalent increase in winter storage fluxes, as expected. Significant differences are also observed with direction during summer, showing decreased Bowen ratios and lower CO2 emissions from sectors with a larger urban tree canopy cover in the footprint. The largely mature, dominantly oak urban canopy cover alleviates approximately 100 W m- 2 during typical summer days. On the other hand, anthropogenic CO2 emissions dominate over photosynthetic uptake all year round. Measured carbon fluxes peak during morning rush-hour traffic, especially when increasing

  1. High-Energy Neutron Spectra and Flux Measurements Below Ground

    NASA Astrophysics Data System (ADS)

    Roecker, Caleb; Bernstein, Adam; Marleau, Peter; Vetter, Kai

    2016-03-01

    High-energy neutrons are a ubiquitous and often poorly measured background. Below ground, these neutrons could potentially interfere with antineutrino based reactor monitoring experiments as well as other rare-event neutral particle detectors. We have designed and constructed a transportable fast neutron detection system for measuring neutron energy spectra and flux ranging from tens to hundreds of MeV. The spectrometer uses a multiplicity technique in order to have a higher effective area than traditional transportable high-energy neutron spectrometers. Transportability ensures a common detector-related systematic bias for future measurements. The spectrometer is composed of two Gd containing plastic scintillator detectors arranged around a lead spallation target. A high-energy neutron may interact in the lead producing many secondary neutrons. The detector records the correlated secondary neutron multiplicity. Over many events, the response can be used to infer the incident neutron energy spectrum and flux. As a validation of the detector response, surface measurements have been performed; results confirm agreement with previous experiments. Below ground measurements have been performed at 3 depths (380, 600, and 1450 m.w.e.); results from these measurements will be presented.

  2. Momentum Flux Measuring Instrument for Neutral and Charged Particle Flows

    NASA Technical Reports Server (NTRS)

    Chavers, Greg; Chang-Diaz, Franklin; Schafer, Charles F. (Technical Monitor)

    2002-01-01

    An instrument to measure the momentum flux (total pressure) of plasma and neutral particle jets onto a surface has been developed. While this instrument was developed for magnetized plasmas, the concept works for non-magnetized plasmas as well. We have measured forces as small as 10(exp -4) Newtons on a surface immersed in the plasma where small forces are due to ionic and neutral particles with kinetic energies on the order of a few eV impacting the surface. This instrument, a force sensor, uses a target plate (surface) that is immersed in the plasma and connected to one end of an alumina rod while the opposite end of the alumina rod is mechanically connected to a titanium beam on which four strain gauges are mounted. The force on the target generates torque causing strain in the beam. The resulting strain measurements can be correlated to a force on the target plate. The alumina rod electrically and thermally isolates the target plate from the strain gauge beam and allows the strain gauges to be located out of the plasma flow while also serving as a moment arm of several inches to increase the strain in the beam at the strain gauge location. These force measurements correspond directly to momentum flux and may be used with known plasma conditions to place boundaries on the kinetic energies of the plasma and neutral particles. The force measurements may also be used to infer thrust produced by a plasma propulsive device. Stainless steel, titanium, molybdenum, and aluminum flat target plates have been used. Momentum flux measurements of H2, D2, He, and Ar plasmas produced in a magnetized plasma device have been performed.

  3. Eddy covariance measurements in screenhouses: turbulence characteristics and flux gradients

    NASA Astrophysics Data System (ADS)

    Dicken, U.; Cohen, S.; Tanny, J.

    2012-04-01

    Shading banana and other orchard crops with screens is popular in arid and semi-arid regions for decreasing water use and increasing fruit quality. However, crop water use within this unique environment is much less studied than for canopies in the open. Previous studies of our research group have established the use of the Eddy Covariance (EC) technique for reliable evapotranspiration and sensible heat flux measurements within screenhouses. These studies focused on operating conditions of the system. The present paper is a comprehensive study which examined the performance of the EC system in different types of screenhouses (shading and insect-proof), different crops (banana and pepper) at different development stages (small and large plants) and different climatic regions in Israel. The main goal was to establish guidelines for optimal application of the EC technique in screenhouses. The research consisted of 6 field campaigns: in 3 campaigns two EC systems were simultaneously deployed either vertically or horizontally, and in 3 other campaigns a single EC system was deployed at one measurement height. EC systems were deployed at different normalized system heights, Zs, which define the relative measurement heights within the air gap between the canopy top and the horizontal screened roof. System performance was examined using quality tests like energy balance closure, flux variance similarity, friction velocity, footprint modeling, energy spectrum, turbulence intensity and vertical and horizontal flux gradient analyses. Resulting energy balance closure slopes averaged 0.81±0.08 and 0.91±0.08 for the smaller and larger plants, respectively. Turbulent flows were found to be marginally developed within the air gap between the top of the plants and the horizontal screened roof. Turbulence intensity, flux variance similarity test, energy spectrum decay rate and friction velocity were essentially independent of the measurement height and were within the common range

  4. Optimizing laboratory-based radon flux measurements for sediments.

    PubMed

    Chanyotha, Supitcha; Kranrod, Chutima; Kritsananuwat, Rawiwan; Lane-Smith, Derek; Burnett, William C

    2016-07-01

    Radon flux via diffusion from sediments and other materials may be determined in the laboratory by circulating air through the sample and a radon detector in a closed loop. However, this approach is complicated by the necessity of having to determine the total air volume in the system and accounting for any small air leaks that can arise if using extended measurement periods. We designed a simple open-loop configuration that includes a measured mass of wet sediment and water inside a gas-tight reaction flask connected to a drying system and a radon-in-air analyzer. Ambient air flows through two charcoal columns before entering the reaction vessel to eliminate incoming radon. After traveling through the reaction flask, the air passes the drier and the radon analyzer and is then vented. After some time, the radon activity will reach a steady state depending upon the airflow rate. With this approach, the radon flux via diffusion is simply the product of the steady-state radon activity (Bq/m(3)) multiplied by the airflow rate (mL/min). We demonstrated that this setup could produce good results for materials that produce relatively high radon fluxes. We also show that a modified closed system approach, including radon removal of the incoming air by charcoal filtration in a bypass, can produce very good results including samples with very low emission rates.

  5. Impact of hydrological variations on modeling of peatland CO2 fluxes: Results from the North American Carbon Program site synthesis

    NASA Astrophysics Data System (ADS)

    Sulman, Benjamin N.; Desai, Ankur R.; Schroeder, Nicole M.; Ricciuto, Dan; Barr, Alan; Richardson, Andrew D.; Flanagan, Lawrence B.; Lafleur, Peter M.; Tian, Hanqin; Chen, Guangsheng; Grant, Robert F.; Poulter, Benjamin; Verbeeck, Hans; Ciais, Philippe; Ringeval, Bruno; Baker, Ian T.; Schaefer, Kevin; Luo, Yiqi; Weng, Ensheng

    2012-03-01

    Northern peatlands are likely to be important in future carbon cycle-climate feedbacks due to their large carbon pools and vulnerability to hydrological change. Use of non-peatland-specific models could lead to bias in modeling studies of peatland-rich regions. Here, seven ecosystem models were used to simulate CO2fluxes at three wetland sites in Canada and the northern United States, including two nutrient-rich fens and one nutrient-poor,sphagnum-dominated bog, over periods between 1999 and 2007. Models consistently overestimated mean annual gross ecosystem production (GEP) and ecosystem respiration (ER) at all three sites. Monthly flux residuals (simulated - observed) were correlated with measured water table for GEP and ER at the two fen sites, but were not consistently correlated with water table at the bog site. Models that inhibited soil respiration under saturated conditions had less mean bias than models that did not. Modeled diurnal cycles agreed well with eddy covariance measurements at fen sites, but overestimated fluxes at the bog site. Eddy covariance GEP and ER at fens were higher during dry periods than during wet periods, while models predicted either the opposite relationship or no significant difference. At the bog site, eddy covariance GEP did not depend on water table, while simulated GEP was higher during wet periods. Carbon cycle modeling in peatland-rich regions could be improved by incorporating wetland-specific hydrology and by inhibiting GEP and ER under saturated conditions. Bogs and fens likely require distinct plant and soil parameterizations in ecosystem models due to differences in nutrients, peat properties, and plant communities.

  6. Gap-filling of flux measurements over a heterogeneous urban landscape

    NASA Astrophysics Data System (ADS)

    Menzer, O.; McFadden, J.

    2012-12-01

    A small, but growing, number of urban flux towers measure surface-atmospheric exchanges of energy, water, and greenhouse gases by the eddy covariance method. Imputation of gaps in these measurements caused by low turbulence conditions and system failures is essential for obtaining annual sums of CO2 exchange and evaporation. Yet most gap-filling methods were designed for natural measurement sites such as forests and grasslands. In the urban environment, however, the assumptions on which those approaches are based are violated and well known temperature or light response models are not applicable because of urban footprint heterogeneity and localized CO2 emissions. Observation-based methods of machine learning can reveal intrinsic mechanisms by using inputs such as wind direction, footprint size, and continuous traffic data, making gap-filling results more accurate. Here, we report preliminary gap-filling results using such empirical approaches for >3 years of flux measurements from the KUOM tall tower in a suburban neighborhood of Minneapolis, Minnesota, USA. We also ran one of the most common gap-filling methods that has been used for natural systems as a baseline or null model. We found that CO2 and water vapor fluxes from the urban landscape showed higher variability than those from a nearby turfgrass lawn, in which fluxes closely followed environmental drivers of light and temperature. Higher variability was found in NEE measurements as compared to LE, due to the relatively greater heterogeneity of sources and sinks that influenced CO2 exchange in the urban landscape.

  7. Biogenic volatile organic compound emissions during BEARPEX 2009 measured by eddy covariance and flux-gradient similarity methods

    NASA Astrophysics Data System (ADS)

    Park, J.-H.; Fares, S.; Weber, R.; Goldstein, A. H.

    2014-01-01

    The Biosphere Effects on AeRosols and Photochemistry EXperiment (BEARPEX) took place in Blodgett Forest, a Ponderosa pine forest in the Sierra Nevada of California, USA, during summer 2009. We deployed a proton transfer reaction-quadrupole mass spectrometer (PTR-QMS) to measure fluxes and concentrations of biogenic volatile organic compounds (BVOCs). Eighteen ion species, including the major BVOC expected at the site, were measured sequentially at 5 heights to observe their vertical gradient from the forest floor to above the canopy. Fluxes of the 3 dominant BVOCs methanol, 2-Methyl-3-butene-2-ol (MBO), and monoterpenes were measured above the canopy by the disjunct eddy covariance (EC) method. Canopy-scale fluxes were also determined by the flux-gradient similarity method (K-theory). A universal K (Kuniv) was determined as the mean of individual K's calculated from the measured fluxes divided by vertical gradients for methanol, MBO, and monoterpenes. This Kuniv was then multiplied by the gradients of each observed ion species to compute their fluxes. The flux-gradient similarity method showed very good agreement with the disjunct EC method. Fluxes are presented for all measured species and compared to historical measurements from the same site, and used to test emission algorithms used to model fluxes at the regional scale. MBO was the dominant emission observed, followed by methanol, monoterpenes, acetone, and acetaldehyde. The flux-gradient similarity method is shown to be tenable, and we recommend its use, especially in experimental conditions when fast measurement of BVOC species is not available.

  8. Measuring Longwave Radiative Flux Divergence in an Urban Canyon

    NASA Astrophysics Data System (ADS)

    Soux, A.; Oke, T. R.; Nunez, M.; Wilson, M.

    2003-12-01

    There has been very little measurement of longwave radiation divergence since the urban studies of Fuggle, Oke and Nunez in the mid 1970's or the rural work of Funk in the early 1960's. Although radiative divergence has been widely ignored for sometime there is the belief that it may play an important role in balancing nocturnal energy budgets in a range of environments. For example, in urban environments surface temperature relates well to the energy balance whereas air temperature does not, even in non-turbulent conditions. This is probably due at least in part to the effects of longwave divergence. To help answer issues related to longwave divergence a new dual-channel infrared radiometer (DCIR) has been developed. The DCIR, as the name implies, measures the directional infrared radiation in two wavebands and can, through differencing of the signals and further signal processing, give a direct measurement of longwave radiative flux divergence. The DCIR was deployed for the first time as part of a larger study (BUBBLE) of the urban boundary layer of Basel, Switzerland. The objective is to further study the thermal regime of a city at the canyon scale. To this end, a street canyon was carefully selected, in the city of Basel. The canyon surface and air volume were instrumented, including turbulent and conductive fluxes, and standard meteorological variables in addition to radiation. A unique data set was obtained to allow the complete energy balance of the canyon system to be evaluated without the need to resort to using residuals to quantify the magnitude of the longwave radiative flux divergence. Measured values of longwave flux-divergence are converted to cooling rates to compare with measured air temperature cooling. Preliminary results show that at the onset of canyon air-volume cooling, measured cooling rates are slightly lower than radiative cooling rates. The differences are less than 0.5° C. This contrasts sharply with previously measured above roof

  9. Momentum Flux Measurements Using an Impact Thrust Stand

    NASA Technical Reports Server (NTRS)

    Chavers, Greg; Chang-Diaz, Franklin; Breizman, Boris; Bengtson, Roger

    2004-01-01

    A device has been developed to measure the force caused by a beam of charged and neutral particles impacting a target plate. This device, an impact thrust stand, was developed to allow thrusters, during early stages of development, to be quickly and easily exhausted and compared to other thrusters. Since some thruster concepts are tested using laboratory equipment that is heavy and cumbersome, measuring the momentum flux of the particles in the plume can be much simpler than placing the entire thruster on a thrust stand. Conservation of momentum requires the momentum flux measured in the plume to be related to the thrust produced by the thruster. The impact thrust stand was designed to be placed in the plume of an electric thruster and has been tested and compared to the thrust measured from a Hall thruster placed on a pendulum thrust stand. Force measurements taken at several axial locations in the magnetic nozzle region of the Variable Specific Impulse Magnetoplasma Rocket will be presented.

  10. Airflows and turbulent flux measurements in mountainous terrain: Part 2: Mesoscale effects

    USGS Publications Warehouse

    Turnipseed, A.A.; Anderson, D.E.; Burns, S.; Blanken, P.D.; Monson, Russell K.

    2004-01-01

    The location of the Niwot Ridge Ameriflux site within the rocky mountains subjects it to airflows which are common in mountainous terrain. In this study, we examine the effects of some of these mesoscale features on local turbulent flux measurements; most notably, the formation of valley/mountain flows and mountain lee-side waves. The valley/mountain flows created local non-stationarities in the wind flow caused by the passage of a lee-side convergence zone (LCZ) in which upslope and downslope flows met in the vicinity of the measurement tower. During June-August, 2001, possible lee-side convergences were flagged for ???26% of all half-hour daytime flux measurement periods. However, there was no apparent loss of flux during these periods. On some relatively stable, summer nights, turbulence (designated via ??w), and scalar fluctuations (temperature and CO2, for example) exhibited periodicities that appeared congruent with passage of low frequency gravity waves (?? ??? 20 min). Spectral peaks at 0.0008 Hz (20 min) in both vertical velocity and scalar spectra were observed and indicated that 25-50% of the total scalar covariances were accounted for by the low frequency waves. During some periods of strong westerly winds (predominantly in winter), large mountain gravity waves were observed to form. Typically, the flux tower resided within a region of downslope "shooting flow", which created high turbulence, but had no detrimental effect on local flux measurements based on valid turbulence statistics and nearly complete energy budget closure. Periodically, we found evidence for re-circulating, rotor winds in the simultaneous time series of wind data from the Ameriflux tower site and a second meteorological site situated 8 km upslope and to the West. Only 14% of the half-hour time periods that we examined for a 4 month period in the winter of 2000-2001 indicated the possible existence of rotor winds. On average, energy budget closure was ???20% less during periods with

  11. Influence of Different Environmental Variables on Energy and Carbon Fluxes in a Mediterranean Maquis Site

    NASA Astrophysics Data System (ADS)

    Bellucco, V.; Marras, S.; Sirca, C.; Duce, P.; Spano, D.

    2015-12-01

    Recent studies show that, in the Mediterranean area, global climate changes are likely causing an increase in frequency and intensity of drought periods as well as in the number of warmer days and nights. Mediterranean maquis (schlerophyll species) is a typical evergreen ecosystem consisting of short shrubs with leathery leaves sparsely distributed. It is adapted to live in a semi-arid climate as that of Mediterranean coasts and can survive to these environmental stress condition, being able to recover after autumn rainfall. However, increased environmental stress condition may determine changes in vegetation behavior in the long period. The aim of this study is to show the seasonal variability of sensible and latent heat, and CO2 exchanges measured, with the Eddy Covariance (EC) technique, over a Mediterranean Maquis site. It is located, about 600 m far from the sea, in the Capo Caccia peninsula (municipal district of Alghero (SS), Italy) within a natural reserve called "Le Prigionette", also known as Arca di Noé, in the North-West Sardinia coast (40.61° N, 8.15° E, 74 m asl). Due to this proximity of the EC tower to the sea, the ecosystem vertical exchanges and their footprint may be differently affected by sea and land breeze during days and nights, respectively. A four-component net radiometer, a quantum sensor, and a meteorological station were also set up for ancillary measurements as well as four heat plates in four different positions to account for under canopy and bare soil conditions in the Maquis ecosystem. Therefore, the influence of different environmental variables, such as soil/air temperature, atmospheric conditions and soil moisture content, on energy and carbon fluxes will be investigated and their effect on the seasonal and inter-annual variability of surface fluxes will be analyzed.

  12. AmeriFlux US-Ha2 Harvard Forest Hemlock Site

    DOE Data Explorer

    Munger, William [Harvard University

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Ha2 Harvard Forest Hemlock Site. Site Description - The forest surrounding the Hemlock site has remained pristine with two exceptions. In the early to mid-1700s, European settlers cleared the majority of the forest for agricultural purposes. Selective harvesting of hemlock and chestnut trees occurred up until the early 1900s, when the chestnut blight killed all of the chestnut trees. In the current forest, about 83% of the total basal area of trees is hemlock. The remainder is equally divided between eastern white pine (Pinus strobus L.) and deciduous species, including red maple (Acer rubrum), red oak (Quercus rubra) and black birch (Betula lenta). A very thick organic layer (10-20 cm or more) covers the soil surface, and highly decayed coarse woody debris is abundant.

  13. Development of a laser remote sensing instrument to measure sub-aerial volcanic CO2 fluxes

    NASA Astrophysics Data System (ADS)

    Queisser, Manuel; Burton, Mike

    2016-04-01

    A thorough quantification of volcanic CO2 fluxes would lead to an enhanced understanding of the role of volcanoes in the geological carbon cycle. This would enable a more subtle understanding of human impact on that cycle. Furthermore, variations in volcanic CO2 emissions are a key to understanding volcanic processes such as eruption phenomenology. However, measuring fluxes of volcanic CO2 is challenging as volcanic CO2 concentrations are modest compared with the ambient CO2 concentration (~400 ppm) . Volcanic CO2 quickly dilutes with the background air. For Mt. Etna (Italy), for instance, 1000 m downwind from the crater, dispersion modelling yields a signal of ~4 ppm only. It is for this reason that many magmatic CO2 concentration measurements focus on in situ techniques, such as direct sampling Giggenbach bottles, chemical sensors, IR absorption spectrometers or mass spectrometers. However, emission rates are highly variable in time and space. Point measurements fail to account for this variability. Inferring 1-D or 2-D gas concentration profiles, necessary to estimate gas fluxes, from point measurements may thus lead to erroneous flux estimations. Moreover, in situ probing is time consuming and, since many volcanoes emit toxic gases and are dangerous as mountains, may raise safety concerns. In addition, degassing is often diffuse and spatially extended, which makes a measurement approach with spatial coverage desirable. There are techniques that allow to indirectly retrieve CO2 fluxes from correlated SO2 concentrations and fluxes. However, they still rely on point measurements of CO2 and are prone to errors of SO2 fluxes due to light dilution and depend on blue sky conditions. Here, we present a new remote sensing instrument, developed with the ERC project CO2Volc, which measures 1-D column amounts of CO2 in the atmosphere with sufficient sensitivity to reveal the contribution of magmatic CO2. Based on differential absorption LIDAR (DIAL) the instrument measures

  14. Assessment of CO2 flux measurements in different soil types

    NASA Astrophysics Data System (ADS)

    Xia, L.; Szlavecz, K.; Musaloiu, R.; Cupchup, J.; Pitz, S.

    2008-12-01

    Accurate measurements of soil CO2 efflux are extraordinarily challenging due to the very properties of CO2 transport in a porous medium of soil. The most commonly used method today is the chamber method, which provides direct measurements of CO2 efflux at the soil surface, but it can not measure the soil CO2 flux continuously. In order to develop new measurement methods in soil CO2 efflux, small solid-state CO2 sensors have been used to continuously to monitor soil CO2 profiles by burying these sensors at different soil depths. Using this method we compared soil CO2 efflux of four different soil types: forests soil, grassland soil (collected in Maryland) commercial potting soil and pure sand as control. CO2 concentration varied between 500 ppm in sand and 8000 ppm in forest soil at depth 12 cm. CO2 flux had the following order: Forest (0.3~0.4 mg CO2 m-2 s-1), potting soil (0.1~0.14 mg CO2 m-2 s-1 ), grassland (0.03~0.05 mg CO2 m-2 s-1), sand ( 0 mg CO2 m-2 s-1 ). Exponential relationship between temperature and CO2 flux was established for forest soil and potting soil only. Leaf litter, often thick layer in many terrestrial ecosystems and a significant source of CO2 production, is not part of the of the diffusivity models. We are currently conducting experiments which include the effect of leaf litter and soil invertebrates into soil respiration.

  15. Long-term isoprene flux measurements above a northern hardwood forest

    NASA Astrophysics Data System (ADS)

    Pressley, Shelley; Lamb, Brian; Westberg, Hal; Flaherty, Julia; Chen, Jack; Vogel, Christoph

    2005-04-01

    We report continuous whole canopy isoprene emission fluxes from a northern hardwood forest in Michigan for the 1999-2002 growing seasons. The eddy covariance fluxes of isoprene, CO2, latent heat, and sensible heat are presented along with an analysis of the seasonal and year-to-year variations. Measurements were made in collaboration with the AmeriFlux site located at the University of Michigan Biological Station (UMBS) and the Program for Research on Oxidants: PHotochemistry, Emissions, and Transport (PROPHET). In general, isoprene emissions increased throughout the day with increasing temperature and light levels, peaked at midafternoon, and declined to zero by night. There were significant variations from one 30-min period to the next, and from one day to the next. Average midday isoprene fluxes were 2.8, 3.2, and 2.9 mg C m-2 h-1 for 2000 through 2002, respectively. Insufficient data were available to include 1999. Last frost and full leaf out were significantly later in 2002 compared to the other years; however, total accumulated isoprene emissions for each year varied by less than 10%. Fully developed isoprene emissions occurred between 400 and 500 heating degree days, roughly half those required at other sites. Using long-term net ecosystem exchange measurements from the UMBS˜Flux group, isoprene emissions represent between 1.7 to 3.1% of the net carbon uptake at this site. Observations for 2000-2002 were compared with the BEIS3 emission model. Estimates agree well with observations during the midsummer period, but BEIS3 overestimates observations during the spring onset of emissions and the fall decline in emissions. This work provides a unique long-term data set useful for verifying canopy scale models and to help us better understand the dynamics of biosphere-atmosphere exchange of isoprene.

  16. Progress on a Rayleigh Scattering Mass Flux Measurement Technique

    NASA Technical Reports Server (NTRS)

    Mielke-Fagan, Amy F.; Clem, Michelle M.; Elam, Kristie A.; Hirt, Stefanie M.

    2010-01-01

    A Rayleigh scattering diagnostic has been developed to provide mass flux measurements in wind tunnel flows. Spectroscopic molecular Rayleigh scattering is an established flow diagnostic tool that has the ability to provide simultaneous density and velocity measurements in gaseous flows. Rayleigh scattered light from a focused 10 Watt continuous-wave laser beam is collected and fiber-optically transmitted to a solid Fabry-Perot etalon for spectral analysis. The circular interference pattern that contains the spectral information that is needed to determine the flow properties is imaged onto a CCD detector. Baseline measurements of density and velocity in the test section of the 15 cm x 15 cm Supersonic Wind Tunnel at NASA Glenn Research Center are presented as well as velocity measurements within a supersonic combustion ramjet engine isolator model installed in the tunnel test section.

  17. SIERRA-Flux: Measuring Regional Surface Fluxes of Carbon Dioxide, Methane, and Water Vapor from an Unmanned Aircraft System

    NASA Technical Reports Server (NTRS)

    Fladeland; Yates, Emma Louise; Bui, Thaopaul Van; Dean-Day, Jonathan; Kolyer, Richard

    2011-01-01

    The Eddy-Covariance Method for quantifying surface-atmosphere fluxes is a foundational technique for measuring net ecosystem exchange and validating regional-to-global carbon cycle models. While towers or ships are the most frequent platform for measuring surface-atmosphere exchange, experiments using aircraft for flux measurements have yielded contributions to several large-scale studies including BOREAS, SMACEX, RECAB by providing local-to-regional coverage beyond towers. The low-altitude flight requirements make airborne flux measurements particularly dangerous and well suited for unmanned aircraft.

  18. Design and measurement of improved capacitively-shunted flux qubits

    NASA Astrophysics Data System (ADS)

    Sears, Adam; Birenbaum, Jeffrey; Hover, David; Gudmundsen, Theodore; Kerman, Andrew; Welander, Paul; Yoder, Jonilyn L.; Gustavsson, Simon; Jin, Xiaoyue; Kamal, Archana; Clarke, John; Oliver, William

    2014-03-01

    The addition of a capacitive or inductive shunt across one of the junctions can alter the coherence properties of a classic flux or RF-SQUID qubit. We have studied the performance of capacitively shunted flux qubits fabricated with MBE aluminum, starting from a 2D coplanar waveguide geometry used in similar high-performance transmon qubits, and measured dispersively. We will detail the importance of design parameters that preserve the flux qubit's anharmonicity and discuss conclusions about materials quality based on calculations of the participation of junction, dielectric, and superconductor components. This research was funded in part by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA); and by the Assistant Secretary of Defense for Research & Engineering under Air Force Contract number FA8721-05-C-0002. All statements of fact, opinion or conclusions contained herein are those of the authors and should not be construed as representing the official views or policies of IARPA, the ODNI, or the U.S. Government Present address: SLAC National Accelerator Laboratory, Menlo Park, CA.

  19. Numerical modeling of cold magmatic CO2 flux measurements for the exploration of hidden geothermal systems

    NASA Astrophysics Data System (ADS)

    Peiffer, Loïc.; Wanner, Christoph; Pan, Lehua

    2015-10-01

    The most accepted conceptual model to explain surface degassing of cold magmatic CO2 in volcanic-geothermal systems involves the presence of a gas reservoir. In this study, numerical simulations using the TOUGH2-ECO2N V2.0 package are performed to get quantitative insights into how cold CO2 soil flux measurements are related to reservoir and fluid properties. Although the modeling is based on flux data measured at a specific geothermal site, the Acoculco caldera (Mexico), some general insights have been gained. Both the CO2 fluxes at the surface and the depth at which CO2 exsolves are highly sensitive to the dissolved CO2 content of the deep fluid. If CO2 mainly exsolves above the reservoir within a fracture zone, the surface CO2 fluxes are not sensitive to the reservoir size but depend on the CO2 dissolved content and the rock permeability. For gas exsolution below the top of the reservoir, surface CO2 fluxes also depend on the gas saturation of the deep fluid as well as the reservoir size. The absence of thermal anomalies at the surface is mainly a consequence of the low enthalpy of CO2. The heat carried by CO2 is efficiently cooled down by heat conduction and to a certain extent by isoenthalpic volume expansion depending on the temperature gradient. Thermal anomalies occur at higher CO2 fluxes (>37,000 g m-2 d-1) when the heat flux of the rising CO2 is not balanced anymore. Finally, specific results are obtained for the Acoculco area (reservoir depth, CO2 dissolved content, and gas saturation state).

  20. The first geothermal heat flux measurement below the West Antarctic Ice Sheet

    NASA Astrophysics Data System (ADS)

    Fisher, A. T.; Mankoff, K. D.; Tulaczyk, S. M.; Foley, N.; Hossainzadeh, S.

    2014-12-01

    The geothermal heat flux is a critical thermal boundary condition that influences the melting, flow and mass balance of outlet glaciers and ice sheets. We measured directly the geothermal heat flux below the West Antarctic Ice Sheet (WAIS), under Subglacial Lake Whillans (SLW), as part of the Whillans Ice Stream Subglacial Access Research Drilling (WISSARD) project. The one-dimensional, conductive heat flux is the product of thermal gradient and thermal conductivity. We developed and fielded a tool to determine the thermal gradient in lake sediments, after penetrating ~800 m of ice using a hot water drilling system. We used the needle-probe method to measure the thermal conductivity of sediments recovered from the bottom of the lake with a gravity-driven multi-corer. The thermal gradient was determined during two separate deployments of the geothermal tool, which penetrated ~1.1 m into the till below SLW, yielding essentially identical results: 0.21±0.07 °C/m. Fifteen sediment thermal conductivity measurements yield an average value of 1.36±0.12 W/m-K. The heat flux determined from these measurements is 285±85 W/m2. This value is somewhat higher than that estimated from the WAIS-Divide ice core site, 230 mW/m2, ~800 km away, and much higher than regional estimates based on magnetics and a global seismic model, generally ≤100 mW/m2. Elevated heat flux in this area could result from thermal perturbations associated with rifting, crustal thinning, or volcanic activity. Heat flux of this magnitude is likely to cause basal melt rate of a few cm/year. If this value is representative of conditions below this part of the WAIS, it might help to explain the occurrence of active subglacial lakes and fast-moving ice streams and the ice dynamics of WAIS more broadly.

  1. Post-disturbance dynamics in forest-atmosphere fluxes: Observations from a windthrow site in the European Alps

    NASA Astrophysics Data System (ADS)

    Matthews, Bradley; Mayer, Mathias; Katzensteiner, Klaus; Schume, Helmut

    2015-04-01

    Natural disturbances can cause abrupt and substantial changes in ecosystem properties regulating forest-atmosphere exchange. Although forest sites disturbed by e.g. wind, fire, and insects have become important targets of micrometeorological research, investigations of intact and disturbed forests in mountainous areas remain comparatively scarce. This discrepancy is likely explained by the additional methodological challenges posed by mountainous ecosystems, especially with respect to the eddy covariance technique. Nonetheless, the lack of such experiments constitutes a significant void in global and regional flux networks, particularly in the Central European context, where the Alps are forecasted as potential hotspots of intensifying windthrow and bark beetle disturbance regimes. We therefore began a micrometeorological investigation at a forest site in the Northern Calcareous Alps of Austria disturbed by windthrow and subsequent bark beetle infestation in 2009. The objectives of the study were to determine 1) whether the eddy covariance technique provides robust measurements of turbulent surface-atmosphere exchange at the site and 2) how net exchange of carbon dioxide (CO2), water vapor, sensible heat and shortwave radiation develop over 3 subsequent growing seasons (2011 to 2013) following disturbance. According to a flux quality assessment looking at turbulence, stationarity, flux footprint and energy balance closure, eddy covariance provides defensible estimates of net turbulent exchange at the site, despite the non ideal conditions for its application. While the site remained a CO2 source in 2013, decreasing net CO2 release over the three subsequent growing seasons indicated that the ecosystem was in a state of recovery. Moreover, it appeared that this recovery also significantly influenced the net exchange of shortwave radiation and the partitioning between sensible and latent heat fluxes. Taking into account the varying climate over the three campaign

  2. Diffusive flux of PAHs across sediment-water and water-air interfaces at urban superfund sites.

    PubMed

    Minick, D James; Anderson, Kim A

    2017-03-06

    Superfund sites may be a source of polycyclic aromatic hydrocarbons (PAHs) to the surrounding environment. These sites can also act as PAH sinks from present-day anthropogenic activities, especially in urban locations. Understanding PAH transport across environmental compartments helps to define the relative contributions of these sources and is therefore important for informing remedial and management decisions. In the present study, paired passive samplers were co-deployed at sediment-water and water-air interfaces within the Portland Harbor Superfund Site and the McCormick and Baxter Superfund Site. These sites, located along the Willamette River (Portland, OR, USA), have PAH contamination from both legacy and modern sources. Diffusive flux calculations indicate that the Willamette River acts predominantly as a sink for low molecular weight PAHs from both the sediment and the air. The sediment was also predominantly a source of 4- and 5-ring PAHs to the river, and the river was a source of these same PAHs to the air, indicating that legacy pollution may be contributing to PAH exposure for residents of the Portland urban center. At the remediated McCormick and Baxter Superfund Site, flux measurements highlight locations within the sand and rock sediment cap where contaminant breakthrough is occurring. Environ Toxicol Chem 2017;9999:1-9. © 2017 SETAC.

