Science.gov

Sample records for flux quantization

  1. Flux quantization on quasicrystalline networks

    SciTech Connect

    Behrooz, A.; Burns, M.J.; Deckman, H.; Levine, D.; Whitehead, B.; Chaikin, P.M.

    1986-07-21

    We have measured the superconducting transition temperature T-italic/sub c-italic/(H) as a function of magnetic field for a network of thin aluminum wires arranged in two quasicrystalline arrays, a Fibonacci sequence and the eightfold-symmetric version of a Penrose tiling. The quasicrystals have two periods whose ratio sigma is irrational and are constructed of two tiles with irrationally related areas. We find a series of dips in deltaT-italic/sub c-italic/(H) corresponding to favorable arrangements of the flux lattice on the quasicrystalline substrate. The largest dips are found at sigma/sup n-italic/ and the dips approach the zero-field transition temperature as n-italic increases.

  2. Theory of the Knight Shift and Flux Quantization in Superconductors

    DOE R&D Accomplishments Database

    Cooper, L. N.; Lee, H. J.; Schwartz, B. B.; Silvert, W.

    1962-05-01

    Consequences of a generalization of the theory of superconductivity that yields a finite Knight shift are presented. In this theory, by introducing an electron-electron interaction that is not spatially invariant, the pairing of electrons with varying total momentum is made possible. An expression for Xs (the spin susceptibility in the superconducting state) is derived. In general Xs is smaller than Xn, but is not necessarily zero. The precise magnitude of Xs will vary from sample to sample and will depend on the nonuniformity of the samples. There should be no marked size dependence and no marked dependence on the strength of the magnetic field; this is in accord with observation. The basic superconducting properties are retained, but there are modifications in the various electromagnetic and thermal properties since the electrons paired are not time sequences of this generalized theory on flux quantization arguments are presented.(auth)

  3. Quantized Chiral Magnetic Current from Reconnections of Magnetic Flux

    DOE PAGES

    Hirono, Yuji; Kharzeev, Dmitri E.; Yin, Yi

    2016-10-20

    We introduce a new mechanism for the chiral magnetic e ect that does not require an initial chirality imbalance. The chiral magnetic current is generated by reconnections of magnetic ux that change the magnetic helicity of the system. The resulting current is entirely determined by the change of magnetic helicity, and it is quantized.

  4. Loop quantization

    SciTech Connect

    Nicolau, A.

    1988-10-01

    Loop unwinding is a known technique for reducing loop overhead, exposing parallelism, and increasing the efficiency of pipelining. Traditional loop unwinding is limited to the innermost loop in a group of nested loops and the amount of unwinding either is fixed or must be specified by the user, on a case by case basis. In this paper the authors present a general technique for automatically unwinding multiply nested loops, explain its advantages over other transformation techniques, and illustrate its practical effectiveness. Lopp Quantization could be beneficial by itself or coupled with other loop transformations.

  5. KP flows and quantization

    NASA Astrophysics Data System (ADS)

    Luu, Martin T.

    2016-12-01

    The quantization of a pair of commuting differential operators is a pair of non-commuting differential operators. Both at the classical and quantum levels, the flows of the Kadomtsev-Petviashvili (KP) hierarchy are defined and further one can consider switching, up to a sign, the ordering of the operators. We discuss the interaction of these operations with the quantization.

  6. Quantization of emergent gravity

    NASA Astrophysics Data System (ADS)

    Yang, Hyun Seok

    2015-02-01

    Emergent gravity is based on a novel form of the equivalence principle known as the Darboux theorem or the Moser lemma in symplectic geometry stating that the electromagnetic force can always be eliminated by a local coordinate transformation as far as space-time admits a symplectic structure, in other words, a microscopic space-time becomes noncommutative (NC). If gravity emerges from U(1) gauge theory on NC space-time, this picture of emergent gravity suggests a completely new quantization scheme where quantum gravity is defined by quantizing space-time itself, leading to a dynamical NC space-time. Therefore the quantization of emergent gravity is radically different from the conventional approach trying to quantize a phase space of metric fields. This approach for quantum gravity allows a background-independent formulation where space-time and matter fields are equally emergent from a universal vacuum of quantum gravity.

  7. Riemann surface and quantization

    NASA Astrophysics Data System (ADS)

    Perepelkin, E. E.; Sadovnikov, B. I.; Inozemtseva, N. G.

    2017-01-01

    This paper proposes an approach of the unified consideration of classical and quantum mechanics from the standpoint of the complex analysis effects. It turns out that quantization can be interpreted in terms of the Riemann surface corresponding to the multivalent LnΨ function. A visual interpretation of "trajectories" of the quantum system and of the Feynman's path integral is presented. A magnetic dipole having a magnetic charge that satisfies the Dirac quantization rule was obtained.

  8. Action Quantization, Energy Quantization, and Time Parametrization

    NASA Astrophysics Data System (ADS)

    Floyd, Edward R.

    2017-03-01

    The additional information within a Hamilton-Jacobi representation of quantum mechanics is extra, in general, to the Schrödinger representation. This additional information specifies the microstate of ψ that is incorporated into the quantum reduced action, W. Non-physical solutions of the quantum stationary Hamilton-Jacobi equation for energies that are not Hamiltonian eigenvalues are examined to establish Lipschitz continuity of the quantum reduced action and conjugate momentum. Milne quantization renders the eigenvalue J. Eigenvalues J and E mutually imply each other. Jacobi's theorem generates a microstate-dependent time parametrization t-τ =partial _E W even where energy, E, and action variable, J, are quantized eigenvalues. Substantiating examples are examined in a Hamilton-Jacobi representation including the linear harmonic oscillator numerically and the square well in closed form. Two byproducts are developed. First, the monotonic behavior of W is shown to ease numerical and analytic computations. Second, a Hamilton-Jacobi representation, quantum trajectories, is shown to develop the standard energy quantization formulas of wave mechanics.

  9. Weak associativity and deformation quantization

    NASA Astrophysics Data System (ADS)

    Kupriyanov, V. G.

    2016-09-01

    Non-commutativity and non-associativity are quite natural in string theory. For open strings it appears due to the presence of non-vanishing background two-form in the world volume of Dirichlet brane, while in closed string theory the flux compactifications with non-vanishing three-form also lead to non-geometric backgrounds. In this paper, working in the framework of deformation quantization, we study the violation of associativity imposing the condition that the associator of three elements should vanish whenever each two of them are equal. The corresponding star products are called alternative and satisfy important for physical applications properties like the Moufang identities, alternative identities, Artin's theorem, etc. The condition of alternativity is invariant under the gauge transformations, just like it happens in the associative case. The price to pay is the restriction on the non-associative algebra which can be represented by the alternative star product, it should satisfy the Malcev identity. The example of nontrivial Malcev algebra is the algebra of imaginary octonions. For this case we construct an explicit expression of the non-associative and alternative star product. We also discuss the quantization of Malcev-Poisson algebras of general form, study its properties and provide the lower order expression for the alternative star product. To conclude we define the integration on the algebra of the alternative star products and show that the integrated associator vanishes.

  10. Quantization Effects on Complex Networks

    PubMed Central

    Wang, Ying; Wang, Lin; Yang, Wen; Wang, Xiaofan

    2016-01-01

    Weights of edges in many complex networks we constructed are quantized values of the real weights. To what extent does the quantization affect the properties of a network? In this work, quantization effects on network properties are investigated based on the spectrum of the corresponding Laplacian. In contrast to the intuition that larger quantization level always implies a better approximation of the quantized network to the original one, we find a ubiquitous periodic jumping phenomenon with peak-value decreasing in a power-law relationship in all the real-world weighted networks that we investigated. We supply theoretical analysis on the critical quantization level and the power laws. PMID:27226049

  11. On Quantizable Odd Lie Bialgebras

    NASA Astrophysics Data System (ADS)

    Khoroshkin, Anton; Merkulov, Sergei; Willwacher, Thomas

    2016-09-01

    Motivated by the obstruction to the deformation quantization of Poisson structures in infinite dimensions, we introduce the notion of a quantizable odd Lie bialgebra. The main result of the paper is a construction of the highly non-trivial minimal resolution of the properad governing such Lie bialgebras, and its link with the theory of so-called quantizable Poisson structures.

  12. Quantized Algebra I Texts

    ERIC Educational Resources Information Center

    DeBuvitz, William

    2014-01-01

    I am a volunteer reader at the Princeton unit of "Learning Ally" (formerly "Recording for the Blind & Dyslexic") and I recently discovered that high school students are introduced to the concept of quantization well before they take chemistry and physics. For the past few months I have been reading onto computer files a…

  13. BRST quantization of cosmological perturbations

    NASA Astrophysics Data System (ADS)

    Armendariz-Picon, Cristian; Şengör, Gizem

    2016-11-01

    BRST quantization is an elegant and powerful method to quantize theories with local symmetries. In this article we study the Hamiltonian BRST quantization of cosmological perturbations in a universe dominated by a scalar field, along with the closely related quantization method of Dirac. We describe how both formalisms apply to perturbations in a time-dependent background, and how expectation values of gauge-invariant operators can be calculated in the in-in formalism. Our analysis focuses mostly on the free theory. By appropriate canonical transformations we simplify and diagonalize the free Hamiltonian. BRST quantization in derivative gauges allows us to dramatically simplify the structure of the propagators, whereas Dirac quantization, which amounts to quantization in synchronous gauge, dispenses with the need to introduce ghosts and preserves the locality of the gauge-fixed action.

  14. BRST quantization of cosmological perturbations

    SciTech Connect

    Armendariz-Picon, Cristian; Şengör, Gizem

    2016-11-08

    BRST quantization is an elegant and powerful method to quantize theories with local symmetries. In this article we study the Hamiltonian BRST quantization of cosmological perturbations in a universe dominated by a scalar field, along with the closely related quantization method of Dirac. We describe how both formalisms apply to perturbations in a time-dependent background, and how expectation values of gauge-invariant operators can be calculated in the in-in formalism. Our analysis focuses mostly on the free theory. By appropriate canonical transformations we simplify and diagonalize the free Hamiltonian. BRST quantization in derivative gauges allows us to dramatically simplify the structure of the propagators, whereas Dirac quantization, which amounts to quantization in synchronous gauge, dispenses with the need to introduce ghosts and preserves the locality of the gauge-fixed action.

  15. Cosmic Origin of Quantization

    NASA Astrophysics Data System (ADS)

    Calogero, Francesco

    An estimate is presented of the angular momentum associated with the stochastic cosmic tremor, which has been hypothesized to be caused by universal gravitation and by the granularity of matter, and to be itself the cause of quantization ("cosmic origin of quantization"). If that universal tremor has the spatial coherence which is instrumental in order that the estimated action associated with it have the order of magnitude of Planck's constant h, then the estimated order of magnitude of the angular momentum associated with it also has the same value. We moreover indicate how these findings (originally based on a simplified model of the Universe, as being made up only of particles having the nucleon mass) are affected (in fact, essentially unaffected) by the possible presence in the mass of the Universe of a large component made up of particles much lighter than nucleons ("dark", or "missing", mass).

  16. Resurgence matches quantization

    NASA Astrophysics Data System (ADS)

    Couso-Santamaría, Ricardo; Mariño, Marcos; Schiappa, Ricardo

    2017-04-01

    The quest to find a nonperturbative formulation of topological string theory has recently seen two unrelated developments. On the one hand, via quantization of the mirror curve associated to a toric Calabi–Yau background, it has been possible to give a nonperturbative definition of the topological-string partition function. On the other hand, using techniques of resurgence and transseries, it has been possible to extend the string (asymptotic) perturbative expansion into a transseries involving nonperturbative instanton sectors. Within the specific example of the local {{{P}}2} toric Calabi–Yau threefold, the present work shows how the Borel–Padé–Écalle resummation of this resurgent transseries, alongside occurrence of Stokes phenomenon, matches the string-theoretic partition function obtained via quantization of the mirror curve. This match is highly non-trivial, given the unrelated nature of both nonperturbative frameworks, signaling at the existence of a consistent underlying structure.

  17. Uniform quantized electron gas

    NASA Astrophysics Data System (ADS)

    Høye, Johan S.; Lomba, Enrique

    2016-10-01

    In this work we study the correlation energy of the quantized electron gas of uniform density at temperature T  =  0. To do so we utilize methods from classical statistical mechanics. The basis for this is the Feynman path integral for the partition function of quantized systems. With this representation the quantum mechanical problem can be interpreted as, and is equivalent to, a classical polymer problem in four dimensions where the fourth dimension is imaginary time. Thus methods, results, and properties obtained in the statistical mechanics of classical fluids can be utilized. From this viewpoint we recover the well known RPA (random phase approximation). Then to improve it we modify the RPA by requiring the corresponding correlation function to be such that electrons with equal spins can not be on the same position. Numerical evaluations are compared with well known results of a standard parameterization of Monte Carlo correlation energies.

  18. Quantization of interface currents

    SciTech Connect

    Kotani, Motoko; Schulz-Baldes, Hermann; Villegas-Blas, Carlos

    2014-12-15

    At the interface of two two-dimensional quantum systems, there may exist interface currents similar to edge currents in quantum Hall systems. It is proved that these interface currents are macroscopically quantized by an integer that is given by the difference of the Chern numbers of the two systems. It is also argued that at the interface between two time-reversal invariant systems with half-integer spin, one of which is trivial and the other non-trivial, there are dissipationless spin-polarized interface currents.

  19. Quantization Of Temperature

    NASA Astrophysics Data System (ADS)

    O'Brien, Paul

    2017-01-01

    Max Plank did not quantize temperature. I will show that the Plank temperature violates the Plank scale. Plank stated that the Plank scale was Natures scale and independent of human construct. Also stating that even aliens would derive the same values. He made a huge mistake, because temperature is based on the Kelvin scale, which is man-made just like the meter and kilogram. He did not discover natures scale for the quantization of temperature. His formula is flawed, and his value is incorrect. Plank's calculation is Tp = c2Mp/Kb. The general form of this equation is T = E/Kb Why is this wrong? The temperature for a fixed amount of energy is dependent upon the volume it occupies. Using the correct formula involves specifying the radius of the volume in the form of (RE). This leads to an inequality and a limit that is equivalent to the Bekenstein Bound, but using temperature instead of entropy. Rewriting this equation as a limit defines both the maximum temperature and Boltzmann's constant. This will saturate any space-time boundary with maximum temperature and information density, also the minimum radius and entropy. The general form of the equation then becomes a limit in BH thermodynamics T <= (RE)/(λKb) .

  20. Quantization on Curves

    NASA Astrophysics Data System (ADS)

    Frønsdal, Christian; Kontsevich, Maxim

    2007-02-01

    Deformation quantization on varieties with singularities offers perspectives that are not found on manifolds. The Harrison component of Hochschild cohomology, vanishing on smooth manifolds, reflects information about singularities. The Harrison 2-cochains are symmetric and are interpreted in terms of abelian *-products. This paper begins a study of abelian quantization on plane curves over mathbb{C}, being algebraic varieties of the form {mathbb{C}}^2/R, where R is a polynomial in two variables; that is, abelian deformations of the coordinate algebra mathbb{C}[x,y]/(R). To understand the connection between the singularities of a variety and cohomology we determine the algebraic Hochschild (co)homology and its Barr Gerstenhaber Schack decomposition. Homology is the same for all plane curves mathbb{C}[x,y]/R, but the cohomology depends on the local algebra of the singularity of R at the origin. The Appendix, by Maxim Kontsevich, explains in modern mathematical language a way to calculate Hochschild and Harrison cohomology groups for algebras of functions on singular planar curves etc. based on Koszul resolutions.

  1. Coherent state quantization of quaternions

    SciTech Connect

    Muraleetharan, B. E-mail: santhar@gmail.com; Thirulogasanthar, K. E-mail: santhar@gmail.com

    2015-08-15

    Parallel to the quantization of the complex plane, using the canonical coherent states of a right quaternionic Hilbert space, quaternion field of quaternionic quantum mechanics is quantized. Associated upper symbols, lower symbols, and related quantities are analyzed. Quaternionic version of the harmonic oscillator and Weyl-Heisenberg algebra are also obtained.

  2. First quantized electrodynamics

    SciTech Connect

    Bennett, A.F.

    2014-06-15

    The parametrized Dirac wave equation represents position and time as operators, and can be formulated for many particles. It thus provides, unlike field-theoretic Quantum Electrodynamics (QED), an elementary and unrestricted representation of electrons entangled in space or time. The parametrized formalism leads directly and without further conjecture to the Bethe–Salpeter equation for bound states. The formalism also yields the Uehling shift of the hydrogenic spectrum, the anomalous magnetic moment of the electron to leading order in the fine structure constant, the Lamb shift and the axial anomaly of QED. -- Highlights: •First-quantized electrodynamics of the parametrized Dirac equation is developed. •Unrestricted entanglement in time is made explicit. •Bethe and Salpeter’s equation for relativistic bound states is derived without further conjecture. •One-loop scattering corrections and the axial anomaly are derived using a partial summation. •Wide utility of semi-classical Quantum Electrodynamics is argued.

  3. Quantized beam shifts in graphene

    SciTech Connect

    de Melo Kort-Kamp, Wilton Junior; Sinitsyn, Nikolai; Dalvit, Diego Alejandro Roberto

    2015-10-08

    We predict the existence of quantized Imbert-Fedorov, Goos-Hanchen, and photonic spin Hall shifts for light beams impinging on a graphene-on-substrate system in an external magnetic field. In the quantum Hall regime the Imbert-Fedorov and photonic spin Hall shifts are quantized in integer multiples of the fine structure constant α, while the Goos-Hanchen ones in multiples of α2. We investigate the influence on these shifts of magnetic field, temperature, and material dispersion and dissipation. An experimental demonstration of quantized beam shifts could be achieved at terahertz frequencies for moderate values of the magnetic field.

  4. Deformation quantization of fermi fields

    SciTech Connect

    Galaviz, I. Garcia-Compean, H. Przanowski, M. Turrubiates, F.J.

    2008-04-15

    Deformation quantization for any Grassmann scalar free field is described via the Weyl-Wigner-Moyal formalism. The Stratonovich-Weyl quantizer, the Moyal *-product and the Wigner functional are obtained by extending the formalism proposed recently in [I. Galaviz, H. Garcia-Compean, M. Przanowski, F.J. Turrubiates, Weyl-Wigner-Moyal Formalism for Fermi Classical Systems, arXiv:hep-th/0612245] to the fermionic systems of infinite number of degrees of freedom. In particular, this formalism is applied to quantize the Dirac free field. It is observed that the use of suitable oscillator variables facilitates considerably the procedure. The Stratonovich-Weyl quantizer, the Moyal *-product, the Wigner functional, the normal ordering operator, and finally, the Dirac propagator have been found with the use of these variables.

  5. Visibility of wavelet quantization noise

    NASA Technical Reports Server (NTRS)

    Watson, A. B.; Yang, G. Y.; Solomon, J. A.; Villasenor, J.

    1997-01-01

    The discrete wavelet transform (DWT) decomposes an image into bands that vary in spatial frequency and orientation. It is widely used for image compression. Measures of the visibility of DWT quantization errors are required to achieve optimal compression. Uniform quantization of a single band of coefficients results in an artifact that we call DWT uniform quantization noise; it is the sum of a lattice of random amplitude basis functions of the corresponding DWT synthesis filter. We measured visual detection thresholds for samples of DWT uniform quantization noise in Y, Cb, and Cr color channels. The spatial frequency of a wavelet is r 2-lambda, where r is display visual resolution in pixels/degree, and lambda is the wavelet level. Thresholds increase rapidly with wavelet spatial frequency. Thresholds also increase from Y to Cr to Cb, and with orientation from lowpass to horizontal/vertical to diagonal. We construct a mathematical model for DWT noise detection thresholds that is a function of level, orientation, and display visual resolution. This allows calculation of a "perceptually lossless" quantization matrix for which all errors are in theory below the visual threshold. The model may also be used as the basis for adaptive quantization schemes.

  6. Visibility of Wavelet Quantization Noise

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.; Yang, Gloria Y.; Solomon, Joshua A.; Villasenor, John; Null, Cynthia H. (Technical Monitor)

    1995-01-01

    The Discrete Wavelet Transform (DWT) decomposes an image into bands that vary in spatial frequency and orientation. It is widely used for image compression. Measures of the visibility of DWT quantization errors are required to achieve optimal compression. Uniform quantization of a single band of coefficients results in an artifact that is the sum of a lattice of random amplitude basis functions of the corresponding DWT synthesis filter, which we call DWT uniform quantization noise. We measured visual detection thresholds for samples of DWT uniform quantization noise in Y, Cb, and Cr color channels. The spatial frequency of a wavelet is r 2(exp)-L , where r is display visual resolution in pixels/degree, and L is the wavelet level. Amplitude thresholds increase rapidly with spatial frequency. Thresholds also increase from Y to Cr to Cb, and with orientation from low-pass to horizontal/vertical to diagonal. We describe a mathematical model to predict DWT noise detection thresholds as a function of level, orientation, and display visual resolution. This allows calculation of a "perceptually lossless" quantization matrix for which all errors are in theory below the visual threshold. The model may also be used as the basis for adaptive quantization schemes.

  7. Stochastic Quantization of Instantons

    NASA Astrophysics Data System (ADS)

    Grandati, Y.; Bérard, A.; Grangé, P.

    1996-03-01

    The method of Parisi and Wu to quantize classical fields is applied to instanton solutionsϕIof euclidian non-linear theory in one dimension. The solutionϕεof the corresponding Langevin equation is built through a singular perturbative expansion inε=ℏ1/2in the frame of the center of mass of the instanton, where the differenceϕε-ϕIcarries only fluctuations of the instanton form. The relevance of the method is shown for the stochasticK dVequation with uniform noise in space: the exact solution usually obtained by the inverse scattering method is retrieved easily by the singular expansion. A general diagrammatic representation of the solution is then established which makes a thorough use of regrouping properties of stochastic diagrams derived in scalar field theory. Averaging over the noise and in the limit of infinite stochastic time, we obtain explicit expressions for the first two orders inεof the perturbed instanton and of its Green function. Specializing to the Sine-Gordon andϕ4models, the first anharmonic correction is obtained analytically. The calculation is carried to second order for theϕ4model, showing good convergence.

  8. Magnetic quantization over Riemannian manifolds

    NASA Astrophysics Data System (ADS)

    Karasev, M. V.; Osborn, T. A.

    2006-06-01

    We demonstrate that Weyl's pioneering idea (1918) to intertwine metric and magnetic fields into a single joint connection can be naturally realized, on the phase space level, by the gauge-invariant quantization of the cotangent bundle with magnetic symplectic form. Quantization, for systems over a noncompact Riemannian configuration manifold, may be achieved by the introduction of a magneto-metric analog of the Stratonovich quantizer - a family of invertible, selfadjoint operators representing quantum delta functions. Based on the quantizer, we construct a generalized Wigner transform that maps Hilbert-Schmidt operators into L-2 phase-space functions. The algebraic properties of the quantizer allow one to extract a family of symplectic reflections, which are then used to (i) derive a simple, explicit, and geometrically invariant formula for the noncommutative product of functions on phase space, and (ii) construct a magneto-metric connection on phase space. The classical limit of this product is given by the usual multiplication of functions (zeroth-order term), the magnetic Poisson bracket (first-order term), and by the magneto-metric connection (second-order term).

  9. Is Planck's quantization constant unique?

    NASA Astrophysics Data System (ADS)

    Livadiotis, George

    2016-07-01

    A cornerstone of Quantum Mechanics is the existence of a non-zero least action, the Planck constant. However, the basic concepts and theoretical developments of Quantum Mechanics are independent of its specific numerical value. A different constant h _{*}, similar to the Planck constant h, but ˜12 orders of magnitude larger, characterizes plasmas. The study of >50 different geophysical, space, and laboratory plasmas, provided the first evidence for the universality and the quantum nature of h _{*}, revealing that it is a new quantization constant. The recent results show the diagnostics for determining whether plasmas are characterized by the Planck or the new quantization constant, compounding the challenge to reconcile both quantization constants in quantum mechanics.

  10. Dual approach to circuit quantization using loop charges

    NASA Astrophysics Data System (ADS)

    Ulrich, Jascha; Hassler, Fabian

    2016-09-01

    The conventional approach to circuit quantization is based on node fluxes and traces the motion of node charges on the islands of the circuit. However, for some devices, the relevant physics can be best described by the motion of polarization charges over the branches of the circuit that are in general related to the node charges in a highly nonlocal way. Here, we present a method, dual to the conventional approach, for quantizing planar circuits in terms of loop charges. In this way, the polarization charges are directly obtained as the differences of the two loop charges on the neighboring loops. The loop charges trace the motion of fluxes through the circuit loops. We show that loop charges yield a simple description of the flux transport across phase-slip junctions. We outline a concrete construction of circuits based on phase-slip junctions that are electromagnetically dual to arbitrary planar Josephson junction circuits. We argue that loop charges also yield a simple description of the flux transport in conventional Josephson junctions shunted by large impedances. We show that a mixed circuit description in terms of node fluxes and loop charges yields an insight into the flux decompactification of a Josephson junction shunted by an inductor. As an application, we show that the fluxonium qubit is well approximated as a phase-slip junction for the experimentally relevant parameters. Moreover, we argue that the 0 -π qubit is effectively the dual of a Majorana Josephson junction.

  11. Color Quantization by Multiresolution Analysis

    NASA Astrophysics Data System (ADS)

    Ramella, Giuliana; di Baja, Gabriella Sanniti

    A color quantization method is presented, which is based on the analysis of the histogram at different resolutions computed on a Gaussian pyramid of the input image. Criteria based on persistence and dominance of peaks and pits of the histograms are introduced to detect the modes in the histogram of the input image and to define the reduced colormap. Important features of the method are, besides its limited computational cost, the possibility to obtain quantized images with a variable number of colors, depending on the user’s need, and that the number of colors in the resulting image does not need to be a priori fixed.

  12. EZW coding using nonuniform quantization

    NASA Astrophysics Data System (ADS)

    Yin, Che-Yi; Derin, Haluk

    1999-10-01

    This paper presents an image coder that modifies the EZW coder and provides an improvement in its performance. The subband EZW image coder uses a uniform quantizer with a threshold (deadzone). Whereas, we know that the distribution/histogram of the wavelet tree subband coefficients, all except the lowest subband, tend to be Laplacian. To accommodate for this, we modify the refining procedure in EZW and use a non-uniform quantizer on the coefficients that better fits their distribution. The experimental results show that the new image coder performs better than EZW.

  13. Geometric Quantization and Foliation Reduction

    NASA Astrophysics Data System (ADS)

    Skerritt, Paul

    A standard question in the study of geometric quantization is whether symplectic reduction interacts nicely with the quantized theory, and in particular whether "quantization commutes with reduction." Guillemin and Sternberg first proposed this question, and answered it in the affirmative for the case of a free action of a compact Lie group on a compact Kahler manifold. Subsequent work has focused mainly on extending their proof to non-free actions and non-Kahler manifolds. For realistic physical examples, however, it is desirable to have a proof which also applies to non-compact symplectic manifolds. In this thesis we give a proof of the quantization-reduction problem for general symplectic manifolds. This is accomplished by working in a particular wavefunction representation, associated with a polarization that is in some sense compatible with reduction. While the polarized sections described by Guillemin and Sternberg are nonzero on a dense subset of the Kahler manifold, the ones considered here are distributional, having support only on regions of the phase space associated with certain quantized, or "admissible", values of momentum. We first propose a reduction procedure for the prequantum geometric structures that "covers" symplectic reduction, and demonstrate how both symplectic and prequantum reduction can be viewed as examples of foliation reduction. Consistency of prequantum reduction imposes the above-mentioned admissibility conditions on the quantized momenta, which can be seen as analogues of the Bohr-Wilson-Sommerfeld conditions for completely integrable systems. We then describe our reduction-compatible polarization, and demonstrate a one-to-one correspondence between polarized sections on the unreduced and reduced spaces. Finally, we describe a factorization of the reduced prequantum bundle, suggested by the structure of the underlying reduced symplectic manifold. This in turn induces a factorization of the space of polarized sections that agrees

  14. Deformation of second and third quantization

    NASA Astrophysics Data System (ADS)

    Faizal, Mir

    2015-03-01

    In this paper, we will deform the second and third quantized theories by deforming the canonical commutation relations in such a way that they become consistent with the generalized uncertainty principle. Thus, we will first deform the second quantized commutator and obtain a deformed version of the Wheeler-DeWitt equation. Then we will further deform the third quantized theory by deforming the third quantized canonical commutation relation. This way we will obtain a deformed version of the third quantized theory for the multiverse.

  15. Quantized photonic spin Hall effect in graphene

    NASA Astrophysics Data System (ADS)

    Cai, Liang; Liu, Mengxia; Chen, Shizhen; Liu, Yachao; Shu, Weixing; Luo, Hailu; Wen, Shuangchun

    2017-01-01

    We examine the photonic spin Hall effect (SHE) in a graphene-substrate system with the presence of an external magnetic field. In the quantum Hall regime, we demonstrate that the in-plane and transverse spin-dependent splittings in the photonic SHE exhibit different quantized behaviors. The quantized SHE can be described as a consequence of a quantized geometric phase (Berry phase), which corresponds to the quantized spin-orbit interaction. Furthermore, an experimental scheme based on quantum weak value amplification is proposed to detect the quantized SHE in the terahertz frequency regime. By incorporating the quantum weak measurement techniques, the quantized photonic SHE holds great promise for detecting quantized Hall conductivity and the Berry phase. These results may bridge the gap between the electronic SHE and photonic SHE in graphene.

  16. Quantization of Multiply Connected Manifolds

    NASA Astrophysics Data System (ADS)

    Hawkins, Eli

    2005-04-01

    The standard (Berezin-Toeplitz) geometric quantization of a compact Kähler manifold is restricted by integrality conditions. These restrictions can be circumvented by passing to the universal covering space, provided that the lift of the symplectic form is exact. I relate this construction to the Baum-Connes assembly map and prove that it gives a strict quantization of the original manifold. I also propose a further generalization, classify the required structure, and provide a means of computing the resulting algebras. These constructions involve twisted group C*-algebras of the fundamental group which are determined by a group cocycle constructed from the cohomology class of the symplectic form. This provides an algebraic counterpart to the Morita equivalence of a symplectic manifold with its fundamental group.

  17. Quantized-"Gray-Scale" Electronic Synapses

    NASA Technical Reports Server (NTRS)

    Lamb, James L.; Daud, Taher; Thakoor, Anilkumar P.

    1990-01-01

    Proposed array of programmable synaptic connections for electronic neural network applications offers multiple quantized levels of connection strength using only simple, two-terminal, binary microswitch devices. Subgrids in fine grid of programmable resistive connections connected externally in parallel to form coarser synaptic grid. By selection of pattern of connections in each subgrid, connection strength of synaptic node represented by that subgrid set at quantized "gray level". Device structures promise implementations of quantized-"gray-scale" synaptic arrays with very high density.

  18. Exact quantization conditions for cluster integrable systems

    NASA Astrophysics Data System (ADS)

    Franco, Sebastián; Hatsuda, Yasuyuki; Mariño, Marcos

    2016-06-01

    We propose exact quantization conditions for the quantum integrable systems of Goncharov and Kenyon, based on the enumerative geometry of the corresponding toric Calabi-Yau manifolds. Our conjecture builds upon recent results on the quantization of mirror curves, and generalizes a previous proposal for the quantization of the relativistic Toda lattice. We present explicit tests of our conjecture for the integrable systems associated to the resolved {{{C}}3}/{{{Z}}5} and {{{C}}3}/{{{Z}}6} orbifolds.

  19. Vector Quantization With Emergent Codebook Structure

    NASA Technical Reports Server (NTRS)

    Ahalt, Stanley C.; Krishnamurthy, Ashok

    1993-01-01

    Proposed scheme under development for transmission of vector-quantized digital video images, vector quantizer codebook updated to adapt quantizer to changing signal statistics. Intended to be realized with electronic neural network. Codebook, which consists of patterns constituting video images, will undergo training during operation and scheme will develop codebooks ordered during training. System enables coding more compact, more immune to noise, and supports variable rate compression.

  20. Adaptive scalar quantization without side information.

    PubMed

    Ortega, A; Vetterli, M

    1997-01-01

    In this paper, we introduce a novel technique for adaptive scalar quantization. Adaptivity is useful in applications, including image compression, where the statistics of the source are either not known a priori or will change over time. Our algorithm uses previously quantized samples to estimate the distribution of the source, and does not require that side information be sent in order to adapt to changing source statistics. Our quantization scheme is thus backward adaptive. We propose that an adaptive quantizer can be separated into two building blocks, namely, model estimation and quantizer design. The model estimation produces an estimate of the changing source probability density function, which is then used to redesign the quantizer using standard techniques. We introduce nonparametric estimation techniques that only assume smoothness of the input distribution. We discuss the various sources of error in our estimation and argue that, for a wide class of sources with a smooth probability density function (pdf), we provide a good approximation to a "universal" quantizer, with the approximation becoming better as the rate increases. We study the performance of our scheme and show how the loss due to adaptivity is minimal in typical scenarios. In particular, we provide examples and show how our technique can achieve signal-to-noise ratios within 0.05 dB of the optimal Lloyd-Max quantizer for a memoryless source, while achieving over 1.5 dB gain over a fixed quantizer for a bimodal source.

  1. Berezin-Toeplitz Quantization and Berezin Transform

    NASA Astrophysics Data System (ADS)

    Schlichenmaier, Martin

    2001-04-01

    In this lecture results on the Berezin-Toeplitz quantization of arbitrary compact quantizable Kähler manifolds are presented. These results are obtained in joint work with M. Bordemann and E. Meinrenken. The existence of the Berezin-Toeplitz deformation quantization is also covered. Recent results obtained in joint work with A. Karabegov on the asymptotic expansion of the Berezin transform for arbitrary quantizable compact Kähler manifolds are explained. As an application the asymptotic expansion of the Fubini-Study fundamental form under the coherent state embedding is considered. Some comments on the dynamics of the quantum operators are given.

  2. Vector quantization for volume rendering

    NASA Technical Reports Server (NTRS)

    Ning, Paul; Hesselink, Lambertus

    1992-01-01

    Volume rendering techniques typically process volumetric data in raw, uncompressed form. As algorithmic and architectural advances improve rendering speeds, however, larger data sets will be evaluated requiring consideration of data storage and transmission issues. In this paper, we analyze the data compression requirements for volume rendering applications and present a solution based on vector quantization. The proposed system compresses volumetric data and then renders images directly from the new data format. Tests on a fluid flow data set demonstrate that good image quality may be achieved at a compression ratio of 17:1 with only a 5 percent cost in additional rendering time.

  3. Quantization of general linear electrodynamics

    SciTech Connect

    Rivera, Sergio; Schuller, Frederic P.

    2011-03-15

    General linear electrodynamics allow for an arbitrary linear constitutive relation between the field strength 2-form and induction 2-form density if crucial hyperbolicity and energy conditions are satisfied, which render the theory predictive and physically interpretable. Taking into account the higher-order polynomial dispersion relation and associated causal structure of general linear electrodynamics, we carefully develop its Hamiltonian formulation from first principles. Canonical quantization of the resulting constrained system then results in a quantum vacuum which is sensitive to the constitutive tensor of the classical theory. As an application we calculate the Casimir effect in a birefringent linear optical medium.

  4. Electronic quantization in dielectric nanolaminates

    NASA Astrophysics Data System (ADS)

    Willemsen, T.; Geerke, P.; Jupé, M.; Gallais, L.; Ristau, D.

    2016-12-01

    The scientific background in the field of the laser induced damage processes in optical coatings has been significantly extended during the last decades. Especially for the ultra-short pulse regime a clear correlation between the electronic material parameters and the laser damage threshold could be demonstrated. In the present study, the quantization in nanolaminates is investigated to gain a deeper insight into the behavior of the blue shift of the bandgap in specific coating materials as well as to find approximations for the effective mass of the electrons. The theoretical predictions are correlated to the measurements.

  5. Weighted Bergman Kernels and Quantization}

    NASA Astrophysics Data System (ADS)

    Engliš, Miroslav

    Let Ω be a bounded pseudoconvex domain in CN, φ, ψ two positive functions on Ω such that - log ψ, - log φ are plurisubharmonic, and z∈Ω a point at which - log φ is smooth and strictly plurisubharmonic. We show that as k-->∞, the Bergman kernels with respect to the weights φkψ have an asymptotic expansion for x,y near z, where φ(x,y) is an almost-analytic extension of &\\phi(x)=φ(x,x) and similarly for ψ. Further, . If in addition Ω is of finite type, φ,ψ behave reasonably at the boundary, and - log φ, - log ψ are strictly plurisubharmonic on Ω, we obtain also an analogous asymptotic expansion for the Berezin transform and give applications to the Berezin quantization. Finally, for Ω smoothly bounded and strictly pseudoconvex and φ a smooth strictly plurisubharmonic defining function for Ω, we also obtain results on the Berezin-Toeplitz quantization.

  6. Breathers on quantized superfluid vortices.

    PubMed

    Salman, Hayder

    2013-10-18

    We consider the propagation of breathers along a quantized superfluid vortex. Using the correspondence between the local induction approximation (LIA) and the nonlinear Schrödinger equation, we identify a set of initial conditions corresponding to breather solutions of vortex motion governed by the LIA. These initial conditions, which give rise to a long-wavelength modulational instability, result in the emergence of large amplitude perturbations that are localized in both space and time. The emergent structures on the vortex filament are analogous to loop solitons but arise from the dual action of bending and twisting of the vortex. Although the breather solutions we study are exact solutions of the LIA equations, we demonstrate through full numerical simulations that their key emergent attributes carry over to vortex dynamics governed by the Biot-Savart law and to quantized vortices described by the Gross-Pitaevskii equation. The breather excitations can lead to self-reconnections, a mechanism that can play an important role within the crossover range of scales in superfluid turbulence. Moreover, the observation of breather solutions on vortices in a field model suggests that these solutions are expected to arise in a wide range of other physical contexts from classical vortices to cosmological strings.

  7. Breathers on Quantized Superfluid Vortices

    NASA Astrophysics Data System (ADS)

    Salman, Hayder

    2013-10-01

    We consider the propagation of breathers along a quantized superfluid vortex. Using the correspondence between the local induction approximation (LIA) and the nonlinear Schrödinger equation, we identify a set of initial conditions corresponding to breather solutions of vortex motion governed by the LIA. These initial conditions, which give rise to a long-wavelength modulational instability, result in the emergence of large amplitude perturbations that are localized in both space and time. The emergent structures on the vortex filament are analogous to loop solitons but arise from the dual action of bending and twisting of the vortex. Although the breather solutions we study are exact solutions of the LIA equations, we demonstrate through full numerical simulations that their key emergent attributes carry over to vortex dynamics governed by the Biot-Savart law and to quantized vortices described by the Gross-Pitaevskii equation. The breather excitations can lead to self-reconnections, a mechanism that can play an important role within the crossover range of scales in superfluid turbulence. Moreover, the observation of breather solutions on vortices in a field model suggests that these solutions are expected to arise in a wide range of other physical contexts from classical vortices to cosmological strings.

  8. Quantization of higher spin fields

    SciTech Connect

    Wagenaar, J. W.; Rijken, T. A

    2009-11-15

    In this article we quantize (massive) higher spin (1{<=}j{<=}2) fields by means of Dirac's constrained Hamilton procedure both in the situation were they are totally free and were they are coupled to (an) auxiliary field(s). A full constraint analysis and quantization is presented by determining and discussing all constraints and Lagrange multipliers and by giving all equal times (anti)commutation relations. Also we construct the relevant propagators. In the free case we obtain the well-known propagators and show that they are not covariant, which is also well known. In the coupled case we do obtain covariant propagators (in the spin-3/2 case this requires b=0) and show that they have a smooth massless limit connecting perfectly to the massless case (with auxiliary fields). We notice that in our system of the spin-3/2 and spin-2 case the massive propagators coupled to conserved currents only have a smooth limit to the pure massless spin-propagator, when there are ghosts in the massive case.

  9. Integral quantizations with two basic examples

    SciTech Connect

    Bergeron, H.; Gazeau, J.P.

    2014-05-15

    The paper concerns integral quantization, a procedure based on operator-valued measure and resolution of the identity. We insist on covariance properties in the important case where group representation theory is involved. We also insist on the inherent probabilistic aspects of this classical–quantum map. The approach includes and generalizes coherent state quantization. Two applications based on group representation are carried out. The first one concerns the Weyl–Heisenberg group and the euclidean plane viewed as the corresponding phase space. We show that a world of quantizations exist, which yield the canonical commutation rule and the usual quantum spectrum of the harmonic oscillator. The second one concerns the affine group of the real line and gives rise to an interesting regularization of the dilation origin in the half-plane viewed as the corresponding phase space. -- Highlights: •Original approach to quantization based on (positive) operator-valued measures. •Includes Berezin–Klauder–Toeplitz and Weyl–Wigner quantizations. •Infinitely many such quantizations produce canonical commutation rule. •Set of objects to be quantized is enlarged in order to include singular functions or distributions. •Are given illuminating examples like quantum angle and affine or wavelet quantization.

  10. Quantized ionic conductance in nanopores

    SciTech Connect

    Zwolak, Michael; Lagerqvist, Johan; Di Ventra, Massimilliano

    2009-01-01

    Ionic transport in nanopores is a fundamentally and technologically important problem in view of its ubiquitous occurrence in biological processes and its impact on DNA sequencing applications. Using microscopic calculations, we show that ion transport may exhibit strong non-liDearities as a function of the pore radius reminiscent of the conductance quantization steps as a function of the transverse cross section of quantum point contacts. In the present case, however, conductance steps originate from the break up of the hydration layers that form around ions in aqueous solution. Once in the pore, the water molecules form wavelike structures due to multiple scattering at the surface of the pore walls and interference with the radial waves around the ion. We discuss these effects as well as the conditions under which the step-like features in the ionic conductance should be experimentally observable.

  11. Cosmology Quantized in Cosmic Time

    SciTech Connect

    Weinstein, M

    2004-06-03

    This paper discusses the problem of inflation in the context of Friedmann-Robertson-Walker Cosmology. We show how, after a simple change of variables, to quantize the problem in a way which parallels the classical discussion. The result is that two of the Einstein equations arise as exact equations of motion and one of the usual Einstein equations (suitably quantized) survives as a constraint equation to be imposed on the space of physical states. However, the Friedmann equation, which is also a constraint equation and which is the basis of the Wheeler-deWitt equation, acquires a welcome quantum correction that becomes significant for small scale factors. We discuss the extension of this result to a full quantum mechanical derivation of the anisotropy ({delta} {rho}/{rho}) in the cosmic microwave background radiation, and the possibility that the extra term in the Friedmann equation could have observable consequences. To clarify the general formalism and explicitly show why we choose to weaken the statement of the Wheeler-deWitt equation, we apply the general formalism to de Sitter space. After exactly solving the relevant Heisenberg equations of motion we give a detailed discussion of the subtleties associated with defining physical states and the emergence of the classical theory. This computation provides the striking result that quantum corrections to this long wavelength limit of gravity eliminate the problem of the big crunch. We also show that the same corrections lead to possibly measurable effects on the CMB radiation. For the sake of completeness, we discuss the special case, {lambda} = 0, and its relation to Minkowski space. Finally, we suggest interesting ways in which these techniques can be generalized to cast light on the question of chaotic or eternal inflation. In particular, we suggest one can put an experimental lower bound on the distance to a universe with a scale factor very different from our own, by looking at its effects on our CMB

  12. Quantized vortices around wavefront nodes, 2

    NASA Technical Reports Server (NTRS)

    Hirschfelder, J. O.; Goebel, C. J.; Bruch, L. W.

    1974-01-01

    Quantized vortices can occur around nodal points in wavefunctions. The derivation depends only on the wavefunction being single valued, continuous, and having continuous first derivatives. Since the derivation does not depend upon the dynamical equations, the quantized vortices are expected to occur for many types of waves such as electromagnetic and acoustic. Such vortices have appeared in the calculations of the H + H2 molecular collisions and play a role in the chemical kinetics. In a companion paper, it is shown that quantized vortices occur when optical waves are internally reflected from the face of a prism or particle beams are reflected from potential energy barriers.

  13. Robust vector quantization for noisy channels

    NASA Technical Reports Server (NTRS)

    Demarca, J. R. B.; Farvardin, N.; Jayant, N. S.; Shoham, Y.

    1988-01-01

    The paper briefly discusses techniques for making vector quantizers more tolerant to tranmsission errors. Two algorithms are presented for obtaining an efficient binary word assignment to the vector quantizer codewords without increasing the transmission rate. It is shown that about 4.5 dB gain over random assignment can be achieved with these algorithms. It is also proposed to reduce the effects of error propagation in vector-predictive quantizers by appropriately constraining the response of the predictive loop. The constrained system is shown to have about 4 dB of SNR gain over an unconstrained system in a noisy channel, with a small loss of clean-channel performance.

  14. Geometry of physical systems on quantized spaces

    NASA Astrophysics Data System (ADS)

    Milani, Vida; Mansourbeigi, Seyed M. H.; Clyde, Stephen W.

    We present a mathematical model for physical systems. A large class of functions is built through the functional quantization method and applied to the geometric study of the model. Quantized equations of motion along the Hamiltonian vector field are built up. It is seen that the procedure in higher dimension carries more physical information. The metric tensor appears to induce an electromagnetic field into the system and the dynamical nature of the electromagnetic field in curved space arises naturally. In the end, an explicit formula for the curvature tensor in the quantized space is given.

  15. Topologies on quantum topoi induced by quantization

    SciTech Connect

    Nakayama, Kunji

    2013-07-15

    In the present paper, we consider effects of quantization in a topos approach of quantum theory. A quantum system is assumed to be coded in a quantum topos, by which we mean the topos of presheaves on the context category of commutative subalgebras of a von Neumann algebra of bounded operators on a Hilbert space. A classical system is modeled by a Lie algebra of classical observables. It is shown that a quantization map from the classical observables to self-adjoint operators on the Hilbert space naturally induces geometric morphisms from presheaf topoi related to the classical system to the quantum topos. By means of the geometric morphisms, we give Lawvere-Tierney topologies on the quantum topos (and their equivalent Grothendieck topologies on the context category). We show that, among them, there exists a canonical one which we call a quantization topology. We furthermore give an explicit expression of a sheafification functor associated with the quantization topology.

  16. Loop quantization of Schwarzschild interior revisited

    NASA Astrophysics Data System (ADS)

    Singh, Parampreet; Corichi, Alejandro

    2016-03-01

    Several studies of different inequivalent loop quantizations have shown, that there exists no fully satisfactory quantum theory for the Schwarzschild interior. Existing quantizations fail either on dependence on the fiducial structure or on the lack of the classical limit. Here we put forward a novel viewpoint to construct the quantum theory that overcomes all of the known problems of the existing quantizations. It is shown that the quantum gravitational constraint is well defined past the singularity and that its effective dynamics possesses a bounce into an expanding regime. The classical singularity is avoided, and a semiclassical spacetime satisfying vacuum Einstein's equations is recovered on the ``other side'' of the bounce. We argue that such metric represents the interior region of a white-hole spacetime, but for which the corresponding ``white-hole mass'' differs from the original black hole mass. We compare the differences in physical implications with other quantizations.

  17. Spacetime rotation-induced Landau quantization

    NASA Astrophysics Data System (ADS)

    Konno, Kohkichi; Takahashi, Rohta

    2012-03-01

    We investigate noninertial and gravitational effects on quantum states in electromagnetic fields and present the analytic solution for energy eigenstates for the Schrödinger equation including noninertial, gravitational, and electromagnetic effects. We find that in addition to the Landau quantization the rotation of spacetime itself leads to the additional quantization, and that the energy levels for an electron are different from those for a proton at the level of gravitational corrections.

  18. Color quantization and processing by Fibonacci lattices.

    PubMed

    Mojsilovic, A; Soljanin, E

    2001-01-01

    Color quantization is sampling of three-dimensional (3-D) color spaces (such as RGB or Lab) which results in a discrete subset of colors known as a color codebook or palette. It is extensively used for display, transfer, and storage of natural images in Internet-based applications, computer graphics, and animation. We propose a sampling scheme which provides a uniform quantization of the Lab space. The idea is based on several results from number theory and phyllotaxy. The sampling algorithm is very much systematic and allows easy design of universal (image-independent) color codebooks for a given set of parameters. The codebook structure allows fast quantization and ordered dither of color images. The display quality of images quantized by the proposed color codebooks is comparable with that of image-dependent quantizers. Most importantly, the quantized images are more amenable to the type of processing used for grayscale ones. Methods for processing grayscale images cannot be simply extended to color images because they rely on the fact that each gray-level is described by a single number and the fact that a relation of full order can be easily established on the set of those numbers. Color spaces (such as RGB or Lab) are, on the other hand, 3-D. The proposed color quantization, i.e., color space sampling and numbering of sampled points, makes methods for processing grayscale images extendible to color images. We illustrate possible processing of color images by first introducing the basic average and difference operations and then implementing edge detection and compression of color quantized images.

  19. Quantization by cochain twists and nonassociative differentials

    SciTech Connect

    Beggs, E. J.; Majid, S.

    2010-05-15

    We show that several standard associative quantizations in mathematical physics can be expressed as cochain module-algebra twists in the spirit of Moyal products at least to O(({Dirac_h}/2{pi}){sup 3}), but to achieve this we twist not by a 2-cocycle but by a 2-cochain. This implies a hidden nonassociativity not visible in the algebra itself but present in its deeper noncommutative differential geometry, a phenomenon first seen in our previous work on semiclassicalization of differential structures. The quantizations are induced by a classical group covariance and include enveloping algebras U(g) as quantizations of g*, a Fedosov-type quantization of the sphere S{sup 2} under a Lorentz group covariance, the Mackey quantization of homogeneous spaces, and the standard quantum groups C{sub q}[G]. We also consider the differential quantization of R{sup n} for a given symplectic connection as part of our semiclassical analysis and we outline a proposal for the Dirac operator.

  20. A recursive technique for adaptive vector quantization

    NASA Technical Reports Server (NTRS)

    Lindsay, Robert A.

    1989-01-01

    Vector Quantization (VQ) is fast becoming an accepted, if not preferred method for image compression. The VQ performs well when compressing all types of imagery including Video, Electro-Optical (EO), Infrared (IR), Synthetic Aperture Radar (SAR), Multi-Spectral (MS), and digital map data. The only requirement is to change the codebook to switch the compressor from one image sensor to another. There are several approaches for designing codebooks for a vector quantizer. Adaptive Vector Quantization is a procedure that simultaneously designs codebooks as the data is being encoded or quantized. This is done by computing the centroid as a recursive moving average where the centroids move after every vector is encoded. When computing the centroid of a fixed set of vectors the resultant centroid is identical to the previous centroid calculation. This method of centroid calculation can be easily combined with VQ encoding techniques. The defined quantizer changes after every encoded vector by recursively updating the centroid of minimum distance which is the selected by the encoder. Since the quantizer is changing definition or states after every encoded vector, the decoder must now receive updates to the codebook. This is done as side information by multiplexing bits into the compressed source data.

  1. Controlling charge quantization with quantum fluctuations

    NASA Astrophysics Data System (ADS)

    Jezouin, S.; Iftikhar, Z.; Anthore, A.; Parmentier, F. D.; Gennser, U.; Cavanna, A.; Ouerghi, A.; Levkivskyi, I. P.; Idrisov, E.; Sukhorukov, E. V.; Glazman, L. I.; Pierre, F.

    2016-08-01

    In 1909, Millikan showed that the charge of electrically isolated systems is quantized in units of the elementary electron charge e. Today, the persistence of charge quantization in small, weakly connected conductors allows for circuits in which single electrons are manipulated, with applications in, for example, metrology, detectors and thermometry. However, as the connection strength is increased, the discreteness of charge is progressively reduced by quantum fluctuations. Here we report the full quantum control and characterization of charge quantization. By using semiconductor-based tunable elemental conduction channels to connect a micrometre-scale metallic island to a circuit, we explore the complete evolution of charge quantization while scanning the entire range of connection strengths, from a very weak (tunnel) to a perfect (ballistic) contact. We observe, when approaching the ballistic limit, that charge quantization is destroyed by quantum fluctuations, and scales as the square root of the residual probability for an electron to be reflected across the quantum channel; this scaling also applies beyond the different regimes of connection strength currently accessible to theory. At increased temperatures, the thermal fluctuations result in an exponential suppression of charge quantization and in a universal square-root scaling, valid for all connection strengths, in agreement with expectations. Besides being pertinent for the improvement of single-electron circuits and their applications, and for the metal-semiconductor hybrids relevant to topological quantum computing, knowledge of the quantum laws of electricity will be essential for the quantum engineering of future nanoelectronic devices.

  2. Controlling charge quantization with quantum fluctuations.

    PubMed

    Jezouin, S; Iftikhar, Z; Anthore, A; Parmentier, F D; Gennser, U; Cavanna, A; Ouerghi, A; Levkivskyi, I P; Idrisov, E; Sukhorukov, E V; Glazman, L I; Pierre, F

    2016-08-04

    In 1909, Millikan showed that the charge of electrically isolated systems is quantized in units of the elementary electron charge e. Today, the persistence of charge quantization in small, weakly connected conductors allows for circuits in which single electrons are manipulated, with applications in, for example, metrology, detectors and thermometry. However, as the connection strength is increased, the discreteness of charge is progressively reduced by quantum fluctuations. Here we report the full quantum control and characterization of charge quantization. By using semiconductor-based tunable elemental conduction channels to connect a micrometre-scale metallic island to a circuit, we explore the complete evolution of charge quantization while scanning the entire range of connection strengths, from a very weak (tunnel) to a perfect (ballistic) contact. We observe, when approaching the ballistic limit, that charge quantization is destroyed by quantum fluctuations, and scales as the square root of the residual probability for an electron to be reflected across the quantum channel; this scaling also applies beyond the different regimes of connection strength currently accessible to theory. At increased temperatures, the thermal fluctuations result in an exponential suppression of charge quantization and in a universal square-root scaling, valid for all connection strengths, in agreement with expectations. Besides being pertinent for the improvement of single-electron circuits and their applications, and for the metal-semiconductor hybrids relevant to topological quantum computing, knowledge of the quantum laws of electricity will be essential for the quantum engineering of future nanoelectronic devices.

  3. Tribology of the lubricant quantized sliding state.

    PubMed

    Castelli, Ivano Eligio; Capozza, Rosario; Vanossi, Andrea; Santoro, Giuseppe E; Manini, Nicola; Tosatti, Erio

    2009-11-07

    In the framework of Langevin dynamics, we demonstrate clear evidence of the peculiar quantized sliding state, previously found in a simple one-dimensional boundary lubricated model [A. Vanossi et al., Phys. Rev. Lett. 97, 056101 (2006)], for a substantially less idealized two-dimensional description of a confined multilayer solid lubricant under shear. This dynamical state, marked by a nontrivial "quantized" ratio of the averaged lubricant center-of-mass velocity to the externally imposed sliding speed, is recovered, and shown to be robust against the effects of thermal fluctuations, quenched disorder in the confining substrates, and over a wide range of loading forces. The lubricant softness, setting the width of the propagating solitonic structures, is found to play a major role in promoting in-registry commensurate regions beneficial to this quantized sliding. By evaluating the force instantaneously exerted on the top plate, we find that this quantized sliding represents a dynamical "pinned" state, characterized by significantly low values of the kinetic friction. While the quantized sliding occurs due to solitons being driven gently, the transition to ordinary unpinned sliding regimes can involve lubricant melting due to large shear-induced Joule heating, for example at large speed.

