Science.gov

Sample records for flux tube approximation

  1. Flux tube spectra from approximate integrability at low energies

    NASA Astrophysics Data System (ADS)

    Dubovsky, S.; Flauger, R.; Gorbenko, V.

    2015-03-01

    We provide a detailed introduction to a method we recently proposed for calculating the spectrum of excitations of effective strings such as QCD flux tubes. The method relies on the approximate integrability of the low-energy effective theory describing the flux tube excitations and is based on the thermodynamic Bethe ansatz. The approximate integrability is a consequence of the Lorentz symmetry of QCD. For excited states, the convergence of the thermodynamic Bethe ansatz technique is significantly better than that of the traditional perturbative approach. We apply the new technique to the lattice spectra for fundamental flux tubes in gluodynamics in D = 3 + 1 and D = 2 + 1, and to k-strings in gluodynamics in D = 2 + 1. We identify a massive pseudoscalar resonance on the worldsheet of the confining strings in SU(3) gluodynamics in D = 3 + 1, and massive scalar resonances on the worldsheet of k = 2.3 strings in SU(6) gluodynamics in D = 2 + 1.

  2. Drift flux model as approximation of two fluid model for two phase dispersed and slug flow in tube

    SciTech Connect

    Nigmatulin, R.I.

    1995-09-01

    The analysis of one-dimensional schematizing for non-steady two-phase dispersed and slug flow in tube is presented. Quasi-static approximation, when inertia forces because of the accelerations of the phases may be neglected, is considered. Gas-liquid bubbly and slug vertical upward flows are analyzed. Non-trivial theoretical equations for slip velocity for these flows are derived. Juxtaposition of the derived equations for slip velocity with the famous Zuber-Findlay correlation as cross correlation coefficients is criticized. The generalization of non-steady drift flux Wallis theory taking into account influence of wall friction on the bubbly or slug flows for kinematical waves is considered.

  3. Flux Tube Model

    NASA Astrophysics Data System (ADS)

    Steiner, O.

    2011-05-01

    This Fortran code computes magnetohydrostatic flux tubes and sheets according to the method of Steiner, Pneuman, & Stenflo (1986) A&A 170, 126-137. The code has many parameters contained in one input file that are easily modified. Extensive documentation is provided in README files.

  4. First Reconnected Flux Tubes

    NASA Astrophysics Data System (ADS)

    Andersson, L.; Lapenta, G.; Newman, D. L.; Markidis, S.; Spanswick, E. L.; Baker, J. B.; Clausen, L. B.; Larson, D. E.; Ergun, R. E.; Frey, H. U.; Singer, H. J.; Angelopoulos, V.; Bonnell, J. W.; McFadden, J. P.; Glassmeier, K.; Wolfgang, B.

    2011-12-01

    THEMIS observations from the magnetic equator (the equatorial plane) in the near-earth tail reveal a great amount of information regarding the plasma environment in the vicinity of the first reconnected flux tubes (a subgroup of dipolarization fronts). Two sequential observations of dipolarization fronts are analyzed in detail using three of the THEMIS spacecraft. Particle acceleration to high energies (>50 keV) is observed together with a void region interpreted as a region to which the full electron distribution has incomplete access. Whistler waves, which are observed, could be driven by one of the two electron populations located in the wake of the first reconnected flux tubes. The detailed observations are compared with 2D and 3D implicit kinetic simulation of reconnection events. This presentation focuses on the similarity between observation and simulation. One key aspect of this presentation is a demonstration of how different the signature is when observing at vs off the magnetic equator, since most observations in the literature (unlike the observations presented here) are from off the equator. For this event, additional spacecraft and ground observations have been analyzed, which demonstrate that a reconfiguration of the magnetosphere is taking place. However, the focus of this presentation is on the small scale (<~10 di), rather than the large scale (~20 Re).

  5. Charm production in flux tubes

    NASA Astrophysics Data System (ADS)

    Aguiar, C. E.; Kodama, T.; Nazareth, R. A. M. S.; Pech, G.

    1996-01-01

    We argue that the nonperturbative Schwinger mechanism may play an important role in the hadronic production of charm. We present a flux tube model which assumes that the colliding hadrons become color charged because of gluon exchange, and that a single nonelementary flux tube is built up as they recede. The strong chromoelectric field inside this tube creates quark pairs (including charmed ones) and the ensuing color screening breaks the tube into excited hadronic clusters. In their turn these clusters, or ``fireballs,'' decay statistically into the final hadrons. The model is able to account for the soft production of charmed, strange, and lighter hadrons within a unified framework.

  6. Force-free thin flux tubes: Basic equations and stability

    NASA Astrophysics Data System (ADS)

    Zhugzhda, Y. D.

    1996-01-01

    The thin flux tube approximation is considered for a straight, symmetrical, force-free, rigidly rotating flux tube. The derived set of equations describes tube, body sausage, and Alfvén wave modes and is valid for any values of β. The linear waves and instabilities of force-free flux tubes are considered. The comparison of approximate and exact solutions for an untwisted, nonrotating flux tube is performed. It is shown that the approximate and exact dispersion equations coincides, except the 20% discrepancy of sausage frequencies. An effective cross section is proposed to introduce the removal of this discrepancy. It makes the derived approximation correct for the force-free thin flux tube dynamics, except the detailed structure of radial eigenfunction. The dispersion of Alfvén torsional waves in a force-free tubes appears. The valve effect of one directional propagation of waves in rotating twisted tube is revealed. The current and rotational sausage instabilities of a force-free, thin flux tube are considered.

  7. Equilibrium model of thin magnetic flux tubes. [solar atmosphere

    NASA Technical Reports Server (NTRS)

    Bodo, G.; Ferrari, A.; Massaglia, S.; Kalkofen, W.; Rosner, R.

    1984-01-01

    The existence of a physically realizable domain in which approximations that lead to a self consistent solution for flux tube stratification in the solar atmosphere, without ad hoc hypotheses, is proved. The transfer equation is solved assuming that no energy transport other than radiative is present. Convective motions inside the tube are assumed to be suppressed by magnetic forces. Only one parameter, the plasma beta at tau = 0, must be specified, and this can be estimated from observations of spatially resolved flux tubes.

  8. Pentaquark in the flux tube model

    NASA Astrophysics Data System (ADS)

    Iwasaki, M.; Takagi, F.

    2008-03-01

    We propose a model for pentaquarks in an excited state in the flux tube picture. The pentaquark is assumed to be composed of two diquarks and an antiquark connected by a color flux tube with a junction. If the pentaquark is rotating rapidly, it is polarized into two clusters: one is a diquark and the other is an antiquark plus another diquark. Excited energy of this quasilinear system is calculated with the use of the WKB approximation. It is predicted that there exist quasistable excited pentaquarks: 1690MeV(3/2+), 2000MeV(5/2-), 2250MeV(7/2+) etc., which decay mainly through three-body modes.

  9. Investigating the Dynamics of Canonical Flux Tubes

    NASA Astrophysics Data System (ADS)

    von der Linden, Jens; Sears, Jason; Intrator, Thomas; You, Setthivoine

    2016-10-01

    Canonical flux tubes are flux tubes of the circulation of a species' canonical momentum. They provide a convenient generalization of magnetic flux tubes to regimes beyond magnetohydrodynamics (MHD). We hypothesize that hierarchies of instabilities which couple disparate scales could transfer magnetic pitch into helical flows and vice versa while conserving the total canonical helicity. This work first explores the possibility of a sausage instability existing on top of a kink as mechanism for coupling scales, then presents the evolution of canonical helicity in a gyrating kinked flux rope. Analytical and numerical stability spaces derived for magnetic flux tubes with core and skin currents indicate that, as a flux tube lengthens and collimates, it may become kink unstable with a sausage instability developing on top of the kink. A new analysis of 3D magnetic field and ion flow data on gyrating kinked magnetic flux ropes from the Reconnection Scaling Experiment tracks the evolution of canonical flux tubes and their helicity. These results and methodology are being developed as part of the Mochi experiment specifically designed to observe the dynamics of canonical flux tubes. This work is supported by DOE Grant DE-SC0010340 and the DOE Office of Science Graduate Student Research Program and prepared in part by LLNL under Contract DE-AC52-07NA27344. LLNL-ABS-697161.

  10. Effective string description of confining flux tubes

    NASA Astrophysics Data System (ADS)

    Brandt, Bastian B.; Meineri, Marco

    2016-08-01

    We review the current knowledge about the theoretical foundations of the effective string theory for confining flux tubes and the comparison of the predictions to pure gauge lattice data. A concise presentation of the effective string theory is provided, incorporating recent developments. We summarize the predictions for the spectrum and the profile/width of the flux tube and their comparison to lattice data. The review closes with a short summary of open questions for future research.

  11. Dynamics of flux tubes in accretion disks

    NASA Technical Reports Server (NTRS)

    Vishniac, E. T.; Duncan, R. C.

    1994-01-01

    The study of magnetized plasmas in astrophysics is complicated by a number of factors, not the least of which is that in considering magnetic fields in stars or accretion disks, we are considering plasmas with densities well above those we can study in the laboratory. In particular, whereas laboratory plasmas are dominated by the confining magnetic field pressure, stars, and probably accretion disks, have magnetic fields whose beta (ratio of gas pressure to magnetic field pressure) is much greater than 1. Observations of the Sun suggest that under such circumstances the magnetic field breaks apart into discrete flux tubes with a small filling factor. On the other hand, theoretical treatments of MHD turbulence in high-beta plasmas tend to assume that the field is more or less homogeneously distributed throughout the plasma. Here we consider a simple model for the distribution of magnetic flux tubes in a turbulent medium. We discuss the mechanism by which small inhomogeneities evolve into discrete flux tubes and the size and distribution of such flux tubes. We then apply the model to accretion disks. We find that the fibrilation of the magnetic field does not enhance magnetic buoyancy. We also note that the evolution of an initially diffuse field in a turbulent medium, e.g., any uniform field in a shearing flow, will initially show exponential growth as the flux tubes form. This growth saturates when the flux tube formation is complete and cannot be used as the basis for a self-sustaining dynamo effect. Since the typical state of the magnetic field is a collection of intense flux tubes, this effect is of limited interest. However, it may be important early in the evolution of the galactic magnetic field, and it will play a large role in numerical simulations. Finally, we note that the formation of flux tubes is an essential ingredient in any successful dynamo model for stars or accretion disks.

  12. Wave function properties of a single and a system of magnetic flux tube(s) oscillations

    NASA Astrophysics Data System (ADS)

    Esmaeili, Shahriar; Nasiri, Mojtaba; Dadashi, Neda; Safari, Hossein

    2016-10-01

    In this study, the properties of wave functions of the MHD oscillations for a single and a system of straight flux tubes are investigated. Magnetic flux tubes with a straight magnetic field and longitudinal density stratification were considered in zero-β approximation. A single three-dimensional wave equation (eigenvalue problem) is solved for longitudinal component of the perturbed magnetic field using the finite element method. Wave functions (eigenfunction of wave equation) of the MHD oscillations are categorized into sausage, kink, helical kink, and fluting modes. Exact recognition of the wave functions and the frequencies of oscillations can be used in coronal seismology and also helps to the future high-resolution instruments that would be designed for studying the properties of the solar loop oscillations in details. The properties of collective oscillations of nonidentical and identical system of flux tubes and their interactions are studied. The ratios of frequencies, the oscillation frequencies of a system of flux tubes to their equivalent monolithic tube (ω sys/ω mono), are obtained between 0.748 and 0.841 for a system of nonidentical tubes, whereas the related ratios of frequencies for a system of identical flux tubes are fluctuated around 0.761.

  13. MHD waves on solar magnetic flux tubes - Tutorial review

    NASA Technical Reports Server (NTRS)

    Hollweg, Joseph V.

    1990-01-01

    Some of the highly simplified models that have been developed for solar magnetic flux tubes, which are intense photospheric-level fields confined by external gas pressure but able to vary rapidly with height, are presently discussed with emphasis on the torsional Alfven mode's propagation, reflection, and non-WKB properties. The 'sausage' and 'kink' modes described by the thin flux-tube approximation are noted. Attention is also given to the surface waves and resonance absorption of X-ray-emitting loops, as well as to the results of recent work on the resonant instabilities that occur in the presence of bulk flows.

  14. MHD waves on solar magnetic flux tubes - Tutorial review

    NASA Astrophysics Data System (ADS)

    Hollweg, Joseph V.

    Some of the highly simplified models that have been developed for solar magnetic flux tubes, which are intense photospheric-level fields confined by external gas pressure but able to vary rapidly with height, are presently discussed with emphasis on the torsional Alfven mode's propagation, reflection, and non-WKB properties. The 'sausage' and 'kink' modes described by the thin flux-tube approximation are noted. Attention is also given to the surface waves and resonance absorption of X-ray-emitting loops, as well as to the results of recent work on the resonant instabilities that occur in the presence of bulk flows.

  15. Siphon flows in isolated magnetic flux tubes. 3: The equilibrium path of the flux tube arch

    NASA Astrophysics Data System (ADS)

    Thomas, John H.; Montesinis, Benjamin

    1989-09-01

    The arched equilibrium path of a thin magnetic flux tube in a plane-stratified, nonmagnetic atmosphere is calculated for cases in which the flux tube contains a steady siphon flow. The large scale mechanical equilibrium of the flux tube involves a balance among the magnetic buoyancy force, the net magnetic tension force due to the curvature of the flux tube axis, and the inertial (centrifugal) force due to the siphon flow along curved streamlines. The ends of the flux tube are assumed to be pinned down by some other external force. Both isothermal and adiabatic siphon flows are considered for flux tubes in an isothermal external atmosphere. For the isothermal case, in the absence of a siphon flow the equilibrium path reduces to the static arch calculated by Parker (1975, 1979). The presence of a siphon flow causes the flux tube arch to bend more sharply, so that magnetic tension can overcome the additional straightening effect of the inertial force, and reduces the maximum width of the arch. The curvature of the arch increases as the siphon flow speed increases. For a critical siphon flow, with supercritical flow in the downstream leg, the arch is asymmetric, with greater curvature in the downstream leg of the arch. Adiabatic flow have qualitatively similar effects, except that adiabatic cooling reduces the buoyancy of the flux tube and thus leads to significantly wider arches. In some cases the cooling is strong enough to create negative buoyancy along sections of the flux tube, requiring upward curvature of the flux tube path along these sections and sometimes leading to unusual equilibrium paths of periodic, sinusoidal form.

  16. Siphon flows in isolated magnetic flux tubes. 3: The equilibrium path of the flux tube arch

    NASA Technical Reports Server (NTRS)

    Thomas, John H.; Montesinis, Benjamin

    1989-01-01

    The arched equilibrium path of a thin magnetic flux tube in a plane-stratified, nonmagnetic atmosphere is calculated for cases in which the flux tube contains a steady siphon flow. The large scale mechanical equilibrium of the flux tube involves a balance among the magnetic buoyancy force, the net magnetic tension force due to the curvature of the flux tube axis, and the inertial (centrifugal) force due to the siphon flow along curved streamlines. The ends of the flux tube are assumed to be pinned down by some other external force. Both isothermal and adiabatic siphon flows are considered for flux tubes in an isothermal external atmosphere. For the isothermal case, in the absence of a siphon flow the equilibrium path reduces to the static arch calculated by Parker (1975, 1979). The presence of a siphon flow causes the flux tube arch to bend more sharply, so that magnetic tension can overcome the additional straightening effect of the inertial force, and reduces the maximum width of the arch. The curvature of the arch increases as the siphon flow speed increases. For a critical siphon flow, with supercritical flow in the downstream leg, the arch is asymmetric, with greater curvature in the downstream leg of the arch. Adiabatic flow have qualitatively similar effects, except that adiabatic cooling reduces the buoyancy of the flux tube and thus leads to significantly wider arches. In some cases the cooling is strong enough to create negative buoyancy along sections of the flux tube, requiring upward curvature of the flux tube path along these sections and sometimes leading to unusual equilibrium paths of periodic, sinusoidal form.

  17. Diamagnetic force on a flux tube

    NASA Technical Reports Server (NTRS)

    Yeh, T.

    1983-01-01

    The diamagnetic force on a straight flux tube is elucidated. The case when the flux tube has a circular cross section is considered, and the result is generalized to the case of noncircular cross section. The result shows that when the external magnetic field is uniform, the diamagnetic force is simply equal to the vector multiplication of the internal conduction current and the external magnetic field. It is independent of the size and shape of the cross section of the flux tube. This is analogous to the Kutta-Joukowski theorem that the aerodynamic lift force is proportional to the vector multiplication of the unperturbed flow velocity and the circulation around the airfoil. When the external magnetic field is nonuniform, the diamagnetic force has an additional contribution which is proportional to the gradient of magnetic pressure and to the volume of the flux tube. The constant of proportionality, which is shown to be equal to two for a circular cross section, indicates the enhancement of the nonuniformity of the external magnetic field in the vicinity of the periphery by the polarization current.

  18. ON THE DISPERSION AND SCATTERING OF MAGNETOHYDRODYNAMIC WAVES BY LONGITUDINALLY STRATIFIED FLUX TUBES

    SciTech Connect

    Andries, J.; Cally, P. S. E-mail: paul.cally@monash.edu

    2011-12-20

    We provide a fairly general analytic theory for the dispersion and scattering of magnetohydrodynamic waves by longitudinally stratified flux tubes. The theory provides a common framework for, and synthesis of, many previous studies of flux tube oscillations that were carried out under various simplifying assumptions. The present theory focuses on making only a minimal number of assumptions. As a result it thus provides an analytical treatment of several generalizations of existing tube oscillation models. The most important practical cases are inclusion of plasma pressure and possibly buoyancy effects in models of straight non-diverging tubes as applied in coronal seismology, and relaxation of the 'thin tube' approximation in oscillation models of diverging tubes as applied both in the context of p-mode scattering and coronal seismology. In particular, it illustrates the unifying theoretical framework underlying both the description of waves scattered by flux tubes and the dispersion of waves carried along flux tubes.

  19. Dynamics of Quarks in a 2D Flux Tube

    SciTech Connect

    Koshelkin, Andrey V.; Wong, Cheuk-Yin

    2015-01-01

    On the basis of a compactification of the (3+1) into (1+1) dimensional space-time [1], the quark states inside the 2D flux tube are studied for the case of a linear transverse confining potential. The derived states are classified by both the projections of the orbital momentum and the spin along the tube direction. The spectrum of the fermion states is evaluated. It is found that the energy eigenvalues of the quarks appear to be approximately related to the square root of the eigenvalues of the two-dimensional harmonic oscillator.

  20. The Topology of Canonical Flux Tubes in Flared Jet Geometry

    NASA Astrophysics Data System (ADS)

    Sander Lavine, Eric; You, Setthivoine

    2017-01-01

    Magnetized plasma jets are generally modeled as magnetic flux tubes filled with flowing plasma governed by magnetohydrodynamics (MHD). We outline here a more fundamental approach based on flux tubes of canonical vorticity, where canonical vorticity is defined as the circulation of the species’ canonical momentum. This approach extends the concept of magnetic flux tube evolution to include the effects of finite particle momentum and enables visualization of the topology of plasma jets in regimes beyond MHD. A flared, current-carrying magnetic flux tube in an ion-electron plasma with finite ion momentum is thus equivalent to either a pair of electron and ion flow flux tubes, a pair of electron and ion canonical momentum flux tubes, or a pair of electron and ion canonical vorticity flux tubes. We examine the morphology of all these flux tubes for increasing electrical currents, different radial current profiles, different electron Mach numbers, and a fixed, flared, axisymmetric magnetic geometry. Calculations of gauge-invariant relative canonical helicities track the evolution of magnetic, cross, and kinetic helicities in the system, and show that ion flow fields can unwind to compensate for an increasing magnetic twist. The results demonstrate that including a species’ finite momentum can result in a very long collimated canonical vorticity flux tube even if the magnetic flux tube is flared. With finite momentum, particle density gradients must be normal to canonical vorticities, not to magnetic fields, so observations of collimated astrophysical jets could be images of canonical vorticity flux tubes instead of magnetic flux tubes.

  1. MAGNETIC FLUX TUBE INTERCHANGE AT THE HELIOPAUSE

    SciTech Connect

    Florinski, V.

    2015-11-01

    The magnetic field measured by Voyager 1 prior to its heliocliff encounter on 2012.65 showed an unexpectedly complex transition from the primarily azimuthal inner-heliosheath field to the draped interstellar field tilted by some 20° to the nominal azimuthal direction. Most prominent were two regions of enhanced magnetic field strength depleted in energetic charged particles of heliospheric origin. These regions were interpreted as magnetic flux tubes connected to the outer heliosheath that provided a path for the particles to escape. Despite large increases in strength, the field’s direction did not change appreciably at the boundaries of these flux tubes. Rather, the field’s direction changed gradually over several months prior to the heliocliff crossing. It is shown theoretically that the heliopause, as a pressure equilibrium layer, can become unstable to interchange of magnetic fields between the inner and the outer heliosheaths. The curvature of magnetic field lines and the anti-sunward gradient in plasma kinetic pressure provide conditions favorable for an interchange. Magnetic shear between the heliosheath and the interstellar fields reduces the growth rates, but does not fully stabilize the heliopause against perturbations propagating in the latitudinal direction. The instability could create a transition layer permeated by magnetic flux tubes, oriented parallel to each other and alternately connected to the heliosheath or the interstellar regions.

  2. Interaction of twisted curved flux tubes

    NASA Astrophysics Data System (ADS)

    Selwa, Malgorzata; Parnell, Clare; Priest, Eric

    Most solar eruptions are initiated from sigmoidal structures. We perform 3D MHD numerical experiments of the interaction of force-free dipolar flux tubes. The magnetic configuration is initialized as either a potential or a force-free dipole with a constant density. Next we perturb the dipoles by twisting or rotating them leading to reconnection in a resistive MHD regime. We compare the connectivity, energetics and topological features in both models, vary the contact angle of the dipoles and check if the initial configuration (sigmoidal or not) affects flares and eruption initiation leading to faster and stronger reconnection.

  3. Dynamic phenomena in coronal flux tubes

    NASA Technical Reports Server (NTRS)

    Mariska, J. T.; Boris, J. P.

    1981-01-01

    The study of stellar atmospheres and the determination of specific physical mechanisms, geometries, and magnetic structures by which coronae are maintained is examined. Ultraviolet and soft X-ray components observed in the radiative output of cool stars and the Sun require counterentropic temperature gradients for their explanation. The existence of a hot corona is recognized as a result of mechanical or fluid dynamic effects and the importance of the magnetic field in the heating is accepted. Magnetohydrodynamic energy release associated with the emergence of magnetic flux through the chromosphere and its dynamic readjustment in the corona are major counterentropic phenomena which are considered as primary candidates for corona heating. Systematic plows in coronal flux tubes result from asymmetric heating and systematic flows can exist without substantial chromospheric pressure differences.

  4. Maximum allowable heat flux for a submerged horizontal tube bundle

    SciTech Connect

    McEligot, D.M.

    1995-08-14

    For application to industrial heating of large pools by immersed heat exchangers, the socalled maximum allowable (or {open_quotes}critical{close_quotes}) heat flux is studied for unconfined tube bundles aligned horizontally in a pool without forced flow. In general, we are considering boiling after the pool reaches its saturation temperature rather than sub-cooled pool boiling which should occur during early stages of transient operation. A combination of literature review and simple approximate analysis has been used. To date our main conclusion is that estimates of q inch chf are highly uncertain for this configuration.

  5. Equilibrium structure of solar magnetic flux tubes: Energy transport with multistream radiative transfer

    NASA Technical Reports Server (NTRS)

    Hasan, S. S.; Kalkofen, W.

    1994-01-01

    We examine the equilibrium structure of vertical intense magnetic flux tubes on the Sun. Assuming cylindrical geometry, we solve the magnetohydrostatic equations in the thin flux-tube approximation, allowing for energy transport by radiation and convection. The radiative transfer equation is solved in the six-stream approximation, assuming gray opacity and local thermodynamic equilibrium. This constitutes a significant improvement over a previous study, in which the transfer was solved using the multidimensional generalization of the Eddington approximation. Convection in the flux tube is treated using mixing-length theory, with an additional parameter alpha, characterizing the suppression of convective energy transport in the tube by the strong magnetic field. The equations are solved using the method of partial linearization. We present results for tubes with different values of the magnetic field strength and radius at a fixed depth in the atmosphere. In general, we find that, at equal geometric heights, the temperature on the tube axis, compared to the ambient medium, is higher in the photosphere and lower in the convection zone, with the difference becoming larger for thicker tubes. At equal optical depths the tubes are generally hotter than their surroundings. The results are comparatively insensitive to alpha but depend upon whether radiative and convective energy transport operate simultaneously or in separate layers. A comparison of our results with semiempirical models shows that the temperature and intensity contrast are in broad agreement. However, the field strengths of the flux-tube models are somewhat lower than the values inferred from observations.

  6. The Topology of Canonical Flux Tubes in Flared Jet Geometry

    NASA Astrophysics Data System (ADS)

    Lavine, Eric Sander; You, Setthivoine

    2016-10-01

    Magnetized plasma jets are generally modeled as magnetic flux tubes filled with flowing plasma governed by MHD. We outline here a more fundamental approach based on flux tubes of canonical vorticity. This approach extends the concept of magnetic flux tube evolution to include the effects of finite particle momentum and enables visualization of the topology of plasma jets in regimes beyond MHD. We examine the morphology of these canonical flux tubes for increasing electrical currents, different radial current profiles, different electron Mach numbers, and a fixed, flared, dipole magnetic field. Calculations of gauge-invariant relative canonical helicity track the evolution of magnetic, cross, and kinetic helicities in the system and show that ion flow fields can unwind to compensate for increasing magnetic twist. The results demonstrate that including a species' finite momentum can result in long, collimated canonical vorticity flux tubes even when the magnetic flux tube is flared. With finite momentum, particle density gradients must be normal to canonical vorticities not to magnetic fields, so observations of collimated astrophysical jets could be images of canonical vorticity flux tubes instead of magnetic flux tubes. This work is supported by DOE Grant DE-SC0010340.

  7. Supersymmetric quantum mechanics of the flux tube

    NASA Astrophysics Data System (ADS)

    Belitsky, A. V.

    2016-12-01

    The Operator Product Expansion approach to scattering amplitudes in maximally supersymmetric gauge theory operates in terms of pentagon transitions for excitations propagating on a color flux tube. These obey a set of axioms which allow one to determine them to all orders in 't Hooft coupling and confront against explicit calculations. One of the simplifying features of the formalism is the factorizability of multiparticle transitions in terms of single-particle ones. In this paper we extend an earlier consideration of a sector populated by one kind of excitations to the case of a system with fermionic as well as bosonic degrees of freedom to address the origin of the factorization. While the purely bosonic case was analyzed within an integrable noncompact open-spin chain model, the current case is solved in the framework of a supersymmetric sl (2 | 1) magnet. We find the eigenfunctions for the multiparticle system making use of the R-matrix approach. Constructing resulting pentagon transitions, we prove their factorized form. The discussion corresponds to leading order of perturbation theory.