  3. System having unmodulated flux locked loop for measuring magnetic fields

    DOEpatents

    Ganther, Jr., Kenneth R.; Snapp, Lowell D.

    2006-08-15

    A system (10) for measuring magnetic fields, wherein the system (10) comprises an unmodulated or direct-feedback flux locked loop (12) connected by first and second unbalanced RF coaxial transmission lines (16a, 16b) to a superconducting quantum interference device (14). The FLL (12) operates for the most part in a room-temperature or non-cryogenic environment, while the SQUID (14) operates in a cryogenic environment, with the first and second lines (16a, 16b) extending between these two operating environments.

  4. The Use of a Mesoscale Climate Model to Validate the Nocturnal Carbon Flux over a Forested Site

    NASA Astrophysics Data System (ADS)

    Werth, D.; Parker, M.; Kurzeja, R.; Leclerc, M.; Watson, T.

    2007-12-01

    The Savannah River National Laboratory is initiating a comprehensive carbon dioxide monitoring and modeling program in collaboration with the University of Georgia and the Brookhaven National Laboratory. One of the primary goals is to study the dynamics of carbon dioxide in the stable nocturnal boundary layer (NBL) over a forested area of the Savannah River Site in southwest South Carolina. In the nocturnal boundary layer (NBL), eddy flux correlation is less effective in determining the release of CO2 due to respiration. Theoretically, however, the flux can be inferred by measuring the build up of CO2 in the stable layer throughout the night. This method of monitoring the flux will be validated and studied in more detail with both observations and the results of a high-resolution regional climate model. The experiment will involve two phases. First, an artificial tracer will be released into the forest boundary layer and observed through an array of sensors and at a flux tower. The event will be simulated with the RAMS climate model run at very high resolution. Ideally, the tracer will remain trapped within the stable layer and accumulate at rates which will allow us to infer the release rate, and this should compare well to the actual release rate. If an unknown mechanism allows the tracer to escape, the model simulation would be used to reveal it. In the second phase, carbon fluxes will be measured overnight through accumulation in the overlying layer. The RAMS model will be coupled with the SiB carbon model to simulate the nocturnal cycle of carbon dynamics, and this will be compared to the data collected during the night. As with the tracer study, the NBL method of flux measurement will be validated against the model. The RAMS-SiB coupled model has been run over the SRS at high-resolution to simulate the NBL, and results from simulations of both phases of the project will be presented.

  5. Wind tunnel measurements of pollutant turbulent fluxes in urban intersections

    NASA Astrophysics Data System (ADS)

    Carpentieri, Matteo; Hayden, Paul; Robins, Alan G.

    2012-01-01

    Wind tunnel experiments have been carried out at the EnFlo laboratory to measure mean and turbulent tracer fluxes in geometries of real street canyon intersections. The work was part of the major DAPPLE project, focussing on the area surrounding the intersection between Marylebone Road and Gloucester Place in Central London, UK. Understanding flow and dispersion in urban streets is a very important issue for air quality management and planning, and turbulent mass exchange processes are important phenomena that are very often neglected in urban modelling studies. The adopted methodology involved the combined use of laser Doppler anemometry and tracer concentration measurements. This methodology was applied to quantify the mean and turbulent flow and dispersion fields within several street canyon intersections. Vertical profiles of turbulent tracer flux were also measured. The technique, despite a number of limitations, proved reliable and allowed tracer balance calculations to be undertaken in the selected street canyon intersections. The experience gained in this work will enable much more precise studies in the future as issues affecting the accuracy of the experimental technique have been identified and resolved.

  6. Signal-to-noise issues in measuring nitrous oxide fluxes by the eddy covariance method

    NASA Astrophysics Data System (ADS)

    Cowan, Nicholas; Levy, Peter; Langford, Ben; Skiba, Ute

    2016-04-01

    Recently-developed fast-response gas analysers capable of measuring atmospheric N2O with high precision (< 50 ppt) at a rate of 10 Hz are becoming more widely available. These instruments are capable of measuring N2O fluxes using the eddy covariance method, with significantly less effort and uncertainty than previous instruments have allowed. However, there are still many issues to overcome in order to obtain accurate and reliable flux data. The signal-to-noise ratio of N2O measured using these instruments is still two to three orders of magnitude smaller than that of CO2. The low signal-to-noise ratio can lead to systematic uncertainties, in the eddy covariance method, the most significant being in the calculation of the time lag between gas analyser and anemometer by maximisation of covariance (Langford et al., 2015). When signal-to-noise ratio is relatively low, as it is with many N2O measurements, the maximisation of covariance method can systematically overestimate fluxes. However, if constant time lags are assumed, then fluxes will be underestimated. This presents a major issue for N2O eddy covariance measurements. In this presentation we will focus on the signal to noise ratio for an Aerodyne quantum cascade laser (QCL). Eddy covariance flux measurements from multiple agricultural sites across the UK were investigated for potential uncertainties. Our presentation highlights some of these uncertainties when analysing eddy covariance data and offers suggestions as to how these issues may be minimised. Langford, B., Acton, W., Ammann, C., Valach, A. and Nemitz, E.: Eddy-covariance data with low signal-to-noise ratio: time-lag determination, uncertainties and limit of detection, Atmos Meas Tech, 8(10), 4197-4213, doi:10.5194/amt-8-4197-2015, 2015.

  7. Measurement of autophagy flux in the nervous system in vivo

    PubMed Central

    Castillo, K; Valenzuela, V; Matus, S; Nassif, M; Oñate, M; Fuentealba, Y; Encina, G; Irrazabal, T; Parsons, G; Court, F A; Schneider, B L; Armentano, D; Hetz, C

    2013-01-01

    Accurate methods to measure autophagic activity in vivo in neurons are not available, and most of the studies are based on correlative and static measurements of autophagy markers, leading to conflicting interpretations. Autophagy is an essential homeostatic process involved in the degradation of diverse cellular components including organelles and protein aggregates. Autophagy impairment is emerging as a relevant factor driving neurodegeneration in many diseases. Moreover, strategies to modulate autophagy have been shown to provide protection against neurodegeneration. Here we describe a novel and simple strategy to express an autophagy flux reporter in the nervous system of adult animals by the intraventricular delivery of adeno-associated viruses (AAV) into newborn mice. Using this approach we efficiently expressed a monomeric tandem mCherry-GFP-LC3 construct in neurons of the peripheral and central nervous system, allowing the measurement of autophagy activity in pharmacological and disease settings. PMID:24232093

  8. Standardization of flux chamber and wind tunnel flux measurements for quantifying emissions from area sources at animal feeding operations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A variety of wind tunnels and flux chambers have been used to measure fluxes of volatile organic compounds (VOC) and ammonia (NH3) at animal feeding operations (AFO). However, there has been little regard to the extreme variation and inaccuracy caused by inappropriate air velocity or sweep air flow...

  9. Fluxes of polychlorinated biphenyls volatilizing from the Hudson River, New York measured using micrometeorological approaches.

    PubMed

    Sandy, Andy L; Guo, Jia; Miskewitz, Robert J; McGillis, Wade R; Rodenburg, Lisa A

    2012-01-17

    This study represents the first time that a micrometeorological technique, using turbulent transport measurements, has been used to determine the direction and magnitude of air-water exchange of polychlorinated biphenyls (PCBs). The study was conducted during July 2008 on the Hudson River estuary near the Tappan Zee Bridge, which is the site of some of the most serious PCB contamination in the world. Gas-phase ΣPCB concentrations measured at two heights above the water column averaged 1.1 ng m(-3), and concentrations were usually lower in the upper air sample, indicating net transport of PCBs from the water column to the air. Volatilization PCB fluxes were calculated using the modified Thornthwaite-Holzman equation. Values of friction velocity and atmospheric stability were calculated using the Aerodynamic Gradient and Eddy Correlation techniques. The PCB fluxes were corrected for changes in atmospheric stability using the atmospheric stability factor of water vapor (ϕ(w)) calculated from empirical formulations which ranged from 1.0 to 3.2 (neutral to stable atmospheric boundary layer conditions). Vertical ΣPCB fluxes ranged from +0.5 μg m(-2) d (-1) to +13 μg m(-2) d (-1). Mono- through tri-homologues accounted for about half of ΣPCB fluxes, with tetra- through hexa-homologue accounting for the other half. This work demonstrates the utility of a micrometeorological approach to measuring the air-water exchange of organic contaminants.

  10. Measuring the Sources of the Intergalactic Ionizing Flux

    NASA Astrophysics Data System (ADS)

    Cowie, L. L.; Barger, A. J.; Trouille, L.

    2009-02-01

    We use a wide-field (0.9 deg2) X-ray sample with optical and Galaxy Evolution Explorer (GALEX) ultraviolet observations to measure the contribution of active galactic nuclei (AGNs) to the ionizing flux as a function of redshift. Our analysis shows that the AGN contribution to the metagalactic ionizing background peaks at around z = 2. The measured values of the ionizing background from the AGNs are lower than previous estimates and confirm that ionization from AGNs is insufficient to maintain the observed ionization of the intergalactic medium (IGM) at z > 3. We show that only X-ray sources with broad lines in their optical spectra have detectable ionizing flux and that the ionizing flux seen in an AGN is not correlated with its X-ray color. We also use the GALEX observations of the GOODS-N region to place a 2σ upper limit of 0.008 on the average ionization fraction f ν(700 Å)/f ν(1500 Å) for 626 UV selected galaxies in the redshift range z = 0.9-1.4. We then use this limit to estimate an upper bound to the galaxy contribution in the redshift range z = 0-5. If the z ~ 1.15 ionization fraction is appropriate for higher-redshift galaxies, then contributions from the galaxy population are also too low to account for the IGM ionization at the highest redshifts (z > 4). Based in part on data obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA and was made possible by the generous financial support of the W. M. Keck Foundation.

  11. Empirical CO2 and H2O flux uncertainty estimation through comparison of measurements from two heights

    NASA Astrophysics Data System (ADS)

    Ibrom, A.; Pilegaard, K.

    2012-04-01

    Although the eddy covariance technique is the only direct method to measure the turbulent matter flux through the atmospheric boundary-layer, the flux values are only reasonable approximations of the flux from the underlying surface to the atmosphere, if a couple of criteria are fulfilled. Most of these criteria, such as flux constancy over the averaging period, statistical stationarity of the time series, surface homogeneity, and height constancy of the flux, are in real world situations only partly fulfilled. Compromises between the measurement conditions and the theory of flux measurements will therefore introduce a yet unknown error, which is difficult to estimate by means of theory. Here we study whether and how eddy covariance measurements from two heights that are close to each other can be used to estimate at least part of the flux uncertainty and its relation to meteorological and site conditions. One month of data was collected during December 2011 over the Danish beech forest site Sorø, Zealand, at 34 and 43 m height. The EC systems were virtually identical and were logged with the same data logging system. The highest trees were 30 m tall, the sum of displacement height and roughness length was ca. 20 m depending on wind speed. The fetch of forest area varied between 0.5 km and 1.6 km depending on direction (Pilegaard et al. 2011). It could be shown that both the spectral characteristics and even the absolute concentration measurment of the two infra read gas analysers were in very close agreement with the theory. We found usually a very good match of the flux estimates from the two systems during day time. During night time differences were largest at stable stratification but as well at very high wind speeds. In addition to addressing the resulting uncertainty for winter CO2 flux estimates at this site, we analysed periods when very strong differences between the systems occurred. During these periods the comparison indicated a flux divergence

  12. Measurement of concentrations and dry surface fluxes of atmospheric nitrates in the presence of ammonia

    SciTech Connect

    Huebert, B.J.; Luke, W.T.; Delany, A.C.; Brost, R.A.

    1988-06-20

    We measured vertical gradients of nitric acid vapor and nitrate aerosol near the Boulder Atmospheric Observatory (BAO) tower, 20 km north of Dever, Colorado. This site was usually downwind of two large ammonia sources, a cattle feedlot and a chicken farm . The gradients we observed were very different from measurements at other sites: the aerosol gradient was in many cases steeper than that of the vapor, even though both experience and theory predict that aerosol dry deposition should be much slower (with a correspondingly flatter gradient) than that for nitric acid vapor. In some cases we even saw an apparent emission of nitric acid vapor, with the highest concentrations near the surface. These results are consistent with the predictions of a model which couples the evaporation of ammonium nitrate aerosol to the rapid dry deposition of nitric acid vapor. As deposition depletes the vapor near the surface, evaporation of the aerosol resupplies it. This produces a steep arerosol concentration gradient, even though the aerosol itself is not the form which is transported to the the receiving surfaces. One result of this coupling is that the traditional application of deposition velocities and measured concentrations to estimate dry nitric acid deposition may cause significant errors, since the individual species fluxes are not conserved (and may even have different signs under some conditions). The total nitrate flux is conserved, however, and may be the most predictable of the fluxes. copyright American Geophysical Union 1988

  13. Heat flux measurements for use in physiological and clothing research.

    PubMed

    Niedermann, R; Psikuta, A; Rossi, R M

    2014-08-01

    Scientists use passive heat flow meters to measure body heat exchanges with the environment. In recent years, several such sensors have been developed and concerns about their proper calibration have been addressed. However, calibration methods have differed in the geometry of the heated device as well as in the heat transfer mechanism. Therefore, a comparison of calibration methods is needed in order to understand the obtained differences in calibration lines. We chose three commercially available heat flux sensors and placed them on four different heated devices: a hot plate, double hot plate, nude cylinder and a cylinder covered with a spacer material. We found differences between the calibration line of the manufacturer and our own measurements, especially when forced convection was involved as the main heat transfer mechanism. The results showed clearly that the calibration method should be chosen according to the intended purpose of use. In addition, we recommend use a thin, light heat flux sensor with good thermal conduction in human subject studies.

  14. Heat flux measurements for use in physiological and clothing research

    NASA Astrophysics Data System (ADS)

    Niedermann, R.; Psikuta, A.; Rossi, R. M.

    2014-08-01

    Scientists use passive heat flow meters to measure body heat exchanges with the environment. In recent years, several such sensors have been developed and concerns about their proper calibration have been addressed. However, calibration methods have differed in the geometry of the heated device as well as in the heat transfer mechanism. Therefore, a comparison of calibration methods is needed in order to understand the obtained differences in calibration lines. We chose three commercially available heat flux sensors and placed them on four different heated devices: a hot plate, double hot plate, nude cylinder and a cylinder covered with a spacer material. We found differences between the calibration line of the manufacturer and our own measurements, especially when forced convection was involved as the main heat transfer mechanism. The results showed clearly that the calibration method should be chosen according to the intended purpose of use. In addition, we recommend use a thin, light heat flux sensor with good thermal conduction in human subject studies.

  15. Potentials and challenges associated with automated closed dynamic chamber measurements of soil CO2 fluxes

    NASA Astrophysics Data System (ADS)

    Görres, Carolyn-Monika; Kammann, Claudia; Ceulemans, Reinhart

    2015-04-01

    the row width alternating between 1.50 m and 0.75 m, creating spatial differences in e.g. dry bulk density and soil organic carbon content. The soil CO2 flux data sets were split into four subsets each characterized by different environmental conditions, thus presenting different challenges for the measurement equipment, namely 1) daytime, calm conditions, 2) daytime, windy conditions, 3) nighttime, calm conditions, and 4) nighttime, windy conditions. In parallel to the chamber measurements, soil CO2 concentrations were manually measured in the topsoil. Soil CO2 fluxes calculated from this dataset were used as a reference range of soil CO2 fluxes at the field site. Funding support: ERC Advanced Grant agreement (# 233366) POPFULL under the EC 7th Framework Program (FP7/2007-2013), Flemish Hercules Foundation as Infrastructure contract # ZW09-06, and the Methusalem Program of the Flemish Government.

  16. Centrifugal pump inlet pressure site affects measurement.

    PubMed

    Augustin, Simon; Horton, Alison; Butt, Warwick; Bennett, Martin; Horton, Stephen

    2010-09-01

    During extracorporeal life support (ECLS), blood is exposed to a myriad of unphysiological factors that can affect outcome. One aspect of this is the sub-atmospheric pressure generated by the ECLS pump and imparted to blood elements along the pump inlet line. This pressure can be measured on the inlet line close to the pump head by adding a connector, or at the venous cannula connection site. We compared the two measurement sites located at both points; between the venous cannula-inlet tubing and inlet tubing-pump, with a range of cannulae and flows. We also investigated the effects on inlet pressure from pump afterload and increasing inlet tubing length.

  17. Trends in long-term carbon and water fluxes - a case study from a temperate Norway spruce site

    NASA Astrophysics Data System (ADS)

    Babel, Wolfgang; Lüers, Johannes; Hübner, Jörg; Serafimovich, Andrei; Thomas, Christoph; Foken, Thomas

    2016-04-01

    In this study we analyse eddy-covariance flux measurements of carbon dioxide and water vapour from 18 years at Waldstein-Weidenbrunnen (DE-Bay), a Norway spruce forest site in the Fichtelgebirge, Germany. Standard flux partitioning algorithms have been applied for separation of net ecosystem exchange NEE into gross ecosystem uptake GEE and ecosystem respiration Reco, and gap-filling. The annual NEE shows a positive trend, which is related to a strong increase in GEE, while Reco enhances slightly. Annual evapotranspiration increases as well, while atmospheric demand, i.e. potential evapotranspiration, shows inter-annual variability, but no trend. Comparisons with studies from other warm temperate needle-leaved forests show, that NEE is at the upper range of the distribution, and evapotranspiration in Budyko space is in a similar range, but with a large inter-annual variability. While this trends are generally in agreement with findings from other locations and expectations to climate change, the specific history at this site clearly has a large impact on the results: The forest was in the first years very much affected due to forest decline and convalesced after a liming. In the last ten years the site was much affected by beetles and windthrow. Thus the more recent positive trends may be related to increased heterogeneity at the site. As FLUXNET stations, built 10-20 years ago, often started with "ideal forest sites", increasing heterogeneity might be a more general problem for trend analysis of long-term data sets.

  18. The measurement of heat flux from initiators in solid propellant rocket igniters

    NASA Astrophysics Data System (ADS)

    Subba Rao, S. V.; Ramesh, N.; Pillai, B. C.

    The use of ribbon thermocouples to measure the heat flux from the initiator jet of a solid propellant rocket igniter and received by the booster charge is reported. Heat flux histories are given. All the heat flux curves showed a sharp peak within a short operation of 1 ms. Peak heat flux values extended up to 16,000 W/sq cm.

  19. Comparison of buried soil sensors, surface chambers and above ground measurements of carbon dioxide fluxes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil carbon dioxide (CO2) flux is an important component of the terrestrial carbon cycle. Accurate measurements of soil CO2 flux aids determinations of carbon budgets. In this study, we investigated soil CO2 fluxes with time and depth and above ground CO2 fluxes in a bare field. CO2 concentrations w...

  20. Non-reactive and reactive trace gas fluxes: Simultaneous measurements with ground based and vertically integrating methods

    NASA Astrophysics Data System (ADS)

    Mayer, J.-C.; Rummel, U.; Andreae, M. O.; Foken, T.; Meixner, F. X.

    2009-04-01

    The footprint area, i.e. the source region of a flux measured at a certain location, increases with increasing height above ground of the flux measurements. For non-reactive trace gases and horizontally homogeneous terrain (particularly with respect to deposition and emission processes), an increase in height should not alter the actual measured flux (constant flux layer assumption). For reactive trace gases, with chemical life times of about 30 s - 300 s, chemical production and loss processes within the measuring layer lead to vertical flux divergence. The magnitude of the flux divergence can be determined directly by comparing fluxes of reactive trace gases being affected by chemistry with fluxes of the same species being not altered by chemistry. In August 2006, the field experiment LIBRETTO (LIndenBerg REacTive Trace gas prOfiles) was carried out in cooperation with the German Meteorological Service (DWD) at the field site of the Richard Aßmann Observatory in Lindenberg. At a 99 m mast, profiles of air temperature, relative humidity, wind speed and direction were measured. The mast is equipped with an elevator, where sensors for trace gases (CO2, H2O, O3), air temperature and relative humidity have been installed. During the experiment, the elevator system was run continuously, providing scanned profiles of trace gas concentrations from 2 m to 99 m a.g.l. of the atmospheric boundary layer (ABL) approx. every 10 minutes. Between 0.15 m and 2.0 m, concentration differences of the trace gases CO2, H2O, O3, NO and NO2 were measured. Applying the modified Bowen ration (MBR) method to the measured concentration differences and directly measured sensible heat flux (eddy covariance data from DWD) yields surface fluxes of the trace gases. Integral fluxes of CO2, O3 and sensible heat were computed simultaneously by applying the nocturnal boundary layer budget method to the scanned elevator profiles. A direct comparison showed little deviations between the two methods

  1. AmeriFlux US-Ne1 Mead - irrigated continuous maize site

    SciTech Connect

    Suyker, Andy

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Ne1 Mead - irrigated continuous maize site. Site Description - The study site is one of three fields (all located within 1.6 km of each other) at the University of Nebraska Agricultural Research and Development Center near Mead, Nebraska. This site is irrigated with a center pivot system. Prior to the initiation of the study, the irrigated site had a 10-yr history of maize-soybean rotation under no-till. A tillage operation (disking) was done just prior to the 2001 planting to homogenize the top 0.1 m of soil, incorporate P and K fertilizers, as well as previously accumulated surface residues. Since the tillage operation, the site has been under no-till management until the harvest of 2005. Following harvest, a conservation-plow tillage operation was initiated where a small amount of N fertilizer is sprayed on the residue immediately prior to the plow operation. Approximately 1/3 of the crop residue is left on the surface. The post-harvest conservation-plow operation continues as the current practice.

  2. Measurement of momentum flux using two meteor radars in Indonesia

    NASA Astrophysics Data System (ADS)

    Matsumoto, Naoki; Shinbori, Atsuki; Riggin, Dennis M.; Tsuda, Toshitaka

    2016-03-01

    Two nearly identical meteor radars were operated at Koto Tabang (0.20° S, 100.32° E), West Sumatra, and Biak (1.17° S, 136.10° E), West Papua, in Indonesia, separated by approximately 4000 km in longitude on the Equator. The zonal and meridional momentum flux, u'w' and v'w', where u, v, and w are the eastward, northward, and vertical wind velocity components, respectively, were estimated at 86 to 94 km altitudes using the meteor radar data by applying a method proposed by Hocking (2005). The observed u'w' at the two sites agreed reasonably well at 86, 90, and 94 km during the observation periods when the data acquisition rate was sufficiently large enough. Variations in v'w' were consistent between 86, 90, and 94 km altitudes at both sites. The climatological variation in the monthly averaged u'w' and v'w' was investigated using the long-term radar data at Koto Tabang from November 2002 to November 2013. The seasonal variations in u'w' and v'w' showed a repeatable semiannual and annual cycles, respectively. u'w' showed eastward values in February-April and July-September and v'w' was northward in June to August at 90-94 km, both of which were generally anti-phase with the mean zonal and meridional winds, having the same periodicity. Our results suggest the usefulness of the Hocking method.

  3. Cosmic rays muon flux measurements at Belgrade shallow underground laboratory

    SciTech Connect

    Veselinović, N. Dragić, A. Maletić, D. Joković, D. Savić, M. Banjanac, R. Udovičić, V. Aničin, I.

    2015-02-24

    The Belgrade underground laboratory is a shallow underground one, at 25 meters of water equivalent. It is dedicated to low-background spectroscopy and cosmic rays measurement. Its uniqueness is that it is composed of two parts, one above ground, the other bellow with identical sets of detectors and analyzing electronics thus creating opportunity to monitor simultaneously muon flux and ambient radiation. We investigate the possibility of utilizing measurements at the shallow depth for the study of muons, processes to which these muons are sensitive and processes induced by cosmic rays muons. For this purpose a series of simulations of muon generation and propagation is done, based on the CORSIKA air shower simulation package and GEANT4. Results show good agreement with other laboratories and cosmic rays stations.

  4. Measuring fast-neutron flux by track-etch technique

    SciTech Connect

    Not Available

    1981-01-01

    The method covers the measurement of neutron flux by the use of fissionable materials. Fission fragments emitted by the fissionable materials during neutron bombardment penetrate a suitable recording medium, such as plastic, glass, or mica, that is in contact with the fissionable material. Appropriate etching techniques render the path of the fragment in the recording medium visible under an optical microscope. Since measurement of the decay of radioisotopes is not involved in this method, irradiation times are limited only by the maximum number of fission fragment tracks that can be clearly distinguished without pile up: approximately 2 x 10/sup 5//cm/sup 2/. The method includes a discussion of apparatus, reagents and materials, procedure, calculations, precision, and accuracy. (JMT)

  5. Absolute measurement of the extreme UV solar flux

    NASA Technical Reports Server (NTRS)

    Carlson, R. W.; Ogawa, H. S.; Judge, D. L.; Phillips, E.

    1984-01-01

    A windowless rare-gas ionization chamber has been developed to measure the absolute value of the solar extreme UV flux in the 50-575-A region. Successful results were obtained on a solar-pointing sounding rocket. The ionization chamber, operated in total absorption, is an inherently stable absolute detector of ionizing UV radiation and was designed to be independent of effects from secondary ionization and gas effusion. The net error of the measurement is + or - 7.3 percent, which is primarily due to residual outgassing in the instrument, other errors such as multiple ionization, photoelectron collection, and extrapolation to the zero atmospheric optical depth being small in comparison. For the day of the flight, Aug. 10, 1982, the solar irradiance (50-575 A), normalized to unit solar distance, was found to be 5.71 + or - 0.42 x 10 to the 10th photons per sq cm sec.

  6. Nevada Test Site seismic: telemetry measurements

    SciTech Connect

    Albright, J N; Parker, L E; Horton, E H

    1983-08-01

    The feasibility and limitations of surface-to-tunnel seismic telemetry at the Nevada Test Site were explored through field measurements using current technology. Range functions for signaling were determined through analysis of monofrequency seismic signals injected into the earth at various sites as far as 70 km (43 mi) from installations of seismometers in the G-Tunnel complex of Rainier Mesa. Transmitted signal power at 16, 24, and 32 Hz was measured at two locations in G-Tunnel separated by 670 m (2200 ft). Transmissions from 58 surface sites distributed primarily along three azimuths from G-Tunnel were studied. The G-Tunnel noise environment was monitored over the 20-day duration of the field tests. Noise-power probability functions were calculated for 20-s and 280-s seismic-record populations. Signaling rates were calculated for signals transmitted from superior transmitter sites to G-Tunnel. A detection threshold of 13 dB re 1 nm/sup 2/ displacement power at 95% reliability was demanded. Consideration of field results suggests that even for the frequency range used in this study, substantially higher signaling rates are likely to be obtained in future work in view of the present lack of information relevant to hardware-siting criteria and the seismic propagation paths at the Nevada Test Site. 12 references.

  7. Measurement of N{sub 2}O fluxes from fertilized grassland using a fast response tunable diode laser spectrometer

    SciTech Connect

    Wienhold, F.G.; Frahm, H.; Harris, G.W.

    1994-08-20

    Measurements of nitrous oxide flux from fertilized agricultural grasslands is important in explaining and predicting the relationship of emissions of this gas to global warming. The nitrous oxide flux from agricultural grasslands was measured using micrometeorological techniques at a site near Stirling, Scotland. Emission levels were measured using a fast response tunable diode laser spectrometer. Measurements were made by both eddy correlation and concentration gradient techniques. This paper describes the results of this experiment and discusses information obtained that may be used for the characterization of the spatial variability in nitrous oxide emissions. 20 refs., 8 figs, 1 tab.

  8. Local Heat Flux Measurements with Single Element Coaxial Injectors

    NASA Technical Reports Server (NTRS)

    Jones, Gregg; Protz, Christopher; Bullard, Brad; Hulka, James

    2006-01-01

    To support the mission for the NASA Vision for Space Exploration, the NASA Marshall Space Flight Center conducted a program in 2005 to improve the capability to predict local thermal compatibility and heat transfer in liquid propellant rocket engine combustion devices. The ultimate objective was to predict and hence reduce the local peak heat flux due to injector design, resulting in a significant improvement in overall engine reliability and durability. Such analyses are applicable to combustion devices in booster, upper stage, and in-space engines, as well as for small thrusters with few elements in the injector. In this program, single element and three-element injectors were hot-fire tested with liquid oxygen and ambient temperature gaseous hydrogen propellants at The Pennsylvania State University Cryogenic Combustor Laboratory from May to August 2005. Local heat fluxes were measured in a 1-inch internal diameter heat sink combustion chamber using Medtherm coaxial thermocouples and Gardon heat flux gauges. Injectors were tested with shear coaxial and swirl coaxial elements, including recessed, flush and scarfed oxidizer post configurations, and concentric and non-concentric fuel annuli. This paper includes general descriptions of the experimental hardware, instrumentation, and results of the hot-fire testing for three of the single element injectors - recessed-post shear coaxial with concentric fuel, flush-post swirl coaxial with concentric fuel, and scarfed-post swirl coaxial with concentric fuel. Detailed geometry and test results will be published elsewhere to provide well-defined data sets for injector development and model validatation.

  9. Measurements of agricultural N2O: a comparative study of static chamber and eddy covariance fluxes

    NASA Astrophysics Data System (ADS)

    Molodovskaya, M.; Warland, J.; Anderson, T. R.; Archibald, J. A.; Chiang, J.; Li, J.; Marjerison, R. D.; Sharma, A.; Richards, B. K.; Steenhuis, T. S.