  4. Gravitational surface Hamiltonian and entropy quantization

    NASA Astrophysics Data System (ADS)

    Bakshi, Ashish; Majhi, Bibhas Ranjan; Samanta, Saurav

    2017-02-01

    The surface Hamiltonian corresponding to the surface part of a gravitational action has xp structure where p is conjugate momentum of x. Moreover, it leads to TS on the horizon of a black hole. Here T and S are temperature and entropy of the horizon. Imposing the hermiticity condition we quantize this Hamiltonian. This leads to an equidistant spectrum of its eigenvalues. Using this we show that the entropy of the horizon is quantized. This analysis holds for any order of Lanczos-Lovelock gravity. For general relativity, the area spectrum is consistent with Bekenstein's observation. This provides a more robust confirmation of this earlier result as the calculation is based on the direct quantization of the Hamiltonian in the sense of usual quantum mechanics.

  5. The totally constrained model: three quantization approaches

    NASA Astrophysics Data System (ADS)

    Gambini, Rodolfo; Olmedo, Javier

    2014-08-01

    We provide a detailed comparison of the different approaches available for the quantization of a totally constrained system with a constraint algebra generating the non-compact group. In particular, we consider three schemes: the Refined Algebraic Quantization, the Master Constraint Programme and the Uniform Discretizations approach. For the latter, we provide a quantum description where we identify semiclassical sectors of the kinematical Hilbert space. We study the quantum dynamics of the system in order to show that it is compatible with the classical continuum evolution. Among these quantization approaches, the Uniform Discretizations provides the simpler description in agreement with the classical theory of this particular model, and it is expected to give new insights about the quantum dynamics of more realistic totally constrained models such as canonical general relativity.

  6. Non-quantized penetration of magnetic field in the vortex state of superconductors

    PubMed

    Geim; Dubonos; Grigorieva; Novoselov; Peeters; Schweigert

    2000-09-07

    As first pointed out by Bardeen and Ginzburg in the early sixties, the amount of magnetic flux carried by vortices in superconducting materials depends on their distance from the sample edge, and can be smaller than one flux quantum, phi0 = h/2e (where h is Planck's constant and e is the electronic charge). In bulk superconductors, this reduction of flux becomes negligible at submicrometre distances from the edge, but in thin films the effect may survive much farther into the material. But the effect has not been observed experimentally, and it is often assumed that magnetic field enters type II superconductors in units of phi0. Here we measure the amount of flux introduced by individual vortices in a superconducting film, finding that the flux always differs substantially from phi0. We have observed vortices that carry as little as 0.001phi0, as well as 'negative vortices', whose penetration leads to the expulsion of magnetic field. We distinguish two phenomena responsible for non-quantized flux penetration: the finite-size effect and a nonlinear screening of the magnetic field due to the presence of a surface barrier. The latter effect has not been considered previously, but is likely to cause non-quantized penetration in most cases.

  7. Subband Image Coding with Jointly Optimized Quantizers

    NASA Technical Reports Server (NTRS)

    Kossentini, Faouzi; Chung, Wilson C.; Smith Mark J. T.

    1995-01-01

    An iterative design algorithm for the joint design of complexity- and entropy-constrained subband quantizers and associated entropy coders is proposed. Unlike conventional subband design algorithms, the proposed algorithm does not require the use of various bit allocation algorithms. Multistage residual quantizers are employed here because they provide greater control of the complexity-performance tradeoffs, and also because they allow efficient and effective high-order statistical modeling. The resulting subband coder exploits statistical dependencies within subbands, across subbands, and across stages, mainly through complexity-constrained high-order entropy coding. Experimental results demonstrate that the complexity-rate-distortion performance of the new subband coder is exceptional.

  8. Minimal representations, geometric quantization, and unitarity.

    PubMed Central

    Brylinski, R; Kostant, B

    1994-01-01

    In the framework of geometric quantization we explicitly construct, in a uniform fashion, a unitary minimal representation pio of every simply-connected real Lie group Go such that the maximal compact subgroup of Go has finite center and Go admits some minimal representation. We obtain algebraic and analytic results about pio. We give several results on the algebraic and symplectic geometry of the minimal nilpotent orbits and then "quantize" these results to obtain the corresponding representations. We assume (Lie Go)C is simple. PMID:11607478

  9. Image Coding Based on Address Vector Quantization.

    NASA Astrophysics Data System (ADS)

    Feng, Yushu

    Image coding is finding increased application in teleconferencing, archiving, and remote sensing. This thesis investigates the potential of Vector Quantization (VQ), a relatively new source coding technique, for compression of monochromatic and color images. Extensions of the Vector Quantization technique to the Address Vector Quantization method have been investigated. In Vector Quantization, the image data to be encoded are first processed to yield a set of vectors. A codeword from the codebook which best matches the input image vector is then selected. Compression is achieved by replacing the image vector with the index of the code-word which produced the best match, the index is sent to the channel. Reconstruction of the image is done by using a table lookup technique, where the label is simply used as an address for a table containing the representative vectors. A code-book of representative vectors (codewords) is generated using an iterative clustering algorithm such as K-means, or the generalized Lloyd algorithm. A review of different Vector Quantization techniques are given in chapter 1. Chapter 2 gives an overview of codebook design methods including the Kohonen neural network to design codebook. During the encoding process, the correlation of the address is considered and Address Vector Quantization is developed for color image and monochrome image coding. Address VQ which includes static and dynamic processes is introduced in chapter 3. In order to overcome the problems in Hierarchical VQ, Multi-layer Address Vector Quantization is proposed in chapter 4. This approach gives the same performance as that of the normal VQ scheme but the bit rate is about 1/2 to 1/3 as that of the normal VQ method. In chapter 5, a Dynamic Finite State VQ based on a probability transition matrix to select the best subcodebook to encode the image is developed. In chapter 6, a new adaptive vector quantization scheme, suitable for color video coding, called "A Self -Organizing

  10. Constraints on operator ordering from third quantization

    SciTech Connect

    Ohkuwa, Yoshiaki; Faizal, Mir; Ezawa, Yasuo

    2016-02-15

    In this paper, we analyse the Wheeler–DeWitt equation in the third quantized formalism. We will demonstrate that for certain operator ordering, the early stages of the universe are dominated by quantum fluctuations, and the universe becomes classical at later stages during the cosmic expansion. This is physically expected, if the universe is formed from quantum fluctuations in the third quantized formalism. So, we will argue that this physical requirement can be used to constrain the form of the operator ordering chosen. We will explicitly demonstrate this to be the case for two different cosmological models.

  11. On Quantization of Quadratic Poisson Structures

    NASA Astrophysics Data System (ADS)

    Manchon, D.; Masmoudi, M.; Roux, A.

    Any classical r-matrix on the Lie algebra of linear operators on a real vector space V gives rise to a quadratic Poisson structure on V which admits a deformation quantization stemming from the construction of V. Drinfel'd [Dr], [Gr]. We exhibit in this article an example of quadratic Poisson structure which does not arise this way.

  12. Deformation quantization and boundary value problems

    NASA Astrophysics Data System (ADS)

    Tarkhanov, Nikolai

    2016-11-01

    We describe a natural construction of deformation quantization on a compact symplectic manifold with boundary. On the algebra of quantum observables a trace functional is defined which as usual annihilates the commutators. This gives rise to an index as the trace of the unity element. We formulate the index theorem as a conjecture and examine it by the classical harmonic oscillator.

  13. Hysteresis in a quantized superfluid 'atomtronic' circuit.

    PubMed

    Eckel, Stephen; Lee, Jeffrey G; Jendrzejewski, Fred; Murray, Noel; Clark, Charles W; Lobb, Christopher J; Phillips, William D; Edwards, Mark; Campbell, Gretchen K

    2014-02-13

    Atomtronics is an emerging interdisciplinary field that seeks to develop new functional methods by creating devices and circuits where ultracold atoms, often superfluids, have a role analogous to that of electrons in electronics. Hysteresis is widely used in electronic circuits-it is routinely observed in superconducting circuits and is essential in radio-frequency superconducting quantum interference devices. Furthermore, it is as fundamental to superfluidity (and superconductivity) as quantized persistent currents, critical velocity and Josephson effects. Nevertheless, despite multiple theoretical predictions, hysteresis has not been previously observed in any superfluid, atomic-gas Bose-Einstein condensate. Here we directly detect hysteresis between quantized circulation states in an atomtronic circuit formed from a ring of superfluid Bose-Einstein condensate obstructed by a rotating weak link (a region of low atomic density). This contrasts with previous experiments on superfluid liquid helium where hysteresis was observed directly in systems in which the quantization of flow could not be observed, and indirectly in systems that showed quantized flow. Our techniques allow us to tune the size of the hysteresis loop and to consider the fundamental excitations that accompany hysteresis. The results suggest that the relevant excitations involved in hysteresis are vortices, and indicate that dissipation has an important role in the dynamics. Controlled hysteresis in atomtronic circuits may prove to be a crucial feature for the development of practical devices, just as it has in electronic circuits such as memories, digital noise filters (for example Schmitt triggers) and magnetometers (for example superconducting quantum interference devices).

  14. Bolometric Device Based on Fluxoid Quantization

    NASA Technical Reports Server (NTRS)

    Bonetti, Joseph A.; Kenyon, Matthew E.; Leduc, Henry G.; Day, Peter K.

    2010-01-01

    The temperature dependence of fluxoid quantization in a superconducting loop. The sensitivity of the device is expected to surpass that of other superconducting- based bolometric devices, such as superconducting transition-edge sensors and superconducting nanowire devices. Just as important, the proposed device has advantages in sample fabrication.

  15. Visual data mining for quantized spatial data

    NASA Technical Reports Server (NTRS)

    Braverman, Amy; Kahn, Brian

    2004-01-01

    In previous papers we've shown how a well known data compression algorithm called Entropy-constrained Vector Quantization ( can be modified to reduce the size and complexity of very large, satellite data sets. In this paper, we descuss how to visualize and understand the content of such reduced data sets.

  16. Deterministic Quantization by Dynamical Boundary Conditions

    SciTech Connect

    Dolce, Donatello

    2010-06-15

    We propose an unexplored quantization method. It is based on the assumption of dynamical space-time intrinsic periodicities for relativistic fields, which in turn can be regarded as dual to extra-dimensional fields. As a consequence we obtain a unified and consistent interpretation of Special Relativity and Quantum Mechanics in terms of Deterministic Geometrodynamics.

  17. Multiverse in the Third Quantized Formalism

    NASA Astrophysics Data System (ADS)

    Mir, Faizal

    2014-11-01

    In this paper we will analyze the third quantization of gravity in path integral formalism. We will use the time-dependent version of Wheeler—DeWitt equation to analyze the multiverse in this formalism. We will propose a mechanism for baryogenesis to occur in the multiverse, without violating the baryon number conservation.

  18. Hysteresis in a quantized superfluid `atomtronic' circuit

    NASA Astrophysics Data System (ADS)

    Eckel, Stephen; Lee, Jeffrey G.; Jendrzejewski, Fred; Murray, Noel; Clark, Charles W.; Lobb, Christopher J.; Phillips, William D.; Edwards, Mark; Campbell, Gretchen K.

    2014-02-01

    Atomtronics is an emerging interdisciplinary field that seeks to develop new functional methods by creating devices and circuits where ultracold atoms, often superfluids, have a role analogous to that of electrons in electronics. Hysteresis is widely used in electronic circuits--it is routinely observed in superconducting circuits and is essential in radio-frequency superconducting quantum interference devices. Furthermore, it is as fundamental to superfluidity (and superconductivity) as quantized persistent currents, critical velocity and Josephson effects. Nevertheless, despite multiple theoretical predictions, hysteresis has not been previously observed in any superfluid, atomic-gas Bose-Einstein condensate. Here we directly detect hysteresis between quantized circulation states in an atomtronic circuit formed from a ring of superfluid Bose-Einstein condensate obstructed by a rotating weak link (a region of low atomic density). This contrasts with previous experiments on superfluid liquid helium where hysteresis was observed directly in systems in which the quantization of flow could not be observed, and indirectly in systems that showed quantized flow. Our techniques allow us to tune the size of the hysteresis loop and to consider the fundamental excitations that accompany hysteresis. The results suggest that the relevant excitations involved in hysteresis are vortices, and indicate that dissipation has an important role in the dynamics. Controlled hysteresis in atomtronic circuits may prove to be a crucial feature for the development of practical devices, just as it has in electronic circuits such as memories, digital noise filters (for example Schmitt triggers) and magnetometers (for example superconducting quantum interference devices).

  19. Image compression using address-vector quantization

    NASA Astrophysics Data System (ADS)

    Nasrabadi, Nasser M.; Feng, Yushu

    1990-12-01

    A novel vector quantization scheme, the address-vector quantizer (A-VQ), is proposed which exploits the interblock correlation by encoding a group of blocks together using an address-codebook (AC). The AC is a set of address-codevectors (ACVs), each representing a combination of addresses or indices. Each element of the ACV is an address of an entry in the LBG-codebook, representing a vector-quantized block. The AC consists of an active (addressable) region and an inactive (nonaddressable) region. During encoding the ACVs in the AC are reordered adaptively to bring the most probable ACVs into the active region. When encoding an ACV, the active region is checked, and if such an address combination exists, its index is transmitted to the receiver. Otherwise, the address of each block is transmitted individually. The SNR of the images encoded by the A-VQ method is the same as that of a memoryless vector quantizer, but the bit rate is by a factor of approximately two.

  20. Video data compression using artificial neural network differential vector quantization

    NASA Technical Reports Server (NTRS)

    Krishnamurthy, Ashok K.; Bibyk, Steven B.; Ahalt, Stanley C.

    1991-01-01

    An artificial neural network vector quantizer is developed for use in data compression applications such as Digital Video. Differential Vector Quantization is used to preserve edge features, and a new adaptive algorithm, known as Frequency-Sensitive Competitive Learning, is used to develop the vector quantizer codebook. To develop real time performance, a custom Very Large Scale Integration Application Specific Integrated Circuit (VLSI ASIC) is being developed to realize the associative memory functions needed in the vector quantization algorithm. By using vector quantization, the need for Huffman coding can be eliminated, resulting in superior performance against channel bit errors than methods that use variable length codes.

  1. Quantization of non-Hamiltonian and dissipative systems

    NASA Astrophysics Data System (ADS)

    Tarasov, Vasily E.

    2001-09-01

    A generalization of canonical quantization which maps a dynamical operator to a dynamical superoperator is suggested. Weyl quantization of dynamical operator, which cannot be represented as Poisson bracket with some function, is considered. The usual Weyl quantization of observables is a specific case of suggested quantization. This approach allows to define consistent quantization procedure for non-Hamiltonian and dissipative systems. Examples of the harmonic oscillator with friction (generalized Lorenz-Rossler-Leipnik-Newton equation), the Fokker-Planck-type system and Lorenz-type system are considered.

  2. The Angular Momentum Dilemma and Born-Jordan Quantization

    NASA Astrophysics Data System (ADS)

    de Gosson, Maurice A.

    2017-01-01

    The rigorous equivalence of the Schrödinger and Heisenberg pictures requires that one uses Born-Jordan quantization in place of Weyl quantization. We confirm this by showing that the much discussed " angular momentum dilemma" disappears if one uses Born-Jordan quantization. We argue that the latter is the only physically correct quantization procedure. We also briefly discuss a possible redefinition of phase space quantum mechanics, where the usual Wigner distribution has to be replaced with a new quasi-distribution associated with Born-Jordan quantization, and which has proven to be successful in time-frequency analysis.

  3. Exact quantization of a superparticle in AdS{sub 5}xS{sup 5}

    SciTech Connect

    Horigane, Tetsuo; Kazama, Yoichi

    2010-02-15

    As a step toward deeper understanding of the AdS/CFT correspondence, exact quantization of a Brink-Schwarz superparticle in the AdS{sub 5}xS{sup 5} background with Ramond-Ramond flux is performed from the first principle in the phase space formulation. It includes the construction of the quantum Noether charges for the psu(2,2|4) superconformal symmetry and by solving the superconformal primary conditions we obtain the complete physical spectrum of the system with the explicit wave functions. The spectrum agrees precisely with the supergravity results, including all the Kaluza-Klein excitations. Our method and the result are expected to shed light on the eventual quantization of a superstring in this important background.

  4. Precise Quantization of Anomalous Hall Effect

    NASA Astrophysics Data System (ADS)

    Bestwick, Andrew

    In the quantum anomalous Hall effect, electron transport in a magnetically-doped topological insulator takes place through chiral, dissipationless edge channels. In this talk, we discuss the behavior of a nearly ideal implementations of the effect in which the Hall resistance is within a part per 10,000 of its quantized value and the longitudinal resistivity can reach below 1 Ω per square. Nearly all Cr-doped topological insulator samples demonstrate extreme temperature dependence that is well-modeled by a small effective gap, allowing control over quantization with an unexpected magnetocaloric effect. We also discuss measurements of new device geometries and non-local resistances that identify the sources of dissipation that limit the effect. (Now at Rigetti Computing).

  5. Neural net approach to predictive vector quantization

    NASA Astrophysics Data System (ADS)

    Mohsenian, Nader; Nasrabadi, Nasser M.

    1992-11-01

    A new predictive vector quantization (PVQ) technique, capable of exploring the nonlinear dependencies in addition to the linear dependencies that exist between adjacent blocks of pixels, is introduced. Two different classes of neural nets form the components of the PVQ scheme. A multi-layer perceptron is embedded in the predictive component of the compression system. This neural network, using the non-linearity condition associated with its processing units, can perform as a non-linear vector predictor. The second component of the PVQ scheme vector quantizes (VQ) the residual vector that is formed by subtracting the output of the perceptron from the original wave-pattern. Kohonen Self-Organizing Feature Map (KSOFM) was utilized as a neural network clustering algorithm to design the codebook for the VQ technique. Coding results are presented for monochrome 'still' images.

  6. Second quantization in bit-string physics

    NASA Technical Reports Server (NTRS)

    Noyes, H. Pierre

    1993-01-01

    Using a new fundamental theory based on bit-strings, a finite and discrete version of the solutions of the free one particle Dirac equation as segmented trajectories with steps of length h/mc along the forward and backward light cones executed at velocity +/- c are derived. Interpreting the statistical fluctuations which cause the bends in these segmented trajectories as emission and absorption of radiation, these solutions are analogous to a fermion propagator in a second quantized theory. This allows us to interpret the mass parameter in the step length as the physical mass of the free particle. The radiation in interaction with it has the usual harmonic oscillator structure of a second quantized theory. How these free particle masses can be generated gravitationally using the combinatorial hierarchy sequence (3,10,137,2(sup 127) + 136), and some of the predictive consequences are sketched.

  7. Covariant quantization of the CBS superparticle

    NASA Astrophysics Data System (ADS)

    Grassi, P. A.; Policastro, G.; Porrati, M.

    2001-07-01

    The quantization of the Casalbuoni-Brink-Schwarz superparticle is performed in an explicitly covariant way using the antibracket formalism. Since an infinite number of ghost fields are required, within a suitable off-shell twistor-like formalism, we are able to fix the gauge of each ghost sector without modifying the physical content of the theory. The computation reveals that the antibracket cohomology contains only the physical degrees of freedom.

  8. Quantization, group contraction and zero point energy

    NASA Astrophysics Data System (ADS)

    Blasone, M.; Celeghini, E.; Jizba, P.; Vitiello, G.

    2003-04-01

    We study algebraic structures underlying 't Hooft's construction relating classical systems with the quantum harmonic oscillator. The role of group contraction is discussed. We propose the use of SU(1,1) for two reasons: because of the isomorphism between its representation Hilbert space and that of the harmonic oscillator and because zero point energy is implied by the representation structure. Finally, we also comment on the relation between dissipation and quantization.

  9. Single Abrikosov vortices as quantized information bits

    PubMed Central

    Golod, T.; Iovan, A.; Krasnov, V. M.

    2015-01-01

    Superconducting digital devices can be advantageously used in future supercomputers because they can greatly reduce the dissipation power and increase the speed of operation. Non-volatile quantized states are ideal for the realization of classical Boolean logics. A quantized Abrikosov vortex represents the most compact magnetic object in superconductors, which can be utilized for creation of high-density digital cryoelectronics. In this work we provide a proof of concept for Abrikosov-vortex-based random access memory cell, in which a single vortex is used as an information bit. We demonstrate high-endurance write operation and two different ways of read-out using a spin valve or a Josephson junction. These memory cells are characterized by an infinite magnetoresistance between 0 and 1 states, a short access time, a scalability to nm sizes and an extremely low write energy. Non-volatility and perfect reproducibility are inherent for such a device due to the quantized nature of the vortex. PMID:26456592

  10. Generalized Bergman kernels and geometric quantization

    NASA Astrophysics Data System (ADS)

    Tuynman, G. M.

    1987-03-01

    In geometric quantization it is well known that, if f is an observable and F a polarization on a symplectic manifold (M,ω), then the condition ``Xf leaves F invariant'' (where Xf denotes the Hamiltonian vector field associated to f ) is sufficient to guarantee that one does not have to compute the BKS kernel explicitly in order to know the corresponding quantum operator. It is shown in this paper that this condition on f can be weakened to ``Xf leaves F+F° invariant''and the corresponding quantum operator is then given implicitly by formula (4.8); in particular when F is a (positive) Kähler polarization, all observables can be quantized ``directly'' and moreover, an ``explicit'' formula for the corresponding quantum operator is derived (Theorem 5.8). Applying this to the phase space R2n one obtains a quantization prescription which ressembles the normal ordering of operators in quantum field theory. When we translate this prescription to the usual position representation of quantum mechanics, the result is (a.o) that the operator associated to a classical potential is multiplication by a function which is essentially the convolution of the potential function with a Gaussian function of width ℏ, instead of multiplication by the potential itself.

  11. Conductance Quantization in Resistive Random Access Memory

    NASA Astrophysics Data System (ADS)

    Li, Yang; Long, Shibing; Liu, Yang; Hu, Chen; Teng, Jiao; Liu, Qi; Lv, Hangbing; Suñé, Jordi; Liu, Ming

    2015-10-01

    The intrinsic scaling-down ability, simple metal-insulator-metal (MIM) sandwich structure, excellent performances, and complementary metal-oxide-semiconductor (CMOS) technology-compatible fabrication processes make resistive random access memory (RRAM) one of the most promising candidates for the next-generation memory. The RRAM device also exhibits rich electrical, thermal, magnetic, and optical effects, in close correlation with the abundant resistive switching (RS) materials, metal-oxide interface, and multiple RS mechanisms including the formation/rupture of nanoscale to atomic-sized conductive filament (CF) incorporated in RS layer. Conductance quantization effect has been observed in the atomic-sized CF in RRAM, which provides a good opportunity to deeply investigate the RS mechanism in mesoscopic dimension. In this review paper, the operating principles of RRAM are introduced first, followed by the summarization of the basic conductance quantization phenomenon in RRAM and the related RS mechanisms, device structures, and material system. Then, we discuss the theory and modeling of quantum transport in RRAM. Finally, we present the opportunities and challenges in quantized RRAM devices and our views on the future prospects.

  12. Light-Front Quantization of Gauge Theories

    SciTech Connect

    Brodskey, Stanley

    2002-12-01

    Light-front wavefunctions provide a frame-independent representation of hadrons in terms of their physical quark and gluon degrees of freedom. The light-front Hamiltonian formalism provides new nonperturbative methods for obtaining the QCD spectrum and eigensolutions, including resolvant methods, variational techniques, and discretized light-front quantization. A new method for quantizing gauge theories in light-cone gauge using Dirac brackets to implement constraints is presented. In the case of the electroweak theory, this method of light-front quantization leads to a unitary and renormalizable theory of massive gauge particles, automatically incorporating the Lorentz and 't Hooft conditions as well as the Goldstone boson equivalence theorem. Spontaneous symmetry breaking is represented by the appearance of zero modes of the Higgs field leaving the light-front vacuum equal to the perturbative vacuum. I also discuss an ''event amplitude generator'' for automatically computing renormalized amplitudes in perturbation theory. The importance of final-state interactions for the interpretation of diffraction, shadowing, and single-spin asymmetries in inclusive reactions such as deep inelastic lepton-hadron scattering is emphasized.

  13. Analysis and Design of Logarithmic-type Dynamic Quantizer

    NASA Astrophysics Data System (ADS)

    Sugie, Toshiharu; Okamoto, Tetsuro

    This paper is concerned with quantized feedback control in the case where logarithmic-type dynamic quantizers are adopted instead of conventional static (memoryless) ones. First, when the plant and the state feedback controller are given, the admissible coarsest quantization density which guarantees quadratic stability of the closed loop system is given in a closed form, which does not depend on the choice of controller in contrast to the static quantizer case. Second, when the plant, the state feedback controller and the coarseness of the quantization density are given, we provide a design method of the dynamic quantizers via convex optimization. Third, these results are extended to the case of output feedback control systems. Finally, some numerical examples are given to demonstrate the effectiveness of the proposed method.

  14. A visual detection model for DCT coefficient quantization

    NASA Technical Reports Server (NTRS)

    Ahumada, Albert J., Jr.; Peterson, Heidi A.

    1993-01-01

    The discrete cosine transform (DCT) is widely used in image compression, and is part of the JPEG and MPEG compression standards. The degree of compression, and the amount of distortion in the decompressed image are determined by the quantization of the transform coefficients. The standards do not specify how the DCT coefficients should be quantized. Our approach is to set the quantization level for each coefficient so that the quantization error is at the threshold of visibility. Here we combine results from our previous work to form our current best detection model for DCT coefficient quantization noise. This model predicts sensitivity as a function of display parameters, enabling quantization matrices to be designed for display situations varying in luminance, veiling light, and spatial frequency related conditions (pixel size, viewing distance, and aspect ratio). It also allows arbitrary color space directions for the representation of color.

  15. Large-scale quantization from local correlations in space plasmas

    NASA Astrophysics Data System (ADS)

    Livadiotis, George; McComas, David J.

    2014-05-01

    This study examines the large-scale quantization that can characterize the phase space of certain physical systems. Plasmas are such systems where large-scale quantization, ħ*, is caused by Debye shielding that structures correlations between particles. The value of ħ* is constant—some 12 orders of magnitude larger than the Planck constant—across a wide range of space plasmas, from the solar wind in the inner heliosphere to the distant plasma in the inner heliosheath and the local interstellar medium. This paper develops the foundation and advances the understanding of the concept of plasma quantization; in particular, we (i) show the analogy of plasma to Planck quantization, (ii) show the key points of plasma quantization, (iii) construct some basic quantum mechanical concepts for the large-scale plasma quantization, (iv) investigate the correlation between plasma parameters that implies plasma quantization, when it is approximated by a relation between the magnetosonic energy and the plasma frequency, (v) analyze typical space plasmas throughout the heliosphere and show the constancy of plasma quantization over many orders of magnitude in plasma parameters, (vi) analyze Advanced Composition Explorer (ACE) solar wind measurements to develop another measurement of the value of ħ*, and (vii) apply plasma quantization to derive unknown plasma parameters when some key observable is missing.

  16. Semiclassical quantization of nonadiabatic systems with hopping periodic orbits

    SciTech Connect

    Fujii, Mikiya Yamashita, Koichi

    2015-02-21

    We present a semiclassical quantization condition, i.e., quantum–classical correspondence, for steady states of nonadiabatic systems consisting of fast and slow degrees of freedom (DOFs) by extending Gutzwiller’s trace formula to a nonadiabatic form. The quantum–classical correspondence indicates that a set of primitive hopping periodic orbits, which are invariant under time evolution in the phase space of the slow DOF, should be quantized. The semiclassical quantization is then applied to a simple nonadiabatic model and accurately reproduces exact quantum energy levels. In addition to the semiclassical quantization condition, we also discuss chaotic dynamics involved in the classical limit of nonadiabatic dynamics.

  17. Topological Quantization in Units of the Fine Structure Constant

    SciTech Connect

    Maciejko, Joseph; Qi, Xiao-Liang; Drew, H.Dennis; Zhang, Shou-Cheng; /Stanford U., Phys. Dept. /Stanford U., Materials Sci. Dept. /SLAC

    2011-11-11

    Fundamental topological phenomena in condensed matter physics are associated with a quantized electromagnetic response in units of fundamental constants. Recently, it has been predicted theoretically that the time-reversal invariant topological insulator in three dimensions exhibits a topological magnetoelectric effect quantized in units of the fine structure constant {alpha} = e{sup 2}/{h_bar}c. In this Letter, we propose an optical experiment to directly measure this topological quantization phenomenon, independent of material details. Our proposal also provides a way to measure the half-quantized Hall conductances on the two surfaces of the topological insulator independently of each other.

  18. Separable quantizations of Stäckel systems

    NASA Astrophysics Data System (ADS)

    Błaszak, Maciej; Marciniak, Krzysztof; Domański, Ziemowit

    2016-08-01

    In this article we prove that many Hamiltonian systems that cannot be separably quantized in the classical approach of Robertson and Eisenhart can be separably quantized if we extend the class of admissible quantizations through a suitable choice of Riemann space adapted to the Poisson geometry of the system. Actually, in this article we prove that for every quadratic in momenta Stäckel system (defined on 2 n dimensional Poisson manifold) for which Stäckel matrix consists of monomials in position coordinates there exist infinitely many quantizations-parametrized by n arbitrary functions-that turn this system into a quantum separable Stäckel system.

  19. Perceptually optimized quantization tables for H.264/AVC

    NASA Astrophysics Data System (ADS)

    Chen, Heng; Braeckman, Geert; Barbarien, Joeri; Munteanu, Adrian; Schelkens, Peter

    2010-08-01

    The H.264/AVC video coding standard currently represents the state-of-the-art in video compression technology. The initial version of the standard only supported a single quantization step size for all the coefficients in a transformed block. Later, support for custom quantization tables was added, which allows to independently specify the quantization step size for each coefficient in a transformed block. In this way, different quantization can be applied to the highfrequency and low-frequency coefficients, reflecting the human visual system's different sensitivity to high-frequency and low-frequency spatial variations in the signal. In this paper, we design custom quantization tables taking into account the properties of the human visual system as well as the viewing conditions. Our proposed design is based on a model for the human visual system's contrast sensitivity function, which specifies the contrast sensitivity in function of the spatial frequency of the signal. By calculating the spatial frequencies corresponding to each of the transform's basis functions, taking into account viewing distance and dot pitch of the screen, the sensitivity of the human visual system to variations in the transform coefficient corresponding to each basis function can be determined and used to define the corresponding quantization step size. Experimental results, whereby the video quality is measured using VQM, show that the designed quantization tables yield improved performance compared to uniform quantization and to the default quantization tables provided as a part of the reference encoder.

  20. Phase-space quantization of field theory.

    SciTech Connect

    Curtright, T.; Zachos, C.

    1999-04-20

    In this lecture, a limited introduction of gauge invariance in phase-space is provided, predicated on canonical transformations in quantum phase-space. Exact characteristic trajectories are also specified for the time-propagating Wigner phase-space distribution function: they are especially simple--indeed, classical--for the quantized simple harmonic oscillator. This serves as the underpinning of the field theoretic Wigner functional formulation introduced. Scalar field theory is thus reformulated in terms of distributions in field phase-space. This is a pedagogical selection from work published and reported at the Yukawa Institute Workshop ''Gauge Theory and Integrable Models'', 26-29 January, 1999.

  1. Quantum mechanics, gravity and modified quantization relations.

    PubMed

    Calmet, Xavier

    2015-08-06

    In this paper, we investigate a possible energy scale dependence of the quantization rules and, in particular, from a phenomenological point of view, an energy scale dependence of an effective [Formula: see text] (reduced Planck's constant). We set a bound on the deviation of the value of [Formula: see text] at the muon scale from its usual value using measurements of the anomalous magnetic moment of the muon. Assuming that inflation has taken place, we can conclude that nature is described by a quantum theory at least up to an energy scale of about 10(16) GeV.

  2. Automatic threshold selection using histogram quantization

    NASA Astrophysics Data System (ADS)

    Wang, Yue; Adali, Tulay; Lo, Shih-Chung B.

    1997-04-01

    An automatic threshold selection method is proposed for biomedical image analysis based on a histogram coding scheme. The threshold values can be determined based on the well-known Lloyd-Max scalar quantization rule, which is optimal in the sense of achieving minimum mean-square-error distortion. An iterative self-organizing learning rule is derived to determine the threshold levels. The rule does not require any prior information about the histogram, hence is fully automatic. Experimental results show that this new approach is easy to implement yet is highly efficient, robust with respect to noise, and yields reliable estimates of the threshold levels.

  3. Quantized adiabatic transport in momentum space.

    PubMed

    Ho, Derek Y H; Gong, Jiangbin

    2012-07-06

    Though topological aspects of energy bands are known to play a key role in quantum transport in solid-state systems, the implications of Floquet band topology for transport in momentum space (i.e., acceleration) have not been explored so far. Using a ratchet accelerator model inspired by existing cold-atom experiments, here we characterize a class of extended Floquet bands of one-dimensional driven quantum systems by Chern numbers, reveal topological phase transitions therein, and theoretically predict the quantization of adiabatic transport in momentum space. Numerical results confirm our theory and indicate the feasibility of experimental studies.

  4. Conductance quantization in strongly disordered graphene ribbons

    NASA Astrophysics Data System (ADS)

    Ihnatsenka, S.; Kirczenow, G.

    2009-11-01

    We present numerical studies of conduction in graphene nanoribbons with different types of disorder. We find that even when defect scattering depresses the conductance to values two orders of magnitude lower than 2e2/h , equally spaced conductance plateaus occur at moderately low temperatures due to enhanced electron backscattering near subband edge energies if bulk vacancies are present in the ribbon. This work accounts quantitatively for the surprising conductance quantization observed by Lin [Phys. Rev. B 78, 161409(R) (2008)] in ribbons with such low conductances.

  5. Black-box superconducting circuit quantization.

    PubMed

    Nigg, Simon E; Paik, Hanhee; Vlastakis, Brian; Kirchmair, Gerhard; Shankar, S; Frunzio, Luigi; Devoret, M H; Schoelkopf, R J; Girvin, S M

    2012-06-15

    We present a semiclassical method for determining the effective low-energy quantum Hamiltonian of weakly anharmonic superconducting circuits containing mesoscopic Josephson junctions coupled to electromagnetic environments made of an arbitrary combination of distributed and lumped elements. A convenient basis, capturing the multimode physics, is given by the quantized eigenmodes of the linearized circuit and is fully determined by a classical linear response function. The method is used to calculate numerically the low-energy spectrum of a 3D transmon system, and quantitative agreement with measurements is found.

  6. Quantization of conductance minimum and index theorem

    NASA Astrophysics Data System (ADS)

    Ikegaya, Satoshi; Suzuki, Shu-Ichiro; Tanaka, Yukio; Asano, Yasuhiro

    2016-08-01

    We discuss the minimum value of the zero-bias differential conductance Gmin in a junction consisting of a normal metal and a nodal superconductor preserving time-reversal symmetry. Using the quasiclassical Green function method, we show that Gmin is quantized at (4 e2/h ) NZES in the limit of strong impurity scatterings in the normal metal at the zero temperature. The integer NZES represents the number of perfect transmission channels through the junction. An analysis of the chiral symmetry of the Hamiltonian indicates that NZES corresponds to the Atiyah-Singer index in mathematics.

  7. Fréchet-algebraic deformation quantizations

    NASA Astrophysics Data System (ADS)

    Waldmann, S.

    2014-09-01

    In this review I present some recent results on the convergence properties of formal star products. Based on a general construction of a Fréchet topology for an algebra with countable vector space basis I discuss several examples from deformation quantization: the Wick star product on the flat phase space m2n gives a first example of a Fréchet algebraic framework for the canonical commutation relations. More interesting, the star product on the Poincare disk can be treated along the same lines, leading to a non-trivial example of a convergent star product on a curved Kahler manifold.

  8. Quantization of soluble classical constrained systems

    SciTech Connect

    Belhadi, Z.; Menas, F.; Bérard, A.; Mohrbach, H.

    2014-12-15

    The derivation of the brackets among coordinates and momenta for classical constrained systems is a necessary step toward their quantization. Here we present a new approach for the determination of the classical brackets which does neither require Dirac’s formalism nor the symplectic method of Faddeev and Jackiw. This approach is based on the computation of the brackets between the constants of integration of the exact solutions of the equations of motion. From them all brackets of the dynamical variables of the system can be deduced in a straightforward way.

  9. Path integral quantization of generalized quantum electrodynamics

    SciTech Connect

    Bufalo, R.; Pimentel, B. M.; Zambrano, G. E. R.

    2011-02-15

    In this paper, a complete covariant quantization of generalized electrodynamics is shown through the path integral approach. To this goal, we first studied the Hamiltonian structure of the system following Dirac's methodology and, then, we followed the Faddeev-Senjanovic procedure to obtain the transition amplitude. The complete propagators (Schwinger-Dyson-Fradkin equations) of the correct gauge fixation and the generalized Ward-Fradkin-Takahashi identities are also obtained. Afterwards, an explicit calculation of one-loop approximations of all Green's functions and a discussion about the obtained results are presented.

  10. Size quantization in Cu2Se nanocrystals

    NASA Astrophysics Data System (ADS)

    Govindraju, S.; Kalenga, M. P.; Airo, M.; Moloto, M. J.; Sikhwivhilu, L. M.; Moloto, N.

    2014-12-01

    Herein we report on the synthesis of size quantized copper selenide nanocrystals via the colloidal method. Different colours of the sample were obtained at different time intervals indicative of the sizes of the nanocrystals. The absorption band edges were blue-shifted from bulk indicative of quantum confinement. This was corroborated by the TEM results that showed very small particles ranging from 2 nm to 7 nm. This work therefore shows a phenomenon readily observed in cadmium chalcogenide nanocrystals but has never been reported for copper based chalcogenides.

  11. Toward loop quantization of plane gravitational waves

    NASA Astrophysics Data System (ADS)

    Hinterleitner, Franz; Major, Seth

    2012-03-01

    The polarized Gowdy model in terms of Ashtekar-Barbero variables is reduced with an additional constraint derived from the Killing equations for plane gravitational waves with parallel rays. The new constraint is formulated in a diffeomorphism invariant manner and, when it is included in the model, the resulting constraint algebra is first class, in contrast to the prior work done in special coordinates. Using an earlier work by Banerjee and Date, the constraints are expressed in terms of classical quantities that have an operator equivalent in loop quantum gravity, making these plane gravitational wave spacetimes accessible to loop quantization techniques.

  12. Semiclassical Quantization of the Bogoliubov Spectrum

    SciTech Connect

    Kolovsky, Andrey R.

    2007-07-13

    We analyze the Bogoliubov spectrum of the three-site Bose-Hubbard model with a finite number of Bose particles by using a semiclassical approach. The Bogoliubov spectrum is shown to be associated with the low-energy regular component of the classical Hubbard model. We identify the full set of the integrals of motion of this regular component and, quantizing them, obtain the energy levels of the quantum system. The critical values of the energy, above which the regular Bogoliubov spectrum evolves into a chaotic spectrum, is indicated as well.

  13. Quantization of inductively shunted superconducting circuits

    NASA Astrophysics Data System (ADS)

    Smith, W. C.; Kou, A.; Vool, U.; Pop, I. M.; Frunzio, L.; Schoelkopf, R. J.; Devoret, M. H.

    2016-10-01

    We present a method for calculating the energy levels of superconducting circuits that contain highly anharmonic, inductively shunted modes with arbitrarily strong coupling. Our method starts by calculating the normal modes of the linearized circuit and proceeds with numerical diagonalization in this basis. As an example, we analyze the Hamiltonian of a fluxonium qubit inductively coupled to a readout resonator. While elementary, this simple example is nontrivial because it cannot be efficiently treated by the method known as "black-box quantization," numerical diagonalization in the bare harmonic oscillator basis, or perturbation theory. Calculated spectra are compared to measured spectroscopy data, demonstrating excellent quantitative agreement between theory and experiment.

  14. A visual detection model for DCT coefficient quantization

    NASA Technical Reports Server (NTRS)

    Ahumada, Albert J., Jr.; Watson, Andrew B.

    1994-01-01

    The discrete cosine transform (DCT) is widely used in image compression and is part of the JPEG and MPEG compression standards. The degree of compression and the amount of distortion in the decompressed image are controlled by the quantization of the transform coefficients. The standards do not specify how the DCT coefficients should be quantized. One approach is to set the quantization level for each coefficient so that the quantization error is near the threshold of visibility. Results from previous work are combined to form the current best detection model for DCT coefficient quantization noise. This model predicts sensitivity as a function of display parameters, enabling quantization matrices to be designed for display situations varying in luminance, veiling light, and spatial frequency related conditions (pixel size, viewing distance, and aspect ratio). It also allows arbitrary color space directions for the representation of color. A model-based method of optimizing the quantization matrix for an individual image was developed. The model described above provides visual thresholds for each DCT frequency. These thresholds are adjusted within each block for visual light adaptation and contrast masking. For given quantization matrix, the DCT quantization errors are scaled by the adjusted thresholds to yield perceptual errors. These errors are pooled nonlinearly over the image to yield total perceptual error. With this model one may estimate the quantization matrix for a particular image that yields minimum bit rate for a given total perceptual error, or minimum perceptual error for a given bit rate. Custom matrices for a number of images show clear improvement over image-independent matrices. Custom matrices are compatible with the JPEG standard, which requires transmission of the quantization matrix.

  15. Loop quantization of the Schwarzschild interior revisited

    NASA Astrophysics Data System (ADS)

    Corichi, Alejandro; Singh, Parampreet

    2016-03-01

    The loop quantization of the Schwarzschild interior region, as described by a homogeneous anisotropic Kantowski-Sachs model, is re-examined. As several studies of different—inequivalent—loop quantizations have shown, to date there exists no fully satisfactory quantum theory for this model. This fact poses challenges to the validity of some scenarios to address the black hole information problem. Here we put forward a novel viewpoint to construct the quantum theory that builds from some of the models available in the literature. The final picture is a quantum theory that is both independent of any auxiliary structure and possesses a correct low curvature limit. It represents a subtle but non-trivial modification of the original prescription given by Ashtekar and Bojowald. It is shown that the quantum gravitational constraint is well defined past the singularity and that its effective dynamics possesses a bounce into an expanding regime. The classical singularity is avoided, and a semiclassical spacetime satisfying vacuum Einstein’s equations is recovered on the ‘other side’ of the bounce. We argue that such a metric represents the interior region of a white-hole spacetime, but for which the corresponding ‘white hole mass’ differs from the original black hole mass. Furthermore, we find that the value of the white hole mass is proportional to the third power of the starting black hole mass.

  16. Quantizations on the circle and coherent states

    NASA Astrophysics Data System (ADS)

    Chadzitaskos, G.; Luft, P.; Tolar, J.

    2012-06-01

    We present a possible construction of coherent states on the unit circle as configuration space. Our approach is based on Borel quantizations on S1 including the Aharonov-Bohm-type quantum description. Coherent states are constructed by Perelomov’s method as group-related coherent states generated by Weyl operators on the quantum phase space {Z} \\times S^{1}. Because of the duality of canonical coordinates and momenta, i.e. the angular variable and the integers, this formulation can also be interpreted as coherent states over an infinite periodic chain. For the construction, we use the analogy with our quantization and coherent states over a finite periodic chain where the quantum phase space was {Z}_{M} \\times {Z}_{M}. The coherent states constructed in this work are shown to satisfy the resolution of unity. To compare them with canonical coherent states, some of their further properties are also studied demonstrating similarities as well as substantial differences. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Coherent states: mathematical and physical aspects’.

  17. Second-quantized formulation of geometric phases

    SciTech Connect

    Deguchi, Shinichi; Fujikawa, Kazuo

    2005-07-15

    The level crossing problem and associated geometric terms are neatly formulated by the second-quantized formulation. This formulation exhibits a hidden local gauge symmetry related to the arbitrariness of the phase choice of the complete orthonormal basis set. By using this second-quantized formulation, which does not assume adiabatic approximation, a convenient exact formula for the geometric terms including off-diagonal geometric terms is derived. The analysis of geometric phases is then reduced to a simple diagonalization of the Hamiltonian, and it is analyzed both in the operator and path-integral formulations. If one diagonalizes the geometric terms in the infinitesimal neighborhood of level crossing, the geometric phases become trivial (and thus no monopole singularity) for arbitrarily large but finite time interval T. The integrability of Schroedinger equation and the appearance of the seemingly nonintegrable phases are thus consistent. The topological proof of the Longuet-Higgins' phase-change rule, for example, fails in the practical Born-Oppenheimer approximation where a large but finite ratio of two time scales is involved and T is identified with the period of the slower system. The difference and similarity between the geometric phases associated with level crossing and the exact topological object such as the Aharonov-Bohm phase become clear in the present formulation. A crucial difference between the quantum anomaly and the geometric phases is also noted.

  18. Instabilities caused by floating-point arithmetic quantization.

    NASA Technical Reports Server (NTRS)

    Phillips, C. L.

    1972-01-01

    It is shown that an otherwise stable digital control system can be made unstable by signal quantization when the controller operates on floating-point arithmetic. Sufficient conditions of instability are determined, and an example of loss of stability is treated when only one quantizer is operated.

  19. Image Compression on a VLSI Neural-Based Vector Quantizer.

    ERIC Educational Resources Information Center

    Chen, Oscal T.-C.; And Others

    1992-01-01

    Describes a modified frequency-sensitive self-organization (FSO) algorithm for image data compression and the associated VLSI architecture. Topics discussed include vector quantization; VLSI neural processor architecture; detailed circuit implementation; and a neural network vector quantization prototype chip. Examples of images using the FSO…

  20. Alternate Light Front Quantization Procedure for Scalar Fields

    NASA Astrophysics Data System (ADS)

    Przeszowski, Jerzy A.

    2017-03-01

    The novel procedure for the light-front (LF) quantization is formulated and applied for models of free scalar fields. The expected well-known results are rediscovered for a single field and new results are obtained for the two fields model. We use fields smeared with a test function on the LF hypersurface as the basic ingredient of our novel quantization procedure.

  1. The origin of quantum fluctuations in microcanonical quantization

    NASA Astrophysics Data System (ADS)

    Kanenaga, Masahiko

    2004-04-01

    For the harmonic oscillator, we show that the important postulate of microcanonical quantization which yields quantum fluctuations can be derived from the random dynamics of stochastic electrodynamics, here chosen to be the ( D+1)-dimensional classical dynamics in the microcanonical quantization formalism.

  2. On the quantization of the charge-mass ratio

    NASA Astrophysics Data System (ADS)

    Ulhoa, S. C.

    2017-01-01

    The paper deals with the problem of describing fundamental particles. The Einstein-Rosen approach was revisited to explain the charge-mass ratio quantization. Such a result is obtained once a quantization prescription is applied to the expression of gravitational energy defined in the realm of teleparallel gravity.

  3. Weighted MinMax Algorithm for Color Image Quantization

    NASA Technical Reports Server (NTRS)

    Reitan, Paula J.

    1999-01-01

    The maximum intercluster distance and the maximum quantization error that are minimized by the MinMax algorithm are shown to be inappropriate error measures for color image quantization. A fast and effective (improves image quality) method for generalizing activity weighting to any histogram-based color quantization algorithm is presented. A new non-hierarchical color quantization technique called weighted MinMax that is a hybrid between the MinMax and Linde-Buzo-Gray (LBG) algorithms is also described. The weighted MinMax algorithm incorporates activity weighting and seeks to minimize WRMSE, whereby obtaining high quality quantized images with significantly less visual distortion than the MinMax algorithm.

  4. Modeling quantization matrices for perceptual image / video encoding

    NASA Astrophysics Data System (ADS)

    Zhang, Huipin; Cote, Guy

    2008-01-01

    Quantization matrix is an important encoding tool for discrete cosine transform (DCT) based perceptual image / video encoding in that DCT coefficients can be quantized according to the sensitivity of the human visual system to the coefficients' corresponding spatial frequencies. A quadratic model is introduced to parameterize the quantization matrices. This model is then used to optimize quantization matrices for a specific bitrate or bitrate range by maximizing the expected encoding quality via a trial based multidimensional numerical search method. The model is simple yet it characterizes the slope and the convexity of the quantization matrices along the horizontal, the vertical and the diagonal directions. The advantage of the model for improving perceptual video encoding quality is demonstrated with simulations using H.264 / AVC video encoding.

  5. Lattice radial quantization: 3D Ising

    NASA Astrophysics Data System (ADS)

    Brower, R. C.; Fleming, G. T.; Neuberger, H.

    2013-04-01

    Lattice radial quantization is introduced as a nonperturbative method intended to numerically solve Euclidean conformal field theories that can be realized as fixed points of known Lagrangians. As an example, we employ a lattice shaped as a cylinder with a 2D Icosahedral cross-section to discretize dilatations in the 3D Ising model. Using the integer spacing of the anomalous dimensions of the first two descendants (l = 1, 2), we obtain an estimate for η = 0.034 (10). We also observed small deviations from integer spacing for the 3rd descendant, which suggests that a further improvement of our radial lattice action will be required to guarantee conformal symmetry at the Wilson-Fisher fixed point in the continuum limit.

  6. Quantizing polaritons in inhomogeneous dissipative systems

    NASA Astrophysics Data System (ADS)

    Drezet, Aurélien

    2017-02-01

    In this article we provide a general analysis of canonical quantization for polaritons in dispersive and dissipative electromagnetic inhomogeneous media. We compare several approaches based either on the Huttner-Barnett model [B. Huttner and S. M. Barnett, Phys. Rev. A 46, 4306 (1992), 10.1103/PhysRevA.46.4306] or the Green function, Langevin-noise method [T. Gruner and D.-G. Welsch, Phys. Rev. A 53, 1818 (1996), 10.1103/PhysRevA.53.1818] which includes only material oscillators as fundamental variables. We show that in order to preserve unitarity, causality, and time symmetry, one must necessarily include with an equal footing both electromagnetic modes and material fluctuations in the evolution equations. This becomes particularly relevant for all nanophotonics and plasmonics problems involving spatially localized antennas or devices.

  7. Quaternionic quantization principle in general relativity and supergravity

    NASA Astrophysics Data System (ADS)

    Kober, Martin

    2016-01-01

    A generalized quantization principle is considered, which incorporates nontrivial commutation relations of the components of the variables of the quantized theory with the components of the corresponding canonical conjugated momenta referring to other space-time directions. The corresponding commutation relations are formulated by using quaternions. At the beginning, this extended quantization concept is applied to the variables of quantum mechanics. The resulting Dirac equation and the corresponding generalized expression for plane waves are formulated and some consequences for quantum field theory are considered. Later, the quaternionic quantization principle is transferred to canonical quantum gravity. Within quantum geometrodynamics as well as the Ashtekar formalism, the generalized algebraic properties of the operators describing the gravitational observables and the corresponding quantum constraints implied by the generalized representations of these operators are determined. The generalized algebra also induces commutation relations of the several components of the quantized variables with each other. Finally, the quaternionic quantization procedure is also transferred to 𝒩 = 1 supergravity. Accordingly, the quantization principle has to be generalized to be compatible with Dirac brackets, which appear in canonical quantum supergravity.

  8. Modified 8×8 quantization table and Huffman encoding steganography

    NASA Astrophysics Data System (ADS)

    Guo, Yongning; Sun, Shuliang

    2014-10-01

    A new secure steganography, which is based on Huffman encoding and modified quantized discrete cosine transform (DCT) coefficients, is provided in this paper. Firstly, the cover image is segmented into 8×8 blocks and modified DCT transformation is applied on each block. Huffman encoding is applied to code the secret image before embedding. DCT coefficients are quantized by modified quantization table. Inverse DCT(IDCT) is conducted on each block. All the blocks are combined together and the steg image is finally achieved. The experiment shows that the proposed method is better than DCT and Mahender Singh's in PSNR and Capacity.

  9. Universal features of quantized thermal conductance of carbon nanotubes.

    PubMed

    Yamamoto, Takahiro; Watanabe, Satoshi; Watanabe, Kazuyuki

    2004-02-20

    The universal features of quantized thermal conductance of carbon nanotubes (CNTs) are revealed through a theoretical analysis based on the Landauer theory of heat transport. The phonon-derived thermal conductance of semiconducting CNTs exhibits a universal quantization in the low-temperature limit, independent of the radius or atomic geometry. The temperature dependence follows a single curve given in terms of temperature scaled by the phonon energy gap. The thermal conductance of metallic CNTs has an additional contribution from electronic states, which also exhibits quantized behavior up to room temperature.

  10. Direct observation of Kelvin waves excited by quantized vortex reconnection

    PubMed Central

    Fonda, Enrico; Meichle, David P.; Ouellette, Nicholas T.; Hormoz, Sahand; Lathrop, Daniel P.

    2014-01-01

    Quantized vortices are key features of quantum fluids such as superfluid helium and Bose–Einstein condensates. The reconnection of quantized vortices and subsequent emission of Kelvin waves along the vortices are thought to be central to dissipation in such systems. By visualizing the motion of submicron particles dispersed in superfluid 4He, we have directly observed the emission of Kelvin waves from quantized vortex reconnection. We characterize one event in detail, using dimensionless similarity coordinates, and compare it with several theories. Finally, we give evidence for other examples of wavelike behavior in our system. PMID:24704878

  11. Precise quantization of anomalous Hall effect near zero magnetic field

    NASA Astrophysics Data System (ADS)

    Bestwick, Andrew; Fox, Eli; Kou, Xufeng; Pan, Lei; Wang, Kang; Goldhaber-Gordon, David

    2015-03-01

    The quantum anomalous Hall effect (QAHE) has recently been of great interest due to its recent experimental realization in thin films of Cr-doped (Bi, Sb)2Te3, a ferromagnetic 3D topological insulator. The presence of ferromagnetic exchange breaks time-reversal symmetry, opening a gap in the surface states, but gives rise to dissipationless chiral conduction at the edge of a magnetized film. Ideally, this leads to vanishing longitudinal resistance and Hall resistance quantized to h /e2 , where h is Planck's constant and e is the electron charge, but perfect quantization has so far proved elusive. Here, we study the QAHE in the limit of zero applied magnetic field, and measure Hall resistance quantized to within one part per 10,000. Deviation from quantization is due primarily to thermally activated carriers, which can be nearly eliminated through adiabatic demagnetization cooling. This result demonstrates an important step toward dissipationless electron transport in technologically relevant conditions.

  12. Polymer-Fourier quantization of the scalar field revisited

    NASA Astrophysics Data System (ADS)

    Garcia-Chung, Angel; Vergara, J. David

    2016-10-01

    The polymer quantization of the Fourier modes of the real scalar field is studied within algebraic scheme. We replace the positive linear functional of the standard Poincaré invariant quantization by a singular one. This singular positive linear functional is constructed as mimicking the singular limit of the complex structure of the Poincaré invariant Fock quantization. The resulting symmetry group of such polymer quantization is the subgroup SDiff(ℝ4) which is a subgroup of Diff(ℝ4) formed by spatial volume preserving diffeomorphisms. In consequence, this yields an entirely different irreducible representation of the canonical commutation relations, nonunitary equivalent to the standard Fock representation. We also compared the Poincaré invariant Fock vacuum with the polymer Fourier vacuum.

  13. Remarks on the geometric quantization of Landau levels

    NASA Astrophysics Data System (ADS)

    Galasso, Andrea; Spera, Mauro

    2016-08-01

    In this note, we resume the geometric quantization approach to the motion of a charged particle on a plane, subject to a constant magnetic field perpendicular to the latter, by showing directly that it gives rise to a completely integrable system to which we may apply holomorphic geometric quantization. In addition, we present a variant employing a suitable vertical polarization and we also make contact with Bott’s quantization, enforcing the property “quantization commutes with reduction”, which is known to hold under quite general conditions. We also provide an interpretation of translational symmetry breaking in terms of coherent states and index theory. Finally, we give a representation theoretic description of the lowest Landau level via the use of an S1-equivariant Dirac operator.