  8. Benchmarking gyrokinetic simulations in a toroidal flux-tube

    SciTech Connect

    Chen, Y.; Parker, S. E.; Wan, W.; Bravenec, R.

    2013-09-15

    A flux-tube model is implemented in the global turbulence code GEM [Y. Chen and S. E. Parker, J. Comput. Phys. 220, 839 (2007)] in order to facilitate benchmarking with Eulerian codes. The global GEM assumes the magnetic equilibrium to be completely given. The initial flux-tube implementation simply selects a radial location as the center of the flux-tube and a radial size of the flux-tube, sets all equilibrium quantities (B, ∇B, etc.) to be equal to the values at the center of the flux-tube, and retains only a linear radial profile of the safety factor needed for boundary conditions. This implementation shows disagreement with Eulerian codes in linear simulations. An alternative flux-tube model based on a complete local equilibrium solution of the Grad-Shafranov equation [J. Candy, Plasma Phys. Controlled Fusion 51, 105009 (2009)] is then implemented. This results in better agreement between Eulerian codes and the particle-in-cell (PIC) method. The PIC algorithm based on the v{sub ||}-formalism [J. Reynders, Ph.D. dissertation, Princeton University, 1992] and the gyrokinetic ion/fluid electron hybrid model with kinetic electron closure [Y. Chan and S. E. Parker, Phys. Plasmas 18, 055703 (2011)] are also implemented in the flux-tube geometry and compared with the direct method for both the ion temperature gradient driven modes and the kinetic ballooning modes.

  9. TWISTED MAGNETIC FLUX TUBES IN THE SOLAR WIND

    SciTech Connect

    Zaqarashvili, Teimuraz V.; Vörös, Zoltán; Narita, Yasuhito; Bruno, Roberto

    2014-03-01

    Magnetic flux tubes in the solar wind can be twisted as they are transported from the solar surface, where the tubes are twisted due to photospheric motions. It is suggested that the twisted magnetic tubes can be detected as the variation of total (thermal+magnetic) pressure during their passage through the observing satellite. We show that the total pressure of several observed twisted tubes resembles the theoretically expected profile. The twist of the isolated magnetic tube may explain the observed abrupt changes of magnetic field direction at tube walls. We have also found some evidence that the flux tube walls can be associated with local heating of the plasma and elevated proton and electron temperatures. For the tubes aligned with the Parker spiral, the twist angle can be estimated from the change of magnetic field direction. Stability analysis of twisted tubes shows that the critical twist angle of the tube with a homogeneous twist is 70°, but the angle can further decrease due to the motion of the tube with respect to the solar wind stream. The tubes with a stronger twist are unstable to the kink instability, therefore they probably cannot reach 1 AU.

  10. Colour flux-tubes in static pentaquark and tetraquark systems

    NASA Astrophysics Data System (ADS)

    Bicudo, Pedro; Cardoso, Nuno; Cardoso, Marco

    2012-04-01

    The colour fields created by the static tetraquark and pentaquark systems are computed in quenched SU(3) lattice QCD, with gauge invariant lattice operators, in a 243×48 lattice at β=6.2. We generate our quenched configurations with GPUs, and detail the respective benchmarks in different SU(N) groups. While at smaller distances the Coulomb potential is expected to dominate, at larger distances it is expected that fundamental flux tubes, similar to the flux-tube between a quark and an antiquark, emerge and confine the quarks. In order to minimize the potential the fundamental flux tubes should connect at 120° angles. We compute the square of the colour fields utilizing plaquettes, and locate the static sources with generalized Wilson loops and with APE smearing. The tetraquark system is well described by a double-Y-shaped flux-tube, with two Steiner points, but when quark-antiquark pairs are close enough the two junctions collapse and we have an X-shaped flux-tube, with one Steiner point. The pentaquark system is well described by a three-Y-shaped flux-tube where the three flux junctions are Steiner points.

  11. Flux tube analysis of L-band ionospheric scintillation

    NASA Astrophysics Data System (ADS)

    Shume, E. B.; Mannucci, A. J.; Butala, M. D.; Pi, X.; Valladares, C. E.

    2013-06-01

    This manuscript presents magnetic flux tube analysis of L-band signal scintillation in the nighttime equatorial and low-latitude ionosphere. Residues of the scintillation index S4 estimated from the L-band signals received from Geostationary Earth Orbit (GEO) satellites are employed in the analysis. The S4 estimates have been shown to be associated with simultaneous GPS VTEC variations derived from JPL's GIPSY-GIM package. We have applied the wavelet decomposition technique simultaneously on the S4 time series in a flux tube over the equatorial and low-latitude regions. The technique decomposes the S4 signal to identify the dominant mode of variabilities and the temporal variations of scintillation-producing irregularities in the context of a flux tube. Statistically significant regions of the wavelet power spectra considered in our study have mainly shown that (a) dominant plasma irregularities associated with S4 variabilities in a flux tube have periods of about 4 to 15 minutes (horizontal irregularity scales of about 24 to 90 km). These periods match short period gravity waves, (b) scintillation-producing irregularities are anisotropic along the flux tube and in the east-west direction, and (c) the occurrences of scintillation-producing irregularities along the flux tube indicate that the entire flux tube became unstable. However, plasma instability occurrences were not simultaneous in most cases along the flux tube, there were time delays of various orders. Understanding the attributes of L-band scintillation-producing irregularities could be important for developing measures to mitigate L-band signal degradation.

  12. J/ ψ-dissociation by a color electric flux tube

    NASA Astrophysics Data System (ADS)

    Loh, S.; Greiner, C.; Mosel, U.

    1997-02-01

    We address the question of how a c - c¯state (a J/ ψ) can be dissociated by the strong color electric fields when moving through a color electric flux tube. The color electric flux tube and the dissociation of the heavy quarkonia state are both described within the Friedberg-Lee color dielectric model. We speculate on the importance of such an effect with respect to the observed J/ ψ-suppression in ultrarelativistic heavy ion collisions.

  13. Stability of cool flux tubes in the solar chromosphere. II - Non-linear dynamical behaviour

    NASA Astrophysics Data System (ADS)

    Hassan, S. S.; Kneer, F.

    1990-06-01

    A single vertical cool flux tube in the solar chromosphere is focused upon for stability studies. The analysis of a previous study by Hasan and Kneer (1986) is extended to the nonlinear regime with a view to examining the consequences of having self-exciting mechanisms of oscillations above the photosphere. In particular, the possibility of whether the motions driven by the convective instability caused by the presence of CO could extract sufficient energy from the radiation field near the Tmin region of empirical models and deposit it in higher layers to produce chromospheric heating is investigated. The time evolution of this instability is followed by solving the MHD equations in the thin flux tube approximation. The analysis includes energy exchange with the radiation field. The simulations of a flux tube with a transmitting upper boundary show that the average energy flux in the oscillations is inadequate for chromospheric heating.

  14. Comparison of the Radiative Two-Flux and Diffusion Approximations

    NASA Technical Reports Server (NTRS)

    Spuckler, Charles M.

    2006-01-01

    Approximate solutions are sometimes used to determine the heat transfer and temperatures in a semitransparent material in which conduction and thermal radiation are acting. A comparison of the Milne-Eddington two-flux approximation and the diffusion approximation for combined conduction and radiation heat transfer in a ceramic material was preformed to determine the accuracy of the diffusion solution. A plane gray semitransparent layer without a substrate and a non-gray semitransparent plane layer on an opaque substrate were considered. For the plane gray layer the material is semitransparent for all wavelengths and the scattering and absorption coefficients do not vary with wavelength. For the non-gray plane layer the material is semitransparent with constant absorption and scattering coefficients up to a specified wavelength. At higher wavelengths the non-gray plane layer is assumed to be opaque. The layers are heated on one side and cooled on the other by diffuse radiation and convection. The scattering and absorption coefficients were varied. The error in the diffusion approximation compared to the Milne-Eddington two flux approximation was obtained as a function of scattering coefficient and absorption coefficient. The percent difference in interface temperatures and heat flux through the layer obtained using the Milne-Eddington two-flux and diffusion approximations are presented as a function of scattering coefficient and absorption coefficient. The largest errors occur for high scattering and low absorption except for the back surface temperature of the plane gray layer where the error is also larger at low scattering and low absorption. It is shown that the accuracy of the diffusion approximation can be improved for some scattering and absorption conditions if a reflectance obtained from a Kubelka-Munk type two flux theory is used instead of a reflection obtained from the Fresnel equation. The Kubelka-Munk reflectance accounts for surface reflection and

  15. Empty Flux Tubes and Plasmasphere Refilling as Seen by IMAGE

    NASA Technical Reports Server (NTRS)

    Adrian, M. L.; Gallagher, D. L.; Sandel, B. R.; Green, J. L.; Reinish, B.; Goldstein, J.; Huegrich, T.

    2002-01-01

    When a plasmaspheric flux tube is empty, what plasma is actually missing? When a flux tube refills, where does the plasma accumulate first? How long does it take to refill a flux tube to a level that is essentially saturated? Owing to the observational difficulties of measuring the distribution of plasmaspheric plasma along a flux tube, these questions have remained unanswered over many decades of study since discovery of the plasmasphere. They are important questions, because of the role that plasmaspheric plasma plays in collisional losses of higher energy populations, in modifying instabilities for wave-particle interactions, and in influencing the transport of energy through plasma waves. The Extreme Ultraviolet Imager and the Radio Plasma Imager on the IMAGE Mission are providing new, critical observations of the dynamic outer plasmasphere where convective erosion and refilling dominate. Latitudinal density profiles along a single L-shell from BPI confirm earlier indications of a mid-latitude transition between the altitude organized structure of the ionosphere and L-shell organized plasmasphere. Emptied flux tubes often mean empty only above about 1 Re in altitude or below plus or minus 40 degrees in magnetic latitude. Refilling to nearly saturated levels is found to take much less than that previously found necessary to complete the process. The observations behind these conclusions and the new light brought to plasmaspheric refilling will be discussed.

  16. CURRENT BUILDUP IN EMERGING SERPENTINE FLUX TUBES

    SciTech Connect

    Pariat, E.; Masson, S.; Aulanier, G.

    2009-08-20

    The increase of magnetic flux in the solar atmosphere during active-region formation involves the transport of the magnetic field from the solar convection zone through the lowest layers of the solar atmosphere, through which the plasma {beta} changes from >1 to <1 with altitude. The crossing of this magnetic transition zone requires the magnetic field to adopt a serpentine shape also known as the sea-serpent topology. In the frame of the resistive flux-emergence model, the rising of the magnetic flux is believed to be dynamically driven by a succession of magnetic reconnections which are commonly observed in emerging flux regions as Ellerman bombs. Using a data-driven, three-dimensional (3D) magnetohydrodynamic numerical simulation of flux emergence occurring in active region 10191 on 2002 November 16-17, we study the development of 3D electric current sheets. We show that these currents buildup along the 3D serpentine magnetic-field structure as a result of photospheric diverging horizontal line-tied motions that emulate the observed photospheric evolution. We observe that reconnection can not only develop following a pinching evolution of the serpentine field line, as usually assumed in two-dimensional geometry, but can also result from 3D shearing deformation of the magnetic structure. In addition, we report for the first time on the observation in the UV domain with the Transition Region and Coronal Explorer (TRACE) of extremely transient loop-like features, appearing within the emerging flux domain, which link several Ellermam bombs with one another. We argue that these loop transients can be explained as a consequence of the currents that build up along the serpentine magnetic field.

  17. A Flux Tube Solar Dynamo Model Based on the Competing Role of Buoyancy and Downflows

    NASA Astrophysics Data System (ADS)

    Li, L. H.; Sofia, S.; Belvedere, G.

    2005-08-01

    A magnetic flux tube can be considered both as a separate body and as a confined field. As a field, it is affected by both differential rotation (Ω-effect) and cyclonic convection (α-effect). As a body, the tube experiences not only a buoyant force, but also a dynamic pressure due to downflows above the tube. These two competing dynamic effects are incorporated into the α-Ω dynamo equations through the total magnetic turbulent diffusivity, leading to a flux tube dynamo operating in the convection zone. We analyze and solve the extended dynamo equations in the linear approximation by adopting the observed solar internal rotation and assuming a downflow effect derived from numerical simulations of a solar convection zone. The model reproduces the 22 yr cycle period; the extended butterfly diagram with the confinement of strong activity to low heliographic latitudes |Φ|<=35deg the evidence that at low latitudes the radial field is in an approximately π phase lag compared to the toroidal field at the same latitude; the evidence that the poleward branch is in a π/2 phase lag with respect to the equatorward branch; and the evidence that most of the magnetic flux is present in an intermittent form, concentrated into strong flux tubes.

  18. Magnetic field characters of returning flux tubes in Saturn's magnetosphere

    NASA Astrophysics Data System (ADS)

    Lai, Hairong; Russell, Christopher; Jia, Yingdong; Wei, Hanying

    2016-04-01

    Deep in the Saturnian magnetosphere, water-group neutrals are ionized after being released from the plume of Enceladus at 4 RS. This forms a plasma disk from 2.5 to 8 RS around Saturn and the typical source rate is 12~250 kg/s. Such plasma addition must be shed to the solar wind ultimately to maintain the plasma density in the magnetosphere in long term average. In this plasma transfer process, the magnetic flux also convects outward. To conserve the total magnetic flux imposed on the magnetosphere by the planet's internal dynamo, the magnetic flux has to return to the inner magnetosphere. Flux tubes are found to be the major form of such return. Determining such flux tubes is essential in understanding the breathing of Saturn magnetosphere. We investigated 10 years of Cassini magnetometer data to identify over six hundred flux-returning events between 4 and 18 in L. Statistical properties are presented, to constrain the origin, transport and evolution of these flux tubes.

  19. Signature of the Fragmentation of a Color Flux Tube

    SciTech Connect

    Wong, Cheuk-Yin

    2015-10-07

    The production of quark-antiquark pairs along a color flux tube precedes the fragmentation of the tube. Because of the local conservation of momentum and charge, the production of a $q$-$\\bar q$ pair will lead to correlations of adjacently produced mesons (mostly pions). Adjacently produced pions however can be signalled by the their rapidity difference $\\Delta y$ falling within the window of $|\\Delta y | < 1/(dN_\\pi/dy)$, on account of the space-time-rapidity ordering of produced pions in a flux tube fragmentation. Therefore, the local conservation of momentum will lead to a suppression of azimuthal two-pion correlation $dN/(d\\Delta \\phi\\, d\\Delta y)$ on the near side at $(\\Delta \\phi, \\Delta y) \\sim 0$, but an enhanced azimuthal correlation on the back-to-back, away side at $(\\Delta \\phi$$\\sim$$ \\pi,\\Delta y$$\\sim$0). Similarly, in a flux tube fragmentation, the local conservation of charge will forbid the production of like charge pions within $|\\Delta y | < 1/(dN_\\pi/dy)$, but there is no such prohibition for $|\\Delta y| >1/(dN_\\pi/dy)$. These properties may be used as the signature for the fragmentation of a color flux tube.

  20. Signature of the Fragmentation of a Color Flux Tube

    DOE PAGES

    Wong, Cheuk-Yin

    2015-10-07

    The production of quark-antiquark pairs along a color flux tube precedes the fragmentation of the tube. Because of the local conservation of momentum and charge, the production of amore » $q$-$$\\bar q$$ pair will lead to correlations of adjacently produced mesons (mostly pions). Adjacently produced pions however can be signalled by the their rapidity difference $$\\Delta y$$ falling within the window of $$|\\Delta y | < 1/(dN_\\pi/dy)$$, on account of the space-time-rapidity ordering of produced pions in a flux tube fragmentation. Therefore, the local conservation of momentum will lead to a suppression of azimuthal two-pion correlation $$dN/(d\\Delta \\phi\\, d\\Delta y)$$ on the near side at $$(\\Delta \\phi, \\Delta y) \\sim 0$$, but an enhanced azimuthal correlation on the back-to-back, away side at $$(\\Delta \\phi$$$\\sim$$$ \\pi,\\Delta y$$$\\sim$$0). Similarly, in a flux tube fragmentation, the local conservation of charge will forbid the production of like charge pions within $$|\\Delta y | < 1/(dN_\\pi/dy)$$, but there is no such prohibition for $$|\\Delta y| >1/(dN_\\pi/dy)$$. These properties may be used as the signature for the fragmentation of a color flux tube.« less

  1. Dissipationless Damping of Compressive MHD Modes in Twisted Flux Tubes

    NASA Astrophysics Data System (ADS)

    Giagkiozis, I.; Fedun, V.; Verth, G.; Goossens, M. L.; Van Doorsselaere, T.

    2015-12-01

    Axisymmetric modes in straight magentic flux tubes exhibit a cutoff in the long wavelength limit and no damping is predicted. However, as soon as weak magnetic twist is introduced inside as well as outside the magnetic flux tube the cutoff recedes. Furthermore, when density variations are also incomporated within the modelresonant absorption appears. In this work we explore analytically the expected damping times for waves within the Alfven continuum for different solar atmospheric conditions. Based on the results in this work we offer insight on recent observations of sausage wave damping in the chromosphere.

  2. Explosive instability and erupting flux tubes in a magnetized plasma

    PubMed Central

    Cowley, S. C.; Cowley, B.; Henneberg, S. A.; Wilson, H. R.

    2015-01-01

    The eruption of multiple flux tubes in a magnetized plasma is proposed as a mechanism for explosive release of energy in plasmas. A significant fraction of the linearly stable isolated flux tubes are shown to be metastable in a box model magnetized atmosphere in which ends of the field lines are embedded in conducting walls. The energy released by destabilizing such field lines can be a large proportion of the gravitational energy stored in the system. This energy can be released in a fast dynamical time. PMID:26339193

  3. The Color Flux Tube as an Effective String

    NASA Astrophysics Data System (ADS)

    Pepe, Michele

    2011-05-01

    We investigate the low-energy regime of the confining string connecting color sources in Yang-Mills theory. First, we present results of the Monte Carlo measurement of the width of the flux tube between two static quarks in the fundamental representation both at zero and at finite temperature. Then we consider the confining flux tube connecting color sources in larger representations of the gauge group. For stable strings—the k-strings—we study the Luscher term; for unstable strings we investigate their decay as the distance between the static sources is increased.

  4. Reconnection Between Twisted Flux Tubes - Implications for Coronal Heating

    NASA Astrophysics Data System (ADS)

    Knizhnik, K. J.; Antiochos, S. K.; DeVore, C. R.; Klimchuk, J. A.; Wyper, P. F.

    2015-12-01

    The nature of the heating of the Sun's corona has been a long-standing unanswered problem in solar physics. Beginning with the work of Parker (1972), many authors have argued that the corona is continuously heated through numerous small-scale reconnection events known as nanoflares. In these nanoflare models, stressing of magnetic flux tubes by photospheric motions causes the field to become misaligned, producing current sheets in the corona. These current sheets then reconnect, converting the free energy stored in the magnetic field into heat. In this work, we use the Adaptively Refined MHD Solver (ARMS) to perform 3D MHD simulations that dynamically resolve regions of strong current to study the reconnection between twisted flux tubes in a plane-parallel Parker configuration. We investigate the energetics of the process, and show that the flux tubes accumulate stress gradually before undergoing impulsive reconnection. We study the motion of the individual field lines during reconnection, and demonstrate that the connectivity of the configuration becomes extremely complex, with multiple current sheets being formed, which could lead to enhanced heating. In addition, we show that there is considerable interaction between the twisted flux tubes and the surrounding untwisted field, which contributes further to the formation of current sheets. The implications for observations will be discussed. This work was funded by a NASA Earth and Space Science Fellowship, and by the NASA TR&T Program.

  5. Modeling the Subsurface Evolution of Active-Region Flux Tubes

    NASA Astrophysics Data System (ADS)

    Fan, Y.

    2009-12-01

    I present results from a set of 3-D spherical-shell MHD simulations of the buoyant rise of active region flux tubes in the solar interior that put new constraints on the initial twist of the subsurface tubes in order for them to emerge with tilt angles consistent with the observed Joy's law for the mean tilt of solar active regions. Due to asymmetric stretching of the Ω-shaped tube by the Coriolis force, a field strength asymmetry develops with the leading side having a greater field strength and thus being more cohesive compared to the following side. Furthermore, the magnetic flux in the leading leg shows more coherent values of local twist α ≡ JB / B2, whereas the values in the following leg show large fluctuations and are of mixed signs.

  6. Statistical Flux Tube Properties of 3D Magnetic Carpet Fields

    NASA Astrophysics Data System (ADS)

    Close, R. M.; Parnell, C. E.; Mackay, D. H.; Priest, E. R.

    2003-02-01

    The quiet-Sun photosphere consists of numerous magnetic flux fragments of both polarities that evolve with granular and supergranular flow fields. These concentrations give rise to a web of intermingled magnetic flux tubes which characterise the coronal magnetic field. Here, the nature of these flux tubes is studied. The photosphere is taken to be the source plane and each photospheric fragment is represented by a series of point sources. By analysing the potential field produced by these sources, it is found that the distribution of flux tube lengths obtained by (i) integrating forward from positive sources and (ii) tracing back from negative sources is highly dependent on the total flux imbalance within the region of interest. It is established that the relation between the footpoint separation of a flux tube and its height cannot be assumed to be linear. Where there is a significant imbalance of flux within a region, it is found that fragments of the dominant polarity will have noticeably more connections, on average, than the minority polarity fragments. Despite this difference, the flux from a single fragment of either polarity is typically divided such that (i) 60-70% connects to one opposite-polarity fragment, (ii) 25-30% goes to a further 1 to 2 opposite-polarity fragments, and (iii) any remaining flux may connect to as many as another 50 or more other opposite-polarity fragments. This is true regardless of any flux imbalance within the region. It is found that fragments connect preferentially to their nearest neighbours, with, on average, around 60-70% of flux closing down within 10 Mm of a typical fragment. Only 50% of the flux in a quiet region extends higher than 2.5 Mm above the solar surface and 5-10% extends higher than 25 Mm. The fragments that contribute to the field above this height cover a range of sizes, with even the smallest of fragments contributing to the field at heights of over 50 Mm.

  7. Doppler displacements in kink MHD waves in solar flux tubes

    NASA Astrophysics Data System (ADS)

    Goossens, Marcel; Van Doorsselaere, Tom; Terradas, Jaume; Verth, Gary; Soler, Roberto

    Doppler displacements in kink MHD waves in solar flux tubes Presenting author: M. Goossens Co-authors: R. Soler, J. Terradas, T. Van Doorsselaere, G. Verth The standard interpretation of the transverse MHD waves observed in the solar atmosphere is that they are non-axisymmetric kink m=1) waves on magnetic flux tubes. This interpretation is based on the fact that axisymmetric and non-axisymmetric fluting waves do not displace the axis of the loop and the loop as a whole while kink waves indeed do so. A uniform transverse motion produces a Doppler displacement that is constant across the magnetic flux tube. A recent development is the observation of Doppler displacements that vary across the loop. The aim of the present contribution is to show that spatial variations of the Doppler displacements across the loop can be caused by kink waves. The motion associated with a kink wave is purely transverse only when the flux tube is uniform and sufficiently thin. Only in that case do the radial and azimuthal components of displacement have the same amplitude and is the azimuthal component a quarter of a period ahead of the radial component. This results in a unidirectional or transverse displacement. When the flux tube is non-uniform and has a non-zero radius the conditions for the generation of a purely transverse motion are not any longer met. In that case the motion in a kink wave is the sum of a transverse motion and a non-axisymmetric rotational motion that depends on the azimuthal angle. It can produce complicated variations of the Doppler displacement across the loop. I shall discuss the various cases of possible Doppler displacenents that can occur depending on the relative sizes of the amplitudes of the radial and azimuthal components of the displacement in the kink wave and on the orientation of the line of sight.

  8. Evidence of Twisted Flux-Tube Emergence in Active Regions

    NASA Astrophysics Data System (ADS)

    Poisson, M.; Mandrini, C. H.; Démoulin, P.; López Fuentes, M.

    2015-03-01

    Elongated magnetic polarities are observed during the emergence phase of bipolar active regions (ARs). These extended features, called magnetic tongues, are interpreted as a consequence of the azimuthal component of the magnetic flux in the toroidal flux-tubes that form ARs. We develop a new systematic and user-independent method to identify AR tongues. Our method is based on determining and analyzing the evolution of the AR main polarity inversion line (PIL). The effect of the tongues is quantified by measuring the acute angle [ τ] between the orientation of the PIL and the direction orthogonal to the AR main bipolar axis. We apply a simple model to simulate the emergence of a bipolar AR. This model lets us interpret the effect of magnetic tongues on parameters that characterize ARs ( e.g. the PIL inclination and the tilt angles, and their evolution). In this idealized kinematic emergence model, τ is a monotonically increasing function of the twist and has the same sign as the magnetic helicity. We systematically apply our procedure to a set of bipolar ARs (41 ARs) that were observed emerging in line-of-sight magnetograms over eight years. For most of the cases studied, the tongues only have a small influence on the AR tilt angle since tongues have a much lower magnetic flux than the more concentrated main polarities. From the observed evolution of τ, corrected for the temporal evolution of the tilt angle and its final value when the AR is fully emerged, we estimate the average number of turns in the subphotospherically emerging flux-rope. These values for the 41 observed ARs are below unity, except for one. This indicates that subphotospheric flux-ropes typically have a low amount of twist, i.e. highly twisted flux-tubes are rare. Our results demonstrate that the evolution of the PIL is a robust indicator of the presence of tongues and constrains the amount of twist in emerging flux-tubes.

  9. The delta-Eddington approximation for radiative flux transfer

    NASA Technical Reports Server (NTRS)

    Joseph, J. H.; Wiscombe, W. J.; Weinman, J. A.

    1976-01-01

    Simple approximations, like the Eddington, are often incapable of coping with the highly asymmetric phase functions typical of particulate scattering. A simple yet accurate method called the delta-Eddington approximation is proposed for determining monochromatic radiative fluxes in an absorbing-scattering atmosphere. In this method, the governing phase function is approximated by a Dirac delta function forward scatter peak and a two-term expansion of the phase function. The fraction of scattering into the truncated forward peak is taken proportional to the square of the phase function asymmetry factor, which distinguishes the delta-Eddington approximation from others of similar nature. The transmission, reflection, and absorption predicted by the delta-Eddington approximation are compared with doubling method calculations for realistic ranges of optical depth, single-scattering albedo, surface albedo, sun angle and asymmetry factor. The approximation is shown to provide an accurate and analytically simple parameterization of radiation to replace the empirism currently encountered in many general circulation and climate models.

  10. Pair creation in an electric flux tube and chiral anomaly

    SciTech Connect

    Iwazaki, Aiichi

    2009-11-15

    Using the chiral anomaly, we discuss the pair creation of massless fermions under the effect of a magnetic field B-vector when an electric flux tube E-vector parallel to B-vector is switched on. The tube is axially symmetric and infinitely long. For the constraint B>>E, we can analytically obtain the spatial and temporal behaviors of the number density of the fermions, the azimuthal magnetic field generated by the fermions, and so on. We find that the lifetime t{sub c} of the electric field becomes shorter as the width of the tube becomes narrower. Applying it to the plasma in high-energy heavy-ion collisions, we find that the color electric field decays quickly such that t{sub c}{approx_equal}Q{sub s}{sup -1}, in which Q{sub s} is the saturation momentum.