    2009-05-01

    Nitrous oxide (N2O) emitted from soils is a strong greenhouse gas and catalyst of ozone destruction by virtue of its long persistence in the atmosphere. Our understanding of both agricultural and natural N2O emissions has significantly improved over the past decade, but difficulties with precise soil N2O emission quantification still exist, related mostly to the large flux variability (both temporally and spatially) and the diversity of factors affecting N2O formation. The most commonly used methodologies for N2O measurements are conventional chambers and more recently-developed (and more expensive) micrometeorological methods. However, the differences in the flux-footprint between those two methods result in a large uncertainty in the integrated flux estimates, especially for areas with non-uniform land use and vegetation. In this study, comparative N2O flux measurements were performed on dairy manure fertilized cropland (on a field split between corn (Zea mays) and alfalfa (Medicago sativa)) in New York State. The field area was monitored simultaneously with (1) micrometeorological eddy covariance technique and (2) arrays of conventional static chambers. For eddy covariance measurements, a tunable diode laser absorption spectroscopy (TDLAS) trace gas analyzer (TGA100a) and 3D sonic anemometer were used, with the high- frequency data averaged over 30 min periods. The chamber design included a set of 28 chambers (14 on the alfalfa, and 14 on the corn site), and the sampling was time-synchronized with TDLAS/TGA100 measurements. The comparative analysis of the two N2O emission data sets helped to estimate the agreement between the methodologies and the spatial distribution of integrated N2O flux formation.

  10. Background light measurements at the DUMAND site

    NASA Technical Reports Server (NTRS)

    Aoki, T.; Kitamura, T.; Matsuno, S.; Mitsui, K.; Ohashi, Y.; Okada, A.; Cady, D. R.; Learned, J. G.; Oconnor, D.; Mcmurdo, M.

    1985-01-01

    Ambient light intensities at the DUMAND site, west of the island of Hawaii were measured around the one photoelectron level. Throughout the water column between 1,500m and 4,700m, a substantial amount of stimulateable bioluminescence is observed with a ship suspended detector. But non-stimulated bioluminescence level is comparable, or less than, K sup 40 background, when measured with a bottom tethered detector typical of a DUMAND optical module.

  11. Estimation of water flux in urban area using eddy covariance measurements in Riverside, Southern California

    NASA Astrophysics Data System (ADS)

    Jenerette, D.; Liang, L.

    2015-12-01

    Micrometeorological methods can direct measure the sensible and latent heat flux in specific sites and provide robust estimates of the evaporative fraction (EF), which is the fraction of available surface energy contained in latent heat. Across a vegetation coverage gradient in urban area, an empirical relationship is expected between EF and vegetation coverage, which provides the opportunity to quantify regional water flux. Here we deployed three eddy covariance (EC) systems to quantify the relationship between EF and vegetation coverage. First, two continuous systems were deployed at an industrial area with very low vegetation cover and another located in the orange orchid in Riverside, CA, to quantify the temporal dynamic of EF for the endpoints. Second, a mobile EC system was deployed to quantify the spatial distribution of EF across a gradient of vegetation coverage, during the summer time in Riverside, CA. These data showed the EF in high vegetation cover is 31.16±3.99%, but at the lower vegetation cover site EF is only 16.48±5.40%, which about 2 times lower in EF than the area with high vegetation cover. These results derived from the EC measurements provide essential data to quantify the temporal and spatial water fluxes in urban area and are needed to better understand and manage urban water use in response to drought.

  12. On the applicability of surrogate-based Markov chain Monte Carlo-Bayesian inversion to the Community Land Model: Case studies at flux tower sites

    NASA Astrophysics Data System (ADS)

    Huang, Maoyi; Ray, Jaideep; Hou, Zhangshuan; Ren, Huiying; Liu, Ying; Swiler, Laura

    2016-07-01

    The Community Land Model (CLM) has been widely used in climate and Earth system modeling. Accurate estimation of model parameters is needed for reliable model simulations and predictions under current and future conditions, respectively. In our previous work, a subset of hydrological parameters has been identified to have significant impact on surface energy fluxes at selected flux tower sites based on parameter screening and sensitivity analysis, which indicate that the parameters could potentially be estimated from surface flux observations at the towers. To date, such estimates do not exist. In this paper, we assess the feasibility of applying a Bayesian model calibration technique to estimate CLM parameters at selected flux tower sites under various site conditions. The parameters are estimated as a joint probability density function (PDF) that provides estimates of uncertainty of the parameters being inverted, conditional on climatologically average latent heat fluxes derived from observations. We find that the simulated mean latent heat fluxes from CLM using the calibrated parameters are generally improved at all sites when compared to those obtained with CLM simulations using default parameter sets. Further, our calibration method also results in credibility bounds around the simulated mean fluxes which bracket the measured data. The modes (or maximum a posteriori values) and 95% credibility intervals of the site-specific posterior PDFs are tabulated as suggested parameter values for each site. Analysis of relationships between the posterior PDFs and site conditions suggests that the parameter values are likely correlated with the plant functional type, which needs to be confirmed in future studies by extending the approach to more sites.

  13. On the applicability of surrogate-based MCMC-Bayesian inversion to the Community Land Model: Case studies at Flux tower sites

    SciTech Connect

    Huang, Maoyi; Ray, Jaideep; Hou, Zhangshuan; Ren, Huiying; Liu, Ying; Swiler, Laura

    2016-06-01

    The Community Land Model (CLM) has been widely used in climate and Earth system modeling. Accurate estimation of model parameters is needed for reliable model simulations and predictions under current and future conditions, respectively. In our previous work, a subset of hydrological parameters has been identified to have significant impact on surface energy fluxes at selected flux tower sites based on parameter screening and sensitivity analysis, which indicate that the parameters could potentially be estimated from surface flux observations at the towers. To date, such estimates do not exist. In this paper, we assess the feasibility of applying a Bayesian model calibration technique to estimate CLM parameters at selected flux tower sites under various site conditions. The parameters are estimated as a joint probability density function (PDF) that provides estimates of uncertainty of the parameters being inverted, conditional on climatologically-average latent heat fluxes derived from observations. We find that the simulated mean latent heat fluxes from CLM using the calibrated parameters are generally improved at all sites when compared to those obtained with CLM simulations using default parameter sets. Further, our calibration method also results in credibility bounds around the simulated mean fluxes which bracket the measured data. The modes (or maximum a posteriori values) and 95% credibility intervals of the site-specific posterior PDFs are tabulated as suggested parameter values for each site. Lastly, analysis of relationships between the posterior PDFs and site conditions suggests that the parameter values are likely correlated with the plant functional type, which needs to be confirmed in future studies by extending the approach to more sites.

  14. On the applicability of surrogate-based MCMC-Bayesian inversion to the Community Land Model: Case studies at Flux tower sites

    DOE PAGES

    Huang, Maoyi; Ray, Jaideep; Hou, Zhangshuan; ...

    2016-06-01

    The Community Land Model (CLM) has been widely used in climate and Earth system modeling. Accurate estimation of model parameters is needed for reliable model simulations and predictions under current and future conditions, respectively. In our previous work, a subset of hydrological parameters has been identified to have significant impact on surface energy fluxes at selected flux tower sites based on parameter screening and sensitivity analysis, which indicate that the parameters could potentially be estimated from surface flux observations at the towers. To date, such estimates do not exist. In this paper, we assess the feasibility of applying a Bayesianmore » model calibration technique to estimate CLM parameters at selected flux tower sites under various site conditions. The parameters are estimated as a joint probability density function (PDF) that provides estimates of uncertainty of the parameters being inverted, conditional on climatologically-average latent heat fluxes derived from observations. We find that the simulated mean latent heat fluxes from CLM using the calibrated parameters are generally improved at all sites when compared to those obtained with CLM simulations using default parameter sets. Further, our calibration method also results in credibility bounds around the simulated mean fluxes which bracket the measured data. The modes (or maximum a posteriori values) and 95% credibility intervals of the site-specific posterior PDFs are tabulated as suggested parameter values for each site. Lastly, analysis of relationships between the posterior PDFs and site conditions suggests that the parameter values are likely correlated with the plant functional type, which needs to be confirmed in future studies by extending the approach to more sites.« less

  15. Measurements for the JASPER Program Flux Monitor Experiment

    SciTech Connect

    Muckenthaler, F.J.; Spencer, R.R.; Hunter, H.T.; Hull, J.L.; Shono, A.

    1993-02-01

    The Flux Monitor Experiment was conducted at the Oak Ridge National Laboratory (ORNL) Tower Shielding Facility (TSF) during the months of May and June 1992, as part of the continuing series of eight experiments planned for the Japanese-American Shielding Program for Experimental Research (JASPER) program that was started in 1986. This series of experiments was designed to examine shielding concerns and radiation transport effects pertaining to in-vessel flux monitoring systems (FMS) in current reactor shield designs proposed for both the Advanced Liquid Metal Reactor (ALMR) design and the Japanese loop-type design. The program is a cooperative effort between the United States Department of Energy (US DOE) and the Japanese Power Reactor and Nuclear Fuel Development Corporation (PNC). The Tower Shielding Reactor H (TSR-II) neutron source was altered by the spectrum modifier (SM) used previously in the Axial Shield Experiment, and part of the Japanese Removable Radial Shield (RRS) before reaching the axial shield. In the axial shield were placed six homogeneous boron carbide (B{sub 4}C) hexagons around a center hexagon of aluminum used to represent sodium. Shield designs to be studied were placed beyond the axial shield, each design forming a void directly behind the axial shield. Measurements were made in the void and behind each slab as successive slabs were added.

  16. "Influence Method" applied to measure a moderated neutron flux

    NASA Astrophysics Data System (ADS)

    Rios, I. J.; Mayer, R. E.

    2016-01-01

    The "Influence Method" is conceived for the absolute determination of a nuclear particle flux in the absence of known detector efficiency. This method exploits the influence of the presence of one detector, in the count rate of another detector when they are placed one behind the other and define statistical estimators for the absolute number of incident particles and for the efficiency. The method and its detailed mathematical description were recently published (Rios and Mayer, 2015 [1]). In this article we apply it to the measurement of the moderated neutron flux produced by an 241AmBe neutron source surrounded by a light water sphere, employing a pair of 3He detectors. For this purpose, the method is extended for its application where particles arriving at the detector obey a Poisson distribution and also, for the case when efficiency is not constant over the energy spectrum of interest. Experimental distributions and derived parameters are compared with theoretical predictions of the method and implications concerning the potential application to the absolute calibration of neutron sources are considered.

  17. Impact of vegetation cover and stand age on scaling carbon fluxes in the upper Midwest: a multiple eddy flux site study

    NASA Astrophysics Data System (ADS)

    Desai, A. R.; Normeets, A.; Bolstad, P. V.; Chen, J.; Cook, B. D.; Curtis, P. S.; Davis, K. J.; Euskirchen, E.; Gough, C.; Martin, J.; Ricciuto, D. M.; Schmid, H. P.; Tang, J.; Su, H.; Vogel, C.; Wang, W.

    2004-12-01

    Eight permanent and three roving eddy flux towers were used to observe the exchange of carbon dioxide between the ecosystem and atmosphere at fourteen different sites in northern Wisconsin and Michigan (USA) during the growing seasons (May-Sept) of 2002 and 2003. These towers were part of the Chequamegon Ecosystem-Atmosphere Study (ChEAS), the University of Michigan Biological Station (UMBS), and the Michigan Technical University. The sites spanned a range of vegetation types typical of the region (northern hardwood, hemlock-hardwood, mixed forest, red pine, jack pine, pine barrens and shrub wetland). The hardwood and red pine sites also spanned a range of forest stand age (young, intermediate, mature and old). All sites experienced roughly similar climate; thus, comparisons among the sites allow for an examination of the impact of heterogeneous vegetation cover and stand age across a regional landscape. Carbon fluxes at different sites generally reacted similarly in response to variability in climate. Results suggest that both cover type and stand age are important variables for modeling and predicting fluxes in this region. These results have implications for developing methods of scaling carbon dioxide fluxes from sites to regions. These results will be contrasted to a flux decomposition at the WLEF tall tower.

  18. Controlling quantum flux through measurement: An idealised example

    NASA Astrophysics Data System (ADS)

    Tilloy, A.; Bauer, M.; Bernard, D.

    2014-07-01

    Classically, no transfer occurs between two equally filled reservoirs, no matter how one looks at them, but the situation can be different quantum-mechanically. This paradoxically surprising phenomenon rests on the distinctive property of the quantum world that one cannot stare at a system without disturbing it. It was recently discovered that this seemingly annoying feature could be harnessed to control small quantum systems using weak measurements. Here we present one of the simplest models —an idealised double quantum dot—where by toying with the dot measurement strength, i.e. the intensity of the look, it is possible to create a particle flux in an otherwise completely symmetric system. The basic property underlying this phenomena is that measurement disturbances are very different on a system evolving unitarily and a system evolving dissipatively. This effect shows that adaptive measurements can have dramatic effects enabling transport control but possibly inducing biases in the measurement of macroscopic quantities if not handled with care.

  19. Sensitivity of Simulated Ecosystem Fluxes to Meteorological Forcings : A case study for 6 eddy covariance sites in France

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Peylin, Philippe; Ciais, Philippe; Viovy, Nicolas; Granier, André; Calvet, Jean-Christophe; Sites, Pis Of; Maignan, Fabienne

    2010-05-01

    Process oriented terrestrial biosphere models (TBM) are useful tool to predict carbon stocks and fluxes of the land on regional to global scales. Global or regional gridded meteorological fields, e.g. calculated by Numerical Weather Prediction models, are commonly used to drive TBMs for spatially explicit applications. The uncertainties on carbon, water and energy fluxes caused by uncertain meterology drivers have rarely been investigated in a systematic way. To tackle this problem, we use in this study eddy-covariance continuous measurements of CO2, H2O and heat fluxes at six sites in France, chosen to represent the regional diversity of ecosystems, and a process based TBM called ORCHIDEE. Four relatively high time-space resolution modeled meterological forcing datasets, from SAFRAN (8 km) to ECMWF products (EC-OPERA and ERA-I; 80 km) and REMO (25 km), are used in this study. The modeled meterological variables, i.e. air temperature (Tair), air humidity (Qair), rainfall (Rain), shortwave and longwave downwelling radiations (SWD, LWD), are examed against measured meteorological data on time scales going from hourly to multi-year. SAFRAN appears to be the best model in terms of both variability and bias while REMO has the lowest performances. All models faithfully reproduce the seasonal cycle of Tair, Qair and SWD. The largest systematic bias is found for LWD. Considering interannual variability, Tair is the best reproduced variables while SWD is the worst. The mountain site is most difficult to simulate even for the high resolution model such as SAFRAN. The sensitivity of ORCHIDEE fluxes to meteorological drivers is investigated for each site and each time scale; it appears to be significant, with interannual time scale being the most problematic. We found that the best model fit to the measured NEE is obtained for SAFRAN at all time scales. The mountain site tends to have the largest discrepancy between modeled and measured NEE in terms of seasonal course. Overall

  20. Diurnal centroid of ecosystem energy and carbon fluxes at FLUXNET sites

    NASA Astrophysics Data System (ADS)

    Wilson, Kell B.; Baldocchi, Dennis; Falge, Eva; Aubinet, Marc; Berbigier, Paul; Bernhofer, Christian; Dolman, Han; Field, Chris; Goldstein, Allen; Granier, Andre; Hollinger, Dave; Katul, Gabriel; Law, B. E.; Meyers, Tilden; Moncrieff, John; Monson, Russ; Tenhunen, John; Valentini, Riccardo; Verma, Shashi; Wofsy, Steve

    2003-11-01

    Data from a network of eddy covariance stations in Europe and North America (FLUXNET) were analyzed to examine the diurnal patterns of surface energy and carbon fluxes during the summer period across a range of ecosystems and climates. Diurnal trends were quantified by assessing the time of day surface fluxes and meteorological variable reached peak values, using the "diurnal centroid" method; the diurnal centroid enabled us to discern whether the peak activity of the variable of interest is weighted more toward the morning or afternoon. In this paper, diurnal centroid estimates were used to diagnose which atmospheric and physiological processes controlled carbon dioxide, water vapor, and sensible heat fluxes across different ecosystems and climates. Sensitivity tests suggested that the diurnal centroids for latent (LE) and sensible (H) heat flux depend on atmospheric resistance, static stability in the free atmosphere, stomatal response to vapor pressure deficit, and advection. With respect to diurnal trends of surface energy fluxes at FLUXNET sites, maximum LE occurred later in the day relative to H at most tall forests with continental climates. The lag between LE and H was reduced or reversed at sites that were influenced by advection or by afternoon stomatal closure. The time of peak carbon uptake of temperate forests occurred earlier relative to the temporal peak of photosynthetically active radiation, as compared to boreal forests. The timing of this peak occurred earlier during periods with low soil water content, as it did during the summer in Mediterranean climates. In this case, the diurnal centroid for the CO2 flux was influenced by the response of respiration and photosynthesis to increasing afternoon temperature and by afternoon stomatal closure.

  1. Simulating Energy, Water and Carbon Fluxes at the Shortgrass Steppe Long Term Ecological Research (LTER) Site

    NASA Astrophysics Data System (ADS)

    Beltran-Przekurat, A. B.; Pielke, R. A.; Morgan, J. A.; Burke, I. C.

    2005-12-01

    Coupled atmospheric-biospheric models are a particularly valuable tool for studying the potential effects of land-use and land-cover changes on the near-surface atmosphere since the atmosphere and biosphere are allowed to dynamically interact through the surface and canopy energy balance. GEMRAMS is a coupled atmospheric-biospheric model comprised of an atmospheric model, RAMS, and an ecophysiological process-based model, GEMTM. In the first part of this study, the soil-vegetation-atmosphere-transfer (SVAT) scheme, LEAF2, from RAMS, coupled with GEMTM, are used to simulate energy, water and carbon fluxes over different cropping systems (winter wheat and irrigated corn) and over a mixed C3/C4 shortgrass prairie located at the USDA-ARS Central Plains Experimental Range near Nunn, Colorado, the LTER Shortgrass Steppe site. The new SVAT scheme, GEMLEAF, is forced with air temperature and humidity, wind speed and photosynthetic active radiation (PAR). Calculated canopy temperature and relative humidity, soil moisture and temperature and PAR are used to compute sunlit/shaded leaf photosynthesis (for C3 and C4 plant types) and respiration. Photosynthate is allocated to leaves, shoots, roots and reproductive organs with variable partition coefficients, which are functions of soil water conditions. As water stress increases, the fraction of photosynthate allocated to root growth increases. Leaf area index (LAI) is estimated from daily leaf biomass growth, using the vegetation-prescribed specific leaf area. Canopy conductance, computed and based on photosynthesis and relative humidity, is used to calculate latent heat flux. Simulated energy and CO2 fluxes are compared to observations collected using Bowen ratio flux towers during two growing seasons. Seasonality of the fluxes reflecting different plant phenologies agrees well with the observed patterns. In the second part of this study, simulations for two clear days are performed with GEMRAMS over a model domain centered at

  2. Complementarities between Biomass and FluxNet data to optimize ORCHIDEE ecosystem model at European forest and grassland sites

    NASA Astrophysics Data System (ADS)

    Thum, T.; Peylin, P.; Granier, A.; Ibrom, A.; Linden, L.; Loustau, D.; Bacour, C.; Ciais, P.

    2010-12-01

    Assimilation of data from several measurements provides knowledge of the model's performance and uncertainties. In this work we investigate the complementary of Biomass data to net CO2 flux (NEE) and latent heat flux (LE) in optimising parameters of the biogeochemical model ORCHIDEE. Our optimisation method is a gradient based iterative method. We optimized the model at the French forest sites, European beech forest of Hesse (48 .67°N, 7.06°E) and maritime pine forest of Le Bray (44.72°N, 0.77°W). First we adapted the model to represent the past clearcut on these two sites in order to obtain a realistic age of the forest. The model-data improvement in terms of aboveground biomass will be discussed. We then used FluxNet and Biomass data, separately and altogether, in the optimization process to assess the potential and the complementarities of these two data stream. For biomass data optimization we added parameters linked to allocation to the optimization scheme. The results show a decrease in the uncertainty of the parameters after optimization and reveal some structural deficiencies in the model. In a second step, data from ecosystem manipulation experiment site Brandbjerg (55.88°N, 11.97°E), a Danish grassland site, were used for model optimisation. The different ecosystem experiments at this site include rain exclusion, warming, and increased CO2 concentration, and only biomass data were available and used in the optimization for the different treatments. We investigate the ability of the model to represent the biomass differences between manipulative experiments with a given set of parameters and highlight model deficiencies.

  3. Eddy Covariance Measurements Over a Maize Field: The Contribution of Minor Flux Terms to the Energy Balance Gap

    NASA Astrophysics Data System (ADS)

    Smidt, J.; Ingwersen, J.; Streck, T.

    2015-12-01

    The lack of energy balance closure is a long-standing problem in eddy covariance (EC) measurements. The energy balance equation is defined as Rn - G = H + λE, where Rn is net radiation, G is the ground heat flux, H is the sensible heat flux and λE is the latent heat flux. In most cases of energy imbalance, either Rn is overestimated or the ground heat and turbulent fluxes are underestimated. Multiple studies have shown that calculations, incorrect instrument installation/calibration and measurement errors alone do not entirely account for this imbalance. Rather, research is now focused on previously neglected sources of heat storage in the soil, biomass and air beneath the EC station. This project examined the potential of five "minor flux terms" - soil heat storage, biomass heat storage, energy consumption by photosynthesis, air heat storage and atmospheric moisture change, to further close the energy balance gap. Eddy covariance measurements were conducted at a maize (Zea mays) field in southwest Germany during summer 2014. Soil heat storage was measured for six weeks at 11 sites around the field footprint. Biomass and air heat storage were measured for six subsequent weeks at seven sites around the field footprint. Energy consumption by photosynthesis was calculated using the CO2 flux data. Evapotranspiration was calculated using the water balance method and then compared to the flux data processed with three post-closure methods: the sensible heat flux, the latent heat flux and the Bowen ratio post-closure methods. An energy balance closure of 66% was achieved by the EC station measurements over the entire investigation period. During the soil heat flux campaign, EC station closure was 74.1%, and the field footprint soil heat storage contributed 3.3% additional closure. During the second minor flux term measurement period, closure with the EC station data was 91%. Biomass heat storage resulted in 1.1% additional closure, the photosynthesis flux closed the gap

  4. Forest floor leachate fluxes under six different tree species on a metal contaminated site.

    PubMed

    Van Nevel, Lotte; Mertens, Jan; De Schrijver, An; Baeten, Lander; De Neve, Stefaan; Tack, Filip M G; Meers, Erik; Verheyen, Kris

    2013-03-01

    Trees play an important role in the biogeochemical cycling of metals, although the influence of different tree species on the mobilization of metals is not yet clear. This study examined effects of six tree species on fluxes of Cd, Zn, DOC, H(+) and base cations in forest floor leachates on a metal polluted site in Belgium. Forest floor leachates were sampled with zero-tension lysimeters in a 12-year-old post-agricultural forest on a sandy soil. The tree species included were silver birch (Betula pendula), oak (Quercus robur and Q. petraea), black locust (Robinia pseudoacacia), aspen (Populus tremula), Scots pine (Pinus sylvestris) and Douglas fir (Pseudotsuga menziesii). We show that total Cd fluxes in forest floor leachate under aspen were slightly higher than those in the other species' leachates, yet the relative differences between the species were considerably smaller when looking at dissolved Cd fluxes. The latter was probably caused by extremely low H(+) amounts leaching from aspen's forest floor. No tree species effect was found for Zn leachate fluxes. We expected higher metal leachate fluxes under aspen as its leaf litter was significantly contaminated with Cd and Zn. We propose that the low amounts of Cd and Zn leaching under aspen's forest floor were possibly caused by high activity of soil biota, for example burrowing earthworms. Furthermore, our results reveal that Scots pine and oak were characterized by high H(+) and DOC fluxes as well as low base cation fluxes in their forest floor leachates, implying that those species might enhance metal mobilization in the soil profile and thus bear a potential risk for belowground metal dispersion.

  5. Organic Carbon Inventories and Vertical Fluxes Through the Vadose Zone into Groundwater at the Rifle, Colorado River Floodplain Site

    NASA Astrophysics Data System (ADS)

    Tokunaga, T. K.; Wan, J.; Dong, W.; Williams, K. H.; Robbins, M.; Kim, Y.; Faybishenko, B.; Conrad, M. E.; Christensen, J. N.; Gilbert, B.; Dayvault, R. D.; Long, P. E.; Hubbard, S. S.

    2013-12-01

    Understanding carbon inventories and fluxes within the vadose zone and groundwater of semi-arid regions is challenging because of their typically deep profiles, moderately low soil organic carbon (SOC) inventories, low dissolved organic carbon (DOC) fluxes, and slow changes in soil inorganic carbon (SIC) inventories. The remediated uranium/vanadium mill tailings site situated on a floodplain at Rifle, Colorado possesses a number of characteristics that facilitate investigation of subsurface carbon fluxes. These include locally derived fill soil having SOC and SIC concentrations representative of the region, established vegetation cover (perennial grasses and shrubs) on the fill, boundaries between the fill and underlying alluvium distinguishable through concentrations of SIC and other chemical components, predictable groundwater flow and interaction with the adjacent Colorado River, and a clearly delineated impermeable lower boundary (Wasatch Formation shale) at depths ranging from 6 to 7.5 m. Environmental characteristics of this site permit year-round sampling of both pore water and pore gas throughout most of the moderately deep (~ 3.5 m) vadose zone. Within this well-defined hydrological system, we recently installed a suite of tensiometers, pore water (vadose zone and groundwater) samplers, gas samplers, and neutron probe access tubes at three sites along a transect aligned with the groundwater flow direction in order to determine inventories and fluxes of water, carbon, and other components. The tensiometer and piezometer measurements are revealing impacts of infiltration and groundwater recharge events, evapotranspiration, and capillary fringe-groundwater interactions. The results of pore water analyses are showing relatively high concentrations of DOC (up to 4 mM) in the vadose zone, and particulate organic carbon (POC) mobile in the capillary fringe. Differences in DOC characteristics are being determined using a variety of analytical techniques. Hydraulic

  6. Measurement of particulate matter emission fluxes from a beef cattle feedlot using Flux-gradient technique

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Data on air emissions from open-lot beef cattle feedlots are limited. This research was conducted to determine PM10 emission fluxes from a commercial beef cattle feedlot in Kansas using the flux-gradient technique, a widely-used micrometeorological method for gaseous emissions from open sources. V...

  7. Characterization of neutron flux spectra in the irradiation sites of a 37 GBq 241Am-Be isotopic source

    NASA Astrophysics Data System (ADS)

    Yücel, Haluk; Budak, Mustafa Guray; Karadag, Mustafa; Yüksel, Alptuğ Özer

    2014-11-01

    For the applicability of instrumental neutron activation analysis (NAA) technique, an irradiation unit with a 37 GBq 241Am-Be neutron source was installed at Institute of Nuclear Sciences of Ankara University. Design and configuration properties of the irradiation unit are described. It has two different sample irradiation positions, one is called site #1 having a pneumatic sample transfer system and the other is site #2 having a location for manual use. In order to characterize neutron flux spectra in the irradiation sites, the measurement results were obtained for thermal (Фth) and epithermal neutron fluxes (Фepi), thermal to epithermal flux ratio (f) and epithermal spectrum shaping factors (α) by employing cadmium ratios of gold (Au) and molybdenum (Mo) monitors. The activities produced in these foils were measured by using a p-type, 44.8% relative efficiency HPGe well detector. For the measured γ-rays, self-absorption and true coincidence summing effects were taken into account. Additionally, thermal neutron self-shielding and resonance neutron self-shielding effects were taken into account in the measured results. For characterization of site #1, the required parameters were found to be Фth = (2.11 ± 0.05) × 103 n cm-2 s-1, Фepi = (3.32 ± 0.17) × 101 n cm-2 s-1, f = 63.6 ± 1.5, α = 0.045 ± 0.009, respectively. Similarly, those parameters were measured in site #2 as Фth = (1.49 ± 0.04) × 103 n cm-2 s-1, Фepi = (2.93 ± 0.15) × 101 n cm-2 s-1, f = 50.9 ± 1.3 and α = 0.038 ± 0.008. The results for f-values indicate that good thermalization of fast neutrons on the order of 98% was achieved in both sample irradiation sites. This is because an optimum combination of water and paraffin moderator is used in the present configuration. In addition, the shielding requirements are met by using natural boron oxide powder (5.5 cm) and boron loaded paraffin layers against neutrons, and a 15 cm thick lead bricks against gamma-rays from source and its

  8. Reentrant albedo proton fluxes measured by the PAMELA experiment

    NASA Astrophysics Data System (ADS)

    Adriani, O.; Barbarino, G. C.; Bazilevskaya, G. A.; Bellotti, R.; Boezio, M.; Bogomolov, E. A.; Bongi, M.; Bonvicini, V.; Bottai, S.; Bruno, A.; Cafagna, F.; Campana, D.; Carlson, P.; Casolino, M.; Castellini, G.; Donato, C. De; De Santis, C.; De Simone, N.; Di Felice, V.; Formato, V.; Galper, A. M.; Karelin, A. V.; Koldashov, S. V.; Koldobskiy, S.; Krutkov, S. Y.; Kvashnin, A. N.; Leonov, A.; Malakhov, V.; Marcelli, L.; Martucci, M.; Mayorov, A. G.; Menn, W.; Mergé, M.; Mikhailov, V. V.; Mocchiutti, E.; Monaco, A.; Mori, N.; Munini, R.; Osteria, G.; Palma, F.; Panico, B.; Papini, P.; Pearce, M.; Picozza, P.; Ricci, M.; Ricciarini, S. B.; Sarkar, R.; Scotti, V.; Simon, M.; Sparvoli, R.; Spillantini, P.; Stozhkov, Y. I.; Vacchi, A.; Vannuccini, E.; Vasilyev, G. I.; Voronov, S. A.; Yurkin, Y. T.; Zampa, G.; Zampa, N.

    2015-05-01

    We present a precise measurement of downward going albedo proton fluxes for kinetic energy above ˜70 MeV performed by the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) experiment at an altitude between 350 and 610 km. On the basis of a trajectory tracing simulation, the analyzed protons were classified into quasi-trapped, concentrating in the magnetic equatorial region, and untrapped spreading over all latitudes, including both short-lived (precipitating) and long-lived (pseudotrapped) components. In addition, features of the penumbra region around the geomagnetic cutoff were investigated in detail. PAMELA results significantly improve the characterization of the high-energy albedo proton populations at low-Earth orbits.

  9. Isoprene Fluxes Measured By Eddy-correlation Over A Mixed Deciduous Forest In Italy

    NASA Astrophysics Data System (ADS)

    Finco, A.; Cieslik, S.

    A measuring campaign was conducted from July to September 2001 at a mixed de- ciduous forest located at a flat site (Nonantola, 4441' N; 1107' E) in the North- ern Italian plain to determine isoprene fluxes. The measuring station, operated by the CNR-ISAO (Bologna ) and CNR-IATA (Florence) was part of the CARBOEU- ROFLUX network, whose main goal is the study of the carbon balance in European forests. The flux measuring system used the eddy-correlation technique and consisted of a Gill sonic anemometer installed at 13 m a.g.l., and a LI-COR CO2/H2O analyser. For isoprene, a Hills Fast Isoprene Sensor was used.In this forest, about 50% of the trees (oaks, poplars and willows) are isoprene emitters. The canopy is very dense and homogeneous; its average height is 8 meters a.g.l. The general daily course of isoprene concentrations consisted in an increase during morning hours, followed with a sharp maximum and a rapid decrease. Maximum val- ues were quite high (around 15 ppb) in July and August, decreasing in September. During daytime, fluxes appeared to be strongly correlated with latent heat fluxes, con- firming the hypothesis of emission through stomata. The concentration decrease ob- served in the afternoon shows exponential decay, suggesting that no emission occurs after the concentration maximum, when stomata are progressively closing. A resistance analysis confirmed the above hypothesis : the role of stomatal emission appears essential, practically excluding other pathways. A mathematical investigation of the stationarity state of the lower atmosphere dur- ing the observations was made in order to draw attention on limitations of the eddy- correlation method. During nighttime, non-stationary situations are frequent, causing apparent peaks of isoprene flux, not due to an emission from the plants. The method developed permits to eliminate these biases.