  14. Inelastic scattering of xenon atoms by quantized vortices in superfluids

    NASA Astrophysics Data System (ADS)

    Pshenichnyuk, I. A.; Berloff, N. G.

    2016-11-01

    We study inelastic interactions of particles with quantized vortices in superfluids by using a semiclassical matter wave theory that is analogous to the Landau two-fluid equations, but allows for the vortex dynamics. The research is motivated by recent experiments on xenon-doped helium nanodroplets that show clustering of the impurities along the vortex cores. We numerically simulate the dynamics of trapping and interactions of xenon atoms by quantized vortices in superfluid helium and the obtained results can be extended to scattering of other impurities by quantized vortices. Different energies and impact parameters of incident particles are considered. We show that inelastic scattering is closely linked to the generation of Kelvin waves along a quantized vortex during the interaction even if there is no capture. The capture criterion of an impurity is formulated in terms of the binding energy.

  15. Fill-in binary loop pulse-torque quantizer

    NASA Technical Reports Server (NTRS)

    Lory, C. B.

    1975-01-01

    Fill-in binary (FIB) loop provides constant heating of torque generator, an advantage of binary current switching. At the same time, it avoids mode-related dead zone and data delay of binary, an advantage of ternary quantization.

  16. Predictive vector quantization using a neural network approach

    NASA Astrophysics Data System (ADS)

    Mohsenian, Nader; Rizvi, Syed A.; Nasrabadi, Nasser M.

    1993-07-01

    A new predictive vector quantization (PVQ) technique capable of exploring the nonlinear dependencies in addition to the linear dependencies that exist between adjacent blocks (vectors) of pixels is introduced. The two components of the PVQ scheme, the vector predictor and the vector quantizer, are implemented by two different classes of neural networks. A multilayer perceptron is used for the predictive component and Kohonen self- organizing feature maps are used to design the codebook for the vector quantizer. The multilayer perceptron uses the nonlinearity condition associated with its processing units to perform a nonlinear vector prediction. The second component of the PVQ scheme vector quantizers the residual vector that is formed by subtracting the output of the perceptron from the original input vector. The joint-optimization task of designing the two components of the PVQ scheme is also achieved. Simulation results are presented for still images with high visual quality.

  17. Spin wave quantization in continuous film with stripe domains

    NASA Astrophysics Data System (ADS)

    Ha, Seung-Seok; Yoon, Jungbum; Lee, Sukmock; You, Chun-Yeol; Jung, Myung-Hwa; Kim, Young Keun

    2009-04-01

    We investigated the spin wave dynamics of CoFeSiB film, which has a stripe domain structure at a low magnetic field region (<1 kOe). We measured the spin wave excitation spectra by employing Brillouin light scattering. Abnormal field dependence and dispersion relations were observed, and they are similar to spin wave quantization in laterally confined magnetic structures such as arrays of magnetic nanowires. The observed spin wave excitation spectra must be interpreted with spin wave quantization such as Damon-Eshbach mode separation. It was found that the spin wave quantization is related to the stripe magnetic domain structure in continuous film. The physical origin of the quantization is the partial reflection of the propagating spin wave at the periodic stripe domain boundaries.

  18. Rate-of-change limiter for quantized signals

    NASA Technical Reports Server (NTRS)

    Streuding, G. C.

    1977-01-01

    Analog circuit is employed to smooth change between levels of quantized voltage signal without adversely affecting its fidelity. Circuit is applicable to units requiring interface between digital and analog systems such as automated manufacturing systems or industrial robots.

  19. Minimum uncertainty and squeezing in diffusion processes and stochastic quantization

    NASA Technical Reports Server (NTRS)

    Demartino, S.; Desiena, S.; Illuminati, Fabrizo; Vitiello, Giuseppe

    1994-01-01

    We show that uncertainty relations, as well as minimum uncertainty coherent and squeezed states, are structural properties for diffusion processes. Through Nelson stochastic quantization we derive the stochastic image of the quantum mechanical coherent and squeezed states.

  20. An Analysis of Perturbed Quantization Steganography in the Spatial Domain

    DTIC Science & Technology

    2005-03-01

    steganography is also common with audio [KaP00]. Figure 1 depicts this form of steganography . Figure 1. Least Significant Bit Substitution 6...QUANTIZATION STEGANOGRAPHY IN THE SPATIAL DOMAIN THESIS Matthew D. Spisak AFIT/GIA/ENG/05-04DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY ORCE...ANALYSIS OF PERTURBED QUANTIZATION STEGANOGRAPHY IN THE SPATIAL DOMAIN THESIS Presented to the Faculty Department of Electrical and

  1. Poincare invariant algebra from instant to light-front quantization

    SciTech Connect

    Ji, Chueng-Ryong; Mitchell, Chad

    2001-10-15

    We present the Poincare algebra interpolating between instant and light-front time quantizations. The angular momentum operators satisfying SU(2) algebra are constructed in an arbitrary interpolation angle and shown to be identical to the ordinary angular momentum and Leutwyler-Stern angular momentum in the instant and light-front quantization limits, respectively. The exchange of the dynamical role between the transverse angular mometum and the boost operators is manifest in our newly constructed algebra.

  2. Light-cone quantization and hadron structure

    SciTech Connect

    Brodsky, S.J.

    1996-04-01

    Quantum chromodynamics provides a fundamental description of hadronic and nuclear structure and dynamics in terms of elementary quark and gluon degrees of freedom. In practice, the direct application of QCD to reactions involving the structure of hadrons is extremely complex because of the interplay of nonperturbative effects such as color confinement and multi-quark coherence. In this talk, the author will discuss light-cone quantization and the light-cone Fock expansion as a tractable and consistent representation of relativistic many-body systems and bound states in quantum field theory. The Fock state representation in QCD includes all quantum fluctuations of the hadron wavefunction, including fax off-shell configurations such as intrinsic strangeness and charm and, in the case of nuclei, hidden color. The Fock state components of the hadron with small transverse size, which dominate hard exclusive reactions, have small color dipole moments and thus diminished hadronic interactions. Thus QCD predicts minimal absorptive corrections, i.e., color transparency for quasi-elastic exclusive reactions in nuclear targets at large momentum transfer. In other applications, such as the calculation of the axial, magnetic, and quadrupole moments of light nuclei, the QCD relativistic Fock state description provides new insights which go well beyond the usual assumptions of traditional hadronic and nuclear physics.

  3. Wheeler-DeWitt quantization and singularities

    NASA Astrophysics Data System (ADS)

    Falciano, F. T.; Pinto-Neto, N.; Struyve, W.

    2015-02-01

    We consider a Bohmian approach to the Wheeler-DeWitt quantization of the Friedmann-Lemaître-Robertson-Walker model and investigate the question of whether or not there are singularities, in the sense that the Universe reaches zero volume. We find that for generic wave functions (i.e., nonclassical wave functions), there is a nonzero probability for a trajectory to be nonsingular. This should be contrasted to the consistent histories approach for which it was recently shown by Craig and Singh that there is always a singularity. This result illustrates that the question of singularities depends much on which version of quantum theory one adopts. This was already pointed out by Pinto-Neto et al., albeit with a different Bohmian approach. Our current Bohmian approach agrees with the consistent histories approach by Craig and Singh for single-time histories, unlike the one studied earlier by Pinto-Neto et al. Although the trajectories are usually different in the two Bohmian approaches, their qualitative behavior is the same for generic wave functions.

  4. Observation of quantized conductance in neutral matter

    NASA Astrophysics Data System (ADS)

    Husmann, Dominik; Krinner, Sebastian; Lebrat, Martin; Grenier, Charles; Nakajima, Shuta; Häusler, Samuel; Brantut, Jean-Philippe; Esslinger, Tilman

    2015-05-01

    In transport experiments, the quantum nature of matter becomes directly evident when changes in conductance occur only in discrete steps, with a size determined solely by Planck's constant h. Here we report the observation of quantized conductance in the transport of neutral atoms driven by a chemical potential bias. We use high-resolution lithography to shape light potentials that realize either a quantum point contact or a quantum wire for atoms. These constrictions are imprinted on a quasi-two-dimensional ballistic channel connecting the reservoirs. By varying either a gate potential or the transverse confinement of the constrictions, we observe distinct plateaux in the atom conductance. The conductance in the first plateau is found to be equal to the universal conductance quantum, 1/h. We use Landauer's formula to model our results and find good agreement for low gate potentials, with all parameters determined a priori. We eventually explore the behavior of a strongly interacting Fermi gas in the same configuration, and the consequences of the emergence of superfluidity.

  5. Quantized vortices in interacting gauge theories

    NASA Astrophysics Data System (ADS)

    Butera, Salvatore; Valiente, Manuel; Ohberg, Patrik

    2015-05-01

    We consider a two-dimensional weakly interacting ultracold Bose gas whose constituents are two-level atoms. We study the effects of a synthetic density-dependent gauge field that arises from laser-matter coupling in the adiabatic limit with a laser configuration such that the single-particle vector potential corresponds to a constant synthetic magnetic field. We find a new type of current non-linearity in the Gross-Pitaevskii equation which affects the dynamics of the order parameter of the condensate. We investigate on the physical conditions that make the nucleation of a quantized vortex in the system energetically favourable with respect to the non rotating solution. Two different physical interpretations can be given to this new non linearity: firstly it can be seen as a local modification of the mean field coupling constant, whose value depends on the angular momentum of the condensate. Secondly, it can be interpreted as a density modulated angular velocity given to the cloud. We analyze the physical conditions that make a single vortex state energetically favourable. In the Thomas-Fermi limit, we show that the effect of the new nonlinearity is to induce a rotation to the condensate, where the transition from non-rotating to rotating depends on the density of the cloud. The authors acknowledge support from CM-DTC and EPSRC.

  6. Quantized vortices in interacting gauge theories

    NASA Astrophysics Data System (ADS)

    Butera, Salvatore; Valiente, Manuel; Öhberg, Patrik

    2016-01-01

    We consider a two-dimensional weakly interacting ultracold Bose gas whose constituents are two-level atoms. We study the effects of a synthetic density-dependent gauge field that arises from laser-matter coupling in the adiabatic limit with a laser configuration such that the single-particle zeroth-order vector potential corresponds to a constant synthetic magnetic field. We find a new exotic type of current nonlinearity in the Gross-Pitaevskii equation which affects the dynamics of the order parameter of the condensate. We investigate the rotational properties of this system in the Thomas-Fermi limit, focusing in particular on the physical conditions that make the existence of a quantized vortex in the system energetically favourable with respect to the non-rotating solution. We point out that two different physical interpretations can be given to this new nonlinearity: firstly it can be seen as a local modification of the mean field coupling constant, whose value depends on the angular momentum of the condensate. Secondly, it can be interpreted as a density modulated angular velocity given to the cloud. Looking at the problem from both of these viewpoints, we show that the effect of the new nonlinearity is to induce a rotation to the condensate, where the transition from non-rotating to rotating states depends on the density of the cloud.

  7. Dynamics of Quantized Vortices Before Reconnection

    NASA Astrophysics Data System (ADS)

    Andryushchenko, V. A.; Kondaurova, L. P.; Nemirovskii, S. K.

    2016-12-01

    The main goal of this paper is to investigate numerically the dynamics of quantized vortex loops, just before the reconnection at finite temperature, when mutual friction essentially changes the evolution of lines. Modeling is performed on the base of vortex filament method using the full Biot-Savart equation. It was discovered that the initial position of vortices and the temperature strongly affect the dependence on time of the minimum distance δ (t) between tips of two vortex loops. In particular, in some cases, the shrinking and collapse of vortex loops due to mutual friction occur earlier than the reconnection, thereby canceling the latter. However, this relationship takes a universal square-root form δ ( t) =√{( κ /2π ) ( t_{*}-t) } at distances smaller than the distances, satisfying the Schwarz reconnection criterion, when the nonlocal contribution to the Biot-Savart equation becomes about equal to the local contribution. In the "universal" stage, the nearest parts of vortices form a pyramid-like structure with angles which neither depend on the initial configuration nor on temperature.

  8. Causal Poisson bracket via deformation quantization

    NASA Astrophysics Data System (ADS)

    Berra-Montiel, Jasel; Molgado, Alberto; Palacios-García, César D.

    2016-06-01

    Starting with the well-defined product of quantum fields at two spacetime points, we explore an associated Poisson structure for classical field theories within the deformation quantization formalism. We realize that the induced star-product is naturally related to the standard Moyal product through an appropriate causal Green’s functions connecting points in the space of classical solutions to the equations of motion. Our results resemble the Peierls-DeWitt bracket that has been analyzed in the multisymplectic context. Once our star-product is defined, we are able to apply the Wigner-Weyl map in order to introduce a generalized version of Wick’s theorem. Finally, we include some examples to explicitly test our method: the real scalar field, the bosonic string and a physically motivated nonlinear particle model. For the field theoretic models, we have encountered causal generalizations of the creation/annihilation relations, and also a causal generalization of the Virasoro algebra for the bosonic string. For the nonlinear particle case, we use the approximate solution in terms of the Green’s function, in order to construct a well-behaved causal bracket.

  9. G 2-structures and quantization of non-geometric M-theory backgrounds

    NASA Astrophysics Data System (ADS)

    Kupriyanov, Vladislav G.; Szabo, Richard J.

    2017-02-01

    We describe the quantization of a four-dimensional locally non-geometric M-theory background dual to a twisted three-torus by deriving a phase space star product for deformation quantization of quasi-Poisson brackets related to the nonassociative algebra of octonions. The construction is based on a choice of G 2-structure which defines a nonassociative deformation of the addition law on the seven-dimensional vector space of Fourier momenta. We demonstrate explicitly that this star product reduces to that of the three-dimensional parabolic constant R-flux model in the contraction of M-theory to string theory, and use it to derive quantum phase space uncertainty relations as well as triproducts for the nonassociative geometry of the four-dimensional configuration space. By extending the G 2-structure to a Spin(7)-structure, we propose a 3-algebra structure on the full eight-dimensional M2-brane phase space which reduces to the quasi-Poisson algebra after imposing a particular gauge constraint, and whose deformation quantisation simultaneously encompasses both the phase space star products and the configuration space triproducts. We demonstrate how these structures naturally fit in with previous occurences of 3-algebras in M-theory.

  10. Quantized Concentration Gradient in Picoliter Scale

    NASA Astrophysics Data System (ADS)

    Hong, Jong Wook

    2010-10-01

    Generation of concentration gradient is of paramount importance in the success of reactions for cell biology, molecular biology, biochemistry, drug-discovery, chemotaxis, cell culture, biomaterials synthesis, and tissue engineering. In conventional method of conducting reactions, the concentration gradients is achieved by using pipettes, test tubes, 96-well assay plates, and robotic systems. Conventional methods require milliliter or microliter volumes of samples for typical experiments with multiple and sequential reactions. It is a challenge to carry out experiments with precious samples that have strict limitations with the amount of samples or the price to pay for the amount. In order to overcome this challenge faced by the conventional methods, fluidic devices with micrometer scale channels have been developed. These devices, however, cause restrictions on changing the concentration due to the fixed gradient set based on fixed fluidic channels.ootnotetextJambovane, S.; Duin, E. C.; Kim, S-K.; Hong, J. W., Determination of Kinetic Parameters, KM and kcat, with a Single Experiment on a Chip. textitAnalytical Chemistry, 81, (9), 3239-3245, 2009.^,ootnotetextJambovane, S.; Hong, J. W., Lorenz-like Chatotic System on a Chip In The 14th International Conference on Miniaturized Systems for Chemistry and Life Sciences (MicroTAS), The Netherlands, October, 2010. Here, we present a unique microfluidic system that can generate quantized concentration gradient by using series of droplets generated by a mechanical valve based injection method.ootnotetextJambovane, S.; Rho, H.; Hong, J., Fluidic Circuit based Predictive Model of Microdroplet Generation through Mechanical Cutting. In ASME International Mechanical Engineering Congress & Exposition, Lake Buena Vista, Florida, USA, October, 2009.^,ootnotetextLee, W.; Jambovane, S.; Kim, D.; Hong, J., Predictive Model on Micro Droplet Generation through Mechanical Cutting. Microfluidics and Nanofluidics, 7, (3), 431-438, 2009

  11. Momentum space orthogonal polynomial projection quantization

    NASA Astrophysics Data System (ADS)

    Handy, C. R.; Vrinceanu, D.; Marth, C. B.; Gupta, R.

    2016-04-01

    The orthogonal polynomial projection quantization (OPPQ) is an algebraic method for solving Schrödinger’s equation by representing the wave function as an expansion {{\\Psi }}(x)={\\displaystyle \\sum }n{{{Ω }}}n{P}n(x)R(x) in terms of polynomials {P}n(x) orthogonal with respect to a suitable reference function R(x), which decays asymptotically not faster than the bound state wave function. The expansion coefficients {{{Ω }}}n are obtained as linear combinations of power moments {μ }{{p}}=\\int {x}p{{\\Psi }}(x) {{d}}x. In turn, the {μ }{{p}}'s are generated by a linear recursion relation derived from Schrödinger’s equation from an initial set of low order moments. It can be readily argued that for square integrable wave functions representing physical states {{lim}}n\\to ∞ {{{Ω }}}n=0. Rapidly converging discrete energies are obtained by setting Ω coefficients to zero at arbitrarily high order. This paper introduces an extention of OPPQ in momentum space by using the representation {{Φ }}(k)={\\displaystyle \\sum }n{{{\\Xi }}}n{Q}n(k)T(k), where Q n (k) are polynomials orthogonal with respect to a suitable reference function T(k). The advantage of this new representation is that it can help solving problems for which there is no coordinate space moment equation. This is because the power moments in momentum space are the Taylor expansion coefficients, which are recursively calculated via Schrödinger’s equation. We show the convergence of this new method for the sextic anharmonic oscillator and an algebraic treatment of Gross-Pitaevskii nonlinear equation.

  12. Perturbation theory in light-cone quantization

    SciTech Connect

    Langnau, A.

    1992-01-01

    A thorough investigation of light-cone properties which are characteristic for higher dimensions is very important. The easiest way of addressing these issues is by analyzing the perturbative structure of light-cone field theories first. Perturbative studies cannot be substituted for an analysis of problems related to a nonperturbative approach. However, in order to lay down groundwork for upcoming nonperturbative studies, it is indispensable to validate the renormalization methods at the perturbative level, i.e., to gain control over the perturbative treatment first. A clear understanding of divergences in perturbation theory, as well as their numerical treatment, is a necessary first step towards formulating such a program. The first objective of this dissertation is to clarify this issue, at least in second and fourth-order in perturbation theory. The work in this dissertation can provide guidance for the choice of counterterms in Discrete Light-Cone Quantization or the Tamm-Dancoff approach. A second objective of this work is the study of light-cone perturbation theory as a competitive tool for conducting perturbative Feynman diagram calculations. Feynman perturbation theory has become the most practical tool for computing cross sections in high energy physics and other physical properties of field theory. Although this standard covariant method has been applied to a great range of problems, computations beyond one-loop corrections are very difficult. Because of the algebraic complexity of the Feynman calculations in higher-order perturbation theory, it is desirable to automatize Feynman diagram calculations so that algebraic manipulation programs can carry out almost the entire calculation. This thesis presents a step in this direction. The technique we are elaborating on here is known as light-cone perturbation theory.

  13. Remote Sensing and Quantization of Analog Sensors

    NASA Technical Reports Server (NTRS)

    Strauss, Karl F.

    2011-01-01

    This method enables sensing and quantization of analog strain gauges. By manufacturing a piezoelectric sensor stack in parallel (physical) with a piezoelectric actuator stack, the capacitance of the sensor stack varies in exact proportion to the exertion applied by the actuator stack. This, in turn, varies the output frequency of the local sensor oscillator. The output, F(sub out), is fed to a phase detector, which is driven by a stable reference, F(sub ref). The output of the phase detector is a square waveform, D(sub out), whose duty cycle, t(sub W), varies in exact proportion according to whether F(sub out) is higher or lower than F(sub ref). In this design, should F(sub out) be precisely equal to F(sub ref), then the waveform has an exact 50/50 duty cycle. The waveform, D(sub out), is of generally very low frequency suitable for safe transmission over long distances without corruption. The active portion of the waveform, t(sub W), gates a remotely located counter, which is driven by a stable oscillator (source) of such frequency as to give sufficient digitization of t(sub W) to the resolution required by the application. The advantage to this scheme is that it negates the most-common, present method of sending either very low level signals (viz. direct output from the sensors) across great distances (anything over one-half meter) or the need to transmit widely varying higher frequencies over significant distances thereby eliminating interference [both in terms of beat frequency generation and in-situ EMI (electromagnetic interference)] caused by ineffective shielding. It also results in a significant reduction in shielding mass.

  14. Some effects of quantization on a noiseless phase-locked loop. [sampling phase errors

    NASA Technical Reports Server (NTRS)

    Greenhall, C. A.

    1979-01-01

    If the VCO of a phase-locked receiver is to be replaced by a digitally programmed synthesizer, the phase error signal must be sampled and quantized. Effects of quantizing after the loop filter (frequency quantization) or before (phase error quantization) are investigated. Constant Doppler or Doppler rate noiseless inputs are assumed. The main result gives the phase jitter due to frequency quantization for a Doppler-rate input. By itself, however, frequency quantization is impractical because it makes the loop dynamic range too small.

  15. Probabilistic distance-based quantizer design for distributed estimation

    NASA Astrophysics Data System (ADS)

    Kim, Yoon Hak

    2016-12-01

    We consider an iterative design of independently operating local quantizers at nodes that should cooperate without interaction to achieve application objectives for distributed estimation systems. We suggest as a new cost function a probabilistic distance between the posterior distribution and its quantized one expressed as the Kullback Leibler (KL) divergence. We first present the analysis that minimizing the KL divergence in the cyclic generalized Lloyd design framework is equivalent to maximizing the logarithmic quantized posterior distribution on the average which can be further computationally reduced in our iterative design. We propose an iterative design algorithm that seeks to maximize the simplified version of the posterior quantized distribution and discuss that our algorithm converges to a global optimum due to the convexity of the cost function and generates the most informative quantized measurements. We also provide an independent encoding technique that enables minimization of the cost function and can be efficiently simplified for a practical use of power-constrained nodes. We finally demonstrate through extensive experiments an obvious advantage of improved estimation performance as compared with the typical designs and the novel design techniques previously published.

  16. Deformation Quantization and the Baum-Connes Conjecture

    NASA Astrophysics Data System (ADS)

    Landsman, N. P.

    Alternative titles of this paper would have been `Index theory without index' or `The Baum-Connes conjecture without Baum.' In 1989, Rieffel introduced an analytic version of deformation quantization based on the use of continuous fields of C*-algebras. We review how a wide variety of examples of such quantizations can be understood on the basis of a single lemma involving amenable groupoids. These include Weyl-Moyal quantization on manifolds, C*-algebras of Lie groups and Lie groupoids, and the E-theoretic version of the Baum-Connes conjecture for smooth groupoids as described by Connes in his book Noncommutative Geometry. Concerning the latter, we use a different semidirect product construction from Connes. This enables one to formulate the Baum-Connes conjecture in terms of twisted Weyl-Moyal quantization. The underlying mechanical system is a noncommutative desingularization of a stratified Poisson space, and the Baum-Connes conjecture actually suggests a strategy for quantizing such singular spaces.

  17. Selection of small color palette for color image quantization

    NASA Astrophysics Data System (ADS)

    Chau, Wing K.; Wong, S. K. M.; Yang, Xuedong; Wan, Shijie J.

    1992-05-01

    Two issues are involved in color image quantization: color palette selection and color mapping. A common practice for color palette selection is to minimize the color distortion for each pixel (the median-cut, the variance-based and the k-means algorithms). After the color palette has been chosen, a quantized image may be generated by mapping the original color of each pixel onto its nearest color in the color palette. Such an approach can usually produce quantized images of high quality with 128 or more colors. For 32 - 64 colors, the quality of the quantized images is often acceptable with the aid of dithering techniques in the color mapping process. For 8 - 16 color, however, the above statistical method for color selection becomes no longer suitable because of the great reduction of color gamut. In order to preserve the color gamut of the original image, one may want to select the colors in such a way that the convex hull formed by these colors in the RGB color space encloses most colors of the original image. Quantized images generated in such a geometrical way usually preserve a lot of image details, but may contain too much high frequency noises. This paper presents an effective algorithm for the selection of very small color palette by combining the strengths of the above statistical and geometrical approaches. We demonstrate that with the new method images of high quality can be produced by using only 4 to 8 colors.

  18. Topological transconductance quantization in a four-terminal Josephson junction

    NASA Astrophysics Data System (ADS)

    Eriksson, Erik; Riwar, Roman-Pascal; Houzet, Manuel; Meyer, Julia S.; Nazarov, Yuli V.

    2017-02-01

    Recently we predicted that the Andreev bound-state spectrum of four-terminal Josephson junctions may possess topologically protected zero-energy Weyl singularities, which manifest themselves in a quantized transconductance in units of 4 e2/h when two of the terminals are voltage biased [R.-P. Riwar, M. Houzet, J. S. Meyer, and Y. V. Nazarov, Nature Commun. 7, 11167 (2016), 10.1038/ncomms11167]. Here, using the Landauer-Büttiker scattering theory, we compute numerically the currents flowing through such a structure in order to assess the conditions for observing this effect. We show that the voltage below which the transconductance becomes quantized is determined by the interplay of nonadiabatic transitions between Andreev bound states and inelastic relaxation processes. We demonstrate that the topological quantization of the transconductance can be observed at voltages of the order of 10-2Δ /e ,Δ being the the superconducting gap in the leads.

  19. Locally adaptive vector quantization: Data compression with feature preservation

    NASA Technical Reports Server (NTRS)

    Cheung, K. M.; Sayano, M.

    1992-01-01

    A study of a locally adaptive vector quantization (LAVQ) algorithm for data compression is presented. This algorithm provides high-speed one-pass compression and is fully adaptable to any data source and does not require a priori knowledge of the source statistics. Therefore, LAVQ is a universal data compression algorithm. The basic algorithm and several modifications to improve performance are discussed. These modifications are nonlinear quantization, coarse quantization of the codebook, and lossless compression of the output. Performance of LAVQ on various images using irreversible (lossy) coding is comparable to that of the Linde-Buzo-Gray algorithm, but LAVQ has a much higher speed; thus this algorithm has potential for real-time video compression. Unlike most other image compression algorithms, LAVQ preserves fine detail in images. LAVQ's performance as a lossless data compression algorithm is comparable to that of Lempel-Ziv-based algorithms, but LAVQ uses far less memory during the coding process.

  20. Performance of customized DCT quantization tables on scientific data

    NASA Technical Reports Server (NTRS)

    Ratnakar, Viresh; Livny, Miron

    1994-01-01

    We show that it is desirable to use data-specific or customized quantization tables for scaling the spatial frequency coefficients obtained using the Discrete Cosine Transform (DCT). DCT is widely used for image and video compression (MP89, PM93) but applications typically use default quantization matrices. Using actual scientific data gathered from divers sources such as spacecrafts and electron-microscopes, we show that the default compression/quality tradeoffs can be significantly improved upon by using customized tables. We also show that significant improvements are possible for the standard test images Lena and Baboon. This work is part of an effort to develop a practical scheme for optimizing quantization matrices for any given image or video stream, under any given quality or compression constraints.

  1. Application of heterogeneous pulse coupled neural network in image quantization

    NASA Astrophysics Data System (ADS)

    Huang, Yi; Ma, Yide; Li, Shouliang; Zhan, Kun

    2016-11-01

    On the basis of the different strengths of synaptic connections between actual neurons, this paper proposes a heterogeneous pulse coupled neural network (HPCNN) algorithm to perform quantization on images. HPCNNs are developed from traditional pulse coupled neural network (PCNN) models, which have different parameters corresponding to different image regions. This allows pixels of different gray levels to be classified broadly into two categories: background regional and object regional. Moreover, an HPCNN also satisfies human visual characteristics. The parameters of the HPCNN model are calculated automatically according to these categories, and quantized results will be optimal and more suitable for humans to observe. At the same time, the experimental results of natural images from the standard image library show the validity and efficiency of our proposed quantization method.

  2. Effects of quantization in phase-shifting digital holography.

    PubMed

    Mills, Godfrey A; Yamaguchi, Ichirou

    2005-03-01

    We discuss quantization effects of hologram recording on the quality of reconstructed images in phase-shifting digital holography. We vary bit depths of phase-shifted holograms in both numerical simulation and experiments and then derived the complex amplitude, which is subjected to Fresnel transformation for the image reconstruction. The influence of bit-depth limitation in quantization has been demonstrated in a numerical simulation for spot-array patterns with linearly varying intensities and a continuous intensity object. The objects are provided with uniform and random phase modulation. In experiments, digital holograms are originally recorded at 8 bits and the bit depths are changed to deliver holograms at bit depths of 1 to 8 bits for the image reconstruction. The quality of the reconstructed images has been evaluated for the different quantization levels.

  3. Quantization of gauge fields, graph polynomials and graph homology

    SciTech Connect

    Kreimer, Dirk; Sars, Matthias; Suijlekom, Walter D. van

    2013-09-15

    We review quantization of gauge fields using algebraic properties of 3-regular graphs. We derive the Feynman integrand at n loops for a non-abelian gauge theory quantized in a covariant gauge from scalar integrands for connected 3-regular graphs, obtained from the two Symanzik polynomials. The transition to the full gauge theory amplitude is obtained by the use of a third, new, graph polynomial, the corolla polynomial. This implies effectively a covariant quantization without ghosts, where all the relevant signs of the ghost sector are incorporated in a double complex furnished by the corolla polynomial–we call it cycle homology–and by graph homology. -- Highlights: •We derive gauge theory Feynman from scalar field theory with 3-valent vertices. •We clarify the role of graph homology and cycle homology. •We use parametric renormalization and the new corolla polynomial.

  4. Faddeev-Jackiw quantization and the path integral

    NASA Astrophysics Data System (ADS)

    Toms, David J.

    2015-11-01

    The method for quantization of constrained theories that was suggested originally by Faddeev and Jackiw along with later modifications is discussed. The particular emphasis of this paper is to show how it is simple to implement their method within the path integral framework using the natural geometric structure that their method utilizes. The procedure is exemplified with the analysis of two models: a quantum mechanical particle constrained to a surface (of which the hypersphere is a special case), and a quantized Schrödinger field interacting with a quantized vector field for both the massive and the massless cases. The results are shown to agree with what is found using the Dirac method for constrained path integrals. We comment on a previous path integral analysis of the Faddeev-Jackiw method. We also discuss why a previous criticism of the Faddeev-Jackiw method is unfounded and why suggested modifications of their method are unnecessary.

  5. Honey Bee Mating Optimization Vector Quantization Scheme in Image Compression

    NASA Astrophysics Data System (ADS)

    Horng, Ming-Huwi

    The vector quantization is a powerful technique in the applications of digital image compression. The traditionally widely used method such as the Linde-Buzo-Gray (LBG) algorithm always generated local optimal codebook. Recently, particle swarm optimization (PSO) is adapted to obtain the near-global optimal codebook of vector quantization. In this paper, we applied a new swarm algorithm, honey bee mating optimization, to construct the codebook of vector quantization. The proposed method is called the honey bee mating optimization based LBG (HBMO-LBG) algorithm. The results were compared with the other two methods that are LBG and PSO-LBG algorithms. Experimental results showed that the proposed HBMO-LBG algorithm is more reliable and the reconstructed images get higher quality than those generated form the other three methods.

  6. General N=1 supersymmetric flux vacua of massive type IIA string theory.

    PubMed

    Behrndt, Klaus; Cvetic, Mirjam

    2005-07-08

    We derive conditions for the existence of four-dimensional N=1 supersymmetric flux vacua of massive type IIA string theory with general supergravity fluxes turned on. For an SU(3) singlet Killing spinor, we show that such flux vacua exist when the internal geometry is nearly Kähler. The geometry is not warped, all the allowed fluxes are proportional to the mass parameter, and the dilaton is fixed by a ratio of (quantized) fluxes. The four-dimensional cosmological constant, while negative, becomes small in the vacuum with the weak string coupling.

  7. Luminance-model-based DCT quantization for color image compression

    NASA Technical Reports Server (NTRS)

    Ahumada, Albert J., Jr.; Peterson, Heidi A.

    1992-01-01

    A model is developed to approximate visibility thresholds for discrete cosine transform (DCT) coefficient quantization error based on the peak-to-peak luminance of the error image. Experimentally measured visibility thresholds for R, G, and B DCT basis functions can be predicted by a simple luminance-based detection model. This model allows DCT coefficient quantization matrices to be designed for display conditions other than those of the experimental measurements: other display luminances, other veiling luminances, and other spatial frequencies (different pixel spacings, viewing distances, and aspect ratios).

  8. Linking loop quantum gravity quantization ambiguities with phenomenology

    NASA Astrophysics Data System (ADS)

    Brahma, Suddhasattwa; Ronco, Michele; Amelino-Camelia, Giovanni; Marcianò, Antonino

    2017-02-01

    It is well known that extracting viable testable predictions out of fundamental quantum gravity theories is notoriously difficult. In this paper, we aim to incorporate putative quantum corrections coming from loop quantum gravity in deriving modified dispersion relations for particles in a deformed Minkowski spacetime. We show how different choices of the Immirzi parameter can, in some cases, serendipitously lead to different outcomes for such modifications, depending on the quantization scheme chosen. This allows one to differentiate between these quantization choices via testable phenomenological predictions.

  9. Potential scattering of electrons in a quantized radiation field

    NASA Astrophysics Data System (ADS)

    Bergou, J.; Ehlotzky, F.

    1986-05-01

    Potential scattering of electrons in a strong laser field is reconsidered. The laser beam is described by a quantized single-mode plane-wave field with a finite number of quanta in the mode. The scattering amplitude is expanded in powers of the potential, and the first two Born terms are considered. It is shown that in the limit of an infinite number of field quanta, the Kroll-Watson approximation is recovered. Additional insight is gained into the validity of this low-frequency theorem. The approach rests on the introduction of electron-dressed quantized-field states. Relations to earlier work are indicated.

  10. Quarter-Filled Honeycomb Lattice with a Quantized Hall Conductance

    NASA Astrophysics Data System (ADS)

    Shimshoni, Efrat; Murthy, Ganpathy; Shankar, Ramamurti; Fertig, Herbert

    2012-02-01

    We study a generic two-dimensional hopping model on a honeycomb lattice with strong spin-orbit coupling, without the requirement that the half-filled lattice be a Topological Insulator. For quarter-(or three-quarter) filling, we show that a state with a quantized Hall conductance generically arises in the presence of a Zeeman field of sufficient strength. We discuss the influence of Hubbard interactions and argue that spontaneous ferromagnetism (which breaks time-reversal) will occur, leading to a quantized anomalous Hall effect. G. Murthy, E. Shimshoni, R. Shankar, and H. A. Fertig, arxiv:1108.2010[cond-mat.mes-hall

  11. Effective Field Theory of Fractional Quantized Hall Nematics

    SciTech Connect

    Mulligan, Michael; Nayak, Chetan; Kachru, Shamit; /Stanford U., Phys. Dept. /SLAC

    2012-06-06

    We present a Landau-Ginzburg theory for a fractional quantized Hall nematic state and the transition to it from an isotropic fractional quantum Hall state. This justifies Lifshitz-Chern-Simons theory - which is shown to be its dual - on a more microscopic basis and enables us to compute a ground state wave function in the symmetry-broken phase. In such a state of matter, the Hall resistance remains quantized while the longitudinal DC resistivity due to thermally-excited quasiparticles is anisotropic. We interpret recent experiments at Landau level filling factor {nu} = 7/3 in terms of our theory.

  12. Divergent Integrals of QED in Krein Space Quantization

    SciTech Connect

    Payandeh, F.

    2010-06-15

    The usual quantum field theory leads to an ultraviolet divergence in the vacuum energies and an infrared divergence in the two-point functions. It has been shown that the presence of unphysical negative-frequency states (Krein space quantization) plays the role of an automatic renormalization tool for the theory of quantized fields. In the standard QED, the divergent quantities are found in the self-energy, vacuum polarization, and vertex graphs. It seems as if evaluating divergent integrals of QED in Krein space leads to convergent values.

  13. Quantization selection in the high-throughput H.264/AVC encoder based on the RD

    NASA Astrophysics Data System (ADS)

    Pastuszak, Grzegorz

    2013-10-01

    In the hardware video encoder, the quantization is responsible for quality losses. On the other hand, it allows the reduction of bit rates to the target one. If the mode selection is based on the rate-distortion criterion, the quantization can also be adjusted to obtain better compression efficiency. Particularly, the use of Lagrangian function with a given multiplier enables the encoder to select the most suitable quantization step determined by the quantization parameter QP. Moreover, the quantization offset added before discarding the fraction value after quantization can be adjusted. In order to select the best quantization parameter and offset in real time, the HD/SD encoder should be implemented in the hardware. In particular, the hardware architecture should embed the transformation and quantization modules able to process the same residuals many times. In this work, such an architecture is used. Experimental results show what improvements in terms of compression efficiency are achievable for Intra coding.

  14. A quantum-drive-time (QDT) quantization of the Taub cosmology

    SciTech Connect

    Miller, W.A.; Kheyfets, A.

    1994-10-01

    We present here an application of a new quantization scheme. We quantize the Taub cosmology by quantizing only the anisotropy parameter {beta} and imposing the super-Hamiltonian constraint as an expectation-value equation to recover the relationship between the scale factor {Omega} and time t. This approach appears to avoid the problem of time.

  15. Floating-point system quantization errors in digital control systems

    NASA Technical Reports Server (NTRS)

    Phillips, C. L.; Vallely, D. P.

    1978-01-01

    This paper considers digital controllers (filters) operating in floating-point arithmetic in either open-loop or closed-loop systems. A quantization error analysis technique is developed, and is implemented by a digital computer program that is based on a digital simulation of the system. The program can be integrated into existing digital simulations of a system.

  16. Can one ADM quantize relativistic bosonicstrings and membranes?

    NASA Astrophysics Data System (ADS)

    Moncrief, Vincent

    2006-04-01

    The standard methods for quantizing relativistic strings diverge significantly from the Dirac-Wheeler-DeWitt program for quantization of generally covariant systems and one wonders whether the latter could be successfully implemented as an alternative to the former. As a first step in this direction, we consider the possibility of quantizing strings (and also relativistic membranes) via a partially gauge-fixed ADM (Arnowitt, Deser and Misner) formulation of the reduced field equations for these systems. By exploiting some (Euclidean signature) Hamilton-Jacobi techniques that Mike Ryan and I had developed previously for the quantization of Bianchi IX cosmological models, I show how to construct Diff( S 1)-invariant (or Diff(Σ)-invariant in the case of membranes) ground state wave functionals for the cases of co-dimension one strings and membranes embedded in Minkowski spacetime. I also show that the reduced Hamiltonian density operators for these systems weakly commute when applied to physical (i.e. Diff( S 1) or Diff(Σ)-invariant) states. While many open questions remain, these preliminary results seem to encourage further research along the same lines.

  17. Multispectral data compression through transform coding and block quantization

    NASA Technical Reports Server (NTRS)

    Ready, P. J.; Wintz, P. A.

    1972-01-01

    Transform coding and block quantization techniques are applied to multispectral aircraft scanner data, and digitized satellite imagery. The multispectral source is defined and an appropriate mathematical model proposed. The Karhunen-Loeve, Fourier, and Hadamard encoders are considered and are compared to the rate distortion function for the equivalent Gaussian source and to the performance of the single sample PCM encoder.

  18. Second quantization techniques in the scattering of nonidentical composite bodies

    NASA Technical Reports Server (NTRS)

    Norbury, J. W.; Townsend, L. W.; Deutchman, P. A.

    1986-01-01

    Second quantization techniques for describing elastic and inelastic interactions between nonidentical composite bodies are presented and are applied to nucleus-nucleus collisions involving ground-state and one-particle-one-hole excitations. Evaluations of the resultant collision matrix elements are made through use of Wick's theorem.

  19. Prediction-guided quantization for video tone mapping

    NASA Astrophysics Data System (ADS)

    Le Dauphin, Agnès.; Boitard, Ronan; Thoreau, Dominique; Olivier, Yannick; Francois, Edouard; LeLéannec, Fabrice

    2014-09-01

    Tone Mapping Operators (TMOs) compress High Dynamic Range (HDR) content to address Low Dynamic Range (LDR) displays. However, before reaching the end-user, this tone mapped content is usually compressed for broadcasting or storage purposes. Any TMO includes a quantization step to convert floating point values to integer ones. In this work, we propose to adapt this quantization, in the loop of an encoder, to reduce the entropy of the tone mapped video content. Our technique provides an appropriate quantization for each mode of both the Intra and Inter-prediction that is performed in the loop of a block-based encoder. The mode that minimizes a rate-distortion criterion uses its associated quantization to provide integer values for the rest of the encoding process. The method has been implemented in HEVC and was tested over two different scenarios: the compression of tone mapped LDR video content (using the HM10.0) and the compression of perceptually encoded HDR content (HM14.0). Results show an average bit-rate reduction under the same PSNR for all the sequences and TMO considered of 20.3% and 27.3% for tone mapped content and 2.4% and 2.7% for HDR content.

  20. Semiclassical Quantization of the Electron-Dipole System.

    ERIC Educational Resources Information Center

    Turner, J. E.

    1979-01-01

    This paper presents a derivation of the number given by Fermi in 1925, in his semiclassical treatment of the motion of an electron in the field of two stationary positive charges, for Bohr quantization of the electron orbits when the stationary charges are positive, and applies it to an electron moving in the field of a stationary dipole.…

  1. The cosmological 'constant' and quantization in five dimensions

    NASA Astrophysics Data System (ADS)

    Wesson, Paul S.

    2011-11-01

    Campbell's theorem ensures that all vacuum space-times in general relativity can be embedded in five dimensions, with the 4D scalar curvature expressed as an effective cosmological 'constant' Λ which depends on the extra coordinate. This Λ-landscape can be used to give insight to certain physical phenomena, such as the big bang and quantized particles.

  2. Optimal Pruning for Tree-Structured Vector Quantization.

    ERIC Educational Resources Information Center

    Lin, Jianhua; And Others

    1992-01-01

    Analyzes the computational complexity of optimal binary tree pruning for tree-structured vector quantization. Topics discussed include the combinatorial nature of the optimization problem; the complexity of optimal tree pruning; and finding a minimal size pruned tree. (11 references) (LRW)

  3. Consistent quantization of massive chiral electrodynamics in four dimensions

    SciTech Connect

    Andrianov, A. ); Bassetto, A.; Soldati, R.

    1989-10-09

    We discuss the quantization of a four-dimensional model in which a massive Abelian vector field interacts with chiral massless fermions. We show that, by introducing extra scalar fields, a renormalizable unitary {ital S} matrix can be obtained in a suitably defined Hilbert space of physical states.

  4. Mean-shape vector quantizer for ECG signal compression.

    PubMed

    Cárdenas-Barrera, J L; Lorenzo-Ginori, J V

    1999-01-01

    A direct waveform mean-shape vector quantization (MSVQ) is proposed here as an alternative for electrocardiographic (ECG) signal compression. In this method, the mean values for short ECG signal segments are quantized as scalars and compression of the single-lead ECG by average beat substraction and residual differencing their waveshapes coded through a vector quantizer. An entropy encoder is applied to both, mean and vector codes, to further increase compression without degrading the quality of the reconstructed signals. In this paper, the fundamentals of MSVQ are discussed, along with various parameters specifications such as duration of signal segments, the wordlength of the mean-value quantization and the size of the vector codebook. The method is assessed through percent-residual-difference measures on reconstructed signals, whereas its computational complexity is analyzed considering its real-time implementation. As a result, MSVQ has been found to be an efficient compression method, leading to high compression ratios (CR's) while maintaining a low level of waveform distortion and, consequently, preserving the main clinically interesting features of the ECG signals. CR's in excess of 39 have been achieved, yielding low data rates of about 140 bps. This compression factor makes this technique especially attractive in the area of ambulatory monitoring.

  5. The Quantization of Classical Fields Equations and the Cyclic Universe

    NASA Astrophysics Data System (ADS)

    Guo, Zhu Ho

    2011-03-01

    Basically nothing is known definitely about the early universe. Einstein gravity field equation, based on general relativity and the grand unified field theories, has been employed for the study of the early universe but has not provided definitive answers. As detailed in this article, for understanding the enormous energy of the early universe, classical field equations, including general relativity, must be quantized. The quantization of general relativity by using Feynman's formulation has also faced difficulties. Unified Field theory also needs quantization of Einstein equation for studying the universe. New interpretations of the uncertainty principles indicates that physical quantities should have both lower and upper limits. Physical quantities form pairs, couple and complement to each other performing cyclic process. Their limits should overcome the limits of coupling formulae. In this article, cyclic universe theories are reviewed and limits coupling formulae are derived for pairs of physical quantities. By means of these limits coupling formulae, most of the classical field equations, including Einstein equation, are quantized. The equations derived are used successfully to describe quantitatively the whole development of our cyclic universe. Some long-standing questions in cosmology may be answered with this approach, such as the origin of quasar and the existence of other universes.

  6. Generalized noise terms for the quantized fluctuational electrodynamics

    NASA Astrophysics Data System (ADS)

    Partanen, Mikko; Häyrynen, Teppo; Tulkki, Jukka; Oksanen, Jani

    2017-03-01

    The quantization of optical fields in vacuum has been known for decades, but extending the field quantization to lossy and dispersive media in nonequilibrium conditions has proven to be complicated due to the position-dependent electric and magnetic responses of the media. In fact, consistent position-dependent quantum models for the photon number in resonant structures have only been formulated very recently and only for dielectric media. Here we present a general position-dependent quantized fluctuational electrodynamics (QFED) formalism that extends the consistent field quantization to describe the photon number also in the presence of magnetic field-matter interactions. It is shown that the magnetic fluctuations provide an additional degree of freedom in media where the magnetic coupling to the field is prominent. Therefore, the field quantization requires an additional independent noise operator that is commuting with the conventional bosonic noise operator describing the polarization current fluctuations in dielectric media. In addition to allowing the detailed description of field fluctuations, our methods provide practical tools for modeling optical energy transfer and the formation of thermal balance in general dielectric and magnetic nanodevices. We use QFED to investigate the magnetic properties of microcavity systems to demonstrate an example geometry in which it is possible to probe fields arising from the electric and magnetic source terms. We show that, as a consequence of the magnetic Purcell effect, the tuning of the position of an emitter layer placed inside a vacuum cavity can make the emissivity of a magnetic emitter to exceed the emissivity of a corresponding electric emitter.

  7. Quantization and Quantum-Like Phenomena: A Number Amplitude Approach

    NASA Astrophysics Data System (ADS)

    Robinson, T. R.; Haven, E.

    2015-12-01

    Historically, quantization has meant turning the dynamical variables of classical mechanics that are represented by numbers into their corresponding operators. Thus the relationships between classical variables determine the relationships between the corresponding quantum mechanical operators. Here, we take a radically different approach to this conventional quantization procedure. Our approach does not rely on any relations based on classical Hamiltonian or Lagrangian mechanics nor on any canonical quantization relations, nor even on any preconceptions of particle trajectories in space and time. Instead we examine the symmetry properties of certain Hermitian operators with respect to phase changes. This introduces harmonic operators that can be identified with a variety of cyclic systems, from clocks to quantum fields. These operators are shown to have the characteristics of creation and annihilation operators that constitute the primitive fields of quantum field theory. Such an approach not only allows us to recover the Hamiltonian equations of classical mechanics and the Schrödinger wave equation from the fundamental quantization relations, but also, by freeing the quantum formalism from any physical connotation, makes it more directly applicable to non-physical, so-called quantum-like systems. Over the past decade or so, there has been a rapid growth of interest in such applications. These include, the use of the Schrödinger equation in finance, second quantization and the number operator in social interactions, population dynamics and financial trading, and quantum probability models in cognitive processes and decision-making. In this paper we try to look beyond physical analogies to provide a foundational underpinning of such applications.

  8. Frame quantization or exploring the world in the manner of a starfish

    NASA Astrophysics Data System (ADS)

    Gazeau, Jean Pierre

    2012-06-01

    Starting with the example of a five-fold frame for the plane (e.g. sea star), we explain the powerful role that coherent states (CS) or frames can play in quantizing any set equipped with a measure. This CS quantization is illustrated with the standard case involving Glauber CS and yielding the canonical quantization, and with CS on the circle, leading in particular to quantization of action and angle variables. We then describe the general method of quantization with action-angle coherent states.

  9. An Effective Color Quantization Method Using Octree-Based Self-Organizing Maps.

    PubMed

    Park, Hyun Jun; Kim, Kwang Baek; Cha, Eui-Young

    2016-01-01

    Color quantization is an essential technique in color image processing, which has been continuously researched. It is often used, in particular, as preprocessing for many applications. Self-Organizing Map (SOM) color quantization is one of the most effective methods. However, it is inefficient for obtaining accurate results when it performs quantization with too few colors. In this paper, we present a more effective color quantization algorithm that reduces the number of colors to a small number by using octree quantization. This generates more natural results with less difference from the original image. The proposed method is evaluated by comparing it with well-known quantization methods. The experimental results show that the proposed method is more effective than other methods when using a small number of colors to quantize the colors. Also, it takes only 71.73% of the processing time of the conventional SOM method.

  10. An Effective Color Quantization Method Using Octree-Based Self-Organizing Maps

    PubMed Central

    Park, Hyun Jun; Kim, Kwang Baek; Cha, Eui-Young

    2016-01-01

    Color quantization is an essential technique in color image processing, which has been continuously researched. It is often used, in particular, as preprocessing for many applications. Self-Organizing Map (SOM) color quantization is one of the most effective methods. However, it is inefficient for obtaining accurate results when it performs quantization with too few colors. In this paper, we present a more effective color quantization algorithm that reduces the number of colors to a small number by using octree quantization. This generates more natural results with less difference from the original image. The proposed method is evaluated by comparing it with well-known quantization methods. The experimental results show that the proposed method is more effective than other methods when using a small number of colors to quantize the colors. Also, it takes only 71.73% of the processing time of the conventional SOM method. PMID:26884748

  11. Quantization of electromagnetic field and analysis of Purcell effect based on formalism of scattering matrix

    NASA Astrophysics Data System (ADS)

    Kaliteevski, M. A.; Gubaydullin, A. R.; Ivanov, K. A.; Mazlin, V. A.

    2016-09-01

    We have developed a rigorous self-consistent approach for the quantization of electromagnetic field in inhomogeneous structures. The approach is based on utilization of the scattering matrix of the system. Instead of the use of standard periodic Born-Karman boundary conditions, we use the quantization condition implying equating eigenvalues of the scattering matrix (S-matrix) of the system to unity (S-quantization). In the trivial case of uniform medium boundary condition for S-quantization is nothing but periodic boundary condition. S-quantization allows calculating modification of the spontaneous emission rate for arbitrary inhomogeneous structure and direction of the emitted radiation. S-quantization solves the long-standing problem coupled to normalization of the quasi-stationary electromagnetic modes. Examples of application of S-quantization for the calculation of spontaneous emission rate for the cases of Bragg reflector and microcavity are demonstrated.

  12. 50 Years of Fluxoid Quantization: 2e or Not 2e

    NASA Astrophysics Data System (ADS)

    Einzel, Dietrich

    2011-06-01

    The year 2011 is quite remarkable because it allows us to celebrate not only the centennial of the discovery of superconductivity by Heike Kamerlingh-Onnes (The superconductivity of Mercury, Comm. Phys. Lab. Univ. Leiden, vols. 122, 124, 1911), but also the half-centennial of the discovery of what is referred to as fluxoid quantization in superconductors by Robert Doll and Martin Näbauer (Phys. Rev. Lett. 7:51, 1961; Z. Phys. 169:526, 1962), and, independently, by Bascom S. Deaver Jr. and William Fairbank (Phys. Rev. Lett. 7:43, 1961; Ph.D. Thesis, Stanford University, 1962). The experimental proof of the quantization of magnetic flux (or more accurately fluxoid) in hollow superconducting cylinders actually supports two important theoretical concepts. The form of the fluxoid quantum, on the one hand, which contains twice the elementary charge, allows for the conclusion, that the superconducting ground state can be viewed as a condensate of electron pairs, as predicted by the BCS theory of superconductivity (Bardeen et al. in Phys. Rev. 106:162, 1957; Phys. Rev. 108:1175, 1957). It can be viewed, on the other hand, as a quantum phenomenon seen on macroscopic scales and thus supports the concept of the bosonic macroscopic wave function, here applied to the description of (quasi-bosonic) fermion pair condensates. This review is devoted to a discussion of the physics behind the Doll-Näbauer, Deaver-Fairbank discoveries and is intended to review historically the chain of events which motivated these talented experimentalists and which led to their independent discoveries at quite remote points of the earth.

  13. Floating-point system quantization errors in digital control systems

    NASA Technical Reports Server (NTRS)

    Phillips, C. L.

    1973-01-01

    The results are reported of research into the effects on system operation of signal quantization in a digital control system. The investigation considered digital controllers (filters) operating in floating-point arithmetic in either open-loop or closed-loop systems. An error analysis technique is developed, and is implemented by a digital computer program that is based on a digital simulation of the system. As an output the program gives the programing form required for minimum system quantization errors (either maximum of rms errors), and the maximum and rms errors that appear in the system output for a given bit configuration. The program can be integrated into existing digital simulations of a system.

  14. Unwinding of a single quantized vortex from a wire

    SciTech Connect

    Schwarz, K.W. )

    1993-05-01

    The dynamical behavior of a quantized vortex partially attached to a wire is studied theoretically, with the aim of interpreting recent experiments on quantized circulation in superfluid [sup 3]He-B. The geometry considered consists of a thin wire running parallel to the axis of a circular cylinder enclosing the wire. The circulation is assumed to run part way up the wire, and then to enter the fluid as a free vortex which eventually terminates on the outer wall. It is found that such a vortex achieves a state of steady precession around the wire, accompanied by a steady unwinding motion down the wire due to frictional effects. For an off-center wire, both the precession rate and the unwinding rate develop oscillatory components. Various particulars, such as the effects of friction, of moving the wire off center, and of pinning, are investigated. Excellent agreement is obtained between experiment, analytical theory, and numerical calculations.

  15. Quantization of universal Teichmüller space

    NASA Astrophysics Data System (ADS)

    Sergeev, Armen

    2014-12-01

    Universal Teichmüller space [InlineMediaObject not available: see fulltext.] is the quotient of the group QS( S 1) of quasisymmetric homeomorphisms of S 1 modulo Möbius transformations. The quantization problem for [InlineMediaObject not available: see fulltext.] arises in the theory of non-smooth closed bosonic strings. Because of non-smoothness of strings the natural QS( S 1)-action on [InlineMediaObject not available: see fulltext.] is also not smooth so there is no classical Lie algebra, associated to QS( S 1). However, using methods of non-commutative geometry, we can define a quantum Lie algebra of observables Der q ( QS), yielding the quantization of [InlineMediaObject not available: see fulltext.].

  16. Wavelet/scalar quantization compression standard for fingerprint images

    SciTech Connect

    Brislawn, C.M.