  11. From QCD Flux Tubes to Gravitational S-matrix and Back

    NASA Astrophysics Data System (ADS)

    Gorbenko, Victor

    We study the effective field theory of long relativistic strings such as confining flux tubes in QCD. Our main focus is on the scattering matrix of massless exci- tations propagating on the string’s worldsheet. The Lorentz invariance of QCD manifests itself in certain soft theorems satisfied by the amplitudes. We find that critical dimension appears as a condition that allows this scattering to be inte- grable and consequently flux tubes in four-dimensional QCD do not fall into this category. In case of the critical dimension equal to 26, however, we are able to find a full integrable S-matrix that exhibits many features expected from gravi- tational models. Moreover, it gives rise to a family of not necessarily integrable two-dimensional theories that inherit very peculiar UV-properties. We discuss im- plication of this construction for the hierarchy problem. We then return to the QCD flux tubes and find that integrability-inspired techniques can be applied to them in an approximate way that allows us to calculate their spectrum in the regime inaccessible for standard perturbation theory. In particular, analysis of the lattice data allows us to identify the first massive particle present on the world sheet of the QCD flux tube.

  12. A Multiple Flux-tube Solar Wind Model

    NASA Astrophysics Data System (ADS)

    Pinto, Rui F.; Rouillard, Alexis P.

    2017-04-01

    We present a new model, MULTI-VP, which computes the three-dimensional structure of the solar wind and includes the chromosphere, the transition region, and the corona and low heliosphere. MULTI-VP calculates a large ensemble of wind profiles flowing along open magnetic field lines that sample the entire three-dimensional atmosphere or, alternatively, a given region of interest. The radial domain starts from the photosphere and typically extends to about 30 {R}ȯ . The elementary uni-dimensional wind solutions are based on a mature numerical scheme that was adapted in order to accept any flux-tube geometry. We discuss here the first results obtained with this model. We use Potential Field Source-surface extrapolations of magnetograms from the Wilcox Solar Observatory to determine the structure of the background magnetic field. Our results support the hypothesis that the geometry of the magnetic flux-tubes in the lower corona controls the distribution of slow and fast wind flows. The inverse correlation between density and speed far away from the Sun is a global effect resulting from small readjustments of the flux-tube cross-sections in the high corona (necessary to achieve global pressure balance and a uniform open flux distribution). In comparison to current global MHD models, MULTI-VP performs much faster and does not suffer from spurious cross-field diffusion effects. We show that MULTI-VP has the capability to predict correctly the dynamical and thermal properties of the background solar wind (wind speed, density, temperature, magnetic field amplitude, and other derived quantities) and to approach real-time operation requirements.

  13. The equilibrium structure of thin magnetic flux tubes. II. [in sun and late stars

    NASA Technical Reports Server (NTRS)

    Kalkofen, W.; Rosner, R.; Ferrari, A.; Massaglia, S.

    1986-01-01

    The thermal structure of the medium inside thin, vertical magnetic flux tubes embedded in a given external atmosphere is investigated, assuming cylindrical symmetry and a depth-independent plasma beta. The variation with tube radius of the temperature on the tube axis is computed and the temperature on the tube wall is estimated. The temperature variation across the flux tube is found to be due to the depth variation of the intensity and to the density stratification of the atmosphere. Since the temperature difference between the axis and the wall is small in thin flux tubes (of the order of 10 percent), the horizontal temperature gradient may often be neglected and the temperature in a tube of given radius may be described by a single function of depth. Thus, a more detailed numerical treatment of the radiative transfer within thin flux tubes can be substantially simplified by neglecting horizontal temperature differences within the flux tube proper.

  14. A multiscale two-point flux-approximation method

    SciTech Connect

    Møyner, Olav Lie, Knut-Andreas

    2014-10-15

    A large number of multiscale finite-volume methods have been developed over the past decade to compute conservative approximations to multiphase flow problems in heterogeneous porous media. In particular, several iterative and algebraic multiscale frameworks that seek to reduce the fine-scale residual towards machine precision have been presented. Common for all such methods is that they rely on a compatible primal–dual coarse partition, which makes it challenging to extend them to stratigraphic and unstructured grids. Herein, we propose a general idea for how one can formulate multiscale finite-volume methods using only a primal coarse partition. To this end, we use two key ingredients that are computed numerically: (i) elementary functions that correspond to flow solutions used in transmissibility upscaling, and (ii) partition-of-unity functions used to combine elementary functions into basis functions. We exemplify the idea by deriving a multiscale two-point flux-approximation (MsTPFA) method, which is robust with regards to strong heterogeneities in the permeability field and can easily handle general grids with unstructured fine- and coarse-scale connections. The method can easily be adapted to arbitrary levels of coarsening, and can be used both as a standalone solver and as a preconditioner. Several numerical experiments are presented to demonstrate that the MsTPFA method can be used to solve elliptic pressure problems on a wide variety of geological models in a robust and efficient manner.

  15. Propagation of nonlinear, radiatively damped longitudinal waves along magnetic flux tubes in the solar atmosphere

    NASA Technical Reports Server (NTRS)

    Herbold, G.; Ulmschneider, P.; Spruit, H. C.; Rosner, R.

    1985-01-01

    For solar magnetic flux tubes three types of waves are compared: longitudinal MHD tube waves, acoustic tube waves propagating in the same tube geometry but with rigid walls and ordinary acoustic waves in plane geometry. It is found that the effect of the distensibility of the tube is small and that longitudinal waves are essentially acoustic tube waves. Due to the tube geometry there is considerable difference between longitudinal waves or acoustic tube waves and ordinary acoustic waves. Longitudinal waves as well as acoustic tube waves show a smaller amplitude growth, larger shock formation heights, smaller mean chromospheric temperature but a steeper dependence of the temperature gradient on wave period.

  16. Investigating the Dynamics of Canonical Flux Tubes in Jet Geometry

    NASA Astrophysics Data System (ADS)

    Lavine, Eric; You, Setthivoine

    2014-10-01

    Highly collimated plasma jets are frequently observed at galactic, stellar, and laboratory scales. Some models suppose these jets are magnetohydrodynamically-driven magnetic flux tubes filled with flowing plasma, but they do not agree on a collimation process. Some evidence supporting a universal MHD pumping mechanism has been obtained from planar electrode experiments with aspect ratios of ~10:1 however, these jets are subject to kink instabilities beyond a certain length and are unable to replicate the remarkable aspect ratios (10-1000:1) seen in astrophysical systems. Other models suppose these jets are flowing Z-pinch plasmas and experiments that use stabilizing shear flows have achieved aspect ratios of ~30:1, but are line tied at both ends. Can both collimation and stabilization mechanisms work together to produce long jets without kink instabilities and only one end tied to the central object? This question is evaluated from the point of view of canonical flux tubes and canonical helicity transport, indicating that jets can become long and collimated due to a combination of strong helical shear flows and conversion of magnetic helicity into kinetic helicity. The MOCHI LabJet experiment is designed to study this in the laboratory. Supported by US DoE Early Career Grant DE-SC0010340.

  17. Dynamic Flux Tubes Form Reservoirs of Stability in Neuronal Circuits

    NASA Astrophysics Data System (ADS)

    Monteforte, Michael; Wolf, Fred

    2012-10-01

    Neurons in cerebral cortical circuits interact by sending and receiving electrical impulses called spikes. The ongoing spiking activity of cortical circuits is fundamental to many cognitive functions including sensory processing, working memory, and decision making. London et al. [Sensitivity to Perturbations In Vivo Implies High Noise and Suggests Rate Coding in Cortex, Nature (London)NATUAS0028-0836 466, 123 (2010).10.1038/nature09086] recently argued that even a single additional spike can cause a cascade of extra spikes that rapidly decorrelate the microstate of the network. Here, we show theoretically in a minimal model of cortical neuronal circuits that single-spike perturbations trigger only a very weak rate response. Nevertheless, single-spike perturbations are found to rapidly decorrelate the microstate of the network, although the dynamics is stable with respect to small perturbations. The coexistence of stable and unstable dynamics results from a system of exponentially separating dynamic flux tubes around stable trajectories in the network’s phase space. The radius of these flux tubes appears to decrease algebraically with neuron number N and connectivity K, which implies that the entropy of the circuit’s repertoire of state sequences scales as Nln⁡(KN).

  18. KELVIN-HELMHOLTZ INSTABILITY IN CORONAL MAGNETIC FLUX TUBES DUE TO AZIMUTHAL SHEAR FLOWS

    SciTech Connect

    Soler, R.; Terradas, J.; Oliver, R.; Ballester, J. L.; Goossens, M.

    2010-04-01

    Transverse oscillations of coronal loops are often observed and have been theoretically interpreted as kink magnetohydrodynamic (MHD) modes. Numerical simulations by Terradas et al. suggest that shear flows generated at the loop boundary during kink oscillations could give rise to a Kelvin-Helmholtz instability (KHI). Here, we investigate the linear stage of the KHI in a cylindrical magnetic flux tube in the presence of azimuthal shear motions. We consider the basic, linearized MHD equations in the beta = 0 approximation and apply them to a straight and homogeneous cylindrical flux tube model embedded in a coronal environment. Azimuthal shear flows with a sharp jump of the velocity at the cylinder boundary are included in the model. We obtain an analytical expression for the dispersion relation of the unstable MHD modes supported by the configuration, and compute analytical approximations of the critical velocity shear and the KHI growth rate in the thin tube limit. A parametric study of the KHI growth rates is performed by numerically solving the full dispersion relation. We find that fluting-like modes can develop a KHI in timescales comparable to the period of kink oscillations of the flux tube. The KHI growth rates increase with the value of the azimuthal wavenumber and decrease with the longitudinal wavenumber. However, the presence of a small azimuthal component of the magnetic field can suppress the KHI. Azimuthal motions related to kink oscillations of untwisted coronal loops may trigger a KHI, but this phenomenon has not been observed to date. We propose that the azimuthal component of the magnetic field is responsible for suppressing the KHI in a stable coronal loop. The required twist is small enough to prevent the development of the pinch instability.

  19. Dynamics of Magnetic Flux Tubes in an Advective Flow around a Black Hole

    NASA Astrophysics Data System (ADS)

    Deb, Arnab; Chakrabarti, Sandip Kumar; Giri, Kinsuk

    2016-07-01

    Magnetic fields cannibalized by an accretion flow would very soon have a dominant toroidal component. Without changing the topology, we study the movements of these flux tubes inside a geometrically thick advective disk which undergo centrifugal pressure supported shocks. We also consider the effects of the flux tubes on the flow. We use a finite element method (Total Variation Diminishing) for this purpose and specifically focussed whether the flux tubes contribute to changes in outflow properties in terms of its collimation and outflow rates. It is seen that depending upon the cross sectional radius of the flux tubes (which control the drag force), these field lines may move towards the central object or oscillate vertically before eventually escaping out of the funnel wall (pressure zero surface). These interesting results obtained with and without flux tubes point to the role the flux tubes play in collimation of jets and outflows.

  20. Nonlinear fast sausage waves in homogeneous magnetic flux tubes

    NASA Astrophysics Data System (ADS)

    Mikhalyaev, Badma B.; Ruderman, Michael S.

    2015-12-01

    > We consider fast sausage waves in straight homogeneous magnetic tubes. The plasma motion is described by the ideal magnetohydrodynamic equations in the cold plasma approximation. We derive the nonlinear Schrödinger equation describing the nonlinear evolution of an envelope of a carrier wave. The coefficients of this equation are expressed in terms Bessel and modified Bessel functions. They are calculated numerically for various values of parameters. In particular, we show that the criterion for the onset of the modulational or Benjamin-Fair instability is satisfied. The implication of the obtained results for solar physics is discussed.

  1. A magnetohydrodynamic simulation of the formation of magnetic flux tubes at the earth's dayside magnetopause

    NASA Technical Reports Server (NTRS)

    Ogino, Tatsuki; Walker, Raymond J.; Ashour-Abdalla, Maha

    1989-01-01

    Dayside magnetic reconnection was studied by using a three-dimensional global magnetohydrodynamic simulation of the interaction between the solar wind and the magnetosphere. Two different mechanisms were found for the formation of magnetic flux tubes at the dayside magnetopause, which depend on the orientation of the interplanetary magnetic field (IMF). The dayside magnetic flux tubes occur only when the IMF has a southward component. A strongly twisted and localized magnetic flux tube similar to magnetic flux ropes appears at the subsolar magnetopause when the IMF has a large B(y) component. When the B(y) component is small, twin flux tubes appear at the dayside magnetopause. Both types of magnetic flux tube are consistent with several observational features of flux transfer events and are generated by antiparallel magnetic reconnection.

  2. A magnetohydrodynamic simulation of the formation of magnetic flux tubes at the Earth's dayside magnetopause

    SciTech Connect

    Ogino, Tatsuki ); Walker, R.J.; Ashour-Abdalla, Maha )

    1989-02-01

    The authors have studied dayside magnetic reconnection by using a three-dimensional global magnetohydrodynamic simulation of the interaction between the solar wind and the magnetosphere. They found two different mechanisms for the formation of magnetic flux tubes at the dayside magnetopause which depend on the orientation of the interplanetary magnetic field (IMF). The dayside magnetic flux tubes occur only when the IMF has a southward component. A strongly twisted and localized magnetic flux tube similar to magnetic flux ropes appears at the subsolar magnetopause when the IMF has a large B{sub y} component. When the B{sub y} component is small, twin flux tubes appear at the dayside magnetopause. Both types of magnetic flux tube are consistent with several observational features of flux transfer events and are generated by antiparallel magnetic reconnection.

  3. Flux tube train model for local turbulence simulation of toroidal plasmas

    SciTech Connect

    Watanabe, T.-H.; Sugama, H.; Ishizawa, A.; Nunami, M.

    2015-02-15

    A new simulation method for local turbulence in toroidal plasmas is developed by extending the conventional idea of the flux tube model. In the new approach, a train of flux tubes is employed, where flux tube simulation boxes are serially connected at each end along a field line so as to preserve a symmetry of the local gyrokinetic equations for image modes in an axisymmetric torus. Validity of the flux tube train model is confirmed against the toroidal ion temperature gradient turbulence for a case with a long parallel correlation of fluctuations, demonstrating numerical advantages over the conventional method in the time step size and the symmetry-preserving property.

  4. Plasma dynamics on current-carrying magnetic flux tubes

    NASA Technical Reports Server (NTRS)

    Swift, Daniel W.

    1992-01-01

    A 1D numerical simulation is used to investigate the evolution of a plasma in a current-carrying magnetic flux tube of variable cross section. A large potential difference, parallel to the magnetic field, is applied across the domain. The result is that density minimum tends to deepen, primarily in the cathode end, and the entire potential drop becomes concentrated across the region of density minimum. The evolution of the simulation shows some sensitivity to particle boundary conditions, but the simulations inevitably evolve into a final state with a nearly stationary double layer near the cathode end. The simulation results are at sufficient variance with observations that it appears unlikely that auroral electrons can be explained by a simple process of acceleration through a field-aligned potential drop.

  5. AN ESTIMATE OF THE DETECTABILITY OF RISING FLUX TUBES

    SciTech Connect

    Birch, A. C.; Braun, D. C.; Fan, Y.

    2010-11-10

    The physics of the formation of magnetic active regions (ARs) is one of the most important problems in solar physics. One main class of theories suggests that ARs are the result of magnetic flux that rises from the tachocline. Time-distance helioseismology, which is based on measurements of wave propagation, promises to allow the study of the subsurface behavior of this magnetic flux. Here, we use a model for a buoyant magnetic flux concentration together with the ray approximation to show that the dominant effect on the wave propagation is expected to be from the roughly 100 m s{sup -1} retrograde flow associated with the rising flux. Using a B-spline-based method for carrying out inversions of wave travel times for flows in spherical geometry, we show that at 3 days before emergence the detection of this retrograde flow at a depth of 30 Mm should be possible with a signal-to-noise level of about 8 with a sample of 150 emerging ARs.

  6. Approximation to the Probability Density at the Output of a Photmultiplier Tube

    NASA Technical Reports Server (NTRS)

    Stokey, R. J.; Lee, P. J.

    1983-01-01

    The probability density of the integrated output of a photomultiplier tube (PMT) is approximated by the Gaussian, Rayleigh, and Gamma probability densities. The accuracy of the approximations depends on the signal energy alpha: the Gamma distribution is accurate for all alpha, the Raleigh distribution is accurate for small alpha (approximate or less than 1 photon) and the Gaussian distribution is accurate for large alpha (approximate or greater than 10 photons).

  7. Magnetohydrostatic equilibrium. II. Three-dimensional multiple open magnetic flux tubes in the stratified solar atmosphere

    SciTech Connect

    Gent, F. A.; Erdélyi, R.; Fedun, V.

    2014-07-01

    A system of multiple open magnetic flux tubes spanning the solar photosphere and lower corona is modeled analytically, within a realistic stratified atmosphere subject to solar gravity. This extends results for a single magnetic flux tube in magnetohydrostatic equilibrium, described in Gent et al. Self-similar magnetic flux tubes are combined to form magnetic structures, which are consistent with high-resolution observations. The observational evidence supports the existence of strands of open flux tubes and loops persisting in a relatively steady state. Self-similar magnetic flux tubes, for which an analytic solution to the plasma density and pressure distribution is possible, are combined. We calculate the appropriate balancing forces, applying to the equations of momentum and energy conservation to preserve equilibrium. Multiplex flux tube configurations are observed to remain relatively stable for up to a day or more, and it is our aim to apply our model as the background condition for numerical studies of energy transport mechanisms from the solar surface to the corona. We apply magnetic field strength, plasma density, pressure, and temperature distributions consistent with observational and theoretical estimates for the lower solar atmosphere. Although each flux tube is identical in construction apart from the location of the radial axis, combinations can be applied to generate a non-axisymmetric magnetic field with multiple non-uniform flux tubes. This is a considerable step forward in modeling the realistic magnetized three-dimensional equilibria of the solar atmosphere.

  8. On the area expansion of magnetic flux tubes in solar active regions

    SciTech Connect

    Dudík, Jaroslav; Dzifčáková, Elena; Cirtain, Jonathan W. E-mail: elena@asu.cas.cz

    2014-11-20

    We calculated the three-dimensional (3D) distribution of the area expansion factors in a potential magnetic field, extrapolated from the high-resolution Hinode/SOT magnetogram of the quiescent active region NOAA 11482. Retaining only closed loops within the computational box, we show that the distribution of area expansion factors show significant structure. Loop-like structures characterized by locally lower values of the expansion factor are embedded in a smooth background. These loop-like flux tubes have squashed cross-sections and expand with height. The distribution of the expansion factors show an overall increase with height, allowing an active region core characterized by low values of the expansion factor to be distinguished. The area expansion factors obtained from extrapolation of the Solar Optical Telescope magnetogram are compared to those obtained from an approximation of the observed magnetogram by a series of 134 submerged charges. This approximation retains the general flux distribution in the observed magnetogram, but removes the small-scale structure in both the approximated magnetogram and the 3D distribution of the area expansion factors. We argue that the structuring of the expansion factor can be a significant ingredient in producing the observed structuring of the solar corona. However, due to the potential approximation used, these results may not be applicable to loops exhibiting twist or to active regions producing significant flares.

  9. New analytical approximations for the liquid rise in a capillary tube

    NASA Astrophysics Data System (ADS)

    González-Santander, J. L.; Martín, G.

    2015-04-01

    We present the ordinary differential equation (ODE) that governs the motion of a liquid rising in a capillary tube in such a way that we can easily derive the principal analytical approximations given in the literature. From this presentation, the numerical solution of the liquid rise over time could be computed very quickly and easily. Furthermore, we derive other analytical approximations not given in the literature, providing a mathematical justification for the cases in which such approximations are good. Some of the approximations found fit the experimental data better than the analytical approximations given in the literature.

  10. Sausage Instabilities on top of Kinking Lengthening Current-Carrying Magnetic Flux Tubes

    NASA Astrophysics Data System (ADS)

    von der Linden, Jens; You, Setthivoine

    2015-11-01

    Observations indicate that the dynamics of magnetic flux tubes in our cosmos and terrestrial experiments involve fast topological change beyond MHD reconnection. Recent experiments suggest that hierarchies of instabilities coupling disparate plasma scales could be responsible for this fast topological change by accessing two-fluid and kinetic scales. This study will explore the possibility of sausage instabilities developing on top of a kink instability in lengthening current-carrying magnetic flux tubes. Current driven flux tubes evolve over a wide range of aspect ratios k and current to magnetic flux ratios λ . An analytical stability criterion and numerical investigations, based on applying Newcomb's variational approach to idealized magnetic flux tubes with core and skin currents, indicate a dependence of the stability boundaries on current profiles and overlapping kink and sausage unstable regions in the k - λ trajectory of the flux tubes. A triple electrode planar plasma gun (Mochi.LabJet) is designed to generate flux tubes with discrete core and skin currents. Measurements from a fast-framing camera and a high resolution magnetic probe are being assembled into stability maps of the k - λ space of flux tubes. This work was sponsored in part by the US DOE Grant DE-SC0010340.

  11. Low thermal flux glass-fiber tubing for cryogenic service

    NASA Technical Reports Server (NTRS)

    Hall, C. A.; Spond, D. E.

    1977-01-01

    This paper describes analytical techniques, fabrication development, and test results for composite tubing that has many applications in aerospace and commercial cryogenic installations. Metal liner fabrication is discussed in detail with attention given to resistance-welded liners, fusion-welded liners, chem-milled tubing liners, joining tube liners and end fittings, heat treatment and leak checks. Composite overwrapping, a second method of tubing fabrication, is also discussed. Test programs and analytical correlation are considered along with composite tubing advantages such as minimum weight, thermal efficiency and safety and reliability.

  12. THE BEHAVIOR OF TRANSVERSE WAVES IN NONUNIFORM SOLAR FLUX TUBES. I. COMPARISON OF IDEAL AND RESISTIVE RESULTS

    SciTech Connect

    Soler, Roberto; Terradas, Jaume; Oliver, Ramón; Goossens, Marcel

    2013-11-10

    Magnetohydrodynamic (MHD) waves are ubiquitously observed in the solar atmosphere. Kink waves are a type of transverse MHD waves in magnetic flux tubes that are damped due to resonant absorption. The theoretical study of kink MHD waves in solar flux tubes is usually based on the simplification that the transverse variation of density is confined to a nonuniform layer much thinner than the radius of the tube, i.e., the so-called thin boundary approximation. Here, we develop a general analytic method to compute the dispersion relation and the eigenfunctions of ideal MHD waves in pressureless flux tubes with transversely nonuniform layers of arbitrary thickness. Results for kink waves are produced and compared with fully numerical resistive MHD eigenvalue computations in the limit of small resistivity. We find that the frequency and resonant damping rate are the same in both ideal and resistive cases. The actual results for thick nonuniform layers deviate from the behavior predicted in the thin boundary approximation and strongly depend on the shape of the nonuniform layer. The eigenfunctions in ideal MHD are very different from those in resistive MHD. The ideal eigenfunctions display a global character regardless of the thickness of the nonuniform layer, while the resistive eigenfunctions are localized around the resonance and are indistinguishable from those of ordinary resistive Alfvén modes. Consequently, the spatial distribution of wave energy in the ideal and resistive cases is dramatically different. This poses a fundamental theoretical problem with clear observational consequences.

  13. HOW MUCH DOES A MAGNETIC FLUX TUBE EMERGE INTO THE SOLAR ATMOSPHERE?

    SciTech Connect

    Magara, T.

    2012-03-20

    The emergence process of the magnetic field into the solar atmosphere plays an essential role in determining the configuration of the magnetic field and its activity on the Sun. This paper focuses on how much the magnetic flux contained by a flux tube emerges into the solar atmosphere, which is the key to understanding the physical mechanism of solar eruptions. By comparing a kinematic model of an emerging flux tube to a series of magnetohydrodynamic simulations, we derive the characteristics of the emergence process, showing how the process depends on the pre-emerged state of the magnetic field such as the radius of a flux tube, field strength, field-line twist, and wavelength of undulation assumed by the flux tube. We also discuss the relationship between magnetic configurations and their stability on the Sun.

  14. The nonlinear gyro-kinetic flux tube code GKW

    NASA Astrophysics Data System (ADS)

    Peeters, A. G.; Camenen, Y.; Casson, F. J.; Hornsby, W. A.; Snodin, A. P.; Strintzi, D.; Szepesi, G.

    2009-12-01

    A new nonlinear gyro-kinetic flux tube code (GKW) for the simulation of micro instabilities and turbulence in magnetic confinement plasmas is presented in this paper. The code incorporates all physics effects that can be expected from a state of the art gyro-kinetic simulation code in the local limit: kinetic electrons, electromagnetic effects, collisions, full general geometry with a coupling to a MHD equilibrium code, and E×B shearing. In addition the physics of plasma rotation has been implemented through a formulation of the gyro-kinetic equation in the co-moving system. The gyro-kinetic model is five-dimensional and requires a massive parallel approach. GKW has been parallelised using MPI and scales well up to 8192+ cores. The paper presents the set of equations solved, the numerical methods, the code structure, and the essential benchmarks. Program summaryProgram title: GKW Catalogue identifier: AEES_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEES_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU GPL v3 No. of lines in distributed program, including test data, etc.: 29 998 No. of bytes in distributed program, including test data, etc.: 206 943 Distribution format: tar.gz Programming language: Fortran 95 Computer: Not computer specific Operating system: Any for which a Fortran 95 compiler is available Has the code been vectorised or parallelised?: Yes. The program can efficiently utilise 8192+ processors, depending on problem and available computer. 128 processors is reasonable for a typical nonlinear kinetic run on the latest x86-64 machines. RAM:˜128 MB-1 GB for a linear run; 25 GB for typical nonlinear kinetic run (30 million grid points) Classification: 19.8, 19.9, 19.11 External routines: None required, although the functionality of the program is somewhat limited without a MPI implementation (preferably MPI-2) and the FFTW3 library. Nature of problem: Five

  15. Evidence from lattice data for a new particle on the worldsheet of the QCD flux tube.

    PubMed

    Dubovsky, Sergei; Flauger, Raphael; Gorbenko, Victor

    2013-08-09

    We propose a new approach for the calculation of the spectrum of excitations of QCD flux tubes. It relies on the fact that the worldsheet theory is integrable at low energies. With this approach, energy levels can be calculated for much shorter flux tubes than was previously possible, allowing for a quantitative comparison with existing lattice data. The improved theoretical control makes it manifest that existing lattice data provides strong evidence for a new pseudoscalar particle localized on the QCD flux tube--the worldsheet axion.

