Optimal Qubit Control Using Single-Flux Quantum Pulses
NASA Astrophysics Data System (ADS)
Liebermann, Per J.; Wilhelm, Frank K.
2016-08-01
Single-flux quantum pulses are a natural candidate for on-chip control of superconducting qubits. We show that they can drive high-fidelity single-qubit rotations—even in leaky transmon qubits—if the pulse sequence is suitably optimized. We achieve this objective by showing that, for these restricted all-digital pulses, genetic algorithms can be made to converge to arbitrarily low error, verified up to a reduction in gate error by 2 orders of magnitude compared to an evenly spaced pulse train. Timing jitter of the pulses is taken into account, exploring the robustness of our optimized sequence. This approach takes us one step further towards on-chip qubit controls.
NASA Astrophysics Data System (ADS)
Vanner, Michael R.; Pikovski, Igor; Cole, Garrett D.; Kim, Myungshik; Brukner, Caslav; Hammerer, Klemens; Milburn, Gerard J.; Aspelmeyer, Markus
2011-03-01
By combining quantum optics with mechanical resonators an avenue is opened to extend investigations of quantum behavior into unprecendented mass regimes. The field resulting from this combination - ``cavity quantum optomechanics'' -- is receiving a surge of interest for its potential to contribute to quantum measurement and control, studies of decoherence and non-classical state preparation of macroscopic objects. However, quantum state preparation and especially quantum state reconstruction of mechanical oscillators is currently a significant challenge. We are pursuing a scheme that employs short optical pulses to realize quantum state tomography, squeezing via measurement and state purifcation of a mechanical resonator. The pulsed scheme has considerable resilience to initial thermal occupation, provides a promising means to explore the quantum nature of massive oscillators and can be applied to other systems such as trapped ions. Our theoretical proposal and experimental results will be discussed.
Pulse power applications of flux compression generators
Fowler, C.M.; Caird, R.S.; Erickson, D.J.; Freeman, B.L.
1981-01-01
Characteristics are presented for two different types of explosive driven flux compression generators and a megavolt pulse transformer. Status reports are given for rail gun and plasma focus programs for which the generators serve as power sources.
Quantum tunneling in flux compactifications
NASA Astrophysics Data System (ADS)
Blanco-Pillado, Jose J.; Schwartz-Perlov, Delia; Vilenkin, Alexander
2009-12-01
We identify instantons representing vacuum decay in a 6-dimensional toy model for string theory flux compactifications, with the two extra dimensions compactified on a sphere. We evaluate the instanton action for tunneling between different flux vacua, as well as for the decompactification decay channel. The bubbles resulting from flux tunneling have an unusual structure. They are bounded by two-dimensional branes, which are localized in the extra dimensions. This has important implications for bubble collisions.
Flux qubits: quantum nondemolition readout and controlled-not gate
NASA Astrophysics Data System (ADS)
Mooij, Hans
2007-03-01
Superconducting flux qubits have of a loop with three Josephson junctions, biased at about half a flux quantum. Basic states have opposite persistent currents, readout is by inductive coupling to a SQUID magnetometer. The following results have been obtained in a bias flux regime where the qubit energy states closely resemble the current states. Coherence was significantly lower than for the best samples. A dispersive method for readout was developed, where the inductance of the SQUID is measured rather than the critical current. The SQUID together with an on-chip capacitance forms a nonlinear oscillator where the resonant frequency depends on the flux in the SQUID, in turn influenced by the qubit. For high driving, two oscillation modes exist with low and high amplitude with a hysteretic transition. A short microwave pulse is applied and the probability that the oscillator switches to the high-amplitude mode is determined. This readout method yields a fidelity of 87% without any corrections for relaxation. We have performed series of two consecutive measurements on a qubit in various superposition states and correlations between the outcomes were determined. Between the first measurement and the second a Rabi pulse was applied. Results were consistent with fully projective measurement, with a quantum nondemolition fidelity of 88% without corrections. We have also studied a system of two permanently coupled flux qubits. For each qubit, the energy splitting is shifted by the other qubit to plus or minus 200 MHz. When a suitable pulse is applied to a target qubit, it acts as a pi-pulse when the control qubit is in one state, and does nothing in the opposite case. This controlled-not operation that consists of a single microwave pulse has been performed for arbitrary superposition states of the two qubits. We have determined the phase reliability of the operation as well as its amplitude response.
Coherent pulse position modulation quantum cipher
Sohma, Masaki; Hirota, Osamu
2014-12-04
On the basis of fundamental idea of Yuen, we present a new type of quantum random cipher, where pulse position modulated signals are encrypted in the picture of quantum Gaussian wave form. We discuss the security of our proposed system with a phase mask encryption.
Quantum state engineering with flux-biased Josephson phase qubits by rapid adiabatic passages
Nie, W.; Huang, J. S.; Shi, X.; Wei, L. F.
2010-09-15
In this article, the scheme of quantum computing based on the Stark-chirped rapid adiabatic passage (SCRAP) technique [L. F. Wei, J. R. Johansson, L. X. Cen, S. Ashhab, and F. Nori, Phys. Rev. Lett. 100, 113601 (2008)] is extensively applied to implement quantum state manipulations in flux-biased Josephson phase qubits. The broken-parity symmetries of bound states in flux-biased Josephson junctions are utilized to conveniently generate the desirable Stark shifts. Then, assisted by various transition pulses, universal quantum logic gates as well as arbitrary quantum state preparations can be implemented. Compared with the usual {pi}-pulse operations widely used in experiments, the adiabatic population passages proposed here are insensitive to the details of the applied pulses and thus the desirable population transfers can be satisfyingly implemented. The experimental feasibility of the proposal is also discussed.
Continuous and Pulsed Quantum Zeno Effect
Streed, Erik W.; Mun, Jongchul; Boyd, Micah; Campbell, Gretchen K.; Medley, Patrick; Ketterle, Wolfgang; Pritchard, David E.
2006-12-31
Continuous and pulsed quantum Zeno effects were observed using a {sup 87}Rb Bose-Einstein condensate. Oscillations between two ground hyperfine states of a magnetically trapped condensate, externally driven at a transition rate {omega}{sub R}, were suppressed by destructively measuring the population in one of the states with resonant light. The suppression of the transition rate in the two-level system was quantified for pulsed measurements with a time interval {delta}t between pulses and continuous measurements with a scattering rate {gamma}. We observe that the continuous measurements exhibit the same suppression in the transition rate as the pulsed measurements when {gamma}{delta}t=3.60(0.43), in agreement with the predicted value of 4. Increasing the measurement rate suppressed the transition rate down to 0.005{omega}{sub R}.
Quantum transport in coupled resonators enclosed synthetic magnetic flux
NASA Astrophysics Data System (ADS)
Jin, L.
2016-07-01
Quantum transport properties are instrumental to understanding quantum coherent transport processes. Potential applications of quantum transport are widespread, in areas ranging from quantum information science to quantum engineering, and not restricted to quantum state transfer, control and manipulation. Here, we study light transport in a ring array of coupled resonators enclosed synthetic magnetic flux. The ring configuration, with an arbitrary number of resonators embedded, forms a two-arm Aharonov-Bohm interferometer. The influence of magnetic flux on light transport is investigated. Tuning the magnetic flux can lead to resonant transmission, while half-integer magnetic flux quantum leads to completely destructive interference and transmission zeros in an interferometer with two equal arms.
Learning robust pulses for generating universal quantum gates
Dong, Daoyi; Wu, Chengzhi; Chen, Chunlin; Qi, Bo; Petersen, Ian R.; Nori, Franco
2016-01-01
Constructing a set of universal quantum gates is a fundamental task for quantum computation. The existence of noises, disturbances and fluctuations is unavoidable during the process of implementing quantum gates for most practical quantum systems. This paper employs a sampling-based learning method to find robust control pulses for generating a set of universal quantum gates. Numerical results show that the learned robust control fields are insensitive to disturbances, uncertainties and fluctuations during the process of realizing universal quantum gates. PMID:27782219
Blind quantum computing with weak coherent pulses.
Dunjko, Vedran; Kashefi, Elham; Leverrier, Anthony
2012-05-18
The universal blind quantum computation (UBQC) protocol [A. Broadbent, J. Fitzsimons, and E. Kashefi, in Proceedings of the 50th Annual IEEE Symposiumon Foundations of Computer Science (IEEE Computer Society, Los Alamitos, CA, USA, 2009), pp. 517-526.] allows a client to perform quantum computation on a remote server. In an ideal setting, perfect privacy is guaranteed if the client is capable of producing specific, randomly chosen single qubit states. While from a theoretical point of view, this may constitute the lowest possible quantum requirement, from a pragmatic point of view, generation of such states to be sent along long distances can never be achieved perfectly. We introduce the concept of ϵ blindness for UBQC, in analogy to the concept of ϵ security developed for other cryptographic protocols, allowing us to characterize the robustness and security properties of the protocol under possible imperfections. We also present a remote blind single qubit preparation protocol with weak coherent pulses for the client to prepare, in a delegated fashion, quantum states arbitrarily close to perfect random single qubit states. This allows us to efficiently achieve ϵ-blind UBQC for any ϵ>0, even if the channel between the client and the server is arbitrarily lossy.
Correlated states of a quantum oscillator acted by short pulses
NASA Technical Reports Server (NTRS)
Manko, O. V.
1993-01-01
Correlated squeezed states for a quantum oscillator are constructed based on the method of quantum integrals of motion. The quantum oscillator is acted upon by short duration pulses. Three delta-kickings of frequency are used to model the pulses' dependence upon the time aspects of the frequency of the oscillator. Additionally, the correlation coefficient and quantum variances of operations of coordinates and momenta are written in explicit form.
Flux rectification in the quantum XXZ chain.
Landi, Gabriel T; Novais, E; de Oliveira, Mário J; Karevski, Dragi
2014-10-01
Thermal rectification is the phenomenon by which the flux of heat depends on the direction of the flow. It has attracted much interest in recent years due to the possibility of devising thermal diodes. In this paper, we consider the rectification phenomenon in the quantum XXZ chain subject to an inhomogeneous field. The chain is driven out of equilibrium by the contact at its boundaries with two different reservoirs, leading to a constant flow of magnetization from one bath to the other. The nonunitary dynamics of this system, which is modeled by a Lindblad master equation, is treated exactly for small sizes and numerically for larger ones. The functional dependence of the rectification coefficient on the model parameters (anisotropy, field amplitude, and out of equilibrium driving strength) is investigated in full detail. Close to the XX point and at small inhomogeneity and low driving, we have found an explicit expression for the rectification coefficient that is valid at all system sizes. In particular, it shows that the phenomenon of rectification persists even in the thermodynamic limit. Finally, we prove that in the case of the XX chain, there is no rectification.
Quantum depinning of flux lines from columnar defects
Chudnovsky, E.M. ); Ferrera, A.; Vilenkin, A. )
1995-01-01
The depinning of a flux line from a columnar defect is studied within the path-integral approach. Instantons of the quantum field theory in 1+1 dimensions are computed for the flux line whose dynamics is dominated by the Magnus force. The universal temperature dependence of the decay rate in the proximity of the critical current is obtained. This problem provides an example of macroscopic quantum tunneling, which is accessible to the direct comparison between theory and experiment.
Effect of pulse frequency on the ion fluxes during pulsed dc magnetron sputtering
Rahamathunnisa, M.; Cameron, D. C.
2009-03-15
The ion fluxes and energies which impinge on the substrate during the deposition of chromium nitride by asymmetric bipolar pulsed dc reactive magnetron sputtering have been analyzed using energy resolved mass spectrometry. It has been found that there is a remarkable increase in ion flux at higher pulse frequencies and that the peak ion energy is directly related to the positive voltage overshoot of the target voltage. The magnitude of the metal flux depositing on the substrate is consistent with a 'dead time' of {approx}0.7 {mu}s at the start of the on period. The variation of the ion flux with pulse frequency has been explained by a simple model in which the ion density during the on period has a large peak which is slightly delayed from the large negative voltage overshoot which occurs at the start of the on pulse due to increased ionization at that time. This is consistent with the previously observed phenomena in pulsed sputtering.
rf-SQUID qubit readout using a fast flux pulse
NASA Astrophysics Data System (ADS)
Bennett, Douglas A.; Longobardi, Luigi; Patel, Vijay; Chen, Wei; Lukens, James E.
2007-11-01
We report on development of a set-up for measuring intrawell dynamics in a Nb-based rf-SQUID qubit described by a double well potential, by rapidly tilting the potential, allowing escape to the adjacent well with high probability for an excited state but low probability for the ground state. The rapid tilt of the double well potential is accomplished via a readout flux pulse inductively coupled to the qubit from a microstrip transmission line on a separate chip suspended above the qubit chip. The readout pulse is analogous to the current bias pulse used to readout phase qubits and hysteretic dc-SQUID magnetometers. The coupling between the transmission line and the qubit is carefully controlled via a window in the ground plane between the signal conductor of the microstrip and the qubit loop. Since the high frequency transmission lines are on a separate chip, they can be independently characterized and reused for different qubit samples. Clean flux pulses as short as 5 ns with rise times of 0.5 ns have been coupled to the qubit to measure escape rates higher than 108 s-1, the lifetime of the excited state, and coherent oscillations between the ground and excited states within the same well.
Developing a High-Flux Isolated Attosecond Pulse Source
NASA Astrophysics Data System (ADS)
Kamalov, Andrei; Ware, Matthew; Bucksbaum, Philip; Cryan, James
2016-05-01
High harmonic based light sources have proven to be valuable experimental tools that facilitate studies of electron dynamics at their natural timescale, the attosecond regime. The nature of driving laser sources used in high harmonic generation make it difficult to attain attosecond pulses that are both isolated in time and of a high intensity. We present our progress in commissioning a beamline designed to produce high-flux isolated attosecond pulses. A multistep amplification process provides us with 30 mJ, 25 fs pulses centered around 800 nm with 100 Hz repetition rate. These pulses are spatially split and focused into a gas cell. A non-collinear optical gating scheme is used to produce a lighthouse source of high harmonic radiation wherein each beamlet is an isolated attosecond pulse. A variable-depth grazing-incidence stepped mirror is fabricated to extend the optical path length of the older beamlets and thus overlap the beamlets in time. The combined beam is tightly focused and ensuing mechanics will be studied with an electron spectrometer as well as a xuv photon spectrometer. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division.
Extending quantum coherence of superconducting flux
NASA Astrophysics Data System (ADS)
Yan, Fei; Kamal, Archana; Orlando, Terry; Gustavsson, Simon; Oliver, William; Engineering Quantum Systems, MIT Team
We present the design of a superconducting qubit with multiple Josephson junctions. The design starts with a capacitively shunted flux qubit, and it incorporates particular junction parameter choices for the purpose of simultaneously optimizing over transition frequency, anharmonicity, flux- and charge-noise sensitivity around flux degeneracy. By studying the scaling properties with design parameters, we identify directions to extend coherence substantially. This research was funded by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA) via MIT Lincoln Laboratory under Air Force Contract No. FA8721-05-C-0002.
Adiabatic quantum computing with phase modulated laser pulses
Goswami, Debabrata
2005-01-01
Implementation of quantum logical gates for multilevel systems is demonstrated through decoherence control under the quantum adiabatic method using simple phase modulated laser pulses. We make use of selective population inversion and Hamiltonian evolution with time to achieve such goals robustly instead of the standard unitary transformation language. PMID:17195865
Optimized pulse sequences for suppressing unwanted transitions in quantum systems
Schroeder, C. A.; Agarwal, G. S.
2011-01-15
We investigate the nature of the pulse sequence so that unwanted transitions in quantum systems can be inhibited optimally. For this purpose we show that the sequence of pulses proposed by Uhrig [Phys. Rev. Lett. 98, 100504 (2007)] in the context of inhibition of environmental dephasing effects is optimal. We derive exact results for inhibiting the transitions and confirm the results numerically. We posit a very significant improvement by usage of the Uhrig sequence over an equidistant sequence in decoupling a quantum system from unwanted transitions. The physics of inhibition is the destructive interference between transition amplitudes before and after each pulse.
The influence of continuous vs. pulsed laser excitation on single quantum dot photophysics.
Smyder, Julie A; Amori, Amanda R; Odoi, Michael Y; Stern, Harry A; Peterson, Jeffrey J; Krauss, Todd D
2014-12-21
The impact of pulsed versus continuous wave (cw) laser excitation on the photophysical properties of single quantum dots (QDs) has been investigated in an experiment in which all macroscopic variables are identical except the nature of laser excitation. Pulsed excitation exaggerates the effects of photobleaching, results in a lower probability of long ON fluorescence blinking events, and leads to shorter fluorescence lifetimes with respect to cw excitation at the same wavelength and average intensity. Spectral wandering, biexciton quantum yields, and power law exponents that describe fluorescence blinking are largely insensitive to the nature of laser excitation. These results explicitly illustrate important similarities and differences in fluorescence dynamics between pulsed and cw excitation, enabling more meaningful comparisons between literature reports and aiding in the design of new experiments to mitigate possible influences of high photon flux on QDs.
Comment on 'Realism and quantum flux tunneling'
NASA Technical Reports Server (NTRS)
Leggett, A. J.; Garg, Anupam
1987-01-01
A reply is presented to Ballentine's (1987) critique of the Legett and Garg (1985) experiment to discriminate between the experimental predictions of quantum mechanics (QM) and those of a class of macrorealistic theories. Legett and Garg uphold their earlier conclusions on the basis of the fact that the present critique refers to an experiment which was not in fact proposed. It is stressed that the original work involved an analysis according to macrorealism, while the calculations of Ballentine only demonstrate the internal consistency of the formalism of QM when applied to three consecutive actually performed experiments.
Experimental quantum fingerprinting with weak coherent pulses.
Xu, Feihu; Arrazola, Juan Miguel; Wei, Kejin; Wang, Wenyuan; Palacios-Avila, Pablo; Feng, Chen; Sajeed, Shihan; Lütkenhaus, Norbert; Lo, Hoi-Kwong
2015-10-30
Quantum communication holds the promise of creating disruptive technologies that will play an essential role in future communication networks. For example, the study of quantum communication complexity has shown that quantum communication allows exponential reductions in the information that must be transmitted to solve distributed computational tasks. Recently, protocols that realize this advantage using optical implementations have been proposed. Here we report a proof-of-concept experimental demonstration of a quantum fingerprinting system that is capable of transmitting less information than the best-known classical protocol. Our implementation is based on a modified version of a commercial quantum key distribution system using off-the-shelf optical components over telecom wavelengths, and is practical for messages as large as 100 Mbits, even in the presence of experimental imperfections. Our results provide a first step in the development of experimental quantum communication complexity.
Experimental quantum fingerprinting with weak coherent pulses
Xu, Feihu; Arrazola, Juan Miguel; Wei, Kejin; Wang, Wenyuan; Palacios-Avila, Pablo; Feng, Chen; Sajeed, Shihan; Lütkenhaus, Norbert; Lo, Hoi-Kwong
2015-01-01
Quantum communication holds the promise of creating disruptive technologies that will play an essential role in future communication networks. For example, the study of quantum communication complexity has shown that quantum communication allows exponential reductions in the information that must be transmitted to solve distributed computational tasks. Recently, protocols that realize this advantage using optical implementations have been proposed. Here we report a proof-of-concept experimental demonstration of a quantum fingerprinting system that is capable of transmitting less information than the best-known classical protocol. Our implementation is based on a modified version of a commercial quantum key distribution system using off-the-shelf optical components over telecom wavelengths, and is practical for messages as large as 100 Mbits, even in the presence of experimental imperfections. Our results provide a first step in the development of experimental quantum communication complexity. PMID:26515586
Arbitrary precision composite pulses for NMR quantum computing.
Alway, William G; Jones, Jonathan A
2007-11-01
We discuss the implementation of arbitrary precision composite pulses developed using the methods of Brown et al. [K.R. Brown, A.W. Harrow, I.L. Chuang, Arbitrarily accurate composite pulse sequences, Phys. Rev. A 70 (2004) 052318]. We give explicit results for pulse sequences designed to tackle both the simple case of pulse length errors and the more complex case of off-resonance errors. The results are developed in the context of NMR quantum computation, but could be applied more widely.
Magnetic Flux Compression Concept for Nuclear Pulse Propulsion and Power
NASA Technical Reports Server (NTRS)
Litchford, Ronald J.
2000-01-01
The desire for fast, efficient interplanetary transport requires propulsion systems having short acceleration times and very high specific impulse attributes. Unfortunately, most highly efficient propulsion systems which are within the capabilities of present day technologies are either very heavy or yield very low impulse such that the acceleration time to final velocity is too long to be of lasting interest, One exception, the nuclear thermal thruster, could achieve the desired acceleration but it would require inordinately large mass ratios to reach the range of desired final velocities. An alternative approach, among several competing concepts that are beyond our modern technical capabilities, is a pulsed thermonuclear device utilizing microfusion detonations. In this paper, we examine the feasibility of an innovative magnetic flux compression concept for utilizing microfusion detonations, assuming that such low yield nuclear bursts can be realized in practice. In this concept, a magnetic field is compressed between an expanding detonation driven diamagnetic plasma and a stationary structure formed from a high temperature superconductor (HTSC). In general, we are interested in accomplishing two important functions: (1) collimation of a hot diamagnetic plasma for direct thrust production; and (2) pulse power generation for dense plasma ignition. For the purposes of this research, it is assumed that rnicrofusion detonation technology may become available within a few decades, and that this approach could capitalize on recent advances in inertial confinement fusion ICF) technologies including magnetized target concepts and antimatter initiated nuclear detonations. The charged particle expansion velocity in these detonations can be on the order of 10 (exp 6)- 10 (exp 7) meters per second, and, if effectively collimated by a magnetic nozzle, can yield the Isp and the acceleration levels needed for practical interplanetary spaceflight. The ability to ignite pure
Multifrequency control pulses for multilevel superconducting quantum circuits
Forney, Anne M.; Jackson, Steven R.; Strauch, Frederick W.
2010-01-15
Superconducting quantum circuits, such as the superconducting phase qubit, have multiple quantum states that can interfere with ideal qubit operation. The use of multiple frequency control pulses, resonant with the energy differences of the multistate system, is theoretically explored. An analytical method to design such control pulses is developed, using a generalization of the Floquet method to multiple frequency controls. This method is applicable to optimizing the control of both superconducting qubits and qudits and is found to be in excellent agreement with time-dependent numerical simulations.
Novel latch for adiabatic quantum-flux-parametron logic
Takeuchi, Naoki Yamanashi, Yuki; Yoshikawa, Nobuyuki; Ortlepp, Thomas
2014-03-14
We herein propose the quantum-flux-latch (QFL) as a novel latch for adiabatic quantum-flux-parametron (AQFP) logic. A QFL is very compact and compatible with AQFP logic gates and can be read out in one clock cycle. Simulation results revealed that the QFL operates at 5 GHz with wide parameter margins of more than ±22%. The calculated energy dissipation was only ∼0.1 aJ/bit, which yields a small energy delay product of 20 aJ·ps. We also designed shift registers using QFLs to demonstrate more complex circuits with QFLs. Finally, we experimentally demonstrated correct operations of the QFL and a 1-bit shift register (a D flip-flop)
Experimental energy-density flux characterization of ultrashort laser pulse filaments.
Faccio, Daniele; Lotti, Antonio; Matijosius, Aidas; Bragheri, Francesca; Degiorgio, Vittorio; Couairon, Arnaud; Di Trapani, Paolo
2009-05-11
Visualization of the energy density flux gives a unique insight into the propagation properties of complex ultrashort pulses. This analysis, formerly relegated to numerical investigations, is here shown to be an invaluable experimental diagnostic tool. By retrieving the spatio-temporal amplitude and phase we experimentally obtain the energy density flux within complex ultrashort pulses generated by filamentation in a nonlinear Kerr medium.
Design of a Pulsed Flux Concentrator for the ILC Positron Source
Gronberg, J; Abbott, R; Brown, C; Javedani, J; Piggott, W T; Clarke, J
2010-05-17
The Positron Source for the International Linear Collider requires an optical matching device after the target to increase the capture efficiency for positrons. Pulsed flux concentrators have been used by previous machines to improve the capture efficiency but the ILC has a 1 ms long pulse train which is too long for a standard flux concentrator. A pulsed flux concentrator with a 40 ms flat top was created for a hyperon experiment in 1965 which used liquid nitrogen cooling to reduce the resistance of the concentrating plates and extend the lifetime of the pulse. We report on a design for a 1 ms device based on this concept.
Noncollinear gating for high-flux isolated-attosecond-pulse generation
NASA Astrophysics Data System (ADS)
Zhong, Shiyang; He, Xinkui; Jiang, Yujiao; Teng, Hao; He, Peng; Liu, Yangyang; Zhao, Kun; Wei, Zhiyi
2016-03-01
We propose an approach for producing high-flux isolated-attosecond pulses (IAPs) based on noncollinear geometry of high-order harmonic generation (HHG). By combining a main driving pulse and an ultrashort gating pulse in the interaction medium to form a tilt wave front in a very narrow overlapping time region, the attosecond pulses generated in this region are spatially separated from the original beam in the far field. It gives a way of extracting IAPs as well as fully characterizing an attosecond-pulse train (APT). Since this approach set no restriction on the pulse duration of the main driving pulse, it is particularly suitable for high-flux IAP generation by a high-energy laser which usually has multicycle pulse duration.
Brihoum, Melisa; Cunge, Gilles; Darnon, Maxime; Joubert, Olivier; Gahan, David; Braithwaite, Nicholas St. J.
2013-03-15
Changes in the ion flux and the time-averaged ion distribution functions are reported for pulsed, inductively coupled RF plasmas (ICPs) operated over a range of duty cycles. For helium and argon plasmas, the ion flux increases rapidly after the start of the RF pulse and after about 50 {mu}s reaches the same steady state value as that in continuous ICPs. Therefore, when the plasma is pulsed at 1 kHz, the ion flux during the pulse has a value that is almost independent of the duty cycle. By contrast, in molecular electronegative chlorine/chlorosilane plasmas, the ion flux during the pulse reaches a steady state value that depends strongly on the duty cycle. This is because both the plasma chemistry and the electronegativity depend on the duty cycle. As a result, the ion flux is 15 times smaller in a pulsed 10% duty cycle plasma than in the continuous wave (CW) plasma. The consequence is that for a given synchronous RF biasing of a wafer-chuck, the ion energy is much higher in the pulsed plasma than it is in the CW plasma of chlorine/chlorosilane. Under these conditions, the wafer is bombarded by a low flux of very energetic ions, very much as it would in a low density, capacitively coupled plasma. Therefore, one can extend the operating range of ICPs through synchronous pulsing of the inductive excitation and capacitive chuck-bias, offering new means by which to control plasma etching.
Ablation characteristics of quantum square pulse mode dental erbium laser
NASA Astrophysics Data System (ADS)
Lukač, Nejc; Suhovršnik, Tomaž; Lukač, Matjaž; Jezeršek, Matija
2016-01-01
Erbium lasers are by now an accepted tool for performing ablative medical procedures, especially when minimal invasiveness is desired. Ideally, a minimally invasive laser cutting procedure should be fast and precise, and with minimal pain and thermal side effects. All these characteristics are significantly influenced by laser pulse duration, albeit not in the same manner. For example, high cutting efficacy and low heat deposition are characteristics of short pulses, while vibrations and ejected debris screening are less pronounced at longer pulse durations. We report on a study of ablation characteristics on dental enamel and cementum, of a chopped-pulse Er:YAG [quantum square pulse (QSP)] mode, which was designed to reduce debris screening during an ablation process. It is shown that in comparison to other studied standard Er:YAG and Er,Cr:YSGG laser pulse duration modes, the QSP mode exhibits the highest ablation drilling efficacy with lowest heat deposition and reduced vibrations, demonstrating that debris screening has a considerable influence on the ablation process. By measuring single-pulse ablation depths, we also show that tissue desiccation during the consecutive delivery of laser pulses leads to a significant reduction of the intrinsic ablation efficacy that cannot be fully restored under clinical settings by rehydrating the tooth using an external water spray.
Accuracy of quantum sensors measuring yield photon flux and photosynthetic photon flux
NASA Technical Reports Server (NTRS)
Barnes, C.; Tibbitts, T.; Sager, J.; Deitzer, G.; Bubenheim, D.; Koerner, G.; Bugbee, B.; Knott, W. M. (Principal Investigator)
1993-01-01
Photosynthesis is fundamentally driven by photon flux rather than energy flux, but not all absorbed photons yield equal amounts of photosynthesis. Thus, two measures of photosynthetically active radiation have emerged: photosynthetic photon flux (PPF), which values all photons from 400 to 700 nm equally, and yield photon flux (YPF), which weights photons in the range from 360 to 760 nm according to plant photosynthetic response. We selected seven common radiation sources and measured YPF and PPF from each source with a spectroradiometer. We then compared these measurements with measurements from three quantum sensors designed to measure YPF, and from six quantum sensors designed to measure PPF. There were few differences among sensors within a group (usually <5%), but YPF values from sensors were consistently lower (3% to 20%) than YPF values calculated from spectroradiometric measurements. Quantum sensor measurements of PPF also were consistently lower than PPF values calculated from spectroradiometric measurements, but the differences were <7% for all sources, except red-light-emitting diodes. The sensors were most accurate for broad-band sources and least accurate for narrow-band sources. According to spectroradiometric measurements, YPF sensors were significantly less accurate (>9% difference) than PPF sensors under metal halide, high-pressure sodium, and low-pressure sodium lamps. Both sensor types were inaccurate (>18% error) under red-light-emitting diodes. Because both YPF and PPF sensors are imperfect integrators, and because spectroradiometers can measure photosynthetically active radiation much more accurately, researchers should consider developing calibration factors from spectroradiometric data for some specific radiation sources to improve the accuracy of integrating sensors.
Accuracy of quantum sensors measuring yield photon flux and photosynthetic photon flux.
Barnes, C; Tibbitts, T; Sager, J; Deitzer, G; Bubenheim, D; Koerner, G; Bugbee, B
1993-12-01
Photosynthesis is fundamentally driven by photon flux rather than energy flux, but not all absorbed photons yield equal amounts of photosynthesis. Thus, two measures of photosynthetically active radiation have emerged: photosynthetic photon flux (PPF), which values all photons from 400 to 700 nm equally, and yield photon flux (YPF), which weights photons in the range from 360 to 760 nm according to plant photosynthetic response. We selected seven common radiation sources and measured YPF and PPF from each source with a spectroradiometer. We then compared these measurements with measurements from three quantum sensors designed to measure YPF, and from six quantum sensors designed to measure PPF. There were few differences among sensors within a group (usually <5%), but YPF values from sensors were consistently lower (3% to 20%) than YPF values calculated from spectroradiometric measurements. Quantum sensor measurements of PPF also were consistently lower than PPF values calculated from spectroradiometric measurements, but the differences were <7% for all sources, except red-light-emitting diodes. The sensors were most accurate for broad-band sources and least accurate for narrow-band sources. According to spectroradiometric measurements, YPF sensors were significantly less accurate (>9% difference) than PPF sensors under metal halide, high-pressure sodium, and low-pressure sodium lamps. Both sensor types were inaccurate (>18% error) under red-light-emitting diodes. Because both YPF and PPF sensors are imperfect integrators, and because spectroradiometers can measure photosynthetically active radiation much more accurately, researchers should consider developing calibration factors from spectroradiometric data for some specific radiation sources to improve the accuracy of integrating sensors.
Monitoring of ethylene by a pulsed quantum cascade laser.
Weidmann, Damien; Kosterev, Anatoliy A; Roller, Chad; Curl, Robert F; Fraser, Matthew P; Tittel, Frank K
2004-06-01
We report on the development and performance of a gas sensor based on a quantum cascade laser operating at a wavelength of approximately 10 microns to measure ethylene (C2H4) concentrations by use of a rotational component of the fundamental nu 7 band. The laser is thermoelectrically cooled and operates in a pulsed mode. The influence of pulse-to-pulse fluctuations is minimized by use of a reference beam and a single detector with time discriminating electronics. Gas absorption is recorded in a 100-m optical path-length astigmatic Herriott cell. With a 10-kHz pulse repetition rate and an 80-s total acquisition time, a noise equivalent sensitivity of 30 parts per billion has been demonstrated. The sensor has been applied to monitor C2H4 in vehicle exhaust as well as in air collected in a high-traffic urban tunnel.
Quantum Paramagnet in a π Flux Triangular Lattice Hubbard Model.
Rachel, Stephan; Laubach, Manuel; Reuther, Johannes; Thomale, Ronny
2015-04-24
We propose the π flux triangular lattice Hubbard model (π THM) as a prototypical setup to stabilize magnetically disordered quantum states of matter in the presence of charge fluctuations. The quantum paramagnetic domain of the π THM that we identify for intermediate Hubbard U is framed by a Dirac semimetal for weak coupling and by 120° Néel order for strong coupling. Generalizing the Klein duality from spin Hamiltonians to tight-binding models, the π THM maps to a Hubbard model which corresponds to the (J_{H},J_{K})=(-1,2) Heisenberg-Kitaev model in its strong coupling limit. The π THM provides a promising microscopic testing ground for exotic finite-U spin liquid ground states amenable to numerical investigation. PMID:25955072
Phase-controlled superconducting heat-flux quantum modulator
NASA Astrophysics Data System (ADS)
Giazotto, F.; Martínez-Pérez, M. J.
2012-09-01
We theoretically put forward the concept of a phase-controlled superconducting heat-flux quantum modulator. Its operation relies on phase-dependent heat current predicted to occur in temperature-biased Josephson tunnel junctions. The device behavior is investigated as a function of temperature bias across the junctions, bath temperature, and junctions asymmetry as well. In a realistic Al-based setup the structure could provide temperature modulation amplitudes up to ˜50 mK with flux-to-temperature transfer coefficients exceeding ˜125 mK/Φ0 below 1 K, and temperature modulation frequency of the order of a few MHz. The proposed structure appears as a promising building-block for the implementation of caloritronic devices operating at cryogenic temperatures.
Flux formulation of loop quantum gravity: classical framework
NASA Astrophysics Data System (ADS)
Dittrich, Bianca; Geiller, Marc
2015-07-01
We recently introduced a new representation for loop quantum gravity (LQG), which is based on the BF vacuum and is in this sense much nearer to the spirit of spin foam dynamics. In the present paper we lay out the classical framework underlying this new formulation. The central objects in our construction are the so-called integrated fluxes, which are defined as the integral of the electric field variable over surfaces of codimension one, and related in turn to Wilson surface operators. These integrated flux observables will play an important role in the coarse graining of states in LQG, and can be used to encode in this context the notion of curvature-induced torsion. We furthermore define a continuum phase space as the modified projective limit of a family of discrete phase spaces based on triangulations. This continuum phase space yields a continuum (holonomy-flux) algebra of observables. We show that the corresponding Poisson algebra is closed by computing the Poisson brackets between the integrated fluxes, which have the novel property of being allowed to intersect each other.
Robust quantum gates between trapped ions using shaped pulses
NASA Astrophysics Data System (ADS)
Zou, Ping; Zhang, Zhi-Ming
2015-12-01
We improve two existing entangling gate schemes between trapped ion qubits immersed in a large linear crystal. Based on the existing two-qubit gate schemes by applying segmented forces on the individually addressed qubits, we present a systematic method to optimize the shapes of the forces to suppress the dominant source of infidelity. The spin-dependent forces in the scheme can be from periodic photon kicks or from continuous optical pulses. The entangling gates are fast, robust, and have high fidelity. They can be used to implement scalable quantum computation and quantum simulation.
Precipitation pulses and carbon fluxes in semiarid and arid ecosystems.
Huxman, Travis E; Snyder, Keirith A; Tissue, David; Leffler, A Joshua; Ogle, Kiona; Pockman, William T; Sandquist, Darren R; Potts, Daniel L; Schwinning, Susan
2004-10-01
In the arid and semiarid regions of North America, discrete precipitation pulses are important triggers for biological activity. The timing and magnitude of these pulses may differentially affect the activity of plants and microbes, combining to influence the C balance of desert ecosystems. Here, we evaluate how a "pulse" of water influences physiological activity in plants, soils and ecosystems, and how characteristics, such as precipitation pulse size and frequency are important controllers of biological and physical processes in arid land ecosystems. We show that pulse size regulates C balance by determining the temporal duration of activity for different components of the biota. Microbial respiration responds to very small events, but the relationship between pulse size and duration of activity likely saturates at moderate event sizes. Photosynthetic activity of vascular plants generally increases following relatively larger pulses or a series of small pulses. In this case, the duration of physiological activity is an increasing function of pulse size up to events that are infrequent in these hydroclimatological regions. This differential responsiveness of photosynthesis and respiration results in arid ecosystems acting as immediate C sources to the atmosphere following rainfall, with subsequent periods of C accumulation should pulse size be sufficient to initiate vascular plant activity. Using the average pulse size distributions in the North American deserts, a simple modeling exercise shows that net ecosystem exchange of CO2 is sensitive to changes in the event size distribution representative of wet and dry years. An important regulator of the pulse response is initial soil and canopy conditions and the physical structuring of bare soil and beneath canopy patches on the landscape. Initial condition influences responses to pulses of varying magnitude, while bare soil/beneath canopy patches interact to introduce nonlinearity in the relationship between pulse
Analysis of femtosecond quantum control mechanisms with colored double pulses
Vogt, Gerhard; Nuernberger, Patrick; Selle, Reimer; Dimler, Frank; Brixner, Tobias; Gerber, Gustav
2006-09-15
Fitness landscapes based on a limited number of laser pulse shape parameters can elucidate reaction pathways and can help to find the underlying control mechanism of optimal pulses determined by adaptive femtosecond quantum control. In a first experiment, we employ colored double pulses and systematically scan both the temporal subpulse separation and the relative amplitude of the two subpulses to acquire fitness landscapes. Comparison with results obtained from a closed-loop experiment demonstrates the capability of fitness landscapes for the revelation of possible control mechanisms. In a second experiment, using transient absorption spectroscopy, we investigate and compare the dependence of the excitation efficiency of the solvated dye molecule 5,5{sup '}-dichloro-11-diphenylamino-3,3{sup '}-diethyl-10,12-ethylene thiatricarbocyanine perchlorate (IR140) on selected pulse shapes in two parametrizations. The results show that very different pulse profiles can be equivalently adequate to maximize a given control objective. Fitness landscapes thus provide valuable information about different pathways along which a molecular system can be controlled with shaped laser pulses.
Combined flux compression and plasma opening switch on the Saturn pulsed power generator.
Felber, Franklin S; Waisman, Eduardo M; Mazarakis, Michael G
2010-05-01
A wire-array flux-compression cartridge installed on Sandia's Saturn pulsed power generator doubled the current into a 3-nH load to 6 MA and halved its rise time to 100 ns. The current into the load, however, was unexpectedly delayed by almost 1 micros. Estimates of a plasma flow switch acting as a long-conduction-time opening switch are consistent with key features of the power compression. The results suggest that microsecond-conduction-time plasma flow switches can be combined with flux compression both to amplify currents and to sharpen pulse rise times in pulsed power drivers.
Combined Flux Compression and Plasma Opening Switch on the Saturn Pulsed Power Generator
Felber, Franklin S.; Waisman, Eduardo M.; Mazarakis, Michael G.
2010-05-07
A wire-array flux-compression cartridge installed on Sandia's Saturn pulsed power generator doubled the current into a 3-nH load to 6 MA and halved its rise time to 100 ns. The current into the load, however, was unexpectedly delayed by almost 1 {mu}s. Estimates of a plasma flow switch acting as a long-conduction-time opening switch are consistent with key features of the power compression. The results suggest that microsecond-conduction-time plasma flow switches can be combined with flux compression both to amplify currents and to sharpen pulse rise times in pulsed power drivers.
Quantum correlations of pulses of optical parametric oscillator synchronously pumped above threshold
NASA Astrophysics Data System (ADS)
Averchenko, V. A.; Golubev, Yu. M.; Filonenko, K. V.; Fabre, C.; Treps, N.
2011-06-01
The quantum analysis of radiation from a degenerate optical parametric oscillator synchronously pumped above its oscillation threshold is presented. It is shown that pulses of signal and pump fields at the output of the oscillator have the following properties: quantum fluctuations of the fields are independent in each individual pulse, but correlated in pulses of the pulse train with a temporal step multiple of the pulse period. The number of essentially correlated pulses is on the order of the oscillator cavity finesse. Cross-correlations between the pump and signal pulses are established above the oscillation threshold. These correlations lead to a significant quantum effect in the integral characteristics of the fields. A theoretical analysis revealed that the spectrum of field fluctuations measured using a balanced homodyne detection technique of phase quadratures of the fields with a pulsed local oscillator reveals quantum noise suppression in the vicinity of frequencies that are multiples of the pulse repetition rate.
Resonator-assisted quantum bath engineering of a flux qubit
NASA Astrophysics Data System (ADS)
Zhang, Xian-Peng; Shen, Li-Tuo; Yin, Zhang-Qi; Wu, Huai-Zhi; Yang, Zhen-Biao
2015-01-01
We demonstrate quantum bath engineering for preparation of any orbital state with the controllable phase factor of a superconducting flux qubit assisted by a microwave coplanar waveguide resonator. We investigate the polarization efficiency of the arbitrary direction rotating on the Bloch sphere, and obtain an effective Rabi frequency by using the convergence condition of the Markovian master equation. The processes of polarization can be implemented effectively in a dissipative environment created by resonator photon loss when the spectrum of the microwave resonator matches with the specially tailored Rabi and resonant frequencies of the drive. Our calculations indicate that state-preparation fidelities in excess of 99% and the required time on the order of magnitude of a microsecond are in principle possible for experimentally reasonable sample parameters. Furthermore, our proposal could be applied to other systems with spin-based qubits.
Reprint of : Flux sensitivity of quantum spin Hall rings
NASA Astrophysics Data System (ADS)
Crépin, F.; Trauzettel, B.
2016-08-01
We analyze the periodicity of persistent currents in quantum spin Hall loops, partly covered with an s-wave superconductor, in the presence of a flux tube. Much like in normal (non-helical) metals, the periodicity of the single-particle spectrum goes from Φ0 = h / e to Φ0 / 2 as the length of the superconductor is increased past the coherence length of the superconductor. We further analyze the periodicity of the persistent current, which is a many-body effect. Interestingly, time reversal symmetry and parity conservation can significantly change the period. We find a 2Φ0-periodic persistent current in two distinct regimes, where one corresponds to a Josephson junction and the other one to an Aharonov-Bohm setup.
Adiabatic quantum-flux-parametron cell library adopting minimalist design
Takeuchi, Naoki; Yamanashi, Yuki; Yoshikawa, Nobuyuki
2015-05-07
We herein build an adiabatic quantum-flux-parametron (AQFP) cell library adopting minimalist design and a symmetric layout. In the proposed minimalist design, every logic cell is designed by arraying four types of building block cells: buffer, NOT, constant, and branch cells. Therefore, minimalist design enables us to effectively build and customize an AQFP cell library. The symmetric layout reduces unwanted parasitic magnetic coupling and ensures a large mutual inductance in an output transformer, which enables very long wiring between logic cells. We design and fabricate several logic circuits using the minimal AQFP cell library so as to test logic cells in the library. Moreover, we experimentally investigate the maximum wiring length between logic cells. Finally, we present an experimental demonstration of an 8-bit carry look-ahead adder designed using the minimal AQFP cell library and demonstrate that the proposed cell library is sufficiently robust to realize large-scale digital circuits.
Mixed quantum-classical equilibrium in global flux surface hopping
Sifain, Andrew E.; Wang, Linjun; Prezhdo, Oleg V.
2015-06-14
Global flux surface hopping (GFSH) generalizes fewest switches surface hopping (FSSH)—one of the most popular approaches to nonadiabatic molecular dynamics—for processes exhibiting superexchange. We show that GFSH satisfies detailed balance and leads to thermodynamic equilibrium with accuracy similar to FSSH. This feature is particularly important when studying electron-vibrational relaxation and phonon-assisted transport. By studying the dynamics in a three-level quantum system coupled to a classical atom in contact with a classical bath, we demonstrate that both FSSH and GFSH achieve the Boltzmann state populations. Thermal equilibrium is attained significantly faster with GFSH, since it accurately represents the superexchange process. GFSH converges closer to the Boltzmann averages than FSSH and exhibits significantly smaller statistical errors.
Superconducting single flux quantum 20 Gb/s clock recovery circuit
Kaplunenko, V.; Borzenets, V.; Dubash, N.; Van Duzer, T.
1997-07-01
A clock recovery circuit has been successfully tested at frequencies up to 20 GHz. This cell is designed for a rapid-single-flux-quantum (RSFQ) telecommunication data switch. It serves to set the receiver clock in phase with the incoming digital signal. The circuit consists of a dc-to-SFQ converter, ring oscillator [(RO) is a closed-loop RSFQ Josephson transmission line], confluence buffer, and an 8-bit binary counter. The input signal transforms to SFQ pulses, and each pulse resets the phase of the ring oscillator, giving a locking time of 1 bit. Thus, the pull-in (capture) range and hold-in (tracking) range are the same, and strictly depend on the encoding of the input signal. This range is estimated to be about 1 GHz at frequency 20 GHz, if the sequence of consecutive ONEs or ZEROs does not exceed 20 bits. The quality factor Q{sub RO} of ring oscillator is about 2000, which gives a jitter of 50 fs for a 35-junction RO. A sampling technique was used to demonstrate phase recovery (phase locking) with only one incoming pulse per 512 clock periods. {copyright} {ital 1997 American Institute of Physics.}
Optical measurement on quantum cascade lasers using femtosecond pulses
NASA Astrophysics Data System (ADS)
Cai, Hong
Quantum cascade lasers (QCLs) as the state-of-the-art mid-infrared (mid-IR) coherent sources have been greatly developed in aspects such as output power, energy efficiency and spectral purity. However, there are additional applications of QCLs in high demand, namely mode-locking, mid-IR modulation, etc. The inherent optical properties and ultrafast carrier dynamics can lead to solutions to these challenges. In this dissertation, we further characterize QCLs using mid-IR femtosecond (fs) pulses generated from a laser system consisting of a Ti:sapphire oscillator, a Ti:sapphire regenerative amplifier, an optical parametric amplifier and a difference frequency generator. We study the Kerr nonlinearity of QCLs by coupling resonant and off-resonant mid-IR fs pulses into an active QCL waveguide. We observe an increase in the spectral width of the transmitted fs pulses as the coupled mid-IR pulse power increases. This is explained by the self-phase modulation effect due to the large Kerr nonlinearity of QCL waveguides. We further confirm this effect by observing the intensity dependent far-field profile of the transmitted mid-IR pulses, showing the pulses undergo self-focusing as they propagate through the active QCL due to the intensity dependent refractive index. The finite-difference time-domain simulations of QCL waveguides with Kerr nonlinearity incorporated show similar behavior to the experimental results. The giant Kerr nonlinearity investigated here may be used to realize ultrafast pulse generation in QCLs. In addition, we temporally resolved the ultrafast mid-infrared transmission modulation of QCLs using a near-infrared pump/mid-infrared probe technique at room temperature. Two different femtosecond wavelength pumps are used with photon energy above and below the quantum well (QW) bandgap. The shorter wavelength pump modulates the mid-infrared probe transmission through interband transition assisted mechanisms, resulting in a high transmission modulation depth
Nonresonant interaction of ultrashort electromagnetic pulses with multilevel quantum systems
NASA Technical Reports Server (NTRS)
Belenov, E.; Isakov, V.; Nazarkin, A.
1994-01-01
Some features of the excitation of multilevel quantum systems under the action of electromagnetic pulses which are shorter than the inverse frequency of interlevel transitions are considered. It is shown that the interaction is characterized by a specific type of selectivity which is not connected with the resonant absorption of radiation. The simplest three-level model displays the inverse population of upper levels. The effect of an ultrashort laser pulse on a multilevel molecule was regarded as an instant reception of the oscillation velocity by the oscillator and this approach showed an effective excitation and dissociation of the molecule. The estimations testify to the fact that these effects can be observed using modern femtosecond lasers.
Realizing various approximate quantum cloning with XY-type exchange interactions of flux qubits
NASA Astrophysics Data System (ADS)
Li, Na; Ye, Liu
2014-03-01
In this paper, we realize all kinds of 1 → 2 approximate quantum cloning, including optimal 1 → 2 symmetric (or asymmetric) universal quantum cloning (UQC) and phase-covariant cloning (PCC), symmetric economical phase-covariant cloning (EPCC) and real state quantum cloning, with the XY-type exchange interactions of the flux qubits which are coupled by dc superconducting quantum interference devices (SQUIDs). It is shown that our schemes can be realized with the current experimental technology.
NASA Astrophysics Data System (ADS)
Chulliat, A.
2010-12-01
Recent observational studies based upon satellite data have shown that magnetic flux is being expelled from the core in several regions of the core surface. This phenomenon is observed below the South Atlantic Anomaly, where at least two reversed flux patches have been growing for several decades, including one under St Helena Island, and below the North polar region, where a small reversed flux patch has emerged in the 1990s, contributing to the acceleration of the North magnetic pole over the same time interval. Secular acceleration pulses are rapid surges in the second order derivative of the radial magnetic field at the core surface. The most recent pulse occurred in 2005 and was at the origin of the 2003 and 2007 geomagnetic jerks, defined as sudden changes in the field second derivative at the Earth’s surface. It was largest under St Helena and Cocos Islands. The simultaneous occurrences in the 2000s of a flux expulsion and an acceleration pulse under the St Helena region are intriguing. Both phenomena were also simultaneously observed under the North polar region in the 1990s. This presentation will (a) briefly review recent evidence in favor of the existence of magnetic flux expulsions and secular acceleration pulses at the core surface, and (b) discuss possible kinematic and dynamical links between both phenomena.
Observation of 65 GHz Coherent Oscillation in a Superconducting Flux Qubit Manipulated by Pulses
NASA Astrophysics Data System (ADS)
F, Chiarello; P, Carelli; G, Castellano M.; C, Cosmelli; G, Torrioli
2014-05-01
A superconducting flux qubit can be manipulated by a fast modification of its potential, with a rapid transition from a double well to a single well shape, and coming back to the initial condition. This mechanism is based on a non-trivial quantum phenomenon, involving "partial" Landau-Zener transitions, coherent evolution in an harmonic potential and quantum interference. The study of this system enables a deep insight in decoherence mechanisms typical of superconducting qubits. Moreover, this procedure allows quantum operations with extreme high speeds, not possible with other standard manipulations. We present the experimental observation of coherent oscillations showing tunable frequencies with a 65 GHz top value.
Vision for single flux quantum very large scale integrated technology
NASA Astrophysics Data System (ADS)
Silver, Arnold; Bunyk, Paul; Kleinsasser, Alan; Spargo, John
2006-05-01
Single flux quantum (SFQ) electronics is extremely fast and has very low on-chip power dissipation. SFQ VLSI is an excellent candidate for high-performance computing and other applications requiring extremely high-speed signal processing. Despite this, SFQ technology has generally not been accepted for system implementation. We argue that this is due, at least in part, to the use of outdated tools to produce SFQ circuits and chips. Assuming the use of tools equivalent to those employed in the semiconductor industry, we estimate the density of Josephson junctions, circuit speed, and power dissipation that could be achieved with SFQ technology. Today, CMOS lithography is at 90-65 nm with about 20 layers. Assuming equivalent technology, aggressively increasing the current density above 100 kA cm-2 to achieve junction speeds approximately 1000 GHz, and reducing device footprints by converting device profiles from planar to vertical, one could expect to integrate about 250 M Josephson junctions cm-2 into SFQ digital circuits. This should enable circuit operation with clock frequencies above 200 GHz and place approximately 20 K gates within a radius of one clock period. As a result, complete microprocessors, including integrated memory registers, could be fabricated on a single chip. This technology was exported from the United States in accordance with the US Department of Commerce Export Administration Regulations (EAR) for ultimate destination in the United Kingdom. Diversion contrary to US law prohibited.
Controlled Fluxes of Silicon Nanoparticles By Extraction from a Pulsed RF Plasma
NASA Astrophysics Data System (ADS)
Girshick, Steven; Larriba-Andaluz, Carlos
2015-09-01
Deposition of silicon nanoparticles onto substrates may be a means of growing monocrystalline silicon films at low substrate temperature if the nanoparticles' impact energy and size can be controlled to provide melting or amorphization of the nanoparticle without damaging the underlying film. In order to explore conditions that could produce such controlled fluxes of nanoparticles we numerically model a pulsed RF argon-silane plasma, with a positive DC bias applied during the afterglow phase of each pulse so as to extract and accelerate negatively charged silicon particles. Operating parameters studied include pulse on time, pulse off time, DC bias voltage, RF voltage and pressure. This set of parameters is tested to find conditions under which one can achieve a periodic steady state with repeatable pulse-to-pulse conditions that maximize silicon film growth rates while maintaining nanoparticle impact energies in the range 0.5-2.0 eV/atom. We utilize a previously developed 1-D dusty plasma numerical model, modified to consider pulsing and applied substrate bias. This model self-consistently solves for the coupled behavior of plasma, chemistry, and aerosol. Results show that it is possible by this method to produce nanoparticle fluxes that are tailored with respect to their distribution of impact energies and mass deposition rates. Partially supported by US Dept. of Energy Office of Fusion Energy Science (DE-SC0001939), US National Science Foundation (CHE-124752), and Minnesota Supercomputing Institute.
The Neutron-Gamma Pulse Shape Discrimination Method for Neutron Flux Detection in the ITER
NASA Astrophysics Data System (ADS)
Xu, Xiufeng; Li, Shiping; Cao, Hongrui; Yuan, Guoliang; Yang, Qingwei; Yin, Zejie
2013-05-01
The neutron flux monitor (NFM), as a significant diagnostic system in the International Thermonuclear Experimental Reactor (ITER), will play an important role in the readings of a series of key parameters in the fusion reaction process. As the core of the main electronic system of the NFM, the neutron-gamma pulse shape discrimination (n-γ PSD) can distinguish the neutron pulse from the gamma pulse and other disturbing pulses according to the thresholds of the rising time and the amplitude pre-installed on the board, the double timing point CFD method is used to get the rising time of the pulse. The n-γ PSD can provide an accurate neutron count.
NASA Astrophysics Data System (ADS)
Chuang, You-Lin; Yu, Ite A.; Lee, Ray-Kuang
2015-06-01
Beyond the adiabatic approximation, we develop a quantum theory for optical probe pulses propagating in electromagnetically-induced-transparency (EIT) media by including Langevin noise operators and asking the field operator to satisfy bosonic commutation relation. Influences on the degradation of quantum noise squeezing from optical depth of atomic ensemble, strength of control field, and ground-state decoherence are studied in the slow light, as well as storage and retrieval, for a squeezed probe pulse. Moreover, to give guidelines for realization of quantum interfaces based on EIT media, we demonstrate that the quantum squeezing of output probe pulses could be preserved with a stronger classical control field.
Band-selective shaped pulse for high fidelity quantum control in diamond
Chang, Yan-Chun; Xing, Jian; Liu, Gang-Qin; Jiang, Qian-Qing; Li, Wu-Xia; Zhang, Fei-Hao; Gu, Chang-Zhi; Pan, Xin-Yu; Long, Gui-Lu
2014-06-30
High fidelity quantum control of qubits is crucially important for realistic quantum computing, and it becomes more challenging when there are inevitable interactions between qubits. We introduce a band-selective shaped pulse, refocusing BURP (REBURP) pulse, to cope with the problems. The electron spin of nitrogen-vacancy centers in diamond is flipped with high fidelity by the REBURP pulse. In contrast with traditional rectangular pulses, the shaped pulse has almost equal excitation effect in a sharply edged region (in frequency domain). So the three sublevels of host {sup 14}N nuclear spin can be flipped accurately simultaneously, while unwanted excitations of other sublevels (e.g., of a nearby {sup 13}C nuclear spin) is well suppressed. Our scheme can be used for various applications such as quantum metrology, quantum sensing, and quantum information process.
A high flux pulsed source of energetic atomic oxygen. [for spacecraft materials ground testing
NASA Technical Reports Server (NTRS)
Krech, Robert H.; Caledonia, George E.
1986-01-01
The design and demonstration of a pulsed high flux source of nearly monoenergetic atomic oxygen are reported. In the present test setup, molecular oxygen under several atmospheres of pressure is introduced into an evacuated supersonic expansion nozzle through a pulsed molecular beam valve. A 10J CO2 TEA laser is focused to intensities greater than 10 to the 9th W/sq cm in the nozzle throat, generating a laser-induced breakdown with a resulting 20,000-K plasma. Plasma expansion is confined by the nozzle geometry to promote rapid electron-ion recombination. Average O-atom beam velocities from 5-13 km/s at fluxes up to 10 to the 18th atoms/pulse are measured, and a similar surface oxygen enrichment in polyethylene samples to that obtained on the STS-8 mission is found.
Compton scattering of electrons from optical pulses for quantum nondemolition measurements
Friberg, S.R. ); Hawkins, R.J. )
1995-01-01
Compton scattering of electrons from photons destroys neither electrons nor photons, permitting quantum nondemolition measurements of the photon number. Here we consider a Compton scattering quantum nondemolition measurement of the photon number of an optical pulse traveling in a prepared optical fiber. A beam of electrons is directed through the evanescent field associated with the optical pulse, causing the electrons to scatter through an angle proportional to the pulse's photon number.
Influence of stem temperature changes on heat pulse sap flux density measurements.
Vandegehuchte, Maurits W; Burgess, Stephen S O; Downey, Alec; Steppe, Kathy
2015-04-01
While natural spatial temperature gradients between measurement needles have been thoroughly investigated for continuous heat-based sap flow methods, little attention has been given to how natural changes in stem temperature impact heat pulse-based methods through temporal rather than spatial effects. By modelling the theoretical equation for both an ideal instantaneous pulse and a step pulse and applying a finite element model which included actual needle dimensions and wound effects, the influence of a varying stem temperature on heat pulse-based methods was investigated. It was shown that the heat ratio (HR) method was influenced, while for the compensation heat pulse and Tmax methods changes in stem temperatures of up to 0.002 °C s(-1) did not lead to significantly different results. For the HR method, rising stem temperatures during measurements led to lower heat pulse velocity values, while decreasing stem temperatures led to both higher and lower heat pulse velocities, and to imaginary results for high flows. These errors of up to 40% can easily be prevented by including a temperature correction in the data analysis procedure, calculating the slope of the natural temperature change based on the measured temperatures before application of the heat pulse. Results of a greenhouse and outdoor experiment on Pinus pinea L. show the influence of this correction on low and average sap flux densities.
Quantum Hooke's Law to classify pulse laser induced ultrafast melting
Hu, Hao; Ding, Hepeng; Liu, Feng
2015-02-03
Ultrafast crystal-to-liquid phase transition induced by femtosecond pulse laser excitation is an interesting material's behavior manifesting the complexity of light-matter interaction. There exist two types of such phase transitions: one occurs at a time scale shorter than a picosecond via a nonthermal process mediated by electron-hole plasma formation; the other at a longer time scale via a thermal melting process mediated by electron-phonon interaction. However, it remains unclear what material would undergo which process and why? Here, by exploiting the property of quantum electronic stress (QES) governed by quantum Hooke's law, we classify the transitions by two distinct classes of materials: the faster nonthermal process can only occur in materials like ice having an anomalous phase diagram characterized with dT_{m}/dP < 0, where T_{m} is the melting temperature and P is pressure, above a high threshold laser fluence; while the slower thermal process may occur in all materials. Especially, the nonthermal transition is shown to be induced by the QES, acting like a negative internal pressure, which drives the crystal into a “super pressing” state to spontaneously transform into a higher-density liquid phase. Our findings significantly advance fundamental understanding of ultrafast crystal-to-liquid phase transitions, enabling quantitative a priori predictions.
Quantum Hooke's law to classify pulse laser induced ultrafast melting.
Hu, Hao; Ding, Hepeng; Liu, Feng
2015-02-03
Ultrafast crystal-to-liquid phase transition induced by femtosecond pulse laser excitation is an interesting material's behavior manifesting the complexity of light-matter interaction. There exist two types of such phase transitions: one occurs at a time scale shorter than a picosecond via a nonthermal process mediated by electron-hole plasma formation; the other at a longer time scale via a thermal melting process mediated by electron-phonon interaction. However, it remains unclear what material would undergo which process and why? Here, by exploiting the property of quantum electronic stress (QES) governed by quantum Hooke's law, we classify the transitions by two distinct classes of materials: the faster nonthermal process can only occur in materials like ice having an anomalous phase diagram characterized with dTm/dP < 0, where Tm is the melting temperature and P is pressure, above a high threshold laser fluence; while the slower thermal process may occur in all materials. Especially, the nonthermal transition is shown to be induced by the QES, acting like a negative internal pressure, which drives the crystal into a "super pressing" state to spontaneously transform into a higher-density liquid phase. Our findings significantly advance fundamental understanding of ultrafast crystal-to-liquid phase transitions, enabling quantitative a priori predictions.