    1996-06-12

    US Federal Bureau of Investigation (FBI) has recently formulated a national standard for digitization and compression of gray-scale fingerprint images. Fingerprints are scanned at a spatial resolution of 500 dots per inch, with 8 bits of gray-scale resolution. The compression algorithm for the resulting digital images is based on adaptive uniform scalar quantization of a discrete wavelet transform subband decomposition (wavelet/scalar quantization method). The FBI standard produces archival-quality images at compression ratios of around 15 to 1 and will allow the current database of paper fingerprint cards to be replaced by digital imagery. The compression standard specifies a class of potential encoders and a universal decoder with sufficient generality to reconstruct compressed images produced by any compliant encoder, allowing flexibility for future improvements in encoder technology. A compliance testing program is also being implemented to ensure high standards of image quality and interchangeability of data between different implementations.

  17. Compression of Ultrasonic NDT Image by Wavelet Based Local Quantization

    NASA Astrophysics Data System (ADS)

    Cheng, W.; Li, L. Q.; Tsukada, K.; Hanasaki, K.

    2004-02-01

    Compression on ultrasonic image that is always corrupted by noise will cause `over-smoothness' or much distortion. To solve this problem to meet the need of real time inspection and tele-inspection, a compression method based on Discrete Wavelet Transform (DWT) that can also suppress the noise without losing much flaw-relevant information, is presented in this work. Exploiting the multi-resolution and interscale correlation property of DWT, a simple way named DWCs classification, is introduced first to classify detail wavelet coefficients (DWCs) as dominated by noise, signal or bi-effected. A better denoising can be realized by selective thresholding DWCs. While in `Local quantization', different quantization strategies are applied to the DWCs according to their classification and the local image property. It allocates the bit rate more efficiently to the DWCs thus achieve a higher compression rate. Meanwhile, the decompressed image shows the effects of noise suppressed and flaw characters preserved.

  18. Novel properties of the q-analogue quantized radiation field

    NASA Technical Reports Server (NTRS)

    Nelson, Charles A.

    1993-01-01

    The 'classical limit' of the q-analog quantized radiation field is studied paralleling conventional quantum optics analyses. The q-generalizations of the phase operator of Susskind and Glogower and that of Pegg and Barnett are constructed. Both generalizations and their associated number-phase uncertainty relations are manifestly q-independent in the n greater than g number basis. However, in the q-coherent state z greater than q basis, the variance of the generic electric field, (delta(E))(sup 2) is found to be increased by a factor lambda(z) where lambda(z) greater than 1 if q not equal to 1. At large amplitudes, the amplitude itself would be quantized if the available resolution of unity for the q-analog coherent states is accepted in the formulation. These consequences are remarkable versus the conventional q = 1 limit.

  19. Subband directional vector quantization in radiological image compression

    NASA Astrophysics Data System (ADS)

    Akrout, Nabil M.; Diab, Chaouki; Prost, Remy; Goutte, Robert; Amiel, Michel

    1992-05-01

    The aim of this paper is to propose a new scheme for image compression. The method is very efficient for images which have directional edges such as the tree-like structure of the coronary vessels in digital angiograms. This method involves two steps. First, the original image is decomposed at different resolution levels using a pyramidal subband decomposition scheme. For decomposition/reconstruction of the image, free of aliasing and boundary errors, we use an ideal band-pass filter bank implemented in the Discrete Cosine Transform domain (DCT). Second, the high-frequency subbands are vector quantized using a multiresolution codebook with vertical and horizontal codewords which take into account the edge orientation of each subband. The proposed method reduces the blocking effect encountered at low bit rates in conventional vector quantization.

  20. Polymer quantization of the Einstein-Rosen wormhole throat

    SciTech Connect

    Kunstatter, Gabor; Peltola, Ari; Louko, Jorma

    2010-01-15

    We present a polymer quantization of spherically symmetric Einstein gravity in which the polymerized variable is the area of the Einstein-Rosen wormhole throat. In the classical polymer theory, the singularity is replaced by a bounce at a radius that depends on the polymerization scale. In the polymer quantum theory, we show numerically that the area spectrum is evenly spaced and in agreement with a Bohr-Sommerfeld semiclassical estimate, and this spectrum is not qualitatively sensitive to issues of factor ordering or boundary conditions except in the lowest few eigenvalues. In the limit of small polymerization scale we recover, within the numerical accuracy, the area spectrum obtained from a Schroedinger quantization of the wormhole throat dynamics. The prospects of recovering from the polymer throat theory a full quantum-corrected spacetime are discussed.

  1. Quantized supercurrent decay in an annular Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Moulder, Stuart; Beattie, Scott; Smith, Robert P.; Tammuz, Naaman; Hadzibabic, Zoran

    2012-07-01

    We study the metastability and decay of multiply charged superflow in a ring-shaped atomic Bose-Einstein condensate. Supercurrent corresponding to a giant vortex with topological charge up to q=10 is phase imprinted optically and detected both interferometrically and kinematically. We observe q=3 superflow persisting for up to a minute and clearly resolve a cascade of quantized steps in its decay. These stochastic decay events, associated with vortex-induced 2π phase slips, correspond to collective jumps of atoms between discrete q values. We demonstrate the ability to detect quantized rotational states with >99% fidelity, which allows a detailed quantitative study of time-resolved phase-slip dynamics. We find that the supercurrent decays rapidly if the superflow speed exceeds a critical velocity in good agreement with numerical simulations, and we also observe rare stochastic phase slips for superflow speeds below the critical velocity.

  2. Conformal Loop quantization of gravity coupled to the standard model

    NASA Astrophysics Data System (ADS)

    Pullin, Jorge; Gambini, Rodolfo

    2016-03-01

    We consider a local conformal invariant coupling of the standard model to gravity free of any dimensional parameter. The theory is formulated in order to have a quantized version that admits a spin network description at the kinematical level like that of loop quantum gravity. The Gauss constraint, the diffeomorphism constraint and the conformal constraint are automatically satisfied and the standard inner product of the spin-network basis still holds. The resulting theory has resemblances with the Bars-Steinhardt-Turok local conformal theory, except it admits a canonical quantization in terms of loops. By considering a gauge fixed version of the theory we show that the Standard model coupled to gravity is recovered and the Higgs boson acquires mass. This in turn induces via the standard mechanism masses for massive bosons, baryons and leptons.

  3. Polymer quantization, stability and higher-order time derivative terms

    NASA Astrophysics Data System (ADS)

    Cumsille, Patricio; Reyes, Carlos M.; Ossandon, Sebastian; Reyes, Camilo

    2016-03-01

    The possibility that fundamental discreteness implicit in a quantum gravity theory may act as a natural regulator for ultraviolet singularities arising in quantum field theory has been intensively studied. Here, along the same expectations, we investigate whether a nonstandard representation called polymer representation can smooth away the large amount of negative energy that afflicts the Hamiltonians of higher-order time derivative theories, rendering the theory unstable when interactions come into play. We focus on the fourth-order Pais-Uhlenbeck model which can be reexpressed as the sum of two decoupled harmonic oscillators one producing positive energy and the other negative energy. As expected, the Schrödinger quantization of such model leads to the stability problem or to negative norm states called ghosts. Within the framework of polymer quantization we show the existence of new regions where the Hamiltonian can be defined well bounded from below.

  4. Polymer quantization of the Einstein-Rosen wormhole throat

    NASA Astrophysics Data System (ADS)

    Kunstatter, Gabor; Louko, Jorma; Peltola, Ari

    2010-01-01

    We present a polymer quantization of spherically symmetric Einstein gravity in which the polymerized variable is the area of the Einstein-Rosen wormhole throat. In the classical polymer theory, the singularity is replaced by a bounce at a radius that depends on the polymerization scale. In the polymer quantum theory, we show numerically that the area spectrum is evenly spaced and in agreement with a Bohr-Sommerfeld semiclassical estimate, and this spectrum is not qualitatively sensitive to issues of factor ordering or boundary conditions except in the lowest few eigenvalues. In the limit of small polymerization scale we recover, within the numerical accuracy, the area spectrum obtained from a Schrödinger quantization of the wormhole throat dynamics. The prospects of recovering from the polymer throat theory a full quantum-corrected spacetime are discussed.

  5. Precise quantization of anomalous Hall effect near zero magnetic field

    SciTech Connect

    Bestwick, A. J.; Fox, E. J.; Kou, Xufeng; Pan, Lei; Wang, Kang L.; Goldhaber-Gordon, D.

    2015-05-04

    In this study, we report a nearly ideal quantum anomalous Hall effect in a three-dimensional topological insulator thin film with ferromagnetic doping. Near zero applied magnetic field we measure exact quantization in the Hall resistance to within a part per 10,000 and a longitudinal resistivity under 1 Ω per square, with chiral edge transport explicitly confirmed by nonlocal measurements. Deviations from this behavior are found to be caused by thermally activated carriers, as indicated by an Arrhenius law temperature dependence. Using the deviations as a thermometer, we demonstrate an unexpected magnetocaloric effect and use it to reach near-perfect quantization by cooling the sample below the dilution refrigerator base temperature in a process approximating adiabatic demagnetization refrigeration.

  6. New approach of color image quantization based on multidimensional directory

    NASA Astrophysics Data System (ADS)

    Chang, Chin-Chen; Su, Yuan-Yuan

    2003-04-01

    Color image quantization is a strategy in which a smaller number of colors are used to represent the image. The objective is to make the quality approximate as closely to the original true-color image. The technology is widely used in non-true-color displays and in color printers that cannot reproduce a large number of different colors. However, the main problem the quantization of color image has to face is how to use less colors to show the color image. Therefore, it is very important to choose one suitable palette for an index color image. In this paper, we shall propose a new approach which employs the concept of Multi-Dimensional Directory (MDD) together with the one cycle LBG algorithm to create a high-quality index color image. Compared with the approaches such as VQ, ISQ, and Photoshop v.5, our approach can not only acquire high quality image but also shorten the operation time.

  7. Experimental evidence for a two-dimensional quantized Hall insulator

    NASA Astrophysics Data System (ADS)

    Hilke, M.; Shahar, D.; Song, S. H.; Tsui, D. C.; Xie, Y. H.; Monroe, Don

    1998-10-01

    The general theoretical definition of an insulator is a material in which the conductivity vanishes at the absolute zero of temperature. In classical insulators, such as materials with a band gap, vanishing conductivities lead to diverging resistivities. But other insulators can show more complex behaviour, particularly in the presence of a high magnetic field, where different components of the resistivity tensor can display different behaviours: the magnetoresistance diverges as the temperature approaches absolute zero, but the transverse (Hall) resistance remains finite. Such a system is known as a Hall insulator. Here we report experimental evidence for a quantized Hall insulator in a two-dimensional electron system-confined in a semiconductor quantum well. The Hall resistance is quantized in the quantum unit of resistance h/e2, where h is Planck's constant and e the electronic charge. At low fields, the sample reverts to being a normal Hall insulator.

  8. Magnetic Oscillations and Landau Quantization in Decoupled Epitaxial Graphene Multilayers*

    NASA Astrophysics Data System (ADS)

    Stroscio, Joseph A.

    2009-03-01

    A fundamental challenge to the development of a new electronics based on single atomic sheets of carbon, known as graphene, is to realize a large-area production platform that can produce a carbon system with the same intrinsic properties as a single sheet of graphene. Multi-layer epitaxial graphene (MEG) grown on SiC substrates has been proposed as a possible platform to this end [1]. The central question is, Can MEG behave as single layer graphene with the same intrinsic electrical characteristics? In this talk we show that MEG graphene on SiC exhibits single layer graphene properties through new tunneling magnetic measurements. The circular motion of electrons in a magnetic field has historically been a powerful probe of the Fermi surface properties of materials. Oscillations in many measureable properties, such as magnetization, thermal conductivity, and resistance, all reflect the Landau quantization of the electron energy levels. In this talk we show the ability to observe tunneling magneto-conductance oscillations (TMCOs) in the tunneling differential conductance as a function of both magnetic field and electron energy. The TMCO arise from intense Dirac quantization of the 2-dimensional Dirac electron and hole quasiparticles in MEG grown on SiC substrates. Spatial profiles of the Landau quantization demonstrate the high quality of MEG on SiC with carrier concentrations that vary less than 10% over hundreds of nm. The single layer quantization observed in these multi-layer samples is attributed to observed rotational stacking domains that effectively decouple the carbon layers in MEG on SiC, thereby yielding single layer graphene properties in a large area carbon production method. *In collaboration with Lee Miller, Kevin Kubista, Gregory M. Rutter, Ming Ruan, Mike Sprinkle, Claire Berger, Walt A. de Heer, and Phillip N. First, Georgia Institute of Technology [1] W.A. de Heer et. al., Solid State Comm. 143, 92 (2007).

  9. Quantized charge pumping through a carbon nanotube double quantum dot

    NASA Astrophysics Data System (ADS)

    Chorley, S. J.; Frake, J.; Smith, C. G.; Jones, G. A. C.; Buitelaar, M. R.

    2012-04-01

    We demonstrate single-electron pumping in a gate-defined carbon nanotube double quantum dot. By periodic modulation of the potentials of the two quantum dots, we move the system around charge triple points and transport exactly one electron or hole per cycle. We investigate the pumping as a function of the modulation frequency and amplitude and observe good current quantization up to frequencies of 18 MHz where rectification effects cause the mechanism to break down.

  10. Corrected Hawking Temperature in Snyder's Quantized Space-time

    NASA Astrophysics Data System (ADS)

    Ma, Meng-Sen; Liu, Fang; Zhao, Ren

    2015-06-01

    In the quantized space-time of Snyder, generalized uncertainty relation and commutativity are both included. In this paper we analyze the possible form for the corrected Hawking temperature and derive it from the both effects. It is shown that the corrected Hawking temperature has a form similar to the one of noncommutative geometry inspired Schwarzschild black hole, however with an requirement for the noncommutative parameter 𝜃 and the minimal length a.

  11. Superfield Hamiltonian quantization in terms of quantum antibrackets

    NASA Astrophysics Data System (ADS)

    Batalin, Igor A.; Lavrov, Peter M.

    2016-04-01

    We develop a new version of the superfield Hamiltonian quantization. The main new feature is that the BRST-BFV charge and the gauge fixing Fermion are introduced on equal footing within the sigma model approach, which provides for the actual use of the quantum/derived antibrackets. We study in detail the generating equations for the quantum antibrackets and their primed counterparts. We discuss the finite quantum anticanonical transformations generated by the quantum antibracket.

  12. Quantization Errors in Digital Signal Processors of Radar Systems

    DTIC Science & Technology

    1976-06-01

    QUANTIZATION ERRORS IN DIGITAL SIGNAL PROCESSORS, ~ ~OF RADAR SYSTEMS ) Final Technical Report 00 B v Jerry D. Moore Principal Investigator 0 Brian P...under Grant DAAG29-76-G-0072 THE UNIVERSITY OF ALABAMA ___ BER Report No. 205-125 Approved for Public Release: Distribution Unlimited 47.7 DISCLAIMER...THE FINDINGS OF THIS REPORT ARE NOT TO BE CONSTRUED AS AN OFFICIAL DEPARTMENIT OF THE ARMY POSITION UNLESS SO DESIGNATED BY OTHER AUTHORIZED DOCUMENTS

  13. Background independent noncommutative gravity from Fedosov quantization of endomorphism bundle

    NASA Astrophysics Data System (ADS)

    Dobrski, Michał

    2017-04-01

    A model of noncommutative gravity is constructed by means of Fedosov deformation quantization of an endomorphism bundle. The fields describing noncommutativity—symplectic form and symplectic connection—are dynamical, and the resulting theory is coordinate covariant and background independent. Its interpretation in terms of a Seiberg–Witten map is provided. Also, a new action for ordinary (commutative) general relativity is given, which in the present context appears as a commutative limit of noncommutative theory.

  14. Polymer quantization and the saddle point approximation of partition functions

    NASA Astrophysics Data System (ADS)

    Morales-Técotl, Hugo A.; Orozco-Borunda, Daniel H.; Rastgoo, Saeed

    2015-11-01

    The saddle point approximation of the path integral partition functions is an important way of deriving the thermodynamical properties of black holes. However, there are certain black hole models and some mathematically analog mechanical models for which this method cannot be applied directly. This is due to the fact that their action evaluated on a classical solution is not finite and its first variation does not vanish for all consistent boundary conditions. These problems can be dealt with by adding a counterterm to the classical action, which is a solution of the corresponding Hamilton-Jacobi equation. In this work we study the effects of polymer quantization on a mechanical model presenting the aforementioned difficulties and contrast it with the above counterterm method. This type of quantization for mechanical models is motivated by the loop quantization of gravity, which is known to play a role in the thermodynamics of black hole systems. The model we consider is a nonrelativistic particle in an inverse square potential, and we analyze two polarizations of the polymer quantization in which either the position or the momentum is discrete. In the former case, Thiemann's regularization is applied to represent the inverse power potential, but we still need to incorporate the Hamilton-Jacobi counterterm, which is now modified by polymer corrections. In the latter, momentum discrete case, however, such regularization could not be implemented. Yet, remarkably, owing to the fact that the position is bounded, we do not need a Hamilton-Jacobi counterterm in order to have a well-defined saddle point approximation. Further developments and extensions are commented upon in the discussion.

  15. Covariant quantization of C P T -violating photons

    NASA Astrophysics Data System (ADS)

    Colladay, D.; McDonald, P.; Noordmans, J. P.; Potting, R.

    2017-01-01

    We perform the covariant canonical quantization of the C P T - and Lorentz-symmetry-violating photon sector of the minimal Standard-Model Extension, which contains a general (timelike, lightlike, or spacelike) fixed background tensor kAF μ. Well-known stability issues, arising from complex-valued energy states, are solved by introducing a small photon mass, orders of magnitude below current experimental bounds. We explicitly construct a covariant basis of polarization vectors, in which the photon field can be expanded. We proceed to derive the Feynman propagator and show that the theory is microcausal. Despite the occurrence of negative energies and vacuum-Cherenkov radiation, we do not find any runaway stability issues, because the energy remains bounded from below. An important observation is that the ordering of the roots of the dispersion relations is the same in any observer frame, which allows for a frame-independent condition that selects the correct branch of the dispersion relation. This turns out to be critical for the consistency of the quantization. To our knowledge, this is the first system for which quantization has consistently been performed, in spite of the fact that the theory contains negative energies in some observer frames.

  16. Combinatorial quantization of the Hamiltonian Chern-Simons theory II

    NASA Astrophysics Data System (ADS)

    Alekseev, Anton Yu.; Grosse, Harald; Schomerus, Volker

    1996-01-01

    This paper further develops the combinatorial approach to quantization of the Hamiltonian Chern Simons theory advertised in [1]. Using the theory of quantum Wilson lines, we show how the Verlinde algebra appears within the context of quantum group gauge theory. This allows to discuss flatness of quantum connections so that we can give a mathematically rigorous definition of the algebra of observables A CS of the Chern Simons model. It is a *-algebra of “functions on the quantum moduli space of flat connections” and comes equipped with a positive functional ω (“integration”). We prove that this data does not depend on the particular choices which have been made in the construction. Following ideas of Fock and Rosly [2], the algebra A CS provides a deformation quantization of the algebra of functions on the moduli space along the natural Poisson bracket induced by the Chern Simons action. We evaluate a volume of the quantized moduli space and prove that it coincides with the Verlinde number. This answer is also interpreted as a partition partition function of the lattice Yang-Mills theory corresponding to a quantum gauge group.

  17. Progressive image data compression with adaptive scale-space quantization

    NASA Astrophysics Data System (ADS)

    Przelaskowski, Artur

    1999-12-01

    Some improvements of embedded zerotree wavelet algorithm are considere. Compression methods tested here are based on dyadic wavelet image decomposition, scalar quantization and coding in progressive fashion. Profitable coders with embedded form of code and rate fixing abilities like Shapiro EZW and Said nad Pearlman SPIHT are modified to improve compression efficiency. We explore the modifications of the initial threshold value, reconstruction levels and quantization scheme in SPIHT algorithm. Additionally, we present the result of the best filter bank selection. The most efficient biorthogonal filter banks are tested. Significant efficiency improvement of SPIHT coder was finally noticed even up to 0.9dB of PSNR in some cases. Because of the problems with optimization of quantization scheme in embedded coder we propose another solution: adaptive threshold selection of wavelet coefficients in progressive coding scheme. Two versions of this coder are tested: progressive in quality and resolution. As a result, improved compression effectiveness is achieved - close to 1.3 dB in comparison to SPIHT for image Barbara. All proposed algorithms are optimized automatically and are not time-consuming. But sometimes the most efficient solution must be found in iterative way. Final results are competitive across the most efficient wavelet coders.

  18. Image compression system and method having optimized quantization tables

    NASA Technical Reports Server (NTRS)

    Ratnakar, Viresh (Inventor); Livny, Miron (Inventor)

    1998-01-01

    A digital image compression preprocessor for use in a discrete cosine transform-based digital image compression device is provided. The preprocessor includes a gathering mechanism for determining discrete cosine transform statistics from input digital image data. A computing mechanism is operatively coupled to the gathering mechanism to calculate a image distortion array and a rate of image compression array based upon the discrete cosine transform statistics for each possible quantization value. A dynamic programming mechanism is operatively coupled to the computing mechanism to optimize the rate of image compression array against the image distortion array such that a rate-distortion-optimal quantization table is derived. In addition, a discrete cosine transform-based digital image compression device and a discrete cosine transform-based digital image compression and decompression system are provided. Also, a method for generating a rate-distortion-optimal quantization table, using discrete cosine transform-based digital image compression, and operating a discrete cosine transform-based digital image compression and decompression system are provided.

  19. Design of Dynamic Quantizers in Two Degree of Freedom IMC for Input-delay Plant

    NASA Astrophysics Data System (ADS)

    Okajima, Hiroshi; Umemoto, Tatsuya; Matsunaga, Nobutomo; Kawaji, Shigeyasu

    It is well known that plants with time delay are hard to be controlled by using traditional method. For this, controller with delay, such as Internal Model Control (IMC), Smith-method, have been proposed for input-delay systems. However, it would be difficult to realize the delay of controller because of memory limit of micro control unit(MCU). Also, the sampling time might be large in case of the application to the plant with large time delay, because of the limitation of the memory in MCU. Hence, the trade-off exists between sampling time and maximum quantizing error, and the assignment of the quantizer affects the quantization error. In this paper, dynamic quantizers are designed for achieving small quantizing error for input-delay control systems in MCU system. Also, the attainable performance caused by assignment of the quantizer is discussed. The effectiveness of the proposed method is shown by numerical example.

  20. The Hamiltonian structure of Dirac's equation in tensor form and its Fermi quantization

    NASA Technical Reports Server (NTRS)

    Reifler, Frank; Morris, Randall

    1992-01-01

    Currently, there is some interest in studying the tensor forms of the Dirac equation to elucidate the possibility of the constrained tensor fields admitting Fermi quantization. We demonstrate that the bispinor and tensor Hamiltonian systems have equivalent Fermi quantizations. Although the tensor Hamiltonian system is noncanonical, representing the tensor Poisson brackets as commutators for the Heisenberg operators directly leads to Fermi quantization without the use of bispinors.

  1. Simultaneous fault detection and control design for switched systems with two quantized signals.

    PubMed

    Li, Jian; Park, Ju H; Ye, Dan

    2017-01-01

    The problem of simultaneous fault detection and control design for switched systems with two quantized signals is presented in this paper. Dynamic quantizers are employed, respectively, before the output is passed to fault detector, and before the control input is transmitted to the switched system. Taking the quantized errors into account, the robust performance for this kind of system is given. Furthermore, sufficient conditions for the existence of fault detector/controller are presented in the framework of linear matrix inequalities, and fault detector/controller gains and the supremum of quantizer range are derived by a convex optimized method. Finally, two illustrative examples demonstrate the effectiveness of the proposed method.

  2. Quantized Feedback Stabilization of Linear Discrete-Time Systems with Constraints

    NASA Astrophysics Data System (ADS)

    Zanma, Tadanao; Yamamoto, Yusuke; Ishida, Muneaki

    This paper addresses quantization of control systems. The state of the system is quantized via a quantizer. In addition, constraints on input and/or state are considered explicitly. For a linear system with no constraint, some quantized feedback control methods have been proposed. In this paper, a control methodology for the constrained system is proposed. Specifically, an idea of a positively invariant set is introduced so that the performance is improved while the constraints are satisfied. The effectiveness of the proposed method is verified through both simulation and experiment.

  3. Image-adapted visually weighted quantization matrices for digital image compression

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B. (Inventor)

    1994-01-01

    A method for performing image compression that eliminates redundant and invisible image components is presented. The image compression uses a Discrete Cosine Transform (DCT) and each DCT coefficient yielded by the transform is quantized by an entry in a quantization matrix which determines the perceived image quality and the bit rate of the image being compressed. The present invention adapts or customizes the quantization matrix to the image being compressed. The quantization matrix comprises visual masking by luminance and contrast techniques and by an error pooling technique all resulting in a minimum perceptual error for any given bit rate, or minimum bit rate for a given perceptual error.

  4. Length quantization of DNA partially expelled from heads of a bacteriophage T3 mutant

    SciTech Connect

    Serwer, Philip; Wright, Elena T.; Liu, Zheng; Jiang, Wen

    2014-05-15

    DNA packaging of phages phi29, T3 and T7 sometimes produces incompletely packaged DNA with quantized lengths, based on gel electrophoretic band formation. We discover here a packaging ATPase-free, in vitro model for packaged DNA length quantization. We use directed evolution to isolate a five-site T3 point mutant that hyper-produces tail-free capsids with mature DNA (heads). Three tail gene mutations, but no head gene mutations, are present. A variable-length DNA segment leaks from some mutant heads, based on DNase I-protection assay and electron microscopy. The protected DNA segment has quantized lengths, based on restriction endonuclease analysis: six sharp bands of DNA missing 3.7–12.3% of the last end packaged. Native gel electrophoresis confirms quantized DNA expulsion and, after removal of external DNA, provides evidence that capsid radius is the quantization-ruler. Capsid-based DNA length quantization possibly evolved via selection for stalling that provides time for feedback control during DNA packaging and injection. - Graphical abstract: Highlights: • We implement directed evolution- and DNA-sequencing-based phage assembly genetics. • We purify stable, mutant phage heads with a partially leaked mature DNA molecule. • Native gels and DNase-protection show leaked DNA segments to have quantized lengths. • Native gels after DNase I-removal of leaked DNA reveal the capsids to vary in radius. • Thus, we hypothesize leaked DNA quantization via variably quantized capsid radius.

  5. Synthetic aperture radar signal data compression using block adaptive quantization

    NASA Technical Reports Server (NTRS)

    Kuduvalli, Gopinath; Dutkiewicz, Melanie; Cumming, Ian

    1994-01-01

    This paper describes the design and testing of an on-board SAR signal data compression algorithm for ESA's ENVISAT satellite. The Block Adaptive Quantization (BAQ) algorithm was selected, and optimized for the various operational modes of the ASAR instrument. A flexible BAQ scheme was developed which allows a selection of compression ratio/image quality trade-offs. Test results show the high quality of the SAR images processed from the reconstructed signal data, and the feasibility of on-board implementation using a single ASIC.

  6. Canonical Functional Quantization of Pseudo-Photons in Planar Systems

    SciTech Connect

    Ferreira, P. Castelo

    2008-06-25

    Extended U{sub e}(1)xU{sub g}(1) electromagnetism containing both a photon and a pseudo-photon is introduced at the variational level and is justified by the violation of the Bianchi identities in conceptual systems, either in the presence of magnetic monopoles or non-regular external fields, not being accounted for by the standard Maxwell Lagrangian. A dimensional reduction is carried out that yields a U{sub e}(1)xU{sub g}(1) Maxwell-BF type theory and a canonical functional quantization in planar systems is considered which may be relevant in Hall systems.

  7. Nucleation of Quantized Vortices from Rotating Superfluid Drops

    NASA Technical Reports Server (NTRS)

    Donnelly, Russell J.

    2001-01-01

    The long-term goal of this project is to study the nucleation of quantized vortices in helium II by investigating the behavior of rotating droplets of helium II in a reduced gravity environment. The objective of this ground-based research grant was to develop new experimental techniques to aid in accomplishing that goal. The development of an electrostatic levitator for superfluid helium, described below, and the successful suspension of charged superfluid drops in modest electric fields was the primary focus of this work. Other key technologies of general low temperature use were developed and are also discussed.

  8. Quantized Vortices and Four-Component Superfluidity of Semiconductor Excitons

    NASA Astrophysics Data System (ADS)

    Anankine, Romain; Beian, Mussie; Dang, Suzanne; Alloing, Mathieu; Cambril, Edmond; Merghem, Kamel; Carbonell, Carmen Gomez; Lemaître, Aristide; Dubin, François

    2017-03-01

    We study spatially indirect excitons of GaAs quantum wells, confined in a 10 μ m electrostatic trap. Below a critical temperature of about 1 K, we detect macroscopic spatial coherence and quantized vortices in the weak photoluminescence emitted from the trap. These quantum signatures are restricted to a narrow range of density, in a dilute regime. They manifest the formation of a four-component superfluid, made by a low population of optically bright excitons coherently coupled to a dominant fraction of optically dark excitons.

  9. Work extraction from heat-powered quantized optomechanical setups

    PubMed Central

    Gelbwaser-Klimovsky, D.; Kurizki, G.

    2015-01-01

    We analyze work extraction from an autonomous (self-contained) heat-powered optomechanical setup. The initial state of the quantized mechanical oscillator plays a key role. As the initial mean amplitude of the oscillator decreases, the resulting efficiency increases. In contrast to laser-powered self-induced oscillations, work extraction from a broadband heat bath does not require coherence or phase-locking: an initial phase-averaged coherent state of the oscillator still yields work, as opposed to an initial Fock-state. PMID:25589170

  10. Formal verification of communication protocols using quantized Horn clauses

    NASA Astrophysics Data System (ADS)

    Balu, Radhakrishnan

    2016-05-01

    The stochastic nature of quantum communication protocols naturally lends itself for expression via probabilistic logic languages. In this work we describe quantized computation using Horn clauses and base the semantics on quantum probability. Turing computable Horn clauses are very convenient to work with and the formalism can be extended to general form of first order languages. Towards this end we build a Hilbert space of H-interpretations and a corresponding non commutative von Neumann algebra of bounded linear operators. We demonstrate the expressive power of the language by casting quantum communication protocols as Horn clauses.

  11. Gravity quantized: Loop quantum gravity with a scalar field

    SciTech Connect

    Domagala, Marcin; Kaminski, Wojciech; Giesel, Kristina; Lewandowski, Jerzy

    2010-11-15

    ...''but we do not have quantum gravity.'' This phrase is often used when analysis of a physical problem enters the regime in which quantum gravity effects should be taken into account. In fact, there are several models of the gravitational field coupled to (scalar) fields for which the quantization procedure can be completed using loop quantum gravity techniques. The model we present in this paper consists of the gravitational field coupled to a scalar field. The result has similar structure to the loop quantum cosmology models, except that it involves all the local degrees of freedom of the gravitational field because no symmetry reduction has been performed at the classical level.

  12. Temporal evolutional absorption behaviors of graphene under Landau quantization

    NASA Astrophysics Data System (ADS)

    Hamedi, H. R.; Sahrai, M.

    2017-02-01

    We investigate the evolutional absorption behaviors of Landau-quantized graphene structure based on the transient solution to the density matrix equations of the motion. The impact of various system parameters on temporal evolution of probe absorption is studied. In addition, the required times for switching the high-absorption case to the zero-absorption (transparency) of a probe field is discussed. Due to unusual optical and electronic characteristics of graphene resulting from linear, massless dispersion of electrons near the Dirac point and the chiral character of electron states, our study may have potential applications in telecommunication, biomedicine, and optical information processing and may cause significant impact on technological applications.

  13. Noncommutative Dirac quantization condition using the Seiberg-Witten map

    NASA Astrophysics Data System (ADS)

    Maceda, Marco; Martínez-Carbajal, Daniel

    2016-11-01

    The Dirac quantization condition (DQC) for magnetic monopoles in noncommutative space-time is analyzed. For this a noncommutative generalization of the method introduced by Wu and Yang is considered; the effects of noncommutativity are analyzed using the Seiberg-Witten map and the corresponding deformed Maxwell's equations are discussed. By using a perturbation expansion in the noncommutativity parameter θ , we show first that the DQC remains unmodified up to the first and second order. This result is then generalized to all orders in the expansion parameter for a class of noncommutative electric currents induced by the Seiberg-Witten map; these currents reduce to the Dirac delta function in the commutative limit.

  14. Motion on constant curvature spaces and quantization using Noether symmetries.

    PubMed

    Bracken, Paul

    2014-12-01

    A general approach is presented for quantizing a metric nonlinear system on a manifold of constant curvature. It makes use of a curvature dependent procedure which relies on determining Noether symmetries from the metric. The curvature of the space functions as a constant parameter. For a specific metric which defines the manifold, Lie differentiation of the metric gives these symmetries. A metric is used such that the resulting Schrödinger equation can be solved in terms of hypergeometric functions. This permits the investigation of both the energy spectrum and wave functions exactly for this system.

  15. Quantization of spin waves in oval-shaped nanorings

    NASA Astrophysics Data System (ADS)

    Tan, C. G.; Lim, H. S.; Wang, Z. K.; Ng, S. C.; Kuok, M. H.; Goolaup, S.; Adeyeye, A. O.; Singh, N.

    Regular arrays of oval-shaped permalloy nanorings have been fabricated using deep ultraviolet lithography and their spin dynamics measured by Brillouin light scattering with the magnetic field applied along long (easy) axes of the rings. The dispersionless behavior of the spin wave modes observed reveals their standing wave nature. Two-dimensional simulations and analytical calculations have been performed for a single isolated nanoring. Results reveal that the observed modes can be interpreted in terms of quantized Damon-Eshbach modes due to lateral confinement in the finite size rings.

  16. Photophysics and photochemistry of quantized ZnO colloids

    SciTech Connect

    Kamat, P.V.; Patrick, B.

    1992-08-06

    The photophysical and photochemical behavior of quantized ZnO colloids in ethanol has been investigated by time-resolved transient absorption and emission measurements. Trapping of electrons at the ZnO surface resulted in broad absorption in the red region. The green emission of ZnO colloids was readily quenched by hole scavengers such as SCN{sup -} and I{sup -}. The photoinduced charge transfer to these hole scavengers was studied by laser flash photolysis. The yield of oxidized product increased considerably when ZnO colloids were coupled with ZnSe. 36 refs., 11 figs., 1 tab.

  17. Basis light-front quantization approach to positronium

    NASA Astrophysics Data System (ADS)

    Wiecki, Paul; Li, Yang; Zhao, Xingbo; Maris, Pieter; Vary, James P.

    2015-05-01

    We present the first application of the recently developed basis light-front quantization (BLFQ) method to self-bound systems in quantum field theory, using the positronium system as a test case. Within the BLFQ framework, we develop a two-body effective interaction, operating only in the lowest Fock sector, that implements photon exchange, neglecting fermion self-energy effects. We then solve for the mass spectrum of this interaction at the unphysical coupling α =0.3 . The resulting spectrum is in good agreement with the expected Bohr spectrum of nonrelativistic quantum mechanics. We examine in detail the dependence of the results on the regulators of the theory.

  18. Pisot q-coherent states quantization of the harmonic oscillator

    NASA Astrophysics Data System (ADS)

    Gazeau, J. P.; del Olmo, M. A.

    2013-03-01

    We revisit the quantized version of the harmonic oscillator obtained through a q-dependent family of coherent states. For each q, 0

  19. Image compression with embedded wavelet coding via vector quantization

    NASA Astrophysics Data System (ADS)

    Katsavounidis, Ioannis; Kuo, C.-C. Jay

    1995-09-01

    In this research, we improve Shapiro's EZW algorithm by performing the vector quantization (VQ) of the wavelet transform coefficients. The proposed VQ scheme uses different vector dimensions for different wavelet subbands and also different codebook sizes so that more bits are assigned to those subbands that have more energy. Another feature is that the vector codebooks used are tree-structured to maintain the embedding property. Finally, the energy of these vectors is used as a prediction parameter between different scales to improve the performance. We investigate the performance of the proposed method together with the 7 - 9 tap bi-orthogonal wavelet basis, and look into ways to incorporate loseless compression techniques.

  20. Charge retention in quantized energy levels of nanocrystals

    NASA Astrophysics Data System (ADS)

    Dâna, Aykutlu; Akça, İmran; Ergun, Orçun; Aydınlı, Atilla; Turan, Raşit; Finstad, Terje G.

    2007-04-01

    Understanding charging mechanisms and charge retention dynamics of nanocrystal (NC) memory devices is important in optimization of device design. Capacitance spectroscopy on PECVD grown germanium NCs embedded in a silicon oxide matrix was performed. Dynamic measurements of discharge dynamics are carried out. Charge decay is modelled by assuming storage of carriers in the ground states of NCs and that the decay is dominated by direct tunnelling. Discharge rates are calculated using the theoretical model for different NC sizes and densities and are compared with experimental data. Experimental results agree well with the proposed model and suggest that charge is indeed stored in the quantized energy levels of the NCs.

  1. Quantization of the Sobolev space of half-differentiable functions

    NASA Astrophysics Data System (ADS)

    Sergeev, A. G.

    2016-10-01

    A quantization of the Sobolev space V=H_01/2(S^1, R) of half- differentiable functions on the circle, which is closely connected with string theory, is constructed. The group {QS}(S^1) of quasisymmetric circle homeomorphisms acts on V by reparametrizations, but this action is not smooth. Nevertheless, a quantum infinitesimal action of {QS}(S^1) on V can be defined, which enables one to construct a quantum algebra of observables which is associated with the system (V,{QS}(S^1)). Bibliography: 7 titles.

  2. Canonical quantization of general relativity in discrete space-times.

    PubMed

    Gambini, Rodolfo; Pullin, Jorge

    2003-01-17

    It has long been recognized that lattice gauge theory formulations, when applied to general relativity, conflict with the invariance of the theory under diffeomorphisms. We analyze discrete lattice general relativity and develop a canonical formalism that allows one to treat constrained theories in Lorentzian signature space-times. The presence of the lattice introduces a "dynamical gauge" fixing that makes the quantization of the theories conceptually clear, albeit computationally involved. The problem of a consistent algebra of constraints is automatically solved in our approach. The approach works successfully in other field theories as well, including topological theories. A simple cosmological application exhibits quantum elimination of the singularity at the big bang.

  3. Topos quantum theory on quantization-induced sheaves

    SciTech Connect

    Nakayama, Kunji

    2014-10-15

    In this paper, we construct a sheaf-based topos quantum theory. It is well known that a topos quantum theory can be constructed on the topos of presheaves on the category of commutative von Neumann algebras of bounded operators on a Hilbert space. Also, it is already known that quantization naturally induces a Lawvere-Tierney topology on the presheaf topos. We show that a topos quantum theory akin to the presheaf-based one can be constructed on sheaves defined by the quantization-induced Lawvere-Tierney topology. That is, starting from the spectral sheaf as a state space of a given quantum system, we construct sheaf-based expressions of physical propositions and truth objects, and thereby give a method of truth-value assignment to the propositions. Furthermore, we clarify the relationship to the presheaf-based quantum theory. We give translation rules between the sheaf-based ingredients and the corresponding presheaf-based ones. The translation rules have “coarse-graining” effects on the spaces of the presheaf-based ingredients; a lot of different proposition presheaves, truth presheaves, and presheaf-based truth-values are translated to a proposition sheaf, a truth sheaf, and a sheaf-based truth-value, respectively. We examine the extent of the coarse-graining made by translation.

  4. Phase Structure of a Quantized Chiral Soliton on S3

    NASA Astrophysics Data System (ADS)

    Kobayashi, A.; Sawada, S.

    1993-11-01

    A quantization of a breathing motion of a rotating chiral soliton on S3 is performed in terms of a family of trial functions for a profile function of the hedgehog ansatz. We determine eigenenergies of the quantized S3 skyrmion by solving the Schrödinger equation of the breathing mode for several lower spin and isospin states varying the Skyrme term constants e. When S3 radius is smaller than 2/efπ, where fπ is the pion decay constant, we always obtain a conformal map solution as the lowest eigenenergy state. In the conformal map case, allowed states are either symmetric or anti-symmetric under the inversion of a dynamical variable describing the breathing mode. As the S3 radius increases the energy splitting between the symmetric and anti-symmetric states rapidly decreases and two states degenerate completely. When the S3 radius is larger than 3/efπ, for the small Skyrme term constant e, the lowest eigenenergy states are obtained with the profile function given by an arccosine form which is almost the same to those of usual R3 skyrmion. When the effects of the Skyrme term are weak, i.e., large e, the lowest energy states are obtained by the profile function of conformal map, which correspond to the ``frozen states'' for the R3 skyrmion as the limit of S3 radius --> ∞.

  5. Minimally destructive Doppler measurement of a quantized, superfluid flow

    NASA Astrophysics Data System (ADS)

    Anderson, Neil; Kumar, Avinash; Eckel, Stephen; Stringari, Sandro; Campbell, Gretchen

    2016-05-01

    Ring shaped Bose-Einstein condensates are of interest because they support the existence of quantized, persistent currents. These currents arise because in a ring trap, the wavefunction of the condensate must be single valued, and thus the azimuthal velocity is quantized. Previously, these persistent current states have only been measured in a destructive fashion via either interference with a phase reference or using the size of a central vortex-like structure that appears in time of flight. Here, we demonstrate a minimally destructive, in-situ measurement of the winding number of a ring shaped BEC. We excite a standing wave of phonon modes in the ring BEC using a perturbation. If the condensate is in a nonzero circulation state, then the frequency of these phonon modes are Doppler shifted, causing the standing wave to precess about the ring. From the direction and velocity of this precession, we can infer the winding number of the flow. For certain parameters, this technique can detect individual winding numbers with approximately 90% fidelity.

  6. A short course on quantum mechanics and methods of quantization

    NASA Astrophysics Data System (ADS)

    Ercolessi, Elisa

    2015-07-01

    These notes collect the lectures given by the author to the "XXIII International Workshop on Geometry and Physics" held in Granada (Spain) in September 2014. The first part of this paper aims at introducing a mathematical oriented reader to the realm of Quantum Mechanics (QM) and then to present the geometric structures that underline the mathematical formalism of QM which, contrary to what is usually done in Classical Mechanics (CM), are usually not taught in introductory courses. The mathematics related to Hilbert spaces and Differential Geometry are assumed to be known by the reader. In the second part, we concentrate on some quantization procedures, that are founded on the geometric structures of QM — as we have described them in the first part — and represent the ones that are more operatively used in modern theoretical physics. We will discuss first the so-called Coherent State Approach which, mainly complemented by "Feynman Path Integral Technique", is the method which is most widely used in quantum field theory. Finally, we will describe the "Weyl Quantization Approach" which is at the origin of modern tomographic techniques, originally used in optics and now in quantum information theory.

  7. Quantization of Space in the Presence of a Minimal Length

    NASA Astrophysics Data System (ADS)

    Wang, Lun-Zhou; Long, Chao-Yun; Long, Zheng-Wen

    2015-06-01

    In this article, we apply the Generalized Uncertainty Principle (GUP), which is consistent with quantum gravity theories to an elementary particle in a finite potential well, and study the quantum behavior in this system. The generalized Hamiltonian contains two additional terms, which are proportional to ap3 (the result of the maximum momentum assumption) and α2p4 (the result of the minimum length assumption), where α ∼ 1/MPIc is the GUP parameter. On the basis of the work by Ali et al., we solve the generalized Schrödinger equation which is extended to include the α2 correction term, and find that the length L of the finite potential well must be quantized. Then a generalization to the double-square-well potential is discussed. The result shows that all the measurable lengths especially the distance between the two potential wells are quantized in units of α0lPI in GUP scenario. Supported by National Natural Science Foundation of China under Grant Nos. 10865003 and 11464005

  8. Analysis of the quantum bouncer using polymer quantization

    NASA Astrophysics Data System (ADS)

    Martín-Ruiz, A.; Frank, A.; Urrutia, L. F.

    2015-08-01

    Polymer quantization (PQ) is a background independent quantization scheme that arises in loop quantum gravity. This framework leads to a new short-distance (discretized) structure characterized by a fundamental length. In this paper we use PQ to analyze the problem of a particle bouncing on a perfectly reflecting surface under the influence of Earth's gravitational field. In this scenario, deviations from the usual quantum effects are induced by the spatial discreteness, but not by a new short-range gravitational interaction. We solve the polymer Schrödinger equation in an analytical fashion, and we evaluate numerically the corresponding energy levels. We find that the polymer energy spectrum exhibits a negative shift compared to the one obtained for the quantum bouncer. The comparison of our results with those obtained in the GRANIT experiment leads to an upper bound for the fundamental length scale, namely λ ≪0.6 Å . We find polymer corrections to the transition probability between levels, induced by small vibrations, together with the probability of spontaneous emission in the quadrupole approximation.

  9. Design and evaluation of sparse quantization index modulation watermarking schemes

    NASA Astrophysics Data System (ADS)

    Cornelis, Bruno; Barbarien, Joeri; Dooms, Ann; Munteanu, Adrian; Cornelis, Jan; Schelkens, Peter

    2008-08-01

    In the past decade the use of digital data has increased significantly. The advantages of digital data are, amongst others, easy editing, fast, cheap and cross-platform distribution and compact storage. The most crucial disadvantages are the unauthorized copying and copyright issues, by which authors and license holders can suffer considerable financial losses. Many inexpensive methods are readily available for editing digital data and, unlike analog information, the reproduction in the digital case is simple and robust. Hence, there is great interest in developing technology that helps to protect the integrity of a digital work and the copyrights of its owners. Watermarking, which is the embedding of a signal (known as the watermark) into the original digital data, is one method that has been proposed for the protection of digital media elements such as audio, video and images. In this article, we examine watermarking schemes for still images, based on selective quantization of the coefficients of a wavelet transformed image, i.e. sparse quantization-index modulation (QIM) watermarking. Different grouping schemes for the wavelet coefficients are evaluated and experimentally verified for robustness against several attacks. Wavelet tree-based grouping schemes yield a slightly improved performance over block-based grouping schemes. Additionally, the impact of the deployment of error correction codes on the most promising configurations is examined. The utilization of BCH-codes (Bose, Ray-Chaudhuri, Hocquenghem) results in an improved robustness as long as the capacity of the error codes is not exceeded (cliff-effect).

  10. Path-memory induced quantization of classical orbits

    PubMed Central

    Fort, Emmanuel; Eddi, Antonin; Boudaoud, Arezki; Moukhtar, Julien; Couder, Yves

    2010-01-01

    A droplet bouncing on a liquid bath can self-propel due to its interaction with the waves it generates. The resulting “walker” is a dynamical association where, at a macroscopic scale, a particle (the droplet) is driven by a pilot-wave field. A specificity of this system is that the wave field itself results from the superposition of the waves generated at the points of space recently visited by the particle. It thus contains a memory of the past trajectory of the particle. Here, we investigate the response of this object to forces orthogonal to its motion. We find that the resulting closed orbits present a spontaneous quantization. This is observed only when the memory of the system is long enough for the particle to interact with the wave sources distributed along the whole orbit. An additional force then limits the possible orbits to a discrete set. The wave-sustained path memory is thus demonstrated to generate a quantization of angular momentum. Because a quantum-like uncertainty was also observed recently in these systems, the nonlocality generated by path memory opens new perspectives.

  11. Quantization and harmonic analysis on nilpotent Lie groups

    SciTech Connect

    Wildberger, N.J.

    1983-01-01

    Weyl Quantization is a procedure for associating a function on which the canonical commutation relations are realized. If G is a simply-connected, connected nilpotent Lie group with Lie algebra g and dual g/sup */, it is shown how to inductively construct symplectic isomorphisms between every co-adjoint orbit O and the bundle in Hilbert Space for some m. Weyl Quantization can then be used to associate to each orbit O a unitary representation rho/sub 0/ of G, recovering the classification of the unitary dual by Kirillov. It is used to define a geometric Fourier transform, F : L/sup 1/(G) ..-->.. functions on g/sup */, and it is shown that the usual operator-valued Fourier transform can be recovered from F, characters are inverse Fourier transforms of invariant measures on orbits, and matrix coefficients are inverse Fourier transforms of non-invariant measures supported on orbits. Realizations of the representations rho/sub 0/ in subspaces of L/sup 2/(O) are obtained.. Finally, the kernel function is computed for the upper triangular unipotent group and one other example.

  12. Universality and quantized response in bosonic mesoscopic tunneling

    NASA Astrophysics Data System (ADS)

    Yin, Shaoyu; Béri, Benjamin

    2016-06-01

    We show that tunneling involving bosonic wires and/or boson integer quantum Hall (bIQH) edges is characterized by features that are far more universal than those in their fermionic counterpart. Considering a pair of minimal geometries, we examine the tunneling conductance as a function of energy (e.g., chemical potential bias) at high and low energy limits, finding a low energy enhancement and a universal high versus zero energy relation that hold for all wire/bIQH edge combinations. Beyond this universality present in all the different topological (bIQH-edge) and nontopological (wire) setups, we also discover a number of features distinguishing the topological bIQH edges, which include a current imbalance to chemical potential bias ratio that is quantized despite the lack of conductance quantization in the bIQH edges themselves. The predicted phenomena require only initial states to be thermal and thus are well suited for tests with ultracold bosons forming wires and bIQH states. For the latter, we highlight a potential realization based on single component bosons in the recently observed Harper-Hofstadter band structure.

  13. Imaging of quantized magnetostatic modes using spatially resolved ferromagnetic resonance

    NASA Astrophysics Data System (ADS)

    Tamaru, S.; Bain, J. A.; van de Veerdonk, R. J. M.; Crawford, T. M.; Covington, M.; Kryder, M. H.

    2002-05-01

    We present a measurement technique for performing spatially resolved ferromagnetic resonance and directly imaging quantized magnetostatic modes in magnetic samples that undergo high frequency magnetic drive fields (up to 8 GHz). The dynamic response of a 50×50 μm2 permalloy structure (100 nm thick) under a 7.04 GHz highly nonuniform drive field was measured as a function of the dc bias field using this technique. The magnetization variation observed indicates that quantized magnetostatic mode waves appear at certain bias fields, with the number of nodes decreasing with an increase in the bias field. We tentatively assign the indices of each mode using the Damon-Eshbach (DE) model. Similar modes have been observed for a similar sample geometry using an inductive measurement and they showed good agreement with the DE model. However, the result measured using this technique showed some discrepancy with the DE model and the spatial patterns observed are more complicated than simple one-dimensional standing waves. This complexity suggests that analysis beyond that of the DE model is required to explain the observations.

  14. Pisot q-coherent states quantization of the harmonic oscillator

    SciTech Connect

    Gazeau, J.P.; Olmo, M.A. del

    2013-03-15

    We revisit the quantized version of the harmonic oscillator obtained through a q-dependent family of coherent states. For each q, 0Quantized version of the harmonic oscillator (HO) through a q-family of coherent states. Black-Right-Pointing-Pointer For q,0

  15. Adaptive Quantization Parameter Cascading in HEVC Hierarchical Coding.

    PubMed

    Zhao, Tiesong; Wang, Zhou; Chen, Chang Wen

    2016-04-20

    The state-of-the-art High Efficiency Video Coding (HEVC) standard adopts a hierarchical coding structure to improve its coding efficiency. This allows for the Quantization Parameter Cascading (QPC) scheme that assigns Quantization Parameters (Qps) to different hierarchical layers in order to further improve the Rate-Distortion (RD) performance. However, only static QPC schemes have been suggested in HEVC test model (HM), which are unable to fully explore the potentials of QPC. In this paper, we propose an adaptive QPC scheme for HEVC hierarchical structure to code natural video sequences characterized by diversified textures, motions and encoder configurations. We formulate the adaptive QPC scheme as a non-linear programming problem and solve it in a scientifically sound way with a manageable low computational overhead. The proposed model addresses a generic Qp assignment problem of video coding. Therefore, it also applies to Group-Of-Picture (GOP)- level, frame-level and Coding Unit (CU)-level Qp assignments. Comprehensive experiments have demonstrated the proposed QPC scheme is able to adapt quickly to different video contents and coding configurations while achieving noticeable RD performance enhancement over all static and adaptive QPC schemes under comparison as well as HEVC default frame-level rate control. We have also made valuable observations on the distributions of adaptive QPC sets in videos of different types of contents, which provide useful insights on how to further improve static QPC schemes.

  16. Adaptive Quantization Parameter Cascading in HEVC Hierarchical Coding.

    PubMed

    Zhao, Tiesong; Wang, Zhou; Chen, Chang Wen

    2016-07-01

    The state-of-the-art High Efficiency Video Coding (HEVC) standard adopts a hierarchical coding structure to improve its coding efficiency. This allows for the quantization parameter cascading (QPC) scheme that assigns quantization parameters (Qps) to different hierarchical layers in order to further improve the rate-distortion (RD) performance. However, only static QPC schemes have been suggested in HEVC test model, which are unable to fully explore the potentials of QPC. In this paper, we propose an adaptive QPC scheme for an HEVC hierarchical structure to code natural video sequences characterized by diversified textures, motions, and encoder configurations. We formulate the adaptive QPC scheme as a non-linear programming problem and solve it in a scientifically sound way with a manageable low computational overhead. The proposed model addresses a generic Qp assignment problem of video coding. Therefore, it also applies to group-of-picture-level, frame-level and coding unit-level Qp assignments. Comprehensive experiments have demonstrated that the proposed QPC scheme is able to adapt quickly to different video contents and coding configurations while achieving noticeable RD performance enhancement over all static and adaptive QPC schemes under comparison as well as HEVC default frame-level rate control. We have also made valuable observations on the distributions of adaptive QPC sets in the videos of different types of contents, which provide useful insights on how to further improve static QPC schemes.

  17. Charge quantization in the CP(1) nonlinear σ-model

    NASA Astrophysics Data System (ADS)

    Hellerman, Simeon; Kehayias, John; Yanagida, Tsutomu T.

    2014-01-01

    We investigate the consistency conditions for matter fields coupled to the four-dimensional (N=1 supersymmetric) CP(1) nonlinear sigma model (the coset space SU(2/U(1). We find that consistency requires that the U(1 charge of the matter be quantized, in units of half of the U(1 charge of the Nambu-Goldstone (NG) boson, if the matter has a nonsingular kinetic term and the dynamics respect the full group SU(2. We can then take the linearly realized group U(1 to comprise the weak hypercharge group U(1 of the Standard Model. Thus we have charge quantization without a Grand Unified Theory (GUT), completely avoiding problems like proton decay, doublet-triplet splitting, and magnetic monopoles. We briefly investigate the phenomenological implications of this model-building framework. The NG boson is fractionally charged and completely stable. It can be naturally light, avoiding constraints while being a component of dark matter or having applications in nuclear physics. We also comment on the extension to other NLSMs on coset spaces, which will be explored more fully in a followup paper.

  18. Size quantization of Dirac fermions in graphene constrictions

    PubMed Central

    Terrés, B.; Chizhova, L. A.; Libisch, F.; Peiro, J.; Jörger, D.; Engels, S.; Girschik, A.; Watanabe, K.; Taniguchi, T.; Rotkin, S. V.; Burgdörfer, J.; Stampfer, C.