  16. Pool boiling of distilled water over tube bundle with variable heat flux

    NASA Astrophysics Data System (ADS)

    Swain, Abhilas; Mohanty, Rajiva Lochan; Das, Mihir Kumar

    2017-02-01

    The experimental investigation of saturated pool boiling heat transfer of distilled water over plain tube bundle, under uniform and varying heat flux condition along the height are presented in this article. Experiments are carried out under various heat flux configurations applied to rows of tube bundles and pitch distance to diameter ratios of 1.25, 1.6 and 1.95. The wall superheats and pool boiling heat transfer coefficients over individual rows are determined. The pool boiling heat transfer coefficients for variable heat flux and uniform heat flux conditions are compared. The results indicate that the bundle effect is found to exist for uniform as well as variable heat flux under all operating conditions in the present investigation. The variable heat flux resulted in range of wall superheat being highest for decreasing heat flux from bottom to top and lowest for increasing heat flux from bottom to top.

  17. Closed flux tubes in D = 2 + 1 SU( N ) gauge theories: dynamics and effective string description

    NASA Astrophysics Data System (ADS)

    Athenodorou, Andreas; Teper, Michael

    2016-10-01

    We extend our earlier calculations of the spectrum of closed flux tubes in SU( N ) gauge theories in 2 + 1 dimensions, with a focus on questions raised by recent theoretical progress on the effective string action of long flux tubes and the world-sheet action for flux tubes of moderate lengths. Our new calculations in SU(4) and SU(8) provide evidence that the leading O(1 /l γ ) non-universal correction to the flux tube ground state energy does indeed have a power γ ≥ 7. We perform a study in SU(2), where we can traverse the length at which the Nambu-Goto ground state becomes tachyonic, to obtain an all- N view of the spectrum. Our comparison of the k = 2 flux tube excitation energies in SU(4) and SU(6) suggests that the massive world sheet excitation associated with the k = 2 binding has a scale that knows about the group and hence the theory in the bulk, and we comment on the potential implications of world sheet massive modes for the bulk spectrum. We provide a quantitative analysis of the surprising (near-)orthogonality of flux tubes carrying flux in different SU( N ) representations, which implies that their screening by gluons is highly suppressed even at small N.

  18. New constraint on effective field theories of the QCD flux tube

    NASA Astrophysics Data System (ADS)

    Baker, M.

    2016-03-01

    Effective magnetic S U (N ) gauge theory with classical ZN flux tubes of intrinsic width 1/M is an effective field theory of the long-distance quark-antiquark interaction in S U (N ) Yang-Mills theory. Long-wavelength fluctuations of the ZN vortices of this theory lead to an effective string theory. In this paper, we clarify the connection between effective field theory and effective string theory, and we propose a new constraint on these vortices. We first examine the impact of string fluctuations on the classical dual superconductor description of confinement. At interquark distances R ˜1/M , the classical action for a straight flux tube determines the heavy quark potentials. At distances R ≫1/M , fluctuations of the flux tube axis x ˜ give rise to an effective string theory with an action Seff(x ˜), the classical action for a curved flux tube, evaluated in the limit 1/M →0 . This action is equal to the Nambu-Goto action. These conclusions are independent of the details of the ZN flux tube. Further, we assume the QCD flux tube satisfies the additional constraint, ∫0∞r d r T/θθ(r ) r2=0 , where T/θθ(r ) r2 is the value of the θ θ component of the stress tensor at a distance r from the axis of an infinite flux tube. Under this constraint, the string tension σ equals the force on a quark in the chromoelectric field E → of an infinite straight flux tube, and the Nambu-Goto action can be represented in terms of the chromodynamic fields of effective magnetic S U (N ) gauge theory, yielding a field theory interpretation of effective string theory.

  19. Ionospheric Joule heating and Poynting flux in quasi-static approximation

    NASA Astrophysics Data System (ADS)

    VanhamäKi, H.; Yoshikawa, A.; Amm, O.; Fujii, R.

    2012-08-01

    Energy flow is an important aspect of magnetosphere-ionosphere coupling. Electromagnetic energy is transported as Poynting flux from the magnetosphere to the ionosphere, where it is dissipated as Joule heating. Recently Richmond derived an "Equipotential Boundary Poynting Flux (EBPF) theorem", that the Poynting flux within a flux tube whose boundary is an equipotential curve is dissipated inside the ionospheric foot point of the flux tube. In this article we study Richmond's EBPF theorem more closely by considering the curl-free and divergence-free parts as well as the Hall and Pedersen parts of the ionospheric current system separately. Our main findings are that i) divergence-free currents are on average dissipationless, ii) the curl-free Pedersen current is responsible for the whole ionospheric Joule heating and iii) pointwise match between vertical Poynting flux and ionospheric Joule heating is broken by gradients of Hall and Pedersen conductances. Results i) and ii) hold when integrated over the whole ionosphere or any area bounded by an equipotential curve. The present study is limited to quasi-static phenomena. The more general topic of electrodynamic Joule heating and Poynting flux, including inductive effects, will be addressed in a future study.

  20. Long-lived auroral structures and atmospheric losses through auroral flux tubes on Mars

    NASA Astrophysics Data System (ADS)

    Dubinin, E.; Fraenz, M.; Woch, J.; Barabash, S.; Lundin, R.

    2009-04-01

    The ASPERA-3 observations of electron and ion fluxes over the regions dominated by crustal magnetic fields show the existence of long-lived and active aurora-type magnetic flux tubes with a width of 20-150 km. The activity manifests itself by large electron energy fluxes (≥10-4 W/m2) and strong distortions in the upper (350-400 km) ionosphere. In some events the peaked electron energy distributions typical for Earth aurora are so pronounced that they are present in velocity distribution functions. A significant depletion of such auroral flux tubes is accompanied by the appearance of oxygen beams and a heating of the ions of ionospheric origin. Auroral activity was observed on several subsequent orbits of the Mars Express spacecraft during more than two weeks implying a stable existence of aurora on Mars. Atmospheric loss driven by energy deposition in the auroral flux tubes is estimated as ˜1023 s-1.

  1. An approximate algorithm for the flux from a rectangular volume source

    SciTech Connect

    Wallace, O.J.

    1994-11-09

    An exact semi-analytic formula for the flux from a rectangular surface source with a slab shield has been derived and the required function table has been calculated. This formula is the basis for an algorithm which gives a good approximation for the flux from a rectangular volume source. No other hand calculation method for this source geometry is available in the literature.

  2. On the relation between coronal heating, flux tube divergence, and the solar wind proton flux and flow speed

    NASA Technical Reports Server (NTRS)

    Sandbaek, Onulf; Leer, Egil; Hansteen, Viggo H.

    1994-01-01

    A one-fluid solar wind model is used to investigate some relations between coronal heating, the flux tube divergence near the Sun, and the solar wind proton flux and flow speed. The effects of energy addition to the supersonic region of the flow are also studied. We allow for a mechanical energy flux that heats the corona, and an Alfven wave energy flux that adds energy, mainly to the supersonic flow, both as momentum and as heat. We find that the mechanical energy flux determines the solar wind mass flux, and in order to keep an almost constant proton flux at the orbit of Earth with changing flow geometry, that the mechanical energy flux must vary linearly with the magnetic field in the inner corona. This thermally driven wind generally has a low asymptotic flow speed. When Alfven waves are added to the thermally driven flow, the asymptotic flow speed is increased and is determined by the ratio of the Alfven wave and the mechanical energy fluxes at the coronal base. Flow speeds characteristic of recurrent high-speed solar wind streams can be obtained only when the Alfven wave energy flux, deposited in the supersonic flow, is larger than the mechanical energy flux heating the corona.

  3. Signatures of Flux Tube Fragmentation and Strangeness Correlations in pp Collisions

    NASA Astrophysics Data System (ADS)

    Wong, Cheuk-Yin

    2017-01-01

    In the fragmentation of a color flux tube in high-energy pp collisions or e +-e‑ annihilations, the production of pairs along a color flux tube precedes the fragmentation of the tube. The local conservation laws in the production of these pairs will lead to the correlations of adjacently produced hadrons. As a consequence, the fragmentation of a flux tube will yield a many-hadron correlation in the form of a chain of hadrons ordered in rapidity, with adjacent hadrons correlated in charges, flavor contents, and azimuthal angles. It will also lead to a two-hadron angular correlation between two hadrons with opposite charges or strangeness that is suppressed at Δϕ ~ 0 but enhanced at Δϕ ~ π, within a rapidity window Δy~1/(dN/dy).

  4. Flux Transfer Events Simultaneously Observed by Polar and Cluster: Flux Rope in the Subsolar Region and Flux Tube Addition to the Polar Cusp

    NASA Technical Reports Server (NTRS)

    Le, G.; Zheng, Y.; Russell, C. T.; Pfaff, R. F.; Lin, N.; Slavin, J. A.; Parks, G.; Wilber, M.; Petrinec, S. M.; Lucek, E. A.; Reme, H.

    2007-01-01

    The phenomenon called flux transfer events (FTEs) is widely accepted as the manifestation of time-dependent reconnection. In this paper, we present observational evidence of a flux transfer event observed simultaneously at low-latitude by Polar and at high-latitude by Cluster. This event occurs on March 21, 2002, when both Cluster and Polar are located near local noon but with a large latitudinal separation. During the event, Cluster is moving outbound from the polar cusp to the magnetosheath, and Polar is in the magnetosheath near the equatorial magnetopause. The observations show that a flux transfer event occurs between the equator and the northern cusp. Polar and Cluster observe the FTE s two open flux tubes: Polar encounters the southward moving flux tube near the equator; and Cluster the northward moving flux tube at high latitude. The low latitude FTE appears to be a flux rope with helical magnetic field lines as it has a strong core field and the magnetic field component in the boundary normal direction exhibits a strong bi-polar variation. Unlike the low-latitude FTE, the high-latitude FTE observed by Cluster does not exhibit the characteristic bi-polar perturbation in the magnetic field. But the plasma data clearly reveal its open flux tube configuration. It shows that the magnetic field lines have straightened inside the FTE and become more aligned to the neighboring flux tubes as it moves to the cusp. Enhanced electrostatic fluctuations have been observed within the FTE core, both at low- and high-latitudes. This event provides a unique opportunity to understand high-latitude FTE signatures and the nature of time-varying reconnection.

  5. Evidence from Lattice Data for a New Particle on the Worldsheet of the QCD Flux Tube

    NASA Astrophysics Data System (ADS)

    Dubovsky, Sergei; Flauger, Raphael; Gorbenko, Victor

    2013-08-01

    We propose a new approach for the calculation of the spectrum of excitations of QCD flux tubes. It relies on the fact that the worldsheet theory is integrable at low energies. With this approach, energy levels can be calculated for much shorter flux tubes than was previously possible, allowing for a quantitative comparison with existing lattice data. The improved theoretical control makes it manifest that existing lattice data provides strong evidence for a new pseudoscalar particle localized on the QCD flux tube—the worldsheet axion.

  6. NUMERICAL EXPERIMENTS ON THE TWO-STEP EMERGENCE OF TWISTED MAGNETIC FLUX TUBES IN THE SUN

    SciTech Connect

    Toriumi, S.; Yokoyama, T.

    2011-07-10

    We present the new results of the two-dimensional numerical experiments on the cross-sectional evolution of a twisted magnetic flux tube rising from the deeper solar convection zone (-20,000 km) to the corona through the surface. The initial depth is 10 times deeper than most of the previous calculations focusing on the flux emergence from the uppermost convection zone. We find that the evolution is illustrated by the following two-step process. The initial tube rises due to its buoyancy, subject to aerodynamic drag due to the external flow. Because of the azimuthal component of the magnetic field, the tube maintains its coherency and does not deform to become a vortex roll pair. When the flux tube approaches the photosphere and expands sufficiently, the plasma on the rising tube accumulates to suppress the tube's emergence. Therefore, the flux decelerates and extends horizontally beneath the surface. This new finding owes to our large-scale simulation, which simultaneously calculates the dynamics within the interior as well as above the surface. As the magnetic pressure gradient increases around the surface, magnetic buoyancy instability is triggered locally and, as a result, the flux rises further into the solar corona. We also find that the deceleration occurs at a higher altitude than assumed in our previous experiment using magnetic flux sheets. By conducting parametric studies, we investigate the conditions for the two-step emergence of the rising flux tube: field strength {approx}> 1.5 x 10{sup 4} G and the twist {approx}> 5.0 x 10{sup -4} km{sup -1} at -20,000 km depth.

  7. Flux tubes embedded into reconnection outflows in the solar wind

    NASA Astrophysics Data System (ADS)

    Voros, Z.; Zaqarashvili, T.; Sasunov, Y.; Narita, Y.

    2015-12-01

    Reconnection exhausts in the solar wind are usually interpreted in terms of a quasi-stationary Petschek-type reconnection model. Accordingly, within a region of magnetic field reversal, the wedge-shaped, Alfvenic accelerated plasma outflow is bounded by layers containing (anti-) correlated components of speed and magnetic field fluctuations. However, time-dependent impulsive reconnection can generate flux ropes embedded into accelerated outflows. Reconnection associated moving flux ropes or plasmoids are frequently observed in the Earth's magnetotail, while similar observations are missing in the solar wind. We present the first observations of small-scale magnetic flux ropes associated with reconnection exhausts in the solar wind, using the data from the WIND probe. We argue that the interaction of moving flux ropes with the background plasma can generate turbulence leading finally to the local heating of the solar wind.

  8. Benchmarking Particle-in-Cell drift wave simulations with Eulerian simulations in a flux-tube

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Parker, Scott; Wan, Weigang; Bravenec, Ronald; Wang, Eric; Candy, Jeff

    2012-10-01

    We present the implementation of a flux-tube option in the global turbulence code GEM.footnotetextY. Chen and S. E. Parker, J. Comp. Phys. 220, 839 (2007) This is necessary for benchmarking purposes because of the immense complexity involved in comparing global simulations. The global GEM assumes the magnetic equilibrium to be completely given. Our initial flux-tube implementation simply selects a radial location as the center of the flux-tube and a radial size of the flux-tube, sets all equilibrium quantities (B, ∇B, T, ∇T, the Jacobian etc.) to be equal to their values at the center of the flux-tube, and retains only a linear radial profile of the safety factor needed for boundary conditions. We found good agreement between GEM and GYRO/GS2 for the mode frequency/growth rate in the case of adiabatic electrons, but a difference of ˜15% in the growth rates when kinetic electrons are included. Our goal is to understand the origin of this moderate disagreement. An alternative local geometry model based on a local solution of the Grad-Shafranov equationfootnotetextJ. Candy, Plasma Phys. Control. Fusion 51, 105009 (2009) has been implemented and new benchmarking results from this model will be presented.

  9. The stretching of magnetic flux tubes in the convective overshoot region

    NASA Technical Reports Server (NTRS)

    Fisher, George H.; Mcclymont, Alexander N.; Chou, Dean-Yi

    1991-01-01

    The present study examines the fate of a magnetic flux tube initially lying at the bottom of the solar convective overshoot region. Stretching of the flux tube, e.g., by differential rotation, reduces its density, causing it to rise quasi-statically (a process referred to as vertical flux drift) until it reaches the top of the overshoot region and enters the buoyantly unstable convection region, from which a portion of it may ultimately protrude to form an active region on the surface. It is suggested that vertical flux drift and flux destabilization are inevitable consequences of field amplification, and it is surmised that these phenomena should be considered in self-consistent models of solar and stellar dynamos operating in the overshoot region.

  10. Heat flux solutions of the 13-moment approximation transport equations in a multispecies gas

    SciTech Connect

    Jian Wu; Taieb, C.

    1993-09-01

    The authors study steady state heat flux equations by means of the 13-moment approximation for situations applicable to aeronomy and space plasmas. They compare their results with Fourier`s law applied to similar problems, to test validity conditions for it. They look at the flux of oxygen and hydrogen ions in the high-latitude ionosphere, and compare calculations with observations from EISCAT radar measurements. These plasma components are observed to have strongly non-Maxwellian distributions.

  11. Approximate Analytic Solutions for the Primary Auroral Electron Flux and Related Quantities.

    DTIC Science & Technology

    1981-03-03

    Preliminary Remarks 18 8.2 Unidirectional- Monoenergetic Incident Flux 19 8.3 Isotropic-Maxwellian Incident Flux 20 8.4 Isotropic- Monoenergetic Incident...PSEUDOPARTICLES To APPROXIMATE THE SUMS 25 51 Contents 11. COMPARISONS 28 11. 1 Preliminary Remarks 28 11. 2 Comparisons for Isotropic - Monoenerget ie...the Analytic, Range, and Rees Models for 10, 5, and 2 KeV Isotrqpic- Monoenergetic Sources Each Containing 1 erg/cm s 30 6. Incident Maxwellian Energy

  12. Numerical simulations of magnetic Kelvin-Helmholtz instability at a twisted solar flux tube

    NASA Astrophysics Data System (ADS)

    Murawski, K.; Chmielewski, P.; Zaqarashvili, T. V.; Khomenko, E.

    2016-07-01

    The paper aims to study the response of a solar small-scale and weak magnetic flux tube to photospheric twisting motions. We numerically solve three-dimensional ideal magnetohydrodynamic equations to describe the evolution of the perturbation within the initially static flux tube, excited by twists in the azimuthal component of the velocity. These twists produce rotation of the magnetic field lines. Perturbation of magnetic field lines propagates upwardly, driving vertical and azimuthal flow as well as plasma compressions and rarefactions in the form of eddies. We conclude that these eddies result from the sheared azimuthal flow which seeds Kelvin-Helmholtz instability (KHI) between the flux tube and the ambient medium. Numerically obtained properties of the KHI confirm the analytical predictions for the occurrence of the instability.

  13. Dynamical fragmentation of flux tubes in the Friedberg-Lee model

    NASA Astrophysics Data System (ADS)

    Loh, S.; Greiner, C.; Mosel, U.; Thoma, M. H.

    1997-02-01

    We present two novel dynamical features of flux tubes in the Friedberg-Lee model. First the fusion of two (anti-)parallel flux tubes, where we extract a string-string interaction potential which has a qualitative similarity to the nucleon-nucleon potential in the Friedberg-Lee model obtained by Koepf et al. Furthermore we show the dynamical breakup of flux tubes via q overlineq- particle production and the disintegration into mesons. We find, as a shortcoming of the present realization of the model, that the full dynamical transport approach presented in a previous publication fails to provide the disintegration mechanism in the semiclassical limit. Therefore, in addition, we present here a molecular dynamical approach for the motion of the quarks and show, as a first application, the space-time development of the wuarks and their mean-fields for Lund-type string fragmentation processes.

  14. Numerical approximation of head and flux covariances in three dimensions using mixed finite elements

    NASA Astrophysics Data System (ADS)

    James, Andrew I.; Graham, Wendy D.

    A numerical method is developed for accurately approximating head and flux covariances and cross-covariances in finite two- and three-dimensional domains using the mixed finite element method. The method is useful for determining head and flux covariances for non-stationary flow fields, for example those induced by injection or extraction wells, impermeable subsurface barriers, or non-stationary hydraulic conductivity fields. Because the numerical approximations to the flux covariances are obtained directly from the solution to the coupled problem rather than having to differentiate head covariances, the approximations are in general more accurate than those obtained from conventional finite difference or finite element methods. Results for uniform flow example problems are consistent with results from previously published finite domain analyses and demonstrate that head variances and covariances are quite sensitive to boundary conditions and the size of the bounded domain. Flux variances and covariances are less sensitive to boundary conditions and domain size. Results comparing approximations from lower-order Raviart-Thomas-Nedelec and higher order Brezzi-Douglas-Marini [9] finite element spaces indicate that higher order element space improve the estimate of the flux covariances, but do not significantly affect the estimate of the head covariances.

  15. Axisymmetric and non-axisymmetric modulated MHD waves in magnetic flux tubes

    NASA Astrophysics Data System (ADS)

    Chargeishvili, B. B.; Japaridze, D. R.

    2016-02-01

    Nonlinear modulated both axisymmetric and non-axisymmetric MHD wave propagation in magnetic flux tubes is studied. In the cylindrical coordinates, ordinary differential equation with cubic nonlinearity is derived. In both cases of symmetry, the equation has solitary solutions. Modulation stability of the solutions is studied. The results of the study show that the propagation of axisymmetric soliton causes rising of plasma temperature in peripheral regions of a magnetic flux tube. In the non-axisymmetric case, it gives also temperature rising effect. Results of theoretical study are examined on idealized model of chromospheric spicule.

  16. Measurements and computations of mass flow and momentum flux through short tubes in rarefied gases

    NASA Astrophysics Data System (ADS)

    Lilly, T. C.; Gimelshein, S. F.; Ketsdever, A. D.; Markelov, G. N.

    2006-09-01

    Gas flows through orifices and short tubes have been extensively studied from the 1960s through the 1980s for both fundamental and practical reasons. These flows are a basic and often important element of various modern gas driven instruments. Recent advances in micro- and nanoscale technologies have paved the way for a generation of miniaturized devices in various application areas, from clinical analyses to biochemical detection to aerospace propulsion. The latter is the main area of interest of this study, where rarefied gas flow into a vacuum through short tubes with thickness-to-diameter ratios varying from 0.015 to 1.2 is investigated both experimentally and numerically with kinetic and continuum approaches. Helium and nitrogen gases are used in the range of Reynolds numbers from 0.02 to 770 (based on the tube diameter), corresponding to Knudsen numbers from 40 down to about 0.001. Propulsion properties of relatively thin and thick tubes are examined. Good agreement between experimental and numerical results is observed for mass flow rate and momentum flux, the latter being corrected for the experimental facility background pressure. For thick-to-thin tube ratios of mass flow and momentum flux versus pressure, a minimum is observed at a Knudsen number of about 0.5. A short tube propulsion efficiency is shown to be much higher than that of a thin orifice. The effect of surface specularity on a thicker tube specific impulse was found to be relatively small.

  17. Length and time for development of laminar flow in tubes following a step increase of volume flux

    NASA Astrophysics Data System (ADS)

    Chaudhury, Rafeed A.; Herrmann, Marcus; Frakes, David H.; Adrian, Ronald J.

    2015-01-01

    Laminar flows starting up from rest in round tubes are relevant to numerous industrial and biomedical applications. The two most common types are flows driven by an abruptly imposed constant pressure gradient or by an abruptly imposed constant volume flux. Analytical solutions are available for transient, fully developed flows, wherein streamwise development over the entrance length is absent (Szymanski in J de Mathématiques Pures et Appliquées 11:67-107, 1932; Andersson and Tiseth in Chem Eng Commun 112(1):121-133, 1992, respectively). They represent the transient responses of flows in tubes that are very long compared with the entrance length, a condition that is seldom satisfied in biomedical tube networks. This study establishes the entrance (development) length and development time of starting laminar flow in a round tube of finite length driven by a piston pump that produces a step change from zero flow to a constant volume flux for Reynolds numbers between 500 and 3,000. The flows are examined experimentally, using stereographic particle image velocimetry and computationally using computational fluid dynamics, and are then compared with the known analytical solutions for fully developed flow conditions in infinitely long tubes. Results show that step function volume flux start-up flows reach steady state and fully developed flow five times more quickly than those driven by a step function pressure gradient, a 500 % change when compared with existing estimates. Based on these results, we present new, simple guidelines for achieving experimental flows that are fully developed in space and time in realistic (finite) tube geometries. To a first approximation, the time to achieve steady spatially developing flow is nearly equal to the time needed to achieve steady, fully developed flow. Conversely, the entrance length needed to achieve fully developed transient flow is approximately equal to the length needed to achieve fully developed steady flow. Beyond this

  18. The Role of Twisted Magnetic Flux Tubes in Topological Space Weather Forecasting

    NASA Astrophysics Data System (ADS)

    Nightingale, R. W.

    2008-12-01

    More and more twisted magnetic flux tubes are being identified in the solar active regions of solar cycle 23 utilizing imagery from high resolution satellite instrumentation, such as TRACE, Hinode, and SOHO/MDI. The twisted flux tubes carry energy and helicity via the Poynting Flux from below the photosphere up into the corona, where much of it is stored in the non-potentiality of the fields, many times visible in the form of sigmoidal and anti-sigmoidal shapes, until dissipation occurs mostly following eruptive events. The twisted flux tubes are easily observed and measured in TRACE whitelight in cross section as sunspots at the photosphere, which rotate about their umbral centers. The first results presented at the 2007 Fall AGU from a statistical study on the number of rotating sunspots showed that almost all of the measurable sunspots during the solar maximum year of 2000 were rotating. Here we extend the study to include halo coronal mass ejections (CMEs) observed by SOHO/LASCO, of which 80% are associated with rotating sunspots and twisted magnetic flux tubes in 2000. Many of the CMEs, consisting of very energetic particles normally captured within a magnetic cloud of twisted flux tubes, accelerate out into the heliosphere where the Earth and its magnetic fields can encounter them, causing large geomagnetic events, such as geomagnetic storms, Solar Particle Events (SPEs), and other space weather effects. The amount of twist, or helicity, and its directionality may play important roles in solar eruptions and in the CME's interaction with the magnetosphere. Within the next year the Solar Dynamics Observatory (SDO) will launch and the HMI and AIA instruments will be available to observe the rotating sunspots and twisted magnetic flux tubes in greater detail than is currently being done to improve our understanding of these processes. Examples of such events and topological features will be shown and discussed with respect to the role that twisted magnetic flux

  19. Simulation of magnetic flux leakage: Application to tube inspection

    NASA Astrophysics Data System (ADS)

    Prémel, Denis; Fnaeich, E. A.; Djafa, S.; Pichon, L.; Trillon, A.; Bisiaux, B.

    2012-05-01

    The detection of flaws in steel pipes using Magnetic Flux Leakage (MFL) consists in detecting magnetic flux leaks outside the pipe, either with a magnetic sensor or with an induction coil, while the pipe is rotating. In the Vallourec group, many NDT units use MFL for testing ferromagnetic pipes. In order to improve the performances of flaw detection, CEA LIST and the Vallourec Research Aulnoye (VRA) group are collaborating on MFL modelling. The aim is to be able to perform parametric studies thanks to a fast 3D numerical model dedicated to MFL systems. A simplified 2D geometry has already been derived for the development of first simulation tools. When considering the B-H curve of ferromagnetic materials, the non-linear magnetostatic problem can be solved with the generalized boundary element method (BEMG), which comes to the evaluation of two equivalent scalar potentials: the surface charge density and the volume charge density. When applying the Galerkin method for the discretization of integral equations, the particularity of this numerical model lies in the implementation of high order basis functions for the interpolation of the scalar unknowns. This paper presents some first numerical results for the numerical validation of the semi-analytical model.

  20. Magnetic Reconnection in a Solar Eruption -Formation of the Flux Tube and its Eruption-

    NASA Astrophysics Data System (ADS)

    Inoue, Satoshi; Büchner, Jörg

    2016-07-01

    A solar eruption is one of a dramatic phenomenon observed in the solar corona. The flux tube, which is a bundle of highly twisted lines, is widely believed as a driver source of the eruption. Although the magnetic reconnection is a key process of the formation of the flux tube as well as the eruptive process, these dynamics are still open to be solved. In order to clarify these dynamics, we first perform a magnetohydrodynamic (MHD) simulation using a force-free field extrapolated from the photospheric magnetic field. Our simulation successfully produced the typical eruptive processes in which the twisted flux tube slowly ascends in the beginning of the eruption; afterwards, it shows the fast ascending. We found that the reconnection is a key process to break the force-free field initially constructed, and highly twisted flux tube formation during the slow rising phase and even after the fast eruption. Next we compare with Büchner + Skala simulations and compressively discuss the play of the reconnection in the solar eruption.

