Science.gov

Sample records for flux quantization

  1. Flux Quantization Without Cooper Pairs

    NASA Astrophysics Data System (ADS)

    Kadin, Alan

    2013-03-01

    It is universally accepted that the superconducting flux quantum h/2e requires the existence of a phase-coherent macroscopic wave function of Cooper pairs, each with charge 2e. On the contrary, we assert that flux quantization can be better understood in terms of single-electron quantum states, localized on the scale of the coherence length and organized into a real-space phase-antiphase structure. This packing configuration is consistent with the Pauli exclusion principle for single-electron states, maintains long-range phase coherence, and is compatible with much of the BCS formalism. This also accounts for h/2e in the Josephson effect, without Cooper pairs. Experimental evidence for this alternative picture may be found in deviations from h/2e in loops and devices much smaller than the coherence length. A similar phase-antiphase structure may also account for superfluids, without the need for boson condensation.

  2. Theory of the Knight Shift and Flux Quantization in Superconductors

    DOE R&D Accomplishments Database

    Cooper, L. N.; Lee, H. J.; Schwartz, B. B.; Silvert, W.

    1962-05-01

    Consequences of a generalization of the theory of superconductivity that yields a finite Knight shift are presented. In this theory, by introducing an electron-electron interaction that is not spatially invariant, the pairing of electrons with varying total momentum is made possible. An expression for Xs (the spin susceptibility in the superconducting state) is derived. In general Xs is smaller than Xn, but is not necessarily zero. The precise magnitude of Xs will vary from sample to sample and will depend on the nonuniformity of the samples. There should be no marked size dependence and no marked dependence on the strength of the magnetic field; this is in accord with observation. The basic superconducting properties are retained, but there are modifications in the various electromagnetic and thermal properties since the electrons paired are not time sequences of this generalized theory on flux quantization arguments are presented.(auth)

  3. Half-integer flux quantization in a superconducting loop with a ferromagnetic π-junction

    NASA Astrophysics Data System (ADS)

    Bauer, A.; Bentner, J.; Aprili, M.; Della Rocca, M.; Reinwald, M.; Wegscheider, W.; Strunk, C.

    2006-09-01

    Superconducting loops containing a π-junction are predicted to show a spontaneous magnetic moment in zero external magnetic field. In order to confirm this longstanding prediction experimentally we performed magnetization measurements on individual mesoscopic superconducting niobium loops with a ferromagnetic (PdNi) π-junction. The loops are prepared on top of the active area of a micro Hall-sensor based on high mobility GaAs/AlGaAs heterostructures. We observe switching of the loop between different magnetization states at very low magnetic fields, which is asymmetric for positive and negative sweep direction. This is evidence for a spontaneous current induced by the intrinsic phase shift of the π-junction. In addition, the presence of the spontaneous current at zero applied field is directly revealed by an increase of the magnetic moment with decreasing temperature, which results in half integer flux quantization in the loop at low temperatures.

  4. Fourth quantization

    NASA Astrophysics Data System (ADS)

    Faizal, Mir

    2013-12-01

    In this Letter we will analyze the creation of the multiverse. We will first calculate the wave function for the multiverse using third quantization. Then we will fourth-quantize this theory. We will show that there is no single vacuum state for this theory. Thus, we can end up with a multiverse, even after starting from a vacuum state. This will be used as a possible explanation for the creation of the multiverse. We also analyze the effect of interactions in this fourth-quantized theory.

  5. Vector quantization

    NASA Technical Reports Server (NTRS)

    Gray, Robert M.

    1989-01-01

    During the past ten years Vector Quantization (VQ) has developed from a theoretical possibility promised by Shannon's source coding theorems into a powerful and competitive technique for speech and image coding and compression at medium to low bit rates. In this survey, the basic ideas behind the design of vector quantizers are sketched and some comments made on the state-of-the-art and current research efforts.

  6. Quantization of Algebraic Reduction

    SciTech Connect

    Sniatycki, Jeodrzej

    2007-11-14

    For a Poisson algebra obtained by algebraic reduction of symmetries of a quantizable system we develop an analogue of geometric quantization based on the quantization structure of the original system.

  7. Third quantization

    NASA Astrophysics Data System (ADS)

    Seligman, Thomas H.; Prosen, Tomaž

    2010-12-01

    The basic ideas of second quantization and Fock space are extended to density operator states, used in treatments of open many-body systems. This can be done for fermions and bosons. While the former only requires the use of a non-orthogonal basis, the latter requires the introduction of a dual set of spaces. In both cases an operator algebra closely resembling the canonical one is developed and used to define the dual sets of bases. We here concentrated on the bosonic case where the unboundedness of the operators requires the definitions of dual spaces to support the pair of bases. Some applications, mainly to non-equilibrium steady states, will be mentioned.

  8. Lagrange structure and quantization

    NASA Astrophysics Data System (ADS)

    Kazinski, Peter O.; Lyakhovich, Simon L.; Sharapov, Alexey A.

    2005-07-01

    A path-integral quantization method is proposed for dynamical systems whose classical equations of motion do not necessarily follow from the action principle. The key new notion behind this quantization scheme is the Lagrange structure which is more general than the lagrangian formalism in the same sense as Poisson geometry is more general than the symplectic one. The Lagrange structure is shown to admit a natural BRST description which is used to construct an AKSZ-type topological sigma-model. The dynamics of this sigma-model in d+1 dimensions, being localized on the boundary, are proved to be equivalent to the original theory in d dimensions. As the topological sigma-model has a well defined action, it is path-integral quantized in the usual way that results in quantization of the original (not necessarily lagrangian) theory. When the original equations of motion come from the action principle, the standard BV path-integral is explicitly deduced from the proposed quantization scheme. The general quantization scheme is exemplified by several models including the ones whose classical dynamics are not variational.

  9. Weak associativity and deformation quantization

    NASA Astrophysics Data System (ADS)

    Kupriyanov, V. G.

    2016-09-01

    Non-commutativity and non-associativity are quite natural in string theory. For open strings it appears due to the presence of non-vanishing background two-form in the world volume of Dirichlet brane, while in closed string theory the flux compactifications with non-vanishing three-form also lead to non-geometric backgrounds. In this paper, working in the framework of deformation quantization, we study the violation of associativity imposing the condition that the associator of three elements should vanish whenever each two of them are equal. The corresponding star products are called alternative and satisfy important for physical applications properties like the Moufang identities, alternative identities, Artin's theorem, etc. The condition of alternativity is invariant under the gauge transformations, just like it happens in the associative case. The price to pay is the restriction on the non-associative algebra which can be represented by the alternative star product, it should satisfy the Malcev identity. The example of nontrivial Malcev algebra is the algebra of imaginary octonions. For this case we construct an explicit expression of the non-associative and alternative star product. We also discuss the quantization of Malcev-Poisson algebras of general form, study its properties and provide the lower order expression for the alternative star product. To conclude we define the integration on the algebra of the alternative star products and show that the integrated associator vanishes.

  10. Quantization Effects on Complex Networks

    PubMed Central

    Wang, Ying; Wang, Lin; Yang, Wen; Wang, Xiaofan

    2016-01-01

    Weights of edges in many complex networks we constructed are quantized values of the real weights. To what extent does the quantization affect the properties of a network? In this work, quantization effects on network properties are investigated based on the spectrum of the corresponding Laplacian. In contrast to the intuition that larger quantization level always implies a better approximation of the quantized network to the original one, we find a ubiquitous periodic jumping phenomenon with peak-value decreasing in a power-law relationship in all the real-world weighted networks that we investigated. We supply theoretical analysis on the critical quantization level and the power laws. PMID:27226049

  11. Quantization Effects on Complex Networks

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Wang, Lin; Yang, Wen; Wang, Xiaofan

    2016-05-01

    Weights of edges in many complex networks we constructed are quantized values of the real weights. To what extent does the quantization affect the properties of a network? In this work, quantization effects on network properties are investigated based on the spectrum of the corresponding Laplacian. In contrast to the intuition that larger quantization level always implies a better approximation of the quantized network to the original one, we find a ubiquitous periodic jumping phenomenon with peak-value decreasing in a power-law relationship in all the real-world weighted networks that we investigated. We supply theoretical analysis on the critical quantization level and the power laws.

  12. Quantization Effects on Complex Networks.

    PubMed

    Wang, Ying; Wang, Lin; Yang, Wen; Wang, Xiaofan

    2016-01-01

    Weights of edges in many complex networks we constructed are quantized values of the real weights. To what extent does the quantization affect the properties of a network? In this work, quantization effects on network properties are investigated based on the spectrum of the corresponding Laplacian. In contrast to the intuition that larger quantization level always implies a better approximation of the quantized network to the original one, we find a ubiquitous periodic jumping phenomenon with peak-value decreasing in a power-law relationship in all the real-world weighted networks that we investigated. We supply theoretical analysis on the critical quantization level and the power laws. PMID:27226049

  13. Quantization of Black Holes

    NASA Astrophysics Data System (ADS)

    He, Xiao-Gang; Ma, Bo-Qiang

    We show that black holes can be quantized in an intuitive and elegant way with results in agreement with conventional knowledge of black holes by using Bohr's idea of quantizing the motion of an electron inside the atom in quantum mechanics. We find that properties of black holes can also be derived from an ansatz of quantized entropy Δ S = 4π k Δ R/{{-{λ }}}, which was suggested in a previous work to unify the black hole entropy formula and Verlinde's conjecture to explain gravity as an entropic force. Such an Ansatz also explains gravity as an entropic force from quantum effect. This suggests a way to unify gravity with quantum theory. Several interesting and surprising results of black holes are given from which we predict the existence of primordial black holes ranging from Planck scale both in size and energy to big ones in size but with low energy behaviors.

  14. On Quantizable Odd Lie Bialgebras

    NASA Astrophysics Data System (ADS)

    Khoroshkin, Anton; Merkulov, Sergei; Willwacher, Thomas

    2016-09-01

    Motivated by the obstruction to the deformation quantization of Poisson structures in infinite dimensions, we introduce the notion of a quantizable odd Lie bialgebra. The main result of the paper is a construction of the highly non-trivial minimal resolution of the properad governing such Lie bialgebras, and its link with the theory of so-called quantizable Poisson structures.

  15. Quantized Algebra I Texts

    ERIC Educational Resources Information Center

    DeBuvitz, William

    2014-01-01

    I am a volunteer reader at the Princeton unit of "Learning Ally" (formerly "Recording for the Blind & Dyslexic") and I recently discovered that high school students are introduced to the concept of quantization well before they take chemistry and physics. For the past few months I have been reading onto computer files a…

  16. Uniform quantized electron gas.

    PubMed

    Høye, Johan S; Lomba, Enrique

    2016-10-19

    In this work we study the correlation energy of the quantized electron gas of uniform density at temperature T  =  0. To do so we utilize methods from classical statistical mechanics. The basis for this is the Feynman path integral for the partition function of quantized systems. With this representation the quantum mechanical problem can be interpreted as, and is equivalent to, a classical polymer problem in four dimensions where the fourth dimension is imaginary time. Thus methods, results, and properties obtained in the statistical mechanics of classical fluids can be utilized. From this viewpoint we recover the well known RPA (random phase approximation). Then to improve it we modify the RPA by requiring the corresponding correlation function to be such that electrons with equal spins can not be on the same position. Numerical evaluations are compared with well known results of a standard parameterization of Monte Carlo correlation energies. PMID:27546166

  17. Uniform quantized electron gas

    NASA Astrophysics Data System (ADS)

    Høye, Johan S.; Lomba, Enrique

    2016-10-01

    In this work we study the correlation energy of the quantized electron gas of uniform density at temperature T  =  0. To do so we utilize methods from classical statistical mechanics. The basis for this is the Feynman path integral for the partition function of quantized systems. With this representation the quantum mechanical problem can be interpreted as, and is equivalent to, a classical polymer problem in four dimensions where the fourth dimension is imaginary time. Thus methods, results, and properties obtained in the statistical mechanics of classical fluids can be utilized. From this viewpoint we recover the well known RPA (random phase approximation). Then to improve it we modify the RPA by requiring the corresponding correlation function to be such that electrons with equal spins can not be on the same position. Numerical evaluations are compared with well known results of a standard parameterization of Monte Carlo correlation energies.

  18. Quantization of Inequivalent Classical Hamiltonians.

    ERIC Educational Resources Information Center

    Edwards, Ian K.

    1979-01-01

    Shows how the quantization of a Hamiltonian which is not canonically related to the energy is ambiguous and thereby results in conflicting physical interpretations. Concludes that only the Hamiltonian corresponding to the total energy of a classical system or one canonically related to it is suitable for consistent quantization. (GA)

  19. Coherent state quantization of quaternions

    SciTech Connect

    Muraleetharan, B. E-mail: santhar@gmail.com; Thirulogasanthar, K. E-mail: santhar@gmail.com

    2015-08-15

    Parallel to the quantization of the complex plane, using the canonical coherent states of a right quaternionic Hilbert space, quaternion field of quaternionic quantum mechanics is quantized. Associated upper symbols, lower symbols, and related quantities are analyzed. Quaternionic version of the harmonic oscillator and Weyl-Heisenberg algebra are also obtained.

  20. Coherent state quantization of quaternions

    NASA Astrophysics Data System (ADS)

    Muraleetharan, B.; Thirulogasanthar, K.

    2015-08-01

    Parallel to the quantization of the complex plane, using the canonical coherent states of a right quaternionic Hilbert space, quaternion field of quaternionic quantum mechanics is quantized. Associated upper symbols, lower symbols, and related quantities are analyzed. Quaternionic version of the harmonic oscillator and Weyl-Heisenberg algebra are also obtained.

  1. First quantized electrodynamics

    SciTech Connect

    Bennett, A.F.

    2014-06-15

    The parametrized Dirac wave equation represents position and time as operators, and can be formulated for many particles. It thus provides, unlike field-theoretic Quantum Electrodynamics (QED), an elementary and unrestricted representation of electrons entangled in space or time. The parametrized formalism leads directly and without further conjecture to the Bethe–Salpeter equation for bound states. The formalism also yields the Uehling shift of the hydrogenic spectrum, the anomalous magnetic moment of the electron to leading order in the fine structure constant, the Lamb shift and the axial anomaly of QED. -- Highlights: •First-quantized electrodynamics of the parametrized Dirac equation is developed. •Unrestricted entanglement in time is made explicit. •Bethe and Salpeter’s equation for relativistic bound states is derived without further conjecture. •One-loop scattering corrections and the axial anomaly are derived using a partial summation. •Wide utility of semi-classical Quantum Electrodynamics is argued.

  2. Quantized beam shifts in graphene

    SciTech Connect

    de Melo Kort-Kamp, Wilton Junior; Sinitsyn, Nikolai; Dalvit, Diego Alejandro Roberto

    2015-10-08

    We predict the existence of quantized Imbert-Fedorov, Goos-Hanchen, and photonic spin Hall shifts for light beams impinging on a graphene-on-substrate system in an external magnetic field. In the quantum Hall regime the Imbert-Fedorov and photonic spin Hall shifts are quantized in integer multiples of the fine structure constant α, while the Goos-Hanchen ones in multiples of α2. We investigate the influence on these shifts of magnetic field, temperature, and material dispersion and dissipation. An experimental demonstration of quantized beam shifts could be achieved at terahertz frequencies for moderate values of the magnetic field.

  3. Fine structure constant and quantized optical transparency of plasmonic nanoarrays.

    PubMed

    Kravets, V G; Schedin, F; Grigorenko, A N

    2012-01-01

    Optics is renowned for displaying quantum phenomena. Indeed, studies of emission and absorption lines, the photoelectric effect and blackbody radiation helped to build the foundations of quantum mechanics. Nevertheless, it came as a surprise that the visible transparency of suspended graphene is determined solely by the fine structure constant, as this kind of universality had been previously reserved only for quantized resistance and flux quanta in superconductors. Here we describe a plasmonic system in which relative optical transparency is determined solely by the fine structure constant. The system consists of a regular array of gold nanoparticles fabricated on a thin metallic sublayer. We show that its relative transparency can be quantized in the near-infrared, which we attribute to the quantized contact resistance between the nanoparticles and the metallic sublayer. Our results open new possibilities in the exploration of universal dynamic conductance in plasmonic nanooptics.

  4. Minimum distortion quantizers. [determined by max algorithm

    NASA Technical Reports Server (NTRS)

    Jones, H. W., Jr.

    1977-01-01

    The well-known algorithm of Max is used to determine the minimum distortion quantizers for normal, two-sided exponential, and specialized two-sided gamma input distributions and for mean-square, magnitude, and relative magnitude error distortion criteria. The optimum equally-spaced and unequally-spaced quantizers are found, with the resulting quantizer distortion and entropy. The quantizers, and the quantizers with entropy coding, are compared to the rate distortion bounds for mean-square and magnitude error.

  5. Successive refinement lattice vector quantization.

    PubMed

    Mukherjee, Debargha; Mitra, Sanjit K

    2002-01-01

    Lattice Vector quantization (LVQ) solves the complexity problem of LBG based vector quantizers, yielding very general codebooks. However, a single stage LVQ, when applied to high resolution quantization of a vector, may result in very large and unwieldy indices, making it unsuitable for applications requiring successive refinement. The goal of this work is to develop a unified framework for progressive uniform quantization of vectors without having to sacrifice the mean- squared-error advantage of lattice quantization. A successive refinement uniform vector quantization methodology is developed, where the codebooks in successive stages are all lattice codebooks, each in the shape of the Voronoi regions of the lattice at the previous stage. Such Voronoi shaped geometric lattice codebooks are named Voronoi lattice VQs (VLVQ). Measures of efficiency of successive refinement are developed based on the entropy of the indices transmitted by the VLVQs. Additionally, a constructive method for asymptotically optimal uniform quantization is developed using tree-structured subset VLVQs in conjunction with entropy coding. The methodology developed here essentially yields the optimal vector counterpart of scalar "bitplane-wise" refinement. Unfortunately it is not as trivial to implement as in the scalar case. Furthermore, the benefits of asymptotic optimality in tree-structured subset VLVQs remain elusive in practical nonasymptotic situations. Nevertheless, because scalar bitplane- wise refinement is extensively used in modern wavelet image coders, we have applied the VLVQ techniques to successively refine vectors of wavelet coefficients in the vector set-partitioning (VSPIHT) framework. The results are compared against SPIHT and the previous successive approximation wavelet vector quantization (SA-W-VQ) results of Sampson, da Silva and Ghanbari.

  6. The quantized D-transformation.

    PubMed

    Saraceno, M.; Vallejos, R. O.

    1996-06-01

    We construct a new example of a quantum map, the quantized version of the D-transformation, which is the natural extension to two dimensions of the tent map. The classical, quantum and semiclassical behavior is studied. We also exhibit some relationships between the quantum versions of the D-map and the parity projected baker's map. The method of construction allows a generalization to dissipative maps which includes the quantization of a horseshoe. (c) 1996 American Institute of Physics.

  7. Visibility of wavelet quantization noise

    NASA Technical Reports Server (NTRS)

    Watson, A. B.; Yang, G. Y.; Solomon, J. A.; Villasenor, J.

    1997-01-01

    The discrete wavelet transform (DWT) decomposes an image into bands that vary in spatial frequency and orientation. It is widely used for image compression. Measures of the visibility of DWT quantization errors are required to achieve optimal compression. Uniform quantization of a single band of coefficients results in an artifact that we call DWT uniform quantization noise; it is the sum of a lattice of random amplitude basis functions of the corresponding DWT synthesis filter. We measured visual detection thresholds for samples of DWT uniform quantization noise in Y, Cb, and Cr color channels. The spatial frequency of a wavelet is r 2-lambda, where r is display visual resolution in pixels/degree, and lambda is the wavelet level. Thresholds increase rapidly with wavelet spatial frequency. Thresholds also increase from Y to Cr to Cb, and with orientation from lowpass to horizontal/vertical to diagonal. We construct a mathematical model for DWT noise detection thresholds that is a function of level, orientation, and display visual resolution. This allows calculation of a "perceptually lossless" quantization matrix for which all errors are in theory below the visual threshold. The model may also be used as the basis for adaptive quantization schemes.

  8. Visibility of Wavelet Quantization Noise

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.; Yang, Gloria Y.; Solomon, Joshua A.; Villasenor, John; Null, Cynthia H. (Technical Monitor)

    1995-01-01

    The Discrete Wavelet Transform (DWT) decomposes an image into bands that vary in spatial frequency and orientation. It is widely used for image compression. Measures of the visibility of DWT quantization errors are required to achieve optimal compression. Uniform quantization of a single band of coefficients results in an artifact that is the sum of a lattice of random amplitude basis functions of the corresponding DWT synthesis filter, which we call DWT uniform quantization noise. We measured visual detection thresholds for samples of DWT uniform quantization noise in Y, Cb, and Cr color channels. The spatial frequency of a wavelet is r 2(exp)-L , where r is display visual resolution in pixels/degree, and L is the wavelet level. Amplitude thresholds increase rapidly with spatial frequency. Thresholds also increase from Y to Cr to Cb, and with orientation from low-pass to horizontal/vertical to diagonal. We describe a mathematical model to predict DWT noise detection thresholds as a function of level, orientation, and display visual resolution. This allows calculation of a "perceptually lossless" quantization matrix for which all errors are in theory below the visual threshold. The model may also be used as the basis for adaptive quantization schemes.

  9. Quantized string models

    NASA Astrophysics Data System (ADS)

    Fradkin, E. S.; Tseytlin, A. A.

    1982-10-01

    We discuss and compare the Lorentz covariant path integral quantization of the three bose string models, namely, the Nambu, Eguchi and Brink-Di Vecchia-Howe-Polyakov (BDHP) ones. Along with a critical review of the subject with some uncertainties and ambiguities clearly stated, various new results are presented. We work out the form of the BDHP string ansatz for the Wilson average and prove a formal inequivalence of the exact Nambu and BDHP models for any space-time dimension d. The above three models, known to be equivalent on the classical level, are shown to be equivalent in a semiclassical approximation near a minimal surface and also in the leading 1/d- approximation for the static overlineqq-potential. We analyse scattering amplitudes predicted by the BDHP string and find that when exactly calculated for d < 26 they are different from the old dual ones, and possess a non-linear spectrum which may be considered as free from tachyons in the ground state.

  10. Quantized visual awareness

    PubMed Central

    Escobar, W. A.

    2013-01-01

    The proposed model holds that, at its most fundamental level, visual awareness is quantized. That is to say that visual awareness arises as individual bits of awareness through the action of neural circuits with hundreds to thousands of neurons in at least the human striate cortex. Circuits with specific topologies will reproducibly result in visual awareness that correspond to basic aspects of vision like color, motion, and depth. These quanta of awareness (qualia) are produced by the feedforward sweep that occurs through the geniculocortical pathway but are not integrated into a conscious experience until recurrent processing from centers like V4 or V5 select the appropriate qualia being produced in V1 to create a percept. The model proposed here has the potential to shift the focus of the search for visual awareness to the level of microcircuits and these likely exist across the kingdom Animalia. Thus establishing qualia as the fundamental nature of visual awareness will not only provide a deeper understanding of awareness, but also allow for a more quantitative understanding of the evolution of visual awareness throughout the animal kingdom. PMID:24319436

  11. Periodic roads and quantized wheels

    NASA Astrophysics Data System (ADS)

    de Campos Valadares, Eduardo

    2016-08-01

    We propose a simple approach to determine all possible wheels that can roll smoothly without slipping on a periodic roadbed, while maintaining the center of mass at a fixed height. We also address the inverse problem that of obtaining the roadbed profile compatible with a specific wheel and all other related "quantized wheels." The role of symmetry is highlighted, which might preclude the center of mass from remaining at a fixed height. A straightforward consequence of such geometric quantization is that the gravitational potential energy and the moment of inertia are discrete, suggesting a parallelism between macroscopic wheels and nano-systems, such as carbon nanotubes.

  12. Dual approach to circuit quantization using loop charges

    NASA Astrophysics Data System (ADS)

    Ulrich, Jascha; Hassler, Fabian

    2016-09-01

    The conventional approach to circuit quantization is based on node fluxes and traces the motion of node charges on the islands of the circuit. However, for some devices, the relevant physics can be best described by the motion of polarization charges over the branches of the circuit that are in general related to the node charges in a highly nonlocal way. Here, we present a method, dual to the conventional approach, for quantizing planar circuits in terms of loop charges. In this way, the polarization charges are directly obtained as the differences of the two loop charges on the neighboring loops. The loop charges trace the motion of fluxes through the circuit loops. We show that loop charges yield a simple description of the flux transport across phase-slip junctions. We outline a concrete construction of circuits based on phase-slip junctions that are electromagnetically dual to arbitrary planar Josephson junction circuits. We argue that loop charges also yield a simple description of the flux transport in conventional Josephson junctions shunted by large impedances. We show that a mixed circuit description in terms of node fluxes and loop charges yields an insight into the flux decompactification of a Josephson junction shunted by an inductor. As an application, we show that the fluxonium qubit is well approximated as a phase-slip junction for the experimentally relevant parameters. Moreover, we argue that the 0 -π qubit is effectively the dual of a Majorana Josephson junction.

  13. Area potentials and deformation quantization.

    SciTech Connect

    Curtright, T. L.; Polychronakos, A. P.; Zachos, C. K.; High Energy Physics; Univ. of Miami; Rockefeller Univ.; Univ. of Ioannina

    2002-04-01

    Systems built out of N-body interactions, beyond 2-body interactions, are formulated on the plane, and investigated classically and quantum mechanically (in phase space). Their Wigner functions--the density matrices in phase-space quantization--are given and analyzed.

  14. Geometric Quantization and Foliation Reduction

    NASA Astrophysics Data System (ADS)

    Skerritt, Paul

    A standard question in the study of geometric quantization is whether symplectic reduction interacts nicely with the quantized theory, and in particular whether "quantization commutes with reduction." Guillemin and Sternberg first proposed this question, and answered it in the affirmative for the case of a free action of a compact Lie group on a compact Kahler manifold. Subsequent work has focused mainly on extending their proof to non-free actions and non-Kahler manifolds. For realistic physical examples, however, it is desirable to have a proof which also applies to non-compact symplectic manifolds. In this thesis we give a proof of the quantization-reduction problem for general symplectic manifolds. This is accomplished by working in a particular wavefunction representation, associated with a polarization that is in some sense compatible with reduction. While the polarized sections described by Guillemin and Sternberg are nonzero on a dense subset of the Kahler manifold, the ones considered here are distributional, having support only on regions of the phase space associated with certain quantized, or "admissible", values of momentum. We first propose a reduction procedure for the prequantum geometric structures that "covers" symplectic reduction, and demonstrate how both symplectic and prequantum reduction can be viewed as examples of foliation reduction. Consistency of prequantum reduction imposes the above-mentioned admissibility conditions on the quantized momenta, which can be seen as analogues of the Bohr-Wilson-Sommerfeld conditions for completely integrable systems. We then describe our reduction-compatible polarization, and demonstrate a one-to-one correspondence between polarized sections on the unreduced and reduced spaces. Finally, we describe a factorization of the reduced prequantum bundle, suggested by the structure of the underlying reduced symplectic manifold. This in turn induces a factorization of the space of polarized sections that agrees

  15. Deformation of second and third quantization

    NASA Astrophysics Data System (ADS)

    Faizal, Mir

    2015-03-01

    In this paper, we will deform the second and third quantized theories by deforming the canonical commutation relations in such a way that they become consistent with the generalized uncertainty principle. Thus, we will first deform the second quantized commutator and obtain a deformed version of the Wheeler-DeWitt equation. Then we will further deform the third quantized theory by deforming the third quantized canonical commutation relation. This way we will obtain a deformed version of the third quantized theory for the multiverse.

  16. On quantization of matrix models

    NASA Astrophysics Data System (ADS)

    Starodubtsev, Artem

    2002-12-01

    The issue of non-perturbative background independent quantization of matrix models is addressed. The analysis is carried out by considering a simple matrix model which is a matrix extension of ordinary mechanics reduced to 0 dimension. It is shown that this model has an ordinary mechanical system evolving in time as a classical solution. But in this treatment the action principle admits a natural modification which results in algebraic relations describing quantum theory. The origin of quantization is similar to that in Adler's generalized quantum dynamics. The problem with extension of this formalism to many degrees of freedom is solved by packing all the degrees of freedom into a single matrix. The possibility to apply this scheme to various matrix models is discussed.

  17. Strain-induced one-dimensional Landau level quantization in corrugated graphene

    NASA Astrophysics Data System (ADS)

    Meng, Lan; He, Wen-Yu; Zheng, Hong; Liu, Mengxi; Yan, Hui; Yan, Wei; Chu, Zhao-Dong; Bai, Keke; Dou, Rui-Fen; Zhang, Yanfeng; Liu, Zhongfan; Nie, Jia-Cai; He, Lin

    2013-05-01

    Theoretical research has predicted that a ripple of graphene generates an effective gauge field on its low-energy electronic structure and could lead to Landau quantization. Here, we demonstrate using a combination of an experimental method (scanning tunneling microscopy) and a theoretical approach (tight-binding approximation) that Landau levels will form when the effective pseudomagnetic flux per ripple Φ˜(h2/la)Φ0 is larger than the flux quantum Φ0 (here, h is the height, l is the width of the ripple, and a is the nearest C-C bond length). The strain-induced gauge field in the ripple only results in one-dimensional (1D) Landau-level quantization along the ripple. Such 1D Landau quantization does not exist in two-dimensional systems in an external magnetic field. Its existence offers a unique opportunity to realize interesting electronic properties in strained graphene.

  18. Bloch theory and quantization of magnetic systems

    NASA Astrophysics Data System (ADS)

    Gruber, Michael J.

    2000-06-01

    Quantizing the motion of particles on a Riemannian manifold in the presence of a magnetic field poses the problems of existence and uniqueness of quantizations. Both of them are considered since the early days of geometric quantization but there is still some structural insight to gain from spectral theory. Following the work of Asch et al. (Magnetic Bloch analysis and Bochner Laplacians, J. Geom. Phys. 13 (3) (1994) 275-288) for the 2-torus we describe the relation between quantization on the manifold and Bloch theory on its covering space for more general compact manifolds.

  19. Quantization noise filtering in ADPCM systems

    NASA Astrophysics Data System (ADS)

    Gibson, J. D.

    1980-08-01

    Differential pulse code modulation (DPCM) systems utilizing adaptive quantizers and fixed or adaptive predictors are effective methods for voice encoding at data rates of 9.6 to 40 kbits/s. The principal performance limitation on these systems is the presence of quantization noise in the receiver output and the predictor feedback loop. An approach to reducing the quantization noise using sequential filtering methods based on estimation theory concepts is described. Several different filter structures are presented and the efficacy of the approach is illustrated via system simulations using actual speech. Signal-to-quantization noise ratio, sound spectrograms, and subjective listening tests are used for system performance evaluations.

  20. Adaptive image segmentation by quantization

    NASA Astrophysics Data System (ADS)

    Liu, Hui; Yun, David Y.

    1992-12-01

    Segmentation of images into textural homogeneous regions is a fundamental problem in an image understanding system. Most region-oriented segmentation approaches suffer from the problem of different thresholds selecting for different images. In this paper an adaptive image segmentation based on vector quantization is presented. It automatically segments images without preset thresholds. The approach contains a feature extraction module and a two-layer hierarchical clustering module, a vector quantizer (VQ) implemented by a competitive learning neural network in the first layer. A near-optimal competitive learning algorithm (NOLA) is employed to train the vector quantizer. NOLA combines the advantages of both Kohonen self- organizing feature map (KSFM) and K-means clustering algorithm. After the VQ is trained, the weights of the network and the number of input vectors clustered by each neuron form a 3- D topological feature map with separable hills aggregated by similar vectors. This overcomes the inability to visualize the geometric properties of data in a high-dimensional space for most other clustering algorithms. The second clustering algorithm operates in the feature map instead of the input set itself. Since the number of units in the feature map is much less than the number of feature vectors in the feature set, it is easy to check all peaks and find the `correct' number of clusters, also a key problem in current clustering techniques. In the experiments, we compare our algorithm with K-means clustering method on a variety of images. The results show that our algorithm achieves better performance.

  1. Quantization of general linear electrodynamics

    SciTech Connect

    Rivera, Sergio; Schuller, Frederic P.

    2011-03-15

    General linear electrodynamics allow for an arbitrary linear constitutive relation between the field strength 2-form and induction 2-form density if crucial hyperbolicity and energy conditions are satisfied, which render the theory predictive and physically interpretable. Taking into account the higher-order polynomial dispersion relation and associated causal structure of general linear electrodynamics, we carefully develop its Hamiltonian formulation from first principles. Canonical quantization of the resulting constrained system then results in a quantum vacuum which is sensitive to the constitutive tensor of the classical theory. As an application we calculate the Casimir effect in a birefringent linear optical medium.

  2. Breathers on quantized superfluid vortices.

    PubMed

    Salman, Hayder

    2013-10-18

    We consider the propagation of breathers along a quantized superfluid vortex. Using the correspondence between the local induction approximation (LIA) and the nonlinear Schrödinger equation, we identify a set of initial conditions corresponding to breather solutions of vortex motion governed by the LIA. These initial conditions, which give rise to a long-wavelength modulational instability, result in the emergence of large amplitude perturbations that are localized in both space and time. The emergent structures on the vortex filament are analogous to loop solitons but arise from the dual action of bending and twisting of the vortex. Although the breather solutions we study are exact solutions of the LIA equations, we demonstrate through full numerical simulations that their key emergent attributes carry over to vortex dynamics governed by the Biot-Savart law and to quantized vortices described by the Gross-Pitaevskii equation. The breather excitations can lead to self-reconnections, a mechanism that can play an important role within the crossover range of scales in superfluid turbulence. Moreover, the observation of breather solutions on vortices in a field model suggests that these solutions are expected to arise in a wide range of other physical contexts from classical vortices to cosmological strings. PMID:24182275

  3. Breathers on Quantized Superfluid Vortices

    NASA Astrophysics Data System (ADS)

    Salman, Hayder

    2013-10-01

    We consider the propagation of breathers along a quantized superfluid vortex. Using the correspondence between the local induction approximation (LIA) and the nonlinear Schrödinger equation, we identify a set of initial conditions corresponding to breather solutions of vortex motion governed by the LIA. These initial conditions, which give rise to a long-wavelength modulational instability, result in the emergence of large amplitude perturbations that are localized in both space and time. The emergent structures on the vortex filament are analogous to loop solitons but arise from the dual action of bending and twisting of the vortex. Although the breather solutions we study are exact solutions of the LIA equations, we demonstrate through full numerical simulations that their key emergent attributes carry over to vortex dynamics governed by the Biot-Savart law and to quantized vortices described by the Gross-Pitaevskii equation. The breather excitations can lead to self-reconnections, a mechanism that can play an important role within the crossover range of scales in superfluid turbulence. Moreover, the observation of breather solutions on vortices in a field model suggests that these solutions are expected to arise in a wide range of other physical contexts from classical vortices to cosmological strings.

  4. Quantization of higher spin fields

    SciTech Connect

    Wagenaar, J. W.; Rijken, T. A

    2009-11-15

    In this article we quantize (massive) higher spin (1{<=}j{<=}2) fields by means of Dirac's constrained Hamilton procedure both in the situation were they are totally free and were they are coupled to (an) auxiliary field(s). A full constraint analysis and quantization is presented by determining and discussing all constraints and Lagrange multipliers and by giving all equal times (anti)commutation relations. Also we construct the relevant propagators. In the free case we obtain the well-known propagators and show that they are not covariant, which is also well known. In the coupled case we do obtain covariant propagators (in the spin-3/2 case this requires b=0) and show that they have a smooth massless limit connecting perfectly to the massless case (with auxiliary fields). We notice that in our system of the spin-3/2 and spin-2 case the massive propagators coupled to conserved currents only have a smooth limit to the pure massless spin-propagator, when there are ghosts in the massive case.

  5. Weighted Bergman Kernels and Quantization}

    NASA Astrophysics Data System (ADS)

    Engliš, Miroslav

    Let Ω be a bounded pseudoconvex domain in CN, φ, ψ two positive functions on Ω such that - log ψ, - log φ are plurisubharmonic, and z∈Ω a point at which - log φ is smooth and strictly plurisubharmonic. We show that as k-->∞, the Bergman kernels with respect to the weights φkψ have an asymptotic expansion for x,y near z, where φ(x,y) is an almost-analytic extension of &\\phi(x)=φ(x,x) and similarly for ψ. Further, . If in addition Ω is of finite type, φ,ψ behave reasonably at the boundary, and - log φ, - log ψ are strictly plurisubharmonic on Ω, we obtain also an analogous asymptotic expansion for the Berezin transform and give applications to the Berezin quantization. Finally, for Ω smoothly bounded and strictly pseudoconvex and φ a smooth strictly plurisubharmonic defining function for Ω, we also obtain results on the Berezin-Toeplitz quantization.

  6. Integral quantizations with two basic examples

    SciTech Connect

    Bergeron, H.; Gazeau, J.P.

    2014-05-15

    The paper concerns integral quantization, a procedure based on operator-valued measure and resolution of the identity. We insist on covariance properties in the important case where group representation theory is involved. We also insist on the inherent probabilistic aspects of this classical–quantum map. The approach includes and generalizes coherent state quantization. Two applications based on group representation are carried out. The first one concerns the Weyl–Heisenberg group and the euclidean plane viewed as the corresponding phase space. We show that a world of quantizations exist, which yield the canonical commutation rule and the usual quantum spectrum of the harmonic oscillator. The second one concerns the affine group of the real line and gives rise to an interesting regularization of the dilation origin in the half-plane viewed as the corresponding phase space. -- Highlights: •Original approach to quantization based on (positive) operator-valued measures. •Includes Berezin–Klauder–Toeplitz and Weyl–Wigner quantizations. •Infinitely many such quantizations produce canonical commutation rule. •Set of objects to be quantized is enlarged in order to include singular functions or distributions. •Are given illuminating examples like quantum angle and affine or wavelet quantization.

  7. Quantization of Electromagnetic Fields in Cavities

    NASA Technical Reports Server (NTRS)

    Kakazu, Kiyotaka; Oshiro, Kazunori

    1996-01-01

    A quantization procedure for the electromagnetic field in a rectangular cavity with perfect conductor walls is presented, where a decomposition formula of the field plays an essential role. All vector mode functions are obtained by using the decomposition. After expanding the field in terms of the vector mode functions, we get the quantized electromagnetic Hamiltonian.

  8. Logarithmic Adaptive Quantization Projection for Audio Watermarking

    NASA Astrophysics Data System (ADS)

    Zhao, Xuemin; Guo, Yuhong; Liu, Jian; Yan, Yonghong; Fu, Qiang

    In this paper, a logarithmic adaptive quantization projection (LAQP) algorithm for digital watermarking is proposed. Conventional quantization index modulation uses a fixed quantization step in the watermarking embedding procedure, which leads to poor fidelity. Moreover, the conventional methods are sensitive to value-metric scaling attack. The LAQP method combines the quantization projection scheme with a perceptual model. In comparison to some conventional quantization methods with a perceptual model, the LAQP only needs to calculate the perceptual model in the embedding procedure, avoiding the decoding errors introduced by the difference of the perceptual model used in the embedding and decoding procedure. Experimental results show that the proposed watermarking scheme keeps a better fidelity and is robust against the common signal processing attack. More importantly, the proposed scheme is invariant to value-metric scaling attack.

  9. Quantized conic sections; quantum gravity

    SciTech Connect

    Noyes, H.P.

    1993-03-15

    Starting from free relativistic particles whose position and velocity can only be measured to a precision < {Delta}r{Delta}v > {equivalent_to} {plus_minus} k/2 meter{sup 2}sec{sup {minus}1} , we use the relativistic conservation laws to define the relative motion of the coordinate r = r{sub 1} {minus} r{sub 2} of two particles of mass m{sub 1}, m{sub 2} and relative velocity v = {beta}c = {sub (k{sub 1} + k{sub 2}})/ {sup (k{sub 1} {minus} k{sub 2}}) in terms of conic section equation v{sup 2} = {Gamma} [2/r {plus_minus} 1/a] where ``+`` corresponds to hyperbolic and ``{minus}`` to elliptical trajectories. Equation is quantized by expressing Kepler`s Second Law as conservation of angular niomentum per unit mass in units of k. Principal quantum number is n {equivalent_to} j + {1/2} with``square`` {sub T{sup 2}}/{sup A{sup 2}} = (n {minus}1)nk{sup 2} {equivalent_to} {ell}{sub {circle_dot}}({ell}{sub {circle_dot}} + 1)k{sup 2}. Here {ell}{sub {circle_dot}} = n {minus} 1 is the angular momentumquantum number for circular orbits. In a sense, we obtain ``spin`` from this quantization. Since {Gamma}/a cannot reach c{sup 2} without predicting either circular or asymptotic velocities equal to the limiting velocity for particulate motion, we can also quantize velocities in terms of the principle quantum number by defining {beta}{sub n}/{sup 2} = {sub c{sup 2}}/{sup v{sub n{sup 2}} = {sub n{sup 2}}/1({sub c{sup 2}}a/{Gamma}) = ({sub nN{Gamma}}/1){sup 2}. For the Z{sub 1}e,Z{sub 2}e of the same sign and {alpha} {triple_bond} e{sup 2}/m{sub e}{kappa}c, we find that {Gamma}/c{sup 2}a = Z{sub 1}Z{sub 2}{alpha}. The characteristic Coulomb parameter {eta}(n) {triple_bond} Z{sub 1}Z{sub 2}{alpha}/{beta}{sub n} = Z{sub 1}Z{sub 2}nN{sub {Gamma}} then specifies the penetration factor C{sup 2}({eta}) = 2{pi}{eta}/(e{sup 2{pi}{eta}} {minus} 1}). For unlike charges, with {eta} still taken as positive, C{sup 2}({minus}{eta}) = 2{pi}{eta}/(1 {minus} e{sup {minus}2{pi}{eta}}).

  10. Quantized ionic conductance in nanopores

    SciTech Connect

    Zwolak, Michael; Lagerqvist, Johan; Di Ventra, Massimilliano

    2009-01-01

    Ionic transport in nanopores is a fundamentally and technologically important problem in view of its ubiquitous occurrence in biological processes and its impact on DNA sequencing applications. Using microscopic calculations, we show that ion transport may exhibit strong non-liDearities as a function of the pore radius reminiscent of the conductance quantization steps as a function of the transverse cross section of quantum point contacts. In the present case, however, conductance steps originate from the break up of the hydration layers that form around ions in aqueous solution. Once in the pore, the water molecules form wavelike structures due to multiple scattering at the surface of the pore walls and interference with the radial waves around the ion. We discuss these effects as well as the conditions under which the step-like features in the ionic conductance should be experimentally observable.

  11. Loop quantization of Schwarzschild interior revisited

    NASA Astrophysics Data System (ADS)

    Singh, Parampreet; Corichi, Alejandro

    2016-03-01

    Several studies of different inequivalent loop quantizations have shown, that there exists no fully satisfactory quantum theory for the Schwarzschild interior. Existing quantizations fail either on dependence on the fiducial structure or on the lack of the classical limit. Here we put forward a novel viewpoint to construct the quantum theory that overcomes all of the known problems of the existing quantizations. It is shown that the quantum gravitational constraint is well defined past the singularity and that its effective dynamics possesses a bounce into an expanding regime. The classical singularity is avoided, and a semiclassical spacetime satisfying vacuum Einstein's equations is recovered on the ``other side'' of the bounce. We argue that such metric represents the interior region of a white-hole spacetime, but for which the corresponding ``white-hole mass'' differs from the original black hole mass. We compare the differences in physical implications with other quantizations.

  12. Topologies on quantum topoi induced by quantization

    SciTech Connect

    Nakayama, Kunji

    2013-07-15

    In the present paper, we consider effects of quantization in a topos approach of quantum theory. A quantum system is assumed to be coded in a quantum topos, by which we mean the topos of presheaves on the context category of commutative subalgebras of a von Neumann algebra of bounded operators on a Hilbert space. A classical system is modeled by a Lie algebra of classical observables. It is shown that a quantization map from the classical observables to self-adjoint operators on the Hilbert space naturally induces geometric morphisms from presheaf topoi related to the classical system to the quantum topos. By means of the geometric morphisms, we give Lawvere-Tierney topologies on the quantum topos (and their equivalent Grothendieck topologies on the context category). We show that, among them, there exists a canonical one which we call a quantization topology. We furthermore give an explicit expression of a sheafification functor associated with the quantization topology.

  13. Towards quantized current arbitrary waveform synthesis

    NASA Astrophysics Data System (ADS)

    Mirovsky, P.; Fricke, L.; Hohls, F.; Kaestner, B.; Leicht, Ch.; Pierz, K.; Melcher, J.; Schumacher, H. W.

    2013-06-01

    The generation of ac modulated quantized current waveforms using a semiconductor non-adiabatic single electron pump is demonstrated. In standard operation, the single electron pump generates a quantized output current of I = ef, where e is the charge of the electron and f is the pumping frequency. Suitable frequency modulation of f allows the generation of ac modulated output currents with different characteristics. By sinusoidal and saw tooth like modulation of f accordingly modulated quantized current waveforms with kHz modulation frequencies and peak currents up to 100 pA are obtained. Such ac quantized current sources could find applications ranging from precision ac metrology to on-chip signal generation.

  14. Color quantization and processing by Fibonacci lattices.

    PubMed

    Mojsilovic, A; Soljanin, E

    2001-01-01

    Color quantization is sampling of three-dimensional (3-D) color spaces (such as RGB or Lab) which results in a discrete subset of colors known as a color codebook or palette. It is extensively used for display, transfer, and storage of natural images in Internet-based applications, computer graphics, and animation. We propose a sampling scheme which provides a uniform quantization of the Lab space. The idea is based on several results from number theory and phyllotaxy. The sampling algorithm is very much systematic and allows easy design of universal (image-independent) color codebooks for a given set of parameters. The codebook structure allows fast quantization and ordered dither of color images. The display quality of images quantized by the proposed color codebooks is comparable with that of image-dependent quantizers. Most importantly, the quantized images are more amenable to the type of processing used for grayscale ones. Methods for processing grayscale images cannot be simply extended to color images because they rely on the fact that each gray-level is described by a single number and the fact that a relation of full order can be easily established on the set of those numbers. Color spaces (such as RGB or Lab) are, on the other hand, 3-D. The proposed color quantization, i.e., color space sampling and numbering of sampled points, makes methods for processing grayscale images extendible to color images. We illustrate possible processing of color images by first introducing the basic average and difference operations and then implementing edge detection and compression of color quantized images. PMID:18255513

  15. Controlling charge quantization with quantum fluctuations

    NASA Astrophysics Data System (ADS)

    Jezouin, S.; Iftikhar, Z.; Anthore, A.; Parmentier, F. D.; Gennser, U.; Cavanna, A.; Ouerghi, A.; Levkivskyi, I. P.; Idrisov, E.; Sukhorukov, E. V.; Glazman, L. I.; Pierre, F.

    2016-08-01

    In 1909, Millikan showed that the charge of electrically isolated systems is quantized in units of the elementary electron charge e. Today, the persistence of charge quantization in small, weakly connected conductors allows for circuits in which single electrons are manipulated, with applications in, for example, metrology, detectors and thermometry. However, as the connection strength is increased, the discreteness of charge is progressively reduced by quantum fluctuations. Here we report the full quantum control and characterization of charge quantization. By using semiconductor-based tunable elemental conduction channels to connect a micrometre-scale metallic island to a circuit, we explore the complete evolution of charge quantization while scanning the entire range of connection strengths, from a very weak (tunnel) to a perfect (ballistic) contact. We observe, when approaching the ballistic limit, that charge quantization is destroyed by quantum fluctuations, and scales as the square root of the residual probability for an electron to be reflected across the quantum channel; this scaling also applies beyond the different regimes of connection strength currently accessible to theory. At increased temperatures, the thermal fluctuations result in an exponential suppression of charge quantization and in a universal square-root scaling, valid for all connection strengths, in agreement with expectations. Besides being pertinent for the improvement of single-electron circuits and their applications, and for the metal–semiconductor hybrids relevant to topological quantum computing, knowledge of the quantum laws of electricity will be essential for the quantum engineering of future nanoelectronic devices.

  16. A recursive technique for adaptive vector quantization

    NASA Technical Reports Server (NTRS)

    Lindsay, Robert A.

    1989-01-01

    Vector Quantization (VQ) is fast becoming an accepted, if not preferred method for image compression. The VQ performs well when compressing all types of imagery including Video, Electro-Optical (EO), Infrared (IR), Synthetic Aperture Radar (SAR), Multi-Spectral (MS), and digital map data. The only requirement is to change the codebook to switch the compressor from one image sensor to another. There are several approaches for designing codebooks for a vector quantizer. Adaptive Vector Quantization is a procedure that simultaneously designs codebooks as the data is being encoded or quantized. This is done by computing the centroid as a recursive moving average where the centroids move after every vector is encoded. When computing the centroid of a fixed set of vectors the resultant centroid is identical to the previous centroid calculation. This method of centroid calculation can be easily combined with VQ encoding techniques. The defined quantizer changes after every encoded vector by recursively updating the centroid of minimum distance which is the selected by the encoder. Since the quantizer is changing definition or states after every encoded vector, the decoder must now receive updates to the codebook. This is done as side information by multiplexing bits into the compressed source data.

  17. Controlling charge quantization with quantum fluctuations.

    PubMed

    Jezouin, S; Iftikhar, Z; Anthore, A; Parmentier, F D; Gennser, U; Cavanna, A; Ouerghi, A; Levkivskyi, I P; Idrisov, E; Sukhorukov, E V; Glazman, L I; Pierre, F

    2016-08-01

    In 1909, Millikan showed that the charge of electrically isolated systems is quantized in units of the elementary electron charge e. Today, the persistence of charge quantization in small, weakly connected conductors allows for circuits in which single electrons are manipulated, with applications in, for example, metrology, detectors and thermometry. However, as the connection strength is increased, the discreteness of charge is progressively reduced by quantum fluctuations. Here we report the full quantum control and characterization of charge quantization. By using semiconductor-based tunable elemental conduction channels to connect a micrometre-scale metallic island to a circuit, we explore the complete evolution of charge quantization while scanning the entire range of connection strengths, from a very weak (tunnel) to a perfect (ballistic) contact. We observe, when approaching the ballistic limit, that charge quantization is destroyed by quantum fluctuations, and scales as the square root of the residual probability for an electron to be reflected across the quantum channel; this scaling also applies beyond the different regimes of connection strength currently accessible to theory. At increased temperatures, the thermal fluctuations result in an exponential suppression of charge quantization and in a universal square-root scaling, valid for all connection strengths, in agreement with expectations. Besides being pertinent for the improvement of single-electron circuits and their applications, and for the metal-semiconductor hybrids relevant to topological quantum computing, knowledge of the quantum laws of electricity will be essential for the quantum engineering of future nanoelectronic devices.

  18. Perceptual vector quantization for video coding

    NASA Astrophysics Data System (ADS)

    Valin, Jean-Marc; Terriberry, Timothy B.

    2015-03-01

    This paper applies energy conservation principles to the Daala video codec using gain-shape vector quantization to encode a vector of AC coefficients as a length (gain) and direction (shape). The technique originates from the CELT mode of the Opus audio codec, where it is used to conserve the spectral envelope of an audio signal. Conserving energy in video has the potential to preserve textures rather than low-passing them. Explicitly quantizing a gain allows a simple contrast masking model with no signaling cost. Vector quantizing the shape keeps the number of degrees of freedom the same as scalar quantization, avoiding redundancy in the representation. We demonstrate how to predict the vector by transforming the space it is encoded in, rather than subtracting off the predictor, which would make energy conservation impossible. We also derive an encoding of the vector-quantized codewords that takes advantage of their non-uniform distribution. We show that the resulting technique outperforms scalar quantization by an average of 0.90 dB on still images, equivalent to a 24.8% reduction in bitrate at equal quality, while for videos, the improvement averages 0.83 dB, equivalent to a 13.7% reduction in bitrate.

  19. Controlling charge quantization with quantum fluctuations

    NASA Astrophysics Data System (ADS)

    Jezouin, S.; Iftikhar, Z.; Anthore, A.; Parmentier, F. D.; Gennser, U.; Cavanna, A.; Ouerghi, A.; Levkivskyi, I. P.; Idrisov, E.; Sukhorukov, E. V.; Glazman, L. I.; Pierre, F.

    2016-08-01

    In 1909, Millikan showed that the charge of electrically isolated systems is quantized in units of the elementary electron charge e. Today, the persistence of charge quantization in small, weakly connected conductors allows for circuits in which single electrons are manipulated, with applications in, for example, metrology, detectors and thermometry. However, as the connection strength is increased, the discreteness of charge is progressively reduced by quantum fluctuations. Here we report the full quantum control and characterization of charge quantization. By using semiconductor-based tunable elemental conduction channels to connect a micrometre-scale metallic island to a circuit, we explore the complete evolution of charge quantization while scanning the entire range of connection strengths, from a very weak (tunnel) to a perfect (ballistic) contact. We observe, when approaching the ballistic limit, that charge quantization is destroyed by quantum fluctuations, and scales as the square root of the residual probability for an electron to be reflected across the quantum channel; this scaling also applies beyond the different regimes of connection strength currently accessible to theory. At increased temperatures, the thermal fluctuations result in an exponential suppression of charge quantization and in a universal square-root scaling, valid for all connection strengths, in agreement with expectations. Besides being pertinent for the improvement of single-electron circuits and their applications, and for the metal-semiconductor hybrids relevant to topological quantum computing, knowledge of the quantum laws of electricity will be essential for the quantum engineering of future nanoelectronic devices.

  20. Controlling charge quantization with quantum fluctuations.

    PubMed

    Jezouin, S; Iftikhar, Z; Anthore, A; Parmentier, F D; Gennser, U; Cavanna, A; Ouerghi, A; Levkivskyi, I P; Idrisov, E; Sukhorukov, E V; Glazman, L I; Pierre, F

    2016-08-01

    In 1909, Millikan showed that the charge of electrically isolated systems is quantized in units of the elementary electron charge e. Today, the persistence of charge quantization in small, weakly connected conductors allows for circuits in which single electrons are manipulated, with applications in, for example, metrology, detectors and thermometry. However, as the connection strength is increased, the discreteness of charge is progressively reduced by quantum fluctuations. Here we report the full quantum control and characterization of charge quantization. By using semiconductor-based tunable elemental conduction channels to connect a micrometre-scale metallic island to a circuit, we explore the complete evolution of charge quantization while scanning the entire range of connection strengths, from a very weak (tunnel) to a perfect (ballistic) contact. We observe, when approaching the ballistic limit, that charge quantization is destroyed by quantum fluctuations, and scales as the square root of the residual probability for an electron to be reflected across the quantum channel; this scaling also applies beyond the different regimes of connection strength currently accessible to theory. At increased temperatures, the thermal fluctuations result in an exponential suppression of charge quantization and in a universal square-root scaling, valid for all connection strengths, in agreement with expectations. Besides being pertinent for the improvement of single-electron circuits and their applications, and for the metal-semiconductor hybrids relevant to topological quantum computing, knowledge of the quantum laws of electricity will be essential for the quantum engineering of future nanoelectronic devices. PMID:27488797

  1. Quantization of Generally Covariant Systems

    NASA Astrophysics Data System (ADS)

    Sforza, Daniel M.

    2000-12-01

    Finite dimensional models that mimic the constraint structure of Einstein's General Relativity are quantized in the framework of BRST and Dirac's canonical formalisms. The first system to be studied is one featuring a constraint quadratic in the momenta (the "super-Hamiltonian") and a set of constraints linear in the momenta (the "supermomentum" constraints). The starting point is to realize that the ghost contributions to the supermomentum constraint operators can be read in terms of the natural volume induced by the constraints in the orbits. This volume plays a fundamental role in the construction of the quadratic sector of the nilpotent BRST charge. It is shown that the quantum theory is invariant under scaling of the super-Hamiltonian. As long as the system has an intrinsic time, this property translates in a contribution of the potential to the kinetic term. In this aspect, the results substantially differ from other works where the scaling invariance is forced by introducing a coupling to the curvature. The contribution of the potential, far from being unnatural, is beautifully justified in the light of the Jacobi's principle. Then, it is shown that the obtained results can be extended to systems with extrinsic time. In this case, if the metric has a conformal temporal Killing vector and the potential exhibits a suitable behavior with respect to it, the role played by the potential in the case of intrinsic time is now played by the norm of the Killing vector. Finally, the results for the previous cases are extended to a system featuring two super-Hamiltonian constraints. This step is extremely important due to the fact that General Relativity features an infinite number of such constraints satisfying a non trivial algebra among themselves.