    2016-01-01

    Quantum point contacts are cornerstones of mesoscopic physics and central building blocks for quantum electronics. Although the Fermi wavelength in high-quality bulk graphene can be tuned up to hundreds of nanometres, the observation of quantum confinement of Dirac electrons in nanostructured graphene has proven surprisingly challenging. Here we show ballistic transport and quantized conductance of size-confined Dirac fermions in lithographically defined graphene constrictions. At high carrier densities, the observed conductance agrees excellently with the Landauer theory of ballistic transport without any adjustable parameter. Experimental data and simulations for the evolution of the conductance with magnetic field unambiguously confirm the identification of size quantization in the constriction. Close to the charge neutrality point, bias voltage spectroscopy reveals a renormalized Fermi velocity of ∼1.5 × 106 m s−1 in our constrictions. Moreover, at low carrier density transport measurements allow probing the density of localized states at edges, thus offering a unique handle on edge physics in graphene devices. PMID:27198961

  19. Minimizing embedding impact in steganography using trellis-coded quantization

    NASA Astrophysics Data System (ADS)

    Filler, Tomáš; Judas, Jan; Fridrich, Jessica

    2010-01-01

    In this paper, we propose a practical approach to minimizing embedding impact in steganography based on syndrome coding and trellis-coded quantization and contrast its performance with bounds derived from appropriate rate-distortion bounds. We assume that each cover element can be assigned a positive scalar expressing the impact of making an embedding change at that element (single-letter distortion). The problem is to embed a given payload with minimal possible average embedding impact. This task, which can be viewed as a generalization of matrix embedding or writing on wet paper, has been approached using heuristic and suboptimal tools in the past. Here, we propose a fast and very versatile solution to this problem that can theoretically achieve performance arbitrarily close to the bound. It is based on syndrome coding using linear convolutional codes with the optimal binary quantizer implemented using the Viterbi algorithm run in the dual domain. The complexity and memory requirements of the embedding algorithm are linear w.r.t. the number of cover elements. For practitioners, we include detailed algorithms for finding good codes and their implementation. Finally, we report extensive experimental results for a large set of relative payloads and for different distortion profiles, including the wet paper channel.

  20. q-bosons and the q-analogue quantized field

    NASA Technical Reports Server (NTRS)

    Nelson, Charles A.

    1995-01-01

    The q-analogue coherent states are used to identify physical signatures for the presence of a 1-analogue quantized radiation field in the q-CS classical limits where the absolute value of z is large. In this quantum-optics-like limit, the fractional uncertainties of most physical quantities (momentum, position, amplitude, phase) which characterize the quantum field are O(1). They only vanish as O(1/absolute value of z) when q = 1. However, for the number operator, N, and the N-Hamiltonian for a free q-boson gas, H(sub N) = h(omega)(N + 1/2), the fractional uncertainties do still approach zero. A signature for q-boson counting statistics is that (Delta N)(exp 2)/ (N) approaches 0 as the absolute value of z approaches infinity. Except for its O(1) fractional uncertainty, the q-generalization of the Hermitian phase operator of Pegg and Barnett, phi(sub q), still exhibits normal classical behavior. The standard number-phase uncertainty-relation, Delta(N) Delta phi(sub q) = 1/2, and the approximate commutation relation, (N, phi(sub q)) = i, still hold for the single-mode q-analogue quantized field. So, N and phi(sub q) are almost canonically conjugate operators in the q-CS classical limit. The q-analogue CS's minimize this uncertainty relation for moderate (absolute value of z)(exp 2).

  1. Deformation Quantization and Superconformal Symmetry in Three Dimensions

    NASA Astrophysics Data System (ADS)

    Beem, Christopher; Peelaers, Wolfger; Rastelli, Leonardo

    2017-02-01

    We investigate the structure of certain protected operator algebras that arise in three-dimensional N=4 superconformal field theories. We find that these algebras can be understood as a quantization of (either of) the half-BPS chiral ring(s). An important feature of this quantization is that it has a preferred basis in which the structure constants of the quantum algebra are equal to the OPE coefficients of the underlying superconformal theory. We identify several nontrivial conditions that the quantum algebra must satisfy in this basis. We consider examples of theories for which the moduli space of vacua is either the minimal nilpotent orbit of a simple Lie algebra or a Kleinian singularity. For minimal nilpotent orbits, the quantum algebras (and their preferred bases) can be uniquely determined. These algebras are related to higher spin algebras. For Kleinian singularities the algebras can be characterized abstractly—they are spherical subalgebras of symplectic reflection algebras—but the preferred basis is not easily determined. We find evidence in these examples that for a given choice of quantum algebra (defined up to a certain gauge equivalence), there is at most one choice of canonical basis. We conjecture that this is the case for general N=4 SCFTs.

  2. Size quantization of Dirac fermions in graphene constrictions.

    PubMed

    Terrés, B; Chizhova, L A; Libisch, F; Peiro, J; Jörger, D; Engels, S; Girschik, A; Watanabe, K; Taniguchi, T; Rotkin, S V; Burgdörfer, J; Stampfer, C

    2016-05-20

    Quantum point contacts are cornerstones of mesoscopic physics and central building blocks for quantum electronics. Although the Fermi wavelength in high-quality bulk graphene can be tuned up to hundreds of nanometres, the observation of quantum confinement of Dirac electrons in nanostructured graphene has proven surprisingly challenging. Here we show ballistic transport and quantized conductance of size-confined Dirac fermions in lithographically defined graphene constrictions. At high carrier densities, the observed conductance agrees excellently with the Landauer theory of ballistic transport without any adjustable parameter. Experimental data and simulations for the evolution of the conductance with magnetic field unambiguously confirm the identification of size quantization in the constriction. Close to the charge neutrality point, bias voltage spectroscopy reveals a renormalized Fermi velocity of ∼1.5 × 10(6) m s(-1) in our constrictions. Moreover, at low carrier density transport measurements allow probing the density of localized states at edges, thus offering a unique handle on edge physics in graphene devices.

  3. Unified framework for quasispecies evolution and stochastic quantization

    NASA Astrophysics Data System (ADS)

    Bianconi, Ginestra; Rahmede, Christoph

    2011-05-01

    In this paper we provide a unified framework for quasispecies evolution and stochastic quantization. We map the biological evolution described by the quasispecies equation to the stochastic dynamics of an ensemble of particles undergoing a creation-annihilation process. We show that this mapping identifies a natural decomposition of the probability that an individual has a certain genotype into eigenfunctions of the evolutionary operator. This alternative approach to study the quasispecies equation allows for a generalization of the Fisher theorem equivalent to the Price equation. According to this relation the average fitness of an asexual population increases with time proportional to the variance of the eigenvalues of the evolutionary operator. Moreover, from the present alternative formulation of stochastic quantization a novel scenario emerges to be compared with existing approaches. The evolution of an ensemble of particles undergoing diffusion and a creation-annihilation process is parametrized by a variable β that we call the inverse temperature of the stochastic dynamics. We find that the evolution equation at high temperatures is simply related to the Schrödinger equation, but at low temperature it strongly deviates from it. In the presence of additional noise in scattering processes between the particles, the evolution reaches a steady state described by the Bose-Einstein statistics.

  4. Study on macroblock level distortion-quantization models

    NASA Astrophysics Data System (ADS)

    Guo, Longsheng; Yin, Haibing; Wang, Jia; Xu, Ning; Tan, Jingjing

    2012-04-01

    In H.264/AVC, rate distortion (R-D) model plays an important role in rate control and mode decision for efficient video compression. In general, R-D model includes rate quantization (R-Q) model and distortion quantization (D-Q) model. We have already had a study on frame-level D-Q model in the past, it is meaningful for frame level rate control optimization. However, basic unit level R-D model is crucial for precise rate control and efficient mode decision. Therefore, it is necessary to make in-depth analysis on D-Q model at MB level. In this paper, we test several existing D-Q models and give fair comparison on these models, and have an in-depth study on D-Q modeling from accuracy, complexity and applications. Finally, we have shown advantages and disadvantages of these models. This work is meaningful for efficient video coding algorithm optimization in the future.

  5. Fuzzy Adaptive Quantized Control for a Class of Stochastic Nonlinear Uncertain Systems.

    PubMed

    Liu, Zhi; Wang, Fang; Zhang, Yun; Chen, C L Philip

    2016-02-01

    In this paper, a fuzzy adaptive approach for stochastic strict-feedback nonlinear systems with quantized input signal is developed. Compared with the existing research on quantized input problem, the existing works focus on quantized stabilization, while this paper considers the quantized tracking problem, which recovers stabilization as a special case. In addition, uncertain nonlinearity and the unknown stochastic disturbances are simultaneously considered in the quantized feedback control systems. By putting forward a new nonlinear decomposition of the quantized input, the relationship between the control signal and the quantized signal is established, as a result, the major technique difficulty arising from the piece-wise quantized input is overcome. Based on fuzzy logic systems' universal approximation capability, a novel fuzzy adaptive tracking controller is constructed via backstepping technique. The proposed controller guarantees that the tracking error converges to a neighborhood of the origin in the sense of probability and all the signals in the closed-loop system remain bounded in probability. Finally, an example illustrates the effectiveness of the proposed control approach.

  6. Geometric quantization of curvature energy in equipotential surfaces of ionic crystals

    NASA Astrophysics Data System (ADS)

    Gandy, Paul J. F.; Klinowski, Jacek

    2002-06-01

    The curvature energies of triply periodic minimal surfaces (TPMS) and zero equipotential surfaces (ZEPS) of ionic crystals are both quantized with the Euler-Poincaré characteristic as the "quantum number," and the curvature energy of the TPMS larger than that of the corresponding ZEPS. Quantization is imposed by the charge-defined metric.

  7. Educational Information Quantization for Improving Content Quality in Learning Management Systems

    ERIC Educational Resources Information Center

    Rybanov, Alexander Aleksandrovich

    2014-01-01

    The article offers the educational information quantization method for improving content quality in Learning Management Systems. The paper considers questions concerning analysis of quality of quantized presentation of educational information, based on quantitative text parameters: average frequencies of parts of speech, used in the text; formal…

  8. Correlation Loss of a Gaussian Signal Passed Through an Odd Quantizer.

    DTIC Science & Technology

    The correlation coefficient of input signal component and quantizer output is shown to...be a weighted version of the corresponding input correlation coefficient . Furthermore, intervals of input rms voltage exist over which a given linear quantizer should be operated to minimize correlation loss. (Author)

  9. Exact quantization conditions, toric Calabi-Yau and non-perturbative topological string

    NASA Astrophysics Data System (ADS)

    Sun, Kaiwen; Wang, Xin; Huang, Min-xin

    2017-01-01

    We establish the precise relation between the Nekrasov-Shatashvili (NS) quantization scheme and Grassi-Hatsuda-Mariño conjecture for the mirror curve of arbitrary toric Calabi-Yau threefold. For a mirror curve of genus g, the NS quantization scheme leads to g quantization conditions for the corresponding integrable system. The exact NS quantization conditions enjoy a self S-duality with respect to Planck constant h and can be derived from the Lockhart-Vafa partition function of non-perturbative topological string. Based on a recent observation on the correspondence between spectral theory and topological string, another quantization scheme was proposed by Grassi-Hatsuda-Mariño, in which there is a single quantization condition and the spectra are encoded in the vanishing of a quantum Riemann theta function. We demonstrate that there actually exist at least g nonequivalent quantum Riemann theta functions and the intersections of their theta divisors coincide with the spectra determined by the exact NS quantization conditions. This highly nontrivial coincidence between the two quantization schemes requires infinite constraints among the refined Gopakumar-Vafa invariants. The equivalence for mirror curves of genus one has been verified for some local del Pezzo surfaces. In this paper, we generalize the correspondence to higher genus, and analyze in detail the resolved C^3/Z_5 orbifold and several SU( N ) geometries. We also give a proof for some models at ħ = 2π /k.

  10. Quantization techniques for the compression of chest images by JPEG-type algorithms

    NASA Astrophysics Data System (ADS)

    Good, Walter F.; Gur, David

    1992-06-01

    The Joint Photographic Expert Group (JPEG) compression standard specifies a quantization procedure but does not specify a particular quantization table. In addition, there are quantization procedures which are effectively compatible with the standard but do not adhere to the simple quantization scheme described therein. These are important considerations, since it is the quantization procedure that primarily determines the compression ratio as well as the kind of information lost or artifacts introduced. A study has been conducted of issues related to the design of quantization techniques tailored for the compression of 12-bit chest images in radiology. Psycho-physical based quantization alone may not be optimal for images that are to be compressed and then used for primary diagnosis. Two specific examples of auxiliary techniques which can be used in conjunction with JPEG compression are presented here. In particular, preprocessing of the source image is shown to be advantageous under certain circumstances. In contrast, a proposed quantization technique in which isolated nonzero coefficients are removed has been shown to be generally detrimental. Image quality here is primarily measured by mean square error (MSE), although this study is in anticipation of more relevant reader performance studies of compression.

  11. Central extension of mapping class group via Chekhov-Fock quantization

    NASA Astrophysics Data System (ADS)

    Xu, Binbin

    2016-12-01

    The central extension of mapping class groups of punctured surfaces of finite type that arises in Chekhov-Fock quantization is 12 times of the Meyer class plus the Euler classes of the punctures, which agree with the one arising in the Kashaev quantization.

  12. Development of Advanced Technologies for Complete Genomic and Proteomic Characterization of Quantized Human Tumor Cells

    DTIC Science & Technology

    2015-09-01

    populations were successfully established from the corresponding parental cell lines (Figure 2). To generate quantized cell populations a single ...individual cells from the SN291 parental culture. Each dot represents a single cell. Color gradient indicates enrichment score for either published CD133... parental lines and quantized cell types (Specific Aim 5). We believe this program has significantly advanced genomic, proteomic and single -cell

  13. On the Stochastic Quantization Method: Characteristics and Applications to Singular Systems

    NASA Technical Reports Server (NTRS)

    Kanenaga, Masahiko; Namiki, Mikio

    1996-01-01

    Introducing the generalized Langevin equation, we extend the stochastic quantization method so as to deal with singular dynamical systems beyond the ordinary territory of quantum mechanics. We also show how the uncertainty relation is built up to the quantum mechanical limit with respect to fictitious time, irrespective of its initial value, within the framework of the usual stochastic quantization method.

  14. Performance of peaky template matching under additive white Gaussian noise and uniform quantization

    NASA Astrophysics Data System (ADS)

    Horvath, Matthew S.; Rigling, Brian D.

    2015-05-01

    Peaky template matching (PTM) is a special case of a general algorithm known as multinomial pattern matching originally developed for automatic target recognition of synthetic aperture radar data. The algorithm is a model- based approach that first quantizes pixel values into Nq = 2 discrete values yielding generative Beta-Bernoulli models as class-conditional templates. Here, we consider the case of classification of target chips in AWGN and develop approximations to image-to-template classification performance as a function of the noise power. We focus specifically on the case of a uniform quantization" scheme, where a fixed number of the largest pixels are quantized high as opposed to using a fixed threshold. This quantization method reduces sensitivity to the scaling of pixel intensities and quantization in general reduces sensitivity to various nuisance parameters difficult to account for a priori. Our performance expressions are verified using forward-looking infrared imagery from the Army Research Laboratory Comanche dataset.

  15. Modeling of quantization noise in linear analog-to-digital converter

    NASA Astrophysics Data System (ADS)

    Švihlík, Jan; Fliegel, Karel

    2013-09-01

    Quantization noise is present in all the current digital imaging systems, therefore its understanding and modeling is crucial for optimization of image reconstruction techniques. Hence, this paper deals with modeling of the quantization noise. We exploit the undecimated wavelet transform (UWT) for signal representation. We assume that the quantization noise in the spatial domain can be seen as additive, white and uniformly distributed. Hence, the UWT causes the transform of noise distribution due to weighted sum of noise samples and filter coefficients. From the known quantization step we are able to estimate suitable moments of noise uniform probability density function (PDF). These moments then could be directly evaluated in the undecimated wavelet domain using the derived equations. The presented algorithm gives the a priori information about the quantization noise and can be used for the suppression of it.

  16. Distortion-rate models for entropy-coded lattice vector quantization.

    PubMed

    Raffy, P; Antonini, M; Barlaud, M

    2000-01-01

    The increasing demand for real-time applications requires the use of variable-rate quantizers having good performance in the low bit rate domain. In order to minimize the complexity of quantization, as well as maintaining a reasonably high PSNR ratio, we propose to use an entropy-coded lattice vector quantizer (ECLVQ). These quantizers have proven to outperform the well-known EZW algorithm's performance in terms of rate-distortion tradeoff. In this paper, we focus our attention on the modeling of the mean squared error (MSE) distortion and the prefix code rate for ECLVQ. First, we generalize the distortion model of Jeong and Gibson (1993) on fixed-rate cubic quantizers to lattices under a high rate assumption. Second, we derive new rate models for ECLVQ, efficient at low bit rates without any high rate assumptions. Simulation results prove the precision of our models.

  17. On the macroscopic quantization in mesoscopic rings and single-electron devices

    NASA Astrophysics Data System (ADS)

    Semenov, Andrew G.

    2016-05-01

    In this letter we investigate the phenomenon of macroscopic quantization and consider particle on the ring interacting with the dissipative bath as an example. We demonstrate that even in presence of environment, there is macroscopically quantized observable which can take only integer values in the zero temperature limit. This fact follows from the total angular momentum conservation combined with momentum quantization for bare particle on the ring. The nontrivial thing is that the model under consideration, including the notion of quantized observable, can be mapped onto the Ambegaokar-Eckern-Schon model of the single-electron box (SEB). We evaluate SEB observable, originating after mapping, and reveal new physics, which follows from the macroscopic quantization phenomenon and the existence of additional conservation law. Some generalizations of the obtained results are also presented.

  18. Fast flux locked loop

    DOEpatents

    Ganther, Jr., Kenneth R.; Snapp, Lowell D.

    2002-09-10

    A flux locked loop for providing an electrical feedback signal, the flux locked loop employing radio-frequency components and technology to extend the flux modulation frequency and tracking loop bandwidth. The flux locked loop of the present invention has particularly useful application in read-out electronics for DC SQUID magnetic measurement systems, in which case the electrical signal output by the flux locked loop represents an unknown magnetic flux applied to the DC SQUID.

  19. Recursive optimal pruning with applications to tree structured vector quantizers

    NASA Technical Reports Server (NTRS)

    Kiang, Shei-Zein; Baker, Richard L.; Sullivan, Gary J.; Chiu, Chung-Yen

    1992-01-01

    A pruning algorithm of Chou et al. (1989) for designing optimal tree structures identifies only those codebooks which lie on the convex hull of the original codebook's operational distortion rate function. The authors introduce a modified version of the original algorithm, which identifies a large number of codebooks having minimum average distortion, under the constraint that, in each step, only modes having no descendents are removed from the tree. All codebooks generated by the original algorithm are also generated by this algorithm. The new algorithm generates a much larger number of codebooks in the middle- and low-rate regions. The additional codebooks permit operation near the codebook's operational distortion rate function without time sharing by choosing from the increased number of available bit rates. Despite the statistical mismatch which occurs when coding data outside the training sequence, these pruned codebooks retain their performance advantage over full search vector quantizers (VQs) for a large range of rates.

  20. Vacuum Energy in Two Dimensional Box Through the Krein Quantization

    NASA Astrophysics Data System (ADS)

    Ghaffari, Ali; Karimaghaee, Sanaz; Tanhayi, M. R.

    2017-03-01

    In this work we reexamine the Casimir effect in which the vacuum expectation value of quantum fields is calculated over a so-called Krein space. This method has already been successfully applied to study Casimir effect on non-trivial topologies and also the covariance problem in the massless minimally coupled scalar field in de Sitter space-time. It is shown that within this method, no infinite term appears in the computation of the vacuum expectation value of energy-momentum tensor. We investigate the behavior of the Krein quantization for a scalar field in a box satisfying the Dirichlet boundary condition. We show that one can recover the usual theory with the exception that the vacuum energy of the free theory is zero.

  1. Quantized Water Transport: Ideal Desalination through Graphyne-4 Membrane

    PubMed Central

    Zhu, Chongqin; Li, Hui; Zeng, Xiao Cheng; Wang, E. G.; Meng, Sheng

    2013-01-01

    Graphyne sheet exhibits promising potential for nanoscale desalination to achieve both high water permeability and salt rejection rate. Extensive molecular dynamics simulations on pore-size effects suggest that γ-graphyne-4, with 4 acetylene bonds between two adjacent phenyl rings, has the best performance with 100% salt rejection and an unprecedented water permeability, to our knowledge, of ~13 L/cm2/day/MPa, 3 orders of magnitude higher than prevailing commercial membranes based on reverse osmosis, and ~10 times higher than the state-of-the-art nanoporous graphene. Strikingly, water permeability across graphyne exhibits unexpected nonlinear dependence on the pore size. This counter-intuitive behavior is attributed to the quantized nature of water flow at the nanoscale, which has wide implications in controlling nanoscale water transport and designing highly effective membranes. PMID:24196437

  2. Four-Wave Mixing in Landau-Quantized Graphene.

    PubMed

    König-Otto, Jacob C; Wang, Yongrui; Belyanin, Alexey; Berger, Claire; de Heer, Walter A; Orlita, Milan; Pashkin, Alexej; Schneider, Harald; Helm, Manfred; Winnerl, Stephan

    2017-04-12

    For Landau-quantized graphene, featuring an energy spectrum consisting of nonequidistant Landau levels, theory predicts a giant resonantly enhanced optical nonlinearity. We verify the nonlinearity in a time-integrated degenerate four-wave mixing (FWM) experiment in the mid-infrared spectral range, involving the Landau levels LL-1, LL0 and LL1. A rapid dephasing of the optically induced microscopic polarization on a time scale shorter than the pulse duration (∼4 ps) is observed, while a complementary pump-probe experiment under the same experimental conditions reveals a much longer lifetime of the induced population. The FWM signal shows the expected field dependence with respect to lowest order perturbation theory for low fields. Saturation sets in for fields above ∼6 kV/cm. Furthermore, the resonant behavior and the order of magnitude of the third-order susceptibility are in agreement with our theoretical calculations.

  3. Image coding using entropy-constrained residual vector quantization

    NASA Technical Reports Server (NTRS)

    Kossentini, Faouzi; Smith, Mark J. T.; Barnes, Christopher F.

    1993-01-01

    The residual vector quantization (RVQ) structure is exploited to produce a variable length codeword RVQ. Necessary conditions for the optimality of this RVQ are presented, and a new entropy-constrained RVQ (ECRVQ) design algorithm is shown to be very effective in designing RVQ codebooks over a wide range of bit rates and vector sizes. The new EC-RVQ has several important advantages. It can outperform entropy-constrained VQ (ECVQ) in terms of peak signal-to-noise ratio (PSNR), memory, and computation requirements. It can also be used to design high rate codebooks and codebooks with relatively large vector sizes. Experimental results indicate that when the new EC-RVQ is applied to image coding, very high quality is achieved at relatively low bit rates.

  4. Stability of quantized chiral soliton with the Skyrme term

    NASA Astrophysics Data System (ADS)

    Sawada, Shoji; Yang, Keyan

    1991-09-01

    Stability of the chiral soliton with the Skyrme term that is quantized by taking account of breathing modes in addition to the spin-isospin rotation is examined on the basis of a family of trial functions for the profile function of the hedgehog ansatz. It is shown that when the effects of the Skyrme term are sufficiently strong (small Skyrme term constant e), the eigenstates of lower spin-isospin are stable, having finite contributions both from the rotational and breathing modes. On the other hand when the effects of the Skyrme term are weak (e>5), the spin-isospin rotational and the breathing modes are completely frozen and all states tend to infinitely degenerate states labeled by the constant SU(2) matrices.

  5. Loop quantum cosmology: confronting the hybrid quantization approach with observations

    NASA Astrophysics Data System (ADS)

    Olmedo, Javier; Martin de Blas, Daniel

    2017-01-01

    In loop quantum cosmology there are several approaches for the confrontation of the theory with observations. Here, we focus on the hybrid quantization approach. We provide an exhaustive analysis including scalar and tensor perturbations on effective (quantum-mechanically corrected) homogeneous and isotropic cosmologies coupled to a massive scalar field. We compute the primordial power spectrum of the perturbations at the end of inflation for a set of initial vacuum states defined at the deep quantum regime of the cosmological model. We then analyze the tensor-to-scalar ratio and the consistency relation between this quantity and the spectral index of the tensor power spectrum. Eventually, we compute the temperature-temperature, electric-electric, temperature-electric and magnetic-magnetic correlation functions predicted by this approach and compare them with present observations.

  6. A deformation quantization theory for noncommutative quantum mechanics

    SciTech Connect

    Costa Dias, Nuno; Prata, Joao Nuno; Gosson, Maurice de; Luef, Franz

    2010-07-15

    We show that the deformation quantization of noncommutative quantum mechanics previously considered by Dias and Prata ['Weyl-Wigner formulation of noncommutative quantum mechanics', J. Math. Phys. 49, 072101 (2008)] and Bastos, Dias, and Prata ['Wigner measures in non-commutative quantum mechanics', e-print arXiv:math-ph/0907.4438v1; Commun. Math. Phys. (to appear)] can be expressed as a Weyl calculus on a double phase space. We study the properties of the star-product thus defined and prove a spectral theorem for the star-genvalue equation using an extension of the methods recently initiated by de Gosson and Luef ['A new approach to the *-genvalue equation', Lett. Math. Phys. 85, 173-183 (2008)].

  7. Casimir effect for a scalar field via Krein quantization

    SciTech Connect

    Pejhan, H.; Tanhayi, M.R.; Takook, M.V.

    2014-02-15

    In this work, we present a rather simple method to study the Casimir effect on a spherical shell for a massless scalar field with Dirichlet boundary condition by applying the indefinite metric field (Krein) quantization technique. In this technique, the field operators are constructed from both negative and positive norm states. Having understood that negative norm states are un-physical, they are only used as a mathematical tool for renormalizing the theory and then one can get rid of them by imposing some proper physical conditions. -- Highlights: • A modification of QFT is considered to address the vacuum energy divergence problem. • Casimir energy of a spherical shell is calculated, through this approach. • In this technique, it is shown, the theory is automatically regularized.

  8. D-Pseudo-Bosons, Complex Hermite Polynomials, and Integral Quantization

    NASA Astrophysics Data System (ADS)

    Ali, S. Twareque; Bagarello, Fabio; Gazeau, Jean Pierre

    2015-10-01

    The D-pseudo-boson formalism is illustrated with two examples. The first one involves deformed complex Hermite polynomials built using finite-dimensional irreducible representations of the group GL(2,C) of invertible 2 × 2 matrices with complex entries. It reveals interesting aspects of these representations. The second example is based on a pseudo-bosonic generalization of operator-valued functions of a complex variable which resolves the identity. We show that such a generalization allows one to obtain a quantum pseudo-bosonic version of the complex plane viewed as the canonical phase space and to understand functions of the pseudo-bosonic operators as the quantized versions of functions of a complex variable.

  9. Polymer quantization of a self-gravitating thin shell

    NASA Astrophysics Data System (ADS)

    Ziprick, Jonathan; Gegenberg, Jack; Kunstatter, Gabor

    2016-11-01

    We study the quantum mechanics of self-gravitating thin shell collapse by solving the polymerized Wheeler-DeWitt equation. We obtain the energy spectrum and solve the time-dependent equation using numerics. In contradistinction to the continuum theory, we are able to consistently quantize the theory for super-Planckian black holes, and find two choices of boundary conditions which conserve energy and probability, as opposed to one in the continuum theory. Another feature unique to the polymer theory is the existence of negative energy stationary states that disappear from the spectrum as the polymer scale goes to 0. In both theories the probability density is positive semidefinite only for the space of positive energy stationary states. Dynamically, we find that an initial Gaussian probability density develops regions of negative probability as the wave packet approaches R =0 and bounces. This implies that the bouncing state is a sum of both positive and negative eigenstates.

  10. Phase space quantization, noncommutativity, and the gravitational field

    NASA Astrophysics Data System (ADS)

    Chatzistavrakidis, Athanasios

    2014-07-01

    In this paper we study the structure of the phase space in noncommutative geometry in the presence of a nontrivial frame. Our basic assumptions are that the underlying space is a symplectic and parallelizable manifold. Furthermore, we assume the validity of the Leibniz rule and the Jacobi identities. We consider noncommutative spaces due to the quantization of the symplectic structure and determine the momentum operators that guarantee a set of canonical commutation relations, appropriately extended to include the nontrivial frame. We stress the important role of left vs right acting operators and of symplectic duality. This enables us to write down the form of the full phase space algebra on these noncommutative spaces, both in the noncompact and in the compact case. We test our results against the class of four-dimensional and six-dimensional symplectic nilmanifolds, thus presenting a large set of nontrivial examples that realizes the general formalism.

  11. Oscillating magnetocaloric effect in size-quantized diamagnetic film

    SciTech Connect

    Alisultanov, Z. Z.

    2014-03-21

    We investigate the oscillating magnetocaloric effect on a size-quantized diamagnetic film in a transverse magnetic field. We obtain the analytical expression for the thermodynamic potential in case of the arbitrary spectrum of carriers. The entropy change is shown to be the oscillating function of the magnetic field and the film thickness. The nature of this effect is the same as for the de Haas–van Alphen effect. The magnetic part of entropy has a maximal value at some temperature. Such behavior of the entropy is not observed in magneto-ordered materials. We discuss the nature of unusual behavior of the magnetic entropy. We compare our results with the data obtained for 2D and 3D cases.

  12. Face Recognition Using Local Quantized Patterns and Gabor Filters

    NASA Astrophysics Data System (ADS)

    Khryashchev, V.; Priorov, A.; Stepanova, O.; Nikitin, A.

    2015-05-01

    The problem of face recognition in a natural or artificial environment has received a great deal of researchers' attention over the last few years. A lot of methods for accurate face recognition have been proposed. Nevertheless, these methods often fail to accurately recognize the person in difficult scenarios, e.g. low resolution, low contrast, pose variations, etc. We therefore propose an approach for accurate and robust face recognition by using local quantized patterns and Gabor filters. The estimation of the eye centers is used as a preprocessing stage. The evaluation of our algorithm on different samples from a standardized FERET database shows that our method is invariant to the general variations of lighting, expression, occlusion and aging. The proposed approach allows about 20% correct recognition accuracy increase compared with the known face recognition algorithms from the OpenCV library. The additional use of Gabor filters can significantly improve the robustness to changes in lighting conditions.

  13. Quantized fluctuational electrodynamics for three-dimensional plasmonic structures

    NASA Astrophysics Data System (ADS)

    Partanen, Mikko; Häyrynen, Teppo; Tulkki, Jukka; Oksanen, Jani

    2017-01-01

    We recently introduced a quantized fluctuational electrodynamics (QFED) formalism that provides a physically insightful definition of an effective position-dependent photon-number operator and the associated ladder operators. However, this far the formalism has been applicable only for the normal incidence of the electromagnetic field in planar structures. In this work, we overcome the main limitation of the one-dimensional QFED formalism by extending the model to three dimensions, allowing us to use the QFED method to study, e.g., plasmonic structures. To demonstrate the benefits of the developed formalism, we apply it to study the local steady-state photon numbers and field temperatures in a light-emitting near-surface InGaN quantum-well structure with a metallic coating supporting surface plasmons.

  14. A quantized mechanism for activation of pannexin channels

    PubMed Central

    Chiu, Yu-Hsin; Jin, Xueyao; Medina, Christopher B.; Leonhardt, Susan A.; Kiessling, Volker; Bennett, Brad C.; Shu, Shaofang; Tamm, Lukas K.; Yeager, Mark; Ravichandran, Kodi S.; Bayliss, Douglas A.

    2017-01-01

    Pannexin 1 (PANX1) subunits form oligomeric plasma membrane channels that mediate nucleotide release for purinergic signalling, which is involved in diverse physiological processes such as apoptosis, inflammation, blood pressure regulation, and cancer progression and metastasis. Here we explore the mechanistic basis for PANX1 activation by using wild type and engineered concatemeric channels. We find that PANX1 activation involves sequential stepwise sojourns through multiple discrete open states, each with unique channel gating and conductance properties that reflect contributions of the individual subunits of the hexamer. Progressive PANX1 channel opening is directly linked to permeation of ions and large molecules (ATP and fluorescent dyes) and occurs during both irreversible (caspase cleavage-mediated) and reversible (α1 adrenoceptor-mediated) forms of channel activation. This unique, quantized activation process enables fine tuning of PANX1 channel activity and may be a generalized regulatory mechanism for other related multimeric channels. PMID:28134257

  15. Vacuum Energy in Two Dimensional Box Through the Krein Quantization

    NASA Astrophysics Data System (ADS)

    Ghaffari, Ali; Karimaghaee, Sanaz; Tanhayi, M. R.

    2016-12-01

    In this work we reexamine the Casimir effect in which the vacuum expectation value of quantum fields is calculated over a so-called Krein space. This method has already been successfully applied to study Casimir effect on non-trivial topologies and also the covariance problem in the massless minimally coupled scalar field in de Sitter space-time. It is shown that within this method, no infinite term appears in the computation of the vacuum expectation value of energy-momentum tensor. We investigate the behavior of the Krein quantization for a scalar field in a box satisfying the Dirichlet boundary condition. We show that one can recover the usual theory with the exception that the vacuum energy of the free theory is zero.

  16. Coexistence of Quantized, Time Dependent, Clusters in Globally Coupled Oscillators

    NASA Astrophysics Data System (ADS)

    Bi, Hongjie; Hu, Xin; Boccaletti, S.; Wang, Xingang; Zou, Yong; Liu, Zonghua; Guan, Shuguang

    2016-11-01

    We report on a novel collective state, occurring in globally coupled nonidentical oscillators in the proximity of the point where the transition from the system's incoherent to coherent phase converts from explosive to continuous. In such a state, the oscillators form quantized clusters, where neither their phases nor their instantaneous frequencies are locked. The oscillators' instantaneous speeds are different within the clusters, but they form a characteristic cusped pattern and, more importantly, they behave periodically in time so that their average values are the same. Given its intrinsic specular nature with respect to the recently introduced Chimera states, the phase is termed the Bellerophon state. We provide an analytical and numerical description of Bellerophon states, and furnish practical hints on how to seek them in a variety of experimental and natural systems.

  17. Quantized levitation states of superconducting multiple-ring systems

    SciTech Connect

    Haley, S.B.; Fink, H.J.

    1996-02-01

    The quantized levitation, trapped, and suspension states of a magnetic microsphere held in equilibrium by two fixed superconducting (SC) microrings are calculated by minimizing the free energy of the system. Each state is a discrete function of two independent fluxoid quantum numbers of the rings. When the radii of the SC rings are of the same order as the Ginzburg-Landau coherence length {xi}({ital T}), the system exhibits a small set of gravity and temperature-dependent levels. The levels of a weakly magnetized particle are sensitive functions of the gravitational field, indicating potential application as an accelerometer, and for trapping small magnetic particles in outer space or on Earth. The equilibrium states of a SC ring levitated by another SC ring are also calculated. {copyright} {ital 1996 The American Physical Society.}

  18. Paul Weiss and the genesis of canonical quantization

    NASA Astrophysics Data System (ADS)

    Rickles, Dean; Blum, Alexander

    2015-12-01

    This paper describes the life and work of a figure who, we argue, was of primary importance during the early years of field quantisation and (albeit more indirectly) quantum gravity. A student of Dirac and Born, he was interned in Canada during the second world war as an enemy alien and after his release never seemed to regain a good foothold in physics, identifying thereafter as a mathematician. He developed a general method of quantizing (linear and non-linear) field theories based on the parameters labelling an arbitrary hypersurface. This method (the `parameter formalism' often attributed to Dirac), though later discarded, was employed (and viewed at the time as an extremely important tool) by the leading figures associated with canonical quantum gravity: Dirac, Pirani and Schild, Bergmann, DeWitt, and others. We argue that he deserves wider recognition for this and other innovations.

  19. On the Covariant Quantization of Type II Superstrings

    NASA Astrophysics Data System (ADS)

    Guttenberg, Sebastian; Knapp, Johanna; Kreuzer, Maximilian

    2004-06-01

    In a series of papers Grassi, Policastro, Porrati and van Nieuwenhuizen have introduced a new method to covariantly quantize the GS-superstring by constructing a resolution of the pure spinor constraint of Berkovits' approach. Their latest version is based on a gauged WZNW model and a definition of physical states in terms of relative cohomology groups. We first put the off-shell formulation of the type-II version of their ideas into a chirally split form and directly construct the free action of the gauged WZNW model, thus circumventing some complications of the super group manifold approach to type-II. Then we discuss the BRST charges that define the relative cohomology and the N=2 superconformal algebra. A surprising result is that nilpotency of the BRST charge requires the introduction of another quartet of ghosts.

  20. Fractional Dirac bracket and quantization for constrained systems

    NASA Astrophysics Data System (ADS)

    Abreu, Everton M. C.; Godinho, Cresus F. L.

    2011-08-01

    So far, it is not well known how to deal with dissipative systems. There are many paths of investigation in the literature and none of them present a systematic and general procedure to tackle the problem. On the other hand, it is well known that the fractional formalism is a powerful alternative when treating dissipative problems. In this paper, we propose a detailed way of attacking the issue using fractional calculus to construct an extension of the Dirac brackets in order to carry out the quantization of nonconservative theories through the standard canonical way. We believe that, by using the extended Dirac bracket definition, it will be possible to analyze more deeply gauge theories starting with second-class systems.

  1. Second-quantized Landau-Zener theory for dynamical instabilities

    SciTech Connect

    Anglin, J.R.

    2003-05-01

    State engineering in nonlinear quantum dynamics sometimes may demand driving the system through a sequence of dynamically unstable intermediate states. This very general scenario is especially relevant to the dilute Bose-Einstein condensates, for which ambitious control schemes have been based on the powerful Gross-Pitaevskii mean-field theory. Since this theory breaks down on logarithmically short time scales in the presence of dynamical instabilities, an interval of instabilities introduces quantum corrections, which may possibly derail a control scheme. To provide a widely applicable theory for such quantum corrections, this paper solves a general problem of time-dependent quantum-mechanical dynamical instability, by modeling it as a second-quantized analog of a Landau-Zener avoided crossing: a 'twisted crossing'.

  2. Master equation for collective spontaneous emission with quantized atomic motion

    NASA Astrophysics Data System (ADS)

    Damanet, François; Braun, Daniel; Martin, John

    2016-02-01

    We derive a Markovian master equation for the internal dynamics of an ensemble of two-level atoms including all effects related to the quantization of their motion. Our equation provides a unifying picture of the consequences of recoil and indistinguishability of atoms beyond the Lamb-Dicke regime on both their dissipative and conservative dynamics, and applies equally well to distinguishable and indistinguishable atoms. We give general expressions for the decay rates and the dipole-dipole shifts for any motional states, and we find closed-form formulas for a number of relevant states (Gaussian states, Fock states, and thermal states). In particular, we show that dipole-dipole interactions and cooperative photon emission can be modulated through the external state of motion.

  3. Preferentially quantized linker DNA lengths in Saccharomyces cerevisiae.

    PubMed

    Wang, Ji-Ping; Fondufe-Mittendorf, Yvonne; Xi, Liqun; Tsai, Guei-Feng; Segal, Eran; Widom, Jonathan

    2008-09-12

    The exact lengths of linker DNAs connecting adjacent nucleosomes specify the intrinsic three-dimensional structures of eukaryotic chromatin fibers. Some studies suggest that linker DNA lengths preferentially occur at certain quantized values, differing one from another by integral multiples of the DNA helical repeat, approximately 10 bp; however, studies in the literature are inconsistent. Here, we investigate linker DNA length distributions in the yeast Saccharomyces cerevisiae genome, using two novel methods: a Fourier analysis of genomic dinucleotide periodicities adjacent to experimentally mapped nucleosomes and a duration hidden Markov model applied to experimentally defined dinucleosomes. Both methods reveal that linker DNA lengths in yeast are preferentially periodic at the DNA helical repeat ( approximately 10 bp), obeying the forms 10n+5 bp (integer n). This 10 bp periodicity implies an ordered superhelical intrinsic structure for the average chromatin fiber in yeast.

  4. Reducing and filtering point clouds with enhanced vector quantization.

    PubMed

    Ferrari, Stefano; Ferrigno, Giancarlo; Piuri, Vincenzo; Borghese, N Alberto

    2007-01-01

    Modern scanners are able to deliver huge quantities of three-dimensional (3-D) data points sampled on an object's surface, in a short time. These data have to be filtered and their cardinality reduced to come up with a mesh manageable at interactive rates. We introduce here a novel procedure to accomplish these two tasks, which is based on an optimized version of soft vector quantization (VQ). The resulting technique has been termed enhanced vector quantization (EVQ) since it introduces several improvements with respect to the classical soft VQ approaches. These are based on computationally expensive iterative optimization; local computation is introduced here, by means of an adequate partitioning of the data space called hyperbox (HB), to reduce the computational time so as to be linear in the number of data points N, saving more than 80% of time in real applications. Moreover, the algorithm can be fully parallelized, thus leading to an implementation that is sublinear in N. The voxel side and the other parameters are automatically determined from data distribution on the basis of the Zador's criterion. This makes the algorithm completely automatic. Because the only parameter to be specified is the compression rate, the procedure is suitable even for nontrained users. Results obtained in reconstructing faces of both humans and puppets as well as artifacts from point clouds publicly available on the web are reported and discussed, in comparison with other methods available in the literature. EVQ has been conceived as a general procedure, suited for VQ applications with large data sets whose data space has relatively low dimensionality.

  5. Density-Dependent Quantized Least Squares Support Vector Machine for Large Data Sets.

    PubMed

    Nan, Shengyu; Sun, Lei; Chen, Badong; Lin, Zhiping; Toh, Kar-Ann

    2017-01-01

    Based on the knowledge that input data distribution is important for learning, a data density-dependent quantization scheme (DQS) is proposed for sparse input data representation. The usefulness of the representation scheme is demonstrated by using it as a data preprocessing unit attached to the well-known least squares support vector machine (LS-SVM) for application on big data sets. Essentially, the proposed DQS adopts a single shrinkage threshold to obtain a simple quantization scheme, which adapts its outputs to input data density. With this quantization scheme, a large data set is quantized to a small subset where considerable sample size reduction is generally obtained. In particular, the sample size reduction can save significant computational cost when using the quantized subset for feature approximation via the Nyström method. Based on the quantized subset, the approximated features are incorporated into LS-SVM to develop a data density-dependent quantized LS-SVM (DQLS-SVM), where an analytic solution is obtained in the primal solution space. The developed DQLS-SVM is evaluated on synthetic and benchmark data with particular emphasis on large data sets. Extensive experimental results show that the learning machine incorporating DQS attains not only high computational efficiency but also good generalization performance.

  6. Scalable Feature Matching by Dual Cascaded Scalar Quantization for Image Retrieval.

    PubMed

    Zhou, Wengang; Yang, Ming; Wang, Xiaoyu; Li, Houqiang; Lin, Yuanqing; Tian, Qi

    2016-01-01

    In this paper, we investigate the problem of scalable visual feature matching in large-scale image search and propose a novel cascaded scalar quantization scheme in dual resolution. We formulate the visual feature matching as a range-based neighbor search problem and approach it by identifying hyper-cubes with a dual-resolution scalar quantization strategy. Specifically, for each dimension of the PCA-transformed feature, scalar quantization is performed at both coarse and fine resolutions. The scalar quantization results at the coarse resolution are cascaded over multiple dimensions to index an image database. The scalar quantization results over multiple dimensions at the fine resolution are concatenated into a binary super-vector and stored into the index list for efficient verification. The proposed cascaded scalar quantization (CSQ) method is free of the costly visual codebook training and thus is independent of any image descriptor training set. The index structure of the CSQ is flexible enough to accommodate new image features and scalable to index large-scale image database. We evaluate our approach on the public benchmark datasets for large-scale image retrieval. Experimental results demonstrate the competitive retrieval performance of the proposed method compared with several recent retrieval algorithms on feature quantization.

  7. Magnetic-flux pump

    NASA Technical Reports Server (NTRS)

    Hildebrandt, A. F.; Elleman, D. D.; Whitmore, F. C. (Inventor)

    1966-01-01

    A magnetic flux pump is described for increasing the intensity of a magnetic field by transferring flux from one location to the magnetic field. The device includes a pair of communicating cavities formed in a block of superconducting material, and a piston for displacing the trapped magnetic flux into the secondary cavity producing a field having an intense flux density.

  8. Pulse flux measuring device

    DOEpatents

    Riggan, William C.

    1985-01-01

    A device for measuring particle flux comprises first and second photodiode detectors for receiving flux from a source and first and second outputs for producing first and second signals representing the flux incident to the detectors. The device is capable of reducing the first output signal by a portion of the second output signal, thereby enhancing the accuracy of the device. Devices in accordance with the invention may measure distinct components of flux from a single source or fluxes from several sources.

  9. Unconventional Correlation between Quantum Hall Transport Quantization and Bulk State Filling in Gated Graphene Devices

    NASA Astrophysics Data System (ADS)

    Cui, Yong-Tao; Wen, Bo; Ma, Eric Y.; Diankov, Georgi; Han, Zheng; Amet, Francois; Taniguchi, Takashi; Watanabe, Kenji; Goldhaber-Gordon, David; Dean, Cory R.; Shen, Zhi-Xun

    2016-10-01

    We report simultaneous transport and scanning microwave impedance microscopy to examine the correlation between transport quantization and filling of the bulk Landau levels in the quantum Hall regime in gated graphene devices. Surprisingly, a comparison of these measurements reveals that quantized transport typically occurs below the complete filling of bulk Landau levels, when the bulk is still conductive. This result points to a revised understanding of transport quantization when carriers are accumulated by gating. We discuss the implications on transport study of the quantum Hall effect in graphene and related topological states in other two-dimensional electron systems.

  10. Splitting Times of Doubly Quantized Vortices in Dilute Bose-Einstein Condensates

    SciTech Connect

    Huhtamaeki, J. A. M.; Pietilae, V.; Virtanen, S. M. M.; Moettoenen, M.; Isoshima, T.

    2006-09-15

    Recently, the splitting of a topologically created doubly quantized vortex into two singly quantized vortices was experimentally investigated in dilute atomic cigar-shaped Bose-Einstein condensates [Y. Shin et al., Phys. Rev. Lett. 93, 160406 (2004)]. In particular, the dependency of the splitting time on the peak particle density was studied. We present results of theoretical simulations which closely mimic the experimental setup. We show that the combination of gravitational sag and time dependency of the trapping potential alone suffices to split the doubly quantized vortex in time scales which are in good agreement with the experiments.

  11. Quantized Iterative Learning Consensus Tracking of Digital Networks With Limited Information Communication.

    PubMed

    Xiong, Wenjun; Yu, Xinghuo; Chen, Yao; Gao, Jie

    2016-03-03

    This brief investigates the quantized iterative learning problem for digital networks with time-varying topologies. The information is first encoded as symbolic data and then transmitted. After the data are received, a decoder is used by the receiver to get an estimate of the sender's state. Iterative learning quantized communication is considered in the process of encoding and decoding. A sufficient condition is then presented to achieve the consensus tracking problem in a finite interval using the quantized iterative learning controllers. Finally, simulation results are given to illustrate the usefulness of the developed criterion.

  12. Multiobjective Image Color Quantization Algorithm Based on Self-Adaptive Hybrid Differential Evolution

    PubMed Central

    Xia, Xuewen

    2016-01-01

    In recent years, some researchers considered image color quantization as a single-objective problem and applied heuristic algorithms to solve it. This paper establishes a multiobjective image color quantization model with intracluster distance and intercluster separation as its objectives. Inspired by a multipopulation idea, a multiobjective image color quantization algorithm based on self-adaptive hybrid differential evolution (MoDE-CIQ) is then proposed to solve this model. Two numerical experiments on four common test images are conducted to analyze the effectiveness and competitiveness of the multiobjective model and the proposed algorithm. PMID:27738423

  13. Uniform semiclassical quantization of regular and chaotic classical dynamics on the Henon-Heiles surface

    NASA Technical Reports Server (NTRS)

    Jaffe, C.; Reinhardt, W. P.

    1982-01-01

    Qualitative arguments are adduced which indicate that the apparently chaotic dynamics on the Henon-Heiles (1964) surface display sufficient regularity on a short to intermediate (but not long) time scale to allow the use of standard EBK quantization techniques. This takes advantage of the remnants of manifold structure implied. A complete uniform semiclassical quantization is performed using the time independent technique of the Birkhoff-Gustavson normal form, which was recently introduced in the context of semiclassical quantization by Swimm and Delos (1977, 1979).

  14. Stochastic dynamics of extended objects in driven systems II: Current quantization in the low-temperature limit

    NASA Astrophysics Data System (ADS)

    Catanzaro, Michael J.; Chernyak, Vladimir Y.; Klein, John R.

    2016-12-01

    Driven Langevin processes have appeared in a variety of fields due to the relevance of natural phenomena having both deterministic and stochastic effects. The stochastic currents and fluxes in these systems provide a convenient set of observables to describe their non-equilibrium steady states. Here we consider stochastic motion of a (k - 1) -dimensional object, which sweeps out a k-dimensional trajectory, and gives rise to a higher k-dimensional current. By employing the low-temperature (low-noise) limit, we reduce the problem to a discrete Markov chain model on a CW complex, a topological construction which generalizes the notion of a graph. This reduction allows the mean fluxes and currents of the process to be expressed in terms of solutions to the discrete Supersymmetric Fokker-Planck (SFP) equation. Taking the adiabatic limit, we show that generic driving leads to rational quantization of the generated higher dimensional current. The latter is achieved by implementing the recently developed tools, coined the higher-dimensional Kirchhoff tree and co-tree theorems. This extends the study of motion of extended objects in the continuous setting performed in the prequel (Catanzaro et al.) to this manuscript.

  15. Near-threshold quantization for potentials with inverse-cube tails

    SciTech Connect

    Mueller, Tim-Oliver; Friedrich, Harald

    2011-02-15

    For potential wells with long-range attractive tails proportional to -1/r{sup 3}, as occur in the resonant dipole-dipole interaction in homonuclear alkali-metal dimers, we present a highly accurate analytical expression for the tail contribution to the quantization function F(E). This quantization function determines the near-threshold bound-state energies via the quantization rule n{sub th}-n=F(E{sub n}). The performance of the quantization function derived in this paper is demonstrated by applying it to a model Lennard-Jones potential and to vibrational bound-state spectra of sodium dimers (Na{sub 2}). These results are compared with those obtained via the semiclassical LeRoy-Bernstein formula which neglects quantum effects that are important in the near-threshold regime.

  16. Anatomy of a deformed symmetry: Field quantization on curved momentum space

    SciTech Connect

    Arzano, Michele

    2011-01-15

    In certain scenarios of deformed relativistic symmetries relevant for noncommutative field theories particles exhibit a momentum space described by a non-Abelian group manifold. Starting with a formulation of phase space for such particles which allows for a generalization to include group-valued momenta we discuss quantization of the corresponding field theory. Focusing on the particular case of {kappa}-deformed phase space we construct the one-particle Hilbert space and show how curvature in momentum space leads to an ambiguity in the quantization procedure reminiscent of the ambiguities one finds when quantizing fields in curved space-times. The tools gathered in the discussion on quantization allow for a clear definition of the basic deformed field mode operators and two-point function for {kappa}-quantum fields.

  17. Fractional quantization of the topological charge pumping in a one-dimensional superlattice

    NASA Astrophysics Data System (ADS)

    Marra, Pasquale; Citro, Roberta; Ortix, Carmine

    2015-03-01

    A one-dimensional quantum charge pump transfers a quantized charge in each pumping cycle. This quantization is topologically robust, being analogous to the quantum Hall effect. The charge transferred in a fraction of the pumping period is instead generally unquantized. We show, however, that with specific symmetries in parameter space the charge transferred at well-defined fractions of the pumping period is quantized as integer fractions of the Chern number. We illustrate this in a one-dimensional Harper-Hofstadter model and show that the fractional quantization of the topological charge pumping is independent of the specific boundary conditions taken into account. We further discuss the relevance of this phenomenon for cold atomic gases in optical superlattices.

  18. Brillouin light scattering from quantized spin waves in micron-size magnetic wires

    NASA Astrophysics Data System (ADS)

    Jorzick, J.; Demokritov, S. O.; Mathieu, C.; Hillebrands, B.; Bartenlian, B.; Chappert, C.; Rousseaux, F.; Slavin, A. N.

    1999-12-01

    An experimental study of spin-wave quantization in arrays of micron-size magnetic Ni80Fe20 wires by means of Brillouin light-scattering spectroscopy is reported. Dipolar-dominated Damon-Eshbach spin-wave modes laterally quantized in a single wire with quantized wave vector values determined by the width of the wire are studied. The frequency splitting between quantized modes, which decreases with increasing mode number, depends on the wire sizes and is up to 1.5 GHz. The transferred wave vector interval, where each mode is observed, is calculated using a light-scattering theory for confined geometries. The frequencies of the modes are calculated, taking into account finite-size effects. The results of the calculations are in a good agreement with the experimental data.

  19. Event-triggered H∞ filter design for delayed neural network with quantization.

    PubMed

    Liu, Jinliang; Tang, Jia; Fei, Shumin

    2016-10-01

    This paper is concerned with H∞ filter design for a class of neural network systems with event-triggered communication scheme and quantization. Firstly, a new event-triggered communication scheme is introduced to determine whether or not the current sampled sensor data should be broadcasted and transmitted to quantizer, which can save the limited communication resource. Secondly, a logarithmic quantizer is used to quantify the sampled data, which can reduce the data transmission rate in the network. Thirdly, considering the influence of the constrained network resource, we investigate the problem of H∞ filter design for a class of event-triggered neural network systems with quantization. By using Lyapunov functional and linear matrix inequality (LMI) techniques, some delay-dependent stability conditions for the existence of the desired filter are obtained. Furthermore, the explicit expression is given for the designed filter parameters in terms of LMIs. Finally, a numerical example is given to show the usefulness of the obtained theoretical results.

  20. Application of the Max-Lloyd quantizer for ECG compression in diving mammals.

    PubMed

    Rodríguez, M; Ayala, A; Rodríguez, S; Rosa, F; Díaz-González, Mario

    2004-01-01

    This article presents a practical implementation of an ECG compression algorithm using a Max-Lloyd quantizer, to optimize the low resources of an ECG acquisition and transmission system (telemetry system) for dolphins and human divers. The algorithm scheme is based on a first-order differential pulse code modulation (DPCM) and uses a Max-Lloyd quantizer to code the difference between the current and predicted samples. The use of the non-uniform quantizer instead of a uniform quantizer improves the percent root mean-square difference (PRD), thereby producing a low distortion in the reconstructed signals. Due to its low computational complexity, the compression process can be accomplished on-line during the ECG acquisition process.

  1. A joint JPEG2000 compression and watermarking system using a TCQ-based quantization scheme

    NASA Astrophysics Data System (ADS)

    Goudia, D.; Chaumont, M.; Puech, W.; Hadj Said, N.

    2011-01-01

    In this paper, we describe a Trellis Coded Quantization (TCQ)-based quantization and watermarking technique in the framework of JPEG2000 still image compression. Furthermore, we investigate the design of a novel joint compression and watermarking scheme based on a hybrid TCQ module which can perform at the same time quantization and watermark embedding. The watermark extraction process can be achieved both during and after image decompression. Another advantage is the lower complexity of the system because the quantization stage is used for both compression and watermarking purposes. Experimental results have demonstrated that the proposed joint scheme successfully survives JPEG2000 compression with minimal degradation of the image quality. We also studied the robustness of the scheme against gaussian filtering attack, gaussian noise attack, valumetric attack and jpeg attack.

  2. Quantized Step-up Model for Evaluation of Internship in Teaching of Prospective Science Teachers.

    ERIC Educational Resources Information Center

    Sindhu, R. S.

    2002-01-01

    Describes the quantized step-up model developed for the evaluation purposes of internship in teaching which is an analogous model of the atomic structure. Assesses prospective teachers' abilities in lesson delivery. (YDS)

  3. Flux Exclusion Superconducting Quantum Metamaterial: Towards Quantum-level Switching

    PubMed Central

    Savinov, V.; Tsiatmas, A.; Buckingham, A. R.; Fedotov, V. A.; de Groot, P. A. J.; Zheludev, N. I.