  10. Eddy covariance flux measurements of net ecosystem carbon dioxide exchange from a lowland peatland flux tower network in England and Wales

    NASA Astrophysics Data System (ADS)

    Morrison, Ross; Balzter, Heiko; Burden, Annette; Callaghan, Nathan; Cumming, Alenander; Dixon, Simon; Evans, Jonathan; Kaduk, Joerg; Page, Susan; Pan, Gong; Rayment, Mark; Ridley, Luke; Rylett, Daniel; Worrall, Fred; Evans, Christopher

    2016-04-01

    Peatlands store disproportionately large amounts of soil carbon relative to other terrestrial ecosystems. Over recent decades, the large amount of carbon stored as peat has proved vulnerable to a range of land use pressures as well as the increasing impacts of climate change. In temperate Europe and elsewhere, large tracts of lowland peatland have been drained and converted to agricultural land use. Such changes have resulted in widespread losses of lowland peatland habitat, land subsidence across extensive areas and the transfer of historically accumulated soil carbon to the atmosphere as carbon dioxide (CO2). More recently, there has been growth in activities aiming to reduce these impacts through improved land management and peatland restoration. Despite a long history of productive land use and management, the magnitude and controls on greenhouse gas emissions from lowland peatland environments remain poorly quantified. Here, results of surface-atmosphere measurements of net ecosystem CO2 exchange (NEE) from a network of seven eddy covariance (EC) flux towers located at a range of lowland peatland ecosystems across the United Kingdom (UK) are presented. This spatially-dense peatland flux tower network forms part of a wider observation programme aiming to quantify carbon, water and greenhouse gas balances for lowland peatlands across the UK. EC measurements totalling over seventeen site years were obtained at sites exhibiting large differences in vegetation cover, hydrological functioning and land management. The sites in the network show remarkable spatial and temporal variability in NEE. Across sites, annual NEE ranged from a net sink of -194 ±38 g CO2-C m-2 yr-1 to a net source of 784±70 g CO2-C m-2 yr-1. The results suggest that semi-natural sites remain net sinks for atmospheric CO2. Sites that are drained for intensive agricultural production range from a small net sink to the largest observed source for atmospheric CO2 within the flux tower network

  11. MEASUREMENT OF ISOPRENE FLUXES AT THE PROPHET SITE. (R825419)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  12. BOREAS RSS-8 BIOME-BGC Model Simulations at Tower Flux Sites in 1994

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Nickeson, Jaime (Editor); Kimball, John

    2000-01-01

    BIOME-BGC is a general ecosystem process model designed to simulate biogeochemical and hydrologic processes across multiple scales (Running and Hunt, 1993). In this investigation, BIOME-BGC was used to estimate daily water and carbon budgets for the BOREAS tower flux sites for 1994. Carbon variables estimated by the model include gross primary production (i.e., net photosynthesis), maintenance and heterotrophic respiration, net primary production, and net ecosystem carbon exchange. Hydrologic variables estimated by the model include snowcover, evaporation, transpiration, evapotranspiration, soil moisture, and outflow. The information provided by the investigation includes input initialization and model output files for various sites in tabular ASCII format.

  13. Yeast dynamic metabolic flux measurement in nutrient-rich media by HPLC and accelerator mass spectrometry.

    PubMed

    Stewart, Benjamin J; Navid, Ali; Turteltaub, Kenneth W; Bench, Graham

    2010-12-01

    Metabolic flux, the flow of metabolites through networks of enzymes, represents the dynamic productive output of cells. Improved understanding of intracellular metabolic fluxes will enable targeted manipulation of metabolic pathways of medical and industrial importance to a greater degree than is currently possible. Flux balance analysis (FBA) is a constraint-based approach to modeling metabolic fluxes, but its utility is limited by a lack of experimental measurements. Incorporation of experimentally measured fluxes as system constraints will significantly improve the overall accuracy of FBA. We applied a novel, two-tiered approach in the yeast Saccharomyces cerevisiae to measure nutrient consumption rates (extracellular fluxes) and a targeted intracellular flux using a (14)C-labeled precursor with HPLC separation and flux quantitation by accelerator mass spectrometry (AMS). The use of AMS to trace the intracellular fate of (14)C-glutamine allowed the calculation of intracellular metabolic flux through this pathway, with glutathione as the metabolic end point. Measured flux values provided global constraints for the yeast FBA model which reduced model uncertainty by more than 20%, proving the importance of additional constraints in improving the accuracy of model predictions and demonstrating the use of AMS to measure intracellular metabolic fluxes. Our results highlight the need to use intracellular fluxes to constrain the models. We show that inclusion of just one such measurement alone can reduce the average variability of model predicted fluxes by 10%.

  14. Careful Measurements and Energy Balance Closure - The Case of Soil Heat Flux

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An area of persistent concern in micrometeorological measurements is the failure to close the energy balance at surface flux stations. While most attention has focused on corrections associated with the eddy fluxes, none of the energy balance terms are measured without error. The flux plate method i...

  15. Standardization of flux chambers and wind tunnels for area source emission measurements at animal feeding operations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Researchers and practitioners have used many varied designs of wind tunnels and flux chambers to measure the flux of volatile organic compounds, odor, and ammonia from area sources at animal feeding operations. The measured fluxes are used to estimate emission factors or compare treatments. We sho...

  16. Heat flux measured acoustically at Grotto Vent, a hydrothermal vent cluster on the Endeavour Segment, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Xu, G.; Jackson, D. R.; Bemis, K. G.; Rona, P. A.

    2013-12-01

    Over the past several decades, quantifying the heat output has been a unanimous focus of studies at hydrothermal vent fields discovered around the global ocean. Despite their importance, direct measurements of hydrothermal heat flux are very limited due to the remoteness of most vent sites and the complexity of hydrothermal venting. Moreover, almost all the heat flux measurements made to date are snapshots and provide little information on the temporal variation that is expected from the dynamic nature of a hydrothermal system. The Cabled Observatory Vent Imaging Sonar (COVIS, https://sites.google.com/a/uw.edu/covis/) is currently connected to the Endeavour node of the NEPTUNE Canada observatory network (http://www.neptunecanada.ca) to monitor the hydrothermal plumes issuing from a vent cluster (Grotto) on the Endeavour Segment of the Juan de Fuca Ridge. COVIS is acquiring a long-term (20-months to date) time series of the vertical flow rate and volume flux of the hydrothermal plume above Grotto through the Doppler analysis of the acoustic backscatter data (Xu et al., 2013). We then estimate the plume heat flux from vertical flow rate and volume flux using our newly developed inverse method. In this presentation, we will briefly summarize the derivation of the inverse method and present the heat-flux time series obtained consequently with uncertainty quantification. In addition, we compare our heat-flux estimates with the one estimated from the plume in-situ temperatures measured using a Remotely Operative Vehicle (ROV) in 2012. Such comparison sheds light on the uncertainty of our heat flux estimation. Xu, G., Jackson, D., Bemis, K., and Rona, P., 2013, Observations of the volume flux of a seafloor hydrothermal plume using an acoustic imaging sonar, Geochemistry, Geophysics Geosystems, 2013 (in press).

  17. Methane Flux Measurements from a Low Flying Aircraft: What they tell us about Regional Heterogeneity in Carbon Flux over the North Slope of Alaska

    NASA Astrophysics Data System (ADS)

    Sayres, D. S.; Healy, C. E.; Munster, J. B.; Dobosy, R.; Dumas, E. J.; Kochendorfer, J.; Wilkerson, J.; Baker, B.; Langford, J.; Anderson, J. G.

    2015-12-01

    The Arctic contains a large reservoir of organic matter stored in permafrost and clathrates. Varying geology and hydrology across the Arctic, even on small scales, can cause large variability in surface carbon fluxes and partitioning between methane and carbon dioxide. In situ measurements are further complicated by the presence of gas and oil extraction, natural gas seeps, and biomass burning. Ground based measurements can yield high temporal resolution and detailed information about a specific location, but due to the inaccessibility of most of the Arctic to date in situ measurements have been made at very few sites. In August 2013, a small aircraft, flying low over the surface (5-30 m), and carrying an air turbulence probe and spectroscopic instruments to measure methane, carbon dioxide, and their isotopologues, flew over the North Slope of Alaska. During the ten flights multiple comparisons were made with a ground based Eddy Covariance tower as well as three region surveys of fluxes over three areas each approximately 2500 km2. We present analysis using the Flux Fragment Method and surface landscape classification maps to relate the fluxes to different surface land types.

  18. Measuring Total Flux of Organic Vapors From the Unsaturated Zone Under Natural Conditions: Design, Laboratory and Field Testing of a Flux Chamber Device

    NASA Astrophysics Data System (ADS)

    Tillman, F. D.; Choi, J.; Smith, J. A.

    2002-05-01

    A simple, easy-to-use, and inexpensive device for measuring VOC flux under natural conditions was designed and tested both in a controlled laboratory environment and in a natural field setting. The chamber consists of a stainless-steel right circular cylinder open on one end with a flexible, impermeable membrane allowing for chamber expansion and contraction. Air is pumped from inside the chamber through activated carbon traps and returned to the chamber maintaining a net zero pressure gradient from the inside to the outside of the chamber. The traps are analyzed using thermal desorption/GC-FID and the mass of contaminant is divided by the product of the sampled area and sample time to give VOC flux measured by the chamber. Design parameters for the chamber were selected using continuously stirred tank reactor (CSTR)-equation based modeling under step, sinusoidal and transport-model simulation flux inputs. Laboratory testing of the flux chamber under both diffusion and advection dominated conditions was performed in a device constructed to simulate unsaturated zone transport. Aqueous trichloroethene (TCE) solution was pumped through the bottom of a steel drum inside which 50-cm of fine sand was suspended. For diffusion-dominated transport experiments, the chamber was installed in the sand at the top of the simulator and operated in the same manner as would occur in the field. The flux measurement of the chamber was then compared to flux prediction based on measured linear concentration data from the simulator and Fick's law. Advective transport is initiated in the vadose zone simulator by flowing humidified, pressurized air into an input port in the bottom of the simulator below the suspended porous media. Soil-gas velocity is calculated by dividing the airflow input by the surface area of the simulator. Flux was measured with the chamber and compared to flux predicted using airflow and concentration data from the simulator. Results from both the diffusion-only and

  19. On-line measurements of ozone surface fluxes: Part II. Surface-level ozone fluxes onto the Sahara desert

    NASA Astrophysics Data System (ADS)

    Güsten, Hans; Heinrich, Günther; Mönnich, Erbo; Sprung, Detlev; Weppner, Joseph; Ramadan, Abou Bakr; Ezz El-Din, Mohammed R. M.; Ahmed, Darwish M.; Hassan, Galal K. Y.

    Surface-level ozone concentrations, the vertical turbulent ozone flux as well as the fluxes of sensible and latent heat were continuously monitored by the eddy covariance method in the Lybian desert, 30 km south of the Dakhla Oasis in Egypt, from 23 March until 9 April 1993. An automatic station powered by a photovoltaics generator system was used to measure the vertical turbulent ozone flux to the desert ecosystem. Fairly high ozone volume fractions up to 60 ppb were recorded when northerly winds prevailed. When southerly winds were blowing, the ozone volume fractions were lower and reached maximum values slightly above 40 ppb. On-line eddy correlation measurements of the vertical turbulent ozone flux to the desert were performed with a novel fast-response ozone sensor. The fairly small ozone fluxes were corrected for effects of micro-turbulent density fluctuations caused by the concomitant fluxes of heat and water vapour in the air volume (Webb correction). While ozone fluxes to the desert ecosystem are below 2 ppb cm s - in the night, maximum daytime ozone fluxes of 20 ppb cm s -1 were measured which yielded a maximum daily dry deposition velocity of 0.15 cm s -1. During the whole measurement campaign of 16 d a mean deposition velocity of Vd = 0.065 cm s -1 for ozone is calculated. For global numerical models in which the sources and sinks of ozone in the troposphere are taken into account, a daytime Vdof 0.1 cm s -1 and a nighttime value of 0.04 cm s -1 are recommended for the desert ecosystem.

  20. Measurements of Magnetic Helicity within Two Interacting Flux Ropes

    NASA Astrophysics Data System (ADS)

    Dehaas, Timothy; Gekelman, Walter

    2016-10-01

    Magnetic helicity (HM) has become a useful tool in the exploration of astrophysical plasmas. Its conservation in the MHD limit (and even some fluid approaches) constrains the global behavior of large plasma structures. One such astrophysical structure is a magnetic flux rope: a rope-like, current-carrying plasma embedded in an external magnetic field. Bundles of these ropes are commonly observed extending from the solar surface and can be found in the near-earth environment. In this well-diagnosed experiment (3D measurements of ne, Te, Vp, B, J, E, uflow) , two magnetic flux ropes were generated in the Large Plasma Device at UCLA. These ropes were driven kink-unstable, commencing complex motion. As they interact, helicity conservation is broken in regions of reconnection, turbulence, and instabilities. The changes in helicity can be visualized as 1) the transport of helicity (ϕB +E × A) and 2) the dissipation of the helicity (-2EB). Magnetic helicity is observed to have a negative sign and its counterpart, cross helicity, a positive one. These qualities oscillate 8% peak-to-peak. As the ropes move and the topology of the field lines change, a quasi-separatrix layer (QSL) is formed. The volume averaged HM and the largest value of Q both oscillate but not in phase. In addition to magnetic helicity, similar quantities such as self-helicity, mutual-helicity, vorticity, and canonical helicity are derived and will be presented. This work is supported by LANL-UC research Grant and done at the Basic Plasma Science Facility, which is funded by DOE and NSF.

  1. Comparison of three stationary tests for eddy covariance measurements of turbulent fluxes of different scalars

    NASA Astrophysics Data System (ADS)

    Donateo, Antonio; Cava, Daniela; Contini, Daniele

    2013-04-01

    In atmospheric turbulent flows, variables describing the motion undergo random and stochastic fluctuations. In turbulence studies the hypotheses of stationarity and ergodicity of time series is required in order to obtain estimates of ensemble averages from the temporal averages obtained from single runs. In atmosphere, however, equivalence between the two averages is just approximated because of non stationarity often inherent to atmospheric time series. Typically non-stationary conditions are driven by weather or internal boundary layer changing, for example for the presence of gravity waves or simply for the slow diurnal evolution of the boundary layer. The individuation of non-stationary cases is important for measurements of turbulent fluxes using the eddy covariance method generally applied to 30 minutes averages. Moreover it is necessary to have an analytical/parametric stationarity test, which can be used in real time determination of turbulent fluxes, for example in Fluxnet network. Nowadays different stationarity tests are proposed in literature and they are substantially used by scientific community (Foken & Wichura, 1996; Mahrt, 1998; Affre et al., 2000). In this work several time series have been analysed with the three different stationarity tests and a comparison of their performances has been developed. The stationarity tests have been applied to different scalars (temperature, ultrafine particles number concentration, carbon dioxide and water vapour concentration). All the time series come from measurements in different sites and are collected over different canopies: iced surface (in Antarctica), urban or suburban surface (Italy) and vegetal canopy over forests (both in Italy and USA). In total 6 different sites have been analysed and the performances of the stationarity tests do not seem to be site dependent. The correlation of their performances as a function of local micro-meteorological conditions have been analysed. All the three tests show

  2. Post processing of CO2 flux measurements from an urban landscape

    NASA Astrophysics Data System (ADS)

    Menzer, O.; Meiring, W.; Kyriakidis, P. C.; McFadden, J. P.

    2013-12-01

    Tower based measurements of CO2 fluxes by the eddy covariance method are subject to random error, systematic error, and missing data (gaps). In homogeneous ecosystems such as forests and grasslands, the post processing methods to address these problems are relatively well established. In the urban environment, however, the assumptions of most such methods are violated due to spatial heterogeneity in the tower footprint and localized CO2 sources such as traffic emission. For this reason, work is needed to develop and test methods appropriate to the urban setting. Here, we report comparisons of post processing methods for >3 years of flux measurements from the KUOM tall tower in a suburban neighborhood of Minneapolis, Minnesota, USA. Machine learning regression approaches including Artificial Neural Networks and Gaussian Processes were used to integrate observations from remote sensing, traffic and weather stations, and to extract complex underlying functional relationships, in order to improve gap-filling and minimize uncertainties. Specifically, we tested the sensitivity of the measurements to vehicle emissions by incorporating traffic counts from nearby roads and highways. Also, the selection of the friction velocity (u*) threshold was found to be sensitive to the wind direction but consistent between years. We calculated carbon flux sums for both residential and recreational land use types in the tower footprint, and assessed the random and systematic uncertainties caused by gap-filling and u*-filtering. While these post processing methods are essential for interpreting CO2 flux measurements in urban environments, they may also be useful for other inhomogeneous sites such as logged forests or ecosystems under disturbance from fire or pests.

  3. Direct measurements of transport properties are essential for site characterization

    SciTech Connect

    Wright, J.; Conca, J.L.

    1994-08-01

    Direct measurements of transport parameters on subsurface sediments using, the UFA method provided detailed hydrostratigraphic mapping, and subsurface flux distributions at a mixed-waste disposal site at Hanford. Seven hundred unsaturated conductivity measurements on fifty samples were obtained in only six months total of UFA run time. These data are used to provide realistic information to conceptual models, predictive models and restoration strategies. The UFA instrument consists of an ultracentrifuge with a constant, ultralow flow pump that provides fluid to the sample surface through a rotating seal assembly and microdispersal system. Effluent from the sample is collected in a transparent, volumetrically-calibrated chamber at the bottom of the sample assembly. Using a strobe light, an observer can check the chamber while the sample is being centrifuged. Materials can be run in the UFA as recomposited samples or in situ samples can be subcored directly into the sample UFA chamber.

  4. Eddy covariance measurements of the net turbulent methane flux in the city centre - results of 2-year campaign in Łódź, Poland

    NASA Astrophysics Data System (ADS)

    Pawlak, Włodzimierz; Fortuniak, Krzysztof

    2016-07-01

    To investigate temporal variability of methane (CH4) fluxes in an urban environment, air-surface exchange fluxes of CH4 were continuously measured using eddy covariance techniques at a city-centre site in Łódź, Poland, from July 2013 to August 2015. In the immediate vicinity of the measurement site, potential methane sources include vehicle traffic, dense sewerage infrastructure and natural gas networks. Sensible and latent heat fluxes have also been measured since 2000 and carbon dioxide fluxes since 2007 at this site. Upward CH4 fluxes dominated during the measurement period, indicating that the city centre is a net source of CH4 to the troposphere. The highest monthly fluxes were observed in winter (2.0 to 2.7 g m-2 month-1) and the lowest in summer (0.8 to 1.0 g m-2 month-1). Fluxes on working days were around 6 % higher than on weekends. The cumulative flux indicates that the city centre emitted a net quantity of nearly 18 g m-2 of CH4 in 2014. Stable values of the FCO2/ FCH4 ratio in months (minimum 2.41 × 10-3, maximum 5.3 × 10-3) and the lack of a clear annual course suggest comparable magnitude of both fluxes.

  5. Using Carbonyl Sulfide Column Measurements and a Chemical Transport Model to Investigate Variability in Biospheric CO2 Fluxes

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Palm, M.; Deutscher, N. M.; Warneke, T.; Notholt, J.; Baker, I. T.; Berry, J. A.; Suntharalingam, P.; Campbell, J. E.; Wolf, A.

    2014-12-01

    Understanding the CO2 processes on land is of great importance, because the terrestrial exchange drives the seasonal and interannual variability of CO2 in the atmosphere. Atmospheric inversions based on CO2 concentration measurements alone can only determine net biosphere fluxes, but not differentiate between photosynthesis (uptake) and respiration (production). Carbonyl sulfide (OCS) could provide an important additional constraint: it is also taken up by plants during photosynthesis but not emitted during respiration, and therefore is a potential means to differentiate between these processes. Solar absorption Fourier Transform InfraRed (FTIR) spectrometry allows for the retrieval of the atmospheric concentrations of both CO2 and OCS. Here, we investigate co-located and nearly simultaneous measurements of OCS and CO2 measured at 3 sites via FTIR spectrometers. These northern-hemispheric sites span a wide range of latitudes and all have multiple year time-series. The sites include Ny-Alesund (79°N), Bremen (53°N) and Paramaribo (6°N). We compare these measurements to simulations of OCS and CO2 using the GEOS-Chem model. The simulations are driven by different land biospheric fluxes of OCS and CO2 to match the seasonality of the measurements. The simple biosphere model (SiB-COS) are used in the study because it simultaneously calculates the biospheric fluxes of both OCS and CO2. The CO2 simulation with SiB fluxes agrees with the measurements better than a simulation using CASA. Comparison of the OCS simulations with different fluxes indicates that the latitudinal distribution of the OCS fluxes within SiB needs to be adjusted.

  6. Using Carbonyl Sulfide column measurements and a Chemical Transport Model to investigate variability in biospheric CO2 fluxes

    NASA Astrophysics Data System (ADS)

    Wang, Yuting; Petri, Christof; Palm, Mathias; Warneke, Thorsten; Baker, Ian; Berry, Joe; Suntharalingam, Parvadha; Campbell, Elliott; Wolf, Adam; Deutscher, Nick; Notholt, Justus

    2015-04-01

    Understanding the CO2 processes on land is of great importance, because the terrestrial exchange drives the seasonal and interannual variability of CO2 in the atmosphere. Atmospheric inversions based on CO2 concentration measurements alone can only determine net biosphere fluxes, but not differentiate between photosynthesis (uptake) and respiration (production). Carbonyl sulfide (OCS) could provide an important additional constraint: it is also taken up by plants during photosynthesis but not emitted during respiration, and therefore is a potential means to differentiate between these processes. Solar absorption Fourier Transform InfraRed (FTIR) spectrometry allows for the retrieval of the atmospheric concentrations of both CO2 and OCS. Here, we investigate co-located and nearly simultaneous measurements of OCS and CO2 measured at 3 sites via FTIR spectrometers. These northern-hemispheric sites span a wide range of latitudes and all have multiple year time-series. The sites include Ny-Alesund (79°N), Bremen (53°N) and Paramaribo (6°N). We compare these measurements to simulations of OCS and CO2 using the GEOS-Chem model. The simulations are driven by different land biospheric fluxes of OCS and CO2 to match the seasonality of the measurements. The simple biosphere model (SiB-COS) are used in the study because it simultaneously calculates the biospheric fluxes of both OCS and CO2. The CO2 simulation with SiB fluxes agrees with the measurements better than a simulation using CASA. Comparison of the OCS simulations with different fluxes indicates that the latitudinal distribution of the OCS fluxes within SiB needs to be adjusted.

  7. LOW-POWER SOLUTION FOR EDDY COVARIANCE MEASUREMENTS OF METHANE FLUX

    NASA Astrophysics Data System (ADS)

    Anderson, T.; Burba, G. G.; Komissarov, A.; McDermitt, D. K.; Xu, L.; Zona, D.; Oechel, W. C.; Schedlbauer, J. L.; Oberbauer, S. F.; Riensche, B.; Allyn, D.

    2009-12-01

    Open-path analyzers offer a number of advantages for measuring methane fluxes, including undisturbed in-situ flux measurements, spatial integration using the Eddy Covariance approach, zero frequency response errors due to tube attenuation, confident water and thermal density terms from co-located fast measurements of water and sonic temperature, and possibility of remote and mobile solar-powered or small-generator-powered deployments due to lower power demands in the absence of a pump. The LI-7700 open-path methane analyzer is a VCSEL (vertical-cavity surface-emitting laser)-based instrument. It employs an open Herriott cell and measures levels of methane with RMS noise below 5 ppb at 10 Hz sampling in controlled laboratory conditions. The power consumption of the stand-alone LI-7700 in steady-state is about 8W, so it can be deployed in any methane-generating location of interest on a portable or mobile solar-powered tower, and it does not have to have grid power or permanent industrial generator. Eddy Covariance measurements of methane flux using the LI-7700 open-path methane analyzer were conducted in 2006-2009 in five ecosystems with contrasting weather and moisture conditions: (1) sawgrass wetland in the Florida Everglades; (2) coastal wetlands in an Arctic tundra; and (3) pacific mangroves in Mexico; (4) maize field and (5) ryegrass field in Nebraska. Methane co-spectra behaved in a manner similar to that of the co-spectra of carbon dioxide, water vapor, and air temperature, demonstrating that the LI-7700 adequately measured fluctuations in methane concentration across the whole spectrum of frequencies contributing to vertical atmospheric turbulent transport at the experimental sites. All co-spectra also closely followed the Kaimal model, and demonstrated good agreement with another methane co-spectrum obtained with a TDLS (Tunable Diode Laser Spectroscope; Unisearch Associates, Inc.) over a peatland. Overall, hourly methane fluxes ranged from near-zero at

  8. Evaluation of the flux gradient technique for measurement of ozone surface fluxes over snowpack at Summit, Greenland

    NASA Astrophysics Data System (ADS)

    Bocquet, F.; Helmig, D.; van Dam, B. A.; Fairall, C. W.

    2011-10-01

    A multi-step procedure for investigating ozone surface fluxes over polar snow by the tower gradient method was developed and evaluated. These measurements were then used to obtain five months (April-August 2004) of turbulent ozone flux data at the Summit research camp located in the center of the Greenland ice shield. Turbulent fluxes were determined by the gradient method incorporating tower measurements of (a) ozone gradients measured by commercial ultraviolet absorption analyzers, (b) ambient temperature gradients using aspirated thermocouple sensors, and (c) wind speed gradients determined by cup anemometers. All gradient instruments were regularly inter-compared by bringing sensors or inlets to the same measurement height. The developed protocol resulted in an uncertainty on the order of 0.1 ppbv for 30-min averaged ozone gradients that were used for the ozone flux calculations. This protocol facilitated a lower sensitivity threshold for the ozone flux determination of ∼8 × 10-3μg m-2 s-1, respectively ∼0.01 cm s-1 for the ozone deposition velocity for typical environmental conditions encountered at Summit. Uncertainty in the 30-min ozone exchange measurements (evaluated by the Monte Carlo statistical approach) was on the order of 10-2 cm s-1. This uncertainty typically accounted to ~20-100% of the ozone exchange velocities that were determined. These measurements are among the most sensitive ozone deposition determinations reported to date. This flux experiment allowed for measurements of the relatively low ozone uptake rates encountered for polar snow, and thereby the study of their environmental and spring-versus-summer dependencies.

  9. Evaluation of the flux gradient technique for measurement of ozone surface fluxes over snowpack at Summit, Greenland

    NASA Astrophysics Data System (ADS)

    Bocquet, F.; Helmig, D.; van Dam, B. A.; Fairall, C. W.

    2011-02-01

    A multi-step procedure for investigating ozone surface fluxes over polar snow by the tower gradient method was developed and evaluated. These measurements were then used to obtain four months of turbulent ozone flux data at the Summit research camp located in the center of the Greenland ice shield. Turbulent fluxes were determined by the aerodynamic gradient method incorporating tower measurements of (a) ozone gradients measured by commercial ultraviolet absorption analyzers, (b) ambient temperature gradients using aspirated thermocouple sensors, and (c) wind speed gradients determined by cup anemometers. All gradient instruments were regularly inter-compared by bringing sensors or inlets to the same measurement height. The developed protocol resulted in an uncertainty on the order of 0.1 ppbv for 30-min averaged ozone gradients that were used for the ozone flux calculations. This protocol facilitated a lower sensitivity threshold for the ozone flux determination of -8 × 10-3 μg m-2 s-1, respectively ~0.01 cm s-1 for the ozone deposition velocity for typical environmental conditions encountered at Summit. Uncertainty in the 30-min ozone exchange measurements (evaluated by the Monte Carlo statistical approach) was on the order of 10-2 cm s-1. This uncertainty typically accounted to ~20-100% of the ozone exchange velocities that were determined. These measurements are among the most sensitive ozone deposition determinations reported to date. This flux experiment, deployed at Summit for a period of four months, allowed for measurements of the relatively low ozone uptake rates encountered for polar snow, and thereby the study of their environmental and seasonal dependencies.

  10. Formaldehyde in remote marine air and rain - Flux measurements and estimates

    NASA Astrophysics Data System (ADS)

    Zafiriou, O. C.; Alford, J.; Herrera, M.; Peltzer, E. T.; Gagosian, R. B.; Liu, S. C.

    1980-05-01

    The tropospheric trace constituent formaldehyde, HCHO, was measured in rain and in the gas phase during the wet season at Enewetak Atoll, a remote marine site in the central equatorial Pacific. Rainwater averaged 8 + or - 2 microgram/kg; the gas phase averaged 0.4 + or 0.2 ppbv (0.5 microgram/cu m). These values, especially the rain, are among the lowest reported to date. The formaldehyde flux to the sea by rainout and washout extrapolates to 0.010 g/sq m per year. The gaseous flux into the sea surface is estimated to be 0.05 g/sq m per year by an air-sea exchange calculation that takes into account enhanced uptake by hydroxide-catalyzed formaldehyde hydration. The measured mixing ratio is close to the 0.18 ppbv prediction of a tropospheric chemistry model calculation. The methane oxidation chain probably is the sole formaldehyde source in the Enewetak area. The total formaldehyde flux as carbon into the ocean is approximately 2% of the estimated total organic carbon from rainout and washout. About 2-4% of the calculated column formaldehyde production is removed from the atmosphere by these processes.

  11. Flux estimation of fugitive particulate matter emissions from loose Calcisols at construction sites

    NASA Astrophysics Data System (ADS)

    Hassan, Hala A.; Kumar, Prashant; Kakosimos, Konstantinos E.

    2016-09-01

    A major source of airborne pollution in arid and semi-arid environments (i.e. North Africa, Middle East, Central Asia, and Australia) is the fugitive particulate matter (fPM), which is a frequent product of wind erosion. However, accurate determination of fPM is an ongoing scientific challenge. The objective of this study is to examine fPM emissions from the loose Calcisols (i.e. soils with a substantial accumulation of secondary carbonates), owing to construction activities that can be frequently seen nowadays in arid urbanizing regions such as the Middle East. A two months field campaign was conducted at a construction site, at rest, within the city of Doha (Qatar) to measure number concentrations of PM over a size range of 0.25-32 μm using light scattering based monitoring stations. The fPM emission fluxes were calculated using the Fugitive Dust Model (FDM) in an iterative manner and were fitted to a power function, which expresses the wind velocity dependence. The power factors were estimated as 1.87, 1.65, 2.70 and 2.06 for the four different size classes of particles ≤2.5, 2.5-6, 6-10 and ≤10 μm, respectively. Fitted power function was considered acceptable given that adjusted R2 values varied from 0.13 for the smaller particles and up to 0.69 for the larger ones. These power factors are in the same range of those reported in the literature for similar sources. The outcome of this study is expected to contribute to the improvement of PM emission inventories by focusing on an overlooked but significant pollution source, especially in dry and arid regions, and often located very close to residential areas and sensitive population groups. Further campaigns are recommended to reduce the uncertainty and include more fPM sources (e.g. earthworks) and other types of soil.