  2. Recovery of quantized compressed sensing measurements

    NASA Astrophysics Data System (ADS)

    Tsagkatakis, Grigorios; Tsakalides, Panagiotis

    2015-03-01

    Compressed Sensing (CS) is a novel mathematical framework that has revolutionized modern signal and image acquisition architectures ranging from one-pixel cameras, to range imaging and medical ultrasound imaging. According to CS, a sparse signal, or a signal that can be sparsely represented in an appropriate collection of elementary examples, can be recovered from a small number of random linear measurements. However, real life systems may introduce non-linearities in the encoding in order to achieve a particular goal. Quantization of the acquired measurements is an example of such a non-linearity introduced in order to reduce storage and communications requirements. In this work, we consider the case of scalar quantization of CS measurements and propose a novel recovery mechanism that enforces the constraints associated with the quantization processes during recovery. The proposed recovery mechanism, termed Quantized Orthogonal Matching Pursuit (Q-OMP) is based on a modification of the OMP greedy sparsity seeking algorithm where the process of quantization is explicit considered during decoding. Simulation results on the recovery of images acquired by a CS approach reveal that the modified framework is able to achieve significantly higher reconstruction performance compared to its naive counterpart under a wide range of sampling rates and sensing parameters, at a minimum cost in computational complexity.

  3. Smooth big bounce from affine quantization

    NASA Astrophysics Data System (ADS)

    Bergeron, Hervé; Dapor, Andrea; Gazeau, Jean Pierre; Małkiewicz, Przemysław

    2014-04-01

    We examine the possibility of dealing with gravitational singularities on a quantum level through the use of coherent state or wavelet quantization instead of canonical quantization. We consider the Robertson-Walker metric coupled to a perfect fluid. It is the simplest model of a gravitational collapse, and the results obtained here may serve as a useful starting point for more complex investigations in the future. We follow a quantization procedure based on affine coherent states or wavelets built from the unitary irreducible representation of the affine group of the real line with positive dilation. The main issue of our approach is the appearance of a quantum centrifugal potential allowing for regularization of the singularity, essential self-adjointness of the Hamiltonian, and unambiguous quantum dynamical evolution.

  4. Single Abrikosov vortices as quantized information bits.

    PubMed

    Golod, T; Iovan, A; Krasnov, V M

    2015-10-12

    Superconducting digital devices can be advantageously used in future supercomputers because they can greatly reduce the dissipation power and increase the speed of operation. Non-volatile quantized states are ideal for the realization of classical Boolean logics. A quantized Abrikosov vortex represents the most compact magnetic object in superconductors, which can be utilized for creation of high-density digital cryoelectronics. In this work we provide a proof of concept for Abrikosov-vortex-based random access memory cell, in which a single vortex is used as an information bit. We demonstrate high-endurance write operation and two different ways of read-out using a spin valve or a Josephson junction. These memory cells are characterized by an infinite magnetoresistance between 0 and 1 states, a short access time, a scalability to nm sizes and an extremely low write energy. Non-volatility and perfect reproducibility are inherent for such a device due to the quantized nature of the vortex.

  5. Single Abrikosov vortices as quantized information bits

    NASA Astrophysics Data System (ADS)

    Golod, T.; Iovan, A.; Krasnov, V. M.

    2015-10-01

    Superconducting digital devices can be advantageously used in future supercomputers because they can greatly reduce the dissipation power and increase the speed of operation. Non-volatile quantized states are ideal for the realization of classical Boolean logics. A quantized Abrikosov vortex represents the most compact magnetic object in superconductors, which can be utilized for creation of high-density digital cryoelectronics. In this work we provide a proof of concept for Abrikosov-vortex-based random access memory cell, in which a single vortex is used as an information bit. We demonstrate high-endurance write operation and two different ways of read-out using a spin valve or a Josephson junction. These memory cells are characterized by an infinite magnetoresistance between 0 and 1 states, a short access time, a scalability to nm sizes and an extremely low write energy. Non-volatility and perfect reproducibility are inherent for such a device due to the quantized nature of the vortex.

  6. Subband Image Coding with Jointly Optimized Quantizers

    NASA Technical Reports Server (NTRS)

    Kossentini, Faouzi; Chung, Wilson C.; Smith Mark J. T.

    1995-01-01

    An iterative design algorithm for the joint design of complexity- and entropy-constrained subband quantizers and associated entropy coders is proposed. Unlike conventional subband design algorithms, the proposed algorithm does not require the use of various bit allocation algorithms. Multistage residual quantizers are employed here because they provide greater control of the complexity-performance tradeoffs, and also because they allow efficient and effective high-order statistical modeling. The resulting subband coder exploits statistical dependencies within subbands, across subbands, and across stages, mainly through complexity-constrained high-order entropy coding. Experimental results demonstrate that the complexity-rate-distortion performance of the new subband coder is exceptional.

  7. Observation of Quantized and Partial Quantized Conductance in Polymer-Suspended Graphene Nanoplatelets

    NASA Astrophysics Data System (ADS)

    Kang, Yuhong; Ruan, Hang; Claus, Richard O.; Heremans, Jean; Orlowski, Marius

    2016-04-01

    Quantized conductance is observed at zero magnetic field and room temperature in metal-insulator-metal structures with graphene submicron-sized nanoplatelets embedded in a 3-hexylthiophene (P3HT) polymer layer. In devices with medium concentration of graphene platelets, integer multiples of G o = 2 e 2/ h (=12.91 kΩ-1), and in some devices partially quantized including a series of with ( n/7) × G o, steps are observed. Such an organic memory device exhibits reliable memory operation with an on/off ratio of more than 10. We attribute the quantized conductance to the existence of a 1-D electron waveguide along the conductive path. The partial quantized conductance results likely from imperfect transmission coefficient due to impedance mismatch of the first waveguide modes.

  8. Deterministic Quantization by Dynamical Boundary Conditions

    SciTech Connect

    Dolce, Donatello

    2010-06-15

    We propose an unexplored quantization method. It is based on the assumption of dynamical space-time intrinsic periodicities for relativistic fields, which in turn can be regarded as dual to extra-dimensional fields. As a consequence we obtain a unified and consistent interpretation of Special Relativity and Quantum Mechanics in terms of Deterministic Geometrodynamics.

  9. Nonlinear ADC with digitally selectable quantizing characteristics

    SciTech Connect

    Lygouras, J.N.

    1988-10-01

    In this paper a method is presented for generating linear or nonlinear functions digitally. The Nonlinear Analog to Digital Conversion (NLADC) is accomplished using the Pulse Width Modulation (PWM) of the analog input voltage. The conversion is done according to a special Quantizing Characteristic Function (Q.C.F.), which depends on the specific application. This special Q.C.F. sampled, quantized and coded has been stored in an EPROM. The quantizing characteristic can be any monotonically increasing function of any type (e.g. linear, square, exponential e.t.c.) resulting in a very flexible linear or nonlinear A/D converter. More than one Q.C.F. can be stored in the EPROM. Such a NLADC could be used for the expansion or compression of the dynamic range in Nuclear Science measurements, in robotics for the cartesian space path planning, as in the case of Pulse Code Modulation (PCM) nonlinear quantization, e.t.c. The corresponding nonlinear Digital to Analog Converter is described.

  10. Bolometric Device Based on Fluxoid Quantization

    NASA Technical Reports Server (NTRS)

    Bonetti, Joseph A.; Kenyon, Matthew E.; Leduc, Henry G.; Day, Peter K.

    2010-01-01

    The temperature dependence of fluxoid quantization in a superconducting loop. The sensitivity of the device is expected to surpass that of other superconducting- based bolometric devices, such as superconducting transition-edge sensors and superconducting nanowire devices. Just as important, the proposed device has advantages in sample fabrication.

  11. Deformation quantization and boundary value problems

    NASA Astrophysics Data System (ADS)

    Tarkhanov, Nikolai

    2016-11-01

    We describe a natural construction of deformation quantization on a compact symplectic manifold with boundary. On the algebra of quantum observables a trace functional is defined which as usual annihilates the commutators. This gives rise to an index as the trace of the unity element. We formulate the index theorem as a conjecture and examine it by the classical harmonic oscillator.

  12. Hysteresis in a quantized superfluid 'atomtronic' circuit.

    PubMed

    Eckel, Stephen; Lee, Jeffrey G; Jendrzejewski, Fred; Murray, Noel; Clark, Charles W; Lobb, Christopher J; Phillips, William D; Edwards, Mark; Campbell, Gretchen K

    2014-02-13

    Atomtronics is an emerging interdisciplinary field that seeks to develop new functional methods by creating devices and circuits where ultracold atoms, often superfluids, have a role analogous to that of electrons in electronics. Hysteresis is widely used in electronic circuits-it is routinely observed in superconducting circuits and is essential in radio-frequency superconducting quantum interference devices. Furthermore, it is as fundamental to superfluidity (and superconductivity) as quantized persistent currents, critical velocity and Josephson effects. Nevertheless, despite multiple theoretical predictions, hysteresis has not been previously observed in any superfluid, atomic-gas Bose-Einstein condensate. Here we directly detect hysteresis between quantized circulation states in an atomtronic circuit formed from a ring of superfluid Bose-Einstein condensate obstructed by a rotating weak link (a region of low atomic density). This contrasts with previous experiments on superfluid liquid helium where hysteresis was observed directly in systems in which the quantization of flow could not be observed, and indirectly in systems that showed quantized flow. Our techniques allow us to tune the size of the hysteresis loop and to consider the fundamental excitations that accompany hysteresis. The results suggest that the relevant excitations involved in hysteresis are vortices, and indicate that dissipation has an important role in the dynamics. Controlled hysteresis in atomtronic circuits may prove to be a crucial feature for the development of practical devices, just as it has in electronic circuits such as memories, digital noise filters (for example Schmitt triggers) and magnetometers (for example superconducting quantum interference devices). PMID:24522597

  13. Hysteresis in a quantized superfluid 'atomtronic' circuit.

    PubMed

    Eckel, Stephen; Lee, Jeffrey G; Jendrzejewski, Fred; Murray, Noel; Clark, Charles W; Lobb, Christopher J; Phillips, William D; Edwards, Mark; Campbell, Gretchen K

    2014-02-13

    Atomtronics is an emerging interdisciplinary field that seeks to develop new functional methods by creating devices and circuits where ultracold atoms, often superfluids, have a role analogous to that of electrons in electronics. Hysteresis is widely used in electronic circuits-it is routinely observed in superconducting circuits and is essential in radio-frequency superconducting quantum interference devices. Furthermore, it is as fundamental to superfluidity (and superconductivity) as quantized persistent currents, critical velocity and Josephson effects. Nevertheless, despite multiple theoretical predictions, hysteresis has not been previously observed in any superfluid, atomic-gas Bose-Einstein condensate. Here we directly detect hysteresis between quantized circulation states in an atomtronic circuit formed from a ring of superfluid Bose-Einstein condensate obstructed by a rotating weak link (a region of low atomic density). This contrasts with previous experiments on superfluid liquid helium where hysteresis was observed directly in systems in which the quantization of flow could not be observed, and indirectly in systems that showed quantized flow. Our techniques allow us to tune the size of the hysteresis loop and to consider the fundamental excitations that accompany hysteresis. The results suggest that the relevant excitations involved in hysteresis are vortices, and indicate that dissipation has an important role in the dynamics. Controlled hysteresis in atomtronic circuits may prove to be a crucial feature for the development of practical devices, just as it has in electronic circuits such as memories, digital noise filters (for example Schmitt triggers) and magnetometers (for example superconducting quantum interference devices).

  14. Quantization of the chiral soliton in medium

    NASA Astrophysics Data System (ADS)

    Nagai, S.; Sawado, N.; Shiiki, N.

    2006-01-01

    Chiral solitons coupled with quarks in medium are studied based on the Wigner-Seitz approximation. The chiral quark soliton model is used to obtain the classical soliton solutions. To investigate nucleon and Δ in matter, the semi-classical quantization is performed by the cranking method. The saturation for nucleon matter and Δ matter are observed.

  15. Scalar-vector quantization of medical images.

    PubMed

    Mohsenian, N; Shahri, H; Nasrabadi, N M

    1996-01-01

    A new coding scheme based on the scalar-vector quantizer (SVQ) is developed for compression of medical images. The SVQ is a fixed rate encoder and its rate-distortion performance is close to that of optimal entropy-constrained scalar quantizers (ECSQs) for memoryless sources. The use of a fixed-rate quantizer is expected to eliminate some of the complexity of using variable-length scalar quantizers. When transmission of images over noisy channels is considered, our coding scheme does not suffer from error propagation that is typical of coding schemes using variable-length codes. For a set of magnetic resonance (MR) images, coding results obtained from SVQ and ECSQ at low bit rates are indistinguishable. Furthermore, our encoded images are perceptually indistinguishable from the original when displayed on a monitor. This makes our SVQ-based coder an attractive compression scheme for picture archiving and communication systems (PACS). PACS are currently under study for use in an all-digital radiology environment in hospitals, where reliable transmission, storage, and high fidelity reconstruction of images are desired. PMID:18285124

  16. Multiverse in the Third Quantized Formalism

    NASA Astrophysics Data System (ADS)

    Mir, Faizal

    2014-11-01

    In this paper we will analyze the third quantization of gravity in path integral formalism. We will use the time-dependent version of Wheeler—DeWitt equation to analyze the multiverse in this formalism. We will propose a mechanism for baryogenesis to occur in the multiverse, without violating the baryon number conservation.

  17. Visual data mining for quantized spatial data

    NASA Technical Reports Server (NTRS)

    Braverman, Amy; Kahn, Brian

    2004-01-01

    In previous papers we've shown how a well known data compression algorithm called Entropy-constrained Vector Quantization ( can be modified to reduce the size and complexity of very large, satellite data sets. In this paper, we descuss how to visualize and understand the content of such reduced data sets.

  18. Image compression using address-vector quantization

    NASA Astrophysics Data System (ADS)

    Nasrabadi, Nasser M.; Feng, Yushu

    1990-12-01

    A novel vector quantization scheme, the address-vector quantizer (A-VQ), is proposed which exploits the interblock correlation by encoding a group of blocks together using an address-codebook (AC). The AC is a set of address-codevectors (ACVs), each representing a combination of addresses or indices. Each element of the ACV is an address of an entry in the LBG-codebook, representing a vector-quantized block. The AC consists of an active (addressable) region and an inactive (nonaddressable) region. During encoding the ACVs in the AC are reordered adaptively to bring the most probable ACVs into the active region. When encoding an ACV, the active region is checked, and if such an address combination exists, its index is transmitted to the receiver. Otherwise, the address of each block is transmitted individually. The SNR of the images encoded by the A-VQ method is the same as that of a memoryless vector quantizer, but the bit rate is by a factor of approximately two.

  19. Optimized vector quantization with fuzzy distortion measure

    NASA Astrophysics Data System (ADS)

    Mitra, Sunanda; Pemmaraju, Suryalakshmi

    1996-06-01

    From the perspective of information theory, the design of vector quantizers (VQs) in optimizing the rate distortion function has been extensively studied. In practice, however, the existing VQ algorithms, often, suffer from a number of serious problems, e.g., long search process, codebook initialization, and getting trapped in local minima, inherent to most iterative processes. The generalized Lloyd algorithm, for designing VQs with embedded k-means clustering for codebook generation has been recently used by a number of researcher for efficient image coding by quantizing wavelet decomposed subimages. We present a new approach to vector quantization by generating such multiresolution codebooks using two different neuro-fuzzy clustering techniques that eliminate the existing problems. These clustering techniques integrate fuzzy optimization constraints from the fuzzy-C-means with self-organizing neural network architectures. In one of the new clustering techniques, a new distance measure has also been introduced. The resulting multiresolution codebooks generated from the wavelet decomposed images yield significant improvement in the coding process. The signal transformation and vector quantization stages together yield, at least, 64:1 bit rate reduction with good visual quality and acceptable peak signal to noise ratio (PSNR) and mean square error (MSE). Additional bit rate reduction can be easily obtained by employing conventional entropy encoding after the quantization stage. The performance of this new VQ coding technique has been compared to that of the well-known Linde, Buzo, and Gray (LBG) - VQ for a variety of image classes. The new VQ technique demonstrated superior ability for fast convergence with minimum distortion at similar bit rate reduction then the existing VQ technique for several classes of images/signals including standard test images and medical images in terms of mean-squared error (MSE), peak-signal-to- noise-ratio (PSNR), and visual quality.

  20. Video data compression using artificial neural network differential vector quantization

    NASA Technical Reports Server (NTRS)

    Krishnamurthy, Ashok K.; Bibyk, Steven B.; Ahalt, Stanley C.

    1991-01-01

    An artificial neural network vector quantizer is developed for use in data compression applications such as Digital Video. Differential Vector Quantization is used to preserve edge features, and a new adaptive algorithm, known as Frequency-Sensitive Competitive Learning, is used to develop the vector quantizer codebook. To develop real time performance, a custom Very Large Scale Integration Application Specific Integrated Circuit (VLSI ASIC) is being developed to realize the associative memory functions needed in the vector quantization algorithm. By using vector quantization, the need for Huffman coding can be eliminated, resulting in superior performance against channel bit errors than methods that use variable length codes.

  1. The Angular Momentum Dilemma and Born-Jordan Quantization

    NASA Astrophysics Data System (ADS)

    de Gosson, Maurice A.

    2016-10-01

    The rigorous equivalence of the Schrödinger and Heisenberg pictures requires that one uses Born-Jordan quantization in place of Weyl quantization. We confirm this by showing that the much discussed " angular momentum dilemma" disappears if one uses Born-Jordan quantization. We argue that the latter is the only physically correct quantization procedure. We also briefly discuss a possible redefinition of phase space quantum mechanics, where the usual Wigner distribution has to be replaced with a new quasi-distribution associated with Born-Jordan quantization, and which has proven to be successful in time-frequency analysis.

  2. A fully digital readout employing extended counting method to achieve very low quantization noise

    NASA Astrophysics Data System (ADS)

    Kayahan, Huseyin; Ceylan, Ömer; Yazici, Melik; Gurbuz, Yasar

    2013-06-01

    This paper presents a digital ROIC for staring type arrays with extending counting method to realize very low quantization noise while achieving a very high charge handling capacity. Current state of the art has shown that digital readouts with pulse frequency method can achieve charge handling capacities higher than 3Ge- with quantization noise higher than 1000e-. Even if the integration capacitance is reduced, it cannot be lower than 1-3 fF due to the parasitic capacitance of the comparator. For achieving a very low quantization noise of 200 electrons in a power efficient way, a new method based on measuring the time to measure the remaining charge on the integration capacitor is proposed. With this approach SNR of low flux pixels are significantly increased while large flux pixels can store electrons as high as 2.33Ge-. A prototype array of 32x32 pixels with 30μm pitch is implemented in 90nm CMOS process technology for verification. Simulation results are given for complete readout.

  3. Block adaptive quantization of Magellan SAR data

    NASA Technical Reports Server (NTRS)

    Kwok, Ronald; Johnson, William T. K.

    1989-01-01

    A report is presented on a data compression scheme that will be used to reduce the SAR data rate on the NASA Magellan mission to Venus. The spacecraft has only one scientific instrument, a radar system for imaging the surface, for altimetric profiling of the planet topography, and for measuring radiation from the planet surface. A straightforward implementation of the scientific requirements of the mission results in a data rate higher than can be accommodated by the available system bandwidth. A data-rate-reduction scheme which includes operation of the radar in burst mode and block-adaptive quantization of the SAR data is selected to satisfy the scientific requirements. Descriptions of the quantization scheme and its hardware implementation are given. Burst-mode SAR operation is also briefly discussed.

  4. Loop quantization of the Schwarzschild black hole.

    PubMed

    Gambini, Rodolfo; Pullin, Jorge

    2013-05-24

    We quantize spherically symmetric vacuum gravity without gauge fixing the diffeomorphism constraint. Through a rescaling, we make the algebra of Hamiltonian constraints Abelian, and therefore the constraint algebra is a true Lie algebra. This allows the completion of the Dirac quantization procedure using loop quantum gravity techniques. We can construct explicitly the exact solutions of the physical Hilbert space annihilated by all constraints. New observables living in the bulk appear at the quantum level (analogous to spin in quantum mechanics) that are not present at the classical level and are associated with the discrete nature of the spin network states of loop quantum gravity. The resulting quantum space-times resolve the singularity present in the classical theory inside black holes. PMID:23745855

  5. Quantized magnetoresistance in atomic-size contacts.

    PubMed

    Sokolov, Andrei; Zhang, Chunjuan; Tsymbal, Evgeny Y; Redepenning, Jody; Doudin, Bernard

    2007-03-01

    When the dimensions of a metallic conductor are reduced so that they become comparable to the de Broglie wavelengths of the conduction electrons, the absence of scattering results in ballistic electron transport and the conductance becomes quantized. In ferromagnetic metals, the spin angular momentum of the electrons results in spin-dependent conductance quantization and various unusual magnetoresistive phenomena. Theorists have predicted a related phenomenon known as ballistic anisotropic magnetoresistance (BAMR). Here we report the first experimental evidence for BAMR by observing a stepwise variation in the ballistic conductance of cobalt nanocontacts as the direction of an applied magnetic field is varied. Our results show that BAMR can be positive and negative, and exhibits symmetric and asymmetric angular dependences, consistent with theoretical predictions. PMID:18654248

  6. Loop quantization of the Schwarzschild black hole.

    PubMed

    Gambini, Rodolfo; Pullin, Jorge

    2013-05-24

    We quantize spherically symmetric vacuum gravity without gauge fixing the diffeomorphism constraint. Through a rescaling, we make the algebra of Hamiltonian constraints Abelian, and therefore the constraint algebra is a true Lie algebra. This allows the completion of the Dirac quantization procedure using loop quantum gravity techniques. We can construct explicitly the exact solutions of the physical Hilbert space annihilated by all constraints. New observables living in the bulk appear at the quantum level (analogous to spin in quantum mechanics) that are not present at the classical level and are associated with the discrete nature of the spin network states of loop quantum gravity. The resulting quantum space-times resolve the singularity present in the classical theory inside black holes.

  7. Second quantization in bit-string physics

    NASA Technical Reports Server (NTRS)

    Noyes, H. Pierre

    1993-01-01

    Using a new fundamental theory based on bit-strings, a finite and discrete version of the solutions of the free one particle Dirac equation as segmented trajectories with steps of length h/mc along the forward and backward light cones executed at velocity +/- c are derived. Interpreting the statistical fluctuations which cause the bends in these segmented trajectories as emission and absorption of radiation, these solutions are analogous to a fermion propagator in a second quantized theory. This allows us to interpret the mass parameter in the step length as the physical mass of the free particle. The radiation in interaction with it has the usual harmonic oscillator structure of a second quantized theory. How these free particle masses can be generated gravitationally using the combinatorial hierarchy sequence (3,10,137,2(sup 127) + 136), and some of the predictive consequences are sketched.

  8. Quantization of the nonlinear sigma model revisited

    NASA Astrophysics Data System (ADS)

    Nguyen, Timothy

    2016-08-01

    We revisit the subject of perturbatively quantizing the nonlinear sigma model in two dimensions from a rigorous, mathematical point of view. Our main contribution is to make precise the cohomological problem of eliminating potential anomalies that may arise when trying to preserve symmetries under quantization. The symmetries we consider are twofold: (i) diffeomorphism covariance for a general target manifold; (ii) a transitive group of isometries when the target manifold is a homogeneous space. We show that there are no anomalies in case (i) and that (ii) is also anomaly-free under additional assumptions on the target homogeneous space, in agreement with the work of Friedan. We carry out some explicit computations for the O(N)-model. Finally, we show how a suitable notion of the renormalization group establishes the Ricci flow as the one loop renormalization group flow of the nonlinear sigma model.

  9. Quantized Mechanics of Nanotubes and Bundles

    NASA Astrophysics Data System (ADS)

    Pugno, Nicola M.

    In this chapter, the mechanics of carbon nanotubes and related bundles is reviewed, with an eye to their application as ultra-sharp tips for scanning probe "nanoscopy". In particular, the role of thermodynamically unavoidable, atomistic defects with different sizes and shapes on the fracture strength, fatigue life, and elasticity is quantified, thanks to new quantized fracture mechanics approaches. The reader is introduced in a simple way to such innovative treatments at the beginning of the chapter.

  10. Capture and transparency in coarse quantized images.

    PubMed

    Morrone, M C; Burr, D C

    1997-09-01

    This study examines the effect of coarse quantization (blocking) on image recognition, and explores possible mechanisms. Thresholds for noise corruption showed that coarse quantization reduces drastically the recognizability of both faces and letters, well beyond the levels expected by equivalent blurring. Phase-shifting the spurious high frequencies introduced by the blocking (with an operation designed to leave both overall and local contrast unaffected, and feature localization) greatly improved recognizability of both faces and letters. For large phase shifts, the low spatial frequencies appear in transparency behind a grid structure of checks or lines. We also studied a more simple example of blocking, the checkerboard, that can be considered as a coarse quantized diagonal sinusoidal plaid. When one component of the plaid was contrast-inverted, it was seen in transparency against the checkerboard, while the other remained "captured" within the block structure. If the higher harmonics are then phase-shifted by pi, the contrast-reversed fundamental becomes captured and the other seen in transparency. Intermediate phase shifts of the higher harmonics cause intermediate effects, which we measured by adjusting the relative contrast of the fundamentals until neither orientation dominated. The contrast match varied considerably with the phase of the higher harmonics, over a range of about 1.5 log units. Simulations with the local energy model predicted qualitatively the results of the recognizability of both faces and letters, and quantitatively the apparent orientation of the modified checkerboard pattern. More generally, the model predicts the conditions under which an image will be "captured" by coarse quantization, or seen in transparency.

  11. Light-Front Quantization of Gauge Theories

    SciTech Connect

    Brodskey, Stanley

    2002-12-01

    Light-front wavefunctions provide a frame-independent representation of hadrons in terms of their physical quark and gluon degrees of freedom. The light-front Hamiltonian formalism provides new nonperturbative methods for obtaining the QCD spectrum and eigensolutions, including resolvant methods, variational techniques, and discretized light-front quantization. A new method for quantizing gauge theories in light-cone gauge using Dirac brackets to implement constraints is presented. In the case of the electroweak theory, this method of light-front quantization leads to a unitary and renormalizable theory of massive gauge particles, automatically incorporating the Lorentz and 't Hooft conditions as well as the Goldstone boson equivalence theorem. Spontaneous symmetry breaking is represented by the appearance of zero modes of the Higgs field leaving the light-front vacuum equal to the perturbative vacuum. I also discuss an ''event amplitude generator'' for automatically computing renormalized amplitudes in perturbation theory. The importance of final-state interactions for the interpretation of diffraction, shadowing, and single-spin asymmetries in inclusive reactions such as deep inelastic lepton-hadron scattering is emphasized.

  12. Single Abrikosov vortices as quantized information bits.

    PubMed

    Golod, T; Iovan, A; Krasnov, V M

    2015-01-01

    Superconducting digital devices can be advantageously used in future supercomputers because they can greatly reduce the dissipation power and increase the speed of operation. Non-volatile quantized states are ideal for the realization of classical Boolean logics. A quantized Abrikosov vortex represents the most compact magnetic object in superconductors, which can be utilized for creation of high-density digital cryoelectronics. In this work we provide a proof of concept for Abrikosov-vortex-based random access memory cell, in which a single vortex is used as an information bit. We demonstrate high-endurance write operation and two different ways of read-out using a spin valve or a Josephson junction. These memory cells are characterized by an infinite magnetoresistance between 0 and 1 states, a short access time, a scalability to nm sizes and an extremely low write energy. Non-volatility and perfect reproducibility are inherent for such a device due to the quantized nature of the vortex. PMID:26456592

  13. Single Abrikosov vortices as quantized information bits

    PubMed Central

    Golod, T.; Iovan, A.; Krasnov, V. M.

    2015-01-01

    Superconducting digital devices can be advantageously used in future supercomputers because they can greatly reduce the dissipation power and increase the speed of operation. Non-volatile quantized states are ideal for the realization of classical Boolean logics. A quantized Abrikosov vortex represents the most compact magnetic object in superconductors, which can be utilized for creation of high-density digital cryoelectronics. In this work we provide a proof of concept for Abrikosov-vortex-based random access memory cell, in which a single vortex is used as an information bit. We demonstrate high-endurance write operation and two different ways of read-out using a spin valve or a Josephson junction. These memory cells are characterized by an infinite magnetoresistance between 0 and 1 states, a short access time, a scalability to nm sizes and an extremely low write energy. Non-volatility and perfect reproducibility are inherent for such a device due to the quantized nature of the vortex. PMID:26456592

  14. Quantized Nambu-Poisson manifolds and n-Lie algebras

    NASA Astrophysics Data System (ADS)

    DeBellis, Joshua; Sämann, Christian; Szabo, Richard J.

    2010-12-01

    We investigate the geometric interpretation of quantized Nambu-Poisson structures in terms of noncommutative geometries. We describe an extension of the usual axioms of quantization in which classical Nambu-Poisson structures are translated to n-Lie algebras at quantum level. We demonstrate that this generalized procedure matches an extension of Berezin-Toeplitz quantization yielding quantized spheres, hyperboloids, and superspheres. The extended Berezin quantization of spheres is closely related to a deformation quantization of n-Lie algebras as well as the approach based on harmonic analysis. We find an interpretation of Nambu-Heisenberg n-Lie algebras in terms of foliations of {{R}}^n by fuzzy spheres, fuzzy hyperboloids, and noncommutative hyperplanes. Some applications to the quantum geometry of branes in M-theory are also briefly discussed.

  15. Analysis and Design of Logarithmic-type Dynamic Quantizer

    NASA Astrophysics Data System (ADS)

    Sugie, Toshiharu; Okamoto, Tetsuro

    This paper is concerned with quantized feedback control in the case where logarithmic-type dynamic quantizers are adopted instead of conventional static (memoryless) ones. First, when the plant and the state feedback controller are given, the admissible coarsest quantization density which guarantees quadratic stability of the closed loop system is given in a closed form, which does not depend on the choice of controller in contrast to the static quantizer case. Second, when the plant, the state feedback controller and the coarseness of the quantization density are given, we provide a design method of the dynamic quantizers via convex optimization. Third, these results are extended to the case of output feedback control systems. Finally, some numerical examples are given to demonstrate the effectiveness of the proposed method.

  16. Quantized Nambu-Poisson manifolds and n-Lie algebras

    SciTech Connect

    DeBellis, Joshua; Saemann, Christian; Szabo, Richard J.

    2010-12-15

    We investigate the geometric interpretation of quantized Nambu-Poisson structures in terms of noncommutative geometries. We describe an extension of the usual axioms of quantization in which classical Nambu-Poisson structures are translated to n-Lie algebras at quantum level. We demonstrate that this generalized procedure matches an extension of Berezin-Toeplitz quantization yielding quantized spheres, hyperboloids, and superspheres. The extended Berezin quantization of spheres is closely related to a deformation quantization of n-Lie algebras as well as the approach based on harmonic analysis. We find an interpretation of Nambu-Heisenberg n-Lie algebras in terms of foliations of R{sup n} by fuzzy spheres, fuzzy hyperboloids, and noncommutative hyperplanes. Some applications to the quantum geometry of branes in M-theory are also briefly discussed.

  17. Stochastic variational method as quantization scheme: Field quantization of the complex Klein-Gordon equation

    NASA Astrophysics Data System (ADS)

    Koide, T.; Kodama, T.

    2015-09-01

    The stochastic variational method (SVM) is the generalization of the variational approach to systems described by stochastic variables. In this paper, we investigate the applicability of SVM as an alternative field-quantization scheme, by considering the complex Klein-Gordon equation. There, the Euler-Lagrangian equation for the stochastic field variables leads to the functional Schrödinger equation, which can be interpreted as the Euler (ideal fluid) equation in the functional space. The present formulation is a quantization scheme based on commutable variables, so that there appears no ambiguity associated with the ordering of operators, e.g., in the definition of Noether charges.

  18. Semiclassical quantization of nonadiabatic systems with hopping periodic orbits.

    PubMed

    Fujii, Mikiya; Yamashita, Koichi

    2015-02-21

    We present a semiclassical quantization condition, i.e., quantum-classical correspondence, for steady states of nonadiabatic systems consisting of fast and slow degrees of freedom (DOFs) by extending Gutzwiller's trace formula to a nonadiabatic form. The quantum-classical correspondence indicates that a set of primitive hopping periodic orbits, which are invariant under time evolution in the phase space of the slow DOF, should be quantized. The semiclassical quantization is then applied to a simple nonadiabatic model and accurately reproduces exact quantum energy levels. In addition to the semiclassical quantization condition, we also discuss chaotic dynamics involved in the classical limit of nonadiabatic dynamics.

  19. Perceptually optimized quantization tables for H.264/AVC

    NASA Astrophysics Data System (ADS)

    Chen, Heng; Braeckman, Geert; Barbarien, Joeri; Munteanu, Adrian; Schelkens, Peter

    2010-08-01

    The H.264/AVC video coding standard currently represents the state-of-the-art in video compression technology. The initial version of the standard only supported a single quantization step size for all the coefficients in a transformed block. Later, support for custom quantization tables was added, which allows to independently specify the quantization step size for each coefficient in a transformed block. In this way, different quantization can be applied to the highfrequency and low-frequency coefficients, reflecting the human visual system's different sensitivity to high-frequency and low-frequency spatial variations in the signal. In this paper, we design custom quantization tables taking into account the properties of the human visual system as well as the viewing conditions. Our proposed design is based on a model for the human visual system's contrast sensitivity function, which specifies the contrast sensitivity in function of the spatial frequency of the signal. By calculating the spatial frequencies corresponding to each of the transform's basis functions, taking into account viewing distance and dot pitch of the screen, the sensitivity of the human visual system to variations in the transform coefficient corresponding to each basis function can be determined and used to define the corresponding quantization step size. Experimental results, whereby the video quality is measured using VQM, show that the designed quantization tables yield improved performance compared to uniform quantization and to the default quantization tables provided as a part of the reference encoder.

  20. Semiclassical quantization of nonadiabatic systems with hopping periodic orbits

    NASA Astrophysics Data System (ADS)

    Fujii, Mikiya; Yamashita, Koichi

    2015-02-01

    We present a semiclassical quantization condition, i.e., quantum-classical correspondence, for steady states of nonadiabatic systems consisting of fast and slow degrees of freedom (DOFs) by extending Gutzwiller's trace formula to a nonadiabatic form. The quantum-classical correspondence indicates that a set of primitive hopping periodic orbits, which are invariant under time evolution in the phase space of the slow DOF, should be quantized. The semiclassical quantization is then applied to a simple nonadiabatic model and accurately reproduces exact quantum energy levels. In addition to the semiclassical quantization condition, we also discuss chaotic dynamics involved in the classical limit of nonadiabatic dynamics.

  1. Semiclassical quantization of nonadiabatic systems with hopping periodic orbits

    SciTech Connect

    Fujii, Mikiya Yamashita, Koichi

    2015-02-21

    We present a semiclassical quantization condition, i.e., quantum–classical correspondence, for steady states of nonadiabatic systems consisting of fast and slow degrees of freedom (DOFs) by extending Gutzwiller’s trace formula to a nonadiabatic form. The quantum–classical correspondence indicates that a set of primitive hopping periodic orbits, which are invariant under time evolution in the phase space of the slow DOF, should be quantized. The semiclassical quantization is then applied to a simple nonadiabatic model and accurately reproduces exact quantum energy levels. In addition to the semiclassical quantization condition, we also discuss chaotic dynamics involved in the classical limit of nonadiabatic dynamics.

  2. Separable quantizations of Stäckel systems

    NASA Astrophysics Data System (ADS)

    Błaszak, Maciej; Marciniak, Krzysztof; Domański, Ziemowit

    2016-08-01

    In this article we prove that many Hamiltonian systems that cannot be separably quantized in the classical approach of Robertson and Eisenhart can be separably quantized if we extend the class of admissible quantizations through a suitable choice of Riemann space adapted to the Poisson geometry of the system. Actually, in this article we prove that for every quadratic in momenta Stäckel system (defined on 2 n dimensional Poisson manifold) for which Stäckel matrix consists of monomials in position coordinates there exist infinitely many quantizations-parametrized by n arbitrary functions-that turn this system into a quantum separable Stäckel system.

  3. Quantization effects in radiation spectroscopy based on digital pulse processing

    SciTech Connect

    Jordanov, V. T.; Jordanova, K. V.

    2011-07-01

    Radiation spectra represent inherently quantization data in the form of stacked channels of equal width. The spectrum is an experimental measurement of the discrete probability density function (PDF) of the detector pulse heights. The quantization granularity of the spectra depends on the total number of channels covering the full range of pulse heights. In analog pulse processing the total number of channels is equal to the total digital values produced by a spectroscopy analog-to-digital converter (ADC). In digital pulse processing each detector pulse is sampled and quantized by a fast ADC producing certain number of quantized numerical values. These digital values are linearly processed to obtain a digital quantity representing the peak of the digitally shaped pulse. Using digital pulse processing it is possible to acquire a spectrum with the total number of channels greater than the number of ADC values. Noise and sample averaging are important in the transformation of ADC quantized data into spectral quantized data. Analysis of this transformation is performed using an area sampling model of quantization. Spectrum differential nonlinearity (DNL) is shown to be related to the quantization at low noise levels and small number of averaged samples. Theoretical analysis and experimental measurements are used to obtain the condition to minimize the DNL due to quantization. (authors)

  4. The decoding method based on wavelet image En vector quantization

    NASA Astrophysics Data System (ADS)

    Liu, Chun-yang; Li, Hui; Wang, Tao

    2013-12-01

    With the rapidly progress of internet technology, large scale integrated circuit and computer technology, digital image processing technology has been greatly developed. Vector quantization technique plays a very important role in digital image compression. It has the advantages other than scalar quantization, which possesses the characteristics of higher compression ratio, simple algorithm of image decoding. Vector quantization, therefore, has been widely used in many practical fields. This paper will combine the wavelet analysis method and vector quantization En encoder efficiently, make a testing in standard image. The experiment result in PSNR will have a great improvement compared with the LBG algorithm.

  5. Canonical quantization of classical mechanics in curvilinear coordinates. Invariant quantization procedure

    SciTech Connect

    Błaszak, Maciej Domański, Ziemowit

    2013-12-15

    In the paper is presented an invariant quantization procedure of classical mechanics on the phase space over flat configuration space. Then, the passage to an operator representation of quantum mechanics in a Hilbert space over configuration space is derived. An explicit form of position and momentum operators as well as their appropriate ordering in arbitrary curvilinear coordinates is demonstrated. Finally, the extension of presented formalism onto non-flat case and related ambiguities of the process of quantization are discussed. -- Highlights: •An invariant quantization procedure of classical mechanics on the phase space over flat configuration space is presented. •The passage to an operator representation of quantum mechanics in a Hilbert space over configuration space is derived. •Explicit form of position and momentum operators and their appropriate ordering in curvilinear coordinates is shown. •The invariant form of Hamiltonian operators quadratic and cubic in momenta is derived. •The extension of presented formalism onto non-flat case and related ambiguities of the quantization process are discussed.

  6. Quantization of soluble classical constrained systems

    SciTech Connect

    Belhadi, Z.; Menas, F.; Bérard, A.; Mohrbach, H.

    2014-12-15

    The derivation of the brackets among coordinates and momenta for classical constrained systems is a necessary step toward their quantization. Here we present a new approach for the determination of the classical brackets which does neither require Dirac’s formalism nor the symplectic method of Faddeev and Jackiw. This approach is based on the computation of the brackets between the constants of integration of the exact solutions of the equations of motion. From them all brackets of the dynamical variables of the system can be deduced in a straightforward way.

  7. Phase-space quantization of field theory.

    SciTech Connect

    Curtright, T.; Zachos, C.

    1999-04-20

    In this lecture, a limited introduction of gauge invariance in phase-space is provided, predicated on canonical transformations in quantum phase-space. Exact characteristic trajectories are also specified for the time-propagating Wigner phase-space distribution function: they are especially simple--indeed, classical--for the quantized simple harmonic oscillator. This serves as the underpinning of the field theoretic Wigner functional formulation introduced. Scalar field theory is thus reformulated in terms of distributions in field phase-space. This is a pedagogical selection from work published and reported at the Yukawa Institute Workshop ''Gauge Theory and Integrable Models'', 26-29 January, 1999.

  8. Lattices of quantized vortices in polariton superfluids

    NASA Astrophysics Data System (ADS)

    Boulier, Thomas; Cancellieri, Emiliano; Sangouard, Nicolas D.; Hivet, Romain; Glorieux, Quentin; Giacobino, Élisabeth; Bramati, Alberto

    2016-10-01

    In this review, we will focus on the description of the recent studies conducted in the quest for the observation of lattices of quantized vortices in resonantly injected polariton superfluids. In particular, we will show how the implementation of optical traps for polaritons allows for the realization of vortex-antivortex lattices in confined geometries and how the development of a flexible method to inject a controlled orbital angular momentum (OAM) in such systems results in the observation of patterns of same-sign vortices.

  9. Quantization of soluble classical constrained systems

    NASA Astrophysics Data System (ADS)

    Belhadi, Z.; Menas, F.; Bérard, A.; Mohrbach, H.

    2014-12-01

    The derivation of the brackets among coordinates and momenta for classical constrained systems is a necessary step toward their quantization. Here we present a new approach for the determination of the classical brackets which does neither require Dirac's formalism nor the symplectic method of Faddeev and Jackiw. This approach is based on the computation of the brackets between the constants of integration of the exact solutions of the equations of motion. From them all brackets of the dynamical variables of the system can be deduced in a straightforward way.

  10. Conductance quantization in strongly disordered graphene ribbons

    NASA Astrophysics Data System (ADS)

    Ihnatsenka, S.; Kirczenow, G.

    2009-11-01

    We present numerical studies of conduction in graphene nanoribbons with different types of disorder. We find that even when defect scattering depresses the conductance to values two orders of magnitude lower than 2e2/h , equally spaced conductance plateaus occur at moderately low temperatures due to enhanced electron backscattering near subband edge energies if bulk vacancies are present in the ribbon. This work accounts quantitatively for the surprising conductance quantization observed by Lin [Phys. Rev. B 78, 161409(R) (2008)] in ribbons with such low conductances.

  11. Path integral quantization of generalized quantum electrodynamics

    SciTech Connect

    Bufalo, R.; Pimentel, B. M.; Zambrano, G. E. R.

    2011-02-15

    In this paper, a complete covariant quantization of generalized electrodynamics is shown through the path integral approach. To this goal, we first studied the Hamiltonian structure of the system following Dirac's methodology and, then, we followed the Faddeev-Senjanovic procedure to obtain the transition amplitude. The complete propagators (Schwinger-Dyson-Fradkin equations) of the correct gauge fixation and the generalized Ward-Fradkin-Takahashi identities are also obtained. Afterwards, an explicit calculation of one-loop approximations of all Green's functions and a discussion about the obtained results are presented.

  12. Lorenz gauge quantization in conformally flat spacetimes

    NASA Astrophysics Data System (ADS)

    Cresswell, Jesse C.; Vollick, Dan N.

    2015-04-01

    Recently it was shown that Dirac's method of quantizing constrained dynamical systems can be used to impose the Lorenz gauge condition in a four-dimensional cosmological spacetime. In this paper we use Dirac's method to impose the Lorenz gauge condition in a general four-dimensional conformally flat spacetime and find that there is no particle production. We show that in cosmological spacetimes with dimension D ≠4 there will be particle production when the scale factor changes, and we calculate the particle production due to a sudden change.

  13. Quantum mechanics, gravity and modified quantization relations.

    PubMed

    Calmet, Xavier

    2015-08-01

    In this paper, we investigate a possible energy scale dependence of the quantization rules and, in particular, from a phenomenological point of view, an energy scale dependence of an effective [Formula: see text] (reduced Planck's constant). We set a bound on the deviation of the value of [Formula: see text] at the muon scale from its usual value using measurements of the anomalous magnetic moment of the muon. Assuming that inflation has taken place, we can conclude that nature is described by a quantum theory at least up to an energy scale of about 10(16) GeV.

  14. A visual detection model for DCT coefficient quantization

    NASA Technical Reports Server (NTRS)

    Ahumada, Albert J., Jr.; Watson, Andrew B.

    1994-01-01

    The discrete cosine transform (DCT) is widely used in image compression and is part of the JPEG and MPEG compression standards. The degree of compression and the amount of distortion in the decompressed image are controlled by the quantization of the transform coefficients. The standards do not specify how the DCT coefficients should be quantized. One approach is to set the quantization level for each coefficient so that the quantization error is near the threshold of visibility. Results from previous work are combined to form the current best detection model for DCT coefficient quantization noise. This model predicts sensitivity as a function of display parameters, enabling quantization matrices to be designed for display situations varying in luminance, veiling light, and spatial frequency related conditions (pixel size, viewing distance, and aspect ratio). It also allows arbitrary color space directions for the representation of color. A model-based method of optimizing the quantization matrix for an individual image was developed. The model described above provides visual thresholds for each DCT frequency. These thresholds are adjusted within each block for visual light adaptation and contrast masking. For given quantization matrix, the DCT quantization errors are scaled by the adjusted thresholds to yield perceptual errors. These errors are pooled nonlinearly over the image to yield total perceptual error. With this model one may estimate the quantization matrix for a particular image that yields minimum bit rate for a given total perceptual error, or minimum perceptual error for a given bit rate. Custom matrices for a number of images show clear improvement over image-independent matrices. Custom matrices are compatible with the JPEG standard, which requires transmission of the quantization matrix.

  15. Distance learning in discriminative vector quantization.

    PubMed

    Schneider, Petra; Biehl, Michael; Hammer, Barbara

    2009-10-01

    Discriminative vector quantization schemes such as learning vector quantization (LVQ) and extensions thereof offer efficient and intuitive classifiers based on the representation of classes by prototypes. The original methods, however, rely on the Euclidean distance corresponding to the assumption that the data can be represented by isotropic clusters. For this reason, extensions of the methods to more general metric structures have been proposed, such as relevance adaptation in generalized LVQ (GLVQ) and matrix learning in GLVQ. In these approaches, metric parameters are learned based on the given classification task such that a data-driven distance measure is found. In this letter, we consider full matrix adaptation in advanced LVQ schemes. In particular, we introduce matrix learning to a recent statistical formalization of LVQ, robust soft LVQ, and we compare the results on several artificial and real-life data sets to matrix learning in GLVQ, a derivation of LVQ-like learning based on a (heuristic) cost function. In all cases, matrix adaptation allows a significant improvement of the classification accuracy. Interestingly, however, the principled behavior of the models with respect to prototype locations and extracted matrix dimensions shows several characteristic differences depending on the data sets.

  16. Loop quantization of the Schwarzschild interior revisited

    NASA Astrophysics Data System (ADS)

    Corichi, Alejandro; Singh, Parampreet

    2016-03-01

    The loop quantization of the Schwarzschild interior region, as described by a homogeneous anisotropic Kantowski-Sachs model, is re-examined. As several studies of different—inequivalent—loop quantizations have shown, to date there exists no fully satisfactory quantum theory for this model. This fact poses challenges to the validity of some scenarios to address the black hole information problem. Here we put forward a novel viewpoint to construct the quantum theory that builds from some of the models available in the literature. The final picture is a quantum theory that is both independent of any auxiliary structure and possesses a correct low curvature limit. It represents a subtle but non-trivial modification of the original prescription given by Ashtekar and Bojowald. It is shown that the quantum gravitational constraint is well defined past the singularity and that its effective dynamics possesses a bounce into an expanding regime. The classical singularity is avoided, and a semiclassical spacetime satisfying vacuum Einstein’s equations is recovered on the ‘other side’ of the bounce. We argue that such a metric represents the interior region of a white-hole spacetime, but for which the corresponding ‘white hole mass’ differs from the original black hole mass. Furthermore, we find that the value of the white hole mass is proportional to the third power of the starting black hole mass.

  17. Bohmian quantization of the big rip

    NASA Astrophysics Data System (ADS)

    Pinto-Neto, Nelson; Pantoja, Diego Moraes

    2009-10-01

    It is shown in this paper that minisuperspace quantization of homogeneous and isotropic geometries with phantom scalar fields, when examined in the light of the Bohm-de Broglie interpretation of quantum mechanics, does not eliminate, in general, the classical big rip singularity present in the classical model. For some values of the Hamilton-Jacobi separation constant present in a class of quantum state solutions of the Wheeler-De Witt equation, the big rip can be either completely eliminated or may still constitute a future attractor for all expanding solutions. This is contrary to the conclusion presented in [M. P. Dabrowski, C. Kiefer, and B. Sandhofer, Phys. Rev. DPRVDAQ1550-7998 74, 044022 (2006).10.1103/PhysRevD.74.044022], using a different interpretation of the wave function, where the big rip singularity is completely eliminated (“smoothed out”) through quantization, independently of such a separation constant and for all members of the above mentioned class of solutions. This is an example of the very peculiar situation where different interpretations of the same quantum state of a system are predicting different physical facts, instead of just giving different descriptions of the same observable facts: in fact, there is nothing more observable than the fate of the whole Universe.

  18. Second-quantized formulation of geometric phases

    SciTech Connect

    Deguchi, Shinichi; Fujikawa, Kazuo

    2005-07-15

    The level crossing problem and associated geometric terms are neatly formulated by the second-quantized formulation. This formulation exhibits a hidden local gauge symmetry related to the arbitrariness of the phase choice of the complete orthonormal basis set. By using this second-quantized formulation, which does not assume adiabatic approximation, a convenient exact formula for the geometric terms including off-diagonal geometric terms is derived. The analysis of geometric phases is then reduced to a simple diagonalization of the Hamiltonian, and it is analyzed both in the operator and path-integral formulations. If one diagonalizes the geometric terms in the infinitesimal neighborhood of level crossing, the geometric phases become trivial (and thus no monopole singularity) for arbitrarily large but finite time interval T. The integrability of Schroedinger equation and the appearance of the seemingly nonintegrable phases are thus consistent. The topological proof of the Longuet-Higgins' phase-change rule, for example, fails in the practical Born-Oppenheimer approximation where a large but finite ratio of two time scales is involved and T is identified with the period of the slower system. The difference and similarity between the geometric phases associated with level crossing and the exact topological object such as the Aharonov-Bohm phase become clear in the present formulation. A crucial difference between the quantum anomaly and the geometric phases is also noted.

  19. Exciton condensation in microcavities under three-dimensional quantization conditions

    SciTech Connect

    Kochereshko, V. P. Platonov, A. V.; Savvidis, P.; Kavokin, A. V.; Bleuse, J.; Mariette, H.

    2013-11-15

    The dependence of the spectra of the polarized photoluminescence of excitons in microcavities under conditions of three-dimensional quantization on the optical-excitation intensity is investigated. The cascade relaxation of polaritons between quantized states of a polariton Bose condensate is observed.

  20. Faddeev-Jackiw quantization of non-autonomous singular systems

    NASA Astrophysics Data System (ADS)

    Belhadi, Zahir; Bérard, Alain; Mohrbach, Hervé

    2016-10-01

    We extend the quantization à la Faddeev-Jackiw for non-autonomous singular systems. This leads to a generalization of the Schrödinger equation for those systems. The method is exemplified by the quantization of the damped harmonic oscillator and the relativistic particle in an external electromagnetic field.

  1. Image Compression on a VLSI Neural-Based Vector Quantizer.

    ERIC Educational Resources Information Center

    Chen, Oscal T.-C.; And Others

    1992-01-01

    Describes a modified frequency-sensitive self-organization (FSO) algorithm for image data compression and the associated VLSI architecture. Topics discussed include vector quantization; VLSI neural processor architecture; detailed circuit implementation; and a neural network vector quantization prototype chip. Examples of images using the FSO…

  2. Design and Performance of Tree-Structured Vector Quantizers.

    ERIC Educational Resources Information Center

    Lin, Jianhua; Storer, James A.

    1994-01-01

    Describes the design of optimal tree-structured vector quantizers that minimize the expected distortion subject to cost functions related to storage cost, encoding rate, or quantization time. Since the optimal design problem is intractable in most cases, the performance of a general design heuristic based on successive partitioning is analyzed.…

  3. Weighted MinMax Algorithm for Color Image Quantization

    NASA Technical Reports Server (NTRS)

    Reitan, Paula J.

    1999-01-01

    The maximum intercluster distance and the maximum quantization error that are minimized by the MinMax algorithm are shown to be inappropriate error measures for color image quantization. A fast and effective (improves image quality) method for generalizing activity weighting to any histogram-based color quantization algorithm is presented. A new non-hierarchical color quantization technique called weighted MinMax that is a hybrid between the MinMax and Linde-Buzo-Gray (LBG) algorithms is also described. The weighted MinMax algorithm incorporates activity weighting and seeks to minimize WRMSE, whereby obtaining high quality quantized images with significantly less visual distortion than the MinMax algorithm.

  4. Kerr Black Hole Entropy and its Quantization

    NASA Astrophysics Data System (ADS)

    Jiang, Ji-Jian; Li, Chuan-An; Cheng, Xie-Feng

    2016-08-01

    By constructing the four-dimensional phase space based on the observable physical quantity of Kerr black hole and gauge transformation, the Kerr black hole entropy in the phase space was obtained. Then considering the corresponding mechanical quantities as operators and making the operators quantized, entropy spectrum of Kerr black hole was obtained. Our results show that the Kerr black hole has the entropy spectrum with equal intervals, which is in agreement with the idea of Bekenstein. In the limit of large event horizon, the area of the adjacent event horizon of the black hole have equal intervals. The results are in consistent with the results based on the loop quantum gravity theory by Dreyer et al.

  5. Numerical Investigations of Reconnection of Quantized Vortices

    NASA Astrophysics Data System (ADS)

    Rorai, Cecilia; Fisher, Michael E.; Lathrop, Daniel P.; Sreenivasan, Katepalli R.; Kerr, Robert M.

    2011-11-01

    Reconnection of quantized vortices in superfluid helium was conjectured by Feynman in 1955, and first observed experimentally by Bewley et al. (PNAS 105, 13708, 2007). The nature of this phenomenon is quantum mechanical, involving atomically thin vortex cores. At the same time, this phenomenon influences the large scale dynamics, since a tangle of vortices can change topology through reconnection and evolve in time. Numerically, the Gross-Pitaevskii (GP) equation allows detailed predictions of vortex reconnection as first shown by Koplik and Levine (1993). We have undertaken further calculations to characterize the dynamics of isolated reconnection events. Initial conditions have been analyzed carefully, different geometries have been considered and a new approach has been proposed. This approach consists in using the diffusion equation associated to the GP equation to set minimum energy initial vortex profiles. The underlying questions we wish to answer are the universality of vortex reconnection and its effect on energy dissipation to the phonon field.

  6. Quantized topological Hall effect in skyrmion crystal

    NASA Astrophysics Data System (ADS)

    Hamamoto, Keita; Ezawa, Motohiko; Nagaosa, Naoto

    2015-09-01

    We theoretically study the quantized topological Hall effect (QTHE) in skyrmion crystal (SkX) without external magnetic field. The emergent magnetic field in SkX could be gigantic, as much as 4000 T , when its lattice constant is 1 nm . The band structure is not flat but has a finite gap in the low electron-density regime. We also study the conditions to realize the QTHE for the skyrmion size, carrier density, disorder strength, and temperature. Comparing the SkX and the system under the corresponding uniform magnetic field, the former is more fragile against the temperature compared with the latter since the gap is reduced by a factor of 1/5, while they are almost equally robust against the disorder. Therefore, it is expected that the QTHE of the SkX system is realized even with strong disorder at room temperature when the electron density is of the order of 1 per skyrmion.

  7. Quaternionic quantization principle in general relativity and supergravity

    NASA Astrophysics Data System (ADS)

    Kober, Martin

    2016-01-01

    A generalized quantization principle is considered, which incorporates nontrivial commutation relations of the components of the variables of the quantized theory with the components of the corresponding canonical conjugated momenta referring to other space-time directions. The corresponding commutation relations are formulated by using quaternions. At the beginning, this extended quantization concept is applied to the variables of quantum mechanics. The resulting Dirac equation and the corresponding generalized expression for plane waves are formulated and some consequences for quantum field theory are considered. Later, the quaternionic quantization principle is transferred to canonical quantum gravity. Within quantum geometrodynamics as well as the Ashtekar formalism, the generalized algebraic properties of the operators describing the gravitational observables and the corresponding quantum constraints implied by the generalized representations of these operators are determined. The generalized algebra also induces commutation relations of the several components of the quantized variables with each other. Finally, the quaternionic quantization procedure is also transferred to 𝒩 = 1 supergravity. Accordingly, the quantization principle has to be generalized to be compatible with Dirac brackets, which appear in canonical quantum supergravity.

  8. Implementation of digital filters for minimum quantization errors

    NASA Technical Reports Server (NTRS)

    Phillips, C. L.; Vallely, D. P.

    1974-01-01

    In this paper a technique is developed for choosing programing forms and bit configurations for digital filters that minimize the quantization errors. The technique applies to digital filters operating in fixed-point arithmetic in either open-loop or closed-loop systems, and is implemented by a digital computer program that is based on a digital simulation of the system. As an output the program gives the programing form required for minimum quantization errors, the total bit configuration required in the filter, and the location of the binary decimal point at each quantizer within the filter.