Quantum Hooke's Law to classify pulse laser induced ultrafast melting
Hu, Hao; Ding, Hepeng; Liu, Feng
2015-02-03
Ultrafast crystal-to-liquid phase transition induced by femtosecond pulse laser excitation is an interesting material's behavior manifesting the complexity of light-matter interaction. There exist two types of such phase transitions: one occurs at a time scale shorter than a picosecond via a nonthermal process mediated by electron-hole plasma formation; the other at a longer time scale via a thermal melting process mediated by electron-phonon interaction. However, it remains unclear what material would undergo which process and why? Here, by exploiting the property of quantum electronic stress (QES) governed by quantum Hooke's law, we classify the transitions by two distinct classes ofmore » materials: the faster nonthermal process can only occur in materials like ice having an anomalous phase diagram characterized with dTm/dP < 0, where Tm is the melting temperature and P is pressure, above a high threshold laser fluence; while the slower thermal process may occur in all materials. Especially, the nonthermal transition is shown to be induced by the QES, acting like a negative internal pressure, which drives the crystal into a “super pressing” state to spontaneously transform into a higher-density liquid phase. Our findings significantly advance fundamental understanding of ultrafast crystal-to-liquid phase transitions, enabling quantitative a priori predictions.« less
Quantum Hooke's Law to Classify Pulse Laser Induced Ultrafast Melting
Hu, Hao; Ding, Hepeng; Liu, Feng
2015-01-01
Ultrafast crystal-to-liquid phase transition induced by femtosecond pulse laser excitation is an interesting material's behavior manifesting the complexity of light-matter interaction. There exist two types of such phase transitions: one occurs at a time scale shorter than a picosecond via a nonthermal process mediated by electron-hole plasma formation; the other at a longer time scale via a thermal melting process mediated by electron-phonon interaction. However, it remains unclear what material would undergo which process and why? Here, by exploiting the property of quantum electronic stress (QES) governed by quantum Hooke's law, we classify the transitions by two distinct classes of materials: the faster nonthermal process can only occur in materials like ice having an anomalous phase diagram characterized with dTm/dP < 0, where Tm is the melting temperature and P is pressure, above a high threshold laser fluence; while the slower thermal process may occur in all materials. Especially, the nonthermal transition is shown to be induced by the QES, acting like a negative internal pressure, which drives the crystal into a “super pressing” state to spontaneously transform into a higher-density liquid phase. Our findings significantly advance fundamental understanding of ultrafast crystal-to-liquid phase transitions, enabling quantitative a priori predictions. PMID:25645258
Motion of a quantum particle in a random-flux field
NASA Astrophysics Data System (ADS)
Łusakowski, Andrzej; Turski, Łukasz A.
1993-08-01
We consider a charged spinless quantum particle moving on a two-dimensional square lattice. Each plaquette of the lattice is penetrated by a random magnetic flux with values homogeneously distributed in the interval (0,2π) (in units of the elementary quantum flux h/e). The fluxes in different plaquettes are statistically independent. Using the path-integral method, within the saddle-point approximation, we evaluated the averaged density of states. Our results are compared with the recent numerical-simulation predictions of Pryor and Zee.
Soil carbon flux following pulse precipitation events in the shortgrass steppe
Munson, S.M.; Benton, T.J.; Lauenroth, W.K.; Burke, I.C.
2010-01-01
Pulses of water availability characterize semiarid and arid ecosystems. Most precipitation events in these ecosystems are small (???10 mm), but can stimulate carbon flux. The large proportion of carbon stored belowground and small carbon inputs create the potential for these small precipitation events to have large effects on carbon cycling. Land-use change can modify these effects through alteration of the biota and soil resources. The goal of our research was to determine how small precipitation events (2, 5, and 10 mm) affected the dynamics of soil carbon flux and water loss in previously cultivated Conservation Reserve Program (CRP) fields and undisturbed shortgrass steppe. Total carbon loss and duration of elevated carbon flux increased as event size increased in all field types. Time since cultivation increased in importance for carbon flux as event size increased. A comparison of water loss rates to carbon flux suggests that water is limiting to carbon flux for the smallest events, but is less limiting for events above 5 mm. We also describe how water availability interacts with temperature in controlling carbon flux rate. We conclude that small precipitation events have the potential for large short-term losses of carbon in the shortgrass steppe. ?? 2009 The Ecological Society of Japan.
Yang, J.-Y. Hsieh, T.-Y.; Shi, Y.-H.; Xu Kun
2007-12-10
A class of high-order kinetic flux vector splitting schemes are presented for solving ideal quantum gas dynamics based on quantum statistical mechanics. The collisionless quantum Boltzmann equation approach is adopted and both Bose-Einstein and Fermi-Dirac gases are considered. The formulas for the split flux vectors are derived based on the general three-dimensional distribution function in velocity space and formulas for lower dimensions can be directly deduced. General curvilinear coordinates are introduced to treat practical problems with general geometry. High-order accurate schemes using weighted essentially non-oscillatory methods are implemented. The resulting high resolution kinetic flux splitting schemes are tested for 1D shock tube flows and shock wave diffraction by a 2D wedge and by a circular cylinder in ideal quantum gases. Excellent results have been obtained for all examples computed.
NASA Astrophysics Data System (ADS)
Kempf, Sebastian; Ferring, Anna; Enss, Christian
2016-10-01
The comprehensive analysis of low-frequency excess flux noise both in terms of magnetic flux noise S Φ , 1 / f and energy sensitivity ɛ1/f of 84 superconducting quantum devices studied at temperatures below 1 K reveals a universal behavior. When analyzing data in terms of ɛ1/f, we find that noise spectra of independent devices cross each other all at certain crossing frequencies fc. Besides this main result of our paper, we further show that superconducting quantum interference device (SQUID) arrays systematically feature higher noise exponents than single SQUIDs and give evidence for a material and device type dependence of low-frequency excess flux noise. The latter results facilitate to engineer the shape of magnetic flux noise spectra and thus to experimentally modify key properties such as coherence or measurement times of superconducting quantum devices.
NASA Astrophysics Data System (ADS)
Rossow, U.; Hoffmann, L.; Bremers, H.; Buß, E. R.; Ketzer, F.; Langer, T.; Hangleiter, A.; Mehrtens, T.; Schowalter, M.; Rosenauer, A.
2015-03-01
We study the incorporation of indium into AlxGa1-x N/GaN quantum well (QW) structures with high indium concentrations above 25% for QW thicknesses in the range 2 nm down to half a c-lattice constant under pulsed and continuous growth conditions. We want to clarify which processes limit the incorporation of indium and lead to a degrading layer structure. The data are discussed in the context of the adlayer proposed by theory (Northrup et al., 2000) [1]. The interplay of the adlayer with the incoming flux, the high desorption rate and segregation of indium can consistently explain the various observed phenomena.
Quantum control in silicon using coherent THz pulses
NASA Astrophysics Data System (ADS)
Lynch, Stephen A.; Greenland, P. Thornton; van der Meer, Alexander F. G.; Murdin, Benedict N.; Pidgeon, Carl R.; Redlich, Britta; Vinh, Nguyen Q.; Aeppli, Gabriel
2012-10-01
It has long been known that shallow donors such as phosphorous and the other group-V elements, have a hydrogen-like optical spectrum. The main difference is that while the spectrum of atomic hydrogen lies in the visible band, the spectrum of shallow donors in silicon is downshifted to the THz frequency band. This is a direct consequence of the reduced Coulomb attraction seen by the loosely bound electron because the core electrons shield the positive donor atom nucleus, and because the electron is now moving in a dielectric material. While spectroscopy has already revealed much about the energy level structure, very little was known about the temporal dynamics of the system until now. We have used THz pulses from the FELIX free electron laser to probe these hydrogen-like levels. By exploiting the well-known pump-probe technique we have measured the characteristic lifetimes of the excited Rydberg states and found them to be of the order 200 ps. Then, by making subtle changes to the geometry of the pump-probe experimental setup we demonstrate the existence of a THz photon echo. The photon echo is a purely quantum phenomenon with no classical analogue, and it allows us to study the quantum state of the donor electron. We then show, using the photon echo, that it is possible to create a coherent superposition of the ground and excited state of the donor. Measuring the photon echo is important because it can also be used to measure a second important characteristic lifetime of the silicon-donor system, the phase decoherence time.
Laboratory transferability of optimally shaped laser pulses for quantum control.
Moore Tibbetts, Katharine; Xing, Xi; Rabitz, Herschel
2014-02-21
Optimal control experiments can readily identify effective shaped laser pulses, or "photonic reagents," that achieve a wide variety of objectives. An important additional practical desire is for photonic reagent prescriptions to produce good, if not optimal, objective yields when transferred to a different system or laboratory. Building on general experience in chemistry, the hope is that transferred photonic reagent prescriptions may remain functional even though all features of a shaped pulse profile at the sample typically cannot be reproduced exactly. As a specific example, we assess the potential for transferring optimal photonic reagents for the objective of optimizing a ratio of photoproduct ions from a family of halomethanes through three related experiments. First, applying the same set of photonic reagents with systematically varying second- and third-order chirp on both laser systems generated similar shapes of the associated control landscape (i.e., relation between the objective yield and the variables describing the photonic reagents). Second, optimal photonic reagents obtained from the first laser system were found to still produce near optimal yields on the second laser system. Third, transferring a collection of photonic reagents optimized on the first laser system to the second laser system reproduced systematic trends in photoproduct yields upon interaction with the homologous chemical family. These three transfers of photonic reagents are demonstrated to be successful upon paying reasonable attention to overall laser system characteristics. The ability to transfer photonic reagents from one laser system to another is analogous to well-established utilitarian operating procedures with traditional chemical reagents. The practical implications of the present results for experimental quantum control are discussed. PMID:24559348
Laboratory transferability of optimally shaped laser pulses for quantum control
NASA Astrophysics Data System (ADS)
Moore Tibbetts, Katharine; Xing, Xi; Rabitz, Herschel
2014-02-01
Optimal control experiments can readily identify effective shaped laser pulses, or "photonic reagents," that achieve a wide variety of objectives. An important additional practical desire is for photonic reagent prescriptions to produce good, if not optimal, objective yields when transferred to a different system or laboratory. Building on general experience in chemistry, the hope is that transferred photonic reagent prescriptions may remain functional even though all features of a shaped pulse profile at the sample typically cannot be reproduced exactly. As a specific example, we assess the potential for transferring optimal photonic reagents for the objective of optimizing a ratio of photoproduct ions from a family of halomethanes through three related experiments. First, applying the same set of photonic reagents with systematically varying second- and third-order chirp on both laser systems generated similar shapes of the associated control landscape (i.e., relation between the objective yield and the variables describing the photonic reagents). Second, optimal photonic reagents obtained from the first laser system were found to still produce near optimal yields on the second laser system. Third, transferring a collection of photonic reagents optimized on the first laser system to the second laser system reproduced systematic trends in photoproduct yields upon interaction with the homologous chemical family. These three transfers of photonic reagents are demonstrated to be successful upon paying reasonable attention to overall laser system characteristics. The ability to transfer photonic reagents from one laser system to another is analogous to well-established utilitarian operating procedures with traditional chemical reagents. The practical implications of the present results for experimental quantum control are discussed.
Ceotto, Michele; Yang, Sandy; Miller, William H
2005-01-22
A quantum theory of thermal reaction rates is presented which may be viewed as an extension of the recently developed "quantum instanton" (QI) model [W. H. Miller, Y. Zhao, M. Ceotto, and S. Yang, J. Chem. Phys. 119, 1329 (2003)]. It is based on using higher derivatives of the flux-flux autocorrelation function C(t) (as given by Miller, Schwartz, and Tromp) at t=0 to construct a short time approximation for C(t). Tests of this theory on 1d and collinear reactions, both symmetric and asymmetric, show it to be more accurate than the original QI model, giving rate constants to approximately 5% for a wide range of temperature. PMID:15740237
NASA Astrophysics Data System (ADS)
Ceotto, Michele; Yang, Sandy; Miller, William H.
2005-01-01
A quantum theory of thermal reaction rates is presented which may be viewed as an extension of the recently developed "quantum instanton" (QI) model [W. H. Miller, Y. Zhao, M. Ceotto, and S. Yang, J. Chem. Phys. 119, 1329 (2003)]. It is based on using higher derivatives of the flux-flux autocorrelation function C(t) (as given by Miller, Schwartz, and Tromp) at t=0 to construct a short time approximation for C(t). Tests of this theory on 1d and collinear reactions, both symmetric and asymmetric, show it to be more accurate than the original QI model, giving rate constants to ˜5% for a wide range of temperature.
Effects of Cr2O3 Activating Flux on the Plasma Plume in Pulsed Laser Welding
NASA Astrophysics Data System (ADS)
Yi, Luo; Yunfei, Du; Xiaojian, Xie; Rui, Wan; Liang, Zhu; Jingtao, Han
2016-08-01
The effects of Cr2O3 activating flux on pulsed YAG laser welding of stainless steel and, particularly, on the behavior of the plasma plume in the welding process were investigated. According to the acoustic emission (AE) signals detected in the welding process, the possible mechanism for the improvement in penetration depth was discussed. The results indicated that the AE signals detected in the welding process reflected the behavior of the plasma plume as pulsed laser energy affecting the molten pool. The root-mean-square (RMS) waveform, AE count, and power spectrum of AE signals were three effective means to characterize the behavior of the plasma plume, which indicated the characteristics of energy released by the plasma plume. The activating flux affected by the laser beam helped to increase the duration and intensity of energy released by the plasma plume, which improved the recoil force and thermal effect transferred from the plasma plume to the molten pool. These results were the main mechanism for Cr2O3 activating flux addition improving the penetration depth in pulsed YAG laser welding.
Effects of Cr2O3 Activating Flux on the Plasma Plume in Pulsed Laser Welding
NASA Astrophysics Data System (ADS)
Yi, Luo; Yunfei, Du; Xiaojian, Xie; Rui, Wan; Liang, Zhu; Jingtao, Han
2016-11-01
The effects of Cr2O3 activating flux on pulsed YAG laser welding of stainless steel and, particularly, on the behavior of the plasma plume in the welding process were investigated. According to the acoustic emission (AE) signals detected in the welding process, the possible mechanism for the improvement in penetration depth was discussed. The results indicated that the AE signals detected in the welding process reflected the behavior of the plasma plume as pulsed laser energy affecting the molten pool. The root-mean-square (RMS) waveform, AE count, and power spectrum of AE signals were three effective means to characterize the behavior of the plasma plume, which indicated the characteristics of energy released by the plasma plume. The activating flux affected by the laser beam helped to increase the duration and intensity of energy released by the plasma plume, which improved the recoil force and thermal effect transferred from the plasma plume to the molten pool. These results were the main mechanism for Cr2O3 activating flux addition improving the penetration depth in pulsed YAG laser welding.
Design considerations for 100 MJ class flux compression pulse power systems
Reinovsky, R.E.; Lindemuth, I.R.
1993-10-01
With the cost of high performance, capacitor-discharge, pulse power systems continuing around $1--2 per joule and with energy requirements for experiments such as fast compression of magnetized plasmas ranging to 100 MJ and beyond, the need for economical, super-energy pulse power systems is being recognized. Explosively powered flux compressors, capable of delivering 100 MJ to a plasma physics experiment, can be designed, fabricated, and fielded at costs of less than $0.01J per shot. While less economical than laboratory pulsed power systems, if system life exceeds a few hundred full-energy shots, explosive pulse power techniques allow initial experiments to be performed quickly and economically at energies that are prohibitively costly, and hence unavailable, using conventional techniques. A variety of configurations for flux compressors suitable for 100-MJ operation can be considered. Among these, the disk configuration, pioneered by researchers at the All Russian Institute of Experimental Physics has demonstrated both high current and high energy capabilities.
Flux jumps in high-J c MgB2 bulks during pulsed field magnetization
NASA Astrophysics Data System (ADS)
Fujishiro, H.; Mochizuki, H.; Naito, T.; Ainslie, M. D.; Giunchi, G.
2016-03-01
Pulsed field magnetization (PFM) of a high-J c MgB2 bulk disk has been investigated at 20 K, in which flux jumps frequently occur for high pulsed fields. Using a numerical simulation of the PFM procedure, we estimated the time dependence of the local magnetic field and temperature during PFM. We analyzed the electromagnetic and thermal instability of the high-J c MgB2 bulk to avoid flux jumps using the time dependence of the critical thickness, d c(t), which shows the upper safety thickness to stabilize the superconductor magnetically, and the minimum propagation zone length, l m(t), to obtain dynamical stability. The values of d c(t) and l m(t) change along the thermally-stabilized direction with increasing temperature below the critical temperature, T c. However, the flux jump can be qualitatively understood by the local temperature, T(t), which exceeds T c in the bulk. Finally, possible solutions to avoid flux jumps in high-J c MgB2 bulks are discussed.
Characterization of a heat flux sensor using short pulse laser calibration
NASA Astrophysics Data System (ADS)
Löhle, Stefan; Battaglia, Jean-Luc; Batsale, Jean-Christophe; Enouf, Olivier; Dubard, Jimmy; Filtz, Jean-Remy
2007-05-01
A method to calibrate classical heat flux sensors is presented. The classical approach to measure the temperature inside a known material by using a thermocouple fails when the measurement time is very short. In this work the surface heat flux is determined by solving the inverse heat conduction problem using a noninteger identified system as a direct model for the estimation process. Using short pulse laser calibration measurements the crucial design aspects of the sensor that play a significant role when assuming one-dimensional, semi-infinite heat transfer have been accounted for. The theoretical approach as well as the calibration results are presented and comparisons to the classical approach and results from finite element modeling are shown. It is concluded that the new method ameliorate the heat flux sensor significantly and extend its application to very short measurement times.
Faint laser pulses versus a single-photon source in free space quantum cryptography
NASA Astrophysics Data System (ADS)
Molotkov, S. N.; Potapova, T. A.
2016-03-01
In this letter we present estimates for the distance of secret key transmission through free space for three different protocols of quantum key distribution: for BB84 and phase time-coding protocols in the case of a strictly single-photon source, and for the relativistic quantum key distribution protocol in the case of faint laser pulses.
Differential-phase-shift quantum key distribution with segmented pulse trains
Kawahara, Hiroki; Inoue, Kyo
2011-06-15
We present a modified scheme of differential-phase-shift (DPS) quantum key distribution (QKD) for improving its performance. A transmitter sends a weak coherent pulse train segmented with vacant pulses. Then, a receiver can find eavesdropping by monitoring the photon detection rate at particular time slots. Simulations show that the proposed scheme is robust against a sequential attack and a general individual attack.
Ultrashort-Pulse Child-Langmuir Law in the Quantum and Relativistic Regimes
Ang, L. K.; Zhang, P.
2007-04-20
This Letter presents a consistent quantum and relativistic model of short-pulse Child-Langmuir (CL) law, of which the pulse length {tau} is less than the electron transit time in a gap of spacing D and voltage V. The classical value of the short-pulse CL law is enhanced by a large factor due to quantum effects when the pulse length and the size of the beam are, respectively, in femtosecond duration and nanometer scale. At high voltage larger than the electron rest mass, relativistic effects will suppress the enhancement of short-pulse CL law, which is confirmed by particle-in-cell simulation. When the pulse length is much shorter than the gap transit time, the current density is proportional to V, and to the inverse power of D and {tau}.
Markey, Patrick M.; Racine, Sarah E.; Markey, Charlotte N.; Hopwood, Christopher J.; Keel, Pamela K.; Burt, S. Alexandra; Neale, Michael C.; Sisk, Cheryl L.; Boker, Steven M.; Klump, Kelly L.
2014-01-01
A classical twin study was used to estimate the magnitude of genetic and environmental influences on four measurements of within-person variability: dominance flux, warmth flux, spin and pulse. Flux refers to the variability of an individual’s interpersonal dominance and warmth. Spin measures changes in the tone of interpersonal styles and pulse measures changes in the intensity of interpersonal styles. Daily reports of interpersonal styles were collected from 494 same-sex female twins (142 monozygotic pairs and 105 dizygotic pairs) over 45 days. For dominance flux, warmth flux, and spin, genetic effects accounted for a larger proportion of variance (37%, 24%, and 30%, respectively) than shared environmental effects (14%, 13%, 0%, respectively), with the remaining variance due to the non-shared environment (62%, 50%, 70% respectively). Pulse appeared to be primarily influenced by the non-shared environment, although conclusions about the contribution of familial influences were difficult to draw from this study. PMID:25977748
Alternative method for gas detection using pulsed quantum-cascade-laser spectrometers.
Grouiez, Bruno; Parvitte, Bertrand; Joly, Lilian; Zeninari, Virginie
2009-01-15
Pulsed quantum-cascade-laser (QCL) spectrometers are usually used to detect atmospheric gases with either the interpulse technique (short pulses, typically 5-20 ns) or the intrapulse technique (long pulses, typically 500-800 ns). Each of these techniques has many drawbacks, which we present. Particularly the gas absorption spectra are generally distorted. We demonstrate the possibility to use intermediate pulses (typically 50-100 ns) for gas detection using pulsed QCL spectrometers. IR spectra of ammonia recorded in the 10 microm region are presented in various conditions of pulse emission. These experiences demonstrate the large influence of the pulse shape on the recorded spectrum and the importance to use our alternative method for gas detection with pulsed QCL spectrometers.
Single flux-quantum Josephson memory cell using a new threshold characteristic
Kurosawa, I.; Yagi, A.; Nakagawa, H.; Hayakawa, H.
1983-12-01
A new single flux-quantum Josephson memory cell in which nondestructive readout (NDRO) operations can be realized with a simple circuit configuration is proposed. The memory cell utilizes a new type of threshold characteristics in an equivalent asymmetric dc superconducting quantum interference device (SQUID) consisting of a three-junction SQUID gate and a single junction. NDRO operation has been successfully demonstrated in an experimental memory circuit.
Simultaneous SU(2) rotations on multiple quantum dot exciton qubits using a single shaped pulse
NASA Astrophysics Data System (ADS)
Mathew, Reuble; Yang, Hong Yi Shi; Hall, Kimberley C.
2015-10-01
Recent experimental demonstration of a parallel (π ,2 π ) single qubit rotation on excitons in two distant quantum dots [Nano Lett. 13, 4666 (2013), 10.1021/nl4018176] is extended in numerical simulations to the design of pulses for more general quantum state control, demonstrating the feasibility of full SU(2) rotations of each exciton qubit. Our results show that simultaneous high-fidelity quantum control is achievable within the experimentally accessible parameter space for commercial Fourier-domain pulse shaping systems. The identification of a threshold of distinguishability for the two quantum dots (QDs) for achieving high-fidelity parallel rotations, corresponding to a difference in transition energies of ˜0.25 meV , points to the possibility of controlling more than 10 QDs with a single shaped optical pulse.
Why the two-pulse photon echo is not a good quantum memory protocol
Ruggiero, Jerome; Le Goueet, Jean-Louis; Chaneliere, Thierry; Simon, Christoph
2009-05-15
We consider in this paper a two-pulse photon echo sequence in the prospect of quantum light storage. We analyze the conditions where quantum storage could be realistically performed. We simply and analytically calculate the efficiency in that limit, and clarify the role of the exactly {pi}-rephasing pulse in the sequence. Our physical interpretation of the process is well supported by its experimental implementation in a Tm{sup 3+}:yttrium aluminum garnet crystal thanks to an accurate control of the rephasing pulse area. We finally address independently the fundamental limitations of the quantum fidelity. Our work allows us to point out on one side the real drawbacks of this scheme for quantum storage and on the other side its specificities which can be a source of inspiration to conceive more promising procedures with rare-earth ion doped crystals.
Fast neutron flux analyzer with real-time digital pulse shape discrimination
NASA Astrophysics Data System (ADS)
Ivanova, A. A.; Zubarev, P. V.; Ivanenko, S. V.; Khilchenko, A. D.; Kotelnikov, A. I.; Polosatkin, S. V.; Puryga, E. A.; Shvyrev, V. G.; Sulyaev, Yu. S.
2016-08-01
Investigation of subthermonuclear plasma confinement and heating in magnetic fusion devices such as GOL-3 and GDT at the Budker Institute (Novosibirsk, Russia) requires sophisticated equipment for neutron-, gamma- diagnostics and upgrading data acquisition systems with online data processing. Measurement of fast neutron flux with stilbene scintillation detectors raised the problem of discrimination of the neutrons (n) from background cosmic particles (muons) and neutron-induced gamma rays (γ). This paper describes a fast neutron flux analyzer with real-time digital pulse-shape discrimination (DPSD) algorithm FPGA-implemented for the GOL-3 and GDT devices. This analyzer was tested and calibrated with the help of 137Cs and 252Cf radiation sources. The Figures of Merit (FOM) calculated for different energy cuts are presented.
Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory
Tang, Jian-Shun; Zhou, Zong-Quan; Wang, Yi-Tao; Li, Yu-Long; Liu, Xiao; Hua, Yi-Lin; Zou, Yang; Wang, Shuang; He, De-Yong; Chen, Geng; Sun, Yong-Nan; Yu, Ying; Li, Mi-Feng; Zha, Guo-Wei; Ni, Hai-Qiao; Niu, Zhi-Chuan; Li, Chuan-Feng; Guo, Guang-Can
2015-01-01
Quantum repeaters are critical components for distributing entanglement over long distances in presence of unavoidable optical losses during transmission. Stimulated by the Duan–Lukin–Cirac–Zoller protocol, many improved quantum repeater protocols based on quantum memories have been proposed, which commonly focus on the entanglement-distribution rate. Among these protocols, the elimination of multiple photons (or multiple photon-pairs) and the use of multimode quantum memory are demonstrated to have the ability to greatly improve the entanglement-distribution rate. Here, we demonstrate the storage of deterministic single photons emitted from a quantum dot in a polarization-maintaining solid-state quantum memory; in addition, multi-temporal-mode memory with 1, 20 and 100 narrow single-photon pulses is also demonstrated. Multi-photons are eliminated, and only one photon at most is contained in each pulse. Moreover, the solid-state properties of both sub-systems make this configuration more stable and easier to be scalable. Our work will be helpful in the construction of efficient quantum repeaters based on all-solid-state devices. PMID:26468996
Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory.
Tang, Jian-Shun; Zhou, Zong-Quan; Wang, Yi-Tao; Li, Yu-Long; Liu, Xiao; Hua, Yi-Lin; Zou, Yang; Wang, Shuang; He, De-Yong; Chen, Geng; Sun, Yong-Nan; Yu, Ying; Li, Mi-Feng; Zha, Guo-Wei; Ni, Hai-Qiao; Niu, Zhi-Chuan; Li, Chuan-Feng; Guo, Guang-Can
2015-10-15
Quantum repeaters are critical components for distributing entanglement over long distances in presence of unavoidable optical losses during transmission. Stimulated by the Duan-Lukin-Cirac-Zoller protocol, many improved quantum repeater protocols based on quantum memories have been proposed, which commonly focus on the entanglement-distribution rate. Among these protocols, the elimination of multiple photons (or multiple photon-pairs) and the use of multimode quantum memory are demonstrated to have the ability to greatly improve the entanglement-distribution rate. Here, we demonstrate the storage of deterministic single photons emitted from a quantum dot in a polarization-maintaining solid-state quantum memory; in addition, multi-temporal-mode memory with 1, 20 and 100 narrow single-photon pulses is also demonstrated. Multi-photons are eliminated, and only one photon at most is contained in each pulse. Moreover, the solid-state properties of both sub-systems make this configuration more stable and easier to be scalable. Our work will be helpful in the construction of efficient quantum repeaters based on all-solid-state devices.
[Intra-pulse spectroscopy based on room-temperature pulsed quantum-cascade laser for N2O detection].
Wang, Min; Zhang, Yu-Jun; Liu, Wen-Qing; Kan, Rui-Feng; Chen, Zhen-Yi; Tang, Yuan-Yuan; Liu, Jian-Guo
2009-12-01
Mid-infrared lasers are very suitable for high-sensitive trace-gases detection in that their wavelengths cover the fundamental absorption lines of most gases. Quantum-cascade lasers have been demonstrated to be ideal light sources with their especially high power, wide range of tuning capability and favorable operating condition on room-temperature. The intra-pulse spectroscopy based on a room-temperature distributed-feedback pulsed QC laser is a simple and effective trace gas detective method to detect trace-gas qualitatively or quantificationally. When a long excitation pulse is applied to a QC laser, the laser frequency tunes almost linearly to lower wave number (lower frequency) as a function of time so all absorption spectral elements are recorded during a single laser pulse. In the present paper, the method was introduced, and identification of N2O spectral fingerprint using this spectroscopy was demonstrated experimentally. The thermal chirp from a 500 ns long excitation pulse was applied to a quantum-cascade laser to get a fast wavelength scanning, thus a wave number tuning of about 1 cm(-1) was produced. The N2O absorption spectrum centered at 1 273.7 cm(-1) was also obtained. The measured absorption spectrum is consistent with HITRAN data precisely.
Habibi, M.; Ghamari, F.
2012-11-15
The authors have investigated the non-stationary self-focusing of Gaussian laser pulse in cold quantum plasma. In case of high dense plasma, the nonlinearity in the dielectric constant is mainly due to relativistic high intense interactions and quantum effects. In this paper, we have introduced a ramp density profile for plasma and presented graphically the behavior of spot size oscillations of pulse at rear and front portions of the pulse. It is observed that the ramp density profile and quantum effects play a vital role in stronger and better focusing at the rear of the pulse than at the front in cold quantum plasmas.
Pulse control of sudden transition for two qubits in XY spin baths and quantum phase transition
Luo, Da-Wei; Xu, Jing-Bo; Lin, Hai-Qing; Yao, Dao-Xin
2011-12-15
We study the dynamics of two initially correlated qubits coupled to their own separate spin baths modeled by an XY spin chain and find the explicit expression of the quantum discord for the system. A sudden transition is found to exist between classical and quantum decoherence by choosing certain initial states. We show that the sudden transition happens near the critical point, which provides an alternative way to characterize the quantum phase transition. Furthermore, we propose a scheme to prolong the transition time of the quantum discord by applying the bang-bang pulses.
Quantum network theory of computing with respect to entangled flux qubits and external perturbation
NASA Astrophysics Data System (ADS)
Cain, C. A.; Wu, C. H.
2013-04-01
In this work, we attempt to show the differences between traditional qubit-based spintronic methodology for quantum computation and the possible ballistic quantum network implementations. Flux qubits can be considered topologically similar to the persistent currents possessed as the angular momentum in Aharonov-Bohm loops, which can be coupled and thus entangled together. Since entanglement is guaranteed for coupled quantum networks, starting from a point-contacted situation, we first investigate how varying the degree of entanglement strength can affect the superposition of the four possible states for two isolated flux qubits being brought together. In general, the superposition is destroyed once the degree of entanglement is altered from the point-contact situation. However, we show that for a specific network with maximum entanglement, a Bell state situation can be produced. We then examine the effects of varying the external perturbation strength on the readout capability in quantum networks by changing the coupling strength through the cross-sectional area ratio. From the analysis of our results, we are persuaded to believe that two universally accepted components for quantum computing are not valid in the quantum network approach: the need of a weak perturbation for measurement of computational results and the requirement of fixed entanglement among qubits. We show there is an interplay between the strength of the entanglement and that of the external perturbation for high-fidelity classical readouts.
He, Qi-Liang; Xu, Jing-Bo; Yao, Dao-Xin; Zhang, Ye-Qi
2013-07-15
We investigate the dynamics of quantum correlation between two noninteracting qubits each inserted in its own finite-temperature environment with 1/f spectral density. It is found that the phenomenon of sudden transition between classical and quantum decoherence exists in the system when two qubits are initially prepared in X-type quantum states, and the transition time depends on the initial-state of two qubits, the qubit–environment coupling constant and the temperature of the environment. Furthermore, we explore the influence of dynamical decoupling pulses on the transition time and show that it can be prolonged by applying the dynamical decoupling pulses. -- Highlights: •The sudden transition phenomenon from finite-temperature environments is studied. •The transition time depends on the environment temperature and the system parameters. •The transition time can be prolonged by applying the dynamical decoupling pulses.
Robust signatures of quantum radiation reaction in focused ultrashort laser pulses.
Li, Jian-Xing; Hatsagortsyan, Karen Z; Keitel, Christoph H
2014-07-25
Radiation-reaction effects in the interaction of an electron bunch with a superstrong focused ultrashort laser pulse are investigated in the quantum radiation-dominated regime. The angle-resolved Compton scattering spectra are calculated in laser pulses of variable duration using a semiclassical description for the radiation-dominated dynamics and a full quantum treatment for the emitted radiation. In dependence of the laser-pulse duration we find signatures of quantum radiation reaction in the radiation spectra, which are characteristic for the focused laser beam and visible in the qualitative behavior of both the angular spread and the spectral bandwidth of the radiation spectra. The signatures are robust with respect to the variation of the electron and laser-beam parameters in a large range. Qualitatively, they differ fully from those in the classical radiation-reaction regime and are measurable with presently available laser technology.
Pulse-controlled quantum gate sequences on a strongly coupled qubit chain
NASA Astrophysics Data System (ADS)
Frydrych, Holger; Marthaler, Michael; Alber, Gernot
2015-12-01
We propose a selective dynamical decoupling scheme on a chain of permanently coupled qubits with XX-type interactions, which is capable of dynamically suppressing any coupling in the chain by applying sequences of local pulses to the individual qubits. We demonstrate that high-fidelity single- and two-qubit gates can be achieved by this procedure and that sequences of gates can be implemented by this pulse control alone. We discuss the applicability and physical limitations of our model specifically for strongly coupled superconducting flux qubits. Since dynamically modifying the couplings between flux qubits is challenging, they are a natural candidate for our approach.
Evolution of Rydberg states in half-cycle pulses: Classical, semiclassical, and quantum dynamics
Burgdoerfer, J.; Reinhold, C. |
1994-12-31
We summarize recent theoretical advances in the description of the evolution of Rydberg atoms subject to ultrashort pulses extending only a fraction of an optical cycle. We have performed classical. semiclassical and full quantum calculations in order to delineate the classical-quantum correspondence for impulsively perturbed atomic systems. We observe classical and quantum (or semiclassical) oscillations in excitation and ionization which depend on the initial state of atoms and on the strength of the perturbation. These predictions can be experimentally tested. 4 figs.
Lü, B.; Münger, E. P.; Sarakinos, K.
2015-04-07
The morphology and physical properties of thin films deposited by vapor condensation on solid surfaces are predominantly set by the processes of island nucleation, growth, and coalescence. When deposition is performed using pulsed vapor fluxes, three distinct nucleation regimes are known to exist depending on the temporal profile of the flux. These regimes can be accessed by tuning deposition conditions; however, their effect on film microstructure becomes marginal when coalescence sets in and erases morphological features obtained during nucleation. By preventing coalescence from being completed, these nucleation regimes can be used to control microstructure evolution and thus access a larger palette of film morphological features. Recently, we derived the quantitative criterion to stop coalescence during continuous metal vapor flux deposition on insulating surfaces—which typically yields 3-dimensional growth—by describing analytically the competition between island growth by atomic incorporation and the coalescence rate of islands [Lü et al., Appl. Phys. Lett. 105, 163107 (2014)]. Here, we develop the analytical framework for entering a coalescence-free growth regime for metal vapor deposition on insulating substrates using pulsed vapor fluxes, showing that there exist three distinct criteria for suppressing coalescence that correspond to the three nucleation regimes of pulsed vapor flux deposition. The theoretical framework developed herein is substantiated by kinetic Monte Carlo growth simulations. Our findings highlight the possibility of using atomistic nucleation theory for pulsed vapor deposition to control morphology of thin films beyond the point of island density saturation.
Pulse dynamics in a mode-locked fiber laser and its quantum limited comb frequency uncertainty.
Bao, Chengying; Funk, Andrew C; Yang, Changxi; Cundiff, Steven T
2014-06-01
We present an experimental study of pulse dynamics in a mode-locked Er:fiber laser. By injecting a continuous wave laser with sinusoidal intensity modulation into the fiber laser, we are able to modulate the gain. Measuring the response of the pulse energy, central frequency, central pulse time, and phase to the gain modulation allows determination of the parameters that describe their coupling. Based on the experimentally derived parameters, we evaluate the free running comb linewidth and frequency uncertainty with feedback included, assuming quantum noise is the limiting factor. Optimization of fiber lasers is also discussed.
Robust quantum control using smooth pulses and topological winding
NASA Astrophysics Data System (ADS)
Barnes, Edwin; Wang, Xin; Das Sarma, S.
2015-08-01
The greatest challenge in achieving the high level of control needed for future technologies based on coherent quantum systems is the decoherence induced by the environment. Here, we present an analytical approach that yields explicit constraints on the driving field which are necessary and sufficient to ensure that the leading-order noise-induced errors in a qubit’s evolution cancel exactly. We derive constraints for two of the most common types of noise that arise in qubits: slow fluctuations of the qubit energy splitting and fluctuations in the driving field itself. By theoretically recasting a phase in the qubit’s wavefunction as a topological winding number, we can satisfy the noise-cancelation conditions by adjusting driving field parameters without altering the target state or quantum evolution. We demonstrate our method by constructing robust quantum gates for two types of spin qubit: phosphorous donors in silicon and nitrogen-vacancy centers in diamond.
Quantum entanglement and teleportation in pulsed cavity optomechanics
Hofer, Sebastian G.; Wieczorek, Witlef; Aspelmeyer, Markus; Hammerer, Klemens
2011-11-15
Entangling a mechanical oscillator with an optical mode is an enticing and yet a very challenging goal in cavity optomechanics. Here we consider a pulsed scheme to create Einstein-Podolsky-Rosen-type entanglement between a traveling-wave light pulse and a mechanical oscillator. The entanglement can be verified unambiguously by a pump-probe sequence of pulses. In contrast to schemes that work in a steady-state regime under a continuous-wave drive, this protocol is not subject to stability requirements that normally limit the strength of achievable entanglement. We investigate the protocol's performance under realistic conditions, including mechanical decoherence, in full detail. We discuss the relevance of a high mechanical Qf product for entanglement creation and provide a quantitative statement on which magnitude of the Qf product is necessary for a successful realization of the scheme. We determine the optimal parameter regime for its operation and show it to work in current state-of-the-art systems.
Optical pulse dynamics for quantum-dot logic operations in a photonic-crystal waveguide
Ma, Xun; John, Sajeev
2011-11-15
We numerically demonstrate all-optical logic operations with quantum dots (QDs) embedded in a bimodal photonic-crystal waveguide using Maxwell-Bloch equations in a slowly varying envelope approximation (SVEA). The two-level QD excitation level is controlled by one or more femtojoule optical driving pulses passing through the waveguide. Specific logic operations depend on the relative pulse strengths and their detunings from an inhomogeneouslly broadened (about 1% for QD transitions centered at 1.5 {mu}m) QD transition. This excitation controlled two-level medium then determines passage of subsequent probe optical pulses. Envelope equations for electromagnetic waves in the linear dispersion and cutoff waveguide modes are derived to simplify solution of the coupled Maxwell-Bloch equations in the waveguide. These determine the quantum mechanical evolution of the QD excitation and its polarization, driven by classical electromagnetic (EM) pulses near a sharp discontinuity in the EM density of states of the bimodal waveguide. Different configurations of the driving pulses lead to distinctive relations between driving pulse strength and probe pulse passage, representing all-optical logic and, or, and not operations. Simulation results demonstrate that such operations can be done on picosecond time scales and within a waveguide length of about 10 {mu}m in a photonic-band-gap (PBG) optical microchip.
NASA Astrophysics Data System (ADS)
Gulyaev, A. V.; Tikhonova, O. V.
2010-05-01
The propagation of ultrashort few-cycle laser pulses through a quantum nonlinear medium with resonant properties is studied using the method of slowly varying amplitudes with allowance for dispersion effects. A self-consistent system of nonlinear wave equation for the evolution of laser field and the nonstationary Schrödinger equation that determines the material polarization response is numerically solved. Specific features of the propagation of laser pulse caused by a relatively large spectral width and the nonadiabatic character of the laser pulse are established. The rise of the slowly dumping polarization at the eigenfrequency of the medium and the consequent stretching of the laser pulse are observed. The role of the resonant absorption of the laser energy in the medium is analyzed. The nonlinear spectral broadening is demonstrated for the laser pulse propagating through the medium.
Controlling pathway dynamics of a four-level quantum system with pulse shaping
NASA Astrophysics Data System (ADS)
Cao, Dewen; Yang, Ling; Wang, Yaoxiong; Shuang, Feng; Gao, Fang
2016-07-01
The dynamics of two two-photon absorption (TPA) pathways in a four-level quantum system driven by a laser pulse is investigated in this work. An analytical solution for pulse shaping is proposed to be globally optimal for constructive interference between the two pathways, and accurate spectral boundaries for phase modulation are obtained. The TPA rate can be enhanced by a factor of 8.33 with the optimal pulse instead of the transform limited pulse (TL pulse). Simple control strategies modulating both amplitudes and phases are also designed to increase the TPA amplitude along one pathway while decreasing that along the other simultaneously. The strategies are intuitive and the two pathway amplitudes can differ by two orders of magnitude.
NASA Astrophysics Data System (ADS)
Liu, Dang-Ting; Tian, Ye; Zhao, Shi-Ping; Ren, Yu-Feng; Chen, Geng-Hua
2015-04-01
We discuss a simple relation between the input and output signals of a superconducting quantum interference device magnetometer operating in flux locked mode in a cosine curve approximation. According to this relation, an original fast input signal can be easily retrieved from its distorted output response. This technique can be used in some areas such as sensitive and fast detection of magnetic or metallic grains in medicine and food security checking.
NASA Astrophysics Data System (ADS)
Yevdokimov, I. V.; Ruser, R.; Buegger, F.; Marx, M.; Munch, J. C.
2007-07-01
The input dynamics of labeled C into pools of soil organic matter and CO2 fluxes from soil were studied in a pot experiment with the pulse labeling of oats and corn under a 13CO2 atmosphere, and the contribution of the root and microbial respiration to the emission of CO2 from the soil was determined from the fluxes of labeled C in the microbial biomass and the evolved carbon dioxide. A considerable amount of 13C (up to 96% of the total amount of the label found in the rhizosphere soil) was incorporated into the biomass of the rhizosphere microorganisms. The diurnal fluctuations of the labeled C pools in the microbial biomass, dissolved organic carbon, and CO2 released in the rhizosphere of oats and corn were related to the day/night changes, i.e., to the on and off periods of the photosynthetic activity of the plants. The average contribution of the corn root respiration (70% of the total CO2 emission from the soil surface) was higher than that of the oats roots (44%), which was related to the lower incorporation of rhizodeposit carbon into the microbial biomass in the soil under the corn plants than in the soil under the oats plants.
NASA Astrophysics Data System (ADS)
Gerdel, Katharina; Spielmann, Felix M.; Hammerle, Albin; Wohlfahrt, Georg
2016-04-01
Carbonyl sulfide (COS) is the most abundant sulfur containing trace gas present in the troposphere at concentrations of around 500 ppt. Recent interest in COS by the ecosystem-physiological community has been sparked by the fact that COS co-diffuses into plant leaves pretty much the same way as carbon dioxide (CO2) does, but in contrast to CO2, COS is not known to be emitted by plants. Thus uptake of COS by vegetation has the potential to be used as a tracer for canopy gross photosynthesis, which cannot be measured directly, however represents a key term in the global carbon cycle. Since a few years, quantum cascade laser absorption spectrometers (QCLAS) are commercially available with the precision, sensitivity and time response suitable for eddy covariance (EC) flux measurements. While there exist a handful of published reports on EC flux measurements in the recent literature, no rigorous investigation of the applicability of QCLAS for EC COS flux measurements has been carried out so far, nor have been EC processing and QA/QC steps developed for carbon dioxide and water vapor flux measurements within FLUXNET been assessed for COS. The aim of this study is to close this knowledge gap, to discuss critical steps in the post-processing chain of COS EC flux measurements and to devise best-practice guidelines for COS EC flux data processing. To this end we collected EC COS (and CO2, H2O and CO) flux measurements above a temperate mountain grassland in Austria over the vegetation period 2015 with a commercially available QCLAS. We discuss various aspects of EC data post-processing, in particular issues with the time-lag estimation between sonic anemometer and QCLAS signals and QCLAS time series detrending, as well as QA/QC, in particular flux detection limits, random flux uncertainty, the interaction of various processing steps with common EC QA/QC filters (e.g. detrending and stationarity tests), u*-filtering, etc.
Xia, Mingjun; Ghafouri-Shiraz, H
2015-12-10
In this paper, we study the wavelength-dependent amplification in three different wideband quantum well semiconductor optical amplifiers (QWAs) having conventional, exponentially tapered, and linearly tapered active region waveguide structures. A new theoretical model for tapered-waveguide QWAs considering the effect of lateral carrier density distribution and the strain effect in the quantum well is established based on a quantum well transmission line modeling method. The temporal and spectral characteristics of amplified femtosecond pulse are analyzed for each structure. It was found that, for the amplification of a single femtosecond pulse, the tapered-waveguide QWA provides higher saturation gain, and the output spectra of the amplified pulse in all three structures exhibit an apparent redshift and bandwidth narrowing due to the reduction of carrier density; however, the output spectrum in the tapered-waveguide amplifier is less distorted and exhibits smaller bandwidth narrowing. For the simultaneous amplification of two femtosecond pulses with different central frequencies, in all the three structures, two peaks appear in the output spectra while the peak at the frequency closer to the peak frequency of the QWA gain spectrum receives higher amplification due to the frequency (wavelength) dependence of the QWA gain. At a low peak power level of the input pulse, the bandwidth of each window in the tapered structure is larger than that of the conventional waveguide structure, which aggravates the spectrum alias in the amplification of femtosecond pulses with different central frequencies. As the peak powers of the two pulses increase, the spectrum alias in the conventional waveguide becomes more serious while there are small changes in the tapered structures. Also, we have found that in the amplification of a femtosecond pulse train, the linear-tapered QWAs exhibit the fastest gain recovery as compared with the conventional and exponentially tapered QWAs.
Xia, Mingjun; Ghafouri-Shiraz, H
2015-12-10
In this paper, we study the wavelength-dependent amplification in three different wideband quantum well semiconductor optical amplifiers (QWAs) having conventional, exponentially tapered, and linearly tapered active region waveguide structures. A new theoretical model for tapered-waveguide QWAs considering the effect of lateral carrier density distribution and the strain effect in the quantum well is established based on a quantum well transmission line modeling method. The temporal and spectral characteristics of amplified femtosecond pulse are analyzed for each structure. It was found that, for the amplification of a single femtosecond pulse, the tapered-waveguide QWA provides higher saturation gain, and the output spectra of the amplified pulse in all three structures exhibit an apparent redshift and bandwidth narrowing due to the reduction of carrier density; however, the output spectrum in the tapered-waveguide amplifier is less distorted and exhibits smaller bandwidth narrowing. For the simultaneous amplification of two femtosecond pulses with different central frequencies, in all the three structures, two peaks appear in the output spectra while the peak at the frequency closer to the peak frequency of the QWA gain spectrum receives higher amplification due to the frequency (wavelength) dependence of the QWA gain. At a low peak power level of the input pulse, the bandwidth of each window in the tapered structure is larger than that of the conventional waveguide structure, which aggravates the spectrum alias in the amplification of femtosecond pulses with different central frequencies. As the peak powers of the two pulses increase, the spectrum alias in the conventional waveguide becomes more serious while there are small changes in the tapered structures. Also, we have found that in the amplification of a femtosecond pulse train, the linear-tapered QWAs exhibit the fastest gain recovery as compared with the conventional and exponentially tapered QWAs. PMID
Quantum control of multilevel atoms with rotational degeneracy using short laser pulses
Demeter, G.
2010-10-15
We study the quantum control of multilevel atoms with rotationally degenerate levels using short laser pulses. Various control schemes are considered, ones using {pi} pulses, frequency-chirped pulses, two consecutive pulses, or two pulses that overlap each other partially. We study the possibilities of controlling the quantum state of an ensemble of atoms distributed randomly over one or more rotationally degenerate levels initially. For the sake of concreteness we use the hyperfine level scheme of the {sup 85}Rb D line, but the results can easily be generalized for any of the alkali-metal atoms used in cooling and trapping experiments. We find that even though a number of difficulties arise, such as unequal coupling constants between rotational sublevels or dephasing between different hyperfine levels during the interaction, control schemes using simple or multiphoton adiabatic passage can be used to control the internal states of the atoms effectively as well as the center-of-mass motion. Furthermore, it is shown that in some cases it is possible to exploit the inequality of the coupling constants to entangle the rotational substates with specific distinct translational quantum states and hence separate these substates in momentum space.
NASA Astrophysics Data System (ADS)
Korotchenko, K. B.; Tukhfatullin, TA; Pivovarov, Yu L.; Eikhorn, Yu L.
2016-07-01
Simulation of flux-peaking effect of the 255 MeV positrons channeled in (220) Si crystals is performed in the frame of classical and quantum mechanics. Comparison of the results obtained using both approaches shows relatively good agreement.
Various methods of optimizing control pulses for quantum systems with decoherence
NASA Astrophysics Data System (ADS)
Pawela, Łukasz; Sadowski, Przemysław
2016-05-01
We design control setting that allows the implementation of an approximation of an unitary operation of a quantum system under decoherence using various quantum system layouts and numerical algorithms. We focus our attention on the possibility of adding ancillary qubits which help to achieve a desired quantum map on the initial system. Furthermore, we use three methods of optimizing the control pulses: genetic optimization, approximate evolution method and approximate gradient method. To model the noise in the system we use the Lindblad equation. We obtain results showing that applying the control pulses to the ancilla allows one to successfully implement unitary operation on a target system in the presence of noise, which is not possible which control field applied to the system qubits.
NASA Astrophysics Data System (ADS)
Zhu, Meng-Zheng; Ye, Liu
2015-04-01
An efficient scheme is proposed to implement a quantum cloning machine in separate cavities based on a hybrid interaction between electron-spin systems placed in the cavities and an optical coherent pulse. The coefficient of the output state for the present cloning machine is just the direct product of two trigonometric functions, which ensures that different types of quantum cloning machine can be achieved readily in the same framework by appropriately adjusting the rotated angles. The present scheme can implement optimal one-to-two symmetric (asymmetric) universal quantum cloning, optimal symmetric (asymmetric) phase-covariant cloning, optimal symmetric (asymmetric) real-state cloning, optimal one-to-three symmetric economical real-state cloning, and optimal symmetric cloning of qubits given by an arbitrary axisymmetric distribution. In addition, photon loss of the qubus beams during the transmission and decoherence effects caused by such a photon loss are investigated.
Implementing and diagnosing magnetic flux compression on the Z pulsed power accelerator
McBride, Ryan D.; Bliss, David E.; Gomez, Matthew R.; Hansen, Stephanie B.; Martin, Matthew R.; Jennings, Christopher Ashley; Slutz, Stephen A.; Rovang, Dean C.; Knapp, Patrick F.; Schmit, Paul F.; Awe, Thomas James; Hess, M. H.; Lemke, Raymond W.; Dolan, D. H.; Lamppa, Derek C.; Jobe, Marc Ronald Lee; Fang, Lu; Hahn, Kelly D.; Chandler, Gordon A.; Cooper, Gary Wayne; Ruiz, Carlos L.; Maurer, A. J.; Robertson, Grafton Kincannon; Cuneo, Michael E.; Sinars, Daniel; Tomlinson, Kurt; Smith, Gary; Paguio, Reny; Intrator, Tom; Weber, Thomas; Greenly, John
2015-11-01
We report on the progress made to date for a Laboratory Directed Research and Development (LDRD) project aimed at diagnosing magnetic flux compression on the Z pulsed-power accelerator (0-20 MA in 100 ns). Each experiment consisted of an initially solid Be or Al liner (cylindrical tube), which was imploded using the Z accelerator's drive current (0-20 MA in 100 ns). The imploding liner compresses a 10-T axial seed field, B z ( 0 ) , supplied by an independently driven Helmholtz coil pair. Assuming perfect flux conservation, the axial field amplification should be well described by B z ( t ) = B z ( 0 ) x [ R ( 0 ) / R ( t )] 2 , where R is the liner's inner surface radius. With perfect flux conservation, B z ( t ) and dB z / dt values exceeding 10 4 T and 10 12 T/s, respectively, are expected. These large values, the diminishing liner volume, and the harsh environment on Z, make it particularly challenging to measure these fields. We report on our latest efforts to do so using three primary techniques: (1) micro B-dot probes to measure the fringe fields associated with flux compression, (2) streaked visible Zeeman absorption spectroscopy, and (3) fiber-based Faraday rotation. We also mention two new techniques that make use of the neutron diagnostics suite on Z. These techniques were not developed under this LDRD, but they could influence how we prioritize our efforts to diagnose magnetic flux compression on Z in the future. The first technique is based on the yield ratio of secondary DT to primary DD reactions. The second technique makes use of the secondary DT neutron time-of-flight energy spectra. Both of these techniques have been used successfully to infer the degree of magnetization at stagnation in fully integrated Magnetized Liner Inertial Fusion (MagLIF) experiments on Z [P. F. Schmit et al. , Phys. Rev. Lett. 113 , 155004 (2014); P. F. Knapp et al. , Phys. Plasmas, 22 , 056312 (2015)]. Finally, we present some recent developments for designing
Trigonometric pulse envelopes for laser-induced quantum dynamics
NASA Astrophysics Data System (ADS)
Barth, I.; Lasser, C.
2009-12-01
We relate powers of trigonometric functions to Gaussians by proving that properly truncated cosn functions converge to a Gaussian as n tends to infinity. For an application, we analyse the laser-induced population transfer |X1Σ+rang → |A1Πxrang in a two-level model system of aluminium monochloride (AlCl) with fixed nuclei. We apply linearly x-polarized ultraviolet laser pulses with a trigonometric envelope function, whose square has full width at half-maximum of 2.5 fs and 5.0 fs. Studying population dynamics and optimized laser parameters, we find that the optimal field amplitude for trigonometric pulses with n = 20 and n = 1000 has a relative difference of 1%, which is below experimental resolution.
Efficient Amplitude-Modulated Pulses for Triple- to Single-Quantum Coherence Conversion in MQMAS NMR
2014-01-01
The conversion between multiple- and single-quantum coherences is integral to many nuclear magnetic resonance (NMR) experiments of quadrupolar nuclei. This conversion is relatively inefficient when effected by a single pulse, and many composite pulse schemes have been developed to improve this efficiency. To provide the maximum improvement, such schemes typically require time-consuming experimental optimization. Here, we demonstrate an approach for generating amplitude-modulated pulses to enhance the efficiency of the triple- to single-quantum conversion. The optimization is performed using the SIMPSON and MATLAB packages and results in efficient pulses that can be used without experimental reoptimisation. Most significant signal enhancements are obtained when good estimates of the inherent radio-frequency nutation rate and the magnitude of the quadrupolar coupling are used as input to the optimization, but the pulses appear robust to reasonable variations in either parameter, producing significant enhancements compared to a single-pulse conversion, and also comparable or improved efficiency over other commonly used approaches. In all cases, the ease of implementation of our method is advantageous, particularly for cases with low sensitivity, where the improvement is most needed (e.g., low gyromagnetic ratio or high quadrupolar coupling). Our approach offers the potential to routinely improve the sensitivity of high-resolution NMR spectra of nuclei and systems that would, perhaps, otherwise be deemed “too challenging”. PMID:25047226
Sensitive detection of acrolein and acrylonitrile with a pulsed quantum-cascade laser
NASA Astrophysics Data System (ADS)
Manne, J.; Lim, A.; Tulip, J.; Jäger, W.
2012-05-01
We report on spectroscopic measurements of acrolein and acrylonitrile at atmospheric pressure using a pulsed distributed feedback quantum-cascade laser in combination with intra- and inter-pulse techniques and compare the results. The measurements were done in the frequency region around 957 cm-1. In the inter-pulse technique, the laser is excited with short current pulses (5-10 ns), and the pulse amplitude is modulated with an external current ramp resulting in a ˜2.3 cm-1 frequency scan. In the intra-pulse technique, a linear frequency down-chirp during the pulse is used for sweeping across the absorption line. Long current pulses up to 500 ns were used for these measurements which resulted in a spectral window of ˜2.2 cm-1 during the down-chirp. These comparatively wide spectral windows facilitated the measurements of the relatively broad absorption lines (˜1 cm-1) of acrolein and acrylonitrile. The use of a room-temperature mercury-cadmium-telluride detector resulted in a completely cryogen-free spectrometer. We demonstrate ppb level detection limits within a data acquisition time of ˜10 s with these methodologies.
Zhang, Z. D.; Wang, J.
2014-06-28
We established a theoretical framework in terms of the curl flux, population landscape, and coherence for non-equilibrium quantum systems at steady state, through exploring the energy and charge transport in molecular processes. The curl quantum flux plays the key role in determining transport properties and the system reaches equilibrium when flux vanishes. The novel curl quantum flux reflects the degree of non-equilibriumness and the time-irreversibility. We found an analytical expression for the quantum flux and its relationship to the environmental pumping (non-equilibriumness quantified by the voltage away from the equilibrium) and the quantum tunneling. Furthermore, we investigated another quantum signature, the coherence, quantitatively measured by the non-zero off diagonal element of the density matrix. Populations of states give the probabilities of individual states and therefore quantify the population landscape. Both curl flux and coherence depend on steady state population landscape. Besides the environment-assistance which can give dramatic enhancement of coherence and quantum flux with high voltage at a fixed tunneling strength, the quantum flux is promoted by the coherence in the regime of small tunneling while reduced by the coherence in the regime of large tunneling, due to the non-monotonic relationship between the coherence and tunneling. This is in contrast to the previously found linear relationship. For the systems coupled to bosonic (photonic and phononic) reservoirs the flux is significantly promoted at large voltage while for fermionic (electronic) reservoirs the flux reaches a saturation after a significant enhancement at large voltage due to the Pauli exclusion principle. In view of the system as a quantum heat engine, we studied the non-equilibrium thermodynamics and established the analytical connections of curl quantum flux to the transport quantities such as energy (charge) transfer efficiency, chemical reaction efficiency, energy
Zhang, Zhedong; Wang, Jin; Zhang, Z D; Wang, J
2014-06-28
We established a theoretical framework in terms of the curl flux, population landscape, and coherence for non-equilibrium quantum systems at steady state, through exploring the energy and charge transport in molecular processes. The curl quantum flux plays the key role in determining transport properties and the system reaches equilibrium when flux vanishes. The novel curl quantum flux reflects the degree of non-equilibriumness and the time-irreversibility. We found an analytical expression for the quantum flux and its relationship to the environmental pumping (non-equilibriumness quantified by the voltage away from the equilibrium) and the quantum tunneling. Furthermore, we investigated another quantum signature, the coherence, quantitatively measured by the non-zero off diagonal element of the density matrix. Populations of states give the probabilities of individual states and therefore quantify the population landscape. Both curl flux and coherence depend on steady state population landscape. Besides the environment-assistance which can give dramatic enhancement of coherence and quantum flux with high voltage at a fixed tunneling strength, the quantum flux is promoted by the coherence in the regime of small tunneling while reduced by the coherence in the regime of large tunneling, due to the non-monotonic relationship between the coherence and tunneling. This is in contrast to the previously found linear relationship. For the systems coupled to bosonic (photonic and phononic) reservoirs the flux is significantly promoted at large voltage while for fermionic (electronic) reservoirs the flux reaches a saturation after a significant enhancement at large voltage due to the Pauli exclusion principle. In view of the system as a quantum heat engine, we studied the non-equilibrium thermodynamics and established the analytical connections of curl quantum flux to the transport quantities such as energy (charge) transfer efficiency, chemical reaction efficiency, energy
Generation of high-photon flux-coherent soft x-ray radiation with few-cycle pulses.
Demmler, Stefan; Rothhardt, Jan; Hädrich, Steffen; Krebs, Manuel; Hage, Arvid; Limpert, Jens; Tünnermann, Andreas
2013-12-01
We present a tabletop source of coherent soft x-ray radiation with high-photon flux. Two-cycle pulses delivered by a fiber-laser-pumped optical parametric chirped-pulse amplifier operating at 180 kHz repetition rate are upconverted via high harmonic generation in neon to photon energies beyond 200 eV. A maximum photon flux of 1.3·10(8) photons/s is achieved within a 1% bandwidth at 125 eV photon energy. This corresponds to a conversion efficiency of ~10(-9), which can be reached due to a gas jet simultaneously providing a high target density and phase matching. Further scaling potential toward higher photon flux as well as higher photon energies are discussed.
Generation of high-photon flux-coherent soft x-ray radiation with few-cycle pulses.
Demmler, Stefan; Rothhardt, Jan; Hädrich, Steffen; Krebs, Manuel; Hage, Arvid; Limpert, Jens; Tünnermann, Andreas
2013-12-01
We present a tabletop source of coherent soft x-ray radiation with high-photon flux. Two-cycle pulses delivered by a fiber-laser-pumped optical parametric chirped-pulse amplifier operating at 180 kHz repetition rate are upconverted via high harmonic generation in neon to photon energies beyond 200 eV. A maximum photon flux of 1.3·10(8) photons/s is achieved within a 1% bandwidth at 125 eV photon energy. This corresponds to a conversion efficiency of ~10(-9), which can be reached due to a gas jet simultaneously providing a high target density and phase matching. Further scaling potential toward higher photon flux as well as higher photon energies are discussed. PMID:24281507
Pulsed-laser micropatterned quantum-dot array for white light source
NASA Astrophysics Data System (ADS)
Wang, Sheng-Wen; Lin, Huang-Yu; Lin, Chien-Chung; Kao, Tsung Sheng; Chen, Kuo-Ju; Han, Hau-Vei; Li, Jie-Ru; Lee, Po-Tsung; Chen, Huang-Ming; Hong, Ming-Hui; Kuo, Hao-Chung
2016-03-01
In this study, a novel photoluminescent quantum dots device with laser-processed microscale patterns has been demonstrated to be used as a white light emitting source. The pulsed laser ablation technique was employed to directly fabricate microscale square holes with nano-ripple structures onto the sapphire substrate of a flip-chip blue light-emitting diode, confining sprayed quantum dots into well-defined areas and eliminating the coffee ring effect. The electroluminescence characterizations showed that the white light emission from the developed photoluminescent quantum-dot light-emitting diode exhibits stable emission at different driving currents. With a flexibility of controlling the quantum dots proportions in the patterned square holes, our developed white-light emitting source not only can be employed in the display applications with color triangle enlarged by 47% compared with the NTSC standard, but also provide the great potential in future lighting industry with the correlated color temperature continuously changed in a wide range.
Detection of acrolein and acrylonitrile with a pulsed room temperature quantum cascade laser
NASA Astrophysics Data System (ADS)
Manne, J.; Jäger, W.; Tulip, J.