  1. Plasma dynamics on current-carrying magnetic flux tubes. II - Low potential simulation

    NASA Technical Reports Server (NTRS)

    Swift, Daniel W.

    1992-01-01

    The evolution of plasma in a current-carrying magnetic flux tube of variable cross section is investigated using a one-dimensional numerical simulation. The flux tube is narrow at the two ends and broad in the middle. The middle part of the flux tube is loaded with a hot, magnetically trapped population, and the two ends have a more dense, gravitationally bound population. A potential difference larger than the gravitational potential but less than the energy of the hot population is applied across the domain. The general result is that the potential change becomes distributed along the anode half of the domain, with negligible potential change on the cathode half. The potential is supported by the mirror force of magnetically trapped particles. The simulations show a steady depletion of plasma on the anode side of the flux tube. The current steadily decreases on a time scale of an ion transit time. The results may provide an explanation for the observed plasma depletions on auroral field lines carrying upward currents.

  2. Detection of Cracks at Welds in Steel Tubing Using Flux Focusing Electromagnetic Probe

    NASA Technical Reports Server (NTRS)

    Wincheski, Buzz; Fulton, Jim; Nath, Shridhar; Simpson, John; Namkung, Min

    1994-01-01

    The inspection of weldments in critical pressure vessel joints is a major concern in the nuclear power industry. Corrosive environments can speed the fatigue process and access to the critical area is often limited. Eddy current techniques have begun to be used to help overcome these obstacles [1]. As direct contact and couplants are not required, remote areas can be inspected by simply snaking an eddy current coil into the intake tube of the vessel. The drawback of the eddy current method has been the high sensitivity to small changes in the conductivity and permeability of the test piece which are known to vary at weldments [1]. The flaw detection mechanism of the flux focusing electromagnetic probe can help alleviate these difficulties and provide a unique capability for detecting longitudinal fatigue cracks in critical tube structures. The Flux Focusing Electromagnetic Flaw Detector, originally invented for the detection of fatigue and corrosion damage in aluminum plates [2-3], has been adapted for use in testing steel tubing for longitudinal fatigue cracks. The modified design allows for the probe to be placed axisymmetrically into the tubing, inducing eddy currents in the tube wall. The pickup coil of the probe is fixed slightly below the primary windings and is rotated 90 so that its axis is normal to the tube wall. The magnetic flux of the primary coil is focused through the use of ferromagnetic material so that in the absence of fatigue damage there will be no flux linkage with the pickup coil. The presence of a longitudinal fatigue crack will cause the eddy currents induced in the tube wall to flow around the flaw and directly under the pickup coil. The magnetic field associated with these currents will then link the pickup coil and an unambiguous increase in the output voltage of the probe will be measured. The use of the flux focusing electromagnetic probe is especially suited for the detection of flaws originating at or near tube welds. The probe is

  3. Numerical simulation of filling a magnetic flux tube with a cold plasma: Anomalous plasma effects

    NASA Technical Reports Server (NTRS)

    Singh, Nagendra; Leung, W. C.

    1995-01-01

    Large-scale models of plasmaspheric refilling have revealed that during the early stage of the refilling counterstreaming ion beams are a common feature. However, the instability of such ion beams and its effect on refilling remain unexplored. In order to learn the basic effects of ion beam instabilities on refilling, we have performed numerical simulations of the refilling of an artificial magnetic flux tube. (The shape and size of the tube are assumed so that the essential features of the refilling problem are kept in the simulation and at the same time the small scale processes driven by the ion beams are sufficiently resolved.) We have also studied the effect of commonly found equatorially trapped warm and/or hot plasma on the filling of a flux tube with a cold plasma. Three types of simulation runs have been performed.

  4. Flux-tube geometry and solar wind speed during an activity cycle

    NASA Astrophysics Data System (ADS)

    Pinto, R. F.; Brun, A. S.; Rouillard, A. P.

    2016-07-01

    Context. The solar wind speed at 1 AU shows cyclic variations in latitude and in time which reflect the evolution of the global background magnetic field during the activity cycle. It is commonly accepted that the terminal (asymptotic) wind speed in a given magnetic flux-tube is generally anti-correlated with its total expansion ratio, which motivated the definition of widely used semi-empirical scaling laws relating one to the other. In practice, such scaling laws require ad hoc corrections (especially for the slow wind in the vicinities of streamer/coronal hole boundaries) and empirical fits to in situ spacecraft data. A predictive law based solely on physical principles is still missing. Aims: We test whether the flux-tube expansion is the controlling factor of the wind speed at all phases of the cycle and at all latitudes (close to and far from streamer boundaries) using a very large sample of wind-carrying open magnetic flux-tubes. We furthermore search for additional physical parameters based on the geometry of the coronal magnetic field which have an influence on the terminal wind flow speed. Methods: We use numerical magneto-hydrodynamical simulations of the corona and wind coupled to a dynamo model to determine the properties of the coronal magnetic field and of the wind velocity (as a function of time and latitude) during a whole 11-yr activity cycle. These simulations provide a large statistical ensemble of open flux-tubes which we analyse conjointly in order to identify relations of dependence between the wind speed and geometrical parameters of the flux-tubes which are valid globally (for all latitudes and moments of the cycle). Results: Our study confirms that the terminal (asymptotic) speed of the solar wind depends very strongly on the geometry of the open magnetic flux-tubes through which it flows. The total flux-tube expansion is more clearly anti-correlated with the wind speed for fast rather than for slow wind flows, and effectively controls the

  5. Correlation of critical heat flux data for uniform tubes

    SciTech Connect

    Jafri, T.; Dougherty, T.J.; Yang, B.W.

    1995-09-01

    A data base of more than 10,000 critical heat flux (CHF) data points has been compiled and analyzed. Two regimes of CHF are observed which will be referred to as the high CHF regime and the low CHF regime. In the high CHF regime, for pressures less than 110 bar, CHF (q{sub c}) is a determined by local conditions and is adequately represented by q{sub c} = (1.2/D{sup 1/2}) exp[-{gamma}(GX{sub t}){sup 1/2}] where the parameter {gamma} is an increasing function of pressure only, X{sub t} the true mass fraction of steam, and all units are metric but the heat flux is in MWm{sup -2}. A simple kinetic model has been developed to estimate X{sub t} as a function of G, X, X{sub i}, and X{sub O}, where X{sub i} is the inlet quality and X{sub O} represents the quality at the Onset of Significant Vaporization (OSV) which is estimated from the Saha-Zuber (S-Z) correlation. The model is based on a rate equation for vaporization suggested by, and consistent with, the S-Z correlation and contains no adjustable parameters. When X{sub i}X{sub O}, X{sub t} depends on X{sub i}, a nonlocal variable, and, in this case, CHF, although determined by local conditions, obeys a nonlocal correlation. This model appears to be satisfactory for pressures less than 110 bar, where the S-Z correlation is known to be reliable. Above 110 bar the method of calculating X{sub O}, and consequently X{sub t}, appears to fail, so this approach can not be applied to high pressure CHF data. Above 35 bar, the bulk of the available data lies in the high CHF regime while, at pressures less than 35 bar, almost all of the available data lie in the low CHF regime and appear to be nonlocal.

  6. Quasi-steady multiple flux tubes induced by localized current perturbation in toroidal plasma

    NASA Astrophysics Data System (ADS)

    Yun, Gunsu

    2015-11-01

    Quasi-steady helical modes with dual, triple, or more flux tubes are easily produced by localized current drive in the core of sawtoothing plasma on the KSTAR tokamak. Individual flux tubes have m / n = 1 / 1 helicity, co-rotate around the magnetic axis, and later merge into a single m = 1 mode. The merged mode eventually crashes with rapid collapse of the core pressure and the next cycle repeats the same pattern, exhibiting sawtooth-like oscillations in the core pressure. The generation mechanism of multiple flux tubes (MFTs) has been studied in two different approaches to understand the observed trend that the number of flux tubes increases as the current drive location moves away from the magnetic axis up to about the magnetic surface of the safety factor q = 1 at the mode collapse: (1) nonlinear reduced MHD simulation with a localized current source modeling the time-varying interaction between the current source and flux tubes and (2) linear MHD simulation with a prescribed q profile with a radially localized current blip. Both studies show that MFTs can be produced only in plasmas with nearly flat q profile close to unity, suggesting the collapse of the m = 1 mode (i.e., sawtooth crash) is complete. Recent observation of long-lived MFTs induced by localized current drive in non-sawtoothing plasma suggests that q profile evolution toward lower- m instability is required for the merging and crash of MFTs. Work supported by the National Research Foundation of Korea, US D.O.E., and Japan Society for the Promotion of Science.

  7. 3D Laboratory Measurements of Forces, Flows, and Collimation in Arched Flux Tubes

    NASA Astrophysics Data System (ADS)

    Haw, Magnus; Bellan, Paul

    2016-10-01

    Fully 3D, vector MHD force measurements from an arched, current carrying flux tube (flux rope) are presented. The experiment consists of two arched plasma-filled flux ropes each powered by a capacitor bank. The two loops are partially overlapped, as in a Venn diagram, and collide and reconnect during their evolution. B-field data is taken on the lower plasma arch using a 54 channel B-dot probe. 3D volumetric data is acquired by placing the probe at 2700 locations and taking 5 plasma shots at each location. The resulting data set gives high resolution (2cm, 10ns) volumetric B-field data with high reproducibility (deviation of 3% between shots). Taking the curl of the measured 3D B-field gives current densities (J) in good agreement with measured capacitor bank current. The JxB forces calculated from the data have a strong axial component at the base of the current channel and are shown to scale linearly with axial gradients in current density. Assuming force balance in the flux tube minor radius direction, we infer near-Alfvenic axial flows from the footpoint regions which are consistent with the measured axial forces. Flux tube collimation is observed in conjunction with these axial flows. These dynamic processes are relevant to the stability and dynamics of coronal loops. Supported provided by NSF, AFOSR.

  8. Numerical Simulations of Torsional Alfvén Waves in Axisymmetric Solar Magnetic Flux Tubes

    NASA Astrophysics Data System (ADS)

    Wójcik, D.; Murawski, K.; Musielak, Z. E.; Konkol, P.; Mignone, A.

    2017-02-01

    We numerically investigate Alfvén waves propagating along an axisymmetric and non-isothermal solar flux tube embedded in the solar atmosphere. The tube magnetic field is current-free and diverges with height, and the waves are excited by a periodic driver along the tube magnetic field lines. The main results are that the two wave variables, the velocity and magnetic field perturbations in the azimuthal direction, behave differently as a result of gradients of the physical parameters along the tube. To explain these differences in the wave behavior, the time evolution of the wave variables and the resulting cutoff period for each wave variable are calculated and used to determine regions in the solar chromosphere where strong wave reflection may occur.

  9. MULTI-SCALE MODELING AND APPROXIMATION ASSISTED OPTIMIZATION OF BARE TUBE HEAT EXCHANGERS

    SciTech Connect

    Bacellar, Daniel; Ling, Jiazhen; Aute, Vikrant; Radermacher, Reinhard; Abdelaziz, Omar

    2014-01-01

    Air-to-refrigerant heat exchangers are very common in air-conditioning, heat pump and refrigeration applications. In these heat exchangers, there is a great benefit in terms of size, weight, refrigerant charge and heat transfer coefficient, by moving from conventional channel sizes (~ 9mm) to smaller channel sizes (< 5mm). This work investigates new designs for air-to-refrigerant heat exchangers with tube outer diameter ranging from 0.5 to 2.0mm. The goal of this research is to develop and optimize the design of these heat exchangers and compare their performance with existing state of the art designs. The air-side performance of various tube bundle configurations are analyzed using a Parallel Parameterized CFD (PPCFD) technique. PPCFD allows for fast-parametric CFD analyses of various geometries with topology change. Approximation techniques drastically reduce the number of CFD evaluations required during optimization. Maximum Entropy Design method is used for sampling and Kriging method is used for metamodeling. Metamodels are developed for the air-side heat transfer coefficients and pressure drop as a function of tube-bundle dimensions and air velocity. The metamodels are then integrated with an air-to-refrigerant heat exchanger design code. This integration allows a multi-scale analysis of air-side performance heat exchangers including air-to-refrigerant heat transfer and phase change. Overall optimization is carried out using a multi-objective genetic algorithm. The optimal designs found can exhibit 50 percent size reduction, 75 percent decrease in air side pressure drop and doubled air heat transfer coefficients compared to a high performance compact micro channel heat exchanger with same capacity and flow rates.

  10. Habitability of planets on eccentric orbits: Limits of the mean flux approximation

    NASA Astrophysics Data System (ADS)

    Bolmont, Emeline; Libert, Anne-Sophie; Leconte, Jeremy; Selsis, Franck

    2016-06-01

    Unlike the Earth, which has a small orbital eccentricity, some exoplanets discovered in the insolation habitable zone (HZ) have high orbital eccentricities (e.g., up to an eccentricity of ~0.97 for HD 20782 b). This raises the question of whether these planets have surface conditions favorable to liquid water. In order to assess the habitability of an eccentric planet, the mean flux approximation is often used. It states that a planet on an eccentric orbit is called habitable if it receives on average a flux compatible with the presence of surface liquid water. However, because the planets experience important insolation variations over one orbit and even spend some time outside the HZ for high eccentricities, the question of their habitability might not be as straightforward. We performed a set of simulations using the global climate model LMDZ to explore the limits of the mean flux approximation when varying the luminosity of the host star and the eccentricity of the planet. We computed the climate of tidally locked ocean covered planets with orbital eccentricity from 0 to 0.9 receiving a mean flux equal to Earth's. These planets are found around stars of luminosity ranging from 1 L⊙ to 10-4L⊙. We use a definition of habitability based on the presence of surface liquid water, and find that most of the planets considered can sustain surface liquid water on the dayside with an ice cap on the nightside. However, for high eccentricity and high luminosity, planets cannot sustain surface liquid water during the whole orbital period. They completely freeze at apoastron and when approaching periastron an ocean appears around the substellar point. We conclude that the higher the eccentricity and the higher the luminosity of the star, the less reliable the mean flux approximation.

  11. THE RISE OF ACTIVE REGION FLUX TUBES IN THE TURBULENT SOLAR CONVECTIVE ENVELOPE

    SciTech Connect

    Weber, Maria A.; Fan Yuhong; Miesch, Mark S.

    2011-11-01

    We use a thin flux tube model in a rotating spherical shell of turbulent convective flows to study how active region scale flux tubes rise buoyantly from the bottom of the convection zone to near the solar surface. We investigate toroidal flux tubes at the base of the convection zone with field strengths ranging from 15 kG to 100 kG at initial latitudes ranging from 1{sup 0} to 40{sup 0} with a total flux of 10{sup 22} Mx. We find that the dynamic evolution of the flux tube changes from convection dominated to magnetic buoyancy dominated as the initial field strength increases from 15 kG to 100 kG. At 100 kG, the development of {Omega}-shaped rising loops is mainly controlled by the growth of the magnetic buoyancy instability. However, at low field strengths of 15 kG, the development of rising {Omega}-shaped loops is largely controlled by convective flows, and properties of the emerging loops are significantly changed compared to previous results in the absence of convection. With convection, rise times are drastically reduced (from years to a few months), loops are able to emerge at low latitudes, and tilt angles of emerging loops are consistent with Joy's law for initial field strengths of {approx}>40 kG. We also examine other asymmetries that develop between the leading and following legs of the emerging loops. Taking all the results together, we find that mid-range field strengths of {approx}40-50 kG produce emerging loops that best match the observed properties of solar active regions.

  12. The optimization of fin-tube heat exchanger with longitudinal vortex generators using response surface approximation and genetic algorithm

    NASA Astrophysics Data System (ADS)

    Wu, Xuehong; Liu, DanDan; Zhao, Min; Lu, YanLi; Song, Xiaoyong

    2016-09-01

    Delta winglet works better than other vortex generators in improving the performance of fin-tube heat exchangers. In this paper, Response Surface Approximation is used to study the effects of the fin pitch, the ratio of the longitudinal tube pitch to transverse tube pitch, the ratio of both sides V 1 , V h of delta winglets and the attack angle of delta winglets on the performance of fin-tube heat exchanger. Firstly, Twenty-nine numerical group experiments including five times repeated experiments at the central point are conducted. Then, the analyses of variable (ANOVA) and regression are performed to verify the accuracy of the polynomial coefficients. Finally, the optimization of the fin-tube heat exchanger using the Genetic Algorithm is conducted and the best performance of j/f (1/3) is found to be 0.07945, which is consistent with the numerical result.

  13. Fast Solar Wind from Slowly Expanding Magnetic Flux Tubes (P54)

    NASA Astrophysics Data System (ADS)

    Srivastava, A. K.; Dwivedi, B. N.

    2006-11-01

    aks.astro.itbhu@gmail.com We present an empirical model of the fast solar wind, emanating from radially oriented slowly expanding magnetic flux tubes. We consider a single-fluid, steady state model in which the flow is driven by thermal and non-thermal pressure gradients. We apply a non-Alfvénic energy correction at the coronal base and find that specific relations correlate solar wind speed and non-thermal energy flux with the aerial expansion factor. The results are compared with the previously reported ones.

  14. Spectral line radiation from solar small-scale flux tubes. II

    NASA Astrophysics Data System (ADS)

    Hasan, S. S.; Kneer, F.; Kalkofen, W.

    1998-04-01

    We examine spectral line radiation from small-scale magnetic flux tubes in the solar atmosphere. This is a continuation of work by Kneer et al. (1996). The main difference with the previous investigation is in the choice of the external atmosphere. Earlier we adopted an atmosphere resembling the empirical quiet Sun model for the ambient medium. In the present study, we iteratively adjust the temperature structure of the external atmosphere to fit the Stokes I and V profiles and the average continuum intensities with those obtained from observations. Our models are hotter in the uppermost photospheric layers and cooler in the deeper layers than the quiet Sun model and agree well with semi-empirical flux tube models.

  15. Distortions of Magnetic Flux Tubes in the Presence of Electric Currents

    NASA Astrophysics Data System (ADS)

    Malanushenko, Anna; Rempel, Matthias; Cheung, Mark

    2016-05-01

    Solar coronal loops possess several peculiar properties, which have been a subject of intensive research for a long time. These in particular include the lack of apparent expansion of coronal loops and the increased pressure scale height in loops compared to the diffuse background. Previously, Malanushenko & Schrijver (2013) proposed that these could be explained by the fact that magnetic flux tubes expand with height in a highly anisotropic manner. They used potential field models to demonstrate that flux tubes that have circular cross section at the photosphere, in the corona turn into a highly elongates structures, more resembling thick ribbons. Such ribbons, viewed along the expanding edge, would appear as thin, crisp structures of a constant cross-section with an increased pressure scale height, and when viewed along the non-expanding side, would appear as faint, wide and underdense features. This may also introduce a selection bias,when a set of loops is collected for a further study, towards those viewed along the expanding edge.However, some of the past studies have indicated that strong electric currents flowing in a given flux tube may result in the tube maintaining a relatively constant cross-sectional shape along its length. Given that Malanushenko & Schrijver (2013) focused on a potential, or current-free, field model of an active region, the extend to which their analysis could be applied to the real solar fields, was unclear.In the present study, we use a magnetic field created by MURaM, a highly realistic state-of-the-art radiative MHD code (Vogler et al, 2005; Rempel et al, 2009b). MURaM was shown to reproduce a wide variety of observed features of the solar corona (e.g., Hansteen et al, 2010; Cheung et al. 2007, 2008; Rempel 2009a,b). We analyze the distortions of magnetic flux tubes in a MURaM simulation of an active region corona. We quantify such distortions and correlate them with a number of relevant parameters of flux tubes, with a

  16. Propagation of Long-Wavelength Nonlinear Slow Sausage Waves in Stratified Magnetic Flux Tubes

    NASA Astrophysics Data System (ADS)

    Barbulescu, M.; Erdélyi, R.

    2016-05-01

    The propagation of nonlinear, long-wavelength, slow sausage waves in an expanding magnetic flux tube, embedded in a non-magnetic stratified environment, is discussed. The governing equation for surface waves, which is akin to the Leibovich-Roberts equation, is derived using the method of multiple scales. The solitary wave solution of the equation is obtained numerically. The results obtained are illustrative of a solitary wave whose properties are highly dependent on the degree of stratification.

  17. Horizontal radiative fluxes in clouds and accuracy of the independent pixel approximation at absorbing wavelengths

    NASA Astrophysics Data System (ADS)

    Marshak, A.; Oreopoulos, L.; Davis, A. B.; Wiscombe, W. J.; Cahalan, R. F.

    For absorbing wavelengths, we discuss the effect of horizontal solar radiative fluxes in clouds on the accuracy of a conventional plane-parallel radiative transfer calculation for a single pixel, known as the Independent Pixel Approximation (IPA). Vertically integrated horizontal fluxes can be represented as a sum of three components: the IPA accuracies for reflectance, transmittance and absorptance. We show that IPA accuracy for reflectance always improves with more absorption, while the IPA accuracy for transmittance is less sensitive to the changes in absorption: with respect to the non-absorbing case, it may first deteriorate for weak absorption and then improve again for strongly absorbing wavelengths. IPA accuracy for absorptance always deteriorates with more absorption.

  18. Scaling in situ cosmogenic nuclide production rates using analytical approximations to atmospheric cosmic-ray fluxes

    NASA Astrophysics Data System (ADS)

    Lifton, Nathaniel; Sato, Tatsuhiko; Dunai, Tibor J.

    2014-01-01

    Several models have been proposed for scaling in situ cosmogenic nuclide production rates from the relatively few sites where they have been measured to other sites of interest. Two main types of models are recognized: (1) those based on data from nuclear disintegrations in photographic emulsions combined with various neutron detectors, and (2) those based largely on neutron monitor data. However, stubborn discrepancies between these model types have led to frequent confusion when calculating surface exposure ages from production rates derived from the models. To help resolve these discrepancies and identify the sources of potential biases in each model, we have developed a new scaling model based on analytical approximations to modeled fluxes of the main atmospheric cosmic-ray particles responsible for in situ cosmogenic nuclide production. Both the analytical formulations and the Monte Carlo model fluxes on which they are based agree well with measured atmospheric fluxes of neutrons, protons, and muons, indicating they can serve as a robust estimate of the atmospheric cosmic-ray flux based on first principles. We are also using updated records for quantifying temporal and spatial variability in geomagnetic and solar modulation effects on the fluxes. A key advantage of this new model (herein termed LSD) over previous Monte Carlo models of cosmogenic nuclide production is that it allows for faster estimation of scaling factors based on time-varying geomagnetic and solar inputs. Comparing scaling predictions derived from the LSD model with those of previously published models suggest potential sources of bias in the latter can be largely attributed to two factors: different energy responses of the secondary neutron detectors used in developing the models, and different geomagnetic parameterizations. Given that the LSD model generates flux spectra for each cosmic-ray particle of interest, it is also relatively straightforward to generate nuclide-specific scaling

  19. Propagation and Dispersion of Sausage Wave Trains in Magnetic Flux Tubes

    NASA Astrophysics Data System (ADS)

    Oliver, R.; Ruderman, M. S.; Terradas, J.

    2015-06-01

    A localized perturbation of a magnetic flux tube produces wave trains that disperse as they propagate along the tube, where the extent of dispersion depends on the physical properties of the magnetic structure, on the length of the initial excitation, and on its nature (e.g., transverse or axisymmetric). In Oliver et al. we considered a transverse initial perturbation, whereas the temporal evolution of an axisymmetric one is examined here. In both papers we use a method based on Fourier integrals to solve the initial value problem. We find that the propagating wave train undergoes stronger attenuation for longer axisymmetric (or shorter transverse) perturbations, while the internal to external density ratio has a smaller effect on the attenuation. Moreover, for parameter values typical of coronal loops axisymmetric (transverse) wave trains travel at a speed 0.75-1 (1.2) times the Alfvén speed of the magnetic tube. In both cases, the wave train passage at a fixed position of the magnetic tube gives rise to oscillations with periods of the order of seconds, with axisymmetric disturbances causing more oscillations than transverse ones. To test the detectability of propagating transverse or axisymmetric wave packets in magnetic tubes of the solar atmosphere (e.g., coronal loops, spicules, or prominence threads) a forward modeling of the perturbations must be carried out.

  20. PROPAGATION AND DISPERSION OF SAUSAGE WAVE TRAINS IN MAGNETIC FLUX TUBES

    SciTech Connect

    Oliver, R.; Terradas, J.; Ruderman, M. S.

    2015-06-10

    A localized perturbation of a magnetic flux tube produces wave trains that disperse as they propagate along the tube, where the extent of dispersion depends on the physical properties of the magnetic structure, on the length of the initial excitation, and on its nature (e.g., transverse or axisymmetric). In Oliver et al. we considered a transverse initial perturbation, whereas the temporal evolution of an axisymmetric one is examined here. In both papers we use a method based on Fourier integrals to solve the initial value problem. We find that the propagating wave train undergoes stronger attenuation for longer axisymmetric (or shorter transverse) perturbations, while the internal to external density ratio has a smaller effect on the attenuation. Moreover, for parameter values typical of coronal loops axisymmetric (transverse) wave trains travel at a speed 0.75–1 (1.2) times the Alfvén speed of the magnetic tube. In both cases, the wave train passage at a fixed position of the magnetic tube gives rise to oscillations with periods of the order of seconds, with axisymmetric disturbances causing more oscillations than transverse ones. To test the detectability of propagating transverse or axisymmetric wave packets in magnetic tubes of the solar atmosphere (e.g., coronal loops, spicules, or prominence threads) a forward modeling of the perturbations must be carried out.