  12. Site-specific seasonal models of carbon fluxes in terrestrial biomes

    SciTech Connect

    King, A.W.; DeAngelis, D.L.

    1986-01-01

    A set of site-specific computer simulation models of seasonal terrestrial carbon exchange has been assembled from open-literature sources. This collection is designed to facilitate the development of biome-level models for each of the principal terrestrial vegetation biomes on earth, for their integration into a global model of seasonal CO/sub 2/ variation in the atmosphere. The models are described in sufficient detail that their underlying assumptions can be compared. Descriptions include the following aspects of each model: (1) the compartments; (2) the carbon fluxes between compartments; and (3) the climatic variables that drive the carbon fluxes. In particular, the functional forms of the dependencies of respiration and photosynthesis on the driving variables are described. The methods by which these models will be extrapolated to biome-level models are also discussed.

  13. Partitioning a decade of evapotranspiration and carbon dioxide fluxes at a forested Ameriflux eddy-covariance site in southern Indiana

    NASA Astrophysics Data System (ADS)

    Sulman, B. N.; Scanlon, T. M.; Novick, K. A.

    2014-12-01

    The eddy covariance (EC) technique measures fluxes of water vapor and carbon dioxide between ecosystems and the atmosphere. Net ecosystem exchange of CO2 (NEE) is the balance between ecosystem respiration (ER) and gross primary production (GPP), and evapotranspiration (ET) is the sum of transpiration and evaporation. In order to relate these measurements to physical and ecological processes, it is often necessary to partition the fluxes into their components. While established techniques for partitioning NEE are widely used in the EC community, partitioning of ET remains a challenge. A recently developed partitioning procedure uses assumed correlations between stomatal (photosynthesis and transpiration) and non-stomatal (respiration and evaporation) sources of water vapor and CO2 to simultaneously partition NEE and ET into their respective components. Because the technique uses the same high-frequency measurements as EC, it is easily applicable to existing EC datasets, provided ecosystem-scale water use efficiency can be specified. We applied the method to a ten-year record of EC fluxes at the Morgan Monroe State Forest (MMSF) Ameriflux site, using estimates of water use efficiency from recent leaf-level gas exchange measurements. The technique has been tested in agricultural systems, but has not previously been evaluated in forests. ER and GPP from the correlation-based procedure qualitatively matched estimates from a more traditional partitioning method based on fitting nighttime NEE to a function of temperature and calculating GPP as the residual during the day, although the magnitudes of GPP and ER from the correlation-based technique were higher than those from the traditional technique. Partitioned respiration and evaporation were also consistent with sub-canopy flux measurements. Transpiration accounted for the majority of ET during the growing season, but had a strong seasonal cycle. Both evaporation and transpiration declined during periods of low soil

  14. Wide Range Neutron Flux Measuring Channel for Aerospace Application

    NASA Astrophysics Data System (ADS)

    Cibils, R. M.; Busto, A.; Gonella, J. L.; Martinez, R.; Chielens, A. J.; Otero, J. M.; Nuñez, M.; Tropea, S. E.

    2008-01-01

    The use of classical techniques for neutron flux measurements in nuclear reactors involves the switching between several detection chains as the power grows up to 10 decades. In space applications where mass and size constraints are of key significance, such volume of hardware represents a clear disadvantage. Instead of requiring different instruments for each reactor operating range (start-up, ramping-up, and nominal power), a single instrument chain should be desirable. A Wide Range Neutron Detector (WRND) system, combining a classic pulse Counting Channel with a Campbell's theorem based Fluctuation Channel can be implemented for the monitoring and control of a space nuclear reactor. Such an instrument will allow for a reduction in the complexity of space-based nuclear instrumentation and control systems. In this presentation we will discuss the criteria and tradeoffs involved in the development of such a system. We will focus particularly on the characteristics of the System On Chip (SOC) and the DSP board used to implement this instrument.

  15. Wide Range Neutron Flux Measuring Channel for Aerospace Application

    SciTech Connect

    Cibils, R. M.; Busto, A.; Gonella, J. L.; Martinez, R.; Chielens, A. J.; Otero, J. M.; Nunez, M.; Tropea, S. E.

    2008-01-21

    The use of classical techniques for neutron flux measurements in nuclear reactors involves the switching between several detection chains as the power grows up to 10 decades. In space applications where mass and size constraints are of key significance, such volume of hardware represents a clear disadvantage. Instead of requiring different instruments for each reactor operating range (start-up, ramping-up, and nominal power), a single instrument chain should be desirable. A Wide Range Neutron Detector (WRND) system, combining a classic pulse Counting Channel with a Campbell's theorem based Fluctuation Channel can be implemented for the monitoring and control of a space nuclear reactor. Such an instrument will allow for a reduction in the complexity of space-based nuclear instrumentation and control systems. In this presentation we will discuss the criteria and tradeoffs involved in the development of such a system. We will focus particularly on the characteristics of the System On Chip (SOC) and the DSP board used to implement this instrument.

  16. On-board Direct Eddy Flux Measurements of Heat, Water Vapor and Co2

    NASA Astrophysics Data System (ADS)

    Tsukamoto, O.; Takahashi, S.; Kono, T.; Yamashita, E.; Ishida, H.

    Direct eddy fluxes of heat(sensible and latent), water vapor and CO2 were measuted with on-board eddy flux system over the Pacific. Present authors are continueing direct eddy flux measurement on R/V MIRAI(JAMSTEC) cruising the Pacific. I addition to these routine heat flux evaluation, direct CO2 flux measurements were applied with LI- 7500 (Licor) and Kaijo sonic anemometer. The eddy flux system including CO2 sensor worked very well even in the moving ship. Small amplitude of turbulent fluctuations of CO2 were measured and it is found that CO2 was transported downward to sea surface during a month(Nov-Dec 2001) around 2N,138E. CO2 concentrations in the air and sea water were also measured and they also confirmed the CO2 sink. The automated real-time eddy flux system including ship motion correction has started and this can be applied to other cruising ships.

  17. Long-term measurements of CO2 flux and evapotranspiration in a Chihuahuan desert grassland

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We measured CO2 and evapotranspiration (ET) fluxes above a Chihuahuan desert grassland from 1996 through 2001. Averaged across six years, this ecosystem was a source (positive flux)of CO2 in every month. Over that period, sustained periods of carbon uptake (negative flux)were rare. Averaged across a...

  18. So close, so different: geothermal flux shapes divergent soil microbial communities at neighbouring sites.

    PubMed

    Gagliano, A L; Tagliavia, M; D'Alessandro, W; Franzetti, A; Parello, F; Quatrini, P

    2016-03-01

    This study is focused on the (micro)biogeochemical features of two close geothermal sites (FAV1 and FAV2), both selected at the main exhalative area of Pantelleria Island, Italy. A previous biogeochemical survey revealed high CH4 consumption and the presence of a diverse community of methanotrophs at FAV2 site, whereas the close site FAV1 was apparently devoid of methanotrophs and recorded no CH4 consumption. Next-Generation Sequencing (NGS) techniques were applied to describe the bacterial and archaeal communities which have been linked to the physicochemical conditions and the geothermal sources of energy available at the two sites. Both sites are dominated by Bacteria and host a negligible component of ammonia-oxidizing Archaea (phylum Thaumarchaeota). The FAV2 bacterial community is characterized by an extraordinary diversity of methanotrophs, with 40% of the sequences assigned to Methylocaldum, Methylobacter (Gammaproteobacteria) and Bejerickia (Alphaproteobacteria); conversely, a community of thermo-acidophilic chemolithotrophs (Acidithiobacillus, Nitrosococcus) or putative chemolithotrophs (Ktedonobacter) dominates the FAV1 community, in the absence of methanotrophs. Since physical andchemical factors of FAV1, such as temperature and pH, cannot be considered limiting for methanotrophy, it is hypothesized that the main limiting factor for methanotrophs could be high NH4(+) concentration. At the same time, abundant availability of NH4(+) and other high energy electron donors and acceptors determined by the hydrothermal flux in this site create more energetically favourable conditions for chemolithotrophs that outcompete methanotrophs in non-nitrogen-limited soils.

  19. In Situ Measurement of Energetic Electron Fluxes Inside Thunderclouds

    NASA Astrophysics Data System (ADS)

    Arabshahi, S.; Vodopiyanov, I. B.; Dwyer, J. R.; Rassoul, H.

    2013-12-01

    It is now well established that high-energy radiation is routinely produced by thunderclouds and lightning. This radiation is in the form of x-rays and gamma-rays with timescales ranging from sub-microsecond (x-rays associated with lightning leaders), to sub-millisecond (Terrestrial Gamma-ray Flashes), to minute long glows (Gamma-ray Glows from thunderclouds seen on the ground and in or near the cloud by aircrafts and balloons). It is generally accepted that these emissions originate from bremsstrahlung interactions of relativistic runaway electrons with air, which can be accelerated in the thundercloud/lightning electric fields and gain up to multi-MeV energies. However, the exact physical details of the mechanism that produces these runaway electrons are still unknown. In order to better understand the source of energetic radiation inside thunderclouds, we have begun a campaign of balloon-borne instruments to directly measure the flux of energetic electrons inside thunderclouds. In the current configuration, each balloon carries Geiger counters to record the energetic particles. Geiger counters are well suited for directly measuring energetic electrons and positrons and have the advantage of being lightweight and dependable. Due to the nature of the thunderstorm environment, the campaign has many design, communication, and safety challenges. In this presentation we will report on the status of the campaign and some of the physical insights gained from the data collected by our instruments. This work was supported in part by the NASA grant NNX12A002H and by DARPA grant HR0011-1-10-1-0061.

  20. Balloon-borne measurement of energetic electron fluxes inside thunderclouds

    NASA Astrophysics Data System (ADS)

    Arabshahi, Shahab; Vodopiyanov, Igor; Dwyer, Joseph; Rassoul, Hamid

    2014-05-01

    High-energy radiation is routinely produced by thunderclouds and lightning. This radiation is in the form of x-rays and gamma-rays with timescales ranging from sub-microsecond (x-rays associated with lightning leaders), to sub-millisecond (Terrestrial Gamma-ray Flashes), to minute long glows (Gamma-ray Glows from thunderclouds seen on the ground and in or near the cloud by aircrafts and balloons). It is generally accepted that these emissions originate from bremsstrahlung interactions of relativistic runaway electrons with air, which can be accelerated in the thundercloud/lightning electric fields and gain up to multi-MeV energies. However, the exact physical details of the mechanism that produces these runaway electrons are still unknown. In order to better understand the source of energetic radiation inside thunderclouds, we have begun a campaign of balloon-borne instruments to directly measure the flux of energetic electrons inside thunderclouds. In the current configuration, each balloon carries Geiger counters to record the energetic particles. Geiger counters are well suited for directly measuring energetic electrons and positrons and have the advantage of being lightweight and dependable. We transmit data at 900MHz, ISM band, with 115.2 kb/s transmission rate. This would provide us a high resolution radiation profile over a relatively large distance. Due to the nature of the thunderstorm environment, the campaign has many design, communication, and safety challenges. In this presentation we will report on the status of the campaign and some of the physical insights gained from the data collected by our instruments. This work was supported in part by the NASA grant NNX12A002H and by DARPA grant HR0011-1-10-1-0061.

  1. Measurements of NO(x) and NO(y) concentrations and fluxes over Arctic tundra

    NASA Technical Reports Server (NTRS)

    Bakwin, Peter S.; Wofsy, Steven C.; Fan, Song-Miao; Fitzjarrald, David R.

    1992-01-01

    Measurements of the atmospheric concentrations of NO, NO2, total NO(y), and O3 were made during the NASA Arctic Boundary Layer Expedition (ABLE 3A) at a remote location in a tundra bog ecosystem in southeastern Alaska during the growing season (July-August 1988). Concentrations of NO(x) and NO(y) were found to be very low compared to other remote continental sites, indicating that anthropogenic influences were small at this site during this time of year. The NO(y) emission rate from the soil were 0.13 +/- 0.05 x 10 exp 9 molecules/sq cm/s. Direct measurements of the flux of total NO(y) were made for the first time, indicating downward flux of NO(y) at all times of day, with maximum deposition of 2.5 +/- 0.9 x 10 exp 9 molecules/sq cm/s in the afternoon. Deposition of HNO3 appears to dominate the atmosphere/surface exchange of NO(y). The mean dry deposition rate of NO(y) to the tundra was 1.8 +/- 1.0 x 10 exp 9 molecules/sq cm/s.

  2. Measurements of NO(x) and NO(y) concentrations and fluxes over Arctic tundra

    SciTech Connect

    Bakwin, P.S.; Wofsy, S.C.; Fan, Songmiao; Fitzjarrald, D.R. New York State Univ., Albany )

    1992-10-01

    Measurements of the atmospheric concentrations of NO, NO[sub 2], total NO(y), and O[sub 3] were made during the NASA Arctic Boundary Layer Expedition (ABLE 3A) at a remote location in a tundra bog ecosystem in southeastern Alaska during the growing season (July-August 1988). Concentrations of NO(x) and NO(y) were found to be very low compared to other remote continental sites, indicating that anthropogenic influences were small at this site during this time of year. The NO(y) emission rate from the soil were 0.13 +/- 0.05 x 10 exp 9 molecules/sq cm/s. Direct measurements of the flux of total NO(y) were made for the first time, indicating downward flux of NO(y) at all times of day, with maximum deposition of 2.5 +/- 0.9 x 10 exp 9 molecules/sq cm/s in the afternoon. Deposition of HNO3 appears to dominate the atmosphere/surface exchange of NO(y). The mean dry deposition rate of NO(y) to the tundra was 1.8 +/- 1.0 x 10 exp 9 molecules/sq cm/s. 58 refs.

  3. SIGNAL : Water vapour flux variability and local wind field investigations within five differently managed agroforestry sites across Germany

    NASA Astrophysics Data System (ADS)

    Markwitz, Christian; Siebicke, Lukas; Knohl, Alexander

    2016-04-01

    Optimising soil water uptake and ground water consumption in mono-specific agricultural systems plays an important role for sustainable land management. By including tree alleys into the agricultural landscape, called agroforestry (AF), the wind flow is modified leading to a presumably favourable microclimate behind the tree alleys. We expect that this zone is characterized by increased air temperature and atmospheric water vapour content, compared to mono-specific fields. This would extend the growing season and increase the yield production behind the tree alleys. Within the SIGNAL (Sustainable Intensification of Agriculture through Agroforestry) project the evapotranspiration (ET) variability and the local wind field of agroforestry sites compared to mono-specific agricultural systems is investigated. Our study is based on the comparison of five differently managed agroforestry sites across Germany. All site feature one agroforestry plot and one reference plot, which represents a mono-specific cropped system. Each plot is equipped with an eddy-covariance tower, including a high frequency 3D SONIC anemometer and instruments gathering standard meteorological parameter as pressure, temperature, relative humidity, precipitation, ground heat flux, net- and global radiation. The Surface Energy Budget (SEB) method will be used to calculate evapotranspiration QE as QE = - QN - QH - QG - Res by measuring the sensible heat flux, QH, with the eddy covariance method, the radiation balance, QN and the ground heat flux, QG. QH and QN will be measured continuously long-term. We will quantify site specific energy balance non-closure, Res, by temporarily measuring QE, using eddy covariance and a roving tower and then solving the SEB equation for Res. The short term Res will be used to then continuously derive QE from the SEB method. We will compare measured evapotranspiration rates from the SEB method to modelled evapotranspiration of the agroforestry systems through upscaling

  4. Scaling up of Carbon Exchange Dynamics from AmeriFlux Sites to a Super-Region in the Eastern United States

    SciTech Connect

    Hans Peter Schmid; Craig Wayson

    2009-05-05

    The primary objective of this project was to evaluate carbon exchange dynamics across a region of North America between the Great Plains and the East Coast. This region contains about 40 active carbon cycle research (AmeriFlux) sites in a variety of climatic and landuse settings, from upland forest to urban development. The core research involved a scaling strategy that uses measured fluxes of CO{sub 2}, energy, water, and other biophysical and biometric parameters to train and calibrate surface-vegetation-atmosphere models, in conjunction with satellite (MODIS) derived drivers. To achieve matching of measured and modeled fluxes, the ecosystem parameters of the models will be adjusted to the dynamically variable flux-tower footprints following Schmid (1997). High-resolution vegetation index variations around the flux sites have been derived from Landsat data for this purpose. The calibrated models are being used in conjunction with MODIS data, atmospheric re-analysis data, and digital land-cover databases to derive ecosystem exchange fluxes over the study domain.

  5. Calculations of automatic chamber flux measurements of methane and carbon dioxide using short time series of concentrations

    NASA Astrophysics Data System (ADS)

    Pirk, N.; Mastepanov, M.; Parmentier, F.-J. W.; Lund, M.; Crill, P.; Christensen, T. R.

    2015-09-01

    The closed chamber technique is widely used to measure the exchange of methane (CH4) and carbon dioxide (CO2) from terrestrial ecosystems. There is, however, large uncertainty about which model should be used to calculate the gas flux from the measured gas concentrations. Due to experimental uncertainties the robust linear regression model (first order polynomial) is often applied, even though theoretical considerations of the technique suggest the application of other, curvilinear models. High-resolution automatic chamber systems which sample gas concentrations several hundred times per flux measurement make it possible to resolve the curvilinear behavior and study the information imposed by the natural variability of the temporal concentration changes. We used more than 50 000 such flux measurements of CH4 and CO2 from five field sites located in peat forming wetlands to calculate fluxes with different models. The flux differences from independent linear estimates are generally found to be smaller than the local flux variability on the plot scale. The curvilinear behavior of the gas concentrations within the chamber is strongly influenced by wind driven chamber leakage, and less so by changing gas concentration gradients in the soil during chamber closure. Such physical processes affect both gas species equally, which makes it possible to isolate biochemical processes affecting the gases differently, such as photosynthesis limitation by chamber headspace CO2 concentrations under high levels of incoming solar radiation. We assess the possibility to exploit this effect for a partitioning of the net CO2 flux into photosynthesis and ecosystem respiration and argue that high-resolution automatic chamber measurements could be used for purposes beyond the estimation of the net gas flux.

  6. Inferring 222Rn soil fluxes from ambient 222Rn activity and eddy covariance measurements of CO2

    NASA Astrophysics Data System (ADS)

    van der Laan, Sander; Manohar, Swagath; Vermeulen, Alex; Bosveld, Fred; Meijer, Harro; Manning, Andrew; van der Molen, Michiel; van der Laan-Luijkx, Ingrid

    2016-11-01

    We present a new methodology, which we call Single Pair of Observations Technique with Eddy Covariance (SPOT-EC), to estimate regional-scale surface fluxes of 222Rn from tower-based observations of 222Rn activity concentration, CO2 mole fractions and direct CO2 flux measurements from eddy covariance. For specific events, the regional (222Rn) surface flux is calculated from short-term changes in ambient (222Rn) activity concentration scaled by the ratio of the mean CO2 surface flux for the specific event to the change in its observed mole fraction. The resulting 222Rn surface emissions are integrated in time (between the moment of observation and the last prior background levels) and space (i.e. over the footprint of the observations). The measurement uncertainty obtained is about ±15 % for diurnal events and about ±10 % for longer-term (e.g. seasonal or annual) means. The method does not provide continuous observations, but reliable daily averages can be obtained. We applied our method to in situ observations from two sites in the Netherlands: Cabauw station (CBW) and Lutjewad station (LUT). For LUT, which is an intensive agricultural site, we estimated a mean 222Rn surface flux of (0.29 ± 0.02) atoms cm-2 s-1 with values > 0.5 atoms cm-2 s-1 to the south and south-east. For CBW we estimated a mean 222Rn surface flux of (0.63 ± 0.04) atoms cm-2 s-1. The highest values were observed to the south-west, where the soil type is mainly river clay. For both stations good agreement was found between our results and those from measurements with soil chambers and two recently published 222Rn soil flux maps for Europe. At both sites, large spatial and temporal variability of 222Rn surface fluxes were observed which would be impractical to measure with a soil chamber. SPOT-EC, therefore, offers an important new tool for estimating regional-scale 222Rn surface fluxes. Practical applications furthermore include calibration of process-based 222Rn soil flux models, validation

  7. Mass Flux Measurements of Arsenic in Groundwater (Battelle Conference)

    EPA Science Inventory

    Concentration trends of arsenic are typically used to evaluate the performance of remediation efforts designed to mitigate arsenic contamination in groundwater. A complementary approach would be to track changes in mass flux of the contaminant through the subsurface, for exampl...

  8. On Using CO2 Concentration Measurements at Mountain top and Valley Locations in Regional Flux Studies.

    NASA Astrophysics Data System (ADS)

    de Wekker, S. F.; Song, G.; Stephens, B. B.

    2007-12-01

    Data from the Regional Atmospheric Continuous CO2 Network in the Rocky Mountains (Rocky RACCOON) are used to investigate atmospheric controls on temporal and spatial variability of CO2 in mountainous terrain and the usefulness of mountain top and valley measurement for the estimation of regional CO2 fluxes. Rocky RACCOON consists of four sites installed in fall of 2005 and spring of 2006: Niwot Ridge, near Ward, Colorado; Storm Peak Laboratory near Steamboat Springs, Colorado; Fraser Experimental Forest, near Fraser Colorado; and Hidden Peak, near Snowbird, Utah. The network uses the NCAR-developed Autonomous Inexpensive Robust CO2 Analyzer. These units measure CO2 concentrations at three levels on a tower, producing individual measurements every 2.5 minutes precise to 0.1 ppm CO2 and closely tied to the WMO CO2 scale. Three of the sites are located on a mountain top while one site is located in a valley. Initial analyses show interesting relationships between CO2 concentration and atmospheric parameters, such as wind speed and direction, temperature, and incoming solar radiation. The nature of these relationships is further investigated with an atmospheric mesoscale model. Idealized and realistic simulations are able to capture the observed behavior of spatial and temporal CO2 variability and reveal the responsible physical processes. The implications of the results and the value of the measurements for providing information on local to regional scale respiration and photosynthesis rates in the Rockies are discussed.

  9. Comparison of floating chamber and eddy covariance measurements of lake greenhouse gas fluxes

    NASA Astrophysics Data System (ADS)

    Podgrajsek, E.; Sahlée, E.; Bastviken, D.; Holst, J.; Lindroth, A.; Tranvik, L.; Rutgersson, A.

    2013-11-01

    Fluxes of carbon dioxide (CO2) and methane (CH4) from lakes may have a large impact on the magnitude of the terrestrial carbon sink. Traditionally lake fluxes have been measured using the floating chambers (FC) technique, however, several recent studies use the eddy covariance (EC) method. We present simultaneous flux measurements using both methods at the lake Tämnaren in Sweden during field campaigns in 2011 and 2012. Only very few similar studies exist. For CO2 flux, the two methods agree relatively well during some periods, but deviate substantially at other times. The large discrepancies might be caused by heterogeneity of partial pressure of CO2 (pCO2w) in the EC flux footprint. The methods agree better for CH4 fluxes, it is, however, clear that short-term discontinuous FC measurements are likely to miss important high flux events.

  10. Comparison of floating chamber and eddy covariance measurements of lake greenhouse gas fluxes

    NASA Astrophysics Data System (ADS)

    Podgrajsek, E.; Sahlée, E.; Bastviken, D.; Holst, J.; Lindroth, A.; Tranvik, L.; Rutgersson, A.

    2014-08-01

    Fluxes of carbon dioxide (CO2) and methane (CH4) from lakes may have a large impact on the magnitude of the terrestrial carbon sink. Traditionally lake fluxes have been measured using the floating chamber (FC) technique; however, several recent studies use the eddy covariance (EC) method. We present simultaneous flux measurements using both methods at lake Tämnaren in Sweden during field campaigns in 2011 and 2012. Only very few similar studies exist. For CO2 flux, the two methods agree relatively well during some periods, but deviate substantially at other times. The large discrepancies might be caused by heterogeneity of partial pressure of CO2 (pCO2w) in the EC flux footprint. The methods agree better for CH4 fluxes. It is, however, clear that short-term discontinuous FC measurements are likely to miss important high flux events.

  11. Assessment of CO2 fluxes and forest productivity (NPP/GPP) estimates from eddy covariance measurement and field observations

    NASA Astrophysics Data System (ADS)

    Anić, Mislav; Marjanović, Hrvoje; Zorana Ostrogović Sever, Maša; Barcza, Zoltán; Večenaj, Željko

    2016-04-01

    Eddy covariance (EC) measurements were carried out at the Jastrebarsko site, Croatia, in lowland forest dominated by pedunculate oak. For validation of CO2 fluxes measured with EC method bi-weekly field measurements of increment of 640 trees in 24 plots set in a 100m x 100m grid, height increment and litterfall have been used. In our work we compared annual productivity (GPP and NPP) assessments from EC measurements with field measurements. The comparison was made on a seven year dataset of measurements, spanning from 2008 to 2014. Also, flux dependence on groundwater level has been investigated. Results are showing that forest productivity estimates with EC method are in good agreement with the estimates from field measurements in the dry years. Agreement is slightly lower for years with high precipitation.

  12. Field-testing of a Passive Surface Water Flux Meter for the Direct Measurement of Water and Solute Mass Fluxes

    NASA Astrophysics Data System (ADS)

    Atkinson, E. C.; Jawitz, J. W.; Annable, M. D.; Klammler, H.; Hatfield, K.

    2007-05-01

    The measurement of water and solute mass discharges in surface water flow systems is a fundamental hydrologic task for ecological and economic decision making. However, due to the extensive monetary, labor, and time costs of traditional monitoring devices and methods, many water quality monitoring programs lack the resources necessary to provide comprehensive descriptions of surface water impairments. The Passive Surface Water Flux Meter (PSFM) is a recently developed passive sampling device that measures water and solute fluxes within flowing surface water bodies. Devoid of mechanical components and power supply requirements, the relatively low-maintenance, low-cost design of the PSFM gives it considerable potential as a tool for extensive, large-scale surface water quality characterization and monitoring. The novelty of the PSFM extends to its direct mass-based approach to solute flux measurement, as compared to conventional, indirect concentration-based approaches. During this field-testing campaign, the PSFM was deployed in flowing surface water bodies of north- central Florida. The device contained a dual-packed porous media cartridge that performed simultaneous ion exchange to determine phosphate mass flux and equilibrium tracer desorption to determine water flux within the stream. The PSFM demonstrated accurate measurement of steady-state water and phosphate mass fluxes to within 15% over a range of stream velocities, solute concentrations, and deployment durations. The PSFM design described here was found to perform well in steady-flow conditions. The device was also shown to be effective under transient conditions of limited variability, but full transient testing remains for future work.

  13. Bowen ratio evaporation measurement in a remote montane grassland: Data integrity and fluxes

    NASA Astrophysics Data System (ADS)

    Savage, M. J.; Everson, C. S.; Metelerkamp, B. R.

    2009-09-01

    SummaryEvaporation measurements using two Bowen ratio energy balance (BREB) systems in a remote high altitude montane grassland catchment of the Drakensberg Mountains, Cathedral Peak, South Africa are reported on. Various methods of data verification and rejection of inaccurate measured air temperature and water vapour pressure gradients are examined. A theoretical analysis, based on the equivalent temperature, results in data rejection procedures using the measurement of the air temperature profile difference. Data rejection is necessary whenever the Bowen ratio approaches -1, resulting in extremely inaccurate and impossibly large positive or negative sensible heat and latent energy fluxes. Using the simplified energy balance, it is shown that when the Bowen ratio approaches the limit of -1, for which the available energy flux density approaches 0 W m -2, conditions are pseudoadiabatic and isobaric and that such conditions can be depicted by the wet-bulb temperature isolines of the psychrometric chart. Disregarding evaporation estimates for which the Bowen ratio values are between arbitrarily chosen values remedies the problem to some extent. With this method, daily total evaporation may be reasonable but 20-min values unreasonable during mainly early morning and late afternoon periods. A more sensitive and dynamic approach is used to prevent BREB data from being excluded unnecessarily and to prevent rogue values escaping detection. Once the rejection procedures were applied, the 20-min BREB latent energy flux estimates compared well with measurements from a weighing lysimeter adjacent the site. Three methods were used to estimate the exchange coefficient K which allowed flux estimation for when BREB data are invalid or lacking. One method involved calculating K from wind speed only and the second method was based on the MOST-dependent temperature-variance method for which the 20-min standard deviation of 1-Hz air temperature data were used. From independent

  14. Real time measurements of PM2.5 concentrations and vertical turbulent fluxes using an optical detector

    NASA Astrophysics Data System (ADS)

    Donateo, Antonio; Contini, Daniele; Belosi, Franco

    In this work the possibility of measuring real-time concentrations of PM2.5 and the corresponding vertical turbulent fluxes using the optical detector Mie pDR-1200, operating synchronously with an ultrasonic anemometer, is investigated. This detector is known to be sensitive to high values of relative humidity (RH) and a new procedure to correct the effect of RH on concentration measurements is presented. Results of optical measurements have been compared with gravimetric detections of PM2.5 and results show a reasonable correlation between them and an improvement of the agreement when RH-correction is used. Results presented have been collected at two measurement sites that can be representative of urban background environments but in one of them was present an industrial area nearby. Post-processing of data has been performed with the eddy-correlation technique that allows evaluation of vertical turbulent fluxes of PM2.5 as well as sensible heat and momentum fluxes. The turbulent mass fluxes, together with the analysis of real-time concentrations and their correlation with meteorology proved to be an useful tool to infer details about the local aerosol dynamics helping to interpret traditional gravimetric analysis of aerosol that is usually performed on a 24 h basis. Results show that the methodology can be useful in identifying the contribution of local sources like ground level emissions or industrial plumes with respect to the contribution of sources located far away from the measurement site.

  15. Intercomparison of fast response commercial gas analysers for nitrous oxide flux measurements under field conditions

    NASA Astrophysics Data System (ADS)

    Rannik, Ü.; Haapanala, S.; Shurpali, N. J.; Mammarella, I.; Lind, S.; Hyvönen, N.; Peltola, O.; Zahniser, M.; Martikainen, P. J.; Vesala, T.

    2015-01-01

    of the same magnitude as the fluxes when N2O exchange was small at the measurement site. Both instruments based on continuous-wave quantum cascade laser, CW-TILDAS-CS and N2O / CO-23d, were able to determine the same sample of low N2O fluxes with a high mutual coefficient of determination at the 30 min averaging level and with minor systematic difference over the observation period of several months. This enables us to conclude that the new-generation instrumentation is capable of measuring small N2O exchange with high precision and accuracy at sites with low fluxes.

  16. Radio Diagnostics of Electron Acceleration Sites During the Eruption of a Flux Rope in the Solar Corona

    NASA Astrophysics Data System (ADS)

    Carley, Eoin P.; Vilmer, Nicole; Gallagher, Peter T.