2010-06-01
We investigated the use of a pulsed, distributed feedback quantum cascade laser centered at 957 cm-1 in combination with an astigmatic Herriot cell with 250 m path length for the detection of acrolein and acrylonitrile. These molecules have been identified as hazardous air-pollutants because of their adverse health effects. The spectrometer utilizes the intra-pulse method, where a linear frequency down-chirp, that is induced when a top-hat current pulse is applied to the laser, is used for sweeping across the absorption line. Up to 450 ns long pulses were used for these measurements which resulted in a spectral window of ~2.2 cm-1. A room temperature mercury-cadmium-telluride detector was used, resulting in a completely cryogen free spectrometer. We demonstrated detection limits of ~3 ppb for acrylonitrile and ~6 ppb for acrolein with ~10 s averaging time. Laser characterization and optimization of the operational parameters for sensitivity improvement are discussed.
Agha, Imad; Ates, Serkan; Sapienza, Luca; Srinivasan, Kartik
2014-10-01
We experimentally demonstrate spectral broadening and shaping of exponentially-decaying nanosecond pulses via nonlinear mixing with a phase-modulated pump in a periodically poled lithium niobate (PPLN) waveguide. 1550 nm pump light is imprinted with a temporal phase and used to upconvert a weak 980 nm pulse to 600 nm while simultaneously broadening the spectrum to that of a Lorentzian pulse up to 10 times shorter. While the current experimental demonstration is for spectral shaping, we also provide a numerical study showing the feasibility of subsequent spectral phase correction to achieve temporal compression and reshaping of a 1 ns mono-exponentially decaying pulse to a 250 ps Lorentzian, which would constitute a complete spectrotemporal waveform shaping protocol. This method, which uses quantum frequency conversion in PPLN with >100:1 signal-to-noise ratio, is compatible with single photon states of light. PMID:25360957
Mimicking of pulse shape-dependent learning rules with a quantum dot memristor
NASA Astrophysics Data System (ADS)
Maier, P.; Hartmann, F.; Rebello Sousa Dias, M.; Emmerling, M.; Schneider, C.; Castelano, L. K.; Kamp, M.; Marques, G. E.; Lopez-Richard, V.; Worschech, L.; Höfling, S.
2016-10-01
We present the realization of four different learning rules with a quantum dot memristor by tuning the shape, the magnitude, the polarity and the timing of voltage pulses. The memristor displays a large maximum to minimum conductance ratio of about 57 000 at zero bias voltage. The high and low conductances correspond to different amounts of electrons localized in quantum dots, which can be successively raised or lowered by the timing and shapes of incoming voltage pulses. Modifications of the pulse shapes allow altering the conductance change in dependence on the time difference. Hence, we are able to mimic different learning processes in neural networks with a single device. In addition, the device performance under pulsed excitation is emulated combining the Landauer-Büttiker formalism with a dynamic model for the quantum dot charging, which allows explaining the whole spectrum of learning responses in terms of structural parameters that can be adjusted during fabrication, such as gating efficiencies and tunneling rates. The presented memristor may pave the way for future artificial synapses with a stimulus-dependent capability of learning.
Vandegehuchte, Maurits W; Steppe, Kathy
2012-10-01
• To our knowledge, to date, no nonempirical method exists to measure reverse, low or high sap flux density. Moreover, existing sap flow methods require destructive wood core measurements to determine sapwood water content, necessary to convert heat velocity to sap flux density, not only damaging the tree, but also neglecting seasonal variability in sapwood water content. • Here, we present a nonempirical heat-pulse-based method and coupled sensor which measure temperature changes around a linear heater in both axial and tangential directions after application of a heat pulse. By fitting the correct heat conduction-convection equation to the measured temperature profiles, the heat velocity and water content of the sapwood can be determined. • An identifiability analysis and validation tests on artificial and real stem segments of European beech (Fagus sylvatica L.) confirm the applicability of the method, leading to accurate determinations of heat velocity, water content and hence sap flux density. • The proposed method enables sap flux density measurements to be made across the entire natural occurring sap flux density range of woody plants. Moreover, the water content during low flows can be determined accurately, enabling a correct conversion from heat velocity to sap flux density without destructive core measurements.
Brunner, D.; LaBombard, B.
2012-03-15
A novel set of thermocouple sensors has been developed to measure heat fluxes arriving at divertor surfaces in the Alcator C-Mod tokamak, a magnetic confinement fusion experiment. These sensors operate in direct contact with the divertor plasma, which deposits heat fluxes in excess of {approx}10 MW/m{sup 2} over an {approx}1 s pulse. Thermoelectric EMF signals are produced across a non-standard bimetallic junction: a 50 {mu}m thick 74% tungsten-26% rhenium ribbon embedded in a 6.35 mm diameter molybdenum cylinder. The unique coaxial geometry of the sensor combined with its single-point electrical ground contact minimizes interference from the plasma/magnetic environment. Incident heat fluxes are inferred from surface temperature evolution via a 1D thermal heat transport model. For an incident heat flux of 10 MW/m{sup 2}, surface temperatures rise {approx}1000 deg. C/s, corresponding to a heat flux flowing along the local magnetic field of {approx}200 MW/m{sup 2}. Separate calorimeter sensors are used to independently confirm the derived heat fluxes by comparing total energies deposited during a plasma pulse. Langmuir probes in close proximity to the surface thermocouples are used to test plasma-sheath heat transmission theory and to identify potential sources of discrepancies among physical models.
Giant photon bunching, superradiant pulse emission and excitation trapping in quantum-dot nanolasers
NASA Astrophysics Data System (ADS)
Jahnke, Frank; Gies, Christopher; Aßmann, Marc; Bayer, Manfred; Leymann, H. A. M.; Foerster, Alexander; Wiersig, Jan; Schneider, Christian; Kamp, Martin; Höfling, Sven
2016-05-01
Light is often characterized only by its classical properties, like intensity or coherence. When looking at its quantum properties, described by photon correlations, new information about the state of the matter generating the radiation can be revealed. In particular the difference between independent and entangled emitters, which is at the heart of quantum mechanics, can be made visible in the photon statistics of the emitted light. The well-studied phenomenon of superradiance occurs when quantum-mechanical correlations between the emitters are present. Notwithstanding, superradiance was previously demonstrated only in terms of classical light properties. Here, we provide the missing link between quantum correlations of the active material and photon correlations in the emitted radiation. We use the superradiance of quantum dots in a cavity-quantum electrodynamics laser to show a direct connection between superradiant pulse emission and distinctive changes in the photon correlation function. This directly demonstrates the importance of quantum-mechanical correlations and their transfer between carriers and photons in novel optoelectronic devices.
Jahnke, Frank; Gies, Christopher; Aßmann, Marc; Bayer, Manfred; Leymann, H A M; Foerster, Alexander; Wiersig, Jan; Schneider, Christian; Kamp, Martin; Höfling, Sven
2016-01-01
Light is often characterized only by its classical properties, like intensity or coherence. When looking at its quantum properties, described by photon correlations, new information about the state of the matter generating the radiation can be revealed. In particular the difference between independent and entangled emitters, which is at the heart of quantum mechanics, can be made visible in the photon statistics of the emitted light. The well-studied phenomenon of superradiance occurs when quantum-mechanical correlations between the emitters are present. Notwithstanding, superradiance was previously demonstrated only in terms of classical light properties. Here, we provide the missing link between quantum correlations of the active material and photon correlations in the emitted radiation. We use the superradiance of quantum dots in a cavity-quantum electrodynamics laser to show a direct connection between superradiant pulse emission and distinctive changes in the photon correlation function. This directly demonstrates the importance of quantum-mechanical correlations and their transfer between carriers and photons in novel optoelectronic devices. PMID:27161302
Jahnke, Frank; Gies, Christopher; Aßmann, Marc; Bayer, Manfred; Leymann, H A M; Foerster, Alexander; Wiersig, Jan; Schneider, Christian; Kamp, Martin; Höfling, Sven
2016-05-10
Light is often characterized only by its classical properties, like intensity or coherence. When looking at its quantum properties, described by photon correlations, new information about the state of the matter generating the radiation can be revealed. In particular the difference between independent and entangled emitters, which is at the heart of quantum mechanics, can be made visible in the photon statistics of the emitted light. The well-studied phenomenon of superradiance occurs when quantum-mechanical correlations between the emitters are present. Notwithstanding, superradiance was previously demonstrated only in terms of classical light properties. Here, we provide the missing link between quantum correlations of the active material and photon correlations in the emitted radiation. We use the superradiance of quantum dots in a cavity-quantum electrodynamics laser to show a direct connection between superradiant pulse emission and distinctive changes in the photon correlation function. This directly demonstrates the importance of quantum-mechanical correlations and their transfer between carriers and photons in novel optoelectronic devices.
Blekos, Konstantinos; Terzis, Andreas F.; Simserides, Constantinos; Paspalakis, Emmanuel
2010-11-10
We study the interaction of a chirped electromagnetic pulse with intersubband transitions of a double semiconductor quantum well. We specifically consider the interaction of the ground and first excited subbands with the electromagnetic field and use the nonlinear density matrix equations for the description of the system dynamics. These equations are solved numerically for various values of the electron sheet density for a realistic double GaAs/AlGaAs quantum well, and the efficiency of population transfer is discussed with emphasis given to the effects of the detuning of the central frequency of the electromagnetic field from resonance.
Selective preparation of enantiomers by laser pulses: quantum model simulation for H 2POSH
NASA Astrophysics Data System (ADS)
Fujimura, Y.; González, L.; Hoki, K.; Manz, J.; Ohtsuki, Y.
1999-06-01
This Letter presents the first quantum model simulation of the selective preparation of enantiomers by means of optimal, elliptically polarized, infrared picosecond laser pulses. The laser-driven molecular dynamics is demonstrated by the time evolution of the representative wavepacket, from the initial state which corresponds to a 50:50% racemate of two equivalent enantiomers with opposite chiralities towards the nearly 100:0% preparation of a single enantiomer. The wavepacket dynamics is based on the quantum ab initio potential energy surface and dipole functions for the torsional vibration of the hydrogen atom around the P-S molecular axis of the model system H 2POSH.
Angular Distribution of Tungsten Material and Ion Flux during Nanosecond Pulsed Laser Deposition
NASA Astrophysics Data System (ADS)
Hussain, M. S.; Dogar, A. H.; Qayyum, A.; Abbasi, S. A.
2016-01-01
Tungsten thin films were prepared by pulsed laser deposition (PLD) technique on glass substrates placed at the angles of 0∘ to 70∘ with respect to the target surface normal. Rutherford backscattering Spectrometry (RBS) analysis of the films indicated that about 90% of tungsten material flux is distributed in a cone of 40∘ solid angle while about 54% of it lies even in a narrower cone of 10∘ solid angle. Significant diffusion of tungsten in glass substrate has been observed in the films deposited at smaller angles with respect to target surface normal. Time-of-flight (TOF) measurements performed using Langmuir probe indicated that the most probable ion energy decreases from about 600 to 91eV for variation of θ from 0∘ to 70∘. In general ion energy spread is quite large at all angles investigated here. The enhanced tungsten diffusion in glass substrate observed at smaller angles is most probably due to the higher ion energy and ion assisted recoil implantation of already deposited tungsten.
High-resolution emission spectra of pulsed terahertz quantum-cascade lasers
Ikonnikov, A. V. Antonov, A. V.; Lastovkin, A. A.; Gavrilenko, V. I.; Sadof'ev, Yu. G.; Samal, N.
2010-11-15
The spectra of pulsed terahertz quantum-cascade lasers were measured with high spectral resolution. The characteristic line width at half maximum was 0.01 cm{sup -1}; it is controlled by laser temperature variations during the supply voltage pulse. It was shown that an increase in the laser temperature leads to a decrease in the emission frequency, which is caused by an increase in the effective refractive index of the active region. It was also found that a decrease in the supply voltage results in a decrease in the emission frequency, which is caused by a change in the energy of diagonal transitions between lasing levels.
Control of mixed-state quantum systems by a train of short pulses
NASA Astrophysics Data System (ADS)
Sugny, D.; Keller, A.; Atabek, O.; Daems, D.; Dion, C. M.; Guérin, S.; Jauslin, H. R.
2005-09-01
A density matrix approach is developed for the control of a mixed-state quantum system using a time-dependent external field such as a train of pulses. This leads to the definition of a target density matrix constructed in a reduced Hilbert space as a specific combination of the eigenvectors of a given observable through weighting factors related to the initial statistics of the system. A train of pulses is considered as a possible strategy to reach this target. An illustration is given by considering the laser control of molecular alignment and orientation in thermal equilibrium.
Lin, S.; Zhang, G.; Li, C.; Song, Z.
2016-01-01
We study the tight-binding model for a graphene tube with perimeter N threaded by a magnetic field. We show exactly that this model has different nontrivial topological phases as the flux changes. The winding number, as an indicator of topological quantum phase transition (QPT) fixes at N/3 if N/3 equals to its integer part [N/3], otherwise it jumps between [N/3] and [N/3] + 1 periodically as the flux varies a flux quantum. For an open tube with zigzag boundary condition, exact edge states are obtained. There exist two perfect midgap edge states, in which the particle is completely located at the boundary, even for a tube with finite length. The threading flux can be employed to control the quantum states: transferring the perfect edge state from one end to the other, or generating maximal entanglement between them. PMID:27554930
NASA Astrophysics Data System (ADS)
Lin, S.; Zhang, G.; Li, C.; Song, Z.
2016-08-01
We study the tight-binding model for a graphene tube with perimeter N threaded by a magnetic field. We show exactly that this model has different nontrivial topological phases as the flux changes. The winding number, as an indicator of topological quantum phase transition (QPT) fixes at N/3 if N/3 equals to its integer part [N/3], otherwise it jumps between [N/3] and [N/3] + 1 periodically as the flux varies a flux quantum. For an open tube with zigzag boundary condition, exact edge states are obtained. There exist two perfect midgap edge states, in which the particle is completely located at the boundary, even for a tube with finite length. The threading flux can be employed to control the quantum states: transferring the perfect edge state from one end to the other, or generating maximal entanglement between them.
Quantum magnetic flux lines, BPS vortex zero modes, and one-loop string tension shifts
NASA Astrophysics Data System (ADS)
Alonso-Izquierdo, A.; Mateos Guilarte, J.; de la Torre Mayado, M.
2016-08-01
Spectral heat kernel/zeta function regularization procedures are employed in this paper to control the divergences arising from vacuum fluctuations of Bogomolnyi-Prasad-Sommerfield vortices in the Abelian Higgs model. Zero modes of vortex fluctuations are the source of difficulties appearing when the standard Gilkey-de Witt expansion is the tool used in the calculations of one-loop shifts of vortex masses and string tensions. A modified GdW expansion is developed to diminish the impact of the infrared divergences due to the vortex zero modes of fluctuation. With this new technique at our disposal we compute the one-loop vortex mass shifts in the planar AHM and the quantum corrections to the string tension of the magnetic flux tubes living in three dimensions. In both cases it is observed that weak repulsive forces surge between these classically noninteracting topological defects caused by vacuum quantum fluctuations.
Rapid single-flux-quantum circuits for low noise mK operation
NASA Astrophysics Data System (ADS)
Intiso, Samuel; Pekola, Jukka; Savin, Alexander; Devyatov, Ygor; Kidiyarova-Shevchenko, Anna
2006-05-01
Rapid single-flux-quantum (RSFQ) technology has been proposed as control electronics for superconducting quantum bits because of the material and working temperature compatibility. In this work, we consider practical aspects of RSFQ circuit design for low noise low power operation. At the working temperature of 20 mK and operational frequency of 2 GHz, dissipated power per junction is reduced to 25 pW by using 6 µA critical current junctions available at the Hypres and VTT low Jc fabrication process. To limit phonon temperature to 30 mK, a maximum of 40 junctions can be placed on a 5 mm × 5 mm chip. Electron temperature in resistive shunts of Josephson junctions is minimized by use of cooling fins, giving minimum electron temperatures of about 150 mK for the Hypres process and 70 mK for the VTT process.
Pulse-phase control for spectral disambiguation in quantum sensing protocols
NASA Astrophysics Data System (ADS)
Haase, J. F.; Wang, Z.-Y.; Casanova, J.; Plenio, M. B.
2016-09-01
We present a method to identify spurious signals generated by finite-width pulses in quantum sensing experiments and apply it to recently proposed dynamical decoupling sequences for accurate spectral interpretation. We first study the origin of these fake resonances and quantify their behavior in a situation that involves the measurement of a classical magnetic field. Here we show that a change of the initial phase of the sensor or, equivalently, of the decoupling pulses leads to oscillations in the spurious signal intensity while the real resonances remain intact. Finally we extend our results to the quantum regime for the unambiguous detection of remote nuclear spins by utilization of a nitrogen vacancy sensor in diamond.
Pulsed quantum-cascade laser-based sensor for trace-gas detection of carbonyl sulfide.
Wysocki, Gerard; McCurdy, Matt; So, Stephen; Weidmann, Damien; Roller, Chad; Curl, Robert F; Tittel, Frank K
2004-11-10
Simultaneous exhaled carbonyl sulfide (OCS) and carbon dioxide concentration measurements in human breath are demonstrated with a compact pulsed quantum-cascade laser-based gas sensor. We achieved a noise-equivalent sensitivity (1sigma) of 1.2 parts per billion by measuring a well-isolated OCS P(11) absorption line in the v3 band at 2057.6 cm(-1) using an astigmatic Herriott cell of 36-m optical path length and 0.4-s acquisition time.
Second harmonic generation from direct band gap quantum dots pumped by femtosecond laser pulses
Liu, Liwei Wang, Yue; Hu, Siyi; Ren, Yu; Huang, Chen
2014-02-21
We report on nonlinear optical experiments performed on Cu{sub 2}S quantum dots (QDs) pumped by femtosecond laser pulses. We conduct a theoretical simulation and experiments to determine their second harmonic generation characteristics. Furthermore, we demonstrate that the QDs have a second harmonic generation conversion efficiency of up to 76%. Our studies suggest that these Cu{sub 2}S QDs can be used for solar cells, bioimaging, biosensing, and electric detection.
NASA Astrophysics Data System (ADS)
Wakana, H.; Adachi, S.; Tsubone, K.; Tarutani, Y.; Kamitani, Ai; Nakayama, K.; Ishimaru, Y.; Tanabe, K.
2006-05-01
We have developed a multilayer structure with a smooth surface and fabrication processes for HTS single-flux-quantum (SFQ) circuits. The multilayer structure with surface roughness Ra less than 2 nm, composed of a La0.2-Y0.9Ba1.9Cu3Ox ground plane and base electrode layer, and SrSnO3 insulating layers, was deposited by off-axis magnetron sputtering. We have fabricated interface-engineered junctions based on the multilayer structure using an La0.2-Yb0.9Ba1.9Cu3Ox counter-electrode layer prepared by pulsed laser deposition. The fabricated junctions exhibited excellent Josephson characteristics with a 1-σ spread in Ic as low as 8% for 1000 junctions. The sheet inductance values below 50 K were 0.8-1.0 pH per square. Operation of several elementary SFQ circuits including a toggle flip-flop, a confluence buffer, a set-reset flip-flop and other SFQ elements has been successfully demonstrated at 30-60 K.
NASA Astrophysics Data System (ADS)
Cibella, S.; Beck, M.; Carelli, P.; Castellano, M. G.; Chiarello, F.; Faist, J.; Leoni, R.; Ortolani, M.; Sabbatini, L.; Scalari, G.; Torrioli, G.; Turcinkova, D.
2012-06-01
We make use of a niobium film to produce a micrometric vacuum-bridge superconducting bolometer responding to THz frequency. The bolometer works anywhere in the temperature range 2-7 K, which can be easily reached in helium bath cryostats or closed-cycle cryocoolers. In this work the bolometer is mounted on a pulse tube refrigerator and operated to measure the equivalent noise power (NEP) and the response to fast (μs) terahertz pulses. The NEP above 100 Hz equals that measured in a liquid helium cryostat showing that potential drawbacks related to the use of a pulse tube refrigerator (like mechanical and thermal oscillations, electromagnetic interference, noise) are irrelevant. At low frequency, instead, the pulse tube expansion-compression cycles originate lines at 1 Hz and harmonics in the noise spectrum. The bolometer was illuminated with THz single pulses coming either from a Quantum Cascade Laser operating at liquid nitrogen temperature or from a frequency-multiplied electronic oscillator. The response of the bolometer to the single pulses show that the device can track signals with a rise time as fast as about 450 ns.
Cai, Hong; Liu, Sheng; Lalanne, Elaine; Johnson, Anthony M.
2015-02-02
We study the Kerr nonlinearity of quantum cascade lasers (QCLs) by coupling resonant and off-resonant mid-infrared (mid-IR) femtosecond (fs) pulses into an active QCL waveguide. We observe an increase in the spectral width of the transmitted fs pulses as the coupled mid-infrared (mid-IR) pulse power increases. This is explained by the self-phase modulation effect due to the large Kerr nonlinearity of QCL waveguides. We further confirm this effect by observing the intensity dependent far-field profile of the transmitted mid-IR pulses, showing the pulses undergo self-focusing as they propagate through the active QCL due to the intensity dependent refractive index. We experimentally estimate the nonlinear refractive index n{sub 2} of a QCL to be ∼8 × 10{sup −9 }cm{sup 2}/W using the far-field beam profile of the transmitted pulses. The finite-difference time-domain simulations of QCL waveguides with Kerr nonlinearity incorporated show similar behavior to the experimental results.
On protection against a bright-pulse attack in the two-pass quantum cryptography system
NASA Astrophysics Data System (ADS)
Balygin, K. A.; Klimov, A. N.; Korol'kov, A. V.; Kulik, S. P.; Molotkov, S. N.
2016-06-01
The security of keys in quantum cryptography systems, in contrast to mathematical cryptographic algorithms, is guaranteed by fundamental quantum-mechanical laws. However, the cryptographic resistance of such systems, which are distributed physical devices, fundamentally depends on the method of their implementation and particularly on the calibration and control of critical parameters. The most important parameter is the number of photons in quasi-single-photon information states in a communication channel. The sensitivity to a bright-pulse attack has been demonstrated in an explicit form for a number of systems. A method guaranteeing the resistance to such attacks has been proposed and implemented. Furthermore, the relation of physical observables used and obtained at the control of quantum states to the length of final secret keys has been obtained for the first time.
Dropout dynamics in pulsed quantum dot lasers due to mode jumping
Sokolovskii, G. S.; Dudelev, V. V.; Deryagin, A. G.; Novikov, I. I.; Maximov, M. V.; Ustinov, V. M.; Kuchinskii, V. I.; Viktorov, E. A.; Abusaa, M.; Danckaert, J.; Kolykhalova, E. D.; Soboleva, K. K.; Zhukov, A. E.; Sibbett, W.; Rafailov, E. U.; Erneux, T.
2015-06-29
We examine the response of a pulse pumped quantum dot laser both experimentally and numerically. As the maximum of the pump pulse comes closer to the excited-state threshold, the output pulse shape becomes unstable and leads to dropouts. We conjecture that these instabilities result from an increase of the linewidth enhancement factor α as the pump parameter comes close to the excitated state threshold. In order to analyze the dynamical mechanism of the dropout, we consider two cases for which the laser exhibits either a jump to a different single mode or a jump to fast intensity oscillations. The origin of these two instabilities is clarified by a combined analytical and numerical bifurcation diagram of the steady state intensity modes.
Yoxall, Edward Rahmani, Mohsen; Maier, Stefan A.; Phillips, Chris C.; Navarro-Cía, Miguel
2013-11-18
We demonstrate the use of a pulsed quantum cascade laser, wavelength tuneable between 6 and 10 μm, with a scattering-type scanning near-field optical microscope (s-SNOM). A simple method for calculating the signal-to-noise ratio (SNR) of the s-SNOM measurement is presented. For pulsed lasers, the SNR is shown to be highly dependent on the degree of synchronization between the laser pulse and the sampling circuitry; in measurements on a gold sample, the SNR is 26 with good synchronization and less than 1 without. Simulations and experimental s-SNOM images, with a resolution of 100 nm, corresponding to λ/80, and an acquisition time of less than 90 s, are presented as proof of concept. They show the change in the field profile of plasmon-resonant broadband antennas when they are excited with wavelengths of 7.9 and 9.5 μm.
Pulse propagation through a dielectric slab doped with a triple quantum dot nanostructure
NASA Astrophysics Data System (ADS)
Nasehi, R.; Mahmoudi, M.; Sahrai, M.
2016-11-01
The propagation of an electromagnetic pulse through a dielectric slab doped with a triple quantum dot (QD) nanostructure has been discussed in the presence of electron tunneling. We include the effect of an incoherent pump field in the transmission and reflection of a pulse in a triple QD. It is shown that the reflected and transmitted pulses can be switched from subluminal to superluminal light propagation by changing either the rate of the incoherent pump field or the inter-dot tunneling between QD1, QD2 and QD3 in a slab. Furthermore, it is demonstrated that the inter-dot tunnel coupling can significantly affect the behavior of optical bistability (OB) and optical multi-stability (OM) in a dielectric slab. The obtained results can be used for the development of new types of nanoelectronic devices for realizing the switching process.
DC-SQUID Quantum Non-Demolition Readout of Superconducting Flux Qubits
NASA Astrophysics Data System (ADS)
Harmans, Kees
2011-03-01
Extracting state information from a quantum system is a central theme in quantum mechanics. As the process of state extraction by a detector implies system-detector entanglement, reverse action from the detector onto the quantum object can not be avoided. Consequently, detectors that minimise this back action are crucial. For superconducting flux qubits commonly a DC-SQUID detector is used, either in an AC dispersive scheme or in a switching mode. The latter can be by AC bifurcation or by direct DC switching. The DC approach combines simplicity in use with complexity in dynamical behaviour. This complexity results from the fast Josephson phase dynamics and the significant generation of quasi-particles in the dissipative detector ON-state. This gave rise to the long-standing belief that it can not act as a ``good'' detector. This includes it to fail as a Quantum Non-Demolition (QND) detector, i.e. the preservation of the state of the quantum object after a state readout. In a recent experiment for relatively weak qubit-SQUID interaction strength we investigated the detection properties of such a DC-switching SQUID, finding a remarkably good QND fidelity. This was achieved by shunting the SQUID by a low-value resistor, thus strongly suppressing the generation of quasi-particles. Also the detector ON-time was minimised to a few tens of ns using a nearby cryogenic amplifier. The QND-ness was obtained from measuring the correlation between two successive readouts, and found to reach 75% QND fidelity. The weak qubit-detector interaction leads to a limited readout contrast. We will discuss the results as well as its consequences, including the potential for combining high contrast and good QND fidelity.
Non-geometric fluxes, quasi-Hopf twist deformations, and nonassociative quantum mechanics
Mylonas, Dionysios Szabo, Richard J.; Schupp, Peter
2014-12-15
We analyse the symmetries underlying nonassociative deformations of geometry in non-geometric R-flux compactifications which arise via T-duality from closed strings with constant geometric fluxes. Starting from the non-abelian Lie algebra of translations and Bopp shifts in phase space, together with a suitable cochain twist, we construct the quasi-Hopf algebra of symmetries that deforms the algebra of functions and the exterior differential calculus in the phase space description of nonassociative R-space. In this setting, nonassociativity is characterised by the associator 3-cocycle which controls non-coassociativity of the quasi-Hopf algebra. We use abelian 2-cocycle twists to construct maps between the dynamical nonassociative star product and a family of associative star products parametrized by constant momentum surfaces in phase space. We define a suitable integration on these nonassociative spaces and find that the usual cyclicity of associative noncommutative deformations is replaced by weaker notions of 2-cyclicity and 3-cyclicity. Using this star product quantization on phase space together with 3-cyclicity, we formulate a consistent version of nonassociative quantum mechanics, in which we calculate the expectation values of area and volume operators, and find coarse-graining of the string background due to the R-flux.
Non-geometric fluxes, quasi-Hopf twist deformations, and nonassociative quantum mechanics
NASA Astrophysics Data System (ADS)
Mylonas, Dionysios; Schupp, Peter; Szabo, Richard J.
2014-12-01
We analyse the symmetries underlying nonassociative deformations of geometry in non-geometric R-flux compactifications which arise via T-duality from closed strings with constant geometric fluxes. Starting from the non-abelian Lie algebra of translations and Bopp shifts in phase space, together with a suitable cochain twist, we construct the quasi-Hopf algebra of symmetries that deforms the algebra of functions and the exterior differential calculus in the phase space description of nonassociative R-space. In this setting, nonassociativity is characterised by the associator 3-cocycle which controls non-coassociativity of the quasi-Hopf algebra. We use abelian 2-cocycle twists to construct maps between the dynamical nonassociative star product and a family of associative star products parametrized by constant momentum surfaces in phase space. We define a suitable integration on these nonassociative spaces and find that the usual cyclicity of associative noncommutative deformations is replaced by weaker notions of 2-cyclicity and 3-cyclicity. Using this star product quantization on phase space together with 3-cyclicity, we formulate a consistent version of nonassociative quantum mechanics, in which we calculate the expectation values of area and volume operators, and find coarse-graining of the string background due to the R-flux.
Giant photon bunching, superradiant pulse emission and excitation trapping in quantum-dot nanolasers
Jahnke, Frank; Gies, Christopher; Aßmann, Marc; Bayer, Manfred; Leymann, H. A. M.; Foerster, Alexander; Wiersig, Jan; Schneider, Christian; Kamp, Martin; Höfling, Sven
2016-01-01
Light is often characterized only by its classical properties, like intensity or coherence. When looking at its quantum properties, described by photon correlations, new information about the state of the matter generating the radiation can be revealed. In particular the difference between independent and entangled emitters, which is at the heart of quantum mechanics, can be made visible in the photon statistics of the emitted light. The well-studied phenomenon of superradiance occurs when quantum–mechanical correlations between the emitters are present. Notwithstanding, superradiance was previously demonstrated only in terms of classical light properties. Here, we provide the missing link between quantum correlations of the active material and photon correlations in the emitted radiation. We use the superradiance of quantum dots in a cavity-quantum electrodynamics laser to show a direct connection between superradiant pulse emission and distinctive changes in the photon correlation function. This directly demonstrates the importance of quantum–mechanical correlations and their transfer between carriers and photons in novel optoelectronic devices. PMID:27161302
Model for a pulsed terahertz quantum cascade laser under optical feedback.
Agnew, Gary; Grier, Andrew; Taimre, Thomas; Lim, Yah Leng; Bertling, Karl; Ikonić, Zoran; Valavanis, Alexander; Dean, Paul; Cooper, Jonathan; Khanna, Suraj P; Lachab, Mohammad; Linfield, Edmund H; Davies, A Giles; Harrison, Paul; Indjin, Dragan; Rakić, Aleksandar D
2016-09-01
Optical feedback effects in lasers may be useful or problematic, depending on the type of application. When semiconductor lasers are operated using pulsed-mode excitation, their behavior under optical feedback depends on the electronic and thermal characteristics of the laser, as well as the nature of the external cavity. Predicting the behavior of a laser under both optical feedback and pulsed operation therefore requires a detailed model that includes laser-specific thermal and electronic characteristics. In this paper we introduce such a model for an exemplar bound-to-continuum terahertz frequency quantum cascade laser (QCL), illustrating its use in a selection of pulsed operation scenarios. Our results demonstrate significant interplay between electro-optical, thermal, and feedback phenomena, and that this interplay is key to understanding QCL behavior in pulsed applications. Further, our results suggest that for many types of QCL in interferometric applications, thermal modulation via low duty cycle pulsed operation would be an alternative to commonly used adiabatic modulation.
Model for a pulsed terahertz quantum cascade laser under optical feedback.
Agnew, Gary; Grier, Andrew; Taimre, Thomas; Lim, Yah Leng; Bertling, Karl; Ikonić, Zoran; Valavanis, Alexander; Dean, Paul; Cooper, Jonathan; Khanna, Suraj P; Lachab, Mohammad; Linfield, Edmund H; Davies, A Giles; Harrison, Paul; Indjin, Dragan; Rakić, Aleksandar D
2016-09-01
Optical feedback effects in lasers may be useful or problematic, depending on the type of application. When semiconductor lasers are operated using pulsed-mode excitation, their behavior under optical feedback depends on the electronic and thermal characteristics of the laser, as well as the nature of the external cavity. Predicting the behavior of a laser under both optical feedback and pulsed operation therefore requires a detailed model that includes laser-specific thermal and electronic characteristics. In this paper we introduce such a model for an exemplar bound-to-continuum terahertz frequency quantum cascade laser (QCL), illustrating its use in a selection of pulsed operation scenarios. Our results demonstrate significant interplay between electro-optical, thermal, and feedback phenomena, and that this interplay is key to understanding QCL behavior in pulsed applications. Further, our results suggest that for many types of QCL in interferometric applications, thermal modulation via low duty cycle pulsed operation would be an alternative to commonly used adiabatic modulation. PMID:27607659
NASA Astrophysics Data System (ADS)
Good, Stephen P.; Soderberg, Keir; Guan, Kaiyu; King, Elizabeth G.; Scanlon, Todd M.; Caylor, Kelly K.
2014-02-01
The partitioning of surface vapor flux (FET) into evaporation (FE) and transpiration (FT) is theoretically possible because of distinct differences in end-member stable isotope composition. In this study, we combine high-frequency laser spectroscopy with eddy covariance techniques to critically evaluate isotope flux partitioning of FET over a grass field during a 15 day experiment. Following the application of a 30 mm water pulse, green grass coverage at the study site increased from 0 to 10% of ground surface area after 6 days and then began to senesce. Using isotope flux partitioning, transpiration increased as a fraction of total vapor flux from 0% to 40% during the green-up phase, after which this ratio decreased while exhibiting hysteresis with respect to green grass coverage. Daily daytime leaf-level gas exchange measurements compare well with daily isotope flux partitioning averages (RMSE = 0.0018 g m-2 s-1). Overall the average ratio of FT to FET was 29%, where uncertainties in Keeling plot intercepts and transpiration composition resulted in an average of uncertainty of ˜5% in our isotopic partitioning of FET. Flux-variance similarity partitioning was partially consistent with the isotope-based approach, with divergence occurring after rainfall and when the grass was stressed. Over the average diurnal cycle, local meteorological conditions, particularly net radiation and relative humidity, are shown to control partitioning. At longer time scales, green leaf area and available soil water control FT/FET. Finally, we demonstrate the feasibility of combining isotope flux partitioning and flux-variance similarity theory to estimate water use efficiency at the landscape scale.
NASA Astrophysics Data System (ADS)
Saha, Surajit; Ghosh, Manas
2016-02-01
We perform a rigorous analysis of the profiles of a few diagonal and off-diagonal components of linear ( α xx , α yy , α xy , and α yx ), first nonlinear ( β xxx , β yyy , β xyy , and β yxx ), and second nonlinear ( γ xxxx , γ yyyy , γ xxyy , and γ yyxx ) polarizabilities of quantum dots exposed to an external pulsed field. Simultaneous presence of multiplicative white noise has also been taken into account. The quantum dot contains a dopant represented by a Gaussian potential. The number of pulse and the dopant location have been found to fabricate the said profiles through their interplay. Moreover, a variation in the noise strength also contributes evidently in designing the profiles of above polarizability components. In general, the off-diagonal components have been found to be somewhat more responsive to a variation of noise strength. However, we have found some exception to the above fact for the off-diagonal β yxx component. The study projects some pathways of achieving stable, enhanced, and often maximized output of linear and nonlinear polarizabilities of doped quantum dots driven by multiplicative noise.
Electron motion induced by magnetic pulse in a bilayer quantum wire
NASA Astrophysics Data System (ADS)
Chwiej, T.
2016-06-01
We consider theoretical stimulation of electron motion in a quantum wire by means of ultrashort magnetic pulses of time duration between several and a few tens of picoseconds. In our considerations, an electron is confined in a nanowire which consists of two vertically stacked tunnel-coupled layers. If a magnetic pulse pierces this nanowire and its direction is parallel to the plane established by the layers, and additionally, it is perpendicular to the wire's axis, then the eigenstates of a single electron energy operator for vertical direction are hybridized by the off-diagonal terms of the full Hamiltonian. These terms depend linearly on the momentum operator, which means that such magnetically forced hybridization may induce electron motion in a nanowire. The classical counterpart of this quantum-mechanical picture is a situation in which the rotational electric field generated by a time-varying magnetic field pushes the charge densities localized in the upper and lower layers in opposite directions. We have found, however, that for an asymmetric vertical confinement in a bilayer nanowire, the major part of the single electron density starts to move in the direction of the local electric field in its layer forcing the minority part to move in this direction as well. It results in coherent motion of both densities in a particular direction. We analyze the dynamics of such motion in dependence on the time characteristics of a magnetic pulse and discuss potential applications of this effect in the construction of a magnetic valve.
Heat Fluxes and Evaporation Measurements by Multi-Function Heat Pulse Probe: a Laboratory Experiment
NASA Astrophysics Data System (ADS)
Sharma, V.; Ciocca, F.; Hopmans, J. W.; Kamai, T.; Lunati, I.; Parlange, M. B.
2012-04-01
Multi Functional Heat Pulse Probes (MFHPP) are multi-needles probes developed in the last years able to measure temperature, thermal properties such as thermal diffusivity and volumetric heat capacity, from which soil moisture is directly retrieved, and electric conductivity (through a Wenner array). They allow the simultaneous measurement of coupled heat, water and solute transport in porous media, then. The use of only one instrument to estimate different quantities in the same volume and almost at the same time significantly reduces the need to interpolate different measurement types in space and time, increasing the ability to study the interdependencies characterizing the coupled transports, especially of water and heat, and water and solute. A three steps laboratory experiment is realized at EPFL to investigate the effectiveness and reliability of the MFHPP responses in a loamy soil from Conthey, Switzerland. In the first step specific calibration curves of volumetric heat capacity and thermal conductivity as function of known volumetric water content are obtained placing the MFHPP in small samplers filled with the soil homogeneously packed at different saturation degrees. The results are compared with literature values. In the second stage the ability of the MFHPP to measure heat fluxes is tested within a homemade thermally insulated calibration box and results are matched with those by two self-calibrating Heatflux plates (from Huxseflux), placed in the same box. In the last step the MFHPP are used to estimate the cumulative subsurface evaporation inside a small column (30 centimeters height per 8 centimeters inner diameter), placed on a scale, filled with the same loamy soil (homogeneously packed and then saturated) and equipped with a vertical array of four MFHPP inserted close to the surface. The subsurface evaporation is calculated from the difference between the net sensible heat and the net heat storage in the volume scanned by the probes, and the
NASA Astrophysics Data System (ADS)
Williams, C. A.; Hanan, N. P.; Scholes, R. J.
2005-12-01
Water and carbon fluxes from savanna landscapes are tightly coupled to soil water availability through physiological limitation from plant water stress. This general principle has been used to broadly characterize savanna vegetation distributions based almost solely on rainfall or soil moisture. However, a number of other physical and biotic drivers vary seasonally and interannually, including radiation, humidity, leaf area, and plant functional type. It remains unclear to what degree these other drivers limit our ability to accurately predict vegetation distributions in water-limited systems. In this study, we analyze five years of eddy flux data collected at Kruger National Park, South Africa, to investigate the degree to which these other drivers modulate soil moisture control of water and carbon fluxes. Our analysis focuses on what controls seasonal variation in the response of canopy-scale fluxes to pulse precipitation events and subsequent drydown. From more than thirty drydown response curves, we find pronounced seasonal variation in the time rate of decay of soil moisture and evapotranspiration, which are both well represented as either a logarithm or power of time since a rainfall pulse. Radiation and humidity explain most of the residuals in the response of evapotranspiration to soil moisture, with only weak explanatory power of leaf area. We also find little difference in the drydown responses of Combretum versus Acacia dominated savannas. Marked seasonal shifts in canopy-scale water use efficiency (carbon / water fluxes) documents transitions from early wet season greening, to dry season moisture stress, to dormancy and decay prior to first rains. These results suggest that generalized relations between soil moisture, evapotranspiration, and carbon exchange are robust when adjusted to incorporate seasonal dependence on radiation and humidty. Broader implications for modeling savanna vegetation distributions will be discussed.
Quantum dot formation and dynamic scaling behavior of SnO2 nanocrystals induced by pulsed delivery
NASA Astrophysics Data System (ADS)
Chen, Z. W.; Lai, J. K. L.; Shek, C. H.
2006-01-01
Quantum dot formation and dynamic scaling behavior of SnO2 nanocrystals in coalescence regime for growth by pulsed-laser deposition is explored experimentally and theoretically, and the same is compared with that for continuous vapor deposition such as molecular-beam epitaxy. Using high-resolution transmission electron microscopy, unusual quantum dots of SnO2 nanocrystals are studied. We present kinetic Monte-Carlo simulations for pulsed-laser deposition in the submonolayer regime and give a description of the island distance versus pulse intensity. We found that the scaling exponent for pulsed-laser deposition is 1.28±0.03, which is significantly lower as compared to that for molecular-beam epitaxy (1.62±0.03). Theoretical simulations reveal that this attractive difference can be pursued to the large fraction of multiple droplet coalescence under pulsed vapor delivery.
The two-flux composite fermion series of fractional quantum Hall states in strained (100) Si.
Lai, K.; Schaffler, F.; Muhlberger, M.; Lyon, S.; Pan, Wei; Tsui, Daniel Chee
2004-06-01
Magnetotransport properties are studied in a high-mobility 2DES in the strained Si quantum well. We observe around v = 1/2 the two-flux composite fermion (CF{sup 2}) series of the FQHE states at v = 2/3, 3/5, 4/7, and at v = 4/9, 2/5, 1/3. Of the CF series, the v = 3/5 state is weaker than the nearby 4/7 state and the 3/7 state is missing, resembling the observation that the v = 3 is weaker than the v = 4 state. Our data indicate that the CF model still applies for the multivalley Si/SiGe system when taking into account the two-fold valley degeneracy.
All-high-Tc superconductor rapid-single-flux-quantum circuit operating at ˜30 K
NASA Astrophysics Data System (ADS)
Shokhor, S.; Nadgorny, B.; Gurvitch, M.; Semenov, V.; Polyakov, Yu.; Likharev, K.; Hou, S. Y.; Phillips, Julia M.
1995-11-01
We have implemented a simple circuit of the rapid single-flux-quantum (RSFQ) logic family using a single-layer YBa2Cu3O7-x thin-film structure with 14 in-plane Josephson junctions formed by direct electron beam writing. The circuit includes two dc/SFQ converters, two Josephson transmission lines, a complete RS SFQ flip-flop, and an SFQ/dc converter (readout SQUID). Low-frequency testing has shown that the dc-current-biased circuit operates correctly and reliably at T˜30 K, a few degrees below the effective critical temperature of the junctions. Prospects for a further increase of the operation temperature and implementation of more complex RSFQ circuits are discussed in brief.
Confinement and Lattice Quantum-Electrodynamic Electric Flux Tubes Simulated with Ultracold Atoms
Zohar, Erez; Reznik, Benni
2011-12-30
We propose a method for simulating (2+1)D compact lattice quantum-electrodynamics, using ultracold atoms in optical lattices. In our model local Bose-Einstein condensates' (BECs) phases correspond to the electromagnetic vector potential, and the local number operators represent the conjugate electric field. The well-known gauge-invariant Kogut-Susskind Hamiltonian is obtained as an effective low-energy theory. The field is then coupled to external static charges. We show that in the strong coupling limit this gives rise to ''electric flux tubes'' and to confinement. This can be observed by measuring the local density deviations of the BECs, and is expected to hold even, to some extent, outside the perturbative calculable regime.
Robust quantum gates for singlet-triplet spin qubits using composite pulses
NASA Astrophysics Data System (ADS)
Wang, Xin; Bishop, Lev S.; Barnes, Edwin; Kestner, J. P.; Sarma, S. Das
2014-02-01
We present a comprehensive theoretical treatment of supcode, a method for generating dynamically corrected quantum gate operations, which are immune to random noise in the environment, by using carefully designed sequences of soft pulses. supcode enables dynamical error suppression even when the control field is constrained to be positive and uniaxial, making it particularly suited to counteracting the effects of noise in systems subject to these constraints such as singlet-triplet qubits. We describe and explain in detail how to generate supcode pulse sequences for arbitrary single-qubit gates and provide several explicit examples of sequences that implement commonly used gates, including the single-qubit Clifford gates. We develop sequences for noise-resistant two-qubit gates for two exchange-coupled singlet-triplet qubits by cascading robust single-qubit gates, leading to a 35% reduction in gate time compared to previous works. This cascade approach can be scaled up to produce gates for an arbitrary-length spin qubit array and is thus relevant to scalable quantum computing architectures. To more accurately describe real spin qubit experiments, we show how to design sequences that incorporate additional features and practical constraints such as sample-specific charge noise models and finite pulse rise times. We provide a detailed analysis based on randomized benchmarking to show how supcode gates perform under realistic 1/fα noise and find a strong dependence of gate fidelity on the exponent α, with best performance for α >1. Our supcode sequences can therefore be used to implement robust universal quantum computation while accommodating the fundamental constraints and experimental realities of singlet-triplet qubits.
Pulsed laser deposition of Mn doped CdSe quantum dots for improved solar cell performance
Dai, Qilin; Wang, Wenyong E-mail: jtang2@uwyo.edu; Tang, Jinke E-mail: jtang2@uwyo.edu; Sabio, Erwin M.
2014-05-05
In this work, we demonstrate (1) a facile method to prepare Mn doped CdSe quantum dots (QDs) on Zn{sub 2}SnO{sub 4} photoanodes by pulsed laser deposition and (2) improved device performance of quantum dot sensitized solar cells of the Mn doped QDs (CdSe:Mn) compared to the undoped QDs (CdSe). The band diagram of photoanode Zn{sub 2}SnO{sub 4} and sensitizer CdSe:Mn QD is proposed based on the incident-photon-to-electron conversion efficiency (IPCE) data. Mn-modified band structure leads to absorption at longer wavelengths than the undoped CdSe QDs, which is due to the exchange splitting of the CdSe:Mn conduction band by the Mn dopant. Three-fold increase in the IPCE efficiency has also been observed for the Mn doped samples.
Electronic excitation by short x-ray pulses: from quantum beats to wave packet revivals
NASA Astrophysics Data System (ADS)
Rivière, P.; Iqbal, S.; Rost, J. M.
2014-06-01
We propose a simple way to determine the periodicities of wave packets (WPs) in quantum systems directly from the energy differences of the states involved. The resulting classical periods and revival times are more accurate than those obtained with the traditional expansion of the energies about the central quantum number \\overline{n}, especially when \\overline{n} is low. The latter type of WP motion occurs upon excitation of highly charged ions with short XUV or x-ray pulses. Moreover, we formulate the WP dynamics in such a form that it directly reveals the origin of phase shifts in the maxima of the autocorrelation function, a phenomenon most prominent in the low \\overline{n} WP dynamics.
NASA Astrophysics Data System (ADS)
Meenehan, Seán M.; Cohen, Justin D.; MacCabe, Gregory S.; Marsili, Francesco; Shaw, Matthew D.; Painter, Oskar
2015-10-01
Using pulsed optical excitation and read-out along with single-phonon-counting techniques, we measure the transient backaction, heating, and damping dynamics of a nanoscale silicon optomechanical crystal cavity mounted in a dilution refrigerator at a base temperature of Tf≈11 mK . In addition to observing a slow (approximately 740-ns) turn-on time for the optical-absorption-induced hot-phonon bath, we measure for the 5.6-GHz "breathing" acoustic mode of the cavity an initial phonon occupancy as low as ⟨n ⟩=0.021 ±0.007 (mode temperature Tmin≈70 mK ) and an intrinsic mechanical decay rate of γ0=328 ±14 Hz (Qm≈1.7 ×107). These measurements demonstrate the feasibility of using short pulsed measurements for a variety of quantum optomechanical applications despite the presence of steady-state optical heating.
Pulsed quantum cascade laser-based cavity ring-down spectroscopy for ammonia detection in breath.
Manne, Jagadeeshwari; Sukhorukov, Oleksandr; Jäger, Wolfgang; Tulip, John
2006-12-20
Breath analysis can be a valuable, noninvasive tool for the clinical diagnosis of a number of pathological conditions. The detection of ammonia in exhaled breath is of particular interest for it has been linked to kidney malfunction and peptic ulcers. Pulsed cavity ringdown spectroscopy in the mid-IR region has developed into a sensitive analytical technique for trace gas analysis. A gas analyzer based on a pulsed mid-IR quantum cascade laser operating near 970 cm(-1) has been developed for the detection of ammonia levels in breath. We report a sensitivity of approximately 50 parts per billion with a 20 s time resolution for ammonia detection in breath with this system. The challenges and possible solutions for the quantification of ammonia in human breath by the described technique are discussed.
Optical nonlinearity for few-photon pulses on a quantum dot-pillar cavity device.
Loo, V; Arnold, C; Gazzano, O; Lemaître, A; Sagnes, I; Krebs, O; Voisin, P; Senellart, P; Lanco, L
2012-10-19
Giant optical nonlinearity is observed under both continuous wave and pulsed excitation in a deterministically coupled quantum dot-micropillar system, in a pronounced strong-coupling regime. Using absolute reflectivity measurements we determine the critical intracavity photon number as well as the input and output coupling efficiencies of the device. Thanks to a near-unity input-coupling efficiency, we demonstrate a record nonlinearity threshold of only 8 incident photons per pulse. The output-coupling efficiency is found to strongly influence this nonlinearity threshold. We show how the fundamental limit of single-photon nonlinearity can be attained in realistic devices, which would provide an effective interaction between two coincident single-photons.
Pulsed-laser micropatterned quantum-dot array for white light source.
Wang, Sheng-Wen; Lin, Huang-Yu; Lin, Chien-Chung; Kao, Tsung Sheng; Chen, Kuo-Ju; Han, Hau-Vei; Li, Jie-Ru; Lee, Po-Tsung; Chen, Huang-Ming; Hong, Ming-Hui; Kuo, Hao-Chung
2016-01-01
In this study, a novel photoluminescent quantum dots device with laser-processed microscale patterns has been demonstrated to be used as a white light emitting source. The pulsed laser ablation technique was employed to directly fabricate microscale square holes with nano-ripple structures onto the sapphire substrate of a flip-chip blue light-emitting diode, confining sprayed quantum dots into well-defined areas and eliminating the coffee ring effect. The electroluminescence characterizations showed that the white light emission from the developed photoluminescent quantum-dot light-emitting diode exhibits stable emission at different driving currents. With a flexibility of controlling the quantum dots proportions in the patterned square holes, our developed white-light emitting source not only can be employed in the display applications with color triangle enlarged by 47% compared with the NTSC standard, but also provide the great potential in future lighting industry with the correlated color temperature continuously changed in a wide range. PMID:27005829
Pulsed-laser micropatterned quantum-dot array for white light source
Wang, Sheng-Wen; Lin, Huang-Yu; Lin, Chien-Chung; Kao, Tsung Sheng; Chen, Kuo-Ju; Han, Hau-Vei; Li, Jie-Ru; Lee, Po-Tsung; Chen, Huang-Ming; Hong, Ming-Hui; Kuo, Hao-Chung
2016-01-01
In this study, a novel photoluminescent quantum dots device with laser-processed microscale patterns has been demonstrated to be used as a white light emitting source. The pulsed laser ablation technique was employed to directly fabricate microscale square holes with nano-ripple structures onto the sapphire substrate of a flip-chip blue light-emitting diode, confining sprayed quantum dots into well-defined areas and eliminating the coffee ring effect. The electroluminescence characterizations showed that the white light emission from the developed photoluminescent quantum-dot light-emitting diode exhibits stable emission at different driving currents. With a flexibility of controlling the quantum dots proportions in the patterned square holes, our developed white-light emitting source not only can be employed in the display applications with color triangle enlarged by 47% compared with the NTSC standard, but also provide the great potential in future lighting industry with the correlated color temperature continuously changed in a wide range. PMID:27005829
Time-resolved spectral characterization of a pulsed external-cavity quantum cascade laser
NASA Astrophysics Data System (ADS)
Melkonian, Jean-Michel; Raybaut, Myriam; Godard, Antoine; Petit, Johan; Lefebvre, Michel
2012-10-01
Spectrally tunable narrow-linewidth mid-infrared sources are used in a variety of spectrometric optical systems for detection, identification, and/or quantification of chemical species. However, in the pulsed regime they often display a varying spectrum in time, either from shot-to-shot or during the pulse itself, with consequences on the measurement accuracy, resolution, and repeatability. This is, for instance, the case of pulsed quantum cascade lasers (QCL), mainly because of strong transient thermal effects in the optical waveguide. Unfortunately, little information has been published on this subject because mid-infrared time-resolved spectrometers are extremely scarce. In this paper, we explain how this can be circumvented by using time-gated frequency upconversion in a nonlinear crystal. We apply this principle to characterize a pulsed external cavity QCL (EC-QCL) at 7.8 μm, using AgGaS2 as the nonlinear crystal and a Q-switched Nd:YAG laser as the pump source. The upconverted near infrared spectrum is conveniently analyzed with a high resolution lambdameter and an optical spectrum analyzer. We evidence frequency chirp at an average rate of -50 MHz/ns and mode hops spanning 15 GHz for the EC-QCL. These results are compared to published data.
Skyrmions in quantum Hall ferromagnets as spin waves bound to unbalanced magnetic-flux quanta
NASA Astrophysics Data System (ADS)
Oaknin, J. H.; Paredes, B.; Tejedor, C.
1998-11-01
A microscopic description of (baby) skyrmions in quantum Hall ferromagnets is derived from a scattering theory of collective (neutral) spin modes by a bare quasiparticle. We start by mapping the low-lying spectrum of spin waves in the uniform ferromagnet onto that of freely moving spin excitons, and then we study their scattering by the charge defect. In the presence of this disturbance, the local spin stiffness varies in space, and we translate it into an inhomogeneous metric in the Hilbert space supporting the excitons. An attractive potential is then required to preserve the symmetry under global spin rotations, and it traps the excitons around the charged defect. The quasiparticle now carries a spin texture. Textures containing more than one exciton are described within a mean-field theory, the interaction among the excitons being taken into account through a new renormalization of the metric. The number of excitons actually bound depends on the Zeeman coupling, which plays the same role as a chemical potential. For small Zeeman energies, the defect binds many excitons that condensate. As the bound excitons have a unit of angular momentum, provided by the quantum of magnetic flux left unbalanced by the defect of charge, the resulting texture turns out to be a topological excitation of charge 1. Its energy is that given by the nonlinear σ model for the ground state in this topological sector, i.e., the texture is a skyrmion.
NASA Astrophysics Data System (ADS)
Kerman,
2013-10-01
It has long been thought that macroscopic phase coherence breaks down in effectively lower-dimensional superconducting systems even at zero temperature due to enhanced topological quantum phase fluctuations. In quasi-one-dimensional wires, these fluctuations are described in terms of ‘quantum phase-slip’ (QPS): tunneling of the superconducting order parameter for the wire between states differing by ±2π in their relative phase between the wire's ends. Over the last several decades, many deviations from conventional bulk superconducting behavior have been observed in ultra-narrow superconducting nanowires, some of which have been identified with QPS. While at least some of the observations are consistent with existing theories for QPS, other observations in many cases point to contradictory conclusions or cannot be explained by these theories. Hence, our understanding of the nature of QPS, and its relationship to the various observations, has remained imcomplete. In this paper we present a new model for QPS which takes as its starting point an idea originally postulated by Mooij and Nazarov (2006 Nature Phys. 2 169): that flux-charge duality, a classical symmetry of Maxwell's equations, can be used to relate QPS to the well-known Josephson tunneling of Cooper pairs. Our model provides an alternative, and qualitatively different, conceptual basis for QPS and the phenomena which arise from it in experiments, and it appears to permit for the first time a unified understanding of observations across several different types of experiments and materials systems.
NASA Astrophysics Data System (ADS)
Oikawa, P. Y.; Grantz, D. A.; Chatterjee, A.; Eberwein, J. R.; Allsman, L. A.; Jenerette, D.
2012-12-01
Trace gas emissions from the soil surface are often underestimated due to poor understanding of the factors regulating fluxes under extreme conditions when moisture can be highly variable. In particular, dynamics of soil surface trace gas emissions from hot agricultural regions can be difficult to predict due to the sporadic use of flood irrigation and nitrogen fertilization. Soil surface CO2 and NOx fluxes are especially difficult to predict due to nonlinear responses to pulse water and fertilization events. Additionally, models such as Lloyd and Taylor (1994) and Yienger and Levy II (1995) are not well parameterized for soil surface CO2 and NOx flux, respectively, under excessively high temperatures. We measured soil surface CO2 and NOx flux in an agricultural field transitioning from fallow to biofuel crop production (Sorghum bicolor). Soil surface CO2 flux was measured using CO2 probes coupled with the flux-gradient method. NOx measurements were made using chambers coupled with a NOx monitor. Our field site is located at the University of California Desert Research and Extension Center in the Imperial Valley of CA. Air temperatures regularly exceed 42°C in the summer. Flood irrigation is used at the site as well as nitrogen fertilizers. Soil respiration ranged from 0-15 μmoles CO2 m-2 s-1, with strong hysteresis observed both with and without plants. Soil CO2 fluxes measured in the fallow field before the biofuel crop was planted were temperature independent and mainly regulated by soil moisture. When plants were introduced, temperature became an important predictor for soil respiration as well as canopy height. NOx fluxes were highest at intermediate soil moisture and varied significantly across an irrigation cycle. NOx emissions were temperature dependent, ranging from 3-113 ng N cm-2 hr-1. Neither CO2 nor NOx emissions showed inhibition at soil temperatures up to 55°C. Models may underestimate fluxes of CO2 and NOx from hot agricultural regions due to
Diestler, D J
2012-03-22
The Born-Oppenheimer (BO) description of electronically adiabatic molecular processes predicts a vanishing electronic flux density (j(e)),
Bredtmann, Timm; Diestler, Dennis J; Li, Si-Dian; Manz, Jörn; Pérez-Torres, Jhon Fredy; Tian, Wen-Juan; Wu, Yan-Bo; Yang, Yonggang; Zhai, Hua-Jin
2015-11-28
An elementary molecular process can be characterized by the flow of particles (i.e., electrons and nuclei) that compose the system. The flow, in turn, is quantitatively described by the flux (i.e., the time-sequence of maps of the rate of flow of particles though specified surfaces of observation) or, in more detail, by the flux density. The quantum theory of concerted electronic and nuclear fluxes (CENFs) associated with electronically adiabatic intramolecular processes is presented. In particular, it is emphasized how the electronic continuity equation can be employed to circumvent the failure of the Born-Oppenheimer approximation, which always predicts a vanishing electronic flux density (EFD). It is also shown that all CENFs accompanying coherent tunnelling between equivalent "reactant" and "product" configurations of isolated molecules are synchronous. The theory is applied to three systems of increasing complexity. The first application is to vibrating, aligned H2(+)((2)Σg(+)), or vibrating and dissociating H2(+)((2)Σg(+), J = 0, M = 0). The EFD maps manifest a rich and surprising structure in this simplest of systems; for example, they show that the EFD is not necessarily synchronous with the nuclear flux density and can alternate in direction several times over the length of the molecule. The second application is to coherent tunnelling isomerization in the model inorganic system B4, in which all CENFs are synchronous. The contributions of core and valence electrons to the EFD are separately computed and it is found that core electrons flow with the nuclei, whereas the valence electrons flow obliquely to the core electrons in distinctive patterns. The third application is to the Cope rearrangement of semibullvalene, which also involves coherent tunnelling. An especially interesting discovery is that the so-called "pericyclic" electrons do not behave in the manner typically portrayed by the traditional Lewis structures with appended arrows. Indeed, it is
Falaye, Babatunde James; Sun, Guo-Hua; Silva-Ortigoza, Ramón; Dong, Shi-Hai
2016-05-01
This study presents the confinement influences of Aharonov-Bohm (AB) flux and electric and magnetic fields directed along the z axis and encircled by quantum plasmas on the hydrogen atom. The all-inclusive effects result in a strongly attractive system while the localizations of quantum levels change and the eigenvalues decrease. We find that the combined effect of the fields is stronger than a solitary effect and consequently there is a substantial shift in the bound state energy of the system. We also find that to perpetuate a low-energy medium for the hydrogen atom in quantum plasmas, a strong electric field and weak magnetic field are required, whereas the AB flux field can be used as a regulator. The application of the perturbation technique utilized in this paper is not restricted to plasma physics; it can also be applied in molecular physics.
Two-dimensional quantum ring in a graphene layer in the presence of a Aharonov-Bohm flux
NASA Astrophysics Data System (ADS)
Amaro Neto, José; Bueno, M. J.; Furtado, Claudio
2016-10-01
In this paper we study the relativistic quantum dynamics of a massless fermion confined in a quantum ring. We use a model of confining potential and introduce the interaction via Dirac oscillator coupling, which provides ring confinement for massless Dirac fermions. The energy levels and corresponding eigenfunctions for this model in graphene layer in the presence of Aharonov-Bohm flux in the centre of the ring and the expression for persistent current in this model are derived. We also investigate the model for quantum ring in graphene layer in the presence of a disclination and a magnetic flux. The energy spectrum and wave function are obtained exactly for this case. We see that the persistent current depends on parameters characterizing the topological defect.