  9. Direct observation of Kelvin waves excited by quantized vortex reconnection.

    PubMed

    Fonda, Enrico; Meichle, David P; Ouellette, Nicholas T; Hormoz, Sahand; Lathrop, Daniel P

    2014-03-25

    Quantized vortices are key features of quantum fluids such as superfluid helium and Bose-Einstein condensates. The reconnection of quantized vortices and subsequent emission of Kelvin waves along the vortices are thought to be central to dissipation in such systems. By visualizing the motion of submicron particles dispersed in superfluid (4)He, we have directly observed the emission of Kelvin waves from quantized vortex reconnection. We characterize one event in detail, using dimensionless similarity coordinates, and compare it with several theories. Finally, we give evidence for other examples of wavelike behavior in our system.

  10. Modified 8×8 quantization table and Huffman encoding steganography

    NASA Astrophysics Data System (ADS)

    Guo, Yongning; Sun, Shuliang

    2014-10-01

    A new secure steganography, which is based on Huffman encoding and modified quantized discrete cosine transform (DCT) coefficients, is provided in this paper. Firstly, the cover image is segmented into 8×8 blocks and modified DCT transformation is applied on each block. Huffman encoding is applied to code the secret image before embedding. DCT coefficients are quantized by modified quantization table. Inverse DCT(IDCT) is conducted on each block. All the blocks are combined together and the steg image is finally achieved. The experiment shows that the proposed method is better than DCT and Mahender Singh's in PSNR and Capacity.

  11. Quantization of Fayet-Iliopoulos parameters in supergravity

    SciTech Connect

    Distler, Jacques; Sharpe, Eric

    2011-04-15

    In this short article we discuss quantization of the Fayet-Iliopoulos parameter in supergravity theories. We argue that, in supergravity, the Fayet-Iliopoulos parameter determines a lift of the group action to a line bundle, and such lifts are quantized. Just as D-terms in rigid N=1 supersymmetry are interpreted in terms of moment maps and symplectic reductions, we argue that in supergravity the quantization of the Fayet-Iliopoulos parameter has a natural understanding in terms of linearizations in geometric invariant theory quotients, the algebro-geometric version of symplectic quotients.

  12. Direct observation of Kelvin waves excited by quantized vortex reconnection

    PubMed Central

    Fonda, Enrico; Meichle, David P.; Ouellette, Nicholas T.; Hormoz, Sahand; Lathrop, Daniel P.

    2014-01-01

    Quantized vortices are key features of quantum fluids such as superfluid helium and Bose–Einstein condensates. The reconnection of quantized vortices and subsequent emission of Kelvin waves along the vortices are thought to be central to dissipation in such systems. By visualizing the motion of submicron particles dispersed in superfluid 4He, we have directly observed the emission of Kelvin waves from quantized vortex reconnection. We characterize one event in detail, using dimensionless similarity coordinates, and compare it with several theories. Finally, we give evidence for other examples of wavelike behavior in our system. PMID:24704878

  13. A new digital readout integrated circuit (DROIC) with pixel parallel A/D conversion with reduced quantization noise

    NASA Astrophysics Data System (ADS)

    Kayahan, Huseyin; Ceylan, Ömer; Yazici, Melik; Gurbuz, Yasar

    2014-06-01

    This paper presents a digital ROIC for staring type arrays with extending counting method to realize very low quantization noise while achieving a very high charge handling capacity. Current state of the art has shown that digital readouts with pulse frequency method can achieve charge handling capacities higher than 3Ge- with quantization noise higher than 1000e-. Even if the integration capacitance is reduced, it cannot be lower than 1-3 fF due to the parasitic capacitance of the comparator. For achieving a very low quantization noise of 161 electrons in a power efficient way, a new method based on measuring the time to measure the remaining charge on the integration capacitor is proposed. With this approach SNR of low flux pixels are significantly increased while large flux pixels can store electrons as high as 2.33Ge-. A prototype array of 32×32 pixels with 30μm pitch is implemented in 90nm CMOS process technology for verification. Measurement results are given for complete readout.

  14. In-loop atom modulus quantization for matching pursuit and its application to video coding.

    PubMed

    De Vleeschouwer, Christophe; Zakhor, Avideh

    2003-01-01

    This paper provides a precise analytical study of the selection and modulus quantization of matching pursuit (MP) coefficients. We demonstrate that an optimal rate-distortion trade-off is achieved by selecting the atoms up to a quality-dependent threshold, and by defining the modulus quantizer in terms of that threshold. In doing so, we take into account quantization error re-injection resulting from inserting the modulus quantizer inside the MP atom computation loop. In-loop quantization not only improves coding performance, but also affects the optimal quantizer design for both uniform and nonuniform quantization. We measure the impact of our work in the context of video coding. For both uniform and nonuniform quantization, the precise understanding of the relation between atom selection and quantization results in significant improvements in terms of coding efficiency. At high bitrates, the proposed nonuniform quantization scheme results in 0.5 to 2 dB improvement over the previous method.

  15. Minimum uncertainty and squeezing in diffusion processes and stochastic quantization

    NASA Technical Reports Server (NTRS)

    Demartino, S.; Desiena, S.; Illuminati, Fabrizo; Vitiello, Giuseppe

    1994-01-01

    We show that uncertainty relations, as well as minimum uncertainty coherent and squeezed states, are structural properties for diffusion processes. Through Nelson stochastic quantization we derive the stochastic image of the quantum mechanical coherent and squeezed states.

  16. A physically motivated quantization of the electromagnetic field

    NASA Astrophysics Data System (ADS)

    Bennett, Robert; Barlow, Thomas M.; Beige, Almut

    2016-01-01

    The notion that the electromagnetic field is quantized is usually inferred from observations such as the photoelectric effect and the black-body spectrum. However accounts of the quantization of this field are usually mathematically motivated and begin by introducing a vector potential, followed by the imposition of a gauge that allows the manipulation of the solutions of Maxwell’s equations into a form that is amenable for the machinery of canonical quantization. By contrast, here we quantize the electromagnetic field in a less mathematically and more physically motivated way. Starting from a direct description of what one sees in experiments, we show that the usual expressions of the electric and magnetic field observables follow from Heisenberg’s equation of motion. In our treatment, there is no need to invoke the vector potential in a specific gauge and we avoid the commonly used notion of a fictitious cavity that applies boundary conditions to the field.

  17. Quantization of maximally charged slowly moving black holes

    NASA Astrophysics Data System (ADS)

    Siopsis, George

    2001-05-01

    We discuss the quantization of a system of slowly moving extreme Reissner-Nordström black holes. In the near-horizon limit, this system has been shown to possess an SL(2,R) conformal symmetry. However, the Hamiltonian appears to have no well-defined ground state. This problem can be circumvented by a redefinition of the Hamiltonian due to de Alfaro, Fubini, and Furlan (DFF). We apply the Faddeev-Popov quantization procedure to show that the Hamiltonian with no ground state corresponds to a gauge in which there is an obstruction at the singularities of moduli space requiring a modification of the quantization rules. The redefinition of the Hamiltonian in the manner of DFF corresponds to a different choice of gauge. The latter is a good gauge leading to standard quantization rules. Thus the DFF trick is a consequence of a standard gauge-fixing procedure in the case of black hole scattering.

  18. Fill-in binary loop pulse-torque quantizer

    NASA Technical Reports Server (NTRS)

    Lory, C. B.

    1975-01-01

    Fill-in binary (FIB) loop provides constant heating of torque generator, an advantage of binary current switching. At the same time, it avoids mode-related dead zone and data delay of binary, an advantage of ternary quantization.

  19. On the deformation quantization description of Matrix compactifications

    NASA Astrophysics Data System (ADS)

    García-Compeán, Hugo

    1999-03-01

    Matrix theory compactifications on tori have associated Yang-Mills theories on the dual tori with sixteen supercharges. A non-commutative description of these Yang-Mills theories based in deformation quantization theory is provided. We show that this framework allows a natural generalization of the 'Moya B-deformation' of the Yang-Mills theories to non-constant background B-fields on curved spaces. This generalization is described through Fedosov's geometry of deformation quantization.

  20. Multivariate Fronthaul Quantization for Downlink C-RAN

    NASA Astrophysics Data System (ADS)

    Lee, Wonju; Simeone, Osvaldo; Kang, Joonhyuk; Shamai, Shlomo

    2016-10-01

    The Cloud-Radio Access Network (C-RAN) cellular architecture relies on the transfer of complex baseband signals to and from a central unit (CU) over digital fronthaul links to enable the virtualization of the baseband processing functionalities of distributed radio units (RUs). The standard design of digital fronthauling is based on either scalar quantization or on more sophisticated point to-point compression techniques operating on baseband signals. Motivated by network-information theoretic results, techniques for fronthaul quantization and compression that improve over point-to-point solutions by allowing for joint processing across multiple fronthaul links at the CU have been recently proposed for both the uplink and the downlink. For the downlink, a form of joint compression, known in network information theory as multivariate compression, was shown to be advantageous under a non-constructive asymptotic information-theoretic framework. In this paper, instead, the design of a practical symbol-by-symbol fronthaul quantization algorithm that implements the idea of multivariate compression is investigated for the C-RAN downlink. As compared to current standards, the proposed multivariate quantization (MQ) only requires changes in the CU processing while no modification is needed at the RUs. The algorithm is extended to enable the joint optimization of downlink precoding and quantization, reduced-complexity MQ via successive block quantization, and variable-length compression. Numerical results, which include performance evaluations over standard cellular models, demonstrate the advantages of MQ and the merits of a joint optimization with precoding.

  1. Visual optimization of DCT quantization matrices for individual images

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.

    1993-01-01

    Many image compression standards (JPEG, MPEG, H.261) are based on the Discrete Cosine Transform (DCT). However, these standards do not specify the actual DCT quantization matrix. We have previously provided mathematical formulae to compute a perceptually lossless quantization matrix. Here I show how to compute a matrix that is optimized for a particular image. The method treats each DCT coefficient as an approximation to the local response of a visual 'channel'. For a given quantization matrix, the DCT quantization errors are adjusted by contrast sensitivity, light adaptation, and contrast masking, and are pooled non-linearly over the blocks of the image. This yields an 8x8 'perceptual error matrix'. A second non-linear pooling over the perceptual error matrix yields total perceptual error. With this model we may estimate the quantization matrix for a particular image that yields minimum bit rate for a given total perceptual error, or minimum perceptual error for a given bit rate. Custom matrices for a number of images show clear improvement over image-independent matrices. Custom matrices are compatible with the JPEG standard, which requires transmission of the quantization matrix.

  2. Error-resilient pyramid vector quantization for image compression.

    PubMed

    Hung, A C; Tsern, E K; Meng, T H

    1998-01-01

    Pyramid vector quantization (PVQ) uses the lattice points of a pyramidal shape in multidimensional space as the quantizer codebook. It is a fixed-rate quantization technique that can be used for the compression of Laplacian-like sources arising from transform and subband image coding, where its performance approaches the optimal entropy-coded scalar quantizer without the necessity of variable length codes. In this paper, we investigate the use of PVQ for compressed image transmission over noisy channels, where the fixed-rate quantization reduces the susceptibility to bit-error corruption. We propose a new method of deriving the indices of the lattice points of the multidimensional pyramid and describe how these techniques can also improve the channel noise immunity of general symmetric lattice quantizers. Our new indexing scheme improves channel robustness by up to 3 dB over previous indexing methods, and can be performed with similar computational cost. The final fixed-rate coding algorithm surpasses the performance of typical Joint Photographic Experts Group (JPEG) implementations and exhibits much greater error resilience.

  3. Monte Carlo simulation of a quantized universe.

    NASA Astrophysics Data System (ADS)

    Berger, Beverly K.

    1988-08-01

    A Monte Carlo simulation method which yields groundstate wave functions for multielectron atoms is applied to quantized cosmological models. In quantum mechanics, the propagator for the Schrödinger equation reduces to the absolute value squared of the groundstate wave function in the limit of infinite Euclidean time. The wave function of the universe as the solution to the Wheeler-DeWitt equation may be regarded as the zero energy mode of a Schrödinger equation in coordinate time. The simulation evaluates the path integral formulation of the propagator by constructing a large number of paths and computing their contribution to the path integral using the Metropolis algorithm to drive the paths toward a global minimum in the path energy. The result agrees with a solution to the Wheeler-DeWitt equation which has the characteristics of a nodeless groundstate wave function. Oscillatory behavior cannot be reproduced although the simulation results may be physically reasonable. The primary advantage of the simulations is that they may easily be extended to cosmologies with many degrees of freedom. Examples with one, two, and three degrees of freedom (d.f.) are presented.

  4. Interactions between unidirectional quantized vortex rings

    NASA Astrophysics Data System (ADS)

    Zhu, T.; Evans, M. L.; Brown, R. A.; Walmsley, P. M.; Golov, A. I.

    2016-08-01

    We have used the vortex filament method to numerically investigate the interactions between pairs of quantized vortex rings that are initially traveling in the same direction but with their axes offset by a variable impact parameter. The interaction of two circular rings of comparable radii produces outcomes that can be categorized into four regimes, dependent only on the impact parameter; the two rings can either miss each other on the inside or outside or reconnect leading to final states consisting of either one or two deformed rings. The fraction of energy that went into ring deformations and the transverse component of velocity of the rings are analyzed for each regime. We find that rings of very similar radius only reconnect for a very narrow range of the impact parameter, much smaller than would be expected from the geometrical cross-section alone. In contrast, when the radii of the rings are very different, the range of impact parameters producing a reconnection is close to the geometrical value. A second type of interaction considered is the collision of circular rings with a highly deformed ring. This type of interaction appears to be a productive mechanism for creating small vortex rings. The simulations are discussed in the context of experiments on colliding vortex rings and quantum turbulence in superfluid helium in the zero-temperature limit.

  5. Quantized vortices in interacting gauge theories

    NASA Astrophysics Data System (ADS)

    Butera, Salvatore; Valiente, Manuel; Öhberg, Patrik

    2016-01-01

    We consider a two-dimensional weakly interacting ultracold Bose gas whose constituents are two-level atoms. We study the effects of a synthetic density-dependent gauge field that arises from laser-matter coupling in the adiabatic limit with a laser configuration such that the single-particle zeroth-order vector potential corresponds to a constant synthetic magnetic field. We find a new exotic type of current nonlinearity in the Gross-Pitaevskii equation which affects the dynamics of the order parameter of the condensate. We investigate the rotational properties of this system in the Thomas-Fermi limit, focusing in particular on the physical conditions that make the existence of a quantized vortex in the system energetically favourable with respect to the non-rotating solution. We point out that two different physical interpretations can be given to this new nonlinearity: firstly it can be seen as a local modification of the mean field coupling constant, whose value depends on the angular momentum of the condensate. Secondly, it can be interpreted as a density modulated angular velocity given to the cloud. Looking at the problem from both of these viewpoints, we show that the effect of the new nonlinearity is to induce a rotation to the condensate, where the transition from non-rotating to rotating states depends on the density of the cloud.

  6. Light-cone quantization and hadron structure

    SciTech Connect

    Brodsky, S.J.

    1996-04-01

    Quantum chromodynamics provides a fundamental description of hadronic and nuclear structure and dynamics in terms of elementary quark and gluon degrees of freedom. In practice, the direct application of QCD to reactions involving the structure of hadrons is extremely complex because of the interplay of nonperturbative effects such as color confinement and multi-quark coherence. In this talk, the author will discuss light-cone quantization and the light-cone Fock expansion as a tractable and consistent representation of relativistic many-body systems and bound states in quantum field theory. The Fock state representation in QCD includes all quantum fluctuations of the hadron wavefunction, including fax off-shell configurations such as intrinsic strangeness and charm and, in the case of nuclei, hidden color. The Fock state components of the hadron with small transverse size, which dominate hard exclusive reactions, have small color dipole moments and thus diminished hadronic interactions. Thus QCD predicts minimal absorptive corrections, i.e., color transparency for quasi-elastic exclusive reactions in nuclear targets at large momentum transfer. In other applications, such as the calculation of the axial, magnetic, and quadrupole moments of light nuclei, the QCD relativistic Fock state description provides new insights which go well beyond the usual assumptions of traditional hadronic and nuclear physics.

  7. Dynamics of Quantized Vortices Before Reconnection

    NASA Astrophysics Data System (ADS)

    Andryushchenko, V. A.; Kondaurova, L. P.; Nemirovskii, S. K.

    2016-04-01

    The main goal of this paper is to investigate numerically the dynamics of quantized vortex loops, just before the reconnection at finite temperature, when mutual friction essentially changes the evolution of lines. Modeling is performed on the base of vortex filament method using the full Biot-Savart equation. It was discovered that the initial position of vortices and the temperature strongly affect the dependence on time of the minimum distance δ (t) between tips of two vortex loops. In particular, in some cases, the shrinking and collapse of vortex loops due to mutual friction occur earlier than the reconnection, thereby canceling the latter. However, this relationship takes a universal square-root form δ ( t) =√{( κ/2π ) ( t_{*}-t) } at distances smaller than the distances, satisfying the Schwarz reconnection criterion, when the nonlocal contribution to the Biot-Savart equation becomes about equal to the local contribution. In the "universal" stage, the nearest parts of vortices form a pyramid-like structure with angles which neither depend on the initial configuration nor on temperature.

  8. Quantized vortices in interacting gauge theories

    NASA Astrophysics Data System (ADS)

    Butera, Salvatore; Valiente, Manuel; Ohberg, Patrik

    2015-05-01

    We consider a two-dimensional weakly interacting ultracold Bose gas whose constituents are two-level atoms. We study the effects of a synthetic density-dependent gauge field that arises from laser-matter coupling in the adiabatic limit with a laser configuration such that the single-particle vector potential corresponds to a constant synthetic magnetic field. We find a new type of current non-linearity in the Gross-Pitaevskii equation which affects the dynamics of the order parameter of the condensate. We investigate on the physical conditions that make the nucleation of a quantized vortex in the system energetically favourable with respect to the non rotating solution. Two different physical interpretations can be given to this new non linearity: firstly it can be seen as a local modification of the mean field coupling constant, whose value depends on the angular momentum of the condensate. Secondly, it can be interpreted as a density modulated angular velocity given to the cloud. We analyze the physical conditions that make a single vortex state energetically favourable. In the Thomas-Fermi limit, we show that the effect of the new nonlinearity is to induce a rotation to the condensate, where the transition from non-rotating to rotating depends on the density of the cloud. The authors acknowledge support from CM-DTC and EPSRC.

  9. Causal Poisson bracket via deformation quantization

    NASA Astrophysics Data System (ADS)

    Berra-Montiel, Jasel; Molgado, Alberto; Palacios-García, César D.

    2016-06-01

    Starting with the well-defined product of quantum fields at two spacetime points, we explore an associated Poisson structure for classical field theories within the deformation quantization formalism. We realize that the induced star-product is naturally related to the standard Moyal product through an appropriate causal Green’s functions connecting points in the space of classical solutions to the equations of motion. Our results resemble the Peierls-DeWitt bracket that has been analyzed in the multisymplectic context. Once our star-product is defined, we are able to apply the Wigner-Weyl map in order to introduce a generalized version of Wick’s theorem. Finally, we include some examples to explicitly test our method: the real scalar field, the bosonic string and a physically motivated nonlinear particle model. For the field theoretic models, we have encountered causal generalizations of the creation/annihilation relations, and also a causal generalization of the Virasoro algebra for the bosonic string. For the nonlinear particle case, we use the approximate solution in terms of the Green’s function, in order to construct a well-behaved causal bracket.

  10. Hierarchically clustered adaptive quantization CMAC and its learning convergence.

    PubMed

    Teddy, S D; Lai, E M K; Quek, C

    2007-11-01

    The cerebellar model articulation controller (CMAC) neural network (NN) is a well-established computational model of the human cerebellum. Nevertheless, there are two major drawbacks associated with the uniform quantization scheme of the CMAC network. They are the following: (1) a constant output resolution associated with the entire input space and (2) the generalization-accuracy dilemma. Moreover, the size of the CMAC network is an exponential function of the number of inputs. Depending on the characteristics of the training data, only a small percentage of the entire set of CMAC memory cells is utilized. Therefore, the efficient utilization of the CMAC memory is a crucial issue. One approach is to quantize the input space nonuniformly. For existing nonuniformly quantized CMAC systems, there is a tradeoff between memory efficiency and computational complexity. Inspired by the underlying organizational mechanism of the human brain, this paper presents a novel CMAC architecture named hierarchically clustered adaptive quantization CMAC (HCAQ-CMAC). HCAQ-CMAC employs hierarchical clustering for the nonuniform quantization of the input space to identify significant input segments and subsequently allocating more memory cells to these regions. The stability of the HCAQ-CMAC network is theoretically guaranteed by the proof of its learning convergence. The performance of the proposed network is subsequently benchmarked against the original CMAC network, as well as two other existing CMAC variants on two real-life applications, namely, automated control of car maneuver and modeling of the human blood glucose dynamics. The experimental results have demonstrated that the HCAQ-CMAC network offers an efficient memory allocation scheme and improves the generalization and accuracy of the network output to achieve better or comparable performances with smaller memory usages. Index Terms-Cerebellar model articulation controller (CMAC), hierarchical clustering, hierarchically

  11. ) Mold Fluxes

    NASA Astrophysics Data System (ADS)

    Seo, Myung-Duk; Shi, Cheng-Bin; Cho, Jung-Wook; Kim, Seon-Hyo

    2014-10-01

    The effects of basicity (CaO/SiO2), B2O3, and Li2O addition on the crystallization behaviors of lime-silica-based mold fluxes have been investigated by non-isothermal differential scanning calorimetry (DSC), field emission scanning electron microscopy, X-ray diffraction (XRD), and single hot thermocouple technique. It was found that the crystallization temperature of cuspidine increased with increasing the basicity of mold fluxes. The crystallization of wollastonite was suppressed with increasing the mold flux basicity due to the enhancement of cuspidine crystallization. The addition of B2O3 suppresses the crystallization of mold flux. The crystallization temperature of mold flux decreases with Li2O addition. The size of cuspidine increases, while the number of cuspidine decreases with increasing mold flux basicity. The morphology of cuspidine in mold fluxes with lower basicity is largely dendritic. The dendritic cuspidine in mold fluxes is composed of many fine cuspidine crystals. On the contrary, in mold fluxes with higher basicity, the cuspidine crystals are larger in size with mainly faceted morphology. The crystalline phase evolution was also calculated using a thermodynamic database, and compared with the experimental results determined by DSC and XRD. The results of thermodynamic calculation of crystalline phase formation are in accordance with the results determined by DSC and XRD.

  12. Quantized Concentration Gradient in Picoliter Scale

    NASA Astrophysics Data System (ADS)

    Hong, Jong Wook

    2010-10-01

    Generation of concentration gradient is of paramount importance in the success of reactions for cell biology, molecular biology, biochemistry, drug-discovery, chemotaxis, cell culture, biomaterials synthesis, and tissue engineering. In conventional method of conducting reactions, the concentration gradients is achieved by using pipettes, test tubes, 96-well assay plates, and robotic systems. Conventional methods require milliliter or microliter volumes of samples for typical experiments with multiple and sequential reactions. It is a challenge to carry out experiments with precious samples that have strict limitations with the amount of samples or the price to pay for the amount. In order to overcome this challenge faced by the conventional methods, fluidic devices with micrometer scale channels have been developed. These devices, however, cause restrictions on changing the concentration due to the fixed gradient set based on fixed fluidic channels.ootnotetextJambovane, S.; Duin, E. C.; Kim, S-K.; Hong, J. W., Determination of Kinetic Parameters, KM and kcat, with a Single Experiment on a Chip. textitAnalytical Chemistry, 81, (9), 3239-3245, 2009.^,ootnotetextJambovane, S.; Hong, J. W., Lorenz-like Chatotic System on a Chip In The 14th International Conference on Miniaturized Systems for Chemistry and Life Sciences (MicroTAS), The Netherlands, October, 2010. Here, we present a unique microfluidic system that can generate quantized concentration gradient by using series of droplets generated by a mechanical valve based injection method.ootnotetextJambovane, S.; Rho, H.; Hong, J., Fluidic Circuit based Predictive Model of Microdroplet Generation through Mechanical Cutting. In ASME International Mechanical Engineering Congress & Exposition, Lake Buena Vista, Florida, USA, October, 2009.^,ootnotetextLee, W.; Jambovane, S.; Kim, D.; Hong, J., Predictive Model on Micro Droplet Generation through Mechanical Cutting. Microfluidics and Nanofluidics, 7, (3), 431-438, 2009

  13. Remote Sensing and Quantization of Analog Sensors

    NASA Technical Reports Server (NTRS)

    Strauss, Karl F.

    2011-01-01

    This method enables sensing and quantization of analog strain gauges. By manufacturing a piezoelectric sensor stack in parallel (physical) with a piezoelectric actuator stack, the capacitance of the sensor stack varies in exact proportion to the exertion applied by the actuator stack. This, in turn, varies the output frequency of the local sensor oscillator. The output, F(sub out), is fed to a phase detector, which is driven by a stable reference, F(sub ref). The output of the phase detector is a square waveform, D(sub out), whose duty cycle, t(sub W), varies in exact proportion according to whether F(sub out) is higher or lower than F(sub ref). In this design, should F(sub out) be precisely equal to F(sub ref), then the waveform has an exact 50/50 duty cycle. The waveform, D(sub out), is of generally very low frequency suitable for safe transmission over long distances without corruption. The active portion of the waveform, t(sub W), gates a remotely located counter, which is driven by a stable oscillator (source) of such frequency as to give sufficient digitization of t(sub W) to the resolution required by the application. The advantage to this scheme is that it negates the most-common, present method of sending either very low level signals (viz. direct output from the sensors) across great distances (anything over one-half meter) or the need to transmit widely varying higher frequencies over significant distances thereby eliminating interference [both in terms of beat frequency generation and in-situ EMI (electromagnetic interference)] caused by ineffective shielding. It also results in a significant reduction in shielding mass.

  14. Perturbation theory in light-cone quantization

    SciTech Connect

    Langnau, A.

    1992-01-01

    A thorough investigation of light-cone properties which are characteristic for higher dimensions is very important. The easiest way of addressing these issues is by analyzing the perturbative structure of light-cone field theories first. Perturbative studies cannot be substituted for an analysis of problems related to a nonperturbative approach. However, in order to lay down groundwork for upcoming nonperturbative studies, it is indispensable to validate the renormalization methods at the perturbative level, i.e., to gain control over the perturbative treatment first. A clear understanding of divergences in perturbation theory, as well as their numerical treatment, is a necessary first step towards formulating such a program. The first objective of this dissertation is to clarify this issue, at least in second and fourth-order in perturbation theory. The work in this dissertation can provide guidance for the choice of counterterms in Discrete Light-Cone Quantization or the Tamm-Dancoff approach. A second objective of this work is the study of light-cone perturbation theory as a competitive tool for conducting perturbative Feynman diagram calculations. Feynman perturbation theory has become the most practical tool for computing cross sections in high energy physics and other physical properties of field theory. Although this standard covariant method has been applied to a great range of problems, computations beyond one-loop corrections are very difficult. Because of the algebraic complexity of the Feynman calculations in higher-order perturbation theory, it is desirable to automatize Feynman diagram calculations so that algebraic manipulation programs can carry out almost the entire calculation. This thesis presents a step in this direction. The technique we are elaborating on here is known as light-cone perturbation theory.

  15. Dynamic Quantizer Synthesis Based on Invariant Set Analysis for SISO Systems with Discrete-Valued Input

    NASA Astrophysics Data System (ADS)

    Sawada, Kenji; Shin, Seiichi

    This paper proposes analysis and synthesis methods of dynamic quantizers for linear feedback single input single output (SISO) systems with discrete-valued input in terms of invariant set analysis. First, this paper derives the quantizer analysis and synthesis conditions that clarify an optimal quantizer within the ellipsoidal invariant set analysis framework. In the case of minimum phase feedback systems, next, this paper presents that the structure of the proposed quantizer is also optimal in the sense that the quantizer gives an optimal output approximation property. Finally, this paper points out that the proposed design method can design a stable quantizer for non-minimum phase feedback systems through a numerical example.

  16. Some effects of quantization on a noiseless phase-locked loop. [sampling phase errors

    NASA Technical Reports Server (NTRS)

    Greenhall, C. A.

    1979-01-01

    If the VCO of a phase-locked receiver is to be replaced by a digitally programmed synthesizer, the phase error signal must be sampled and quantized. Effects of quantizing after the loop filter (frequency quantization) or before (phase error quantization) are investigated. Constant Doppler or Doppler rate noiseless inputs are assumed. The main result gives the phase jitter due to frequency quantization for a Doppler-rate input. By itself, however, frequency quantization is impractical because it makes the loop dynamic range too small.

  17. Study on adaptive compressed sensing & reconstruction of quantized speech signals

    NASA Astrophysics Data System (ADS)

    Yunyun, Ji; Zhen, Yang

    2012-12-01

    Compressed sensing (CS) is a rising focus in recent years for its simultaneous sampling and compression of sparse signals. Speech signals can be considered approximately sparse or compressible in some domains for natural characteristics. Thus, it has great prospect to apply compressed sensing to speech signals. This paper is involved in three aspects. Firstly, the sparsity and sparsifying matrix for speech signals are analyzed. Simultaneously, a kind of adaptive sparsifying matrix based on the long-term prediction of voiced speech signals is constructed. Secondly, a CS matrix called two-block diagonal (TBD) matrix is constructed for speech signals based on the existing block diagonal matrix theory to find out that its performance is empirically superior to that of the dense Gaussian random matrix when the sparsifying matrix is the DCT basis. Finally, we consider the quantization effect on the projections. Two corollaries about the impact of the adaptive quantization and nonadaptive quantization on reconstruction performance with two different matrices, the TBD matrix and the dense Gaussian random matrix, are derived. We find that the adaptive quantization and the TBD matrix are two effective ways to mitigate the quantization effect on reconstruction of speech signals in the framework of CS.

  18. Anomalous currents on closed surfaces: extended proximity, partial quantization and qubits.

    PubMed

    Selem, Alexander

    2013-01-30

    Motivated by the surfaces of topological insulators, the Dirac anomaly's discontinuous dependence on the sign of the mass, m/|m|, is investigated on closed topologies when the mass terms are weak or only partially cover the surface. It is found that, unlike the massive Dirac theory on an infinite plane, there is a smoothly decreasing current when the mass region is not infinite; also, a massive finite region fails to exhibit a Hall current edge-exerting an extended proximity effect, which can, however, be uniformly small-and oppositely orientated Hall phases are fully quantized while accompanied by diffuse chiral modes. Examples are computed using Dirac energy eigenstates on a flat torus (genus one topology) and a closed cap cylinder (genus zero topology) for various mass-term geometries. Finally, from the resulting properties of the surface spectra, a potential application for a flux-charge qubit is presented.

  19. Quantized Space-Time and Black Hole Entropy

    NASA Astrophysics Data System (ADS)

    Ma, Meng-Sen; Li, Huai-Fan; Zhao, Ren

    2014-06-01

    On the basis of Snyder's idea of quantized space-time, we derive a new generalized uncertainty principle and a new modified density of states. Accordingly, we obtain a corrected black hole entropy with a logarithmic correction term by employing the new generalized uncertainty principle. In addition, we recalculate the entropy of spherically symmetric black holes using statistical mechanics. Because of the use of the minimal length in quantized space-time as a natural cutoff, the entanglement entropy we obtained does not have the usual form A/4 but has a coefficient dependent on the minimal length, which shows differences between black hole entropy in quantized space-time and that in continuous space-time.

  20. Performance of customized DCT quantization tables on scientific data

    NASA Technical Reports Server (NTRS)

    Ratnakar, Viresh; Livny, Miron

    1994-01-01

    We show that it is desirable to use data-specific or customized quantization tables for scaling the spatial frequency coefficients obtained using the Discrete Cosine Transform (DCT). DCT is widely used for image and video compression (MP89, PM93) but applications typically use default quantization matrices. Using actual scientific data gathered from divers sources such as spacecrafts and electron-microscopes, we show that the default compression/quality tradeoffs can be significantly improved upon by using customized tables. We also show that significant improvements are possible for the standard test images Lena and Baboon. This work is part of an effort to develop a practical scheme for optimizing quantization matrices for any given image or video stream, under any given quality or compression constraints.

  1. Quantization of gauge fields, graph polynomials and graph homology

    SciTech Connect

    Kreimer, Dirk; Sars, Matthias; Suijlekom, Walter D. van

    2013-09-15

    We review quantization of gauge fields using algebraic properties of 3-regular graphs. We derive the Feynman integrand at n loops for a non-abelian gauge theory quantized in a covariant gauge from scalar integrands for connected 3-regular graphs, obtained from the two Symanzik polynomials. The transition to the full gauge theory amplitude is obtained by the use of a third, new, graph polynomial, the corolla polynomial. This implies effectively a covariant quantization without ghosts, where all the relevant signs of the ghost sector are incorporated in a double complex furnished by the corolla polynomial–we call it cycle homology–and by graph homology. -- Highlights: •We derive gauge theory Feynman from scalar field theory with 3-valent vertices. •We clarify the role of graph homology and cycle homology. •We use parametric renormalization and the new corolla polynomial.

  2. Honey Bee Mating Optimization Vector Quantization Scheme in Image Compression

    NASA Astrophysics Data System (ADS)

    Horng, Ming-Huwi

    The vector quantization is a powerful technique in the applications of digital image compression. The traditionally widely used method such as the Linde-Buzo-Gray (LBG) algorithm always generated local optimal codebook. Recently, particle swarm optimization (PSO) is adapted to obtain the near-global optimal codebook of vector quantization. In this paper, we applied a new swarm algorithm, honey bee mating optimization, to construct the codebook of vector quantization. The proposed method is called the honey bee mating optimization based LBG (HBMO-LBG) algorithm. The results were compared with the other two methods that are LBG and PSO-LBG algorithms. Experimental results showed that the proposed HBMO-LBG algorithm is more reliable and the reconstructed images get higher quality than those generated form the other three methods.

  3. Vector-quantization-based scheme for data embedding for images

    NASA Astrophysics Data System (ADS)

    Liu, Ning; Subbalakshmi, Koduvayur P.

    2004-06-01

    Today, data hiding has become more and more important in a variety of applications including security. Since Costa's work in the context of communication, the set of quantization based schemes have been proposed as one class of data hiding schemes. Most of these schemes are based on uniform scalar quantizer, which is optimal only if the host signal is uniformly distributed. In this paper, we propose pdf -matched embedding schemes, which not only consider pdf -matched quantizers, but also extend them to multiple dimensions. Specifically, our contributions to this paper are: We propose a pdf-matched embedding (PME) scheme by generalizing the probability distribution of host image and then constructing a pdf-matched quantizer as the starting point. We show experimentally that the proposed pdf-matched quantizer provides better trade-offs between distortion caused by embedding, the robustness to attacks and the embedding capacity. We extend our algorithm to embed a vector of bits in a host signal vector. We show by experiments that our scheme can be closer to the data hiding capacity by embedding larger dimension bit vectors in larger dimension VQs. Two enhancements have been proposed to our method: by vector flipping and by using distortion compensation (DC-PME), that serve to further decrease the embedding distortion. For the 1-D case, the PME scheme shows a 1 dB improvement over the QIM method in a robustness-distortion sense, while DC-PME is 1 dB better than DC-QIM and the 4-D vector quantizer based PME scheme performs about 3 dB better than the 1-D PME.

  4. Quantized stabilization of wireless networked control systems with packet losses.

    PubMed

    Qu, Feng-Lin; Hu, Bin; Guan, Zhi-Hong; Wu, Yong-Hong; He, Ding-Xin; Zheng, Ding-Fu

    2016-09-01

    This paper considers stabilization of discrete-time linear systems, where wireless networks exist for transmitting the sensor and controller information. Based on Markov jump systems, we show that the coarsest quantizer that stabilizes the WNCS is logarithmic in the sense of mean square quadratic stability and the stabilization of this system can be transformed into the robust stabilization of an equivalent uncertain system. Moreover, a method of optimal quantizer/controller design in terms of linear matrix inequality is presented. Finally, a numerical example is provided to illustrate the effectiveness of the developed theoretical results.

  5. Effective Field Theory of Fractional Quantized Hall Nematics

    SciTech Connect

    Mulligan, Michael; Nayak, Chetan; Kachru, Shamit; /Stanford U., Phys. Dept. /SLAC

    2012-06-06

    We present a Landau-Ginzburg theory for a fractional quantized Hall nematic state and the transition to it from an isotropic fractional quantum Hall state. This justifies Lifshitz-Chern-Simons theory - which is shown to be its dual - on a more microscopic basis and enables us to compute a ground state wave function in the symmetry-broken phase. In such a state of matter, the Hall resistance remains quantized while the longitudinal DC resistivity due to thermally-excited quasiparticles is anisotropic. We interpret recent experiments at Landau level filling factor {nu} = 7/3 in terms of our theory.

  6. On precanonical quantization of gravity in spin connection variables

    SciTech Connect

    Kanatchikov, I. V.

    2013-02-21

    The basics of precanonical quantization and its relation to the functional Schroedinger picture in QFT are briefly outlined. The approach is then applied to quantization of Einstein's gravity in vielbein and spin connection variables and leads to a quantum dynamics described by the covariant Schroedinger equation for the transition amplitudes on the bundle of spin connection coefficients over space-time, that yields a novel quantum description of space-time geometry. A toy model of precanonical quantum cosmology based on the example of flat FLRW universe is considered.

  7. BRST operator quantization of generally covariant gauge systems

    NASA Astrophysics Data System (ADS)

    Ferraro, Rafael; Sforza, Daniel M.

    1997-04-01

    The BRST generator is realized as a Hermitian nilpotent operator for a finite-dimensional gauge system featuring a quadratic super-Hamiltonian and linear supermomentum constraints. As a result, the emerging ordering for the Hamiltonian constraint is not trivial, because the potential must enter the kinetic term in order to obtain a quantization invariant under scaling. Namely, BRST quantization does not lead to the curvature term used in the literature as a means to get that invariance. The inclusion of the potential in the kinetic term, far from being unnatural, is beautifully justified in light of the Jacobi's principle.

  8. New Exact Quantization Condition for Toric Calabi-Yau Geometries

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Zhang, Guojun; Huang, Min-xin

    2015-09-01

    We propose a new exact quantization condition for a class of quantum mechanical systems derived from local toric Calabi-Yau threefolds. Our proposal includes all contributions to the energy spectrum which are nonperturbative in the Planck constant, and is much simpler than the available quantization condition in the literature. We check that our proposal is consistent with previous works and implies nontrivial relations among the topological Gopakumar-Vafa invariants of the toric Calabi-Yau geometries. Together with the recent developments, our proposal opens a new avenue in the long investigations at the interface of geometry, topology and quantum mechanics.

  9. New Exact Quantization Condition for Toric Calabi-Yau Geometries.

    PubMed

    Wang, Xin; Zhang, Guojun; Huang, Min-Xin

    2015-09-18

    We propose a new exact quantization condition for a class of quantum mechanical systems derived from local toric Calabi-Yau threefolds. Our proposal includes all contributions to the energy spectrum which are nonperturbative in the Planck constant, and is much simpler than the available quantization condition in the literature. We check that our proposal is consistent with previous works and implies nontrivial relations among the topological Gopakumar-Vafa invariants of the toric Calabi-Yau geometries. Together with the recent developments, our proposal opens a new avenue in the long investigations at the interface of geometry, topology and quantum mechanics. PMID:26430981

  10. Enhanced current quantization in high-frequency electron pumps in a perpendicular magnetic field

    SciTech Connect

    Wright, S. J.; Blumenthal, M. D.; Gumbs, Godfrey; Thorn, A. L.; Pepper, M.; Anderson, D.; Jones, G. A. C.; Nicoll, C. A.; Ritchie, D. A.; Janssen, T. J. B. M.; Holmes, S. N.

    2008-12-15

    We present experimental results of high-frequency quantized charge pumping through a quantum dot formed by the electric field arising from applied voltages in a GaAs/AlGaAs system in the presence of a perpendicular magnetic field B. Clear changes are observed in the quantized current plateaus as a function of applied magnetic field. We report on the robustness in the length of the quantized plateaus and improvements in the quantization as a result of the applied B field.

  11. General N=1 supersymmetric flux vacua of massive type IIA string theory.

    PubMed

    Behrndt, Klaus; Cvetic, Mirjam

    2005-07-01

    We derive conditions for the existence of four-dimensional N=1 supersymmetric flux vacua of massive type IIA string theory with general supergravity fluxes turned on. For an SU(3) singlet Killing spinor, we show that such flux vacua exist when the internal geometry is nearly Kähler. The geometry is not warped, all the allowed fluxes are proportional to the mass parameter, and the dilaton is fixed by a ratio of (quantized) fluxes. The four-dimensional cosmological constant, while negative, becomes small in the vacuum with the weak string coupling.

  12. One-Dimensional Relativistic Dissipative System with Constant Force and its Quantization

    NASA Astrophysics Data System (ADS)

    López, G.; López, X. E.; Hernández, H.

    2006-04-01

    For a relativistic particle under a constant force and a linear velocity dissipation force, a constant of motion is found. Problems are shown for getting the Hamiltonian of this system. Thus, the quantization of this system is carried out through the constant of motion and using the quantization on the velocity variable. The dissipative relativistic quantum bouncer is outlined within this quantization approach.

  13. Analytic semi-classical quantization of a QCD string with light quarks

    SciTech Connect

    Theodore J. Allen et al.

    2002-08-14

    We perform an analytic semi-classical quantization of the straight QCD string with one end fixed and a massless quark on the other, in the limits of orbital and radial dominant motion. Our results well approximate those of the exact numerical semi-classical quantization as well as our exact numerical canonical quantization.

  14. A quantum-drive-time (QDT) quantization of the Taub cosmology

    SciTech Connect

    Miller, W.A.; Kheyfets, A.

    1994-10-01

    We present here an application of a new quantization scheme. We quantize the Taub cosmology by quantizing only the anisotropy parameter {beta} and imposing the super-Hamiltonian constraint as an expectation-value equation to recover the relationship between the scale factor {Omega} and time t. This approach appears to avoid the problem of time.

  15. Nonperturbative renormalization of QED in light-cone quantization

    SciTech Connect

    Hiller, J.R.; Brodsky, S.J.

    1996-08-01

    As a precursor to work on QCD, we study the dressed electron in QED non-perturbatively. The calculational scheme uses an invariant mass cutoff, discretized light cone quantization, a Tamm-Dancoff truncation of the Fock space, and a small photon mass. Nonperturbative renormalization of the coupling and electron mass is developed.

  16. Multispectral data compression through transform coding and block quantization

    NASA Technical Reports Server (NTRS)

    Ready, P. J.; Wintz, P. A.

    1972-01-01

    Transform coding and block quantization techniques are applied to multispectral aircraft scanner data, and digitized satellite imagery. The multispectral source is defined and an appropriate mathematical model proposed. The Karhunen-Loeve, Fourier, and Hadamard encoders are considered and are compared to the rate distortion function for the equivalent Gaussian source and to the performance of the single sample PCM encoder.

  17. Local mesh quantized extrema patterns for image retrieval.

    PubMed

    Koteswara Rao, L; Venkata Rao, D; Reddy, L Pratap

    2016-01-01

    In this paper, we propose a new feature descriptor, named local mesh quantized extrema patterns (LMeQEP) for image indexing and retrieval. The standard local quantized patterns collect the spatial relationship in the form of larger or deeper texture pattern based on the relative variations in the gray values of center pixel and its neighbors. Directional local extrema patterns explore the directional information in 0°, 90°, 45° and 135° for a pixel positioned at the center. A mesh structure is created from a quantized extrema to derive significant textural information. Initially, the directional quantized data from the mesh structure is extracted to form LMeQEP of given image. Then, RGB color histogram is built and integrated with the LMeQEP to enhance the performance of the system. In order to test the impact of proposed method, experimentation is done with bench mark image repositories such as MIT VisTex and Corel-1k. Avg. retrieval rate and avg. retrieval precision are considered as the evaluation metrics to record the performance level. The results from experiments show a considerable improvement when compared to other recent techniques in the image retrieval. PMID:27429886

  18. Quantization method for describing the motion of celestial systems

    NASA Astrophysics Data System (ADS)

    Christianto, Victor; Smarandache, Florentin

    2015-11-01

    Criticism arises concerning the use of quantization method for describing the motion of celestial systems, arguing that the method is oversimplifying the problem, and cannot explain other phenomena, for instance planetary migration. Using quantization method like Nottale-Schumacher did, one can expect to predict new exoplanets with remarkable result. The ``conventional'' theories explaining planetary migration normally use fluid theory involving diffusion process. Gibson have shown that these migration phenomena could be described via Navier-Stokes approach. Kiehn's argument was based on exact-mapping between Schrodinger equation and Navier-Stokes equations, while our method may be interpreted as an oversimplification of the real planetary migration process which took place sometime in the past, providing useful tool for prediction (e.g. other planetoids, which are likely to be observed in the near future, around 113.8AU and 137.7 AU). Therefore, quantization method could be seen as merely a ``plausible'' theory. We would like to emphasize that the quantization method does not have to be the true description of reality with regards to celestial phenomena. This method could explain some phenomena, while perhaps lacks explanation for other phenomena.

  19. FAST TRACK COMMUNICATION: Quantization over boson operator spaces

    NASA Astrophysics Data System (ADS)

    Prosen, Tomaž; Seligman, Thomas H.

    2010-10-01

    The framework of third quantization—canonical quantization in the Liouville space—is developed for open many-body bosonic systems. We show how to diagonalize the quantum Liouvillean for an arbitrary quadratic n-boson Hamiltonian with arbitrary linear Lindblad couplings to the baths and, as an example, explicitly work out a general case of a single boson.

  20. Semiclassical Quantization of the Electron-Dipole System.

    ERIC Educational Resources Information Center

    Turner, J. E.

    1979-01-01

    This paper presents a derivation of the number given by Fermi in 1925, in his semiclassical treatment of the motion of an electron in the field of two stationary positive charges, for Bohr quantization of the electron orbits when the stationary charges are positive, and applies it to an electron moving in the field of a stationary dipole.…

  1. Consistent quantization of massive chiral electrodynamics in four dimensions

    SciTech Connect

    Andrianov, A. ); Bassetto, A.; Soldati, R.

    1989-10-09

    We discuss the quantization of a four-dimensional model in which a massive Abelian vector field interacts with chiral massless fermions. We show that, by introducing extra scalar fields, a renormalizable unitary {ital S} matrix can be obtained in a suitably defined Hilbert space of physical states.

  2. Optimal Pruning for Tree-Structured Vector Quantization.

    ERIC Educational Resources Information Center

    Lin, Jianhua; And Others

    1992-01-01

    Analyzes the computational complexity of optimal binary tree pruning for tree-structured vector quantization. Topics discussed include the combinatorial nature of the optimization problem; the complexity of optimal tree pruning; and finding a minimal size pruned tree. (11 references) (LRW)

  3. Local mesh quantized extrema patterns for image retrieval.

    PubMed

    Koteswara Rao, L; Venkata Rao, D; Reddy, L Pratap

    2016-01-01

    In this paper, we propose a new feature descriptor, named local mesh quantized extrema patterns (LMeQEP) for image indexing and retrieval. The standard local quantized patterns collect the spatial relationship in the form of larger or deeper texture pattern based on the relative variations in the gray values of center pixel and its neighbors. Directional local extrema patterns explore the directional information in 0°, 90°, 45° and 135° for a pixel positioned at the center. A mesh structure is created from a quantized extrema to derive significant textural information. Initially, the directional quantized data from the mesh structure is extracted to form LMeQEP of given image. Then, RGB color histogram is built and integrated with the LMeQEP to enhance the performance of the system. In order to test the impact of proposed method, experimentation is done with bench mark image repositories such as MIT VisTex and Corel-1k. Avg. retrieval rate and avg. retrieval precision are considered as the evaluation metrics to record the performance level. The results from experiments show a considerable improvement when compared to other recent techniques in the image retrieval.

  4. Equivalent Electrical Circuit Representations of AC Quantized Hall Resistance Standards

    PubMed Central

    Cage, M. E.; Jeffery, A.; Matthews, J.

    1999-01-01

    We use equivalent electrical circuits to analyze the effects of large parasitic impedances existing in all sample probes on four-terminal-pair measurements of the ac quantized Hall resistance RH. The circuit components include the externally measurable parasitic capacitances, inductances, lead resistances, and leakage resistances of ac quantized Hall resistance standards, as well as components that represent the electrical characteristics of the quantum Hall effect device (QHE). Two kinds of electrical circuit connections to the QHE are described and considered: single-series “offset” and quadruple-series. (We eliminated other connections in earlier analyses because they did not provide the desired accuracy with all sample probe leads attached at the device.) Exact, but complicated, algebraic equations are derived for the currents and measured quantized Hall voltages for these two circuits. Only the quadruple-series connection circuit meets our desired goal of measuring RH for both ac and dc currents with a one-standard-deviation uncertainty of 10−8 RH or less during the same cool-down with all leads attached at the device. The single-series “offset” connection circuit meets our other desired goal of also measuring the longitudinal resistance Rx for both ac and dc currents during that same cool-down. We will use these predictions to apply small measurable corrections, and uncertainties of the corrections, to ac measurements of RH in order to realize an intrinsic ac quantized Hall resistance standard of 10−8 RH uncertainty or less.

  5. Fast large-scale object retrieval with binary quantization

    NASA Astrophysics Data System (ADS)

    Zhou, Shifu; Zeng, Dan; Shen, Wei; Zhang, Zhijiang; Tian, Qi

    2015-11-01

    The objective of large-scale object retrieval systems is to search for images that contain the target object in an image database. Where state-of-the-art approaches rely on global image representations to conduct searches, we consider many boxes per image as candidates to search locally in a picture. In this paper, a feature quantization algorithm called binary quantization is proposed. In binary quantization, a scale-invariant feature transform (SIFT) feature is quantized into a descriptive and discriminative bit-vector, which allows itself to adapt to the classic inverted file structure for box indexing. The inverted file, which stores the bit-vector and box ID where the SIFT feature is located inside, is compact and can be loaded into the main memory for efficient box indexing. We evaluate our approach on available object retrieval datasets. Experimental results demonstrate that the proposed approach is fast and achieves excellent search quality. Therefore, the proposed approach is an improvement over state-of-the-art approaches for object retrieval.

  6. Phase quantization of chaos in the semiclassical regime

    NASA Astrophysics Data System (ADS)

    Takahashi, Satoshi; Takatsuka, Kazuo

    2007-08-01

    Since the early stage of the study of Hamilton chaos, semiclassical quantization based on the low-order Wentzel-Kramers-Brillouin theory, the primitive semiclassical approximation to the Feynman path integrals (or the so-called Van Vleck propagator), and their variants have been suffering from difficulties such as divergence in the correlation function, nonconvergence in the trace formula, and so on. These difficulties have been hampering the progress of quantum chaos, and it is widely recognized that the essential drawback of these semiclassical theories commonly originates from the erroneous feature of the amplitude factors in their applications to classically chaotic systems. This forms a clear contrast to the success of the Einstein-Brillouin-Keller quantization condition for regular (integrable) systems. We show here that energy quantization of chaos in semiclassical regime is, in principle, possible in terms of constructive and destructive interference of phases alone, and the role of the semiclassical amplitude factor is indeed negligibly small, as long as it is not highly oscillatory. To do so, we first sketch the mechanism of semiclassical quantization of energy spectrum with the Fourier analysis of phase interference in a time correlation function, from which the amplitude factor is practically factored out due to its slowly varying nature. In this argument there is no distinction between integrability and nonintegrability of classical dynamics. Then we present numerical evidence that chaos can be indeed quantized by means of amplitude-free quasicorrelation functions and Heller's frozen Gaussian method. This is called phase quantization. Finally, we revisit the work of Yamashita and Takatsuka [Prog. Theor. Phys. Suppl. 161, 56 (2007)] who have shown explicitly that the semiclassical spectrum is quite insensitive to smooth modification (rescaling) of the amplitude factor. At the same time, we note that the phase quantization naturally breaks down when the

  7. Quantization and Quantum-Like Phenomena: A Number Amplitude Approach

    NASA Astrophysics Data System (ADS)

    Robinson, T. R.; Haven, E.

    2015-12-01

    Historically, quantization has meant turning the dynamical variables of classical mechanics that are represented by numbers into their corresponding operators. Thus the relationships between classical variables determine the relationships between the corresponding quantum mechanical operators. Here, we take a radically different approach to this conventional quantization procedure. Our approach does not rely on any relations based on classical Hamiltonian or Lagrangian mechanics nor on any canonical quantization relations, nor even on any preconceptions of particle trajectories in space and time. Instead we examine the symmetry properties of certain Hermitian operators with respect to phase changes. This introduces harmonic operators that can be identified with a variety of cyclic systems, from clocks to quantum fields. These operators are shown to have the characteristics of creation and annihilation operators that constitute the primitive fields of quantum field theory. Such an approach not only allows us to recover the Hamiltonian equations of classical mechanics and the Schrödinger wave equation from the fundamental quantization relations, but also, by freeing the quantum formalism from any physical connotation, makes it more directly applicable to non-physical, so-called quantum-like systems. Over the past decade or so, there has been a rapid growth of interest in such applications. These include, the use of the Schrödinger equation in finance, second quantization and the number operator in social interactions, population dynamics and financial trading, and quantum probability models in cognitive processes and decision-making. In this paper we try to look beyond physical analogies to provide a foundational underpinning of such applications.

  8. In search of a new initialization of K-means clustering for color quantization

    NASA Astrophysics Data System (ADS)

    Frackiewicz, Mariusz; Palus, Henryk

    2015-12-01

    Color quantization is still an important auxiliary operation in the processing of color images. The K-means clustering (KM), used to quantize the color, requires an appropriate initialization. In this paper, we propose a combined KM method that use to initialize the results of well-known quantization algorithms such as Wu's, NeuQuant (NQ) and Neural Gas (NG). This approach, assessed by three quality indices: PSNR, ΔE and ΔM, improves the results. Experimental results of such combined quantization indicate that the deterministic Wu+KM and random NG+KM approaches leading to the best quantized images.

  9. Quantization of electromagnetic field and analysis of Purcell effect based on formalism of scattering matrix

    NASA Astrophysics Data System (ADS)

    Kaliteevski, M. A.; Gubaydullin, A. R.; Ivanov, K. A.; Mazlin, V. A.

    2016-09-01

    We have developed a rigorous self-consistent approach for the quantization of electromagnetic field in inhomogeneous structures. The approach is based on utilization of the scattering matrix of the system. Instead of the use of standard periodic Born-Karman boundary conditions, we use the quantization condition implying equating eigenvalues of the scattering matrix (S-matrix) of the system to unity (S-quantization). In the trivial case of uniform medium boundary condition for S-quantization is nothing but periodic boundary condition. S-quantization allows calculating modification of the spontaneous emission rate for arbitrary inhomogeneous structure and direction of the emitted radiation. S-quantization solves the long-standing problem coupled to normalization of the quasi-stationary electromagnetic modes. Examples of application of S-quantization for the calculation of spontaneous emission rate for the cases of Bragg reflector and microcavity are demonstrated.

  10. U h( g) invariant quantization of coadjoint orbits and vector bundles over them

    NASA Astrophysics Data System (ADS)

    Donin, Joseph

    2001-04-01

    Let M be a coadjoint semisimple orbit of a simple Lie group G. Let U h( g) be a quantum group corresponding to G. We construct a universal family of U h( g) invariant quantizations of the sheaf of functions on M and describe all such quantizations. We also describe all two parameter U h( g) invariant quantizations on M, which can be considered as U h( g) invariant quantizations of the Kirillov-Kostant-Souriau (KKS) Poisson bracket on M. We also consider how those quantizations relate to the natural polarizations of M with respect to the KKS bracket. Using polarizations, we quantize the sheaves of sections of vector bundles on M as one- and two-sided U h( g) invariant modules over a quantized function sheaf.

  11. Semi-logarithmic and hybrid quantization of Laplacian source inwide range of variances

    NASA Astrophysics Data System (ADS)

    Savić, Milan S.; Perić, Zoran H.; Panić, Stefan R.; Mosić, Aleksandar V.

    2012-12-01

    A novel semilogarithmic hybrid quantizer for non-uniform scalar quantization of Laplacian source, which consist of uniform quantizer and companding quantizer is introduced. Uniform quantizer has unit gain in area around zero. Companding quantizer is defined with a novel logarithm characteristic. Also an analysis of classic semilogarithmic A-law for various values of A parameter is provided. Comparation with classic semilogarithmic A-law is performed. The main advantage of hybrid quantizer is that number of representation levels for both uniform and companding quantizer are not unambiguously determined function of the A parameter value, as it is the case with classic semilogarithmic A companding characteristic. It is shown that by using hybrid quantizer, average of signal-to-quantization noise ratio SQNR quality obtained by using classic A companding law can be overachieved for 0.47 dB. Numbers of representation levels of hybrid quantizer are adapted to the input signal variances, in order to achieve high SQNR in a wide range of signal volumes (variances). By using this adaptation higher average SQNR quality of 2.52 dB could be achieved compared to classic A companding law. Forward adaptation of hybrid quantizer is analyzed and obtained performances correspond to adaptive classic A companding law case but possible advantage arises in simpler practical realization of hybrid quantizers. Obtained performances correspond to classic A-law companding case, because during the adaptation process, optimal values of parameter A are chosen. For each other A parameter values proposed hybrid quantizer provides better results. For value of A = 50 hybrid model has higher SQNR value for 0.79 dB

  12. Quantum heat engine: A fully quantized model

    NASA Astrophysics Data System (ADS)

    Youssef, M.; Mahler, G.; Obada, A.-S. F.