  1. Habitability of planets on eccentric orbits: limits of the mean flux approximation

    NASA Astrophysics Data System (ADS)

    Bolmont, Emeline; Libert, Anne-Sophie; Leconte, Jérémy; Selsis, Franck; Turbet, Martin; Forget, François

    2016-04-01

    A few of the planets found in the insolation habitable zone (region in which a planet with an atmosphere can sustain surface liquid water, Kasting et al. 1993) are on eccentric orbits, such as GJ 667Cc (eccentricity of < 0.3, Anglada-Escude et al. 2012) or HD 16175 b (eccentricity of 0.6, Peek et al. 2009). This raises the question of the potential habitability of planets that only spend a fraction of their orbit in the habitable zone. Usually for a planet of semi-major axis a and eccentricity e, the averaged flux over one orbit received by the planet is considered. This averaged flux corresponds to the flux received by a planet on a circular orbit of radius r = a(1 -e2)1/4. If this orbital distance is within the habitable zone, the planet is said "habitable". However, for a hot star, for which the habitable zone is far from the star, the climate can be degraded when the planet is temporarily outside the habitable zone. We investigate here the limits of validity of the mean flux approximation used to assess the potential habitability of eccentric planets. For this study, we consider ocean planets in synchronized rotation and planets with a rotation period of 24 hr. We investigate the influence of the type of host star and the eccentricity of the orbit on the climate of a planet. We do so by scaling the duration of its orbital period and its apastron and periastron distance to ensure that it receives in average the same incoming flux as Earth's. We performed sets of 3D simulations using the Global Climate Model LMDz (Wordsworth et al. 2011, Forget et al. 2013, Leconte et al. 2013). The atmosphere is composed of N2, CO2 and H2O (gas, liquid, solid) in Earth-like proportions. First, we do not take into account the spectral difference between a low luminosity star and a Sun-like star. Second, the dependence of the albedo of ice and snow on the spectra of the host star is taken into account. This influences the positive ice-albedo feedback and can lead to a different

  2. Habitability of planets on eccentric orbits: limits of the mean flux approximation??

    NASA Astrophysics Data System (ADS)

    Bolmont, Emeline; Libert, Anne-Sophie; Leconte, Jeremy; Selsis, Franck

    2015-07-01

    A few of the planets found in the insolation habitable zone (as defined by Kasting et al. 1993) are on eccentric orbits, such as HD 136118 b (eccentricity of ˜0.3, Wittenmyer et al. 2009). This raises the question of the potential habitability of planets that only spend a fraction of their orbit in the habitable zone. Usually for a planet of semi-major axis a and eccentricity e, the averaged flux over one orbit received by the planet is considered. This averaged flux corresponds to the flux received by a planet on a circular orbit of radius r = a(1-eˆ2)ˆ1/4. If this orbital distance is within the habitable zone, the planet is considered "habitable". However, for a hot star, for which the habitable zone is far from the star, the climate can be degraded when the planet is temporarily outside the habitable zone. The influence of the orbital eccentricity of a planet on its climate has already been studied for Earth-like conditions (same star, same rotation period), with Global Climate Models (GCM) such as in Williams & Pollard 2002 and Linsenmeier et al. 2014. Spiegel 2010 and Dressing et al. 2010 have also studied the effect of eccentricity for more diverse conditions with energy-balanced models. We performed a set of simulations using the Global Climate Model LMDz (Wordsworth et al. 2011, Forget et al. 2013, Leconte et al. 2013). We computed the climate of aqua planets receiving a mean flux equal to Earth's, around stars of luminosity ranging from 1 Lsun to 10-4 Lsun and of orbital eccentricity from 0 to 0.9. We show the limits of the mean flux approximation, depending on the previous parameters and also the thermal inertia of oceans.

  3. The motion of magnetic flux tube at the dayside magnetopause under the influence of solar wind flow

    SciTech Connect

    Liu, Z.X.; Hu, Y.D.; Li, F. ); Pu, Z.Y. )

    1990-05-01

    The authors propose that flux transfer events (FTEs) at the dayside magnetopause are formed by fluid vortices in the flow field. According to the view of vortex-induced reconnection a FTE tube is a magnetic fluid vortex tube (MF vortex tube). The motion of a FTE tube can be represented by that of a MF vortex in the formation region located in the dayside magnetopause region. This study deals with the internal and external influences governing the motion of MF vortex tubes. The equations of motion of a vortex tube are established and solved. It is found that a FTE tube moves frm low latitude to high latitude with a certain speed. However, the motional path is not a straight line but oscillates about the northward direction for the northern hemisphere. The motional velocity, amplitude and period of the oscillation depend on the flow field and magnetic field in the magnetosheath and magnetosphere as well as the size of the FTE tube.

  4. Spectropolarimetric Evidence for a Siphon Flow along an Emerging Magnetic Flux Tube

    NASA Astrophysics Data System (ADS)

    Requerey, Iker S.; Ruiz Cobo, B.; Del Toro Iniesta, J. C.; Orozco Suárez, D.; Blanco Rodríguez, J.; Solanki, S. K.; Barthol, P.; Gandorfer, A.; Gizon, L.; Hirzberger, J.; Riethmüller, T. L.; van Noort, M.; Schmidt, W.; Martínez Pillet, V.; Knölker, M.

    2017-03-01

    We study the dynamics and topology of an emerging magnetic flux concentration using high spatial resolution spectropolarimetric data acquired with the Imaging Magnetograph eXperiment on board the sunrise balloon-borne solar observatory. We obtain the full vector magnetic field and the line of sight (LOS) velocity through inversions of the Fe i line at 525.02 nm with the SPINOR code. The derived vector magnetic field is used to trace magnetic field lines. Two magnetic flux concentrations with different polarities and LOS velocities are found to be connected by a group of arch-shaped magnetic field lines. The positive polarity footpoint is weaker (1100 G) and displays an upflow, while the negative polarity footpoint is stronger (2200 G) and shows a downflow. This configuration is naturally interpreted as a siphon flow along an arched magnetic flux tube.

  5. Surprisingly low frequency attenuation effects in long tubes when measuring turbulent fluxes at tall towers

    NASA Astrophysics Data System (ADS)

    Ibrom, Andreas; Brændholt, Andreas; Pilegaard, Kim

    2016-04-01

    The eddy covariance technique relies on the fast and accurate measurement of gas concentration fluctuations. While for some gasses robust and compact sensors are available, measurement of, e.g., non CO2 greenhouse gas fluxes is often performed with sensitive equipment that cannot be run on a tower without massively disturbing the wind field. To measure CO and N2O fluxes, we installed an eddy covariance system at a 125 m mast, where the gas analyser was kept in a laboratory close to the tower and the sampling was performed using a 150 m long tube with a gas intake at 96 m height. We investigated the frequency attenuation and the time lag of the N2O and CO concentration measurements with a concentration step experiment. The results showed surprisingly high cut-off frequencies (close to 2 Hz) and small low-pass filter induced time lags (< 0.3 s), which were similar for CO and N2O. The results indicate that the concentration signal was hardly biased during the ca 10 s travel through the tube. Due to the larger turbulence time scales at large measurement heights the low-pass correction was for the majority of the measurements < 5%. For water vapour the tube attenuation was massive, which had, however, a positive effect by reducing both the water vapour dilution correction and the cross sensitivity effects on the N2O and CO flux measurements. Here we present the set-up of the concentration step change experiment and its results and compare them with recently developed theories for the behaviour of gases in turbulent tube flows.

  6. Forced Convection Boiling and Critical Heat Flux of Ethanol in Electrically Heated Tube Tests

    NASA Technical Reports Server (NTRS)

    Meyer, Michael L.; Linne, Diane L.; Rousar, Donald C.

    1998-01-01

    Electrically heated tube tests were conducted to characterize the critical heat flux (transition from nucleate to film boiling) of subcritical ethanol flowing at conditions relevant to the design of a regeneratively cooled rocket engine thrust chamber. The coolant was SDA-3C alcohol (95% ethyl alcohol, 5% isopropyl alcohol by weight), and tests were conducted over the following ranges of conditions: pressure from 144 to 703 psia, flow velocities from 9.7 to 77 ft/s, coolant subcooling from 33 to 362 F, and critical heat fluxes up to 8.7 BTU/in(exp 2)/sec. For the data taken near 200 psia, critical heat flux was correlated as a function of the product of velocity and fluid subcooling to within +/- 20%. For data taken at higher pressures, an additional pressure term is needed to correlate the critical heat flux. It was also shown that at the higher test pressures and/or flow rates, exceeding the critical heat flux did not result in wall burnout. This result may significantly increase the engine heat flux design envelope for higher pressure conditions.

  7. Auroral electron precipitation and flux tube erosion in Titan’s upper atmosphere

    NASA Astrophysics Data System (ADS)

    Snowden, D.; Yelle, R. V.; Galand, M.; Coates, A. J.; Wellbrock, A.; Jones, G. H.; Lavvas, P.

    2013-09-01

    Cassini dasta shows that Titan’s atmosphere strongly depletes the electron content in Saturn’s flux tubes, producing features known as electron bite-outs, which indicate that the flux of auroral electrons decreases over time. To understand this process we have developed a time-dependent two-stream model, which uses field line geometries and drift paths calculated by a three-dimensional multi-fluid model of Titan’s plasma interaction. The boundary conditions of the model account for the time-dependent reduction or increase in electron flux along Saturn’s magnetic field lines because of the loss or production of electrons in Titan’s atmosphere. The modification of the auroral electron flux depends on the electron bounce period in Saturn’s outer magnetosphere; therefore, we also calculate electron bounce periods along several Kronian field lines accounting for both the magnetic mirroring force and the field-aligned electric potential in Saturn’s plasma sheet. We use the time-dependent two-stream model to calculate how the reduction in the auroral electron flux affects electron impact ionization and energy deposition rates in Titan’s upper atmosphere. We find that the flux of higher energy (>50 eV) electrons entering Titan’s atmosphere is strongly reduced over time, resulting in smaller ionization and energy deposition rates below ∼1300 km altitude. Finally, we show that sample spectrograms produced from our calculations are consistent with CAPS-ELS data.

  8. Generation of Magnetohydrodynamic Waves in Low Solar Atmospheric Flux Tubes by Photospheric Motions

    NASA Astrophysics Data System (ADS)

    Mumford, S. J.; Fedun, V.; Erdélyi, R.

    2015-01-01

    Recent ground- and space-based observations reveal the presence of small-scale motions between convection cells in the solar photosphere. In these regions, small-scale magnetic flux tubes are generated via the interaction of granulation motion and the background magnetic field. This paper studies the effects of these motions on magnetohydrodynamic (MHD) wave excitation from broadband photospheric drivers. Numerical experiments of linear MHD wave propagation in a magnetic flux tube embedded in a realistic gravitationally stratified solar atmosphere between the photosphere and the low choromosphere (above β = 1) are performed. Horizontal and vertical velocity field drivers mimic granular buffeting and solar global oscillations. A uniform torsional driver as well as Archimedean and logarithmic spiral drivers mimic observed torsional motions in the solar photosphere. The results are analyzed using a novel method for extracting the parallel, perpendicular, and azimuthal components of the perturbations, which caters to both the linear and non-linear cases. Employing this method yields the identification of the wave modes excited in the numerical simulations and enables a comparison of excited modes via velocity perturbations and wave energy flux. The wave energy flux distribution is calculated to enable the quantification of the relative strengths of excited modes. The torsional drivers primarily excite Alfvén modes (≈60% of the total flux) with small contributions from the slow kink mode, and, for the logarithmic spiral driver, small amounts of slow sausage mode. The horizontal and vertical drivers primarily excite slow kink or fast sausage modes, respectively, with small variations dependent upon flux surface radius.

  9. GENERATION OF MAGNETOHYDRODYNAMIC WAVES IN LOW SOLAR ATMOSPHERIC FLUX TUBES BY PHOTOSPHERIC MOTIONS

    SciTech Connect

    Mumford, S. J.; Fedun, V.; Erdélyi, R.

    2015-01-20

    Recent ground- and space-based observations reveal the presence of small-scale motions between convection cells in the solar photosphere. In these regions, small-scale magnetic flux tubes are generated via the interaction of granulation motion and the background magnetic field. This paper studies the effects of these motions on magnetohydrodynamic (MHD) wave excitation from broadband photospheric drivers. Numerical experiments of linear MHD wave propagation in a magnetic flux tube embedded in a realistic gravitationally stratified solar atmosphere between the photosphere and the low choromosphere (above β = 1) are performed. Horizontal and vertical velocity field drivers mimic granular buffeting and solar global oscillations. A uniform torsional driver as well as Archimedean and logarithmic spiral drivers mimic observed torsional motions in the solar photosphere. The results are analyzed using a novel method for extracting the parallel, perpendicular, and azimuthal components of the perturbations, which caters to both the linear and non-linear cases. Employing this method yields the identification of the wave modes excited in the numerical simulations and enables a comparison of excited modes via velocity perturbations and wave energy flux. The wave energy flux distribution is calculated to enable the quantification of the relative strengths of excited modes. The torsional drivers primarily excite Alfvén modes (≈60% of the total flux) with small contributions from the slow kink mode, and, for the logarithmic spiral driver, small amounts of slow sausage mode. The horizontal and vertical drivers primarily excite slow kink or fast sausage modes, respectively, with small variations dependent upon flux surface radius.

  10. The sensitivity of latent heat flux to the air humidity approximations used in ocean circulation models

    NASA Technical Reports Server (NTRS)

    Liu, W. Timothy; Niiler, Pearn P.

    1990-01-01

    In deriving the surface latent heat flux with the bulk formula for the thermal forcing of some ocean circulation models, two approximations are commonly made to bypass the use of atmospheric humidity in the formula. The first assumes a constant relative humidity, and the second supposes that the sea-air humidity difference varies linearly with the saturation humidity at sea surface temperature. Using climatological fields derived from the Marine Deck and long time series from ocean weather stations, the errors introduced by these two assumptions are examined. It is shown that the errors reach above 100 W/sq m over western boundary currents and 50 W/sq m over the tropical ocean. The two approximations also introduce erroneous seasonal and spatial variabilities with magnitudes over 50 percent of the observed variabilities.

  11. THE EMERGENCE OF A TWISTED FLUX TUBE INTO THE SOLAR ATMOSPHERE: SUNSPOT ROTATIONS AND THE FORMATION OF A CORONAL FLUX ROPE

    SciTech Connect

    Fan, Y.

    2009-06-01

    We present a three-dimensional simulation of the dynamic emergence of a twisted magnetic flux tube from the top layer of the solar convection zone into the solar atmosphere and corona. It is found that after a brief initial stage of flux emergence during which the two polarities of the bipolar region become separated and the tubes intersecting the photosphere become vertical, significant rotational motion sets in within each polarity. The rotational motions of the two polarities are found to twist up the inner field lines of the emerged fields such that they change their orientation into an inverse configuration (i.e., pointing from the negative polarity to the positive polarity over the neutral line). As a result, a flux rope with sigmoid-shaped, dipped core fields forms in the corona, and the center of the flux rope rises in the corona with increasing velocity as the twisting of the flux rope footpoints continues. The rotational motion in the two polarities is a result of propagation of nonlinear torsional Alfven waves along the flux tube, which transports significant twist from the tube's interior portion toward its expanded coronal portion. This is a basic process whereby twisted flux ropes are developed in the corona with increasing twist and magnetic energy, leading up to solar eruptions.

  12. The dynamic evolution of active-region-scale magnetic flux tubes in the turbulent solar convective envelope

    NASA Astrophysics Data System (ADS)

    Weber, Maria Ann

    2014-12-01

    The Sun exhibits cyclic properties of its large-scale magnetic field on the order of sigma22 years, with a ˜11 year frequency of sunspot occurrence. These sunspots, or active regions, are the centers of magnetically driven phenomena such as flares and coronal mass ejections. Volatile solar magnetic events directed toward the Earth pose a threat to human activities and our increasingly technological society. As such, the origin and nature of solar magnetic flux emergence is a topic of global concern. Sunspots are observable manifestations of solar magnetic fields, thus providing a photospheric link to the deep-seated dynamo mechanism. However, the manner by which bundles of magnetic field, or flux tubes, traverse the convection zone to eventual emergence at the solar surface is not well understood. To provide a connection between dynamo-generated magnetic fields and sunspots, I have performed simulations of magnetic flux emergence through the bulk of a turbulent, solar convective envelope by employing a thin flux tube model subject to interaction with flows taken from a hydrodynamic convection simulation computed through the Anelastic Spherical Harmonic (ASH) code. The convective velocity field interacts with the flux tube through the drag force it experiences as it traverses through the convecting medium. Through performing these simulations, much insight has been gained about the influence of turbulent solar-like convection on the flux emergence process and resulting active region properties. I find that the dynamic evolution of flux tubes change from convection dominated to magnetic buoyancy dominated as the initial field strength of the flux tubes increases from 15 kG to 100 kG. Additionally, active-region-scale flux tubes of 40 kG and greater exhibit properties similar to those of active regions on the Sun, such as: tilt angles, rotation rates, and morphological asymmetries. The joint effect of the Coriolis force and helical motions present in convective

  13. Sabots, Obturator and Gas-In-Launch Tube Techniques for Heat Flux Models in Ballistic Ranges

    NASA Technical Reports Server (NTRS)

    Bogdanoff, David W.; Wilder, Michael C.

    2013-01-01

    For thermal protection system (heat shield) design for space vehicle entry into earth and other planetary atmospheres, it is essential to know the augmentation of the heat flux due to vehicle surface roughness. At the NASA Ames Hypervelocity Free Flight Aerodynamic Facility (HFFAF) ballistic range, a campaign of heat flux studies on rough models, using infrared camera techniques, has been initiated. Several phenomena can interfere with obtaining good heat flux data when using this measuring technique. These include leakage of the hot drive gas in the gun barrel through joints in the sabot (model carrier) to create spurious thermal imprints on the model forebody, deposition of sabot material on the model forebody, thereby changing the thermal properties of the model surface and unknown in-barrel heating of the model. This report presents developments in launch techniques to greatly reduce or eliminate these problems. The techniques include the use of obturator cups behind the launch package, enclosed versus open front sabot designs and the use of hydrogen gas in the launch tube. Attention also had to be paid to the problem of the obturator drafting behind the model and impacting the model. Of the techniques presented, the obturator cups and hydrogen in the launch tube were successful when properly implemented

  14. Particle propagation, wave growth and energy dissipation in a flaring flux tube

    NASA Technical Reports Server (NTRS)

    White, S. M.; Melrose, D. B.; Dulk, G. A.

    1986-01-01

    Wave amplification by downgoing particles in a common flare model is investigated. The flare is assumed to occur at the top of a coronal magnetic flux loop, and results in the heating of plasma in the flaring region. The hot electrons propagate down the legs of the flux tube towards increasing magnetic field. It is simple to demonstrate that the velocity distributions which result in this model are unstable to both beam instabilities and cyclotron maser action. An explanation is presented for the propagation effects on the distribution, and the properties of the resulting amplified waves are explored, concentrating on cyclotron maser action, which has properties (emission in the z mode below the local gyrofrequency) quite different from maser action by other distributions considered in the context of solar flares. The z mode waves will be damped in the coronal plasma surrounding the flaring flux tube and lead to heating there. This process may be important in the overall energy budget of the flare. The downgoing maser is compared with the loss cone maser, which is more likely to produce observable bursts.

  15. Alfven waves in the solar atmosphere. III - Nonlinear waves on open flux tubes

    NASA Technical Reports Server (NTRS)

    Hollweg, J. V.; Jackson, S.; Galloway, D.

    1982-01-01

    Consideration is given the nonlinear propagation of Alfven waves on solar magnetic flux tubes, where the tubes are taken to be vertical, axisymmetric and initially untwisted and the Alfven waves are time-dependent axisymmetric twists. The propagation of the waves into the chromosphere and corona is investigated through the numerical solution of a set of nonlinear, time-dependent equations coupling the Alfven waves into motions that are parallel to the initial magnetic field. It is concluded that Alfven waves can steepen into fast shocks in the chromosphere, pass through the transition region to produce high-velocity pulses, and then enter the corona, which they heat. The transition region pulses have amplitudes of about 60 km/sec, and durations of a few tens of seconds. In addition, the Alfven waves exhibit a tendency to drive upward flows, with many of the properties of spicules.

  16. Linear MHD Wave Propagation in Time-Dependent Flux Tube. II. Finite Plasma Beta

    NASA Astrophysics Data System (ADS)

    Williamson, A.; Erdélyi, R.

    2014-04-01

    The propagation of magnetohydrodynamic (MHD) waves is an area that has been thoroughly studied for idealised static and steady state magnetised plasma systems applied to numerous solar structures. By applying the generalisation of a temporally varying background density to an open magnetic flux tube, mimicking the observed slow evolution of such waveguides in the solar atmosphere, further investigations into the propagation of both fast and slow MHD waves can take place. The assumption of a zero-beta plasma (no gas pressure) was applied in Williamson and Erdélyi ( Solar Phys. 2013, doi:10.1007/s11207-013-0366-9, Paper I) is now relaxed for further analysis here. Firstly, the introduction of a finite thermal pressure to the magnetic flux tube equilibrium modifies the existence of fast MHD waves which are directly comparable to their counterparts found in Paper I. Further, as a direct consequence of the non-zero kinetic plasma pressure, a slow MHD wave now exists, and is investigated. Analysis of the slow wave shows that, similar to the fast MHD wave, wave amplitude amplification takes place in time and height. The evolution of the wave amplitude is determined here analytically. We conclude that for a temporally slowly decreasing background density both propagating magnetosonic wave modes are amplified for over-dense magnetic flux tubes. This information can be very practical and useful for future solar magneto-seismology applications in the study of the amplitude and frequency properties of MHD waveguides, e.g. for diagnostic purposes, present in the solar atmosphere.

  17. TIME-DEPENDENT TURBULENT HEATING OF OPEN FLUX TUBES IN THE CHROMOSPHERE, CORONA, AND SOLAR WIND

    SciTech Connect

    Woolsey, L. N.; Cranmer, S. R.

    2015-10-01

    We investigate several key questions of plasma heating in open-field regions of the corona that connect to the solar wind. We present results for a model of Alfvén-wave-driven turbulence for three typical open magnetic field structures: a polar coronal hole, an open flux tube neighboring an equatorial streamer, and an open flux tube near a strong-field active region. We compare time-steady, one-dimensional turbulent heating models against fully time-dependent three-dimensional reduced-magnetohydrodynamic modeling of BRAID. We find that the time-steady results agree well with time-averaged results from BRAID. The time dependence allows us to investigate the variability of the magnetic fluctuations and of the heating in the corona. The high-frequency tail of the power spectrum of fluctuations forms a power law whose exponent varies with height, and we discuss the possible physical explanation for this behavior. The variability in the heating rate is bursty and nanoflare-like in nature, and we analyze the amount of energy lost via dissipative heating in transient events throughout the simulation. The average energy in these events is 10{sup 21.91} erg, within the “picoflare” range, and many events reach classical “nanoflare” energies. We also estimated the multithermal distribution of temperatures that would result from the heating-rate variability, and found good agreement with observed widths of coronal differential emission measure distributions. The results of the modeling presented in this paper provide compelling evidence that turbulent heating in the solar atmosphere by Alfvén waves accelerates the solar wind in open flux tubes.

  18. Observations on Characterization of Defects in Coiled Tubing From Magnetic-Flux-Leakage Data

    SciTech Connect

    Timothy R. McJunkin; Karen S. Miller; Charles R. Tolle

    2006-04-01

    This paper presents observations on the sizing of automatically detected artificial flaws in coiled tubing samples using magnetic-flux-leakage data. Sixty-six artificial flaws of various shapes and types, ranging from 0.30 mm deep pits to slots with length of 9.5 mm, in 44.45 mm outer diameter pipe were analyzed. The detection algorithm and the information automatically extracted from the data are described. Observations on the capabilities and limitations for determining the size and shape of the flaws are discussed.

  19. A thermal mixing model of crossflow in tube bundles for use with the porous body approximation

    SciTech Connect

    Ashcroft, J.; Kaminski, D.A.

    1996-06-01

    Diffusive thermal mixing in a heated tube bundle with a cooling fluid in crossflow was analyzed numerically. From the results of detailed two-dimensional models, which calculated the diffusion of heat downstream of one heated tube in an otherwise adiabatic flow field, a diffusion model appropriate for use with the porous body method was developed. The model accounts for both molecular and turbulent diffusion of heat by determining the effective thermal conductivity in the porous region. The model was developed for triangular shaped staggered tube bundles with pitch to diameter ratios between 1.10 and 2.00 and for Reynolds numbers between 1,000 and 20,000. The tubes are treated as nonconducting. Air and water were considered as working fluids. The effective thermal conductivity was found to be linearly dependent on the tube Reynolds number and fluid Prandtl number, and dependent on the bundle geometry. The porous body thermal mixing model was then compared against numerical models for flows with multiple heated tubes with very good agreement.

  20. MULTI-PARAMETRIC STUDY OF RISING 3D BUOYANT FLUX TUBES IN AN ADIABATIC STRATIFICATION USING AMR

    SciTech Connect

    Martínez-Sykora, Juan; Cheung, Mark C. M.; Moreno-Insertis, Fernando

    2015-11-20

    We study the buoyant rise of magnetic flux tubes embedded in an adiabatic stratification using two-and three-dimensional, magnetohydrodynamic simulations. We analyze the dependence of the tube evolution on the field line twist and on the curvature of the tube axis in different diffusion regimes. To be able to achieve a comparatively high spatial resolution we use the FLASH code, which has a built-in Adaptive Mesh Refinement (AMR) capability. Our 3D experiments reach Reynolds numbers that permit a reasonable comparison of the results with those of previous 2D simulations. When the experiments are run without AMR, hence with a comparatively large diffusivity, the amount of longitudinal magnetic flux retained inside the tube increases with the curvature of the tube axis. However, when a low-diffusion regime is reached by using the AMR algorithms, the magnetic twist is able to prevent the splitting of the magnetic loop into vortex tubes and the loop curvature does not play any significant role. We detect the generation of vorticity in the main body of the tube of opposite sign on the opposite sides of the apex. This is a consequence of the inhomogeneity of the azimuthal component of the field on the flux surfaces. The lift force associated with this global vorticity makes the flanks of the tube move away from their initial vertical plane in an antisymmetric fashion. The trajectories have an oscillatory motion superimposed, due to the shedding of vortex rolls to the wake, which creates a Von Karman street.

  1. Stresses and deformations in cross-ply composite tubes subjected to a uniform temperature change: Elasticity and Approximate Solutions

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.; Cooper, D. E.; Cohen, D.

    1985-01-01

    The effects of a uniform temperature change on the stresses and deformations of composite tubes are investigated. The accuracy of an approximate solution based on the principle of complementary virtual work is determined. Interest centers on tube response away from the ends and so a planar elasticity approach is used. For the approximate solution a piecewise linear variation of stresses with the radial coordinate is assumed. The results from the approximate solution are compared with the elasticity solution. The stress predictions agree well, particularly peak interlaminar stresses. Surprisingly, the axial deformations also agree well. This, despite the fact that the deformations predicted by the approximate solution do not satisfy the interface displacement continuity conditions required by the elasticity solution. The study shows that the axial thermal expansion coefficient of tubes with a specific number of axial and circumferential layers depends on the stacking sequence. This is in contrast to classical lamination theory which predicts the expansion to be independent of the stacking arrangement. As expected, the sign and magnitude of the peak interlaminar stresses depends on stacking sequence.

  2. Magnetic-flux-driven topological quantum phase transition and manipulation of perfect edge states in graphene tube

    PubMed Central

    Lin, S.; Zhang, G.; Li, C.; Song, Z.