Falaye, Babatunde James; Sun, Guo-Hua; Silva-Ortigoza, Ramón; Dong, Shi-Hai
2016-05-01
This study presents the confinement influences of Aharonov-Bohm (AB) flux and electric and magnetic fields directed along the z axis and encircled by quantum plasmas on the hydrogen atom. The all-inclusive effects result in a strongly attractive system while the localizations of quantum levels change and the eigenvalues decrease. We find that the combined effect of the fields is stronger than a solitary effect and consequently there is a substantial shift in the bound state energy of the system. We also find that to perpetuate a low-energy medium for the hydrogen atom in quantum plasmas, a strong electric field and weak magnetic field are required, whereas the AB flux field can be used as a regulator. The application of the perturbation technique utilized in this paper is not restricted to plasma physics; it can also be applied in molecular physics. PMID:27300989
A source for quantum control: generation and measurement of attosecond ultraviolet light pulses
Kulander, K C
1999-02-19
This project has pursued the possibility of producing ultra-short pulses of coherent light using harmonic conversion of a mid-infrared light source, focused into an atomic gas medium. This was a joint effort with Louis DiMauro's experimental group at Brookhaven National Laboratory and in collaboration with Ken Schafer from Louisiana State University and Mette Gaarde from Lund University on the theoretical part. High order harmonic generation (HHG) in nobel gas media using short-pulse visible and near infrared lasers has become an established method for producing coherent, short pulse radiation at wavelengths from the ultraviolet to soft x-rays. We recently proposed that this approach could lead to extremely short pulses, potentially less than one fs, provided the unavoidable frequency chirp of the highest harmonics, could be removed by compressing the pulses with a grating pair. Sources of sub-fs pulses would provide unique opportunities to study dynamical processes on time scales short compared to those associated with nuclear motion. Truly stroboscopic pictures of chemical reaction dynamics would be possible, for example. In this research project we have chosen much smaller driving frequencies than used previously in HHG studies for two reasons. First, this will allow us to measure the pulse lengths of the compressed harmonics because they will be in the vacuum ultraviolet where coincidence measurements are possible. Second, the wavelengths of these harmonics will be idea for pump-probe experiments of quantum dynamical control studies. Our theoretical effort was concentrated in two areas. We used our time-dependent quantum numerical codes to evaluate the harmonic response of alkali atoms to the mid-IR laser excitation. Results were obtained for potassium, the initial species to be used in the experiments, then sodium and rubidium to investigate the possibility of higher conversion efficiencies. In fact, rubidium was found to be significantly better than potassium
Sansone, G.; Benedetti, E.; Caumes, J.-P.; Stagira, S.; Vozzi, C.; De Silvestri, S.; Nisoli, M.
2006-05-15
In this work we report on the first experimental demonstration of selection of the long electron quantum paths in the process of high-order harmonic generation by phase-stabilized multiple-cycle light pulses. A complete experimental investigation of the role of intensity and carrier-envelope phase of the driving pulses on the spectral characteristics of the long quantum paths is performed. Simulations based on the nonadiabatic saddle-point method and on a complete nonadiabatic three-dimensional model reproduce the main features of the experimental results. The use of phase-stabilized driving pulses allows one to control, on an attosecond temporal scale, the spectral and temporal characteristics associated with the electron quantum paths involved in the harmonic generation process.
NASA Astrophysics Data System (ADS)
Krivenkov, Victor A.; Samokhvalov, Pavel S.; Linkov, Pavel A.; Prokhorov, Sergey D.; Martynov, Igor L.; Chistyakov, Alexander A.; Nabiev, Igor
2015-05-01
The organic ligands passivating the surface of semiconductor quantum dots (QDs) and the solvents used strongly determine the photostability of QD solutions. Highly purified QD solutions in chloroform have been shown to photodegrade upon pulsed ultraviolet (UV) irradiation, irrespectively of the type of surface ligand. However, the photostability of QDs dissolved in n-octane, a more photochemically inert solvent, strongly depends on the ligands passivating their surface. In n-octane, hexadecylamine-coated QDs are completely stable and display no photochemical response to pulsed UV laser irradiation. In solutions of octanethiol-capped QDs, the photoluminescence intensity slightly decreases under irradiation. QDs coated with trioctylphosphine oxide exhibit a more complex pattern of photobleaching, which depends on the initial value of fluorescence quantum yield of QDs. This complex pattern may be accounted for by two competing processes: (1) ligand photodesorption accompanied by photobleaching due to specific alignment of the band levels of QDs and highest occupied molecular orbital of the ligand and (2) photoinduced decrease in the population of trapping states. Furthermore, practically no thermodynamic degradation of QD solutions has been observed for the micromolar QD concentration used in the study, in contrast to lower concentrations, thus confirming the photoinduced origin of the changes caused by UV irradiation. Obtained results show that the photostability of QDs may be strongly increased by careful selection of the ligands passivating their surface and the solvents used in the experiments.
NASA Astrophysics Data System (ADS)
Castellano, M. G.; Chiarello, F.; Leoni, R.; Simeone, D.; Torrioli, G.; Cosmelli, C.; Buttiglione, R.; Poletto, S.; Carelli, P.
2003-12-01
A hysteretic dc-superconducting quantum interference device (SQUID) is used to trace the flux characteristic of a tunable rf-SQUID, the basic element for the realization of superconducting flux qubits. This allows important simplifications of circuitry and electronics in developing devices for quantum computing, by eliminating the necessity of more complex magnetometers. A hysteretic dc-SQUID is usually operated as a comparator, distinguishing only which one of two adjacent flux states is occupied by the rf-SQUID. The necessary sensitivity, moreover, is usually reached only at temperatures in the mK range. However, by exploiting the statistical properties of the current-voltage curve in the region where the switching from the zero-voltage state occurs, it is possible to obtain an accurate tracing of the input flux, even at a relatively high temperature (a few Kelvin). In our case, the input signal is given by the internal flux of a tunable rf-SQUID, the building block of a flux qubit.
Ultrafast single-electron transfer in coupled quantum dots driven by a few-cycle chirped pulse
Yang, Wen-Xing; Chen, Ai-Xi; Bai, Yanfeng; Lee, Ray-Kuang
2014-04-14
We theoretically study the ultrafast transfer of a single electron between the ground states of a coupled double quantum dot (QD) structure driven by a nonlinear chirped few-cycle laser pulse. A time-dependent Schrödinger equation without the rotating wave approximation is solved numerically. We demonstrate numerically the possibility to have a complete transfer of a single electron by choosing appropriate values of chirped rate parameters and the intensity of the pulse. Even in the presence of the spontaneous emission and dephasing processes of the QD system, high-efficiency coherent transfer of a single electron can be obtained in a wide range of the pulse parameters. Our results illustrate the potential to utilize few-cycle pulses for the excitation in coupled quantum dot systems through the nonlinear chirp parameter control, as well as a guidance in the design of experimental implementation.
Schmeckebier, H; Fiol, G; Meuer, C; Arsenijević, D; Bimberg, D
2010-02-15
A complete characterization of pulse shape and phase of a 1.3 microm, monolithic-two-section, quantum-dot mode-locked laser (QD-MLL) at a repetition rate of 40 GHz is presented, based on frequency resolved optical gating. We show that the pulse broadening of the QD-MLL is caused by linear chirp for all values of current and voltage investigated here. The chirp increases with the current at the gain section, whereas larger bias at the absorber section leads to less chirp and therefore to shorter pulses. Pulse broadening is observed at very high bias, likely due to the quantum confined stark effect. Passive- and hybrid-QD-MLL pulses are directly compared. Improved pulse intensity profiles are found for hybrid mode locking. Via linear chirp compensation pulse widths down to 700 fs can be achieved independent of current and bias, resulting in a significantly increased overall mode-locking range of 101 MHz. The suitability of QD-MLL chirp compensated pulse combs for optical communication up to 160 Gbit/s using optical-time-division multiplexing are demonstrated by eye diagrams and autocorrelation measurements.
Wójcik, Aleksander K.; Belyanin, Alexey; Malara, Pietro; Blanchard, Romain; Mansuripur, Tobias S.; Capasso, Federico
2013-12-02
We propose a robust and reliable method of active mode locking of mid-infrared quantum cascade lasers and develop its theoretical description. Its key element is the use of an external ring cavity, which circumvents fundamental issues undermining the stability of mode locking in quantum cascade lasers. We show that active mode locking can give rise to the generation of picosecond pulses and phase-locked frequency combs containing thousands of the ring cavity modes.
Manipulation of the nuclear spin ensemble in a quantum dot with chirped magnetic resonance pulses
NASA Astrophysics Data System (ADS)
Munsch, Mathieu; Wüst, Gunter; Kuhlmann, Andreas V.; Xue, Fei; Ludwig, Arne; Reuter, Dirk; Wieck, Andreas D.; Poggio, Martino; Warburton, Richard J.
2014-09-01
The nuclear spins in nanostructured semiconductors play a central role in quantum applications. The nuclear spins represent a useful resource for generating local magnetic fields but nuclear spin noise represents a major source of dephasing for spin qubits. Controlling the nuclear spins enhances the resource while suppressing the noise. NMR techniques are challenging: the group III and V isotopes have large spins with widely different gyromagnetic ratios; in strained material there are large atom-dependent quadrupole shifts; and nanoscale NMR is hard to detect. We report NMR on 100,000 nuclear spins of a quantum dot using chirped radiofrequency pulses. Following polarization, we demonstrate a reversal of the nuclear spin. We can flip the nuclear spin back and forth a hundred times. We demonstrate that chirped NMR is a powerful way of determining the chemical composition, the initial nuclear spin temperatures and quadrupole frequency distributions for all the main isotopes. The key observation is a plateau in the NMR signal as a function of sweep rate: we achieve inversion at the first quantum transition for all isotopes simultaneously. These experiments represent a generic technique for manipulating nanoscale inhomogeneous nuclear spin ensembles and open the way to probe the coherence of such mesoscopic systems.
NASA Astrophysics Data System (ADS)
Figueira de Morisson Faria, C.; Liu, X.; Sanpera, A.; Lewenstein, M.
2004-10-01
We address nonsequential double ionization induced by strong, linearly polarized laser fields of only a few cycles, considering a physical mechanism in which the second electron is dislodged by the inelastic collision of the first electron with its parent ion. The problem is treated classically, using an ensemble model, and quantum mechanically, within the strong-field and uniform saddle-point approximations. In the latter case, the results are interpreted in terms of “quantum orbits,” which can be related to the trajectories of a classical electron in an electric field. We obtain highly asymmetric electron momentum distributions, which strongly depend on the absolute phase, i.e., on the phase difference between the pulse envelope and its carrier frequency. Around a particular value of this parameter, the distributions shift from the region of positive to that of negative momenta, or vice versa, in a radical fashion. This behavior is investigated in detail for several driving-field parameters, and provides a very efficient method for measuring the absolute phase. Both models yield very similar distributions, which share the same physical explanation. There exist, however, minor discrepancies due to the fact that, beyond the region for which electron-impact ionization is classically allowed, the yields from the quantum-mechanical computation decay exponentially, whereas their classical counterparts vanish.
Exactly solvable two-state quantum model for a pulse of hyperbolic-tangent shape
NASA Astrophysics Data System (ADS)
Simeonov, Lachezar S.; Vitanov, Nikolay V.
2014-04-01
We present an analytically exactly solvable two-state quantum model, in which the coupling has a hyperbolic-tangent temporal shape and the frequency detuning is constant. The exact solution is expressed in terms of associated Legendre functions. An interesting feature of this model is that the excitation probability does not vanish, except for zero pulse area or zero detuning; this feature is attributed to the asymmetric pulse shape. Two limiting cases are considered. When the coupling rises very slowly, it is nearly linear and the tanh model reduces to the shark model introduced earlier. When the coupling rises very quickly, the tanh model reduces to the Rabi model, which assumes a rectangular pulse shape and hence a sudden switch on. Because of its practical significance, we have elaborated the asymptotics of the solution in the Rabi limit, and we have derived the next terms in the asymptotic expansion, which deliver the corrections to the amplitude and the phase of the Rabi oscillations due to the finite rise time of the coupling.
Flux amplification and sustainment of ST plasmas by multi-pulsed coaxial helicity injection on HIST
NASA Astrophysics Data System (ADS)
Higashi, T.; Ishihara, M.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.
2010-11-01
The Helicity Injected Spherical Torus (HIST) device has been developed towards high-current start up and sustainment by Multi-pulsed Coaxial Helicity Injection (M-CHI) method. Multiple pulses operation of the coaxial plasma gun can build the magnetic field of STs and spheromak plasmas in a stepwise manner. So far, successive gun pulses on SSPX at LLNL were demonstrated to maintain the magnetic field of spheromak in a quasi-steady state against resistive decay [1]. The resistive 3D-MHD numerical simulation [2] for STs reproduced the current amplification by the M-CHI method and confirmed that stochastic magnetic field was reduced during the decay phase. By double pulsed operation on HIST, the plasma current was effectively amplified against the resistive decay. The life time increases up to 10 ms which is longer than that in the single CHI case (4 ms). The edge poloidal fields last between 0.5 ms and 6 ms like a repetitive manner. During the second driven phase, the toroidal ion flow is driven in the same direction as the plasma current as well as in the initial driven phase. At the meeting, we will discuss a current amplification mechanism based on the merging process with the plasmoid injected secondly from the gun. [1] B. Hudson et al., Phys. Plasmas Vol.15, 056112 (2008). [2] Y. Kagei et al., J. Plasma Fusion Res. Vol.79, 217 (2003).
NASA Astrophysics Data System (ADS)
Wu, Jianlan; Liu, Fan; Ma, Jian; Silbey, Robert J.; Cao, Jianshu
2012-11-01
Following the calculation of optimal energy transfer in thermal environment in our first paper [J. L. Wu, F. Liu, Y. Shen, J. S. Cao, and R. J. Silbey, New J. Phys. 12, 105012 (2010), 10.1088/1367-2630/12/10/105012], full quantum dynamics and leading-order "classical" hopping kinetics are compared in the seven-site Fenna-Matthews-Olson (FMO) protein complex. The difference between these two dynamic descriptions is due to higher-order quantum corrections. Two thermal bath models, classical white noise (the Haken-Strobl-Reineker (HSR) model) and quantum Debye model, are considered. In the seven-site FMO model, we observe that higher-order corrections lead to negligible changes in the trapping time or in energy transfer efficiency around the optimal and physiological conditions (2% in the HSR model and 0.1% in the quantum Debye model for the initial site at BChl 1). However, using the concept of integrated flux, we can identify significant differences in branching probabilities of the energy transfer network between hopping kinetics and quantum dynamics (26% in the HSR model and 32% in the quantum Debye model for the initial site at BChl 1). This observation indicates that the quantum coherence can significantly change the distribution of energy transfer pathways in the flux network with the efficiency nearly the same. The quantum-classical comparison of the average trapping time with the removal of the bottleneck site, BChl 4, demonstrates the robustness of the efficient energy transfer by the mechanism of multi-site quantum coherence. To reconcile with the latest eight-site FMO model which is also investigated in the third paper [J. Moix, J. L. Wu, P. F. Huo, D. F. Coker, and J. S. Cao, J. Phys. Chem. Lett. 2, 3045 (2011), 10.1021/jz201259v], the quantum-classical comparison with the flux network analysis is summarized in Appendix C. The eight-site FMO model yields similar trapping time and network structure as the seven-site FMO model but leads to a more disperse
Minhas, Atul S; Woo, Eung Je; Lee, Soo Yeol
2009-01-01
Magnetic Resonance Electrical Impedance Tomography (MREIT) utilizes the magnetic flux density B(z), generated due to current injection, to find conductivity distribution inside an object. This B(z) can be measured from MR phase images using spin echo pulse sequence. The SNR of B(z) and the sensitivity of phase produced by B(z) in MR phase image are critical in deciding the resolution of MREIT conductivity images. The conventional spin echo based data acquisition has poor phase sensitivity to current injection. Longer scan time is needed to acquire data with higher SNR. We propose a balanced steady state free precession (b-SSFP) based pulse sequence which is highly sensitive to small off-resonance phase changes. A procedure to reconstruct B(z) from MR signal obtained with b-SSFP sequence is described. Phases for b-SSFP signals for two conductivity phantoms of TX 151 and Gelatin are simulated from the mathematical models of b-SSFP signal. It was observed that the phase changes obtained from b-SSFP pulse sequence are highly sensitive to current injection and hence would produce higher magnetic flux density. However, the b-SSFP signal is dependent on magnetic field inhomogeneity and the signal deteriorated highly for small offset from resonance frequency. The simulation results show that the b-SSFP sequence can be utilized for conductivity imaging of a local region where magnetic field inhomogeneity is small. A proper shimming of magnet is recommended before using the b-SSFP sequence.
NASA Technical Reports Server (NTRS)
Gavriil, Fotis P.; Kaspi, Victoria M.; Woods, Peter M.; Lyutikov, Maxim
2005-01-01
We report on the latest X-ray burst detected from the direction of the Anomalous X-ray Pulsar (AXP) 1E 1048.1-5937 using the Rossi X-ray Timing Explorer (RXTE). Following the burst the AXP was observed further with RXTE, XMM-Newton and Chandra. We find a simultaneous increase of approx. 3.7 times the quiescent value (approx. 5 sigma) in the pulsed component of the pulsar's flux during the tail of the burst which identifies the AXP as the burst's origin. The burst was overall very similar to the two others reported from this source in 2001. The unambiguous identification of 1E 1048.1-5937 as the burster here suggests it was in 2001 as well. Pre- and post-burst observations revealed no change in the total flux or spectrum of the quiescent emission. Comparing all three bursts detected thus far from this source we find that this event was the most fluent (170+/-42 x 10(exp -10) erg cm-2), had the highest peak flux (71+/-16 x 10(exp -10) erg/s/sq cm), the longest duration (approx. 411 s). The epoch of the burst peak was consistent with the arrival time of 1E 1048.1-5937's pulse peak. The burst exhibited significant spectral evolution with the trend going from hard to soft. Although the average spectrum of the burst was comparable in hardness (Gamma approx. 1) to those of the 2001 bursts, the peak of this burst was much harder (Gamma approx. 0.5).
USING A HEAT PULSE TO MEASURE THE FLUX BETWEEN GROUNDWATER AND SURFACE WATER
EPA estimates that 10 percent of the sediments under the surface waters of the United States are contaminated and approximately 20 percent of the superfund sites include contaminated sediments. The risk associated with these contaminated sediments is directly related to the flux...
NASA Astrophysics Data System (ADS)
Ciocca, Francesco; Sharma, Varun; Lunati, Ivan; Parlange, Marc B.
2013-04-01
Ground heat flux plays a crucial role in surface energy budget: an incorrect estimation of energy storage and heat fluxes in soils occur when probes such as heat flux plates are adopted, and these mistakes can account for up to 90% of the residual variance (Higgins, GRL, 2012). A promising alternative to heat flux plates is represented by Multi Function Heat Pulse Probes (MFHPP). They have proven to be accurate in thermal properties and heat fluxes estimation (e.g. Cobos, VZJ, 2003) and can be used to monitor and quantify subsurface evaporation in field experiments (Xiao et al., VZJ, 2011). We perform a laboratory experiment with controlled temperature in a small Plexiglas column (20cm diameter and 40cm height). The column is packed with homogeneously saturated sandy soil and equipped with three MFHPPs in the upper 4cm and thermocouples and dielectric soil moisture probes deeper. This configuration allows for accurate and simultaneous ground heat flux, soil moisture and subsurface evaporation measurements. Total evaporation is monitored using a precision scale, while an infrared gun and a long wave radiometer measure the soil skin temperature and the outgoing long-short wave radiation, respectively. A fan and a heat lamp placed above the column allow to mimick on a smaller and more controlled scale the field conditions induced by the diurnal cycle. At a reference height above the column relative humidity, wind speed and air temperature are collected. Results are interpreted by means of numerical simulations performed with an ad-hoc-developed numerical model that simulates coupled heat and moisture transfer in soils and is used to match and interpolate the temperature and soil moisture values got at finite depths within the column. Ground heat fluxes are then estimated by integrating over almost continuous, numerically simulated temperature profiles, which avoids errors due to use of discrete data (Lunati et al., WRR, 2012) and leads to a more reliable estimate of
NASA Astrophysics Data System (ADS)
Li, Hong-Wei; Yin, Zhen-Qiang; Wang, Shuang; Bao, Wan-Su; Guo, Guang-Can; Han, Zheng-Fu
2011-10-01
Quantum key distribution is the art of sharing secret keys between two distant parties, and has attracted a lot of attention due to its unconditional security. Compared with other quantum key distribution protocols, the differential phase shift quantum key distribution protocol has higher efficiency and simpler apparatus. Unfortunately, the unconditional security of differential phase shift quantum key distribution has not been proved. Utilizing the sharp continuity of the von Neuman entropy and some basic inequalities, we estimate the upper bound for the eavesdropper Eve's information. We then prove the lower bound for the security of the differential phase shift quantum key distribution protocol against a one-pulse attack with Devatak—Winter's secret key rate formula.
Flux qubit on a mesoscopic nonsuperconducting ring
NASA Astrophysics Data System (ADS)
Zipper, E.; Kurpas, M.; Szeląg, M.; Dajka, J.; Szopa, M.
2006-09-01
The possibility of making a flux qubit on a nonsuperconducting mesoscopic ballistic quasi-one-dimensional ring is discussed. We showed that such a ring can be effectively reduced to a two-state system with two external control parameters. The two states carry opposite persistent currents and are coupled by tunneling, which leads to a quantum superposition of states. The qubit states can be manipulated by resonant microwave pulses. The flux state of the sample can be measured by a superconducting quantum interference device magnetometer. Two or more qubits can be coupled by the flux the circulating currents generate. The problem of decoherence is also discussed.
Kosterev, A A; Tittel, F K; Gmachl, C; Capasso, F; Sivco, D L; Baillargeon, J N; Hutchinson, A L; Cho, A Y
2000-12-20
A pulsed quantum-cascade distributed feedback laser operating at near room temperature was used for sensitive high-resolution IR absorption spectroscopy of ambient air at a wavelength of approximately 8 microm. Near-transform-limited laser pulses were obtained owing to short (approximately 5-ns) current pulse excitation and optimized electrical coupling. Fast and slow computer-controlled frequency scanning techniques were implemented and characterized. Fast computer-controlled laser wavelength switching was used to acquire second-derivative absorption spectra. The minimum detectable absorption was found to be 3 x 10(-4) with 10(5) laser pulses (20-kHz repetition rate), and 1.7 x 10(-4) for 5 x 10(5) pulses, based on the standard deviation of the linear regression analysis.
NASA Technical Reports Server (NTRS)
Gavriil, Fotis P.; Kaspi, Victoria M.; Woods, Peter M.
2006-01-01
We report on the 2004 June 29 X-ray burst detected from the direction of the AXP 1E 1048.1-5937 using the RXTE. We find a simultaneous increase of approx. 3.5 times the quiescent value in the 2-10 keV pulsed flux of 1E 1048.1-5937 during the tail of the burst, which identifies the AXP as the burst s origin. The burst was overall very similar to the two others reported from the direction of this source in 2001. The unambiguous identification of 1E 1048.1-5937 as the burster here confirms that it was the origin of the 2001 bursts as well. The epoch of the burst peak was very close to the arrival time of 1E 1048.1-5937 s pulse peak. The burst exhibited significant spectral evolution, with the trend going from hard to soft. Although the average spectrum of the burst was comparable in hardness (Lambda approx. 1.6) to those,of the 2001 bursts, the peak of this burst was much harder (Lambda approx. 0.3). During the 11 days following the burst, the AXP was observed further with RXTE, XMM-Newton, and Chandra. Pre- and post-burst observations revealed no change in the total flux or spectrum of the quiescent emission. Comparing all three bursts detected thus far from this source, we find that this event was the most fluent (>3.3 x 10(exp-8 ergs/sq cm) in the 2-20 keV band), had the highest peak flux (59+/-9 x 10(exp -10)ergs/s/sq cm) in the 2-20 keV band), and had the longest duration (>699 s). The long duration of the burst difFerentiates it from SGR bursts, which have typical durations of approx.0.1 s. Bursts that occur preferentially at pulse maximum, have fast rises, and long X-tails containing the majority of the total burst energy have been seen uniquely from AXPs. The marked differences between AXP and SGRs bursts may provide new clues to help understand the physical differences between these objects.
Santiago, S R M; Lin, T N; Yuan, C T; Shen, J L; Huang, H Y; Lin, C A J
2016-08-10
A one-step synthesis of graphene quantum dots (GQDs) has been implemented using pulsed laser ablation (PLA) with carboxyl-functionalized multiwalled carbon nanotubes (MWCNTs). The synthesized GQDs with an average size smaller than 3 nm were obtained by the fragmentation of MWCNTs via oxidative cutting. The GQDs can generate tunable photoluminescence (PL) ranging from green to blue by controlling the PLA time. The PL spectrum (decay time) of the green GQDs remains unchanged under different excitation energies (emission energies), while that of the blue GQDs correlates with the excitation energy (emission energy). On the basis of the pH and temperature dependence of PL, we suggest that the localized intrinsic states associated with the sp(2) nanodomains and delocalized extrinsic states embedded on the GQD surface are responsible for blue and green emission in GQDs, respectively. PMID:27476476
Gradient ascent pulse engineering approach to CNOT gates in donor electron spin quantum computing
Tsai, D.-B.; Goan, H.-S.
2008-11-07
In this paper, we demonstrate how gradient ascent pulse engineering (GRAPE) optimal control methods can be implemented on donor electron spin qubits in semiconductors with an architecture complementary to the original Kane's proposal. We focus on the high fidelity controlled-NOT (CNOT) gate and we explicitly find the digitized control sequences for a controlled-NOT gate by optimizing its fidelity using the effective, reduced donor electron spin Hamiltonian with external controls over the hyperfine A and exchange J interactions. We then simulate the CNOT-gate sequence with the full spin Hamiltonian and find that it has an error of 10{sup -6} that is below the error threshold of 10{sup -4} required for fault-tolerant quantum computation. Also the CNOT gate operation time of 100 ns is 3 times faster than 297 ns of the proposed global control scheme.
Diestler, D J; Kenfack, A; Manz, J; Paulus, B
2012-03-22
This article presents the results of the first quantum simulations of the electronic flux density (j(e)) by the "coupled-channels" (CC) theory, the fundamentals of which are presented in the previous article [Diestler, D. J. J. Phys. Chem. A 2012, DOI: 10.1021/jp207843z]. The principal advantage of the CC scheme is that it employs exclusively standard methods of quantum chemistry and quantum dynamics within the framework of the Born-Oppenheimer approximation (BOA). The CC theory goes beyond the BOA in that it yields a nonzero j(e) for electronically adiabatic processes, in contradistinction to the BOA itself, which always gives j(e) = 0. The CC is applied to oriented H(2)(+) vibrating in the electronic ground state ((2)Σ(g)(+)), for which the nuclear and electronic flux densities evolve on a common time scale of about 22 fs per vibrational period. The system is chosen as a touchstone for the CC theory, because it is the only one for which highly accurate flux densities have been calculated numerically without invoking the BOA [Barth et al, Chem. Phys. Lett. 2009, 481, 118]. Good agreement between CC and accurate results supports the CC approach, another advantage of which is that it allows a transparent interpretation of the temporal and spatial properties of j(e).
Zhang, Yang; Ding, Jun; Duan, Wei
2006-01-01
The aim of this study was to investigate the influence of pulsed electromagnetic fields with various flux densities and frequencies on neurite outgrowth in PC12 rat pheochromocytoma cells. We have studied the percentage of neurite-bearing cells, average length of neurites and directivity of neurite outgrowth in PC12 cells cultured for 96 hours in the presence of nerve growth factor (NGF). PC12 cells were exposed to 50 Hz pulsed electromagnetic fields with a flux density of 1.37 mT, 0.19 mT and 0.016 mT respectively. The field was generated through a Helmholtz coil pair housed in one incubator and the control samples were placed in another identical incubator. It was found that exposure to both a relatively high flux density (1.37 mT) and a medium flux density (0.19 mT) inhibited the percentage of neurite-bearing cells and promoted neurite length significantly. Exposure to high flux density (1.37 mT) also resulted in nearly 20% enhancement of neurite directivity along the field direction. However, exposure to low flux density field (0.016 mT) had no detectable effect on neurite outgrowth. We also studied the effect of frequency at the constant flux density of 1.37 mT. In the range from 1 approximately 100 Hz, only 50 and 70 Hz pulse frequencies had significant effects on neurite outgrowth. Our study has shown that neurite outgrowth in PC12 cells is sensitive to flux density and frequency of pulsed electromagnetic field.
Yap, Yung Szen; Tabuchi, Yutaka; Negoro, Makoto; Kagawa, Akinori; Kitagawa, Masahiro
2015-06-15
We present a 17 GHz (Ku band) arbitrary waveform pulsed electron paramagnetic resonance spectrometer for experiments down to millikelvin temperatures. The spectrometer is located at room temperature, while the resonator is placed either in a room temperature magnet or inside a cryogen-free dilution refrigerator; the operating temperature range of the dilution unit is from ca. 10 mK to 8 K. This combination provides the opportunity to perform quantum control experiments on electron spins in the pure-state regime. At 0.6 T, spin echo experiments were carried out using γ-irradiated quartz glass from 1 K to 12.3 mK. With decreasing temperatures, we observed an increase in spin echo signal intensities due to increasing spin polarizations, in accordance with theoretical predictions. Through experimental data fitting, thermal spin polarization at 100 mK was estimated to be at least 99%, which was almost pure state. Next, to demonstrate the ability to create arbitrary waveform pulses, we generate a shaped pulse by superposing three Gaussian pulses of different frequencies. The resulting pulse was able to selectively and coherently excite three different spin packets simultaneously—a useful ability for analyzing multi-spin system and for controlling a multi-qubit quantum computer. By applying this pulse to the inhomogeneously broadened sample, we obtain three well-resolved excitations at 8 K, 1 K, and 14 mK.
Yap, Yung Szen; Tabuchi, Yutaka; Negoro, Makoto; Kagawa, Akinori; Kitagawa, Masahiro
2015-06-01
We present a 17 GHz (Ku band) arbitrary waveform pulsed electron paramagnetic resonance spectrometer for experiments down to millikelvin temperatures. The spectrometer is located at room temperature, while the resonator is placed either in a room temperature magnet or inside a cryogen-free dilution refrigerator; the operating temperature range of the dilution unit is from ca. 10 mK to 8 K. This combination provides the opportunity to perform quantum control experiments on electron spins in the pure-state regime. At 0.6 T, spin echo experiments were carried out using γ-irradiated quartz glass from 1 K to 12.3 mK. With decreasing temperatures, we observed an increase in spin echo signal intensities due to increasing spin polarizations, in accordance with theoretical predictions. Through experimental data fitting, thermal spin polarization at 100 mK was estimated to be at least 99%, which was almost pure state. Next, to demonstrate the ability to create arbitrary waveform pulses, we generate a shaped pulse by superposing three Gaussian pulses of different frequencies. The resulting pulse was able to selectively and coherently excite three different spin packets simultaneously-a useful ability for analyzing multi-spin system and for controlling a multi-qubit quantum computer. By applying this pulse to the inhomogeneously broadened sample, we obtain three well-resolved excitations at 8 K, 1 K, and 14 mK.
Quantum mechanics versus macroscopic realism: Is the flux there when nobody looks
Leggett, A.J.; Garg, A.
1985-03-04
It is shown that, in the contect of an idealized ''macroscopic quantum coherence'' experiment, the prediction of quantum mechanics are incompattible with the conjunction of two general assimptions which are designated ''macroscopic realism'' and ''noninvasive measurability at the macroscopiclevel.'' The conditions under which quantum mechanics can be tested against these assumptions in a realistic experiment are discussed.
NASA Astrophysics Data System (ADS)
Mattauch, S.; Ioffe, A.; Lott, D.; Menelle, A.; Ott, F.; Medic, Z.
2016-04-01
An instrument concept of a reflectometer with a vertical sample geometry fitted to the long pulse structure of a spallation source, called “VERITAS” at the ESS, is presented. It focuses on designing a reflectometer with high intensity at the lowest possible background following the users' demand to investigate thin layers or interfacial areas in the sub-nanometer length scale. The high intensity approach of the vertical reflectometer fits very well to the long pulse structure of the ESS. Its main goal is to deliver as much usable intensity as possible at the sample position and be able to access a reflectivity range of 8 orders of magnitude and more. The concept assures that the reflectivity measurements can be performed in its best way to maximize the flux delivered to the sample. The reflectometer is optimized for studies of (magnetic) layers having thicknesses down to 5Å and a surface area of 1x1cm2. With reflectivity measurements the depth-resolved, laterally averaged chemical and magnetic profile can be investigated. By using polarised neutrons, additional vector information on the in-plane magnetic correlations (off-specular scattering at the pm length scale, GISANS at the nm length scale) can be studied. The full polarisation analysis could be used for soft matter samples to correct for incoherent scattering which is presently limiting neutron reflectivity studies to a reflectivity range on the order of 10-6.
Geiseler, Henning; Rottke, Horst; Steinmeyer, Guenter; Sandner, Wolfgang
2011-09-15
We investigate quantum beat oscillations in the photoionization continuum of Ne atoms that are photoionized by absorption of two photons via a group of excited bound states using ultrashort extreme ultraviolet and infrared laser pulses. The extreme ultraviolet pulse starts an excited-state wave packet that is photoionized by a high-intensity infrared pulse after a variable time delay. We analyze the continuum quantum beats from this two-step photoionization process and their dependence on the photoelectron kinetic energy. We find a pronounced dependence of the quantum beat amplitudes on the photoelectron kinetic energy. The dependence changes significantly with the applied infrared laser-pulse intensity. The experimental results are in good qualitative agreement with a model calculation that is adapted to the experimental situation. It accounts for the intensity dependence of the quantum beat structure through the coupling of the excited-state wave packet to other bound Ne states induced by the high-intensity infrared laser pulse.
... resting for at least 10 minutes. Take the exercise heart rate while you are exercising. ... pulse rate can help determine if the patient's heart is pumping. ... rate gives information about your fitness level and health.
NASA Astrophysics Data System (ADS)
Ko, Heasin; Lim, Kyongchun; Oh, Junsang; Rhee, June-Koo Kevin
2016-07-01
Quantum channel loopholes due to imperfect implementations of practical devices expose quantum key distribution (QKD) systems to potential eavesdropping attacks. Even though QKD systems are implemented with optical devices that are highly selective on spectral characteristics, information theory-based analysis about a pertinent attack strategy built with a reasonable framework exploiting it has never been clarified. This paper proposes a new type of trojan horse attack called hidden pulse attack that can be applied in a plug-and-play QKD system, using general and optimal attack strategies that can extract quantum information from phase-disturbed quantum states of eavesdropper's hidden pulses. It exploits spectral characteristics of a photodiode used in a plug-and-play QKD system in order to probe modulation states of photon qubits. We analyze the security performance of the decoy-state BB84 QKD system under the optimal hidden pulse attack model that shows enormous performance degradation in terms of both secret key rate and transmission distance.
NASA Astrophysics Data System (ADS)
Ko, Heasin; Lim, Kyongchun; Oh, Junsang; Rhee, June-Koo Kevin
2016-10-01
Quantum channel loopholes due to imperfect implementations of practical devices expose quantum key distribution (QKD) systems to potential eavesdropping attacks. Even though QKD systems are implemented with optical devices that are highly selective on spectral characteristics, information theory-based analysis about a pertinent attack strategy built with a reasonable framework exploiting it has never been clarified. This paper proposes a new type of trojan horse attack called hidden pulse attack that can be applied in a plug-and-play QKD system, using general and optimal attack strategies that can extract quantum information from phase-disturbed quantum states of eavesdropper's hidden pulses. It exploits spectral characteristics of a photodiode used in a plug-and-play QKD system in order to probe modulation states of photon qubits. We analyze the security performance of the decoy-state BB84 QKD system under the optimal hidden pulse attack model that shows enormous performance degradation in terms of both secret key rate and transmission distance.
Quantum tricks with femtosecond light pulses teach magnetic devices to think ultrafast
NASA Astrophysics Data System (ADS)
Perakis, I. E.; Lingos, P. C.; Wang, J.
2014-03-01
The technological demand to push the gigahertz switching speed limit of today's magnetic memory/logic devices into the terahertz (1THz=1ps-1) regime underlies the entire field of spin-electronics and integrated multi- functional devices. This challenge is met by all-optical magnetic switching based on coherent spin manipulation By analogy to femto-chemistry and photosynthetic dynamics where photo-products of chemical/biochemical re- actions can be influenced by creating suitable superpositions of molecular states, femtosecond (fs) laser-excited coherence between spin/orbital/charge states can switch magnetic orders, by "suddenly" breaking the delicate balance between competing phases of correlated materials, e.g., the colossal magneto-resistive (CMR) manganites suitable for applications. Here we discuss femtosecond (fs) all-optical switching from antiferro- to ferromagnetic ordering via establishment of a magnetization increase within ˜100 fs, while the laser field still interacts with the system. Such non-equilibrium ferromagnetic correlations arise from quantum spin-flip fluctuations corre- lated with coherent superpositions of electronic states. The development of ferromagnetic correlations during the fs laser pulse reveals an initial quantum coherent regime of magnetism, clearly distinguished from the pi- cosecond lattice-heating regime characterized by phase separation. We summarize a microscopic theory based on density matrix equations of motion for composite fermion Hubbard operators, instead of bare electrons, that take into account the strong spin and charge local correlations. Our work merges two fields, femto-magnetism in metals/band insulators and non-equilibrium phase transitions of strongly correlated electrons, where local interactions exceeding the kinetic energy produce a complex balance of competing orders.
NASA Astrophysics Data System (ADS)
Li, Hongxin; Jiang, Haodong; Gao, Ming; Ma, Zhi; Ma, Chuangui; Wang, Wei
2015-12-01
The statistical fluctuation problem is a critical factor in all quantum key distribution (QKD) protocols under finite-key conditions. The current statistical fluctuation analysis is mainly based on independent random samples, however, the precondition cannot always be satisfied because of different choices of samples and actual parameters. As a result, proper statistical fluctuation methods are required to solve this problem. Taking the after-pulse contributions into consideration, this paper gives the expression for the secure key rate and the mathematical model for statistical fluctuations, focusing on a decoy-state QKD protocol [Z.-C. Wei et al., Sci. Rep. 3, 2453 (2013), 10.1038/srep02453] with a biased basis choice. On this basis, a classified analysis of statistical fluctuation is represented according to the mutual relationship between random samples. First, for independent identical relations, a deviation comparison is made between the law of large numbers and standard error analysis. Second, a sufficient condition is given that the Chernoff bound achieves a better result than Hoeffding's inequality based on only independent relations. Third, by constructing the proper martingale, a stringent way is proposed to deal issues based on dependent random samples through making use of Azuma's inequality. In numerical optimization, the impact on the secure key rate, the comparison of secure key rates, and the respective deviations under various kinds of statistical fluctuation analyses are depicted.
Pulsed quantum cascade laser-based CRDS substance detection: real-time detection of TNT.
Harb, C C; Boyson, T K; Kallapur, A G; Petersen, I R; Calzada, M E; Spence, T G; Kirkbride, K P; Moore, D S
2012-07-01
This paper presents experimental results from a pulsed quantum cascade laser based cavity ringdown spectrometer used as a high-throughput detection system. The results were obtained from an optical cavity with 99.8% input and output coupling mirrors that was rapidly swept (0.2s to 7s sweep times) between 1582.25 cm(-1) (6.3201μm) and 1697.00 cm(-1) (5.8928μm). The spectrometer was able to monitor gas species over the pressure range 585 torr to 1μtorr, and the analysis involves a new digital data processing system that optimises the processing speed and minimises the data storage requirements. In this approach we show that is it not necessary to make direct measurements of the ringdown time of the cavity to obtain the system dynamics. Furthermore, we show that correct data processing is crucial for the ultimate implementation of a wideband IR spectrometer that covers a range similar to that of commercial Fourier transform infrared instruments.
Open path atmospheric spectroscopy using room temperature operated pulsed quantum cascade laser.
Taslakov, M; Simeonov, V; van den Bergh, H
2006-04-01
We report the application of a distributed feedback quantum cascade laser for 5.8 km long open path spectroscopic monitoring of ozone, water vapor and CO(2). The thermal chirp during a 140 or 200 ns long excitation pulse is used for fast wavelength scanning. The fast wavelength scanning has the advantage of the measured spectra not being affected by atmospheric turbulence, which is essential for long open path measurements. An almost linear tuning of about 0.6 and 1.2 cm(-1) is achieved, respectively. Lines from the nu(3) vibrational band of the ozone spectra centered at 1,031 and 1,049 cm(-1) is used for ozone detection by differential absorption. The lowest column densities (LCD) for ozone of the order of 0.3 ppmm retrieved from the absorption spectra for averaging times less than 20s are better then the LCD value of 2 ppmm measured with UV DOAS systems. The intrinsic haze immunity of mid-IR laser sources is an additional important advantage of mid-IR open path spectroscopy, compared with standard UV-vis DOAS. The third major advantage of the method is the possibility to measure more inorganic and organic atmospheric species compared to the UV-vis DOAS.
Omidi, Mahboubeh Faizabadi, Edris
2015-03-21
Magnetic susceptibility is investigated in a man-made elliptical quantum ring in the presence of Rashba spin-orbit interactions and the magnetic flux. It is shown that magnetic susceptibility as a function of magnetic flux changes between negative and positive signs periodically. The periodicity of the Aharonov-Bohm oscillations depends on the geometry of the region where magnetic field is applied, the eccentricity, and number of sites in each chain ring (the elliptical ring is composed of chain rings). The magnetic susceptibility sign can be reversed by tuning the Rashba spin-orbit strength as well. Both the magnetic susceptibility strength and sign can be controlled via external spin-orbit interactions, which can be exploited in spintronics and nanoelectronics.
Ultra-broadband Superradiant Pulses from Femtosecond Laser Pumped InP based Quantum Well Laser Diode
NASA Astrophysics Data System (ADS)
Liu, Jingjing
Laser techniques, such as gain / Q switching, mode-locking, have successfully overcome the energy restriction of gain clamping in the stead-state operated lasers, and allowed the generation of giant pulses with short pulse durations. However, gain saturation further limits the amount of stored energy in a gain medium, and therefore limits the possible maximum pulse energy obtained by laser techniques. Here we circumvent both gain clamping and the capacity limitation of energy storage by operating the double-quantum-well laser diode chips on ultrafast gain-switching model using femtosecond (fs) laser pulses as the optical pump. The advantage of our pumping approach is that the fs pulse can instantly produce a very large number of carriers, and therefore enable the formation of non-equilibrium coherent e-h BCS-like condensate state in a large energy region from the lowest QW subband edges to the highest subband and then obtain the ultra-broadband superradiant pulses. Superradiance (SR) or the coherent spontaneous emission is not a new quantum optics phenomenon, which has been proposed in 1954 by R. Dicke, even earlier than the invention of laser. It is famous as by its ultrashort duration, high peak power, high coherence and high timing jitter. Recently, femtosecond SR pulses have been generated from semiconductors. This investigation has revived both theoretical and experimental studies of SR emission. In this thesis, we have demonstrated the generation of intense, delayed SR pulses from the InP based double quantum well laser diode at room temperature. The 1040 nm femtosecond laser was applied as the optical pumping source, and when the pump power is high enough, the cooperative recombination of e-h pairs from higher order quantum energy levels can occur to generate SR bursts earlier than the cooperative emission from the lower quantum energy levels. Then, ultra-broadband TM polarized SR pulses have been firstly generated at room temperature. Our experiments also
Chen, Shaoqiang; Yoshita, Masahiro; Ito, Takashi; Mochizuki, Toshimitsu; Akiyama, Hidefumi; Yokoyama, Hiroyuki
2013-03-25
Gain-switched pulses of InGaAs double-quantum-well lasers fabricated from identical epitaxial laser wafers were measured under both current injection and optical pumping conditions. The shortest output pulse widths were nearly identical (about 40 ps) both for current injection and optical pumping; this result attributed the dominant pulse-width limitation factor to the intrinsic gain properties of the lasers. We quantitatively compared the experimental results with theoretical calculations based on rate equations incorporating gain nonlinearities. Close consistency between the experimental data and the calculations was obtained only when we assumed a dynamically suppressed gain value deviated from the steady-state gain value supported by standard microscopic theories.
NASA Astrophysics Data System (ADS)
Valavanis, A.; Dean, P.; Scheuring, A.; Salih, M.; Stockhausen, A.; Wuensch, S.; Il'in, K.; Chowdhury, S.; Khanna, S. P.; Siegel, M.; Davies, A. G.; Linfield, E. H.
2013-08-01
Joule heating causes significant degradation in the power emitted from terahertz-frequency quantum-cascade lasers (THz QCLs). However, to date, it has not been possible to characterize the thermal equilibration time of these devices, since THz power degradation over sub-millisecond time-scales cannot be resolved using conventional bolometric or pyroelectric detectors. In this letter, we use a superconducting antenna-coupled niobium nitride detector to measure the emission from a THz QCL with a nanosecond-scale time-resolution. The emitted THz power is shown to decay more rapidly at higher heat-sink temperatures, and in steady-state the power reduces as the repetition rate of the driving pulses increases. The pulse-to-pulse variation in active-region temperature is inferred by comparing the THz signals with those obtained from low duty-cycle measurements. A thermal resistance of 8.2 ± 0.6 K/W is determined, which is in good agreement with earlier measurements, and we calculate a 370 ± 90-μs bulk heat-storage time, which corresponds to the simulated heat capacity of the device substrate.
Whole Ecosystem Low-level 14C Pulse Labeling and CO2 Flux Measurements in a Boreal Forest
NASA Astrophysics Data System (ADS)
Carbone, M.; Trumbore, S.; Czimczik, C.; McDuffee, K.; McMillan, A.
2004-12-01
We developed a large volume, low level, 14C pulse-chase, field labeling method to determine the timing and contribution of recent photosynthetic products to total ecosystem respiration in a poorly drained black spruce forest stand in Manitoba, Canada. The site is part of a chronosequence of black spruce stands located in the BOREAS Northern Study Area (55N, 98W), and time since fire is 40 years. The radiocarbon addition was designed to produce a 14C signature of ~1500 times Modern for CO2 at ambient levels inside the ~37,000 L volume light chamber. At this level of labeling, the radioactivity in our 14C source (acidified sodium bicarbonate solution with specific activity of ~30 nCi/g) and in the chamber were well below levels that are regulated. We labeled two chambers in August 2004. The vegetation inside the first (37,000 L) chamber included black spruce trees (ranging from seedlings to 4 m tall) with feather moss and shrub understory. A second 14CO2 label was applied in a smaller chamber (500 L) containing only feather mosses. Both chambers were constructed from polyethylene plastic that allowed for 70 percent transmission of PAR. For seven days following the label, we measured the quantity and 14C content of soil respiration with small (10 L) dark chambers, above-ground respiration with branch bags, and total ecosystem respiration with a dark chamber. Live root and moss 14C content were measured by field incubations. Additionally, soil gas 14C content at two depths within the moss/organic layer was measured. Radiocarbon measurements are made using Accelerator Mass Spectrometry, which allows us to easily distinguish the presence of the label in small amounts (mg) of material. We will report the radiocarbon (delta 14C) signature of individual respiration sources. Preliminary results show that we can use these isotopic signatures to follow the labeled contribution of respiration from individual sources (moss, root/root exudates, and needle) to total ecosystem
NASA Astrophysics Data System (ADS)
Tao, L.; Sun, K.; Cavigelli, M. A.; Gelfand, I.; Zenone, T.; Cui, M.; Miller, D. J.; Khan, M. A.; Zondlo, M. A.
2012-12-01
The ambient concentration of nitrous oxide (N2O), the fourth most abundant greenhouse gas, is rapidly increasing with emissions from both natural and anthropogenic sources [1]. Soil and aquatic areas are important sources and sinks for N2O due to complicated biogenic processes. However, N2O emissions are poorly constrained in space and time, despite its importance to global climate change and ozone depletion. We report our recent N2O emission measurements with an open-path quantum cascade laser (QCL)-based sensor for ecological systems. The newly emergent QCLs have been used to build compact, sensitive trace gas sensors in the mid-IR spectral region. A compact open-path QCL based sensor was developed to detect atmospheric N2O and CO at ~ 4.5 μm using wavelength modulation spectroscopy (WMS) to achieve a sensitivity of 0.26 ppbv of N2O and 0.24 ppbv of CO in 1 s with a power consumption of ~50 W [2]. This portable sensor system has been used to perform N2O emission flux measurement both with a static flux chamber and on an eddy covariance (EC) flux tower. In the flux chamber measurements, custom chambers were used to host the laser sensor, while gas samples for gas chromatograph (GC) were collected at the same time in the same chamber for validation and comparison. Different soil treatments have been applied in different chambers to study the relationship between N2O emission and the amount of fertilizer (and water) addition. Measurements from two methods agreed with each other (95% or higher confidence interval) for emission flux results, while laser sensor gave measurements with a much high temporal resolution. We have also performed the first open-path eddy covariance N2O flux measurement at Kellogg research station, Michigan State University for a month in June, 2012. Our sensor was placed on a 4-meter tower in a corn field and powered by batteries (connected with solar panels). We have observed the diurnal cycle of N2O flux. During this deployment, an inter
NASA Astrophysics Data System (ADS)
Aksenov, V. L.; Korneev, Daniel A.; Chernenko, L. P.
1992-11-01
This paper discusses the new neutron reflectometer being built on the high flux pulsed reactor IBR-2 in Dubna. A new method is suggested for measuring and interpretation of data in the study of inhomogeneous (noncollinear) magnetization depth profile in thin films. It is important to take into account the surface roughness in the interpretation of the data from the measurements of the magnetic field penetration depth in superconductors.
Second-order shaped pulsed for solid-state quantum computation
Sengupta, Pinaki
2008-01-01
We present the construction and detailed analysis of highly optimized self-refocusing pulse shapes for several rotation angles. We characterize the constructed pulses by the coefficients appearing in the Magnus expansion up to second order. This allows a semianalytical analysis of the performance of the constructed shapes in sequences and composite pulses by computing the corresponding leading-order error operators. Higher orders can be analyzed with the numerical technique suggested by us previously. We illustrate the technique by analyzing several composite pulses designed to protect against pulse amplitude errors, and on decoupling sequences for potentially long chains of qubits with on-site and nearest-neighbor couplings.
NASA Astrophysics Data System (ADS)
Parisen Toldin, Francesco; Hohenadler, Martin; Assaad, Fakher F.; Herbut, Igor F.
2015-04-01
We numerically investigate the critical behavior of the Hubbard model on the honeycomb and the π -flux lattice, which exhibits a direct transition from a Dirac semimetal to an antiferromagnetically ordered Mott insulator. We use projective auxiliary-field quantum Monte Carlo simulations and a careful finite-size scaling analysis that exploits approximately improved renormalization-group-invariant observables. This approach, which is successfully verified for the three-dimensional XY transition of the Kane-Mele-Hubbard model, allows us to extract estimates for the critical couplings and the critical exponents. The results confirm that the critical behavior for the semimetal to Mott insulator transition in the Hubbard model belongs to the Gross-Neveu-Heisenberg universality class on both lattices.
Aubret, Antoine; Houel, Julien; Pereira, Antonio; Baronnier, Justine; Lhuillier, Emmanuel; Dubertret, Benoit; Dujardin, Christophe; Kulzer, Florian; Pillonnet, Anne
2016-08-31
We report the successful encapsulation of colloidal quantum dots in an inorganic matrix by pulsed laser deposition. Our technique is nondestructive and thus permits the incorporation of CdSe/CdS core/shell colloidal quantum dots in an amorphous yttrium oxide matrix (Y2O3) under full preservation of the advantageous optical properties of the nanocrystals. We find that controlling the kinetic energy of the matrix precursors by means of the oxygen pressure in the deposition chamber facilitates the survival of the encapsulated species, whose well-conserved optical properties such as emission intensity, luminescence spectrum, fluorescence lifetime, and efficiency as single-photon emitters we document in detail. Our method can be extended to different types of nanoemitters (e.g., nanorods, dots-in-rods, nanoplatelets) as well as to other matrices (oxides, semiconductors, metals), opening up new vistas for the realization of fully inorganic multilayered active devices based on colloidal nano-objects. PMID:27503143
Markmann, Sergej Nong, Hanond Hekmat, Negar; Jukam, Nathan; Pal, Shovon; Scholz, Sven; Kukharchyk, Nadezhda; Ludwig, Arne; Wieck, Andreas D.; Dhillon, Sukhdeep; Tignon, Jérôme; Marcadet, Xavier; Bock, Claudia; Kunze, Ulrich
2015-09-14
We demonstrate by injection seeding that the spectral emission of a terahertz (THz) quantum cascade laser (QCL) can be modified with broad-band THz pulses whose bandwidths are greater than the QCL bandwidth. Two broad-band THz pulses delayed in time imprint a modulation on the single THz pulse spectrum. The resulting spectrum is used to injection seed the THz QCL. By varying the time delay between the THz pulses, the amplitude distribution of the QCL longitudinal modes is modified. By applying this approach, the QCL emission is reversibly switched from multi-mode to single mode emission.
NASA Astrophysics Data System (ADS)
Markmann, Sergej; Nong, Hanond; Pal, Shovon; Hekmat, Negar; Scholz, Sven; Kukharchyk, Nadezhda; Ludwig, Arne; Dhillon, Sukhdeep; Tignon, Jérôme; Marcadet, Xavier; Bock, Claudia; Kunze, Ulrich; Wieck, Andreas D.; Jukam, Nathan
2015-09-01
We demonstrate by injection seeding that the spectral emission of a terahertz (THz) quantum cascade laser (QCL) can be modified with broad-band THz pulses whose bandwidths are greater than the QCL bandwidth. Two broad-band THz pulses delayed in time imprint a modulation on the single THz pulse spectrum. The resulting spectrum is used to injection seed the THz QCL. By varying the time delay between the THz pulses, the amplitude distribution of the QCL longitudinal modes is modified. By applying this approach, the QCL emission is reversibly switched from multi-mode to single mode emission.
NASA Astrophysics Data System (ADS)
Sakasegawa, Yohei; Saito, Shingo; Sekine, Norihiko; Kasamatsu, Akifumi; Ashida, Masaaki; Hosako, Iwao
2016-10-01
We report the intensity and spectral changes in a multi-mode terahertz quantum cascade laser induced by injecting λ = 800 nm optical pulses through a cavity facet. We find that photogenerated carriers, via modulation of the intersubband gain, increase the threshold current by up to 0.2 A and cause spectral changes such that the individual peaks of the multi-lateral-mode spectra are varied in amplitude with different ratios. It is found that the indirect recombination of electron-hole pairs and thermal relaxation on timescales of ˜700 ns and ˜10 µs, respectively, are involved in the recovery kinetics.
NASA Astrophysics Data System (ADS)
Zorin, A. B.; Tolkacheva, E. M.; Khabipov, M. I.; Buchholz, F.-I.; Niemeyer, J.
2006-07-01
Within the framework of the microscopic model of tunneling, we modeled the behavior of the Josephson junction shunted by the superconductor-insulator-normal-metal (SIN) tunnel junction. The electromagnetic impedance of the SIN junction includes both the frequency-dependent damping and reactance, which affect the circuit dynamics. We calculated the dc I-V curves and transient characteristics and show their differences to the characteristics obtained within the simpler models. The correct operation of the basic single-flux-quantum circuits, i.e., the Josephson transmission line and the toggle flip-flop, based on such SIN-shunted Josephson junctions with small damping at low frequencies, has also been modeled.
Pulse excitation to continuous-wave excitation in a low-dimensional interacting quantum system
NASA Astrophysics Data System (ADS)
Ono, Atsushi; Hashimoto, Hiroshi; Ishihara, Sumio
2016-09-01
Real-time dynamics in a one-dimensional transverse Ising model coupled with the time-dependent oscillating field is analyzed by using the infinite time-evolving block decimation algorithm and Floquet theory. In particular, the transient dynamics induced by the pulse field and their connections to the dynamics by a continuous-wave field are focused on. During the pulse-field irradiation, the order parameter shows a characteristic oscillation, in which the frequency shifts from the pulse-field frequency. This is considered as a kind of the Rabi oscillation, but the frequency strongly depends on the intersite Ising interaction. After turning off the pulse field, the oscillation remains with a frequency Ω and a damping constant γ . In the case of low fluence, both Ω and γ are scaled by the pulse amplitude over a wide range of the parameter values of the model. In the case of high fluence, Ω and γ are arranged by a product of the pulse amplitude and the pulse width, which governs the population of the excited state when the pulse field is turned off. Experimental feasibility of the present results is briefly discussed.
Lee, N.; Wetzstein, H.Y.; Sommer, H.E.
1985-07-01
Liquidambar styraciflua L. seedlings and tissue-cultured plantlets were grown under high, medium, or low quantum flux densities. Net photosynthesis, chlorophyll content, and chloroplast ultrastructure of leaves differentiated from these conditions were investigated. Seedling photosynthetic rates at light saturation were positively related to light pretreatments. Cultured plantlets under all light conditions had appreciably higher photosynthetic rates than noncultured seedlings. Chlorophyll in seedlings and plantlets was significantly higher in low light-treated plants. Seedling leaves had chloroplasts with abundant starch regardless of light pretreatment. In high light, starch granules were predominant and associated with disrupted granal structure. Low light seedling chloroplasts had smaller starch grains and well-formed grana. In contrast, tissue culture-differentiated leaves were devoid of starch; grana were well organized in higher quantum flux density treatments, but disorganized at low flux densities. 29 references, 7 figures, 1 table.
NASA Astrophysics Data System (ADS)
Randazzo, J. M.; Ancarani, L. U.
2015-12-01
For the single differential cross section (SDCS) for hydrogen ionization by electron impact (e -H problem), we propose a correction to the flux formula given by R. Peterkop [Theory of Ionization of Atoms by Electron Impact (Colorado Associated University Press, Boulder, 1977)]. The modification is based on an alternative way of defining the kinetic energy fraction, using Bohm's definition of velocities instead of the usual asymptotic kinematical, or geometrical, approximation. It turns out that the solution-dependent, modified energy fraction is equally related to the components of the probability flux. Compared to what is usually observed, the correction yields a finite and well-behaved SDCS value in the asymmetrical situation where one of the continuum electrons carries all the energy while the other has zero energy. We also discuss, within the S -wave model of the e -H ionization process, the continuity of the SDCS derivative at the equal energy sharing point, a property not so clearly observed in published benchmark results obtained with integral and S -matrix formulas with unequal final states.
Song, Jie; Chang, Shih-Pang; Zhang, Cheng; Hsu, Ta-Cheng; Han, Jung
2015-01-14
We have demonstrated nitrogen-polar (0001̅) (N-polar) InGaN multiple quantum wells (MQWs) with significantly improved luminescence properties prepared by pulsed metalorganic chemical vapor deposition. During the growth of InGaN quantum wells, Ga and N sources are alternately injected into the reactor to alter the surface stoichiometry. The influence of flow duration in pulsed growth mode on the luminescence properties has been studied. We find that use of pulsed-mode creates a high density of hexagonal mounds with an increased InGaN growth rate and enhanced In composition around screw-type dislocations, resulting in remarkably improved luminescence properties. The mechanism of enhanced luminescence caused by the hexagonal mounds is discussed. Luminescence properties of N-polar InGaN MQWs grown with short pulse durations have been significantly improved in comparison with a sample grown by a conventional continuous growth method.
NASA Astrophysics Data System (ADS)
Arkhipkin, V. G.; Manushkin, D. V.; Timofeev, V. P.
1998-12-01
A medium of three-level absorbing atoms is considered under conditions of adiabatic population transfer. A study is made of the characteristics of spatial propagation of two delayed (relative to one another) Gaussian pulses. It is shown that selective excitation of a two-photon resonant state with a near-unity probability is conserved over the length of a medium, which is considerably greater than the absorption length of a weak probe pulse in the absence of the second field.
NASA Astrophysics Data System (ADS)
Sweeney, Timothy M.; Phelps, Carey; Wang, Hailin
2011-08-01
We demonstrated optical spin control of a two-dimensional electron gas in a modulation-doped CdTe quantum well by driving a spin-flip Raman transition with a pair of phase-locked laser pulses. In contrast to single-pulse optical spin control, which features a fixed spin-rotation axis, manipulation of the initial relative phase of the pulse pair enables us to control the axis of the optical spin rotation. We show that the Raman pulse pair acts like an effective microwave field, mapping the relative optical phase onto the phase of the electron spin polarization and making possible ultrafast, all-optical, and full quantum control of the electron spins.
NASA Astrophysics Data System (ADS)
Ishmuratov, I. K.; Baibekov, E. I.
2015-12-01
We investigate the possibility to restore transient nutations of electron spin centers embedded in the solid using specific composite pulse sequences developed previously for the application in nuclear magnetic resonance spectroscopy. We treat two types of systematic errors simultaneously: (i) rotation angle errors related to the spatial distribution of microwave field amplitude in the sample volume, and (ii) off-resonance errors related to the spectral distribution of Larmor precession frequencies of the electron spin centers. Our direct simulations of the transient signal in erbium- and chromium-doped CaWO4 crystal samples with and without error corrections show that the application of the selected composite pulse sequences can substantially increase the lifetime of Rabi oscillations. Finally, we discuss the applicability limitations of the studied pulse sequences for the use in solid-state electron paramagnetic resonance spectroscopy.
NASA Astrophysics Data System (ADS)
Castillo, Paulo; Diaz, Adrian; Thomas, Benjamin; Gross, Barry; Moshary, Fred
2015-10-01
Methane and Nitrous Oxide are long-lived greenhouse gases in the atmosphere with significant global warming effects. We report on application of chirped-pulsed quantum cascade lasers (QCLs) to simultaneous measurements of these trace gases in both open-path fence-line and backscatter systems. The intra-pulse thermal frequency chip in a QCL can be time resolved and calibrated to allow for high resolution differential optical absorption spectroscopy over the spectral window of the chip, which for a DFB-QCL can be reach ~2cm-1 for a 500 nsec pulse. The spectral line-shape of the output from these lasers are highly stable from pulse to pulse over long period of time (> 1 day), and the system does not require frequent calibrations.