    2012-01-01

    Nonlinear and switchable metamaterials achieved by artificial structuring on the subwavelength scale have become a central topic in photonics research. Switching with only a few quanta of excitation per metamolecule, metamaterial's elementary building block, is the ultimate goal, achieving which will open new opportunities for energy efficient signal handling and quantum information processing. Recently, arrays of Josephson junction devices have been proposed as a possible solution. However, they require extremely high levels of nanofabrication. Here we introduce a new quantum superconducting metamaterial which exploits the magnetic flux quantization for switching. It does not contain Josephson junctions, making it simple to fabricate and scale into large arrays. The metamaterial was manufactured from a high-temperature superconductor and characterized in the low intensity regime, providing the first observation of the quantum phenomenon of flux exclusion affecting the far-field electromagnetic properties of the metamaterial. PMID:22690319

  4. Flux exclusion superconducting quantum metamaterial: towards quantum-level switching.

    PubMed

    Savinov, V; Tsiatmas, A; Buckingham, A R; Fedotov, V A; de Groot, P A J; Zheludev, N I

    2012-01-01

    Nonlinear and switchable metamaterials achieved by artificial structuring on the subwavelength scale have become a central topic in photonics research. Switching with only a few quanta of excitation per metamolecule, metamaterial's elementary building block, is the ultimate goal, achieving which will open new opportunities for energy efficient signal handling and quantum information processing. Recently, arrays of Josephson junction devices have been proposed as a possible solution. However, they require extremely high levels of nanofabrication. Here we introduce a new quantum superconducting metamaterial which exploits the magnetic flux quantization for switching. It does not contain Josephson junctions, making it simple to fabricate and scale into large arrays. The metamaterial was manufactured from a high-temperature superconductor and characterized in the low intensity regime, providing the first observation of the quantum phenomenon of flux exclusion affecting the far-field electromagnetic properties of the metamaterial.

  5. Threshold expansion of the three-particle quantization condition

    NASA Astrophysics Data System (ADS)

    Hansen, Maxwell T.; Sharpe, Stephen R.

    2016-05-01

    We recently derived a quantization condition for the energy of three relativistic particles in a cubic box [M. T. Hansen and S. R. Sharpe, Phys. Rev. D 90, 116003 (2014); M. T. Hansen and S. R. Sharpe, Phys. Rev. D 92, 114509 (2015)]. Here we use this condition to study the energy level closest to the three-particle threshold when the total three-momentum vanishes. We expand this energy in powers of 1 /L , where L is the linear extent of the finite volume. The expansion begins at O (1 /L3), and we determine the coefficients of the terms through O (1 /L6). As is also the case for the two-particle threshold energy, the 1 /L3, 1 /L4 and 1 /L5 coefficients depend only on the two-particle scattering length a . These can be compared to previous results obtained using nonrelativistic quantum mechanics [K. Huang and C. N. Yang, Phys. Rev. 105, 767 (1957); S. R. Beane, W. Detmold, and M. J. Savage, Phys. Rev. D 76, 074507 (2007); S. Tan, Phys. Rev. A 78, 013636 (2008)], and we find complete agreement. The 1 /L6 coefficients depend additionally on the two-particle effective range r (just as in the two-particle case) and on a suitably defined threshold three-particle scattering amplitude (a new feature for three particles). A second new feature in the three-particle case is that logarithmic dependence on L appears at O (1 /L6). Relativistic effects enter at this order, and the only comparison possible with the nonrelativistic result is for the coefficient of the logarithm, where we again find agreement. For a more thorough check of the 1 /L6 result, and thus of the quantization condition, we also compare to a perturbative calculation of the threshold energy in relativistic λ ϕ4 theory, which we have recently presented in [M. T. Hansen and S. R. Sharpe, Phys. Rev. D 93, 014506 (2016)]. Here, all terms can be compared, and we find full agreement.

  6. Quantized Vortex State in hcp Solid 4He

    NASA Astrophysics Data System (ADS)

    Kubota, Minoru

    2012-11-01

    The quantized vortex state appearing in the recently discovered new states in hcp 4He since their discovery (Kim and Chan, Nature, 427:225-227, 2004; Science, 305:1941, 2004) is discussed. Special attention is given to evidence for the vortex state as the vortex fluid (VF) state (Anderson, Nat. Phys., 3:160-162, 2007; Phys. Rev. Lett., 100:215301, 2008; Penzev et al., Phys. Rev. Lett., 101:065301, 2008; Nemirovskii et al., arXiv:0907.0330, 2009) and its transition into the supersolid (SS) state (Shimizu et al., arXiv:0903.1326, 2009; Kubota et al., J. Low Temp. Phys., 158:572-577, 2010; J. Low Temp. Phys., 162:483-491, 2011). Its features are described. The historical explanations (Reatto and Chester, Phys. Rev., 155(1):88-100, 1967; Chester, Phys. Rev. A, 2(1):256-258, 1970; Andreev and Lifshitz, JETP Lett., 29:1107-1113, 1969; Leggett, Phys. Rev. Lett., 25(22), 1543-1546, 1970; Matsuda and Tsuneto, Prog. Theor. Phys., 46:411-436, 1970) for the SS state in quantum solids such as solid 4He were based on the idea of Bose Einstein Condensation (BEC) of the imperfections such as vacancies, interstitials and other possible excitations in the quantum solids which are expected because of the large zero-point motions. The SS state was proposed as a new state of matter in which real space ordering of the lattice structure of the solid coexists with the momentum space ordering of superfluidity. A new type of superconductors, since the discovery of the cuprate high T c superconductors, HTSCs (Bednorz and Mueller, Z. Phys., 64:189, 1986), has been shown to share a feature with the vortex state, involving the VF and vortex solid states. The high T c s of these materials are being discussed in connection to the large fluctuations associated with some other phase transitions like the antiferromagnetic transition in addition to that of the low dimensionality. The supersolidity in the hcp solid 4He, in contrast to the new superconductors which have multiple degrees of freedom of

  7. Rotating effects on the Landau quantization for an atom with a magnetic quadrupole moment

    SciTech Connect

    Fonseca, I. C.; Bakke, K.

    2016-01-07

    Based on the single particle approximation [Dmitriev et al., Phys. Rev. C 50, 2358 (1994) and C.-C. Chen, Phys. Rev. A 51, 2611 (1995)], the Landau quantization associated with an atom with a magnetic quadrupole moment is introduced, and then, rotating effects on this analogue of the Landau quantization is investigated. It is shown that rotating effects can modify the cyclotron frequency and breaks the degeneracy of the analogue of the Landau levels.

  8. Rotating effects on the Landau quantization for an atom with a magnetic quadrupole moment.

    PubMed

    Fonseca, I C; Bakke, K

    2016-01-07

    Based on the single particle approximation [Dmitriev et al., Phys. Rev. C 50, 2358 (1994) and C.-C. Chen, Phys. Rev. A 51, 2611 (1995)], the Landau quantization associated with an atom with a magnetic quadrupole moment is introduced, and then, rotating effects on this analogue of the Landau quantization is investigated. It is shown that rotating effects can modify the cyclotron frequency and breaks the degeneracy of the analogue of the Landau levels.

  9. The wavelet/scalar quantization compression standard for digital fingerprint images

    SciTech Connect

    Bradley, J.N.; Brislawn, C.M.

    1994-04-01

    A new digital image compression standard has been adopted by the US Federal Bureau of Investigation for use on digitized gray-scale fingerprint images. The algorithm is based on adaptive uniform scalar quantization of a discrete wavelet transform image decomposition and is referred to as the wavelet/scalar quantization standard. The standard produces archival quality images at compression ratios of around 20:1 and will allow the FBI to replace their current database of paper fingerprint cards with digital imagery.

  10. Minisuperspace quantization of bubbling AdS2×S2 geometries

    NASA Astrophysics Data System (ADS)

    Li, Qinglin

    2017-01-01

    We quantize the moduli space of supersymmetric microstates describing four-dimensional black holes with AdS2×S2 asymptotics. To acquire the commutation relations of quantization, we find the symplectic form that is imposed in the Type IIB supergravity and defined in the space of solutions parametrized by one complex harmonic function in R3 with sources distributed along closed curves.

  11. A K-homological approach to the quantization commutes with reduction problem

    NASA Astrophysics Data System (ADS)

    Song, Yanli

    2017-02-01

    Kasparov (1988) defined a distinguished K-homology fundamental class, so called the Dirac element. We prove a localization formula for the Dirac element in K-homology of crossed product of C∗-algebras. Then we define the quantization of Hamiltonian G-spaces as a push-forward of the Dirac element. With this, we develop a K-homological approach to the quantization commutes with reduction theorem.

  12. `Third' Quantization of Vacuum Einstein Gravity and Free Yang-Mills Theories

    NASA Astrophysics Data System (ADS)

    Raptis, Ioannis

    2007-05-01

    Certain pivotal results from various applications of Abstract Differential Geometry (ADG) to gravity and gauge theories are presently collected and used to argue that we already possess a geometrically (pre)quantized, second quantized and manifestly background spacetime manifold independent vacuum Einstein gravitational field dynamics. The arguments carry also mutatis mutandis to the case of free Yang-Mills theories, since from the ADG-theoretic perspective gravity is regarded as another gauge field theory. The powerful algebraico-categorical, sheaf cohomological conceptual and technical machinery of ADG is then employed, based on the fundamental ADG-theoretic conception of a field as a pair ({mathcal{E}},{mathcal{D}}) consisting of a vector sheaf {mathcal{E}} and an algebraic connection {mathcal{D}} acting categorically as a sheaf morphism on {mathcal{E}}'s local sections, to introduce a ‘universal’, because expressly functorial, field quantization scenario coined third quantization. Although third quantization is fully covariant, on intuitive and heuristic grounds alone it formally appears to follow a canonical route; albeit, in a purely algebraic and, in contradistinction to geometric (pre)quantization and (canonical) second quantization, manifestly background geometrical spacetime manifold independent fashion, as befits ADG. All in all, from the ADG-theoretic vantage, vacuum Einstein gravity and free Yang-Mills theories are regarded as external spacetime manifold unconstrained, third quantized, pure gauge field theories. The paper abounds with philosophical smatterings and speculative remarks about the potential import and significance of our results to current and future Quantum Gravity research. A postscript gives a brief account of this author's personal encounters with Rafael Sorkin and his work.

  13. The method of Ostrogradsky, quantization, and a move toward a ghost-free future

    SciTech Connect

    Nucci, M C; Leach, P G L

    2009-11-15

    The method of Ostrogradsky has been used to construct a first-order Lagrangian, hence Hamiltonian, for the fourth-order field-theoretical model of Pais-Uhlenbeck with unfortunate results when quantization is undertaken since states with negative norm, commonly called ''ghosts,'' appear. We propose an alternative route based on the preservation of symmetry and this leads to a ghost-free quantization.

  14. An analogue of Weyl’s law for quantized irreducible generalized flag manifolds

    SciTech Connect

    Matassa, Marco E-mail: mmatassa@math.uio.no

    2015-09-15

    We prove an analogue of Weyl’s law for quantized irreducible generalized flag manifolds. This is formulated in terms of a zeta function which, similarly to the classical setting, satisfies the following two properties: as a functional on the quantized algebra it is proportional to the Haar state and its first singularity coincides with the classical dimension. The relevant formulas are given for the more general case of compact quantum groups.

  15. Length Quantization of DNA Partially Expelled from Heads of a Bacteriophage T3 Mutant

    PubMed Central

    Serwer, Philip; Wright, Elena T.; Liu, Zheng; Jiang, Wen

    2014-01-01

    DNA packaging of phages phi29, T3 and T7 sometimes produces incompletely packaged DNA with quantized lengths, based on gel electrophoretic band formation. We discover here a packaging ATPase-free, in vitro model for packaged DNA length quantization. We use directed evolution to isolate a five-site T3 point mutant that hyper-produces tail-free capsids with mature DNA (heads). Three tail gene mutations, but no head gene mutations, are present. A variable-length DNA segment leaks from some mutant heads, based on DNase I-protection assay and electron microscopy. The protected DNA segment has quantized lengths, based on restriction endonuclease analysis: six sharp bands of DNA missing 3.7–12.3% of the last end packaged. Native gel electrophoresis confirms quantized DNA expulsion and, after removal of external DNA, provides evidence that capsid radius is the quantization-ruler. Capsid-based DNA length quantization possibly evolved via selection for stalling that provides time for feedback control during DNA packaging and injection. PMID:24889235

  16. Can Dirac quantization of constrained systems be fulfilled within the intrinsic geometry?

    SciTech Connect

    Xun, D.M.; Liu, Q.H.

    2014-02-15

    For particles constrained on a curved surface, how to perform quantization within Dirac’s canonical quantization scheme is a long-standing problem. On one hand, Dirac stressed that the Cartesian coordinate system has fundamental importance in passing from the classical Hamiltonian to its quantum mechanical form while preserving the classical algebraic structure between positions, momenta and Hamiltonian to the extent possible. On the other, on the curved surface, we have no exact Cartesian coordinate system within intrinsic geometry. These two facts imply that the three-dimensional Euclidean space in which the curved surface is embedded must be invoked otherwise no proper canonical quantization is attainable. In this paper, we take a minimum surface, helicoid, on which the motion is constrained, to explore whether the intrinsic geometry offers a proper framework in which the quantum theory can be established in a self-consistent way. Results show that not only an inconsistency within Dirac theory occurs, but also an incompatibility with Schrödinger theory happens. In contrast, in three-dimensional Euclidean space, the Dirac quantization turns out to be satisfactory all around, and the resultant geometric momentum and potential are then in agreement with those given by the Schrödinger theory. -- Highlights: • Quantum motion on a minimum surface, helicoid, is examined within canonical quantization. • Both geometric momentum and geometric potential are embedding quantities. • No canonical quantization can be fulfilled within the intrinsic geometry.

  17. High-Resolution Group Quantization Phase Processing Method in Radio Frequency Measurement Range

    NASA Astrophysics Data System (ADS)

    Du, Baoqing; Feng, Dazheng; Tang, Yaohua; Geng, Xin; Zhang, Duo; Cai, Chaofeng; Wan, Maoquan; Yang, Zhigang

    2016-07-01

    Aiming at the more complex frequency translation, the longer response time and the limited measurement precision in the traditional phase processing, a high-resolution phase processing method by group quantization higher than 100 fs level is proposed in radio frequency measurement range. First, the phase quantization is used as a step value to quantize every phase difference in a group by using the fixed phase relationships between different frequencies signals. The group quantization is formed by the results of the quantized phase difference. In the light of frequency drift mainly caused by phase noise of measurement device, a regular phase shift of the group quantization is produced, which results in the phase coincidence of two comparing signals which obtain high-resolution measurement. Second, in order to achieve the best coincidences pulse, a subtle delay is initiatively used to reduce the width of the coincidences fuzzy area according to the transmission characteristics of the coincidences in the specific medium. Third, a series of feature coincidences pulses of fuzzy area can be captured by logic gate to achieve the best phase coincidences information for the improvement of the measurement precision. The method provides a novel way to precise time and frequency measurement.

  18. Born-Jordan Quantization and the Equivalence of the Schrödinger and Heisenberg Pictures.

    PubMed

    de Gosson, Maurice A

    The aim of the famous Born and Jordan 1925 paper was to put Heisenberg's matrix mechanics on a firm mathematical basis. Born and Jordan showed that if one wants to ensure energy conservation in Heisenberg's theory it is necessary and sufficient to quantize observables following a certain ordering rule. One apparently unnoticed consequence of this fact is that Schrödinger's wave mechanics cannot be equivalent to Heisenberg's more physically motivated matrix mechanics unless its observables are quantized using this rule, and not the more symmetric prescription proposed by Weyl in 1926, which has become the standard procedure in quantum mechanics. This observation confirms the superiority of Born-Jordan quantization, as already suggested by Kauffmann. We also show how to explicitly determine the Born-Jordan quantization of arbitrary classical variables, and discuss the conceptual advantages in using this quantization scheme. We finally suggest that it might be possible to determine the correct quantization scheme by using the results of weak measurement experiments.

  19. Quantization of spacetime based on a spacetime interval operator

    NASA Astrophysics Data System (ADS)

    Chiang, Hsu-Wen; Hu, Yao-Chieh; Chen, Pisin

    2016-04-01

    Motivated by both concepts of Adler's recent work on utilizing Clifford algebra as the linear line element d s =⟨γμ⟩ d Xμ and the fermionization of the cylindrical worldsheet Polyakov action, we introduce a new type of spacetime quantization that is fully covariant. The theory is based on the reinterpretation of Adler's linear line element as d s =γμ⟨λ γμ⟩ , where λ is the characteristic length of the theory. We name this new operator the "spacetime interval operator" and argue that it can be regarded as a natural extension to the one-forms in the U (s u (2 )) noncommutative geometry. By treating Fourier momentum as the particle momentum, the generalized uncertainty principle of the U (s u (2 )) noncommutative geometry, as an approximation to the generalized uncertainty principle of our theory, is derived and is shown to have a lowest order correction term of the order p2 similar to that of Snyder's. The holography nature of the theory is demonstrated and the predicted fuzziness of the geodesic is shown to be much smaller than conceivable astrophysical bounds.

  20. Evaluation of learning vector quantization to classify cotton trash

    NASA Astrophysics Data System (ADS)

    Lieberman, Michael A.; Patil, Rajendra B.

    1997-03-01

    The cotton industry needs a method to identify the type of trash [nonlint material (NLM)] in cotton samples; learning vector quantization (LVQ) is evaluated as that method. LVQ is a classification technique that defines reference vectors (group prototypes) in an N-dimensional feature space (RN). Normalized trash object features extracted from images of compressed cotton samples define RN. An unknown NLM object is given the label of the closest reference vector (as defined by Euclidean distance). Different normalized features spaces and NLM classifications are evaluated and accuracies reported for correctly identifying the NLM type. LVQ is used to partition cotton trash into: (1) bark (B), leaf (L), pepper (P), or stick (S); (2) bark and nonbark (N); or (3) bark, combined leaf and pepper (LP), or stick. Percentage accuracy for correctly identifying 139 pieces of test trash placed on laboratory prepared samples for the three scenarios are (B:95, L:87, P:100, S:88), (B:100, N:97), and (B:95, LP:99, S:88), respectively. Also, LVQ results are compared to previous work using backpropagating neural networks.

  1. Metamaterial bricks and quantization of meta-surfaces

    NASA Astrophysics Data System (ADS)

    Memoli, Gianluca; Caleap, Mihai; Asakawa, Michihiro; Sahoo, Deepak R.; Drinkwater, Bruce W.; Subramanian, Sriram

    2017-02-01

    Controlling acoustic fields is crucial in diverse applications such as loudspeaker design, ultrasound imaging and therapy or acoustic particle manipulation. The current approaches use fixed lenses or expensive phased arrays. Here, using a process of analogue-to-digital conversion and wavelet decomposition, we develop the notion of quantal meta-surfaces. The quanta here are small, pre-manufactured three-dimensional units--which we call metamaterial bricks--each encoding a specific phase delay. These bricks can be assembled into meta-surfaces to generate any diffraction-limited acoustic field. We apply this methodology to show experimental examples of acoustic focusing, steering and, after stacking single meta-surfaces into layers, the more complex field of an acoustic tractor beam. We demonstrate experimentally single-sided air-borne acoustic levitation using meta-layers at various bit-rates: from a 4-bit uniform to 3-bit non-uniform quantization in phase. This powerful methodology dramatically simplifies the design of acoustic devices and provides a key-step towards realizing spatial sound modulators.

  2. Metamaterial bricks and quantization of meta-surfaces.

    PubMed

    Memoli, Gianluca; Caleap, Mihai; Asakawa, Michihiro; Sahoo, Deepak R; Drinkwater, Bruce W; Subramanian, Sriram

    2017-02-27

    Controlling acoustic fields is crucial in diverse applications such as loudspeaker design, ultrasound imaging and therapy or acoustic particle manipulation. The current approaches use fixed lenses or expensive phased arrays. Here, using a process of analogue-to-digital conversion and wavelet decomposition, we develop the notion of quantal meta-surfaces. The quanta here are small, pre-manufactured three-dimensional units-which we call metamaterial bricks-each encoding a specific phase delay. These bricks can be assembled into meta-surfaces to generate any diffraction-limited acoustic field. We apply this methodology to show experimental examples of acoustic focusing, steering and, after stacking single meta-surfaces into layers, the more complex field of an acoustic tractor beam. We demonstrate experimentally single-sided air-borne acoustic levitation using meta-layers at various bit-rates: from a 4-bit uniform to 3-bit non-uniform quantization in phase. This powerful methodology dramatically simplifies the design of acoustic devices and provides a key-step towards realizing spatial sound modulators.

  3. Quantization of closed mini-superspace models as bound states

    NASA Astrophysics Data System (ADS)

    Kung, J. H.

    1995-01-01

    The Wheeler-DeWitt equation is applied to closedk>0 Friedmann-Robertson-Walker metric with various combination of cosmological constant and matter (e.g., radiation or pressureless gas). It is shown that if the universe ends in the matter dominated era (e.g., radiation or pressureless gas) with zero cosmological constant, then the resulting Wheeler-DeWitt equation describes a bound state problem. As solutions of a nondegenerate bound state system, the eigen-wave functions are real (Hartle-Hawking). Furthermore, as a bound state problem, there exists a quantization condition that relates the curvature of the three space with the various energy densities of the universe. If we assume that our universe is closed, then the quantum number of our universe isN˜(Gk)-1˜10122. The largeness of this quantum number is naturally explained by an early inflationary phase which resulted in a flat universe we observe today. It is also shown that if there is a cosmological constant Λ>0 in our universe that persists for all time, then the resulting Wheeler-DeWitt equation describes a non-bound state system, regardless of the magnitude of the cosmological constant. As a consequence, the wave functions are in general complex (Vilenkin).

  4. Singular Lagrangians. Classical dynamics and quantization. Lectures for young scientists

    NASA Astrophysics Data System (ADS)

    Nesterenko, V. V.; Chervyakov, A. M.

    The lectures are devoted to the classical and quantum dynamics of the systems described by singular (or degenerate) Lagrangians. The complete set of the Hamiltonian constraints is constructed in the framework of the Lagrangian formalism. The equations of motion in the phase space are derived by taking into account all the constraints in the theory. It is proved that the dynamic on the physical submanifold of the phase space has the Hamiltonian form. On lectures the second Noether theorem is widely used. On its basis the properties of the Poisson brackets of the primary constraints are investigated and the invariance of the Lagrangian constraints during evolution is proved. The setting of the Cauchy problem in the theories with singular Lagrangians is discussed. The quantization of the systems with constraints is carried out by the functional integration in the phase space. There is considered the most general case of the first class and the second class constraints with an explicit time dependence. The gauge conditions may be noninvoluntary and time dependent. The material is illustrated by some examples (relativistic point particle, relativistic string, electromagnetic field, and Yang-Mills fields).

  5. Metamaterial bricks and quantization of meta-surfaces

    PubMed Central

    Memoli, Gianluca; Caleap, Mihai; Asakawa, Michihiro; Sahoo, Deepak R.; Drinkwater, Bruce W.; Subramanian, Sriram

    2017-01-01

    Controlling acoustic fields is crucial in diverse applications such as loudspeaker design, ultrasound imaging and therapy or acoustic particle manipulation. The current approaches use fixed lenses or expensive phased arrays. Here, using a process of analogue-to-digital conversion and wavelet decomposition, we develop the notion of quantal meta-surfaces. The quanta here are small, pre-manufactured three-dimensional units—which we call metamaterial bricks—each encoding a specific phase delay. These bricks can be assembled into meta-surfaces to generate any diffraction-limited acoustic field. We apply this methodology to show experimental examples of acoustic focusing, steering and, after stacking single meta-surfaces into layers, the more complex field of an acoustic tractor beam. We demonstrate experimentally single-sided air-borne acoustic levitation using meta-layers at various bit-rates: from a 4-bit uniform to 3-bit non-uniform quantization in phase. This powerful methodology dramatically simplifies the design of acoustic devices and provides a key-step towards realizing spatial sound modulators. PMID:28240283

  6. Landau quantization and Fermi velocity renormalization in twisted graphene bilayers

    NASA Astrophysics Data System (ADS)

    Yin, Long-Jing; Qiao, Jia-Bin; Wang, Wen-Xiao; Zuo, Wei-Jie; Yan, Wei; Xu, Rui; Dou, Rui-Fen; Nie, Jia-Cai; He, Lin

    2015-11-01

    Currently there is a lively discussion concerning Fermi velocity renormalization in twisted bilayers and several contradicted experimental results are reported. Here we study electronic structures of the twisted bilayers by scanning tunneling microscopy (STM) and spectroscopy (STS). The interlayer coupling strengths between the adjacent bilayers are measured according to energy separations of two pronounced low-energy van Hove singularities (VHSs) in the STS spectra. We demonstrate that there is a large range of values for the interlayer interaction not only in different twisted bilayers, but also in twisted bilayers with the same rotation angle. Below the VHSs, the observed Landau quantization in the twisted bilayers is identical to that of massless Dirac fermions in graphene monolayer, which allows us to measure the Fermi velocity directly. Our result indicates that the Fermi velocity of the twisted bilayers depends remarkably on both the twisted angles and the interlayer coupling strengths. This removes the discrepancy about the Fermi velocity renormalization in the twisted bilayers and provides a consistent interpretation of all current data.

  7. A methodology for constructing fuzzy algorithms for learning vector quantization.

    PubMed

    Karayiannis, N B

    1997-01-01

    This paper presents a general methodology for the development of fuzzy algorithms for learning vector quantization (FALVQ). The design of specific FALVQ algorithms according to existing approaches reduces to the selection of the membership function assigned to the weight vectors of an LVQ competitive neural network, which represent the prototypes. The development of a broad variety of FALVQ algorithms can be accomplished by selecting the form of the interference function that determines the effect of the nonwinning prototypes on the attraction between the winning prototype and the input of the network. The proposed methodology provides the basis for extending the existing FALVQ 1, FALVQ 2, and FALVQ 3 families of algorithms. This paper also introduces two quantitative measures which establish a relationship between the formulation that led to FALVQ algorithms and the competition between the prototypes during the learning process. The proposed algorithms and competition measures are tested and evaluated using the IRIS data set. The significance of the proposed competition measure is illustrated using FALVQ algorithms to perform segmentation of magnetic resonance images of the brain.

  8. Finite energy quantization on a topology changing spacetime

    NASA Astrophysics Data System (ADS)

    Krasnikov, S.

    2016-08-01

    The "trousers" spacetime is a pair of flat two-dimensional cylinders ("legs") merging into a single one ("trunk"). In spite of its simplicity this spacetime has a few features (including, in particular, a naked singularity in the "crotch") each of which is presumably unphysical, but for none of which a mechanism is known able to prevent its occurrence. Therefore, it is interesting and important to study the behavior of the quantum fields in such a space. Anderson and DeWitt were the first to consider the free scalar field in the trousers spacetime. They argued that the crotch singularity produces an infinitely bright flash, which was interpreted as evidence that the topology of space is dynamically preserved. Similar divergencies were later discovered by Manogue, Copeland, and Dray who used a more exotic quantization scheme. Later yet the same result obtained within a somewhat different approach led Sorkin to the conclusion that the topological transition in question is suppressed in quantum gravity. In this paper I show that the Anderson-DeWitt divergence is an artifact of their choice of the Fock space. By choosing a different one-particle Hilbert space one gets a quantum state in which the components of the stress-energy tensor (SET) are bounded in the frame of a free-falling observer.

  9. Applications of Basis Light-Front Quantization to QED

    NASA Astrophysics Data System (ADS)

    Vary, James P.; Zhao, Xingbo; Ilderton, Anton; Honkanen, Heli; Maris, Pieter; Brodsky, Stanley J.

    2014-06-01

    Hamiltonian light-front quantum field theory provides a framework for calculating both static and dynamic properties of strongly interacting relativistic systems. Invariant masses, correlated parton amplitudes and time-dependent scattering amplitudes, possibly with strong external time-dependent fields, represent a few of the important applications. By choosing the light-front gauge and adopting an orthonormal basis function representation, we obtain a large, sparse, Hamiltonian matrix eigenvalue problem for mass eigenstates that we solve by adapting ab initio no-core methods of nuclear many-body theory. In the continuum limit, the infinite matrix limit, we recover full covariance. Guided by the symmetries of light-front quantized theory, we adopt a two-dimensional harmonic oscillator basis for transverse modes that corresponds with eigensolutions of the soft-wall anti-de Sitter/quantum chromodynamics (AdS/QCD) model obtained from light-front holography. We outline our approach and present results for non-linear Compton scattering, evaluated non-perturbatively, where a strong and time-dependent laser field accelerates the electron and produces states of higher invariant mass i.e. final states with photon emission.

  10. Non-uniqueness of quantized Yang - Mills theories

    NASA Astrophysics Data System (ADS)

    Dütsch, Michael

    1996-12-01

    We consider quantized Yang - Mills theories in the framework of causal perturbation theory which goes back to Epstein and Glaser. In this approach gauge invariance is expressed by a simple commutator relation for the S-matrix. The most general coupling which is gauge invariant to first order contains a two-parametric ambiguity in the ghost sector: a divergence- and a coboundary-coupling may be added. We prove (not completely) that the higher orders with these two additional couplings are also gauge invariant. Moreover, we show that the ambiguities of the n-point distributions restricted to the physical subspace are only a sum of the divergences (in the sense of vector analysis). It turns out that the theory without divergence- and coboundary-coupling is the simplest one in a quite technical sense. The proofs for the n-point distributions containing coboundary-couplings are given up to third or fourth order only, whereas the statements about the divergence-coupling are proved for all orders.

  11. Spectrum of Quantized Energy for a Lengthening Pendulum

    SciTech Connect

    Choi, Jeong Ryeol; Song, Ji Nny; Hong, Seong Ju

    2010-09-30

    We considered a quantum system of simple pendulum whose length of string is increasing at a steady rate. Since the string length is represented as a time function, this system is described by a time-dependent Hamiltonian. The invariant operator method is very useful in solving the quantum solutions of time-dependent Hamiltonian systems like this. The invariant operator of the system is represented in terms of the lowering operator a(t) and the raising operator a{sup {dagger}}(t). The Schroedinger solutions {psi}{sub n}({theta}, t) whose spectrum is discrete are obtained by means of the invariant operator. The expectation value of the Hamiltonian in the {psi}{sub n}({theta}, t) state is the same as the quantum energy. At first, we considered only {theta}{sup 2} term in the Hamiltonian in order to evaluate the quantized energy. The numerical study for quantum energy correction is also made by considering the angle variable not only up to {theta}{sup 4} term but also up to {theta}{sup 6} term in the Hamiltonian, using the perturbation theory.

  12. Refined codebook for grayscale image coding based on vector quantization

    NASA Astrophysics Data System (ADS)

    Hu, Yu-Chen; Chen, Wu-Lin; Tsai, Pi-Yu

    2015-07-01

    Vector quantization (VQ) is a commonly used technique for image compression. Typically, the common codebooks (CCBs) that are designed by using multiple training images are used in VQ. The CCBs are stored in the public websites such that their storage cost can be omitted. In addition to the CCBs, the private codebooks (PCBs) that are designed by using the image to be compressed can be used in VQ. However, calculating the bit rates (BRs) of VQ includes the storage cost of the PCBs. It is observed that some codewords in the CCB are not used in VQ. The codebook refinement process is designed to generate the refined codebook (RCB) based on the CCB of each image. To cut down the BRs, the lossless index coding process and the two-stage lossless coding process are employed to encode the index table and the RCB, respectively. Experimental results reveal that the proposed scheme (PS) achieves better image qualities than VQ with the CCBs. In addition, the PS requires less BRs than VQ with the PCBs.

  13. Size quantization in layered HgI/sub 2/ colloids

    SciTech Connect

    Peterson, M.W.; Micic, O.I.; Nozik, A.J.

    1988-07-14

    Colloidal particles of HgI/sub 2/ with a particle size less than about 25 /angstrom/ are formed by the reaction of HgCl/sub 2/ with NaI in acetonitrile. The particles are charged with Cl/sup -/ ions that fill normally empty tetrahedral coordination sites at the edges; therefore they have an empirical formula HgI/sub 2/Cl/sub 0.6//sup 0.6-/. About 40% of the mercury in the colloidal solution is in the form of the ionic complex HgI/sub 2/Cl/sup -/. These conclusions are based on extensive spectroscopic studies of various Hg-I-Cl species and experiments involving ultracentifugation, ultrafiltration, and treatment of the colloids with ion-exchange resins. The absorption spectrum of the colloidal HgI/sub 2/ consists of three peaks at 4.26, 4.94, and 6.04 eV, and is attributed to size quantization effects. This spectrum is consistent with the first three allowed transitions in a simple particle-in-a-box model with infinite potential barriers in which the colloidal particles have the usual tetrahedral, layered structure of red HgI/sub 2/, with dimensions of 26.1 /angstrom/ perpendicular to the layer plane (four layers thick) and 13.3 /angstrom/ in the direction parallel to the layer plane.

  14. Round Randomized Learning Vector Quantization for Brain Tumor Imaging

    PubMed Central

    2016-01-01

    Brain magnetic resonance imaging (MRI) classification into normal and abnormal is a critical and challenging task. Owing to that, several medical imaging classification techniques have been devised in which Learning Vector Quantization (LVQ) is amongst the potential. The main goal of this paper is to enhance the performance of LVQ technique in order to gain higher accuracy detection for brain tumor in MRIs. The classical way of selecting the winner code vector in LVQ is to measure the distance between the input vector and the codebook vectors using Euclidean distance function. In order to improve the winner selection technique, round off function is employed along with the Euclidean distance function. Moreover, in competitive learning classifiers, the fitting model is highly dependent on the class distribution. Therefore this paper proposed a multiresampling technique for which better class distribution can be achieved. This multiresampling is executed by using random selection via preclassification. The test data sample used are the brain tumor magnetic resonance images collected from Universiti Kebangsaan Malaysia Medical Center and UCI benchmark data sets. Comparative studies showed that the proposed methods with promising results are LVQ1, Multipass LVQ, Hierarchical LVQ, Multilayer Perceptron, and Radial Basis Function. PMID:27516807

  15. Image Classification of Ribbed Smoked Sheet using Learning Vector Quantization

    NASA Astrophysics Data System (ADS)

    Rahmat, R. F.; Pulungan, A. F.; Faza, S.; Budiarto, R.

    2017-01-01

    Natural rubber is an important export commodity in Indonesia, which can be a major contributor to national economic development. One type of rubber used as rubber material exports is Ribbed Smoked Sheet (RSS). The quantity of RSS exports depends on the quality of RSS. RSS rubber quality has been assigned in SNI 06-001-1987 and the International Standards of Quality and Packing for Natural Rubber Grades (The Green Book). The determination of RSS quality is also known as the sorting process. In the rubber factones, the sorting process is still done manually by looking and detecting at the levels of air bubbles on the surface of the rubber sheet by naked eyes so that the result is subjective and not so good. Therefore, a method is required to classify RSS rubber automatically and precisely. We propose some image processing techniques for the pre-processing, zoning method for feature extraction and Learning Vector Quantization (LVQ) method for classifying RSS rubber into two grades, namely RSS1 and RSS3. We used 120 RSS images as training dataset and 60 RSS images as testing dataset. The result shows that our proposed method can give 89% of accuracy and the best perform epoch is in the fifteenth epoch.

  16. Fiber-bundle formalism for quantization in curved spaces

    SciTech Connect

    Wyrozumski, T. )

    1990-08-15

    We set up a geometrical formulation of the canonical quantization of a free Klein-Gordon field on a gravitational background. We introduce the notion of the Bogolubov bundle as the principal fiber bundle over the space of all Cauchy surfaces belonging to some fixed foliation of space-time, with the Bogolubov group as the structure group, as a tool in considering local Bogolubov transformations. Sections of the associated complex structure bundle have the meaning of attaching Hilbert spaces to Cauchy surfaces. We single out, as physical, sections defined by the equation of parallel transport on the Bogolubov bundle. The connection is then subjected to a certain nonlinear differential equation. We find a particular solution, which happens to coincide with a formula given by Parker for Robertson-Walker space-times. Finally, we adopt the adiabatic hypothesis as the physical input to the formalism and fix in this way a free parameter in the connection. Concluding, we comment on a possible geometrical interpretation of the regularization of the stress-energy tensor and on generalizations of the formalism toward quantum gravity.

  17. Exponentially more precise quantum simulation of fermions in second quantization

    NASA Astrophysics Data System (ADS)

    Babbush, Ryan; Berry, Dominic W.; Kivlichan, Ian D.; Wei, Annie Y.; Love, Peter J.; Aspuru-Guzik, Alán

    2016-03-01

    We introduce novel algorithms for the quantum simulation of fermionic systems which are dramatically more efficient than those based on the Lie-Trotter-Suzuki decomposition. We present the first application of a general technique for simulating Hamiltonian evolution using a truncated Taylor series to obtain logarithmic scaling with the inverse of the desired precision. The key difficulty in applying algorithms for general sparse Hamiltonian simulation to fermionic simulation is that a query, corresponding to computation of an entry of the Hamiltonian, is costly to compute. This means that the gate complexity would be much higher than quantified by the query complexity. We solve this problem with a novel quantum algorithm for on-the-fly computation of integrals that is exponentially faster than classical sampling. While the approaches presented here are readily applicable to a wide class of fermionic models, we focus on quantum chemistry simulation in second quantization, perhaps the most studied application of Hamiltonian simulation. Our central result is an algorithm for simulating an N spin-orbital system that requires \\tilde{{ O }}({N}5t) gates. This approach is exponentially faster in the inverse precision and at least cubically faster in N than all previous approaches to chemistry simulation in the literature.

  18. Quantized Water Transport: Ideal Desalination through Graphyne-4 Membrane

    NASA Astrophysics Data System (ADS)

    Zhu, Chongqin; Li, Hui; Zeng, Xiao Cheng; Wang, E. G.; Meng, Sheng

    2014-03-01

    The shortage of clean and fresh water is one of most pervasive problems afflicting human being's life in the world. Desalination is one viable solution to produce clean water, since 98% of the available water in the form of salty water. Using molecular dynamics simulations, we demonstrate that graphyne sheet exhibits promising potential for nanoscale desalination to achieve both high water permeability and salt rejection rate. In addition, Graphyne sheets also are mechanically robust with high tolerance to deformation. Especially, γ-graphyne-4 has the best performance with 100% slat rejection and an unprecedented water permeability of ~ 13L/cm2/day/MPa. 3 orders of magnitude higher than prevailing commercial membranes based on reverse osmosis, and ~ 10 times higher than the state-of-the-art nanoporous graphene. Strikingly, water permeability across graphyne exhibits unexpected nonlinear dependence on the pore area. This counter-intuitive behavior is attributed to the quantized nature of water flow at the nanoscale, which has wide implications in controlling nanoscale water transport and designing highly effective membrane.

  19. Fluxoid Quantization in Superconducting Al Nano-Rings

    NASA Astrophysics Data System (ADS)

    Snyder, Stephen; Goldman, Allen

    2011-03-01

    The Little-Parks experiment on superconducting cylinders is an important demonstration of fluxoid quantization in superconductors. The transition temperature oscillations in magnetic field have a period of h / 2 e for the micro cylinders in their studies, which was further evidence for Cooper paring at the time {[}W. A. Little, R. D. Parks, PRL 1964, 9, 9{]}. However recent theoretical works have suggested that in superconducting loops smaller than the coherence length this period changes from h / 2 e to h / e , for details see {[}F. Loder, et al. PRB, 2008, 78, 174526{]} and references therein. We present experimental work in an effort to achieve this limit with Al nano-rings prepared by electron beam lithography. The rings presented here are smaller than others reported in the literature by as much as a factor of two or three {[}H. Wang, et al. PRB, 2007, 75, 064509{]}. This work was supported by the U.S. Department of Energy under Grant No. DE-FG02-02ER46004.

  20. Cotangent bundle quantization: entangling of metric and magnetic field

    NASA Astrophysics Data System (ADS)

    Karasev, M. V.; Osborn, T. A.

    2005-10-01

    For manifolds \\mathcal{M} of noncompact type endowed with an affine connection (for example, the Levi-Civita connection) and a closed 2-form (magnetic field), we define a Hilbert algebra structure in the space L^2(T^*\\!{\\mathcal{M}}) and construct an irreducible representation of this algebra in L^2(\\mathcal{M}) . This algebra is automatically extended to polynomial in momenta functions and distributions. Under some natural conditions, this algebra is unique. The non-commutative product over T^*\\!{\\mathcal{M}} is given by an explicit integral formula. This product is exact (not formal) and is expressed in invariant geometrical terms. Our analysis reveals that this product has a front, which is described in terms of geodesic triangles in \\mathcal{M} . The quantization of δ-functions induces a family of symplectic reflections in T^*\\!{\\mathcal{M}} and generates a magneto-geodesic connection Γ on T^*\\mathcal{M} . This symplectic connection entangles, on the phase space level, the original affine structure on \\mathcal{M} and the magnetic field. In the classical approximation, the planck2-part of the quantum product contains the Ricci curvature of Γ and a magneto-geodesic coupling tensor.

  1. The dip effect under integer quantized Hall conditions

    NASA Astrophysics Data System (ADS)

    Gulebaglan, Sinem Erden; Kalkan, Sirri Batuhan; Sirt, Serkan; Kendirlik, Enver Metin; Siddiki, Afif

    2014-03-01

    In this work we investigate an unusual transport phenomenon observed in two-dimensional electron gas under integer quantum Hall effect conditions. Our calculations are based on the screening theory, using a semi-analytical model. The transport anomalies are dip and overshoot effects, where the Hall resistance decreases (or increases) unexpectedly at the quantized resistance plateaus intervals. We report on our numerical findings of the dip effect in the Hall resistance, considering GaAs/AlGaAs heterostructures in which we investigated the effect under different experimental conditions. We show that, similar to overshoot, the amplitude of the dip effect is strongly influenced by the edge reconstruction due to electrostatics. It is observed that the steep potential variation close to the physical boundaries of the sample results in narrower incompressible strips, hence, the experimental observation of the dip effect is limited by the properties of these current carrying strips. By performing standard Hall resistance measurements on gate defined narrow samples, we demonstrate that the predictions of the screening theory is in well agreement with our experimental findings.

  2. Efficient codebook search for vector quantization: exploiting inherent codebook structure

    NASA Astrophysics Data System (ADS)

    Qasem, Mohamed; Du, Xun; Ahalt, Stanley C.

    1999-07-01

    A major problem associated with vector quantization is the complexity of exhaustive codebook search. This problem has hindered the use of this powerful technique for lossy image compression. An exhaustive codebook search requires that an input vector be compared against each code vector in the codebook in order to find the code vector that yields the minimum distortion. Because an exhaustive search does not capitalize on any underlying structure of the code vectors in hyperspace, other researchers have proposed technique that exploit codebook structure, but these technique typically result in sub-optimal distortion. We propose a new method that exploits the nearest neighbor structure of code vectors and significantly reduces the number of computations required in the search process. However, this technique does not introduce additional distortion, and is thus optimal. Our method requires a one time precomputation and a small increase in the memory required to store the codebook. In the best case, arising when the code vectors are largely dispersed in the hyperspace, our method requires only partial search of the codewords. In the worst case, our method requires a full search of the codebook. Since the method depends on the structure of the code vectors in the hyperspace, it is difficult to determine its efficiency in all cases, but test on typical image compression tasks have shown that this method offers on average an 81.16 percent reduction in the total number of multiples, additions and subtractions required as compared to full search.

  3. Unbalanced quantized multiple description video transmission using path diversity

    NASA Astrophysics Data System (ADS)

    Ekmekci, Sila; Sikora, Thomas

    2003-05-01

    Multiple Description Coding is a forward error correction scheme where two or more descriptions of the source are sent to the receiver over different channels. If only one channel is received the signal can be reconstructed with distortion D1 or D2. On the other hand, if both channels rae received the combined information is used to achieve a lower distortion D0. Our approach is based on the Multiple State Video Coding with the novelty that we achieve a flexible unbalance rate of the two streams by varying the quantization step size while keeping the original frame rate constant. The total bitrate Rτ is fixed which is to be allocated between the two streams. If the assigned bitratres are not balanced there will be PSNR variations between neighboring frames after reconstruction. Our goal is to find the optimal rate allocation while maximizing the average reconstructed frame PSNR and minimizing the PSNR variations given the total bitrate Rτ and the packet loss probabilities p1 and p2 over the two paths. The reconstruction algorithm is also taken into account in the optimization process. The paper will report results presenting optimal system designs for balanced but also for unbalanced path conditions.

  4. Exciting Quantized Vortex Rings in a Superfluid Unitary Fermi Gas

    NASA Astrophysics Data System (ADS)

    Bulgac, Aurel

    2014-03-01

    In a recent article, Yefsah et al., Nature 499, 426 (2013) report the observation of an unusual quantum excitation mode in an elongated harmonically trapped unitary Fermi gas. After phase imprinting a domain wall, they observe collective oscillations of the superfluid atomic cloud with a period almost an order of magnitude larger than that predicted by any theory of domain walls, which they interpret as a possible new quantum phenomenon dubbed ``a heavy soliton'' with an inertial mass some 50 times larger than one expected for a domain wall. We present compelling evidence that this ``heavy soliton'' is instead a quantized vortex ring by showing that the main aspects of the experiment can be naturally explained within an extension of the time-dependent density functional theory (TDDFT) to superfluid systems. The numerical simulations required the solution of some 260,000 nonlinear coupled time-dependent 3-dimensional partial differential equations and was implemented on 2048 GPUs on the Cray XK7 supercomputer Titan of the Oak Ridge Leadership Computing Facility.

  5. Comparison of different quantization strategies for subband coding of medical images

    NASA Astrophysics Data System (ADS)

    Castagno, Roberto; Lancini, Rosa C.; Egger, Olivier

    1996-04-01

    In this paper different methods for the quantization of wavelet transform coefficients are compared in view of medical imaging applications. The goal is to provide users with a comprehensive and application-oriented review of these techniques. The performance of four quantization methods (namely standard scalar quantization, embedded zerotree, variable dimension vector quantization and pyramid vector quantization) are compared with regard to their application in the field of medical imaging. In addition to the standard rate-distortion criterion, we took into account the possibility of bitrate control, the feasibility of real-time implementation, the genericity (for use in non-dedicated multimedia environments) of each approach. In addition, the diagnostical reliability of the decompressed images has been assessed during a viewing session and with the help of a specialist. Classical scalar quantization methods are briefly reviewed. As a result, it is shown that despite the relatively simple design of the optimum quantizers, their performance in terms of rate-distortion tradeoff are quite poor. For high quality subband coding, it is of major importance to exploit the existing zero-correlation across subbands as proposed with the embedded zerotree wavelet (EZW) algorithm. In this paper an improved EZW-algorithm is used which is termed embedded zerotree lossless (EZL) algorithm -- due to the importance of lossless compression in medical imaging applications -- having the additional possibility of producing an embedded lossless bitstream. VQ based methods take advantage of statistical properties of a block or a vector of data values, yielding good quality results of reconstructed images at the same bitrates. In this paper, we take in account two classes of VQ methods, random quantizers (VQ) and geometric quantizers (PVQ). Algorithms belonging to the first group (the most widely known being that developed by Linde-Buzo-Gray) suffer from the common drawback of requiring a

  6. Width dependent transition of quantized spin-wave modes in Ni{sub 80}Fe{sub 20} square nanorings

    SciTech Connect

    Banerjee, Chandrima; Saha, Susmita; Barman, Saswati; Barman, Anjan; Rousseau, Olivier; Otani, YoshiChika

    2014-10-28

    We investigated optically induced ultrafast magnetization dynamics in square shaped Ni{sub 80}Fe{sub 20} nanorings with varying ring width. Rich spin-wave spectra are observed whose frequencies showed a strong dependence on the ring width. Micromagnetic simulations showed different types of spin-wave modes, which are quantized upto very high quantization number. In the case of widest ring, the spin-wave mode spectrum shows quantized modes along the applied field direction, which is similar to the mode spectrum of an antidot array. As the ring width decreases, additional quantization in the azimuthal direction appears causing mixed modes. In the narrowest ring, the spin-waves exhibit quantization solely in azimuthal direction. The different quantization is attributed to the variation in the internal field distribution for different ring width as obtained from micromagnetic analysis and supported by magnetic force microscopy.

  7. FLUXES FOR MECHANIZED ELECTRIC WELDING,

    DTIC Science & Technology

    WELDING FLUXES, WELDING ), (* WELDING , WELDING FLUXES), ARC WELDING , WELDS, STABILITY, POROSITY, WELDING RODS, STEEL, CERAMIC MATERIALS, FLUXES(FUSION), TITANIUM ALLOYS, ALUMINUM ALLOYS, COPPER ALLOYS, ELECTRODEPOSITION

  8. From Weyl to Born-Jordan quantization: The Schrödinger representation revisited

    NASA Astrophysics Data System (ADS)

    de Gosson, Maurice A.

    2016-03-01

    The ordering problem has been one of the long standing and much discussed questions in quantum mechanics from its very beginning. Nowadays, there is more or less a consensus among physicists that the right prescription is Weyl's rule, which is closely related to the Moyal-Wigner phase space formalism. We propose in this report an alternative approach by replacing Weyl quantization with the less well-known Born-Jordan quantization. This choice is actually natural if we want the Heisenberg and Schrödinger pictures of quantum mechanics to be mathematically equivalent. It turns out that, in addition, Born-Jordan quantization can be recovered from Feynman's path integral approach provided that one used short-time propagators arising from correct formulas for the short-time action, as observed by Makri and Miller. These observations lead to a slightly different quantum mechanics, exhibiting some unexpected features, and this without affecting the main existing theory; for instance quantizations of physical Hamiltonian functions are the same as in the Weyl correspondence. The differences are in fact of a more subtle nature; for instance, the quantum observables will not correspond in a one-to-one fashion to classical ones, and the dequantization of a Born-Jordan quantum operator is less straightforward than that of the corresponding Weyl operator. The use of Born-Jordan quantization moreover solves the "angular momentum dilemma", which already puzzled L. Pauling. Born-Jordan quantization has been known for some time (but not fully exploited) by mathematicians working in time-frequency analysis and signal analysis, but ignored by physicists. One of the aims of this report is to collect and synthesize these sporadic discussions, while analyzing the conceptual differences with Weyl quantization, which is also reviewed in detail. Another striking feature is that the Born-Jordan formalism leads to a redefinition of phase space quantum mechanics, where the usual Wigner

  9. Temperature and Wavelength Dependence of Energy Transfer Process Between Quantized States and Surface States in CdSe Quantum Dots.

    PubMed

    Zhang, Lei; Xu, Qinfeng; Liu, Mingliang; Kong, Lingbin; Jiao, Mengmeng; Mu, Haifeng; Wang, Dehua; Wang, Honggang; Chen, Jiannong; Yang, Chuanlu

    2017-12-01

    Temperature and wavelength dependence of energy transfer (ET) process between quantized states and surface trap states of CdSe quantum dots was investigated, respectively. The experimental results demonstrate that the photoluminescence (PL) intensity of the quantized states decreases with respect to the trap state emission, especially at lower temperatures. The observed ET process between quantized states and trap states which is influenced by the thermal population behavior. At the same temperature, the silver films can greatly enhance the energy transfer (ET) rate from the quantized states to trap states due to surface plasmonic coupling effect.

  10. Geometric Quantization of Chern-Simons Gauge Theory

    NASA Astrophysics Data System (ADS)

    Axelrod, Scott Elliot

    1991-02-01

    We present a new construction of the quantum Hilbert space of Chern-Simons gauge theory using methods which are natural from the three dimensional point of view. We describe a generalization of Lagrangian field theory which is an appropriate classical starting point for topological quantum field theories. It is explained how classical Chern-Simons theory with arbitrary gauge group G fits in this framework. Given G compact, an element of H ^4(BG,doubz), and a principal G-bundle E on a closed 2-manifold Sigma, we arrive at a prequantum line bundle on the moduli space of flat G-connections on E. Equipping Sigma with a complex structure, we obtain by Kahler quantization a quantum Hilbert space. To show that this Hilbert space is independent of the choice of complex structure, and so is acted on by the mapping class group, we construct a natural projectively flat connection on the quantum Hilbert bundle over Teichmuller space. This connection has been previously constructed in the context of two dimensional conformal field theory where it is interpreted as the stress energy tensor. Our construction thus gives a 2 + 1 dimensional derivation of the basic properties of 1 + 1 dimensional current algebra. To construct the connection we show generally that for affine symplectic quotients the natural projectively flat connection on the quantum Hilbert bundle may be expressed purely in terms of the intrinsic Kahler geometry of the quotient and the Quillen connection on a certain determinant line bundle. The proof of most of the properties of the connection we construct follows surprisingly simply from the index theorem identities for the curvature of the Quillen connection. As an example, we treat the case when Sigma has genus one explicitly. We also make some preliminary comments concerning the Hilbert space structure.

  11. Quantization of Chern-Simons Theories on Manifolds with Boundaries

    NASA Astrophysics Data System (ADS)

    Bimonte, Giuseppe Roberto

    The subject matter of this thesis deals with Chern -Simons Topological Field Theories in 2 + 1 space-time dimensions on manifolds with boundaries. We develop elementary canonical methods for the quantization of Abelian and non-Abelian Chern-Simons actions, only using well known ideas in gauge theories and quantum gravity. In particular, our approach does not involve choice of gauge or delicate manipulations of functional integrals. When the spacial slice is a disc, it yields Witten's edge states carrying a representation of the Kac -Moody algebra. The canonical expression for the generators of diffeomorphisms acting on the boundary of the disc are also found, and it is established that they are the Chern -Simons version of the Sugawara construction. The formalism is then extended to the inclusion of sources. The quantum states of a source with a fixed spatial location are shown to be those of a conformal family. The internal states of a source are not thus associated with just a single ray of a Hilbert space. Vertex operators for both abelian and non-abelian sources are constructed. The regularized abelian Wilson line is proved to be a vertex operator. The spin-statistics theorem is established for Chern-Simons dynamics even though the sources are not described by relativistic quantum fields. The proof employs particularly simple and transparent geometrical methods. These results are finally applied to the Chern -Simons formulation of gravity in 2 + 1 dimensions, due to Witten. Here also, when the spatial slice is a disc, edge states are found, carrying a representation of the ISO(2,1) Kac-Moody algebra. The appropriate vertex operator is constructed also for this theory. It is shown that when acting on the vacuum it creates particles with a discrete mass spectrum. The lowest mass particle induces a cylindrical space time geometry, while higher mass particles give an n-fold covering of the cylinder.

  12. Orthogonal polynomial projection quantization: a new Hill determinant method

    NASA Astrophysics Data System (ADS)

    Handy, C. R.; Vrinceanu, D.

    2013-04-01

    Accurate energy eigenvalues are obtained by simply projecting the unknown bound state wave function on, essentially, arbitrary sets of orthogonal polynomials, and setting a subset of these to zero. The projection integrals are represented in terms of the power moments of the wave function, obtained recursively by transforming Schrödinger’s equation into a moment equation. Because unbounded wave functions do not have power moments, all solutions are guaranteed to be L2, resulting in a more robust, rapidly converging and stable method when compared with configuration space Hill determinant methods. More importantly, our approach permits the use of arbitrary, nonanalytic, positive reference functions, including those that manifest the true asymptotic behavior of the discrete states. These advantages are not usually possible with the standard Hill approach. The formulation presented here can be applied to any problem for which Schrödinger’s equation can be transformed into a moment equation. In this regard it is related to the L2 quantization prescription developed by Tymczak et al (1998 Phys. Rev. Lett. 80 3674; 1998 Phys. Rev. A 58 2708) corresponding to the Hill determinant method in momentum space, and to the eigenvalue moment method (Handy and Bessis 1985 Phys. Rev. Lett. 55 931; Handy et al 1988 Phys. Rev. Lett. 60 253), the first use of semidefinite programming related analysis in quantum physics. The latter method can be used to generate the ground state, whose orthogonal polynomials can serve to generate even more rapidly converging estimates for the excited discrete state energies. We demonstrate the power of this new approach on the sextic and quartic anharmonic oscillators, as well as on recently studied one- and two-dimensional pseudo-Hermitian Hamiltonians.