    2010-01-01

    Motivated by the growing interest in the nanophysics and the field of quantum thermodynamics [J. Gemmer, M. Michel, G. Mahler, Springer, 2005] we study a system consisting of two different 2-level atoms (spins) coupled to a quantum oscillator (resonator field mode), and each spin linked to a heat bath with different temperatures. We find that the energy gradient imposed on the system and the “coherent driving” of the two atoms achieved by the oscillator make this system act as a thermodynamic machine. We analyze the engine dynamics using the recently developed definitions of heat flux and power [E. Boukobza, D.J. Tannor, Phys. Rev. A. 74 (2006) 063823; H. Weimer, M.J. Henrich, F. Rempp, H. Schröder, G. Mahler, Eur. Phys. Lett. 83 (3) (2008) 30008]. The system can work as heat engine (laser) or a heat pump in a non-cyclic continuous mode. We characterize the properties of the resonator field. The concept of work and heat for this machine is discussed.

  13. Optimisation of Block-Adaptive Quantization for SAR Raw Data

    NASA Astrophysics Data System (ADS)

    Parraga Niebla, C.; Krieger, G.

    In SAR systems using a satellite platform, the amount of raw data to be transmitted to ground for processing is huge. Effort has to be spent to reduce the raw data. One technique that can be applied here is block adaptive quantization. For SAR systems, the raw data set is organised as a two-dimensional complex array (in-phase and quadrature) whose axes correspond to range and azimuth of the SAR image, normally using 8 bit coding per pixel, which generates a big amount of data to be transmitted and processed. In the case of satellites with store and forward function, data storage becomes a problem since the buffer capacity downlink bandwidth are limited. Therefore, there is a need to reduce the raw data set to be transmitted. One approach to solve this problem is to reduce the number of levels for amplitude coding. The Block-Adaptive Quantization algorithm consists of (i) dividing the data set in blocks and (ii) the adaptation of the quantization threshold levels and reconstruction values to the statistics of the signal within each block in order to better fit the dynamic margin, reducing this way the required number of bits of each block. Asuming a non-uniform quantization, the knowledge of SAR raw data statistical properties (which can be asumed as complex Gaussian distributed) can be applied to optimise the threshold values and reconstruction leves to the probability density function (pdf) of the signal. As every compression technique, the Block-Adaptive Quantization algorithm is loosing information as long as the number of bits is reduced. The effect of this information loss will be investigated in detail in this paper to find the right balance between compression rate and information loss in order to keep the processing quality for different remote sensing applications (SAR processing, interferometry, polarimetry) at an sufficient level. Furthermore, the selection of an optimum block size to be treated as statistically stationary is an issue for systematic

  14. 50 Years of Fluxoid Quantization: 2e or Not 2e

    NASA Astrophysics Data System (ADS)

    Einzel, Dietrich

    2011-06-01

    The year 2011 is quite remarkable because it allows us to celebrate not only the centennial of the discovery of superconductivity by Heike Kamerlingh-Onnes (The superconductivity of Mercury, Comm. Phys. Lab. Univ. Leiden, vols. 122, 124, 1911), but also the half-centennial of the discovery of what is referred to as fluxoid quantization in superconductors by Robert Doll and Martin Näbauer (Phys. Rev. Lett. 7:51, 1961; Z. Phys. 169:526, 1962), and, independently, by Bascom S. Deaver Jr. and William Fairbank (Phys. Rev. Lett. 7:43, 1961; Ph.D. Thesis, Stanford University, 1962). The experimental proof of the quantization of magnetic flux (or more accurately fluxoid) in hollow superconducting cylinders actually supports two important theoretical concepts. The form of the fluxoid quantum, on the one hand, which contains twice the elementary charge, allows for the conclusion, that the superconducting ground state can be viewed as a condensate of electron pairs, as predicted by the BCS theory of superconductivity (Bardeen et al. in Phys. Rev. 106:162, 1957; Phys. Rev. 108:1175, 1957). It can be viewed, on the other hand, as a quantum phenomenon seen on macroscopic scales and thus supports the concept of the bosonic macroscopic wave function, here applied to the description of (quasi-bosonic) fermion pair condensates. This review is devoted to a discussion of the physics behind the Doll-Näbauer, Deaver-Fairbank discoveries and is intended to review historically the chain of events which motivated these talented experimentalists and which led to their independent discoveries at quite remote points of the earth.

  15. The nature and role of quantized transition states in the accurate quantum dynamics of the reaction O + H2 yields OH + H

    NASA Technical Reports Server (NTRS)

    Chatfield, David C.; Friedman, Ronald S.; Lynch, Gillian C.; Truhlar, Donald G.; Schwenke, David W.

    1993-01-01

    Accurate quantum mechanical dynamics calculations are reported for the reaction probabilities of O(3P) + H2 yields OH + H with zero total angular momentum on a single potential energy surface. The results show that the reactive flux is gated by quantized transition states up to the highest energy studied, which corresponds to a total energy of 1.90 eV. The quantized transition states are assigned and compared to vibrationally adiabatic barrier maxima; their widths and transmission coefficients are determined; and they are classified as variational, supernumerary of the first kind, and supernumerary of the second kind. Their effects on state-selected and state-to-state reactivity are discussed in detail.

  16. New approach of color image quantization based on multidimensional directory

    NASA Astrophysics Data System (ADS)

    Chang, Chin-Chen; Su, Yuan-Yuan

    2003-04-01

    Color image quantization is a strategy in which a smaller number of colors are used to represent the image. The objective is to make the quality approximate as closely to the original true-color image. The technology is widely used in non-true-color displays and in color printers that cannot reproduce a large number of different colors. However, the main problem the quantization of color image has to face is how to use less colors to show the color image. Therefore, it is very important to choose one suitable palette for an index color image. In this paper, we shall propose a new approach which employs the concept of Multi-Dimensional Directory (MDD) together with the one cycle LBG algorithm to create a high-quality index color image. Compared with the approaches such as VQ, ISQ, and Photoshop v.5, our approach can not only acquire high quality image but also shorten the operation time.

  17. Features of multiphoton-stimulated bremsstrahlung in a quantized field

    NASA Astrophysics Data System (ADS)

    Burenkov, Ivan A.; Tikhonova, Olga V.

    2010-12-01

    The process of absorption and emission of external field quanta by a free electron during the scattering on a potential centre is investigated in the case of interaction with a quantized electromagnetic field. The analytical expression for differential cross-sections and probabilities of different multiphoton channels are obtained. We demonstrate that in the case of a non-classical 'squeezed vacuum' initial field state the probability for the electron to absorb a large number of photons appears to be larger by several orders of magnitude in comparison to the classical field and leads to the formation of the high-energy plateau in the electron energy spectrum. The generalization of the Marcuse effect to the case of the quantized field is worked out. The total probability of energy absorption by electron from the non-classical light is analysed.

  18. Wavelet/scalar quantization compression standard for fingerprint images

    SciTech Connect

    Brislawn, C.M.

    1996-06-12

    US Federal Bureau of Investigation (FBI) has recently formulated a national standard for digitization and compression of gray-scale fingerprint images. Fingerprints are scanned at a spatial resolution of 500 dots per inch, with 8 bits of gray-scale resolution. The compression algorithm for the resulting digital images is based on adaptive uniform scalar quantization of a discrete wavelet transform subband decomposition (wavelet/scalar quantization method). The FBI standard produces archival-quality images at compression ratios of around 15 to 1 and will allow the current database of paper fingerprint cards to be replaced by digital imagery. The compression standard specifies a class of potential encoders and a universal decoder with sufficient generality to reconstruct compressed images produced by any compliant encoder, allowing flexibility for future improvements in encoder technology. A compliance testing program is also being implemented to ensure high standards of image quality and interchangeability of data between different implementations.

  19. Conformal Loop quantization of gravity coupled to the standard model

    NASA Astrophysics Data System (ADS)

    Pullin, Jorge; Gambini, Rodolfo

    2016-03-01

    We consider a local conformal invariant coupling of the standard model to gravity free of any dimensional parameter. The theory is formulated in order to have a quantized version that admits a spin network description at the kinematical level like that of loop quantum gravity. The Gauss constraint, the diffeomorphism constraint and the conformal constraint are automatically satisfied and the standard inner product of the spin-network basis still holds. The resulting theory has resemblances with the Bars-Steinhardt-Turok local conformal theory, except it admits a canonical quantization in terms of loops. By considering a gauge fixed version of the theory we show that the Standard model coupled to gravity is recovered and the Higgs boson acquires mass. This in turn induces via the standard mechanism masses for massive bosons, baryons and leptons.

  20. Statistical amplitude scale estimation for quantization-based watermarking

    NASA Astrophysics Data System (ADS)

    Shterev, Ivo D.; Lagendijk, Reginald L.; Heusdens, Richard

    2004-06-01

    Quantization-based watermarking schemes are vulnerable to amplitude scaling. Therefore the scaling factor has to be accounted for either at the encoder, or at the decoder, prior to watermark decoding. In this paper we derive the marginal probability density model for the watermarked and attacked data, when the attack channel consists of amplitude scaling followed by additive noise. The encoder is Quantization Index Modulation with Distortion Compensation. Based on this model we obtain two estimation procedures for the scale parameter. The first approach is based on Fourier Analysis of the probability density function. The estimation of the scaling parameter relies on the structure of the received data. The second approach that we obtain is the Maximum Likelihood estimator of the scaling factor. We study the performance of the estimation procedures theoretically and experimentally with real audio signals, and compare them to other well known approaches for amplitude scale estimation in the literature.

  1. Floating-point system quantization errors in digital control systems

    NASA Technical Reports Server (NTRS)

    Phillips, C. L.

    1973-01-01

    The results are reported of research into the effects on system operation of signal quantization in a digital control system. The investigation considered digital controllers (filters) operating in floating-point arithmetic in either open-loop or closed-loop systems. An error analysis technique is developed, and is implemented by a digital computer program that is based on a digital simulation of the system. As an output the program gives the programing form required for minimum system quantization errors (either maximum of rms errors), and the maximum and rms errors that appear in the system output for a given bit configuration. The program can be integrated into existing digital simulations of a system.

  2. On Group Phase Quantization and Its Physical Characteristics

    NASA Astrophysics Data System (ADS)

    Du, Bao-Qiang; Zhou, Wei; Yu, Jian-Guo; Dong, Shao-Feng

    2011-05-01

    The physical characteristics of phase quantum are further revealed, based on the proposition of concepts of the greatest common factor frequency, the least common multiple period, quantized phase shift resolution and equivalent phase comparison frequency. Then the problem of phase comparison between different frequency signals is certified in detail. Using the basic principle of phase comparison between different frequencies and the variation law of group phase difference, a point of view on group phase quantization is presented. Group phase quantum is not only an indivisible individual of group phase, but also a basic unit composing group phase difference. It is equal to the equivalent phase comparison period of phase comparison between different frequencies in size. Experimental results show not only a high measurement resolution of 10-12/s in frequency measurement based on group phase quantum, but also a super-high locked phase precision of 10-13/s in active H atomic clock.

  3. Polymer quantization of the Einstein-Rosen wormhole throat

    SciTech Connect

    Kunstatter, Gabor; Peltola, Ari; Louko, Jorma

    2010-01-15

    We present a polymer quantization of spherically symmetric Einstein gravity in which the polymerized variable is the area of the Einstein-Rosen wormhole throat. In the classical polymer theory, the singularity is replaced by a bounce at a radius that depends on the polymerization scale. In the polymer quantum theory, we show numerically that the area spectrum is evenly spaced and in agreement with a Bohr-Sommerfeld semiclassical estimate, and this spectrum is not qualitatively sensitive to issues of factor ordering or boundary conditions except in the lowest few eigenvalues. In the limit of small polymerization scale we recover, within the numerical accuracy, the area spectrum obtained from a Schroedinger quantization of the wormhole throat dynamics. The prospects of recovering from the polymer throat theory a full quantum-corrected spacetime are discussed.

  4. Hierarchical vector quantizers with table-lookup encoders

    NASA Astrophysics Data System (ADS)

    Chang, P. C.; Gray, R. M.; May, J.

    This paper presents a technique for the design of vector quantizer (VQ) encoders implemented by table lookups rather than by a minimum distortion search. In a table lookup encoder, input vectors to the encoder are used directly as addresses in code tables to choose the channel symbol codewords. In order to preserve manageable table sizes for large dimension VQs, hierarchical structures are used to quantize the signal successively in stages. The encoder of a hierarchical VQ (HVQ) consists of several stages, each stage being a VQ implemented by a lookup table. Since both the encoder and the decoder are implemented by table lookups, there are no arithmetic computations required in the final VQ implementation. Preliminary simulation results are presented which demonstrate that the degradation using HVQ over full search VQ is less than 1 dB for speech waveform coding.

  5. Wavelet-based learning vector quantization for automatic target recognition

    NASA Astrophysics Data System (ADS)

    Chan, Lipchen A.; Nasrabadi, Nasser M.; Mirelli, Vincent

    1996-06-01

    An automatic target recognition classifier is constructed that uses a set of dedicated vector quantizers (VQs). The background pixels in each input image are properly clipped out by a set of aspect windows. The extracted target area for each aspect window is then enlarged to a fixed size, after which a wavelet decomposition splits the enlarged extraction into several subbands. A dedicated VQ codebook is generated for each subband of a particular target class at a specific range of aspects. Thus, each codebook consists of a set of feature templates that are iteratively adapted to represent a particular subband of a given target class at a specific range of aspects. These templates are then further trained by a modified learning vector quantization (LVQ) algorithm that enhances their discriminatory characteristics. A recognition rate of 69.0 percent is achieved on a highly cluttered test set.

  6. Novel properties of the q-analogue quantized radiation field

    NASA Technical Reports Server (NTRS)

    Nelson, Charles A.

    1993-01-01

    The 'classical limit' of the q-analog quantized radiation field is studied paralleling conventional quantum optics analyses. The q-generalizations of the phase operator of Susskind and Glogower and that of Pegg and Barnett are constructed. Both generalizations and their associated number-phase uncertainty relations are manifestly q-independent in the n greater than g number basis. However, in the q-coherent state z greater than q basis, the variance of the generic electric field, (delta(E))(sup 2) is found to be increased by a factor lambda(z) where lambda(z) greater than 1 if q not equal to 1. At large amplitudes, the amplitude itself would be quantized if the available resolution of unity for the q-analog coherent states is accepted in the formulation. These consequences are remarkable versus the conventional q = 1 limit.

  7. Quantized conductance through the quantum evaporation of bosonic atoms

    NASA Astrophysics Data System (ADS)

    Papoular, D. J.; Pitaevskii, L. P.; Stringari, S.

    2016-08-01

    We analyze theoretically the quantization of conductance occurring with cold bosonic atoms trapped in two reservoirs connected by a constriction with an attractive gate potential. We focus on temperatures slightly above the condensation threshold in the reservoirs. We show that a conductance step occurs, coinciding with the appearance of a condensate in the constriction. Conductance relies on a collective process involving the quantum condensation of an atom into an elementary excitation and the subsequent quantum evaporation of an atom, in contrast with ballistic fermion transport. The value of the bosonic conductance plateau is strongly enhanced compared to fermions and explicitly depends on temperature. We highlight the role of the repulsive interactions between the bosons in preventing them from collapsing into the constriction. We also point out the differences between the bosonic and fermionic thermoelectric effects in the quantized conductance regime.

  8. Precise quantization of anomalous Hall effect near zero magnetic field

    SciTech Connect

    Bestwick, A. J.; Fox, E. J.; Kou, Xufeng; Pan, Lei; Wang, Kang L.; Goldhaber-Gordon, D.

    2015-05-04

    In this study, we report a nearly ideal quantum anomalous Hall effect in a three-dimensional topological insulator thin film with ferromagnetic doping. Near zero applied magnetic field we measure exact quantization in the Hall resistance to within a part per 10,000 and a longitudinal resistivity under 1 Ω per square, with chiral edge transport explicitly confirmed by nonlocal measurements. Deviations from this behavior are found to be caused by thermally activated carriers, as indicated by an Arrhenius law temperature dependence. Using the deviations as a thermometer, we demonstrate an unexpected magnetocaloric effect and use it to reach near-perfect quantization by cooling the sample below the dilution refrigerator base temperature in a process approximating adiabatic demagnetization refrigeration.

  9. Gauge Invariance of Parametrized Systems and Path Integral Quantization

    NASA Astrophysics Data System (ADS)

    de Cicco, Hernán; Simeone, Claudio

    Gauge invariance of systems whose Hamilton-Jacobi equation is separable is improved by adding surface terms to the action functional. The general form of these terms is given for some complete solutions of the Hamilton-Jacobi equation. The procedure is applied to the relativistic particle and toy universes, which are quantized by imposing canonical gauge conditions in the path integral; in the case of empty models, we first quantize the parametrized system called "ideal clock," and then we examine the possibility of obtaining the amplitude for the minisuperspaces by matching them with the ideal clock. The relation existing between the geometrical properties of the constraint surface and the variables identifying the quantum states in the path integral is discussed.

  10. Corrected Hawking Temperature in Snyder's Quantized Space-time

    NASA Astrophysics Data System (ADS)

    Ma, Meng-Sen; Liu, Fang; Zhao, Ren

    2015-06-01

    In the quantized space-time of Snyder, generalized uncertainty relation and commutativity are both included. In this paper we analyze the possible form for the corrected Hawking temperature and derive it from the both effects. It is shown that the corrected Hawking temperature has a form similar to the one of noncommutative geometry inspired Schwarzschild black hole, however with an requirement for the noncommutative parameter 𝜃 and the minimal length a.

  11. Robust image analysis with sparse representation on quantized visual features.

    PubMed

    Bao, Bing-Kun; Zhu, Guangyu; Shen, Jialie; Yan, Shuicheng

    2013-03-01

    Recent techniques based on sparse representation (SR) have demonstrated promising performance in high-level visual recognition, exemplified by the highly accurate face recognition under occlusion and other sparse corruptions. Most research in this area has focused on classification algorithms using raw image pixels, and very few have been proposed to utilize the quantized visual features, such as the popular bag-of-words feature abstraction. In such cases, besides the inherent quantization errors, ambiguity associated with visual word assignment and misdetection of feature points, due to factors such as visual occlusions and noises, constitutes the major cause of dense corruptions of the quantized representation. The dense corruptions can jeopardize the decision process by distorting the patterns of the sparse reconstruction coefficients. In this paper, we aim to eliminate the corruptions and achieve robust image analysis with SR. Toward this goal, we introduce two transfer processes (ambiguity transfer and mis-detection transfer) to account for the two major sources of corruption as discussed. By reasonably assuming the rarity of the two kinds of distortion processes, we augment the original SR-based reconstruction objective with l(0) norm regularization on the transfer terms to encourage sparsity and, hence, discourage dense distortion/transfer. Computationally, we relax the nonconvex l(0) norm optimization into a convex l(1) norm optimization problem, and employ the accelerated proximal gradient method to optimize the convergence provable updating procedure. Extensive experiments on four benchmark datasets, Caltech-101, Caltech-256, Corel-5k, and CMU pose, illumination, and expression, manifest the necessity of removing the quantization corruptions and the various advantages of the proposed framework.

  12. Indexing and retrieval of color images using vector quantization

    NASA Astrophysics Data System (ADS)

    Panchanathan, Sethuraman; Huang, Changan

    1999-10-01

    Image and Video indexing is becoming popular with the increasing volumes of visual information that is being stored and transmitted in various multimedia applications. An important focus of the upcoming MPEG 7 standard is on indexing and retrieval of multimedia data. The visual information can be indexed using the spatial (color, texture, shape, sketch, etc.) and temporal (motion, camera operations, etc.) features. Since multimedia data is likely to be stored in compressed form, indexing the information in compressed domain entails savings in compute time and storage space. In this paper, we present a novel indexing and retrieval technique using vector quantization of color images. Color is an important feature for indexing the visual information. Several color based indexing schemes have been reported in the recent literature. Vector Quantization (VQ) is a popular compression technique for low-power applications. Indexing the visual information based on VQ features such as luminance codebook and labels have also been recently presented in the literature. Previous VQ-based indexing techniques describes the entire image content by modeling the histogram of the image without taking into account the location of colors, which may result in unsatisfactory retrieval. We propose to incorporate spatial information in the content representation in VQ-compressed domain. We employ the luminance and chrominance codebooks trained and generated from wavelet-vector-quantized (WVQ) images, in which the images are first decomposed using wavelet transform followed by vector quantization of the transform coefficients. The labels, and the usage maps corresponding to the utilization pattern of codebooks for the individual images serve as indices to the associated color information contained in the images. Hence, the VQ compression parameters serve the purpose of indexing resulting in joint compression and indexing of the color information. Our simulations indicate superior indexing and

  13. Hamiltonian BRST quantization of Chern-Simons gauge theory

    SciTech Connect

    Imai, H.; So, H. . Dept. of Physics); Igarashi, Y. ); Kitakado, S. ); Kubo, J. . Coll. of Liberal Arts)

    1990-08-30

    This paper quantizes non-abelian gauge theory with only a Chern-Simons term in three dimensions by using the generalized Hamiltonian formalism of Batalin and Fradkin for irreducible first- and second-class constrained systems, and derives a covariant action for the theory which is invariant under the off-shell nilpotent BRST transformation. Some aspects of the theory, finiteness and supersymmetry are discussed.

  14. Torus as phase space: Weyl quantization, dequantization, and Wigner formalism

    NASA Astrophysics Data System (ADS)

    Ligabò, Marilena

    2016-08-01

    The Weyl quantization of classical observables on the torus (as phase space) without regularity assumptions is explicitly computed. The equivalence class of symbols yielding the same Weyl operator is characterized. The Heisenberg equation for the dynamics of general quantum observables is written through the Moyal brackets on the torus and the support of the Wigner transform is characterized. Finally, a dequantization procedure is introduced that applies, for instance, to the Pauli matrices. As a result we obtain the corresponding classical symbols.

  15. Polymer quantization and the saddle point approximation of partition functions

    NASA Astrophysics Data System (ADS)

    Morales-Técotl, Hugo A.; Orozco-Borunda, Daniel H.; Rastgoo, Saeed

    2015-11-01

    The saddle point approximation of the path integral partition functions is an important way of deriving the thermodynamical properties of black holes. However, there are certain black hole models and some mathematically analog mechanical models for which this method cannot be applied directly. This is due to the fact that their action evaluated on a classical solution is not finite and its first variation does not vanish for all consistent boundary conditions. These problems can be dealt with by adding a counterterm to the classical action, which is a solution of the corresponding Hamilton-Jacobi equation. In this work we study the effects of polymer quantization on a mechanical model presenting the aforementioned difficulties and contrast it with the above counterterm method. This type of quantization for mechanical models is motivated by the loop quantization of gravity, which is known to play a role in the thermodynamics of black hole systems. The model we consider is a nonrelativistic particle in an inverse square potential, and we analyze two polarizations of the polymer quantization in which either the position or the momentum is discrete. In the former case, Thiemann's regularization is applied to represent the inverse power potential, but we still need to incorporate the Hamilton-Jacobi counterterm, which is now modified by polymer corrections. In the latter, momentum discrete case, however, such regularization could not be implemented. Yet, remarkably, owing to the fact that the position is bounded, we do not need a Hamilton-Jacobi counterterm in order to have a well-defined saddle point approximation. Further developments and extensions are commented upon in the discussion.

  16. Cascade of FISDW Phases: Wave Vector Quantization and its Consequences

    NASA Astrophysics Data System (ADS)

    Héritier, M.

    We discuss a formation of the field-induced spin-density-wave phases in organic conductors (TMTSF)2X in terms of the so-called quantized nesting model (QNM), suggested by Heritier, Montambaux, and Lederer on a basis of the Go'kov- Lebed theory. The QNM, developed by Lebed, Maki et al., Yamaji, Poilblanc et al., and Yakovenko et al., is able to account for experimentally observed threedimensional quantum Hall effect.

  17. Image compression system and method having optimized quantization tables

    NASA Technical Reports Server (NTRS)

    Ratnakar, Viresh (Inventor); Livny, Miron (Inventor)

    1998-01-01

    A digital image compression preprocessor for use in a discrete cosine transform-based digital image compression device is provided. The preprocessor includes a gathering mechanism for determining discrete cosine transform statistics from input digital image data. A computing mechanism is operatively coupled to the gathering mechanism to calculate a image distortion array and a rate of image compression array based upon the discrete cosine transform statistics for each possible quantization value. A dynamic programming mechanism is operatively coupled to the computing mechanism to optimize the rate of image compression array against the image distortion array such that a rate-distortion-optimal quantization table is derived. In addition, a discrete cosine transform-based digital image compression device and a discrete cosine transform-based digital image compression and decompression system are provided. Also, a method for generating a rate-distortion-optimal quantization table, using discrete cosine transform-based digital image compression, and operating a discrete cosine transform-based digital image compression and decompression system are provided.

  18. Fundamentals of free flux flow: proposed studies

    NASA Astrophysics Data System (ADS)

    Alexander, J. A.; Gafarov, O.; Gapud, A. A.; Wu, J. Z.

    2013-03-01

    Although much is known about free flux flow (FFF) in superconductors - in which pinning is insignificant compared to interactions between quantized vortices - there still remain questions concerning fundamental dynamics. Building on our previous work in correlating FFF with vortex core size (PRB 80, 134524), we propose three new studies examining more deeply the normal state in the vortex core and interactions between vortices. A correlation between scattering inside cores and the viscosity of FFF has not been explicitly determined; this may be investigated by probing the effect of scattering centers created by proton irradiation. Using results of previous irradiation work, one could control the extent of normal state scattering while monitoring effects on FFF. Questions also exist concerning vortex motion in channels with widths approaching that of individual vortices - as determined solely by inter-vortex interactions. Studies have suggested that flux flow through constrictions could imitate ``jamming'' in the collective motion of grains: Under certain conditions, it is possible for grains to form a barrier, blocking flow. More than just qualitatively comparing flux flow and granular flow to find evidence of jamming, we propose a new experiment for quantitatively modeling flux jamming by realizing the flux flow equivalent of granular jamming in a ``hopper''. In the same way, we also propose a FFF equivalent of another granular-flow phenomenon, ``non-Newtonian'' fluids, where rapid shear causes jamming. Funded by NSF-RUI grant, DMR-0907038.

  19. Hierarchical Vector Quantization with Application to Speech Waveform Coding.

    NASA Astrophysics Data System (ADS)

    Shoham, Yair

    Digital voice communication has long been of great engineering concern due to the vital role of voice communication in human society. Recently, a new and theoretically powerful coding technique, Vector Quantization (VQ), has been used in enhancing existing speech coders and in developing new coding algorithms. VQ operates on a vector of source samples as an elementary unit. The basic coding operation is that of pattern matching, where a finite set of codevectors (the codebook) is searched for the best approximation to the input source vector. However, the applicability of VQ to speech coding is limited by the computational complexity, associated with the codebook search, which grows exponentially with the source dimension and the coding rate. A fundamental property of speech is that it is composed of long highly correlated segments, due to its quasi-periodicity and short -term stationarity. These features of speech cannot be directly exploited by vector quantization because of the complexity problem. Thus, to be able to efficiently exploit the redundancy in speech by a VQ-based coding scheme, a special technique is needed, capable of handling very high dimensional vectors. Such a technique, called Hierarchical Vector Quantization (HVQ) is developed in this work. HVQ is based on representing the source by a multi -level tree-structure of low dimensional vectors. The bottom level of the tree contains the data vectors which are subvectors of the main high dimensional input. Vectors at higher levels contain suitably defined signal parameters which are extracted from the lower levels. These parameters, called features, are used as side-information in coding the data vectors. This technique partially exploits the correlation and structure of the main input vector while actually performing low dimensional, low complexity vector quantization. In this work HVQ, is used in quantizing the coefficients of a specially structured transform coder. This coder employs variable

  20. Influence of quantized diffractive phase element on the axial uniformity of pseudo-nondiffracting beams

    NASA Astrophysics Data System (ADS)

    Sze, Jyh-Rou; Wei, An-Chi; Wu, Wen-Hong; Chang, Chun-Li

    2015-07-01

    The analysis of the diffractive phase elements (DPEs) that synthesizes pseudo-nondiffracting beams (PNDBs) in different axial regions are described. Those elements are designed by using conjugate-gradient method algorithm. To meet the requirement of lithography fabrication process, the obtained optimum continuous surface profile of DPEs must be quantized in the multilevel structure. In order to analyze the impact of different quantization levels, the axial-illuminance RMS variance of PNDBs for each quantized DPE is calculated and compared with each other. The compared results show that the axial illuminance of the PNDB of DPE with smaller-levels quantization fluctuates more rapidly than that of DPE with larger-levels quantization. Meanwhile, the analyses also show that the axial uniformity of the PNDB of DPE with a longer focal length is less sensitive to the quantization level.

  1. Image-adapted visually weighted quantization matrices for digital image compression

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B. (Inventor)

    1994-01-01

    A method for performing image compression that eliminates redundant and invisible image components is presented. The image compression uses a Discrete Cosine Transform (DCT) and each DCT coefficient yielded by the transform is quantized by an entry in a quantization matrix which determines the perceived image quality and the bit rate of the image being compressed. The present invention adapts or customizes the quantization matrix to the image being compressed. The quantization matrix comprises visual masking by luminance and contrast techniques and by an error pooling technique all resulting in a minimum perceptual error for any given bit rate, or minimum bit rate for a given perceptual error.

  2. Length quantization of DNA partially expelled from heads of a bacteriophage T3 mutant

    SciTech Connect

    Serwer, Philip; Wright, Elena T.; Liu, Zheng; Jiang, Wen

    2014-05-15

    DNA packaging of phages phi29, T3 and T7 sometimes produces incompletely packaged DNA with quantized lengths, based on gel electrophoretic band formation. We discover here a packaging ATPase-free, in vitro model for packaged DNA length quantization. We use directed evolution to isolate a five-site T3 point mutant that hyper-produces tail-free capsids with mature DNA (heads). Three tail gene mutations, but no head gene mutations, are present. A variable-length DNA segment leaks from some mutant heads, based on DNase I-protection assay and electron microscopy. The protected DNA segment has quantized lengths, based on restriction endonuclease analysis: six sharp bands of DNA missing 3.7–12.3% of the last end packaged. Native gel electrophoresis confirms quantized DNA expulsion and, after removal of external DNA, provides evidence that capsid radius is the quantization-ruler. Capsid-based DNA length quantization possibly evolved via selection for stalling that provides time for feedback control during DNA packaging and injection. - Graphical abstract: Highlights: • We implement directed evolution- and DNA-sequencing-based phage assembly genetics. • We purify stable, mutant phage heads with a partially leaked mature DNA molecule. • Native gels and DNase-protection show leaked DNA segments to have quantized lengths. • Native gels after DNase I-removal of leaked DNA reveal the capsids to vary in radius. • Thus, we hypothesize leaked DNA quantization via variably quantized capsid radius.

  3. Multiscale video compression using adaptive finite-state vector quantization

    NASA Astrophysics Data System (ADS)

    Kwon, Heesung; Venkatraman, Mahesh; Nasrabadi, Nasser M.

    1998-10-01

    We investigate the use of vector quantizers (VQs) with memory to encode image sequences. A multiscale video coding technique using adaptive finite-state vector quantization (FSVQ) is presented.In this technique, a small codebook (subcodebook) is generated for each input vector from a much larger codebook (supercodebook) by the selection (through a reordering procedure) of a set of appropriate codevectors that is the best representative of the input vector. Therefore, the subcodebook dynamically adapts to the characteristics of the motion-compensated frame difference signal. Several reordering procedures are introduced, and their performance is evaluated. In adaptive FSVQ, two different methods, predefined thresholding and rate- distortion cost optimization, are used to decide between the supercodebook and subcodebook for encoding a given input vector. A cache-based vector quantizer, a form of adaptive FSVQ, is also presented for very-low-bit-rate video coding. An efficient bit-allocation strategy using quadtree decomposition is used with the cache-based VQ to compress the video signal. The proposed video codec outperforms H.263 in terms of the peak signal-to-noise ratio and perceptual quality at very low bit rates, ranging from 5 to 20 kbps. The picture quality of the proposed video codec is a significant improvement over previous codecs, in terms of annoying distortions (blocking artifacts and mosquito noises), and is comparable to that of recently developed wavelet-based video codecs. This similarity in picture quality can be explained by the fact that the proposed video codex uses multiscale segmentation and subsequent variable- rate coding, which are conceptually similar to wavelet-based coding techniques. The simplicity of the encoder and decoder of the proposed codec makes it more suitable than wavelet- based coding for real-time, very-low-bit rate video applications.

  4. Direct Images, Fields of Hilbert Spaces, and Geometric Quantization

    NASA Astrophysics Data System (ADS)

    Lempert, László; Szőke, Róbert

    2014-04-01

    Geometric quantization often produces not one Hilbert space to represent the quantum states of a classical system but a whole family H s of Hilbert spaces, and the question arises if the spaces H s are canonically isomorphic. Axelrod et al. (J. Diff. Geo. 33:787-902, 1991) and Hitchin (Commun. Math. Phys. 131:347-380, 1990) suggest viewing H s as fibers of a Hilbert bundle H, introduce a connection on H, and use parallel transport to identify different fibers. Here we explore to what extent this can be done. First we introduce the notion of smooth and analytic fields of Hilbert spaces, and prove that if an analytic field over a simply connected base is flat, then it corresponds to a Hermitian Hilbert bundle with a flat connection and path independent parallel transport. Second we address a general direct image problem in complex geometry: pushing forward a Hermitian holomorphic vector bundle along a non-proper map . We give criteria for the direct image to be a smooth field of Hilbert spaces. Third we consider quantizing an analytic Riemannian manifold M by endowing TM with the family of adapted Kähler structures from Lempert and Szőke (Bull. Lond. Math. Soc. 44:367-374, 2012). This leads to a direct image problem. When M is homogeneous, we prove the direct image is an analytic field of Hilbert spaces. For certain such M—but not all—the direct image is even flat; which means that in those cases quantization is unique.

  5. Digital Model of Fourier and Fresnel Quantized Holograms

    NASA Astrophysics Data System (ADS)

    Boriskevich, Anatoly A.; Erokhovets, Valery K.; Tkachenko, Vadim V.

    Some models schemes of Fourier and Fresnel quantized protective holograms with visual effects are suggested. The condition to arrive at optimum relationship between the quality of reconstructed images, and the coefficient of data reduction about a hologram, and quantity of iterations in the reconstructing hologram process has been estimated through computer model. Higher protection level is achieved by means of greater number both bi-dimensional secret keys (more than 2128) in form of pseudorandom amplitude and phase encoding matrixes, and one-dimensional encoding key parameters for every image of single-layer or superimposed holograms.

  6. Conductance quantization in magnetic nanowires electrodeposited in nanopores

    NASA Astrophysics Data System (ADS)

    Elhoussine, F.; Mátéfi-Tempfli, S.; Encinas, A.; Piraux, L.

    2002-08-01

    Magnetic nanocontacts have been prepared by a templating method that involves the electrodeposition of Ni within the pores of track-etched polymer membranes. The nanocontacts are made at the extremity of a single Ni nanowire either inside or outside the pores. The method is simple, flexible, and controllable as the width of the constriction can be varied reversibly by controlling the potential between the electrodeposited nanowire and a ferromagnetic electrode. At room temperature, the electrical conductance shows quantization steps in units of e2/h, as expected for ferromagnetic metals without spin degeneracy. Our fabrication method enables future investigation of ballistic spin transport phenomena in electrodeposited magnetic nanocontacts.

  7. Energy distribution in quantized mesoscopic RLC electric circuit

    NASA Astrophysics Data System (ADS)

    Wu, Wei-Feng; Fan, Hong-Yi

    2016-09-01

    Quantum information processing experimentally depends on optical-electronic devices. In this paper, we consider quantized mesoscopic RLC (resistance, inductance and capacitance) electric circuit in stable case as a quantum statistical ensemble, and calculate energy distribution (i.e. the energy stored in inductance and capacitance as well as the energy consumed on the resistance). For this aim, we employ the technique of integration within ordered product (IWOP) of operator to derive the thermo-vacuum state for this mesoscopic system, with which ensemble average energy calculation is replaced by evaluating expected value in pure state. This approach is concise and the result we deduced is physically appealling.

  8. Quantization of surface rust by using laser imaging techniques

    NASA Astrophysics Data System (ADS)

    Koyuncu, B.; Yasin, A.; Abu-Rezq, A.

    1995-06-01

    Laser speckle interferometry 1,2 and image processing 3,4 have been used to detect and quantize the rust build-up on metal surfaces under water. Speckle information from the sample metal surface was captured by a CCD camera and a frame grabber card. Software techniques were used to convert the image data files into ASCII files in an appropriate format. Three-dimensional surface plots were generated to define the numerical values for the amout of rust build-up.

  9. Variable-rate colour image quantization based on quadtree segmentation

    NASA Astrophysics Data System (ADS)

    Hu, Y. C.; Li, C. Y.; Chuang, J. C.; Lo, C. C.

    2011-09-01

    A novel variable-sized block encoding with threshold control for colour image quantization (CIQ) is presented in this paper. In CIQ, the colour palette used has a great influence on the reconstructed image quality. Typically, a higher image quality and a larger storage cost are obtained when a larger-sized palette is used in CIQ. To cut down the storage cost while preserving quality of the reconstructed images, the threshold control policy for quadtree segmentation is used in this paper. Experimental results show that the proposed method adaptively provides desired bit rates while having better image qualities comparing to CIQ with the usage of multiple palettes of different sizes.

  10. Quantized Eigenstates of a Classical Particle in a Ponderomotive Potential

    SciTech Connect

    I.Y. Dodin; N.J. Fisch

    2004-12-21

    The average dynamics of a classical particle under the action of a high-frequency radiation resembles quantum particle motion in a conservative field with an effective de Broglie wavelength ë equal to the particle average displacement on a period of oscillations. In a "quasi-classical" field, with a spatial scale large compared to ë, the guiding center motion is adiabatic. Otherwise, a particle exhibits quantized eigenstates in a ponderomotive potential well, can tunnel through classically forbidden regions and experience reflection from an attractive potential. Discrete energy levels are also found for a "crystal" formed by multiple ponderomotive barriers.

  11. Note on Stochastic Quantization of Field Theories with Bottomless Actions

    NASA Astrophysics Data System (ADS)

    Ito, M.; Morita, K.

    1993-07-01

    It is shown that the kerneled Langevin equation, which has recently been proposed by Tanaka et al. to quantize field theories with bottomless actions, reproduces perturbation theory results independent of the initial conditions. The effective potential is approximately determined from the kerneled Langevin equation to be bounded from below. The evolution equation for the two-point correlation function also defines the effective potential for the propagator, which is given for the zero-dimensional ``wrong-sign'' -λφ4 model under the assumption that all higher-moment cumulants than the second vanish.

  12. Formal verification of communication protocols using quantized Horn clauses

    NASA Astrophysics Data System (ADS)

    Balu, Radhakrishnan

    2016-05-01

    The stochastic nature of quantum communication protocols naturally lends itself for expression via probabilistic logic languages. In this work we describe quantized computation using Horn clauses and base the semantics on quantum probability. Turing computable Horn clauses are very convenient to work with and the formalism can be extended to general form of first order languages. Towards this end we build a Hilbert space of H-interpretations and a corresponding non commutative von Neumann algebra of bounded linear operators. We demonstrate the expressive power of the language by casting quantum communication protocols as Horn clauses.

  13. Canonical Functional Quantization of Pseudo-Photons in Planar Systems

    SciTech Connect

    Ferreira, P. Castelo

    2008-06-25

    Extended U{sub e}(1)xU{sub g}(1) electromagnetism containing both a photon and a pseudo-photon is introduced at the variational level and is justified by the violation of the Bianchi identities in conceptual systems, either in the presence of magnetic monopoles or non-regular external fields, not being accounted for by the standard Maxwell Lagrangian. A dimensional reduction is carried out that yields a U{sub e}(1)xU{sub g}(1) Maxwell-BF type theory and a canonical functional quantization in planar systems is considered which may be relevant in Hall systems.

  14. Quantization of scalar fields coupled to point masses

    NASA Astrophysics Data System (ADS)

    Barbero G, J. Fernando; Juárez-Aubry, Benito A.; Margalef-Bentabol, Juan; Villaseñor, Eduardo J. S.

    2015-12-01

    We study the Fock quantization of a compound classical system consisting of point masses and a scalar field. We consider the Hamiltonian formulation of the model by using the geometric constraint algorithm of Gotay, Nester and Hinds. By relying on this Hamiltonian description, we characterize in a precise way the real Hilbert space of classical solutions to the equations of motion and use it to rigorously construct the Fock space of the system. We finally discuss the structure of this space, in particular the impossibility of writing it in a natural way as a tensor product of Hilbert spaces associated with the point masses and the field, respectively.

  15. Quantization conditions and functional equations in ABJ(M) theories

    NASA Astrophysics Data System (ADS)

    Grassi, Alba; Hatsuda, Yasuyuki; Mariño, Marcos

    2016-03-01

    The partition function of ABJ(M) theories on the three-sphere can be regarded as the canonical partition function of an ideal Fermi gas with a non-trivial Hamiltonian. We propose an exact expression for the spectral determinant of this Hamiltonian, which generalizes recent results obtained in the maximally supersymmetric case. As a consequence, we find an exact WKB quantization condition determining the spectrum which is in agreement with numerical results. In addition, we investigate the factorization properties and functional equations for our conjectured spectral determinants. These functional equations relate the spectral determinants of ABJ theories to consecutive ranks of gauge groups but the same Chern-Simons coupling.

  16. Canonical quantization of general relativity in discrete space-times.

    PubMed

    Gambini, Rodolfo; Pullin, Jorge

    2003-01-17

    It has long been recognized that lattice gauge theory formulations, when applied to general relativity, conflict with the invariance of the theory under diffeomorphisms. We analyze discrete lattice general relativity and develop a canonical formalism that allows one to treat constrained theories in Lorentzian signature space-times. The presence of the lattice introduces a "dynamical gauge" fixing that makes the quantization of the theories conceptually clear, albeit computationally involved. The problem of a consistent algebra of constraints is automatically solved in our approach. The approach works successfully in other field theories as well, including topological theories. A simple cosmological application exhibits quantum elimination of the singularity at the big bang.

  17. Canonical quantization of general relativity in discrete space-times.

    PubMed

    Gambini, Rodolfo; Pullin, Jorge

    2003-01-17

    It has long been recognized that lattice gauge theory formulations, when applied to general relativity, conflict with the invariance of the theory under diffeomorphisms. We analyze discrete lattice general relativity and develop a canonical formalism that allows one to treat constrained theories in Lorentzian signature space-times. The presence of the lattice introduces a "dynamical gauge" fixing that makes the quantization of the theories conceptually clear, albeit computationally involved. The problem of a consistent algebra of constraints is automatically solved in our approach. The approach works successfully in other field theories as well, including topological theories. A simple cosmological application exhibits quantum elimination of the singularity at the big bang. PMID:12570532

  18. Canonical quantization of electromagnetism in spatially dispersive media

    NASA Astrophysics Data System (ADS)

    Horsley, S. A. R.; Philbin, T. G.

    2014-01-01

    We find the action that describes the electromagnetic field in a spatially dispersive, homogeneous medium. This theory is quantized and the Hamiltonian is diagonalized in terms of a continuum of normal modes. It is found that the introduction of nonlocal response in the medium automatically regulates some previously divergent results, and we calculate a finite value for the intensity of the electromagnetic field at a fixed frequency within a homogeneous medium. To conclude we discuss the potential importance of spatial dispersion in taming the divergences that arise in calculations of Casimir-type effects.

  19. Photophysics and photochemistry of quantized ZnO colloids

    SciTech Connect

    Kamat, P.V.; Patrick, B.

    1992-08-06

    The photophysical and photochemical behavior of quantized ZnO colloids in ethanol has been investigated by time-resolved transient absorption and emission measurements. Trapping of electrons at the ZnO surface resulted in broad absorption in the red region. The green emission of ZnO colloids was readily quenched by hole scavengers such as SCN{sup -} and I{sup -}. The photoinduced charge transfer to these hole scavengers was studied by laser flash photolysis. The yield of oxidized product increased considerably when ZnO colloids were coupled with ZnSe. 36 refs., 11 figs., 1 tab.

  20. Gravity quantized: Loop quantum gravity with a scalar field

    SciTech Connect

    Domagala, Marcin; Kaminski, Wojciech; Giesel, Kristina; Lewandowski, Jerzy

    2010-11-15

    ...''but we do not have quantum gravity.'' This phrase is often used when analysis of a physical problem enters the regime in which quantum gravity effects should be taken into account. In fact, there are several models of the gravitational field coupled to (scalar) fields for which the quantization procedure can be completed using loop quantum gravity techniques. The model we present in this paper consists of the gravitational field coupled to a scalar field. The result has similar structure to the loop quantum cosmology models, except that it involves all the local degrees of freedom of the gravitational field because no symmetry reduction has been performed at the classical level.

  1. Synthetic aperture radar signal data compression using block adaptive quantization

    NASA Technical Reports Server (NTRS)

    Kuduvalli, Gopinath; Dutkiewicz, Melanie; Cumming, Ian

    1994-01-01

    This paper describes the design and testing of an on-board SAR signal data compression algorithm for ESA's ENVISAT satellite. The Block Adaptive Quantization (BAQ) algorithm was selected, and optimized for the various operational modes of the ASAR instrument. A flexible BAQ scheme was developed which allows a selection of compression ratio/image quality trade-offs. Test results show the high quality of the SAR images processed from the reconstructed signal data, and the feasibility of on-board implementation using a single ASIC.

  2. Nucleation of Quantized Vortices from Rotating Superfluid Drops

    NASA Technical Reports Server (NTRS)

    Donnelly, Russell J.

    2001-01-01

    The long-term goal of this project is to study the nucleation of quantized vortices in helium II by investigating the behavior of rotating droplets of helium II in a reduced gravity environment. The objective of this ground-based research grant was to develop new experimental techniques to aid in accomplishing that goal. The development of an electrostatic levitator for superfluid helium, described below, and the successful suspension of charged superfluid drops in modest electric fields was the primary focus of this work. Other key technologies of general low temperature use were developed and are also discussed.

  3. Basis Light-Front Quantization: Recent Progress and Future Prospects

    NASA Astrophysics Data System (ADS)

    Vary, James P.; Adhikari, Lekha; Chen, Guangyao; Li, Yang; Maris, Pieter; Zhao, Xingbo

    2016-08-01

    Light-front Hamiltonian field theory has advanced to the stage of becoming a viable non-perturbative method for solving forefront problems in strong interaction physics. Physics drivers include hadron mass spectroscopy, generalized parton distribution functions, spin structures of the hadrons, inelastic structure functions, hadronization, particle production by strong external time-dependent fields in relativistic heavy ion collisions, and many more. We review selected recent results and future prospects with basis light-front quantization that include fermion-antifermion bound states in QCD, fermion motion in a strong time-dependent external field and a novel non-perturbative renormalization scheme.

  4. Development of a one-chip quantized Hall resistance voltage divider

    NASA Astrophysics Data System (ADS)

    Domae, Atsushi; Oe, Takehiko; Matsuhiro, Kenjiro; Kiryu, Syogo; Kaneko, Nobu-hisa

    2012-12-01

    A resistive voltage divider, which is constructed from a binary segmented series array of quantized Hall resistance (QHR) bars fabricated on one chip, named the ‘QHR voltage divider’, has been developed. The QHR voltage divider does not, in principle, require time-consuming bootstrap self-calibration and will provide voltage ratios that are defined by fundamental physical constants with small uncertainties. To evaluate the performance of the QHR voltage divider, the dependence of the Hall resistances RH of all serial segments on the magnetic flux density was measured. The results of the RH measurement showed large and well-defined plateaus, and it was confirmed that the fabricated QHR divider in conjunction with a suitable voltage source would function as a voltage divider. From a preliminary test of the voltage ratios of the QHR voltage divider, deviations from nominal ratios were measured to be less than 1.4 × 10-6, and the expanded uncertainty of the measurement was estimated to be less than 4.1 × 10-6.

  5. Scalar field quantization without divergences in all spacetime dimensions

    NASA Astrophysics Data System (ADS)

    Klauder, John R.

    2011-07-01

    Covariant, self-interacting scalar quantum field theories admit solutions for low enough spacetime dimensions, but when additional divergences appear in higher dimensions, the traditional approach leads to results, such as triviality, that are less than satisfactory. Guided by idealized but soluble nonrenormalizable models, a nontraditional proposal for the quantization of covariant scalar field theories is advanced, which achieves a term-by-term, divergence-free, perturbation analysis of interacting models expanded about a suitable pseudofree theory, which differs from a free theory by an O(planck2) counterterm. These positive features are realized within a functional integral formulation by a local, nonclassical, counterterm that effectively transforms parameter changes in the action from generating mutually singular measures, which are the basis for divergences, to equivalent measures, thereby removing all divergences. The use of an alternative model about which to perturb is already supported by properties of the classical theory and is allowed by the inherent ambiguity in the quantization process itself. This procedure not only provides acceptable solutions for models for which no acceptable, faithful solution currently exists, e.g. phiv4n, for spacetime dimensions n >= 4, but offers a new, divergence-free solution for less-singular models as well, e.g. phiv4n, for n = 2, 3. Our analysis implies similar properties for multicomponent scalar models, such as those associated with the Higgs model.

  6. Unified framework for quasispecies evolution and stochastic quantization.

    PubMed

    Bianconi, Ginestra; Rahmede, Christoph

    2011-05-01

    In this paper we provide a unified framework for quasispecies evolution and stochastic quantization. We map the biological evolution described by the quasispecies equation to the stochastic dynamics of an ensemble of particles undergoing a creation-annihilation process. We show that this mapping identifies a natural decomposition of the probability that an individual has a certain genotype into eigenfunctions of the evolutionary operator. This alternative approach to study the quasispecies equation allows for a generalization of the Fisher theorem equivalent to the Price equation. According to this relation the average fitness of an asexual population increases with time proportional to the variance of the eigenvalues of the evolutionary operator. Moreover, from the present alternative formulation of stochastic quantization a novel scenario emerges to be compared with existing approaches. The evolution of an ensemble of particles undergoing diffusion and a creation-annihilation process is parametrized by a variable β that we call the inverse temperature of the stochastic dynamics. We find that the evolution equation at high temperatures is simply related to the Schrödinger equation, but at low temperature it strongly deviates from it. In the presence of additional noise in scattering processes between the particles, the evolution reaches a steady state described by the Bose-Einstein statistics.

  7. Path-memory induced quantization of classical orbits

    PubMed Central

    Fort, Emmanuel; Eddi, Antonin; Boudaoud, Arezki; Moukhtar, Julien; Couder, Yves

    2010-01-01

    A droplet bouncing on a liquid bath can self-propel due to its interaction with the waves it generates. The resulting “walker” is a dynamical association where, at a macroscopic scale, a particle (the droplet) is driven by a pilot-wave field. A specificity of this system is that the wave field itself results from the superposition of the waves generated at the points of space recently visited by the particle. It thus contains a memory of the past trajectory of the particle. Here, we investigate the response of this object to forces orthogonal to its motion. We find that the resulting closed orbits present a spontaneous quantization. This is observed only when the memory of the system is long enough for the particle to interact with the wave sources distributed along the whole orbit. An additional force then limits the possible orbits to a discrete set. The wave-sustained path memory is thus demonstrated to generate a quantization of angular momentum. Because a quantum-like uncertainty was also observed recently in these systems, the nonlocality generated by path memory opens new perspectives.

  8. Quantization of the massive gravitino on FRW spacetimes

    NASA Astrophysics Data System (ADS)

    Schenkel, Alexander; Uhlemann, Christoph F.

    2012-01-01

    In this article we study the quantization and causal properties of a massive spin 3/2 Rarita-Schwinger field on spatially flat Friedmann-Robertson-Walker (FRW) spacetimes. We construct Zuckerman’s universal conserved current and prove that it leads to a positive definite inner product on solutions of the field equation. Based on this inner product, we quantize the Rarita-Schwinger field in terms of a CAR-algebra. The transversal and longitudinal parts constituting the independent on-shell degrees of freedom decouple. We find a Dirac-type equation for the transversal polarizations, ensuring a causal propagation. The equation of motion for the longitudinal part is also of Dirac-type, but with respect to an “effective metric”. We obtain that for all four-dimensional FRW solutions with a matter equation of state p=ωρ and ω∈(-1,1] the light cones of the effective metric are more narrow than the standard cones, which are recovered for the de Sitter case ω=-1. In particular, this shows that the propagation of the longitudinal part, although nonstandard for ω≠-1, is completely causal in cosmological constant, dust and radiation dominated universes.

  9. Size quantization of Dirac fermions in graphene constrictions

    PubMed Central

    Terrés, B.; Chizhova, L. A.; Libisch, F.; Peiro, J.; Jörger, D.; Engels, S.; Girschik, A.; Watanabe, K.; Taniguchi, T.; Rotkin, S. V.; Burgdörfer, J.; Stampfer, C.

    2016-01-01

    Quantum point contacts are cornerstones of mesoscopic physics and central building blocks for quantum electronics. Although the Fermi wavelength in high-quality bulk graphene can be tuned up to hundreds of nanometres, the observation of quantum confinement of Dirac electrons in nanostructured graphene has proven surprisingly challenging. Here we show ballistic transport and quantized conductance of size-confined Dirac fermions in lithographically defined graphene constrictions. At high carrier densities, the observed conductance agrees excellently with the Landauer theory of ballistic transport without any adjustable parameter. Experimental data and simulations for the evolution of the conductance with magnetic field unambiguously confirm the identification of size quantization in the constriction. Close to the charge neutrality point, bias voltage spectroscopy reveals a renormalized Fermi velocity of ∼1.5 × 106 m s−1 in our constrictions. Moreover, at low carrier density transport measurements allow probing the density of localized states at edges, thus offering a unique handle on edge physics in graphene devices. PMID:27198961

  10. Design and evaluation of sparse quantization index modulation watermarking schemes

    NASA Astrophysics Data System (ADS)

    Cornelis, Bruno; Barbarien, Joeri; Dooms, Ann; Munteanu, Adrian; Cornelis, Jan; Schelkens, Peter

    2008-08-01

    In the past decade the use of digital data has increased significantly. The advantages of digital data are, amongst others, easy editing, fast, cheap and cross-platform distribution and compact storage. The most crucial disadvantages are the unauthorized copying and copyright issues, by which authors and license holders can suffer considerable financial losses. Many inexpensive methods are readily available for editing digital data and, unlike analog information, the reproduction in the digital case is simple and robust. Hence, there is great interest in developing technology that helps to protect the integrity of a digital work and the copyrights of its owners. Watermarking, which is the embedding of a signal (known as the watermark) into the original digital data, is one method that has been proposed for the protection of digital media elements such as audio, video and images. In this article, we examine watermarking schemes for still images, based on selective quantization of the coefficients of a wavelet transformed image, i.e. sparse quantization-index modulation (QIM) watermarking. Different grouping schemes for the wavelet coefficients are evaluated and experimentally verified for robustness against several attacks. Wavelet tree-based grouping schemes yield a slightly improved performance over block-based grouping schemes. Additionally, the impact of the deployment of error correction codes on the most promising configurations is examined. The utilization of BCH-codes (Bose, Ray-Chaudhuri, Hocquenghem) results in an improved robustness as long as the capacity of the error codes is not exceeded (cliff-effect).

  11. Quantization of redshift differences in isolated galaxy pairs

    SciTech Connect

    Tifft, W.G.; Cocke, W.J.

    1989-01-01

    Improved 21 cm data on isolated galaxy pairs are presented which eliminate questions of inhomogeneity in the data on such pairs and reduce observational error to below 5 km/s. Quantization is sharpened, and the zero peak is shown to be displaced from zero to a location near 24 km/s. An exclusion principle is suggested whereby identical redshifts are forbidden in limited volumes. The radio data and data from Schweizer (1987) are combined with the best optical data on close Karachentsev pairs to provide a cumulative sample of 84 of the best differentials now available. New 21 cm observations are used to test for the presence of small differentials in very wide pairs, and the deficiency near zero is found to continue to very wide spacings. A loss of wide pairs by selection bias cannot produce the observed zero deficiency. A new test using pairs selected from the Fisher-Tully catalog is used to demonstrate quantization properties of third components associated with possible pairs. 27 references.

  12. Analysis of the quantum bouncer using polymer quantization

    NASA Astrophysics Data System (ADS)

    Martín-Ruiz, A.; Frank, A.; Urrutia, L. F.