Pulse-controlled quantum gate sequences on a strongly coupled qubit chain
NASA Astrophysics Data System (ADS)
Frydrych, Holger; Marthaler, Michael; Alber, Gernot
2015-05-01
We propose a selective dynamical decoupling scheme on a chain of permanently coupled qubits, which is capable of dynamically suppressing any coupling in the chain by applying sequences of local pulses to the individual qubits. We demonstrate how this pulse control can be used to implement the two-qubit CNS gate on any two neighboring qubits. A sequence of these CNS gates is then applied on the chain to entangle all the qubits in a GHZ state. We find that high entanglement fidelities can be achieved as long as the total number of coupled qubits is not too large.
NASA Astrophysics Data System (ADS)
Leen, J. B.; Yu, X.; Hubbe, J.; Kluzek, C. D.; Tomlinson, J. M.; Fischer, M. L.; Reichl, K.; Gupta, M.
2012-12-01
A pair of new ammonia (NH3) spectrometers were developed based on off-axis integrated cavity output spectroscopy. These ammonia gas analyzers consist of an optical cell, a quantum-cascade laser, a HgCdTe detector, gas sampling system, electronics for control and data acquisition, and data-analysis software. The NH3 mixing ratio is determined from high-resolution NH3 absorption line shapes by tuning the laser wavelength over the fundamental vibration band near 9.6 μm. Excellent linearity is obtained in a wide range (0- 500 ppb) with a precision of 75 ppt (1σ in 1 second). The analyzers' 1/e response time to step changes in ammonia concentration are 2.4 Hz and 8.1 Hz for the airborne and flux instruments, respectively. Feasibility was demonstrated in airborne test flights in the troposphere on board of the Department of Energy (DOE) Gulfstream-1 (G-1) aircraft. Two research flights were conducted over Sunnyside, Washington. In the first test flight, the ammonia gas sensor was used to identify signatures of feedstock from local dairy farms with high vertical spatial resolution under low wind and stable atmospheric conditions. In the second flight, the NH3 spectrometer showed high sensitivity in capturing feedstock emission signals under windy and less stable conditions. Mixing ratios aloft were measured between 0.75 ppb above the boundary layer and 100 ppb over large feedlots. Eddy covariance estimates of NH3 flux from a manure slurry amendment were performed in a pasture near Two Rock, California from May 18, 2012 to July 5, 2012. Measurement spanned pasture conditions from forage growth, cut-to-ground, manure slurry amendment (estimated to be 95 ± 33% kg NH3-N ha-1) and re-growth. An exponential decay fit to the NH3 flux data after slurry amendment provides an estimate of cumulative emission of 6.6 ± 0.5 kg NH3-N ha-1 (or 7 ± 0.24% of the total applied nitrogen) as a result of the slurry amendment. These results demonstrate that the new ammonia spectrometers
Phonon-assisted population inversion of a single InGaAs/GaAs quantum dot by pulsed laser excitation.
Quilter, J H; Brash, A J; Liu, F; Glässl, M; Barth, A M; Axt, V M; Ramsay, A J; Skolnick, M S; Fox, A M
2015-04-01
We demonstrate a new method to realize the population inversion of a single InGaAs/GaAs quantum dot excited by a laser pulse tuned within the neutral exciton phonon sideband. In contrast to the conventional method of inverting a two-level system by performing coherent Rabi oscillation, the inversion is achieved by rapid thermalization of the optically dressed states via incoherent phonon-assisted relaxation. A maximum exciton population of 0.67±0.06 is measured for a laser tuned 0.83 meV to higher energy. Furthermore, the phonon sideband is mapped using a two-color pump-probe technique, with its spectral form and magnitude in very good agreement with the result of path-integral calculations.
NASA Astrophysics Data System (ADS)
Quan, Dong-Xiao; Zhu, Chang-Hua; Liu, Shi-Quan; Pei, Chang-Xing
2015-05-01
We construct a circuit based on PBS and CNOT gates, which can be used to determine whether the input pulse is empty or not according to the detection result of the auxiliary state, while the input state will not be changed. The circuit can be treated as a pre-detection device. Equipping the pre-detection device in the front of the receiver of the quantum key distribution (QKD) can reduce the influence of the dark count of the detector, hence increasing the secure communication distance significantly. Simulation results show that the secure communication distance can reach 516 km and 479 km for QKD with perfect single photon source and decoy-state QKD with weak coherent photon source, respectively. Project supported by the National Natural Science Foundation of China (Grant No. 61372076), the Programme of Introducing Talents of Discipline to Universities, China (Grant No. B08038), and the Fundamental Research Funds for the Central Universities, China (Grant No. K5051201021).
NASA Astrophysics Data System (ADS)
Karni, O.; Mishra, A. K.; Eisenstein, G.; Reithmaier, J. P.
2015-03-01
We study the interplay between coherent light-matter interactions and nonresonant pulse propagation effects when ultrashort pulses propagate in room-temperature quantum dot (QD) semiconductor optical amplifiers (SOAs). The signatures observed on a pulse envelope after propagating in a transparent SOA, when coherent Rabi oscillations are absent, highlight the contribution of two-photon absorption (TPA), and its accompanying Kerr-like effect, as well as of linear dispersion, to the modification of the pulse complex electric field profile. These effects are incorporated into our previously developed finite-difference time-domain comprehensive model that describes the interaction between the pulses and the QD SOA. The present generalized model is used to investigate the combined effect of coherent and nonresonant phenomena in the gain and absorption regimes of the QD SOA. It confirms that in the QD SOA we examined, linear dispersion in the presence of the Kerr-like effect causes pulse compression, which counteracts the pulse peak suppression due to TPA, and also modifies the patterns which the coherent Rabi oscillations imprint on the pulse envelope under both gain and absorption conditions. The inclusion of these effects leads to a better fit with experiments and to a better understanding of the interplay among the various mechanisms so as to be able to better analyze more complex future experiments of coherent light-matter interaction induced by short pulses propagating along an SOA.
Scarani, Valerio; Acín, Antonio; Ribordy, Grégoire; Gisin, Nicolas
2004-02-01
We introduce a new class of quantum key distribution protocols, tailored to be robust against photon number splitting (PNS) attacks. We study one of these protocols, which differs from the original protocol by Bennett and Brassard (BB84) only in the classical sifting procedure. This protocol is provably better than BB84 against PNS attacks at zero error. PMID:14995344
Scarani, Valerio; Acín, Antonio; Ribordy, Grégoire; Gisin, Nicolas
2004-02-01
We introduce a new class of quantum key distribution protocols, tailored to be robust against photon number splitting (PNS) attacks. We study one of these protocols, which differs from the original protocol by Bennett and Brassard (BB84) only in the classical sifting procedure. This protocol is provably better than BB84 against PNS attacks at zero error.
Hagler, A T
2015-12-01
Computer simulations are increasingly prevalent, complementing experimental studies in all fields of biophysics, chemistry, and materials. Their utility, however, is critically dependent on the validity of the underlying force fields employed. In this Perspective we review the ability of quantum mechanics, and in particular analytical ab initio derivatives, to inform on the nature of intra- and intermolecular interactions. The power inherent in the exploitation of forces and second derivatives (Hessians) to derive force fields for a variety of compound types, including inorganic, organic, and biomolecules, is explored. We discuss the use of these quantities along with QM energies and geometries to determine force constants, including nonbond and electrostatic parameters, and to assess the functional form of the energy surface. The latter includes the optimal form of out-of-plane interactions and the necessity for anharmonicity, and terms to account for coupling between internals, to adequately represent the energy of intramolecular deformations. In addition, individual second derivatives of the energy with respect to selected interaction coordinates, such as interatomic distances or individual dihedral angles, have been shown to select out for the corresponding interactions, annihilating other interactions in the potential expression. Exploitation of these quantities allows one to probe the individual interaction and explore phenomena such as, for example, anisotropy of atom-atom nonbonded interactions, charge flux, or the functional form of isolated dihedral angles, e.g., a single dihedral X-C-C-Y about a tetrahedral C-C bond.
NASA Astrophysics Data System (ADS)
Shiri, Jalil
2016-05-01
Based on a GaAs/AlGaAs quadruple-coupled quantum dot heterostructure, an optical switch for controlling superluminal and subluminal light propagation is suggested. The transient and steady state behaviour of the absorption and dispersion of a probe pulse laser field through a quadruple quantum dot molecule are studied. We show that the group velocity of a light pulse can be controlled from superluminal to subluminal, or vice versa, by controlling the tunnelling rates between the quantum dots. The required switching time is calculated and we find it to be about 8 ps. We also investigated a method for the all-optical switching of probe field absorption from a large amount to nearly zero just by applying an incoherent pumping field. We estimated the required switching time for this case to be between 3 and 14 ps.
Allen, Doug K; Bates, Philip D; Tjellström, Henrik
2015-04-01
Metabolism is comprised of networks of chemical transformations, organized into integrated biochemical pathways that are the basis of cellular operation, and function to sustain life. Metabolism, and thus life, is not static. The rate of metabolites transitioning through biochemical pathways (i.e., flux) determines cellular phenotypes, and is constantly changing in response to genetic or environmental perturbations. Each change evokes a response in metabolic pathway flow, and the quantification of fluxes under varied conditions helps to elucidate major and minor routes, and regulatory aspects of metabolism. To measure fluxes requires experimental methods that assess the movements and transformations of metabolites without creating artifacts. Isotopic labeling fills this role and is a long-standing experimental approach to identify pathways and quantify their metabolic relevance in different tissues or under different conditions. The application of labeling techniques to plant science is however far from reaching it potential. In light of advances in genetics and molecular biology that provide a means to alter metabolism, and given recent improvements in instrumentation, computational tools and available isotopes, the use of isotopic labeling to probe metabolism is becoming more and more powerful. We review the principal analytical methods for isotopic labeling with a focus on seminal studies of pathways and fluxes in lipid metabolism and carbon partitioning through central metabolism. Central carbon metabolic steps are directly linked to lipid production by serving to generate the precursors for fatty acid biosynthesis and lipid assembly. Additionally some of the ideas for labeling techniques that may be most applicable for lipid metabolism in the future were originally developed to investigate other aspects of central metabolism. We conclude by describing recent advances that will play an important future role in quantifying flux and metabolic operation in plant
NASA Astrophysics Data System (ADS)
Hashimura, Keisuke; Ishii, Katsunori; Awazu, Kunio
2016-04-01
Cholesteryl esters are the main components of atherosclerotic plaques, and they have an absorption peak at the wavelength of 5.75 µm. To realize less-invasive ablation of the atherosclerotic plaques using a quasi-continuous wave (quasi-CW) quantum cascade laser (QCL), the thermal effects on normal vessels must be reduced. In this study, we attempted to reduce the thermal effects by controlling the pulse structure. The irradiation effects on rabbit atherosclerotic aortas using macro pulse irradiation (irradiation of pulses at intervals) and conventional quasi-CW irradiation were compared. The macro pulse width and the macro pulse interval were determined based on the thermal relaxation time of atherosclerotic and normal aortas in the oscillation wavelength of the QCL. The ablation depth increased and the coagulation width decreased using macro pulse irradiation. Moreover, difference in ablation depth between the atherosclerotic and normal rabbit aortas using macro pulse irradiation was confirmed. Therefore, the QCL in the 5.7-µm wavelength range with controlling the pulse structure was effective for less-invasive laser angioplasty.
NASA Astrophysics Data System (ADS)
Georgiev, Lachezar S.
2004-02-01
Using the effective conformal field theory for the quantum Hall edge states we propose a compact and convenient scheme for the computation of the periods, amplitudes, and temperature behavior of the chiral persistent currents and the magnetic susceptibilities in the mesoscopic disk version of the Zk parafermion quantum Hall states in the second Landau level. Our numerical calculations show that the persistent currents are periodic in the Aharonov Bohm flux with period exactly one flux quantum and have a diamagnetic nature. In the high-temperature regime their amplitudes decay exponentially with increasing the temperature and the corresponding exponents are universal characteristics of non-Fermi liquids. Our theoretical results for these exponents are in perfect agreement with those extracted from the numerical data and demonstrate that there is in general a nontrivial contribution coming from the neutral sector. We emphasize the crucial role of the nonholomorphic factors, first proposed by Cappelli and Zemba in the context of the conformal field theory partition functions for the quantum Hall states, which ensure the invariance of the annulus partition function under the Laughlin spectral flow.
Molecular Realizations of Quantum Computing 2007
NASA Astrophysics Data System (ADS)
Nakahara, Mikio; Ota, Yukihiro; Rahimi, Robabeh; Kondo, Yasushi; Tada-Umezaki, Masahito
2009-06-01
Liquid-state NMR quantum computer: working principle and some examples / Y. Kondo -- Flux qubits, tunable coupling and beyond / A. O. Niskanen -- Josephson phase qubits, and quantum communication via a resonant cavity / M. A. Sillanpää -- Quantum computing using pulse-based electron-nuclear double resonance (ENDOR): molecular spin-qubits / K. Sato ... [et al.] -- Fullerene C[symbol]: a possible molecular quantum computer / T. Wakabayashi -- Molecular magnets for quantum computation / T. Kuroda -- Errors in a plausible scheme of quantum gates in Kane's model / Y. Ota -- Yet another formulation for quantum simultaneous noncooperative bimatrix games / A. SaiToh, R. Rahimi, M. Nakahara -- Continuous-variable teleportation of single-photon states and an accidental cloning of a photonic qubit in two-channel teleportation / T. Ide.
Microstrip Superconducting Quantum Interference Devices for Quantum Information Science
NASA Astrophysics Data System (ADS)
De Feo, Michael P.
Quantum-limited amplification in the microwave frequency range is of both practical and fundamental importance. The weak signals corresponding to single microwave photons require substantial amplification to resolve. When probing quantum excitations of the electromagnetic field, the substantial noise produced by standard amplifiers dominates the signal, therefore, several averages must be accumulated to achieve even a modest signal-to-noise ratio. Even worse, the back-action on the system due to amplifier noise can hasten the decay of the quantum state. In recent years, low-noise microwave-frequency amplification has been advancing rapidly and one field that would benefit greatly from this is circuit quantum electrodynamics (cQED). The development of circuit quantum electrodynamics—which implements techniques of quantum optics at microwave frequencies—has led to revolutionary progress in the field of quantum information science. cQED employs quantum bits (qubits) and superconducting microwave resonators in place of the atoms and cavities used in quantum optics permitting preparation and control of low energy photon states in macroscopic superconducting circuits at millikelvin temperatures. We have developed a microstrip superconducting quantum interference device (SQUID) amplifier (MSA) to provide the first stage of amplification for these systems. Employing sub-micron Josephson tunnel junctions for enhanced gain, these MSAs operate at microwave frequencies and are optimized to perform with near quantum-limited noise characteristics. Our MSA is utilized as the first stage of amplification to probe the dynamics of a SQUID oscillator. The SQUID oscillator is a flux-tunable microwave resonator formed by a capacitively shunted dc SQUID. Josephson plasma oscillations are induced by pulsed microwave excitations at the resonant frequency of the oscillator. Once pulsed, decaying plasma oscillations are observed in the time domain. By measuring with pulse amplitudes
Silva, Arnaldo F.; Richter, Wagner E.; Bruns, Roy E.; Terrabuio, Luiz A.; Haiduke, Roberto L. A.
2014-02-28
The Quantum Theory of Atoms In Molecules/Charge-Charge Flux-Dipole Flux (QTAIM/CCFDF) model has been used to investigate the electronic structure variations associated with intensity changes on dimerization for the vibrations of the water and hydrogen fluoride dimers as well as in the water-hydrogen fluoride complex. QCISD/cc-pVTZ wave functions applied in the QTAIM/CCFDF model accurately provide the fundamental band intensities of water and its dimer predicting symmetric and antisymmetric stretching intensity increases for the donor unit of 159 and 47 km mol{sup −1} on H-bond formation compared with the experimental values of 141 and 53 km mol{sup −1}. The symmetric stretching of the proton donor water in the dimer has intensity contributions parallel and perpendicular to its C{sub 2v} axis. The largest calculated increase of 107 km mol{sup −1} is perpendicular to this axis and owes to equilibrium atomic charge displacements on vibration. Charge flux decreases occurring parallel and perpendicular to this axis result in 42 and 40 km mol{sup −1} total intensity increases for the symmetric and antisymmetric stretches, respectively. These decreases in charge flux result in intensity enhancements because of the interaction contributions to the intensities between charge flux and the other quantities. Even though dipole flux contributions are much smaller than the charge and charge flux ones in both monomer and dimer water they are important for calculating the total intensity values for their stretching vibrations since the charge-charge flux interaction term cancels the charge and charge flux contributions. The QTAIM/CCFDF hydrogen-bonded stretching intensity strengthening of 321 km mol{sup −1} on HF dimerization and 592 km mol{sup −1} on HF:H{sub 2}O complexation can essentially be explained by charge, charge flux and their interaction cross term. Atomic contributions to the intensities are also calculated. The bridge hydrogen atomic contributions alone
Simple pulses for universal quantum computation with a Heisenberg ABAB chain
NASA Astrophysics Data System (ADS)
Benjamin, Simon C.
2001-11-01
Recently, Levy has shown that quantum computation may be performed using an ABAB... chain of spin-1/2 systems with nearest-neighbor Heisenberg interactions. Levy notes that all necessary elementary computational ``gates'' may be achieved purely by manipulating the spin-spin interaction: he proposes using ``spin-resonance'' techniques involving modulating the interaction strength at high frequency. Here, we establish an alternative: it is possible to perform the elementary gates via simple, nonoscillatory switching of the interaction strength. This approach removes a time ``bottle neck'' in Levy's scheme, so that all elementary operations may now be performed within a time scale of order ħ/(EA-EB).
Kitahama, Yasutaka; Sakaguchi, Yoshio
2008-01-17
We investigated the quantum beats, the oscillation between singlet and triplet states of radical pairs induced by the microwave field resonant to one of the component radicals. They were observed as the alternation of the yields of the component radicals by a nanosecond time-resolved optical absorption with the X-band (9.15 GHz) resonant microwave pulse. This technique was applied to the photochemical reaction of benzophenone, benzophenone-d(10), and benzophenone-carbonyl-(13)C in a sodium dodecylsulfate micellar solution with a step-by-step increase of the resonant microwave pulse width. The yields of the component radicals showed alternation with an increase of the microwave pulse width. This indicates that the radical pair retains spin coherence in the micellar solution. The magnetic isotope effect on the amplitude of the quantum beat was observed. The MW effect on the quantum beat of BP-(13)C decreases from 80% to 60% of that of BP by irradiation of the pi-pulse MW due to spin-locking. The kinetic parameters were also determined using the X- or Ku-band (17.44 GHz) region. They are almost similar to each other except for the intersystem recombination rate in the system of BP-(13)C, which may be slightly higher than those in other systems.
Almost sudden perturbation of a quantum system with ultrashort electric pulses
Lugovskoy, Andrey; Bray, Igor
2008-02-15
We present an alternative approach to analyze atomic behavior when an external field perturbation is not sudden for a number of states of the field-free system. It is shown that the probability amplitudes for the system to be in these states can be accurately estimated from the closed set of their integral equations. Numerical examples for an electron in a one-dimensional Coulomb potential interacting with (i) laser and (ii) half-cycle pulses are provided. Comparison with exact calculations indicates the strength of the approach.
Measuring quantum coherence in bulk solids using dual phase-locked optical pulses
Hayashi, Shingo; Kato, Keigo; Norimatsu, Katsura; Hada, Masaki; Kayanuma, Yosuke; Nakamura, Kazutaka G.
2014-01-01
Electronic and phonon coherence are usually measured in different ways because their time-scales are very different. In this paper we simultaneously measure the electronic and phonon coherence using the interference of the electron-phonon correlated states induced by two phase-locked optical pulses. Interferometric visibility showed that electronic coherence remained in a semiconducting GaAs crystal until ~40 fs; in contrast, electronic coherence disappeared within 10 fs in a semimetallic Bi crystal at room temperature, differing substantially from the long damping time of its phonon coherence, in the picosecond range. PMID:24662682
Hyperfine Quantum Beat Spectroscopy of the Cs 8p level with Pulsed Pump-Probe Technique
NASA Astrophysics Data System (ADS)
Bayram, Burcin; Popov, Oleg; Kelly, Stephen; Boyle, Patrick; Salsman, Andrew
2013-05-01
Quantum beats arising from the hyperfine interaction were measured in a three-level excitation (lambda) scheme: pump for the 6s2S1 / 2 --> 8p2P3 / 2 and stimulated emission pump (probe) for the 8p2P3 / 2 --> 5d2D5 / 2 transitions of atomic cesium. In the technique, pump laser instantaneously excites the hot atomic vapor and creates anisotropy in the 8p2P3 / 2 level, and probe laser comes after some time delay. Delaying the probe time allows us to map out the motion of the polarized atoms like a stroboscope. According to the observed evolution of the hyperfine structure dependent parameters, e.g. alignment and atomic polarization, by delaying the arrival time of the stimulated emission pump laser (SEP), precise values of the magnetic dipole and electric quadrupole coefficients are obtained with an improved precision over previous results. The usefulness of the PUMP-SEP excitation scheme for the polarization hyperfine quantum beat measurements without complications from the Doppler effect will also be discussed. The financial support of the Research Corporation under the Grant number CC7133 and MiamiUniversity, College of the Arts and Sciences are acknowledged.
Theory of quantum transport in disordered systems driven by voltage pulse
NASA Astrophysics Data System (ADS)
Zhou, Chenyi; Chen, Xiaobin; Guo, Hong
2016-08-01
Predicting time-dependent quantum transport in the transient regime is important for understanding the intrinsic dynamic response of a nanodevice and for predicting the limit of how such a device can switch on or off a current. Theoretically, this problem becomes quite difficult to solve when the nanodevice contains disorder because the calculated transient current must be averaged over many disorder configurations. In this work, we present a theoretical formalism to calculate the configuration averaged time-dependent current flowing through a phase coherent device containing disorder sites where the transient current is driven by sharply turning on and off the external bias voltage. Our theory is based on the Keldysh nonequilibrium Green's function (NEGF) formalism and is applicable in the far from equilibrium nonlinear response quantum transport regime. The effects of disorder scattering are dealt with by the coherent potential approximation (CPA) extended in the time domain. We show that after approximations such as CPA and vertex corrections for calculating the multiple impurity scattering in the transient regime, the derived NEGFs perfectly satisfy a Ward identity. The theory is quantitatively verified by comparing its predictions to the exact solution for a tight-binding model of a disordered two-probe transport junction.
NASA Astrophysics Data System (ADS)
Maimistov, Andrei I.
1997-11-01
An analysis is made of the coherent interaction of a short pulse of polarised electromagnetic radiation with a medium in which the energy levels are degenerate in respect of the angular momentum projection. In the case of the ja = 1 → jb=0 transition it is found, without recourse to the approximation of slowly varying envelopes, that the system of the Maxwell-Bloch equations has an exact solution in the form of a steady-state solitary wave of duration equal to half the period of emission as a result of the investigated atomic transition. A new solution is obtained, in addition to a simple generalisation corresponding to a polarised video pulse. When the populations of the excited states with different projections of the angular momentum are different, the spherical components of the vector representing the electric field intensity do not behave proportionately: if one of them corresponds to a unipolar spike of the electric field, the other component is a variable-sign solitary wave.
NASA Astrophysics Data System (ADS)
Hashimura, Keisuke; Ishii, Katsunori; Awazu, Kunio
2015-03-01
Atherosclerotic plaques mainly consist of cholesteryl esters. Cholesteryl esters have an absorption peak at the wavelength of 5.75 μm originated from C=O stretching vibration mode of ester bond. Our group achieved making cutting difference between atherosclerotic lesions and normal vessels using a quantum cascade laser (QCL) in the 5.7 μm wavelength range. QCLs are relatively new types of semiconductor lasers that can emit mid-infrared range. They are sufficiently compact and have recently achieved their high-power emission. However, large thermal damage was observed because the QCL worked as a quasi-continuous wave laser due to its short pulse interval. To realize less invasive ablation by the QCL, reducing thermal effects to normal vessels is needed. In this study, we tried improving the thermal effects by changing the pulse structure. First, irradiation effects to rabbit atherosclerotic aortas by macro pulse irradiation (irradiation of pulses at intervals) and conventional continuous pulse irradiation were compared. The macro pulse width and the macro pulse interval were set to 0.54 and 12 ms, respectively, because the thermal relaxation time of rabbit normal and atherosclerotic aortas in the oscillation wavelength was 0.54-12 ms. As a result, ablation depth became longer and coagulation width became shorter by the macro pulse irradiation. In addition, cutting difference between rabbit normal and atherosclerotic aortas was observed by the macro pulse irradiation. Therefore, the macro pulse irradiation achieved the improvement of thermal effects by the QCL in the 5.7 μm wavelength range. The QCL has the potential of realizing less-invasive laser angioplasty.
NASA Astrophysics Data System (ADS)
Tokitani, Masayuki; Yoshida, Naoaki; Tokunaga, Kazutoshi; Sakakita, Hajime; Kiyama, Satoru; Koguchi, Haruhisa; Hirano, Yoichi; Masuzaki, Suguru
The neutral beam injection facility in the National Institute of Advanced Industrial Science and Technology was used to irradiate a polycrystalline tungsten specimen with high energy and high flux helium and hydrogen particles. The incidence energy and flux of the beam shot were 25 keV and 8.8 × 1022 particles/m2 s, respectively. The duration of each shot was approximately 30 ms, with 6 min intervals between each shot. Surface temperatures over 1800 K were attained. In the two cases of helium irradiation, total fluence of either 1.5 × 1022 He/m2 or 4.0 × 1022 He/m2 was selected. In the former case, large sized blisters with diameter of 500 nm were densely observed. While, the latter case, the blisters were disappeared and fine nanobranch structures appeared instead. Cross-sectional observations using a transmission electron microscope (TEM) with the focused ion beam (FIB) technique were performed. According to the TEM image, after irradiation with a beam shot of total fluence 4.0 × 1022 He/m2 , there were very dense fine helium bubbles in the tungsten of sizes 1-50 nm. As the helium bubbles grew the density of the tungsten matrix drastically decreased as a result of void swelling. These effects were not seen in hydrogen irradiation case.
Tracing explosive in solvent using quantum cascade laser with pulsed electric discharge system
Park, Seong-Wook; Tian, Chao; Martini, Rainer; Chen, Gang; Chen, I-chun Anderson
2014-11-03
We demonstrated highly sensitive detection of explosive dissolved in solvent with a portable spectroscopy system (Q-MACS) by tracing the explosive byproduct, N{sub 2}O, in combination with a pulsed electric discharge system for safe explosive decomposition. Using Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), the gas was monitored and analyzed by Q-MACS and the presence of the dissolved explosive clearly detected. While HMX presence could be identified directly in the air above the solutions even without plasma, much better results were achieved under the decomposition. The experiment results give an estimated detection limit of 10 ppb, which corresponds to a 15 pg of HMX.
Laser absorption via quantum electrodynamics cascades in counter propagating laser pulses
NASA Astrophysics Data System (ADS)
Grismayer, T.; Vranic, M.; Martins, J. L.; Fonseca, R. A.; Silva, L. O.
2016-05-01
A model for laser light absorption in electron-positron plasmas self-consistently created via QED cascades is described. The laser energy is mainly absorbed due to hard photon emission via nonlinear Compton scattering. The degree of absorption depends on the laser intensity and the pulse duration. The QED cascades are studied with multi-dimensional particle-in-cell simulations complemented by a QED module and a macro-particle merging algorithm that allows to handle the exponential growth of the number of particles. Results range from moderate-intensity regimes ( ˜ 10 PW ) where the laser absorption is negligible to extreme intensities ( > 100 PW ) where the degree of absorption reaches 80%. Our study demonstrates good agreement between the analytical model and simulations. The expected properties of the hard photon emission and the generated pair-plasma are investigated, and the experimental signatures for near-future laser facilities are discussed.
Tracing explosive in solvent using quantum cascade laser with pulsed electric discharge system
NASA Astrophysics Data System (ADS)
Park, Seong-Wook; Chen, Gang; Chen, I.-chun Anderson; Tian, Chao; Martini, Rainer
2014-11-01
We demonstrated highly sensitive detection of explosive dissolved in solvent with a portable spectroscopy system (Q-MACS) by tracing the explosive byproduct, N2O, in combination with a pulsed electric discharge system for safe explosive decomposition. Using Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), the gas was monitored and analyzed by Q-MACS and the presence of the dissolved explosive clearly detected. While HMX presence could be identified directly in the air above the solutions even without plasma, much better results were achieved under the decomposition. The experiment results give an estimated detection limit of 10 ppb, which corresponds to a 15 pg of HMX.
Ingrisch, Johannes; Biermann, Tobias; Seeber, Elke; Leipold, Thomas; Li, Maoshan; Ma, Yaoming; Xu, Xingliang; Miehe, Georg; Guggenberger, Georg; Foken, Thomas; Kuzyakov, Yakov
2015-02-01
The Tibetan highlands host the largest alpine grassland ecosystems worldwide, bearing soils that store substantial stocks of carbon (C) that are very sensitive to land use changes. This study focuses on the cycling of photoassimilated C within a Kobresia pygmaea pasture, the dominating ecosystems on the Tibetan highlands. We investigated short-term effects of grazing cessation and the role of the characteristic Kobresia root turf on C fluxes and belowground C turnover. By combining eddy-covariance measurements with (13)CO₂ pulse labeling we applied a powerful new approach to measure absolute fluxes of assimilates within and between various pools of the plant-soil-atmosphere system. The roots and soil each store roughly 50% of the overall C in the system (76 Mg C ha(-1)), with only a minor contribution from shoots, which is also expressed in the root:shoot ratio of 90. During June and July the pasture acted as a weak C sink with a strong uptake of approximately 2 g C m(-2) d(-1) in the first half of July. The root turf was the main compartment for the turnover of photoassimilates, with a subset of highly dynamic roots (mean residence time 20 days), and plays a key role for the C cycling and C storage in this ecosystem. The short-term grazing cessation only affected aboveground biomass but not ecosystem scale C exchange or assimilate allocation into roots and soil. PMID:25461119
NASA Astrophysics Data System (ADS)
Zhang, Feng; Ikeda, Masao; Zhou, Kun; Liu, Zongshun; Liu, Jianping; Zhang, Shuming; Yang, Hui
2015-07-01
Injection current dependences of electroluminescence transition energy in blue InGaN/GaN multiple quantum wells light emitting diodes (LEDs) with different quantum barrier thicknesses under pulsed current conditions have been analyzed taking into account the related effects including deformation caused by lattice strain, quantum confined Stark effects due to polarization field partly screened by carriers, band gap renormalization, Stokes-like shift due to compositional fluctuations which are supposed to be random alloy fluctuations in the sub-nanometer scale, band filling effect (Burstein-Moss shift), and quantum levels in finite triangular wells. The bandgap renormalization and band filling effect occurring at high concentrations oppose one another, however, the renormalization effect dominates in the concentration range studied, since the band filling effect arising from the filling in the tail states in the valence band of quantum wells is much smaller than the case in the bulk materials. In order to correlate the carrier densities with current densities, the nonradiative recombination rates were deduced experimentally by curve-fitting to the external quantum efficiencies. The transition energies in LEDs both with 15 nm quantum barriers and 5 nm quantum barriers, calculated using full strengths of theoretical macroscopic polarization given by Barnardini and Fiorentini [Phys. Status Solidi B 216, 391 (1999)] are in excellent accordance with experimental results. The LED with 5 nm barriers has been shown to exhibit a higher transition energy and a smaller blue shift than those of LED with 15 nm barriers, which is mainly caused by the smaller internal polarization field in the quantum wells.
Zhang, Feng; Ikeda, Masao Liu, Jianping; Zhang, Shuming; Zhou, Kun; Yang, Hui; Liu, Zongshun
2015-07-21
Injection current dependences of electroluminescence transition energy in blue InGaN/GaN multiple quantum wells light emitting diodes (LEDs) with different quantum barrier thicknesses under pulsed current conditions have been analyzed taking into account the related effects including deformation caused by lattice strain, quantum confined Stark effects due to polarization field partly screened by carriers, band gap renormalization, Stokes-like shift due to compositional fluctuations which are supposed to be random alloy fluctuations in the sub-nanometer scale, band filling effect (Burstein-Moss shift), and quantum levels in finite triangular wells. The bandgap renormalization and band filling effect occurring at high concentrations oppose one another, however, the renormalization effect dominates in the concentration range studied, since the band filling effect arising from the filling in the tail states in the valence band of quantum wells is much smaller than the case in the bulk materials. In order to correlate the carrier densities with current densities, the nonradiative recombination rates were deduced experimentally by curve-fitting to the external quantum efficiencies. The transition energies in LEDs both with 15 nm quantum barriers and 5 nm quantum barriers, calculated using full strengths of theoretical macroscopic polarization given by Barnardini and Fiorentini [Phys. Status Solidi B 216, 391 (1999)] are in excellent accordance with experimental results. The LED with 5 nm barriers has been shown to exhibit a higher transition energy and a smaller blue shift than those of LED with 15 nm barriers, which is mainly caused by the smaller internal polarization field in the quantum wells.
Tapered pulse tube for pulse tube refrigerators
Swift, Gregory W.; Olson, Jeffrey R.
1999-01-01
Thermal insulation of the pulse tube in a pulse-tube refrigerator is maintained by optimally varying the radius of the pulse tube to suppress convective heat loss from mass flux streaming in the pulse tube. A simple cone with an optimum taper angle will often provide sufficient improvement. Alternatively, the pulse tube radius r as a function of axial position x can be shaped with r(x) such that streaming is optimally suppressed at each x.
NASA Astrophysics Data System (ADS)
Jin, Bin Bin; Wang, Ye Feng; Wang, Xue Qing; Zeng, Jing Hui
2016-04-01
Lead selenide (PbSe) thin films were deposited on fluorine doped tin oxide (FTO) glass by a facile one-step pulse voltage electrodeposition method, and used as counter electrode (CE) in CdS/CdSe quantum dot-sensitized solar cells (QDSSCs). A power conversion efficiency of 4.67% is received for the CdS/CdSe co-sensitized solar cells, which is much better than that of 2.39% received using Pt CEs. The enhanced performance is attributed to the extended absorption in the near infrared region, superior electrocatalytic activity and p-type conductivity with a reflection of the incident light at the back electrode in addition. The physical and chemical properties were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDS), reflectance spectra, electrochemical impedance spectroscopy (EIS) and Tafel polarization measurements. The present work provides a facile pathway to an efficient CE in the QDSSCs.
NASA Astrophysics Data System (ADS)
Pan, D.; Benedict, K. B.; Ham, J. M.; Prenni, A. J.; Schichtel, B. A.; Collett, J. L., Jr.; Zondlo, M. A.
2015-12-01
NH3 is an important component of the bio-atmospheric N cycle with implications for regional air quality, human and ecosystem health degradation, and global climate change. However, measuring NH3 flux is challenging, requiring a sensor with high sensitivity (sub-ppbv), fast response time and the capability to account for NH3 adsorption effects. In this study, we address these issues with an open-path quantum-cascade-based sensor for eddy covariance (EC) measurements. Previously, our EC NH3 sensor was deployed over a feedlot in Colorado in 2013 and 2014, and the results showed the potential of the sensor to measure NH3 emissions from agricultural sources. In the summer of 2015, the sensor was installed at a remote monitoring site in Rocky Mountain National Park to measure NH3 flux over a natural grass land. During the deployment, the precision of the sensor was about 0.15 ppbv at 10 Hz, and the detection limit of the flux was estimated to be 0.7±0.5 ng NH3/s/m2. The cospectra of the NH3 flux closely resembled those of CO2 flux and sensible heat flux measured by a LI-7500 CO2 analyzer and a CSAT3 sonic anemometer. The ogive analyses indicated that the loss of NH3 fluxes due to various damping effects was about 15%. Examining initial results from a few days of measurement, the measured NH3 fluxes appear to have a strong diurnal pattern with local emissions during afternoon, a pattern not previously reported for remote grass land. The pattern is consistent with background NH3 concentration measured by PICARRO NH3 analyzer, although summertime afternoon concentration increases at the site have previously been associated with upslope transport from urban and agricultural regions to the east. The results demonstrate the sensor's capability to measure NH3 flux in low NH3 conditions and also show that more measurements are needed to investigate spatial and temporal variability of NH3 flux.
Spadaro, J A; Bergstrom, W H
2002-06-01
Although PEMF's have been found to promote fracture healing and to modulate the activity of bone cells in vitro, effects on bone metabolism are largely unexplored. A bioassay using neonatal rat calvarial bone was used to determine the early effects of a pulsing electromagnetic field (PEMF) exposure in vivo and in vitro on bone metabolic calcium exchange. Bone discs taken from whole body exposed animals (0-4 hours) show a log exposure time-dependent average increase in net Ca uptake in the 0-50% range (r2 = 0.83). This increase could be detected immediately after exposure and also after 24 hours, but not 48 hours later. Animals given whole body PEMF exposure also showed a decrease in serum calcium and did not elevate serum Ca after administration of exogenous parathyroid hormone (PTH). Bone discs from untreated rats, exposed to PEMF for 15 minutes in vitro and then assayed, showed net Ca uptake increases of a similar magnitude and also were refractory to the Ca-releasing effect of PTH. Unexposed discs responded normally to PTH by decreasing net Ca uptake. Treatment of calvarial discs with calcitonin or acetazolamide, both of which inactivate osteoclasts, made the bone refractory to further increases in Ca uptake by PEMF. These results suggest that PEMF exposure produces PTH-refractory osteoclastics and has a relatively rapid effect on increasing net bone Ca uptake, putatively due to a decrease in PTH/paracrine-mediated bone resorption. PMID:11976773
Mappé, I; Joly, L; Durry, G; Thomas, X; Decarpenterie, T; Cousin, J; Dumelie, N; Roth, E; Chakir, A; Grillon, P G
2013-02-01
This paper describes a Quantum Cascade Laser Absorption Spectrometer, called "QCLAS" that was developed to monitor in situ greenhouse gases like N2O and CH4, at high temporal resolution and with a high accuracy. The design of the laser sensor is reported as well as its performances in terms of precision error and field deployment capabilities. Finally, to demonstrate the efficiency and the robustness of QCLAS and its suitability for gas emission monitoring and for the determination of fluxes, we report the results from a field campaign, that took place in the Wallis and Futuna Islands in 2011, to investigate the impact of environmental intensive pig farming.
Nagler, P.L.; Glenn, E.P.; Kim, H.; Emmerich, W.; Scott, R.L.; Huxman, T. E.; Huete, A.R.
2007-01-01
We used moisture Bowen ratio flux tower data and the enhanced vegetation index (EVI) from the moderate resolution imaging spectrometer (MODIS) on the Terra satellite to measure and scale evapotranspiration (ET) over sparsely vegetated grassland and shrubland sites in a semiarid watershed in southeastern Arizona from 2000 to 2004. The grassland tower site had higher mean annual ET (336 mm yr-1) than the shrubland tower site (266 mm yr-1) (P<0.001). ET measured at the individual tower sites was strongly correlated with EVI (r=0.80-0.94). ET was moderately correlated with precipitation (P), and only weakly correlated with net radiation or air temperature. The strong correlation between ET and EVI, as opposed to the moderate correlation with rainfall, suggests that transpiration (T) is the dominant process controlling ET at these sites. ET could be adequately predicted from EVI and P across seasons and tower sites (r2 = 0.74) by a single multiple regression equation. The regression equation relating ET to EVI and P was used to scale ET over 25 km2 areas of grassland and shrubland around each tower site. Over the study, ratios of T to ET ranged from 0.75 to 1.0. Winter rains stimulated spring ET, and a large rain event in fall, 2000, stimulated ET above T through the following year, indicating that winter rain stored in the soil profile can be an important component of the plants' water budget during the warm season in this ecosystem. We conclude that remotely sensed vegetation indices can be used to scale ground measurements of ET over larger landscape units in semiarid ranglelands, and that the vegetation communities in this landscape effectively harvest the available precipitation over a period of years, even though precipitation patterns are variably seasonally and interannually. ?? 2007 Elsevier Ltd. All rights reserved.
High-peak-power pulsed operation of 2.0 μm (AlGaIn)(AsSb) quantum-well ridge waveguide diode lasers
NASA Astrophysics Data System (ADS)
Eichhorn, M.; Rattunde, M.; Schmitz, J.; Kaufel, G.; Wagner, J.
2006-03-01
We have characterized 2.0 μm (aluminium-gallium-indium)(arsenide-antimonide) quantum-well diode lasers in pulsed operation (20-60 ns). A peak power of 1.25 W could be achieved. The near-field distribution on the output facet and the spectral output have been analyzed. Single transverse mode operation can only be maintained at low pulse currents. Above a certain current limit higher order modes occur and fluctuations between these modes have been resolved on a 10 ns time scale. The threshold for thermal and optical damage was investigated for ridge waveguide widths of 6, 8, and 16 μm. No systematic damage threshold could be determined up to current densities as high as 200 kA/cm2.
Ka, Ibrahima; Le Borgne, Vincent; Fujisawa, Kazunori; Hayashi, Takuya; Kim, Yoong Ahm; Endo, Morinobu; Ma, Dongling; El Khakani, My Ali
2016-01-01
The pulsed laser deposition method was used to decorate appropriately single wall carbon nanotubes (SWCNTs) with PbS quantum dots (QDs), leading to the formation of a novel class of SWCNTs/PbS-QDs nanohybrids (NHs), without resorting to any ligand engineering and/or surface functionalization. The number of laser ablation pulses (NLp) was used to control the average size of the PbS-QDs and their coverage on the SWCNTs’ surface. Photoconductive (PC) devices fabricated from these SWCNTs/PbS-QDs NHs have shown a significantly enhanced photoresponse, which is found to be PbS-QD size dependent. Wavelength-resolved photocurrent measurements revealed a strong photoconductivity of the NHs in the UV-visible region, which is shown to be due to multiple exciton generation (MEG) in the PbS-QDs. For the 6.5 nm-diameter PbS-QDs (with a bandgap (Eg) = 0.86 eV), the MEG contribution of the NHs based PC devices was shown to lead to a normalized internal quantum efficiency in excess of 300% for photon energies ≥4.5Eg. While the lowest MEG threshold in our NHs based PC devices is found to be of ~2.5Eg, the MEG efficiency reaches values as high as 0.9 ± 0.1. PMID:26830452
NASA Astrophysics Data System (ADS)
Ka, Ibrahima; Le Borgne, Vincent; Fujisawa, Kazunori; Hayashi, Takuya; Kim, Yoong Ahm; Endo, Morinobu; Ma, Dongling; El Khakani, My Ali
2016-02-01
The pulsed laser deposition method was used to decorate appropriately single wall carbon nanotubes (SWCNTs) with PbS quantum dots (QDs), leading to the formation of a novel class of SWCNTs/PbS-QDs nanohybrids (NHs), without resorting to any ligand engineering and/or surface functionalization. The number of laser ablation pulses (NLp) was used to control the average size of the PbS-QDs and their coverage on the SWCNTs’ surface. Photoconductive (PC) devices fabricated from these SWCNTs/PbS-QDs NHs have shown a significantly enhanced photoresponse, which is found to be PbS-QD size dependent. Wavelength-resolved photocurrent measurements revealed a strong photoconductivity of the NHs in the UV-visible region, which is shown to be due to multiple exciton generation (MEG) in the PbS-QDs. For the 6.5 nm-diameter PbS-QDs (with a bandgap (Eg) = 0.86 eV), the MEG contribution of the NHs based PC devices was shown to lead to a normalized internal quantum efficiency in excess of 300% for photon energies ≥4.5Eg. While the lowest MEG threshold in our NHs based PC devices is found to be of ~2.5Eg, the MEG efficiency reaches values as high as 0.9 ± 0.1.
NASA Astrophysics Data System (ADS)
Barth, Ingo; Manz, Jörn
Circularly polarized re-optimized π laser pulses may induce electronic and/or nuclear ring currents in model systems, from one-electron atomic ions till molecules which should have three-, four-, or higher-fold axes of rotations or reflection-rotations, in order to support doubly or more degenerate, complex-valued eigenstates which support these ring currents. The ring currents in turn induce magnetic fields. The effects are about two orders of magnitude larger than for traditional ring currents which are induced by external magnetic fields. Moreover, the laser pulses allow to control the strengths and shapes of the ring currents and, therefore, also the induced magnetic fields. We present a survey of the development of the field, together with new quantum simulations which document ultrafast switchings of magnetic fields. We discuss various criteria such as strong ring currents with small radii, in order to generate huge magnetic fields, approaching 1,000T, in accord with the Biot-Savart law. Moreover, we consider various methods for monitoring the fields, and for applications, in particular ultrafast deflections of neutrons by means of quantum switching of the ring currents and induced magnetic fields.
Ka, Ibrahima; Le Borgne, Vincent; Fujisawa, Kazunori; Hayashi, Takuya; Kim, Yoong Ahm; Endo, Morinobu; Ma, Dongling; El Khakani, My Ali
2016-01-01
The pulsed laser deposition method was used to decorate appropriately single wall carbon nanotubes (SWCNTs) with PbS quantum dots (QDs), leading to the formation of a novel class of SWCNTs/PbS-QDs nanohybrids (NHs), without resorting to any ligand engineering and/or surface functionalization. The number of laser ablation pulses (NLp) was used to control the average size of the PbS-QDs and their coverage on the SWCNTs' surface. Photoconductive (PC) devices fabricated from these SWCNTs/PbS-QDs NHs have shown a significantly enhanced photoresponse, which is found to be PbS-QD size dependent. Wavelength-resolved photocurrent measurements revealed a strong photoconductivity of the NHs in the UV-visible region, which is shown to be due to multiple exciton generation (MEG) in the PbS-QDs. For the 6.5 nm-diameter PbS-QDs (with a bandgap (Eg) = 0.86 eV), the MEG contribution of the NHs based PC devices was shown to lead to a normalized internal quantum efficiency in excess of 300% for photon energies ≥4.5Eg. While the lowest MEG threshold in our NHs based PC devices is found to be of ~2.5Eg, the MEG efficiency reaches values as high as 0.9 ± 0.1. PMID:26830452
NASA Astrophysics Data System (ADS)
Sadeghi, S. M.; Wing, W. J.; Gutha, R. R.
2015-08-01
We study irreversible ultrafast dynamics caused by interaction of a semiconductor quantum-dot-metallic-nanorod system with an infrared laser field. We show that when this system supports exciton-plasmon coupling, by just varying the amplitude of this laser for a short period of time (several nanoseconds), one can decide the instance when the plasmon field of the nanorod becomes significant and its duration. This is done by showing that a sudden rise in the amplitude of the infrared laser (positive pulse) can induce irreversible transition from one of the collective molecular states of this system to another, making the plasmon field significant. When this amplitude reduces for a short period of time (negative pulse), the system returns back to its initial state, suppressing this field. We provide a detailed description of how, depending on the location, the infrared-induced dynamics can lend itself to different time-dependent plasmon fields around the nanorod. Our results show that at a given moment of time at each location we can have dramatically different types of dynamics for the phase and amplitude of the plasmon field. Using these we show that a quantum-dot-metallic-nanoparticle system can act as an all-optical and logic gate.
Duxbury, Geoffrey; Kelly, James F; Blake, Thomas A; Langford, Nigel
2012-05-01
Using a low power, rapid (nsec) pulse-modulated quantum cascade (QC) laser, collective coherent effects in the 5 μm spectrum of nitric oxide have been demonstrated by the observation of sub-Doppler hyperfine splitting and also Autler-Townes splitting of Doppler broadened lines. For nitrous oxide, experiments and model calculations have demonstrated that two main effects occur with pulse-modulated (chirped) quantum cascade lasers: free induction decay signals, and signals induced by rapid passage during the laser chirp. In the open shell molecule, NO, in which both Λ-doubling splitting and hyperfine structure occur, laser field-induced coupling between the hyperfine levels of the two Λ-doublet components can induce a large ac Stark effect. This may be observed as sub-Doppler structure, field-induced splittings, or Autler-Townes splitting of a Doppler broadened line. These represent an extension of the types of behaviour observed in the closed shell molecule nitrous oxide, using the same apparatus, when probed with an 8 μm QC laser.
Garcia, A.; Mateo, C. M.; Defensor, M.; Salvador, A.; Hui, H. K.; Boothroyd, C. B.; Philpott, E.
2007-10-01
We report the effects of variations in As{sub 4} growth flux on the evolution of molecular beam epitaxy grown InAs quantum dots (QDs) and their structures and optical properties. For InAs QDs grown under As-stable conditions, evaluated through photoluminescence and atomic force microscopy (AFM) measurements, it is evident that QD size increases with As{sub 4} pressure along with improvement in size uniformity. Furthermore, transmission electron microscopy measurements for InAs layers of critical thicknesses ({approx}1.7 ML) showed decreasing QD density with increasing As{sub 4} pressure accompanied by a strong reduction in photoluminescence (PL) integral intensity. These show that high As{sub 4} fluxes suppress InAs QD formation while the decreasing PL intensity seems to indicate cluster formation that features nonradiative recombination. AFM measurements show larger and denser QDs for samples grown at higher As{sub 4} pressures. These are explained on the basis of adatom condensation during surface cooling and the influence of As{sub 4} pressure on indium incorporation.
Magnetic reversal dynamics of a quantum system on a picosecond timescale
Kuznetsov, Alexey V; Soloviev, Igor I; Bakurskiy, Sergey V; Tikhonova, Olga V
2015-01-01
Summary We present our approach for a consistent, fully quantum mechanical description of the magnetization reversal process in natural and artificial atomic systems by means of short magnetic pulses. In terms of the simplest model of a two-level system with a magnetic moment, we analyze the possibility of a fast magnetization reversal on the picosecond timescale induced by oscillating or short unipolar magnetic pulses. We demonstrate the possibility of selective magnetization reversal of a superconducting flux qubit using a single flux quantum-based pulse and suggest a promising, rapid Λ-scheme for resonant implementation of this process. In addition, the magnetization reversal treatment is fulfilled within the framework of the macroscopic theory of the magnetic moment, which allows for the comparison and explanation of the quantum and classical behavior. PMID:26665066
Magnetic reversal dynamics of a quantum system on a picosecond timescale.
Klenov, Nikolay V; Kuznetsov, Alexey V; Soloviev, Igor I; Bakurskiy, Sergey V; Tikhonova, Olga V
2015-01-01
We present our approach for a consistent, fully quantum mechanical description of the magnetization reversal process in natural and artificial atomic systems by means of short magnetic pulses. In terms of the simplest model of a two-level system with a magnetic moment, we analyze the possibility of a fast magnetization reversal on the picosecond timescale induced by oscillating or short unipolar magnetic pulses. We demonstrate the possibility of selective magnetization reversal of a superconducting flux qubit using a single flux quantum-based pulse and suggest a promising, rapid Λ-scheme for resonant implementation of this process. In addition, the magnetization reversal treatment is fulfilled within the framework of the macroscopic theory of the magnetic moment, which allows for the comparison and explanation of the quantum and classical behavior. PMID:26665066
Electronic and nuclear flux densities in the H2 molecule
NASA Astrophysics Data System (ADS)
Hermann, G.; Paulus, B.; Pérez-Torres, J. F.; Pohl, V.
2014-05-01
We present a theoretical study of the electronic and nuclear flux densities of a vibrating H2 molecule after an electronic excitation by a short femtosecond laser pulse. The final state, a coherent superposition of the electronic ground state X1Σg+ and the electronic excited state B1Σu+, evolves freely and permits the partition of the electronic flux density into two competing fluxes: the adiabatic and the transition flux density. The nature of the two fluxes allows us to identify two alternating dynamics of the electronic motion, occurring on the attosecond and the femtosecond time scales. In contradistinction to the adiabatic electronic flux density, the transition electronic flux density shows a dependence on the carrier-envelope phase of the laser field, encoding information of the interaction of the electrons with the electric field. Furthermore, the nuclear flux density displays multiple reversals, a quantum effect recently discovered by Manz et al. [J. Manz, J. F. Pérez-Torres, and Y. Yang, Phys. Rev. Lett. 111, 153004 (2013), 10.1103/PhysRevLett.111.153004], calling for investigation of the electronic flux density.
NASA Astrophysics Data System (ADS)
Kakuyanagi, Kosuke; Matsuzaki, Yuichiro; Baba, Tatsuya; Nakano, Hayato; Saito, Shiro; Semba, Kouichi
2016-10-01
Quantum measurements play a central role in quantum information processing. Understanding the mechanism of the quantum measurements is essential to both improve the visibility of the readout and decrease the projection error during measurement. Here, we describe and demonstrate an experimental protocol for quantifying a measurement backaction when we readout a superconducting flux qubit using a Josephson bifurcation amplifier. The coupling with the Josephson bifurcation amplifier induces a dephasing on the flux qubit during the readout. We have succeeded in estimating and controlling the strength of such a measurement-induced dephasing by changing the pulse height of the microwave driving. Our results are crucial for designing a suitable quantum readout technique for the realization of practical quantum devices.
NASA Astrophysics Data System (ADS)
Korol'kova, N. V.; Chirkin, Anatolii S.
1998-04-01
An analysis is made of the phase—photon-number uncertainty relation for multimode electromagnetic fields (wave packets). It is shown that the variance of fluctuations of the investigated quantities depends strongly on the relation between the pulse duration τp and the recording time T. If T ≪ τp , the uncertainty relation is similar to that applicable to a single mode, and the phase and photon number variances follow adiabatically the changes in the pulse envelope.
Scott, A.C.
1982-01-01
Some recent experimental and theoretical results on mechanisms through which individual nerve pulses can interact are reviewed. Three modes of interactions are considered: (1) interaction of pulses as they travel along a single fiber which leads to velocity dispersion; (2) propagation of pairs of pulses through a branching region leading to quantum pulse code transformations; and (3) interaction of pulses on parallel fibers through which they may form a pulse assembly. This notion is analogous to Hebb's concept of a cell assembly, but on a lower level of the neural hierarchy.
Xu, Ben; Milošević, M V; Lin, Shi-Hsin; Peeters, F M; Jankó, B
2011-07-29
Because of strong flux confinement in mesoscopic superconductors, a "giant" vortex may appear in the ground state of the system in an applied magnetic field. This multiquanta vortex can then split into individual vortices (and vice versa) as a function of, e.g., applied current, magnetic field, or temperature. Here we show that such transitions can be identified by calorimetry, as the formation or splitting of a giant vortex results in a clear jump in measured heat capacity versus external drive. We attribute this phenomenon to an abrupt change in the density of states of the quasiparticle excitations in the vortex core(s), and further link it to a sharp change of the magnetic susceptibility at the transition--proving that the formation of a giant vortex can also be detected by magnetometry. PMID:21867091
Weber, Christoph; Drzewietzki, Lukas; Rossetti, Mattia; Xu, Tianhong; Bardella, Paolo; Simos, Hercules; Mesaritakis, Charis; Ruiz, Mike; Krestnikov, Igor; Livshits, Daniil; Krakowski, Michel; Syvridis, Dimitris; Montrosset, Ivo; Rafailov, Edik U; Elsäßer, Wolfgang; Breuer, Stefan
2015-02-01
We experimentally study the generation and amplification of stable picosecond-short optical pulses by a master oscillator power-amplifier configuration consisting of a monolithic quantum-dot-based gain-guided tapered laser and amplifier emitting at 1.26 µm without pulse compression, external cavity, gain- or Q-switched operation. We report a peak power of 42 W and a figure-of-merit for second-order nonlinear imaging of 38.5 W2 at a repetition rate of 16 GHz and an associated pulse width of 1.37 ps. PMID:25680056
Grills, D.C.; Cook, A.R.; Fujita, E.; George, M.W.; Miller, J.R.; Preses, J.M.; Wishart, J.F.
2010-06-01
Pulse radiolysis, utilizing short pulses of high-energy electrons from accelerators, is a powerful method for rapidly generating reduced or oxidized species and other free radicals in solution. Combined with fast time-resolved spectroscopic detection (typically in the ultraviolet/visible/near-infrared), it is invaluable for monitoring the reactivity of species subjected to radiolysis on timescales ranging from picoseconds to seconds. However, it is often difficult to identify the transient intermediates definitively due to a lack of structural information in the spectral bands. Time-resolved vibrational spectroscopy offers the structural specificity necessary for mechanistic investigations but has received only limited application in pulse radiolysis experiments. For example, time-resolved infrared (TRIR) spectroscopy has only been applied to a handful of gas-phase studies, limited mainly by several technical challenges. We have exploited recent developments in commercial external-cavity quantum cascade laser (EC-QCL) technology to construct a nanosecond TRIR apparatus that has allowed, for the first time, TRIR spectra to be recorded following pulse radiolysis of condensed-phase samples. Near single-shot sensitivity of DeltaOD <1 x 10(-3) has been achieved, with a response time of <20 ns. Using two continuous-wave EC-QCLs, the current apparatus covers a probe region from 1890-2084 cm(-1), and TRIR spectra are acquired on a point-by-point basis by recording transient absorption decay traces at specific IR wavelengths and combining these to generate spectral time slices. The utility of the apparatus has been demonstrated by monitoring the formation and decay of the one-electron reduced form of the CO(2) reduction catalyst, [Re(I)(bpy)(CO)(3)(CH(3)CN)](+), in acetonitrile with nanosecond time resolution following pulse radiolysis. Characteristic red-shifting of the nu(CO) IR bands confirmed that one-electron reduction of the complex took place. The availability of
Grills, David C; Cook, Andrew R; Fujita, Etsuko; George, Michael W; Preses, Jack M; Wishart, James F
2010-06-01
Pulse radiolysis, utilizing short pulses of high-energy electrons from accelerators, is a powerful method for rapidly generating reduced or oxidized species and other free radicals in solution. Combined with fast time-resolved spectroscopic detection (typically in the ultraviolet/visible/near-infrared), it is invaluable for monitoring the reactivity of species subjected to radiolysis on timescales ranging from picoseconds to seconds. However, it is often difficult to identify the transient intermediates definitively due to a lack of structural information in the spectral bands. Time-resolved vibrational spectroscopy offers the structural specificity necessary for mechanistic investigations but has received only limited application in pulse radiolysis experiments. For example, time-resolved infrared (TRIR) spectroscopy has only been applied to a handful of gas-phase studies, limited mainly by several technical challenges. We have exploited recent developments in commercial external-cavity quantum cascade laser (EC-QCL) technology to construct a nanosecond TRIR apparatus that has allowed, for the first time, TRIR spectra to be recorded following pulse radiolysis of condensed-phase samples. Near single-shot sensitivity of DeltaOD <1 x 10(-3) has been achieved, with a response time of <20 ns. Using two continuous-wave EC-QCLs, the current apparatus covers a probe region from 1890-2084 cm(-1), and TRIR spectra are acquired on a point-by-point basis by recording transient absorption decay traces at specific IR wavelengths and combining these to generate spectral time slices. The utility of the apparatus has been demonstrated by monitoring the formation and decay of the one-electron reduced form of the CO(2) reduction catalyst, [Re(I)(bpy)(CO)(3)(CH(3)CN)](+), in acetonitrile with nanosecond time resolution following pulse radiolysis. Characteristic red-shifting of the nu(CO) IR bands confirmed that one-electron reduction of the complex took place. The availability of
Sheu, Yae-lin; Hsu, Liang-Yan; Wu, Hau-tieng; Li, Peng-Cheng; Chu, Shih-I
2014-11-15
This study introduces a new adaptive time-frequency (TF) analysis technique, the synchrosqueezing transform (SST), to explore the dynamics of a laser-driven hydrogen atom at an ab initio level, upon which we have demonstrated its versatility as a new viable venue for further exploring quantum dynamics. For a signal composed of oscillatory components which can be characterized by instantaneous frequency, the SST enables rendering the decomposed signal based on the phase information inherited in the linear TF representation with mathematical support. Compared with the classical type of TF methods, the SST clearly depicts several intrinsic quantum dynamical processes such as selection rules, AC Stark effects, and high harmonic generation.
NASA Astrophysics Data System (ADS)
Raghunathan, R.; Mee, J. K.; Crowley, M. T.; Grillot, F.; Kovanis, V.; Lester, L. F.
2013-03-01
A nonlinear delay differential equation model for passive mode-locking in semiconductor lasers, seeded with parameters extracted from the gain and loss spectra of a quantum dot laser, is employed to simulate and study the dynamical regimes of mode-locked operation of the device. The model parameter ranges corresponding to these regimes are then mapped to externally-controllable parameters such as gain current and absorber bias voltage. Using this approach, a map indicating the approximate regions corresponding to fundamental and harmonically mode locked operation is constructed as a function of gain current and absorber bias voltage. This is shown to be a highly useful method of getting a sense of the highest repetition rates achievable in principle with a simple, two-section device, and provides a guideline toward achieving higher repetition rates by simply adjusting external biasing conditions instantaneously while the device is in operation, as opposed to re-engineering the device with additional passive or saturable absorber sections. The general approach could potentially aid the development of numerical modeling techniques aimed at providing a systematic guideline geared toward developing microwave and RF photonic sources for THz applications.
Ananyev, Gennady; Gates, Colin; Dismukes, G Charles
2016-09-01
We have measured flash-induced oxygen quantum yields (O2-QYs) and primary charge separation (Chl variable fluorescence yield, Fv/Fm) in vivo among phylogenetically diverse microalgae and cyanobacteria. Higher O2-QYs can be attained in cells by releasing constraints on charge transfer at the Photosystem II (PSII) acceptor side by adding membrane-permeable benzoquinone (BQ) derivatives that oxidize plastosemiquinone QB(-) and QBH2. This method allows uncoupling PSII turnover from its natural regulation in living cells, without artifacts of isolating PSII complexes. This approach reveals different extents of regulation across species, controlled at the QB(-) acceptor site. Arthrospira maxima is confirmed as the most efficient PSII-WOC (water oxidizing complex) and exhibits the least regulation of flux. Thermosynechococcus elongatus exhibits an O2-QY of 30%, suggesting strong downregulation. WOC cycle simulations with the most accurate model (VZAD) show that a light-driven backward transition (net addition of an electron to the WOC, distinct from recombination) occurs in up to 25% of native PSIIs in the S2 and S3 states, while adding BQ prevents backward transitions and increases the lifetime of S2 and S3 by 10-fold. Backward transitions occur in PSIIs that have plastosemiquinone radicals in the QB site and are postulated to be physiologically regulated pathways for storing light energy as proton gradient through direct PSII-cyclic electron flow (PSII-CEF). PSII-CEF is independent of classical PSI/cyt-b6f-CEF and provides an alternative proton translocation pathway for energy conversion. PSII-CEF enables variable fluxes between linear and cyclic electron pathways, thus accommodating species-dependent needs for redox and ion-gradient energy sources powered by a single photosystem.