  13. Quantized impedance dealing with the damping behavior of the one-dimensional oscillator

    SciTech Connect

    Zhu, Jinghao; Zhang, Jing; Li, Yuan; Zhang, Yong; Fang, Zhengji; Zhao, Peide E-mail: pdzhao@hebut.edu.cn; Li, Erping

    2015-11-15

    A quantized impedance is proposed to theoretically establish the relationship between the atomic eigenfrequency and the intrinsic frequency of the one-dimensional oscillator in this paper. The classical oscillator is modified by the idea that the electron transition is treated as a charge-discharge process of a suggested capacitor with the capacitive energy equal to the energy level difference of the jumping electron. The quantized capacitance of the impedance interacting with the jumping electron can lead the resonant frequency of the oscillator to the same as the atomic eigenfrequency. The quantized resistance reflects that the damping coefficient of the oscillator is the mean collision frequency of the transition electron. In addition, the first and third order electric susceptibilities based on the oscillator are accordingly quantized. Our simulation of the hydrogen atom emission spectrum based on the proposed method agrees well with the experimental one. Our results exhibits that the one-dimensional oscillator with the quantized impedance may become useful in the estimations of the refractive index and one- or multi-photon absorption coefficients of some nonmagnetic media composed of hydrogen-like atoms.

  14. Quantization noise in digital speech. M.S. Thesis- Houston Univ.

    NASA Technical Reports Server (NTRS)

    Schmidt, O. L.

    1972-01-01

    The amount of quantization noise generated in a digital-to-analog converter is dependent on the number of bits or quantization levels used to digitize the analog signal in the analog-to-digital converter. The minimum number of quantization levels and the minimum sample rate were derived for a digital voice channel. A sample rate of 6000 samples per second and lowpass filters with a 3 db cutoff of 2400 Hz are required for 100 percent sentence intelligibility. Consonant sounds are the first speech components to be degraded by quantization noise. A compression amplifier can be used to increase the weighting of the consonant sound amplitudes in the analog-to-digital converter. An expansion network must be installed at the output of the digital-to-analog converter to restore the original weighting of the consonant sounds. This technique results in 100 percent sentence intelligibility for a sample rate of 5000 samples per second, eight quantization levels, and lowpass filters with a 3 db cutoff of 2000 Hz.

  15. On Stabilization of Quantized Sampled-Data Neural-Network-Based Control Systems.

    PubMed

    Wang, Yueying; Shen, Hao; Duan, Dengping

    2016-06-28

    This paper investigates the problem of stabilization of sampled-data neural-network-based systems with state quantization. Different with previous works, the communication limitation of state quantization is considered for the first time. More specifically, it is assumed that the sampled state measurements from sensor to the controller are quantized via a quantizer. To reduce conservativeness, a novel piecewise Lyapunov-Krasovskii functional (LKF) is constructed by introducing a line-integral type Lyapunov function and some useful terms that take full advantage of the available information about the actual sampling pattern. Based on the new LKF, much less conservative stabilization conditions are derived to obtain the maximal sampling period and the minimal guaranteed cost control performance. The desired quantized sampled-data three-layer fully connected feedforward neural-network-based controllers are designed by a linear matrix inequality approach. A search algorithm is given to find the optimal values of tuning parameters. The effectiveness and advantage of proposed method are demonstrated by the numerical simulation of an inverted pendulum.

  16. Aspects of flux compactification

    NASA Astrophysics Data System (ADS)

    Liu, Tao

    In this thesis, we study three main aspects of flux compactifications: (1) classify supergravity solutions from flux compactification; (2) construct flux-deformed geometry and 4D low-energy theory to describe these flux vacua; and (3) study 4D particle phenomenology and cosmology of flux vacua. In the first part, we review G-structure, the basic tool to study supersymmetric flux solutions, and some typical solutions obtained in heterotic, type IIA and type IIB string theories. Then we present a comprehensive classification of supersymmetric vacua of M-theory compactification on 7D manifolds with general four-form fluxes. We analyze the cases where the resulting four-dimensional vacua have N = 1, 2, 3, 4 supersymmetry and the internal space allows for SU(2)-, SU(3)- or G 2-structures. In particular, we find for N = 2 supersymmetry, that the external space-time is Minkowski and the base manifold of the internal space is conformally Kahler for SU(2) structures, while for SU(3) structures the internal space has to be Einstein-Sasaki and no internal fluxes are allowed. Moreover, we provide a new vacuum with N = 1 supersymmetry and SU(3) structure, where all fluxes are non-zero and the first order differential equations are solved. In the second part, we simply review the methods used to construct one subclass of fluxed-deformed geometry or the so-called "twisted manifold", and the associated 4D effective theory describing these flux vacua. Then by employing (generalized) Scherk-Schwarz reduction, we construct the geometric twisting for Calabi-Yau manifolds of Voisin-Borcea type (K 3 x T2)/ Z2 and study the superpotential in a type IIA orientifold based on this geometry. The twists modify the direct product by fibering the K 3 over T2 while preserving the Z2 involution. As an important application, the Voisin-Borcea class contains T6/( Z2 x Z2 ), the usual setting for intersecting D6 brane model building. Past work in this context considered only those twists inherited

  17. Heat flux measurements

    NASA Technical Reports Server (NTRS)

    Liebert, Curt H.; Weikle, Donald H.

    1989-01-01

    A new automated, computer controlled heat flux measurement facility is described. Continuous transient and steady-state surface heat flux values varying from about 0.3 to 6 MW/sq m over a temperature range of 100 to 1200 K can be obtained in the facility. An application of this facility is the development of heat flux gauges for continuous fast transient surface heat flux measurement on turbine blades operating in space shuttle main engine turbopumps. The facility is useful for durability testing at fast temperature transients.

  18. Quantization Error Reduction in the Measurement of Fourier Intensity for Phase Retrieval

    NASA Astrophysics Data System (ADS)

    Yang, Shiyuan; Takajo, Hiroaki

    2004-08-01

    The quantization error in the measurement of Fourier intensity for phase retrieval is discussed and a multispectra method is proposed to reduce this error. The Fourier modulus used for phase retrieval is usually obtained by measuring Fourier intensity with a digital device. Therefore, quantization error in the measurement of Fourier intensity leads to an error in the reconstructed object when iterative Fourier transform algorithms are used. The multispectra method uses several Fourier intensity distributions for a number of measurement ranges to generate a Fourier intensity distribution with a low quantization error. Simulations show that the multispectra method is effective in retrieving objects with real or complex distributions when the iterative hybrid input-output algorithm (HIO) is used.

  19. Stability of the quantized circulation of an attractive Bose-Einstein condensate in a rotating torus

    SciTech Connect

    Kanamoto, Rina; Saito, Hiroki; Ueda, Masahito

    2003-10-01

    We investigate rotational properties of a system of attractive bosons confined in a one-dimensional torus. Two kinds of ground states, uniform-density and bright soliton, are obtained analytically as functions of the strength of interaction and of the rotational frequency of the torus. The quantization of circulation appears in the uniform-density state, but disappears upon formation of the soliton. By comparing the results of exact diagonalization with those predicted by the Bogoliubov theory, we show that the Bogoliubov theory is valid at absolute zero over a wide range of parameters. At finite temperatures we employ the exact diagonalization method to examine how thermal fluctuations smear the plateaus of the quantized circulation. Finally, by rotating the system with an axisymmetry-breaking potential, we clarify the process by which the quantized circulation becomes thermodynamically stabilized.

  20. Shaped Gaussian Dictionaries for Quantized Networked Control Systems With Correlated Dropouts

    NASA Astrophysics Data System (ADS)

    Peters, Edwin G. W.; Quevedo, Daniel E.; Ostergaard, Jan

    2016-01-01

    This paper studies fixed rate vector quantisation for noisy networked control systems (NCSs) with correlated packet dropouts. In particular, a discrete-time linear time invariant system is to be controlled over an error-prone digital channel. The controller uses (quantized) packetized predictive control to reduce the impact of packet losses. The proposed vector quantizer is based on sparse regression codes (SPARC), which have recently been shown to be efficient in open-loop systems when coding white Gaussian sources. The dictionaries in existing design of SPARCs consist of independent and identically distributed (i.i.d.) Gaussian entries. However, we show that a significant gain can be achieved by using Gaussian dictionaries that are shaped according to the second-order statistics of the NCS in question. Furthermore, to avoid training of the dictionaries, we provide closed-form expressions for the required second-order statistics in the absence of quantization.

  1. Necessary conditions for the optimality of variable rate residual vector quantizers

    NASA Technical Reports Server (NTRS)

    Kossentini, Faouzi; Smith, Mark J. T.; Barnes, Christopher F.

    1993-01-01

    Residual vector quantization (RVQ), or multistage VQ, as it is also called, has recently been shown to be a competitive technique for data compression. The competitive performance of RVQ reported in results from the joint optimization of variable rate encoding and RVQ direct-sum code books. In this paper, necessary conditions for the optimality of variable rate RVQ's are derived, and an iterative descent algorithm based on a Lagrangian formulation is introduced for designing RVQ's having minimum average distortion subject to an entropy constraint. Simulation results for these entropy-constrained RVQ's (EC-RVQ's) are presented for memory less Gaussian, Laplacian, and uniform sources. A Gauss-Markov source is also considered. The performance is superior to that of entropy-constrained scalar quantizers (EC-SQ's) and practical entropy-constrained vector quantizers (EC-VQ's), and is competitive with that of some of the best source coding techniques that have appeared in the literature.

  2. Metrics for vector quantization-based parametric speech enhancement and separation.

    PubMed

    Christensen, Mads Græsbøll

    2013-05-01

    Speech enhancement and separation algorithms sometimes employ a two-stage processing scheme, wherein the signal is first mapped to an intermediate low-dimensional parametric description after which the parameters are mapped to vectors in codebooks trained on, for example, individual noise-free sources using a vector quantizer. To obtain accurate parameters, one must employ a good estimator in finding the parameters of the intermediate representation, like a maximum likelihood estimator. This leaves some unanswered questions, however, like what metrics to use in the subsequent vector quantization process and how to systematically derive them. This paper aims at answering these questions. Metrics for this are presented and derived, and their use is exemplified on a number of different signal models by deriving closed-form expressions. The metrics essentially take into account in the vector quantization process that some parameters may have been estimated more accurately than others and that there may be dependencies between the estimation errors.

  3. Leader-Following Consensus for Linear and Lipschitz Nonlinear Multiagent Systems With Quantized Communication.

    PubMed

    Zhang, Zhiqiang; Zhang, Lin; Hao, Fei; Wang, Long

    2016-06-21

    This paper studies the leader-following consensus problem for linear and Lipschitz nonlinear multiagent systems where the communication topology has a directed spanning tree with the leader as the root. Due to the constraints of communication bandwidth and storage space, agents can only receive uniform quantized information. We first consider the leader-following consensus problem for linear multiagent systems via quantized control. Then, in order to reduce the communication load, an event-triggered control strategy is investigated to solve the consensus problem for linear multiagent systems with uniform quantization. It is shown that leader-following practical consensus can be achieved and no Zeno behavior occurs in this case. Furthermore, the proposed control strategies are extended to investigate the leader-following consensus problem for multiagent systems with Lipschitz nonlinear dynamics. Simulation results are given to demonstrate the feasibility and effectiveness of the theoretical analysis.

  4. Controllable quantized conductance for multilevel data storage applications using conductive bridge random access memory.

    PubMed

    Aga, Fekadu Gochole; Woo, Jiyong; Song, Jeonghwan; Park, Jaehyuk; Lim, Seokjae; Sung, Changhyuck; Hwang, Hyunsang

    2017-03-17

    In this paper, we investigate the quantized conduction behavior of conductive bridge random access memory (CBRAM) with varied materials and ramping rates. We report stable and reproducible quantized conductance states with integer multiples of fundamental conductance obtained by optimizing the voltage ramping rate and the Ti-diffusion barrier (DB) at the Cu/HfO2 interface. Owing to controlled diffusion of Cu ions by the Ti-DB and the optimized ramping rate, through which it was possible to control the time delay of Cu ion reduction, more than seven levels of discrete conductance states were clearly observed. Analytical modeling was performed to determine the rate-limiting step in filament growth based on an electrochemical redox reaction. Our understanding of the fundamental mechanisms of quantized conductance behaviors provide a promising future for the multi-bit CBRAM device.

  5. A multiple-source consecutive localization algorithm based on quantized measurement for wireless sensor network

    NASA Astrophysics Data System (ADS)

    Chu, Hao; Wu, Chengdong

    2016-10-01

    The source localization base on wireless sensor network has attracted considerable attention in recent years. However, most of the previous works focus on the accurate measurement or single source localization. The multiple-source localization has extensive application prospect in many fields. The quantized measurement is a low-cost and low energy consumption solution for wireless sensor network. In this paper, we present a novel multiple-source consecutive localization algorithm using the quantized measurement. We first introduce the multiple acoustic sources model and quantized measurement method. Then the maximum likelihood method is used to establish the localization function and the particle swarm optimization is employed to estimate the initial position of the source. Finally the Kalman filter is used to mitigate the random processing noise. Simulation results show that the proposed method owns high localization accuracy.

  6. Anomalous quantized conductance in a half-metal/topological superconductor/half-metal junction.

    PubMed

    Ren, C D; Chan, K S; Wang, J

    2014-04-30

    The composite topological superconductor (TS), which is made of one-dimensional spin-orbit coupled nanowire with proximity-induced superconductivity from an s-wave superconductor, is not a pure p-wave superconductor, but has a suppressed s-wave pairing. We calculate the conductance spectrum of a half-metal/TS/half-metal junction in order to probe the pairing states and the spin texture of the p-wave pairing. It is found that, besides the regular quantized conductance peak contributed by Majorana fermions (MFs) when the half-metal magnetization is parallel to the MF spin, an anomalous quantized conductance peak exists when they are almost antiparallel. The physical origin is the MF-assisted local Andreev reflection to condense s-wave pairings. The anomalous quantized conductance is also confirmed by the Kitaev's p-wave model with a nonzero s-wave pairing. The findings might provide a new way to find the MF.

  7. Controllable quantized conductance for multilevel data storage applications using conductive bridge random access memory

    NASA Astrophysics Data System (ADS)

    Gochole Aga, Fekadu; Woo, Jiyong; Song, Jeonghwan; Park, Jaehyuk; Lim, Seokjae; Sung, Changhyuck; Hwang, Hyunsang

    2017-03-01

    In this paper, we investigate the quantized conduction behavior of conductive bridge random access memory (CBRAM) with varied materials and ramping rates. We report stable and reproducible quantized conductance states with integer multiples of fundamental conductance obtained by optimizing the voltage ramping rate and the Ti-diffusion barrier (DB) at the Cu/HfO2 interface. Owing to controlled diffusion of Cu ions by the Ti-DB and the optimized ramping rate, through which it was possible to control the time delay of Cu ion reduction, more than seven levels of discrete conductance states were clearly observed. Analytical modeling was performed to determine the rate-limiting step in filament growth based on an electrochemical redox reaction. Our understanding of the fundamental mechanisms of quantized conductance behaviors provide a promising future for the multi-bit CBRAM device.

  8. Adaptive optimal quantization for 3D mesh representation in the spherical coordinate system

    NASA Astrophysics Data System (ADS)

    Ahn, Jeong-Hwan; Ho, Yo-Sung

    1998-12-01

    In recent days, applications using 3D models are increasing. Since the 3D model contains a huge amount of information, compression of the 3D model data is necessary for efficient storage or transmission. In this paper, we propose an adaptive encoding scheme to compress the geometry information of the 3D model. Using the Levinson-Durbin algorithm, the encoder first predicts vertex positions along a vertex spanning tree. After each prediction error is normalized, the prediction error vector of each vertex point is represented in the spherical coordinate system (r,(theta) ,(phi) ). Each r is then quantizes by an optimal uniform quantizer. A pair of each ((theta) ,(phi) ) is also successively encoded by partitioning the surface of the sphere according to the quantized value of r. The proposed scheme demonstrates improved coding efficiency by exploiting the statistical properties of r and ((theta) ,(phi) ).

  9. Effective wavelet-based compression method with adaptive quantization threshold and zerotree coding

    NASA Astrophysics Data System (ADS)

    Przelaskowski, Artur; Kazubek, Marian; Jamrogiewicz, Tomasz

    1997-10-01

    Efficient image compression technique especially for medical applications is presented. Dyadic wavelet decomposition by use of Antonini and Villasenor bank filters is followed by adaptive space-frequency quantization and zerotree-based entropy coding of wavelet coefficients. Threshold selection and uniform quantization is made on a base of spatial variance estimate built on the lowest frequency subband data set. Threshold value for each coefficient is evaluated as linear function of 9-order binary context. After quantization zerotree construction, pruning and arithmetic coding is applied for efficient lossless data coding. Presented compression method is less complex than the most effective EZW-based techniques but allows to achieve comparable compression efficiency. Specifically our method has similar to SPIHT efficiency in MR image compression, slightly better for CT image and significantly better in US image compression. Thus the compression efficiency of presented method is competitive with the best published algorithms in the literature across diverse classes of medical images.

  10. Model predictive control of non-linear systems over networks with data quantization and packet loss.

    PubMed

    Yu, Jimin; Nan, Liangsheng; Tang, Xiaoming; Wang, Ping

    2015-11-01

    This paper studies the approach of model predictive control (MPC) for the non-linear systems under networked environment where both data quantization and packet loss may occur. The non-linear controlled plant in the networked control system (NCS) is represented by a Tagaki-Sugeno (T-S) model. The sensed data and control signal are quantized in both links and described as sector bound uncertainties by applying sector bound approach. Then, the quantized data are transmitted in the communication networks and may suffer from the effect of packet losses, which are modeled as Bernoulli process. A fuzzy predictive controller which guarantees the stability of the closed-loop system is obtained by solving a set of linear matrix inequalities (LMIs). A numerical example is given to illustrate the effectiveness of the proposed method.

  11. Perturbative quantization of two-dimensional space-time noncommutative QED

    SciTech Connect

    Ghasemkhani, M.; Sadooghi, N.

    2010-02-15

    Using the method of perturbative quantization in the first order approximation, we quantize a nonlocal QED-like theory including fermions and bosons whose interactions are described by terms containing higher order space-time derivatives. As an example, the two-dimensional space-time noncommutative QED (NC-QED) is quantized perturbatively up to O(e{sup 2},{theta}{sup 3}), where e is the NC-QED coupling constant and {theta} is the noncommutativity parameter. The resulting modified Lagrangian density is shown to include terms consisting of first order time-derivative and higher order space-derivatives of the modified field variables that satisfy the ordinary equal-time commutation relations up to O(e{sup 2},{theta}{sup 3}). Using these commutation relations, the canonical current algebra of the modified theory is also derived.

  12. Video Meteor Fluxes

    NASA Technical Reports Server (NTRS)

    Campbell-Brown, M. D.; Braid, D.

    2011-01-01

    The flux of meteoroids, or number of meteoroids per unit area per unit time, is critical for calibrating models of meteoroid stream formation and for estimating the hazard to spacecraft from shower and sporadic meteors. Although observations of meteors in the millimetre to centimetre size range are common, flux measurements (particularly for sporadic meteors, which make up the majority of meteoroid flux) are less so. It is necessary to know the collecting area and collection time for a given set of observations, and to correct for observing biases and the sensitivity of the system. Previous measurements of sporadic fluxes are summarized in Figure 1; the values are given as a total number of meteoroids striking the earth in one year to a given limiting mass. The Gr n et al. (1985) flux model is included in the figure for reference. Fluxes for sporadic meteoroids impacting the Earth have been calculated for objects in the centimeter size range using Super-Schmidt observations (Hawkins & Upton, 1958); this study used about 300 meteors, and used only the physical area of overlap of the cameras at 90 km to calculate the flux, corrected for angular speed of meteors, since a large angular speed reduces the maximum brightness of the meteor on the film, and radiant elevation, which takes into account the geometric reduction in flux when the meteors are not perpendicular to the horizontal. They bring up corrections for both partial trails (which tends to increase the collecting area) and incomplete overlap at heights other than 90 km (which tends to decrease it) as effects that will affect the flux, but estimated that the two effects cancelled one another. Halliday et al. (1984) calculated the flux of meteorite-dropping fireballs with fragment masses greater than 50 g, over the physical area of sky accessible to the MORP fireball cameras, counting only observations in clear weather. In the micron size range, LDEF measurements of small craters on spacecraft have been used to

  13. Electron heat flux instability

    NASA Astrophysics Data System (ADS)

    Saeed, Sundas; Sarfraz, M.; Yoon, P. H.; Lazar, M.; Qureshi, M. N. S.

    2017-02-01

    The heat flux instability is an electromagnetic mode excited by a relative drift between the protons and two-component core-halo electrons. The most prominent application may be in association with the solar wind where drifting electron velocity distributions are observed. The heat flux instability is somewhat analogous to the electrostatic Buneman or ion-acoustic instability driven by the net drift between the protons and bulk electrons, except that the heat flux instability operates in magnetized plasmas and possesses transverse electromagnetic polarization. The heat flux instability is also distinct from the electrostatic counterpart in that it requires two electron species with relative drifts with each other. In the literature, the heat flux instability is often called the 'whistler' heat flux instability, but it is actually polarized in the opposite sense to the whistler wave. This paper elucidates all of these fundamental plasma physical properties associated with the heat flux instability starting from a simple model, and gradually building up more complexity towards a solar wind-like distribution functions. It is found that the essential properties of the instability are already present in the cold counter-streaming electron model, and that the instability is absent if the protons are ignored. These instability characteristics are highly reminiscent of the electron firehose instability driven by excessive parallel temperature anisotropy, propagating in parallel direction with respect to the ambient magnetic field, except that the free energy source for the heat flux instability resides in the effective parallel pressure provided by the counter-streaming electrons.

  14. Event-Driven Control for Networked Control Systems With Quantization and Markov Packet Losses.

    PubMed

    Yang, Hongjiu; Xu, Yang; Zhang, Jinhui

    2016-05-23

    In this paper, event-driven is used in a networked control system (NCS) which is subjected to the effect of quantization and packet losses. A discrete event-detector is used to monitor specific events in the NCS. Both an arbitrary region quantizer and Markov jump packet losses are also considered for the NCS. Based on zoom strategy and Lyapunov theory, a complete proof is given to guarantee mean square stability of the closed-loop system. Stabilization of the NCS is ensured by designing a feedback controller. Lastly, an inverted pendulum model is given to show the advantages and effectiveness of the proposed results.

  15. Properties of solitary ion acoustic waves in a quantized degenerate magnetoplasma with trapped electrons

    SciTech Connect

    Tsintsadze, N. L.; Tagviashvili, M. N.; Shah, H. A.; Qureshi, M. N. S.

    2015-02-15

    We have undertaken the investigation of ion acoustic solitary waves in both weakly and strongly quantized degenerate magnetoplasmas. It is seen that a singular point clearly demarcates the regions of weak and strong quantization due to the ambient magnetic field. The effect of the magnetic field is taken into account via the parameter  η{sub 0}=ℏω{sub ce}/ε{sub Fe} and the Mach number, and their effect on the formation of solitary structures is investigated in both cases and some results are presented graphically.

  16. Communication: Nucleation of quantized vortex rings in {sup 4}He nanodroplets

    SciTech Connect

    Mateo, David; Leal, Antonio; Barranco, Manuel; Pi, Martí; Hernando, Alberto; Cargnoni, Fausto; Mella, Massimo; Zhang, Xiaohang; Drabbels, Marcel

    2014-04-07

    Whereas most of the phenomena associated with superfluidity have been observed in finite-size helium systems, the nucleation of quantized vortices has proven elusive. Here we show using time-dependent density functional simulations that the solvation of a Ba{sup +} ion created by photoionization of neutral Ba at the surface of a {sup 4}He nanodroplet leads to the nucleation of a quantized ring vortex. The vortex is nucleated on a 10 ps timescale at the equator of a solid-like solvation structure that forms around the Ba{sup +} ion. The process is expected to be quite general and very efficient under standard experimental conditions.

  17. Dynamic stability of a doubly quantized vortex in a three-dimensional condensate

    NASA Astrophysics Data System (ADS)

    Lundh, Emil; Nilsen, Halvor M.

    2006-12-01

    The Bogoliubov equations are solved for a three-dimensional Bose-Einstein condensate containing a doubly quantized vortex, trapped in a harmonic potential. Complex frequencies, signifying dynamical instability, are found for certain ranges of parameter values. The existence of alternating windows of stability and instability, respectively, is explained qualitatively and quantitatively using variational calculus and direct numerical solutions. It is seen that the windows of stability disappear in the limit of a cigar-shaped condensate, which is consistent with recent experimental results on the lifetime of a doubly quantized vortex in that regime.

  18. Observation and suppression of quantized spin waves in microfabricated permalloy elements

    NASA Astrophysics Data System (ADS)

    Yamamoto, Tatsuya; Seki, Takeshi; Ono, Shimpei; Takanashi, Koki

    2014-01-01

    We report the observation and suppression of quantized spin wave modes in a microfabricated rectangular permalloy (Py) element. The Py element was located on a coplanar waveguide and was connected to a Cu wire. The quantized Damon-Eshbach spin wave and the perpendicular standing spin wave modes appeared in the resonance spectra for the Py elements. Those non-uniform magnetization dynamics were suppressed when the non-uniformity of the radio frequency magnetic field for the excitation was reduced by changing the design of the device structure.

  19. Quantization of Gaussian samples at very low SNR regime in continuous variable QKD applications

    NASA Astrophysics Data System (ADS)

    Daneshgaran, Fred; Mondin, Marina

    2016-09-01

    The main problem for information reconciliation in continuous variable Quantum Key Distribution (QKD) at low Signal to Noise Ratio (SNR) is quantization and assignment of labels to the samples of the Gaussian Random Variables (RVs) observed at Alice and Bob. Trouble is that most of the samples, assuming that the Gaussian variable is zero mean which is de-facto the case, tend to have small magnitudes and are easily disturbed by noise. Transmission over longer and longer distances increases the losses corresponding to a lower effective SNR exasperating the problem. This paper looks at the quantization problem of the Gaussian samples at very low SNR regime from an information theoretic point of view. We look at the problem of two bit per sample quantization of the Gaussian RVs at Alice and Bob and derive expressions for the mutual information between the bit strings as a result of this quantization. The quantization threshold for the Most Significant Bit (MSB) should be chosen based on the maximization of the mutual information between the quantized bit strings. Furthermore, while the LSB string at Alice and Bob are balanced in a sense that their entropy is close to maximum, this is not the case for the second most significant bit even under optimal threshold. We show that with two bit quantization at SNR of -3 dB we achieve 75.8% of maximal achievable mutual information between Alice and Bob, hence, as the number of quantization bits increases beyond 2-bits, the number of additional useful bits that can be extracted for secret key generation decreases rapidly. Furthermore, the error rates between the bit strings at Alice and Bob at the same significant bit level are rather high demanding very powerful error correcting codes. While our calculations and simulation shows that the mutual information between the LSB at Alice and Bob is 0.1044 bits, that at the MSB level is only 0.035 bits. Hence, it is only by looking at the bits jointly that we are able to achieve a

  20. New Quantization Technique in Semi-fragile Digital Watermarking for Image Authentication

    NASA Astrophysics Data System (ADS)

    Gantasala, Raghu; Prasad, Munaga V. N. K.

    The Internet has been widely used for the distribution, commercialization and transmission of digital files such as images, audio and video. The growth of network multimedia systems has magnified the need for image copyright protection. In this paper we proposed new method for semi-fragile digital watermarking scheme for image authentication. The watermark is embedded in the discrete wavelet domain of the image by quantizing the corresponding wavelet coefficients. Using the proposed method the image distortion is decreased compared to the other techniques and the quantization parameter is a small value. It also robust against attacks including EZW compression, JPEG compression and JPEG 2000 compression algorithms.

  1. Exact Quantization of Einstein-Rosen Waves Coupled to Massless Scalar Matter

    NASA Astrophysics Data System (ADS)

    Barbero G., J. Fernando; Garay, Iñaki; Villaseñor, Eduardo J.

    2005-07-01

    We show in this Letter that gravity coupled to a massless scalar field with full cylindrical symmetry can be exactly quantized by an extension of the techniques used in the quantization of Einstein-Rosen waves. This system provides a useful test bed to discuss a number of issues in quantum general relativity, such as the emergence of the classical metric, microcausality, and large quantum gravity effects. It may also provide an appropriate framework to study gravitational critical phenomena from a quantum point of view, issues related to black hole evaporation, and the consistent definition of test fields and particles in quantum gravity.

  2. Quantized hard-x-ray phase vortices nucleated by aberrated nanolenses

    SciTech Connect

    Pavlov, Konstantin M.; Paganin, David M.; Vine, David J.; Schmalz, Jelena A.; Suzuki, Yoshio; Uesugi, Kentaro; Takeuchi, Akihisa; Yagi, Naoto; Jakubek, Jan; Altissimo, Matteo; Clark, Jesse N.

    2011-01-15

    Quantized x-ray phase vortices, namely, screw-type topological defects in the wave fronts of a coherent monochromatic scalar x-ray wave field, may be spontaneously nucleated by x-ray lenses. Phase retrieval is used to reconstruct the phase and amplitude of the complex disturbance created by aberrated gold nanolenses illuminated with hard x rays. A nanoscale quantized x-ray vortex-antivortex dipole is observed, manifest both as a pair of opposite-helicity branch points in the Riemann sheets of the multivalued x-ray phase map of the complex x-ray field and in the vorticity of the associated Poynting vector field.

  3. Resolution-enhanced all-optical analog-to-digital converter employing cascade optical quantization operation.

    PubMed

    Kang, Zhe; Zhang, Xianting; Yuan, Jinhui; Sang, Xinzhu; Wu, Qiang; Farrell, Gerald; Yu, Chongxiu

    2014-09-08

    In this paper, a cascade optical quantization scheme is proposed to realize all-optical analog-to-digital converter with efficiently enhanced quantization resolution and achievable high analog bandwidth of larger than 20 GHz. Employing the cascade structure of an unbalanced Mach-zehnder modulator and a specially designed optical directional coupler, we predict the enhancement of number-of-bits can be up to 1.59-bit. Simulation results show that a 25 GHz RF signal is efficiently digitalized with the signal-to-noise ratio of 33.58 dB and effective-number-of-bits of 5.28-bit.

  4. Gold nanoparticles produced in situ mediate bioelectricity and hydrogen production in a microbial fuel cell by quantized capacitance charging.

    PubMed

    Kalathil, Shafeer; Lee, Jintae; Cho, Moo Hwan

    2013-02-01

    Oppan quantized style: By adding a gold precursor at its cathode, a microbial fuel cell (MFC) is demonstrated to form gold nanoparticles that can be used to simultaneously produce bioelectricity and hydrogen. By exploiting the quantized capacitance charging effect, the gold nanoparticles mediate the production of hydrogen without requiring an external power supply, while the MFC produces a stable power density.

  5. Choosing channel quantization levels and viterbi decoding for space diversity reception over the additive white Guassian noise channel

    NASA Technical Reports Server (NTRS)

    Kalson, S.

    1986-01-01

    Previous work in the area of choosing channel quantization levels for a additive white Gaussian noise channel composed of one receiver-demodulator is reviewed, and how this applies to the Deep Space Network composed of several receiver-demodulators (space diversity reception) is shown. Viterbi decoding for the resulting quantized channel is discussed.

  6. Energy spectra of the hyperbolic and second Poeschl-Teller like potentials solved by new exact quantization rule

    SciTech Connect

    Dong Shihai Gonzalez-Cisneros, A.

    2008-05-15

    A new exact quantization rule simplifies the calculation of the energy levels for the exactly solvable quantum system. In this work we calculate the energy levels of the Schroedinger equation with the hyperbolic potential by this quantization rule. The corresponding eigenfunction is also derived for completeness. The second Poeschl-Teller like potential case is also carried out.

  7. Directed flux motor

    NASA Technical Reports Server (NTRS)

    Wilson, Andrew (Inventor); Punnoose, Andrew (Inventor); Strausser, Katherine (Inventor); Parikh, Neil (Inventor)

    2011-01-01

    A directed flux motor described utilizes the directed magnetic flux of at least one magnet through ferrous material to drive different planetary gear sets to achieve capabilities in six actuated shafts that are grouped three to a side of the motor. The flux motor also utilizes an interwoven magnet configuration which reduces the overall size of the motor. The motor allows for simple changes to modify the torque to speed ratio of the gearing contained within the motor as well as simple configurations for any number of output shafts up to six. The changes allow for improved manufacturability and reliability within the design.

  8. Relativistic Landau-Aharonov-Casher quantization based on the Lorentz symmetry violation background

    NASA Astrophysics Data System (ADS)

    Bakke, K.; Belich, H.; Silva, E. O.

    2011-06-01

    Based on the discussions about the Aharonov-Casher effect in the Lorentz symmetry violation background, we show that the analogue of the relativistic Landau quantization in the Aharonov-Casher setup can be achieved in the Lorentz-symmetry violation background.

  9. Medical image compression based on vector quantization with variable block sizes in wavelet domain.

    PubMed

    Jiang, Huiyan; Ma, Zhiyuan; Hu, Yang; Yang, Benqiang; Zhang, Libo

    2012-01-01

    An optimized medical image compression algorithm based on wavelet transform and improved vector quantization is introduced. The goal of the proposed method is to maintain the diagnostic-related information of the medical image at a high compression ratio. Wavelet transformation was first applied to the image. For the lowest-frequency subband of wavelet coefficients, a lossless compression method was exploited; for each of the high-frequency subbands, an optimized vector quantization with variable block size was implemented. In the novel vector quantization method, local fractal dimension (LFD) was used to analyze the local complexity of each wavelet coefficients, subband. Then an optimal quadtree method was employed to partition each wavelet coefficients, subband into several sizes of subblocks. After that, a modified K-means approach which is based on energy function was used in the codebook training phase. At last, vector quantization coding was implemented in different types of sub-blocks. In order to verify the effectiveness of the proposed algorithm, JPEG, JPEG2000, and fractal coding approach were chosen as contrast algorithms. Experimental results show that the proposed method can improve the compression performance and can achieve a balance between the compression ratio and the image visual quality.

  10. Relativistic Landau-Aharonov-Casher quantization based on the Lorentz symmetry violation background

    SciTech Connect

    Bakke, K.; Belich, H.; Silva, E. O.

    2011-06-15

    Based on the discussions about the Aharonov-Casher effect in the Lorentz symmetry violation background, we show that the analogue of the relativistic Landau quantization in the Aharonov-Casher setup can be achieved in the Lorentz-symmetry violation background.

  11. On the magnetotransport of 3D systems in quantizing magnetic field

    NASA Astrophysics Data System (ADS)

    Cheremisin, M. V.

    2014-12-01

    The resistivity components of 3D electron gas placed in quantizing magnetic field are calculated taking into account the correction caused by combined action of the Peltier and Seebeck thermoelectric effects. The longitudinal, transverse and the Hall magnetoresistivities exhibit familiar 1/B-period oscillations being universal functions of magnetic field and temperature.

  12. Cascade Error Projection with Low Bit Weight Quantization for High Order Correlation Data

    NASA Technical Reports Server (NTRS)

    Duong, Tuan A.; Daud, Taher

    1998-01-01

    In this paper, we reinvestigate the solution for chaotic time series prediction problem using neural network approach. The nature of this problem is such that the data sequences are never repeated, but they are rather in chaotic region. However, these data sequences are correlated between past, present, and future data in high order. We use Cascade Error Projection (CEP) learning algorithm to capture the high order correlation between past and present data to predict a future data using limited weight quantization constraints. This will help to predict a future information that will provide us better estimation in time for intelligent control system. In our earlier work, it has been shown that CEP can sufficiently learn 5-8 bit parity problem with 4- or more bits, and color segmentation problem with 7- or more bits of weight quantization. In this paper, we demonstrate that chaotic time series can be learned and generalized well with as low as 4-bit weight quantization using round-off and truncation techniques. The results show that generalization feature will suffer less as more bit weight quantization is available and error surfaces with the round-off technique are more symmetric around zero than error surfaces with the truncation technique. This study suggests that CEP is an implementable learning technique for hardware consideration.

  13. Observation of Quantized Flow of a BEC in a Toroidal Trap

    NASA Astrophysics Data System (ADS)

    Ryu, Changhyun; Henderson, Kevin; Boshier, Malcolm

    2010-03-01

    Quantized circulation, one of the most important consequences of Bose-Einstein condensation, is fundamental to the understanding of superfluid phenomena. In a toroidal trap, Bose- condensed atoms should flow with a well defined winding number, which makes it an ideal system to demonstrate the quantized nature of circulation. We used a scanning laser beam to create a toroidal trap [1]. To rotate the atoms, a small potential barrier within the toroidal trap was rotated at a certain frequency and then the barrier was lowered to create a quantized flow state. The winding number of the flow was determined by the diameter of the central hole seen in a time of flight image of the condensate. The measurement showed diameters increasing stepwise with the stirring frequency. We observed flows with winding number up to 5. This is a clear demonstration of the quantization of the flow of atoms in a toroidal trap. Further study of critical velocity and metastability of flow of atoms will be very important in understanding the nature of superfluidity of atoms in a toroidal trap, especially in a 1D limit.[4pt] [1] K. Henderson, C. Ryu, C. MacCormick, and M. G. Boshier, New Journal of Physics 11, 043030 (2009).

  14. Investigating Students' Mental Models about the Quantization of Light, Energy, and Angular Momentum

    ERIC Educational Resources Information Center

    Didis, Nilüfer; Eryilmaz, Ali; Erkoç, Sakir

    2014-01-01

    This paper is the first part of a multiphase study examining students' mental models about the quantization of physical observables--light, energy, and angular momentum. Thirty-one second-year physics and physics education college students who were taking a modern physics course participated in the study. The qualitative analysis of data revealed…

  15. Quantization maps, algebra representation, and non-commutative Fourier transform for Lie groups

    SciTech Connect

    Guedes, Carlos; Oriti, Daniele; Raasakka, Matti

    2013-08-15

    The phase space given by the cotangent bundle of a Lie group appears in the context of several models for physical systems. A representation for the quantum system in terms of non-commutative functions on the (dual) Lie algebra, and a generalized notion of (non-commutative) Fourier transform, different from standard harmonic analysis, has been recently developed, and found several applications, especially in the quantum gravity literature. We show that this algebra representation can be defined on the sole basis of a quantization map of the classical Poisson algebra, and identify the conditions for its existence. In particular, the corresponding non-commutative star-product carried by this representation is obtained directly from the quantization map via deformation quantization. We then clarify under which conditions a unitary intertwiner between such algebra representation and the usual group representation can be constructed giving rise to the non-commutative plane waves and consequently, the non-commutative Fourier transform. The compact groups U(1) and SU(2) are considered for different choices of quantization maps, such as the symmetric and the Duflo map, and we exhibit the corresponding star-products, algebra representations, and non-commutative plane waves.

  16. Quantization and psychoacoustic model in audio coding in advanced audio coding

    NASA Astrophysics Data System (ADS)

    Brzuchalski, Grzegorz

    2011-10-01

    This paper presents complete optimized architecture of Advanced Audio Coder quantization with Huffman coding. After that psychoacoustic model theory is presented and few algorithms described: standard Two Loop Search, its modifications, Genetic, Just Noticeable Level Difference, Trellis-Based and its modification: Cascaded Trellis-Based Algorithm.

  17. Thermoelectric power of n-InSb in a transverse quantizing magnetic field

    SciTech Connect

    Gadzhialiev, M. M. Bashirov, R. R.; Pirmagomedov, Z. Sh.; Efendieva, T. N.; Mädge, H.; Filar, K.

    2015-07-15

    The thermoelectric power of electronic InSb is investigated in a transverse magnetic field up to 14 T at 80 K. It is established that the experimental results for a quantizing magnetic field agree with theoretical data obtained without accounting for spin splitting of the Landau levels.

  18. Quantized Brans-Dicke theory: Phase transition, strong coupling limit, and general relativity

    NASA Astrophysics Data System (ADS)

    Pal, Sridip

    2016-10-01

    We show that Friedmann-Robertson-Walker geometry with a flat spatial section in quantized (Wheeler deWitt quantization) Brans-Dicke (BD) theory reveals a rich phase structure owing to anomalous breaking of a classical symmetry, which maps the scale factor a ↦λ a for some constant λ . In the weak coupling (ω ) limit, the theory goes from a symmetry preserving phase to a broken phase. The existence of a phase boundary is an obstruction to another classical symmetry [see V. Faraoni, Phys. Rev. D 59, 084021 (1999).] (which relates two BD theories with different couplings) admitted by BD theory with scale invariant matter content, i.e., Tμμ=0 . Classically, this prohibits the BD theory from reducing to general relativity (GR) for scale invariant matter content. We show that a strong coupling limit of both BD and GR preserves the symmetry involving the scale factor. We also show that with scale invariant matter content (radiation, i.e., P =1/3 ρ ), the quantized BD theory does reduce to GR as ω →∞ , which is in sharp contrast to classical behavior. This is a first known illustration of a scenario where quantized BD theory provides an example of anomalous symmetry breaking and resulting binary phase structure. We make a conjecture regarding the strong coupling limit of the BD theory in a generic scenario.

  19. Medical Image Compression Based on Vector Quantization with Variable Block Sizes in Wavelet Domain

    PubMed Central

    Jiang, Huiyan; Ma, Zhiyuan; Hu, Yang; Yang, Benqiang; Zhang, Libo

    2012-01-01

    An optimized medical image compression algorithm based on wavelet transform and improved vector quantization is introduced. The goal of the proposed method is to maintain the diagnostic-related information of the medical image at a high compression ratio. Wavelet transformation was first applied to the image. For the lowest-frequency subband of wavelet coefficients, a lossless compression method was exploited; for each of the high-frequency subbands, an optimized vector quantization with variable block size was implemented. In the novel vector quantization method, local fractal dimension (LFD) was used to analyze the local complexity of each wavelet coefficients, subband. Then an optimal quadtree method was employed to partition each wavelet coefficients, subband into several sizes of subblocks. After that, a modified K-means approach which is based on energy function was used in the codebook training phase. At last, vector quantization coding was implemented in different types of sub-blocks. In order to verify the effectiveness of the proposed algorithm, JPEG, JPEG2000, and fractal coding approach were chosen as contrast algorithms. Experimental results show that the proposed method can improve the compression performance and can achieve a balance between the compression ratio and the image visual quality. PMID:23049544

  20. High fidelity adaptive vector quantization at very low bit rates for progressive transmission of radiographic images

    NASA Astrophysics Data System (ADS)

    Mitra, Sunanda; Yang, Shu Y.

    1999-01-01

    An adaptive vector quantizer (VQ) using a clustering technique known as adaptive fuzzy leader clustering (AFLC) that is similar in concept to deterministic annealing for VQ codebook design has been developed. This vector quantizer, AFLC-VQ, has been designed to vector quantize wavelet decomposed sub images with optimal bit allocation. The high- resolution sub images at each level have been statistically analyzed to conform to generalized Gaussian probability distributions by selecting the optimal number of filter taps. The adaptive characteristics of AFLC-VQ result from AFLC, an algorithm that uses self-organizing neural networks with fuzzy membership values of the input samples for upgrading the cluster centroids based on well known optimization criteria. By generating codebooks containing codewords of varying bits, AFLC-VQ is capable of compressing large color/monochrome medical images at extremely low bit rates (0.1 bpp and less) and yet yielding high fidelity reconstructed images. The quality of the reconstructed images formed by AFLC-VQ has been compared with JPEG and EZW, the standard and the well known wavelet based compression technique (using scalar quantization), respectively, in terms of statistical performance criteria as well as visual perception. AFLC-VQ exhibits much better performance than the above techniques. JPEG and EZW were chosen as comparative benchmarks since these have been used in radiographic image compression. The superior performance of AFLC-VQ over LBG-VQ has been reported in earlier papers.

  1. A constrained joint source/channel coder design and vector quantization of nonstationary sources

    NASA Technical Reports Server (NTRS)

    Sayood, Khalid; Chen, Y. C.; Nori, S.; Araj, A.

    1993-01-01

    The emergence of broadband ISDN as the network for the future brings with it the promise of integration of all proposed services in a flexible environment. In order to achieve this flexibility, asynchronous transfer mode (ATM) has been proposed as the transfer technique. During this period a study was conducted on the bridging of network transmission performance and video coding. The successful transmission of variable bit rate video over ATM networks relies on the interaction between the video coding algorithm and the ATM networks. Two aspects of networks that determine the efficiency of video transmission are the resource allocation algorithm and the congestion control algorithm. These are explained in this report. Vector quantization (VQ) is one of the more popular compression techniques to appear in the last twenty years. Numerous compression techniques, which incorporate VQ, have been proposed. While the LBG VQ provides excellent compression, there are also several drawbacks to the use of the LBG quantizers including search complexity and memory requirements, and a mismatch between the codebook and the inputs. The latter mainly stems from the fact that the VQ is generally designed for a specific rate and a specific class of inputs. In this work, an adaptive technique is proposed for vector quantization of images and video sequences. This technique is an extension of the recursively indexed scalar quantization (RISQ) algorithm.

  2. Sound Classification and Localization Based on Biology Hearing Models and Multiscale Vector Quantization

    DTIC Science & Technology

    1999-08-24

    Page 1 Center for Auditory and Acoustic Research Sound Classification and Localization Based on Biology Hearing Models and Multiscale Vector...Quantization John S. Baras Center for Auditory and Acoustic Research Electrical and Computer Engineering Department and the Institute for Systems... Acoustic Microsensors Workshop held on August 24 and 25, 1999 in Crystal City, VA., The original document contains color images. 14. ABSTRACT 15

  3. Uniform discretizations: A new approach for the quantization of totally constrained systems

    SciTech Connect

    Campiglia, Miguel; Gambini, Rodolfo; Di Bartolo, Cayetano; Pullin, Jorge

    2006-12-15

    We discuss in detail the uniform discretization approach to the quantization of totally constrained theories. This approach allows to construct the continuum theory of interest as a well defined, controlled, limit of well behaved discrete theories. We work out several finite dimensional examples that exhibit behaviors expected to be of importance in the quantization of gravity. We also work out the case of BF theory. At the time of quantization, one can take two points of view. The technique can be used to define, upon taking the continuum limit, the space of physical states of the continuum constrained theory of interest. In particular we show in models that it agrees with the group averaging procedure when the latter exists. The technique can also be used to compute, at the discrete level, conditional probabilities and the introduction of a relational time. Upon taking the continuum limit one can show that one reproduces results obtained by the use of evolving constants, and therefore recover all physical predictions of the continuum theory. This second point of view can also be used as a paradigm to deal with cases where the continuum limit does not exist. There one would have discrete theories that at least at certain scales reproduce the semiclassical properties of the theory of interest. In this way the approach can be viewed as a generalization of the Dirac quantization procedure that can handle situations where the latter fails.

  4. Cryogenic flux-concentrator

    NASA Technical Reports Server (NTRS)

    Bailey, B. M.; Brechna, H.; Hill, D. A.

    1969-01-01

    Flux concentrator has high primary to secondary coupling efficiency enabling it to produce high magnetic fields. The device provides versatility in pulse duration, magnetic field strengths and power sources.

  5. Charged Particle Flux Sensor

    NASA Technical Reports Server (NTRS)

    Gregory, D. A.; Stocks, C. D.

    1983-01-01

    Improved version of Faraday cup increases accuracy of measurements of flux density of charged particles incident along axis through collection aperture. Geometry of cone-and-sensing cup combination assures most particles are trapped.

  6. Acid soldering flux poisoning

    MedlinePlus

    The harmful substances in soldering fluxes are called hydrocarbons. They include: Ammonium chloride Rosin Hydrochloric acid Zinc ... Lee DC. Hydrocarbons. In: Marx JA, Hockberger RS, Walls RM, et ... Rosen's Emergency Medicine: Concepts and Clinical Practice . 8th ...

  7. GEWEX Radiative Flux Assessment

    Atmospheric Science Data Center

    2016-05-20

    ... climate components (atmosphere, ocean, land, cryosphere, biosphere). The GEWEX Radiative Flux Assessment (RFA) project will provide a ... Spatial Coverage: (-20.45, -2.43)(-62.87, -47.90) Full Product Page ...

  8. Angular momentum, g-value, and magnetic flux of gyration states

    SciTech Connect

    Arunasalam, V.

    1991-10-01

    Two of the world's leading (Nobel laureate) physicists disagree on the definition of the orbital angular momentum L of the Landau gyration states of a spinless charged particle in a uniform external magnetic field B = B i{sub Z}. According to Richard P. Feynman (and also Frank Wilczek) L = (rx{mu}v) = rx(p - qA/c), while Felix Bloch (and also Kerson Huang) defines it as L = rxp. We show here that Bloch's definition is the correct one since it satisfies the necessary and sufficient condition LxL = i{Dirac h} L, while Feynman's definition does not. However, as a consequence of the quantized Aharonov-Bohm magnetic flux, this canonical orbital angular momentum (surprisingly enough) takes half-odd-integral values with a zero-point gyration states of L{sub Z} = {Dirac h}/2. Further, since the diamagnetic and the paramagnetic contributions to the magnetic moment are interdependent, the g-value of these gyration states is two and not one, again a surprising result for a spinless case. The differences between the gauge invariance in classical and quantum mechanics, Onsager's suggestion that the flux quantization might be an intrinsic property of the electromagnetic field-charged particle interaction, the possibility that the experimentally measured fundamental unit of the flux quantum need not necessarily imply the existence of electron pairing'' of the Bardeen-Cooper-Schrieffer superconductivity theory, and the relationship to the Dirac's angular momentum quantization condition for the magnetic monopole-charged particle composites (i.e. Schwinger's dyons), are also briefly examined from a pedestrian viewpoint.

  9. Distributed Consensus Optimization in Multiagent Networks With Time-Varying Directed Topologies and Quantized Communication.

    PubMed

    Li, Huaqing; Huang, Chicheng; Chen, Guo; Liao, Xiaofeng; Huang, Tingwen

    2017-03-31

    This paper considers solving a class of optimization problems which are modeled as the sum of all agents' convex cost functions and each agent is only accessible to its individual function. Communication between agents in multiagent networks is assumed to be limited: each agent can only interact information with its neighbors by using time-varying communication channels with limited capacities. A technique which overcomes the limitation is to implement a quantization process to the interacted information. The quantized information is first encoded as a binary sequence at the side of each agent before sending. After the binary sequence is received by the neighboring agent, corresponding decoding scheme is utilized to resume the original information with a certain degree of error which is caused by the quantization process. With the availability of each agent's encoding states (associated with its out-channels) and decoding states (associated with its in-channels), we devise a set of distributed optimization algorithms that generate two iterative sequences, one of which converges to the optimal solution and the other of which reaches to the optimal value. We prove that if the parameters satisfy some mild conditions, the quantization errors are bounded and the consensus optimization can be achieved. How to minimize the number of quantization level of each connected communication channel in fixed networks is also explored thoroughly. It is found that, by properly choosing system parameters, one bit information exchange suffices to ensure consensus optimization. Finally, we present two numerical simulation experiments to illustrate the efficacy of the algorithms as well as to validate the theoretical findings.

  10. Minkowski 3-forms, flux string vacua, axion stability and naturalness

    NASA Astrophysics Data System (ADS)

    Bielleman, Sjoerd; Ibáñez, Luis E.; Valenzuela, Irene

    2015-12-01

    We discuss the role of Minkowski 3-forms in flux string vacua. In these vacua all internal closed string fluxes are in one to one correspondence with quantized Minkowski 4-forms. By performing a dimensional reduction of the D = 10 Type II supergravity actions we find that the 4-forms act as auxiliary fields of the Kahler and complex structure moduli in the effective action. We show that all the RR and NS axion dependence of the flux scalar potential appears through the said 4-forms. Gauge invariance of these forms then severely restricts the structure of the axion scalar potentials. Combined with duality symmetries it suggests that all perturbative corrections to the leading axion scalar potential V 0 should appear as an expansion in powers of V 0 itself. These facts could have an important effect e.g. on the inflaton models based on F-term axion monodromy. We also suggest that the involved multi-branched structure of string vacua provides for a new way to maintain interacting scalar masses stable against perturbative corrections.

  11. 3-cocycles, non-associative star-products and the magnetic paradigm of R-flux string vacua

    NASA Astrophysics Data System (ADS)

    Bakas, Ioannis; Lüst, Dieter

    2014-01-01

    We consider the geometric and non-geometric faces of closed string vacua arising by T-duality from principal torus bundles with constant H-flux and pay attention to their double phase space description encompassing all toroidal coordinates, momenta and their dual on equal footing. We construct a star-product algebra on functions in phase space that is manifestly duality invariant and substitutes for canonical quantization. The 3-cocycles of the Abelian group of translations in double phase space are seen to account for non-associativity of the star-product. We also provide alternative cohomological descriptions of non-associativity and draw analogies with the quantization of point-particles in the field of a Dirac monopole or other distributions of magnetic charge. The magnetic field analogue of the R-flux string model is provided by a constant uniform distribution of magnetic charge in space and non-associativity manifests as breaking of angular symmetry. The Poincaré vector comes to rescue angular symmetry as well as associativity and also allow for quantization in terms of operators and Hilbert space only in the case of charged particles moving in the field of a single magnetic monopole.

  12. All-optical demultiplexing of 16-QAM signals into QPSK tributaries using four-level optical phase quantizers.

    PubMed

    Bogris, Adonis

    2014-04-01

    The potential of four-level optical phase quantizers toward coherent processing of advanced modulation formats, such as 16-QAM, is proposed and numerically demonstrated. The work shows that phase quantization achieved in fiber-based phase-sensitive amplifiers can demultiplex 16-QAM into two quadrature phase shift keying (QPSK) signals, enabling subchannel switching. The numerical study highlights the impact of the quantizer transfer function on the performance of the demultiplexing process and numerically calculates the bit error rate for each QPSK tributary after the demultiplexing procedure.