    2016-12-01

    Electron acceleration in the solar corona is often associated with flares and the eruption of twisted magnetic structures known as flux ropes. However, the locations and mechanisms of such particle acceleration during the flare and eruption are still subject to much investigation. Observing the exact sites of particle acceleration can help confirm how the flare and eruption are initiated and how they evolve. Here we use the Atmospheric Imaging Assembly to analyze a flare and erupting flux rope on 2014 April 18, while observations from the Nançay Radio Astronomy Facility allow us to diagnose the sites of electron acceleration during the eruption. Our analysis shows evidence of a pre-formed flux rope that slowly rises and becomes destabilized at the time of a C-class flare, plasma jet, and the escape of ≳75 keV electrons from the rope center into the corona. As the eruption proceeds, continued acceleration of electrons with energies of ˜5 keV occurs above the flux rope for a period over 5 minutes. At the flare peak, one site of electron acceleration is located close to the flare site, while another is driven by the erupting flux rope into the corona at speeds of up to 400 km s-1. Energetic electrons then fill the erupting volume, eventually allowing the flux rope legs to be clearly imaged from radio sources at 150-445 MHz. Following the analysis of Joshi et al. (2015), we conclude that the sites of energetic electrons are consistent with flux rope eruption via a tether cutting or flux cancellation scenario inside a magnetic fan-spine structure. In total, our radio observations allow us to better understand the evolution of a flux rope eruption and its associated electron acceleration sites, from eruption initiation to propagation into the corona.

  17. Comparison of eddy covariance and modified Bowen ratio methods for measuring gas fluxes and implications for measuring fluxes of persistent organic pollutants

    NASA Astrophysics Data System (ADS)

    Bolinius, D. J.; Jahnke, A.; MacLeod, M.

    2015-11-01

    Semi-volatile persistent organic pollutants (POPs) cycle between the atmosphere and terrestrial surfaces, however measuring fluxes of POPs between the atmosphere and other media is challenging. Sampling times of hours to days are required to accurately measure trace concentrations of POPs in the atmosphere, which rules out the use of eddy covariance techniques that are used to measure gas fluxes of major air pollutants. An alternative, the modified Bowen ratio (MBR) method, has been used instead. In this study we used data from FLUXNET for CO2 and water vapor (H2O) to compare fluxes measured by eddy covariance to fluxes measured with the MBR method using vertical concentration gradients in air derived from averaged data that simulates the long sampling times typically required to measure POPs. When concentration gradients are strong and fluxes are unidirectional, the MBR method and the eddy covariance method agree within a factor of 3 for CO2, and within a factor of 10 for H2O. To remain within the range of applicability of the MBR method field, studies should be carried out under conditions such that the direction of net flux does not change during the sampling period. If that condition is met then the performance of the MBR method is not strongly affected by the length of sample duration nor the use of a fixed value for the transfer coefficient.

  18. Comparison of eddy covariance and modified Bowen ratio methods for measuring gas fluxes and implications for measuring fluxes of persistent organic pollutants

    NASA Astrophysics Data System (ADS)

    Bolinius, Damien Johann; Jahnke, Annika; MacLeod, Matthew

    2016-04-01

    Semi-volatile persistent organic pollutants (POPs) cycle between the atmosphere and terrestrial surfaces; however measuring fluxes of POPs between the atmosphere and other media is challenging. Sampling times of hours to days are required to accurately measure trace concentrations of POPs in the atmosphere, which rules out the use of eddy covariance techniques that are used to measure gas fluxes of major air pollutants. An alternative, the modified Bowen ratio (MBR) method, has been used instead. In this study we used data from FLUXNET for CO2 and water vapor (H2O) to compare fluxes measured by eddy covariance to fluxes measured with the MBR method using vertical concentration gradients in air derived from averaged data that simulate the long sampling times typically required to measure POPs. When concentration gradients are strong and fluxes are unidirectional, the MBR method and the eddy covariance method agree within a factor of 3 for CO2, and within a factor of 10 for H2O. To remain within the range of applicability of the MBR method, field studies should be carried out under conditions such that the direction of net flux does not change during the sampling period. If that condition is met, then the performance of the MBR method is neither strongly affected by the length of sample duration nor the use of a fixed value for the transfer coefficient.

  19. Measurement of photon flux with a miniature gas ionization chamber in a Material Testing Reactor

    NASA Astrophysics Data System (ADS)

    Fourmentel, D.; Filliatre, P.; Villard, J. F.; Lyoussi, A.; Reynard-Carette, C.; Carcreff, H.

    2013-10-01

    Nuclear heating measurements in Material Testing Reactors (MTR) are crucial for the design of the experimental devices and the prediction of the temperature of the hosted samples. Nuclear heating in MTR materials (except fuel) is mainly due to the energy deposition by the photon flux. Therefore, the photon flux is a key input parameter for the computer codes which simulate nuclear heating and temperature reached by samples/devices under irradiation. In the Jules Horowitz MTR under construction at the CEA Cadarache, the maximal expected nuclear heating levels will be about 15 to 18 W g-1 and it will be necessary to assess this parameter with the best accuracy. An experiment was performed at the OSIRIS reactor to combine neutron flux, photon flux and nuclear heating measurements to improve the knowledge of the nuclear heating in MTR. There are few appropriate sensors for selective measurement of the photon flux in MTR even if studies and developments are ongoing. An experiment, called CARMEN-1, was conducted at the OSIRIS MTR and we used in particular a gas ionization chamber based on miniature fission chamber design to measure the photon flux. In this paper, we detail Monte-Carlo simulations to analyze the photon fluxes with ionization chamber measurements and we compare the photon flux calculations to the nuclear heating measurements. These results show a good accordance between photon flux measurements and nuclear heating measurement and allow improving the knowledge of these parameters.

  20. Carbon fluxes over two contrasting types of vegetation in West Africa: the case of forest and savannah sites under a Sudanian climate in northern Benin

    NASA Astrophysics Data System (ADS)

    Ago, E. E.; Agbossou, E. K.; Cohard, J. M.; Galle, S.; Aubinet, M.

    2015-12-01

    Continuous CO2, water vapour and sensible heat fluxes were measured during eighteen months (from July 2008 to December 2009) using an eddy-covariance technique over a Savannah and a Forest. Both sites were under a Sudanian climate and located in Benin. All data was computed following the standard procedure. Flux responses to the main environmental factors were studied and discussed during the year within four periods. Water was found to be the main factor controlling the ecosystem dynamic. During dry season, while the CO2 assimilation was limited for the Savannah, it was reduced for the Forest. The respiration was always constantly higher for the Forest than Savannah sites. No clear relationships were found between nighttime fluxes and soil temperature, but the soil moisture appeared to be the main factor controlling the respiration at the two sites. At the seasonal scale, both CO2 assimilation and quantum efficiency were higher within each period at the Forest than Savannah sites. During the dry periods, the Forest acted as a carbon sink while the Savannah was clearly a carbon source. Annually, Forest and Savannah sequestered 0.64 ± 0.05 and 0.19 ± 0.04 kg C m-2, respectively. Besides, the difference of the two sites in land-use strategies and species, the drought could have a big impact on the carbon fluxes dynamics in West Africa.

  1. Galileo Probe Measurements of Thermal and Solar Radiation Fluxes in the Jovian Atmosphere

    NASA Technical Reports Server (NTRS)

    Sromovsky, L. A.; Collard, A. D.; Fry, P. M.; Orton, G. S.; Lemmon, M. T.; Tomasko, M. G.; Freedman, R. S.

    1998-01-01

    The Galileo probe net flux radiometer (NFR) measured radiation fluxes in Jupiter's atmosphere from about 0.44 to 14 bars, using five spectral channels to separate solar and thermal components. Onboard calibration results confirm that the NFR responded to radiation approximately as expected. NFR channels also responded to a superimposed thermal perturbation, which can be approximately removed using blind channel measurements and physical constraints. Evidence for the expected NH3 cloud was seen in the spectral character of spin-induced modulations of the direct solar beam signals. These results are consistent with an overlying cloud of small NH3 ice particles (0.5-0.75 microns in radius) of optical depth 1.5-2 at 0.5 microns. Such a cloud would have so little effect on thermal fluxes that NFR thermal channels provide no additional constraints on its properties. However, evidence for heating near 0.45 bar in the NFR thermal channels would seem to require either an additional opacity source beyond this small-particle cloud, implying a heterogeneous cloud structure to avoid conflicts with solar modulation results, or a change in temperature lapse rate just above the probe measurements. The large thermal flux levels imply water vapor mixing ratios that are only 6% of solar at 10 bars, but possibly increasing with depth, and significantly subsaturated ammonia at pressures less than 3 bars. If deep NH3 mixing ratios at the probe entry site are 3-4 times ground-based inferences, as suggested by probe radio signal attenuation, then only half as much water is needed to match NFR observations. No evidence of a water cloud was seen near the 5-bar level. The 5-microns thermal channel detected the presumed NH4SH cloud base near 1.35 bars. Effects of this cloud were also seen in the solar channel upflux measurements but not in the solar net fluxes, implying that the cloud is a conservative scatterer of sunlight. The minor thermal signature of this cloud is compatible with

  2. Galileo Probe Measurements of Thermal and Solar Radiation Fluxes in the Jovian Atmosphere

    NASA Technical Reports Server (NTRS)

    Sromovsky, L. A.; Collard, A. D.; Fry, P. M.; Orton, G. S.; Lemmon, M. T.; Tomasko, M. G.; Freedman, R. S.

    1998-01-01

    The Galileo probe net flux radiometer (NFR) measured radiation fluxes in Jupiter's atmosphere from about 0.44 to 14 bars, using five spectral channels to separate solar and thermal components. Onboard calibration results confirm that the NFR responded to radiation approximately as expected. NFR channels also responded to a superimposed thermal perturbation, which can be approximately removed using blind channel measurements and physical constraints. Evidence for the expected NH3 cloud was seen in the spectral character of spin-induced modulations of the direct solar beam signals. These results are consistent with an overlying cloud of small NH3 ice particles (0.5-0.75 microns in radius) of optical depth 1.5-2 at 0.5 microns. Such a cloud would have so little effect on thermal fluxes that NFR thermal channels provide no additional constraints on its properties. However, evidence for heating near 0.45 bar in the NFR thermal channels would seem to require either an additional opacity source beyond this small-particle cloud, implying a heterogeneous-cloud structure to avoid conflicts with solar modulation results, or a change in temperature lapse rate just above the probe measurements. The large thermal flux levels imply water vapor mixing ratios that are only 6% of solar at 10 bars, but possibly increasing with depth, and significantly subsaturated ammonia at pressures less than 3 bars. If deep NH3 mixing ratios at the probe entry site are 3-4 times ground-based inferences, as suggested by probe radio signal attenuation, then only half as much water is needed to match NFR observations. No evidence of a water cloud was seen near the 5-bar level. The 5 microns thermal channel detected the presumed NH4SH cloud base near 1.35 bars. Effects of this cloud were also seen in the solar channel upflux measurements but not in the solar net fluxes, implying that the cloud is a conservative scatterer of sunlight. The minor thermal signature of this cloud is compatible with

  3. Significance of multidimensional radiative transfer effects measured in surface fluxes at an Antarctic coastline

    NASA Astrophysics Data System (ADS)

    Lubin, Dan; Ricchiazzi, Paul; Payton, Allison; Gautier, Catherine

    2002-10-01

    At a coastal high-latitude site, multiple reflection of photons between the high albedo surface and an overlying cloud can enhance the downwelling shortwave flux out over the adjacent open water to a distance of several kilometers. This coastal albedo effect has been predicted by theoretical radiative transfer studies and has also been measured under ideal conditions. In this study, three multispectral solar ultraviolet radiometers were deployed in the vicinity of Palmer Station, Antarctica (64° 46'S, 64° 04'W) to determine the prevalence of the coastal albedo effect under the region's natural variability in cloud cover. One radiometer was deployed near the base of a glacier, and the other two radiometers were deployed on Janus Island and Outcast Island, islets ˜2.8 km (1.5 nautical miles) and 5.6 km (3 nautical miles) distant from Palmer Station, respectively. The radiometers were operated simultaneously for 16 days during late December 1999 and January 2000. Under all cloudy sky conditions sampled by this experiment the coastal albedo effect is seen in the data 60% of the time, in the form of a decreasing gradient in surface flux from Palmer Station through Janus and Outcast Islands. During the other 40% of the cloudy sky measurements, local cloud inhomogeneity obscured the coastal albedo effect. The effect is more apparent under overcast layers that appear spatially uniform and occurs 86% of the time under the low overcast decks sampled. The presence of stratus fractus of bad weather, under higher overcast layers, obscures the coastal albedo effect such that it occurs only 43% of the time. A wavelength dependence is noted in the data under optically thin cloud cover: the ratio of a flux measured at an islet to that measured at the station increases with wavelength. This wavelength dependence can be explained by plane-parallel radiative transfer theory.

  4. Solid He: Progress, Status, and Outlook for Mass Flux Measurements

    NASA Astrophysics Data System (ADS)

    Hallock, R. B.

    2015-07-01

    After a brief introduction, what is provided there is brief summary of work with solid He done at the University of Massachusetts Amherst and an outlook for future work. What is presented here is based on a presentation made at the Quantum Gases Fluids and Solids Workshop in Sao Paulo, Brazil in August of 2014. Our work with solid He is aimed at the question: Can a sample cell filled with solid He support a mass flux through the cell? The answer, as will be shown here, is yes. Evidence for this from several types of experiments will be reviewed. There will be an emphasis on more recent work, work that explores how the flux observed depends on temperature and on the He impurity level. The behavior observed suggests that solid He may be an example of a material that demonstrates Bosonic Luttinger liquid behavior. The normalized He flux has a universal temperature dependence. The presence of He at different impurity levels shows that the He blocks the flux at a characteristic temperature. The behavior appears to be consistent with the cores of dislocations as the entity that carries the flux, but it is clear that more work needs to be done to fully understand solid He.

  5. Seasonal variation of and the influence of land use on carbon and water vapour fluxes at the Swiss Carbomont field site

    NASA Astrophysics Data System (ADS)

    Rogiers, N.; Eugster, W.; Furger, M.; Bantelmann, E.; Siegwolf, R.

    2003-04-01

    Within the EU project CARBOMONT the carbon dioxide and water vapour budget as well as the energy budgets over an Alpine grassland ecosystem are quantified. The goal of our continuous measurements of ecosystem fluxes can improve the understanding of the global carbon and water budgets. PSI has equipped a site at Rigi-Seebodenalp in Central Switzerland. The site is divided into different compartments with different land-use and management: an abandoned wet area, and a pasture for cow and horse foraging with two annual grass cuts. The net ecosystem exchange (NEE = photosynthesis + respiration) is determined with the eddy covariance method. These measurements are supplemented by conventional micrometeorological measurements. Here we try to quantify the fluxes of CO2 and H2O over the vegetation period starting in June 2002 till the end of October. The CO2 and H2O fluxes vary considerably over the course of the vegetation period. The seasonal variation of these fluxes can be explained by a change in the duration of the photosynthetically active period, a change in temperature and in leaf area index. Snow at the end of September reduced the CO2 uptake clearly. Further, the factors influencing the seasonal variation of canopy evaporation (latent heat flux) are determined. The influence of the land use on the turbulent exchange of CO2 is investigated. The cutting of the vegetation resulted in a decreased CO2 uptake during the day.

  6. Methane fluxes measured by eddy covariance and static chamber techniques at a temperate forest in central ontario, Canada

    NASA Astrophysics Data System (ADS)

    Wang, J. M.; Murphy, J. G.; Geddes, J. A.; Winsborough, C. L.; Basiliko, N.; Thomas, S. C.

    2012-12-01

    Methane flux measurements were carried out at a temperate forest (Haliburton Forest and Wildlife Reserve) in central Ontario (45°17´11´´ N, 78°32´19´´ W) from June-October, 2011. Continuous measurements were made by an off-axis integrated cavity output spectrometer Fast Greenhouse Gas Analyzer (FGGA) from Los Gatos Research Inc. that measures methane (CH4) at 10 Hz sampling rates. Fluxes were calculated from the gas measurements in conjunction with wind data collected by a 3-D sonic anemometer using the eddy covariance (EC) method. Observed methane fluxes showed net uptake of CH4 over the measurement period with an average uptake flux (± standard deviation of the mean) of -2.7 ± 0.13 nmol m-2 s-1. Methane fluxes showed a seasonal progression with average rates of uptake increasing from June through September and remaining high in October. This pattern was consistent with a decreasing trend in soil moisture content at the monthly time scale. On the diurnal timescale, there was evidence of increased uptake during the day, when the mid-canopy wind speed was at a maximum. These patterns suggest that substrate supply of CH4 and oxygen to methanotrophs, and in certain cases hypoxic soil conditions supporting methanogenesis in low-slope areas, drive the observed variability in fluxes. A network of soil static chambers used at the tower site showed close agreement with the eddy covariance flux measurements. This suggests that soil-level microbial processes, and not abiological leaf-level CH4 production, drive overall CH4 dynamics in temperate forest ecosystems such as Haliburton Forest.

  7. New technique of the local heat flux measurement in combustion chambers of steam boilers

    NASA Astrophysics Data System (ADS)

    Taler, Jan; Taler, Dawid; Sobota, Tomasz; Dzierwa, Piotr

    2011-12-01

    A new method for measurement of local heat flux to water-walls of steam boilers was developed. A flux meter tube was made from an eccentric tube of short length to which two longitudinal fins were attached. These two fins prevent the boiler setting from heating by a thermal radiation from the combustion chamber. The fins are not welded to the adjacent water-wall tubes, so that the temperature distribution in the heat flux meter is not influenced by neighbouring water-wall tubes. The thickness of the heat flux tube wall is larger on the fireside to obtain a greater distance between the thermocouples located inside the wall which increases the accuracy of heat flux determination. Based on the temperature measurements at selected points inside the heat flux meter, the heat flux absorbed by the water-wall, heat transfer coefficient on the inner tube surface and temperature of the water-steam mixture was determined.

  8. Use of CMOS imagers to measure high fluxes of charged particles

    NASA Astrophysics Data System (ADS)

    Servoli, L.; Tucceri, P.

    2016-03-01

    The measurement of high flux charged particle beams, specifically at medical accelerators and with small fields, poses several challenges. In this work we propose a single particle counting method based on CMOS imagers optimized for visible light collection, exploiting their very high spatial segmentation (> 3 106 pixels/cm2) and almost full efficiency detection capability. An algorithm to measure the charged particle flux with a precision of ~ 1% for fluxes up to 40 MHz/cm2 has been developed, using a non-linear calibration algorithm, and several CMOS imagers with different characteristics have been compared to find their limits on flux measurement.

  9. Measurements of methane and carbon dioxide fluxes on the Bakchar bog in warm season

    NASA Astrophysics Data System (ADS)

    Krasnov, Oleg A.; Maksyutov, Shamil S.; Davydov, Denis K.; Fofonov, Aleksander V.; Glagolev, Mikhail V.

    2015-11-01

    Data terrain-atmosphere fluxes of methane and carbon dioxide overseen for measurement campaign Plotnikovo-2014 on the bog's Flux-NIES automatic complex (N56°51.29' E82° 50.91') in the warn season. Six vegetative groups on the bog's surface were taken in comparison. Improvement precise method used to determinate the sensitivity for the gases analyzers and calculating of the CO2 and CH4 fluxes measured by automated chamber-based technique.

  10. Long-term elemental dry deposition fluxes measured around Lake Michigan with an automated dry deposition sampler

    SciTech Connect

    Shahin, U. Yi, S.M.; Paode, R.D.; Holsen, T.M.

    2000-05-15

    Long-term measurements of mass and elemental dry deposition (MG, Al, V, Cr, Mn, Ni, Co, Cu, Zn, As, Sr, Mo, Cd, Sb, Ba, and Pb) were made with an automated dry deposition sampler (Eagle II) containing knife-edge surrogate surfaces during the Lake Michigan Mass Balance/Mass Budget Study. Measurements were made over a roughly 700-day period in Chicago, IL; in South Haven and Sleeping Bear Dunes, MI; and over Lake Michigan on the 68th Street drinking water intake cribs from December 1993 to October 1995. Average mass fluxes in Chicago, South Haven, Sleeping Bear Dunes, and the 68th Street crib were 65, 10, 3.6, and 12 mg m{sup {minus}2} day{sup {minus}1}, respectively. Primarily crustal elemental fluxes were significantly smaller than the mass fluxes but higher than primarily anthropogenic elemental fluxes. For example, the average elemental flux of Al in Chicago, South Haven, Sleeping Bear Dunes, and the 68th Street crib were 1.0, 0.34, 0.074, and 0.34 mg m{sup {minus}2}day{sup {minus}1}, respectively. The average Pb fluxes in Chicago, South Haven, Sleeping Bear Dunes, and the 68th Street crib were 0.038, 0.023, 0.035, and 0.032 mg m{sup {minus}2}day{sup {minus}1}, respectively. The measured fluxes at the various sites were used to calculate the dry deposition loadings to the lake. These estimated fluxes were highest for Mg and lowest for Cd.

  11. A simple calculation algorithm to separate high-resolution CH4 flux measurements into ebullition- and diffusion-derived components

    NASA Astrophysics Data System (ADS)

    Hoffmann, Mathias; Schulz-Hanke, Maximilian; Garcia Alba, Juana; Jurisch, Nicole; Hagemann, Ulrike; Sachs, Torsten; Sommer, Michael; Augustin, Jürgen

    2017-01-01

    Processes driving the production, transformation and transport of methane (CH4) in wetland ecosystems are highly complex. We present a simple calculation algorithm to separate open-water CH4 fluxes measured with automatic chambers into diffusion- and ebullition-derived components. This helps to reveal underlying dynamics, to identify potential environmental drivers and, thus, to calculate reliable CH4 emission estimates. The flux separation is based on identification of ebullition-related sudden concentration changes during single measurements. Therefore, a variable ebullition filter is applied, using the lower and upper quartile and the interquartile range (IQR). Automation of data processing is achieved by using an established R script, adjusted for the purpose of CH4 flux calculation. The algorithm was validated by performing a laboratory experiment and tested using flux measurement data (July to September 2013) from a former fen grassland site, which converted into a shallow lake as a result of rewetting. Ebullition and diffusion contributed equally (46 and 55 %) to total CH4 emissions, which is comparable to ratios given in the literature. Moreover, the separation algorithm revealed a concealed shift in the diurnal trend of diffusive fluxes throughout the measurement period. The water temperature gradient was identified as one of the major drivers of diffusive CH4 emissions, whereas no significant driver was found in the case of erratic CH4 ebullition events.

  12. Confronting model predictions of carbon fluxes with measurements of Amazon forests subjected to experimental drought.

    PubMed

    Powell, Thomas L; Galbraith, David R; Christoffersen, Bradley O; Harper, Anna; Imbuzeiro, Hewlley M A; Rowland, Lucy; Almeida, Samuel; Brando, Paulo M; da Costa, Antonio Carlos Lola; Costa, Marcos Heil; Levine, Naomi M; Malhi, Yadvinder; Saleska, Scott R; Sotta, Eleneide; Williams, Mathew; Meir, Patrick; Moorcroft, Paul R

    2013-10-01

    Considerable uncertainty surrounds the fate of Amazon rainforests in response to climate change. Here, carbon (C) flux predictions of five terrestrial biosphere models (Community Land Model version 3.5 (CLM3.5), Ecosystem Demography model version 2.1 (ED2), Integrated BIosphere Simulator version 2.6.4 (IBIS), Joint UK Land Environment Simulator version 2.1 (JULES) and Simple Biosphere model version 3 (SiB3)) and a hydrodynamic terrestrial ecosystem model (the Soil-Plant-Atmosphere (SPA) model) were evaluated against measurements from two large-scale Amazon drought experiments. Model predictions agreed with the observed C fluxes in the control plots of both experiments, but poorly replicated the responses to the drought treatments. Most notably, with the exception of ED2, the models predicted negligible reductions in aboveground biomass in response to the drought treatments, which was in contrast to an observed c. 20% reduction at both sites. For ED2, the timing of the decline in aboveground biomass was accurate, but the magnitude was too high for one site and too low for the other. Three key findings indicate critical areas for future research and model development. First, the models predicted declines in autotrophic respiration under prolonged drought in contrast to measured increases at one of the sites. Secondly, models lacking a phenological response to drought introduced bias in the sensitivity of canopy productivity and respiration to drought. Thirdly, the phenomenological water-stress functions used by the terrestrial biosphere models to represent the effects of soil moisture on stomatal conductance yielded unrealistic diurnal and seasonal responses to drought.

  13. Carbon flux estimation for Siberia by inverse modeling constrained by aircraft and tower CO2 measurements

    NASA Astrophysics Data System (ADS)

    Saeki, T.; Maksyutov, S.; Sasakawa, M.; Machida, T.; Arshinov, M.; Tans, P. P.; Conway, T. J.; Saito, M.; Valsala, V.; Oda, T.; Andres, R. J.

    2012-12-01

    Despite Siberian ecosystems being one of the largest carbon reservoirs in the world, the Siberian carbon sink remains poorly understood due to the limited numbers of observations. We present the first results of atmospheric CO2 inversions utilizing measurements from a Siberian tower network (Japan-Russia Siberian Tall Tower Inland Observation Network; JR-STATION) and four aircraft sites, in addition to surface background flask measurements by the National Oceanic and Atmospheric Administration (NOAA). The inverse model estimates monthly fluxes for 68 regions globally. Our inversion with only the NOAA data yielded a boreal Eurasian CO2 flux of -0.56 ± 0.79 GtC yr-1, whereas we obtained a weaker uptake of -0.35 ± 0.61 GtC yr-1 when the Siberian data were also included. This difference is mainly explained by a weakened summer uptake, especially in East Siberia. We also found the inclusion of the Siberian data had significant impacts on inversion results over northeastern Europe as well as boreal Eurasia. The inversion with the Siberian data reduced the regional uncertainty by 22 % on average in boreal Eurasia, and further uncertainty reductions up to 80 % were found in eastern and western Siberia. Larger interannual variability was clearly seen in the inversion including the Siberia data than the inversion without the Siberia data. In the inversion with NOAA plus Siberia data, East Siberia showed larger interannual variability than that in West and Central Siberia. Finally, we conducted forward simulations using estimated fluxes and confirmed that the fit to independent measurements over Central Siberia, which were not included in the inversions, was visibly improved.

  14. Eddy covariance flux measurements of gaseous elemental mercury using cavity ring-down spectroscopy.

    PubMed

    Pierce, Ashley M; Moore, Christopher W; Wohlfahrt, Georg; Hörtnagl, Lukas; Kljun, Natascha; Obrist, Daniel

    2015-02-03

    A newly developed pulsed cavity ring-down spectroscopy (CRDS) system for measuring atmospheric gaseous elemental mercury (GEM) concentrations at high temporal resolution (25 Hz) was used to successfully conduct the first eddy covariance (EC) flux measurements of GEM. GEM is the main gaseous atmospheric form, and quantification of bidirectional exchange between the Earth's surface and the atmosphere is important because gas exchange is important on a global scale. For example, surface GEM emissions from natural sources, legacy emissions, and re-emission of previously deposited anthropogenic pollution may exceed direct primary anthropogenic emissions. Using the EC technique for flux measurements requires subsecond measurements, which so far has not been feasible because of the slow time response of available instrumentation. The CRDS system measured GEM fluxes, which were compared to fluxes measured with the modified Bowen ratio (MBR) and a dynamic flux chamber (DFC). Measurements took place near Reno, NV, in September and October 2012 encompassing natural, low-mercury (Hg) background soils and Hg-enriched soils. During nine days of measurements with deployment of Hg-enriched soil in boxes within 60 m upwind of the EC tower, the covariance of GEM concentration and vertical wind speed was measured, showing that EC fluxes over an Hg-enriched area were detectable. During three separate days of flux measurements over background soils (without Hg-enriched soils), no covariance was detected, indicating fluxes below the detection limit. When fluxes were measurable, they strongly correlated with wind direction; the highest fluxes occurred when winds originated from the Hg-enriched area. Comparisons among the three methods showed good agreement in direction (e.g., emission or deposition) and magnitude, especially when measured fluxes originated within the Hg-enriched soil area. EC fluxes averaged 849 ng m(-2) h(-1), compared to DFC fluxes of 1105 ng m(-2) h(-1) and MBR fluxes

  15. MARIE Dose and Flux Measurements in Mars Orbit

    NASA Technical Reports Server (NTRS)

    Zeitlin, C.; Cleghorn, T.; Cucinotta, F. A.; Saganti, P.; Andersen, V.; Lee, K. T.; Pinsky, L. S.; Turner, R.; Atwell, W.

    2004-01-01

    We present results from the Martian Radiation Environment Experiment (MARIE), aboard the 2001 Mars Odyssey spacecraft in orbit around Mars. MARIE operated successfully from March 2002 through October 2003. At the time of this writing, the instrument is off due to a loss of communications during an extremely intense Solar Particle Event. Efforts to revive MARIE are planned for Spring 2004, when Odyssey's role as a communications relay for the MER rovers is completed. During the period of successful operation, MARIE returned the first detailed energetic charged particle data from Mars. Due to limitations of the instrument, normalizing MARIE data to flux or dose is not straightforward - several large corrections are needed. Thus normalized results (like dose or flux) have large uncertainties and/or significant model-dependence. The problems in normalization are mainly due to inefficiency in detecting high-energy protons (signal-to-noise problems force the trigger threshold to be higher than optimal), to the excessively high gains employed in the signal processing electronics (many ions deposit energy sufficient to saturate the electronics, and dE/dx information is lost), and to artifacts associated with the two trigger detectors (incomplete registration of dE/dx). Despite these problems, MARIE is efficient for detecting helium ions with kinetic energies above about 30 MeV/nucleon, and for detecting high-energy ions (energies above about 400 MeV/nucleon) with charges from 5 to 10. Fluxes of these heavier ions can be compared to fluxes obtained from the ACE/CRIS instrument, providing at least one area of direct comparison between data obtained at Earth and at Mars; this analysis will be presented as a work in progress. We will also present dose-rate data, with a detailed explanation of the many sources of uncertainty in normalization. The results for both flux and dose will be compared to predictions of the HZETRN model of the GCR.

  16. LEAF, BRANCH, STAND & LANDSCAPE SCALE MEASUREMENTS OF VOLATILE ORGANIC COMPOUND FLUXES FROM U.S. WOODLANDS

    EPA Science Inventory

    Natural volatile organic compounds (VOC) fluxes were measured in three U.S. woodlands in summer 1993. Fluxes from individual leaves and branches were estimated with enclosure techniques and used to initialize and evaluate VOC emission model estimates. Ambient measurements were us...

  17. Calculating the detection limits of chamber-based greenhouse gas flux measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chamber-based measurement of greenhouse gas emissions from soil is a common technique. However, when changes in chamber headspace gas concentrations are small over time, determination of the flux can be problematic. Several factors contribute to the reliability of measured fluxes, including: samplin...

  18. Estimation of surface energy fluxes using surface renewal and flux variance techniques over an advective irrigated agricultural site

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Estimation of surface energy fluxes over irrigated agriculture is needed to monitor crop water use. Estimates are commonly done using well-established techniques such as eddy covariance (EC) and weighing lysimetry, but implementing these to collect spatially distributed observations is complex and c...

  19. Observed and Modeled Isoprene Fluxes at a Remote Michigan Forest Site

    NASA Astrophysics Data System (ADS)

    Wen, M.; Pressley, S. N.; Gu, D.; Yu, H.; Guenther, A. B.; VanReken, T. M.

    2015-12-01

    Biogenic volatile organic compounds (BVOCs) constitute a major part of global VOC emissions and can affect regional or global climate by influencing tropospheric chemistry and forming secondary organic aerosols. Isoprene is the most abundant species in global BVOC budget. The Model of Emissions of Gases and Aerosols from Nature (MEGAN) 2.1 (Guenther et al., 2006, 2012) is a state-of-art emission model that simulates BVOC emissions by considering major environmental activity factors (e.g. temperature, solar radiation). Here we compare measurements of isoprene emissions in a mixed hardwood forest at the University of Michigan Biological Station (UMBS) during 1999-2005 growing seasons (Pressley et al., 2004, 2005) with MEGAN model simulations. We investigated the seasonal variations of isoprene emissions by considering the impacts from meteorological conditions, as well as correlations between sensible heat flux, latent heat flux and isoprene flux for a model uncertainty analysis. Model simulations are in good agreement with observations during leaf full expansion periods, but the values are 3-4 times higher than observations before full leaf development and after leaf senescence periods. There are significant correlations between the variations of isoprene emissions and precipitation.