Ananyev, Gennady; Gates, Colin; Dismukes, G Charles
2016-09-01
We have measured flash-induced oxygen quantum yields (O2-QYs) and primary charge separation (Chl variable fluorescence yield, Fv/Fm) in vivo among phylogenetically diverse microalgae and cyanobacteria. Higher O2-QYs can be attained in cells by releasing constraints on charge transfer at the Photosystem II (PSII) acceptor side by adding membrane-permeable benzoquinone (BQ) derivatives that oxidize plastosemiquinone QB(-) and QBH2. This method allows uncoupling PSII turnover from its natural regulation in living cells, without artifacts of isolating PSII complexes. This approach reveals different extents of regulation across species, controlled at the QB(-) acceptor site. Arthrospira maxima is confirmed as the most efficient PSII-WOC (water oxidizing complex) and exhibits the least regulation of flux. Thermosynechococcus elongatus exhibits an O2-QY of 30%, suggesting strong downregulation. WOC cycle simulations with the most accurate model (VZAD) show that a light-driven backward transition (net addition of an electron to the WOC, distinct from recombination) occurs in up to 25% of native PSIIs in the S2 and S3 states, while adding BQ prevents backward transitions and increases the lifetime of S2 and S3 by 10-fold. Backward transitions occur in PSIIs that have plastosemiquinone radicals in the QB site and are postulated to be physiologically regulated pathways for storing light energy as proton gradient through direct PSII-cyclic electron flow (PSII-CEF). PSII-CEF is independent of classical PSI/cyt-b6f-CEF and provides an alternative proton translocation pathway for energy conversion. PSII-CEF enables variable fluxes between linear and cyclic electron pathways, thus accommodating species-dependent needs for redox and ion-gradient energy sources powered by a single photosystem. PMID:27117512
NASA Astrophysics Data System (ADS)
Dneprovskii, V. S.; Kozlova, M. V.; Smirnov, A. M.
2013-10-01
We report self-diffraction processes of two types under resonant excitation of the fundamental electron - hole (exciton) transition in a strongly absorbing colloidal solution of CdSe/ZnS quantum dots (QDs) by high-power picosecond laser pulses. In the first case the absorption saturation (bleaching) at the exciton transition frequency and the Stark shift of exciton absorption line lead to the formation of a transparency channel and self-diffraction of the laser beam from the thus induced round diaphragm. In the second case, self-diffraction of two laser beams, intersecting in a cell with a colloidal QD solution, occurs on the diffraction grating induced by these beams. The physical processes responsible for the nonlinear optical properties of CdSe/ZnS QDs and the found selfaction effects are analysed.
Dneprovskii, V S; Kozlova, M V; Smirnov, A M
2013-10-31
We report self-diffraction processes of two types under resonant excitation of the fundamental electron – hole (exciton) transition in a strongly absorbing colloidal solution of CdSe/ZnS quantum dots (QDs) by high-power picosecond laser pulses. In the first case the absorption saturation (bleaching) at the exciton transition frequency and the Stark shift of exciton absorption line lead to the formation of a transparency channel and self-diffraction of the laser beam from the thus induced round diaphragm. In the second case, self-diffraction of two laser beams, intersecting in a cell with a colloidal QD solution, occurs on the diffraction grating induced by these beams. The physical processes responsible for the nonlinear optical properties of CdSe/ZnS QDs and the found selfaction effects are analysed. (nonlinear optical phenomena)
NASA Astrophysics Data System (ADS)
Gerber, Gustav
2009-05-01
By using coherent control techniques we control the behavior of quantum systems on their natural fs-time scale by applying ultrashort coherent light fields in the wavelength range from the IR to the UV. These laser pulses can be variably shaped in space and time using a laser pulse shaper consisting of a liquid-crystal display. [1] Laser-optimized femtochemistry in the gas phase and liquid phase is one field in which this new technique is successfully employed. Automated optimization of branching ratios and total product yields of gas phase photodissociation reactions as well as chemically selective molecular excitation in the liquid phase is performed [2][3]. Structural changes of a molecule in the liquid phase have been controlled by laser-optimized photoisomerization of a cyanine dye molecule [4] and of retinal in bacteriorhodopsin [5]. So far, optimal control techniques have been restricted to gas phase and condensed phase optimization experiments. Recently we have demonstrated femtosecond laser-assisted catalytic reactions on a Pd(100) single crystal surface. By applying a closed-loop optimal control scheme, we manipulate these reactions and selectively optimize the ratio of different bond-forming reaction channels, in contrast to previous quantum control experiments aiming at bond-cleavage. The results represent a first step towards selective photocatalysis of molecules. [4pt] [1] T. Baumert et al, Appl. Phys. B 65, 779 (1997)[0pt] [2] A. Assion et al, Science 282, 919(1998); T. Brixner et al, J. Mod. Opt. 50, 539 (2003)[0pt] [3] T. Brixner et al, Nature, Vol. 414, 57 (2001) and J. Chem. Phys. 118, 3692 (2003)[0pt] [4] G. Krampert et al, Phys. Rev. Lett. 94, 068305 (2005)[0pt] [5] G. Vogt et al, Chem. Phys. Lett. 433, 211 (2006) P. Nuernberger et al, Phys. Chem. Chem. Phys. 9, 2470 (2007)
NASA Astrophysics Data System (ADS)
Fujishiro, H.; Mochizuki, H.; Ainslie, M. D.; Naito, T.
2016-08-01
MgB2 superconducting bulks have promising potential as trapped field magnets. We have achieved a trapped field of B z = 1.1 T on a high-J c MgB2 bulk at 13 K without flux jumps by pulsed field magnetization (PFM) using a split-type coil with a soft iron yoke, which is a record-high trapped field by PFM for bulk MgB2 to date. The flux jumps, which frequently took place using a solenoid-type coil during PFM, were avoided by using the split-type coil, and the B z value was enhanced by the insertion of soft iron yoke. The flux dynamics and heat generation/propagation were analyzed during PFM using a numerical simulation, in which the magnetic flux intruded and attenuated slowly in the bulk and tended to align along the axial direction due to the presence of soft iron yoke. The advantages of the split-type coil and the simultaneous use of a soft iron yoke are discussed.
Ding, Y; Aviles-Espinosa, R; Cataluna, M A; Nikitichev, D; Ruiz, M; Tran, M; Robert, Y; Kapsalis, A; Simos, H; Mesaritakis, C; Xu, T; Bardella, P; Rossetti, M; Krestnikov, I; Livshits, D; Montrosset, Ivo; Syvridis, D; Krakowski, M; Loza-Alvarez, P; Rafailov, E
2012-06-18
In this paper, we present the generation of high peak-power picosecond optical pulses in the 1.26 μm spectral band from a repetition-rate-tunable quantum-dot external-cavity passively mode-locked laser (QD-ECMLL), amplified by a tapered quantum-dot semiconductor optical amplifier (QD-SOA). The laser emission wavelength was controlled through a chirped volume Bragg grating which was used as an external cavity output coupler. An average power of 208.2 mW, pulse energy of 321 pJ, and peak power of 30.3 W were achieved. Preliminary nonlinear imaging investigations indicate that this system is promising as a high peak-power pulsed light source for nonlinear bio-imaging applications across the 1.0 μm - 1.3 μm spectral range. PMID:22714493
Duxbury, Geoffrey; Kelly, James F.; Blake, Thomas A.; Langford, Nigel
2012-05-07
Using a low power, rapid (nsec) pulse-modulated quantum cascade (QC) laser, collective coherent effects in the 5 {micro}m spectrum of nitric oxide have been demonstrated by the observation of sub-Doppler hyperfine splitting and also Autler-Townes splitting of Doppler broadened lines. For nitrous oxide, experiments and model calculations have demonstrated that two main effects occur with ulsemodulated (chirped) quantum cascade lasers: free induction decay signals, and signals induced by rapid passage during the laser chirp. In the open shell molecule, NO, in which both {Lambda}-doubling splitting and hyperfine structure occur, laser field-induced coupling between the hyperfine levels of the two {Lambda}-doublet components can induce a large AC Stark effect. This may be observed as sub-Doppler structure, field-induced splittings, or Autler-Townes splitting of a Doppler broadened line. These represent an extension of the types of behaviour observed in the closed shell molecule nitrous oxide, using the same apparatus, when probed with an 8 {micro}m QC laser.
NASA Astrophysics Data System (ADS)
Teymoori, Gholamhasan; Pahari, Bholanath; Edén, Mattias
2015-12-01
We provide an experimental, numerical, and high-order average Hamiltonian evaluation of an open-ended series of homonuclear dipolar recoupling sequences, SR2 2p 1 with p = 1, 2, 3, … . While operating at a very low radio-frequency (rf) power, corresponding to a nutation frequency of 1/2 of the magic-angle spinning (MAS) rate (ωnut =ωr / 2), these recursively generated double-quantum (2Q) dipolar recoupling schemes offer a progressively improved compensation to resonance offsets and rf inhomogeneity for increasing pulse-sequence order p. The excellent recoupling robustness to these experimental obstacles, as well as to CSA, is demonstrated for 2Q filtering (2QF) experiments and for driving magnetization transfers in 2D NMR correlation spectroscopy, where the sequences may provide either double or zero quantum dipolar Hamiltonians during mixing. Experimental and numerical demonstrations, which mostly target conditions of "ultra-fast" MAS (≳50 kHz) and high magnetic fields, are provided for recoupling of 13C across a wide range of isotropic and anisotropic chemical shifts, as well as dipolar coupling constants, encompassing [2,3-13C2 ]alanine, [1,3-13C2 ]alanine, diammonium [1,4-13C2 ]fumarate, and [U-13 C]tyrosine. When compared at equal power levels, a superior performance is observed for the SR2p 1 sequences with p ⩾ 3 relative to existing and well-established 2Q recoupling techniques. At ultra-fast MAS, proton decoupling is redundant during the homonuclear dipolar recoupling of dilute spins in organic solids, which renders the family of SR2p 1 schemes the first efficient 2Q recoupling option for general applications, such as 2Q-1Q correlation NMR and high-order multiple-quantum excitation, under truly low-power rf conditions.
Cai, Hong; Liu, Sheng; Lalanne, Elaine; Guo, Dingkai; Chen, Xing; Choa, Fow-Sen; Wang, Xiaojun; Johnson, Anthony M.
2014-05-26
We temporally resolved the ultrafast mid-infrared transmission modulation of quantum cascade lasers (QCLs) using a near-infrared pump/mid-infrared probe technique at room temperature. Two different femtosecond wavelength pumps were used with photon energy above and below the quantum well (QW) bandgap. The shorter wavelength pump modulates the mid-infrared probe transmission through interband transition assisted mechanisms, resulting in a high transmission modulation depth and several nanoseconds recovery lifetime. In contrast, pumping with a photon energy below the QW bandgap induces a smaller transmission modulation depth but much faster (several picoseconds) recovery lifetime, attributed to intersubband transition assisted mechanisms. The latter ultrafast modulation (>60 GHz) could provide a potential way to realize fast QCL based free space optical communication.
NASA Astrophysics Data System (ADS)
Kirchner, James
2016-04-01
Forested catchments in the subalpine snow zone provide interesting opportunities to study the interplay between energy and water fluxes under seasonally variable degrees of forcing by transpiration and snowmelt. In such catchments, diurnal cycles in solar flux drive snowmelt and evapotranspiration, which in turn lead to diurnal cycles (with opposing phases) in groundwater levels. These in turn are linked to diurnal cycles in stream stage and discharge, which potentially provide a spatially integrated measure of snowmelt and evapotranspiration rates in the surrounding landscape. Here I analyze ecohydrological controls on diurnal stream and groundwater fluctuations induced by snowmelt and evapotranspiration (ET) at Sagehen Creek, in the Sierra Nevada mountains of California. There is a clear 6-hour lag between radiation forcing and the stream or groundwater response. This is not a travel-time delay, but instead a 90-degree dynamical phase lag arising from the integro-differential relationship between groundwater storage and recharge, ET, and streamflow. The time derivative of groundwater levels is strongly positively correlated with solar flux during snowmelt periods, reflecting snowmelt recharge to the riparian aquifer during daytime. Conversely, this derivative is strongly negatively correlated with solar flux during snow-free summer months, reflecting transpiration withdrawals from the riparian aquifer. As the snow cover disappears, the correlation between the solar flux and the time derivative of groundwater levels abruptly shifts from positive (snowmelt dominance) to negative (ET dominance). During this transition, the groundwater cycles briefly vanish when the opposing forcings (snowmelt and ET) are of equal magnitude, and thus cancel each other out. Stream stage fluctuations integrate these relationships over the altitude range of the catchment. Rates of rise and fall in stream stage are positively correlated with solar flux when the whole catchment is snow
NASA Astrophysics Data System (ADS)
Ly, Sonny
Generation of quantum optical states from ultrashort laser-molecule interactions have led to fascinating discoveries in physics and chemistry. In recent years, these interactions have been extended to probe phenomena in single molecule biophysics. Photons emitted from a single fluorescent molecule contains important properties about how the molecule behave and function in that particular environment. Analysis of the second order coherence function through fluorescence correlation spectroscopy plays a pivotal role in quantum optics. At very short nanosecond timescales, the coherence function predicts photon antibunching, a purely quantum optical phenomena which states that a single molecule can only emit one photon at a time. Photon antibunching is the only direct proof of single molecule emission. From the nanosecond to microsecond timescale, the coherence function gives information about rotational diffusion coefficients, and at longer millisecond timescales, gives information regarding the translational diffusion coefficients. In addition, energy transfer between molecules from dipole-dipole interaction results in FRET, a highly sensitive method to probe conformational dynamics at nanometer distances. Here I apply the quantum optical techniques of photon antibunching, fluorescence correlation spectroscopy and FRET to probe how lipid nanodiscs form and function at the single molecule level. Lipid nanodiscs are particles that contain two apolipoprotein (apo) A-I circumventing a lipid bilayer in a belt conformation. From a technological point of view, nanodiscs mimics a patch of cell membrane that have recently been used to reconstitute a variety of membrane proteins including cytochrome P450 and bacteriorhodopsin. They are also potential drug transport vehicles due to its small and stable 10nm diameter size. Biologically, nanodiscs resemble to high degree, high density lipoproteins (HDL) in our body and provides a model platform to study lipid-protein interactions
NASA Astrophysics Data System (ADS)
Vvedenskii, N. V.; Romanov, A. A.; Silaev, A. A.
2016-05-01
By solving analytically and numerically the three-dimensional time-dependent Schrödinger equation, we have studied the excitation of a residual current density during gas ionisation by a two-colour laser pulse containing a field at the fundamental frequency and an additional field at the doubled frequency. We have found the dependences of the residual current density on the phase shift between the components of the field and on the intensity of the fundamental harmonic. It is shown that the strong-field approximation taking into account the interaction of freed electrons with the parent ion yields a good quantitative agreement with the results of direct numerical simulation.
Capua, Amir; Saal, Abigael; Karni, Ouri; Eisenstein, Gadi; Reithmaier, Johann Peter; Yvind, Kresten
2012-01-01
We describe direct measurements at a high temporal resolution of the changes experienced by the phase and amplitude of an ultra-short pulse upon propagation through an inhomogenously broadened semiconductor nanostructured optical gain medium. Using a cross frequency-resolved optical gating technique, we analyze 150 fs-wide pulses propagating along an InP based quantum dash optical amplifier in both the quasi-linear and saturated regimes. For very large electrical and optical excitations, a second, trailing peak is generated and enhanced by a unique two-photon-induced amplification process.
Yao, Dan-Yang; Zhang, Jin-Chuan; Cathabard, Olivier; Zhai, Shen-Qiang; Liu, Ying-Hui; Jia, Zhi-Wei; Liu, Feng-Qi; Wang, Zhan-Guo
2015-01-01
High-power broad area substrate emitting photonic-crystal distributed feedback (DFB) quantum cascade lasers (QCLs) emitting around 4.73 μm is reported. Two-dimensional centered rectangular photonic-crystal (CRPC) grating is introduced to enhance optical coherence in large area device. Main lobe far-field radiation pattern with a very small divergence angle of about 0.65° × 0.31° is obtained. A record peak output power for vertical emitting QCLs exceeding 10 W is obtained with high reflectivity (HR) coating. Robust single longitudinal mode emission with a side mode suppression ratio (SMSR) of 30 dB is continuously tunable by the heat sink temperature up to 65°C. PMID:25977652
NASA Astrophysics Data System (ADS)
Ross, Matthew R.
The primary focus of this work is the development of a mid-infrared pulse shaping system. The primary motivation for this system is for two-dimensional infrared (2DIR) spectroscopy, however, the mid-infrared pulse shaper also allows for more sophisticated spectroscopic experiments not previously attempted in the mid-infrared. Moreover, many can be implemented without changes or realignment of the optical setup. Example spectra are presented along with a discussion of capabilities and diagnostics. A second major project presented is 2DIR spectroscopy of iron pentacarbonyl, Fe(CO)5, a small metal carbonyl. This molecule undergoes Berry pseudorotation, a form of fluxtionality. This fast exchange of ligands mixes axial and equatorial modes and occurs on a timescale of picoseconds, too fast for NMR and other methods of measuring chemical structure and isomerization. Ultrafast chemical exchange spectroscopy, a measurement within 2DIR spectroscopy, is capable of resolving the time scales of this motion. We found that this process is affected by the solvent environment, specifically the solvent viscosity in alkanes and hydrogen bonding environments in alcohols. Lastly, a study is presented in which a series of synthetic metalloenzymes with a metal active site are studied by 2DIR spectroscopy. In this case a carbonyl is ligated to a copper-I atom in the active site, which then serves as our spectroscopic probe. We find, unexpectedly, that the shape of the carbonyl vibrational potential, as measured by the anharmonicity, is
Hamiltonian structure of propagation equations for ultrashort optical pulses
Amiranashvili, Sh.; Demircan, A.
2010-07-15
A Hamiltonian framework is developed for a sequence of ultrashort optical pulses propagating in a nonlinear dispersive medium. To this end a second-order nonlinear wave equation for the electric field is transformed into a first-order propagation equation for a suitably defined complex electric field. The Hamiltonian formulation is then introduced in terms of normal variables, i.e., classical complex fields referring to the quantum creation and annihilation operators. The derived z-propagated Hamiltonian accounts for forward and backward waves, arbitrary medium dispersion, and four-wave mixing processes. As a simple application we obtain integrals of motion for the pulse propagation. The integrals reflect time-averaged fluxes of energy, momentum, and photons transferred by the pulse. Furthermore, pulses in the form of stationary nonlinear waves are considered. They yield extremal values of the momentum flux for a given energy flux. Simplified propagation equations are obtained by reduction of the Hamiltonian. In particular, the complex electric field reduces to an analytic signal for the unidirectional propagation. Solutions of the full bidirectional model are numerically compared to the predictions of the simplified equation for the analytic signal and to the so-called forward Maxwell equation. The numerics is effectively tested by examining the conservation laws.
Femtosecond polarization pulse shaping.
Brixner, T; Gerber, G
2001-04-15
We report computer-controlled femtosecond polarization pulse shaping where intensity, momentary frequency, and light polarization are varied as functions of time. For the first time to our knowledge, a pulse shaper is used to modulate the degree of ellipticity as well as the orientation of the elliptical principal axes within a single laser pulse by use of a 256-pixel two-layer liquid-crystal display inside a zero-dispersion compressor. Interferometric stability of the setup is not required. Complete pulse characterization is achieved by dual-channel spectral interferometry. This technology has a large range of applications, especially in the field of quantum control.
Femtosecond polarization pulse shaping.
Brixner, T; Gerber, G
2001-04-15
We report computer-controlled femtosecond polarization pulse shaping where intensity, momentary frequency, and light polarization are varied as functions of time. For the first time to our knowledge, a pulse shaper is used to modulate the degree of ellipticity as well as the orientation of the elliptical principal axes within a single laser pulse by use of a 256-pixel two-layer liquid-crystal display inside a zero-dispersion compressor. Interferometric stability of the setup is not required. Complete pulse characterization is achieved by dual-channel spectral interferometry. This technology has a large range of applications, especially in the field of quantum control. PMID:18040384
Flux qubit as a sensor of magnetic flux
NASA Astrophysics Data System (ADS)
Il'ichev, E.; Greenberg, Ya. S.
2007-03-01
A magnetometer based on the quantum properties of a superconducting flux qubit is proposed. The main advantage of this device is that its sensitivity can be below the so-called "standard quantum limit" (for an oscillator this is half of the Plank constant). Moreover its transfer functions relative to the measured flux can be made to be about 10 mV/Φ0, which is an order of magnitude more than the best value for a conventional DC SQUIDs with a direct readout. We analyze here the voltage-to-flux, the phase-to-flux transfer functions and the main noise sources. We show that the experimental characteristics of a flux qubit, obtained in recent experiments, allow the use of a flux qubit as magnetometer with energy resolution close to the Planck constant.
NASA Astrophysics Data System (ADS)
Hashimura, Keisuke; Ishii, Katsunori; Awazu, Kunio
2016-03-01
Cholesteryl esters are main components of atherosclerotic plaques and have an absorption peak at the wavelength of 5.75 μm originated from C=O stretching vibration mode of ester bond. Our group achieved the selective ablation of atherosclerotic lesions using a quantum cascade laser (QCL) in the 5.7 μm wavelength range. QCLs are relatively new types of semiconductor lasers that can emit mid-infrared range. They are sufficiently compact and considered to be useful for clinical application. However, large thermal effects were observed because the QCL worked as quasicontinuous wave (CW) lasers due to its short pulse interval. Then we tried macro pulse irradiation (irradiation of pulses at intervals) of the QCL and achieved effective ablation with less-thermal effects than conventional quasi-CW irradiation. However, lesion selectivity might be changed by changing pulse structure. Therefore, in this study, irradiation effects of the macro pulse irradiation to rabbit atherosclerotic plaque and normal vessel were compared. The macro pulse width and the macro pulse interval were set to 0.5 and 12 ms, respectively, because the thermal relaxation time of rabbit normal and atherosclerotic aortas in the oscillation wavelength of the QCL was 0.5-12 ms. As a result, cutting difference was achieved between rabbit atherosclerotic and normal aortas by the macro pulse irradiation. Therefore, macro pulse irradiation of a QCL in the 5.7 μm wavelength range is effective for reducing thermal effects and selective ablation of the atherosclerotic plaque. QCLs have the potential of realizing less-invasive laser angioplasty.
NASA Astrophysics Data System (ADS)
Han, Minmin; Chen, Wenyuan; Guo, Hongjian; Yu, Limin; Li, Bo; Jia, Junhong
2016-06-01
In the typical solution-based synthesis of colloidal quantum dots (QDs), it always resorts to some surface treatment, ligand exchange processing or post-synthesis processing, which might involve some toxic chemical regents injurious to the performance of QD sensitized solar cells. In this work, the CuInS2 QDs are deposited on the surface of one-dimensional TiO2 nanorod arrays by the pulsed laser deposition (PLD) technique. The CuInS2 QDs are coated on TiO2 nanorods without any ligand engineering, and the performance of the obtained CuInS2 QD sensitized solar cells is optimized by adjusting the laser energy. An energy conversion efficiency of 3.95% is achieved under one sun illumination (AM 1.5, 100 mW cm-2). The improved performance is attributed to enhanced absorption in the longer wavelength region, quick interfacial charge transfer and few chance of carrier recombination with holes for CuInS2 QD-sensitized solar cells. Moreover, the photovoltaic device exhibits high stability in air without any specific encapsulation. Thus, the PLD technique could be further applied for the fabrication of QDs or other absorption materials.
NASA Astrophysics Data System (ADS)
Farberovich, Oleg V.; Mazalova, Victoria L.
2016-05-01
Molecular spin crossover switches are the objects of intense theoretical and experimental studies in recent years. This interest is due to the fact that these systems allow one to control their spin state by applying an external photo-, thermo-, piezo-, or magnetic stimuli. The greatest amount of research is currently devoted to the study of the effect of the photoexcitation on the bi-stable states of spin crossover single molecular magnets (SMMs). The main limitation of photo-induced bi-stable states is their short lifetime. In this paper we present the results of a study of the spin dynamics of the Co-octaethylporphyrin (CoOEP) molecule in the Low Spin (LS) state and the High Spin (HS) state induced by applying the magnetic pulse of 36.8 T. We show that the spin switching in case of the HS state of the CoOEP molecule is characterized by a long lifetime and is dependent on the magnitude and duration of the applied field. Thus, after applying an external stimuli the system in the LS state after the spin switching reverts to its ground state, whereas the system in the HS state remains in the excited state for a long time. We found that the temperature dependency of magnetic susceptibility shows an abrupt thermal spin transition between two spin states at 40 K. Here the proposed theoretical approach opens the way to create modern devices for spintronics with the controllable spin switching process.
NASA Astrophysics Data System (ADS)
Lodestro, Lynda; Hooper, E. B.; Jayakumar, R. J.; Pearlstein, L. D.; Wood, R. D.; McLean, H. S.
2007-11-01
Flux amplification---the ratio of poloidal flux enclosed between the magnetic and geometric axes to that between the separatrix and the geometric axis---is a key measure of efficiency for edge-current-driven spheromaks. With the new, modular capacitor bank, permitting flexible programming of the gun current, studies of flux amplification under various drive scenarios can be performed. Analysis of recent results of pulsed operation with the new bank finds an efficiency ˜ 0.2, in selected shots, of the conversion of gun energy to confined magnetic energy during the pulses, and suggests a route toward sustained efficiency at 0.2. Results of experiments, a model calculation of field build-up, and NIMROD simulations exploring this newly suggested scenario will be presented.
NASA Astrophysics Data System (ADS)
Jang, H.; Nojiri, H.; Gerber, S.; Lee, W.-S.; Zhu, D.; Lee, J.-S.; Kao, C.-C.
X-ray scattering under high magnetic fields provides unique opportunities for solving many scientific puzzles in quantum materials, such as strongly correlated electron systems. Incorporating high magnetic field capability presents serious challenges at an x-ray facility, including the limitation on the maximum magnetic field even with a DC magnet (up to ~20 Tesla), expensive cost in development, radiation damage, and limited flexibility in the experimental configuration. These challenges are especially important when studying the symmetry broken state induced by the high magnetic field are necessary, for example, exploring intertwined orders between charge density wave (CDW) and high Tc superconductivity. Moreover, a gap in magnetic field strengths has led to many discrepancies and puzzling issues for understanding strongly correlated systems - is a CDW competing or more intimately intertwined with high-temperature superconductivity. To bridge this gap and resolve these experimental discrepancies, one needs an innovative experimental approach. Here, we will present a new approach to x-ray scattering under high magnetic field up to 28 Teals by taking advantage of brilliant x-ray free electron laser (FEL). The FEL generates sufficiently high photon flux for single shot x-ray scattering experiment. In this talk, we will also present the first demonstration about the field induced CDW order in YBCO Ortho-VIII with 28 Tesla, which show the totally unexpected three-dimensional behavior.
Vacuum Rabi oscillations observed in a flux qubit LC-oscillator system
NASA Astrophysics Data System (ADS)
Semba, Kouichi
2007-03-01
Superconducting circuit containing Josephson junctions is one of the promising candidates as a quantum bit (qubit) which is an essential ingredient for quantum computation [1]. A three-junction flux qubit [2] is one of such candidates. On the basis of fundamental qubit operations [3,4], the cavity QED like experiments are possible on a superconductor chip by replacing an atom with a flux qubit, and a high-Q cavity with a superconducting LC-circuit. By measuring qubit state just after the resonant interaction with the LC harmonic oscillator, we have succeeded in time domain experiment of vacuum Rabi oscillations, exchange of a single energy quantum, in a superconducting flux qubit LC harmonic oscillator system [5]. The observed vacuum Rabi frequency 140 MHz is roughly 2800 times larger than that of Rydberg atom coupled to a single photon in a high-Q cavity [6]. This is a direct evidence that strong coupling condition can be rather easily established in the case of macroscopic superconducting quantum circuit. We are also considering this quantum LC oscillator as a quantum information bus by sharing it with many flux qubits, then spatially separated qubits can be controlled coherently by a set of microwave pulses. [1] F. Wilhelm and K. Semba, in Physical Realizations of Quantum Computing: Are the DiVincenzo Criteria Fulfilled in 2004?, (World Scientific; April, 2006) [2] J. E. Mooij et al., Science 285, 1036 (1999). [3] T. Kutsuzawa et al., Appl. Phys. Lett. 87, 073501 (2005). [4] S. Saito et al., Phys. Rev. Lett. 96, 107001 (2006). [5] J. Johansson et al., Phys. Rev. Lett. 93, 127006 (2006). [6] J. M. Raimond, M. Brune, and S. Haroche, Rev. Mod. Phys. 73, 565 (2001).
Intramolecular Nuclear Flux Densities
NASA Astrophysics Data System (ADS)
Barth, I.; Daniel, C.; Gindensperger, E.; Manz, J.; PéRez-Torres, J. F.; Schild, A.; Stemmle, C.; Sulzer, D.; Yang, Y.
The topic of this survey article has seen a renaissance during the past couple of years. Here we present and extend the results for various phenomena which we have published from 2012-2014, with gratitude to our coauthors. The new phenomena include (a) the first reduced nuclear flux densities in vibrating diatomic molecules or ions which have been deduced from experimental pump-probe spectra; these "experimental" nuclear flux densities reveal several quantum effects including (b) the "quantum accordion", i.e., during the turn from bond stretch to bond compression, the diatomic system never stands still — instead, various parts of it with different bond lengths flow into opposite directions. (c) Wavepacket interferometry has been extended from nuclear densities to flux densities, again revealing new phenomena: For example, (d) a vibrating nuclear wave function with compact initial shape may split into two partial waves which run into opposite directions, thus causing interfering flux densities. (e) Tunneling in symmetric 1-dimensional double-well systems yields maximum values of the associated nuclear flux density just below the potential barrier; this is in marked contrast with negligible values of the nuclear density just below the barrier. (f) Nuclear flux densities of pseudorotating nuclei may induce huge magnetic fields. A common methodologic theme of all topics is the continuity equation which connects the time derivative of the nuclear density to the divergence of the flux density, subject to the proper boundary conditions. (g) Nearly identical nuclear densities with different boundary conditions may be related to entirely different flux densities, e.g., during tunneling in cyclic versus non-cyclic systems. The original continuity equation, density and flux density of all nuclei, or of all nuclear degrees of freedom, may be reduced to the corresponding quantities for just a single nucleus, or just a single degree of freedom.
Yamashita, Taro; Miki, Shigehito; Terai, Hirotaka; Makise, Kazumasa; Wang, Zhen
2012-07-15
We demonstrate the successful operation of a multielement superconducting nanowire single-photon detector (SSPD) array integrated with a single-flux-quantum (SFQ) readout circuit in a compact 0.1 W Gifford-McMahon cryocooler. A time-resolved readout technique, where output signals from each element enter the SFQ readout circuit with finite time intervals, revealed crosstalk-free operation of the four-element SSPD array connected with the SFQ readout circuit. The timing jitter and the system detection efficiency were measured to be 50 ps and 11.4%, respectively, which were comparable to the performance of practical single-pixel SSPD systems.
Gschrey, M; Thoma, A; Schnauber, P; Seifried, M; Schmidt, R; Wohlfeil, B; Krüger, L; Schulze, J-H; Heindel, T; Burger, S; Schmidt, F; Strittmatter, A; Rodt, S; Reitzenstein, S
2015-01-01
The success of advanced quantum communication relies crucially on non-classical light sources emitting single indistinguishable photons at high flux rates and purity. We report on deterministically fabricated microlenses with single quantum dots inside which fulfil these requirements in a flexible and robust quantum device approach. In our concept we combine cathodoluminescence spectroscopy with advanced in situ three-dimensional electron-beam lithography at cryogenic temperatures to pattern monolithic microlenses precisely aligned to pre-selected single quantum dots above a distributed Bragg reflector. We demonstrate that the resulting deterministic quantum-dot microlenses enhance the photon-extraction efficiency to (23±3)%. Furthermore we prove that such microlenses assure close to pure emission of triggered single photons with a high degree of photon indistinguishability up to (80±7)% at saturation. As a unique feature, both single-photon purity and photon indistinguishability are preserved at high excitation power and pulsed excitation, even above saturation of the quantum emitter.
Pines, A.
1986-09-01
These lectures discuss some recent developments in pulsed NMR, emphasizing fundamental principles with selected illustrative applications. Major topics covered include multiple-quantum spectroscopy, spin decoupling, the interaction of spins with a quantized field, adiabatic rapid passage, spin temperature and statistics of cross-polarization, coherent averaging, and zero field NMR. 55 figs.
Pines, A.
1988-08-01
These lectures discuss some recent developments in pulsed NMR, emphasizing fundamental principles with selected illustrative applications. Major topics covered include multiple-quantum spectroscopy, spin decoupling, the interaction of spins with a quantized field, adiabatic rapid passage, spin temperature and statistics of cross-polarization, coherent averaging, and zero field NMR. 32 refs., 56 figs.
NASA Astrophysics Data System (ADS)
Murakumo, Keisuke; Yamaoka, Yuya; Kumagai, Naoto; Kitada, Takahiro; Isu, Toshiro
2016-04-01
We fabricated a photoconductive antenna structure utilizing Er-doped InAs quantum dot layers embedded in strain-relaxed In0.35Ga0.65As layers on a GaAs substrate. Mesa-shaped electrodes for the antenna structure were formed by photolithography and wet etching in order to suppress its dark current. We measured the photocurrent with the excitation of ∼1.5 µm cw and femtosecond pulse lasers. Compared with the dark current, the photocurrent was clearly observed under both cw and pulse excitation conditions and almost linearly increased with increasing excitation power in a wide range of magnitudes from 10 W/cm2 to 10 MW/cm2 order.
Reidl-Leuthner, Christoph; Lendl, Bernhard
2013-12-01
Two thermoelectrically cooled mid-infrared distributed feedback quantum cascade lasers operated in pulsed mode have been used for the quasi-simultaneous determination of NO and NO2 in the sub-parts per million meter (sub-ppm-m) range. Using a beam splitter, the beams of the two lasers were combined and sent to a retro-reflector. The returned light was recorded with a thermoelectrically cooled mercury cadmium telluride detector with a rise time of 4 ns. Alternate operation of the lasers with pulse lengths of 300 ns and a repetition rate of 66 kHz allowed quasi-simultaneous measurements. During each pulse the laser temperature increased, causing a thermal chirp of the laser line of up to 1.3 cm(-1). These laser chirps were sufficient to scan rotational bands of NO centered at 1902 cm(-1) and NO2 located at 1632 cm(-1). In that way an absorption spectrum could be recorded from a single laser pulse. Currently achieved limits of detection are 600 parts per billion meter (ppb-m) for NO and 260 ppb-m for NO2 using signal averaging over 1 min. This work presents the first steps toward a portable stand-off, open-path instrument that uses thermoelectrically cooled detector and lasers.
Superradiance and flux conservation
NASA Astrophysics Data System (ADS)
Boonserm, Petarpa; Ngampitipan, Tritos; Visser, Matt
2014-09-01
The theoretical foundations of the phenomenon known as superradiance still continue to attract considerable attention. Despite many valiant attempts at pedagogically clear presentations, the effect nevertheless still continues to generate some significant confusion. Part of the confusion arises from the fact that superradiance in a quantum field theory context is not the same as superradiance (superfluorescence) in some condensed matter contexts; part of the confusion arises from traditional but sometimes awkward normalization conventions, and part is due to sometimes unnecessary confusion between fluxes and probabilities. We shall argue that the key point underlying the effect is flux conservation (and, in the presence of dissipation, a controlled amount of flux nonconservation), and that attempting to phrase things in terms of reflection and transmission probabilities only works in the absence of superradiance. To help clarify the situation we present a simple exactly solvable toy model exhibiting both superradiance and damping.
Electro-optic bandwidth manipulation of quantum light (Conference Presentation)
NASA Astrophysics Data System (ADS)
Karpinski, Michal; Jachura, Michal; Wright, Laura J.; Smith, Brian J.
2016-04-01
Spectral-temporal manipulation of optical pulses has enabled numerous developments within a broad range of research topics, ranging from fundamental science to practical applications. Within quantum optics spectral-temporal degree of freedom of light offers a promising platform for integrated photonic quantum information processing. An important challenge in experimentally realizing spectral-temporal manipulation of quantum states of light is the need for highly efficient manipulation tools. In this context the intrinsically deterministic electro-optic methods show great promise for quantum applications. We experimentally demonstrate application of electro-optic platform for spectral-temporal manipulation of ultrashort pulsed quantum light. Using techniques analogous to serrodyne frequency shifting we show active spectral translation of few-picosecond single photon pulses by up to 0.5 THz. By employing an approach based on an electro-optic time lens we demonstrate up to 6-fold spectral compression of heralded single photon pulses with efficiency that enables us to significantly increase single photon flux through a narrow bandpass filter. We realize the required temporal phase manipulation by driving a lithium niobate waveguided electrooptic modulator with 33 dBm sinusoidal RF field at the frequency of either 10 GHz or 40 GHz. We use a phase lock loop to temporally lock the RF field to the 80 MHz repetition rate of approximately 1 ps long optical pulses. Heralded single photon wavepackets are generated by means of spontaneous parametric down-conversion in potassium dihydrogen phosphate (KDP) crystal, which enables preparation of spectrally pure single photon wavepackets without the need for spectral filtering. Spectral shifting is achieved by locking single-photon pulses to the linear slope of sinusoidal 40 GHz RF phase modulation. We verify the spectral shift by performing spectrally resolved heralded single photon counting, using frequency-to-time conversion by
NASA Astrophysics Data System (ADS)
Seo, Myung-Duk; Shi, Cheng-Bin; Cho, Jung-Wook; Kim, Seon-Hyo
2014-10-01
The effects of basicity (CaO/SiO2), B2O3, and Li2O addition on the crystallization behaviors of lime-silica-based mold fluxes have been investigated by non-isothermal differential scanning calorimetry (DSC), field emission scanning electron microscopy, X-ray diffraction (XRD), and single hot thermocouple technique. It was found that the crystallization temperature of cuspidine increased with increasing the basicity of mold fluxes. The crystallization of wollastonite was suppressed with increasing the mold flux basicity due to the enhancement of cuspidine crystallization. The addition of B2O3 suppresses the crystallization of mold flux. The crystallization temperature of mold flux decreases with Li2O addition. The size of cuspidine increases, while the number of cuspidine decreases with increasing mold flux basicity. The morphology of cuspidine in mold fluxes with lower basicity is largely dendritic. The dendritic cuspidine in mold fluxes is composed of many fine cuspidine crystals. On the contrary, in mold fluxes with higher basicity, the cuspidine crystals are larger in size with mainly faceted morphology. The crystalline phase evolution was also calculated using a thermodynamic database, and compared with the experimental results determined by DSC and XRD. The results of thermodynamic calculation of crystalline phase formation are in accordance with the results determined by DSC and XRD.
Scalable optical quantum computer
Manykin, E A; Mel'nichenko, E V
2014-12-31
A way of designing a scalable optical quantum computer based on the photon echo effect is proposed. Individual rare earth ions Pr{sup 3+}, regularly located in the lattice of the orthosilicate (Y{sub 2}SiO{sub 5}) crystal, are suggested to be used as optical qubits. Operations with qubits are performed using coherent and incoherent laser pulses. The operation protocol includes both the method of measurement-based quantum computations and the technique of optical computations. Modern hybrid photon echo protocols, which provide a sufficient quantum efficiency when reading recorded states, are considered as most promising for quantum computations and communications. (quantum computer)
Time-Resolved Quantum Dynamics of Double Ionization in Strong Laser Fields
Prauzner-Bechcicki, Jakub S.; Sacha, Krzysztof; Zakrzewski, Jakub; Eckhardt, Bruno
2007-05-18
Quantum calculations of a (1+1)-dimensional model for double ionization in strong laser fields are used to trace the time evolution from the ground state through ionization and rescattering to the two-electron escape. The subspace of symmetric escape, a prime characteristic of nonsequential double ionization, remains accessible by a judicious choice of 1D coordinates for the electrons. The time-resolved ionization fluxes show the onset of single and double ionization, the sequence of events during the pulse, and the influences of pulse duration and reveal the relative importance of sequential and nonsequential double ionization, even when ionization takes place during the same field cycle.
Straub, R.; Keil, S.; Kleiner, R.; Koelle, D.
2001-06-04
We used low-temperature scanning electron microscopy (LTSEM) for imaging quantized magnetic flux (vortices) in dc superconducting quantum interference devices (SQUIDs) with approximately 1{mu}m spatial resolution at temperature T=77K in a controllable magnetic field up to 20{mu}T. We demonstrate that LTSEM allows to image the spatial distribution of vortices in a YBa{sub 2}Cu{sub 3}O{sub 7}/SrTiO{sub 3}/YBa{sub 2}Cu{sub 3}O{sub 7} multilayer thin-film structure consisting of a dc SQUID washer with an integrated input coil on top. Simultaneously, we are able to measure the low-frequency noise of the sample under test, which allows to correlate the spatial distribution of vortices with low-frequency noise in the SQUID. {copyright} 2001 American Institute of Physics.
NASA Astrophysics Data System (ADS)
Luo, Jiang-Hua
2011-01-01
In this paper, we have investigated theoretically the high harmonic generation form helium atom in long wavelength driving regime at 2000 nm through solving time-dependent Schrödinger equation. By adding a second harmonic pulse (1000 nm) and a UV attosecond pulse (200 nm) to the driving field, an efficient method for picking out and enhancing ionization path to generate high-yield supercontinuum harmonics is realized, and then an isolated sub-100 as pulse with a bandwidth of 190 eV is significantly obtained.
NASA Astrophysics Data System (ADS)
Qin, Chao-Chao; Jia, Guang-Rui; Zhang, Xian-Zhou; Liu, Yu-Fang; Long, Jin-You; Zhang, Bing
2014-01-01
The coherent control of field-free molecular orientation of CO with combined femtosecond single- and dual-color laser pulses has been theoretically studied. The effect of the delay time between the femtosecond single- and dual-color laser pulses is discussed, and the physical mechanism of the enhancement of molecular orientation with pre-alignment of the molecule is investigated. It is found that the basic mechanism is based on the creation of a rotational wave packet by the femtosecond single-color laser pulse. Furthermore, we investigate the interference between multiple rotational excitation pathways following pre-alignment with femtosecond single-color laser pulse. It is shown that such interference can lead to an enhancement of the orientation of CO molecule by a factor of 1.6.
NASA Astrophysics Data System (ADS)
Casati, Giulio; Chirikov, Boris
2006-11-01
Preface; Acknowledgments; Introduction: 1. The legacy of chaos in quantum mechanics G. Casati and B. V. Chirikov; Part I. Classical Chaos and Quantum Localization: 2. Stochastic behaviour of a quantum pendulum under a periodic perturbation G. Casati, B. V. Chirikov, F. M. Izrailev and J. Ford; 3. Quantum dynamics of a nonintegrable system D. R. Grempel, R. E. Prange and S. E. Fishman; 4. Excitation of molecular rotation by periodic microwave pulses. A testing ground for Anderson localization R. Blümel, S. Fishman and U. Smilansky; 5. Localization of diffusive excitation in multi-level systems D. K. Shepelyansky; 6. Classical and quantum chaos for a kicked top F. Haake, M. Kus and R. Scharf; 7. Self-similarity in quantum dynamics L. E. Reichl and L. Haoming; 8. Time irreversibility of classically chaotic quantum dynamics K. Ikeda; 9. Effect of noise on time-dependent quantum chaos E. Ott, T. M. Antonsen Jr and J. D. Hanson; 10. Dynamical localization, dissipation and noise R. F. Graham; 11. Maximum entropy models and quantum transmission in disordered systems J.-L. Pichard and M. Sanquer; 12. Solid state 'atoms' in intense oscillating fields M. S. Sherwin; Part II. Atoms in Strong Fields: 13. Localization of classically chaotic diffusion for hydrogen atoms in microwave fields J. E. Bayfield, G. Casati, I. Guarneri and D. W. Sokol; 14. Inhibition of quantum transport due to 'scars' of unstable periodic orbits R. V. Jensen, M. M. Sanders, M. Saraceno and B. Sundaram; 15. Rubidium Rydberg atoms in strong fields G. Benson, G. Raithel and H. Walther; 16. Diamagnetic Rydberg atom: confrontation of calculated and observed spectra C.-H. Iu, G. R. Welch, M. M. Kash, D. Kleppner, D. Delande and J. C. Gay; 17. Semiclassical approximation for the quantum states of a hydrogen atom in a magnetic field near the ionization limit M. Y. Kuchiev and O. P. Sushkov; 18. The semiclassical helium atom D. Wintgen, K. Richter and G. Tanner; 19. Stretched helium: a model for quantum chaos
NASA Astrophysics Data System (ADS)
Casati, Giulio; Chirikov, Boris
1995-04-01
Preface; Acknowledgments; Introduction: 1. The legacy of chaos in quantum mechanics G. Casati and B. V. Chirikov; Part I. Classical Chaos and Quantum Localization: 2. Stochastic behaviour of a quantum pendulum under a periodic perturbation G. Casati, B. V. Chirikov, F. M. Izrailev and J. Ford; 3. Quantum dynamics of a nonintegrable system D. R. Grempel, R. E. Prange and S. E. Fishman; 4. Excitation of molecular rotation by periodic microwave pulses. A testing ground for Anderson localization R. Blümel, S. Fishman and U. Smilansky; 5. Localization of diffusive excitation in multi-level systems D. K. Shepelyansky; 6. Classical and quantum chaos for a kicked top F. Haake, M. Kus and R. Scharf; 7. Self-similarity in quantum dynamics L. E. Reichl and L. Haoming; 8. Time irreversibility of classically chaotic quantum dynamics K. Ikeda; 9. Effect of noise on time-dependent quantum chaos E. Ott, T. M. Antonsen Jr and J. D. Hanson; 10. Dynamical localization, dissipation and noise R. F. Graham; 11. Maximum entropy models and quantum transmission in disordered systems J.-L. Pichard and M. Sanquer; 12. Solid state 'atoms' in intense oscillating fields M. S. Sherwin; Part II. Atoms in Strong Fields: 13. Localization of classically chaotic diffusion for hydrogen atoms in microwave fields J. E. Bayfield, G. Casati, I. Guarneri and D. W. Sokol; 14. Inhibition of quantum transport due to 'scars' of unstable periodic orbits R. V. Jensen, M. M. Sanders, M. Saraceno and B. Sundaram; 15. Rubidium Rydberg atoms in strong fields G. Benson, G. Raithel and H. Walther; 16. Diamagnetic Rydberg atom: confrontation of calculated and observed spectra C.-H. Iu, G. R. Welch, M. M. Kash, D. Kleppner, D. Delande and J. C. Gay; 17. Semiclassical approximation for the quantum states of a hydrogen atom in a magnetic field near the ionization limit M. Y. Kuchiev and O. P. Sushkov; 18. The semiclassical helium atom D. Wintgen, K. Richter and G. Tanner; 19. Stretched helium: a model for quantum chaos
Single photon quantum cryptography.
Beveratos, Alexios; Brouri, Rosa; Gacoin, Thierry; Villing, André; Poizat, Jean-Philippe; Grangier, Philippe
2002-10-28
We report the full implementation of a quantum cryptography protocol using a stream of single photon pulses generated by a stable and efficient source operating at room temperature. The single photon pulses are emitted on demand by a single nitrogen-vacancy color center in a diamond nanocrystal. The quantum bit error rate is less that 4.6% and the secure bit rate is 7700 bits/s. The overall performances of our system reaches a domain where single photons have a measurable advantage over an equivalent system based on attenuated light pulses.
Minimal-excitation states for electron quantum optics using levitons.
Dubois, J; Jullien, T; Portier, F; Roche, P; Cavanna, A; Jin, Y; Wegscheider, W; Roulleau, P; Glattli, D C
2013-10-31
The on-demand generation of pure quantum excitations is important for the operation of quantum systems, but it is particularly difficult for a system of fermions. This is because any perturbation affects all states below the Fermi energy, resulting in a complex superposition of particle and hole excitations. However, it was predicted nearly 20 years ago that a Lorentzian time-dependent potential with quantized flux generates a minimal excitation with only one particle and no hole. Here we report that such quasiparticles (hereafter termed levitons) can be generated on demand in a conductor by applying voltage pulses to a contact. Partitioning the excitations with an electronic beam splitter generates a current noise that we use to measure their number. Minimal-excitation states are observed for Lorentzian pulses, whereas for other pulse shapes there are significant contributions from holes. Further identification of levitons is provided in the energy domain with shot-noise spectroscopy, and in the time domain with electronic Hong-Ou-Mandel noise correlations. The latter, obtained by colliding synchronized levitons on a beam splitter, exemplifies the potential use of levitons for quantum information: using linear electron quantum optics in ballistic conductors, it is possible to imagine flying-qubit operation in which the Fermi statistics are exploited to entangle synchronized electrons emitted by distinct sources. Compared with electron sources based on quantum dots, the generation of levitons does not require delicate nanolithography, considerably simplifying the circuitry for scalability. Levitons are not limited to carrying a single charge, and so in a broader context n-particle levitons could find application in the study of full electron counting statistics. But they can also carry a fraction of charge if they are implemented in Luttinger liquids or in fractional quantum Hall edge channels; this allows the study of Abelian and non-Abelian quasiparticles in the
Minimal-excitation states for electron quantum optics using levitons
NASA Astrophysics Data System (ADS)
Dubois, J.; Jullien, T.; Portier, F.; Roche, P.; Cavanna, A.; Jin, Y.; Wegscheider, W.; Roulleau, P.; Glattli, D. C.
2013-10-01
The on-demand generation of pure quantum excitations is important for the operation of quantum systems, but it is particularly difficult for a system of fermions. This is because any perturbation affects all states below the Fermi energy, resulting in a complex superposition of particle and hole excitations. However, it was predicted nearly 20 years ago that a Lorentzian time-dependent potential with quantized flux generates a minimal excitation with only one particle and no hole. Here we report that such quasiparticles (hereafter termed levitons) can be generated on demand in a conductor by applying voltage pulses to a contact. Partitioning the excitations with an electronic beam splitter generates a current noise that we use to measure their number. Minimal-excitation states are observed for Lorentzian pulses, whereas for other pulse shapes there are significant contributions from holes. Further identification of levitons is provided in the energy domain with shot-noise spectroscopy, and in the time domain with electronic Hong-Ou-Mandel noise correlations. The latter, obtained by colliding synchronized levitons on a beam splitter, exemplifies the potential use of levitons for quantum information: using linear electron quantum optics in ballistic conductors, it is possible to imagine flying-qubit operation in which the Fermi statistics are exploited to entangle synchronized electrons emitted by distinct sources. Compared with electron sources based on quantum dots, the generation of levitons does not require delicate nanolithography, considerably simplifying the circuitry for scalability. Levitons are not limited to carrying a single charge, and so in a broader context n-particle levitons could find application in the study of full electron counting statistics. But they can also carry a fraction of charge if they are implemented in Luttinger liquids or in fractional quantum Hall edge channels; this allows the study of Abelian and non-Abelian quasiparticles in the
Low back-action magnetometers for high-speed readout of Nb flux qubits
NASA Astrophysics Data System (ADS)
Kuznetsov, Vladimir
2005-03-01
Hysteretic dc-squid magnetometers are used to measure the state of a large area gradiometric rf-squid qubit. The current bias and flux bias of the magnetometer are designed to avoid direct inductive coupling to the qubit. However the current bias affects the circulating current in the magnetometer and hence indirectly couples to the qubit. By designing an asymmetry in the two junctions of the magnetometer we can achieve bias points where fluctuations in the bias currents do not change the circulating current and effectively decouple the readout from the qubit. High-speed readout is achieved by pulsing the flux in the magnetometer, which is inductively coupled to microstrip lines on a separate chip. Resonant tunneling between the quantum wells of the qubit is measured at 10 mK using different sequences of controlling pulses including 10ns flux bias pulses. The effect of bias conditions of the magnetometer on the shape and positions of tunneling peaks indicated the low back-action of the measurements.
Quantum analysis of optical parametric fluorescence in the optical parametric amplification process
NASA Astrophysics Data System (ADS)
Wang, Bopeng; Zou, Xubo; Jing, Feng
2015-07-01
The temporal contrast of the ultra-intense laser pulse can be degraded by optical parametric fluorescence (OPF) in high-gain and pulse-pumped optical parametric amplification (OPA). However, to the best of our knowledge, no theory is proposed to describe the quantum noise in such conditions from the first principle. In this paper, we propose a theory based on the quantization of energy flux and a linearization method for investigating both lasers and the OPF in high-gain and pulse-pumped OPA. Following the proposal, the amplification of laser is consistent with classical nonlinear optics. Moreover, an analytical formula of OPF energy is obtained under undepleted and quasi-monochromatic pump conditions. A simplified formula is also obtained under the assumption of small spectral width and acceptant solid angle. Furthermore, a formula of the OPF duration is obtained with a Gaussian pump pulse. Excellent consistency is achieved between previous experiments and our theory.
NASA Astrophysics Data System (ADS)
Braun, Michael; Glaser, Steffen J.
2010-11-01
We introduce the concept of cooperative (COOP) pulses which are designed to compensate each other's imperfections. In multi-scan experiments, COOP pulses can cancel undesired signal contributions, complementing and generalizing phase cycles. COOP pulses can be efficiently optimized using an extended version of the optimal-control-based gradient ascent pulse engineering (GRAPE) algorithm. The advantage of the COOP approach is experimentally demonstrated for broadband and band-selective pulses.
High Power Picosecond Laser Pulse Recirculation
Shverdin, M Y; Jovanovic, I; Semenov, V A; Betts, S M; Brown, C; Gibson, D J; Shuttlesworth, R M; Hartemann, F V; Siders, C W; Barty, C P
2010-04-12
We demonstrate a nonlinear crystal-based short pulse recirculation cavity for trapping the second harmonic of an incident high power laser pulse. This scheme aims to increase the efficiency and flux of Compton-scattering based light sources. We demonstrate up to 36x average power enhancement of frequency doubled sub-millijoule picosecond pulses, and 17x average power enhancement of 177 mJ, 10 ps, 10 Hz pulses.
High-power picosecond laser pulse recirculation.
Shverdin, M Y; Jovanovic, I; Semenov, V A; Betts, S M; Brown, C; Gibson, D J; Shuttlesworth, R M; Hartemann, F V; Siders, C W; Barty, C P J
2010-07-01
We demonstrate a nonlinear crystal-based short pulse recirculation cavity for trapping the second harmonic of an incident high-power laser pulse. This scheme aims to increase the efficiency and flux of Compton-scattering-based light sources. We demonstrate up to 40x average power enhancement of frequency-doubled submillijoule picosecond pulses, and 17x average power enhancement of 177 mJ, 10 ps, 10 Hz pulses.
High-power picosecond laser pulse recirculation.
Shverdin, M Y; Jovanovic, I; Semenov, V A; Betts, S M; Brown, C; Gibson, D J; Shuttlesworth, R M; Hartemann, F V; Siders, C W; Barty, C P J
2010-07-01
We demonstrate a nonlinear crystal-based short pulse recirculation cavity for trapping the second harmonic of an incident high-power laser pulse. This scheme aims to increase the efficiency and flux of Compton-scattering-based light sources. We demonstrate up to 40x average power enhancement of frequency-doubled submillijoule picosecond pulses, and 17x average power enhancement of 177 mJ, 10 ps, 10 Hz pulses. PMID:20596201
Wade, E.J.
1958-07-29
An apparatus is described for counting and recording the number of electrical pulses occurring in each of a timed sequence of groups of pulses. The particular feature of the invention resides in a novel timing circuit of the univibrator type which provides very accurately timed pulses for opening each of a series of coincidence channels in sequence. The univibrator is shown incorporated in a pulse analyzing system wherein a series of pulse counting channels are periodically opened in order, one at a time, for a predetermtned open time interval, so that only one channel will be open at the time of occurrence of any of the electrical pulses to be sorted.
NASA Astrophysics Data System (ADS)
Arteev, M. S.; Vaulin, V. A.; Slinko, V. N.; Chumerin, P. Yu; Yushkov, Yu G.
1992-06-01
An analysis is made of the possibility of using a commercial microsecond microwave oscillator, supplemented by a device for time compression of microwave pulses, in pumping of industrial lasers with a high efficiency of conversion of the pump source energy into laser radiation. The results are reported of preliminary experiments on the commissioning of an excimer XeCl laser.
Spinhirne, J.D. )
1993-01-01
An eye safe, compact, solid state lidar for profiling atmospheric cloud and aerosol scattering has been demonstrated. The transmitter of the micro pulse lidar is a diode pumped [mu]J pulse energy, high repetition rate Nd:YLF laser. Eye safety is obtained through beam expansion. The receiver employs a photon counting solid state Geiger mode avalanche photodiode detector. Data acquisition is by a single card multichannel scaler. Daytime background induced quantum noise is controlled by a narrow receiver field-of-view (FOV) and a narrow bandwidth temperature controlled interference filter. Dynamic range of the signal is limited by optical geometric signal compression. Signal simulations and initial atmospheric measurements indicate that systems built on the micro pulse lidar concept are capable of detecting and profiling all significant cloud and aerosol scattering through the troposphere and into the stratosphere. The intended applications are scientific studies and environmental monitoring which require full time, unattended measurements of the cloud and aerosol height structure.
NASA Astrophysics Data System (ADS)
Haeri, M. B.; Putterman, S. J.; Garcia, A.; Roberts, P. H.
1993-01-01
The nonlinear quantum kinetic equation for the interaction of sound waves is solved via analytic and numerical techniques. In the classical regime energy cascades to higher frequency (ω) according to the steady-state power law ω-3/2. In the quantum limit, the system prefers a reverse cascade of energy which follows the power law ω-6. Above a critical flux, a new type of spectrum appears which is neither self-similar nor close to equilibrium. This state of nonlinear quantum wave turbulence represents a flow of energy directly from the classical source to the quantum degrees of freedom.
NASA Astrophysics Data System (ADS)
Semenov, Andrew G.; Zaikin, Andrei D.
2016-07-01
Quantum phase slips (QPSs) generate voltage fluctuations in superconducting nanowires. Employing the Keldysh technique and making use of the phase-charge duality arguments, we develop a theory of QPS-induced voltage noise in such nanowires. We demonstrate that quantum tunneling of the magnetic flux quanta across the wire yields quantum shot noise which obeys Poisson statistics and is characterized by a power-law dependence of its spectrum SΩ on the external bias. In long wires, SΩ decreases with increasing frequency Ω and vanishes beyond a threshold value of Ω at T →0 . The quantum coherent nature of QPS noise yields nonmonotonous dependence of SΩ on T at small Ω .
... www.thoracic.org amount of gases (oxygen and carbon dioxide) that are in your blood. To get an ... Also, a pulse oximeter does not measure your carbon dioxide level. How accurate is the pulse oximeter? The ...
NASA Astrophysics Data System (ADS)
Pleitez, Miguel; von Lilienfeld-Toal, Hermann; Mäntele, Werner
2012-01-01
Interstitial fluid, i.e. the liquid present in the outermost layer of living cells of the skin between the Stratum corneum and the Stratum spinosum, was analyzed by Fourier transform infrared spectroscopy and by infrared spectroscopy using pulsed quantum cascade infrared lasers with photoacoustic detection. IR spectra of simulated interstitial fluid samples and of real samples from volunteers in the 850-1800 cm -1 range revealed that the major components of interstitial fluid are albumin and glucose within the physiological range, with only traces of sodium lactate if at all. The IR absorbance of glucose in interstitial fluid in vivo was probed in healthy volunteers using a setup with quantum cascade lasers and photoacoustic detection previously described [11]. A variation of blood glucose between approx. 80 mg/dl and 250 mg/dl in the volunteers was obtained using the standard oral glucose tolerance test (OGT). At two IR wavelengths, 1054 cm -1 and 1084 cm -1, a reasonable correlation between the photoacoustic signal from the skin and the blood glucose value as determined by conventional glucose test sticks using blood from the finger tip was obtained. The infrared photoacoustic glucose signal (PAGS) may serve as the key for a non-invasive glucose measurement, since the glucose content in interstitial fluid closely follows blood glucose in the time course and in the level (a delay of some minutes and a level of approx. 80-90% of the glucose level in blood). Interstitial fluid is present in skin layers at a depth of only 15-50 μm and is thus within the reach of mid-IR energy in an absorbance measurement. A non-invasive glucose measurement for diabetes patients based on mid-infrared quantum cascade lasers and photoacoustic detection could replace the conventional measurement using enzymatic test stripes and a drop of blood from the finger tip, thus reducing pain and being a cost-efficient alternative for millions of diabetes patients.