    2015-08-01

    Polymer quantization (PQ) is a background independent quantization scheme that arises in loop quantum gravity. This framework leads to a new short-distance (discretized) structure characterized by a fundamental length. In this paper we use PQ to analyze the problem of a particle bouncing on a perfectly reflecting surface under the influence of Earth's gravitational field. In this scenario, deviations from the usual quantum effects are induced by the spatial discreteness, but not by a new short-range gravitational interaction. We solve the polymer Schrödinger equation in an analytical fashion, and we evaluate numerically the corresponding energy levels. We find that the polymer energy spectrum exhibits a negative shift compared to the one obtained for the quantum bouncer. The comparison of our results with those obtained in the GRANIT experiment leads to an upper bound for the fundamental length scale, namely λ ≪0.6 Å . We find polymer corrections to the transition probability between levels, induced by small vibrations, together with the probability of spontaneous emission in the quadrupole approximation.

  13. Universality and quantized response in bosonic mesoscopic tunneling

    NASA Astrophysics Data System (ADS)

    Yin, Shaoyu; Béri, Benjamin

    2016-06-01

    We show that tunneling involving bosonic wires and/or boson integer quantum Hall (bIQH) edges is characterized by features that are far more universal than those in their fermionic counterpart. Considering a pair of minimal geometries, we examine the tunneling conductance as a function of energy (e.g., chemical potential bias) at high and low energy limits, finding a low energy enhancement and a universal high versus zero energy relation that hold for all wire/bIQH edge combinations. Beyond this universality present in all the different topological (bIQH-edge) and nontopological (wire) setups, we also discover a number of features distinguishing the topological bIQH edges, which include a current imbalance to chemical potential bias ratio that is quantized despite the lack of conductance quantization in the bIQH edges themselves. The predicted phenomena require only initial states to be thermal and thus are well suited for tests with ultracold bosons forming wires and bIQH states. For the latter, we highlight a potential realization based on single component bosons in the recently observed Harper-Hofstadter band structure.

  14. A short course on quantum mechanics and methods of quantization

    NASA Astrophysics Data System (ADS)

    Ercolessi, Elisa

    2015-07-01

    These notes collect the lectures given by the author to the "XXIII International Workshop on Geometry and Physics" held in Granada (Spain) in September 2014. The first part of this paper aims at introducing a mathematical oriented reader to the realm of Quantum Mechanics (QM) and then to present the geometric structures that underline the mathematical formalism of QM which, contrary to what is usually done in Classical Mechanics (CM), are usually not taught in introductory courses. The mathematics related to Hilbert spaces and Differential Geometry are assumed to be known by the reader. In the second part, we concentrate on some quantization procedures, that are founded on the geometric structures of QM — as we have described them in the first part — and represent the ones that are more operatively used in modern theoretical physics. We will discuss first the so-called Coherent State Approach which, mainly complemented by "Feynman Path Integral Technique", is the method which is most widely used in quantum field theory. Finally, we will describe the "Weyl Quantization Approach" which is at the origin of modern tomographic techniques, originally used in optics and now in quantum information theory.

  15. Automatic target recognition using vector quantization and neural networks

    NASA Astrophysics Data System (ADS)

    Chan, Lipchen A.; Nasrabadi, Nasser M.

    1999-12-01

    We propose an automatic target recognition (ATR) algorithm that uses a set of dedicated vector quantizers (VQs) and multilayer perceptrons (MLPs). For each target class at a specific range of aspects, the background pixels of an input image are first removed. The extracted target area is then subdivided into several subimages. A dedicated VQ codebook is constructed for each of the resulting subimages. Using the K-means algorithm, each VQ codebook learns a set of patterns representing the local features of a particular target for a specific range of aspects. The resulting codebooks are further trained by a modified learning vector quantization algorithm, which enhances the discriminatory power of the codebooks. Each final codebook is expected to give the lowest mean squared error (MSE) for its correct target class and range of aspects. These MSEs are then input to an array of window-level MLPs (WMLPs), where each WMLP is specialized in recognizing its intended target class for a specific range of aspects. The outputs of these WMLPs are manipulated and passed to a target-level MLP, which produces the final recognition results. We trained and tested the proposed ATR algorithm on large and realistic data sets and obtained impressive results using the wavelet-based adaptive produce VQs configuration.

  16. Quad-tree product vector quantization of images

    NASA Astrophysics Data System (ADS)

    Chiu, Chung-Yen; Baker, Richard L.

    1989-06-01

    Variable rate image coding schemes are an efficient way to achieve low bit rates while maintaining acceptable image quality. This paper describes several ways to design variable rate product vector quantizers (VQ) which use a quad-tree data structure to communicate the VQ's block size. The first is a direct encoding method which uses VQs having previously specified rates. The second uses a threshold decision rule together with a method to compute the threshold to keep average distortion below a given level. This computation is based on the relationship between the quantizer performance function and the source variance. The third design uses a new algorithm to determine stepwise optimum VQ codebook rates to minimize rate while limiting distortion. Quad-trees are used in all cases to communicate block sizes to the receiver. Simulations show that these variable rate VQs encode over 70 percent of the Lena image at a very low rate while maintaining good fidelity. The proposed schemes also preserve edge fidelity, even at low rates.

  17. q-bosons and the q-analogue quantized field

    NASA Technical Reports Server (NTRS)

    Nelson, Charles A.

    1995-01-01

    The q-analogue coherent states are used to identify physical signatures for the presence of a 1-analogue quantized radiation field in the q-CS classical limits where the absolute value of z is large. In this quantum-optics-like limit, the fractional uncertainties of most physical quantities (momentum, position, amplitude, phase) which characterize the quantum field are O(1). They only vanish as O(1/absolute value of z) when q = 1. However, for the number operator, N, and the N-Hamiltonian for a free q-boson gas, H(sub N) = h(omega)(N + 1/2), the fractional uncertainties do still approach zero. A signature for q-boson counting statistics is that (Delta N)(exp 2)/ (N) approaches 0 as the absolute value of z approaches infinity. Except for its O(1) fractional uncertainty, the q-generalization of the Hermitian phase operator of Pegg and Barnett, phi(sub q), still exhibits normal classical behavior. The standard number-phase uncertainty-relation, Delta(N) Delta phi(sub q) = 1/2, and the approximate commutation relation, (N, phi(sub q)) = i, still hold for the single-mode q-analogue quantized field. So, N and phi(sub q) are almost canonically conjugate operators in the q-CS classical limit. The q-analogue CS's minimize this uncertainty relation for moderate (absolute value of z)(exp 2).

  18. Pisot q-coherent states quantization of the harmonic oscillator

    SciTech Connect

    Gazeau, J.P.; Olmo, M.A. del

    2013-03-15

    We revisit the quantized version of the harmonic oscillator obtained through a q-dependent family of coherent states. For each q, 0Quantized version of the harmonic oscillator (HO) through a q-family of coherent states. Black-Right-Pointing-Pointer For q,0

  19. Pythagorean quantization, action(s) and the arrow of time

    NASA Astrophysics Data System (ADS)

    Schuch, Dieter

    2010-06-01

    Searching for the first well-documented attempts of introducing some kind of "quantization" into the description of nature inevitably leads to the ancient Greeks, in particular Plato and Pythagoras. The question of finding the so-called Pythagorean triples, i.e., right-angled triangles with integer length of all three sides, is, surprisingly, connected with complex nonlinear Riccati equations that occur in time-dependent quantum mechanics. The complex Riccati equation together with the usual Newtonian equation of the system, leads to a dynamical invariant with the dimension of an action. The relation between this invariant and a conserved "angular momentum" for the motion in the complex plane will be determined. The "Pythagorean quantization" shows similarities with the quantum Hall effect and leads to an interpretation of Sommerfeld's fine structure constant that involves another quantum of action, the "least Coulombic action" e2/c. Since natural evolution is characterized by irreversibility and dissipation, the question of how these aspects can be incorporated into a quantum mechanical description arises. Two effective approaches that also both possess a dynamical invariant (like the one mentioned above) will be discussed. One uses an explicitly time-dependent (linear) Hamiltonian, whereas the other leads to a nonlinear Schrödinger equation with complex logarithmic nonlinearity. Both approaches can be transformed into each other via a non-unitary transformation that involves Schrödinger's original definition of a (complex) action via the wave function.

  20. Topos quantum theory on quantization-induced sheaves

    SciTech Connect

    Nakayama, Kunji

    2014-10-15

    In this paper, we construct a sheaf-based topos quantum theory. It is well known that a topos quantum theory can be constructed on the topos of presheaves on the category of commutative von Neumann algebras of bounded operators on a Hilbert space. Also, it is already known that quantization naturally induces a Lawvere-Tierney topology on the presheaf topos. We show that a topos quantum theory akin to the presheaf-based one can be constructed on sheaves defined by the quantization-induced Lawvere-Tierney topology. That is, starting from the spectral sheaf as a state space of a given quantum system, we construct sheaf-based expressions of physical propositions and truth objects, and thereby give a method of truth-value assignment to the propositions. Furthermore, we clarify the relationship to the presheaf-based quantum theory. We give translation rules between the sheaf-based ingredients and the corresponding presheaf-based ones. The translation rules have “coarse-graining” effects on the spaces of the presheaf-based ingredients; a lot of different proposition presheaves, truth presheaves, and presheaf-based truth-values are translated to a proposition sheaf, a truth sheaf, and a sheaf-based truth-value, respectively. We examine the extent of the coarse-graining made by translation.

  1. Interframe hierarchical vector quantization using hashing-based reorganized codebook

    NASA Astrophysics Data System (ADS)

    Choo, Chang Y.; Cheng, Che H.; Nasrabadi, Nasser M.

    1995-12-01

    Real-time multimedia communication over PSTN (Public Switched Telephone Network) or wireless channel requires video signals to be encoded at the bit rate well below 64 kbits/second. Most of the current works on such very low bit rate video coding are based on H.261 or H.263 scheme. The H.263 encoding scheme, for example, consists mainly of motion estimation and compensation, discrete cosine transform, and run and variable/fixed length coding. Vector quantization (VQ) is an efficient and alternative scheme for coding at very low bit rate. One such VQ code applied to video coding is interframe hierarchical vector quantization (IHVQ). One problem of IHVQ, and VQ in general, is the computational complexity due to codebook search. A number of techniques have been proposed to reduce the search time which include tree-structured VQ, finite-state VQ, cache VQ, and hashing based codebook reorganization. In this paper, we present an IHVQ code with a hashing based scheme to reorganize the codebook so that codebook search time, and thus encoding time, can be significantly reduced. We applied the algorithm to the same test environment as in H.263 and evaluated coding performance. It turned out that the performance of the proposed scheme is significantly better than that of IHVQ without hashed codebook. Also, the performance of the proposed scheme was comparable to and often better than that of the H.263, due mainly to hashing based reorganized codebook.

  2. Optical evidence for quantization in transparent amorphous oxide semiconductor superlattice

    NASA Astrophysics Data System (ADS)

    Abe, Katsumi; Nomura, Kenji; Kamiya, Toshio; Hosono, Hideo

    2012-08-01

    We fabricated transparent amorphous oxide semiconductor superlattices composed of In-Ga-Zn-O (a-IGZO) well layers and Ga2O3 (a-Ga2O3) barrier layers, and investigated their optical absorption properties to examine energy quantization in the a-IGZO well layer. The Tauc gap of a-IGZO well layers monotonically increases with decreasing well thickness at ≤5 nm. The thickness dependence of the Tauc gap is quantitatively explained by a Krönig-Penny model employing a conduction band offset of 1.2 eV between the a-IGZO and the a-Ga2O3, and the effective masses of 0.35m0 for the a-IGZO well layer and 0.5m0 for the a-Ga2O3 barrier layer, where m0 is the electron rest mass. This result demonstrates the quantization in the a-IGZO well layer. The phase relaxation length of the a-IGZO is estimated to be larger than 3.5 nm.

  3. Multipurpose image watermarking algorithm based on multistage vector quantization.

    PubMed

    Lu, Zhe-Ming; Xu, Dian-Guo; Sun, Sheng-He

    2005-06-01

    The rapid growth of digital multimedia and Internet technologies has made copyright protection, copy protection, and integrity verification three important issues in the digital world. To solve these problems, the digital watermarking technique has been presented and widely researched. Traditional watermarking algorithms are mostly based on discrete transform domains, such as the discrete cosine transform, discrete Fourier transform (DFT), and discrete wavelet transform (DWT). Most of these algorithms are good for only one purpose. Recently, some multipurpose digital watermarking methods have been presented, which can achieve the goal of content authentication and copyright protection simultaneously. However, they are based on DWT or DFT. Lately, several robust watermarking schemes based on vector quantization (VQ) have been presented, but they can only be used for copyright protection. In this paper, we present a novel multipurpose digital image watermarking method based on the multistage vector quantizer structure, which can be applied to image authentication and copyright protection. In the proposed method, the semi-fragile watermark and the robust watermark are embedded in different VQ stages using different techniques, and both of them can be extracted without the original image. Simulation results demonstrate the effectiveness of our algorithm in terms of robustness and fragility. PMID:15971780

  4. Educational Information Quantization for Improving Content Quality in Learning Management Systems

    ERIC Educational Resources Information Center

    Rybanov, Alexander Aleksandrovich

    2014-01-01

    The article offers the educational information quantization method for improving content quality in Learning Management Systems. The paper considers questions concerning analysis of quality of quantized presentation of educational information, based on quantitative text parameters: average frequencies of parts of speech, used in the text; formal…

  5. On the Stochastic Quantization Method: Characteristics and Applications to Singular Systems

    NASA Technical Reports Server (NTRS)

    Kanenaga, Masahiko; Namiki, Mikio

    1996-01-01

    Introducing the generalized Langevin equation, we extend the stochastic quantization method so as to deal with singular dynamical systems beyond the ordinary territory of quantum mechanics. We also show how the uncertainty relation is built up to the quantum mechanical limit with respect to fictitious time, irrespective of its initial value, within the framework of the usual stochastic quantization method.

  6. On the macroscopic quantization in mesoscopic rings and single-electron devices

    NASA Astrophysics Data System (ADS)

    Semenov, Andrew G.

    2016-05-01

    In this letter we investigate the phenomenon of macroscopic quantization and consider particle on the ring interacting with the dissipative bath as an example. We demonstrate that even in presence of environment, there is macroscopically quantized observable which can take only integer values in the zero temperature limit. This fact follows from the total angular momentum conservation combined with momentum quantization for bare particle on the ring. The nontrivial thing is that the model under consideration, including the notion of quantized observable, can be mapped onto the Ambegaokar-Eckern-Schon model of the single-electron box (SEB). We evaluate SEB observable, originating after mapping, and reveal new physics, which follows from the macroscopic quantization phenomenon and the existence of additional conservation law. Some generalizations of the obtained results are also presented.

  7. Flat minimal quantizations of Stäckel systems and quantum separability

    SciTech Connect

    Błaszak, Maciej; Domański, Ziemowit; Silindir, Burcu

    2014-12-15

    In this paper, we consider the problem of quantization of classical Stäckel systems and the problem of separability of related quantum Hamiltonians. First, using the concept of Stäckel transform, natural Hamiltonian systems from a given Riemann space are expressed by some flat coordinates of related Euclidean configuration space. Then, the so-called flat minimal quantization procedure is applied in order to construct an appropriate Hermitian operator in the respective Hilbert space. Finally, we distinguish a class of Stäckel systems which remains separable after any of admissible flat minimal quantizations. - Highlights: • Using Stäckel transform, separable Hamiltonians are expressed by flat coordinates. • The concept of admissible flat minimal quantizations is developed. • The class of Stäckel systems, separable after minimal flat quantization is established. • Separability of related stationary Schrödinger equations is presented in explicit form.

  8. Distortion-rate models for entropy-coded lattice vector quantization.

    PubMed

    Raffy, P; Antonini, M; Barlaud, M

    2000-01-01

    The increasing demand for real-time applications requires the use of variable-rate quantizers having good performance in the low bit rate domain. In order to minimize the complexity of quantization, as well as maintaining a reasonably high PSNR ratio, we propose to use an entropy-coded lattice vector quantizer (ECLVQ). These quantizers have proven to outperform the well-known EZW algorithm's performance in terms of rate-distortion tradeoff. In this paper, we focus our attention on the modeling of the mean squared error (MSE) distortion and the prefix code rate for ECLVQ. First, we generalize the distortion model of Jeong and Gibson (1993) on fixed-rate cubic quantizers to lattices under a high rate assumption. Second, we derive new rate models for ECLVQ, efficient at low bit rates without any high rate assumptions. Simulation results prove the precision of our models. PMID:18262939

  9. Performance of peaky template matching under additive white Gaussian noise and uniform quantization

    NASA Astrophysics Data System (ADS)

    Horvath, Matthew S.; Rigling, Brian D.

    2015-05-01

    Peaky template matching (PTM) is a special case of a general algorithm known as multinomial pattern matching originally developed for automatic target recognition of synthetic aperture radar data. The algorithm is a model- based approach that first quantizes pixel values into Nq = 2 discrete values yielding generative Beta-Bernoulli models as class-conditional templates. Here, we consider the case of classification of target chips in AWGN and develop approximations to image-to-template classification performance as a function of the noise power. We focus specifically on the case of a uniform quantization" scheme, where a fixed number of the largest pixels are quantized high as opposed to using a fixed threshold. This quantization method reduces sensitivity to the scaling of pixel intensities and quantization in general reduces sensitivity to various nuisance parameters difficult to account for a priori. Our performance expressions are verified using forward-looking infrared imagery from the Army Research Laboratory Comanche dataset.

  10. Quantized fiber dynamics for extended elementary objects involving gravitation

    NASA Astrophysics Data System (ADS)

    Drechsler, W.

    1992-08-01

    The geometro-stochastic quantization of a gauge theory for extended objects based on the (4, 1)-de Sitter group is used for the description of quantized matter in interaction with gravitation. In this context a Hilbert bundle ℋ over curved space-time B is introduced, possessing the standard fiber ℋ_{bar η }^{(ρ )} , being a resolution kernel Hilbert space (with resolution generatortilde η and generalized coherent state basis) carrying a spin-zero phase space representation of G=SO( 4, 1) belonging to the principal series of unitary irreducible representations determined by the parameter ρ. The bundle ℋ, associated to the de Sitter frame bundle P(B, G), provides a geometric arena with built-in fundamental length parameter R (taken to be of the order of 10-13 cm characterizing hadron physics) yielding, in the presence of gravitation, a quantum kinematical framework for the geometro-stochastic description of spinless matter described in terms of generalized quantum mechanical wave functions, Ψ{x/ρ}(ξ, ζ), defined on #x210B;. By going over to a nonlinear realization of the de Sitter group with the help of a section ξ(x) on the soldered bundle E, associated to P, with homogeneous fiber V'4⋍G/H, one is able to recover gravitation in a de Sitter gauge invariant manner as a gauge theory related to the Lorentz subgroup H of G. ξ(x) plays the dual role of a symmetry-reducing and an extension field. After introducing covariant bilinear source currents in the fields Ψ{x/ρ}(ξ, ζ) and their adjoints determined by G-invariant integration over the local fibers in ℋ, a quantum fiber dynamical (QFD) framework is set up for the dynamics at small distances in B determining the geometric quantities beyond the classical metric of Einstein's theory through a set of current-curvature field equations representing the source equations for axial vector torsion and the de Sitter boost contributions to the bundle connection (the latter defining the soldering forms of

  11. Recursive optimal pruning with applications to tree structured vector quantizers

    NASA Technical Reports Server (NTRS)

    Kiang, Shei-Zein; Baker, Richard L.; Sullivan, Gary J.; Chiu, Chung-Yen

    1992-01-01

    A pruning algorithm of Chou et al. (1989) for designing optimal tree structures identifies only those codebooks which lie on the convex hull of the original codebook's operational distortion rate function. The authors introduce a modified version of the original algorithm, which identifies a large number of codebooks having minimum average distortion, under the constraint that, in each step, only modes having no descendents are removed from the tree. All codebooks generated by the original algorithm are also generated by this algorithm. The new algorithm generates a much larger number of codebooks in the middle- and low-rate regions. The additional codebooks permit operation near the codebook's operational distortion rate function without time sharing by choosing from the increased number of available bit rates. Despite the statistical mismatch which occurs when coding data outside the training sequence, these pruned codebooks retain their performance advantage over full search vector quantizers (VQs) for a large range of rates.

  12. Quantized water transport: ideal desalination through graphyne-4 membrane.

    PubMed

    Zhu, Chongqin; Li, Hui; Zeng, Xiao Cheng; Wang, E G; Meng, Sheng

    2013-11-07

    Graphyne sheet exhibits promising potential for nanoscale desalination to achieve both high water permeability and salt rejection rate. Extensive molecular dynamics simulations on pore-size effects suggest that γ-graphyne-4, with 4 acetylene bonds between two adjacent phenyl rings, has the best performance with 100% salt rejection and an unprecedented water permeability, to our knowledge, of ~13 L/cm(2)/day/MPa, 3 orders of magnitude higher than prevailing commercial membranes based on reverse osmosis, and ~10 times higher than the state-of-the-art nanoporous graphene. Strikingly, water permeability across graphyne exhibits unexpected nonlinear dependence on the pore size. This counter-intuitive behavior is attributed to the quantized nature of water flow at the nanoscale, which has wide implications in controlling nanoscale water transport and designing highly effective membranes.

  13. Face Recognition Using Local Quantized Patterns and Gabor Filters

    NASA Astrophysics Data System (ADS)

    Khryashchev, V.; Priorov, A.; Stepanova, O.; Nikitin, A.

    2015-05-01

    The problem of face recognition in a natural or artificial environment has received a great deal of researchers' attention over the last few years. A lot of methods for accurate face recognition have been proposed. Nevertheless, these methods often fail to accurately recognize the person in difficult scenarios, e.g. low resolution, low contrast, pose variations, etc. We therefore propose an approach for accurate and robust face recognition by using local quantized patterns and Gabor filters. The estimation of the eye centers is used as a preprocessing stage. The evaluation of our algorithm on different samples from a standardized FERET database shows that our method is invariant to the general variations of lighting, expression, occlusion and aging. The proposed approach allows about 20% correct recognition accuracy increase compared with the known face recognition algorithms from the OpenCV library. The additional use of Gabor filters can significantly improve the robustness to changes in lighting conditions.

  14. Semiclassical Quantization of Spinning Quasiparticles in Ballistic Josephson Junctions

    NASA Astrophysics Data System (ADS)

    Konschelle, François; Bergeret, F. Sebastián; Tokatly, Ilya V.

    2016-06-01

    A Josephson junction made of a generic magnetic material sandwiched between two conventional superconductors is studied in the ballistic semiclassic limit. The spectrum of Andreev bound states is obtained from the single valuedness of a particle-hole spinor over closed orbits generated by electron-hole reflections at the interfaces between superconducting and normal materials. The semiclassical quantization condition is shown to depend only on the angle mismatch between initial and final spin directions along such closed trajectories. For the demonstration, an Andreev-Wilson loop in the composite position-particle-hole-spin space is constructed and shown to depend on only two parameters, namely, a magnetic phase shift and a local precession axis for the spin. The details of the Andreev-Wilson loop can be extracted via measuring the spin-resolved density of states. A Josephson junction can thus be viewed as an analog computer of closed-path-ordered exponentials.

  15. Oscillating magnetocaloric effect in size-quantized diamagnetic film

    SciTech Connect

    Alisultanov, Z. Z.

    2014-03-21

    We investigate the oscillating magnetocaloric effect on a size-quantized diamagnetic film in a transverse magnetic field. We obtain the analytical expression for the thermodynamic potential in case of the arbitrary spectrum of carriers. The entropy change is shown to be the oscillating function of the magnetic field and the film thickness. The nature of this effect is the same as for the de Haas–van Alphen effect. The magnetic part of entropy has a maximal value at some temperature. Such behavior of the entropy is not observed in magneto-ordered materials. We discuss the nature of unusual behavior of the magnetic entropy. We compare our results with the data obtained for 2D and 3D cases.

  16. Recursive optimal pruning with applications to tree structured vector quantizers.

    PubMed

    Kiang, S Z; Baker, R L; Sullivan, G J; Chiu, C Y

    1992-01-01

    A pruning algorithm of P.A. Chou et al. (1989) for designing optimal tree structures identifies only those codebooks which lie on the convex hull of the original codebook's operational distortion rate function. The authors introduce a modified version of the original algorithm, which identifies a large number of codebooks having minimum average distortion, under the constraint that, in each step, only modes having no descendents are removed from the tree. All codebooks generated by the original algorithm are also generated by this algorithm. The new algorithm generates a much larger number of codebooks in the middle- and low-rate regions. The additional codebooks permit operation near the codebook's operational distortion rate function without time sharing by choosing from the increased number of available bit rates. Despite the statistical mismatch which occurs when coding data outside the training sequence, these pruned codebooks retain their performance advantage over full search vector quantizers (VQs) for a large range of rates.

  17. Quantized Water Transport: Ideal Desalination through Graphyne-4 Membrane

    PubMed Central

    Zhu, Chongqin; Li, Hui; Zeng, Xiao Cheng; Wang, E. G.; Meng, Sheng

    2013-01-01

    Graphyne sheet exhibits promising potential for nanoscale desalination to achieve both high water permeability and salt rejection rate. Extensive molecular dynamics simulations on pore-size effects suggest that γ-graphyne-4, with 4 acetylene bonds between two adjacent phenyl rings, has the best performance with 100% salt rejection and an unprecedented water permeability, to our knowledge, of ~13 L/cm2/day/MPa, 3 orders of magnitude higher than prevailing commercial membranes based on reverse osmosis, and ~10 times higher than the state-of-the-art nanoporous graphene. Strikingly, water permeability across graphyne exhibits unexpected nonlinear dependence on the pore size. This counter-intuitive behavior is attributed to the quantized nature of water flow at the nanoscale, which has wide implications in controlling nanoscale water transport and designing highly effective membranes. PMID:24196437

  18. The Einstein-Brillouin Action Quantization for Dirac Fermions

    NASA Astrophysics Data System (ADS)

    Onorato, P.

    The Einstein-Brillouin-Keller semiclassical quantization and the topological Maslov index are used to compute the electronic structure of carbon based nanostructures with or without transverse magnetic field. The calculation is based on the Dirac Fermions approach in the limit of strong coupling for the pseudospin. The electronic bandstructure for carbon nanotubes and graphene nanoribbons are discussed, focusing on the role of the chirality and of the unbonded edges configuration respectively. The effects of a transverse uniform magnetic field are analyzed, the different kinds of classical trajectories are discussed and related to the corresponding energies. The development is concise, transparent, and involves only elementary integral calculus and provides a conceptual and intuitive introduction to the quantum nature of carbon nanostructures.

  19. The Casimir Effect in Light-Front Quantization

    NASA Astrophysics Data System (ADS)

    Hiller, J. R.

    2015-09-01

    We show that the standard result for the Casimir force between conducting plates at rest in an inertial frame can be computed in light-front quantization. This is not the same as light-front analyses where the plates are at "rest" in an infinite momentum frame. In that case, Lenz and Steinbacher have shown that the result does not agree with the standard result for plates at rest. The two important ingredients in the present analysis are a careful treatment of the boundary conditions, inspired by the work of Almeida et al. on oblique light-front coordinates, and computation of the ordinary energy density, rather than the light-front energy density.

  20. Image coding using entropy-constrained residual vector quantization

    NASA Technical Reports Server (NTRS)

    Kossentini, Faouzi; Smith, Mark J. T.; Barnes, Christopher F.

    1993-01-01

    The residual vector quantization (RVQ) structure is exploited to produce a variable length codeword RVQ. Necessary conditions for the optimality of this RVQ are presented, and a new entropy-constrained RVQ (ECRVQ) design algorithm is shown to be very effective in designing RVQ codebooks over a wide range of bit rates and vector sizes. The new EC-RVQ has several important advantages. It can outperform entropy-constrained VQ (ECVQ) in terms of peak signal-to-noise ratio (PSNR), memory, and computation requirements. It can also be used to design high rate codebooks and codebooks with relatively large vector sizes. Experimental results indicate that when the new EC-RVQ is applied to image coding, very high quality is achieved at relatively low bit rates.

  1. Observing the quantization of zero mass carriers in graphene.

    PubMed

    Miller, David L; Kubista, Kevin D; Rutter, Gregory M; Ruan, Ming; de Heer, Walt A; First, Phillip N; Stroscio, Joseph A

    2009-05-15

    Application of a magnetic field to conductors causes the charge carriers to circulate in cyclotron orbits with quantized energies called Landau levels (LLs). These are equally spaced in normal metals and two-dimensional electron gases. In graphene, however, the charge carrier velocity is independent of their energy (like massless photons). Consequently, the LL energies are not equally spaced and include a characteristic zero-energy state (the n = 0 LL). With the use of scanning tunneling spectroscopy of graphene grown on silicon carbide, we directly observed the discrete, non-equally-spaced energy-level spectrum of LLs, including the hallmark zero-energy state of graphene. We also detected characteristic magneto-oscillations in the tunneling conductance and mapped the electrostatic potential of graphene by measuring spatial variations in the energy of the n = 0 LL.

  2. Cosmological backreaction of a quantized massless scalar field

    SciTech Connect

    Kaya, Ali; Tarman, Merve E-mail: merve.tarman@boun.edu.tr

    2012-01-01

    We consider the backreaction problem of a quantized minimally coupled massless scalar field in cosmology. The adiabatically regularized stress-energy tensor in a general Friedmann-Robertson-Walker background is approximately evaluated by using the fact that subhorizon modes evolve adiabatically and superhorizon modes are frozen. The vacuum energy density is verified to obey a new first order differential equation depending on a dimensionless parameter of order unity, which calibrates subhorizon/superhorizon division. We check the validity of the approximation by calculating the corresponding vacuum energy densities in fixed backgrounds, which are shown to agree with the known results in de Sitter space and space-times undergoing power law expansions. We then apply our findings to slow-roll inflationary models. Although backreaction effects are found to be negligible during the near exponential expansion, the vacuum energy density generated during this period might be important at later stages since it decreases slower than radiation or dust.

  3. Casimir effect for a scalar field via Krein quantization

    SciTech Connect

    Pejhan, H.; Tanhayi, M.R.; Takook, M.V.

    2014-02-15

    In this work, we present a rather simple method to study the Casimir effect on a spherical shell for a massless scalar field with Dirichlet boundary condition by applying the indefinite metric field (Krein) quantization technique. In this technique, the field operators are constructed from both negative and positive norm states. Having understood that negative norm states are un-physical, they are only used as a mathematical tool for renormalizing the theory and then one can get rid of them by imposing some proper physical conditions. -- Highlights: • A modification of QFT is considered to address the vacuum energy divergence problem. • Casimir energy of a spherical shell is calculated, through this approach. • In this technique, it is shown, the theory is automatically regularized.

  4. A deformation quantization theory for noncommutative quantum mechanics

    SciTech Connect

    Costa Dias, Nuno; Prata, Joao Nuno; Gosson, Maurice de; Luef, Franz

    2010-07-15

    We show that the deformation quantization of noncommutative quantum mechanics previously considered by Dias and Prata ['Weyl-Wigner formulation of noncommutative quantum mechanics', J. Math. Phys. 49, 072101 (2008)] and Bastos, Dias, and Prata ['Wigner measures in non-commutative quantum mechanics', e-print arXiv:math-ph/0907.4438v1; Commun. Math. Phys. (to appear)] can be expressed as a Weyl calculus on a double phase space. We study the properties of the star-product thus defined and prove a spectral theorem for the star-genvalue equation using an extension of the methods recently initiated by de Gosson and Luef ['A new approach to the *-genvalue equation', Lett. Math. Phys. 85, 173-183 (2008)].

  5. Phase space quantization, noncommutativity, and the gravitational field

    NASA Astrophysics Data System (ADS)

    Chatzistavrakidis, Athanasios

    2014-07-01

    In this paper we study the structure of the phase space in noncommutative geometry in the presence of a nontrivial frame. Our basic assumptions are that the underlying space is a symplectic and parallelizable manifold. Furthermore, we assume the validity of the Leibniz rule and the Jacobi identities. We consider noncommutative spaces due to the quantization of the symplectic structure and determine the momentum operators that guarantee a set of canonical commutation relations, appropriately extended to include the nontrivial frame. We stress the important role of left vs right acting operators and of symplectic duality. This enables us to write down the form of the full phase space algebra on these noncommutative spaces, both in the noncompact and in the compact case. We test our results against the class of four-dimensional and six-dimensional symplectic nilmanifolds, thus presenting a large set of nontrivial examples that realizes the general formalism.

  6. Paul Weiss and the genesis of canonical quantization

    NASA Astrophysics Data System (ADS)

    Rickles, Dean; Blum, Alexander

    2015-12-01

    This paper describes the life and work of a figure who, we argue, was of primary importance during the early years of field quantisation and (albeit more indirectly) quantum gravity. A student of Dirac and Born, he was interned in Canada during the second world war as an enemy alien and after his release never seemed to regain a good foothold in physics, identifying thereafter as a mathematician. He developed a general method of quantizing (linear and non-linear) field theories based on the parameters labelling an arbitrary hypersurface. This method (the `parameter formalism' often attributed to Dirac), though later discarded, was employed (and viewed at the time as an extremely important tool) by the leading figures associated with canonical quantum gravity: Dirac, Pirani and Schild, Bergmann, DeWitt, and others. We argue that he deserves wider recognition for this and other innovations.

  7. Semiclassical Quantization of Spinning Quasiparticles in Ballistic Josephson Junctions.

    PubMed

    Konschelle, François; Bergeret, F Sebastián; Tokatly, Ilya V

    2016-06-10

    A Josephson junction made of a generic magnetic material sandwiched between two conventional superconductors is studied in the ballistic semiclassic limit. The spectrum of Andreev bound states is obtained from the single valuedness of a particle-hole spinor over closed orbits generated by electron-hole reflections at the interfaces between superconducting and normal materials. The semiclassical quantization condition is shown to depend only on the angle mismatch between initial and final spin directions along such closed trajectories. For the demonstration, an Andreev-Wilson loop in the composite position-particle-hole-spin space is constructed and shown to depend on only two parameters, namely, a magnetic phase shift and a local precession axis for the spin. The details of the Andreev-Wilson loop can be extracted via measuring the spin-resolved density of states. A Josephson junction can thus be viewed as an analog computer of closed-path-ordered exponentials. PMID:27341251

  8. Dynamical Buildup of a Quantized Hall Response from Nontopological States

    NASA Astrophysics Data System (ADS)

    Hu, Ying; Zoller, Peter; Budich, Jan Carl

    2016-09-01

    We consider a two-dimensional system initialized in a topologically trivial state before its Hamiltonian is ramped through a phase transition into a Chern insulator regime. This scenario is motivated by current experiments with ultracold atomic gases aimed at realizing time-dependent dynamics in topological insulators. Our main findings are twofold. First, considering coherent dynamics, the non-equilibrium Hall response is found to approach a topologically quantized time averaged value in the limit of slow but non-adiabatic parameter ramps, even though the Chern number of the state remains trivial. Second, adding dephasing, the destruction of quantum coherence is found to stabilize this Hall response, while the Chern number generically becomes undefined. We provide a geometric picture of this phenomenology in terms of the time-dependent Berry curvature.

  9. Optical detection of the quantization of collective atomic motion.

    PubMed

    Brahms, Nathan; Botter, Thierry; Schreppler, Sydney; Brooks, Daniel W C; Stamper-Kurn, Dan M

    2012-03-30

    We directly measure the quantized collective motion of a gas of thousands of ultracold atoms, coupled to light in a high-finesse optical cavity. We detect strong asymmetries, as high as 3:1, in the intensity of light scattered into low- and high-energy motional sidebands. Owing to high cavity-atom cooperativity, the optical output of the cavity contains a spectroscopic record of the energy exchanged between light and motion, directly quantifying the heat deposited by a quantum position measurement's backaction. Such backaction selectively causes the phonon occupation of the observed collective modes to increase with the measurement rate. These results, in addition to providing a method for calibrating the motion of low-occupation mechanical systems, offer new possibilities for investigating collective modes of degenerate gases and for diagnosing optomechanical measurement backaction.

  10. Fast flux locked loop

    DOEpatents

    Ganther, Jr., Kenneth R.; Snapp, Lowell D.

    2002-09-10

    A flux locked loop for providing an electrical feedback signal, the flux locked loop employing radio-frequency components and technology to extend the flux modulation frequency and tracking loop bandwidth. The flux locked loop of the present invention has particularly useful application in read-out electronics for DC SQUID magnetic measurement systems, in which case the electrical signal output by the flux locked loop represents an unknown magnetic flux applied to the DC SQUID.

  11. Reducing and filtering point clouds with enhanced vector quantization.

    PubMed

    Ferrari, Stefano; Ferrigno, Giancarlo; Piuri, Vincenzo; Borghese, N Alberto

    2007-01-01

    Modern scanners are able to deliver huge quantities of three-dimensional (3-D) data points sampled on an object's surface, in a short time. These data have to be filtered and their cardinality reduced to come up with a mesh manageable at interactive rates. We introduce here a novel procedure to accomplish these two tasks, which is based on an optimized version of soft vector quantization (VQ). The resulting technique has been termed enhanced vector quantization (EVQ) since it introduces several improvements with respect to the classical soft VQ approaches. These are based on computationally expensive iterative optimization; local computation is introduced here, by means of an adequate partitioning of the data space called hyperbox (HB), to reduce the computational time so as to be linear in the number of data points N, saving more than 80% of time in real applications. Moreover, the algorithm can be fully parallelized, thus leading to an implementation that is sublinear in N. The voxel side and the other parameters are automatically determined from data distribution on the basis of the Zador's criterion. This makes the algorithm completely automatic. Because the only parameter to be specified is the compression rate, the procedure is suitable even for nontrained users. Results obtained in reconstructing faces of both humans and puppets as well as artifacts from point clouds publicly available on the web are reported and discussed, in comparison with other methods available in the literature. EVQ has been conceived as a general procedure, suited for VQ applications with large data sets whose data space has relatively low dimensionality.

  12. Reduced-Complexity Deterministic Annealing for Vector Quantizer Design

    NASA Astrophysics Data System (ADS)

    Demirciler, Kemal; Ortega, Antonio

    2005-12-01

    This paper presents a reduced-complexity deterministic annealing (DA) approach for vector quantizer (VQ) design by using soft information processing with simplified assignment measures. Low-complexity distributions are designed to mimic the Gibbs distribution, where the latter is the optimal distribution used in the standard DA method. These low-complexity distributions are simple enough to facilitate fast computation, but at the same time they can closely approximate the Gibbs distribution to result in near-optimal performance. We have also derived the theoretical performance loss at a given system entropy due to using the simple soft measures instead of the optimal Gibbs measure. We use thederived result to obtain optimal annealing schedules for the simple soft measures that approximate the annealing schedule for the optimal Gibbs distribution. The proposed reduced-complexity DA algorithms have significantly improved the quality of the final codebooks compared to the generalized Lloyd algorithm and standard stochastic relaxation techniques, both with and without the pairwise nearest neighbor (PNN) codebook initialization. The proposed algorithms are able to evade the local minima and the results show that they are not sensitive to the choice of the initial codebook. Compared to the standard DA approach, the reduced-complexity DA algorithms can operate over 100 times faster with negligible performance difference. For example, for the design of a 16-dimensional vector quantizer having a rate of 0.4375 bit/sample for Gaussian source, the standard DA algorithm achieved 3.60 dB performance in 16 483 CPU seconds, whereas the reduced-complexity DA algorithm achieved the same performance in 136 CPU seconds. Other than VQ design, the DA techniques are applicable to problems such as classification, clustering, and resource allocation.

  13. Comment on ``Symplectic quantization, inequivalent quantum theories, and Heisenberg's principle of uncertainty''

    NASA Astrophysics Data System (ADS)

    Latimer, D. C.

    2007-06-01

    In Phys. Rev. A 70, 032104 (2004), M. Montesinos and G. F. Torres del Castillo consider various symplectic structures on the classical phase-space of the two-dimensional isotropic harmonic oscillator. Using Dirac’s quantization condition, the authors investigate how these alternative symplectic forms affect this system’s quantization. They claim that these symplectic structures result in mutually inequivalent quantum theories. In fact, we show here that there exists a unitary map between the two representation spaces so that the various quantizations are equivalent.

  14. Optimization of the Sampling Periods and the Quantization Bit Lengths for Networked Estimation

    PubMed Central

    Suh, Young Soo; Ro, Young Sik; Kang, Hee Jun

    2010-01-01

    This paper is concerned with networked estimation, where sensor data are transmitted over a network of limited transmission rate. The transmission rate depends on the sampling periods and the quantization bit lengths. To investigate how the sampling periods and the quantization bit lengths affect the estimation performance, an equation to compute the estimation performance is provided. An algorithm is proposed to find sampling periods and quantization bit lengths combination, which gives good estimation performance while satisfying the transmission rate constraint. Through the numerical example, the proposed algorithm is verified. PMID:22163557

  15. Conformally covariant quantization of the Maxwell field in de Sitter space

    NASA Astrophysics Data System (ADS)

    Faci, S.; Huguet, E.; Queva, J.; Renaud, J.

    2009-12-01

    In this article, we quantize the Maxwell (“massless spin one”) de Sitter field in a conformally invariant gauge. This quantization is invariant under the SO0(2,4) group and consequently under the de Sitter group. We obtain a new de Sitter-invariant two-point function which is very simple. Our method relies on the one hand on a geometrical point of view which uses the realization of Minkowski, de Sitter and anti-de Sitter spaces as intersections of the null cone in R6 and a moving plane, and on the other hand on a canonical quantization scheme of the Gupta-Bleuler type.

  16. Conformally covariant quantization of the Maxwell field in de Sitter space

    SciTech Connect

    Faci, S.; Huguet, E.; Queva, J.; Renaud, J.

    2009-12-15

    In this article, we quantize the Maxwell ('massless spin one') de Sitter field in a conformally invariant gauge. This quantization is invariant under the SO{sub 0}(2,4) group and consequently under the de Sitter group. We obtain a new de Sitter-invariant two-point function which is very simple. Our method relies on the one hand on a geometrical point of view which uses the realization of Minkowski, de Sitter and anti-de Sitter spaces as intersections of the null cone in R{sup 6} and a moving plane, and on the other hand on a canonical quantization scheme of the Gupta-Bleuler type.

  17. Multiobjective Image Color Quantization Algorithm Based on Self-Adaptive Hybrid Differential Evolution

    PubMed Central

    Xia, Xuewen

    2016-01-01

    In recent years, some researchers considered image color quantization as a single-objective problem and applied heuristic algorithms to solve it. This paper establishes a multiobjective image color quantization model with intracluster distance and intercluster separation as its objectives. Inspired by a multipopulation idea, a multiobjective image color quantization algorithm based on self-adaptive hybrid differential evolution (MoDE-CIQ) is then proposed to solve this model. Two numerical experiments on four common test images are conducted to analyze the effectiveness and competitiveness of the multiobjective model and the proposed algorithm. PMID:27738423

  18. Response of two-band systems to a single-mode quantized field

    NASA Astrophysics Data System (ADS)

    Shi, Z. C.; Shen, H. Z.; Wang, W.; Yi, X. X.

    2016-03-01

    The response of topological insulators (TIs) to an external weakly classical field can be expressed in terms of Kubo formula, which predicts quantized Hall conductivity of the quantum Hall family. The response of TIs to a single-mode quantized field, however, remains unexplored. In this work, we take the quantum nature of the external field into account and define a Hall conductance to characterize the linear response of a two-band system to the quantized field. The theory is then applied to topological insulators. Comparisons with the traditional Hall conductance are presented and discussed.

  19. Magnetic-flux pump

    NASA Technical Reports Server (NTRS)

    Hildebrandt, A. F.; Elleman, D. D.; Whitmore, F. C. (Inventor)

    1966-01-01

    A magnetic flux pump is described for increasing the intensity of a magnetic field by transferring flux from one location to the magnetic field. The device includes a pair of communicating cavities formed in a block of superconducting material, and a piston for displacing the trapped magnetic flux into the secondary cavity producing a field having an intense flux density.

  20. Analysis of sampling and quantization effects on the performance of PN code tracking loops

    NASA Technical Reports Server (NTRS)

    Quirk, K. J.; Srinivasan, M.

    2002-01-01

    Pseudonoise (PN) code tracking loops in direct-sequence spread-spectrum systems are often implemented using digital hardware. Performance degradation due to quantization and sampling effects is not adequately characterized by the traditional analog system feedback loop analysis.

  1. Event-triggered H∞ filter design for delayed neural network with quantization.

    PubMed

    Liu, Jinliang; Tang, Jia; Fei, Shumin

    2016-10-01

    This paper is concerned with H∞ filter design for a class of neural network systems with event-triggered communication scheme and quantization. Firstly, a new event-triggered communication scheme is introduced to determine whether or not the current sampled sensor data should be broadcasted and transmitted to quantizer, which can save the limited communication resource. Secondly, a logarithmic quantizer is used to quantify the sampled data, which can reduce the data transmission rate in the network. Thirdly, considering the influence of the constrained network resource, we investigate the problem of H∞ filter design for a class of event-triggered neural network systems with quantization. By using Lyapunov functional and linear matrix inequality (LMI) techniques, some delay-dependent stability conditions for the existence of the desired filter are obtained. Furthermore, the explicit expression is given for the designed filter parameters in terms of LMIs. Finally, a numerical example is given to show the usefulness of the obtained theoretical results.

  2. Vector Quantization of Harmonic Magnitudes in Speech Coding Applications—A Survey and New Technique

    NASA Astrophysics Data System (ADS)

    Chu, Wai C.

    2004-12-01

    A harmonic coder extracts the harmonic components of a signal and represents them efficiently using a few parameters. The principles of harmonic coding have become quite successful and several standardized speech and audio coders are based on it. One of the key issues in harmonic coder design is in the quantization of harmonic magnitudes, where many propositions have appeared in the literature. The objective of this paper is to provide a survey of the various techniques that have appeared in the literature for vector quantization of harmonic magnitudes, with emphasis on those adopted by the major speech coding standards; these include constant magnitude approximation, partial quantization, dimension conversion, and variable-dimension vector quantization (VDVQ). In addition, a refined VDVQ technique is proposed where experimental data are provided to demonstrate its effectiveness.

  3. Fractional quantization of the topological charge pumping in a one-dimensional superlattice

    NASA Astrophysics Data System (ADS)

    Marra, Pasquale; Citro, Roberta; Ortix, Carmine

    2015-03-01

    A one-dimensional quantum charge pump transfers a quantized charge in each pumping cycle. This quantization is topologically robust, being analogous to the quantum Hall effect. The charge transferred in a fraction of the pumping period is instead generally unquantized. We show, however, that with specific symmetries in parameter space the charge transferred at well-defined fractions of the pumping period is quantized as integer fractions of the Chern number. We illustrate this in a one-dimensional Harper-Hofstadter model and show that the fractional quantization of the topological charge pumping is independent of the specific boundary conditions taken into account. We further discuss the relevance of this phenomenon for cold atomic gases in optical superlattices.

  4. A POCS-based restoration algorithm for restoring halftoned color-quantized images.

    PubMed

    Fung, Yik-Hing; Chan, Yuk-Hee

    2006-07-01

    This paper studies the restoration of images which are color-quantized with error diffusion. Though there are many reported algorithms proposed for restoring noisy blurred color images and inverse halftoning, restoration of color-quantized images is rarely addressed in the literature especially when the images are color-quantized with halftoning. Direct application of existing restoration techniques are generally inadequate to deal with this problem. In this paper, a restoration algorithm based on projection onto convex sets is proposed. This algorithm makes use of the available color palette and the mechanism of a halftoning process to derive useful a priori information for restoration. Simulation results showed that it could improve the quality of a halftoned color-quantized image remarkably in terms of both SNR and CIELAB color difference metric.

  5. Anatomy of a deformed symmetry: Field quantization on curved momentum space

    SciTech Connect

    Arzano, Michele

    2011-01-15

    In certain scenarios of deformed relativistic symmetries relevant for noncommutative field theories particles exhibit a momentum space described by a non-Abelian group manifold. Starting with a formulation of phase space for such particles which allows for a generalization to include group-valued momenta we discuss quantization of the corresponding field theory. Focusing on the particular case of {kappa}-deformed phase space we construct the one-particle Hilbert space and show how curvature in momentum space leads to an ambiguity in the quantization procedure reminiscent of the ambiguities one finds when quantizing fields in curved space-times. The tools gathered in the discussion on quantization allow for a clear definition of the basic deformed field mode operators and two-point function for {kappa}-quantum fields.

  6. Quantized Step-up Model for Evaluation of Internship in Teaching of Prospective Science Teachers.

    ERIC Educational Resources Information Center

    Sindhu, R. S.

    2002-01-01

    Describes the quantized step-up model developed for the evaluation purposes of internship in teaching which is an analogous model of the atomic structure. Assesses prospective teachers' abilities in lesson delivery. (YDS)

  7. Impact Analysis of Baseband Quantizer on Coding Efficiency for HDR Video

    NASA Astrophysics Data System (ADS)

    Wong, Chau-Wai; Su, Guan-Ming; Wu, Min

    2016-10-01

    Digitally acquired high dynamic range (HDR) video baseband signal can take 10 to 12 bits per color channel. It is economically important to be able to reuse the legacy 8 or 10-bit video codecs to efficiently compress the HDR video. Linear or nonlinear mapping on the intensity can be applied to the baseband signal to reduce the dynamic range before the signal is sent to the codec, and we refer to this range reduction step as a baseband quantization. We show analytically and verify using test sequences that the use of the baseband quantizer lowers the coding efficiency. Experiments show that as the baseband quantizer is strengthened by 1.6 bits, the drop of PSNR at a high bitrate is up to 1.60dB. Our result suggests that in order to achieve high coding efficiency, information reduction of videos in terms of quantization error should be introduced in the video codec instead of on the baseband signal.

  8. Novel hybrid classified vector quantization using discrete cosine transform for image compression

    NASA Astrophysics Data System (ADS)

    Al-Fayadh, Ali; Hussain, Abir Jaafar; Lisboa, Paulo; Al-Jumeily, Dhiya

    2009-04-01

    We present a novel image compression technique using a classified vector Quantizer and singular value decomposition for the efficient representation of still images. The proposed method is called hybrid classified vector quantization. It involves a simple but efficient classifier-based gradient method in the spatial domain, which employs only one threshold to determine the class of the input image block, and uses three AC coefficients of discrete cosine transform coefficients to determine the orientation of the block without employing any threshold. The proposed technique is benchmarked with each of the standard vector quantizers generated using the k-means algorithm, standard classified vector quantizer schemes, and JPEG-2000. Simulation results indicate that the proposed approach alleviates edge degradation and can reconstruct good visual quality images with higher peak signal-to-noise ratio than the benchmarked techniques, or be competitive with them.

  9. Effect of trapping in a degenerate plasma in the presence of a quantizing magnetic field

    NASA Astrophysics Data System (ADS)

    Shah, H. A.; Iqbal, M. J.; Tsintsadze, N.; Masood, W.; Qureshi, M. N. S.

    2012-09-01

    Effect of trapping as a microscopic phenomenon in a degenerate plasma is investigated in the presence of a quantizing magnetic field. The plasma comprises degenerate electrons and non-degenerate ions. The presence of the quantizing magnetic field is discussed briefly and the effect of trapping is investigated by using the Fermi-Dirac distribution function. The linear dispersion relation for ion acoustic wave is derived in the presence of the quantizing magnetic field and its influence on the propagation characteristics of the linear ion acoustic wave is discussed. Subsequently, fully nonlinear equations for ion acoustic waves are used to obtain the Sagdeev potential and the investigation of solitary structures. The formation of solitary structures is studied both for fully and partially degenerate plasmas in the presence of a quantizing magnetic field. Both compressive and rarefactive solitons are obtained for different conditions of temperature and magnetic field.

  10. Gauge symmetries in spin-foam gravity: the case for "cellular quantization".

    PubMed

    Bonzom, Valentin; Smerlak, Matteo

    2012-06-15

    The spin-foam approach to quantum gravity rests on a quantization of BF theory using 2-complexes and group representations. We explain why, in dimension three and higher, this spin-foam quantization must be amended to be made consistent with the gauge symmetries of discrete BF theory. We discuss a suitable generalization, called "cellular quantization," which (1) is finite, (2) produces a topological invariant, (3) matches with the properties of the continuum BF theory, and (4) corresponds to its loop quantization. These results significantly clarify the foundations--and limitations--of the spin-foam formalism and open the path to understanding, in a discrete setting, the symmetry-breaking which reduces BF theory to gravity.

  11. Threshold expansion of the three-particle quantization condition

    NASA Astrophysics Data System (ADS)

    Hansen, Maxwell T.; Sharpe, Stephen R.

    2016-05-01

    We recently derived a quantization condition for the energy of three relativistic particles in a cubic box [M. T. Hansen and S. R. Sharpe, Phys. Rev. D 90, 116003 (2014); M. T. Hansen and S. R. Sharpe, Phys. Rev. D 92, 114509 (2015)]. Here we use this condition to study the energy level closest to the three-particle threshold when the total three-momentum vanishes. We expand this energy in powers of 1 /L , where L is the linear extent of the finite volume. The expansion begins at O (1 /L3), and we determine the coefficients of the terms through O (1 /L6). As is also the case for the two-particle threshold energy, the 1 /L3, 1 /L4 and 1 /L5 coefficients depend only on the two-particle scattering length a . These can be compared to previous results obtained using nonrelativistic quantum mechanics [K. Huang and C. N. Yang, Phys. Rev. 105, 767 (1957); S. R. Beane, W. Detmold, and M. J. Savage, Phys. Rev. D 76, 074507 (2007); S. Tan, Phys. Rev. A 78, 013636 (2008)], and we find complete agreement. The 1 /L6 coefficients depend additionally on the two-particle effective range r (just as in the two-particle case) and on a suitably defined threshold three-particle scattering amplitude (a new feature for three particles). A second new feature in the three-particle case is that logarithmic dependence on L appears at O (1 /L6). Relativistic effects enter at this order, and the only comparison possible with the nonrelativistic result is for the coefficient of the logarithm, where we again find agreement. For a more thorough check of the 1 /L6 result, and thus of the quantization condition, we also compare to a perturbative calculation of the threshold energy in relativistic λ ϕ4 theory, which we have recently presented in [M. T. Hansen and S. R. Sharpe, Phys. Rev. D 93, 014506 (2016)]. Here, all terms can be compared, and we find full agreement.

  12. Quantized Vortex State in hcp Solid 4He

    NASA Astrophysics Data System (ADS)

    Kubota, Minoru

    2012-11-01

    The quantized vortex state appearing in the recently discovered new states in hcp 4He since their discovery (Kim and Chan, Nature, 427:225-227, 2004; Science, 305:1941, 2004) is discussed. Special attention is given to evidence for the vortex state as the vortex fluid (VF) state (Anderson, Nat. Phys., 3:160-162, 2007; Phys. Rev. Lett., 100:215301, 2008; Penzev et al., Phys. Rev. Lett., 101:065301, 2008; Nemirovskii et al., arXiv:0907.0330, 2009) and its transition into the supersolid (SS) state (Shimizu et al., arXiv:0903.1326, 2009; Kubota et al., J. Low Temp. Phys., 158:572-577, 2010; J. Low Temp. Phys., 162:483-491, 2011). Its features are described. The historical explanations (Reatto and Chester, Phys. Rev., 155(1):88-100, 1967; Chester, Phys. Rev. A, 2(1):256-258, 1970; Andreev and Lifshitz, JETP Lett., 29:1107-1113, 1969; Leggett, Phys. Rev. Lett., 25(22), 1543-1546, 1970; Matsuda and Tsuneto, Prog. Theor. Phys., 46:411-436, 1970) for the SS state in quantum solids such as solid 4He were based on the idea of Bose Einstein Condensation (BEC) of the imperfections such as vacancies, interstitials and other possible excitations in the quantum solids which are expected because of the large zero-point motions. The SS state was proposed as a new state of matter in which real space ordering of the lattice structure of the solid coexists with the momentum space ordering of superfluidity. A new type of superconductors, since the discovery of the cuprate high T c superconductors, HTSCs (Bednorz and Mueller, Z. Phys., 64:189, 1986), has been shown to share a feature with the vortex state, involving the VF and vortex solid states. The high T c s of these materials are being discussed in connection to the large fluctuations associated with some other phase transitions like the antiferromagnetic transition in addition to that of the low dimensionality. The supersolidity in the hcp solid 4He, in contrast to the new superconductors which have multiple degrees of freedom of

  13. Rotating effects on the Landau quantization for an atom with a magnetic quadrupole moment.

    PubMed

    Fonseca, I C; Bakke, K

    2016-01-01

    Based on the single particle approximation [Dmitriev et al., Phys. Rev. C 50, 2358 (1994) and C.-C. Chen, Phys. Rev. A 51, 2611 (1995)], the Landau quantization associated with an atom with a magnetic quadrupole moment is introduced, and then, rotating effects on this analogue of the Landau quantization is investigated. It is shown that rotating effects can modify the cyclotron frequency and breaks the degeneracy of the analogue of the Landau levels.