    2016-01-01

    We study the tight-binding model for a graphene tube with perimeter N threaded by a magnetic field. We show exactly that this model has different nontrivial topological phases as the flux changes. The winding number, as an indicator of topological quantum phase transition (QPT) fixes at N/3 if N/3 equals to its integer part [N/3], otherwise it jumps between [N/3] and [N/3] + 1 periodically as the flux varies a flux quantum. For an open tube with zigzag boundary condition, exact edge states are obtained. There exist two perfect midgap edge states, in which the particle is completely located at the boundary, even for a tube with finite length. The threading flux can be employed to control the quantum states: transferring the perfect edge state from one end to the other, or generating maximal entanglement between them. PMID:27554930

  3. Magnetic-flux-driven topological quantum phase transition and manipulation of perfect edge states in graphene tube.

    PubMed

    Lin, S; Zhang, G; Li, C; Song, Z

    2016-08-24

    We study the tight-binding model for a graphene tube with perimeter N threaded by a magnetic field. We show exactly that this model has different nontrivial topological phases as the flux changes. The winding number, as an indicator of topological quantum phase transition (QPT) fixes at N/3 if N/3 equals to its integer part [N/3], otherwise it jumps between [N/3] and [N/3] + 1 periodically as the flux varies a flux quantum. For an open tube with zigzag boundary condition, exact edge states are obtained. There exist two perfect midgap edge states, in which the particle is completely located at the boundary, even for a tube with finite length. The threading flux can be employed to control the quantum states: transferring the perfect edge state from one end to the other, or generating maximal entanglement between them.

  4. A Low Cost Photo-Electric Detector for an Arched Flux Tube Experiment

    NASA Astrophysics Data System (ADS)

    Perkins, Rory; Bellan, Paul

    2008-11-01

    A low cost EUV detector is being developed for use in a laboratory experiment where two plasma-filled flux tubes merge in either a co-helicity or counter-helicity arrangement (J.F. Hansen, S.K.P. Tripathi, and P.M. Bellan, Phys. Plasma 2, 3177(2004)). The detector utilizes the photo-electric effect to measure EUV radiation from 10 to 120 nm (S.J. Zweben, R.J. Taylor, Plasma Physics, Vol. 23, No. 4(1981)). The detector geometry is coaxial. A cylindrical collimator capped in wire mesh was placed around the magnesium disk to collimate the field of view and reduce capacitive pick-up. Magnets placed outside the collimator deflect incoming charged particles. The detector was tested in a vacuum chamber with a flash lamp located 50 cm from the detector. A current-to-voltage amplifier with a 1 microsecond rise-time read the detector's output on the test chamber. The detector output on the main experimental chamber was sent directly into 50 ohms with no amplification and produced signals above 200 mV, well above the observed noise. The rise-time for this configuration is well below 1 microsecond. An array of such detectors is currently being designed to image the flux tubes in this EUV range.

  5. In situ measurements of the plasma bulk velocity near the Io flux tube

    NASA Technical Reports Server (NTRS)

    Barnett, A.

    1985-01-01

    The flow around the Io flux tube was studied by analyzing the eleven spectra taken by the Voyager 1 Plasma Science (PLS) experiment in its vicinity. The bulk plasma parameters were determined using a procedure that uses the full response function of the instrument and the data in all four PLS sensors. The mass density of the plasma in the vicinity of Io is found to be 22,500 + or - 2,500 amu/cu cm and its electron density is found to be 1500 + or - 200/cu cm. The Alfven speed was determined using three independent methods; the values obtained are consistent and taken together yield V sub A = 300 + or - 50 km/sec, corresponding to an Alfven Mach number of 0.19 + or - 0.02. For the flow pattern, good agreement was found with the model of Neubauer (1980), and it was concluded that the plasma flows around the flux tube with a pattern similar to the flow of an incompressible fluid around a long cylinder obstacle of radius 1.26 + or - 0.1 R sub Io.

  6. FULLY RESOLVED QUIET-SUN MAGNETIC FLUX TUBE OBSERVED WITH THE SUNRISE/IMAX INSTRUMENT

    SciTech Connect

    Lagg, A.; Solanki, S. K.; Riethmueller, T. L.; Schuessler, M.; Hirzberger, J.; Feller, A.; Borrero, J. M.; Barthol, P.; Gandorfer, A.; MartInez Pillet, V.; Bonet, J. A.; Del Toro Iniesta, J. C.; Domingo, V.; Knoelker, M.; Title, A. M.

    2010-11-10

    Until today, the small size of magnetic elements in quiet-Sun areas has required the application of indirect methods, such as the line-ratio technique or multi-component inversions, to infer their physical properties. A consistent match to the observed Stokes profiles could only be obtained by introducing a magnetic filling factor that specifies the fraction of the observed pixel filled with magnetic field. Here, we investigate the properties of a small magnetic patch in the quiet Sun observed with the IMaX magnetograph on board the balloon-borne telescope SUNRISE with unprecedented spatial resolution and low instrumental stray light. We apply an inversion technique based on the numerical solution of the radiative transfer equation to retrieve the temperature stratification and the field strength in the magnetic patch. The observations can be well reproduced with a one-component, fully magnetized atmosphere with a field strength exceeding 1 kG and a significantly enhanced temperature in the mid to upper photosphere with respect to its surroundings, consistent with semi-empirical flux tube models for plage regions. We therefore conclude that, within the framework of a simple atmospheric model, the IMaX measurements resolve the observed quiet-Sun flux tube.

  7. Particle acceleration in three-dimensional reconnection of flux-tube disconnection

    NASA Astrophysics Data System (ADS)

    Akbari, Z.; Hosseinpour, M.; Mohammadi, M. A.

    2016-11-01

    "Flux-tube disconnection" is a type of steady-state three-dimensional magnetic reconnection with O-point at the origin of the resistive diffusion region. Magnetic reconnection is accepted as a potential mechanism for particle acceleration in astrophysical and space plasmas, especially in solar flares. By using the static magnetic and electric fields for flux-tube disconnection, features of test particle acceleration with input parameters for the solar corona are investigated. We show that a proton injected close to origin of the diffusion region can be accelerated to a very high kinetic energy along the magnetic field lines. The efficient acceleration takes place at the radial point where the electric drift velocity has its maximum magnitude. However, a proton injected at radial distances far away from the origin is not accelerated efficiently and even may be trapped in the field lines. The final kinetic energy of the particle depends significantly on the amplitude of the electric field rather than the amplitude of magnetic field.

  8. Propagation and dispersion of transverse wave trains in magnetic flux tubes

    SciTech Connect

    Oliver, R.; Terradas, J.; Ruderman, M. S.

    2014-07-01

    The dispersion of small-amplitude, impulsively excited wave trains propagating along a magnetic flux tube is investigated. The initial disturbance is a localized transverse displacement of the tube that excites a fast kink wave packet. The spatial and temporal evolution of the perturbed variables (density, plasma displacement, velocity, ...) is given by an analytical expression containing an integral that is computed numerically. We find that the dispersion of fast kink wave trains is more important for shorter initial disturbances (i.e., more concentrated in the longitudinal direction) and for larger density ratios (i.e., for larger contrasts of the tube density with respect to the environment density). This type of excitation generates a wave train whose signature at a fixed position along a coronal loop is a short event (duration ≅ 20 s) in which the velocity and density oscillate very rapidly with typical periods of the order of a few seconds. The oscillatory period is not constant but gradually declines during the course of this event. Peak values of the velocity are of the order of 10 km s{sup –1} and are accompanied by maximum density variations of the order of 10%-15% the unperturbed loop density.

  9. Columbia University flow instability experimental program: Volume 7. Single tube tests, critical heat flux test program

    SciTech Connect

    Dougherty, T.; Maciuca, C.; McAssey, E.V. Jr.; Reddy, D.G.; Yang, B.W.

    1992-09-01

    This report deals with critical heat flux (CHF) measurements in vertical down flow of water at low pressures in a round Inconel tube, 96 inches long and 0.62 inch inside diameter. A total of 28 CHF points were obtained. These data were found to correlate linearly with the single variable q, defined as the heat flux required to raise the enthalpy from the inlet value to the saturation value. These results were compared to the published results of Swedish investigators for vertical upflow of water at low pressures in round tubes of similar diameters and various lengths. The parameter q depends on the inlet enthalpy and is a nonlocal variable, thus this correlation is nonlocal unless the coefficients depend upon tube length in a particular prescribed manner. For the low pressure Swedish data, the coefficients are practically independent of length and hence the correlation is nonlocal. In the present investigation only one length was employed, so it is not possible to determine whether the correlation for these data is local or nonlocal, although there is reason to believe that it is local. The same correlation was applied to a large data base (thousands of CHF points) compiled from the published data of a number of groups and found to apply, with reasonable accuracy over a wide range of conditions, yielding sometimes local and sometimes nonlocal correlations. The basic philosophy of data analysis here was not to generate a single correlation which would reproduce all data, but to search for correlations which apply adequately over some range and which might have some mechanistic significance. The tentative conclusion is that at least two mechanisms appear operative, leading to two types of correlations, one local, the other nonlocal.

  10. The 3D Structure of Flux Tubes That Admit Flute Instability in the Scrape-Off-Layer (SOL) of Tokamaks

    NASA Astrophysics Data System (ADS)

    Takahashi, Hironori

    2014-10-01

    A severe reduction in size down to an ion gyro-radius scale, commonly known as ``squeezing,'' in a lateral dimension of the cross section of a flux tube is traditionally thought to inhibit the occurrence of the flute instability in the Scrape-off-Layer of a diverted tokamak by isolating the main volume of the flux tube from its ends at electrically conducting target plates. A study reported here in the 3D flux tube structure reveals the absence of squeezing for a flux tube that is sufficiently large in its toroidal extent (small toroidal harmonic number n) and located in a layer of low field-line shear around the ``sweet spot'' (about mid-way between the primary and secondary separatrices). The low-shear layer does not hence inhibit the flute instability through the squeezing mechanism, and may thus restore the flute instability, among the most virulent in the magnetized plasma, to the ranks of candidate electrostatic instabilities thought to underlie the turbulence in the SOL in tokamaks. Variations along the flux tube of geometrical characteristics including the cross section will be calculated to develop criteria for the absence of squeezing. Supported in part by the US DOE under DE-AC02-09CH11466.

  11. Photomultiplier tube calibration based on Na lidar observation and its effect on heat flux bias.

    PubMed

    Liu, Alan Z; Guo, Yafang

    2016-11-20

    Na lidar can measure vertical wind and temperature at high temporal and vertical resolutions, enough to resolve gravity wave perturbations. Heat flux due to dissipating gravity waves is an important quantity that can be derived from such perturbations. When lidar signals are high, a photomultiplier tube (PMT) used to count incoming photons may suffer from the saturation effect, and its output count is not linearly related to incoming photon counts. Corrections to this effect can be measured in a laboratory setting but may have large errors at high count rates. We show that the errors in the PMT correction can cause significant bias in the heat flux calculation due to the inherent correlation between wind and temperature errors. Using the measurements made by Na lidar at the Andes Lidar Observatory with Hamamatsu PMTs, we developed a calibration procedure to remove such PMT correction errors from laboratory measurements. By applying the revised PMT correction curve we demonstrated that the heat flux bias can be removed through this procedure.

  12. Limited Streamer Tube System for Detecting Contamination in the Gas Used in the BaBar Instrumented Flux Return

    SciTech Connect

    Huntley, L.I.; /Franklin - Marshall Coll.

    2006-08-30

    The Resistive Plate Chambers (RPCs) initially installed in the Instrumented Flux Return (IFR) of the BABAR particle detector have proven unreliable and inefficient for detecting muons and neutral hadrons. In the summer of 2004, the BABAR Collaboration began replacing the RPCs with Limited Streamer Tubes (LSTs). LST operation requires a mixture of very pure gases and an operating voltage of 5500 V to achieve maximum efficiency. In the past, the gas supplies obtained by the BABAR Collaboration have contained contaminants that caused the efficiency of the IFR LSTs to drop from approximately 90% to approximately 60%. Therefore, it was necessary to develop a method for testing this gas for contaminants. An LST test system was designed and built using two existing LSTs, one placed 1 cm above the other. These LSTs detect cosmic muons in place of particles created during the BABAR experiment. The effect of gas contamination was mimicked by reducing the operating voltage of the test system in order to lower the detection efficiency. When contaminated gas was simulated, the coincidence rate and the percent coincidence between the LSTs in the test system dropped off significantly, demonstrating that test system can be used as an indicator of gas purity. In the fall of 2006, the LST test system will be installed in the gas storage area near the BABAR facility for the purpose of testing the gas being sent to the IFR.

  13. The Scattering of f- and p-modes from Ensembles of Thin Magnetic Flux Tubes: An Analytical Approach

    NASA Astrophysics Data System (ADS)

    Hanson, Chris S.; Cally, Paul S.

    2014-08-01

    Motivated by the observational results of Braun, we extend the model of Hanson & Cally to address the effect of multiple scattering of f and p modes by an ensemble of thin vertical magnetic flux tubes in the surface layers of the Sun. As in the observational Hankel analysis, we measure the scatter and phase shift from an incident cylindrical wave in a coordinate system roughly centered in the core of the ensemble. It is demonstrated that although thin flux tubes are unable to interact with high-order fluting modes individually, they can indirectly absorb energy from these waves through the scatters of kink and sausage components. It is also shown how the distribution of absorption and phase shift across the azimuthal order m depends strongly on the tube position as well as on the individual tube characteristics. This is the first analytical study into an ensembles multiple-scattering regime that is embedded within a stratified atmosphere.

  14. Multiple Scattering of Seismic Waves from Ensembles of Upwardly Lossy Thin Flux Tubes

    NASA Astrophysics Data System (ADS)

    Hanson, Chris S.; Cally, Paul S.

    2015-07-01

    Our previous semi-analytic treatment of - and -mode multiple scattering from ensembles of thin flux tubes (Hanson and Cally, Astrophys. J. 781, 125, 2014a; 791, 129, 2014b) is extended by allowing both sausage and kink waves to freely escape at the top of the model using a radiative boundary condition there. As expected, this additional avenue of escape, supplementing downward loss into the deep solar interior, results in substantially greater absorption of incident - and -modes. However, less intuitively, it also yields mildly to substantially smaller phase shifts in waves emerging from the ensemble. This may have implications for the interpretation of seismic data for solar plage regions, and in particular their small measured phase shifts.

  15. Limited Streamer Tubes for the BaBar Instrumented Flux Return Upgrade

    SciTech Connect

    Lu, C.; /Princeton U.

    2005-10-11

    Starting from the very beginning of their operation the efficiency of the RPC chambers in the BaBar Instrumented Flux Return (IFR) has suffered serious degradation. After intensive investigation, various remediation efforts had been carried out, but without success. As a result the BaBar collaboration decided to replace the dying barrel RPC chambers about two years ago. To study the feasibility of using the Limited Streamer Tube (LST) as the replacement of RPC we carried out an R&D program that has resulted in BaBar's deciding to replace the barrel RPC's with LST's. In this report we summarize the major detector R&D results, and leave other issues of the IFR system upgrade to the future publications.

  16. Confinement and Lattice Quantum-Electrodynamic Electric Flux Tubes Simulated with Ultracold Atoms

    SciTech Connect

    Zohar, Erez; Reznik, Benni

    2011-12-30

    We propose a method for simulating (2+1)D compact lattice quantum-electrodynamics, using ultracold atoms in optical lattices. In our model local Bose-Einstein condensates' (BECs) phases correspond to the electromagnetic vector potential, and the local number operators represent the conjugate electric field. The well-known gauge-invariant Kogut-Susskind Hamiltonian is obtained as an effective low-energy theory. The field is then coupled to external static charges. We show that in the strong coupling limit this gives rise to ''electric flux tubes'' and to confinement. This can be observed by measuring the local density deviations of the BECs, and is expected to hold even, to some extent, outside the perturbative calculable regime.

  17. NUMERICAL STUDY ON THE EMERGENCE OF KINKED FLUX TUBE FOR UNDERSTANDING OF POSSIBLE ORIGIN OF δ-SPOT REGIONS

    SciTech Connect

    Takasao, Shinsuke; Shibata, Kazunari; Fan, Yuhong; Cheung, Mark C. M.

    2015-11-10

    We carried out an magnetohydrodynamic simulation where a subsurface twisted kink-unstable flux tube emerges from the solar interior to the corona. Unlike the previous expectations based on the bodily emergence of a knotted tube, we found that the kinked tube can spontaneously form a complex quadrupole structure at the photosphere. Due to the development of the kink instability before the emergence, the magnetic twist at the kinked apex of the tube is greatly reduced, although the other parts of the tube are still strongly twisted. This leads to the formation of a complex quadrupole structure: a pair of the coherent, strongly twisted spots and a narrow complex bipolar pair between it. The quadrupole is formed by the submergence of a portion of emerged magnetic fields. This result is relevant for understanding the origin of the complex multipolar δ-spot regions that have a strong magnetic shear and emerge with polarity orientations not following Hale-Nicholson and Joy Laws.

  18. Asymptotic solution of the diffusion equation in slender impermeable tubes of revolution. I. The leading-term approximation.

    PubMed

    Traytak, Sergey D

    2014-06-14

    The anisotropic 3D equation describing the pointlike particles diffusion in slender impermeable tubes of revolution with cross section smoothly depending on the longitudinal coordinate is the object of our study. We use singular perturbations approach to find the rigorous asymptotic expression for the local particles concentration as an expansion in the ratio of the characteristic transversal and longitudinal diffusion relaxation times. The corresponding leading-term approximation is a generalization of well-known Fick-Jacobs approximation. This result allowed us to delineate the conditions on temporal and spatial scales under which the Fick-Jacobs approximation is valid. A striking analogy between solution of our problem and the method of inner-outer expansions for low Knudsen numbers gas kinetic theory is established. With the aid of this analogy we clarify the physical and mathematical meaning of the obtained results.

  19. Asymptotic solution of the diffusion equation in slender impermeable tubes of revolution. I. The leading-term approximation

    NASA Astrophysics Data System (ADS)

    Traytak, Sergey D.

    2014-06-01

    The anisotropic 3D equation describing the pointlike particles diffusion in slender impermeable tubes of revolution with cross section smoothly depending on the longitudinal coordinate is the object of our study. We use singular perturbations approach to find the rigorous asymptotic expression for the local particles concentration as an expansion in the ratio of the characteristic transversal and longitudinal diffusion relaxation times. The corresponding leading-term approximation is a generalization of well-known Fick-Jacobs approximation. This result allowed us to delineate the conditions on temporal and spatial scales under which the Fick-Jacobs approximation is valid. A striking analogy between solution of our problem and the method of inner-outer expansions for low Knudsen numbers gas kinetic theory is established. With the aid of this analogy we clarify the physical and mathematical meaning of the obtained results.

  20. Asymptotic solution of the diffusion equation in slender impermeable tubes of revolution. I. The leading-term approximation

    SciTech Connect

    Traytak, Sergey D.

    2014-06-14

    The anisotropic 3D equation describing the pointlike particles diffusion in slender impermeable tubes of revolution with cross section smoothly depending on the longitudinal coordinate is the object of our study. We use singular perturbations approach to find the rigorous asymptotic expression for the local particles concentration as an expansion in the ratio of the characteristic transversal and longitudinal diffusion relaxation times. The corresponding leading-term approximation is a generalization of well-known Fick-Jacobs approximation. This result allowed us to delineate the conditions on temporal and spatial scales under which the Fick-Jacobs approximation is valid. A striking analogy between solution of our problem and the method of inner-outer expansions for low Knudsen numbers gas kinetic theory is established. With the aid of this analogy we clarify the physical and mathematical meaning of the obtained results.

  1. Systematic study of Zc+ family from a multiquark color flux-tube model

    NASA Astrophysics Data System (ADS)

    Deng, Chengrong; Ping, Jialun; Huang, Hongxia; Wang, Fan

    2015-08-01

    Inspired by the present experimental results of charged charmonium-like states Zc+, we present a systematic study of the tetraquark states [c u ][c ¯ d ¯ ] in a color flux-tube model with a multibody confinement potential. Our investigation indicates that charged charmonium-like states Zc+(3900 ) or Zc+(3885 ), Zc+(3930 ) , Zc+(4020 ) or Zc+(4025 ), Z1+(4050 ), Z2+(4250 ), and Zc+(4200 ) can be described as a family of tetraquark [c u ][c ¯d ¯] states with the quantum numbers n 2SL+1 J and JP of 1 3S1 and 1+, 2 3S1 and 1+, 1 5S2 and 2+, 1 3P1 and 1-, 1 5D1 and 1+, and 1 3D1 and 1+, respectively. The predicted lowest mass charged tetraquark state [c u ][c ¯ d ¯ ] with 0+ and 1 1S0 lies at 3780 ±10 MeV /c2 in the model. These tetraquark states have compact three-dimensional spatial configurations similar to a rugby ball with higher orbital angular momentum L between the diquark [c u ] and antidiquark [c ¯d ¯] corresponding to a more prolate spatial distribution. The multibody color flux tube, a collective degree of freedom, plays an important role in the formation of those charged tetraquark states. However, the two heavier charged states Zc+(4430 ) and Zc+(4475 ) cannot be explained as tetraquark states [c u ][c ¯d ¯] in this model approach.

  2. Peculiarities of Alfven wave propagation along a nonuniform magnetic flux tube

    SciTech Connect

    Erkaev, N.V.; Shaidurov, V.A.; Semenov, V.S.; Langmayr, D.; Biernat, H.K.

    2005-01-01

    Within the framework of the assumption of large azimuthal wave numbers, the equations for Alfven and slow magnetosonic waves are obtained using frozen-in material coordinates. These equations are specified for the case of a nonuniform magnetic field with axial symmetry. Assuming a meridional polarization of the magnetic field and velocity perturbations, the effects of Alfven wave propagation are analyzed which are related to geometric characteristics of a nonuniform magnetic field: (a) A finite curvature radius of the magnetic field lines and (b) convergence of magnetic field lines. The interaction between the Alfven and magnetosonic waves is found to be strongly dependent on the curvature radius of the magnetic tube and the local plasma {beta} parameter. The electric field amplitude and the length scale of a wave front are found to increase very strongly in the course of the Alfven wave propagation along a converging magnetic flux tube. Also studied is a temporal decrease of the wave perturbations which is caused by dissipation at the conducting boundary.

  3. On the look-up tables for the critical heat flux in tubes (history and problems)

    SciTech Connect

    Kirillov, P.L.; Smogalev, I.P.

    1995-09-01

    The complication of critical heat flux (CHF) problem for boiling in channels is caused by the large number of variable factors and the variety of two-phase flows. The existence of several hundreds of correlations for the prediction of CHF demonstrates the unsatisfactory state of this problem. The phenomenological CHF models can provide only the qualitative predictions of CHF primarily in annular-dispersed flow. The CHF look-up tables covered the results of numerous experiments received more recognition in the last 15 years. These tables are based on the statistical averaging of CHF values for each range of pressure, mass flux and quality. The CHF values for regions, where no experimental data is available, are obtained by extrapolation. The correction of these tables to account for the diameter effect is a complicated problem. There are ranges of conditions where the simple correlations cannot produce the reliable results. Therefore, diameter effect on CHF needs additional study. The modification of look-up table data for CHF in tubes to predict CHF in rod bundles must include a method which to take into account the nonuniformity of quality in a rod bundle cross section.

  4. Rapidly solidified Ag-Cu eutectics: A comparative study using drop-tube and melt fluxing techniques

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Mullis, A. M.; Cochrane, R. F.

    2016-03-01

    A comparative study of rapid solidification of Ag-Cu eutectic alloy processed via melt fluxing and drop-tube techniques is presented. A computational model is used to estimate the cooling rate and undercooling of the free fall droplets as this cannot be determined directly. SEM micrographs show that both materials consist of lamellar and anomalous eutectic structures. However, below the critical undercooling the morphologies of each are different in respect of the distribution and volume of anomalous eutectic. The anomalous eutectic in flux- undercooled samples preferentially forms at cell boundaries around the lamellar eutectic in the cell body. In drop-tube processed samples it tends to distribute randomly inside the droplets and at much smaller volume fractions. That the formation of the anomalous eutectic can, at least in part, be suppressed in the drop-tube is strongly suggestive that the formation of anomalous eutectic occurs via remelting process, which is suppressed by rapid cooling during solidification.

  5. Consistency between the flow at the top of the core and the frozen-flux approximation

    NASA Astrophysics Data System (ADS)

    Whaler, K. A.; Holme, R.

    2007-12-01

    The flow just below the core-mantle boundary is constrained by the radial component of the induction equation. In the Alfvén frozen-flux limit, thought to be applicable to the outer core on the decade timescale of interest in geomagnetism, this gives a single equation involving the known radial magnetic field and its secular variation in two unknown flow components, leading to a severe problem of non-uniqueness. Despite this, we have two specific pieces of flow information which can be deduced directly from the frozen-flux induction equation: the component of flow perpendicular to null-flux curves, contours on which the radial magnetic field vanishes, and the amount of horizontal convergence and divergence at local extrema (maxima, minima and saddle points) of the radial magnetic field. To produce global velocity maps, we make additional assumptions about the nature of the flow and invert the radial induction equation for flow coefficients. However, it is not clear a priori that the flows thus generated are consistent with what we know about them along null-flux curves and at local extrema. This paper examines that issue. We look at typical differences between the null-flux curve perpendicular flow component, and convergence and divergence values at extrema, deduced directly from the induction equation and those from the inversions, investigate the effect of forcing the inversions to produce the correct null-flux curve and extremal values, and characterise the uncertainties on the various quantities contributing. Although the differences between the flow values from the induction equation directly and obtained by inversion seem large, and imposing the direct flow information as side constraints during inversion alters the flows significantly, we also show that these differences are within the likely uncertainties. Thus, we conclude that flows obtained through inversion do not contravene the specific flow information obtained directly from the radial induction

  6. High-Energy X-Ray Detection of G359.89-0.08 (SGR A-E): Magnetic Flux Tube Emission Powered by Cosmic Rays?

    NASA Technical Reports Server (NTRS)

    Zhang, Shuo; Hailey, Charles J.; Baganoff, Frederick K.; Bauer, Franz E.; Boggs, Steven E.; Craig, William W.; Christensen, Finn E.; Gotthelf, Eric V.; Harrison, Fiona A.; Mori, Kaya; Nynka, Melania; Stern, Daniel; Tomsick, John A; Zhang, Will

    2014-01-01

    We report the first detection of high-energy X-ray (E (is) greater than 10 keV) emission from the Galactic center non-thermal filament G359.89-0.08 (Sgr A-E) using data acquired with the Nuclear Spectroscopic Telescope Array (NuSTAR). The bright filament was detected up to approximately 50 keV during a NuSTAR Galactic center monitoring campaign. The featureless power-law spectrum with a photon index gamma approximately equals 2.3 confirms a non-thermal emission mechanism. The observed flux in the 3-79 keV band is F(sub X) = (2.0 +/- 0.1) × 10(exp -12)erg cm(-2) s(-1) , corresponding to an unabsorbed X-ray luminosity L(sub X) = (2.6+/-0.8)×10(exp 34) erg s(-1) assuming a distance of 8.0 kpc. Based on theoretical predictions and observations, we conclude that Sgr A-E is unlikely to be a pulsar wind nebula (PWN) or supernova remnant-molecular cloud (SNR-MC) interaction, as previously hypothesized. Instead, the emission could be due to a magnetic flux tube which traps TeV electrons. We propose two possible TeV electron sources: old PWNe (up to (is) approximately 100 kyr) with low surface brightness and radii up to (is) approximately 30 pc or MCs illuminated by cosmic rays (CRs) from CR accelerators such as SNRs or Sgr A*.