Pleitez, Miguel; von Lilienfeld-Toal, Hermann; Mäntele, Werner
2012-01-01
Interstitial fluid, i.e. the liquid present in the outermost layer of living cells of the skin between the Stratum corneum and the Stratum spinosum, was analyzed by Fourier transform infrared spectroscopy and by infrared spectroscopy using pulsed quantum cascade infrared lasers with photoacoustic detection. IR spectra of simulated interstitial fluid samples and of real samples from volunteers in the 850-1800cm(-1) range revealed that the major components of interstitial fluid are albumin and glucose within the physiological range, with only traces of sodium lactate if at all. The IR absorbance of glucose in interstitial fluid in vivo was probed in healthy volunteers using a setup with quantum cascade lasers and photoacoustic detection previously described. A variation of blood glucose between approx. 80mg/dl and 250mg/dl in the volunteers was obtained using the standard oral glucose tolerance test (OGT). At two IR wavelengths, 1054cm(-1) and 1084cm(-1), a reasonable correlation between the photoacoustic signal from the skin and the blood glucose value as determined by conventional glucose test sticks using blood from the finger tip was obtained. The infrared photoacoustic glucose signal (PAGS) may serve as the key for a non-invasive glucose measurement, since the glucose content in interstitial fluid closely follows blood glucose in the time course and in the level (a delay of some minutes and a level of approx. 80-90% of the glucose level in blood). Interstitial fluid is present in skin layers at a depth of only 15-50μm and is thus within the reach of mid-IR energy in an absorbance measurement. A non-invasive glucose measurement for diabetes patients based on mid-infrared quantum cascade lasers and photoacoustic detection could replace the conventional measurement using enzymatic test stripes and a drop of blood from the finger tip, thus reducing pain and being a cost-efficient alternative for millions of diabetes patients.
Unipolar pulse assisted generation of the coherent XUV pulses
NASA Astrophysics Data System (ADS)
Feng, Liqiang; Liu, Hang
2015-08-01
A promising method to generate the attosecond XUV sources has been theoretically investigated when the Ne atom is driven by the multi-cycle two-color field combined with the unipolar pulse. The results show that with the introduction of the unipolar pulse, not only the harmonic cutoff is remarkably extended, but also the single short quantum path has been selected to contribute to the harmonics. Further, by optimizing the laser parameters, a supercontinuum with the 406 eV bandwidth can be obtained, which results in a series of sub-40as XUV pulses.
Platonov, V. V.; Kudasov, Yu. B.; Makarov, I. V.; Maslov, D. A.; Surdin, O. M.; Zholudev, M. S.; Ikonnikov, A. V.; Gavrilenko, V. I.; Mikhailov, N. N.; Dvoretsky, S. A.
2015-12-15
The magnetoabsorption in magnetic fields as high as 40 T is investigated at T > 77 K in HgTe/CdHgTe quantum-well heterostructures (d{sub QW} ≈ 8 nm). The spectra reveal two lines associated both with intraband transition from the lower Landau level in the conduction band and with interband transition. It is shown that the band structure in these systems changes from inverted to normal with increasing temperature.
Blanchat, Thomas K.; Hanks, Charles R.
2013-04-01
Four types of heat flux gages (Gardon, Schmidt-Boelter, Directional Flame Temperature, and High Temperature Heat Flux Sensor) were assessed and compared under flux conditions ranging between 100-1000 kW/m2, such as those seen in hydrocarbon fire or propellant fire conditions. Short duration step and pulse boundary conditions were imposed using a six-panel cylindrical array of high-temperature tungsten lamps. Overall, agreement between all gages was acceptable for the pulse tests and also for the step tests. However, repeated tests with the HTHFS with relatively long durations at temperatures approaching 1000ÀC showed a substantial decrease (10-25%) in heat flux subsequent to the initial test, likely due to the mounting technique. New HTHFS gages have been ordered to allow additional tests to determine the cause of the flux reduction.
Optical pulse-phased observations of faint pulsars with a phase-binning CCD camera
NASA Astrophysics Data System (ADS)
Kern, Brian
2002-11-01
We have constructed a phase-binning CCD camera optimized for optical observations of faint pulsars. The phase- binning CCD camera combines the high quantum efficiency of a CCD with a pulse-phased time resolution capable of observing pulsars as fast as 10 ms, with no read noise penalty. The phase-binning CCD can also operate as a two- channel imaging polarimeter, obtaining pulse-phased linear photopolarimetric observations. We have used this phase-binning CCD to make the first measurements of optical pulsations from an anomalous X- ray pulsar. We measured the optical pulse profile of 4U 0142+61, finding a pulsed fraction of 27%, many times larger than the pulsed fraction in X-rays. From this observation, we concluded that 4U 0142+61 must be a magnetar, an ultramagnetized neutron star ( B > 1014 G). The optical pulse is double-peaked, similar to the soft X-ray pulse profile. We also used the phase-binning CCD to obtain the photometric and polarimetric pulse profiles of PSR B0656+14, a middle-aged isolated rotation-powered pulsar. The optical pulse profile we measured significantly disagrees with the low signal-to-noise profile previously published for this pulsar. Our results show that the optical flux is entirely pulsed, with optical peaks at phases 0.2 and 0.8 with respect to the radio peak, and a bridge of emission between the peaks. The significance of the detection of pulsed polarized flux is low, but the position angles match the extrapolation of the radio polarization profile. The optical data, both photometric and polarimetric, are consistent with the polar cap model of pulsar magnetospheric emission. The fit of the optical data with the competing emission model, the outer gap model, has not yet been determined. We have developed a number of statistical tools, both to estimate the errors in our measurements and to identify systematic errors present in the pulse profiles. The statistical tools, when applied to the data presented here, show that the systematic
Roeschke, C.W.
1957-09-24
An improvement in pulse generators is described by which there are produced pulses of a duration from about 1 to 10 microseconds with a truly flat top and extremely rapid rise and fall. The pulses are produced by triggering from a separate input or by modifying the current to operate as a free-running pulse generator. In its broad aspect, the disclosed pulse generator comprises a first tube with an anode capacitor and grid circuit which controls the firing; a second tube series connected in the cathode circuit of the first tube such that discharge of the first tube places a voltage across it as the leading edge of the desired pulse; and an integrator circuit from the plate across the grid of the second tube to control the discharge time of the second tube, determining the pulse length.
NASA Astrophysics Data System (ADS)
Zheng, Zhen-Fei; Su, Qi-Ping; Yang, Chui-Ping
2013-08-01
We propose a way to prepare Greenberger--Horne--Zeilinger (GHZ) entangled photon Fock states of three cavities, by using a superconducting flux qutrit coupled to the cavities. This proposal does not require the use of classical microwave pulses and measurement during the entire operation. Thus, the operation is greatly simplified and the circuit engineering complexity and cost is much reduced. The proposal is quite general and can be applied to generate three-cavity GHZ entangled photon Fock states when the three cavities are coupled by a different three-level physical system such as a superconducting charge qutrit, a transmon qutrit, or a quantum dot.
Flux Quantization Without Cooper Pairs
NASA Astrophysics Data System (ADS)
Kadin, Alan
2013-03-01
It is universally accepted that the superconducting flux quantum h/2e requires the existence of a phase-coherent macroscopic wave function of Cooper pairs, each with charge 2e. On the contrary, we assert that flux quantization can be better understood in terms of single-electron quantum states, localized on the scale of the coherence length and organized into a real-space phase-antiphase structure. This packing configuration is consistent with the Pauli exclusion principle for single-electron states, maintains long-range phase coherence, and is compatible with much of the BCS formalism. This also accounts for h/2e in the Josephson effect, without Cooper pairs. Experimental evidence for this alternative picture may be found in deviations from h/2e in loops and devices much smaller than the coherence length. A similar phase-antiphase structure may also account for superfluids, without the need for boson condensation.
Tierno, A.; Radwell, N.; Ackemann, T.
2011-10-15
Self-sustained pulsations in the output of an InAs quantum dot laser diode in the MHz range are reported. The characteristics (shape, range, and frequency) are presented for the free-running laser and when optical feedback in the Littrow configuration is applied. Bistability in the light-current characteristics is observed for operating wavelengths smaller than the gain peak, but it is not present for wavelengths above the gain peak and for the free-running laser, except at elevated temperatures. The temporal evolution of the envelopes of the optical spectra is very different for operation below, around, and above the gain peak, which might be related to a change of phase-amplitude coupling across the gain maximum, in agreement with the expectation for a two-level system. The time scale and the bifurcation scenario, supported by an initial blueshift of the emission wavelength of each longitudinal mode in time-resolved optical spectra, suggests that these are optothermal pulsations similar to those reported in quantum well amplifiers [Phys. Rev. E 68, 036209 (2003)]. The mechanism of pulsation seems to be a destabilization of bistable states (due to saturable absorption in the beam wings) by a slow thermal change in the waveguiding properties.
NASA Astrophysics Data System (ADS)
Gekelman, Walter; van Compernolle, Bart
2012-10-01
Magnetic flux ropes are due to helical currents and form a dense carpet of arches on the surface of the sun. Occasionally one tears loose as a coronal mass ejection and its rope structure is detected by satellites close to the earth. Current sheets can tear into filaments and these are nothing other than flux ropes. Ropes are not static, they exert mutual JxB forces causing them to twist about each other and merge. Kink instabilities cause them to violently smash into each other and reconnect at the point of contact. We report on experiments done in the large plasma device (LAPD) at UCLA (L=17m,dia=60cm,0.3<=B0z<=2.5kG,n˜2x10^12cm-3)on three dimensional flux ropes. Two, three or more magnetic flux ropes are generated from initially adjacent pulsed current channels in a background magnetized plasma. The currents and magnetic fields form exotic shapes with no ignorable direction and no magnetic nulls. Volumetric space-time data show multiple reconnection sites with time-dependent locations. The concept of a quasi-separatrix layer (QSL), a tool to understand 3D reconnection without null points. In our experiment the QSL is a narrow ribbon-like region(s) that twists between field lines. Within the QSL(s) field lines that start close to one another rapidly diverge as they pass through one or more reconnection regions. When the field lines are tracked they are observed to slip along the QSL when reconnection occurs. The Heating and other co-existing waves will be presented.
SQUID With Integral Flux Concentrator
NASA Technical Reports Server (NTRS)
Peters, Palmer N.; Sisk, Robert C.
1989-01-01
In improved superconducting quantum interference device (SQUID), change in size and shape of superconducting ring improves coupling to external signal coil and eases coil-positioning tolerances. More rugged and easier to manufacture than conventional SQUID's with comparable electrical characteristics. Thin-film superconducting flux concentrator utilizes Meissner effect to deflect magnetic field of signal coil into central hole of SQUID. Used in magnetometers, ammeters, analog-to-digital converters, and related electronic applications in which high signal-to-noise ratios required.
Horton, J.A.
1994-05-03
Apparatus for increasing the length of a laser pulse to reduce its peak power without substantial loss in the average power of the pulse is disclosed. The apparatus uses a White cell having a plurality of optical delay paths of successively increasing number of passes between the field mirror and the objective mirrors. A pulse from a laser travels through a multi-leg reflective path between a beam splitter and a totally reflective mirror to the laser output. The laser pulse is also simultaneously injected through the beam splitter to the input mirrors of the optical delay paths. The pulses from the output mirrors of the optical delay paths go simultaneously to the laser output and to the input mirrors of the longer optical delay paths. The beam splitter is 50% reflective and 50% transmissive to provide equal attenuation of all of the pulses at the laser output. 6 figures.
NASA Astrophysics Data System (ADS)
Yang, Chui-Ping; Su, Qi-Ping; Nori, Franco
2013-11-01
The generation and control of quantum states of spatially-separated qubits distributed in different cavities constitute fundamental tasks in cavity quantum electrodynamics (QED). An interesting question in this context is how to prepare entanglement and realize quantum information transfer between qubits located at different cavities, which are important in large-scale quantum information processing. In this paper, we consider a physical system consisting of two cavities and three qubits. Two of the qubits are placed in two different cavities while the remaining one acts as a coupler, which is used to connect the two cavities. We propose an approach for generating quantum entanglement and implementing quantum information transfer between the two spatially-separated inter-cavity qubits. The quantum operations involved in this proposal are performed by a virtual photon process; thus the cavity decay is greatly suppressed during operations. In addition, to complete these tasks, only one coupler qubit and one operation step are needed. Moreover, there is no need to apply classical pulses, so that the engineering complexity is much reduced and the operation procedure is greatly simplified. Finally, our numerical results illustrate that high-fidelity implementation of this proposal using superconducting phase qubits and one-dimensional transmission line resonators is feasible for current circuit QED implementations. This proposal can also be applied to other types of superconducting qubits, including flux and charge qubits.
Phase engineering techniques in superconducting quantum electronics
NASA Astrophysics Data System (ADS)
Mielke, O.; Ortlepp, Th; Dimov, B.; Uhlmann, F. H.
2008-02-01
Due to the pulse driven nature of the Rapid Single Flux Quantum electronics nearly every basic cell requires the capability of temporary data storing. Implementing phase shifting elements in this essential device leads to several advantages concerning the device characteristics. There are different concepts enabling phase shifting elements. We give a comparative overview about these approaches. The effect of this novel element on a basic cell is analyzed exampling a toggle-flip-flop. Based on the effective noise temperature determined from the experimental results of a standard flip-flop, the bit error rate for several toggle-flip-flop realizations containing different phase shifting elements was calculated. A significantly improved area of function could be shown by simulated error rates lower than 10-12 with a DC bias margin better than ±63.5%.
NASA Astrophysics Data System (ADS)
Stojek, Zbigniew
The idea of imposing potential pulses and measuring the currents at the end of each pulse was proposed by Barker in a little-known journal as early as in 1958 [1]. However, the first reliable trouble-free and affordable polarographs offering voltammetric pulse techniques appeared on the market only in the 1970s. This delay was due to some limitations on the electronic side. In the 1990s, again substantial progress in electrochemical pulse instrumentation took place. This was related to the introduction of microprocessors, computers, and advanced software.
PERTURBATION APPROACH FOR QUANTUM COMPUTATION
G. P. BERMAN; D. I. KAMENEV; V. I. TSIFRINOVICH
2001-04-01
We discuss how to simulate errors in the implementation of simple quantum logic operations in a nuclear spin quantum computer with many qubits, using radio-frequency pulses. We verify our perturbation approach using the exact solutions for relatively small (L = 10) number of qubits.
Fast ballistic readout for flux qubits
NASA Astrophysics Data System (ADS)
Rabenstein, Kristian; Averin, Dmitri; Semenov, Vasili
2004-03-01
We suggest and calculate quantum detector properties of the magnetometer using controlled ballistic propagations of fluxons along a Josephson transmission line, which is the flux analog of the quantum point contact (QPC) detector for charge measurements. The magnetometer operation is based on the modulation of the fluxon transmission probability through the potential barrier created by the measured system. The calculated flux sensitivity and back-action dephasing rate for qubit measurements show that,similarly to the QPC detector, ballistic magnetometer should operate in the quantum-limited regime. One of the conditions of quantum-limited operation is the absence of information in the traversal time of fluxon propagation through the barrier. We also discuss non-trivial measurement strategies (for instance, QND measurements) that should be made possible by the ballistic magnetometer.
NASA Technical Reports Server (NTRS)
Spinhirne, James D. (Inventor)
1993-01-01
An eye safe, compact, solid state lidar for profiling atmospheric cloud and aerosol scattering is disclosed. The transmitter of the micro pulse lidar is a diode pumped micro-J pulse energy, high repetition rate Nd:YLF laser. Eye safety is obtained through beam expansion. The receiver employs a photon counting solid state Geiger mode avalanche photodiode detector. Data acquisition is by a single card multichannel scaler. Daytime background induced quantum noise is controlled by a narrow receiver field-of-view and a narrow bandwidth temperature controlled interference filter. Dynamic range of the signal is limited to optical geometric signal compression. Signal simulations and initial atmospheric measurements indicate that micropulse lider systems are capable of detecting and profiling all significant cloud and aerosol scattering through the troposphere and into the stratosphere. The intended applications are scientific studies and environmental monitoring which require full time, unattended measurements of the cloud and aerosol height structure.
Johnstone, C.W.
1958-06-17
The improvement of pulse amplifiers used with scintillation detectors is described. The pulse amplifier circuit has the advantage of reducing the harmful effects of overloading cause by large signal inputs. In general the pulse amplifier circuit comprises two amplifier tubes with the input pulses applied to one amplifier grid and coupled to the second amplifier tube through a common cathode load. The output of the second amplifier is coupled from the plate circuit to a cathode follower tube grid and a diode tube in connected from grid to cathode of the cathode follower tube. Degenerative feedback is provided in the second amplifier by coupling a signal from the cathode follower cathode to the second amplifier grid. The circuit proqides moderate gain stability, and overload protection for subsequent pulse circuits.
Kohler, B.; Yakovlev, V.V.; Wilson, K.R.; Squier, J.; DeLong, K.W.; Trebino, R.
1995-03-01
Frequency-resolved optical gating (FROG) measurements were made to characterize pulses from a Ti:sapphire chirped-pulse amplified laser system. By characterizing both the pulse intensity and the phase, the FROG data provided the first direct observation to our knowledge of residual phase distortion in a chirped-pulse amplifier. The FROG technique was also used to measure the regenerative amplifier dispersion and to characterize an amplitude-shaped pulse. The data provide an experimental demonstration of the value of FROG for characterizing complex pulses, including tailored femtosecond pulses for quantum control.
Chaisuwan, Nuanapa; Xu, He; Wu, Genying; Liu, Jianshe
2013-08-15
In this study a new and fast procedure was developed to determine trace 17β-estradiol (E2) concentrations using CdSe quantum dots (QDs) conjugation with bovine serum albumin (BSA)-E2. To increase the high efficiency of the method, the immunoassay design was restricted to an indirect competitive format. The E2 antigen and bioconjugate were incubated in a microtiter plate with an anti-E2 antibody and competition for antibody binding sites was established. The in situ bismuth-coated carbon electrodes were used for detecting the cadmium ions (Cd(2+)) released during the acid dissolution step. After optimization, the well-defined sharp anodic stripping voltammograms curves of the E2 concentration ranging from 50 to 1000 pg/mL was recorded, and the lowest detection limit was 50 pg/mL with 6% reproducibility and 7% repeatability. Finally, the assay was applied to tap water and wastewater samples. The detection limits were 52.56 ± 0.125 pg/mL for tap water and 51.42 ± 0.453 pg/mL for wastewater. These results show that the assay exhibited sensitive analytical performance in E2 detection with high sensitivity and accuracy with satisfactory results. PMID:23542084
Note: self-characterizing ultrafast pulse shaper for rapid pulse switching.
Pearson, Brett J; Weinacht, Thomas C
2012-04-01
We use a high-efficiency acousto-optic modulator at the input to a two-dimensional Fourier-domain pulse shaper to achieve built-in characterization of the shaped output pulses. The acousto-optic modulator directs the beam to different vertical positions on a two-dimensional spatial light modulator, each of which can contain a different pulse shape. The undiffracted portion of the light serves as a reference beam for characterizing the shaped pulse via spectral interferometry. Pulse switching rates of 100 kHz can be achieved, making the device especially useful for quantum-control spectroscopy.
Multiple quantum coherence spectroscopy.
Mathew, Nathan A; Yurs, Lena A; Block, Stephen B; Pakoulev, Andrei V; Kornau, Kathryn M; Wright, John C
2009-08-20
Multiple quantum coherences provide a powerful approach for studies of complex systems because increasing the number of quantum states in a quantum mechanical superposition state increases the selectivity of a spectroscopic measurement. We show that frequency domain multiple quantum coherence multidimensional spectroscopy can create these superposition states using different frequency excitation pulses. The superposition state is created using two excitation frequencies to excite the symmetric and asymmetric stretch modes in a rhodium dicarbonyl chelate and the dynamic Stark effect to climb the vibrational ladders involving different overtone and combination band states. A monochromator resolves the free induction decay of different coherences comprising the superposition state. The three spectral dimensions provide the selectivity required to observe 19 different spectral features associated with fully coherent nonlinear processes involving up to 11 interactions with the excitation fields. The different features act as spectroscopic probes of the diagonal and off-diagonal parts of the molecular potential energy hypersurface. This approach can be considered as a coherent pump-probe spectroscopy where the pump is a series of excitation pulses that prepares a multiple quantum coherence and the probe is another series of pulses that creates the output coherence. PMID:19507812
ERIC Educational Resources Information Center
Hands On!, 1998
1998-01-01
Presents an activity using computer software to investigate the role of the heart and blood, how the blood system responds to exercise, and how pulse rate is a good measure of physical condition. (ASK)
Horton, James A.
1994-01-01
Apparatus (20) for increasing the length of a laser pulse to reduce its peak power without substantial loss in the average power of the pulse. The apparatus (20) uses a White cell (10) having a plurality of optical delay paths (18a-18d) of successively increasing number of passes between the field mirror (13) and the objective mirrors (11 and 12). A pulse (26) from a laser (27) travels through a multi-leg reflective path (28) between a beam splitter (21) and a totally reflective mirror (24) to the laser output (37). The laser pulse (26) is also simultaneously injected through the beam splitter (21) to the input mirrors (14a-14d) of the optical delay paths (18a-18d). The pulses from the output mirrors (16a-16d) of the optical delay paths (18a-18d) go simultaneously to the laser output (37) and to the input mirrors ( 14b-14d) of the longer optical delay paths. The beam splitter (21) is 50% reflective and 50% transmissive to provide equal attenuation of all of the pulses at the laser output (37).
Li, Shu-Shen; Long, Gui-Lu; Bai, Feng-Shan; Feng, Song-Lin; Zheng, Hou-Zhi
2001-01-01
Quantum computing is a quickly growing research field. This article introduces the basic concepts of quantum computing, recent developments in quantum searching, and decoherence in a possible quantum dot realization. PMID:11562459
Experimental Satellite Quantum Communications.
Vallone, Giuseppe; Bacco, Davide; Dequal, Daniele; Gaiarin, Simone; Luceri, Vincenza; Bianco, Giuseppe; Villoresi, Paolo
2015-07-24
Quantum communication (QC), namely, the faithful transmission of generic quantum states, is a key ingredient of quantum information science. Here we demonstrate QC with polarization encoding from space to ground by exploiting satellite corner cube retroreflectors as quantum transmitters in orbit and the Matera Laser Ranging Observatory of the Italian Space Agency in Matera, Italy, as a quantum receiver. The quantum bit error ratio (QBER) has been kept steadily low to a level suitable for several quantum information protocols, as the violation of Bell inequalities or quantum key distribution (QKD). Indeed, by taking data from different satellites, we demonstrate an average value of QBER=4.6% for a total link duration of 85 s. The mean photon number per pulse μ_{sat} leaving the satellites was estimated to be of the order of one. In addition, we propose a fully operational satellite QKD system by exploiting our communication scheme with orbiting retroreflectors equipped with a modulator, a very compact payload. Our scheme paves the way toward the implementation of a QC worldwide network leveraging existing receivers. PMID:26252672
Experimental Satellite Quantum Communications
NASA Astrophysics Data System (ADS)
Vallone, Giuseppe; Bacco, Davide; Dequal, Daniele; Gaiarin, Simone; Luceri, Vincenza; Bianco, Giuseppe; Villoresi, Paolo
2015-07-01
Quantum communication (QC), namely, the faithful transmission of generic quantum states, is a key ingredient of quantum information science. Here we demonstrate QC with polarization encoding from space to ground by exploiting satellite corner cube retroreflectors as quantum transmitters in orbit and the Matera Laser Ranging Observatory of the Italian Space Agency in Matera, Italy, as a quantum receiver. The quantum bit error ratio (QBER) has been kept steadily low to a level suitable for several quantum information protocols, as the violation of Bell inequalities or quantum key distribution (QKD). Indeed, by taking data from different satellites, we demonstrate an average value of QBER =4.6 % for a total link duration of 85 s. The mean photon number per pulse μsat leaving the satellites was estimated to be of the order of one. In addition, we propose a fully operational satellite QKD system by exploiting our communication scheme with orbiting retroreflectors equipped with a modulator, a very compact payload. Our scheme paves the way toward the implementation of a QC worldwide network leveraging existing receivers.
Experimental Satellite Quantum Communications.
Vallone, Giuseppe; Bacco, Davide; Dequal, Daniele; Gaiarin, Simone; Luceri, Vincenza; Bianco, Giuseppe; Villoresi, Paolo
2015-07-24
Quantum communication (QC), namely, the faithful transmission of generic quantum states, is a key ingredient of quantum information science. Here we demonstrate QC with polarization encoding from space to ground by exploiting satellite corner cube retroreflectors as quantum transmitters in orbit and the Matera Laser Ranging Observatory of the Italian Space Agency in Matera, Italy, as a quantum receiver. The quantum bit error ratio (QBER) has been kept steadily low to a level suitable for several quantum information protocols, as the violation of Bell inequalities or quantum key distribution (QKD). Indeed, by taking data from different satellites, we demonstrate an average value of QBER=4.6% for a total link duration of 85 s. The mean photon number per pulse μ_{sat} leaving the satellites was estimated to be of the order of one. In addition, we propose a fully operational satellite QKD system by exploiting our communication scheme with orbiting retroreflectors equipped with a modulator, a very compact payload. Our scheme paves the way toward the implementation of a QC worldwide network leveraging existing receivers.
Neutron flux profile monitor for use in a fission reactor
Kopp, Manfred K.; Valentine, Kenneth H.
1983-01-01
A neutron flux monitor is provided which consists of a plurality of fission counters arranged as spaced-apart point detectors along a delay line. As a fission event occurs in any one of the counters, two delayed current pulses are generated at the output of the delay line. The time separation of the pulses identifies the counter in which the particular fission event occured. Neutron flux profiles of reactor cores can be more accurately measured as a result.
STATISTICAL STUDIES OF GIANT PULSE EMISSION FROM THE CRAB PULSAR
Majid, Walid A.; Naudet, Charles J.; Lowe, Stephen T.; Kuiper, Thomas B. H.
2011-11-01
We have observed the Crab pulsar with the Deep Space Network Goldstone 70 m antenna at 1664 MHz during three observing epochs for a total of 4 hr. Our data analysis has detected more than 2500 giant pulses, with flux densities ranging from 0.1 kJy to 150 kJy and pulse widths from 125 ns (limited by our bandwidth) to as long as 100 {mu}s, with median power amplitudes and widths of 1 kJy and 2 {mu}s, respectively. The most energetic pulses in our sample have energy fluxes of approximately 100 kJy {mu}s. We have used this large sample to investigate a number of giant pulse emission properties in the Crab pulsar, including correlations among pulse flux density, width, energy flux, phase, and time of arrival. We present a consistent accounting of the probability distributions and threshold cuts in order to reduce pulse-width biases. The excellent sensitivity obtained has allowed us to probe further into the population of giant pulses. We find that a significant portion, no less than 50%, of the overall pulsed energy flux at our observing frequency is emitted in the form of giant pulses.
NASA Astrophysics Data System (ADS)
Auletta, Gennaro; Fortunato, Mauro; Parisi, Giorgio
2014-01-01
Introduction; Part I. Basic Features of Quantum Mechanics: 1. From classical mechanics to quantum mechanics; 2. Quantum observable and states; 3. Quantum dynamics; 4. Examples of quantum dynamics; 5. Density matrix; Part II. More Advanced Topics: 6. Angular momentum and spin; 7. Identical particles; 8. Symmetries and conservation laws; 9. The measurement problem; Part III. Matter and Light: 10. Perturbations and approximation methods; 11. Hydrogen and helium atoms; 12. Hydrogen molecular ion; 13. Quantum optics; Part IV. Quantum Information: State and Correlations: 14. Quantum theory of open systems; 15. State measurement in quantum mechanics; 16. Entanglement: non-separability; 17. Entanglement: quantum information; References; Index.
Ganther, Jr., Kenneth R.; Snapp, Lowell D.
2002-09-10
A flux locked loop for providing an electrical feedback signal, the flux locked loop employing radio-frequency components and technology to extend the flux modulation frequency and tracking loop bandwidth. The flux locked loop of the present invention has particularly useful application in read-out electronics for DC SQUID magnetic measurement systems, in which case the electrical signal output by the flux locked loop represents an unknown magnetic flux applied to the DC SQUID.
Paramagnetic-Salt Thermometer With Flux Pump And SQUID's
NASA Technical Reports Server (NTRS)
Strayer, Donald M.; Israelsson, Ulf E.
1993-01-01
Paramagnetic-salt low-temperature thermometer incorporates improved superconducting magnetic-flux pump, multiple superconducting quantum interference devices as magnetometers, and feedback stabilization of magnetic flux. Requires much smaller initial magnetizing currents and provides improved temperature resolution via suppression of drift in magnetic induction.
Trumbo, D.E.
1959-02-10
A transistorized pulse-counting circuit adapted for use with nuclear radiation detecting detecting devices to provide a small, light weight portable counter is reported. The small size and low power requirements of the transistor are of particular value in this instance. The circuit provides an adjustable count scale with a single transistor which is triggered by the accumulated charge on a storage capacitor.
Photorefractive deceleration of light pulses
NASA Astrophysics Data System (ADS)
Sturman, B.; Podivilov, E.; Gorkunov, M.
2008-04-01
We theoretically study the effect of light deceleration in photorefractive nonlinear media. This includes consideration of different types of the photorefractive nonlinear response, different wave interaction schemes, and an analysis of the influence of the input parameters, such as the input temporal pulse width and the coupling strength, on the output pulse characteristics: the time delay, the propagation velocity, the amplification factor, and the output width. We show that photorefractive light deceleration has numerous advantages over other known techniques. It works already at low intensities, at room temperature, and within wide spectral ranges and offers a vast variety of handles for manipulating light pulses. An analogy with the light deceleration method based on the quantum effect of electromagnetically induced transparency in ultracold resonant gases is also considered.
Flux Compression Magnetic Nozzle
NASA Technical Reports Server (NTRS)
Thio, Y. C. Francis; Schafer, Charles (Technical Monitor)
2001-01-01
In pulsed fusion propulsion schemes in which the fusion energy creates a radially expanding plasma, a magnetic nozzle is required to redirect the radially diverging flow of the expanding fusion plasma into a rearward axial flow, thereby producing a forward axial impulse to the vehicle. In a highly electrically conducting plasma, the presence of a magnetic field B in the plasma creates a pressure B(exp 2)/2(mu) in the plasma, the magnetic pressure. A gradient in the magnetic pressure can be used to decelerate the plasma traveling in the direction of increasing magnetic field, or to accelerate a plasma from rest in the direction of decreasing magnetic pressure. In principle, ignoring dissipative processes, it is possible to design magnetic configurations to produce an 'elastic' deflection of a plasma beam. In particular, it is conceivable that, by an appropriate arrangement of a set of coils, a good approximation to a parabolic 'magnetic mirror' may be formed, such that a beam of charged particles emanating from the focal point of the parabolic mirror would be reflected by the mirror to travel axially away from the mirror. The degree to which this may be accomplished depends on the degree of control one has over the flux surface of the magnetic field, which changes as a result of its interaction with a moving plasma.
Flux quench in a system of interacting spinless fermions in one dimension
NASA Astrophysics Data System (ADS)
Nakagawa, Yuya O.; Misguich, Grégoire; Oshikawa, Masaki
2016-05-01
We study a quantum quench in a one-dimensional spinless fermion model (equivalent to the XXZ spin chain), where a magnetic flux is suddenly switched off. This quench is equivalent to imposing a pulse of electric field and therefore generates an initial particle current. This current is not a conserved quantity in the presence of a lattice and interactions, and we investigate numerically its time evolution after the quench, using the infinite time-evolving block decimation method. For repulsive interactions or large initial flux, we find oscillations that are governed by excitations deep inside the Fermi sea. At long times we observe that the current remains nonvanishing in the gapless cases, whereas it decays to zero in the gapped cases. Although the linear response theory (valid for a weak flux) predicts the same long-time limit of the current for repulsive and attractive interactions (relation with the zero-temperature Drude weight), larger nonlinearities are observed in the case of repulsive interactions compared with that of the attractive case.
Leake, J R; Donnelly, D P; Saunders, E M; Boddy, L; Read, D J
2001-02-01
We used a novel digital autoradiographic technique that enabled, for the first time, simultaneous visualization and quantification of spatial and temporal changes in carbon allocation patterns in ectomycorrhizal mycelia. Mycorrhizal plants of Pinus sylvestris L. were grown in microcosms containing non-sterile peat. The time course and spatial distribution of carbon allocation by P. sylvestris to mycelia of its mycorrhizal partners, Paxillus involutus (Batsch) Fr. and Suillus bovinus (L.): Kuntze, were quantified following 14C pulse labeling of the plants. Litter patches were used to investigate the effects of nutrient resource quality on carbon allocation. The wood-decomposer fungus Phanerochaete velutina (D.C.: Pers.) Parmasto was introduced to evaluate competitive and territorial interactions between its mycelial cords and the mycelial system of S. bovinus. Growth of ectomycorrhizal mycelium was stimulated in the litter patches. Nearly 60% of the C transferred from host plant to external mycorrhizal mycelium (> 2 mm from root surfaces) was allocated to mycelium in the patches, which comprised only 12% of the soil area available for mycelial colonization. Mycelia in the litter patch most recently colonized by mycorrhizal mycelium received the largest investment of carbon, amounting to 27 to 50% of the total 14C in external mycorrhizal mycelium. The amount of C transfer to external mycelium of S. bovinus following pulse labeling was reduced from a maximum of 167 nmol in systems with no saprotroph to a maximum of 61 nmol in systems interacting with P. velutina. The 14C content of S. bovinus mycelium reached a maximum 24-36 h after labeling in control microcosms, but allocation did not reach a peak until 56 h after labeling, when S. bovinus interacted with mycelium of P. velutina. The mycelium of S. bovinus contained 9% of the total 14C in the plants (including mycorrhizae) at the end of the experiment, but this was reduced to 4% in the presence of P. velutina. The
Leake, J R; Donnelly, D P; Saunders, E M; Boddy, L; Read, D J
2001-02-01
We used a novel digital autoradiographic technique that enabled, for the first time, simultaneous visualization and quantification of spatial and temporal changes in carbon allocation patterns in ectomycorrhizal mycelia. Mycorrhizal plants of Pinus sylvestris L. were grown in microcosms containing non-sterile peat. The time course and spatial distribution of carbon allocation by P. sylvestris to mycelia of its mycorrhizal partners, Paxillus involutus (Batsch) Fr. and Suillus bovinus (L.): Kuntze, were quantified following 14C pulse labeling of the plants. Litter patches were used to investigate the effects of nutrient resource quality on carbon allocation. The wood-decomposer fungus Phanerochaete velutina (D.C.: Pers.) Parmasto was introduced to evaluate competitive and territorial interactions between its mycelial cords and the mycelial system of S. bovinus. Growth of ectomycorrhizal mycelium was stimulated in the litter patches. Nearly 60% of the C transferred from host plant to external mycorrhizal mycelium (> 2 mm from root surfaces) was allocated to mycelium in the patches, which comprised only 12% of the soil area available for mycelial colonization. Mycelia in the litter patch most recently colonized by mycorrhizal mycelium received the largest investment of carbon, amounting to 27 to 50% of the total 14C in external mycorrhizal mycelium. The amount of C transfer to external mycelium of S. bovinus following pulse labeling was reduced from a maximum of 167 nmol in systems with no saprotroph to a maximum of 61 nmol in systems interacting with P. velutina. The 14C content of S. bovinus mycelium reached a maximum 24-36 h after labeling in control microcosms, but allocation did not reach a peak until 56 h after labeling, when S. bovinus interacted with mycelium of P. velutina. The mycelium of S. bovinus contained 9% of the total 14C in the plants (including mycorrhizae) at the end of the experiment, but this was reduced to 4% in the presence of P. velutina. The
NASA Astrophysics Data System (ADS)
Le Gouët, Jean-Louis; Moiseev, Sergey
2012-06-01
Interaction of quantum radiation with multi-particle ensembles has sparked off intense research efforts during the past decade. Emblematic of this field is the quantum memory scheme, where a quantum state of light is mapped onto an ensemble of atoms and then recovered in its original shape. While opening new access to the basics of light-atom interaction, quantum memory also appears as a key element for information processing applications, such as linear optics quantum computation and long-distance quantum communication via quantum repeaters. Not surprisingly, it is far from trivial to practically recover a stored quantum state of light and, although impressive progress has already been accomplished, researchers are still struggling to reach this ambitious objective. This special issue provides an account of the state-of-the-art in a fast-moving research area that makes physicists, engineers and chemists work together at the forefront of their discipline, involving quantum fields and atoms in different media, magnetic resonance techniques and material science. Various strategies have been considered to store and retrieve quantum light. The explored designs belong to three main—while still overlapping—classes. In architectures derived from photon echo, information is mapped over the spectral components of inhomogeneously broadened absorption bands, such as those encountered in rare earth ion doped crystals and atomic gases in external gradient magnetic field. Protocols based on electromagnetic induced transparency also rely on resonant excitation and are ideally suited to the homogeneous absorption lines offered by laser cooled atomic clouds or ion Coulomb crystals. Finally off-resonance approaches are illustrated by Faraday and Raman processes. Coupling with an optical cavity may enhance the storage process, even for negligibly small atom number. Multiple scattering is also proposed as a way to enlarge the quantum interaction distance of light with matter. The
NASA Technical Reports Server (NTRS)
Hildebrandt, A. F.; Elleman, D. D.; Whitmore, F. C. (Inventor)
1966-01-01
A magnetic flux pump is described for increasing the intensity of a magnetic field by transferring flux from one location to the magnetic field. The device includes a pair of communicating cavities formed in a block of superconducting material, and a piston for displacing the trapped magnetic flux into the secondary cavity producing a field having an intense flux density.
Modeling Pulse Tube Cryocoolers with CFD
NASA Astrophysics Data System (ADS)
Flake, Barrett; Razani, Arsalan
2004-06-01
A commercial computational fluid dynamics (CFD) software package is used to model the oscillating flow inside a pulse tube cryocooler. Capabilities for modeling pulse tubes are demonstrated with preliminary case studies and the results presented. The 2D axi-symmetric simulations demonstrate the time varying temperature and velocity fields in the tube along with computation of the heat fluxes at the hot and cold heat exchangers. The only externally imposed boundary conditions are a cyclically moving piston wall at one end of the tube and constant temperature or heat flux boundaries at the external walls of the hot and cold heat exchangers.
FEU-140 photomultipliers in pulsed plasma spectroscopy
Arteev, M.S.; Sulakshin, S.S.
1987-12-01
Special fast photomultipliers are usually employed in photoelectric spectroscopy of nonstationary plasmas. Measurements have been made on the pulse characteristics and spectral sensitivity for the FEU-140 photomultiplier, which enables one to record a light flux of about 10/sup -10/ W as pulses of duration down to 10 nsec in the range 200-650 nm with a fairly wide linearity range (10/sup -10/-10/sup -18/ W).
D branes in background fluxes and Nielsen-Olesen instabilities
NASA Astrophysics Data System (ADS)
Russo, Jorge G.
2016-06-01
In quantum field theory, charged particles with spin ≥ 1 may become tachyonic in the present of magnetic fluxes above some critical field, signaling an instability of the vacuum. The phenomenon is generic, in particular, similar instabilities are known to exist in open and closed string theory, where a spinning string state can become tachyonic above a critical field. In compactifications involving RR fluxes F p+2, the quantum states which could become tachyonic by the same Nielsen-Olesen mechanism are D p branes. By constructing an appropriate background with RR magnetic flux that takes into account back-reaction, we identify the possible tachyonic D p brane states and compute the formula for the energy spectrum in a sector. More generally, we argue that in any background RR magnetic flux, there are high spin D p quantum states which become very light at critical fields.
Limitations on practical quantum cryptography
Brassard; Lutkenhaus; Mor; Sanders
2000-08-01
We provide limits to practical quantum key distribution, taking into account channel losses, a realistic detection process, and imperfections in the "qubits" sent from the sender to the receiver. As we show, even quantum key distribution with perfect qubits might not be achievable over long distances when the other imperfections are taken into account. Furthermore, existing experimental schemes (based on weak pulses) currently do not offer unconditional security for the reported distances and signal strength. Finally we show that parametric down-conversion offers enhanced performance compared to its weak coherent pulse counterpart.
Gschrey, M.; Thoma, A.; Schnauber, P.; Seifried, M.; Schmidt, R.; Wohlfeil, B.; Krüger, L.; Schulze, J. -H.; Heindel, T.; Burger, S.; Schmidt, F.; Strittmatter, A.; Rodt, S.; Reitzenstein, S.
2015-01-01
The success of advanced quantum communication relies crucially on non-classical light sources emitting single indistinguishable photons at high flux rates and purity. We report on deterministically fabricated microlenses with single quantum dots inside which fulfil these requirements in a flexible and robust quantum device approach. In our concept we combine cathodoluminescence spectroscopy with advanced in situ three-dimensional electron-beam lithography at cryogenic temperatures to pattern monolithic microlenses precisely aligned to pre-selected single quantum dots above a distributed Bragg reflector. We demonstrate that the resulting deterministic quantum-dot microlenses enhance the photon-extraction efficiency to (23±3)%. Furthermore we prove that such microlenses assure close to pure emission of triggered single photons with a high degree of photon indistinguishability up to (80±7)% at saturation. As a unique feature, both single-photon purity and photon indistinguishability are preserved at high excitation power and pulsed excitation, even above saturation of the quantum emitter. PMID:26179766
Bohachevsky, I.O.; Torrey, M.D.
1986-06-10
An underwater pulsed hydrojet propulsion system is provided for accelerating and propelling a projectile or other vessel. A reactant, such as lithium, is fluidized and injected into a water volume. The resulting reaction produces an energy density in a time effective to form a steam pocket. Thrust flaps or baffles direct the pressure from the steam pocket toward an exit nozzle for accelerating a water volume to create thrust. A control system regulates the dispersion of reactant to control thrust characteristics.
Practical quantum coin flipping
NASA Astrophysics Data System (ADS)
Pappa, Anna; Chailloux, André; Diamanti, Eleni; Kerenidis, Iordanis
2011-11-01
We show that in the unconditional security model, a single quantum strong coin flip with security guarantees that are strictly better than in any classical protocol is possible to implement with current technology. Our protocol takes into account all aspects of an experimental implementation, including losses, multiphoton pulses emitted by practical photon sources, channel noise, detector dark counts, and finite quantum efficiency. We calculate the abort probability when both players are honest, as well as the probability of one player forcing his desired outcome. For a channel length up to 21 km and commonly used parameter values, we can achieve honest abort and cheating probabilities that are better than in any classical protocol. Our protocol is, in principle, implementable using attenuated laser pulses, with no need for entangled photons or any other specific resources.
Practical quantum coin flipping
Pappa, Anna; Diamanti, Eleni; Chailloux, Andre; Kerenidis, Iordanis
2011-11-15
We show that in the unconditional security model, a single quantum strong coin flip with security guarantees that are strictly better than in any classical protocol is possible to implement with current technology. Our protocol takes into account all aspects of an experimental implementation, including losses, multiphoton pulses emitted by practical photon sources, channel noise, detector dark counts, and finite quantum efficiency. We calculate the abort probability when both players are honest, as well as the probability of one player forcing his desired outcome. For a channel length up to 21 km and commonly used parameter values, we can achieve honest abort and cheating probabilities that are better than in any classical protocol. Our protocol is, in principle, implementable using attenuated laser pulses, with no need for entangled photons or any other specific resources.
NASA Astrophysics Data System (ADS)
Weinfurter, Harald; Zeilinger, Anton
Quantum entanglement lies at the heart of the new field of quantum communication and computation. For a long time, entanglement was seen just as one of those fancy features which make quantum mechanics so counterintuitive. But recently, quantum information theory has shown the tremendous importance of quantum correlations for the formulation of new methods of information transfer and for algorithms exploiting the capabilities of quantum computers.This chapter describes the first experimental realizations of quantum communication schemes using entangled photon pairs. We show how to make communication secure against eavesdropping using entanglement-based quantum cryptography, how to increase the information capacity of a quantum channel by quantum dense coding and, finally, how to communicate quantum information itself in the process of quantum teleportation.
Apparatus and method for optical pulse measurement
Trebino, Rick P.; Tsang, Thomas; Fittinghoff, David N.; Sweetser, John N.; Krumbuegel, Marco A.
1999-12-28
Practical third-order frequency-resolved optical grating (FROG) techniques for characterization of ultrashort optical pulses are disclosed. The techniques are particularly suited to the measurement of single and/or weak optical pulses having pulse durations in the picosecond and subpicosecond regime. The relative quantum inefficiency of third-order nonlinear optical effects is compensated for through i) use of phase-matched transient grating beam geometry to maximize interaction length, and ii) use of interface-enhanced third-harmonic generation.
Apparatus and method for optical pulse measurement
Trebino, R.P.; Tsang, T.; Fittinghoff, D.N.; Sweetser, J.N.; Krumbuegel, M.A.
1999-12-28
Practical third-order frequency-resolved optical grating (FROG) techniques for characterization of ultrashort optical pulses are disclosed. The techniques are particularly suited to the measurement of single and/or weak optical pulses having pulse durations in the picosecond and subpicosecond regime. The relative quantum inefficiency of third-order nonlinear optical effects is compensated for through (i) use of phase-matched transient grating beam geometry to maximize interaction length, and (ii) use of interface-enhanced third-harmonic generation.
Qubit lattice coherence induced by electromagnetic pulses in superconducting metamaterials.
Ivić, Z; Lazarides, N; Tsironis, G P
2016-01-01
Quantum bits (qubits) are at the heart of quantum information processing schemes. Currently, solid-state qubits, and in particular the superconducting ones, seem to satisfy the requirements for being the building blocks of viable quantum computers, since they exhibit relatively long coherence times, extremely low dissipation, and scalability. The possibility of achieving quantum coherence in macroscopic circuits comprising Josephson junctions, envisioned by Legett in the 1980's, was demonstrated for the first time in a charge qubit; since then, the exploitation of macroscopic quantum effects in low-capacitance Josephson junction circuits allowed for the realization of several kinds of superconducting qubits. Furthermore, coupling between qubits has been successfully achieved that was followed by the construction of multiple-qubit logic gates and the implementation of several algorithms. Here it is demonstrated that induced qubit lattice coherence as well as two remarkable quantum coherent optical phenomena, i.e., self-induced transparency and Dicke-type superradiance, may occur during light-pulse propagation in quantum metamaterials comprising superconducting charge qubits. The generated qubit lattice pulse forms a compound "quantum breather" that propagates in synchrony with the electromagnetic pulse. The experimental confirmation of such effects in superconducting quantum metamaterials may open a new pathway to potentially powerful quantum computing. PMID:27403780
Qubit lattice coherence induced by electromagnetic pulses in superconducting metamaterials
Ivić, Z.; Lazarides, N.; Tsironis, G. P.
2016-01-01
Quantum bits (qubits) are at the heart of quantum information processing schemes. Currently, solid-state qubits, and in particular the superconducting ones, seem to satisfy the requirements for being the building blocks of viable quantum computers, since they exhibit relatively long coherence times, extremely low dissipation, and scalability. The possibility of achieving quantum coherence in macroscopic circuits comprising Josephson junctions, envisioned by Legett in the 1980’s, was demonstrated for the first time in a charge qubit; since then, the exploitation of macroscopic quantum effects in low-capacitance Josephson junction circuits allowed for the realization of several kinds of superconducting qubits. Furthermore, coupling between qubits has been successfully achieved that was followed by the construction of multiple-qubit logic gates and the implementation of several algorithms. Here it is demonstrated that induced qubit lattice coherence as well as two remarkable quantum coherent optical phenomena, i.e., self-induced transparency and Dicke-type superradiance, may occur during light-pulse propagation in quantum metamaterials comprising superconducting charge qubits. The generated qubit lattice pulse forms a compound ”quantum breather” that propagates in synchrony with the electromagnetic pulse. The experimental confirmation of such effects in superconducting quantum metamaterials may open a new pathway to potentially powerful quantum computing. PMID:27403780
Qubit lattice coherence induced by electromagnetic pulses in superconducting metamaterials
NASA Astrophysics Data System (ADS)
Ivić, Z.; Lazarides, N.; Tsironis, G. P.
2016-07-01
Quantum bits (qubits) are at the heart of quantum information processing schemes. Currently, solid-state qubits, and in particular the superconducting ones, seem to satisfy the requirements for being the building blocks of viable quantum computers, since they exhibit relatively long coherence times, extremely low dissipation, and scalability. The possibility of achieving quantum coherence in macroscopic circuits comprising Josephson junctions, envisioned by Legett in the 1980’s, was demonstrated for the first time in a charge qubit; since then, the exploitation of macroscopic quantum effects in low-capacitance Josephson junction circuits allowed for the realization of several kinds of superconducting qubits. Furthermore, coupling between qubits has been successfully achieved that was followed by the construction of multiple-qubit logic gates and the implementation of several algorithms. Here it is demonstrated that induced qubit lattice coherence as well as two remarkable quantum coherent optical phenomena, i.e., self-induced transparency and Dicke-type superradiance, may occur during light-pulse propagation in quantum metamaterials comprising superconducting charge qubits. The generated qubit lattice pulse forms a compound ”quantum breather” that propagates in synchrony with the electromagnetic pulse. The experimental confirmation of such effects in superconducting quantum metamaterials may open a new pathway to potentially powerful quantum computing.
Qubit lattice coherence induced by electromagnetic pulses in superconducting metamaterials.
Ivić, Z; Lazarides, N; Tsironis, G P
2016-07-12
Quantum bits (qubits) are at the heart of quantum information processing schemes. Currently, solid-state qubits, and in particular the superconducting ones, seem to satisfy the requirements for being the building blocks of viable quantum computers, since they exhibit relatively long coherence times, extremely low dissipation, and scalability. The possibility of achieving quantum coherence in macroscopic circuits comprising Josephson junctions, envisioned by Legett in the 1980's, was demonstrated for the first time in a charge qubit; since then, the exploitation of macroscopic quantum effects in low-capacitance Josephson junction circuits allowed for the realization of several kinds of superconducting qubits. Furthermore, coupling between qubits has been successfully achieved that was followed by the construction of multiple-qubit logic gates and the implementation of several algorithms. Here it is demonstrated that induced qubit lattice coherence as well as two remarkable quantum coherent optical phenomena, i.e., self-induced transparency and Dicke-type superradiance, may occur during light-pulse propagation in quantum metamaterials comprising superconducting charge qubits. The generated qubit lattice pulse forms a compound "quantum breather" that propagates in synchrony with the electromagnetic pulse. The experimental confirmation of such effects in superconducting quantum metamaterials may open a new pathway to potentially powerful quantum computing.
Quantum Adiabatic Pumping by Modulating Tunnel Phase in Quantum Dots
NASA Astrophysics Data System (ADS)
Taguchi, Masahiko; Nakajima, Satoshi; Kubo, Toshihiro; Tokura, Yasuhiro
2016-08-01
In a mesoscopic system, under zero bias voltage, a finite charge is transferred by quantum adiabatic pumping by adiabatically and periodically changing two or more control parameters. We obtained expressions for the pumped charge for a ring of three quantum dots (QDs) by choosing the magnetic flux penetrating the ring as one of the control parameters. We found that the pumped charge shows a steplike behavior with respect to the variance of the flux. The value of the step heights is not universal but depends on the trajectory of the control parameters. We discuss the physical origin of this behavior on the basis of the Fano resonant condition of the ring.
Greenly, John B.
1997-01-01
An improved pulsed ion beam source having a new biasing circuit for the fast magnetic field. This circuit provides for an initial negative bias for the field created by the fast coils in the ion beam source which pre-ionize the gas in the source, ionize the gas and deliver the gas to the proper position in the accelerating gap between the anode and cathode assemblies in the ion beam source. The initial negative bias improves the interaction between the location of the nulls in the composite magnetic field in the ion beam source and the position of the gas for pre-ionization and ionization into the plasma as well as final positioning of the plasma in the accelerating gap. Improvements to the construction of the flux excluders in the anode assembly are also accomplished by fabricating them as layered structures with a high melting point, low conductivity material on the outsides with a high conductivity material in the center.
Robust dynamical decoupling for quantum computing and quantum memory.
Souza, Alexandre M; Alvarez, Gonzalo A; Suter, Dieter
2011-06-17
Dynamical decoupling (DD) is a popular technique for protecting qubits from the environment. However, unless special care is taken, experimental errors in the control pulses used in this technique can destroy the quantum information instead of preserving it. Here, we investigate techniques for making DD sequences robust against different types of experimental errors while retaining good decoupling efficiency in a fluctuating environment. We present experimental data from solid-state nuclear spin qubits and introduce a new DD sequence that is suitable for quantum computing and quantum memory.
Controllable Quantum States Mesoscopic Superconductivity and Spintronics (MS+S2006)
NASA Astrophysics Data System (ADS)
Takayanagi, Hideaki; Nitta, Junsaku; Nakano, Hayato
2008-10-01
Mesoscopic effects in superconductors. Tunneling measurements of charge imbalance of non-equilibrium superconductors / R. Yagi. Influence of magnetic impurities on Josephson current in SNS junctions / T. Yokoyama. Nonlinear response and observable signatures of equilibrium entanglement / A. M. Zagoskin. Stimulated Raman adiabatic passage with a Cooper pair box / Giuseppe Falci. Crossed Andreev reflection-induced giant negative magnetoresistance / Francesco Giazotto -- Quantum modulation of superconducting junctions. Adiabatic pumping through a Josephson weak link / Fabio Taddei. Squeezing of superconducting qubits / Kazutomu Shiokawa. Detection of Berrys phases in flux qubits with coherent pulses / D. N. Zheng. Probing entanglement in the system of coupled Josephson qubits / A. S. Kiyko. Josephson junction with tunable damping using quasi-particle injection / Ryuta Yagi. Macroscopic quantum coherence in rf-SQUIDs / Alexey V. Ustinov. Bloch oscillations in a Josephson circuit / D. Esteve. Manipulation of magnetization in nonequilibrium superconducting nanostructures / F. Giazotto -- Superconducting qubits. Decoherence and Rabi oscillations in a qubit coupled to a quantum two-level system / Sahel Ashhab. Phase-coupled flux qubits: CNOT operation, controllable coupling and entanglement / Mun Dae Kim. Characteristics of a switchable superconducting flux transformer with a DC-SQUID / Yoshihiro Shimazu. Characterization of adiabatic noise in charge-based coherent nanodevices / E. Paladino -- Unconventional superconductors. Threshold temperatures of zero-bias conductance peak and zero-bias conductance dip in diffusive normal metal/superconductor junctions / Iduru Shigeta. Tunneling conductance in 2DEG/S junctions in the presence of Rashba spin-orbit coupling / T. Yokoyama. Theory of charge transport in diffusive ferromagnet/p-wave superconductor junctions / T. Yokoyama. Theory of enhanced proximity effect by the exchange field in FS bilayers / T. Yokoyama. Theory of
From reactors to long pulse sources
Mezei, F. |
1995-12-31
We will show, that by using an adapted instrumentation concept, the performance of a continuous source can be emulated by one switch on in long pulses for only about 10% of the total time. This 10 fold gain in neutron economy opens up the way for building reactor like sources with an order of magnitude higher flux than the present technological limits. Linac accelerator driven spallation lends itself favorably for the realization of this kind of long pulse sources, which will be complementary to short pulse spallation sources, the same way continuous reactor sources are.
Flux-p: automating metabolic flux analysis.
Ebert, Birgitta E; Lamprecht, Anna-Lena; Steffen, Bernhard; Blank, Lars M
2012-11-12
Quantitative knowledge of intracellular fluxes in metabolic networks is invaluable for inferring metabolic system behavior and the design principles of biological systems. However, intracellular reaction rates can not often be calculated directly but have to be estimated; for instance, via 13C-based metabolic flux analysis, a model-based interpretation of stable carbon isotope patterns in intermediates of metabolism. Existing software such as FiatFlux, OpenFLUX or 13CFLUX supports experts in this complex analysis, but requires several steps that have to be carried out manually, hence restricting the use of this software for data interpretation to a rather small number of experiments. In this paper, we present Flux-P as an approach to automate and standardize 13C-based metabolic flux analysis, using the Bio-jETI workflow framework. Exemplarily based on the FiatFlux software, it demonstrates how services can be created that carry out the different analysis steps autonomously and how these can subsequently be assembled into software workflows that perform automated, high-throughput intracellular flux analysis of high quality and reproducibility. Besides significant acceleration and standardization of the data analysis, the agile workflow-based realization supports flexible changes of the analysis workflows on the user level, making it easy to perform custom analyses.
Nonlinear optics quantum computing with circuit QED.
Adhikari, Prabin; Hafezi, Mohammad; Taylor, J M
2013-02-01
One approach to quantum information processing is to use photons as quantum bits and rely on linear optical elements for most operations. However, some optical nonlinearity is necessary to enable universal quantum computing. Here, we suggest a circuit-QED approach to nonlinear optics quantum computing in the microwave regime, including a deterministic two-photon phase gate. Our specific example uses a hybrid quantum system comprising a LC resonator coupled to a superconducting flux qubit to implement a nonlinear coupling. Compared to the self-Kerr nonlinearity, we find that our approach has improved tolerance to noise in the qubit while maintaining fast operation.
NASA Astrophysics Data System (ADS)
Georgescu, I. M.; Ashhab, S.; Nori, Franco
2014-01-01
Simulating quantum mechanics is known to be a difficult computational problem, especially when dealing with large systems. However, this difficulty may be overcome by using some controllable quantum system to study another less controllable or accessible quantum system, i.e., quantum simulation. Quantum simulation promises to have applications in the study of many problems in, e.g., condensed-matter physics, high-energy physics, atomic physics, quantum chemistry, and cosmology. Quantum simulation could be implemented using quantum computers, but also with simpler, analog devices that would require less control, and therefore, would be easier to construct. A number of quantum systems such as neutral atoms, ions, polar molecules, electrons in semiconductors, superconducting circuits, nuclear spins, and photons have been proposed as quantum simulators. This review outlines the main theoretical and experimental aspects of quantum simulation and emphasizes some of the challenges and promises of this fast-growing field.
Tackling systematic errors in quantum logic gates with composite rotations
Cummins, Holly K.; Llewellyn, Gavin; Jones, Jonathan A.
2003-04-01
We describe the use of composite rotations to combat systematic errors in single-qubit quantum logic gates and discuss three families of composite rotations which can be used to correct off-resonance and pulse length errors. Although developed and described within the context of nuclear magnetic resonance quantum computing, these sequences should be applicable to any implementation of quantum computation.
Controllable injector for local flux entry into superconducting films
NASA Astrophysics Data System (ADS)
Carmo, D.; Colauto, F.; de Andrade, A. M. H.; Oliveira, A. A. M.; Ortiz, W. A.; Johansen, T. H.
2016-09-01
A superconducting flux injector (SFI) has been designed to allow for controlled injections of magnetic flux into a superconducting film from a predefined location along the edge. The SFI is activated by an external current pulse, here chosen to be 200 ms long, and it is demonstrated on films of Nb that the amount of injected flux is controlled by the pulse height. Examples of injections at two different temperatures where the flux enters by stimulated flux-flow and by triggered thermomagnetic avalanches are presented. The boundary between the two types of injection is determined and discussed. The SFI opens up for active use of phenomena which up to now have been considered hazardous for a safe operation of superconducting devices.
Minimal-excitation states for electron quan-tum optics using levitons
NASA Astrophysics Data System (ADS)
Roulleau, Preden; Jullien, Thibaut; Dubois, Julie; Portier, Fabien; Roche, Patrice; Cavanna, Antonella; Jin, Yong; Wegscheider, Werner; Glattli, D. Christian
2014-03-01
The on-demand generation of pure quantum excitations is important for the operation of quantum systems, but it is particularly difficult for a system of fermions. This is because any perturbation affects all states below the Fermi energy, resulting in a complex superposition of particle and hole excitations. However, it was predicted nearly 20 years ago that a Lorentzian time-dependent potential with quantized flux generates a minimal excitation with only one particle and no hole. Here we report that such quasiparticles (hereafter termed levitons) can be generated on demand in a conductor by applying voltage pulses to a contact. Partitioning the excitations with an electronic beam splitter generates a current noise that we use to measure their number. Minimal-excitation states are observed for Lorentzian pulses, whereas for other pulse shapes there are significant contributions from holes. Further identification of levitons is provided in the energy domain with shot-noise spectroscopy, and in the time domain with electronic Hong-Ou-Mandel noise correlations.
Grimmett, E.S.
1964-01-01
This patent covers a continuous countercurrent liquidsolids contactor column having a number of contactor states each comprising a perforated plate, a layer of balls, and a downcomer tube; a liquid-pulsing piston; and a solids discharger formed of a conical section at the bottom of the column, and a tubular extension on the lowest downcomer terminating in the conical section. Between the conical section and the downcomer extension is formed a small annular opening, through which solids fall coming through the perforated plate of the lowest contactor stage. This annular opening is small enough that the pressure drop thereacross is greater than the pressure drop upward through the lowest contactor stage. (AEC)
Quantum Polarization Spectroscopy of Ultracold Spinor Gases
Eckert, K.; Zawitkowski, L.; Sanpera, A.; Lewenstein, M.; Polzik, E. S.
2007-03-09
We propose a method for the detection of ground state quantum phases of spinor gases through a series of two quantum nondemolition measurements performed by sending off-resonant, polarized light pulses through the gas. Signatures of various mean-field as well as strongly correlated phases of F=1 and F=2 spinor gases obtained by detecting quantum fluctuations and mean values of polarization of transmitted light are identified.
Atomic quantum state teleportation and swapping.
Kuzmich, A; Polzik, E S
2000-12-25
A set of protocols for atoms-photons and atoms-atoms quantum state teleportation and swapping utilizing Einstein-Podolsky-Rosen light is proposed. The protocols work for polarization quantum states of multiphoton light pulses and macroscopic samples of atoms, i.e., for continuous quantum variables. A simple free space interaction of polarized light with a spin polarized atomic ensemble is shown to suffice for these protocols. Feasibility of experimental realization using gas samples of atoms is analyzed.