  14. An analogue of Weyl’s law for quantized irreducible generalized flag manifolds

    SciTech Connect

    Matassa, Marco E-mail: mmatassa@math.uio.no

    2015-09-15

    We prove an analogue of Weyl’s law for quantized irreducible generalized flag manifolds. This is formulated in terms of a zeta function which, similarly to the classical setting, satisfies the following two properties: as a functional on the quantized algebra it is proportional to the Haar state and its first singularity coincides with the classical dimension. The relevant formulas are given for the more general case of compact quantum groups.

  15. The wavelet/scalar quantization compression standard for digital fingerprint images

    SciTech Connect

    Bradley, J.N.; Brislawn, C.M.

    1994-04-01

    A new digital image compression standard has been adopted by the US Federal Bureau of Investigation for use on digitized gray-scale fingerprint images. The algorithm is based on adaptive uniform scalar quantization of a discrete wavelet transform image decomposition and is referred to as the wavelet/scalar quantization standard. The standard produces archival quality images at compression ratios of around 20:1 and will allow the FBI to replace their current database of paper fingerprint cards with digital imagery.

  16. Fermi surface determination from wavevector quantization in LaSrCuO films

    NASA Astrophysics Data System (ADS)

    Ariosa, D.; Cancellieri, C.; Lin, P. H.; Pavuna, D.

    2008-03-01

    We have observed the wavevector quantization in LaSrCuO films thinner than 12 unit cells grown on SrTiO3 substrates. Low energy dispersions were determined in situ for different photon energies by angle resolved photoemission spectroscopy. From the wavevector quantization, we extract three dimensional dispersions within a tight-binding model and obtain the Fermi surface topology, without resorting to the nearly free-electron approximation. Such method can be extended to similar confined electron nanostructures.

  17. The method of Ostrogradsky, quantization, and a move toward a ghost-free future

    SciTech Connect

    Nucci, M C; Leach, P G L

    2009-11-15

    The method of Ostrogradsky has been used to construct a first-order Lagrangian, hence Hamiltonian, for the fourth-order field-theoretical model of Pais-Uhlenbeck with unfortunate results when quantization is undertaken since states with negative norm, commonly called ''ghosts,'' appear. We propose an alternative route based on the preservation of symmetry and this leads to a ghost-free quantization.

  18. Quantizing the Discrete Painlevé VI Equation: The Lax Formalism

    NASA Astrophysics Data System (ADS)

    Hasegawa, Koji

    2013-08-01

    A discretization of Painlevé VI equation was obtained by Jimbo and Sakai (Lett Math Phys 38:145-154, 1996). There are two ways to quantize it: (1) use the affine Weyl group symmetry (of {D_5^{(1)}}) (Hasegawa in Adv Stud Pure Math 61:275-288, 2011), (2) Lax formalism, i.e. monodromy preserving point of view. It turns out that the second approach is also successful and gives the same quantization as in the first approach.

  19. Quantized states in superconducting quantum wells biased by an external field

    NASA Astrophysics Data System (ADS)

    Shafranjuk, Serhii; Ketterson, John

    2004-03-01

    The interest to quantized states in superconducting quantum wells (SQW) is stimulated by rapid development of qubit devices. The SQW may be formed in different ways. In this report we consider SQW at a minimum of the superconducting order parameter, which happens, e.g, at a normal core of an Abrikosov vortex or in SINIS junctions (S are the superconducting banks, I is an insulating barrier, N is a thin normal metal layer). The Andreev reflection (when an incident electron is reflected as a hole and vice versa) at opposite SN and NS interfaces (or on SIN and NIS interfaces, which have an intermediate transparency) creates quantized states, which are observed in experiments. The quantization condition depends on the sample purity and the quantum well size, which should be comparable to the superconducting coherence length. However, the quantization condition may also be changed when a bias field is applied across the quantum well, and the phase of the superfluid condensate wave function becomes time-dependent. If the time dependence is arbitrary, and the energy is a bad quantum number, then in accordance with a general quantum mechanical rules no quantized states could arise. However, if the behavior is time-homogeneous (e.g., under influence of a dc field, or of an ac field of constant amplitude), the energy is a good quantum number, and the quantized states may exist. In this work we consider the formation of the quantized states in the SINIS junction biased by a dc and ac voltages. The calculations are made using the boundary conditions in the quasiclassical approximation. The quantization conditions are analyzed versus the quantum well size, the electron mean free path, and the external bias field magnitude.

  20. Can Dirac quantization of constrained systems be fulfilled within the intrinsic geometry?

    SciTech Connect

    Xun, D.M.; Liu, Q.H.

    2014-02-15

    For particles constrained on a curved surface, how to perform quantization within Dirac’s canonical quantization scheme is a long-standing problem. On one hand, Dirac stressed that the Cartesian coordinate system has fundamental importance in passing from the classical Hamiltonian to its quantum mechanical form while preserving the classical algebraic structure between positions, momenta and Hamiltonian to the extent possible. On the other, on the curved surface, we have no exact Cartesian coordinate system within intrinsic geometry. These two facts imply that the three-dimensional Euclidean space in which the curved surface is embedded must be invoked otherwise no proper canonical quantization is attainable. In this paper, we take a minimum surface, helicoid, on which the motion is constrained, to explore whether the intrinsic geometry offers a proper framework in which the quantum theory can be established in a self-consistent way. Results show that not only an inconsistency within Dirac theory occurs, but also an incompatibility with Schrödinger theory happens. In contrast, in three-dimensional Euclidean space, the Dirac quantization turns out to be satisfactory all around, and the resultant geometric momentum and potential are then in agreement with those given by the Schrödinger theory. -- Highlights: • Quantum motion on a minimum surface, helicoid, is examined within canonical quantization. • Both geometric momentum and geometric potential are embedding quantities. • No canonical quantization can be fulfilled within the intrinsic geometry.

  1. High-Resolution Group Quantization Phase Processing Method in Radio Frequency Measurement Range.

    PubMed

    Du, Baoqing; Feng, Dazheng; Tang, Yaohua; Geng, Xin; Zhang, Duo; Cai, Chaofeng; Wan, Maoquan; Yang, Zhigang

    2016-01-01

    Aiming at the more complex frequency translation, the longer response time and the limited measurement precision in the traditional phase processing, a high-resolution phase processing method by group quantization higher than 100 fs level is proposed in radio frequency measurement range. First, the phase quantization is used as a step value to quantize every phase difference in a group by using the fixed phase relationships between different frequencies signals. The group quantization is formed by the results of the quantized phase difference. In the light of frequency drift mainly caused by phase noise of measurement device, a regular phase shift of the group quantization is produced, which results in the phase coincidence of two comparing signals which obtain high-resolution measurement. Second, in order to achieve the best coincidences pulse, a subtle delay is initiatively used to reduce the width of the coincidences fuzzy area according to the transmission characteristics of the coincidences in the specific medium. Third, a series of feature coincidences pulses of fuzzy area can be captured by logic gate to achieve the best phase coincidences information for the improvement of the measurement precision. The method provides a novel way to precise time and frequency measurement. PMID:27388587

  2. Finite-temperature effective boundary theory of the quantized thermal Hall effect

    NASA Astrophysics Data System (ADS)

    Nakai, Ryota; Ryu, Shinsei; Nomura, Kentaro

    2016-02-01

    A finite-temperature effective free energy of the boundary of a quantized thermal Hall system is derived microscopically from the bulk two-dimensional Dirac fermion coupled with a gravitational field. In two spatial dimensions, the thermal Hall conductivity of fully gapped insulators and superconductors is quantized and given by the bulk Chern number, in analogy to the quantized electric Hall conductivity in quantum Hall systems. From the perspective of effective action functionals, two distinct types of the field theory have been proposed to describe the quantized thermal Hall effect. One of these, known as the gravitational Chern-Simons action, is a kind of topological field theory, and the other is a phenomenological theory relevant to the Strěda formula. In order to solve this problem, we derive microscopically an effective theory that accounts for the quantized thermal Hall effect. In this paper, the two-dimensional Dirac fermion under a static background gravitational field is considered in equilibrium at a finite temperature, from which an effective boundary free energy functional of the gravitational field is derived. This boundary theory is shown to explain the quantized thermal Hall conductivity and thermal Hall current in the bulk by assuming the Lorentz symmetry. The bulk effective theory is consistently determined via the boundary effective theory.

  3. Image subband coding using context-based classification and adaptive quantization.

    PubMed

    Yoo, Y; Ortega, A; Yu, B

    1999-01-01

    Adaptive compression methods have been a key component of many proposed subband (or wavelet) image coding techniques. This paper deals with a particular type of adaptive subband image coding where we focus on the image coder's ability to adjust itself "on the fly" to the spatially varying statistical nature of image contents. This backward adaptation is distinguished from more frequently used forward adaptation in that forward adaptation selects the best operating parameters from a predesigned set and thus uses considerable amount of side information in order for the encoder and the decoder to operate with the same parameters. Specifically, we present backward adaptive quantization using a new context-based classification technique which classifies each subband coefficient based on the surrounding quantized coefficients. We couple this classification with online parametric adaptation of the quantizer applied to each class. A simple uniform threshold quantizer is employed as the baseline quantizer for which adaptation is achieved. Our subband image coder based on the proposed adaptive classification quantization idea exhibits excellent rate-distortion performance, in particular at very low rates. For popular test images, it is comparable or superior to most of the state-of-the-art coders in the literature.

  4. High-Resolution Group Quantization Phase Processing Method in Radio Frequency Measurement Range

    PubMed Central

    Du, Baoqing; Feng, Dazheng; Tang, Yaohua; Geng, Xin; Zhang, Duo; Cai, Chaofeng; Wan, Maoquan; Yang, Zhigang

    2016-01-01

    Aiming at the more complex frequency translation, the longer response time and the limited measurement precision in the traditional phase processing, a high-resolution phase processing method by group quantization higher than 100 fs level is proposed in radio frequency measurement range. First, the phase quantization is used as a step value to quantize every phase difference in a group by using the fixed phase relationships between different frequencies signals. The group quantization is formed by the results of the quantized phase difference. In the light of frequency drift mainly caused by phase noise of measurement device, a regular phase shift of the group quantization is produced, which results in the phase coincidence of two comparing signals which obtain high-resolution measurement. Second, in order to achieve the best coincidences pulse, a subtle delay is initiatively used to reduce the width of the coincidences fuzzy area according to the transmission characteristics of the coincidences in the specific medium. Third, a series of feature coincidences pulses of fuzzy area can be captured by logic gate to achieve the best phase coincidences information for the improvement of the measurement precision. The method provides a novel way to precise time and frequency measurement. PMID:27388587

  5. High-Resolution Group Quantization Phase Processing Method in Radio Frequency Measurement Range.

    PubMed

    Du, Baoqing; Feng, Dazheng; Tang, Yaohua; Geng, Xin; Zhang, Duo; Cai, Chaofeng; Wan, Maoquan; Yang, Zhigang

    2016-07-08

    Aiming at the more complex frequency translation, the longer response time and the limited measurement precision in the traditional phase processing, a high-resolution phase processing method by group quantization higher than 100 fs level is proposed in radio frequency measurement range. First, the phase quantization is used as a step value to quantize every phase difference in a group by using the fixed phase relationships between different frequencies signals. The group quantization is formed by the results of the quantized phase difference. In the light of frequency drift mainly caused by phase noise of measurement device, a regular phase shift of the group quantization is produced, which results in the phase coincidence of two comparing signals which obtain high-resolution measurement. Second, in order to achieve the best coincidences pulse, a subtle delay is initiatively used to reduce the width of the coincidences fuzzy area according to the transmission characteristics of the coincidences in the specific medium. Third, a series of feature coincidences pulses of fuzzy area can be captured by logic gate to achieve the best phase coincidences information for the improvement of the measurement precision. The method provides a novel way to precise time and frequency measurement.

  6. High-Resolution Group Quantization Phase Processing Method in Radio Frequency Measurement Range

    NASA Astrophysics Data System (ADS)

    Du, Baoqing; Feng, Dazheng; Tang, Yaohua; Geng, Xin; Zhang, Duo; Cai, Chaofeng; Wan, Maoquan; Yang, Zhigang

    2016-07-01

    Aiming at the more complex frequency translation, the longer response time and the limited measurement precision in the traditional phase processing, a high-resolution phase processing method by group quantization higher than 100 fs level is proposed in radio frequency measurement range. First, the phase quantization is used as a step value to quantize every phase difference in a group by using the fixed phase relationships between different frequencies signals. The group quantization is formed by the results of the quantized phase difference. In the light of frequency drift mainly caused by phase noise of measurement device, a regular phase shift of the group quantization is produced, which results in the phase coincidence of two comparing signals which obtain high-resolution measurement. Second, in order to achieve the best coincidences pulse, a subtle delay is initiatively used to reduce the width of the coincidences fuzzy area according to the transmission characteristics of the coincidences in the specific medium. Third, a series of feature coincidences pulses of fuzzy area can be captured by logic gate to achieve the best phase coincidences information for the improvement of the measurement precision. The method provides a novel way to precise time and frequency measurement.

  7. Robust fault tolerant control based on sliding mode method for uncertain linear systems with quantization.

    PubMed

    Hao, Li-Ying; Yang, Guang-Hong

    2013-09-01

    This paper is concerned with the problem of robust fault-tolerant compensation control problem for uncertain linear systems subject to both state and input signal quantization. By incorporating novel matrix full-rank factorization technique with sliding surface design successfully, the total failure of certain actuators can be coped with, under a special actuator redundancy assumption. In order to compensate for quantization errors, an adjustment range of quantization sensitivity for a dynamic uniform quantizer is given through the flexible choices of design parameters. Comparing with the existing results, the derived inequality condition leads to the fault tolerance ability stronger and much wider scope of applicability. With a static adjustment policy of quantization sensitivity, an adaptive sliding mode controller is then designed to maintain the sliding mode, where the gain of the nonlinear unit vector term is updated automatically to compensate for the effects of actuator faults, quantization errors, exogenous disturbances and parameter uncertainties without the need for a fault detection and isolation (FDI) mechanism. Finally, the effectiveness of the proposed design method is illustrated via a model of a rocket fairing structural-acoustic.

  8. Finite energy quantization on a topology changing spacetime

    NASA Astrophysics Data System (ADS)

    Krasnikov, S.

    2016-08-01

    The "trousers" spacetime is a pair of flat two-dimensional cylinders ("legs") merging into a single one ("trunk"). In spite of its simplicity this spacetime has a few features (including, in particular, a naked singularity in the "crotch") each of which is presumably unphysical, but for none of which a mechanism is known able to prevent its occurrence. Therefore, it is interesting and important to study the behavior of the quantum fields in such a space. Anderson and DeWitt were the first to consider the free scalar field in the trousers spacetime. They argued that the crotch singularity produces an infinitely bright flash, which was interpreted as evidence that the topology of space is dynamically preserved. Similar divergencies were later discovered by Manogue, Copeland, and Dray who used a more exotic quantization scheme. Later yet the same result obtained within a somewhat different approach led Sorkin to the conclusion that the topological transition in question is suppressed in quantum gravity. In this paper I show that the Anderson-DeWitt divergence is an artifact of their choice of the Fock space. By choosing a different one-particle Hilbert space one gets a quantum state in which the components of the stress-energy tensor (SET) are bounded in the frame of a free-falling observer.

  9. Gigahertz quantized charge pumping in graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Connolly, M. R.; Chiu, K. L.; Giblin, S. P.; Kataoka, M.; Fletcher, J. D.; Chua, C.; Griffiths, J. P.; Jones, G. A. C.; Fal'Ko, V. I.; Smith, C. G.; Janssen, T. J. B. M.

    2013-06-01

    Single-electron pumps are set to revolutionize electrical metrology by enabling the ampere to be redefined in terms of the elementary charge of an electron. Pumps based on lithographically fixed tunnel barriers in mesoscopic metallic systems and normal/superconducting hybrid turnstiles can reach very small error rates, but only at megahertz pumping speeds that correspond to small currents of the order of picoamperes. Tunable barrier pumps in semiconductor structures are operated at gigahertz frequencies, but the theoretical treatment of the error rate is more complex and only approximate predictions are available. Here, we present a monolithic, fixed-barrier single-electron pump made entirely from graphene that performs at frequencies up to several gigahertz. Combined with the record-high accuracy of the quantum Hall effect and proximity-induced Josephson junctions, quantized-current generation brings an all-graphene closure of the quantum metrological triangle within reach. Envisaged applications for graphene charge pumps outside quantum metrology include single-photon generation via electron-hole recombination in electrostatically doped bilayer graphene reservoirs, single Dirac fermion emission in relativistic electron quantum optics and read-out of spin-based graphene qubits in quantum information processing.

  10. Generalized Hasimoto Transform, Binormal Flow and Quantized Vortices

    NASA Astrophysics Data System (ADS)

    Strong, Scott A.; Carr, Lincoln D.

    2014-03-01

    A quantized vortex is a topological object central to the study of quantum liquids. Current models of vortex dynamics are motivated by the nonlinear Schrödingier equation and porting techniques from classical vortices. Self induction of classical vorticity ideally localized to a space curve asserts that a curved vortex filament propagates at a speed proportional to its curvature, | v | ~ κ , in the binormal direction of the Frenet frame, b& circ;. Interestingly, this autonomous dynamic can be mapped into the space of solutions to a cubic focusing nonlinear Schrödinger equation, iψt +ψss +1/2| ψ | 2 ψ = 0 , where ψ is a plane-wave defined by curvature and torsion of the vortex filament, ψ = κexp [ i ∫ dsτ ] . Using these two results, one can define a vortex configuration, within superfluid helium or a Bose-Einstein condensate, and prescribe a binormal evolution. In general, however, binormal flow depends nonlinearly on local curvature and maps to a class of nonlinear integro-differential Schrödinger equations. In this talk we discuss how system size affects higher-order nonlinearity and filament geometry which is applicable to theoretical and numerical investigations of vortex dominated quantum hydrodynamics. Funded by NSF.

  11. On second quantization on noncommutative spaces with twisted symmetries

    NASA Astrophysics Data System (ADS)

    Fiore, Gaetano

    2010-04-01

    By the application of the general twist-induced sstarf-deformation procedure we translate second quantization of a system of bosons/fermions on a symmetric spacetime into a noncommutative language. The procedure deforms, in a coordinated way, the spacetime algebra and its symmetries, the wave-mechanical description of a system of n bosons/fermions, the algebra of creation and annihilation operators and also the commutation relations of the latter with functions of spacetime; our key requirement is the mode-decomposition independence of the quantum field. In a minimalistic view, the use of noncommutative coordinates can be seen just as a way to better express non-local interactions of a special kind. In a non-conservative one, we obtain a closed, covariant framework for quantum field theory (QFT) on the corresponding noncommutative spacetime consistent with quantum mechanical axioms and Bose-Fermi statistics. One distinguishing feature is that the field commutation relations remain of the type 'field (anti)commutator=a distribution'. We illustrate the results by choosing as examples interacting non-relativistic and free relativistic QFT on Moyal space(time)s.

  12. Round Randomized Learning Vector Quantization for Brain Tumor Imaging.

    PubMed

    Sheikh Abdullah, Siti Norul Huda; Bohani, Farah Aqilah; Nayef, Baher H; Sahran, Shahnorbanun; Al Akash, Omar; Iqbal Hussain, Rizuana; Ismail, Fuad

    2016-01-01

    Brain magnetic resonance imaging (MRI) classification into normal and abnormal is a critical and challenging task. Owing to that, several medical imaging classification techniques have been devised in which Learning Vector Quantization (LVQ) is amongst the potential. The main goal of this paper is to enhance the performance of LVQ technique in order to gain higher accuracy detection for brain tumor in MRIs. The classical way of selecting the winner code vector in LVQ is to measure the distance between the input vector and the codebook vectors using Euclidean distance function. In order to improve the winner selection technique, round off function is employed along with the Euclidean distance function. Moreover, in competitive learning classifiers, the fitting model is highly dependent on the class distribution. Therefore this paper proposed a multiresampling technique for which better class distribution can be achieved. This multiresampling is executed by using random selection via preclassification. The test data sample used are the brain tumor magnetic resonance images collected from Universiti Kebangsaan Malaysia Medical Center and UCI benchmark data sets. Comparative studies showed that the proposed methods with promising results are LVQ1, Multipass LVQ, Hierarchical LVQ, Multilayer Perceptron, and Radial Basis Function. PMID:27516807

  13. Quantization of spacetime based on a spacetime interval operator

    NASA Astrophysics Data System (ADS)

    Chiang, Hsu-Wen; Hu, Yao-Chieh; Chen, Pisin

    2016-04-01

    Motivated by both concepts of Adler's recent work on utilizing Clifford algebra as the linear line element d s =⟨γμ⟩ d Xμ and the fermionization of the cylindrical worldsheet Polyakov action, we introduce a new type of spacetime quantization that is fully covariant. The theory is based on the reinterpretation of Adler's linear line element as d s =γμ⟨λ γμ⟩ , where λ is the characteristic length of the theory. We name this new operator the "spacetime interval operator" and argue that it can be regarded as a natural extension to the one-forms in the U (s u (2 )) noncommutative geometry. By treating Fourier momentum as the particle momentum, the generalized uncertainty principle of the U (s u (2 )) noncommutative geometry, as an approximation to the generalized uncertainty principle of our theory, is derived and is shown to have a lowest order correction term of the order p2 similar to that of Snyder's. The holography nature of the theory is demonstrated and the predicted fuzziness of the geodesic is shown to be much smaller than conceivable astrophysical bounds.

  14. Exciting Quantized Vortex Rings in a Superfluid Unitary Fermi Gas

    NASA Astrophysics Data System (ADS)

    Bulgac, Aurel

    2014-03-01

    In a recent article, Yefsah et al., Nature 499, 426 (2013) report the observation of an unusual quantum excitation mode in an elongated harmonically trapped unitary Fermi gas. After phase imprinting a domain wall, they observe collective oscillations of the superfluid atomic cloud with a period almost an order of magnitude larger than that predicted by any theory of domain walls, which they interpret as a possible new quantum phenomenon dubbed ``a heavy soliton'' with an inertial mass some 50 times larger than one expected for a domain wall. We present compelling evidence that this ``heavy soliton'' is instead a quantized vortex ring by showing that the main aspects of the experiment can be naturally explained within an extension of the time-dependent density functional theory (TDDFT) to superfluid systems. The numerical simulations required the solution of some 260,000 nonlinear coupled time-dependent 3-dimensional partial differential equations and was implemented on 2048 GPUs on the Cray XK7 supercomputer Titan of the Oak Ridge Leadership Computing Facility.

  15. Round Randomized Learning Vector Quantization for Brain Tumor Imaging

    PubMed Central

    2016-01-01

    Brain magnetic resonance imaging (MRI) classification into normal and abnormal is a critical and challenging task. Owing to that, several medical imaging classification techniques have been devised in which Learning Vector Quantization (LVQ) is amongst the potential. The main goal of this paper is to enhance the performance of LVQ technique in order to gain higher accuracy detection for brain tumor in MRIs. The classical way of selecting the winner code vector in LVQ is to measure the distance between the input vector and the codebook vectors using Euclidean distance function. In order to improve the winner selection technique, round off function is employed along with the Euclidean distance function. Moreover, in competitive learning classifiers, the fitting model is highly dependent on the class distribution. Therefore this paper proposed a multiresampling technique for which better class distribution can be achieved. This multiresampling is executed by using random selection via preclassification. The test data sample used are the brain tumor magnetic resonance images collected from Universiti Kebangsaan Malaysia Medical Center and UCI benchmark data sets. Comparative studies showed that the proposed methods with promising results are LVQ1, Multipass LVQ, Hierarchical LVQ, Multilayer Perceptron, and Radial Basis Function. PMID:27516807

  16. Spectrum of Quantized Energy for a Lengthening Pendulum

    SciTech Connect

    Choi, Jeong Ryeol; Song, Ji Nny; Hong, Seong Ju

    2010-09-30

    We considered a quantum system of simple pendulum whose length of string is increasing at a steady rate. Since the string length is represented as a time function, this system is described by a time-dependent Hamiltonian. The invariant operator method is very useful in solving the quantum solutions of time-dependent Hamiltonian systems like this. The invariant operator of the system is represented in terms of the lowering operator a(t) and the raising operator a{sup {dagger}}(t). The Schroedinger solutions {psi}{sub n}({theta}, t) whose spectrum is discrete are obtained by means of the invariant operator. The expectation value of the Hamiltonian in the {psi}{sub n}({theta}, t) state is the same as the quantum energy. At first, we considered only {theta}{sup 2} term in the Hamiltonian in order to evaluate the quantized energy. The numerical study for quantum energy correction is also made by considering the angle variable not only up to {theta}{sup 4} term but also up to {theta}{sup 6} term in the Hamiltonian, using the perturbation theory.

  17. Unbalanced quantized multiple description video transmission using path diversity

    NASA Astrophysics Data System (ADS)

    Ekmekci, Sila; Sikora, Thomas

    2003-05-01

    Multiple Description Coding is a forward error correction scheme where two or more descriptions of the source are sent to the receiver over different channels. If only one channel is received the signal can be reconstructed with distortion D1 or D2. On the other hand, if both channels rae received the combined information is used to achieve a lower distortion D0. Our approach is based on the Multiple State Video Coding with the novelty that we achieve a flexible unbalance rate of the two streams by varying the quantization step size while keeping the original frame rate constant. The total bitrate Rτ is fixed which is to be allocated between the two streams. If the assigned bitratres are not balanced there will be PSNR variations between neighboring frames after reconstruction. Our goal is to find the optimal rate allocation while maximizing the average reconstructed frame PSNR and minimizing the PSNR variations given the total bitrate Rτ and the packet loss probabilities p1 and p2 over the two paths. The reconstruction algorithm is also taken into account in the optimization process. The paper will report results presenting optimal system designs for balanced but also for unbalanced path conditions.

  18. Flux-p: automating metabolic flux analysis.

    PubMed

    Ebert, Birgitta E; Lamprecht, Anna-Lena; Steffen, Bernhard; Blank, Lars M

    2012-11-12

    Quantitative knowledge of intracellular fluxes in metabolic networks is invaluable for inferring metabolic system behavior and the design principles of biological systems. However, intracellular reaction rates can not often be calculated directly but have to be estimated; for instance, via 13C-based metabolic flux analysis, a model-based interpretation of stable carbon isotope patterns in intermediates of metabolism. Existing software such as FiatFlux, OpenFLUX or 13CFLUX supports experts in this complex analysis, but requires several steps that have to be carried out manually, hence restricting the use of this software for data interpretation to a rather small number of experiments. In this paper, we present Flux-P as an approach to automate and standardize 13C-based metabolic flux analysis, using the Bio-jETI workflow framework. Exemplarily based on the FiatFlux software, it demonstrates how services can be created that carry out the different analysis steps autonomously and how these can subsequently be assembled into software workflows that perform automated, high-throughput intracellular flux analysis of high quality and reproducibility. Besides significant acceleration and standardization of the data analysis, the agile workflow-based realization supports flexible changes of the analysis workflows on the user level, making it easy to perform custom analyses.

  19. VORTEX CREEP AGAINST TOROIDAL FLUX LINES, CRUSTAL ENTRAINMENT, AND PULSAR GLITCHES

    SciTech Connect

    Gügercinoğlu, Erbil; Alpar, M. Ali E-mail: alpar@sabanciuniv.edu

    2014-06-10

    A region of toroidally oriented quantized flux lines must exist in the proton superconductor in the core of the neutron star. This region will be a site of vortex pinning and creep. Entrainment of the neutron superfluid with the crustal lattice leads to a requirement of superfluid moment of inertia associated with vortex creep in excess of the available crustal moment of inertia. This will bring about constraints on the equation of state. The toroidal flux region provides the moment of inertia necessary to complement the crust superfluid with postglitch relaxation behavior fitting the observations.

  20. Width dependent transition of quantized spin-wave modes in Ni{sub 80}Fe{sub 20} square nanorings

    SciTech Connect

    Banerjee, Chandrima; Saha, Susmita; Barman, Saswati; Barman, Anjan; Rousseau, Olivier; Otani, YoshiChika

    2014-10-28

    We investigated optically induced ultrafast magnetization dynamics in square shaped Ni{sub 80}Fe{sub 20} nanorings with varying ring width. Rich spin-wave spectra are observed whose frequencies showed a strong dependence on the ring width. Micromagnetic simulations showed different types of spin-wave modes, which are quantized upto very high quantization number. In the case of widest ring, the spin-wave mode spectrum shows quantized modes along the applied field direction, which is similar to the mode spectrum of an antidot array. As the ring width decreases, additional quantization in the azimuthal direction appears causing mixed modes. In the narrowest ring, the spin-waves exhibit quantization solely in azimuthal direction. The different quantization is attributed to the variation in the internal field distribution for different ring width as obtained from micromagnetic analysis and supported by magnetic force microscopy.

  1. From Weyl to Born-Jordan quantization: The Schrödinger representation revisited

    NASA Astrophysics Data System (ADS)

    de Gosson, Maurice A.

    2016-03-01

    The ordering problem has been one of the long standing and much discussed questions in quantum mechanics from its very beginning. Nowadays, there is more or less a consensus among physicists that the right prescription is Weyl's rule, which is closely related to the Moyal-Wigner phase space formalism. We propose in this report an alternative approach by replacing Weyl quantization with the less well-known Born-Jordan quantization. This choice is actually natural if we want the Heisenberg and Schrödinger pictures of quantum mechanics to be mathematically equivalent. It turns out that, in addition, Born-Jordan quantization can be recovered from Feynman's path integral approach provided that one used short-time propagators arising from correct formulas for the short-time action, as observed by Makri and Miller. These observations lead to a slightly different quantum mechanics, exhibiting some unexpected features, and this without affecting the main existing theory; for instance quantizations of physical Hamiltonian functions are the same as in the Weyl correspondence. The differences are in fact of a more subtle nature; for instance, the quantum observables will not correspond in a one-to-one fashion to classical ones, and the dequantization of a Born-Jordan quantum operator is less straightforward than that of the corresponding Weyl operator. The use of Born-Jordan quantization moreover solves the "angular momentum dilemma", which already puzzled L. Pauling. Born-Jordan quantization has been known for some time (but not fully exploited) by mathematicians working in time-frequency analysis and signal analysis, but ignored by physicists. One of the aims of this report is to collect and synthesize these sporadic discussions, while analyzing the conceptual differences with Weyl quantization, which is also reviewed in detail. Another striking feature is that the Born-Jordan formalism leads to a redefinition of phase space quantum mechanics, where the usual Wigner

  2. Quantization of Chern-Simons Theories on Manifolds with Boundaries

    NASA Astrophysics Data System (ADS)

    Bimonte, Giuseppe Roberto

    The subject matter of this thesis deals with Chern -Simons Topological Field Theories in 2 + 1 space-time dimensions on manifolds with boundaries. We develop elementary canonical methods for the quantization of Abelian and non-Abelian Chern-Simons actions, only using well known ideas in gauge theories and quantum gravity. In particular, our approach does not involve choice of gauge or delicate manipulations of functional integrals. When the spacial slice is a disc, it yields Witten's edge states carrying a representation of the Kac -Moody algebra. The canonical expression for the generators of diffeomorphisms acting on the boundary of the disc are also found, and it is established that they are the Chern -Simons version of the Sugawara construction. The formalism is then extended to the inclusion of sources. The quantum states of a source with a fixed spatial location are shown to be those of a conformal family. The internal states of a source are not thus associated with just a single ray of a Hilbert space. Vertex operators for both abelian and non-abelian sources are constructed. The regularized abelian Wilson line is proved to be a vertex operator. The spin-statistics theorem is established for Chern-Simons dynamics even though the sources are not described by relativistic quantum fields. The proof employs particularly simple and transparent geometrical methods. These results are finally applied to the Chern -Simons formulation of gravity in 2 + 1 dimensions, due to Witten. Here also, when the spatial slice is a disc, edge states are found, carrying a representation of the ISO(2,1) Kac-Moody algebra. The appropriate vertex operator is constructed also for this theory. It is shown that when acting on the vacuum it creates particles with a discrete mass spectrum. The lowest mass particle induces a cylindrical space time geometry, while higher mass particles give an n-fold covering of the cylinder.

  3. Quantization noise in digital speech. M.S. Thesis- Houston Univ.

    NASA Technical Reports Server (NTRS)

    Schmidt, O. L.

    1972-01-01

    The amount of quantization noise generated in a digital-to-analog converter is dependent on the number of bits or quantization levels used to digitize the analog signal in the analog-to-digital converter. The minimum number of quantization levels and the minimum sample rate were derived for a digital voice channel. A sample rate of 6000 samples per second and lowpass filters with a 3 db cutoff of 2400 Hz are required for 100 percent sentence intelligibility. Consonant sounds are the first speech components to be degraded by quantization noise. A compression amplifier can be used to increase the weighting of the consonant sound amplitudes in the analog-to-digital converter. An expansion network must be installed at the output of the digital-to-analog converter to restore the original weighting of the consonant sounds. This technique results in 100 percent sentence intelligibility for a sample rate of 5000 samples per second, eight quantization levels, and lowpass filters with a 3 db cutoff of 2000 Hz.

  4. Node Topology Effect on Target Tracking Based on UWSNs Using Quantized Measurements.

    PubMed

    Zhang, Qiang; Liu, Meiqin; Zhang, Senlin

    2015-10-01

    On one hand, due to the energy and bandwidth constraint of underwater wireless sensor networks (UWSNs), local data quantization/compression is not only a necessity, but also an integral part of the design of UWSNs; on the other hand, since underwater nodes provide measurements for target tracking based on UWSNs, node topology, which is made up of the underwater nodes, may affect the performance of target tracking. This paper studies the effect of node topology on the target tracking in UWSNs using quantized measurements. Firstly, by using the knowledge of geometry, the effects of four typical topologies on target tracking using quantized measurements are analyzed qualitatively. The four typical topologies include two nodes are close to each other, three nodes are close to each other, three nodes are co-linear, and three nodes form a regular triangle. Secondly, under the condition of quantized measurements, the relationship between the posterior Cramer-Rao lower bound (PCRLB) and node's position is derived to evaluate the arbitrary topology. Thirdly, our target tracking scheme consisting of the optimal topology selection scheme by minimizing PCRLB, the optimal fusion center selection scheme by minimizing energy consumption, and the multisensor particle filter with quantized measurements is designed. Last, simulation results show the effectiveness of the proposed scheme.

  5. Quantized impedance dealing with the damping behavior of the one-dimensional oscillator

    SciTech Connect

    Zhu, Jinghao; Zhang, Jing; Li, Yuan; Zhang, Yong; Fang, Zhengji; Zhao, Peide E-mail: pdzhao@hebut.edu.cn; Li, Erping

    2015-11-15

    A quantized impedance is proposed to theoretically establish the relationship between the atomic eigenfrequency and the intrinsic frequency of the one-dimensional oscillator in this paper. The classical oscillator is modified by the idea that the electron transition is treated as a charge-discharge process of a suggested capacitor with the capacitive energy equal to the energy level difference of the jumping electron. The quantized capacitance of the impedance interacting with the jumping electron can lead the resonant frequency of the oscillator to the same as the atomic eigenfrequency. The quantized resistance reflects that the damping coefficient of the oscillator is the mean collision frequency of the transition electron. In addition, the first and third order electric susceptibilities based on the oscillator are accordingly quantized. Our simulation of the hydrogen atom emission spectrum based on the proposed method agrees well with the experimental one. Our results exhibits that the one-dimensional oscillator with the quantized impedance may become useful in the estimations of the refractive index and one- or multi-photon absorption coefficients of some nonmagnetic media composed of hydrogen-like atoms.

  6. Patterns of Flux Emergence

    NASA Astrophysics Data System (ADS)

    Title, A.; Cheung, M.

    2008-05-01

    The high spatial resolution and high cadence of the Solar Optical Telescope on the JAXA Hinode spacecraft have allowed capturing many examples of magnetic flux emergence from the scale of granulation to active regions. The observed patterns of emergence are quite similar. Flux emerges as a array of small bipoles on scales from 1 to 5 arc seconds throughout the region that the flux eventually condenses. Because the fields emerging from the underlying flux rope my appear many in small segments and the total flux (absolute sum) is not a conserved quantity the amount of total flux on the surface may vary significantly during the emergence process. Numerical simulations of flux emergence exhibit patterns similar to observations. Movies of both observations and numerical simulations will be presented.

  7. How to get the reduced B fields of millisecond pulsars: Flux expulsion by spindown before the LMXB phase

    NASA Astrophysics Data System (ADS)

    Alpar, Mehmet Ali; Gügercinoǧlu, Erbil

    2016-07-01

    The physical interaction between quantized flux lines of the Type II proton superconductor and the quantized vortex lines of the neutron superfluid is re-visited. Srinivasan et al. (1990) had proposed that this interaction led to reduction of the magnetic field to the B ˜10^9 G range as the flux lines were expelled together with vortex lines during the spindown of the neutron star in an early epoch of binary evolution. The model is discussed with reference to spindown by the wind from the companion prior to the Roche lobe filling LMXB phase. An evolutionary model for the magnetic field and the rotation rate is presented, with application to the 11 Hz accreting pulsar in the LMXB IGR J17480-2446 in Terzan 5 (Patruno et al 2012) as well as 'standard' accreting and radio millisecond pulsar evolution.

  8. Discretized Light-Cone Quantization: Application to Quantum Electrodynamics

    NASA Astrophysics Data System (ADS)

    Tang, Andrew Chun-Nien

    In this work, a general method for solving quantum field theories, Discretized Light-Cone Quantization (DLCQ), is presented. The method is very straightforward and essentially consists of diagonalizing the light-cone Hamiltonian matrix for the mass spectrum and wavefunctions. This method has been applied successfully in the past of various one space, one time dimensional theories. In each of these past applications, the mass spectrum and wave functions were successfully obtained, and all results agree with previous analytical and numerical work. The success of DLCQ in 1 + 1 dimensions provides the hope of solving theories in three space and one time dimensions. The application to higher dimensions is much more involved than in 1 + 1 dimensions due to the need to introduce ultraviolet and infrared regulators, and invoke a renormalization scheme consistent with gauge invariance and Lorentz invariance. This is in addition to the extra work involved implementing two extra dimensions with their added degrees of freedom. In this paper, I will present the application of DLCQ to 3 + 1 dimensional Quantum Electrodynamics. The theoretical framework of DLCQ in the context of 3 + 1 QED is shown in the first 8 sections. Issues addressed include the question of self-induced inertias and normal ordering, the agreement of Feynman rule and light-cone answers for one-loop radiative corrections, and ultraviolet and infrared regulation. Many of the results presented here are applicable to quantum field theory in general. Unfortunately, solving 3 + 1 QED in this general framework has so far proven elusive due to a number of difficulties. These problems and a way around them using a truncated Fock space are presented in Section 7, with renormalization in this truncated space presented in Section 8. The next 5 sections show attempts to numerically solve 3 + 1 QED in a truncated Fock space by diagonalization of the Hamiltonian and by a variational calculation for the positronium system

  9. Estimation with Wireless Sensor Networks: Censoring and Quantization Perspectives

    NASA Astrophysics Data System (ADS)

    Msechu, Eric James

    In the last decade there has been an increase in application areas for wireless sensor networks (WSNs), which can be attributed to the advances in the enabling sensor technology. These advances include integrated circuit miniaturization and mass-production of highly-reliable hardware for sensing, processing, and data storage at a lower cost. In many emerging applications, massive amounts of data are acquired by a large number of low-cost sensing devices. The design of signal processing algorithms for these WSNs, unlike in wireless networks designed for communications, face a different set of challenges due to resource constraints sensor nodes must adhere to. These include: (i) limited on-board memory for storage; (ii) limited energy source, typically based on irreplaceable battery cells; (iii) radios with limited transmission range; and (iv) stringent data rates either due to a need to save energy or due to limited radio-frequency bandwidth allocated to sensor networks. This work addresses distributed data-reduction at sensor nodes using a combination of measurement-censoring and measurement quantization. The WSN is envisioned for decentralized estimation of either a vector of unknown parameters in a maximum likelihood framework, or, for decentralized estimation of a random signal using Bayesian optimality criteria. Early research effort in data-reduction methods involved using a centralized computation platform directing selection of the most informative data and focusing computational and communication resources toward the selected data only. Robustness against failure of the central computation unit, as well as the need for iterative data-selection and data-gathering in some applications (e.g., real-time navigation systems), motivates a rethinking of the centralized data-selection approach. Recently, research focus has been on collaborative signal processing in sensor neighborhoods for the data-reduction step. It is in this spirit that investigation of methods

  10. Large-Scale Effect of Krein Quantization Method on the Matter Density Perturbations

    NASA Astrophysics Data System (ADS)

    Sojasi, A.; Mohsenzadeh, M.; Saffari, R.

    2015-10-01

    According to the theoretical results obtained in usual quantum cosmology in which the field operator is constructed on the Hilbert space, the power spectrum of the scalar field fluctuations is scale invariant in the inflationary epoch. On the other hand, the observational data predict some deviation from scale-invariance in the power spectrum. It has been shown previously that by using Krein quantization method for constructing field operator, the power spectrum is obtained scale dependent (Mohsenzadeh et al. IJTP 48, 755, 2009). The main goal in this work is to investigate the effect of Krein quantization method on the matter density perturbation at present. The results show if one uses covariant two point function for mass-less minimally coupled scalar field in de Sitter space-time which is calculated via Krein quantization method, the power spectrum of primordial gravitational potential set up during inflation and the power spectrum of matter density perturbation at present deviate from scale-invariant result.

  11. Model predictive control of non-linear systems over networks with data quantization and packet loss.

    PubMed

    Yu, Jimin; Nan, Liangsheng; Tang, Xiaoming; Wang, Ping

    2015-11-01

    This paper studies the approach of model predictive control (MPC) for the non-linear systems under networked environment where both data quantization and packet loss may occur. The non-linear controlled plant in the networked control system (NCS) is represented by a Tagaki-Sugeno (T-S) model. The sensed data and control signal are quantized in both links and described as sector bound uncertainties by applying sector bound approach. Then, the quantized data are transmitted in the communication networks and may suffer from the effect of packet losses, which are modeled as Bernoulli process. A fuzzy predictive controller which guarantees the stability of the closed-loop system is obtained by solving a set of linear matrix inequalities (LMIs). A numerical example is given to illustrate the effectiveness of the proposed method.

  12. Model predictive control of non-linear systems over networks with data quantization and packet loss.

    PubMed

    Yu, Jimin; Nan, Liangsheng; Tang, Xiaoming; Wang, Ping

    2015-11-01

    This paper studies the approach of model predictive control (MPC) for the non-linear systems under networked environment where both data quantization and packet loss may occur. The non-linear controlled plant in the networked control system (NCS) is represented by a Tagaki-Sugeno (T-S) model. The sensed data and control signal are quantized in both links and described as sector bound uncertainties by applying sector bound approach. Then, the quantized data are transmitted in the communication networks and may suffer from the effect of packet losses, which are modeled as Bernoulli process. A fuzzy predictive controller which guarantees the stability of the closed-loop system is obtained by solving a set of linear matrix inequalities (LMIs). A numerical example is given to illustrate the effectiveness of the proposed method. PMID:26341070

  13. Comparison study of EMG signals compression by methods transform using vector quantization, SPIHT and arithmetic coding.

    PubMed

    Ntsama, Eloundou Pascal; Colince, Welba; Ele, Pierre

    2016-01-01

    In this article, we make a comparative study for a new approach compression between discrete cosine transform (DCT) and discrete wavelet transform (DWT). We seek the transform proper to vector quantization to compress the EMG signals. To do this, we initially associated vector quantization and DCT, then vector quantization and DWT. The coding phase is made by the SPIHT coding (set partitioning in hierarchical trees coding) associated with the arithmetic coding. The method is demonstrated and evaluated on actual EMG data. Objective performance evaluations metrics are presented: compression factor, percentage root mean square difference and signal to noise ratio. The results show that method based on the DWT is more efficient than the method based on the DCT.

  14. Quantization effects on the inversion mode of a double gate MOS

    NASA Astrophysics Data System (ADS)

    Mondol, Kalyan; Hasan, Md. Manzurul; Arafath, Yeasir; Alam, Khairul

    We investigate the quantization effects on the gate capacitance and charge distribution of a double gate MOSFET using a self-consistent solution of Poisson and Schrödinger equations of the industry standard simulation package Silvaco. Quantization effects on the gate C-V are simulated by varying the electron and hole effective masses. We notice that the inversion capacitance value decreases as the effective mass goes below 0.1mo and the shape of the C-V curve changes to step like in the inversion. We also notice that the inversion switches from surface inversion to volume inversion for low effective mass, and the quantization effect (step like shape) in C-V and volume inversion in charge profile happen at the same effective mass.

  15. Conductance quantization in an AgInSbTe-based memristor at nanosecond scale

    NASA Astrophysics Data System (ADS)

    Jiang, L.; Xu, L.; Chen, J. W.; Yan, P.; Xue, K. H.; Sun, H. J.; Miao, X. S.

    2016-10-01

    Quantized conductance was observed in a cation-migration-based memristor with the structure of Ag/AgInSbTe(AIST)/Ta. The conductance of the memristor exhibits stepwise increases in units of single quantum conductance (77.5 μS), which is attributed to the formation of a metal filament with an atomic contact of different integer multiples. We designed a high speed circuit to conduct the pulse measurement. The quantized conductance can be obtained by applying voltage pulses in intervals as fast as 3 ns with constant amplitude. Considering that the quantized conductance can be modulated by different pulse widths, our results suggest that the AIST-based memristor is a robust candidate for multi-level data storage and neuromorphic computing systems.

  16. Canonical quantization of a particle near an extreme Reissner-Nordström black hole

    NASA Astrophysics Data System (ADS)

    Siopsis, George

    2000-11-01

    We discuss the quantization of a particle near an extreme Reissner-Nordström black hole in the canonical formalism. This model appears to be described by a Hamiltonian with no well-defined ground state. This problem can be circumvented by a redefinition of the Hamiltonian due to de Alfaro, Fubini and Furlan (DFF). We show that the Hamiltonian with no ground state corresponds to a gauge in which there is an obstruction at the boundary of spacetime requiring a modification of the quantization rules. The redefinition of the Hamiltonian in the manner of DFF corresponds to a different choice of gauge. The latter is a good gauge leading to standard quantization rules. Thus, the DFF trick is a consequence of a standard gauge-fixing procedure in the case of black hole scattering.

  17. Necessary conditions for the optimality of variable rate residual vector quantizers

    NASA Technical Reports Server (NTRS)

    Kossentini, Faouzi; Smith, Mark J. T.; Barnes, Christopher F.

    1993-01-01

    Residual vector quantization (RVQ), or multistage VQ, as it is also called, has recently been shown to be a competitive technique for data compression. The competitive performance of RVQ reported in results from the joint optimization of variable rate encoding and RVQ direct-sum code books. In this paper, necessary conditions for the optimality of variable rate RVQ's are derived, and an iterative descent algorithm based on a Lagrangian formulation is introduced for designing RVQ's having minimum average distortion subject to an entropy constraint. Simulation results for these entropy-constrained RVQ's (EC-RVQ's) are presented for memory less Gaussian, Laplacian, and uniform sources. A Gauss-Markov source is also considered. The performance is superior to that of entropy-constrained scalar quantizers (EC-SQ's) and practical entropy-constrained vector quantizers (EC-VQ's), and is competitive with that of some of the best source coding techniques that have appeared in the literature.

  18. Robust image hashing based on random Gabor filtering and dithered lattice vector quantization.

    PubMed

    Li, Yuenan; Lu, Zheming; Zhu, Ce; Niu, Xiamu

    2012-04-01

    In this paper, we propose a robust-hash function based on random Gabor filtering and dithered lattice vector quantization (LVQ). In order to enhance the robustness against rotation manipulations, the conventional Gabor filter is adapted to be rotation invariant, and the rotation-invariant filter is randomized to facilitate secure feature extraction. Particularly, a novel dithered-LVQ-based quantization scheme is proposed for robust hashing. The dithered-LVQ-based quantization scheme is well suited for robust hashing with several desirable features, including better tradeoff between robustness and discrimination, higher randomness, and secrecy, which are validated by analytical and experimental results. The performance of the proposed hashing algorithm is evaluated over a test image database under various content-preserving manipulations. The proposed hashing algorithm shows superior robustness and discrimination performance compared with other state-of-the-art algorithms, particularly in the robustness against rotations (of large degrees).

  19. ECG compression using uniform scalar dead-zone quantization and conditional entropy coding.

    PubMed

    Chen, Jianhua; Wang, Fuyan; Zhang, Yufeng; Shi, Xinling

    2008-05-01

    A new wavelet-based method for the compression of electrocardiogram (ECG) data is presented. A discrete wavelet transform (DWT) is applied to the digitized ECG signal. The DWT coefficients are first quantized with a uniform scalar dead-zone quantizer, and then the quantized coefficients are decomposed into four symbol streams, representing a binary significance stream, the signs, the positions of the most significant bits, and the residual bits. An adaptive arithmetic coder with several different context models is employed for the entropy coding of these symbol streams. Simulation results on several records from the MIT-BIH arrhythmia database show that the proposed coding algorithm outperforms some recently developed ECG compression algorithms.

  20. Multiverse in the Third Quantized Horava-Lifshitz Theory of Gravity

    NASA Astrophysics Data System (ADS)

    Faizal, Mir

    In this paper we analyze the third quantization of Horava-Lifshitz theory of gravity without detail balance. We show that the Wheeler-DeWitt equation for Horava-Lifshitz theory of gravity in minisuperspace approximation becomes the equation for time-dependent harmonic oscillator. After interpreting the scaling factor as the time, we are able to derive the third quantized wave function for multiverse. We also show in third quantized formalism it is possible that the universe can form from nothing. Then we go on to analyze the effect of introducing interactions in the Wheeler-DeWitt equation. We see how this model of interacting universes can be used to explain baryogenesis with violation of baryon number conservation in the multiverse. We also analyze how this model can possibly explain the present value of the cosmological constant. Finally we analyze the possibility of the multiverse being formed from perturbations around a false vacuum and its decay to a true vacuum.

  1. Quantum gravity and causal structures: Second quantization of conformal Dirac algebras

    NASA Astrophysics Data System (ADS)

    Bonezzi, R.; Corradini, O.; Latini, E.; Waldron, A.

    2015-06-01

    It is postulated that quantum gravity is a sum over causal structures coupled to matter via scale evolution. Quantized causal structures can be described by studying simple matrix models where matrices are replaced by an algebra of quantum mechanical observables. In particular, previous studies constructed quantum gravity models by quantizing the moduli of Laplace, weight, and defining-function operators on Fefferman-Graham ambient spaces. The algebra of these operators underlies conformal geometries. We extend those results to include fermions by taking an o s p (1 |2 ) "Dirac square root" of these algebras. The theory is a simple, Grassmann, two-matrix model. Its quantum action is a Chern-Simons theory whose differential is a first-quantized, quantum mechanical Becchi-Rouet-Stora-Tyutin operator. The theory is a basic ingredient for building fundamental theories of physical observables.

  2. Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers

    SciTech Connect

    Tang, D.Y.; Zhao, L.M.; Zhao, B.; Liu, A.Q.

    2005-10-15

    We report results of numerical simulations on multiple-soliton generation and soliton energy quantization in a soliton fiber ring laser passively mode locked by using the nonlinear polarization rotation technique. We found numerically that the formation of multiple solitons in the laser is caused by a peak-power-limiting effect of the laser cavity. It is also the same effect that suppresses the soliton pulse collapse, an intrinsic feature of solitons propagating in gain media, and makes the solitons stable in the laser. Furthermore, we show that the soliton energy quantization observed in the lasers is a natural consequence of the gain competition between the multiple solitons. Enlightened by the numerical result we speculate that multisoliton formation and soliton energy quantization observed in other types of soliton fiber lasers could have a similar mechanism.

  3. Quantization and Excitation of Longitudinal Electrostatic Waves in Magnetized Quantum Plasmas

    NASA Astrophysics Data System (ADS)

    Tsintsadze, Levan N.

    2010-12-01

    Effects of the Landau diamagnetism and the Pauli paramagnetism on the longitudinal electric wave characteristics in a quantum plasma are studied. It is shown that a dispersion relation of the longitudinal wave propagating along a magnetic field strongly depends on the magnetic field, in radical contrast to the classical case. Instabilities of the quantized longitudinal electric waves are studied by a newly derived dispersion equation. Novel branches of longitudinal waves are found, which have no analogies without the Landau quantization. Growth rates of these new modes are obtained. The excitation of the zero sound by an electron beam is discussed and found that the quantization of the energy of electrons imposes a new condition. Furthermore, the excitation of Bogolyubov's type of spectrum by a strong electric field is considered.

  4. Rate quantization modeling for rate control of MPEG video coding and recording

    NASA Astrophysics Data System (ADS)

    Ding, Wei; Liu, Bede

    1995-04-01

    For MPEG video coding and recording applications, it is important to select quantization parameters at slice and macroblock levels to produce nearly constant quality image for a given bit count budget. A well designed rate control strategy can improve overall image quality for video transmission over a constant-bit-rate channel and fulfill editing requirement of video recording, where a certain number of new pictures are encoded to replace consecutive frames on the storage media using at most the same number of bits. In this paper, we developed a feedback method with a rate-quantization model, which can be adapted to changes in picture activities. The model is used for quantization parameter selection at the frame and slice level. Extra computations needed are modest. Experiments show the accuracy of the model and the effectiveness of the proposed rate control method. A new bit allocation algorithm is then proposed for MPEG video coding.

  5. Yukawas, G-flux, and spectral covers from resolved Calabi-Yau's

    NASA Astrophysics Data System (ADS)

    Marsano, Joseph; Schäfer-Nameki, Sakura

    2011-11-01

    We use the resolution procedure of Esole and Yau [1] to study Yukawa couplings, G-flux, and the emergence of spectral covers from elliptically fibered Calabi-Yau's with a surface of A 4 singularities. We provide a global description of the Esole-Yau resolution and use it to explicitly compute Chern classes of the resolved 4-fold, proving the conjecture of [2] for the Euler character in the process. We comment on the physical implications of the surprising singular fibers in codimension 2 and 3 in [1] and emphasize a group theoretic interpretation based on the A 4 weight lattice. We then construct explicit G-fluxes by brute force in one of the 6 birationally equivalent Esole-Yau resolutions, quantize them explicitly using our result for the second Chern class, and compute the spectrum and flux-induced 3-brane charges, finding agreement with results and conjectures of local models in all cases. Finally, we provide a precise description of the spectral divisor formalism in this setting and sharpen the procedure described in [3] in order to explicitly demonstrate how the Higgs bundle spectral cover of the local model emerges from the resolved Calabi-Yau geometry. Along the way, we demonstrate explicitly how the quantization rules for fluxes in the local and global models are related.

  6. Return flux experiment

    NASA Technical Reports Server (NTRS)

    Tveekrem, June L.

    1992-01-01

    All spacecraft emit molecules via outgassing, thruster plumes, vents, etc. The return flux is the portion of those molecules that scatter from the ambient atmosphere and return to the spacecraft. Return flux allows critical spacecraft surfaces to become contaminated even when there is no direct line of sight between the contamination source and the critical surface. Data from the Long Duration Exposure Facility (LDEF) show that contamination of LDEF surfaces could not have come entirely from direct flux. The data suggest significant return flux. Several computer models have been developed to simulate return flux, but the predictions have never been verified in orbit. Large uncertainties in predictions lead to overly conservative spacecraft designs. The purpose of the REturn FLux EXperiment (REFLEX) is to fly a controlled experiment that can be directly compared with predictions from several models.

  7. Return flux experiment

    NASA Astrophysics Data System (ADS)

    Tveekrem, June L.

    All spacecraft emit molecules via outgassing, thruster plumes, vents, etc. The return flux is the portion of those molecules that scatter from the ambient atmosphere and return to the spacecraft. Return flux allows critical spacecraft surfaces to become contaminated even when there is no direct line of sight between the contamination source and the critical surface. Data from the Long Duration Exposure Facility (LDEF) show that contamination of LDEF surfaces could not have come entirely from direct flux. The data suggest significant return flux. Several computer models have been developed to simulate return flux, but the predictions have never been verified in orbit. Large uncertainties in predictions lead to overly conservative spacecraft designs. The purpose of the REturn FLux EXperiment (REFLEX) is to fly a controlled experiment that can be directly compared with predictions from several models.

  8. Dynamic stability of a doubly quantized vortex in a three-dimensional condensate

    SciTech Connect

    Lundh, Emil; Nilsen, Halvor M.

    2006-12-15

    The Bogoliubov equations are solved for a three-dimensional Bose-Einstein condensate containing a doubly quantized vortex, trapped in a harmonic potential. Complex frequencies, signifying dynamical instability, are found for certain ranges of parameter values. The existence of alternating windows of stability and instability, respectively, is explained qualitatively and quantitatively using variational calculus and direct numerical solutions. It is seen that the windows of stability disappear in the limit of a cigar-shaped condensate, which is consistent with recent experimental results on the lifetime of a doubly quantized vortex in that regime.