  20. Effective monitoring of landfills: flux measurements and thermography enhance efficiency and reduce environmental impact

    NASA Astrophysics Data System (ADS)

    Battaglini, Raffaele; Raco, Brunella; Scozzari, Andrea

    2013-12-01

    This work presents a methodology for estimating the behaviour of a landfill system in terms of biogas release to the atmosphere. Despite the various positions towards the impact of methane on global warming, there is a general agreement about the fact that methane from landfill represents about 23% of the total anthropogenic CH4 released to the atmosphere. Despite the importance of this topic, no internationally accepted protocol exists to quantify the leakage of biogas from the landfill cover. To achieve this goal, this paper presents a field method based on accumulation chamber flux measurements. In addition, the results obtained from a nine-year-long monitoring activity on an Italian municipal solid waste (MSW) landfill are presented. The connection between such flux measurements of biogas release and thermal anomalies detected by infrared radiometry is also discussed. The main overall benefit of the presented approach is a significant increase in the recovered energy from the landfill site by means of an optimal collection of biogas, which implies a reduction of the total anthropogenic methane originated from the disposal of waste.

  1. Snow temperature profiles and heat fluxes measured on the Greenland crest by an automatic weather station

    SciTech Connect

    Stearns, C.R.; Weidner, G A.

    1992-03-01

    In June 1989 three automatic weather station (AWS) units were installed on the Greenland crest at the GISP2 (78.58 N, 38.46 W, 3265 m) and GRIP (78.57 N, 37.62 W, 3230 m) ice coring sites and at Kenton (72.28 N, 38.80 W, 3185 m), the air sampling site. The purpose of the AWS units is to measure the local meteorological variables, including snow temperatures at various depths, in support of ice coring studies. The AWS units measure wind speed and direction, air temperature, and relative humidity at a nominal height of 3.6 meters, air pressure at the electronics enclosure, and air temperature difference between 3.6 m and 0.5 m. The AWS units at GISP2 and GRIP also measure solar radiation, and seven snow temperatures from the surface to a depth of approximately 4 m in the snow. The data are updated at 10-minute intervals and transmitted to the ARGOS data collection system on board the NOAA series of polar-orbiting satellites. The air temperature and snow temperatures are presented as a function of time for the period from June 8, 1989 to August 31, 1990 and as tautochrones at 30-day intervals. The heat flux into the snow is determined from the daily mean snow temperature between the day after and the day before using the volumetric heat capacity of the snow assuming a snow density of 300 kg m-3. The daily mean heat flux into the snow between the highest and the lowest levels of snow temperature is presented as a function of time.

  2. Temperature and heat flux measurement techniques for aeroengine fire test: a review

    NASA Astrophysics Data System (ADS)

    Mohammed, I.; Abu Talib, A. R.; Sultan, M. T. H.; Saadon, S.

    2016-10-01

    This review is made of studies whereby some types of fire test measuring instrument were compared based on their mode of operation, sensing ability, temperature resistance and their calibration mode used for aero-engine applications. The study discusses issues affecting temperature and heat flux measurement, methods of measurement, calibration and uncertainties that occur in the fire test. It is found that the temperature and heat flux measurements of the flame from the standard burner need to be corrected and taken into account for radiation heat loss. Methods for temperature and heat flux measurements, as well as uncertainties analysis, were also discussed.

  3. Continuous atmospheric monitoring of the injected CO2 behavior over geological storage sites using flux stations: latest technologies and resources

    NASA Astrophysics Data System (ADS)

    Burba, George; Madsen, Rodney; Feese, Kristin

    2014-05-01

    Flux stations have been widely used to monitor emission rates of CO2 from various ecosystems for climate research for over 30 years [1]. The stations provide accurate and continuous measurements of CO2 emissions with high temporal resolution. Time scales range from 20 times per second for gas concentrations, to 15-minute, hourly, daily, and multi-year periods. The emissions are measured from the upwind area ranging from thousands of square meters to multiple square kilometers, depending on the measurement height. The stations can nearly instantaneously detect rapid changes in emissions due to weather events, as well as changes caused by variations in human-triggered events (pressure leaks, control releases, etc.). Stations can also detect any slow changes related to seasonal dynamics and human-triggered low-frequency processes (leakage diffusion, etc.). In the past, station configuration, data collection and processing were highly-customized, site-specific and greatly dependent on "school-of-thought" practiced by a particular research group. In the last 3-5 years, due to significant efforts of global and regional CO2 monitoring networks (e.g., FluxNet, Ameriflux, Carbo-Europe, ICOS, etc.) and technological developments, the flux station methodology became fairly standardized and processing protocols became quite uniform [1]. A majority of current stations compute CO2 emission rates using the eddy covariance method, one of the most direct and defensible micrometeorological techniques [1]. Presently, over 600 such flux stations are in operation in over 120 countries, using permanent and mobile towers or moving platforms (e.g., automobiles, helicopters, and airplanes). Atmospheric monitoring of emission rates using such stations is now recognized as an effective method in regulatory and industrial applications, including carbon storage [2-8]. Emerging projects utilize flux stations to continuously monitor large areas before and after the injections, to locate and

  4. Impact of surrounding environment evolution on long-term gas flux measurements in a temperate mixed forest

    NASA Astrophysics Data System (ADS)

    Hurdebise, Quentin; Rixen, Toma; De Ligne, Anne; Vincke, Caroline; Heinesch, Bernard; Aubinet, Marc

    2016-04-01

    With the development of eddy covariance networks like Fluxnet, ICOS or NEON, long-term data series of carbon dioxide, water vapor and other gas exchanges between terrestrial ecosystems and atmosphere will become more and more numerous. However, long-term analyses of such exchanges require a good understanding of measurement conditions during the investigated period. Independently of climate drivers, measurements may indeed be influenced by measurement conditions themselves subjected to long-term variability due to vegetation growth or set-up changes. The present research refers to the Vielsalm Terrestrial Observatory (VTO) where fluxes of momentum, carbon dioxide, latent and sensible heat have been continuously measured by eddy covariance during twenty years. VTO is an ICOS site installed in a mixed forest (beech, silver fir, Douglas fir, Norway spruce) in the Belgian Ardennes. A multidisciplinary approach was developed in order to investigate the spatial and temporal evolution of several site characteristics: -displacement height (d) and relative measurement height (z-d) were determined using a spectral approach that compared observed and theoretical cospectra; -turbulence statistics were analyzed in the context of Monin-Obukhov similarity theory; -tree height during the measurement period was obtained by combining tree height inventories, a LIDAR survey and tree growth models; -measurement footprint was determined by using a footprint model. A good agreement was found between the three first approaches. Results show notably that z-d was subjected to both temporal and spatial evolution. Temporal evolution resulted from continuous tree growth as well as from a tower raise, achieved in 2009. Spatial evolution, due to canopy heterogeneity, was also observed. The impacts of these changes on measurements are investigated. In particular, it was shown that they affect measurement footprint, flux spectral corrections and flux quality. All these effects must be taken into

  5. Determination of solar proton fluxes and energies at high solar latitudes by UV radiation measurements

    NASA Technical Reports Server (NTRS)

    Witt, N.; Blum, P. W.; Ajello, J. M.

    1981-01-01

    The latitudinal variation of the solar proton flux and energy causes a density increase at high solar latitudes of the neutral gas penetrating the heliosphere. Measurements of the neutral density by UV resonance radiation observations from interplanetary spacecraft thus permit deductions on the dependence of the solar proton flux on heliographic latitude. Using both the results of Mariner 10 measurements and of other off-ecliptic solar wind observations, the values of the solar proton fluxes and energies at polar heliographic latitudes are determined for several cases of interest. The Mariner 10 analysis, together with IPS results, indicate a significant decrease of the solar proton flux at polar latitudes.

  6. Historical record and fluxes of DDTs at the Palos Verdes Shelf Superfund site, California.

    PubMed

    Liao, Chunyang; Taylor, Allison R; Kenney, William F; Schlenk, Daniel; Gan, Jay

    2017-03-01

    Marine sediments at many locations in the world are contaminated with a wide range of persistent organic pollutants. The Palos Verdes Shelf (PVS) is located in the ocean off the coast of Los Angeles, California and has been listed as a Superfund site by the US EPA since 1997, because of heavy contamination of DDTs and PCBs. However, little is known about the historical trend in the deposition of DDTs as a result of decades-long discharge of wastewater effluents. In this study, sediment cores were taken from the PVS site and determined for DDT and its metabolites including DDE and DDD (denoted as DDTs). Individual DDTs were found in the majority (95%) of the samples analyzed. The highest ∑DDT concentrations were found in three cores along the 60-meter isobath with geometric means of 31300, 7490, and 5010ng/gdw and medians of 82400, 17300, and 5200ng/g dw, respectively. Among DDT congeners, p,p'-DDE, o,p'-DDE and p,p'-DDD were predominant, contributing to approximately 54%, 27%, and 14% of the ΣDDTs in sediment. The vertical profiles of concentrations of contaminants in the sediment cores were examined. For most of the cores, a steady increase in the concentrations of DDTs during 1940s to 1980s was observed, while the concentrations declined gradually toward the surficial layers. On the basis of the mass flux of DDTs calculated and the area of the PVS Superfund site, we estimated the total deposition amount of DDTs in sediment and the deposition amount of ΣDDTs in this region during 1947-1971 was 132 tons, which was fairly close to what was reported in earlier studies for industrial wastewater discharge in the PVS site (870-1450tons). Our findings suggest that the elevated levels of DDTs in sediment from the PVS site are linked to the discharge of these contaminants between the 1940s-1980s.

  7. Calculating the diffusive flux of persistent organic pollutants between sediments and the water column on the Palos Verdes shelf superfund site using polymeric passive samplers.

    PubMed

    Fernandez, Loretta A; Lao, Wenjian; Maruya, Keith A; Burgess, Robert M

    2014-04-01

    Passive samplers were deployed to the seafloor at a marine Superfund site on the Palos Verdes Shelf, California, USA, and used to determine water concentrations of persistent organic pollutants (POPs) in the surface sediments and near-bottom water. A model of Fickian diffusion across a thin water boundary layer at the sediment-water interface was used to calculate flux of contaminants due to molecular diffusion. Concentrations at four stations were used to calculate the flux of DDE, DDD, DDMU, and selected PCB congeners from sediments to the water column. Three passive sampling materials were compared: PE strips, POM strips, and SPME fibers. Performance reference compounds (PRCs) were used with PE and POM to correct for incomplete equilibration, and the resulting POP concentrations, determined by each material, agreed within 1 order of magnitude. SPME fibers, without PRC corrections, produced values that were generally much lower (1 to 2 orders of magnitude) than those measured using PE and POM, indicating that SPME may not have been fully equilibrated with waters being sampled. In addition, diffusive fluxes measured using PE strips at stations outside of a pilot remedial sand cap area were similar to those measured at a station inside the capped area: 240 to 260 ng cm(-2) y(-1) for p,p'-DDE. The largest diffusive fluxes of POPs were calculated at station 8C, the site where the highest sediment concentrations have been measured in the past, 1100 ng cm(-2) y(-1) for p,p'-DDE.

  8. Assessing the spatial representativeness of eddy-covariance measurements of AmeriFlux network based on remote sensing and footprint analysis

    NASA Astrophysics Data System (ADS)

    Fu, D.; Zhang, L.; Chen, B.

    2015-12-01

    The eddy-covariance towers of AmeriFlux network are important for the analysis of terrestrial ecosystem-atmosphere interactions, and they have been used to improve our understanding of the mechanism behind terrestrial carbon cycle and upscaling from site to landscape and regional scales. However, the spatial representativeness of AmeriFlux network has not been assessed, especially accounting for the effects of land cover change on it using high spatial resolution data. Here we demonstrated an approach for evaluating the spatial representativeness of flux tower measurements based on footprint climatology analyses, land cover change data and remotely sensed vegetation indices. This method was applied to 79 flux towers of AmeriFlux network located in the continental United States, covering evergreen forest, deciduous forest, mixed forest, grass, cropland, shrub, and wetland biomes. For each site, monthly and annual footprint climatologies (i.e. monthly or annual accumulative footprints) were calculated using the Simple Analytical Footprint model on Eulerian coordinates (SAFE-f). The footprint climatologies were then overlaid on the images of Normalized Difference Vegetation Index (NDVI) and National Land Cover Database (NLCD) for the years (2001, 2006 and 2011), which were used as surrogates of land surface fluxes to assess the spatial representativeness. For most sites of AmeriFlux network, the results show that (i) the percentages of the target vegetation functional type (dominant land cover) observed by the AmeriFlux towers were higher than 60%; (ii) to some extent, most of the AmeriFlux sites presented anisotropically distributed patterns of NDVI within the 90% annual footprint climatology area; (iii) the land surface heterogeneity within the flux footprint area differed among sites; and (iv) the land cover types had changed higher than 10% within 6 km*6 km area centered at the flux tower for 5 AmeriFlux sites. We conclude that the footprint modeling based on high

  9. Operation TEAPOT. Project 2.2. Neutron Flux Measurements

    DTIC Science & Technology

    1981-01-01

    fissionable materials used were K plutonium-239, neptunium - 237 , and uranium-238. Approximate thresholds, cross sections, and sample weights were: Approximate...Shots 9 and 10 and on weapons of essentially new design, -~ Detectors employing gold, sulfur, plutonium, neptunium , and uranium-238 were employed...calibrated in terms of the integrated flux interacting with the sample. Neptunium has a neutron fission threshold in the region of 700 key. Samples are

  10. Measurement of DDT fluxes from a historically treated agricultural soil in Canada.

    PubMed

    Kurt-Karakus, Perihan Binnur; Bidleman, Terry F; Staebler, Ralf M; Jones, Kevin C

    2006-08-01

    Organocohlorine pesticide (OCP) residues in agricultural soils are of concern due to the uptake of these compounds by crops, accumulation in the foodchain, and reemission from soils to the atmosphere. Although it has been about three decades since DDT was banned for agricultural uses in Canada, residues persist in soils of some agricultural areas. Emission of DDT compounds to the atmosphere from a historically treated field in southern Ontario was determined in fall 2004 and spring 2005. The sigmaDDTs concentration in the high organic matter (71%) soil was 19 +/- 4 microg g(-1) dry weight. Concentration gradients in the air were measured at 5, 20, 72, and 200 cm above soil using glass fiber filter-polyurethane foam cartridges. Air concentrations of sigmaDDTs averaged 5.7 +/- 5.1 ng m(-3) at 5 cm and decreased to 1.3 +/- 0.8 ng m(-3) at 200 cm and were 60-300 times higher than levels measured at a background site 30 km away. Soil-air fugacity fractions, fs/(fs + fa), of p,p'-DDE, p,p'-DDD, and p,p'-DDT ranged from 0.42 to 0.91 using air concentrations measured above the soil and > or = 0.99 using background air concentrations, indicating that the soil was a net source to the background air. Fractionation of DDT compounds during volatilization was predicted using either liquid-phase vapor pressures (PL) or octanol-air partition coefficients (KOA). Relative emissions of p,p'-DDE and p,p'-DDT were better described by PL than KOA, whereas either PL or KOA successfully accounted for the fractionation of p,p'-DDT and o,p'-DDT. Soil-to-air fluxes were calculated from air concentration gradients and turbulent exchange coefficients determined from micrometeorological measurements. Average fluxes of sigmaDDTs were 90 +/- 24 ng m(-2) h(-1) in fall and 660 +/- 370 ng m(-2) h(-1) in spring. Higher soil temperatures in spring accounted for the higher fluxes. A volatilization half-life of approximately 200 y was estimated for sigmaDDT in the upper 5 cm of the soil column, assuming

  11. Five-year records of mercury wet deposition flux at GMOS sites in the Northern and Southern hemispheres

    NASA Astrophysics Data System (ADS)

    Sprovieri, Francesca; Pirrone, Nicola; Bencardino, Mariantonia; D'Amore, Francesco; Angot, Helene; Barbante, Carlo; Brunke, Ernst-Günther; Arcega-Cabrera, Flor; Cairns, Warren; Comero, Sara; Diéguez, María del Carmen; Dommergue, Aurélien; Ebinghaus, Ralf; Feng, Xin Bin; Fu, Xuewu; Garcia, Patricia Elizabeth; Gawlik, Bernd Manfred; Hageström, Ulla; Hansson, Katarina; Horvat, Milena; Kotnik, Jože; Labuschagne, Casper; Magand, Olivier; Martin, Lynwill; Mashyanov, Nikolay; Mkololo, Thumeka; Munthe, John; Obolkin, Vladimir; Ramirez Islas, Martha; Sena, Fabrizio; Somerset, Vernon; Spandow, Pia; Vardè, Massimiliano; Walters, Chavon; Wängberg, Ingvar; Weigelt, Andreas; Yang, Xu; Zhang, Hui

    2017-02-01

    The atmospheric deposition of mercury (Hg) occurs via several mechanisms, including dry and wet scavenging by precipitation events. In an effort to understand the atmospheric cycling and seasonal depositional characteristics of Hg, wet deposition samples were collected for approximately 5 years at 17 selected GMOS monitoring sites located in the Northern and Southern hemispheres in the framework of the Global Mercury Observation System (GMOS) project. Total mercury (THg) exhibited annual and seasonal patterns in Hg wet deposition samples. Interannual differences in total wet deposition are mostly linked with precipitation volume, with the greatest deposition flux occurring in the wettest years. This data set provides a new insight into baseline concentrations of THg concentrations in precipitation worldwide, particularly in regions such as the Southern Hemisphere and tropical areas where wet deposition as well as atmospheric Hg species were not investigated before, opening the way for future and additional simultaneous measurements across the GMOS network as well as new findings in future modeling studies.

  12. Quantitative method for measuring heat flux emitted from a cryogenic object

    DOEpatents

    Duncan, R.V.

    1993-03-16

    The present invention is a quantitative method for measuring the total heat flux, and of deriving the total power dissipation, of a heat-fluxing object which includes the steps of placing an electrical noise-emitting heat-fluxing object in a liquid helium bath and measuring the superfluid transition temperature of the bath. The temperature of the liquid helium bath is thereafter reduced until some measurable parameter, such as the electrical noise, exhibited by the heat-fluxing object or a temperature-dependent resistive thin film in intimate contact with the heat-fluxing object, becomes greatly reduced. The temperature of the liquid helum bath is measured at this point. The difference between the superfluid transition temperature of the liquid helium bath surrounding the heat-fluxing object, and the temperature of the liquid helium bath when the electrical noise emitted by the heat-fluxing object becomes greatly reduced, is determined. The total heat flux from the heat-fluxing object is determined as a function of this difference between these temperatures. In certain applications, the technique can be used to optimize thermal design parameters of cryogenic electronics, for example, Josephson junction and infrared sensing devices.

  13. Quantitative method for measuring heat flux emitted from a cryogenic object

    DOEpatents

    Duncan, Robert V.

    1993-01-01

    The present invention is a quantitative method for measuring the total heat flux, and of deriving the total power dissipation, of a heat-fluxing object which includes the steps of placing an electrical noise-emitting heat-fluxing object in a liquid helium bath and measuring the superfluid transition temperature of the bath. The temperature of the liquid helium bath is thereafter reduced until some measurable parameter, such as the electrical noise, exhibited by the heat-fluxing object or a temperature-dependent resistive thin film in intimate contact with the heat-fluxing object, becomes greatly reduced. The temperature of the liquid helum bath is measured at this point. The difference between the superfluid transition temperature of the liquid helium bath surrounding the heat-fluxing object, and the temperature of the liquid helium bath when the electrical noise emitted by the heat-fluxing object becomes greatly reduced, is determined. The total heat flux from the heat-fluxing object is determined as a function of this difference between these temperatures. In certain applications, the technique can be used to optimize thermal design parameters of cryogenic electronics, for example, Josephson junction and infra-red sensing devices.

  14. Improved radon-flux-measurement system for uranium-tailings pile measurement

    SciTech Connect

    Freeman, H.D.

    1981-10-01

    The Pacific Northwest Laboratory (PNL) is developing cover technology for uranium mill tailings that will inhibit the diffusion of radon to the atmosphere. As part of this cover program, an improved radon flux measurement system has been developed. The radon measurement system is a recirculating, pressure-balanced, flow-through system that uses activated carbon at ambient temperatures to collect the radon. With the system, an area of 0.93 m/sup 2/ is sampled for periods ranging from 1 to 12 h. The activated carbon is removed from the radon trap and the collected radon is determined by counting the /sup 214/Bi daughter product. Development of the system included studies to determine the efficiency of activated carbon, relative calibration measurements and field measurements made during 1980 at the inactive tailings pile in Grand Junction, Colorado. Results of these studies are presented.

  15. Remote Sensing and Sea-Truth Measurements of Methane Flux to the Atmosphere (HYFLUX project)

    SciTech Connect

    Ian MacDonald

    2011-05-31

    , respectively. Based on the contemporaneous wind speeds at this site, contemporary estimates of the diffusive fluxes from the mixed layer to the atmosphere for methane, ethane, and propane are 26.5, 2.10, and 2.78 {micro}mol/m{sup 2}d, respectively. Continuous measurements of air and sea surface concentrations of methane were made to obtain high spatial and temporal resolution of the diffusive net sea-to-air fluxes. The atmospheric methane fluctuated between 1.70 ppm and 2.40 ppm during the entire cruise except for high concentrations (up to 4.01 ppm) sampled during the end of the occupation of GC600 and the transit between GC600 and GC185. Results from interpolations within the survey areas show the daily methane fluxes to the atmosphere at the three sites range from 0.744 to 300 mol d-1. Considering that the majority of seeps in the GOM are deep (>500 m), elevated CH{sub 4} concentrations in near-surface waters resulting from bubble-mediated CH4 transport in the water column are expected to be widespread in the Gulf of Mexico.

  16. The Niwot Ridge Subalpine Forest US-NR1 AmeriFlux site - Part 1: Data acquisition and site record-keeping

    NASA Astrophysics Data System (ADS)

    Burns, Sean P.; Maclean, Gordon D.; Blanken, Peter D.; Oncley, Steven P.; Semmer, Steven R.; Monson, Russell K.

    2016-09-01

    The Niwot Ridge Subalpine Forest AmeriFlux site (US-NR1) has been measuring eddy-covariance ecosystem fluxes of carbon dioxide, heat, and water vapor since 1 November 1998. Throughout this 17-year period there have been changes to the instrumentation and improvements to the data acquisition system. Here, in Part 1 of this three-part series of papers, we describe the hardware and software used for data-collection and metadata documentation. We made changes to the data acquisition system that aimed to reduce the system complexity, increase redundancy, and be as independent as possible from any network outages. Changes to facilitate these improvements were (1) switching to a PC/104-based computer running the National Center for Atmospheric Research (NCAR) In-Situ Data Acquisition Software (NIDAS) that saves the high-frequency data locally and over the network, and (2) time-tagging individual 10 Hz serial data samples using network time protocol (NTP) coupled to a GPS-based clock, providing a network-independent, accurate time base. Since making these improvements almost 2 years ago, the successful capture of high-rate data has been better than 99.98 %. We also provide philosophical concepts that shaped our design of the data system and are applicable to many different types of environmental data collection.

  17. The Niwot Ridge Subalpine Forest US-NR1 AmeriFlux site – Part 1: Data acquisition and site record-keeping

    DOE PAGES

    Burns, Sean P.; Maclean, Gordon D.; Blanken, Peter D.; ...

    2016-09-29

    The Niwot Ridge Subalpine Forest AmeriFlux site (US-NR1) has been measuring eddy-covariance ecosystem fluxes of carbon dioxide, heat, and water vapor since 1 November 1998. Throughout this 17-year period there have been changes to the instrumentation and improvements to the data acquisition system. Here, in Part 1 of this three-part series of papers, we describe the hardware and software used for data-collection and metadata documentation. We made changes to the data acquisition system that aimed to reduce the system complexity, increase redundancy, and be as independent as possible from any network outages. Changes to facilitate these improvements were (1) switching to a PC/104-based computer runningmore » the National Center for Atmospheric Research (NCAR) In-Situ Data Acquisition Software (NIDAS) that saves the high-frequency data locally and over the network, and (2) time-tagging individual 10 Hz serial data samples using network time protocol (NTP) coupled to a GPS-based clock, providing a network-independent, accurate time base. Since making these improvements almost 2 years ago, the successful capture of high-rate data has been better than 99.98 %. We also provide philosophical concepts that shaped our design of the data system and are applicable to many different types of environmental data collection.« less

  18. Research on effects of baffle position in an integrating sphere on the luminous flux measurement

    NASA Astrophysics Data System (ADS)

    Lin, Fangsheng; Li, Tiecheng; Yin, Dejin; Lai, Lei; Xia, Ming

    2016-09-01

    In the field of optical metrology, luminous flux is an important index to characterize the quality of electric light source. Currently, the majority of luminous flux measurement is based on the integrating sphere method, so measurement accuracy of integrating sphere is the key factor. There are plenty of factors affecting the measurement accuracy, such as coating, power and the position of light source. However, the baffle which is a key part of integrating sphere has important effects on the measurement results. The paper analyzes in detail the principle of an ideal integrating sphere. We use moving rail to change the relative position of baffle and light source inside the sphere. By experiments, measured luminous flux values at different distances between the light source and baffle are obtained, which we used to take analysis of the effects of different baffle position on the measurement. By theoretical calculation, computer simulation and experiment, we obtain the optimum position of baffle for luminous flux measurements. Based on the whole luminous flux measurement error analysis, we develop the methods and apparatus to improve the luminous flux measurement accuracy and reliability. It makes our unifying and transferring work of the luminous flux more accurate in East China and provides effective protection for our traceability system.

  19. Predicting landscape-scale CO2 flux at a pasture and rice paddy with long-term hyperspectral canopy reflectance measurements

    NASA Astrophysics Data System (ADS)

    Matthes, J. H.; Knox, S. H.; Sturtevant, C.; Sonnentag, O.; Verfaillie, J.; Baldocchi, D.

    2015-03-01

    Measurements of hyperspectral canopy reflectance provide a detailed snapshot of information regarding canopy biochemistry, structure and physiology. In this study, we collected five years of repeated canopy hyperspectral reflectance measurements for a total of over 100 site visits within the flux footprints of two eddy covariance towers at a pasture and rice paddy in Northern California. The vegetation at both sites exhibited dynamic phenology, with significant inter-annual variability in the timing of seasonal patterns that propagated into inter-annual variability in measured hyperspectral reflectance. We used partial least-squares regression (PLSR) modeling to leverage the information contained within the entire continuous canopy reflectance spectra (400-900 nm) in order to investigate questions regarding the connection between measured hyperspectral reflectance and landscape-scale fluxes of net ecosystem exchange (NEE) and gross primary productivity (GPP) across multiple timescales, from instantaneous flux to monthly-integrated flux. With the PLSR models developed from this large dataset we achieved a high level of predictability for both NEE and GPP flux in these two ecosystems, where the R2 of prediction with an independent validation dataset ranged from 0.24 to 0.69. The PLSR models achieved the highest skill at predicting the integrated GPP flux for the week prior to the hyperspectral canopy reflectance collection, whereas the NEE flux often achieved the same high predictive power at the daily- through monthly-integrated flux timescales. The high level of predictability achieved by PLSR regression in this study demonstrated the potential for using repeated hyperspectral canopy reflectance measurements to help partition NEE measurements into its component fluxes, GPP and ecosystem respiration, and for using continuous hyperspectral reflectance measurements to model regional carbon flux in future analyses.

  20. Preferentially impaired neurotransmitter release sites not their discreteness compromise the validity of microdialysis zero-net-flux method.

    PubMed

    Chen, Kevin C

    2005-01-01

    Intracerebral microdialysis is a popular technique for studying neurochemistry and neural circuits in various brain regions. Recent studies called into question the validity of the microdialysis zero-net-flux (ZNF) method by suggesting that this method significantly underestimates the basal level of extracellular dopamine as a result of the discreteness of dopamine release sites as well as the preferential damage to dopamine release over uptake. To identify which factor is most important in undermining the microdialysis ZNF measurements and the extent of underestimation, two mathematical models were developed to explore the influences of the discrete nature and the probe-induced impairment in the neurotransmitter release. The two models differ in their characterizations of the transmitter release as spatially discrete and homogeneous, respectively. Simulations using physiologically reasonable parameters for striatal dopamine systems indicate that the preferential release site damage surrounding the implanted probe is the most important determinant to the underestimation of the microdialysis ZNF concentration. Under normal physiological conditions, the discreteness of neurotransmitter release sites is of minor importance, except when neuronal degeneration occurs. It is concluded that homogeneous models can adequately describe microdialysis operating processes as long as the corresponding tissue damage parameters in such models are appropriately incorporated.

  1. Combined FTIR-micrometeorological techniques for long term measurements of greenhouse gas fluxes from agriculture

    NASA Astrophysics Data System (ADS)

    Petersen, A. K.; Griffith, D.; Harvey, M.; Naylor, T.; Smith, M.

    2009-04-01

    The exchange of trace gases between the biosphere and the atmosphere affects the atmospheric concentrations of gases such as methane, carbon dioxide, nitrous oxide, carbon monoxide, ammonia, volatile organic compounds, nitrogen dioxide and others. The quantification of the exchange between a biogenic system and the atmosphere is necessary for the evaluation of the impact of these interactions. This is of special interest for agricultural systems which can be sources or sinks of trace gases, and the measurement of the fluxes is necessary when evaluating both the environmental impact of agricultural activities and the impact of atmospheric pollution on agricultural production and sustainability. With the exception of CO2, micrometeorological measurements of the fluxes of greenhouse gases from agricultural activities are still mostly possible only in campaign mode due to the complexity and logistical requirements of the existing measurement techniques. This limitation precludes studies of fluxes which run for longer periods, for example over full seasonal or growing cycles for both animal- and crop-based agriculture. We have developed an instrument system for long-term flux measurements through a combination of micrometeorological flux measurement techniques such as Relaxed Eddy Accumulation (REA) and Flux-Gradient (FG) with the high precision multi-species detection capabilities of FTIR spectroscopy. The combined technique is capable of simultaneous flux measurements of N2O, CH4 and CO2 at paddock to regional scales continuously, over longer terms (months, seasonal cycles, years). The system was tested on a 3 weeks field campaign in NSW, Australia on a flat, homogeneous circular grass paddock with grazing cattle. The flux of the atmospheric trace gas CO2 was measured with three different micrometeorological techniques: Relaxed Eddy Accumulation, Flux-Gradient, and Eddy Correlation. Simultaneously, fluxes of CH4 and N2O were measured by REA and FG technique.

  2. Air-Sea Fluxes in Terra Nova Bay, Antarctica from In Situ Aircraft Measurements

    NASA Astrophysics Data System (ADS)

    Knuth, S. L.; Cassano, J. J.