  13. SAMOS Surface Fluxes

    NASA Astrophysics Data System (ADS)

    Smith, Shawn; Bourassa, Mark

    2014-05-01

    The development of a new surface flux dataset based on underway meteorological observations from research vessels will be presented. The research vessel data center at the Florida State University routinely acquires, quality controls, and distributes underway surface meteorological and oceanographic observations from over 30 oceanographic vessels. These activities are coordinated by the Shipboard Automated Meteorological and Oceanographic System (SAMOS) initiative in partnership with the Rolling Deck to Repository (R2R) project. Recently, the SAMOS data center has used these underway observations to produce bulk flux estimates for each vessel along individual cruise tracks. A description of this new flux product, along with the underlying data quality control procedures applied to SAMOS observations, will be provided. Research vessels provide underway observations at high-temporal frequency (1 min. sampling interval) that include navigational (position, course, heading, and speed), meteorological (air temperature, humidity, wind, surface pressure, radiation, rainfall), and oceanographic (surface sea temperature and salinity) samples. Vessels recruited to the SAMOS initiative collect a high concentration of data within the U.S. continental shelf and also frequently operate well outside routine shipping lanes, capturing observations in extreme ocean environments (Southern, Arctic, South Atlantic, and South Pacific oceans). These observations are atypical for their spatial and temporal sampling, making them very useful for many applications including validation of numerical models and satellite retrievals, as well as local assessments of natural variability. Individual SAMOS observations undergo routine automated quality control and select vessels receive detailed visual data quality inspection. The result is a quality-flagged data set that is ideal for calculating turbulent flux estimates. We will describe the bulk flux algorithms that have been applied to the

  14. Creation of quantized particles, gravitons, and scalar perturbations by the expanding universe

    NASA Astrophysics Data System (ADS)

    Parker, Leonard

    2015-04-01

    Quantum creation processes during the very rapid early expansion of the universe are believed to give rise to temperature anisotropies and polarization patterns in the CMB radiation. These have been observed by satellites such as COBE, WMAP, and PLANCK, and by bolometric instruments placed near the South Pole by the BICEP collaborations. The expected temperature anisotropies are well-confirmed. The B-mode polarization patterns in the CMB are currently under measurement jointly by the PLANCK and BICEP groups to determine the extent to which the B-modes can be attributed to gravitational waves from the creation of gravitons in the earliest universe. As the original discoverer of the quantum phenomenon of particle creation from vacuum by the expansion of the universe, I will explain how the discovery came about and how it relates to the current observations. The first system that I considered when I started my Ph.D. thesis in 1962 was the quantized minimally-coupled scalar field in an expanding FLRW (Friedmann, Lemaitré, Robertson, Walker) universe having a general continuous scale factor a(t) with continuous time derivatives. I also considered quantized fermion fields of spin-1/2 and the spin-1 massless photon field, as well as the quantized conformally-invariant field equations of arbitrary integer and half-integer spins that had been written down in the classical context for general gravitational metrics by Penrose. It was during 1962 that I proved that quanta of the minimally-coupled scalar field were created by the general expanding FLRW universe. This was relevant also to the creation of quantized perturbations of the gravitational field, since these perturbations satisfied linear field equations that could be quantized in the same way as the minimally-coupled scalar field equation. In fact, in 1946, E.M. Lifshitz had considered the classical Einstein gravitational field in FLRW expanding universes and had shown that the classical linearized Einstein field

  15. Protected Flux Pairing Qubit

    NASA Astrophysics Data System (ADS)

    Bell, Matthew; Zhang, Wenyuan; Ioffe, Lev; Gershenson, Michael

    2014-03-01

    We have studied the coherent flux tunneling in a qubit containing two submicron Josephson junctions shunted by a superinductor (a dissipationless inductor with an impedance much greater than the resistance quantum). The two low energy quantum states of this device, 0 and 1, are represented by even and odd number of fluxes in the loop, respectively. This device is dual to the charge pairing Josephson rhombi qubit. The spectrum of the device, studied by microwave spectroscopy, reflects the interference between coherent quantum phase slips in the two junctions (the Aharonov-Casher effect). The time domain measurements demonstrate the suppression of the qubit's energy relaxation in the protected regime, which illustrates the potential of this flux pairing device as a protected quantum circuit. Templeton Foundation, NSF, and ARO.

  16. Optical heat flux gauge

    DOEpatents

    Noel, Bruce W.; Borella, Henry M.; Cates, Michael R.; Turley, W. Dale; MaCarthur, Charles D.; Cala, Gregory C.

    1991-01-01

    A heat flux gauge comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable.

  17. Optical heat flux gauge

    DOEpatents

    Noel, Bruce W.; Borella, Henry M.; Cates, Michael R.; Turley, W. Dale; MacArthur, Charles D.; Cala, Gregory C.

    1991-01-01

    A heat flux gauge comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator wherein each thermographic layer comprises a plurality of respective thermographic phosphors. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable.

  18. Optical heat flux gauge

    DOEpatents

    Noel, Bruce W.; Borella, Henry M.; Cates, Michael R.; Turley, W. Dale; MacArthur, Charles D.; Cala, Gregory C.

    1991-01-01

    A heat flux gauge comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator, wherein each thermographic layer comprises a plurality of respective thermographic sensors in a juxtaposed relationship with respect to each other. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable.

  19. Optical heat flux gauge

    SciTech Connect

    Noel, B.W.; Borella, H.M.; Cates, M.R.; Turley, W.D.; MacArthur, C.D.; Cala, G.C.

    1991-06-25

    A heat flux gauge is described comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator wherein each thermographic layer comprises respective thermographic phosphors. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable.

  20. Optical heat flux gauge

    SciTech Connect

    Noel, B.W.; Borella, H.M.; Cates, M.R.; Turley, W.D.; MacArthur, C.D.; Cala, G.C.

    1989-06-07

    A heat flux gauge comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable. 9 figs.

  1. Optical heat flux gauge

    SciTech Connect

    Noel, B.W.; Borella, H.M.; Cates, M.R.; Turley, W.D.; MaCarthur, C.D.; Cala, G.C.

    1991-09-03

    A heat flux gauge is described comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable. 9 figures.

  2. Finite amplitude nonlinear drift waves in a spatially inhomogeneous degenerate plasma with Landau quantization and electron temperature corrections

    NASA Astrophysics Data System (ADS)

    Shaukat, Muzzamal I.; Masood, W.; Shah, H. A.; Iqbal, M. J.; Mirza, Arshad M.

    2016-10-01

    In the present investigation, linear and nonlinear electrostatic drift waves in the presence of trapped electrons with quantizing magnetic field and finite electron temperature effects in dense plasmas have been studied. The linear dispersion relation of the ion drift wave has been derived and it has been found that the Landau quantization and finite temperature effects significantly alter the linear propagation characteristics of the wave under consideration. Employing the Sagdeev potential approach, the formation of finite amplitude drift solitary structures has been investigated in the presence of a quantizing magnetic field for both fully and partially degenerate plasmas. Both compressive and rarefactive drift solitary structures have been obtained for different values of quantizing magnetic field and finite electron temperature effects. The theoretical results obtained have been analyzed numerically for the parameters typically found in white dwarfs.

  3. Realization of optical bistability and multistability in Landau-quantized graphene

    NASA Astrophysics Data System (ADS)

    Hamedi, H. R.; Asadpour, S. H.

    2015-05-01

    The solution of input-output curves in an optical ring cavity containing Landau-quantized graphene is theoretically investigated taking the advantage of density-matrix method. It is found that under the action of strong magnetic and infrared laser fields, one can efficiently reduce the threshold of the onset of optical bistability (OB) at resonance condition. At non-resonance condition, we observed that graphene metamaterial can support the possibility to obtain optical multistability (OM), which is more practical in all-optical switching or coding elements. We present an analytical approach to elucidate our simulations. Due to very high infrared optical nonlinearity of graphene stemming from very unique and unusual properties of quantized Landau levels near the Dirac point, such controllability on OB and OM may provide new technological possibilities in solid state quantum information science.

  4. The Analysis of Lagrangian and Hamiltonian Properties of the Classical Relativistic Electrodynamics Models and Their Quantization

    NASA Astrophysics Data System (ADS)

    Bogolubov, Nikolai N.; Prykarpatsky, Anatoliy K.

    2010-05-01

    The Lagrangian and Hamiltonian properties of classical electrodynamics models and their associated Dirac quantizations are studied. Using the vacuum field theory approach developed in (Prykarpatsky et al. Theor. Math. Phys. 160(2): 1079-1095, 2009 and The field structure of a vacuum, Maxwell equations and relativity theory aspects. Preprint ICTP) consistent canonical Hamiltonian reformulations of some alternative classical electrodynamics models are devised, and these formulations include the Lorentz condition in a natural way. The Dirac quantization procedure corresponding to the Hamiltonian formulations is developed. The crucial importance of the rest reference systems, with respect to which the dynamics of charged point particles is framed, is explained and emphasized. A concise expression for the Lorentz force is derived by suitably taking into account the duality of electromagnetic field and charged particle interactions. Finally, a physical explanation of the vacuum field medium and its relativistic properties fitting the mathematical framework developed is formulated and discussed.

  5. On Quantization in Light-cone Variables Compatible with Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Altaisky, M. V.; Kaputkina, N. E.

    2016-06-01

    Canonical quantization of quantum field theory models is inherently related to the Lorentz invariant partition of classical fields into the positive and the negative frequency parts u( x) = u +( x) + u -( x), performed with the help of Fourier transform in Minkowski space. That is the commutation relations are being established between nonlocalized solutions of field equations. At the same time the construction of divergence free physical theory requires the separation of the contributions of different space-time scales. In present paper, using the light-cone variables, we propose a quantization procedure which is compatible with separation of scales using continuous wavelet transform, as described in our previous paper (Altaisky, M.V., Kaputkina, N.E.: Phys. Rev. D 88, 025015 2013).

  6. Effects of quantized scalar fields in cosmological spacetimes with big rip singularities

    SciTech Connect

    Bates, Jason D.; Anderson, Paul R.

    2010-07-15

    Effects of quantized free scalar fields in cosmological spacetimes with big rip singularities are investigated. The energy densities for these fields are computed at late times when the expansion is very rapid. For the massless minimally coupled field it is shown that an attractor state exists in the sense that, for a large class of states, the energy density of the field asymptotically approaches the energy density it would have if it was in the attractor state. Results of numerical computations of the energy density for the massless minimally coupled field and for massive fields with minimal and conformal couplings to the scalar curvature are presented. For the massive fields the energy density is seen to always asymptotically approach that of the corresponding massless field. The question of whether the energy densities of quantized fields can be large enough for backreaction effects to remove the big rip singularity is addressed.

  7. The study of relatively low density stellar matter in presence of strong quantizing magnetic field

    SciTech Connect

    Nag, Nandini; Ghosh, Sutapa; Chakrabarty, Somenath

    2009-03-15

    The effect of strong quantizing magnetic field on the equation of state of matter at the outer crust region of magnetars is studied. The density of such matter is low enough compared to the matter density at the inner crust or outer core region. Based on the relativistic version of semi-classical Thomas-Fermi-Dirac model in presence of strong quantizing magnetic field a formalism is developed to investigate this specific problem. The equation of state of such low density crustal matter is obtained by replacing the compressed atoms/ions by Wigner-Seitz cells with nonuniform electron density. The results are compared with other possible scenarios. The appearance of Thomas-Fermi induced electric charge within each Wigner-Seitz cell is also discussed.

  8. Nonlinear density excitations in electron-positron-ion plasmas with trapping in a quantizing magnetic field

    NASA Astrophysics Data System (ADS)

    Iqbal, M. J.; Masood, W.; Shah, H. A.; Tsintsadze, N. L.

    2017-01-01

    In the present work, we have investigated the effect of trapping as a microscopic phenomenon on the formation of solitary structures in the presence of a quantizing magnetic field in an electron-positron-ion (e-p-i) plasma having degenerate electrons and positrons, whereas ions are taken to be classical and cold. We have found that positron concentration, quantizing magnetic field, and finite electron temperature effects not only affect the linear dispersion characteristics of the electrostatic waves under consideration but also have a significant bearing on the propagation of solitary structures in the nonlinear regime. Importantly, the system under consideration has been found to allow the formation of compressive solitary structures only. The work presented here may be beneficial to understand the propagation of nonlinear electrostatic structures in dense astrophysical environments and in intense-laser plasma interactions.

  9. SU(2) particle sigma model: the role of contact symmetries in global quantization

    NASA Astrophysics Data System (ADS)

    Aldaya, V.; Guerrero, J.; López-Ruiz, F. F.; Cossío, F.

    2016-12-01

    In this paper we achieve the quantization of a particle moving on the SU(2) group manifold, that is, the three-dimensional sphere S 3, by using group-theoretical methods. For this purpose, a fundamental role is played by contact symmetries, i.e., symmetries that leave the Poincaré-Cartan form semi-invariant at the classical level, although not necessarily the Lagrangian. Special attention is paid to the role played by the basic quantum commutators, which depart from the canonical, Heisenberg-Weyl ones, as well as the relationship between the integration measure in the Hilbert space of the system and the non-trivial topology of the configuration space. Also, the quantization on momentum space is briefly outlined.

  10. Weighted merge context for clustering and quantizing spatial data with self-organizing neural networks

    NASA Astrophysics Data System (ADS)

    Hagenauer, Julian

    2016-01-01

    This publication presents a generalization of merge context, named weighted merge context (WMC), which is particularly useful for clustering and quantizing spatial data with self-organizing neural networks. In contrast to merge context, WMC does not depend on a predefined (sequential) ordering of the data; distance is evaluated by recursively taking neighboring observations into account. For this purpose, WMC utilizes a weight matrix that describes the neighborhood relationships between observations. This property distinguishes WMC from existing approaches like contextual neural gas (NG) or the GeoSOM, which force spatially close observations to be represented by similar prototypes, but neglected the similarity of the observations' neighborhoods. For practical studies, WMC is combined with the NG algorithm to obtain weighted merging NG (WMNG). The properties of WMNG and its usefulness for clustering and quantizing spatial data are investigated on two different case studies which utilize an simulated binary grid and a real-world continuous data set.

  11. Quantization of 2d Hořava gravity: Nonprojectable case

    NASA Astrophysics Data System (ADS)

    Li, Bao-Fei; Satheeshkumar, V. H.; Wang, Anzhong

    2016-03-01

    The quantization of a two-dimensional Hořava theory of gravity without the projectability condition is considered. Our study of the Hamiltonian structure of the theory shows that there are two first-class and two second-class constraints. Then, following Dirac, we quantize the theory by first requiring that the two second-class constraints be strongly equal to zero. This is carried out by replacing the Poisson bracket by the Dirac bracket. The two first-class constraints give rise to the Wheeler-DeWitt equations, which yield uniquely a plane wave solution for the wave function. We also study the classical solutions of the theory and find that the characteristics of classical spacetimes are encoded solely in the phase of the plane wave solution in terms of the extrinsic curvature of the foliations t =constant , where t denotes the globally defined time of the theory.

  12. Quantized topological magnetoelectric effect of the zero-plateau quantum anomalous Hall state

    DOE PAGES

    Wang, Jing; Lian, Biao; Qi, Xiao-Liang; ...

    2015-08-10

    The topological magnetoelectric effect in a three-dimensional topological insulator is a novel phenomenon, where an electric field induces a magnetic field in the same direction, with a universal coefficient of proportionality quantized in units of $e²/2h$. Here in this paper, we propose that the topological magnetoelectric effect can be realized in the zero-plateau quantum anomalous Hall state of magnetic topological insulators or a ferromagnet-topological insulator heterostructure. The finite-size effect is also studied numerically, where the magnetoelectric coefficient is shown to converge to a quantized value when the thickness of the topological insulator film increases. We further propose a device setupmore » to eliminate nontopological contributions from the side surface.« less

  13. Canonical formulation of Poincaré BFCG theory and its quantization

    NASA Astrophysics Data System (ADS)

    Miković, Aleksandar; Oliveira, Miguel A.

    2015-05-01

    We find the canonical formulation of the Poincaré BFCG theory in terms of the spatial 2-connection and its canonically conjugate momenta. We show that the Poincaré BFCG action is dynamically equivalent to the BF action for the Poincaré group and we find the canonical transformation relating the two. We study the canonical quantization of the Poincaré BFCG theory by passing to the Poincaré-connection basis. The quantization in the 2-connection basis can be then achieved by performing a Fourier transform. We also briefly discuss how to approach the problem of constructing a basis of spin-foam states, which are the categorical generalization of the spin-network states from loop quantum gravity.

  14. Phonon dispersion and quantization tuning of strained carbon nanotubes for flexible electronics

    SciTech Connect

    Gautreau, Pierre; Chu, Yanbiao; Basaran, Cemal; Ragab, Tarek

    2014-06-28

    Graphene and carbon nanotubes are materials with large potentials for applications in flexible electronics. Such devices require a high level of sustainable strain and an understanding of the materials electrical properties under strain. Using supercell theory in conjunction with a comprehensive molecular mechanics model, the full band phonon dispersion of carbon nanotubes under uniaxial strain is studied. The results suggest an overall phonon softening and open up the possibility of phonon quantization tuning with uniaxial strain. The change in phonon quantization and the resulting increase in electron-phonon and phonon-phonon scattering rates offer further explanation and theoretical basis to the experimental observation of electrical properties degradation for carbon nanotubes under uniaxial strain.

  15. Quantized Faraday and Kerr rotation and axion electrodynamics of a 3D topological insulator.

    PubMed

    Wu, Liang; Salehi, M; Koirala, N; Moon, J; Oh, S; Armitage, N P

    2016-12-02

    Topological insulators have been proposed to be best characterized as bulk magnetoelectric materials that show response functions quantized in terms of fundamental physical constants. Here, we lower the chemical potential of three-dimensional (3D) Bi2Se3 films to ~30 meV above the Dirac point and probe their low-energy electrodynamic response in the presence of magnetic fields with high-precision time-domain terahertz polarimetry. For fields higher than 5 tesla, we observed quantized Faraday and Kerr rotations, whereas the dc transport is still semiclassical. A nontrivial Berry's phase offset to these values gives evidence for axion electrodynamics and the topological magnetoelectric effect. The time structure used in these measurements allows a direct measure of the fine-structure constant based on a topological invariant of a solid-state system.

  16. On the relation between operator constraint, master constraint, reduced phase space and path integral quantization

    NASA Astrophysics Data System (ADS)

    Han, Muxin; Thiemann, T.

    2010-11-01

    Path integral formulations for gauge theories must start from the canonical formulation in order to obtain the correct measure. A possible avenue to derive it is to start from the reduced phase space formulation. In this paper we review this rather involved procedure in full generality. Moreover, we demonstrate that the reduced phase space path integral formulation formally agrees with the Dirac's operator constraint quantization and, more specifically, with the master constraint quantization for first-class constraints. For first-class constraints with nontrivial structure functions the equivalence can only be established by passing to Abelian(ized) constraints which is always possible locally in phase space. Generically, the correct configuration space path integral measure deviates from the exponential of the Lagrangian action. The corrections are especially severe if the theory suffers from second-class secondary constraints. In a companion paper we compute these corrections for the Holst and Plebanski formulations of GR on which current spin foam models are based.

  17. Blackbox quantization and numerical simulation of a concentric transmon superconducting qubit

    NASA Astrophysics Data System (ADS)

    Najafi-Yazdi, Alireza; Lalumiere, Kevin; Braumüller, J.; Weides, Martin

    We present a blackbox quantization and numerical study of a planar concentric transmon superconducting qubit. This architecture has been recently proposed and experimentally investigated by Braumüller et al. The device involves a gradiometric SQUID loop for a fast tuning of the qubit transition frequency. This allows for full tomographic control of the quantum circuit. A fully automatized numerical package for quantization of superconducting qubits is developed and used for the study of the concentric transmon. A systematic characterization of loss channels such as Purcell decay and radiative losses are also studied. Numerical results are in close agreement with experimental data and suggest the platform to be a useful tool in the design of superconducting circuits.

  18. Quantized topological magnetoelectric effect of the zero-plateau quantum anomalous Hall state

    SciTech Connect

    Wang, Jing; Lian, Biao; Qi, Xiao-Liang; Zhang, Shou-Cheng

    2015-08-10

    The topological magnetoelectric effect in a three-dimensional topological insulator is a novel phenomenon, where an electric field induces a magnetic field in the same direction, with a universal coefficient of proportionality quantized in units of $e²/2h$. Here in this paper, we propose that the topological magnetoelectric effect can be realized in the zero-plateau quantum anomalous Hall state of magnetic topological insulators or a ferromagnet-topological insulator heterostructure. The finite-size effect is also studied numerically, where the magnetoelectric coefficient is shown to converge to a quantized value when the thickness of the topological insulator film increases. We further propose a device setup to eliminate nontopological contributions from the side surface.

  19. Realization of optical bistability and multistability in Landau-quantized graphene

    SciTech Connect

    Hamedi, H. R.; Asadpour, S. H.

    2015-05-14

    The solution of input-output curves in an optical ring cavity containing Landau-quantized graphene is theoretically investigated taking the advantage of density-matrix method. It is found that under the action of strong magnetic and infrared laser fields, one can efficiently reduce the threshold of the onset of optical bistability (OB) at resonance condition. At non-resonance condition, we observed that graphene metamaterial can support the possibility to obtain optical multistability (OM), which is more practical in all-optical switching or coding elements. We present an analytical approach to elucidate our simulations. Due to very high infrared optical nonlinearity of graphene stemming from very unique and unusual properties of quantized Landau levels near the Dirac point, such controllability on OB and OM may provide new technological possibilities in solid state quantum information science.

  20. Surface photocurrent in an electron gas over liquid He subjected to a quantizing magnetic field

    NASA Astrophysics Data System (ADS)

    Magarill, L. I.; Entin, M. V.

    2015-06-01

    The photogalvanic effect is studied in electron gas over the liquid He surface with the presence of quantizing magnetic field. The gas is affected by the weak alternating microwave electric field tilted towards the surface normal. Both linear and circular photogalvanic effects are studied. The current occurs via indirect phototransition with the participation of ripplons emission or absorption. The photogalvanic tensor has strong resonances at the microwave frequency ω approaching to the frequencies of transitions between size-quantized subbands. The resonances are symmetric or antisymmetric, depending on a tensor component. Other resonances appear at ω ≈ nω c , where n being integer and ω c is the cyclotron frequency. It is found that the latter resonances split to two peaks connected with emission or absorption of ripplons. The calculated photogalvanic coefficients are in accord with the experimental observed values.

  1. Accelerating Families of Fuzzy K-Means Algorithms for Vector Quantization Codebook Design

    PubMed Central

    Mata, Edson; Bandeira, Silvio; de Mattos Neto, Paulo; Lopes, Waslon; Madeiro, Francisco

    2016-01-01

    The performance of signal processing systems based on vector quantization depends on codebook design. In the image compression scenario, the quality of the reconstructed images depends on the codebooks used. In this paper, alternatives are proposed for accelerating families of fuzzy K-means algorithms for codebook design. The acceleration is obtained by reducing the number of iterations of the algorithms and applying efficient nearest neighbor search techniques. Simulation results concerning image vector quantization have shown that the acceleration obtained so far does not decrease the quality of the reconstructed images. Codebook design time savings up to about 40% are obtained by the accelerated versions with respect to the original versions of the algorithms. PMID:27886061

  2. Quantized Faraday and Kerr rotation and axion electrodynamics of a 3D topological insulator

    NASA Astrophysics Data System (ADS)

    Wu, Liang; Salehi, M.; Koirala, N.; Moon, J.; Oh, S.; Armitage, N. P.

    2016-12-01

    Topological insulators have been proposed to be best characterized as bulk magnetoelectric materials that show response functions quantized in terms of fundamental physical constants. Here, we lower the chemical potential of three-dimensional (3D) Bi2Se3 films to ~30 meV above the Dirac point and probe their low-energy electrodynamic response in the presence of magnetic fields with high-precision time-domain terahertz polarimetry. For fields higher than 5 tesla, we observed quantized Faraday and Kerr rotations, whereas the dc transport is still semiclassical. A nontrivial Berry’s phase offset to these values gives evidence for axion electrodynamics and the topological magnetoelectric effect. The time structure used in these measurements allows a direct measure of the fine-structure constant based on a topological invariant of a solid-state system.

  3. Testing energy quantization at the level of 100 kHz by neutron crystal diffraction

    NASA Astrophysics Data System (ADS)

    Summhammer, J.

    1996-10-01

    For the study of energy quantization in low-frequency potentials and the accompanying quantum effects we analyze a silicon double-crystal arrangement exploiting dynamical diffraction of neutrons to achieve the required extremely high energy resolution. The first crystal prepares a minimum-uncertainty beam that passes a potential region whose influence on the neutron energy is analyzed by the second crystal. With realistic parameters, changes of neutron energy below 0.5 neV can be resolved. This permits a test of quantized energy transfer in periodically time-dependent potentials of a frequency below 100 kHz. We also discuss three specific examples how to observe the quantum phenomena arising from the macroscopic wave packets thereby generated.

  4. The behavior of quantization spectra as a function of signal-to-noise ratio

    NASA Technical Reports Server (NTRS)

    Flanagan, M. J.

    1991-01-01

    An expression for the spectrum of quantization error in a discrete-time system whose input is a sinusoid plus white Gaussian noise is derived. This quantization spectrum consists of two components: a white-noise floor and spurious harmonics. The dithering effect of the input Gaussian noise in both components of the spectrum is considered. Quantitative results in a discrete Fourier transform (DFT) example show the behavior of spurious harmonics as a function of the signal-to-noise ratio (SNR). These results have strong implications for digital reception and signal analysis systems. At low SNRs, spurious harmonics decay exponentially on a log-log scale, and the resulting spectrum is white. As the SNR increases, the spurious harmonics figure prominently in the output spectrum. A useful expression is given that roughly bounds the magnitude of a spurious harmonic as a function of the SNR.

  5. Advanced Surface Flux Parameterization

    DTIC Science & Technology

    2001-09-30

    within PE 0602435N are BE-35-2-18, for the Mesoscale Modeling of the Atmos- phere and Aerosols, BE-35-2-19, and for the Exploratory Data Assimilation ... Methods . Related project at NPS is N0001401WR20242 for Evaluating Surface Flux and Boundary Layer Parameterizations in Mesoscale Models Using

  6. Flux Tube Model

    NASA Astrophysics Data System (ADS)

    Steiner, O.

    2011-05-01

    This Fortran code computes magnetohydrostatic flux tubes and sheets according to the method of Steiner, Pneuman, & Stenflo (1986) A&A 170, 126-137. The code has many parameters contained in one input file that are easily modified. Extensive documentation is provided in README files.

  7. Muon and neutrino fluxes

    NASA Technical Reports Server (NTRS)

    Edwards, P. G.; Protheroe, R. J.

    1985-01-01

    The result of a new calculation of the atmospheric muon and neutrino fluxes and the energy spectrum of muon-neutrinos produced in individual extensive air showers (EAS) initiated by proton and gamma-ray primaries is reported. Also explained is the possibility of detecting atmospheric nu sub mu's due to gamma-rays from these sources.

  8. Carbon Flux Explorers

    ScienceCinema

    Bishop, Jim

    2016-10-12

    Jim Bishop, senior scientist at Berkeley Lab and professor at UC Berkeley, is leading a project to deploy robotic floats that provide data on how microorganisms sequester carbon in the ocean. He recently led a research team on a 10-day voyage, funded by the National Science Foundation, to put the Carbon Flux Explorers to the test.

  9. Carbon Flux Explorers

    SciTech Connect

    Bishop, Jim

    2016-09-09

    Jim Bishop, senior scientist at Berkeley Lab and professor at UC Berkeley, is leading a project to deploy robotic floats that provide data on how microorganisms sequester carbon in the ocean. He recently led a research team on a 10-day voyage, funded by the National Science Foundation, to put the Carbon Flux Explorers to the test.

  10. Radiative Flux Analysis

    DOE Data Explorer

    Long, Chuck [NOAA

    2008-05-14

    The Radiative Flux Analysis is a technique for using surface broadband radiation measurements for detecting periods of clear (i.e. cloudless) skies, and using the detected clear-sky data to fit functions which are then used to produce continuous clear-sky estimates. The clear-sky estimates and measurements are then used in various ways to infer cloud macrophysical properties.

  11. Particle localization, spinor two-valuedness, and Fermi quantization of tensor systems

    NASA Technical Reports Server (NTRS)

    Reifler, Frank; Morris, Randall

    1994-01-01

    Recent studies of particle localization shows that square-integrable positive energy bispinor fields in a Minkowski space-time cannot be physically distinguished from constrained tensor fields. In this paper we generalize this result by characterizing all classical tensor systems, which admit Fermi quantization, as those having unitary Lie-Poisson brackets. Examples include Euler's tensor equation for a rigid body and Dirac's equation in tensor form.

  12. A 1 GHz sample rate, 256-channel, 1-bit quantization, CMOS, digital correlator chip

    NASA Technical Reports Server (NTRS)

    Timoc, C.; Tran, T.; Wongso, J.

    1992-01-01

    This paper describes the development of a digital correlator chip with the following features: 1 Giga-sample/second; 256 channels; 1-bit quantization; 32-bit counters providing up to 4 seconds integration time at 1 GHz; and very low power dissipation per channel. The improvements in the performance-to-cost ratio of the digital correlator chip are achieved with a combination of systolic architecture, novel pipelined differential logic circuits, and standard 1.0 micron CMOS process.

  13. Frozen State in Quantized Chiral Soliton with - and Six-Derivative Terms

    NASA Astrophysics Data System (ADS)

    Sawada, Shoji; Yang, Keyan

    By the use of a family of trial functions for the profile function of the hedgehog ansatz it is shown that the frozen states also appear in the modified Skyrme model with six-derivative term. However, for a reasonable choice of parameters of the Skyrme term and of the six derivatives term, the quantized chiral solitons with I=J=1/2 and 3/2 do not lie on the frozen region.

  14. Convergence of a PI Coordination Protocol in Networks with Switching Topology and Quantized Measurements

    DTIC Science & Technology

    2012-12-10

    Triangle Park, NC 27709-2211 15. SUBJECT TERMS Switching topology , quantized system , cooperative control, multi-agent systems Ronald Choe, Enric Xargay...connected at all times . Similar type of conditions can be found in [11] and [12]. III. DISTRIBUTED CONSENSUS PROTOCOL A. Addition of Virtual Agents The...pp. 1380–1390, August 2007. [12] Z. Lin, B. A. Francis, and M. Maggiore, “State agreement for continuous- time coupled nonlinear systems ,” SIAM

  15. Application of a VLSI vector quantization processor to real-time speech coding

    NASA Technical Reports Server (NTRS)

    Davidson, G.; Gersho, A.

    1986-01-01

    Attention is given to a working vector quantization processor for speech coding that is based on a first-generation VLSI chip which efficiently performs the pattern-matching operation needed for the codebook search process (CPS). Using this chip, the CPS architecture has been successfully incorporated into a compact, single-board Vector PCM implementation operating at 7-18 kbits/sec. A real time Adaptive Vector Predictive Coder system using the CPS has also been implemented.

  16. Quantum paradoxes, entanglement and their explanation on the basis of quantization of fields

    NASA Astrophysics Data System (ADS)

    Melkikh, A. V.

    2017-01-01

    Quantum entanglement is discussed as a consequence of the quantization of fields. The inclusion of quantum fields self-consistently explains some quantum paradoxes (EPR and Hardy’s paradox). The definition of entanglement was introduced, which depends on the maximum energy of the interaction of particles. The destruction of entanglement is caused by the creation and annihilation of particles. On this basis, an algorithm for quantum particle evolution was formulated.

  17. Noise suppression in three-level atomic system driven by quantized field

    NASA Astrophysics Data System (ADS)

    Gelman, A.; Mironov, V.

    2010-02-01

    Numerically by the Monte-Carlo wave function (MCWF) method and analytically by the Heisenberg-Langevin method the interaction of three-level atom with quantized electromagnetic field is investigated in the conditions of electromagnetically induced transparency (EIT) conditions. A possibility of noise suppression in atomic system by means of quantum features of squeezed light is examined in detail. The characteristics of atomic system responsible for relaxation processes and noise in EIT are found.

  18. Noise suppression in three-level atomic system driven by quantized field

    NASA Astrophysics Data System (ADS)

    Gelman, A.; Mironov, V.

    2009-10-01

    Numerically by the Monte-Carlo wave function (MCWF) method and analytically by the Heisenberg-Langevin method the interaction of three-level atom with quantized electromagnetic field is investigated in the conditions of electromagnetically induced transparency (EIT) conditions. A possibility of noise suppression in atomic system by means of quantum features of squeezed light is examined in detail. The characteristics of atomic system responsible for relaxation processes and noise in EIT are found.

  19. Field quantization and squeezed states generation in resonators with time-dependent parameters

    NASA Technical Reports Server (NTRS)

    Dodonov, V. V.; Klimov, A. B.; Nikonov, D. E.

    1992-01-01

    The problem of electromagnetic field quantization is usually considered in textbooks under the assumption that the field occupies some empty box. The case when a nonuniform time-dependent dielectric medium is confined in some space region with time-dependent boundaries is studied. The basis of the subsequent consideration is the system of Maxwell's equations in linear passive time-dependent dielectric and magnetic medium without sources.

  20. Batalin-Tyutin quantization of the self-dual massive theory in three dimensions

    SciTech Connect

    Kim, Y.; Park, Y.; Kim, K.Y.; Kim, Y. )

    1995-03-15

    We quantize the self-dual massive theory by using the Batalin-Tyutin Hamiltonian method, which systematically embeds a second class constraint system into a first class one in extended phase space by introducing new fields. Through this analysis we obtain simultaneously the Stueckelberg scalar term related to the explicit gauge-breaking effect and a new type of Wess-Zumino action related to the Chern-Simons term.

  1. Fraunhofer diffraction of the plane wave by a multilevel (quantized) spiral phase plate.

    PubMed

    Kotlyar, Victor V; Kovalev, Alexey A

    2008-01-15

    We obtain an analytical expression in the form of a finite sum of plane waves that describes the paraxial scalar Fraunhofer diffraction of a limited plane wave by a multilevel (quantized) spiral phase plate (SPP) bounded by a polygonal aperture. For several topological charges of the SPP we numerically obtain the minimal number of SPP sectors for which the RMS between the Fraunhofer diffraction patterns for multilevel and continuous SPP does not exceed 2%.

  2. Quantization of probability distributions under norm-based distortion measures II: Self-similar distributions

    NASA Astrophysics Data System (ADS)

    Delattre, Sylvain; Graf, Siegfried; Luschgy, Harald; Pages, Gilles

    2006-06-01

    For a probability measure P on and consider where the infimum is taken over all subsets [alpha] of with card([alpha])[less-than-or-equals, slant]n and V is a nondecreasing function. Under certain conditions on V, we derive the precise n-asymptotics of en for self-similar distributions P and we find the asymptotic performance of optimal quantizers using weighted empirical measures.

  3. A photonic analog-to-digital converter based on an unbalanced Mach-Zehnder quantizer.

    PubMed

    Sarantos, Chris H; Dagli, Nadir

    2010-07-05

    A Mach-Zehnder modulator (MZM) based analog to digital converter (ADC) is described. The signal to be digitized is applied to a single electrode of a high speed unbalanced modulator that acts as a quantizer. The rest of the system consists of commercially available wavelength division multiplexing (WDM) components. Analysis indicates that 6 bit operation at 40 Giga Samples per second (GS/s) is possible with moderate optical carrier power.

  4. Quantized phase slips with hysteresis in rotating spin-orbit-coupled Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Zhang, Chuanyi

    2017-03-01

    Recently, hysteresis has been observed experimentally in a quantized superfluid circuit [S. Eckel, J. G. Lee, F. Jendrzejewski, N. Murray, C. W. Clark, C. J. Lobb, W. D. Phillips, M. Edwards, and G. K. Campbell, Nature (London) 506, 200 (2014), 10.1038/nature12958], which is a very important step for developing atomtronic devices. Here we find that quantized phase slips occur as the angular velocity rises, and the average angular momenta are quantized at special angular velocities, immune to the nonlinear interactions. When the spin and orbital angular momentum coupling is introduced, we find that two hysteresis loops could arise for each spin, and there exists a phase slip for spin up in one loop and spin down in the other loop. At the special angular velocities, a phase slip emerges for spin down in the lower state of the loop. Especially, multistability appears if the angular velocity is located in the hysteretic region. These results can promote experimental verification and pave the way for atomtronic devices.

  5. Quantization of area for event and Cauchy horizons of the Kerr-Newman black hole

    NASA Astrophysics Data System (ADS)

    Visser, Matt

    2012-06-01

    Based on various string theoretic constructions, and various string-inspired generalizations thereof, there have been repeated suggestions that the areas of black hole event horizons might be quantized in a quite specific manner, in terms of linear combinations of square roots of positive integers. It is important to realise that there are significant physical constraints on such integer-based proposals when one (somewhat speculatively) attempts to extend them outside their original extremal and supersymmetric framework. Specifically, in their most natural and direct physical interpretations, some of the more speculative integer-based proposals for the quantization of horizon areas fail for the ordinary Kerr-Newman black holes in (3+1) dimensions, essentially because the fine structure constant is not an integer. A more baroque interpretation involves asserting the fine structure constant is the square root of a rational number; but such a proposal has its own problems. Insofar as one takes (3+1) general relativity (plus the usual quantization of angular momentum and electric charge) as being paramount, the known explicitly calculable spectra of horizon areas for the physically compelling Kerr-Newman spacetimes indicate that some caution is called for when assessing the universality of some of the more speculative integer-based string-inspired proposals.

  6. Particle on a torus knot: Constrained dynamics and semi-classical quantization in a magnetic field

    NASA Astrophysics Data System (ADS)

    Das, Praloy; Pramanik, Souvik; Ghosh, Subir

    2016-11-01

    Kinematics and dynamics of a particle moving on a torus knot poses an interesting problem as a constrained system. In the first part of the paper we have derived the modified symplectic structure or Dirac brackets of the above model in Dirac's Hamiltonian framework, both in toroidal and Cartesian coordinate systems. This algebra has been used to study the dynamics, in particular small fluctuations in motion around a specific torus. The spatial symmetries of the system have also been studied. In the second part of the paper we have considered the quantum theory of a charge moving in a torus knot in the presence of a uniform magnetic field along the axis of the torus in a semiclassical quantization framework. We exploit the Einstein-Brillouin-Keller (EBK) scheme of quantization that is appropriate for multidimensional systems. Embedding of the knot on a specific torus is inherently two dimensional that gives rise to two quantization conditions. This shows that although the system, after imposing the knot condition reduces to a one dimensional system, even then it has manifested non-planar features which shows up again in the study of fractional angular momentum. Finally we compare the results obtained from EBK (multi-dimensional) and Bohr-Sommerfeld (single dimensional) schemes. The energy levels and fractional spin depend on the torus knot parameters that specifies its non-planar features. Interestingly, we show that there can be non-planar corrections to the planar anyon-like fractional spin.

  7. Field-induced diverse quantizations in monolayer and bilayer black phosphorus

    NASA Astrophysics Data System (ADS)

    Wu, Jhao-Ying; Chen, Szu-Chao; Gumbs, Godfrey; Lin, Ming-Fa

    2017-03-01

    This report provides a comprehensive understanding of the magnetic quantization effects in phosphorene with the use of the generalized tight-binding model. Especially for bilayer systems, a composite magnetic and electric field can induce the feature-rich LL spectrum. We demonstrate the existence of two subgroups of Landau levels (LLs) near the Fermi level according to their distinguishable localization centers. The strong competition between the two subgroups induces unusual quantization behaviors, such as multiple anticrossings for the Bz- and Ez-dependent energy spectra. These results are clearly explained by the spatial distributions of subenvelope functions from which two types of LLs are characterized by being either the usual or the perturbed distribution modes. The detailed analysis of the diverse magnetic quantizations is quite important in understanding other physical properties, such as the dispersion relations of magnetoplasmons, magneto-optical selection rules, as well as electron transport properties. The unusual energy spectra are directly revealed by the special features of the density of states, which could be further validated by measurements employing scanning tunneling spectroscopy.

  8. Wideband audio compression using subband coding and entropy-constrained scalar quantization

    NASA Astrophysics Data System (ADS)

    Trinkaus, Trevor R.

    1995-04-01

    Source coding of wideband audio signals for storage applications and/or transmission over band limited channels is currently a research topic receiving considerable attention. A goal common to all systems designed for wideband audio coding is to achieve an efficient reduction in code rate, while maintaining imperceptible differences between the original and coded audio signals. In this thesis, an effective source coding scheme aimed at reducing the code rate to the entropy of the quantized audio source, while providing good subjective audio quality, is discussed. This scheme employs the technique of subband coding, where a 32-band single sideband modulated filter bank is used to perform subband analysis and synthesis operations. Encoding and decoding of the subbands is accomplished using entropy constrained uniform scalar quantization and subsequent arithmetic coding. A computationally efficient subband rate allocation procedure is used which relies on analytic models to describe the rate distortion characteristics of the subband quantizers. Signal quality is maintained by incorporating masking properties of the human ear into this rate allocation procedure. Results of simulations performed on compact disc quality audio segments are provided.

  9. Stochastic quantization and holographic Wilsonian renormalization group of scalar theories with arbitrary mass

    NASA Astrophysics Data System (ADS)

    Oh, Jae-Hyuk

    2016-11-01

    We explore the mathematical relation between stochastic quantization (SQ) and the holographic Wilsonian renormalization group (HWRG) of a massive scalar field defined in asymptotically anti-de Sitter space. We compute the stochastic two-point correlation function by quantizing the boundary on-shell action (it is identified with the Euclidean action in our stochastic frame) of the scalar field, requiring the initial value of the stochastic field Dirichlet boundary condition, and study its relationship with the double-trace deformation in HWRG computation. It turns out that the stochastic two-point function precisely corresponds to the double-trace deformation through the relation proposed in [J. High Energy Phys. 11 (2012) 144] even in the case that the scalar field mass is arbitrary. In our stochastic framework, the Euclidean action constituting the Langevin equation is not the same as that in the original stochastic theory; in fact, it contains the stochastic time "t -dependent" kernel in it. A justification for the exotic Euclidean action is provided by proving that it transforms to the usual form of the Euclidean action in a new stochastic frame by an appropriate rescaling of both the stochastic fields and time. We also apply the Neumann boundary condition to the stochastic fields to study the relation between SQ and the HWRG when alternative quantization is allowed. It turns out that the application of the Neumann boundary condition to the stochastic fields generates the radial evolution of the single-trace operator as well as the double-trace term.

  10. Efficient entropy estimation based on doubly stochastic models for quantized wavelet image data.

    PubMed

    Gaubatz, Matthew D; Hemami, Sheila S

    2007-04-01

    Under a rate constraint, wavelet-based image coding involves strategic discarding of information such that the remaining data can be described with a given amount of rate. In a practical coding system, this task requires knowledge of the relationship between quantization step size and compressed rate for each group of wavelet coefficients, the R-Q curve. A common approach to this problem is to fit each subband with a scalar probability distribution and compute entropy estimates based on the model. This approach is not effective at rates below 1.0 bits-per-pixel because the distributions of quantized data do not reflect the dependencies in coefficient magnitudes. These dependencies can be addressed with doubly stochastic models, which have been previously proposed to characterize more localized behavior, though there are tradeoffs between storage, computation time, and accuracy. Using a doubly stochastic generalized Gaussian model, it is demonstrated that the relationship between step size and rate is accurately described by a low degree polynomial in the logarithm of the step size. Based on this observation, an entropy estimation scheme is presented which offers an excellent tradeoff between speed and accuracy; after a simple data-gathering step, estimates are computed instantaneously by evaluating a single polynomial for each group of wavelet coefficients quantized with the same step size. These estimates are on average within 3% of a desired target rate for several of state-of-the-art coders.

  11. Uniqueness of the Fock quantization of scalar fields in spatially flat cosmological spacetimes

    SciTech Connect

    Gomar, Laura Castelló; Cortez, Jerónimo; Blas, Daniel Martín-de; Marugán, Guillermo A. Mena; Velhinho, José M. E-mail: jacq@ciencias.unam.mx E-mail: jvelhi@ubi.pt

    2012-11-01

    We study the Fock quantization of scalar fields in (generically) time dependent scenarios, focusing on the case in which the field propagation occurs in –either a background or effective– spacetime with spatial sections of flat compact topology. The discussion finds important applications in cosmology, like e.g. in the description of test Klein-Gordon fields and scalar perturbations in Friedmann-Robertson-Walker spacetime in the observationally favored flat case. Two types of ambiguities in the quantization are analyzed. First, the infinite ambiguity existing in the choice of a Fock representation for the canonical commutation relations, understandable as the freedom in the choice of inequivalent vacua for a given field. Besides, in cosmological situations, it is customary to scale the fields by time dependent functions, which absorb part of the evolution arising from the spacetime, which is treated classically. This leads to an additional ambiguity, this time in the choice of a canonical pair of field variables. We show that both types of ambiguities are removed by the requirements of (a) invariance of the vacuum under the symmetries of the three-torus, and (b) unitary implementation of the dynamics in the quantum theory. In this way, one arrives at a unique class of unitarily equivalent Fock quantizations for the system. This result provides considerable robustness to the quantum predictions and renders meaningful the confrontation with observation.

  12. Spatially resolving unconventional interface Landau quantization in a graphene monolayer-bilayer planar junction

    NASA Astrophysics Data System (ADS)

    Yan, Wei; Li, Si-Yu; Yin, Long-Jing; Qiao, Jia-Bin; Nie, Jia-Cai; He, Lin

    2016-05-01

    Hybrid quantum Hall (QH) junctions have been extensively studied by transport measurements due to their exciting physics and device applications. Here we report on spatially resolving electronic properties of such a junction on the nanoscale. We present a subnanometer-resolved scanning tunneling microscopy (STM) and scanning tunneling spectroscopy study of a monolayer-bilayer graphene planar junction in the QH regime. The atomically well-defined interface of such a junction allows us to spatially resolve the interface electronic properties. Around the interface, we detect Landau quantization of massless Dirac fermions as expected in the graphene monolayer for filled states of the junction, whereas unexpectedly, only Landau quantization of massive Dirac fermions as expected in the graphene bilayer is observed for empty states. The observed unconventional interface Landau quantization arises from the fact that the quantum conductance across the interface is solely determined by the minimum filling factors (number of edge modes) in the graphene monolayer and bilayer regions of the junction. Our finding opens the way to spatially explore the QH effect of different graphene hybrid structures only using a STM.

  13. Quantization-based semi-fragile public-key watermarking for secure image authentication

    NASA Astrophysics Data System (ADS)

    Schlauweg, Mathias; Proefrock, Dima; Palfner, Torsten; Mueller, Erika

    2005-09-01

    Authentication watermarking approaches can be classified into two kinds: fragile and semi-fragile. In contrast to the latter one, fragile watermarking does not tolerate modifications of any single bit of the watermarked data. Since the transmission of digital data often requires lossy compression, an authentication system should accept non-malicious modifications such as JPEG compression. Semi-fragile techniques aim to discriminate malicious manipulations from admissible manipulations. In our approach, we extract image content dependent information, which is hashed afterwards and encrypted using secure methods known from the classical cryptography. The image data is partitioned into nonoverlapping 4x4 pixel blocks in the spatial domain. The mean values of these blocks form n-dimensional vectors, which are quantized to the nearest lattice point neighbours. Based on the changed vector values, a hash is calculated and asymmetrically encrypted, resulting in a digital signature. Traditional dual subspace approaches divide the signal space into a region for signature generation and a region for signature embedding. To ensure the security of the whole image, we join the two subspaces. The vectors, where to embed the bits using quantization-based data hiding techniques, are predistorted and also used for the signature generation. Our scheme applies error correction coding to gain the robustness of the embedded signature to non-malicious distortions. A second quantization run finally embeds the signature.

  14. The application of light-cone quantization to quantum chromodynamics in one-plus-one dimensions

    SciTech Connect

    Hornbostel, K.J.

    1988-12-01

    Formal and computational aspects of light cone quantization are studied by application to quantum chromodynamics (QCD) in one spatial plus one temporal dimension. This quantization scheme, which has been extensively applied to perturbative calculations, is shown to provide an intuitively appealing and numerically tractable approach to non-perturbative computations as well. In the initial section, a light-cone quantization procedure is developed which incorporates fields on the boundaries. This allows for the consistent treatment of massless fermions and the construction of explicitly conserved momentum and charge operators. The next section, which comprises the majority of this work, focuses on the numerical solution of the light-cone Schrodinger equation for bound states. The state space is constructed and the Hamiltonian is evaluated and diagonalized by computer for arbitrary number of colors, baryon number and coupling constant strength. As a result, the full spectrum of mesons and baryons and their associated wavefunctions are determined. These results are compared with those which exist from other approaches to test the reliability of the method. The program also provides a preliminary test for the feasibility of, and an opportunity to develop approximation schemes for, an attack on three-plus-one dimensional QCD. Finally, analytic results are presented which include a discussion of integral equations for wavefunctions and their endpoint behavior. Solutions for hadronic masses and wavefunctions in the limits of both large and small quark mass are discussed. 49 refs., 32 figs., 10 tabs.

  15. The fundamental role of quantized vibrations in coherent light harvesting by cryptophyte algae.

    PubMed

    Kolli, Avinash; O'Reilly, Edward J; Scholes, Gregory D; Olaya-Castro, Alexandra

    2012-11-07

    The influence of fast vibrations on energy transfer and conversion in natural molecular aggregates is an issue of central interest. This article shows the important role of high-energy quantized vibrations and their non-equilibrium dynamics for energy transfer in photosynthetic systems with highly localized excitonic states. We consider the cryptophyte antennae protein phycoerythrin 545 and show that coupling to quantized vibrations, which are quasi-resonant with excitonic transitions is fundamental for biological function as it generates non-cascaded transport with rapid and wider spatial distribution of excitation energy. Our work also indicates that the non-equilibrium dynamics of such vibrations can manifest itself in ultrafast beating of both excitonic populations and coherences at room temperature, with time scales in agreement with those reported in experiments. Moreover, we show that mechanisms supporting coherent excitonic dynamics assist coupling to selected modes that channel energy to preferential sites in the complex. We therefore argue that, in the presence of strong coupling between electronic excitations and quantized vibrations, a concrete and important advantage of quantum coherent dynamics is precisely to tune resonances that promote fast and effective energy distribution.

  16. Detection of perturbed quantization class stego images based on possible change modes

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Liu, Fenlin; Yang, Chunfang; Luo, Xiangyang; Song, Xiaofeng

    2015-11-01

    To improve the detection performance for perturbed quantization (PQ) class [PQ, energy-adaptive PQ (PQe), and texture-adaptive PQ (PQt)] stego images, a detection method based on possible change modes is proposed. First, by using the relationship between the changeable coefficients used for carrying secret messages and the second quantization steps, the modes having even second quantization steps are identified as possible change modes. Second, by referencing the existing features, the modified features that can accurately capture the embedding changes based on possible change modes are extracted. Next, feature sensitivity analyses based on the modifications performed before and after the embedding are carried out. These analyses show that the modified features are more sensitive to the original features. Experimental results indicate that detection performance of the modified features is better than that of the corresponding original features for three typical feature models [Cartesian calibrated PEVny (ccPEV), Cartesian calibrated co-occurrence matrix features (CF), and JPEG rich model (JRM)], and the integrated feature consisting of enhanced histogram features (EHF) and the modified JRM outperforms two current state-of-the-art feature models, namely, phase aware projection model (PHARM) and Gabor rich model (GRM).

  17. Self-adjointness of the Fourier expansion of quantized interaction field Lagrangians

    PubMed Central

    Paneitz, S. M.; Segal, I. E.

    1983-01-01

    Regularity properties significantly stronger than were previously known are developed for four-dimensional non-linear conformally invariant quantized fields. The Fourier coefficients of the interaction Lagrangian in the interaction representation—i.e., evaluated after substitution of the associated quantized free field—is a densely defined operator on the associated free field Hilbert space K. These Fourier coefficients are with respect to a natural basis in the universal cosmos ˜M, to which such fields canonically and maximally extend from Minkowski space-time M0, which is covariantly a submanifold of ˜M. However, conformally invariant free fields over M0 and ˜M are canonically identifiable. The kth Fourier coefficient of the interaction Lagrangian has domain inclusive of all vectors in K to which arbitrary powers of the free hamiltonian in ˜M are applicable. Its adjoint in the rigorous Hilbert space sense is a-k in the case of a hermitian Lagrangian. In particular (k = 0) the leading term in the perturbative expansion of the S-matrix for a conformally invariant quantized field in M0 is a self-adjoint operator. Thus, e.g., if ϕ(x) denotes the free massless neutral scalar field in M0, then ∫M0:ϕ(x)4:d4x is a self-adjoint operator. No coupling constant renormalization is involved here. PMID:16593346

  18. Minimum distortion quantizer for fixed-rate 64-subband video coding

    NASA Astrophysics Data System (ADS)

    Alparone, Luciano; Andreadis, Alessandro; Argenti, Fabrizio; Benelli, Giuliano; Garzelli, Andrea; Tarchi, A.

    1995-02-01

    A motion-compensated sub-band coding (SBC) scheme for video signals, featuring fixed-rate and optimum quantizer, is presented. Block matching algorithm provides a suitable inter-frame prediction, and a 64 sub-band decomposition allows a high decorrelation of the motion- compensated difference field. The main drawback is that sub-bands containing sparse data of different statistics are produced, thus requiring run-length (RL) and variable length coding (VLC) for best performance. However, most digital communication channels operate at constant bit-rate (BR); hence, fixed-rate video coding is the main goal, in order to reduce buffering delays. The approach followed in this work is modeling the subbands as independent memoryless sources with generalized Gaussian PDFs and designing optimum uniform quantizers with the goal of minimizing distortion after a BR value, also accounting for the entropy of the RLs of zero/nonzero coefficients, has been specified. The problem is stated in terms of entropy allocation among sub-bands minimizing the overall distortion, analogously to optimal distortion allocation when fixed quality is requested. The constrained minimum is found by means of Lagrange multipliers, once the parametric PDFs have been assessed from true TV sequences. This procedure provides the optimum step for uniform quantization of each sub-band, thus leading to discarding some of the least significant ones.

  19. Quantization of the AdS3 superparticle on OSP (1 | 2) 2 / SL (2 , R)

    NASA Astrophysics Data System (ADS)

    Heinze, Martin; Jorjadze, George

    2017-02-01

    We analyze AdS3 superparticle dynamics on the coset OSP (1 | 2) × OSP (1 | 2) / SL (2 , R). The system is quantized in canonical coordinates obtained by gauge invariant Hamiltonian reduction. The left and right Noether charges of a massive particle are parametrized by coadjoint orbits of a timelike element of osp (1 | 2). Each chiral sector is described by two bosonic and two fermionic canonical coordinates corresponding to a superparticle with superpotential W = q - m / q, where m is the particle mass. Canonical quantization then provides a quantum realization of osp (1 | 2) ⊕ osp (1 | 2). For the massless particle the chiral charges lie on the coadjoint orbit of a nilpotent element of osp (1 | 2) and each of them depends only on one real fermion, which demonstrates the underlying κ-symmetry. These remaining left and right fermionic variables form a canonical pair and the system is described by four bosonic and two fermionic canonical coordinates. Due to conformal invariance of the massless particle, the osp (1 | 2) ⊕ osp (1 | 2) extends to the corresponding superconformal algebra osp (2 | 4). Its 19 charges are given by all real quadratic combinations of the canonical coordinates, which trivializes their quantization.

  20. An Evaluation of the Effects of Wavelet Coefficient Quantization in Transform Based EEG Compression

    PubMed Central

    Higgins, Garry; McGinley, Brian; Jones, Edward; Glavin, Martin

    2016-01-01

    In recent years, there has been a growing interest in the compression of electroencephalographic (EEG) signals for telemedical and ambulatory EEG applications. Data compression is an important factor in these applications as a means of reducing the amount of data required for transmission. Allowing for a carefully controlled level of loss in the compression method can provide significant gains in data compression. Quantization is an easy to implement method of data reduction that requires little power expenditure. However, it is a relatively simple, noninvertible operation, and reducing the bit-level too far can result in the loss of too much information to reproduce the original signal to an appropriate fidelity. Other lossy compression methods allow for finer control over compression parameters, generally relying on discarding signal components the coder deems insignificant. SPIHT is a state of the art signal compression method based on the Discrete Wavelet Transform (DWT), originally designed for images but highly regarded as a general means of data compression. This paper compares the approaches of compression by changing the quantization level of the DWT coefficients in SPIHT, with the standard thresholding method used in SPIHT, to evaluate the effects of each on EEG signals. The combination of increasing quantization and the use of SPIHT as an entropy encoder has been shown to provide significantly improved results over using the standard SPIHT algorithm alone. PMID:23668341