  9. H2 control of linear uncertain systems considering input quantization with encoder/decoder mismatch.

    PubMed

    Zheng, Bo-Chao; Yang, Guang-Hong

    2013-09-01

    In this paper, an H2 control design for linear uncertain systems with input quantization in the presence of more general encoder/decoder mismatch is investigated. The construction of the control law includes two parts: linear part and nonlinear part. The gain of the linear part is derived from linear matrix inequalities (LMIs), and the linear part of the control law is designed for achieving the H2 performance against system characteristic matrix uncertainty and encoder/decoder mismatch. The nonlinear part is designed to eliminate the influence of external disturbance and quantization error. Finally, examples are provided to illustrate the effectiveness of the proposed method.

  10. Resolution-enhanced all-optical analog-to-digital converter employing cascade optical quantization operation.

    PubMed

    Kang, Zhe; Zhang, Xianting; Yuan, Jinhui; Sang, Xinzhu; Wu, Qiang; Farrell, Gerald; Yu, Chongxiu

    2014-09-01

    In this paper, a cascade optical quantization scheme is proposed to realize all-optical analog-to-digital converter with efficiently enhanced quantization resolution and achievable high analog bandwidth of larger than 20 GHz. Employing the cascade structure of an unbalanced Mach-zehnder modulator and a specially designed optical directional coupler, we predict the enhancement of number-of-bits can be up to 1.59-bit. Simulation results show that a 25 GHz RF signal is efficiently digitalized with the signal-to-noise ratio of 33.58 dB and effective-number-of-bits of 5.28-bit.

  11. New Quantization Technique in Semi-fragile Digital Watermarking for Image Authentication

    NASA Astrophysics Data System (ADS)

    Gantasala, Raghu; Prasad, Munaga V. N. K.

    The Internet has been widely used for the distribution, commercialization and transmission of digital files such as images, audio and video. The growth of network multimedia systems has magnified the need for image copyright protection. In this paper we proposed new method for semi-fragile digital watermarking scheme for image authentication. The watermark is embedded in the discrete wavelet domain of the image by quantizing the corresponding wavelet coefficients. Using the proposed method the image distortion is decreased compared to the other techniques and the quantization parameter is a small value. It also robust against attacks including EZW compression, JPEG compression and JPEG 2000 compression algorithms.

  12. Bekenstein-Hawking entropy by energy quantization from Reissner-Nordström black hole

    NASA Astrophysics Data System (ADS)

    Hossain, M. Jakir; Rahman, M. Atiqur; Hossain, M. Ilias

    2016-01-01

    We consider the motion of a test particle orbiting around Reissner-Nordström (RN) black hole spacetime. The complete set of equations for radial motion and effective potential is derived. We also derive the radius of the different stable circular orbits of this particle corresponding to different label indexes like the Bohr atomic model. We also quantized the energy of this particle from the quantization of angular momentum and calculated the Bekenstein-Hawking entropy of RN black hole. We also investigate the change of entropy between two nearby states approaches to zero for large quantum numbers.

  13. Semiclassical quantization by Padé approximant to periodic orbit sums

    NASA Astrophysics Data System (ADS)

    Main, J.; Dando, P. A.; Belkic, D.; Taylor, H. S.

    1999-11-01

    Periodic orbit quantization requires an analytic continuation of non-convergent semiclassical trace formulae. We propose a method for semiclassical quantization based upon the Padé approximant to the periodic orbit sums. The Padé approximant allows the re-summation of the typically exponentially divergent periodic orbit terms. The technique does not depend on the existence of a symbolic dynamics and can be applied to both bound and open systems. Numerical results are presented for two different systems with chaotic and regular classical dynamics, viz. the three-disk scattering system and the circle billiard.

  14. Communication: Nucleation of quantized vortex rings in {sup 4}He nanodroplets

    SciTech Connect

    Mateo, David; Leal, Antonio; Barranco, Manuel; Pi, Martí; Hernando, Alberto; Cargnoni, Fausto; Mella, Massimo; Zhang, Xiaohang; Drabbels, Marcel

    2014-04-07

    Whereas most of the phenomena associated with superfluidity have been observed in finite-size helium systems, the nucleation of quantized vortices has proven elusive. Here we show using time-dependent density functional simulations that the solvation of a Ba{sup +} ion created by photoionization of neutral Ba at the surface of a {sup 4}He nanodroplet leads to the nucleation of a quantized ring vortex. The vortex is nucleated on a 10 ps timescale at the equator of a solid-like solvation structure that forms around the Ba{sup +} ion. The process is expected to be quite general and very efficient under standard experimental conditions.

  15. Mode-selective quantization and multimodal effective models for spherically layered systems

    NASA Astrophysics Data System (ADS)

    Dzsotjan, D.; Rousseaux, B.; Jauslin, H. R.; des Francs, G. Colas; Couteau, C.; Guérin, S.

    2016-08-01

    We propose a geometry-specific, mode-selective quantization scheme in coupled field-emitter systems which makes it easy to include material and geometrical properties, and intrinsic losses, as well as the positions of an arbitrary number of quantum emitters. The method is presented through the example of a spherically symmetric, nonmagnetic, arbitrarily layered system. We follow it up by a framework to project the system on simpler, effective cavity QED models. Maintaining a well-defined connection to the original quantization, we derive the emerging effective quantities from the full, mode-selective model in a mathematically consistent way. We discuss the uses and limitations of these effective models.

  16. Properties of solitary ion acoustic waves in a quantized degenerate magnetoplasma with trapped electrons

    SciTech Connect

    Tsintsadze, N. L.; Tagviashvili, M. N.; Shah, H. A.; Qureshi, M. N. S.

    2015-02-15

    We have undertaken the investigation of ion acoustic solitary waves in both weakly and strongly quantized degenerate magnetoplasmas. It is seen that a singular point clearly demarcates the regions of weak and strong quantization due to the ambient magnetic field. The effect of the magnetic field is taken into account via the parameter  η{sub 0}=ℏω{sub ce}/ε{sub Fe} and the Mach number, and their effect on the formation of solitary structures is investigated in both cases and some results are presented graphically.

  17. Berry's phase in cavity QED: Proposal for observing an effect of field quantization

    SciTech Connect

    Carollo, A.; Santos, M. Franca; Vedral, V.

    2003-06-01

    We propose a feasible experiment to investigate quantum effects in geometric phases, arising when a classical source drives not a single quantum system, but two interacting ones. In particular, we show how to observe a signature of the quantization of the electromagnetic field through a vacuum effect in Berry's phase. To do so, we describe the interaction of an atom and a quantized cavity mode altogether driven by an external quasiclassical field. We also analyze the semiclassical limit recovering the usual Berry's phase results.

  18. H∞ filtering of Markov jump linear systems with general transition probabilities and output quantization.

    PubMed

    Shen, Mouquan; Park, Ju H

    2016-07-01

    This paper addresses the H∞ filtering of continuous Markov jump linear systems with general transition probabilities and output quantization. S-procedure is employed to handle the adverse influence of the quantization and a new approach is developed to conquer the nonlinearity induced by uncertain and unknown transition probabilities. Then, sufficient conditions are presented to ensure the filtering error system to be stochastically stable with the prescribed performance requirement. Without specified structure imposed on introduced slack variables, a flexible filter design method is established in terms of linear matrix inequalities. The effectiveness of the proposed method is validated by a numerical example. PMID:27129765

  19. Quantum optical random walk: Quantization rules and quantum simulation of asymptotics

    SciTech Connect

    Ellinas, Demosthenes; Smyrnakis, Ioannis

    2007-08-15

    Rules for quantizing the walker-coin parts of a classical random walk are provided by treating them as interacting quantum systems. A quantum optical walk (QOW) is introduced by means of a rule that treats the quantum or classical noise affecting the coin's state as a source of quantization. The long-term asymptotic statistics of the QO walker's position, which shows enhanced diffusion rates as compared to the classical case, is exactly solved. A quantum optical implementation of the walk provides a physical framework for quantum simulation of its asymptotic statistics. The simulation utilizes interacting two-level atoms and/or randomly pulsating laser fields with fluctuating parameters.

  20. Quantized Conductance in InSb nanowires at zero magnetic field

    NASA Astrophysics Data System (ADS)

    Kammhuber, Jakob; Cassidy, Maja; Zhang, Hao; Gül, Önder; Pei, Fei; de Moor, Michiel; Watanabe, Kenji; Taniguchi, Takashi; Car, Diana; Bakkers, Erik; Kouwenhoven, Leo

    We present measurements of InSb nanowires in the ballistic transport regime. In 1D materials such as nanowires, electron scattering has an increased chance of back-reflection, obscuring the observation of quantized conductance at low magnetic fields. By improving the contacts to the nanowire as well as its dielectric environment backscattering events are minimized and conductance quantization is observable at zero magnetic field with high device yield. We study the evolution of individual sub-bands in an external magnetic field, observing a degeneracy between the 2nd and 3rd sub-band when the magnetic field is orientated perpendicular to the nanowire axis.

  1. Gold nanoparticles produced in situ mediate bioelectricity and hydrogen production in a microbial fuel cell by quantized capacitance charging.

    PubMed

    Kalathil, Shafeer; Lee, Jintae; Cho, Moo Hwan

    2013-02-01

    Oppan quantized style: By adding a gold precursor at its cathode, a microbial fuel cell (MFC) is demonstrated to form gold nanoparticles that can be used to simultaneously produce bioelectricity and hydrogen. By exploiting the quantized capacitance charging effect, the gold nanoparticles mediate the production of hydrogen without requiring an external power supply, while the MFC produces a stable power density.

  2. Heat flux measurements

    NASA Technical Reports Server (NTRS)

    Liebert, Curt H.; Weikle, Donald H.

    1989-01-01

    A new automated, computer controlled heat flux measurement facility is described. Continuous transient and steady-state surface heat flux values varying from about 0.3 to 6 MW/sq m over a temperature range of 100 to 1200 K can be obtained in the facility. An application of this facility is the development of heat flux gauges for continuous fast transient surface heat flux measurement on turbine blades operating in space shuttle main engine turbopumps. The facility is useful for durability testing at fast temperature transients.

  3. Aspects of flux compactification

    NASA Astrophysics Data System (ADS)

    Liu, Tao

    In this thesis, we study three main aspects of flux compactifications: (1) classify supergravity solutions from flux compactification; (2) construct flux-deformed geometry and 4D low-energy theory to describe these flux vacua; and (3) study 4D particle phenomenology and cosmology of flux vacua. In the first part, we review G-structure, the basic tool to study supersymmetric flux solutions, and some typical solutions obtained in heterotic, type IIA and type IIB string theories. Then we present a comprehensive classification of supersymmetric vacua of M-theory compactification on 7D manifolds with general four-form fluxes. We analyze the cases where the resulting four-dimensional vacua have N = 1, 2, 3, 4 supersymmetry and the internal space allows for SU(2)-, SU(3)- or G 2-structures. In particular, we find for N = 2 supersymmetry, that the external space-time is Minkowski and the base manifold of the internal space is conformally Kahler for SU(2) structures, while for SU(3) structures the internal space has to be Einstein-Sasaki and no internal fluxes are allowed. Moreover, we provide a new vacuum with N = 1 supersymmetry and SU(3) structure, where all fluxes are non-zero and the first order differential equations are solved. In the second part, we simply review the methods used to construct one subclass of fluxed-deformed geometry or the so-called "twisted manifold", and the associated 4D effective theory describing these flux vacua. Then by employing (generalized) Scherk-Schwarz reduction, we construct the geometric twisting for Calabi-Yau manifolds of Voisin-Borcea type (K 3 x T2)/ Z2 and study the superpotential in a type IIA orientifold based on this geometry. The twists modify the direct product by fibering the K 3 over T2 while preserving the Z2 involution. As an important application, the Voisin-Borcea class contains T6/( Z2 x Z2 ), the usual setting for intersecting D6 brane model building. Past work in this context considered only those twists inherited

  4. Video Meteor Fluxes

    NASA Technical Reports Server (NTRS)

    Campbell-Brown, M. D.; Braid, D.

    2011-01-01

    The flux of meteoroids, or number of meteoroids per unit area per unit time, is critical for calibrating models of meteoroid stream formation and for estimating the hazard to spacecraft from shower and sporadic meteors. Although observations of meteors in the millimetre to centimetre size range are common, flux measurements (particularly for sporadic meteors, which make up the majority of meteoroid flux) are less so. It is necessary to know the collecting area and collection time for a given set of observations, and to correct for observing biases and the sensitivity of the system. Previous measurements of sporadic fluxes are summarized in Figure 1; the values are given as a total number of meteoroids striking the earth in one year to a given limiting mass. The Gr n et al. (1985) flux model is included in the figure for reference. Fluxes for sporadic meteoroids impacting the Earth have been calculated for objects in the centimeter size range using Super-Schmidt observations (Hawkins & Upton, 1958); this study used about 300 meteors, and used only the physical area of overlap of the cameras at 90 km to calculate the flux, corrected for angular speed of meteors, since a large angular speed reduces the maximum brightness of the meteor on the film, and radiant elevation, which takes into account the geometric reduction in flux when the meteors are not perpendicular to the horizontal. They bring up corrections for both partial trails (which tends to increase the collecting area) and incomplete overlap at heights other than 90 km (which tends to decrease it) as effects that will affect the flux, but estimated that the two effects cancelled one another. Halliday et al. (1984) calculated the flux of meteorite-dropping fireballs with fragment masses greater than 50 g, over the physical area of sky accessible to the MORP fireball cameras, counting only observations in clear weather. In the micron size range, LDEF measurements of small craters on spacecraft have been used to

  5. LCLS Spectral Flux Viewer

    2005-10-25

    This application (FluxViewer) is a tool for displaying spectral flux data for the Linac Coherent Light Source (LCLS). This tool allows the user to view sliced spatial and energy distributions of the photons selected for specific energies and positions transverse to the beam axis.

  6. Quantized space-time and its influence on two physical problems

    NASA Astrophysics Data System (ADS)

    Ma, Meng-Sen; Zhao, Hui-Hua

    2014-04-01

    Based on Snyder's idea of quantized space-time, we derive a new generalized uncertainty principle and new modified density of states. Accordingly, we discuss the influence of the modified generalized uncertainty principle on the black hole entropy and the influence of the modified density of states on the Stefan-Boltzman law.

  7. Thermoelectric power of n-InSb in a transverse quantizing magnetic field

    SciTech Connect

    Gadzhialiev, M. M. Bashirov, R. R.; Pirmagomedov, Z. Sh.; Efendieva, T. N.; Mädge, H.; Filar, K.

    2015-07-15

    The thermoelectric power of electronic InSb is investigated in a transverse magnetic field up to 14 T at 80 K. It is established that the experimental results for a quantizing magnetic field agree with theoretical data obtained without accounting for spin splitting of the Landau levels.

  8. Quantization maps, algebra representation, and non-commutative Fourier transform for Lie groups

    SciTech Connect

    Guedes, Carlos; Oriti, Daniele; Raasakka, Matti

    2013-08-15

    The phase space given by the cotangent bundle of a Lie group appears in the context of several models for physical systems. A representation for the quantum system in terms of non-commutative functions on the (dual) Lie algebra, and a generalized notion of (non-commutative) Fourier transform, different from standard harmonic analysis, has been recently developed, and found several applications, especially in the quantum gravity literature. We show that this algebra representation can be defined on the sole basis of a quantization map of the classical Poisson algebra, and identify the conditions for its existence. In particular, the corresponding non-commutative star-product carried by this representation is obtained directly from the quantization map via deformation quantization. We then clarify under which conditions a unitary intertwiner between such algebra representation and the usual group representation can be constructed giving rise to the non-commutative plane waves and consequently, the non-commutative Fourier transform. The compact groups U(1) and SU(2) are considered for different choices of quantization maps, such as the symmetric and the Duflo map, and we exhibit the corresponding star-products, algebra representations, and non-commutative plane waves.

  9. Investigating Students' Mental Models about the Quantization of Light, Energy, and Angular Momentum

    ERIC Educational Resources Information Center

    Didis, Nilüfer; Eryilmaz, Ali; Erkoç, Sakir

    2014-01-01

    This paper is the first part of a multiphase study examining students' mental models about the quantization of physical observables--light, energy, and angular momentum. Thirty-one second-year physics and physics education college students who were taking a modern physics course participated in the study. The qualitative analysis of data…

  10. Canonical quantization of lattice Higgs-Yang-Mills fields: Krein essential selfadjointness of the Hamiltonian

    NASA Astrophysics Data System (ADS)

    Challifour, John L.; Timko, Edward J.

    2016-06-01

    Using a Krein indefinite metric in Fock space, the Hamiltonian for cut-off models of canonically quantized Higgs-Yang-Mills fields interpolating between the Gupta-Bleuler-Feynman and Landau gauges is shown to be essentially maximal accretive and essentially Krein selfadjoint.

  11. Event-triggered H∞ filter design for delayed neural network with quantization.

    PubMed

    Liu, Jinliang; Tang, Jia; Fei, Shumin

    2016-10-01

    This paper is concerned with H∞ filter design for a class of neural network systems with event-triggered communication scheme and quantization. Firstly, a new event-triggered communication scheme is introduced to determine whether or not the current sampled sensor data should be broadcasted and transmitted to quantizer, which can save the limited communication resource. Secondly, a logarithmic quantizer is used to quantify the sampled data, which can reduce the data transmission rate in the network. Thirdly, considering the influence of the constrained network resource, we investigate the problem of H∞ filter design for a class of event-triggered neural network systems with quantization. By using Lyapunov functional and linear matrix inequality (LMI) techniques, some delay-dependent stability conditions for the existence of the desired filter are obtained. Furthermore, the explicit expression is given for the designed filter parameters in terms of LMIs. Finally, a numerical example is given to show the usefulness of the obtained theoretical results. PMID:27459409

  12. Relativistic Landau-Aharonov-Casher quantization based on the Lorentz symmetry violation background

    SciTech Connect

    Bakke, K.; Belich, H.; Silva, E. O.

    2011-06-15

    Based on the discussions about the Aharonov-Casher effect in the Lorentz symmetry violation background, we show that the analogue of the relativistic Landau quantization in the Aharonov-Casher setup can be achieved in the Lorentz-symmetry violation background.

  13. Cascade Error Projection with Low Bit Weight Quantization for High Order Correlation Data

    NASA Technical Reports Server (NTRS)

    Duong, Tuan A.; Daud, Taher

    1998-01-01

    In this paper, we reinvestigate the solution for chaotic time series prediction problem using neural network approach. The nature of this problem is such that the data sequences are never repeated, but they are rather in chaotic region. However, these data sequences are correlated between past, present, and future data in high order. We use Cascade Error Projection (CEP) learning algorithm to capture the high order correlation between past and present data to predict a future data using limited weight quantization constraints. This will help to predict a future information that will provide us better estimation in time for intelligent control system. In our earlier work, it has been shown that CEP can sufficiently learn 5-8 bit parity problem with 4- or more bits, and color segmentation problem with 7- or more bits of weight quantization. In this paper, we demonstrate that chaotic time series can be learned and generalized well with as low as 4-bit weight quantization using round-off and truncation techniques. The results show that generalization feature will suffer less as more bit weight quantization is available and error surfaces with the round-off technique are more symmetric around zero than error surfaces with the truncation technique. This study suggests that CEP is an implementable learning technique for hardware consideration.

  14. Propagation properties of quantized Laguerre-Gaussian beams in atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Saito, Aya; Tanabe, Ayano; Kurihara, Makoto; Hashimoto, Nobuyuki; Ogawa, Kayo

    2016-03-01

    Effect of scintillations is serious problems in optical systems which require the atmospheric propagation, the optimization of optical system to minimize the effects of scintillation have been examined using the simulation of propagation in atmospheric turbulence. The analytic studies of scintillation index of LG beams show that LG beams have less scintillation than Gaussian beams. However, in these researches, the diameter of receiving aperture was set as point receiver without considering the effects of aperture averaging, which is phenomenon that reduced scintillations over finite aperture. In this paper, considering size of a receiving aperture, the propagation losses and the scintillation index of LG beams are simulated. Also, for practical applications, propagation properties of "quantized" LG(5,1) beams simulated. As a result of the examination, the propagation losses and the scintillation index of LG beams is smaller than those of Gaussian beams. By applying LG beams for optical wireless communications, it is expected to improve better the effect of scintillations than using Gaussian beams. The result is that the scintillation index of quantized LG beams is equal to those of LG beams, and it suggested that quantized LG beams can be treat the quantized LG beams the same as LG beams.

  15. A constrained joint source/channel coder design and vector quantization of nonstationary sources

    NASA Technical Reports Server (NTRS)

    Sayood, Khalid; Chen, Y. C.; Nori, S.; Araj, A.

    1993-01-01

    The emergence of broadband ISDN as the network for the future brings with it the promise of integration of all proposed services in a flexible environment. In order to achieve this flexibility, asynchronous transfer mode (ATM) has been proposed as the transfer technique. During this period a study was conducted on the bridging of network transmission performance and video coding. The successful transmission of variable bit rate video over ATM networks relies on the interaction between the video coding algorithm and the ATM networks. Two aspects of networks that determine the efficiency of video transmission are the resource allocation algorithm and the congestion control algorithm. These are explained in this report. Vector quantization (VQ) is one of the more popular compression techniques to appear in the last twenty years. Numerous compression techniques, which incorporate VQ, have been proposed. While the LBG VQ provides excellent compression, there are also several drawbacks to the use of the LBG quantizers including search complexity and memory requirements, and a mismatch between the codebook and the inputs. The latter mainly stems from the fact that the VQ is generally designed for a specific rate and a specific class of inputs. In this work, an adaptive technique is proposed for vector quantization of images and video sequences. This technique is an extension of the recursively indexed scalar quantization (RISQ) algorithm.

  16. Uniform discretizations: A new approach for the quantization of totally constrained systems

    SciTech Connect

    Campiglia, Miguel; Gambini, Rodolfo; Di Bartolo, Cayetano; Pullin, Jorge

    2006-12-15

    We discuss in detail the uniform discretization approach to the quantization of totally constrained theories. This approach allows to construct the continuum theory of interest as a well defined, controlled, limit of well behaved discrete theories. We work out several finite dimensional examples that exhibit behaviors expected to be of importance in the quantization of gravity. We also work out the case of BF theory. At the time of quantization, one can take two points of view. The technique can be used to define, upon taking the continuum limit, the space of physical states of the continuum constrained theory of interest. In particular we show in models that it agrees with the group averaging procedure when the latter exists. The technique can also be used to compute, at the discrete level, conditional probabilities and the introduction of a relational time. Upon taking the continuum limit one can show that one reproduces results obtained by the use of evolving constants, and therefore recover all physical predictions of the continuum theory. This second point of view can also be used as a paradigm to deal with cases where the continuum limit does not exist. There one would have discrete theories that at least at certain scales reproduce the semiclassical properties of the theory of interest. In this way the approach can be viewed as a generalization of the Dirac quantization procedure that can handle situations where the latter fails.

  17. A constrained joint source/channel coder design and vector quantization of nonstationary sources

    NASA Astrophysics Data System (ADS)

    Sayood, Khalid; Chen, Y. C.; Nori, S.; Araj, A.

    1993-12-01

    The emergence of broadband ISDN as the network for the future brings with it the promise of integration of all proposed services in a flexible environment. In order to achieve this flexibility, asynchronous transfer mode (ATM) has been proposed as the transfer technique. During this period a study was conducted on the bridging of network transmission performance and video coding. The successful transmission of variable bit rate video over ATM networks relies on the interaction between the video coding algorithm and the ATM networks. Two aspects of networks that determine the efficiency of video transmission are the resource allocation algorithm and the congestion control algorithm. These are explained in this report. Vector quantization (VQ) is one of the more popular compression techniques to appear in the last twenty years. Numerous compression techniques, which incorporate VQ, have been proposed. While the LBG VQ provides excellent compression, there are also several drawbacks to the use of the LBG quantizers including search complexity and memory requirements, and a mismatch between the codebook and the inputs. The latter mainly stems from the fact that the VQ is generally designed for a specific rate and a specific class of inputs. In this work, an adaptive technique is proposed for vector quantization of images and video sequences. This technique is an extension of the recursively indexed scalar quantization (RISQ) algorithm.

  18. Reformulation of the covering and quantizer problems as ground states of interacting particles

    NASA Astrophysics Data System (ADS)

    Torquato, S.

    2010-11-01

    It is known that the sphere-packing problem and the number-variance problem (closely related to an optimization problem in number theory) can be posed as energy minimizations associated with an infinite number of point particles in d -dimensional Euclidean space Rd interacting via certain repulsive pair potentials. We reformulate the covering and quantizer problems as the determination of the ground states of interacting particles in Rd that generally involve single-body, two-body, three-body, and higher-body interactions. This is done by linking the covering and quantizer problems to certain optimization problems involving the “void” nearest-neighbor functions that arise in the theory of random media and statistical mechanics. These reformulations, which again exemplify the deep interplay between geometry and physics, allow one now to employ theoretical and numerical optimization techniques to analyze and solve these energy minimization problems. The covering and quantizer problems have relevance in numerous applications, including wireless communication network layouts, the search of high-dimensional data parameter spaces, stereotactic radiation therapy, data compression, digital communications, meshing of space for numerical analysis, and coding and cryptography, among other examples. In the first three space dimensions, the best known solutions of the sphere-packing and number-variance problems (or their “dual” solutions) are directly related to those of the covering and quantizer problems, but such relationships may or may not exist for d≥4 , depending on the peculiarities of the dimensions involved. Our reformulation sheds light on the reasons for these similarities and differences. We also show that disordered saturated sphere packings provide relatively thin (economical) coverings and may yield thinner coverings than the best known lattice coverings in sufficiently large dimensions. In the case of the quantizer problem, we derive improved upper

  19. Intramolecular Nuclear Flux Densities

    NASA Astrophysics Data System (ADS)

    Barth, I.; Daniel, C.; Gindensperger, E.; Manz, J.; PéRez-Torres, J. F.; Schild, A.; Stemmle, C.; Sulzer, D.; Yang, Y.

    The topic of this survey article has seen a renaissance during the past couple of years. Here we present and extend the results for various phenomena which we have published from 2012-2014, with gratitude to our coauthors. The new phenomena include (a) the first reduced nuclear flux densities in vibrating diatomic molecules or ions which have been deduced from experimental pump-probe spectra; these "experimental" nuclear flux densities reveal several quantum effects including (b) the "quantum accordion", i.e., during the turn from bond stretch to bond compression, the diatomic system never stands still — instead, various parts of it with different bond lengths flow into opposite directions. (c) Wavepacket interferometry has been extended from nuclear densities to flux densities, again revealing new phenomena: For example, (d) a vibrating nuclear wave function with compact initial shape may split into two partial waves which run into opposite directions, thus causing interfering flux densities. (e) Tunneling in symmetric 1-dimensional double-well systems yields maximum values of the associated nuclear flux density just below the potential barrier; this is in marked contrast with negligible values of the nuclear density just below the barrier. (f) Nuclear flux densities of pseudorotating nuclei may induce huge magnetic fields. A common methodologic theme of all topics is the continuity equation which connects the time derivative of the nuclear density to the divergence of the flux density, subject to the proper boundary conditions. (g) Nearly identical nuclear densities with different boundary conditions may be related to entirely different flux densities, e.g., during tunneling in cyclic versus non-cyclic systems. The original continuity equation, density and flux density of all nuclei, or of all nuclear degrees of freedom, may be reduced to the corresponding quantities for just a single nucleus, or just a single degree of freedom.

  20. Directed flux motor

    NASA Technical Reports Server (NTRS)

    Wilson, Andrew (Inventor); Punnoose, Andrew (Inventor); Strausser, Katherine (Inventor); Parikh, Neil (Inventor)

    2011-01-01

    A directed flux motor described utilizes the directed magnetic flux of at least one magnet through ferrous material to drive different planetary gear sets to achieve capabilities in six actuated shafts that are grouped three to a side of the motor. The flux motor also utilizes an interwoven magnet configuration which reduces the overall size of the motor. The motor allows for simple changes to modify the torque to speed ratio of the gearing contained within the motor as well as simple configurations for any number of output shafts up to six. The changes allow for improved manufacturability and reliability within the design.

  1. Heat Flux Sensor

    NASA Technical Reports Server (NTRS)

    1994-01-01

    A heat flux microsensor developed under a NASP Small Business Innovation Research (SBIR) has a wide range of potential commercial applications. Vatell Corporation originally designed microsensors for use in very high temperatures. The company then used the technology to develop heat flux sensors to measure the rate of heat energy flowing in and out of a surface as well as readings on the surface temperature. Additional major advantages include response to heat flux in less than 10 microseconds and the ability to withstand temperatures up to 1,200 degrees centigrade. Commercial applications are used in high speed aerodynamics, supersonic combustion, blade cooling, and mass flow measurements, etc.

  2. Angular momentum, g-value, and magnetic flux of gyration states

    SciTech Connect

    Arunasalam, V.

    1991-10-01

    Two of the world's leading (Nobel laureate) physicists disagree on the definition of the orbital angular momentum L of the Landau gyration states of a spinless charged particle in a uniform external magnetic field B = B i{sub Z}. According to Richard P. Feynman (and also Frank Wilczek) L = (rx{mu}v) = rx(p - qA/c), while Felix Bloch (and also Kerson Huang) defines it as L = rxp. We show here that Bloch's definition is the correct one since it satisfies the necessary and sufficient condition LxL = i{Dirac h} L, while Feynman's definition does not. However, as a consequence of the quantized Aharonov-Bohm magnetic flux, this canonical orbital angular momentum (surprisingly enough) takes half-odd-integral values with a zero-point gyration states of L{sub Z} = {Dirac h}/2. Further, since the diamagnetic and the paramagnetic contributions to the magnetic moment are interdependent, the g-value of these gyration states is two and not one, again a surprising result for a spinless case. The differences between the gauge invariance in classical and quantum mechanics, Onsager's suggestion that the flux quantization might be an intrinsic property of the electromagnetic field-charged particle interaction, the possibility that the experimentally measured fundamental unit of the flux quantum need not necessarily imply the existence of electron pairing'' of the Bardeen-Cooper-Schrieffer superconductivity theory, and the relationship to the Dirac's angular momentum quantization condition for the magnetic monopole-charged particle composites (i.e. Schwinger's dyons), are also briefly examined from a pedestrian viewpoint.

  3. Effect of adiabatic trapping on vortices and solitons in degenerate plasma in the presence of a quantizing magnetic field

    NASA Astrophysics Data System (ADS)

    Arshad, S.; Shah, H. A.; Qureshi, M. N. S.

    2014-07-01

    The effect of adiabatic trapping as a microscopic phenomenon in an inhomogeneous degenerate plasma is investigated in the presence of a quantizing magnetic field, and a modified Hasegawa Mima equation for the drift ion-acoustic wave is obtained. The linear dispersion relation in the presence of the quantizing magnetic field is investigated. The modified Hasegawa Mima equation is investigated to obtain bounce frequencies of the trapped particles. The Korteweg-de Vries equation is derived for the two-dimensional case and finally the Sagdeev potential approach is used to obtain solitary structures. The theoretically obtained results have been analyzed numerically for different astrophysical plasma and quantizing magnetic field values.

  4. Five-bit parallel operation of optical quantization and coding for photonic analog-to-digital conversion.

    PubMed

    Konishi, Tsuyoshi; Takahashi, Koji; Matsui, Hideki; Satoh, Takema; Itoh, Kazuyoshi

    2011-08-15

    We report the attempt of optical quantization and coding in 5-bit parallel format for photonic A/D conversion. The proposed system is designed to realize generation of 32 different optical codes in proportion to the corresponding signal levels when fed a certain range of amplitude-varied input pulses to the setup. Optical coding in a bit-parallel format made it possible, that provides 5 bit optical codes from 32 optical quantized pulses. The 5-bit parallel operation of an optical quantization and coding module with 5 multi-ports was tested in our experimental setup.

  5. All-optical demultiplexing of 16-QAM signals into QPSK tributaries using four-level optical phase quantizers.

    PubMed

    Bogris, Adonis

    2014-04-01

    The potential of four-level optical phase quantizers toward coherent processing of advanced modulation formats, such as 16-QAM, is proposed and numerically demonstrated. The work shows that phase quantization achieved in fiber-based phase-sensitive amplifiers can demultiplex 16-QAM into two quadrature phase shift keying (QPSK) signals, enabling subchannel switching. The numerical study highlights the impact of the quantizer transfer function on the performance of the demultiplexing process and numerically calculates the bit error rate for each QPSK tributary after the demultiplexing procedure.

  6. Modeling Magnetic Flux Ropes

    NASA Astrophysics Data System (ADS)

    Xia, Chun; Keppens, Rony

    2014-01-01

    The magnetic configuration hosting prominences can be a large-scale helical magnetic flux rope. As a necessary step towards future prominence formation studies, we report on a stepwise approach to study flux rope formation. We start with summarizing our recent three-dimensional (3D) isothermal magnetohydrodynamic (MHD) simulation where a flux rope is formed, including gas pressure and gravity. This starts from a static corona with a linear force-free bipolar magnetic field, altered by lower boundary vortex flows around the main polarities and converging flows towards the polarity inversion. The latter flows induce magnetic reconnection and this forms successive new helical loops so that a complete flux rope grows and ascends. After stopping the driving flows, the system relaxes to a stable helical magnetic flux rope configuration embedded in an overlying arcade. Starting from this relaxed isothermal endstate, we next perform a thermodynamic MHD simulation with a chromospheric layer inserted at the bottom. As a result of a properly parametrized coronal heating, and due to radiative cooling and anisotropic thermal conduction, the system further relaxes to an equilibrium where the flux rope and the arcade develop a fully realistic thermal structure. This paves the way to future simulations for 3D prominence formation.

  7. Creation of quantized particles, gravitons, and scalar perturbations by the expanding universe

    NASA Astrophysics Data System (ADS)

    Parker, Leonard

    2015-04-01

    Quantum creation processes during the very rapid early expansion of the universe are believed to give rise to temperature anisotropies and polarization patterns in the CMB radiation. These have been observed by satellites such as COBE, WMAP, and PLANCK, and by bolometric instruments placed near the South Pole by the BICEP collaborations. The expected temperature anisotropies are well-confirmed. The B-mode polarization patterns in the CMB are currently under measurement jointly by the PLANCK and BICEP groups to determine the extent to which the B-modes can be attributed to gravitational waves from the creation of gravitons in the earliest universe. As the original discoverer of the quantum phenomenon of particle creation from vacuum by the expansion of the universe, I will explain how the discovery came about and how it relates to the current observations. The first system that I considered when I started my Ph.D. thesis in 1962 was the quantized minimally-coupled scalar field in an expanding FLRW (Friedmann, Lemaitré, Robertson, Walker) universe having a general continuous scale factor a(t) with continuous time derivatives. I also considered quantized fermion fields of spin-1/2 and the spin-1 massless photon field, as well as the quantized conformally-invariant field equations of arbitrary integer and half-integer spins that had been written down in the classical context for general gravitational metrics by Penrose. It was during 1962 that I proved that quanta of the minimally-coupled scalar field were created by the general expanding FLRW universe. This was relevant also to the creation of quantized perturbations of the gravitational field, since these perturbations satisfied linear field equations that could be quantized in the same way as the minimally-coupled scalar field equation. In fact, in 1946, E.M. Lifshitz had considered the classical Einstein gravitational field in FLRW expanding universes and had shown that the classical linearized Einstein field

  8. Improving the performance of soft decision Viterbi decoding in a non-Gaussian environment through non-linear quantization

    NASA Technical Reports Server (NTRS)

    Mcgregor, D. N.; Tasoulis, G.; Kinal, G. V.

    1980-01-01

    The performance of Viterbi decoding in a non-Gaussian environment is investigated using a nonlinear quantization strategy. The channel model consists of a convolutionally encoded BPSK signal transmitted to a satellite where it is corrupted with additive white Gaussian noise and pulsed radio frequency interference (RFI). The resultant signal is then passed through a satellite nonlinearity and transmitted to a ground station where it is coherently detected. Interleaving is assumed in order to make the channel memoryless. The presence of RFI makes the channel statistics non-Gaussian, leading to a nonlinear log-likelihood function. A near optimum quantization scheme is found by maximizing a channel parameter, or by matching the quantizer to the log-likelihood function in a mean square error sense. Bit error rate performance improvement is achieved by using such nonlinear quantization.

  9. Weighted merge context for clustering and quantizing spatial data with self-organizing neural networks

    NASA Astrophysics Data System (ADS)

    Hagenauer, Julian

    2016-01-01

    This publication presents a generalization of merge context, named weighted merge context (WMC), which is particularly useful for clustering and quantizing spatial data with self-organizing neural networks. In contrast to merge context, WMC does not depend on a predefined (sequential) ordering of the data; distance is evaluated by recursively taking neighboring observations into account. For this purpose, WMC utilizes a weight matrix that describes the neighborhood relationships between observations. This property distinguishes WMC from existing approaches like contextual neural gas (NG) or the GeoSOM, which force spatially close observations to be represented by similar prototypes, but neglected the similarity of the observations' neighborhoods. For practical studies, WMC is combined with the NG algorithm to obtain weighted merging NG (WMNG). The properties of WMNG and its usefulness for clustering and quantizing spatial data are investigated on two different case studies which utilize an simulated binary grid and a real-world continuous data set.

  10. Pilot-wave dynamics in a rotating frame: on the emergence of orbital quantization

    NASA Astrophysics Data System (ADS)

    Oza, Anand; Harris, Daniel; Rosales, Rodolfo; Bush, John

    2013-11-01

    We present the results of a theoretical investigation of droplets walking on a rotating vibrating fluid bath. The droplet's trajectory is described in terms of an integro-differential equation that incorporates the influence of its propulsive wave force. Predictions for the dependence of the orbital radius on the bath's rotation rate compare favorably with experimental data and capture the progression from continuous to quantized orbits as the vibrational acceleration is increased. The orbital quantization is rationalized by assessing the stability of the orbital solutions, and may be understood as resulting directly from the dynamic constraint imposed on the drop by its monochromatic guiding wave. The stability analysis also predicts the existence of wobbling orbital states reported in recent experiments, and the virtual absence of stable orbits in the limit of large vibrational forcing. The authors acknowledge the generous financial support of the NSF through Grant CBET-0966452.

  11. On Quantization in Light-cone Variables Compatible with Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Altaisky, M. V.; Kaputkina, N. E.

    2016-06-01

    Canonical quantization of quantum field theory models is inherently related to the Lorentz invariant partition of classical fields into the positive and the negative frequency parts u( x) = u +( x) + u -( x), performed with the help of Fourier transform in Minkowski space. That is the commutation relations are being established between nonlocalized solutions of field equations. At the same time the construction of divergence free physical theory requires the separation of the contributions of different space-time scales. In present paper, using the light-cone variables, we propose a quantization procedure which is compatible with separation of scales using continuous wavelet transform, as described in our previous paper (Altaisky, M.V., Kaputkina, N.E.: Phys. Rev. D 88, 025015 2013).

  12. Hiding patients confidential datainthe ECG signal viaa transform-domain quantization scheme.

    PubMed

    Chen, Shuo-Tsung; Guo, Yuan-Jie; Huang, Huang-Nan; Kung, Woon-Man; Tseng, Kuo-Kun; Tu, Shu-Yi

    2014-06-01

    Watermarking is the most widely used technology in the field of copyright and biological information protection. In this paper, we use quantization based digital watermark encryption technology on the Electrocardiogram (ECG) to protect patient rights and information. Three transform domains, DWT, DCT, and DFT are adopted to implement the quantization based watermarking technique. Although the watermark embedding process is not invertible, the change of the PQRST complexes and amplitude of the ECG signal is very small and so the watermarked data can meet the requirements of physiological diagnostics. In addition, the hidden information can be extracted without knowledge of the original ECG data. In other words, the proposed watermarking scheme is blind. Experimental results verify the efficiency of the proposed scheme. PMID:24832688

  13. Precise Quantization of the Anomalous Hall Effect near Zero Magnetic Field.

    PubMed

    Bestwick, A J; Fox, E J; Kou, Xufeng; Pan, Lei; Wang, Kang L; Goldhaber-Gordon, D

    2015-05-01

    We report a nearly ideal quantum anomalous Hall effect in a three-dimensional topological insulator thin film with ferromagnetic doping. Near zero applied magnetic field we measure exact quantization in the Hall resistance to within a part per 10 000 and a longitudinal resistivity under 1  Ω per square, with chiral edge transport explicitly confirmed by nonlocal measurements. Deviations from this behavior are found to be caused by thermally activated carriers, as indicated by an Arrhenius law temperature dependence. Using the deviations as a thermometer, we demonstrate an unexpected magnetocaloric effect and use it to reach near-perfect quantization by cooling the sample below the dilution refrigerator base temperature in a process approximating adiabatic demagnetization refrigeration. PMID:26001016

  14. Quantized topological magnetoelectric effect of the zero-plateau quantum anomalous Hall state

    SciTech Connect

    Wang, Jing; Lian, Biao; Qi, Xiao-Liang; Zhang, Shou-Cheng

    2015-08-10

    The topological magnetoelectric effect in a three-dimensional topological insulator is a novel phenomenon, where an electric field induces a magnetic field in the same direction, with a universal coefficient of proportionality quantized in units of $e²/2h$. Here in this paper, we propose that the topological magnetoelectric effect can be realized in the zero-plateau quantum anomalous Hall state of magnetic topological insulators or a ferromagnet-topological insulator heterostructure. The finite-size effect is also studied numerically, where the magnetoelectric coefficient is shown to converge to a quantized value when the thickness of the topological insulator film increases. We further propose a device setup to eliminate nontopological contributions from the side surface.

  15. Realization of optical bistability and multistability in Landau-quantized graphene

    SciTech Connect

    Hamedi, H. R.; Asadpour, S. H.

    2015-05-14

    The solution of input-output curves in an optical ring cavity containing Landau-quantized graphene is theoretically investigated taking the advantage of density-matrix method. It is found that under the action of strong magnetic and infrared laser fields, one can efficiently reduce the threshold of the onset of optical bistability (OB) at resonance condition. At non-resonance condition, we observed that graphene metamaterial can support the possibility to obtain optical multistability (OM), which is more practical in all-optical switching or coding elements. We present an analytical approach to elucidate our simulations. Due to very high infrared optical nonlinearity of graphene stemming from very unique and unusual properties of quantized Landau levels near the Dirac point, such controllability on OB and OM may provide new technological possibilities in solid state quantum information science.

  16. Quantized topological magnetoelectric effect of the zero-plateau quantum anomalous Hall state

    DOE PAGESBeta

    Wang, Jing; Lian, Biao; Qi, Xiao-Liang; Zhang, Shou-Cheng

    2015-08-10

    The topological magnetoelectric effect in a three-dimensional topological insulator is a novel phenomenon, where an electric field induces a magnetic field in the same direction, with a universal coefficient of proportionality quantized in units of $e²/2h$. Here in this paper, we propose that the topological magnetoelectric effect can be realized in the zero-plateau quantum anomalous Hall state of magnetic topological insulators or a ferromagnet-topological insulator heterostructure. The finite-size effect is also studied numerically, where the magnetoelectric coefficient is shown to converge to a quantized value when the thickness of the topological insulator film increases. We further propose a device setupmore » to eliminate nontopological contributions from the side surface.« less

  17. Gain-adaptive vector quantization for medium-rate speech coding

    NASA Astrophysics Data System (ADS)

    Chen, J.-H.; Gersho, A.

    A class of adaptive vector quantizers (VQs) that can dynamically adjust the 'gain' of codevectors according to the input signal level is introduced. The encoder uses a gain estimator to determine a suitable normalization of each input vector prior to VQ coding. The normalized vectors have reduced dynamic range and can then be more efficiently coded. At the receiver, the VQ decoder output is multiplied by the estimated gain. Both forward and backward adaptation are considered and several different gain estimators are compared and evaluated. An approach to optimizing the design of gain estimators is introduced. Some of the more obvious techniques for achieving gain adaptation are substantially less effective than the use of optimized gain estimators. A novel design technique that is needed to generate the appropriate gain-normalized codebook for the vector quantizer is introduced. Experimental results show that a significant gain in segmental SNR can be obtained over nonadaptive VQ with a negligible increase in complexity.

  18. Gain-adaptive vector quantization for medium-rate speech coding

    NASA Technical Reports Server (NTRS)

    Chen, J.-H.; Gersho, A.

    1985-01-01

    A class of adaptive vector quantizers (VQs) that can dynamically adjust the 'gain' of codevectors according to the input signal level is introduced. The encoder uses a gain estimator to determine a suitable normalization of each input vector prior to VQ coding. The normalized vectors have reduced dynamic range and can then be more efficiently coded. At the receiver, the VQ decoder output is multiplied by the estimated gain. Both forward and backward adaptation are considered and several different gain estimators are compared and evaluated. An approach to optimizing the design of gain estimators is introduced. Some of the more obvious techniques for achieving gain adaptation are substantially less effective than the use of optimized gain estimators. A novel design technique that is needed to generate the appropriate gain-normalized codebook for the vector quantizer is introduced. Experimental results show that a significant gain in segmental SNR can be obtained over nonadaptive VQ with a negligible increase in complexity.

  19. Radiographic image sequence coding using adaptive finite-state vector quantization

    NASA Astrophysics Data System (ADS)

    Joo, Chang-Hee; Choi, Jong S.

    1990-11-01

    Vector quantization is an effective spatial domain image coding technique at under 1 . 0 bits per pixel. To achieve the quality at lower rates it is necessary to exploit spatial redundancy over a larger region of pixels than is possible with memoryless VQ. A fmite state vector quant. izer can achieve the same performance as memoryless VQ at lower rates. This paper describes an athptive finite state vector quantization for radiographic image sequence coding. Simulation experiment has been carried out with 4*4 blocks of pixels from a sequence of cardiac angiogram consisting of 40 frames of size 256*256pixels each. At 0. 45 bpp the resulting adaptive FSVQ encoder achieves performance comparable to earlier memoryless VQs at 0. 8 bpp.

  20. Quantization of the superconducting energy gap in an intense microwave field

    NASA Astrophysics Data System (ADS)

    Boris, A. A.; Krasnov, V. M.

    2015-11-01

    We study experimentally photon-assisted tunneling in Nb /AlOx/Nb Josephson junctions. We perform a quantitative calibration of the microwave field inside the junction. This allows direct verification of the quantum efficiency of microwave photon detection, which corresponds to tunneling of one electron per one absorbed microwave photon. We observe that voltages of photon-assisted tunneling steps vary both with the microwave power and the tunneling current. However, this variation is not monotonous but staircaselike. The phenomenon is caused by mutual locking of positive and negative step series. A similar locking is observed with Shapiro steps. As a result, the superconducting gap assumes quantized values equal to multiples of the quarter of the photon energy. The quantization is a manifestation of nonequilibrium tuning (suppression or enhancement) of superconductivity by the microwave field.

  1. Quantized anomalous Hall effect in two-dimensional ferromagnets: quantum Hall effect in metals.

    PubMed

    Onoda, Masaru; Nagaosa, Naoto

    2003-05-23

    We study the effect of disorder on the anomalous Hall effect (AHE) in two-dimensional ferromagnets. The topological nature of the AHE leads to the integer quantum Hall effect from a metal, i.e., the quantization of sigma(xy) induced by the localization except for the few extended states carrying Chern numbers. Extensive numerical study on a model reveals that Pruisken's two-parameter scaling theory holds even when the system has no gap with the overlapping multibands and without the uniform magnetic field. Therefore, the condition for the quantized AHE is given only by the Hall conductivity sigma(xy) without the quantum correction, i.e., /sigma(xy)/>e(2)/(2h).

  2. Validation of a quantized-current source with 0.2 ppm uncertainty

    SciTech Connect

    Stein, Friederike; Fricke, Lukas Scherer, Hansjörg; Hohls, Frank Leicht, Christoph; Götz, Martin; Krause, Christian; Behr, Ralf; Pesel, Eckart; Pierz, Klaus; Siegner, Uwe; Ahlers, Franz J.; Schumacher, Hans W.; Drung, Dietmar

    2015-09-07

    We report on high-accuracy measurements of quantized current, sourced by a tunable-barrier single-electron pump at frequencies f up to 1 GHz. The measurements were performed with an ultrastable picoammeter instrument, traceable to the Josephson and quantum Hall effects. Current quantization according to I = ef with e being the elementary charge was confirmed at f = 545 MHz with a total relative uncertainty of 0.2 ppm, improving the state of the art by about a factor of 5. The accuracy of a possible future quantum current standard based on single-electron transport was experimentally validated to be better than the best (indirect) realization of the ampere within the present SI.

  3. Simple, fast codebook training algorithm by entropy sequence for vector quantization

    NASA Astrophysics Data System (ADS)

    Pang, Chao-yang; Yao, Shaowen; Qi, Zhang; Sun, Shi-xin; Liu, Jingde

    2001-09-01

    The traditional training algorithm for vector quantization such as the LBG algorithm uses the convergence of distortion sequence as the condition of the end of algorithm. We presented a novel training algorithm for vector quantization in this paper. The convergence of the entropy sequence of each region sequence is employed as the condition of the end of the algorithm. Compared with the famous LBG algorithm, it is simple, fast and easy to be comprehended and controlled. We test the performance of the algorithm by typical test image Lena and Barb. The result shows that the PSNR difference between the algorithm and LBG is less than 0.1dB, but the running time of it is at most one second of LBG.

  4. Phonon dispersion and quantization tuning of strained carbon nanotubes for flexible electronics

    SciTech Connect

    Gautreau, Pierre; Chu, Yanbiao; Basaran, Cemal; Ragab, Tarek

    2014-06-28

    Graphene and carbon nanotubes are materials with large potentials for applications in flexible electronics. Such devices require a high level of sustainable strain and an understanding of the materials electrical properties under strain. Using supercell theory in conjunction with a comprehensive molecular mechanics model, the full band phonon dispersion of carbon nanotubes under uniaxial strain is studied. The results suggest an overall phonon softening and open up the possibility of phonon quantization tuning with uniaxial strain. The change in phonon quantization and the resulting increase in electron-phonon and phonon-phonon scattering rates offer further explanation and theoretical basis to the experimental observation of electrical properties degradation for carbon nanotubes under uniaxial strain.

  5. The Analysis of Lagrangian and Hamiltonian Properties of the Classical Relativistic Electrodynamics Models and Their Quantization

    NASA Astrophysics Data System (ADS)

    Bogolubov, Nikolai N.; Prykarpatsky, Anatoliy K.

    2010-05-01

    The Lagrangian and Hamiltonian properties of classical electrodynamics models and their associated Dirac quantizations are studied. Using the vacuum field theory approach developed in (Prykarpatsky et al. Theor. Math. Phys. 160(2): 1079-1095, 2009 and The field structure of a vacuum, Maxwell equations and relativity theory aspects. Preprint ICTP) consistent canonical Hamiltonian reformulations of some alternative classical electrodynamics models are devised, and these formulations include the Lorentz condition in a natural way. The Dirac quantization procedure corresponding to the Hamiltonian formulations is developed. The crucial importance of the rest reference systems, with respect to which the dynamics of charged point particles is framed, is explained and emphasized. A concise expression for the Lorentz force is derived by suitably taking into account the duality of electromagnetic field and charged particle interactions. Finally, a physical explanation of the vacuum field medium and its relativistic properties fitting the mathematical framework developed is formulated and discussed.

  6. A Hashing-Based Search Algorithm for Coding Digital Images by Vector Quantization

    NASA Astrophysics Data System (ADS)

    Chu, Chen-Chau

    1989-11-01

    This paper describes a fast algorithm to compress digital images by vector quantization. Vector quantization relies heavily on searching to build codebooks and to classify blocks of pixels into code indices. The proposed algorithm uses hashing, localized search, and multi-stage search to accelerate the searching process. The average of pixel values in a block is used as the feature for hashing and intermediate screening. Experimental results using monochrome images are presented. This algorithm compares favorably with other methods with regard to processing time, and has comparable or better mean square error measurements than some of them. The major advantages of the proposed algorithm are its speed, good quality of the reconstructed images, and flexibility.

  7. Quantum geometry and quantization on U(u(2)) background. Noncommutative Dirac monopole

    NASA Astrophysics Data System (ADS)

    Gurevich, Dimitri; Saponov, Pavel

    2016-08-01

    In our previous publications we introduced differential calculus on the enveloping algebras U(gl(m)) similar to the usual calculus on the commutative algebra Sym (gl(m)) . The main ingredients of our calculus are quantum partial derivatives which turn into the usual partial derivatives in the classical limit. In the particular case m = 2 we prolonged this calculus on a central extension A of the algebra U(gl(2)) . In the present paper we consider the problem of a further extension of the quantum partial derivatives on the skew-field of the algebra A and define the corresponding de Rham complex. As an application of the differential calculus we suggest a method of transferring dynamical models defined on an extended Sym (u(2)) to an extended algebra U(u(2)) . We call this procedure the quantization with noncommutative configuration space. In this sense we quantize the Dirac monopole and find a solution of this model.

  8. The behavior of quantization spectra as a function of signal-to-noise ratio

    NASA Technical Reports Server (NTRS)

    Flanagan, M. J.

    1991-01-01

    An expression for the spectrum of quantization error in a discrete-time system whose input is a sinusoid plus white Gaussian noise is derived. This quantization spectrum consists of two components: a white-noise floor and spurious harmonics. The dithering effect of the input Gaussian noise in both components of the spectrum is considered. Quantitative results in a discrete Fourier transform (DFT) example show the behavior of spurious harmonics as a function of the signal-to-noise ratio (SNR). These results have strong implications for digital reception and signal analysis systems. At low SNRs, spurious harmonics decay exponentially on a log-log scale, and the resulting spectrum is white. As the SNR increases, the spurious harmonics figure prominently in the output spectrum. A useful expression is given that roughly bounds the magnitude of a spurious harmonic as a function of the SNR.

  9. Inflation of small true vacuum bubble by quantization of Einstein-Hilbert action

    NASA Astrophysics Data System (ADS)

    He, DongShan; Cai, QingYu

    2015-07-01

    We study the quantization of the Einstein-Hilbert action for a small true vacuum bubble without matter or scalar field. The quantization of action induces an extra term of potential called quantum potential in Hamilton-Jacobi equation, which gives expanding solutions, including the exponential expansion solutions of the scalar factor a for the bubble. We show that exponential expansion of the bubble continues with a short period, no matter whether the bubble is closed, flat, or open. The exponential expansion ends spontaneously when the bubble becomes large, that is, the scalar factor a of the bubble approaches a Planck length l p. We show that it is the quantum potential of the small true vacuum bubble that plays the role of the scalar field potential suggested in the slow-roll inflation model. With the picture of quantum tunneling, we calculate particle creation rate during inflation, which shows that particles created by inflation have the capability of reheating the universe.

  10. Conformally covariant coupled non-linear field theory on the hypercone: Vacuum solutions and quantization of normal modes

    SciTech Connect

    Aciktepe, T.; Akdeniz, K.G.; Barut, A.O.; Kalayci, J.

    1988-01-01

    For the conformally covariant coupled non-linear spinor-scalar field of the sigma-model type the authors show that the non-trivial vacuum instanton solutions have a geometric meaning as constant spinors on the five-dimensional hypercone. The quantized fields around these solutions correspond to the normal modes of the hypercone. A connection is thus established between field theory, particle spectrum of the fields and quantized excitations of a geometry (the hypercone).

  11. Translation invariant theory of polaron (bipolaron) and the problem of quantizing near the classical solution

    SciTech Connect

    Lakhno, V. D.

    2013-06-15

    A physical interpretation of translation-invariant polarons and bipolarons is presented, some results of their existence are discussed. Consideration is given to the problem of quantization in the vicinity of the classical solution in the quantum field theory. The lowest variational estimate is obtained for the bipolaron energy E({eta}) with E(0) = -0.440636{alpha}{sup 2}, where {alpha} is a constant of electron-phonon coupling, {eta} is a parameter of ion binding.

  12. Fraunhofer diffraction of the plane wave by a multilevel (quantized) spiral phase plate.

    PubMed

    Kotlyar, Victor V; Kovalev, Alexey A

    2008-01-15

    We obtain an analytical expression in the form of a finite sum of plane waves that describes the paraxial scalar Fraunhofer diffraction of a limited plane wave by a multilevel (quantized) spiral phase plate (SPP) bounded by a polygonal aperture. For several topological charges of the SPP we numerically obtain the minimal number of SPP sectors for which the RMS between the Fraunhofer diffraction patterns for multilevel and continuous SPP does not exceed 2%.

  13. Progressive Vector Quantization on a massively parallel SIMD machine with application to multispectral image data

    NASA Technical Reports Server (NTRS)

    Manohar, Mareboyana; Tilton, James C.

    1994-01-01

    A progressive vector quantization (VQ) compression approach is discussed which decomposes image data into a number of levels using full search VQ. The final level is losslessly compressed, enabling lossless reconstruction. The computational difficulties are addressed by implementation on a massively parallel SIMD machine. We demonstrate progressive VQ on multispectral imagery obtained from the Advanced Very High Resolution Radiometer instrument and other Earth observation image data, and investigate the trade-offs in selecting the number of decomposition levels and codebook training method.