    2011-12-01

    In September 2009, the first unmanned aerial vehicles (UAVs) were flown over Terra Nova Bay, Antarctica to collect information regarding air-sea interactions over a wintertime coastal polynya. The UAVs measured wind, temperature, pressure, and relative humidity in flights parallel to the downslope wind flow over the polynya, and in a series of vertical profiles at varying distances from the coast. During three flights on three different days, sufficient measurements were collected to calculate sensible heat, latent heat, and momentum fluxes over varying oceanic surface states, including frazil, pancake, and rafted ice, with background winds greater than 15 ms-1. During the three flights, sensible heat fluxes upwards of 600 Wm-2 were estimated near the coast, with maximum latent heat fluxes near 160 Wm-2 just downwind of the coast. The calculated accelerations due to the momentum flux divergence were on the order of 10-3 ms-2. In addition to the fluxes, changes in the overall momentum budget, including the horizontal pressure gradient force, were also calculated during the three flights. This presentation will summarize the methodology for calculating the fluxes from the UAV data, present the first ever in situ estimates of sensible heat, latent heat, and momentum fluxes and overall momentum budget estimates over Terra Nova Bay, and compare the UAV flux calculations to flux measurements taken during other field campaigns in other regions of the Antarctic, as well as to model estimates over Terra Nova Bay.

  3. Novel dynamic flux chamber for measuring air-surface exchange of Hg(o) from soils.

    PubMed

    Lin, Che-Jen; Zhu, Wei; Li, Xianchang; Feng, Xinbin; Sommar, Jonas; Shang, Lihai

    2012-08-21

    Quantifying the air-surface exchange of Hg(o) from soils is critical to understanding the cycling of mercury in different environmental compartments. Dynamic flux chambers (DFCs) have been widely employed for Hg(o) flux measurement over soils. However, DFCs of different sizes, shapes, and sampling flow rates yield distinct measured fluxes for a soil substrate under identical environmental conditions. In this study, we performed an integrated modeling, laboratory and field study to design a DFC capable of producing a steady and uniform air flow over a flat surface. The new DFC was fabricated using polycarbonate sheets. The internal velocity field was experimentally verified against model predictions using both theoretical and computational fluid dynamics techniques, suggesting fully developed flow with velocity profiles in excellent agreement with model results. Laboratory flux measurements demonstrated that the new design improves data reproducibility as compared to a conventional DFC, and reproduces the model-predicted flux trend with increasing sampling flow. A mathematical relationship between the sampling flow rate and surface friction velocity, a variable commonly parametrized in atmospheric models, was developed for field application. For the first time, the internal shear property of a DFC can be precisely controlled using the sampling flow rate, and the flux under atmospheric condition can be inferred from the measured flux and surface shear property. The demonstrated methodology potentially bridges the gap in measured fluxes obtained by the DFC method and the micrometeorological methods.

  4. Net drainage effects on CO2 fluxes of a permafrost ecosystem through eddy-covariance measurements

    NASA Astrophysics Data System (ADS)

    Kittler, Fanny; Burjack, Ina; Zimov, Nikita; Zimov, Sergey; Heimann, Martin; Göckede, Mathias

    2015-04-01

    Permafrost landscapes in the Northern high latitudes with their massive organic carbon stocks are critically important for the global carbon cycle, yet feedback processes with the atmosphere under future climate conditions are uncertain. To improve the understanding of mechanisms and drivers dominating permafrost carbon cycling, we established a continuous observation program in moist tussock tundra ecosystem near Cherskiy in North-eastern Siberia (68.75°N, 161.33°E). The experiment has been designed to monitor carbon cycle fluxes at different scales with different approaches, including e.g. the eddy-covariance technique, and their environmental drivers. Recent observations started mid July 2013 and are still ongoing, while 'historic' measurements are available for the period 2002-2005. Since 2004 part of the observation area has been disturbed by a drainage ditch ring, altering the soil water conditions in the surrounding area in a way that is expected for degrading ice-rich permafrost under a warming climate. With parallel observations over the disturbed (drained) area and a reference area nearby, respectively, we aim to evaluate the disturbance effect on the carbon cycle budgets and the dominating biogeochemical mechanisms. Here, findings based on over 1.5 years of continuous eddy-covariance CO2 flux measurements (July 2013 - March 2015) for both observation areas are presented. Results show systematic shifts in the tundra ecosystem as a result of 10 years of disturbance in the drained area, with significant effects on biotic and abiotic site conditions as well as on the carbon cycle dynamics. Comparing the net budget fluxes between both observations areas indicates a reduction of the net sink strength for CO2 of the drained ecosystem during the summer season in comparison to natural conditions, mostly caused by reduced CO2 uptake with low water levels in late summer. Regarding the long-term CO2 uptake dynamics of the disturbance regime (2005 vs. 2013/14) the

  5. A preliminary evaluation of an O2/CO2 based eddy covariance theory at Missouri AmeriFlux site

    NASA Astrophysics Data System (ADS)

    Yan, B.; Gu, L.

    2013-12-01

    The eddy covariance (EC) technique has been widely used at flux sites on every continent, across most ecosystem types and climates to monitor exchanges of momentum, mass and energy between land surface and atmosphere. In an attempt to develop a self-consistent theory for the EC technique, Gu et al. (2012) reformulated the fundamental equations for EC by introducing the concept of constraining gas that has no net ecosystem sink/source. Gu (2013) expanded the theory of Gu et al. (2012) to include paired gases whose ecosystem exchange ratios are stable over an averaging period (e.g. 30 min) and therefore can be used to constrain EC flux measurements of any gases. He proposed that O2 and CO2 are an ideal pair of gases as their biological processes are coupled and their ecosystem exchange ratio (also known as oxidative ratio) is close to 1. Advantages of this new O2/CO2 based EC theory include: 1) avoidance of covariance loss in calculating dry air density induced by spatial separation of measuring instruments and use of multiple indirectly derived variables, 2) the minimum number of assumptions adopted for the derivation of the equation, and 3) avoidance of errors related to linearization of ideal gas law. In this study, we conducted a preliminary evaluation for the basic principle of Gu (2013) EC theory. We crosschecked net ecosystem exchange (NEE) estimations from different, independent methods by using CO2 and H2O as paired constraining gases. Using CO2 and H2O instead of CO2 and O2 as paired constraining gases is not ideal in the framework of Gu (2013); however, no fast response O2 analyzer is currently available. CO2 and H2O are both transported between the inside of plants and canopy air through stomata on leaves in the processes of photosynthesis and transpiration which are known to be closely coupled. However, this close coupling is contaminated by other ecosystem sinks/sources, e.g. respiration of plants and soil for CO2 and evaporation of intercepted and soil

  6. Calculations of automatic chamber flux measurements of methane and carbon dioxide using short time series of concentrations

    NASA Astrophysics Data System (ADS)

    Pirk, Norbert; Mastepanov, Mikhail; Parmentier, Frans-Jan W.; Lund, Magnus; Crill, Patrick; Christensen, Torben R.

    2016-02-01

    The closed chamber technique is widely used to measure the exchange of methane (CH4) and carbon dioxide (CO2) from terrestrial ecosystems. There is, however, large uncertainty about which model should be used to calculate the gas flux from the measured gas concentrations. Due to experimental uncertainties the simple linear regression model (first-order polynomial) is often applied, even though theoretical considerations of the technique suggest the application of other, curvilinear models. High-resolution automatic chamber systems which sample gas concentrations several hundred times per flux measurement make it possible to resolve the curvilinear behavior and study the information imposed by the natural variability of the temporal concentration changes. We used more than 50 000 such flux measurements of CH4 and CO2 from five field sites located in peat-forming wetlands ranging from 56 to 78° N to quantify the typical differences between flux estimates of different models. In addition, we aimed to assess the curvilinearity of the concentration time series and test the general applicability of curvilinear models. Despite significant episodic differences between the calculated flux estimates, the overall differences are generally found to be smaller than the local flux variability on the plot scale. The curvilinear behavior of the gas concentrations within the chamber is strongly influenced by wind-driven chamber leakage, and less so by changing gas concentration gradients in the soil during chamber closure. Such physical processes affect both gas species equally, which makes it possible to isolate biochemical processes affecting the gases differently, such as photosynthesis limitation by chamber headspace CO2 concentrations under high levels of incoming solar radiation. We assess the possibility to exploit this effect for a partitioning of the net CO2 flux into photosynthesis and ecosystem respiration as an example of how high-resolution automatic chamber

  7. Four-year measurement of methane flux over a temperate forest with a relaxed eddy accumulation method

    NASA Astrophysics Data System (ADS)

    Sakabe, A.; Kosugi, Y.; Ueyama, M.; Hamotani, K.; Takahashi, K.; Iwata, H.; Itoh, M.

    2013-12-01

    Forests are generally assumed to be an atmospheric methane (CH4) sink (Le Mer and Roger, 2001). However, under Asian monsoon climate, forests are subject to wide spatiotemporal range in soil water status, where forest soils often became water-saturated condition heterogeneously. In such warm and humid conditions, forests may act as a CH4 source and/or sink with considerable spatiotemporal variations. Micrometeorological methods such as eddy covariance (EC) method continuously measure spatially-representative flux at a canopy scale without artificial disturbance. In this study, we measured CH4 fluxes over a temperate forest during four-year period using a CH4 analyzer based on tunable diode laser spectroscopy detection with a relaxed eddy accumulation (REA) method (Hamotani et al., 1996, 2001). We revealed the amplitude and seasonal variations of canopy-scale CH4 fluxes. The REA method is the attractive alternative to the EC method to measure trace-gas flux because it allows the use of analyzers with an optimal integration time. We also conducted continuous chamber measurements on forest floor to reveal spatial variations in soil CH4 fluxes and its controlling processes. The observations were made in an evergreen coniferous forest in central Japan. The site has a warm temperate monsoon climate with wet summer. Some wetlands were located in riparian zones along streams within the flux footprint area. For the REA method, the sonic anemometer (SAT-550, Kaijo) was mounted on top of the 29-m-tall tower and air was sampled from just below the sonic anemometer to reservoirs according to the direction of vertical wind velocity (w). After accumulating air for 30 minutes, the air in the reservoirs was pulled into a CO2/H2O gas analyzer (LI-840, Li-Cor) and a CH4 analyzer (FMA-200, Los Gatos Research). Before entering the analyzers, the sampled air was dried using a gas dryer (PD-50 T-48; Perma Pure Inc.). The REA flux is obtained from the difference in the mean concentrations

  8. Evaluation of Heat Flux Measurement as a New Process Analytical Technology Monitoring Tool in Freeze Drying.

    PubMed

    Vollrath, Ilona; Pauli, Victoria; Friess, Wolfgang; Freitag, Angelika; Hawe, Andrea; Winter, Gerhard

    2017-01-04

    This study investigates the suitability of heat flux measurement as a new technique for monitoring product temperature and critical end points during freeze drying. The heat flux sensor is tightly mounted on the shelf and measures non-invasively (no contact with the product) the heat transferred from shelf to vial. Heat flux data were compared to comparative pressure measurement, thermocouple readings, and Karl Fischer titration as current state of the art monitoring techniques. The whole freeze drying process including freezing (both by ramp freezing and controlled nucleation) and primary and secondary drying was considered. We found that direct measurement of the transferred heat enables more insights into thermodynamics of the freezing process. Furthermore, a vial heat transfer coefficient can be calculated from heat flux data, which ultimately provides a non-invasive method to monitor product temperature throughout primary drying. The end point of primary drying determined by heat flux measurements was in accordance with the one defined by thermocouples. During secondary drying, heat flux measurements could not indicate the progress of drying as monitoring the residual moisture content. In conclusion, heat flux measurements are a promising new non-invasive tool for lyophilization process monitoring and development using energy transfer as a control parameter.

  9. Measurement of the cosmic ray and neutrino-induced muon flux at the Sudbury neutrino observatory

    SciTech Connect

    Aharmim, B.; Farine, J.; Fleurot, F.; Hallman, E. D.; Krueger, A.; Luoma, S.; Schwendener, M. H.; Virtue, C. J.; Ahmed, S. N.; Cai, B.; Chen, M.; Evans, H. C.; Ewan, G. T.; Guillian, E.; Harvey, P. J.; Kos, M.; Kraus, C.; Leslie, J. R.; MacLellan, R.; Mak, H. B.

    2009-07-01

    Results are reported on the measurement of the atmospheric neutrino-induced muon flux at a depth of 2 kilometers below the Earth's surface from 1229 days of operation of the Sudbury Neutrino Observatory (SNO). By measuring the flux of through-going muons as a function of zenith angle, the SNO experiment can distinguish between the oscillated and unoscillated portion of the neutrino flux. A total of 514 muonlike events are measured between -1{<=}cos{theta}{sub zenith}{<=}0.4 in a total exposure of 2.30x10{sup 14} cm{sup 2} s. The measured flux normalization is 1.22{+-}0.09 times the Bartol three-dimensional flux prediction. This is the first measurement of the neutrino-induced flux where neutrino oscillations are minimized. The zenith distribution is consistent with previously measured atmospheric neutrino oscillation parameters. The cosmic ray muon flux at SNO with zenith angle cos{theta}{sub zenith}>0.4 is measured to be (3.31{+-}0.01(stat){+-}0.09(sys))x10{sup -10} {mu}/s/cm{sup 2}.

  10. Measurement of the Cosmic Ray and Neutrino-Induced Muon Flux at the Sudbury Neutrino Observatory

    SciTech Connect

    SNO collaboration; Aharmim, B.; Ahmed, S.N.; Andersen, T.C.; Anthony, A.E.; Barros, N.; Beier, E.W.; Bellerive, A.; Beltran, B.; Bergevin, M.; Biller, S.D.; Boudjemline, K.; Boulay, M.G.; Burritt, T.H.; Cai, B.; Chan, Y.D.; Chen, M.; Chon, M.C.; Cleveland, B.T.; Cox-Mobrand, G.A.; Currat, C.A.; Dai, X.; Dalnoki-Veress, F.; Deng, H.; Detwiler, J.; Doe, P.J.; Dosanjh, R.S.; Doucas, G.; Drouin, P.-L.; Duncan, F.A.; Dunford, M.; Elliott, S.R.; Evans, H.C.; Ewan, G.T.; Farine, J.; Fergani, H.; Fleurot, F.; Ford, R.J.; Formaggio, J.A.; Gagnon, N.; Goon, J.TM.; Grant, D.R.; Guillian, E.; Habib, S.; Hahn, R.L.; Hallin, A.L.; Hallman, E.D.; Hargrove, C.K.; Harvey, P.J.; Harvey, P.J.; Heeger, K.M.; Heintzelman, W.J.; Heise, J.; Helmer, R.L.; Hemingway, R.J.; Henning, R.; Hime, A.; Howard, C.; Howe, M.A.; Huang, M.; Jamieson, B.; Jelley, N.A.; Klein, J.R.; Kos, M.; Kruger, A.; Kraus, C.; Krauss, C.B.; Kutter, T.; Kyba, C.C.M.; Lange, R.; Law, J.; Lawson, I.T.; Lesko, K.T.; Leslie, J.R.; Levine, I.; Loach, J.C.; Luoma, S.; MacLellan, R.; Majerus, S.; Mak, H.B.; Maneira, J.; Marino, A.D.; Martin, R.; McCauley, N.; McDonald, A.B.; McGee, S.; Mifflin, C.; Miller, M.L.; Monreal, B.; Monroe, J.; Noble, A.J.; Oblath, N.S.; Okada, C.E.; O?Keeffe, H.M.; Opachich, Y.; Orebi Gann, G.D.; Oser, S.M.; Ott, R.A.; Peeters, S.J.M.; Poon, A.W.P.; Prior, G.; Rielage, K.; Robertson, B.C.; Robertson, R.G.H.; Rollin, E.; Schwendener, M.H.; Secrest, J.A.; Seibert, S.R.; Simard, O.; Simpson, J.J.; Sinclair, D.; Skensved, P.; Smith, M.W.E.; Sonley, T.J.; Steiger, T.D.; Stonehill, L.C.; Tagg, N.; Tesic, G.; Tolich, N.; Tsui, T.; Van de Water, R.G.; VanDevender, B.A.; Virtue, C.J.; Waller, D.; Waltham, C.E.; Wan Chan Tseung, H.; Wark, D.L.; Watson, P.; Wendland, J.; West, N.; Wilkerson, J.F.; Wilson, J.R.; Wouters, J.M.; Wright, A.; Yeh, M.; Zhang, F.; Zuber, K.

    2009-02-16

    Results are reported on the measurement of the atmospheric neutrino-induced muon flux at a depth of 2 kilometers below the Earth's surface from 1229 days of operation of the Sudbury Neutrino Observatory (SNO). By measuring the flux of through-going muons as a function of zenith angle, the SNO experiment can distinguish between the oscillated and un-oscillated portion of the neutrino flux. A total of 514 muon-like events are measured between -1 {le} cos {theta}{sub zenith} 0.4 in a total exposure of 2.30 x 10{sup 14} cm{sup 2} s. The measured flux normalization is 1.22 {+-} 0.09 times the Bartol three-dimensional flux prediction. This is the first measurement of the neutrino-induced flux where neutrino oscillations are minimized. The zenith distribution is consistent with previously measured atmospheric neutrino oscillation parameters. The cosmic ray muon flux at SNO with zenith angle cos {theta}{sub zenith} > 0.4 is measured to be (3.31 {+-} 0.01 (stat.) {+-} 0.09 (sys.)) x 10{sup -10} {micro}/s/cm{sup 2}.

  11. Measurement of the Cosmic Ray and Neutrino-Induced Muon Flux at the Sudbury Neutrino Observatory

    DOE R&D Accomplishments Database

    SNO collaboration; Aharmim, B.; Ahmed, S. N.; Andersen, T. C.; Anthony, A. E.; Barros, N.; Beier, E. W.; Bellerive, A.; Beltran, B.; Bergevin, M.; Biller, S. D.; Boudjemline, K.; Boulay, M. G.; Burritt, T. H.; Cai, B.; Chan, Y. D.; Chen, M.; Chon, M. C.; Cleveland, B. T.; Cox-Mobrand, G. A.; Currat, C. A.; Dai, X.; Dalnoki-Veress, F.; Deng, H.; Detwiler, J.; Doe, P. J.; Dosanjh, R. S.; Doucas, G.; Drouin, P.-L.; Duncan, F. A.; Dunford, M.; Elliott, S. R.; Evans, H. C.; Ewan, G. T.; Farine, J.; Fergani, H.; Fleurot, F.; Ford, R. J.; Formaggio, J. A.; Gagnon, N.; Goon, J. TM.; Grant, D. R.; Guillian, E.; Habib, S.; Hahn, R. L.; Hallin, A. L.; Hallman, E. D.; Hargrove, C. K.; Harvey, P. J.; Harvey, P. J.; Heeger, K. M.; Heintzelman, W. J.; Heise, J.; Helmer, R. L.; Hemingway, R. J.; Henning, R.; Hime, A.; Howard, C.; Howe, M. A.; Huang, M.; Jamieson, B.; Jelley, N. A.; Klein, J. R.; Kos, M.; Kruger, A.; Kraus, C.; Krauss, C. B.; Kutter, T.; Kyba, C. C. M.; Lange, R.; Law, J.; Lawson, I. T.; Lesko, K. T.; Leslie, J. R.; Levine, I.; Loach, J. C.; Luoma, S.; MacLellan, R.; Majerus, S.; Mak, H. B.; Maneira, J.; Marino, A. D.; Martin, R.; McCauley, N.; McDonald, A. B.; McGee, S.; Mifflin, C.; Miller, M. L.; Monreal, B.; Monroe, J.; Noble, A. J.; Oblath, N. S.; Okada, C. E.; O'Keeffe, H. M.; Opachich, Y.; Orebi Gann, G. D.; Oser, S. M.; Ott, R. A.; Peeters, S. J. M.; Poon, A. W. P.; Prior, G.; Rielage, K.; Robertson, B. C.; Robertson, R. G. H.; Rollin, E.; Schwendener, M. H.; Secrest, J. A.; Seibert, S. R.; Simard, O.; Simpson, J. J.; Sinclair, D.; Skensved, P.; Smith, M. W. E.; Sonley, T. J.; Steiger, T. D.; Stonehill, L. C.; Tagg, N.; Tesic, G.; Tolich, N.; Tsui, T.; Van de Water, R. G.; VanDevender, B. A.; Virtue, C. J.; Waller, D.; Waltham, C. E.; Wan Chan Tseung, H.; Wark, D. L.; Watson, P.; Wendland, J.; West, N.; Wilkerson, J. F.; Wilson, J. R.; Wouters, J. M.; Wright, A.; Yeh, M.; Zhang, F.; Zuber, K.

    2009-07-10

    Results are reported on the measurement of the atmospheric neutrino-induced muon flux at a depth of 2 kilometers below the Earth's surface from 1229 days of operation of the Sudbury Neutrino Observatory (SNO). By measuring the flux of through-going muons as a function of zenith angle, the SNO experiment can distinguish between the oscillated and un-oscillated portion of the neutrino flux. A total of 514 muon-like events are measured between -1 {le} cos {theta}{sub zenith} 0.4 in a total exposure of 2.30 x 10{sup 14} cm{sup 2} s. The measured flux normalization is 1.22 {+-} 0.09 times the Bartol three-dimensional flux prediction. This is the first measurement of the neutrino-induced flux where neutrino oscillations are minimized. The zenith distribution is consistent with previously measured atmospheric neutrino oscillation parameters. The cosmic ray muon flux at SNO with zenith angle cos {theta}{sub zenith} > 0.4 is measured to be (3.31 {+-} 0.01 (stat.) {+-} 0.09 (sys.)) x 10{sup -10} {micro}/s/cm{sup 2}.

  12. Effects of biased CO2 flux measurements by open-path sensors on the interpretation of CO2 flux dynamics at contrasting ecosystems

    NASA Astrophysics Data System (ADS)

    Helbig, Manuel; Humphreys, Elyn; Bogoev, Ivan; Quinton, William L.; Wischnweski, Karoline; Sonnentag, Oliver

    2015-04-01

    Long-term measurements of net ecosystem exchange of CO2 (NEE) are conducted across a global network of flux tower sites. These sites are characterised by varying climatic and vegetation conditions, but also differ in the type of CO2/H2O gas analyser used to obtain NEE. Several studies have observed a systematic bias in measured NEE when comparing open-path (OP) and closed-path (CP) sensors with consistently more negative daytime NEE measurements when using OP sensors, both during the growing and non-growing season. A surface heating correction has been proposed in the literature, but seems not to be universally applicable. Systematic biases in NEE measurements are particularly problematic for synthesis papers and inter-comparison studies between sites where the 'true' NEE is small compared to the potential instrument bias. For example, NEE estimates for boreal forest sites derived from OP sensors show large, ecologically unreasonable winter CO2 uptake. To better understand the causes and the magnitude of this potential bias, we conducted a sensor inter-comparison study at the Mer Bleue peatland near Ottawa, ON, Canada. An eddy covariance system with a CP (LI7000 & GILL R3-50) and an OP sensor (EC150 & CSAT3A) was used. Measurements were made between September 2012 and January 2013 and covered late summer, fall, and winter conditions. Flux calculations were made as consistently as possible to minimise differences due to differing processing procedures (e.g. spectral corrections). The latent (LE, slope of orthogonal linear regression of LEOP on LECP: 1.02 ± 0.01 & intercept: -0.2 ± 0.6 W m-2 and sensible heat fluxes (H, slope of HCSAT3A on HGILL: 0.96 ± 0.01 & intercept: 0.1 ± 0.03 W m-2) did not show any significant bias. However, a significant bias was apparent in the NEE measurements (slope of NEEOP on NEECP: 1.36 ± 0.02 & intercept: -0.1 ± 0.05). The differences between NEEOP and NEECP were linearly related to the magnitude of HCSAT3A with a slope of -0

  13. Predicting landscape-scale CO2 flux at a pasture and rice paddy with long-term hyperspectral canopy reflectance measurements

    NASA Astrophysics Data System (ADS)

    Matthes, J. H.; Knox, S. H.; Sturtevant, C.; Sonnentag, O.; Verfaillie, J.; Baldocchi, D.

    2015-08-01

    Measurements of hyperspectral canopy reflectance provide a detailed snapshot of information regarding canopy biochemistry, structure and physiology. In this study, we collected 5 years of repeated canopy hyperspectral reflectance measurements for a total of over 100 site visits within the flux footprints of two eddy covariance towers at a pasture and rice paddy in northern California. The vegetation at both sites exhibited dynamic phenology, with significant interannual variability in the timing of seasonal patterns that propagated into interannual variability in measured hyperspectral reflectance. We used partial least-squares regression (PLSR) modeling to leverage the information contained within the entire canopy reflectance spectra (400-900 nm) in order to investigate questions regarding the connection between measured hyperspectral reflectance and landscape-scale fluxes of net ecosystem exchange (NEE) and gross primary productivity (GPP) across multiple timescales, from instantaneous flux to monthly integrated flux. With the PLSR models developed from this large data set we achieved a high level of predictability for both NEE and GPP flux in these two ecosystems, where the R2 of prediction with an independent validation data set ranged from 0.24 to 0.69. The PLSR models achieved the highest skill at predicting the integrated GPP flux for the week prior to the hyperspectral canopy reflectance collection, whereas the NEE flux often achieved the same high predictive power at daily to monthly integrated flux timescales. The high level of predictability achieved by PLSR in this study demonstrated the potential for using repeated hyperspectral canopy reflectance measurements to help partition NEE into its component fluxes, GPP and ecosystem respiration, and for using quasi-continuous hyperspectral reflectance measurements to model regional carbon flux in future analyses.

  14. A comparison of six methods for measuring soil-surface carbon dioxide fluxes

    USGS Publications Warehouse

    Norman, J.M.; Kucharik, C.J.; Gower, S.T.; Baldocchi, D.D.; Crill, P.M.; Rayment, M.; Savage, K.; Striegl, R.G.

    1997-01-01

    Measurements of soil-surface CO2 fluxes are important for characterizing the carbon budget of boreal forests because these fluxes can be the second largest component of the budget. Several methods for measuring soil-surface CO2 fluxes are available: (1) closed-dynamic-chamber systems, (2) closed-static-chamber systems, (3) open-chamber systems, and (4) eddy covariance systems. This paper presents a field comparison of six individual systems for measuring soil-surface CO2 fluxes with each of the four basic system types represented. A single system is used as a reference and compared to each of the other systems individually in black spruce (Picea mariana), jack pine (Pinus banksiana), or aspen (Populus tremuloides) forests. Fluxes vary from 1 to 10 ??mol CO2 m-2 s-1. Adjustment factors to bring all of the systems into agreement vary from 0.93 to 1.45 with an uncertainty of about 10-15%.

  15. Uncertainty Analysis on an Operational Simplified Surface Energy Balance algorithm for Estimation of Evapotranspiration at Multiple Flux Tower Sites

    NASA Astrophysics Data System (ADS)

    Chen, M.; Senay, G. B.; Verdin, J. P.; Rowland, J.

    2014-12-01

    Current regional to global and daily to annual Evapotranspiration ( ET) estimation mainly relies on surface energy balance (SEB) ET models or statistical empirical methods driven by remote sensing data and various meteorology databases. However, these ET models face challenging issues—large uncertainties from inevitable input errors, poorly defined parameters, and inadequate model structures. The eddy covariance measurements on water, energy, and carbon fluxes at globally available FLUXNET tower sites provide a feasible opportunity to assess the ET modelling uncertainties. In this study, we focused on uncertainty analysis on an operational simplified surface energy balance (SSEBop) algorithm for ET estimation at multiple Ameriflux tower sites with diverse land cover characteristics and climatic conditions. The input land surface temperature (LST) data of the algorithm were adopted from the 8-day composite1-km Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature. The other input data were taken from the Ameriflux database. Results of statistical analysis indicated that uncertainties or random errors from input variables and parameters of SSEBop led to daily and seasonal ET estimates with relative errors around 20% across multiple flux tower sites distributed across different biomes. This uncertainty of SSEBop lies in the error range of 20-30% of similar SEB-based ET algorithms, such as, Surface Energy Balance System and Surface Energy Balance Algorithm for Land. The R2 between daily and seasonal ET estimates by SSEBop and ET eddy covariance measurements at multiple Ameriflux tower sites exceed 0.7, and even up to 0.9 for croplands, grasslands, and forests, suggesting systematic error or bias of the SSEBop is acceptable. In summary, the uncertainty assessment verifies that the SSEBop is a reliable method for wide-area ET calculation and especially useful for detecting drought years and relative drought severity for agricultural production

  16. Natural Gas Seepage Along the Edge of the Aquitaine Shelf (France): Origin and Flux Measurements

    NASA Astrophysics Data System (ADS)

    Ruffine, L.; Donval, J. P.; Battani, A.; Bignon, L.; Croguennec, C.; Caprais, J. C.; Birot, D.; Bayon, G.; Lantéri, N.; Levaché, D.; Dupré, S.

    2014-12-01

    A newly discovered and highly active seepage area has been acoustically mapped at the western edge of the Aquitaine Shelf in the Bay of Biscay [Dupré et al., 2014]. Three selected seeping sites have been investigated with a Remotely Operated Vehicle. All sites were characterized by vigorous gas emissions, and the occurrence of massive carbonate crusts and bacterial mats at the seafloor. Nine seeps have been sampled with the PEGAZ sampler. The latter allowed gas-bubble sampling and preservation at in situpressure, together with gas-flux measurement through its graduated transparent cone. The C2+ fraction of the gas samples accounts for less than 0.06 %-mol of the total composition. Both the abundance of methane and dD and d13C isotopic analyses of the hydrocarbons indicate a biogenic source generated by microbial reduction of carbon dioxide [Whiticar et al., 1986]. The analyses of the associated noble gases also provide further support for a shallow-depth generation. While sharing the same origin, the collected samples are different in other respects, such as the measured d13C values for carbon dioxide and the hydrocarbons. This is the case in particular for methane, with displays values in between -66.1 and -72.7 ‰. We hypothesized that such variations are the result of multiple gas-transport processes along with the occurrence of hydrocarbon oxidation at different rates within the sedimentary column. The measured gas fluxes are extremely heterogeneous from one seep to another, ranging from 18 to 193 m3.yr-1. These values will be discussed in detail by comparing them with values obtained from different measurement techniques at other gas-seeping sites. The GAZCOGNE study is co-funded by TOTAL and IFREMER as part of the PAMELA (Passive Margin Exploration Laboratories) scientific project. References:Dupré, S., L. Berger, N. Le Bouffant, C. Scalabrin, and J. F. Bourillet (2014), Fluid emissions at the Aquitaine Shelf (Bay of Biscay, France): a biogenic origin or

  17. An assessment of corrections for eddy covariance measured turbulent fluxes over snow in mountain environments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Snow-covered complex terrain is an extremely important runoff generating landscape in high altitude and latitude environments, yet is often considered non-viable for eddy covariance measurements of turbulent fluxes. Turbulent flux data are useful for evaluating the coupled snow cover mass and energ...

  18. Carbon fluxes and export in the northern and middle Atlantic Sea measured with drifting sediment traps

    SciTech Connect

    Miquel, J-C; Fowler, S; Hamilton, T; Heilmann, J P; LaRosa, J; Carroll, M

    2000-07-26

    In July 1993 and June 1995 drifting sediment traps were deployed near the Po outflow, in the coastal zone and in the Jabuka Pit in order to obtain quantitative information on the vertical flux of particulate material and export of organic carbon in the Northern and Middle Adriatic Sea. During these periods and in July 1994, the standing stock of carbon and nitrogen in the water column were also estimated. Carbon and nitrogen concentrations were higher in the north with a mean of 266 {micro