NASA Astrophysics Data System (ADS)
Kashefi, Elham
Over the next five to ten years we will see a state of flux as quantum devices become part of the mainstream computing landscape. However adopting and applying such a highly variable and novel technology is both costly and risky as this quantum approach has an acute verification and validation problem: On the one hand, since classical computations cannot scale up to the computational power of quantum mechanics, verifying the correctness of a quantum-mediated computation is challenging; on the other hand, the underlying quantum structure resists classical certification analysis. Our grand aim is to settle these key milestones to make the translation from theory to practice possible. Currently the most efficient ways to verify a quantum computation is to employ cryptographic methods. I will present the current state of the art of various existing protocols where generally there exists a trade-off between the practicality of the scheme versus their generality, trust assumptions and security level. EK gratefully acknowledges funding through EPSRC Grants EP/N003829/1 and EP/M013243/1.
Plasma momentum meter for momentum flux measurements
Zonca, Fulvio; Cohen, Samuel A.; Bennett, Timothy; Timberlake, John R.
1993-01-01
Invention comprises an instrument in which momentum flux onto a biasable target plate is transferred via a suspended quartz tube onto a sensitive force transducer--a capacitance-type pressure gauge. The transducer is protected from thermal damage, arcing and sputtering, and materials used in the target and pendulum are electrically insulating, rigid even at elevated temperatures, and have low thermal conductivity. The instrument enables measurement of small forces (10.sup.-5 to 10.sup.3 N) accompanied by high heat fluxes which are transmitted by energetic particles with 10's of eV of kinetic energy in a intense magnetic field and pulsed plasma environment.
NASA Astrophysics Data System (ADS)
Shao, Tianjiao; Zhao, Guangjiu; Yao, Cuixia; Wen, Bin
2013-02-01
We present a theoretical routine for carrier envelope phase (CEP) retrieval of a multi-cycle femtosecond pulse by heterodyne mixing with a CEP-known few-cycle pulse using the time-dependent wavepacket quantum dynamics method. Our study is based on the CEP measuring technique and the dependence of high-order harmonic generation (HHG) spectra on CEP. After heterodyne mixing, half-cycle cutoffs (HCOs) in HHG spectra become distinct when the CEPs of multi-cycle and few-cycle pulses are well matched. The well-matched CEP of the heterodyne mixing field has a significant effect on the HHG spectra. Moreover, both quantum analysis and classical calculations are performed to demonstrate our theoretical results. The extension of CEP measurement from few-cycle pulses to multi-cycle pulses strengthens the controllability of laser parameters for femtosecond pulses.
Generation of short and intense attosecond pulses
NASA Astrophysics Data System (ADS)
Khan, Sabih Ud Din
Extremely broad bandwidth attosecond pulses (which can support 16as pulses) have been demonstrated in our lab based on spectral measurements, however, compensation of intrinsic chirp and their characterization has been a major bottleneck. In this work, we developed an attosecond streak camera using a multi-layer Mo/Si mirror (bandwidth can support ˜100as pulses) and position sensitive time-of-flight detector, and the shortest measured pulse was 107.5as using DOG, which is close to the mirror bandwidth. We also developed a PCGPA based FROG-CRAB algorithm to characterize such short pulses, however, it uses the central momentum approximation and cannot be used for ultra-broad bandwidth pulses. To facilitate the characterization of such pulses, we developed PROOF using Fourier filtering and an evolutionary algorithm. We have demonstrated the characterization of pulses with a bandwidth corresponding to ˜20as using synthetic data. We also for the first time demonstrated single attosecond pulses (SAP) generated using GDOG with a narrow gate width from a multi-cycle driving laser without CE-phase lock, which opens the possibility of scaling attosecond photon flux by extending the technique to peta-watt class lasers. Further, we generated intense attosecond pulse trains (APT) from laser ablated carbon plasmas and demonstrated ˜9.5 times more intense pulses as compared to those from argon gas and for the first time demonstrated a broad continuum from a carbon plasma using DOG. Additionally, we demonstrated ˜100 times enhancement in APT from gases by switching to 400 nm (blue) driving pulses instead of 800 nm (red) pulses. We measured the ellipticity dependence of high harmonics from blue pulses in argon, neon and helium, and developed a simple theoretical model to numerically calculate the ellipticity dependence with good agreement with experiments. Based on the ellipticity dependence, we proposed a new scheme of blue GDOG which we predict can be employed to extract
The Quantasyn, an improved quantum detector
NASA Technical Reports Server (NTRS)
Gorstein, M.; Mc Williams, I. G.; Seward, H. H.
1969-01-01
Quantasyn provides absolute measurement of radiation flux in the range 1000 A to 4500 A and into the vacuum ultraviolet. This radiation detector cimbines the high quantum efficiency and inherent linearity of the silicon solar cell with the constant quantum response of the fluorescent organic compound liumogen.
The Reality of the Quantum World.
ERIC Educational Resources Information Center
Shimony, Abner
1988-01-01
Describes experiments used during recent history to explain the nature of the quantum world. Explains the essential elements of experiments using polarized light and magnetic flux. Illustrates differences between classical theories in physics and quantum theory. Shows how experiments in the microscopic and macroscopic world appear to support…
Graphene quantum interference photodetector
Voss, Paul L
2015-01-01
Summary In this work, a graphene quantum interference (QI) photodetector was simulated in two regimes of operation. The structure consists of a graphene nanoribbon, Mach–Zehnder interferometer (MZI), which exhibits a strongly resonant transmission of electrons of specific energies. In the first regime of operation (that of a linear photodetector), low intensity light couples two resonant energy levels, resulting in scattering and differential transmission of current with an external quantum efficiency of up to 5.2%. In the second regime of operation, full current switching is caused by the phase decoherence of the current due to a strong photon flux in one or both of the interferometer arms in the same MZI structure. Graphene QI photodetectors have several distinct advantages: they are of very small size, they do not require p- and n-doped regions, and they exhibit a high external quantum efficiency. PMID:25821713
Graphene quantum interference photodetector.
Alam, Mahbub; Voss, Paul L
2015-01-01
In this work, a graphene quantum interference (QI) photodetector was simulated in two regimes of operation. The structure consists of a graphene nanoribbon, Mach-Zehnder interferometer (MZI), which exhibits a strongly resonant transmission of electrons of specific energies. In the first regime of operation (that of a linear photodetector), low intensity light couples two resonant energy levels, resulting in scattering and differential transmission of current with an external quantum efficiency of up to 5.2%. In the second regime of operation, full current switching is caused by the phase decoherence of the current due to a strong photon flux in one or both of the interferometer arms in the same MZI structure. Graphene QI photodetectors have several distinct advantages: they are of very small size, they do not require p- and n-doped regions, and they exhibit a high external quantum efficiency.
Silver-lined proportional counter for detection of pulsed neutrons
NASA Astrophysics Data System (ADS)
Dighe, P. M.; Prasad, K. R.; Kataria, S. K.
2004-05-01
A silver-lined proportional counter is developed for pulsed neutron monitoring near the electron accelerator INDUS-I at CAT, Indore. The device was developed since neutron flux meters with boron counters showed poor response to pulsed neutron background. The detector has 110 mm length and its inner diameter (26 mm) is lined with silver foil of 0.025 cm thickness. Tests in a thermal neutron flux of 150 nv show that it has 0.2 cps/nv neutron sensitivity. Tests at Plasma Focus Device facility with single neutron pulse (pulse width 50 ns) showed that the counter has 1.2×10 6 neutron/pulse counts sensitivity. Tests at INDUS-I electron accelerator facility in multiple neutron pulses (pulse width 1 μs and 1 Hz repetition rate) showed that the neutron flux estimated by the counter is comparable to the flux measured by passive CR-39 foils. The counter has potential application to detect neutron pulses of high intensity that occur within the shielded areas of electron accelerators during partial or total beam loss.
Homopolar Gun for Pulsed Spheromak Fusion Reactors II
Fowler, T
2004-06-14
A homopolar gun is discussed that could produce the high currents required for pulsed spheromak fusion reactors even with unit current amplification and open field lines during injection, possible because close coupling between the gun and flux conserver reduces gun losses to acceptable levels. Example parameters are given for a gun compatible with low cost pulsed reactors and for experiments to develop the concept.
Stapp, H.P.
1988-12-01
Quantum ontologies are conceptions of the constitution of the universe that are compatible with quantum theory. The ontological orientation is contrasted to the pragmatic orientation of science, and reasons are given for considering quantum ontologies both within science, and in broader contexts. The principal quantum ontologies are described and evaluated. Invited paper at conference: Bell's Theorem, Quantum Theory, and Conceptions of the Universe, George Mason University, October 20-21, 1988. 16 refs.
Error-corrected quantum annealing with hundreds of qubits.
Pudenz, Kristen L; Albash, Tameem; Lidar, Daniel A
2014-01-01
Quantum information processing offers dramatic speedups, yet is susceptible to decoherence, whereby quantum superpositions decay into mutually exclusive classical alternatives, thus robbing quantum computers of their power. This makes the development of quantum error correction an essential aspect of quantum computing. So far, little is known about protection against decoherence for quantum annealing, a computational paradigm aiming to exploit ground-state quantum dynamics to solve optimization problems more rapidly than is possible classically. Here we develop error correction for quantum annealing and experimentally demonstrate it using antiferromagnetic chains with up to 344 superconducting flux qubits in processors that have recently been shown to physically implement programmable quantum annealing. We demonstrate a substantial improvement over the performance of the processors in the absence of error correction. These results pave the way towards large-scale noise-protected adiabatic quantum optimization devices, although a threshold theorem such as has been established in the circuit model of quantum computing remains elusive.
NASA Technical Reports Server (NTRS)
Leon, R.; Swift, G. M.; Magness, B.; Taylor, W. A.; Tang, Y. S.; Wang, K. L.; Dowd, P.; Zhang, Y. H.
2000-01-01
The photoluminescence emission from InGaAs/GaAs quantum-well and quantum-dot (QD) structures are compared after controlled irradiation with 1.5 MeV proton fluxes. Results presented here show a significant enhancement in radiation tolerance with three-dimensional quantum confinement.
Quantum Computer Games: Quantum Minesweeper
ERIC Educational Resources Information Center
Gordon, Michal; Gordon, Goren
2010-01-01
The computer game of quantum minesweeper is introduced as a quantum extension of the well-known classical minesweeper. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. Quantum minesweeper demonstrates the effects of superposition, entanglement and their non-local characteristics. While in the classical…
Realization of a universal and phase-covariant quantum cloning machine in separate cavities
Fang Baolong; Song Qingming; Ye Liu
2011-04-15
We present a scheme to realize a special quantum cloning machine in separate cavities. The quantum cloning machine can copy the quantum information from a photon pulse to two distant atoms. Choosing the different parameters, the method can perform optimal symmetric (asymmetric) universal quantum cloning and optimal symmetric (asymmetric) phase-covariant cloning.
Composite pulses for interferometry in a thermal cold atom cloud
NASA Astrophysics Data System (ADS)
Dunning, Alexander; Gregory, Rachel; Bateman, James; Cooper, Nathan; Himsworth, Matthew; Jones, Jonathan A.; Freegarde, Tim
2014-09-01
Atom interferometric sensors and quantum information processors must maintain coherence while the evolving quantum wave function is split, transformed, and recombined, but suffer from experimental inhomogeneities and uncertainties in the speeds and paths of these operations. Several error-correction techniques have been proposed to isolate the variable of interest. Here we apply composite pulse methods to velocity-sensitive Raman state manipulation in a freely expanding thermal atom cloud. We compare several established pulse sequences, and follow the state evolution within them. The agreement between measurements and simple predictions shows the underlying coherence of the atom ensemble, and the inversion infidelity in a ˜80μK atom cloud is halved. Composite pulse techniques, especially if tailored for atom interferometric applications, should allow greater interferometer areas, larger atomic samples, and longer interaction times, and hence improve the sensitivity of quantum technologies from inertial sensing and clocks to quantum information processors and tests of fundamental physics.
Exact transient photon correlation with arbitrary laser pulses
Ooi, C. H. Raymond
2011-11-15
We present a full quantum theory to study the transient evolution of photon pairs. We introduce a method which gives exact time-dependent solutions of the coupled quantum Langevin equations for a multilevel quantum particle driven by arbitrary time-dependent laser fields. The analytical solutions are used to develop a numerical code for computing exact time evolution of the two-photon correlation function. We analyze the effects of laser pulses sequence, pulse duration, chirping, and initial internal quantum states on the nonclassicality of the photon correlation through the violation of the Cauchy-Schwarz inequality. The results provide a promising possibility of controlling the generation of highly correlated photon pairs using tailored short laser pulses.
Magnetic Flux Compression in Plasmas
NASA Astrophysics Data System (ADS)
Velikovich, A. L.
2012-10-01
Magnetic flux compression (MFC) as a method for producing ultra-high pulsed magnetic fields had been originated in the 1950s by Sakharov et al. at Arzamas in the USSR (now VNIIEF, Russia) and by Fowler et al. at Los Alamos in the US. The highest magnetic field produced by explosively driven MFC generator, 28 MG, was reported by Boyko et al. of VNIIEF. The idea of using MFC to increase the magnetic field in a magnetically confined plasma to 3-10 MG, relaxing the strict requirements on the plasma density and Lawson time, gave rise to the research area known as MTF in the US and MAGO in Russia. To make a difference in ICF, a magnetic field of ˜100 MG should be generated via MFC by a plasma liner as a part of the capsule compression scenario on a laser or pulsed power facility. This approach was first suggested in mid-1980s by Liberman and Velikovich in the USSR and Felber in the US. It has not been obvious from the start that it could work at all, given that so many mechanisms exist for anomalously fast penetration of magnetic field through plasma. And yet, many experiments stimulated by this proposal since 1986, mostly using pulsed-power drivers, demonstrated reasonably good flux compression up to ˜42 MG, although diagnostics of magnetic fields of such magnitude in HED plasmas is still problematic. The new interest of MFC in plasmas emerged with the advancement of new drivers, diagnostic methods and simulation tools. Experiments on MFC in a deuterium plasma filling a cylindrical plastic liner imploded by OMEGA laser beam led by Knauer, Betti et al. at LLE produced peak fields of 36 MG. The novel MagLIF approach to low-cost, high-efficiency ICF pursued by Herrmann, Slutz, Vesey et al. at Sandia involves pulsed-power-driven MFC to a peak field of ˜130 MG in a DT plasma. A review of the progress, current status and future prospects of MFC in plasmas is presented.
Analytical optimal pulse shapes obtained with the aid of genetic algorithms
NASA Astrophysics Data System (ADS)
Guerrero, Rubén D.; Arango, Carlos A.; Reyes, Andrés
2015-09-01
We propose a methodology to design optimal pulses for achieving quantum optimal control on molecular systems. Our approach constrains pulse shapes to linear combinations of a fixed number of experimentally relevant pulse functions. Quantum optimal control is obtained by maximizing a multi-target fitness function using genetic algorithms. As a first application of the methodology, we generated an optimal pulse that successfully maximized the yield on a selected dissociation channel of a diatomic molecule. Our pulse is obtained as a linear combination of linearly chirped pulse functions. Data recorded along the evolution of the genetic algorithm contained important information regarding the interplay between radiative and diabatic processes. We performed a principal component analysis on these data to retrieve the most relevant processes along the optimal path. Our proposed methodology could be useful for performing quantum optimal control on more complex systems by employing a wider variety of pulse shape functions.
Analytical optimal pulse shapes obtained with the aid of genetic algorithms
Guerrero, Rubén D.; Arango, Carlos A.; Reyes, Andrés
2015-09-28
We propose a methodology to design optimal pulses for achieving quantum optimal control on molecular systems. Our approach constrains pulse shapes to linear combinations of a fixed number of experimentally relevant pulse functions. Quantum optimal control is obtained by maximizing a multi-target fitness function using genetic algorithms. As a first application of the methodology, we generated an optimal pulse that successfully maximized the yield on a selected dissociation channel of a diatomic molecule. Our pulse is obtained as a linear combination of linearly chirped pulse functions. Data recorded along the evolution of the genetic algorithm contained important information regarding the interplay between radiative and diabatic processes. We performed a principal component analysis on these data to retrieve the most relevant processes along the optimal path. Our proposed methodology could be useful for performing quantum optimal control on more complex systems by employing a wider variety of pulse shape functions.
Loads for pulsed power cylindrical implosion experiments
Anderson, W.E.; Armijo, E.V.; Barthell, B.L.; Bartos, J.J.; Bush, H.; Foreman, L.R.; Garcia, F.P.; Gobby, P.L.; Gomez, V.M.; Gurule, V.A.
1994-07-01
Pulse power can be used to generate high energy density conditions in convergent hollow cylindrical geometry through the use of appropriate electrode configuration and cylindrical loads. Cylindrically symmetric experiments are conducted with the Pegasus-H inductive store, capacitor energized pulse power facility at Los Alamos using both precision machined cylindrical liner loads and low mass vapor deposited cylindrical foil loads. The liner experiments investigate solid density hydrodynamic topics. Foil loads vaporize from Joule heating to generate an imploding cylindrical plasma which can be used to simulate some fluxes associated with fusion energy processes. Similar experiments are conducted with {open_quotes}Procyon{close_quotes} inductive store pulse power assemblies energized by explosively driven magnetic flux compression.
Pulse energy measurement at the SXR instrument
Moeller, Stefan; Brown, Garth; Dakovski, Georgi; Hill, Bruce; Holmes, Michael; Loos, Jennifer; Maida, Ricardo; Paiser, Ernesto; Schlotter, William; Turner, Joshua J.; Wallace, Alex; Jastrow, Ulf; Kreis, Svea; Sorokin, Andrey A.; Tiedtke, Kai
2015-01-01
A gas monitor detector was implemented and characterized at the Soft X-ray Research (SXR) instrument to measure the average, absolute and pulse-resolved photon flux of the LCLS beam in the energy range between 280 and 2000 eV. The detector is placed after the monochromator and addresses the need to provide reliable absolute pulse energy as well as pulse-resolved measurements for the various experiments at this instrument. This detector provides a reliable non-invasive measurement for determining flux levels on the samples in the downstream experimental chamber and for optimizing signal levels of secondary detectors and for the essential need of data normalization. The design, integration into the instrument and operation are described, and examples of its performance are given. PMID:25931075
Pulse energy measurement at the SXR instrument
Moeller, Stefan; Brown, Garth; Dakovski, Georgi; Hill, Bruce; Holmes, Michael; Loos, Jennifer; Maida, Ricardo; Paiser, Ernesto; Schlotter, William; Turner, Joshua J.; Wallace, Alex; Jastrow, Ulf; Kreis, Svea; Sorokin, Andrey A.; Tiedtke, Kai
2015-04-14
A gas monitor detector was implemented and characterized at the Soft X-ray Research (SXR) instrument to measure the average, absolute and pulse-resolved photon flux of the LCLS beam in the energy range between 280 and 2000 eV. The detector is placed after the monochromator and addresses the need to provide reliable absolute pulse energy as well as pulse-resolved measurements for the various experiments at this instrument. This detector provides a reliable non-invasive measurement for determining flux levels on the samples in the downstream experimental chamber and for optimizing signal levels of secondary detectors and for the essential need of data normalization. The design, integration into the instrument and operation are described, and examples of its performance are given.
Pulse energy measurement at the SXR instrument
Moeller, Stefan; Brown, Garth; Dakovski, Georgi; Hill, Bruce; Holmes, Michael; Loos, Jennifer; Maida, Ricardo; Paiser, Ernesto; Schlotter, William; Turner, Joshua J.; et al
2015-04-14
A gas monitor detector was implemented and characterized at the Soft X-ray Research (SXR) instrument to measure the average, absolute and pulse-resolved photon flux of the LCLS beam in the energy range between 280 and 2000 eV. The detector is placed after the monochromator and addresses the need to provide reliable absolute pulse energy as well as pulse-resolved measurements for the various experiments at this instrument. This detector provides a reliable non-invasive measurement for determining flux levels on the samples in the downstream experimental chamber and for optimizing signal levels of secondary detectors and for the essential need of datamore » normalization. The design, integration into the instrument and operation are described, and examples of its performance are given.« less
InP-based type-I quantum well lasers up to 2.9 μm at 230 K in pulsed mode on a metamorphic buffer
Gu, Y.; Zhang, Y. G. Ma, Y. J.; Zhou, L.; Chen, X. Y.; Xi, S. P.; Du, B.
2015-03-23
This work reports on up to 2.9 μm lasing at 230 K of InP-based type-I quantum well lasers. This record long wavelength lasing is achieved by applying InP-based Sb-free structures with eight periods of strain-compensated InAs quantum wells grown on metamorphic In{sub 0.8}Al{sub 0.2}As template layers. The continuous-wave threshold current density is 797 A/cm{sup 2} and the idealized extrapolated threshold current density for infinite cavity length is as low as 58 A/cm{sup 2} per quantum well at 120 K. This scheme is a promising pathway for extending the wavelength range of type-I quantum well lasers on InP substrates.
Uniqueness of measures in loop quantum cosmology
Hanusch, Maximilian
2015-09-15
In Ashtekar and Campiglia [Classical Quantum Gravity 29, 242001 (2012)], residual diffeomorphisms have been used to single out the standard representation of the reduced holonomy-flux algebra in homogeneous loop quantum cosmology (LQC). We show that, in the homogeneous isotropic case, unitarity of the translations with respect to the extended ℝ-action (exponentiated reduced fluxes in the standard approach) singles out the Bohr measure on both the standard quantum configuration space ℝ{sub Bohr} as well as on the Fleischhack one (ℝ⊔ℝ{sub Bohr}). Thus, in both situations, the same condition singles out the standard kinematical Hilbert space of LQC.
Controlling VUV photon fluxes in low-pressure inductively coupled plasmas
NASA Astrophysics Data System (ADS)
Tian, Peng; Kushner, Mark J.
2015-06-01
Low-pressure (a few to hundreds of millitorrs) inductively coupled plasmas (ICPs), as typically used in microelectronics fabrication, often produce vacuum-ultraviolet (VUV) photon fluxes onto surfaces comparable to or exceeding the magnitude of ion fluxes. These VUV photon fluxes are desirable in applications such as sterilization of medical equipment but are unwanted in many materials fabrication processes due to damage to the devices by the high-energy photons. Under specific conditions, VUV fluxes may stimulate etching or synergistically combine with ion fluxes to modify polymeric materials. In this regard, it is desirable to control the magnitude of VUV fluxes or the ratio of VUV fluxes to those of other reactive species, such as ions, or to discretely control the VUV spectrum. In this paper, we discuss results from a computational investigation of VUV fluxes from low-pressure ICPs sustained in rare gas mixtures. The control of VUV fluxes through the use of pressure, pulsed power, and gas mixture is discussed. We found that the ratio, β, of VUV photon to ion fluxes onto surfaces generally increases with increasing pressure. When using pulsed plasmas, the instantaneous value of β can vary by a factor of 4 or more during the pulse cycle due to the VUV flux more closely following the pulsed power.
Two-pulse biexponential-weighted 23Na imaging
NASA Astrophysics Data System (ADS)
Benkhedah, Nadia; Bachert, Peter; Nagel, Armin M.
2014-03-01
A new method is proposed for acquiring 3D biexponential-weighted sodium images with two instead of three RF pulses to allow for shorter repetition time at high magnetic fields (B0 ⩾ 7 T) and reduced SAR. The second pulse converts single- into triple-quantum coherences in regions containing sodium ions which are restricted in mobility. Since only single-quantum coherences can be detected, an image acquired after the second pulse is intrinsically single-quantum-filtered and can be used to generate a biexponential-weighted sodium image by a weighted subtraction with the spin-density-weighted image acquired between the pulses. The proposed sequence generates biexponential-weighted sodium images of in vivo human brain with 140% higher SNR than triple-quantum-filtered sodium images and 4% higher SNR than a biexponential-weighted sequence with three RF pulses at equal acquisition time and with 1/3 lower SAR. As SAR is reduced, accordingly repetition time can be spared to obtain even higher SNR-time efficiency. In comparison to a difference image generated from two images of a double-readout sequence, the proposed two-pulse sequence yields about 14% higher SNR. Our new two-pulse biexponential-weighted sequence allows for acquisition of full 3D data sets of the human brain in vivo with a nominal resolution of (5 mm)3 in about 10 min.
Precision requirements for spin-echo-based quantum memories
Heshami, Khabat; Simon, Christoph; Sangouard, Nicolas; Minar, Jiri; Riedmatten, Hugues de
2011-03-15
Spin-echo techniques are essential for achieving long coherence times in solid-state quantum memories for light because of inhomogeneous broadening of the spin transitions. It has been suggested that unrealistic levels of precision for the radio-frequency control pulses would be necessary for successful decoherence control at the quantum level. Here we study the effects of pulse imperfections in detail, using both a semiclassical and a fully quantum-mechanical approach. Our results show that high efficiencies and low noise-to-signal ratios can be achieved for the quantum memories in the single-photon regime for realistic levels of control pulse precision. We also analyze errors due to imperfect initial-state preparation (optical pumping), showing that they are likely to be more important than control pulse errors in many practical circumstances. These results are crucial for future developments of solid-state quantum memories.
NASA Astrophysics Data System (ADS)
Title, A.; Cheung, M.
2008-05-01
The high spatial resolution and high cadence of the Solar Optical Telescope on the JAXA Hinode spacecraft have allowed capturing many examples of magnetic flux emergence from the scale of granulation to active regions. The observed patterns of emergence are quite similar. Flux emerges as a array of small bipoles on scales from 1 to 5 arc seconds throughout the region that the flux eventually condenses. Because the fields emerging from the underlying flux rope my appear many in small segments and the total flux (absolute sum) is not a conserved quantity the amount of total flux on the surface may vary significantly during the emergence process. Numerical simulations of flux emergence exhibit patterns similar to observations. Movies of both observations and numerical simulations will be presented.
Moiseev, S. A.; Tittel, W.
2010-07-15
We study quantum compression and decompression of light pulses that carry quantum information using a photon-echo quantum memory technique with controllable inhomogeneous broadening of an isolated atomic absorption line. We investigate media with differently broadened absorption profiles, transverse and longitudinal, finding that the recall efficiency can be as large as unity and that the quantum information encoded into the photonic qubits can remain unperturbed. Our results provide insight into reversible light-atom interaction and are interesting in view of future quantum communication networks, where pulse compression and decompression may play an important role in increasing the qubit rate or in mapping quantum information from photonic carriers with large optical bandwidth into atomic memories with smaller bandwidth.
Pfeiffer, P.; Egusquiza, I. L.; Di Ventra, M.; Sanz, M.; Solano, E.
2016-01-01
Technology based on memristors, resistors with memory whose resistance depends on the history of the crossing charges, has lately enhanced the classical paradigm of computation with neuromorphic architectures. However, in contrast to the known quantized models of passive circuit elements, such as inductors, capacitors or resistors, the design and realization of a quantum memristor is still missing. Here, we introduce the concept of a quantum memristor as a quantum dissipative device, whose decoherence mechanism is controlled by a continuous-measurement feedback scheme, which accounts for the memory. Indeed, we provide numerical simulations showing that memory effects actually persist in the quantum regime. Our quantization method, specifically designed for superconducting circuits, may be extended to other quantum platforms, allowing for memristor-type constructions in different quantum technologies. The proposed quantum memristor is then a building block for neuromorphic quantum computation and quantum simulations of non-Markovian systems. PMID:27381511
Pfeiffer, P; Egusquiza, I L; Di Ventra, M; Sanz, M; Solano, E
2016-01-01
Technology based on memristors, resistors with memory whose resistance depends on the history of the crossing charges, has lately enhanced the classical paradigm of computation with neuromorphic architectures. However, in contrast to the known quantized models of passive circuit elements, such as inductors, capacitors or resistors, the design and realization of a quantum memristor is still missing. Here, we introduce the concept of a quantum memristor as a quantum dissipative device, whose decoherence mechanism is controlled by a continuous-measurement feedback scheme, which accounts for the memory. Indeed, we provide numerical simulations showing that memory effects actually persist in the quantum regime. Our quantization method, specifically designed for superconducting circuits, may be extended to other quantum platforms, allowing for memristor-type constructions in different quantum technologies. The proposed quantum memristor is then a building block for neuromorphic quantum computation and quantum simulations of non-Markovian systems. PMID:27381511
Pfeiffer, P; Egusquiza, I L; Di Ventra, M; Sanz, M; Solano, E
2016-07-06
Technology based on memristors, resistors with memory whose resistance depends on the history of the crossing charges, has lately enhanced the classical paradigm of computation with neuromorphic architectures. However, in contrast to the known quantized models of passive circuit elements, such as inductors, capacitors or resistors, the design and realization of a quantum memristor is still missing. Here, we introduce the concept of a quantum memristor as a quantum dissipative device, whose decoherence mechanism is controlled by a continuous-measurement feedback scheme, which accounts for the memory. Indeed, we provide numerical simulations showing that memory effects actually persist in the quantum regime. Our quantization method, specifically designed for superconducting circuits, may be extended to other quantum platforms, allowing for memristor-type constructions in different quantum technologies. The proposed quantum memristor is then a building block for neuromorphic quantum computation and quantum simulations of non-Markovian systems.
NASA Astrophysics Data System (ADS)
Pfeiffer, P.; Egusquiza, I. L.; di Ventra, M.; Sanz, M.; Solano, E.
2016-07-01
Technology based on memristors, resistors with memory whose resistance depends on the history of the crossing charges, has lately enhanced the classical paradigm of computation with neuromorphic architectures. However, in contrast to the known quantized models of passive circuit elements, such as inductors, capacitors or resistors, the design and realization of a quantum memristor is still missing. Here, we introduce the concept of a quantum memristor as a quantum dissipative device, whose decoherence mechanism is controlled by a continuous-measurement feedback scheme, which accounts for the memory. Indeed, we provide numerical simulations showing that memory effects actually persist in the quantum regime. Our quantization method, specifically designed for superconducting circuits, may be extended to other quantum platforms, allowing for memristor-type constructions in different quantum technologies. The proposed quantum memristor is then a building block for neuromorphic quantum computation and quantum simulations of non-Markovian systems.
Cosmic string formation by flux trapping
Blanco-Pillado, Jose J.; Olum, Ken D.; Vilenkin, Alexander
2007-11-15
We study the formation of cosmic strings by confining a stochastic magnetic field into flux tubes in a numerical simulation. We use overdamped evolution in a potential that is minimized when the flux through each face in the simulation lattice is a multiple of the fundamental flux quantum. When the typical number of flux quanta through a correlation-length-sized region is initially about 1, we find a string network similar to that generated by the Kibble-Zurek mechanism. With larger initial flux, the loop distribution and the Brownian shape of the infinite strings remain unchanged, but the fraction of length in infinite strings is increased. A 2D slice of the network exhibits bundles of strings pointing in the same direction, as in earlier 2D simulations. We find, however, that strings belonging to the same bundle do not stay together in 3D for much longer than the correlation length. As the initial flux per correlation length is decreased, there is a point at which infinite strings disappear, as in the Hagedorn transition.
NASA Astrophysics Data System (ADS)
Collins, Thomas; Malinovskaya, Svetlana
2012-06-01
The ability to manipulate the state of a quantum system is the at very heart of the field of quantum control. As quantum control is an essential aspect of the emerging field of quantum computing, it is necessary to find techniques for manipulating quantum systems that are both robust and efficient to implement industrially. In this work the population dynamics of the valence electron of Rubidium, interacting with a single linearly chirped laser pulse, are studied. The pulse envelope is constructed from overlapping Gaussian waveforms and is described analytically by the formula: E0∑β=-n^nExp-[t-(T-n*ɛ)]^22τ0^2 with the parameter ɛ being the separation in time between each peak with the oscillating electric field is phase locked to the central peak. The response of the quantum yield obtained at the end of the pulse to changes in the parameters of the oscillating electric field and pulse envelope are studied. For certain values of these parameters, achievement of a transfer of over 99% of the population to a desired quantum state within the hyperfine structure of the 5S shell via adiabatic passage using beam intensities which are on the order of 100W/cm^2 is demonstrated. Results are robust in the adiabatic regime.
Synthetic magnetic fluxes on the honeycomb lattice
Gorecka, Agnieszka; Gremaud, Benoit; Miniatura, Christian
2011-08-15
We devise experimental schemes that are able to mimic uniform and staggered magnetic fluxes acting on ultracold two-electron atoms, such as ytterbium atoms, propagating in a honeycomb lattice. The atoms are first trapped into two independent state-selective triangular lattices and then further exposed to a suitable configuration of resonant Raman laser beams. These beams induce hops between the two triangular lattices and make atoms move in a honeycomb lattice. Atoms traveling around each unit cell of this honeycomb lattice pick up a nonzero phase. In the uniform case, the artificial magnetic flux sustained by each cell can reach about two flux quanta, thereby realizing a cold-atom analog of the Harper model with its notorious Hofstadter's butterfly structure. Different condensed-matter phenomena such as the relativistic integer and fractional quantum Hall effects, as observed in graphene samples, could be targeted with this scheme.
QCD flux tubes and anomaly inflow
NASA Astrophysics Data System (ADS)
Xiong, Chi
2013-07-01
We apply the Callan-Harvey anomaly-inflow mechanism to the study of QCD (chromoelectric) flux tubes, quark (pair) creation, and the chiral magnetic effect, using new variables from the Cho-Faddeev-Niemi decomposition of the gauge potential. A phenomenological description of chromoelectric flux tubes is obtained by studying a gauged Nambu-Jona-Lasinio effective Lagrangian, derived from the original QCD Lagrangian. At the quantum level, quark condensates in the QCD vacuum may form a vortexlike structure in a chromoelectric flux tube. Quark zero modes trapped in the vortex are chiral and lead to a two-dimensional gauge anomaly. To cancel it, an effective Chern-Simons coupling is needed and, hence, a topological charge density term naturally appears.
Review of High Power Pulse Transformer Design
NASA Astrophysics Data System (ADS)
Zhang, Zhao; Tan, Xiaohua
Vacuum devices generally work under high power pulse voltage of order 103 V to 106 V, and this pulse voltage could be generated by high power pulse transformer. Relatively, pulse transformer has the advantages of compact structure and excellent repetitiveness. It is expected of short rise-time, wide pulse-width and high energy transferring efficiency in most applications. Aiming at this purpose, it is feasible to select magnetic core with high permeability and high saturation magnetic flux density, use closed core and take some special measures to diminish leakage inductance in the making-process. This paper is a brief summary of high power pulse transformer design. In this paper, the principle, types and characteristics specification of high power pulse transformer are presented, and the design methods of electrical, magnetic and structure parameters are summarized. The methods of shortening rise time, diminishing droop and expanding output pulse-width (electrical parameter design), testing magnetic core materials (magnetic parameter design) and minimizing leakage inductance (structure parameter design) are emphasized.
NASA Astrophysics Data System (ADS)
Brzeziński, Tomasz; Fairfax, Simon A.
2012-11-01
Algebras of functions on quantum weighted projective spaces are introduced, and the structure of quantum weighted projective lines or quantum teardrops is described in detail. In particular the presentation of the coordinate algebra of the quantum teardrop in terms of generators and relations and classification of irreducible *-representations are derived. The algebras are then analysed from the point of view of Hopf-Galois theory or the theory of quantum principal bundles. Fredholm modules and associated traces are constructed. C*-algebras of continuous functions on quantum weighted projective lines are described and their K-groups computed.
Driven superconducting quantum circuits
NASA Astrophysics Data System (ADS)
Nakamura, Yasunobu
2014-03-01
Driven nonlinear quantum systems show rich phenomena in various fields of physics. Among them, superconducting quantum circuits have very attractive features such as well-controlled quantum states with design flexibility, strong nonlinearity of Josephson junctions, strong coupling to electromagnetic driving fields, little internal dissipation, and tailored coupling to the electromagnetic environment. We have investigated properties and functionalities of driven superconducting quantum circuits. A transmon qubit coupled to a transmission line shows nearly perfect spatial mode matching between the incident and scattered microwave field in the 1D mode. Dressed states under a driving field are studied there and also in a semi-infinite 1D mode terminated by a resonator containing a flux qubit. An effective Λ-type three-level system is realized under an appropriate driving condition. It allows ``impedance-matched'' perfect absorption of incident probe photons and down conversion into another frequency mode. Finally, the weak signal from the qubit is read out using a Josephson parametric amplifier/oscillator which is another nonlinear circuit driven by a strong pump field. This work was partly supported by the Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST), Project for Developing Innovation Systems of MEXT, MEXT KAKENHI ``Quantum Cybernetics,'' and the NICT Commissioned Research.
ADJUSTABLE DOUBLE PULSE GENERATOR
Gratian, J.W.; Gratian, A.C.
1961-08-01
>A modulator pulse source having adjustable pulse width and adjustable pulse spacing is described. The generator consists of a cross coupled multivibrator having adjustable time constant circuitry in each leg, an adjustable differentiating circuit in the output of each leg, a mixing and rectifying circuit for combining the differentiated pulses and generating in its output a resultant sequence of negative pulses, and a final amplifying circuit for inverting and square-topping the pulses. (AEC)
Robustness of composite pulse sequences to time-dependent noise
NASA Astrophysics Data System (ADS)
Kabytayev, Chingiz; Green, Todd J.; Khodjasteh, Kaveh; Viola, Lorenza; Biercuk, Michael J.; Brown, Kenneth R.
2014-03-01
Quantum control protocols can minimize the effect of noise sources that reduce the quality of quantum operations. Originally developed for NMR, composite pulse sequences correct for unknown static control errors . We study these compensating pulses in the general case of time-varying Gaussian control noise using a filter-function approach and detailed numerics. Three different noise models were considered in this work: amplitude noise, detuning noise and simultaneous presence of both noises. Pulse sequences are shown to be robust to noise up to frequencies as high as ~10% of the Rabi frequency. Robustness of pulses designed for amplitude noise is explained using a geometric picture that naturally follows from filter function. We also discuss future directions including new pulses correcting for noise of certain frequency. True J. Merrill and Kenneth R. Brown. arXiv:1203.6392v1. In press Adv. Chem. Phys. (2013)
Thermodynamics of quantum heat engines
NASA Astrophysics Data System (ADS)
Goswami, Himangshu Prabal; Harbola, Upendra
2013-07-01
We consider a recently proposed four-level quantum heat engine (QHE) model to analyze the role of quantum coherences in determining the thermodynamic properties of the engine, such as flux, output power, and efficiency. A quantitative analysis of the relative effects of the coherences induced by the two thermal baths is brought out. By taking account of the dissipation in the cavity mode, we define useful work obtained from the QHE and present some analytical results for the optimal values of relative coherences that maximizes flux (hence output power) through the engine. We also analyze the role of quantum effects in inducing population inversion (lasing) between the states coupled to the cavity mode. The universal behavior of the efficiency at maximum power (EMP) is examined. In accordance with earlier theoretical predictions, to leading order, we find that EMP˜ηc/2, where ηc is Carnot efficiency. However, the next higher order coefficient is system dependent and hence nonuniversal.
Why do electromagnetic pulses enhance bone growth?
Bowen, Samuel P; Mancini, Jay D; Fessatidis, Vassilios; Grabiner, Mark
2008-02-01
The excitation probability of substrate molecules involved in the production of growth factors influencing the division of chondrocytes in the growth layer of bone under the influence of pulsed electromagnetic fields is studied theoretically in a quantum mechanical model calculation. In this model matrix elements and anti-bonding energy levels are assumed known and the dynamics of the interaction with pulsed electromagnetic fields is derived. The derivation makes it clear that continuous pulsing or large driving currents can overwhelm local diffusive transport to the growth plane resulting in a loss of its enhancement properties. Optimal locations within a pair of Helmholtz coils for enhancement of bone growth are also investigated and found to be close to the coils. The work presented here is believed to be the first derivation in a model calculation of a physical basis for the effects of pulsed electromagnetic fields on bone growth and fusion.
Waveform control pulse magnetization for HTS bulk magnet
NASA Astrophysics Data System (ADS)
Ida, Tetsuya; Shigeuchi, Koji; Okuda, Sayo; Watasaki, Masahiro; Izumi, Mitsuru
2016-03-01
For the past 10 years, we have studied high-temperature superconducting (HTS) bulk magnets for use in electromagnetic rotating machines. If the magnetic field effectively magnetizes the HTS bulk, then the size of the motor and generator can be reduced without a reduction in output. We showed that the melt-textured Gd-Ba-Cu-O HTS bulk effectively traps a high magnetic field using waveform control pulse magnetization (WCPM). WCPM makes it possible to generate any pulsed magnetic field waveform by appropriately changing the duty ratio of the pulse width modulation. By chopping so that the pulsed magnetic field has a period of about 1ms, the WCPM technology enables active control of the rise time and suppresses magnetic flux motion that decreases magnetization efficiency. This method is also useful for any HTS bulk magnet, and the high magnetic flux density is trapped in the HTS bulk by a single pulse magnetic field. We developed a magnetizer that has a feedback system from the penetrated magnetic flux density to realize WCPM. In this research, using only a single pulse magnetic field of WCPM method at 77K, an HTS bulk with a 45mm diameter and 19mm thickness trapped a maximum magnetic field of 1.63T, which is more than 90% of the trapped magnetic flux density by FC magnetization. This result suggests that the pulse magnetizing method can replace the conventional field-cooled method and promote the practical use of HTS magnets for electromagnetic power applications.
Repeated interactions in open quantum systems
Bruneau, Laurent; Joye, Alain; Merkli, Marco
2014-07-15
Analyzing the dynamics of open quantum systems has a long history in mathematics and physics. Depending on the system at hand, basic physical phenomena that one would like to explain are, for example, convergence to equilibrium, the dynamics of quantum coherences (decoherence) and quantum correlations (entanglement), or the emergence of heat and particle fluxes in non-equilibrium situations. From the mathematical physics perspective, one of the main challenges is to derive the irreversible dynamics of the open system, starting from a unitary dynamics of the system and its environment. The repeated interactions systems considered in these notes are models of non-equilibrium quantum statistical mechanics. They are relevant in quantum optics, and more generally, serve as a relatively well treatable approximation of a more difficult quantum dynamics. In particular, the repeated interaction models allow to determine the large time (stationary) asymptotics of quantum systems out of equilibrium.
Experimental signature of programmable quantum annealing.
Boixo, Sergio; Albash, Tameem; Spedalieri, Federico M; Chancellor, Nicholas; Lidar, Daniel A
2013-01-01
Quantum annealing is a general strategy for solving difficult optimization problems with the aid of quantum adiabatic evolution. Both analytical and numerical evidence suggests that under idealized, closed system conditions, quantum annealing can outperform classical thermalization-based algorithms such as simulated annealing. Current engineered quantum annealing devices have a decoherence timescale which is orders of magnitude shorter than the adiabatic evolution time. Do they effectively perform classical thermalization when coupled to a decohering thermal environment? Here we present an experimental signature which is consistent with quantum annealing, and at the same time inconsistent with classical thermalization. Our experiment uses groups of eight superconducting flux qubits with programmable spin-spin couplings, embedded on a commercially available chip with >100 functional qubits. This suggests that programmable quantum devices, scalable with current superconducting technology, implement quantum annealing with a surprising robustness against noise and imperfections.
Trapped magnetic field measurements on HTS bulk by peak controlled pulsed field magnetization
NASA Astrophysics Data System (ADS)
Ida, Tetsuya; Watasaki, Masahiro; Kimura, Yosuke; Miki, Motohiro; Izumi, Mitsuru
2010-06-01
For the past several years, we have studied the high-temperature superconducting (HTS) synchronous motor assembled with melt-textured Gd-Ba-Cu-O bulk magnets. If the single pulse field magnetizes a bulk effectively, size of electrical motor will become small for the strong magnetic field of the HTS magnets without reducing output power of motor. In the previous study, we showed that the HTS bulk was magnetized to excellent cone-shape magnetic field distribution by using the waveform control pulse magnetization (WCPM) method. The WCPM technique made possible the active control of the waveform on which magnetic flux motion depended. We generated the pulse waveform with controlled risetime for HTS bulk magnetization to suppress the magnetic flux motion which decreases magnetization efficiency. The pulsed maximum magnetic flux density with slow risetime is not beyond the maximum magnetic flux density which is trapped by the static field magnetization. But, as for applying the pulse which has fast risetime, the magnetic flux which exceed greatly the threshold penetrates the bulk and causes the disorder of the trapped magnetic distribution. This fact suggests the possibility that the threshold at pulsed magnetization influences the dynamic magnetic flux motion. In this study, Gd-Ba-Cu-O bulk is magnetized by the controlled arbitrary trapezoidal shape pulse, of which the maximum magnetic flux density is controlled not to exceed the threshold. We will present the trapped magnetic characteristics and the technique to generate the controlled pulsed field.
NASA Astrophysics Data System (ADS)
Losev, A. S.; Tikhonov, K. S.; Golubeva, T. Yu; Golubev, Yu M.
2016-10-01
We have considered theoretically the feasibility of broadband quantum memory based on the resonant tripod-type atomic configuration. In this case, the writing of a signal field is carried out simultaneously into two channels, and characterized by an excitation of two spin waves of the atomic ensemble. With simultaneous read out from both channels, quantum properties of the original signal are mapped onto the retrieval pulse no worse than in the case of memory based on a Λ-type atomic configuration. At the same time new possibilities are opened up for the manipulation of quantum states associated with sequential reading out (and/or sequential writing) of signal pulses. For example, a pulse in the squeezed state is converted into two partially entangled pulses with partially squeezed quadratures. Alternatively, two independent signal pulses with orthogonally squeezed quadratures can be converted into two entangled pulses.
Quantum Radiation Reaction: From Interference to Incoherence.
Dinu, Victor; Harvey, Chris; Ilderton, Anton; Marklund, Mattias; Torgrimsson, Greger
2016-01-29
We investigate quantum radiation reaction in laser-electron interactions across different energy and intensity regimes. Using a fully quantum approach which also accounts exactly for the effect of the strong laser pulse on the electron motion, we identify in particular a regime in which radiation reaction is dominated by quantum interference. We find signatures of quantum radiation reaction in the electron spectra which have no classical analogue and which cannot be captured by the incoherent approximations typically used in the high-intensity regime. These signatures are measurable with presently available laser and accelerator technology.
Zurek, Wojciech H
2008-01-01
Quantum Darwinism - proliferation, in the environment, of multiple records of selected states of the system (its information-theoretic progeny) - explains how quantum fragility of individual state can lead to classical robustness of their multitude.
Pfeiffer, P.; Egusquiza, I. L.; Di Ventra, M.; Sanz, M.; Solano, E.
2016-07-06
Technology based on memristors, resistors with memory whose resistance depends on the history of the crossing charges, has lately enhanced the classical paradigm of computation with neuromorphic architectures. However, in contrast to the known quantized models of passive circuit elements, such as inductors, capacitors or resistors, the design and realization of a quantum memristor is still missing. Here, we introduce the concept of a quantum memristor as a quantum dissipative device, whose decoherence mechanism is controlled by a continuous-measurement feedback scheme, which accounts for the memory. Indeed, we provide numerical simulations showing that memory effects actually persist in the quantummore » regime. Our quantization method, specifically designed for superconducting circuits, may be extended to other quantum platforms, allowing for memristor-type constructions in different quantum technologies. As a result, the proposed quantum memristor is then a building block for neuromorphic quantum computation and quantum simulations of non-Markovian systems.« less
NASA Technical Reports Server (NTRS)
Tveekrem, June L.
1992-01-01
All spacecraft emit molecules via outgassing, thruster plumes, vents, etc. The return flux is the portion of those molecules that scatter from the ambient atmosphere and return to the spacecraft. Return flux allows critical spacecraft surfaces to become contaminated even when there is no direct line of sight between the contamination source and the critical surface. Data from the Long Duration Exposure Facility (LDEF) show that contamination of LDEF surfaces could not have come entirely from direct flux. The data suggest significant return flux. Several computer models have been developed to simulate return flux, but the predictions have never been verified in orbit. Large uncertainties in predictions lead to overly conservative spacecraft designs. The purpose of the REturn FLux EXperiment (REFLEX) is to fly a controlled experiment that can be directly compared with predictions from several models.
NASA Astrophysics Data System (ADS)
Tveekrem, June L.
All spacecraft emit molecules via outgassing, thruster plumes, vents, etc. The return flux is the portion of those molecules that scatter from the ambient atmosphere and return to the spacecraft. Return flux allows critical spacecraft surfaces to become contaminated even when there is no direct line of sight between the contamination source and the critical surface. Data from the Long Duration Exposure Facility (LDEF) show that contamination of LDEF surfaces could not have come entirely from direct flux. The data suggest significant return flux. Several computer models have been developed to simulate return flux, but the predictions have never been verified in orbit. Large uncertainties in predictions lead to overly conservative spacecraft designs. The purpose of the REturn FLux EXperiment (REFLEX) is to fly a controlled experiment that can be directly compared with predictions from several models.
Flux effect in superconducting hybrid Aharonov-Bohm rings
Stoof, T.H.; Nazarov, Y.V.
1996-07-01
We have extended the circuit theory of Andreev conductance [Phys. Rev. Lett. {bold 73}, 1420 (1994)] to diffusive superconducting hybrid structures that contain an Aharonov-Bohm ring. The electrostatic potential distribution in the system is predicted to be flux dependent with a period of the superconducting flux quantum {Phi}{sub 0}={ital h}/2{ital e}. When at least one tunnel barrier is present, the conductance of the system oscillates with the same period. {copyright} {ital 1996 The American Physical Society.}
Effect of Orbital Angular Momentum on Nondiffracting Ultrashort Optical Pulses.
Ornigotti, Marco; Conti, Claudio; Szameit, Alexander
2015-09-01
We introduce a new class of nondiffracting optical pulses possessing orbital angular momentum. By generalizing the X-wave solution of the Maxwell equation, we discover the coupling between angular momentum and the temporal degrees of freedom of ultrashort pulses. The spatial twist of propagation invariant light pulse turns out to be directly related to the number of optical cycles. Our results may trigger the development of novel multilevel classical and quantum transmission channels free of dispersion and diffraction. They may also find application in the manipulation of nanostructured objects by ultrashort pulses and for novel approaches to the spatiotemporal measurements in ultrafast photonics. PMID:26382668
Cooperative pulses for pseudo-pure state preparation
NASA Astrophysics Data System (ADS)
Wei, Daxiu; Chang, Yan; Glaser, Steffen J.; Yang, Xiaodong
2014-06-01
Using an extended version of the optimal-control-based gradient ascent pulse engineering algorithm, cooperative (COOP) pulses are designed for multi-scan experiments to prepare pseudo-pure states in quantum computation. COOP pulses can cancel undesired signal contributions, complementing and generalizing phase cycles. They also provide more flexibility and, in particular, eliminate the need to select specific individual target states and achieve the fidelity of theoretical limit by flexibly choosing appropriate number of scans and duration of pulses. The COOP approach is experimentally demonstrated for three-qubit and four-qubit systems.
Cooperative pulses for pseudo-pure state preparation
Wei, Daxiu; Chang, Yan; Yang, Xiaodong E-mail: xiaodong.yang@sibet.ac.cn; Glaser, Steffen J. E-mail: xiaodong.yang@sibet.ac.cn
2014-06-16
Using an extended version of the optimal-control-based gradient ascent pulse engineering algorithm, cooperative (COOP) pulses are designed for multi-scan experiments to prepare pseudo-pure states in quantum computation. COOP pulses can cancel undesired signal contributions, complementing and generalizing phase cycles. They also provide more flexibility and, in particular, eliminate the need to select specific individual target states and achieve the fidelity of theoretical limit by flexibly choosing appropriate number of scans and duration of pulses. The COOP approach is experimentally demonstrated for three-qubit and four-qubit systems.
Effect of Orbital Angular Momentum on Nondiffracting Ultrashort Optical Pulses.
Ornigotti, Marco; Conti, Claudio; Szameit, Alexander
2015-09-01
We introduce a new class of nondiffracting optical pulses possessing orbital angular momentum. By generalizing the X-wave solution of the Maxwell equation, we discover the coupling between angular momentum and the temporal degrees of freedom of ultrashort pulses. The spatial twist of propagation invariant light pulse turns out to be directly related to the number of optical cycles. Our results may trigger the development of novel multilevel classical and quantum transmission channels free of dispersion and diffraction. They may also find application in the manipulation of nanostructured objects by ultrashort pulses and for novel approaches to the spatiotemporal measurements in ultrafast photonics.
Soft-pulse dynamical decoupling with Markovian decoherence
Pryadko, Leonid P.; Quiroz, Gregory
2009-10-15
We consider the effect of broadband decoherence on the performance of refocusing sequences, having in mind applications of dynamical decoupling in concatenation with quantum error correcting codes as the first stage of coherence protection. Specifically, we construct cumulant expansions of effective decoherence operators for a qubit driven by a pulse of a generic symmetric shape and for several sequences of {pi} and {pi}/2 pulses. While, in general, the performance of soft pulses in decoupling sequences in the presence of Markovian decoherence is worse than that of the ideal {delta} pulses, it can be substantially improved by shaping.
NASA Technical Reports Server (NTRS)
Liebert, Curt H.; Weikle, Donald H.
1989-01-01
A new automated, computer controlled heat flux measurement facility is described. Continuous transient and steady-state surface heat flux values varying from about 0.3 to 6 MW/sq m over a temperature range of 100 to 1200 K can be obtained in the facility. An application of this facility is the development of heat flux gauges for continuous fast transient surface heat flux measurement on turbine blades operating in space shuttle main engine turbopumps. The facility is useful for durability testing at fast temperature transients.
Aspects of flux compactification
NASA Astrophysics Data System (ADS)
Liu, Tao
In this thesis, we study three main aspects of flux compactifications: (1) classify supergravity solutions from flux compactification; (2) construct flux-deformed geometry and 4D low-energy theory to describe these flux vacua; and (3) study 4D particle phenomenology and cosmology of flux vacua. In the first part, we review G-structure, the basic tool to study supersymmetric flux solutions, and some typical solutions obtained in heterotic, type IIA and type IIB string theories. Then we present a comprehensive classification of supersymmetric vacua of M-theory compactification on 7D manifolds with general four-form fluxes. We analyze the cases where the resulting four-dimensional vacua have N = 1, 2, 3, 4 supersymmetry and the internal space allows for SU(2)-, SU(3)- or G 2-structures. In particular, we find for N = 2 supersymmetry, that the external space-time is Minkowski and the base manifold of the internal space is conformally Kahler for SU(2) structures, while for SU(3) structures the internal space has to be Einstein-Sasaki and no internal fluxes are allowed. Moreover, we provide a new vacuum with N = 1 supersymmetry and SU(3) structure, where all fluxes are non-zero and the first order differential equations are solved. In the second part, we simply review the methods used to construct one subclass of fluxed-deformed geometry or the so-called "twisted manifold", and the associated 4D effective theory describing these flux vacua. Then by employing (generalized) Scherk-Schwarz reduction, we construct the geometric twisting for Calabi-Yau manifolds of Voisin-Borcea type (K 3 x T2)/ Z2 and study the superpotential in a type IIA orientifold based on this geometry. The twists modify the direct product by fibering the K 3 over T2 while preserving the Z2 involution. As an important application, the Voisin-Borcea class contains T6/( Z2 x Z2 ), the usual setting for intersecting D6 brane model building. Past work in this context considered only those twists inherited
Long pulse production from short pulses
Toeppen, John S.
1994-01-01
A method of producing a long output pulse (SA) from a short pump pulse (P), using an elongated amplified fiber (11) having a doped core (12) that provides an amplifying medium for light of one color when driven into an excited state by light of a shorter wavelength and a surrounding cladding 13. A seed beam (S) of the longer wavelength is injected into the core (12) at one end of the fiber (11) and a pump pulse (P) of the shorter wavelength is injected into the cladding (13) at the other end of the fiber (11). The counter-propagating seed beam (S) and pump pulse (P) will produce an amplified output pulse (SA) having a time duration equal to twice the transit time of the pump pulse (P) through the fiber (11) plus the length of the pump pulse (P).
Long pulse production from short pulses
Toeppen, J.S.
1994-08-02
A method of producing a long output pulse from a short pump pulse is disclosed, using an elongated amplified fiber having a doped core that provides an amplifying medium for light of one color when driven into an excited state by light of a shorter wavelength and a surrounding cladding. A seed beam of the longer wavelength is injected into the core at one end of the fiber and a pump pulse of the shorter wavelength is injected into the cladding at the other end of the fiber. The counter-propagating seed beam and pump pulse will produce an amplified output pulse having a time duration equal to twice the transit time of the pump pulse through the fiber plus the length of the pump pulse. 3 figs.
NASA Astrophysics Data System (ADS)
Coleman, Piers; Schofield, Andrew J.
2005-01-01
As we mark the centenary of Albert Einstein's seminal contribution to both quantum mechanics and special relativity, we approach another anniversary - that of Einstein's foundation of the quantum theory of solids. But 100 years on, the same experimental measurement that puzzled Einstein and his contemporaries is forcing us to question our understanding of how quantum matter transforms at ultra-low temperatures.
Kicking atoms with finite duration pulses
NASA Astrophysics Data System (ADS)
Fekete, Julia; Chai, Shijie; Daszuta, Boris; Andersen, Mikkel F.
2016-05-01
The atom optics delta-kicked particle is a paradigmatic system for experimental studies of quantum chaos and classical-quantum correspondence. It consists of a cloud of laser cooled atoms exposed to a periodically pulsed standing wave of far off-resonant laser light. A purely quantum phenomena in such systems are quantum resonances which transfers the atoms into a coherent superposition of largely separated momentum states. Using such large momentum transfer ``beamsplitters'' in atom interferometers may have applications in high precision metrology. The growth in momentum separation cannot be maintained indefinitely due to finite laser power. The largest momentum transfer is achieved by violating the usual delta-kick assumption. Therefore we explore the behavior of the atom optics kicked particle with finite pulse duration. We have developed a semi-classical model which shows good agreement with the full quantum description as well as our experiments. Furthermore we have found a simple scaling law that helps to identify optimal parameters for an atom interferometer. We verify this by measurements of the ``Talbot time'' (a measurement of h/m) which together with other well-known constants constitute a measurement of the fine structure constant.
Coherent excitation with short electron pulses
NASA Astrophysics Data System (ADS)
Guertler, Andreas; Robicheaux, Francis; Noordam, Bart
2000-06-01
[1pt] The probability for a transition within an atom to be driven by a collision with a long pulse of electrons is proportional to the electron flux with the proportionality factor being the cross section for this transition. Recently it was shown [1] that for electron pulses shorter than the orbit time of the electron in the atom, a contribution of coherent scattering plays a role, which is proportional to the differential cross section in forward direction and the square of the electron flux. To investigate this effect, we are developing a picosecond electron gun [2]. Collision experiments will be done with Rydberg states in lithium around n=40 with Kepler orbit times in the order of 10 ps. For picosecond electron pulses, a quadratic dependance of the transition probability on the electron flux is expected in contrast to the linear dependance expected for nanosecond electron pulses. [1pt] References [1pt] [1] F. Robicheaux and L. D. Noordam, submitted to Phys. Rev. Lett. [1pt] [2] F. Robicheaux, G. M. Lankhuijzen, and L. D. Noordam, JOSA B 15, 1 (1998)
Pulse shortening of an ultrafast VECSEL
NASA Astrophysics Data System (ADS)
Waldburger, D.; Alfieri, C. G. E.; Link, S. M.; Gini, E.; Golling, M.; Mangold, M.; Tilma, B. W.; Keller, U.
2016-03-01
Ultrafast, optically pumped, passively modelocked vertical external-cavity surface-emitting lasers (VECSELs) are excellent sources for industrial and scientific applications that benefit from compact semiconductor based high-power ultrafast lasers with gigahertz repetition rates and excellent beam quality. Applications such as self-referenced frequency combs and multi-photon imaging require sub-200-fs pulse duration combined with high pulse peak power. Here, we present a semiconductor saturable absorber mirror (SESAM) modelocked VECSEL with a pulse duration of 147 fs and 328 W of pulse peak power. The average output power was 100 mW with a repetition rate of 1.82 GHz at a center wavelength of 1034 nm. The laser has optimal beam quality operating in a fundamental transverse mode with a M2 value of <1.05 in both orthogonal directions. The VECSEL was grown by metal-organic vapor phase epitaxy (MOVPE) with five pairs of strain-compensated InGaAs quantum wells (QWs). The QWs are placed symmetrical around the antinodes of the standing electric field at a reduced average field enhancement in the QWs of ≈ 0.5 (normalized to 4 outside the structure). These results overcome the trade-off between pulse duration and peak power of the state-of-the-art threshold values of 4.35 kW peak power for a pulse duration of 400 fs and 3.3 W peak power for a pulse duration of 107 fs.
NASA Technical Reports Server (NTRS)
Campbell-Brown, M. D.; Braid, D.
2011-01-01
The flux of meteoroids, or number of meteoroids per unit area per unit time, is critical for calibrating models of meteoroid stream formation and for estimating the hazard to spacecraft from shower and sporadic meteors. Although observations of meteors in the millimetre to centimetre size range are common, flux measurements (particularly for sporadic meteors, which make up the majority of meteoroid flux) are less so. It is necessary to know the collecting area and collection time for a given set of observations, and to correct for observing biases and the sensitivity of the system. Previous measurements of sporadic fluxes are summarized in Figure 1; the values are given as a total number of meteoroids striking the earth in one year to a given limiting mass. The Gr n et al. (1985) flux model is included in the figure for reference. Fluxes for sporadic meteoroids impacting the Earth have been calculated for objects in the centimeter size range using Super-Schmidt observations (Hawkins & Upton, 1958); this study used about 300 meteors, and used only the physical area of overlap of the cameras at 90 km to calculate the flux, corrected for angular speed of meteors, since a large angular speed reduces the maximum brightness of the meteor on the film, and radiant elevation, which takes into account the geometric reduction in flux when the meteors are not perpendicular to the horizontal. They bring up corrections for both partial trails (which tends to increase the collecting area) and incomplete overlap at heights other than 90 km (which tends to decrease it) as effects that will affect the flux, but estimated that the two effects cancelled one another. Halliday et al. (1984) calculated the flux of meteorite-dropping fireballs with fragment masses greater than 50 g, over the physical area of sky accessible to the MORP fireball cameras, counting only observations in clear weather. In the micron size range, LDEF measurements of small craters on spacecraft have been used to