  14. Application of a VLSI vector quantization processor to real-time speech coding

    NASA Technical Reports Server (NTRS)

    Davidson, G.; Gersho, A.

    1986-01-01

    Attention is given to a working vector quantization processor for speech coding that is based on a first-generation VLSI chip which efficiently performs the pattern-matching operation needed for the codebook search process (CPS). Using this chip, the CPS architecture has been successfully incorporated into a compact, single-board Vector PCM implementation operating at 7-18 kbits/sec. A real time Adaptive Vector Predictive Coder system using the CPS has also been implemented.

  15. Temporally-quantized theory of exponential radioactive decay: Resolution of Zeno's paradox of quantum theory

    NASA Astrophysics Data System (ADS)

    Golden, Sidney

    1995-02-01

    As characterized experimentally by Rutherford, an essential feature of radioactive decompositions is their being constituted of randomly occurring events in terms of which the decomposing systems exhibit exponential temporal decay behavior with associated characteristic half-lives. This feature is rigorously accounted for generally by the recent temporally-quantized dynamical theory of strictly-irreversible evolution of isolated and localized non-relativistic quantum systems, which theory also obviates the celebrated Zeno's paradox of conventional quantum theory.

  16. A 1 GHz sample rate, 256-channel, 1-bit quantization, CMOS, digital correlator chip

    NASA Technical Reports Server (NTRS)

    Timoc, C.; Tran, T.; Wongso, J.

    1992-01-01

    This paper describes the development of a digital correlator chip with the following features: 1 Giga-sample/second; 256 channels; 1-bit quantization; 32-bit counters providing up to 4 seconds integration time at 1 GHz; and very low power dissipation per channel. The improvements in the performance-to-cost ratio of the digital correlator chip are achieved with a combination of systolic architecture, novel pipelined differential logic circuits, and standard 1.0 micron CMOS process.

  17. Consistent canonical quantization of general relativity in the space of vassiliev invariants

    PubMed

    Di Bartolo C; Gambini; Griego; Pullin

    2000-03-13

    We present a quantization of the Hamiltonian and diffeomorphism constraint of canonical quantum gravity in the spin network representation. The novelty consists in considering a space of wave functions based on the Vassiliev invariants. The constraints are finite, well defined, and reproduce at the level of quantum commutators the Poisson algebra of constraints of the classical theory. A similar construction can be carried out in 2+1 dimensions leading to the correct quantum theory.

  18. Second quantization model for surface plasmon polariton in metallic nano wires

    NASA Astrophysics Data System (ADS)

    Thi Phuong Lan, Nguyen; Thi Nga, Do; Viet, Nguyen Ai

    2016-06-01

    A model of effective Hamiltonian is proposed in second quantization representation for system of surface plasmons and photon (polariton) in metallic nano wires. The dispersion relation curves of surface plasmon polariton was calculated by mean of the Bogoliubov diagonalization method. The surface plasmon photon vertexes are considered. The conditions for excitation surface plasmon, existence plasmon radiate modes, and a possible application of metallic nano wires were also discussed.

  19. Superradiance and flux conservation

    NASA Astrophysics Data System (ADS)

    Boonserm, Petarpa; Ngampitipan, Tritos; Visser, Matt

    2014-09-01

    The theoretical foundations of the phenomenon known as superradiance still continue to attract considerable attention. Despite many valiant attempts at pedagogically clear presentations, the effect nevertheless still continues to generate some significant confusion. Part of the confusion arises from the fact that superradiance in a quantum field theory context is not the same as superradiance (superfluorescence) in some condensed matter contexts; part of the confusion arises from traditional but sometimes awkward normalization conventions, and part is due to sometimes unnecessary confusion between fluxes and probabilities. We shall argue that the key point underlying the effect is flux conservation (and, in the presence of dissipation, a controlled amount of flux nonconservation), and that attempting to phrase things in terms of reflection and transmission probabilities only works in the absence of superradiance. To help clarify the situation we present a simple exactly solvable toy model exhibiting both superradiance and damping.

  20. Flux amplification in SSPX

    NASA Astrophysics Data System (ADS)

    Lodestro, Lynda; Hooper, E. B.; Jayakumar, R. J.; Pearlstein, L. D.; Wood, R. D.; McLean, H. S.

    2007-11-01

    Flux amplification---the ratio of poloidal flux enclosed between the magnetic and geometric axes to that between the separatrix and the geometric axis---is a key measure of efficiency for edge-current-driven spheromaks. With the new, modular capacitor bank, permitting flexible programming of the gun current, studies of flux amplification under various drive scenarios can be performed. Analysis of recent results of pulsed operation with the new bank finds an efficiency ˜ 0.2, in selected shots, of the conversion of gun energy to confined magnetic energy during the pulses, and suggests a route toward sustained efficiency at 0.2. Results of experiments, a model calculation of field build-up, and NIMROD simulations exploring this newly suggested scenario will be presented.

  1. Quantization ambiguities and bounds on geometric scalars in anisotropic loop quantum cosmology

    NASA Astrophysics Data System (ADS)

    Singh, Parampreet; Wilson-Ewing, Edward

    2014-02-01

    We study quantization ambiguities in loop quantum cosmology that arise for space-times with non-zero spatial curvature and anisotropies. Motivated by lessons from different possible loop quantizations of the closed Friedmann-Lemaître-Robertson-Walker cosmology, we find that using open holonomies of the extrinsic curvature, which due to gauge-fixing can be treated as a connection, leads to the same quantum geometry effects that are found in spatially flat cosmologies. More specifically, in contrast to the quantization based on open holonomies of the Ashtekar-Barbero connection, the expansion and shear scalars in the effective theories of the Bianchi type II and Bianchi type IX models have upper bounds, and these are in exact agreement with the bounds found in the effective theories of the Friedmann-Lemaître-Robertson-Walker and Bianchi type I models in loop quantum cosmology. We also comment on some ambiguities present in the definition of inverse triad operators and their role.

  2. Particle on a torus knot: Constrained dynamics and semi-classical quantization in a magnetic field

    NASA Astrophysics Data System (ADS)

    Das, Praloy; Pramanik, Souvik; Ghosh, Subir

    2016-11-01

    Kinematics and dynamics of a particle moving on a torus knot poses an interesting problem as a constrained system. In the first part of the paper we have derived the modified symplectic structure or Dirac brackets of the above model in Dirac's Hamiltonian framework, both in toroidal and Cartesian coordinate systems. This algebra has been used to study the dynamics, in particular small fluctuations in motion around a specific torus. The spatial symmetries of the system have also been studied. In the second part of the paper we have considered the quantum theory of a charge moving in a torus knot in the presence of a uniform magnetic field along the axis of the torus in a semiclassical quantization framework. We exploit the Einstein-Brillouin-Keller (EBK) scheme of quantization that is appropriate for multidimensional systems. Embedding of the knot on a specific torus is inherently two dimensional that gives rise to two quantization conditions. This shows that although the system, after imposing the knot condition reduces to a one dimensional system, even then it has manifested non-planar features which shows up again in the study of fractional angular momentum. Finally we compare the results obtained from EBK (multi-dimensional) and Bohr-Sommerfeld (single dimensional) schemes. The energy levels and fractional spin depend on the torus knot parameters that specifies its non-planar features. Interestingly, we show that there can be non-planar corrections to the planar anyon-like fractional spin.

  3. Quantization of area for event and Cauchy horizons of the Kerr-Newman black hole

    NASA Astrophysics Data System (ADS)

    Visser, Matt

    2012-06-01

    Based on various string theoretic constructions, and various string-inspired generalizations thereof, there have been repeated suggestions that the areas of black hole event horizons might be quantized in a quite specific manner, in terms of linear combinations of square roots of positive integers. It is important to realise that there are significant physical constraints on such integer-based proposals when one (somewhat speculatively) attempts to extend them outside their original extremal and supersymmetric framework. Specifically, in their most natural and direct physical interpretations, some of the more speculative integer-based proposals for the quantization of horizon areas fail for the ordinary Kerr-Newman black holes in (3+1) dimensions, essentially because the fine structure constant is not an integer. A more baroque interpretation involves asserting the fine structure constant is the square root of a rational number; but such a proposal has its own problems. Insofar as one takes (3+1) general relativity (plus the usual quantization of angular momentum and electric charge) as being paramount, the known explicitly calculable spectra of horizon areas for the physically compelling Kerr-Newman spacetimes indicate that some caution is called for when assessing the universality of some of the more speculative integer-based string-inspired proposals.

  4. The application of light-cone quantization to quantum chromodynamics in one-plus-one dimensions

    SciTech Connect

    Hornbostel, K.J.

    1988-12-01

    Formal and computational aspects of light cone quantization are studied by application to quantum chromodynamics (QCD) in one spatial plus one temporal dimension. This quantization scheme, which has been extensively applied to perturbative calculations, is shown to provide an intuitively appealing and numerically tractable approach to non-perturbative computations as well. In the initial section, a light-cone quantization procedure is developed which incorporates fields on the boundaries. This allows for the consistent treatment of massless fermions and the construction of explicitly conserved momentum and charge operators. The next section, which comprises the majority of this work, focuses on the numerical solution of the light-cone Schrodinger equation for bound states. The state space is constructed and the Hamiltonian is evaluated and diagonalized by computer for arbitrary number of colors, baryon number and coupling constant strength. As a result, the full spectrum of mesons and baryons and their associated wavefunctions are determined. These results are compared with those which exist from other approaches to test the reliability of the method. The program also provides a preliminary test for the feasibility of, and an opportunity to develop approximation schemes for, an attack on three-plus-one dimensional QCD. Finally, analytic results are presented which include a discussion of integral equations for wavefunctions and their endpoint behavior. Solutions for hadronic masses and wavefunctions in the limits of both large and small quark mass are discussed. 49 refs., 32 figs., 10 tabs.

  5. Application Of Entropy-Constrained Vector Quantization To Waveform Coding Of Images

    NASA Astrophysics Data System (ADS)

    Chou, Philip A.

    1989-11-01

    An algorithm recently introduced to design vector quantizers for optimal joint performance with entropy codes is applied to waveform coding of monochrome images. Experiments show that when such entropy-constrained vector quantizers (ECVQs) are followed by optimal entropy codes, they outperform standard vector quantizers (VQs) that are also followed by optimal entropy codes, by several dB at equivalent bit rates. Two image sources are considered in these experiments: twenty-five 256x 256 magnetic resonance (MR) brain scans produced by a General Electric Signa at Stanford University, and six 512 x 512 (luminance component) images from the standard USC image database. The MR images are blocked into 2 x 2 components, and the USC images are blocked into 4 x 4 components. Both sources are divided into training and test sequences. Under the mean squared error distortion measure, entropy-coded ECVQ shows an improvement over entropy-coded standard VQ by 3.83 dB on the MR test sequence at 1.29 bit/pixel, and by 1.70 dB on the USC test sequence at 0.40 bit/pixel. Further experiments, in which memory is added to both ECVQ and VQ systems, are in progress.

  6. Detection of perturbed quantization class stego images based on possible change modes

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Liu, Fenlin; Yang, Chunfang; Luo, Xiangyang; Song, Xiaofeng

    2015-11-01

    To improve the detection performance for perturbed quantization (PQ) class [PQ, energy-adaptive PQ (PQe), and texture-adaptive PQ (PQt)] stego images, a detection method based on possible change modes is proposed. First, by using the relationship between the changeable coefficients used for carrying secret messages and the second quantization steps, the modes having even second quantization steps are identified as possible change modes. Second, by referencing the existing features, the modified features that can accurately capture the embedding changes based on possible change modes are extracted. Next, feature sensitivity analyses based on the modifications performed before and after the embedding are carried out. These analyses show that the modified features are more sensitive to the original features. Experimental results indicate that detection performance of the modified features is better than that of the corresponding original features for three typical feature models [Cartesian calibrated PEVny (ccPEV), Cartesian calibrated co-occurrence matrix features (CF), and JPEG rich model (JRM)], and the integrated feature consisting of enhanced histogram features (EHF) and the modified JRM outperforms two current state-of-the-art feature models, namely, phase aware projection model (PHARM) and Gabor rich model (GRM).

  7. Combined optimal quantization and lossless coding of digital holograms of three-dimensional objects

    NASA Astrophysics Data System (ADS)

    Shortt, Alison E.; Naughton, Thomas J.; Javidi, Bahram

    2006-10-01

    Digital holography is an inherently three-dimensional (3D) technique for the capture of real-world objects. Many existing 3D imaging and processing techniques are based on the explicit combination of several 2D perspectives (or light stripes, etc.) through digital image processing. The advantage of recording a hologram is that multiple 2D perspectives can be optically combined in parallel, and in a constant number of steps independent of the hologram size. Although holography and its capabilities have been known for many decades, it is only very recently that digital holography has been practically investigated due to the recent development of megapixel digital sensors with sufficient spatial resolution and dynamic range. The applications of digital holography could include 3D television, virtual reality, and medical imaging. If these applications are realized, compression standards will have to be defined. We outline the techniques that have been proposed to date for the compression of digital hologram data and show that they are comparable to the performance of what in communication theory is known as optimal signal quantization. We adapt the optimal signal quantization technique to complex-valued 2D signals. The technique relies on knowledge of the histograms of real and imaginary values in the digital holograms. Our digital holograms of 3D objects are captured using phase-shift interferometry. We complete the compression procedure by applying lossless techniques to the quantized holographic pixels.

  8. Self-adjointness of the Fourier expansion of quantized interaction field Lagrangians

    PubMed Central

    Paneitz, S. M.; Segal, I. E.

    1983-01-01

    Regularity properties significantly stronger than were previously known are developed for four-dimensional non-linear conformally invariant quantized fields. The Fourier coefficients of the interaction Lagrangian in the interaction representation—i.e., evaluated after substitution of the associated quantized free field—is a densely defined operator on the associated free field Hilbert space K. These Fourier coefficients are with respect to a natural basis in the universal cosmos ˜M, to which such fields canonically and maximally extend from Minkowski space-time M0, which is covariantly a submanifold of ˜M. However, conformally invariant free fields over M0 and ˜M are canonically identifiable. The kth Fourier coefficient of the interaction Lagrangian has domain inclusive of all vectors in K to which arbitrary powers of the free hamiltonian in ˜M are applicable. Its adjoint in the rigorous Hilbert space sense is a-k in the case of a hermitian Lagrangian. In particular (k = 0) the leading term in the perturbative expansion of the S-matrix for a conformally invariant quantized field in M0 is a self-adjoint operator. Thus, e.g., if ϕ(x) denotes the free massless neutral scalar field in M0, then ∫M0:ϕ(x)4:d4x is a self-adjoint operator. No coupling constant renormalization is involved here. PMID:16593346

  9. The fundamental role of quantized vibrations in coherent light harvesting by cryptophyte algae.

    PubMed

    Kolli, Avinash; O'Reilly, Edward J; Scholes, Gregory D; Olaya-Castro, Alexandra

    2012-11-01

    The influence of fast vibrations on energy transfer and conversion in natural molecular aggregates is an issue of central interest. This article shows the important role of high-energy quantized vibrations and their non-equilibrium dynamics for energy transfer in photosynthetic systems with highly localized excitonic states. We consider the cryptophyte antennae protein phycoerythrin 545 and show that coupling to quantized vibrations, which are quasi-resonant with excitonic transitions is fundamental for biological function as it generates non-cascaded transport with rapid and wider spatial distribution of excitation energy. Our work also indicates that the non-equilibrium dynamics of such vibrations can manifest itself in ultrafast beating of both excitonic populations and coherences at room temperature, with time scales in agreement with those reported in experiments. Moreover, we show that mechanisms supporting coherent excitonic dynamics assist coupling to selected modes that channel energy to preferential sites in the complex. We therefore argue that, in the presence of strong coupling between electronic excitations and quantized vibrations, a concrete and important advantage of quantum coherent dynamics is precisely to tune resonances that promote fast and effective energy distribution.

  10. Entropy-constrained vector quantization of images in the transform domain

    NASA Astrophysics Data System (ADS)

    Lee, Jong Seok; Kim, Rin C.; Lee, Sang Uk

    1994-09-01

    In this paper, two image coding techniques employing an entropy constrained vector quantizer (ECVQ) in the transform domain are presented. In both techniques, the transformed DCT coefficients are rearranged into the Mandala blocks for vector quantization. The first technique is based on the unstructured ECVQ designed separately for each Mandala block, while the second technique employs a structured ECVQ, i.e., an entropy constrained lattice vector quantizer (ECLVQ). In the ECLVQ, unlike the conventional lattice VQ combined with entropy coding, we take into account both the distortion and entropy in the encoding. Moreover, in order to improve the performance further, the ECLVQ parameters are optimized according to the input image statistics. Also we reduce the size of the variable word-length code table, by decomposing the lattice codeword into its magnitude and sign information. The performances of both techniques are evaluated on the real images, and it is found that the proposed techniques provide 1 - 2 dB gain over the DCT-classified VQ at bit rates in the range of 0.3 - 0.5 bits per pixel.

  11. The fundamental role of quantized vibrations in coherent light harvesting by cryptophyte algae

    NASA Astrophysics Data System (ADS)

    Kolli, Avinash; O'Reilly, Edward J.; Scholes, Gregory D.; Olaya-Castro, Alexandra

    2012-11-01

    The influence of fast vibrations on energy transfer and conversion in natural molecular aggregates is an issue of central interest. This article shows the important role of high-energy quantized vibrations and their non-equilibrium dynamics for energy transfer in photosynthetic systems with highly localized excitonic states. We consider the cryptophyte antennae protein phycoerythrin 545 and show that coupling to quantized vibrations, which are quasi-resonant with excitonic transitions is fundamental for biological function as it generates non-cascaded transport with rapid and wider spatial distribution of excitation energy. Our work also indicates that the non-equilibrium dynamics of such vibrations can manifest itself in ultrafast beating of both excitonic populations and coherences at room temperature, with time scales in agreement with those reported in experiments. Moreover, we show that mechanisms supporting coherent excitonic dynamics assist coupling to selected modes that channel energy to preferential sites in the complex. We therefore argue that, in the presence of strong coupling between electronic excitations and quantized vibrations, a concrete and important advantage of quantum coherent dynamics is precisely to tune resonances that promote fast and effective energy distribution.

  12. Uniqueness of the Fock quantization of scalar fields in spatially flat cosmological spacetimes

    NASA Astrophysics Data System (ADS)

    Castelló Gomar, Laura; Cortez, Jerónimo; Martín-de Blas, Daniel; Mena Marugán, Guillermo A.; Velhinho, José M.

    2012-11-01

    We study the Fock quantization of scalar fields in (generically) time dependent scenarios, focusing on the case in which the field propagation occurs in -either a background or effective- spacetime with spatial sections of flat compact topology. The discussion finds important applications in cosmology, like e.g. in the description of test Klein-Gordon fields and scalar perturbations in Friedmann-Robertson-Walker spacetime in the observationally favored flat case. Two types of ambiguities in the quantization are analyzed. First, the infinite ambiguity existing in the choice of a Fock representation for the canonical commutation relations, understandable as the freedom in the choice of inequivalent vacua for a given field. Besides, in cosmological situations, it is customary to scale the fields by time dependent functions, which absorb part of the evolution arising from the spacetime, which is treated classically. This leads to an additional ambiguity, this time in the choice of a canonical pair of field variables. We show that both types of ambiguities are removed by the requirements of (a) invariance of the vacuum under the symmetries of the three-torus, and (b) unitary implementation of the dynamics in the quantum theory. In this way, one arrives at a unique class of unitarily equivalent Fock quantizations for the system. This result provides considerable robustness to the quantum predictions and renders meaningful the confrontation with observation.

  13. Adaptive Segmentation and Feature Quantization of Sublingual Veins of Healthy Humans

    NASA Astrophysics Data System (ADS)

    Yan, Zifei; Li, Naimin

    The Sublingual Vein Diagnosis, one part of Tongue Diagnosis, plays an important role in deciding the healthy condition of humans. This paper focuses on establishing a feature quantization framework for the inspection of sublingual veins of healthy humans, composed of two parts: the segmentation of sublingual veins of healthy humans and the feature quantization of them. Firstly, a novel technique of sublingual vein segmentation is proposed here. Sublingual Vein Color Model, which combines the Bayesian Decision with CIEYxy color space, is established based on a large number of labeled sublingual images. Experiments prove that the proposed method performs well on the segmentation of images from healthy humans with weak color contrast between sublingual vein and tongue proper. And then, a chromatic system in conformity with diagnostic standard of Traditional Chinese Medicine doctors is established to describe the chromatic feature of sublingual veins. Experimental results show that the geometrical and chromatic features quantized by the proposed framework are properly consistent with the diagnostic standard summarized by TCM doctors for healthy humans.

  14. Breakdown of conductance quantization and mesoscopic fluctuations in the quasiballistic regime

    SciTech Connect

    Glazman, L.I. ); Jonson, M. Solid State Division, Oak Ridge National Laboratory, P. O. Box 2008, Oak Ridge, Tennessee Institute of Theoretical Physics, Chalmers University of Technology, S-412 96 Goeteborg )

    1991-08-15

    We present an analytical theory of corrections to the quantum ballistic conductance of a channel formed in a two-dimensional electron gas (2D EG). Backscattering that causes the corrections occurs inside the channel and is due to a random potential produced by charged donors. The spatial separation of the donors from the 2D EG implies that the scattering potential is smooth and hence gives a natural scale for the width of the channel. We derive the necessary conditions for conductance quantization in both cases of narrow and wide channels. These conditions determine how many quantized steps of the conductance can be observed at a given channel length. An analysis based on our results shows that in existing experiments breakdown of the conductance quantization and a crossover to mesoscopic fluctuations occurs in the narrow-channel limit. The dominating mechanism of breakdown is backscattering within the propagating mode with the largest mode number. This conclusion is validated by a comparison with experimental data. We determine the amplitude of mesoscopic conductance fluctuations in the ballistic regime and derive the minimum temperature for which they are smeared out.

  15. Minimum distortion quantizer for fixed-rate 64-subband video coding

    NASA Astrophysics Data System (ADS)

    Alparone, Luciano; Andreadis, Alessandro; Argenti, Fabrizio; Benelli, Giuliano; Garzelli, Andrea; Tarchi, A.

    1995-02-01

    A motion-compensated sub-band coding (SBC) scheme for video signals, featuring fixed-rate and optimum quantizer, is presented. Block matching algorithm provides a suitable inter-frame prediction, and a 64 sub-band decomposition allows a high decorrelation of the motion- compensated difference field. The main drawback is that sub-bands containing sparse data of different statistics are produced, thus requiring run-length (RL) and variable length coding (VLC) for best performance. However, most digital communication channels operate at constant bit-rate (BR); hence, fixed-rate video coding is the main goal, in order to reduce buffering delays. The approach followed in this work is modeling the subbands as independent memoryless sources with generalized Gaussian PDFs and designing optimum uniform quantizers with the goal of minimizing distortion after a BR value, also accounting for the entropy of the RLs of zero/nonzero coefficients, has been specified. The problem is stated in terms of entropy allocation among sub-bands minimizing the overall distortion, analogously to optimal distortion allocation when fixed quality is requested. The constrained minimum is found by means of Lagrange multipliers, once the parametric PDFs have been assessed from true TV sequences. This procedure provides the optimum step for uniform quantization of each sub-band, thus leading to discarding some of the least significant ones.

  16. Optical heat flux gauge

    DOEpatents

    Noel, Bruce W.; Borella, Henry M.; Cates, Michael R.; Turley, W. Dale; MaCarthur, Charles D.; Cala, Gregory C.

    1991-01-01

    A heat flux gauge comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable.

  17. Optical heat flux gauge

    DOEpatents

    Noel, Bruce W.; Borella, Henry M.; Cates, Michael R.; Turley, W. Dale; MacArthur, Charles D.; Cala, Gregory C.

    1991-01-01

    A heat flux gauge comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator wherein each thermographic layer comprises a plurality of respective thermographic phosphors. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable.

  18. Optical heat flux gauge

    DOEpatents

    Noel, Bruce W.; Borella, Henry M.; Cates, Michael R.; Turley, W. Dale; MacArthur, Charles D.; Cala, Gregory C.

    1991-01-01

    A heat flux gauge comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator, wherein each thermographic layer comprises a plurality of respective thermographic sensors in a juxtaposed relationship with respect to each other. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable.

  19. [Research advances in ecosystem flux].

    PubMed

    Zhang, Xudong; Peng, Zhenhua; Qi, Lianghua; Zhou, Jinxing

    2005-10-01

    To develop the long-term localized observation and investigation on ecosystem flux is of great importance. On the basis of generalizing the concepts and connotations of ecosystem flux, this paper introduced the construction and development histories of Global Flux Networks, Regional Flux Networks (Ameri-Flux, Euro-Flux and Asia-Flux) and China-Flux, as well as the main methodologies, including micrometeorological methods (such as eddy correlation method, mass balance method, energy balance method and air dynamic method)and chamber methods (static and dynamic chamber methods), and their basic operation principles. The research achievements, approaches and advances of CO2, N2O, CH4, and heat fluxes in forest ecosystem, farmland ecosystem, grassland ecosystem and water ecosystem were also summarized. In accordance with the realities and necessities of ecosystem flux research in China, some suggestions and prospects were put forward.

  20. Can The Periods of Some Extra-Solar Planetary Systems be Quantized?

    NASA Astrophysics Data System (ADS)

    El Fady Morcos, Abd

    A simple formula was derived before by Morcos (2013 ), to relate the quantum numbers of planetary systems and their periods. This formula is applicable perfectly for the solar system planets, and some extra-solar planets , of stars of approximately the same masses like the Sun. This formula has been used to estimate the periods of some extra-solar planet of known quantum numbers. The used quantum numbers were calculated previously by other authors. A comparison between the observed and estimated periods, from the given formula has been done. The differences between the observed and calculated periods for the extra-solar systems have been calculated and tabulated. It is found that there is an error of the range of 10% The same formula has been also used to find the quantum numbers, of some known periods, exo-planet. Keywords: Quantization; Periods; Extra-Planetary; Extra-Solar Planet REFERENCES [1] Agnese, A. G. and Festa, R. “Discretization on the Cosmic Scale Inspirred from the Old Quantum Mechanics,” 1998. http://arxiv.org/abs/astro-ph/9807186 [2] Agnese, A. G. and Festa, R. “Discretizing ups-Andro- medae Planetary System,” 1999. http://arxiv.org/abs/astro-ph/9910534. [3] Barnothy, J. M. “The Stability of the Solar Systemand of Small Stellar Systems,” Proceedings of the IAU Sympo-sium 62, Warsaw, 5-8 September 1973, pp. 23-31. [4] Morcos, A.B. , “Confrontation between Quantized Periods of Some Extra-Solar Planetary Systems and Observations”, International Journal of Astronomy and Astrophysics, 2013, 3, 28-32. [5] Nottale, L. “Fractal Space-Time and Microphysics, To-wards a Theory of Scale Relativity,” World Scientific, London, 1994. [6] Nottale , L., “Scale-Relativity and Quantization of Extra- Solar Planetary Systems,” Astronomy & Astrophysics, Vol. 315, 1996, pp. L9-L12 [7] Nottale, L., Schumacher, G. and Gay, J. “Scale-Relativity and Quantization of the Solar Systems,” Astronomy & Astrophysics letters, Vol. 322, 1997, pp. 1018-10 [8

  1. High flux heat exchanger

    NASA Astrophysics Data System (ADS)

    Flynn, Edward M.; Mackowski, Michael J.

    1993-01-01

    This interim report documents the results of the first two phases of a four-phase program to develop a high flux heat exchanger for cooling future high performance aircraft electronics. Phase 1 defines future needs for high flux heat removal in advanced military electronics systems. The results are sorted by broad application categories: (1) commercial digital systems, (2) military data processors, (3) power processors, and (4) radar and optical systems. For applications expected to be fielded in five to ten years, the outlook is for steady state flux levels of 30-50 W/sq cm for digital processors and several hundred W/sq cm for power control applications. In Phase 1, a trade study was conducted on emerging cooling technologies which could remove a steady state chip heat flux of 100 W/sq cm while holding chip junction temperature to 90 C. Constraints imposed on heat exchanger design, in order to reflect operation in a fighter aircraft environment, included a practical lower limit on coolant supply temperature, the preference for a nontoxic, nonflammable, and nonfreezing coolant, the need to minimize weight and volume, and operation in an accelerating environment. The trade study recommended the Compact High Intensity Cooler (CHIC) for design, fabrication, and test in the final two phases of this program.

  2. Radiative Flux Analysis

    DOE Data Explorer

    Long, Chuck [NOAA

    2008-05-14

    The Radiative Flux Analysis is a technique for using surface broadband radiation measurements for detecting periods of clear (i.e. cloudless) skies, and using the detected clear-sky data to fit functions which are then used to produce continuous clear-sky estimates. The clear-sky estimates and measurements are then used in various ways to infer cloud macrophysical properties.

  3. Muon and neutrino fluxes

    NASA Technical Reports Server (NTRS)

    Edwards, P. G.; Protheroe, R. J.

    1985-01-01

    The result of a new calculation of the atmospheric muon and neutrino fluxes and the energy spectrum of muon-neutrinos produced in individual extensive air showers (EAS) initiated by proton and gamma-ray primaries is reported. Also explained is the possibility of detecting atmospheric nu sub mu's due to gamma-rays from these sources.

  4. Incident meteoroid flux density

    NASA Technical Reports Server (NTRS)

    Badadjanov, P. B.; Bibarsov, R. SH.; Getman, V. S.; Kolmakov, V. M.

    1987-01-01

    Complex photographic and radar meteor observations were carried out. Using the available observational data, the density of incident flux of meteoroids was estimated over a wide mass range of 0.001 to 100 g. To avoid the influence of apparatus selectivity a special technique was applied. The main characteristics of this technique are given and discussed.

  5. A Statistical Model for Quantized AC Block DCT Coefficients in JPEG Compression and its Application to Detecting Potential Compression History in Bitmap Images

    NASA Astrophysics Data System (ADS)

    Narayanan, Gopal; Shi, Yun Qing

    We first develop a probability mass function (PMF) for quantized block discrete cosine transform (DCT) coefficients in JPEG compression using statistical analysis of quantization, with a Generalized Gaussian model being considered as the PDF for non-quantized block DCT coefficients. We subsequently propose a novel method to detect potential JPEG compression history in bitmap images using the PMF that has been developed. We show that this method outperforms a classical approach to compression history detection in terms of effectiveness. We also show that it detects history with both independent JPEG group (IJG) and custom quantization tables.

  6. Optical heat flux gauge

    DOEpatents

    Noel, B.W.; Borella, H.M.; Cates, M.R.; Turley, W.D.; MacArthur, C.D.; Cala, G.C.

    1991-04-09

    A heat flux gauge is disclosed comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator, wherein each thermographic layer comprises a plurality of respective thermographic sensors in a juxtaposed relationship with respect to each other. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable. 9 figures.

  7. NEUTRON FLUX INTENSITY DETECTION

    DOEpatents

    Russell, J.T.

    1964-04-21

    A method of measuring the instantaneous intensity of neutron flux in the core of a nuclear reactor is described. A target gas capable of being transmuted by neutron bombardment to a product having a resonance absorption line nt a particular microwave frequency is passed through the core of the reactor. Frequency-modulated microwave energy is passed through the target gas and the attenuation of the energy due to the formation of the transmuted product is measured. (AEC)

  8. Reconnecting Flux Ropes

    NASA Astrophysics Data System (ADS)

    Gekelman, Walter; van Compernolle, Bart

    2012-10-01

    Magnetic flux ropes are due to helical currents and form a dense carpet of arches on the surface of the sun. Occasionally one tears loose as a coronal mass ejection and its rope structure is detected by satellites close to the earth. Current sheets can tear into filaments and these are nothing other than flux ropes. Ropes are not static, they exert mutual JxB forces causing them to twist about each other and merge. Kink instabilities cause them to violently smash into each other and reconnect at the point of contact. We report on experiments done in the large plasma device (LAPD) at UCLA (L=17m,dia=60cm,0.3<=B0z<=2.5kG,n˜2x10^12cm-3)on three dimensional flux ropes. Two, three or more magnetic flux ropes are generated from initially adjacent pulsed current channels in a background magnetized plasma. The currents and magnetic fields form exotic shapes with no ignorable direction and no magnetic nulls. Volumetric space-time data show multiple reconnection sites with time-dependent locations. The concept of a quasi-separatrix layer (QSL), a tool to understand 3D reconnection without null points. In our experiment the QSL is a narrow ribbon-like region(s) that twists between field lines. Within the QSL(s) field lines that start close to one another rapidly diverge as they pass through one or more reconnection regions. When the field lines are tracked they are observed to slip along the QSL when reconnection occurs. The Heating and other co-existing waves will be presented.

  9. Heat Flux Sensor Testing

    NASA Technical Reports Server (NTRS)

    Clark, D. W.

    2002-01-01

    This viewgraph presentation provides information on the following objectives: Developing secondary calibration capabilities for MSFC's (Marshall Space Flight Center) Hot Gas Facility (HGF), a Mach 4 Aerothermal Wind Tunnel; Evaluating ASTM (American Society for Testing and Materials) slug/ thinskin calorimeters against current HGF heat flux sensors; Providing verification of baselined AEDC (Arnold Engineering Development Center) / Medtherm gage calibrations; Addressing future calibration issues involving NIST (National Institute of Standards and Technology) certified radiant gages.

  10. The distribution of solar magnetic fluxes and the nonlinearity of stellar flux-flux relations

    NASA Technical Reports Server (NTRS)

    Schrijver, C. J.; Harvey, K. L.

    1989-01-01

    Synoptic maps for the 1975-1984 period are used to determine the time-dependent distribution function of magnetic flux densities in the solar atmosphere. The distribution function depends only on the global level of magnetic activity, and it is used to study how relations between magnetic flux densities and radiative flux densities from different temperature regimes in the outer atmosphere (derived from spatially resolved solar observations) transform into relations between surface-averaged flux densities. It is found that the transformation to surface-averaged fluxes preserves the power-law character of relations between radiative and magnetic flux densities for spatially resolved data.

  11. Comparison of wavelet scalar quantization and JPEG for fingerprint image compression

    NASA Astrophysics Data System (ADS)

    Kidd, Robert C.

    1995-01-01

    An overview of the wavelet scalar quantization (WSQ) and Joint Photographic Experts Group (JPEG) image compression algorithms is given. Results of application of both algorithms to a database of 60 fingerprint images are then discussed. Signal-to-noise ratio (SNR) results for WSQ, JPEG with quantization matrix (QM) optimization, and JPEG with standard QM scaling are given at several average bit rates. In all cases, optimized-QM JPEG is equal or superior to WSQ in SNR performance. At 0.48 bit/pixel, which is in the operating range proposed by the Federal Bureau of Investigation (FBI), WSQ and QM-optimized JPEG exhibit nearly identical SNR performance. In addition, neither was subjectively preferred on average by human viewers in a forced-choice image-quality experiment. Although WSQ was chosen by the FBI as the national standard for compression of digital fingerprint images on the basis of image quality that was ostensibly superior to that of existing international standard JPEG, it appears likely that this superiority was due more to lack of optimization of JPEG parameters than to inherent superiority of the WSQ algorithm. Furthermore, substantial worldwide support for JPEG has developed due to its status as an international standard, and WSQ is significantly slower than JPEG in software implementation. Taken together, these facts suggest a decision different from the one that was made by the FBI with regard to its fingerprint image compression standard. Still, it is possible that WSQ enhanced with an optimal quantizer-design algorithm could outperform JPEG. This is a topic for future research.

  12. Pilot-wave dynamics in a harmonic potential: Quantization and stability of circular orbits.

    PubMed

    Labousse, M; Oza, A U; Perrard, S; Bush, J W M

    2016-03-01

    We present the results of a theoretical investigation of the dynamics of a droplet walking on a vibrating fluid bath under the influence of a harmonic potential. The walking droplet's horizontal motion is described by an integro-differential trajectory equation, which is found to admit steady orbital solutions. Predictions for the dependence of the orbital radius and frequency on the strength of the radial harmonic force field agree favorably with experimental data. The orbital quantization is rationalized through an analysis of the orbital solutions. The predicted dependence of the orbital stability on system parameters is compared with experimental data and the limitations of the model are discussed.

  13. Quantized thermal conductance of nanowires at room temperature due to Zenneck surface-phonon polaritons.

    PubMed

    Ordonez-Miranda, José; Tranchant, Laurent; Kim, Beomjoon; Chalopin, Yann; Antoni, Thomas; Volz, Sebastian

    2014-02-01

    Based on the Landauer formalism, we demonstrate that the thermal conductance due to the propagation of Zenneck surface-phonon polaritons along a polar nanowire is independent of the material characteristics and is given by π2kB2T/3h. The giant propagation length of these energy carriers establishes that this quantization holds not only for a temperature much smaller than 1 K, as is the case for electrons and phonons, but also for temperatures comparable to room temperature, which can significantly facilitate its observation and application in the thermal management of nanoscale electronics and photonics.

  14. Gauge Invariance, Lorentz Covariance and Canonical Quantization in Nucleon Structure Studies

    NASA Astrophysics Data System (ADS)

    Wang, Fan; Wong, C. W.; Chen, X. S.; Sun, W. M.; Zhang, P. M.

    2015-09-01

    Different operators of quark and gluon momenta, orbital angular momenta, and gluon spin have been used in nucleon structure studies. Their precise meaning is reviewed with respect to gauge invariance, Lorentz covariance and canonical quantization rules. The advantage and disadvantage of different definitions are analyzed. We concentrate on our gauge invariant decomposition of the total momentum and angular momentum into quark and gluon parts based on the separation of the gauge potential into a gauge invariant (covariant) physical part and a gauge dependent pure gauge part. The Lorentz covariance and measurability of our operators are demonstrated.

  15. Quantization and instability of the damped harmonic oscillator subject to a time-dependent force

    SciTech Connect

    Majima, H. Suzuki, A.

    2011-12-15

    We consider the one-dimensional motion of a particle immersed in a potential field U(x) under the influence of a frictional (dissipative) force linear in velocity (-{gamma}x) and a time-dependent external force (K(t)). The dissipative system subject to these forces is discussed by introducing the extended Bateman's system, which is described by the Lagrangian: L=mxy-U(x+1/2 y)+U(x-1/2 y)+({gamma})/2 (xy-yx)-xK(t)+yK(t), which leads to the familiar classical equations of motion for the dissipative (open) system. The equation for a variable y is the time-reversed of the x motion. We discuss the extended Bateman dual Lagrangian and Hamiltonian by setting U(x{+-}y/2)=1/2 k(x{+-}y/2){sup 2} specifically for a dual extended damped-amplified harmonic oscillator subject to the time-dependent external force. We show the method of quantizing such dissipative systems, namely the canonical quantization of the extended Bateman's Hamiltonian H. The Heisenberg equations of motion utilizing the quantized Hamiltonian H surely lead to the equations of motion for the dissipative dynamical quantum systems, which are the quantum analog of the corresponding classical systems. To discuss the stability of the quantum dissipative system due to the influence of an external force K(t) and the dissipative force, we derived a formula for transition amplitudes of the dissipative system with the help of the perturbation analysis. The formula is specifically applied for a damped-amplified harmonic oscillator subject to the impulsive force. This formula is used to study the influence of dissipation such as the instability due to the dissipative force and/or the applied impulsive force. - Highlights: > A method of quantizing dissipative systems is presented. > In order to obtain the method, we apply Bateman's dual system approach. > A formula for a transition amplitude is derived. > We use the formula to study the instability of the dissipative systems.

  16. The FBI wavelet/scalar quantization standard for gray-scale fingerprint image compression

    SciTech Connect

    Bradley, J.N.; Brislawn, C.M. ); Hopper, T. )

    1993-01-01

    The FBI has recently adopted a standard for the compression of digitized 8-bit gray-scale fingerprint images. The standard is based on scalar quantization of a 64-subband discrete wavelet transform decomposition of the images, followed by Huffman coding. Novel features of the algorithm include the use of symmetric boundary conditions for transforming finite-length signals and a subband decomposition tailored for fingerprint images scanned at 500 dpi. The standard is intended for use in conjunction with ANSI/NBS-CLS 1-1993, American National Standard Data Format for the Interchange of Fingerprint Information, and the FBI's Integrated Automated Fingerprint Identification System.

  17. The FBI wavelet/scalar quantization standard for gray-scale fingerprint image compression

    SciTech Connect

    Bradley, J.N.; Brislawn, C.M.; Hopper, T.

    1993-05-01

    The FBI has recently adopted a standard for the compression of digitized 8-bit gray-scale fingerprint images. The standard is based on scalar quantization of a 64-subband discrete wavelet transform decomposition of the images, followed by Huffman coding. Novel features of the algorithm include the use of symmetric boundary conditions for transforming finite-length signals and a subband decomposition tailored for fingerprint images scanned at 500 dpi. The standard is intended for use in conjunction with ANSI/NBS-CLS 1-1993, American National Standard Data Format for the Interchange of Fingerprint Information, and the FBI`s Integrated Automated Fingerprint Identification System.

  18. Group field theory as the second quantization of loop quantum gravity

    NASA Astrophysics Data System (ADS)

    Oriti, Daniele

    2016-04-01

    We construct a second quantized reformulation of canonical loop quantum gravity (LQG) at both kinematical and dynamical level, in terms of a Fock space of spin networks, and show in full generality that it leads directly to the group field theory (GFT) formalism. In particular, we show the correspondence between canonical LQG dynamics and GFT dynamics leading to a specific GFT model from any definition of quantum canonical dynamics of spin networks. We exemplify the correspondence of dynamics in the specific example of 3d quantum gravity. The correspondence between canonical LQG and covariant spin foam models is obtained via the GFT definition of the latter.

  19. From the Weyl quantization of a particle on the circle to number-phase Wigner functions

    NASA Astrophysics Data System (ADS)

    Przanowski, Maciej; Brzykcy, Przemysław; Tosiek, Jaromir

    2014-12-01

    A generalized Weyl quantization formalism for a particle on the circle is shown to supply an effective method for defining the number-phase Wigner function in quantum optics. A Wigner function for the state ϱ' and the kernel K for a particle on the circle is defined and its properties are analysed. Then it is shown how this Wigner function can be easily modified to give the number-phase Wigner function in quantum optics. Some examples of such number-phase Wigner functions are considered.

  20. Imaginary-scaling versus indefinite-metric quantization of the Pais-Uhlenbeck oscillator

    NASA Astrophysics Data System (ADS)

    Mostafazadeh, Ali

    2011-11-01

    Using the Pais-Uhlenbeck oscillator as a toy model, we outline a consistent alternative to the indefinite-metric quantization scheme that does not violate unitarity. We describe the basic mathematical structure of this method by giving an explicit construction of the Hilbert space of state vectors and the corresponding creation and annihilation operators. The latter satisfy the usual bosonic commutation relation and differ from those of the indefinite-metric theories by a sign in the definition of the creation operator. This change of sign achieves a definitization of the indefinite metric that gives life to the ghost states without changing their contribution to the energy spectrum.

  1. Pilot-wave dynamics in a harmonic potential: Quantization and stability of circular orbits.

    PubMed

    Labousse, M; Oza, A U; Perrard, S; Bush, J W M

    2016-03-01

    We present the results of a theoretical investigation of the dynamics of a droplet walking on a vibrating fluid bath under the influence of a harmonic potential. The walking droplet's horizontal motion is described by an integro-differential trajectory equation, which is found to admit steady orbital solutions. Predictions for the dependence of the orbital radius and frequency on the strength of the radial harmonic force field agree favorably with experimental data. The orbital quantization is rationalized through an analysis of the orbital solutions. The predicted dependence of the orbital stability on system parameters is compared with experimental data and the limitations of the model are discussed. PMID:27078462

  2. Thermoelectric response of fractional quantized Hall and reentrant insulating states in the N=1 Landau level

    NASA Astrophysics Data System (ADS)

    Chickering, W. E.; Eisenstein, J. P.; Pfeiffer, L. N.; West, K. W.

    2013-02-01

    Detailed measurements of the longitudinal thermopower of two-dimensional electrons in the first excited Landau level are reported. Clear signatures of numerous fractional quantized Hall states, including those at ν=5/2 and 7/3, are observed in the magnetic field and temperature dependence of the thermopower. An abrupt collapse of the thermopower is observed below about T=40 mK at those filling factors where reentrant insulating electronic states have been observed in conventional resistive transport studies. The thermopower observed at ν=5/2 is discussed in the context of recent theories which incorporate non-Abelian quasiparticle exchange statistics.

  3. Quantum Rabi oscillation: A direct test of field quantization in a cavity

    SciTech Connect

    Brune, M.; Schmidt-Kaler, F.; Maali, A.; Dreyer, J.; Hagley, E.; Raimond, J.M.; Haroche, S.

    1996-03-01

    We have observed the Rabi oscillation of circular Rydberg atoms in the vacuum and in small coherent fields stored in a high {ital Q} cavity. The signal exhibits discrete Fourier components at frequencies proportional to the square root of successive integers. This provides direct evidence of field quantization in the cavity. The weights of the Fourier components yield the photon number distribution in the field. This investigation of the excited levels of the atom-cavity system reveals nonlinear quantum features at extremely low field strengths. {copyright} {ital 1996 The American Physical Society.}

  4. Third quantization: modeling the universe as a 'particle' in a quantum field theory of the minisuperspace

    NASA Astrophysics Data System (ADS)

    Robles Pérez, S. J.

    2013-02-01

    The third quantization formalism of quantum cosmology adds simplicity and conceptual insight into the quantum description of the multiverse. Within such a formalism, the existence of squeezed and entangled states raises the question of whether the complementary principle of quantum mechanics has to be extended to the quantum description of the whole space-time manifold. If so, the particle description entails the consideration of a multiverse scenario and the wave description induces us to consider as well correlations and interactions among the universes of the multiverse.

  5. Grand-canonical quantized liquid density-functional theory in a Car-Parrinello implementation.

    PubMed

    Walther, Christian F J; Patchkovskii, Serguei; Heine, Thomas

    2013-07-21

    Quantized Liquid Density-Functional Theory (QLDFT) [S. Patchkovskii and T. Heine, Phys. Rev. E 80, 031603 (2009)], a method developed to assess the adsorption of gas molecules in porous nanomaterials, is reformulated within the grand canonical ensemble. With the grand potential it is possible to compare directly external and internal thermodynamic quantities. In our new implementation, the grand potential is minimized utilizing the Car-Parrinello approach and gives, in particular for low temperature simulations, a significant computational advantage over the original canonical approaches. The method is validated against original QLDFT, and applied to model potentials and graphite slit pores.

  6. Determination of the quantized topological magneto-electric effect in topological insulators from Rayleigh scattering

    PubMed Central

    Ge, Lixin; Zhan, Tianrong; Han, Dezhuan; Liu, Xiaohan; Zi, Jian

    2015-01-01

    Topological insulators (TIs) exhibit many exotic properties. In particular, a topological magneto-electric (TME) effect, quantized in units of the fine structure constant, exists in TIs. Here, we theoretically study the scattering properties of electromagnetic waves by TI circular cylinders particularly in the Rayleigh scattering limit. Compared with ordinary dielectric cylinders, the scattering by TI cylinders shows many unusual features due to the TME effect. Two proposals are suggested to determine the TME effect of TIs simply by measuring the electric-field components of scattered waves in the far field at one or two scattering angles. Our results could also offer a way to measure the fine structure constant. PMID:25609462

  7. Quantum logic with quantized control fields beyond the 1/ nmacr limit: Mathematically possible, physically unlikely

    NASA Astrophysics Data System (ADS)

    Gea-Banacloche, Julio; Miller, Mayo

    2008-09-01

    A formal Hamiltonian is presented that allows quantum logic with quantized control fields beyond the 1/ nmacr error level, if the field is initially in a (multimode) number state. The key requirement is that the interaction be completely insensitive to the phase of the field. We find, however, that when we try to satisfy this requirement by using a realistic interaction model for trapped ions in phase-insensitive decoherence-free subspaces, the 1/ nmacr scaling is obtained again. We conjecture that it may not be possible to improve on this scaling by physically realizable radiation-matter interactions.

  8. Quantized response times are a signature of a neuronal bottleneck in decision

    PubMed Central

    Perona, Pietro

    2014-01-01

    The histograms of response times of optimal YES/NO decisions that are computed from a single sensory Poisson neuron are highly structured. In particular, response times in NO decisions are quantized to a small set of times, while response times in YES decisions have a multimodal structure. Both the times of NO decisions, as well as the modes of the the histogram of YES decisions, are associated to the number of action potentials that were necessary to reach the decision. Their value is a function of the firing rate of the neuron in response to the states of the stimulus. PMID:24782750

  9. Magic angle and height quantization in nanofacets on SiC(0001) surfaces

    SciTech Connect

    Sawada, Keisuke; Iwata, Jun-Ichi; Oshiyama, Atsushi

    2014-02-03

    We report on the density-functional calculations that provide microscopic mechanism of the facet formation on the SiC (0001) surface. We first identify atom-scale structures of single-, double-, and quad-bilayer steps and find that the single-bilayer (SB) step has the lowest formation energy. We then find that the SB steps are bunched to form a nanofacet with a particular angle relative to the (0001) plane (magic facet angle) and with a discretized height along the (0001) direction (height quantization). We also clarify a microscopic reason for the self-organization of the nanofacet observed experimentally.

  10. Electromagnetic field quantization in an anisotropic magnetodielectric medium with spatial temporal dispersion

    NASA Astrophysics Data System (ADS)

    Amooshahi, M.; Kheirandish, F.

    2008-07-01

    By modeling a linear, anisotropic and inhomogeneous magnetodielectric medium with two independent sets of harmonic oscillators, the electromagnetic field is quantized in such a medium. The electric and magnetic polarizations of the medium are expressed as linear combinations of the ladder operators of the harmonic oscillators modeling the magnetodielectric medium. Maxwell and the constitutive equations of the medium are obtained as the Heisenberg equations of the total system. The electric and magnetic susceptibility tensors of the medium are obtained in terms of the tensors coupling the medium with the electromagnetic field. The explicit forms of the electromagnetic field operators are obtained for a translationally invariant medium.

  11. Position-dependent mass approach and quantization for a torus Lagrangian

    NASA Astrophysics Data System (ADS)

    Yeşiltaş, Özlem

    2016-09-01

    We have shown that a Lagrangian for a torus surface can yield second-order nonlinear differential equations using the Euler-Lagrange formulation. It is seen that these second-order nonlinear differential equations can be transformed into the nonlinear quadratic and Mathews-Lakshmanan equations using the position-dependent mass approach developed by Mustafa (J. Phys. A: Math. Theor. 48, 225206 (2015)) for the classical systems. Then, we have applied the quantization procedure to the nonlinear quadratic and Mathews-Lakshmanan equations and found their exact solutions.

  12. Electromagnetic-field quantization and spontaneous decay in left-handed media

    SciTech Connect

    Dung, Ho Trung; Buhmann, Stefan Yoshi; Knoell, Ludwig; Welsch, Dirk-Gunnar; Scheel, Stefan; Kaestel, Juergen

    2003-10-01

    We present a quantization scheme for the electromagnetic field interacting with atomic systems in the presence of dispersing and absorbing magnetodielectric media, including left-handed material having negative real part of the refractive index. The theory is applied to the spontaneous decay of a two-level atom at the center of a spherical free-space cavity surrounded by magnetodielectric matter of overlapping band-gap zones. Results for both big and small cavities are presented, and the problem of local-field corrections within the real-cavity model is addressed.

  13. Optimal pyramidal and subband decompositions for hierarchical coding of noisy and quantized images.

    PubMed

    Gerassimos Strintzis, M

    1998-01-01

    Optimal hierarchical coding is sought, for progressive or scalable image transmission, by minimizing the variance of the error difference between the original image and its lower resolution renditions. The optimal, according to the above criterion, pyramidal and subband image coders are determined for images subject to corruption by quantization or transmission noise. Given arbitrary analysis filters and assuming adequate knowledge of the noise statistics, optimal synthesis filters are found. The optimal analysis filters are subsequently determined, leading to formulas for globally optimal structures for pyramidal and subband image decompositions. Experimental results illustrate the implementation and performance of the optimal coders.

  14. Fundamental Science and Improvement of the Quality of Life-Space Quantization to MRI

    SciTech Connect

    Tannenbaum, M.

    2010-08-24

    This paper discusses the following topics: (1) Science versus technology - a false dichotomy; (2) scientific discovery is vital for future progress; (3) An example: Space quantization to magnetic reosnance imaging (MRI) - A timeline from 1911-1977; (4) Modern basic research - what is inside the proton; and (5) The 21st century - beginning of the 3rd millennium. The 20th century started with the study of macroscopic matter which led to the discovery of a whole new submicroscopic world of physics which totally changed our view of nature and led to new quantum applications, both fundamental and practical.

  15. Pipeline synthetic aperture radar data compression utilizing systolic binary tree-searched architecture for vector quantization

    NASA Technical Reports Server (NTRS)

    Chang, Chi-Yung (Inventor); Fang, Wai-Chi (Inventor); Curlander, John C. (Inventor)

    1995-01-01

    A system for data compression utilizing systolic array architecture for Vector Quantization (VQ) is disclosed for both full-searched and tree-searched. For a tree-searched VQ, the special case of a Binary Tree-Search VQ (BTSVQ) is disclosed with identical Processing Elements (PE) in the array for both a Raw-Codebook VQ (RCVQ) and a Difference-Codebook VQ (DCVQ) algorithm. A fault tolerant system is disclosed which allows a PE that has developed a fault to be bypassed in the array and replaced by a spare at the end of the array, with codebook memory assignment shifted one PE past the faulty PE of the array.

  16. Interaction of half-quantized vortices in two-component Bose-Einstein condensates

    SciTech Connect

    Eto, Minoru; Kasamatsu, Kenichi; Nitta, Muneto; Takeuchi, Hiromitsu; Tsubota, Makoto

    2011-06-15

    We study the asymptotic interaction between two half-quantized vortices in two-component Bose-Einstein condensates. When two vortices in different components are placed at distance 2R, the leading order of the force between them is found to be (lnR/{xi}-1/2)/R{sup 3}, in contrast to 1/R between vortices placed in the same component. We derive it analytically using the Abrikosov ansatz and the profile functions of the vortices, confirmed numerically with the Gross-Pitaevskii model. We also find that the short-range cutoff of the intervortex potential linearly depends on the healing length.

  17. Isolation of exchange- and spin-orbit-driven effects via manipulation of the axis of quantization

    SciTech Connect

    Komesu, Takashi; Waddill, G.D.; Yu, S.-W.; Butterfield, M.T.; Tobin, J.G.

    2010-11-19

    Double polarization photoelectron spectroscopy using circularly polarized x-rays and true spin detection has been performed using the 2p core levels of ultrathin films of Fe and Co. This includes both the separation into magnetization- and spin-specific spectra and an analysis of the polarization, asymmetry, and related quantities. It is shown how to selectively manipulate the manifestation of exchange- and spin-orbit effects simply by choosing different axes of quantization. Furthermore, the underlying simplicity of the results can be confirmed by comparison to a simple yet powerful single-electron picture.

  18. Role of the spin connection in quantum Hall effect: A perspective from geometric quantization

    NASA Astrophysics Data System (ADS)

    Karabali, Dimitra; Nair, V. P.

    2016-09-01

    The topological terms of the bulk effective action for the integer quantum Hall effect, capturing the dynamics of gauge and gravitational fluctuations, reveal a curiosity, namely, the Abelian potential for the magnetic field appears in a particular combination with the Abelian spin connection. This seems to hold for the quantum Hall effect on complex projective spaces of arbitrary dimensions. An interpretation of this in terms of the algebra of symplectic transformations is given. This can also be viewed in terms of the metaplectic correction in geometric quantization.

  19. Resonant Tunneling of Spin-Wave Packets via Quantized States in Potential Wells

    NASA Astrophysics Data System (ADS)

    Hansen, Ulf-Hendrik; Gatzen, Marius; Demidov, Vladislav E.; Demokritov, Sergej O.

    2007-09-01

    We have studied the tunneling of spin-wave pulses through a system of two closely situated potential barriers. The barriers represent two areas of inhomogeneity of the static magnetic field, where the existence of spin waves is forbidden. We show that for certain values of the spin-wave frequency corresponding to the quantized spin-wave states existing in the well formed between the barriers, the tunneling has a resonant character. As a result, transmission of spin-wave packets through the double-barrier structure is much more efficient than the sequent tunneling through two single barriers.

  20. Landau quantization for a neutral particle in the presence of topological defects

    SciTech Connect

    Bakke, K.; Ribeiro, L. R.; Furtado, C.; Nascimento, J. R.

    2009-01-15

    In this paper we study the Landau levels in the nonrelativistic dynamics of a neutral particle which possesses a permanent magnetic dipole moment interacting with an external electric field in the curved space-time background with the presence or absence of a torsion field. The eigenfunction and eigenvalues of the Hamiltonian are obtained. We show that the presence of the topological defect breaks the infinite degeneracy of the Landau levels arising in this system. We also apply a duality transformation to discuss this same quantization for a dynamics of a neutral particle with a permanent electric dipole moment.