  7. MAGNETOHYDRODYNAMIC KINK WAVES IN NONUNIFORM SOLAR FLUX TUBES: PHASE MIXING AND ENERGY CASCADE TO SMALL SCALES

    SciTech Connect

    Soler, Roberto; Terradas, Jaume

    2015-04-10

    Magnetohydrodynamic (MHD) kink waves are ubiquitously observed in the solar atmosphere. The propagation and damping of these waves may play relevant roles in the transport and dissipation of energy in the solar atmospheric medium. However, in the atmospheric plasma dissipation of transverse MHD wave energy by viscosity or resistivity needs very small spatial scales to be efficient. Here, we theoretically investigate the generation of small scales in nonuniform solar magnetic flux tubes due to phase mixing of MHD kink waves. We go beyond the usual approach based on the existence of a global quasi-mode that is damped in time due to resonant absorption. Instead, we use a modal expansion to express the MHD kink wave as a superposition of Alfvén continuum modes that are phase mixed as time evolves. The comparison of the two techniques evidences that the modal analysis is more physically transparent and describes both the damping of global kink motions and the building up of small scales due to phase mixing. In addition, we discuss that the processes of resonant absorption and phase mixing are closely linked. They represent two aspects of the same underlying physical mechanism: the energy cascade from large scales to small scales due to naturally occurring plasma and/or magnetic field inhomogeneities. This process may provide the necessary scenario for efficient dissipation of transverse MHD wave energy in the solar atmospheric plasma.

  8. Current sheet formation in quasi-separatrix layers and hyperbolic flux tubes

    NASA Astrophysics Data System (ADS)

    Aulanier, G.; Pariat, E.; Démoulin, P.

    2005-12-01

    In 3D magnetic field configurations, quasi-separatrix layers (QSLs) are defined as volumes in which field lines locally display strong gradients of connectivity. Considering QSLs both as the preferential locations for current sheet development and magnetic reconnection, in general, and as a natural model for solar flares and coronal heating, in particular, has been strongly debated issues over the past decade. In this paper, we perform zero-β resistive MHD simulations of the development of electric currents in smooth magnetic configurations which are, strictly speaking, bipolar though they are formed by four flux concentrations, and whose potential fields contain QSLs. The configurations are driven by smooth and large-scale sub-Alfvénic footpoint motions. Extended electric currents form naturally in the configurations, which evolve through a sequence of quasi non-linear force-free equilibria. Narrow current layers also develop. They spontaneously form at small scales all around the QSLs, whatever the footpoint motions are. For long enough motions, the strongest currents develop where the QSLs are the thinnest, namely at the Hyperbolic Flux Tube (HFT), which generalizes the concept of separator. These currents progressively take the shape of an elongated sheet, whose formation is associated with a gradual steepening of the magnetic field gradients over tens of Alfvén times, due to the different motions applied to the field lines which pass on each side of the HFT. Our model then self-consistently accounts for the long-duration energy storage prior to a flare, followed by a switch-on of reconnection when the currents reach the dissipative scale at the HFT. In configurations whose potential fields contain broader QSLs, when the magnetic field gradients reach the dissipative scale, the currents at the HFT reach higher magnitudes. This implies that major solar flares which are not related to an early large-scale ideal instability, must occur in regions whose

  9. Structural properties of the solar flare-producing coronal current system developed in an emerging magnetic flux tube

    NASA Astrophysics Data System (ADS)

    Magara, Tetsuya

    2017-02-01

    The activity of a magnetic structure formed in the solar corona depends on a coronal current system developed in the structure, which determines how an electric current flows in the corona. To investigate structural properties of the coronal current system responsible for producing a solar flare, we perform magnetohydrodynamic simulation of an emerging magnetic flux tube which forms a coronal magnetic structure. Investigation using fractal dimensional analysis and electric current streamlines reveals that the flare-producing coronal current system relies on a specific coronal current structure of two-dimensional spatiality, which has a sub-region where a nearly anti-parallel magnetic field configuration is spontaneously generated. We discuss the role of this locally generated anti-parallel magnetic field configuration in causing the reconnection of a three-dimensional magnetic field, which is a possible mechanism for producing a flare. We also discuss how the twist of a magnetic flux tube affects structural properties of a coronal current system, showing how much volume current flux is carried into the corona by an emerging flux tube. This gives a way to evaluate the activity of a coronal magnetic structure.

  10. On magnetohydrodynamic thermal instabilities in magnetic flux tubes. [in plane parallel stellar atmosphere in LTE and hydrostatic equilibrium

    NASA Technical Reports Server (NTRS)

    Massaglia, S.; Ferrari, A.; Bodo, G.; Kalkofen, W.; Rosner, R.

    1985-01-01

    The stability of current-driven filamentary modes in magnetic flux tubes embedded in a plane-parallel atmosphere in LTE and in hydrostatic equilibrium is discussed. Within the tube, energy transport by radiation only is considered. The dominant contribution to the opacity is due to H- ions and H atoms (in the Paschen continuum). A region in the parameter space of the equilibrium configuration in which the instability is effective is delimited, and the relevance of this process for the formation of structured coronae in late-type stars and accretion disks is discussed.

  11. Evolution of a magnetic flux tube in two-dimensional penetrative convection

    NASA Technical Reports Server (NTRS)

    Jennings, R. L.; Brandenburg, A.; Nordlund, A.; Stein, R. F.

    1992-01-01

    Highly supercritical compressible convection is simulated in a two-dimensional domain in which the upper half is unstable to convection while the lower half is stably stratified. This configuration is an idealization of the layers near the base of the solar convection zone. Once the turbulent flow is well developed, a toroidal magnetic field B sub tor is introduced to the stable layer. The field's evolution is governed by an advection-diffusion-type equation, and the Lorentz force does not significantly affect the flow. After many turnover times the field is stratified such that the absolute value of B sub tor/rho is approximately constant in the convective layer, where rho is density, while in the stable layer this ratio decreases linearly with depth. Consequently most of the magnetic flux is stored in the overshoot layer. The inclusion of rotation leads to travelling waves which transport magnetic flux latitudinally in a manner reminiscent of the migrations seen during the solar cycle.

  12. Lava tube shatter rings and their correlation with lava flux increases at Kīlauea Volcano, Hawai‘i

    USGS Publications Warehouse

    Orr, T.R.

    2011-01-01

    Shatter rings are circular to elliptical volcanic features, typically tens of meters in diameter, which form over active lava tubes. They are typified by an upraised rim of blocky rubble and a central depression. Prior to this study, shatter rings had not been observed forming, and, thus, were interpreted in many ways. This paper describes the process of formation for shatter rings observed at Kīlauea Volcano during November 2005–July 2006. During this period, tilt data, time-lapse images, and field observations showed that episodic tilt changes at the nearby Pu‘u ‘Ō‘ō cone, the shallow magmatic source reservoir, were directly related to fluctuations in the level of lava in the active lava tube, with periods of deflation at Pu‘u ‘Ō‘ō correlating with increases in the level of the lava stream surface. Increases in lava level are interpreted as increases in lava flux, and were coincident with lava breakouts from shatter rings constructed over the lava tube. The repetitive behavior of the lava flux changes, inferred from the nearly continuous tilt oscillations, suggests that shatter rings form from the repeated rise and fall of a portion of a lava tube roof. The locations of shatter rings along the active lava tube suggest that they form where there is an abrupt decrease in flow velocity through the tube, e.g., large increase in tube width, abrupt decrease in tube slope, and (or) sudden change in tube direction. To conserve volume, this necessitates an abrupt increase in lava stream depth and causes over-pressurization of the tube. More than a hundred shatter rings have been identified on volcanoes on Hawai‘i and Maui, and dozens have been reported from basaltic lava fields in Iceland, Australia, Italy, Samoa, and the mainland United States. A quick study of other basaltic lava fields worldwide, using freely available satellite imagery, suggests that they might be even more common than previously thought. If so, this confirms that episodic

  13. Properties of longitudinal flux tube waves. II. Limiting shock strength behavior

    NASA Astrophysics Data System (ADS)

    Cuntz, M.

    2004-06-01

    We extend our previous work on analytic evaluations of properties of longitudinal tube waves to waves propagating in gravitational atmospheres. We derive an expression for the limiting shock strength and discuss the behavior of the shock strength in tubes of different geometry. It is found that a height-independent value for the limiting strength is attained for constant cross-section tubes and exponential tubes, whereas for wine-glass tubes the limiting shock strength increases with height due to the increase of the tube cross section. The limiting shock strength is well reproduced by time-dependent simulations. The derived limiting shock strength as well as the energy dissipation rate of the waves show significant similarities to acoustic waves. The limiting shock strength allows to estimate the heating potential of waves in the absence of detailed time-dependent computations.

  14. Flux tubes and the type-I/type-II transition in a superconductor coupled to a superfluid

    SciTech Connect

    Alford, Mark G.; Good, Gerald

    2008-07-01

    We analyze magnetic-flux tubes at zero temperature in a superconductor that is coupled to a superfluid via both density and gradient ('entrainment') interactions. The example we have in mind is high-density nuclear matter, which is a proton superconductor and a neutron superfluid, but our treatment is general and simple, modeling the interactions as a Ginzburg-Landau effective theory with four-fermion couplings, including only s-wave pairing. We numerically solve the field equations for flux tubes with an arbitrary number of flux quanta and compare their energies. This allows us to map the type-I/type-II transition in the superconductor, which occurs at the conventional {kappa}{identical_to}{lambda}/{xi}=1/{radical}(2) if the condensates are uncoupled. We find that a density coupling between the condensates raises the critical {kappa} and, for a sufficiently high neutron density, resolves the type-I/type-II transition line into an infinite number of bands corresponding to 'type-II(n)' phases, in which n, the number of quanta in the favored flux tube, steps from 1 to infinity. For lower neutron density, the coupling creates spinodal regions around the type-I/type-II boundary, in which metastable flux configurations are possible. We find that a gradient coupling between the condensates lowers the critical {kappa} and creates spinodal regions. These exotic phenomena may not occur in nuclear matter, which is thought to be deep in the type-II region but might be observed in condensed-matter systems.

  15. Critical heat-flux characteristics of R-113 boiling two-phase flow in twisted-tape-inserted tubes

    SciTech Connect

    Lee, Sangryoul; Inoue, Akira; Takahashi, Minoru

    1996-07-01

    This paper presents experimental data on the critical heat flux (CHF) in twisted-tape-inserted tubes over a wide quality range of {minus}0.25 to 0.8. The influences of quality, twist ratio, mass velocity, and clearance between the twisted tape and tube inner wall on CHF were investigated. In the subcooled region, it was observed, using an infrared thermoviewer, that CHF was initiated locally at the wall near the twisted tape. Consequently, twisted tape insertion with small tape-well clearance decreased CHF to below the value of the empty tubes at a low flow rate. This decrease was found to be avoidable by adjusting the clearance. In the net quality region, CHF of the twisted-tape-inserted tubes increased with increasing flow rate contrary to the case of the empty tubes. However, CHF in the net quality region was also decreased by insertion of twisted tapes with high twist ratio (loosely twisted tapes) at a very low flow rate.

  16. ERUPTING FILAMENTS WITH LARGE ENCLOSING FLUX TUBES AS SOURCES OF HIGH-MASS THREE-PART CMEs, AND ERUPTING FILAMENTS IN THE ABSENCE OF ENCLOSING FLUX TUBES AS SOURCES OF LOW-MASS UNSTRUCTURED CMEs

    SciTech Connect

    Hutton, Joe; Morgan, Huw

    2015-11-01

    The 3-part appearance of many coronal mass ejections (CMEs) arising from erupting filaments emerges from a large magnetic flux tube structure, consistent with the form of the erupting filament system. Other CMEs arising from erupting filaments lack a clear 3-part structure and reasons for this have not been researched in detail. This paper aims to further establish the link between CME structure and the structure of the erupting filament system and to investigate whether CMEs which lack a 3-part structure have different eruption characteristics. A survey is made of 221 near-limb filament eruptions observed from 2013 May 03 to 2014 June 30 by Extreme UltraViolet (EUV) imagers and coronagraphs. Ninety-two filament eruptions are associated with 3-part structured CMEs, 41 eruptions are associated with unstructured CMEs. The remaining 88 are categorized as failed eruptions. For 34% of the 3-part CMEs, processing applied to EUV images reveals the erupting front edge is a pre-existing loop structure surrounding the filament, which subsequently erupts with the filament to form the leading bright front edge of the CME. This connection is confirmed by a flux-rope density model. Furthermore, the unstructured CMEs have a narrower distribution of mass compared to structured CMEs, with total mass comparable to the mass of 3-part CME cores. This study supports the interpretation of 3-part CME leading fronts as the outer boundaries of a large pre-existing flux tube. Unstructured (non 3-part) CMEs are a different family to structured CMEs, arising from the eruption of filaments which are compact flux tubes in the absence of a large system of enclosing closed field.

  17. An Approximate Analytic Expression for the Flux Density of Scintillation Light at the Photocathode

    SciTech Connect

    Braverman, Joshua B; Harrison, Mark J; Ziock, Klaus-Peter

    2012-01-01

    The flux density of light exiting scintillator crystals is an important factor affecting the performance of radiation detectors, and is of particular importance for position sensitive instruments. Recent work by T. Woldemichael developed an analytic expression for the shape of the light spot at the bottom of a single crystal [1]. However, the results are of limited utility because there is generally a light pipe and photomultiplier entrance window between the bottom of the crystal and the photocathode. In this study, we expand Woldemichael s theory to include materials each with different indices of refraction and compare the adjusted light spot shape theory to GEANT 4 simulations [2]. Additionally, light reflection losses from index of refraction changes were also taken into account. We found that the simulations closely agree with the adjusted theory.

  18. Nano-cavities observed in a 316SS PWR Flux Thimble Tube Irradiated to 33 and 70 dpa

    SciTech Connect

    Edwards, Danny J.; Garner, Francis A.; Bruemmer, Stephen M.; Efsing, Pal G.

    2009-02-28

    The radiation-induced microstructure of a cold-worked 316SS flux thimble tube from an operating pressurized water reactor (PWR) was examined. Two irradiated conditions, 33 dpa at 290ºC and 70 dpa at 315ºC were examined by transmission electron microscopy. The original dislocation network had completely disappeared and was replaced by fine dispersions of Frank loops and small nano-cavities at high densities. The latter appear to be bubbles containing high levels of helium and hydrogen. An enhanced distribution of these nano-cavities was found at grain boundaries and may play a role in the increased susceptibility of the irradiated 316SS to intergranular failure of specimens from this tube during post-irradiation slow strain rate testing in PWR water conditions.

  19. Symmetric flux continuous positive definite approximation of the elliptic full tensor pressure equation in local conservative form

    SciTech Connect

    Edwards, M.G.

    1995-12-31

    A classical finite volume scheme well known in computational aerodynamics for solving the Transonic full potential equation is imported into reservoir simulation and applied to the full tensor pressure equation. Cell vertex discretization is shown to be a natural framework for approximation. With permeability placed at the cell centers and potential at the vertices (cell corner points), of the grid the scheme is flux continuous and locally conservative. Analysis is presented which proves that the resulting discrete matrix is symmetric positive definite provided the full permeability tensor is symmetric elliptic. The discrete matrix is also diagonally dominant subject to a sufficient elliptically condition. For a diagonal anisotropic tensor the discrete matrix is always symmetric positive definite and the scheme is up to 4th order accurate. A cell centered version of the scheme is indicated.

  20. Control-volume distributed multi-point flux approximation coupled with a lower-dimensional fracture model

    NASA Astrophysics Data System (ADS)

    Ahmed, R.; Edwards, M. G.; Lamine, S.; Huisman, B. A. H.; Pal, M.

    2015-03-01

    A cell-centered control-volume distributed multi-point flux approximation (CVD-MPFA) finite-volume formulation is presented for discrete fracture-matrix simulations. The grid is aligned with the fractures and barriers which are then modeled as lower-dimensional interfaces located between the matrix cells in the physical domain. The nD pressure equation is solved in the matrix domain coupled with an (n - 1)D pressure equation solved in the fractures. The CVD-MPFA formulation naturally handles fractures with anisotropic permeabilities on unstructured grids. Matrix-fracture fluxes are expressed in terms of matrix and fracture pressures, and must be added to the lower-dimensional flow equation (called the transfer function). An additional transmission condition is used between matrix cells adjacent to low permeable fractures to link the velocity and pressure jump across the fractures. Numerical tests serve to assess the convergence and accuracy of the lower-dimensional fracture model for highly anisotropic fractures having different apertures and permeability tensors. A transport equation for tracer flow is coupled via the Darcy flux for single and intersecting fractures. The lower-dimensional approach for intersecting fractures avoids the more restrictive CFL condition corresponding to the equi-dimensional approximation with explicit time discretization. Lower-dimensional fracture model results are compared with hybrid-grid and equi-dimensional model results. Fractures and barriers are efficiently modeled by lower-dimensional interfaces which yield comparable results to those of the equi-dimensional model. Highly conductive fractures are modeled as lower-dimensional entities without the use of locally refined grids that are required by the equi-dimensional model, while pressure continuity across fractures is built into the model, without depending on the extra degrees of freedom which must be added locally by the hybrid-grid method. The lower-dimensional fracture

  1. The behavior of transverse waves in nonuniform solar flux tubes. II. Implications for coronal loop seismology

    SciTech Connect

    Soler, Roberto; Terradas, Jaume; Oliver, Ramón; Goossens, Marcel

    2014-02-01

    The seismology of coronal loops using observations of damped transverse oscillations in combination with results from theoretical models is a tool to indirectly infer physical parameters in the solar atmospheric plasma. Existing seismology schemes based on approximations of the period and damping time of kink oscillations are often used beyond their theoretical range of applicability. These approximations assume that the variation of density across the loop is confined to a nonuniform layer much thinner than the radius of the loop, but the results of the inversion problem often do not satisfy this preliminary hypothesis. Here, we determine the accuracy of the analytic approximations of the period and damping time, and the impact on seismology estimates when largely nonuniform loops are considered. We find that the accuracy of the approximations when used beyond their range of applicability is strongly affected by the form of the density profile across the loop, that is observationally unknown and so must be arbitrarily imposed as part of the theoretical model. The error associated with the analytic approximations can be larger than 50% even for relatively thin nonuniform layers. This error directly affects the accuracy of approximate seismology estimates compared to actual numerical inversions. In addition, assuming different density profiles can produce noncoincident intervals of the seismic variables in inversions of the same event. The ignorance about the true shape of density variation across the loop is an important source of error that may dispute the reliability of parameters seismically inferred assuming an ad hoc density profile.

  2. A phenomenological model for boiling heat transfer and the critical heat flux in tubes containing twisted tapes

    NASA Astrophysics Data System (ADS)

    Weisman, J.; Yang, J. Y.; Usman, S.

    1994-01-01

    New critical heat flux (CHF) and boiling heat transfer data were obtained in the subcooled and low quality regions using refrigerant 113. These data were obtained in a 0.61 cm round tube containing a twisted tape having a twist ratio of 6.25. The new CHF data, plus water data from the literature, were compared to a modified version of the CHF predictive model based on bubble crowding and coalescence in the bubbly layer (Weisman and Pei, (1983), Weisman and Illeslamlou, (1988)). Reasonably good predictions were obtained within the range of the model. It was also found that the Yang and Weisman (1991) extension of the CHF model to boiling heat transfer held for swirling flow.

  3. The kink instability in infinite cylindrical flux tubes - Eigenvalues for power-law twist profiles

    NASA Astrophysics Data System (ADS)

    Craig, I. J. D.; Robb, T. D.; Sneyd, A. D.; McClymont, A. N.

    1990-04-01

    Simple, accurate methods of calculating ideal MHD instability eigenvalues for infinitely long cylindrical tubes with twist function T(r) are developed. The results show that the most rapidly growing and energetic instabilities occur in the Gold-Hoyle v = 0 field, with the instability progressively weakening with increasing v. However, the maximum force eigenvalue is always small, so that even in the Gold-Hoyle case only a small proportion of the available magnetic energy can be released in the linear phase. The results also confirm that the linear pinch is remarkably weak yet relatively resistant to line-tying. It is shown that the weakness of the force eigenvalue implies that the influence of uniform gas pressure on stability is negligible. Implications for the energy-release mechanism in solar flares are discussed.

  4. Enhancement of critical heat flux for subcooled flow boiling of water in tubes with a twisted tape and with a helically coiled wire

    SciTech Connect

    Kabata, Y.; Nakajima, R.; Shioda, K.

    1996-08-01

    This paper reports results of an experimental investigation for critical heat flux (CHF) up to 30 MW/m{sup 2} in subcooled flow boiling of water in tubes with a twisted tape and with a helically coiled wire. Experiments were carried out using uniformly heated horizontal tubes with inner diameters of 8 and 12 mm, and with a heated length of 50 mm. Although the CHF of tubes with and without the twisted tape depends on velocity and exit subcooling of water, no observable influence of the tube diameter is detected. As for the CHF enhancement ratio of the tubes with the tape, it is at least 40% higher than the case without the tape, and increases as the exit water subcooling decreases. In the case of the helically coiled wire, the CHF increases as the wire diameter becomes larger and as the coil pitch smaller. The increase of the CHF by the coil, which is the wire diameter of 1.0 mm and the coil pitch of 12 mm, is higher than that by the twisted tape. The CHF model for the smooth tube developed by Celata et al. was applied to the swirl tube by modifying for the calculation of the friction factor, and the radial temperature and velocity distribution in the liquid. Prediction using the modified Celata model accounts for almost all available experimental data for the swirl tube within {+-}25%. This study is relevant for the development of fusion reactors.

  5. Electroweak production of hybrid mesons in a flux-tube simulation of lattice QCD.

    PubMed

    Close, F E; Dudek, J J

    2003-10-03

    We make the first calculation of the electroweak couplings of hybrid mesons to conventional mesons appropriate to photoproduction and to the decays of B or D mesons. E1 amplitudes are found to be large and may contribute in charge exchange gammap-->nH(+) allowing production of (among others) the charged 1(-+) exotic hybrid off a(2) exchange. Axial hybrid meson photoproduction is predicted to be large courtesy of pi exchange, and its strange hybrid counterpart is predicted in B-->psiK(H)(1(+)) with branching ratio B approximately 10(-4). Higher multipoles and some implications for hybrid charmonium are briefly discussed.

  6. Self-organized criticality in a two-dimensional cellular automaton model of a magnetic flux tube with background flow

    NASA Astrophysics Data System (ADS)

    Dănilă, B.; Harko, T.; Mocanu, G.

    2015-11-01

    We investigate the transition to self-organized criticality in a two-dimensional model of a flux tube with a background flow. The magnetic induction equation, represented by a partial differential equation with a stochastic source term, is discretized and implemented on a two-dimensional cellular automaton. The energy released by the automaton during one relaxation event is the magnetic energy. As a result of the simulations, we obtain the time evolution of the energy release, of the system control parameter, of the event lifetime distribution and of the event size distribution, respectively, and we establish that a self-organized critical state is indeed reached by the system. Moreover, energetic initial impulses in the magnetohydrodynamic flow can lead to one-dimensional signatures in the magnetic two-dimensional system, once the self-organized critical regime is established. The applications of the model for the study of gamma-ray bursts (GRBs) is briefly considered, and it is shown that some astrophysical parameters of the bursts, like the light curves, the maximum released energy and the number of peaks in the light curve can be reproduced and explained, at least on a qualitative level, by working in a framework in which the systems settles in a self-organized critical state via magnetic reconnection processes in the magnetized GRB fireball.

  7. Induced mass and wave motions in the lower solar atmosphere. I - Effects of shear motion of flux tubes

    NASA Technical Reports Server (NTRS)

    Wu, S. T.; Hu, Y. Q.; Nakagawa, Y.; Tandberg-Hanssen, E.

    1983-01-01

    Observations indicate that various dynamic solar phenomena lead to enhanced emission of electromagnetic waves from radio to X-ray wavelengths which can be traced to magnetic activity in the photospheric level. A number of previous investigations have ignored the dynamic responses in the solar atmosphere. On the other hand, Nakagawa et al. (1978, 1981) have studied the atmospheric responses in the frame of MHD in the supersonic super-Alfvenic region. Studies of the slowly varying dynamic response (subsonic) have been unsuccessful because of the requirements of high accuracy in the numerical scheme in which a rigorous mathematical treatment of the boundary conditions is necessary. Recently, a numerical MHD model was constructed by using the full implicit continuous eulerian method. The present investigation makes use of a method which is written in a more convenient numerical code. A two-dimensional, time-dependent, nonplanar MHD model is used to investigate the induced mass and wave motions in the lower solar atmosphere due to the shear motion of flux tubes.

  8. Effective Estimation of Dynamic Metabolic Fluxes Using 13C Labeling and Piecewise Affine Approximation: From Theory to Practical Applicability

    PubMed Central

    Schumacher, Robin; Wahl, S. Aljoscha

    2015-01-01

    The design of microbial production processes relies on rational choices for metabolic engineering of the production host and the process conditions. These require a systematic and quantitative understanding of cellular regulation. Therefore, a novel method for dynamic flux identification using quantitative metabolomics and 13C labeling to identify piecewise-affine (PWA) flux functions has been described recently. Obtaining flux estimates nevertheless still required frequent manual reinitalization to obtain a good reproduction of the experimental data and, moreover, did not optimize on all observables simultaneously (metabolites and isotopomer concentrations). In our contribution we focus on measures to achieve faster and robust dynamic flux estimation which leads to a high dimensional parameter estimation problem. Specifically, we address the following challenges within the PWA problem formulation: (1) Fast selection of sufficient domains for the PWA flux functions, (2) Control of over-fitting in the concentration space using shape-prescriptive modeling and (3) robust and efficient implementation of the parameter estimation using the hybrid implicit filtering algorithm. With the improvements we significantly speed up the convergence by efficiently exploiting that the optimization problem is partly linear. This allows application to larger-scale metabolic networks and demonstrates that the proposed approach is not purely theoretical, but also applicable in practice. PMID:26690237

  9. Gluon correlations from a glasma flux-tube model compared to measured hadron correlations on transverse momentum (pt,pt) and angular differences (ηΔ,φΔ)

    DOE PAGES

    Trainor, Thomas A.; Ray, R. L.

    2011-09-09

    A glasma flux-tube model has been proposed to explain strong elongation on pseudorapidity η of the same-side two-dimensional (2D) peak in minimum-bias angular correlations from √(sNN)=200 GeV Au-Au collisions. The same-side peak or “soft ridge” is said to arise from coupling of flux tubes to radial flow whereby gluons radiated transversely from flux tubes are boosted by radial flow to form a narrow structure or ridge on azimuth. In this study we test the theory conjecture by comparing measurements to predictions for particle production, spectra, and correlations from the glasma model and from conventional fragmentation processes. We conclude that themore » glasma model is contradicted by measured hadron yields, spectra, and correlations, whereas a two-component model of hadron production, including minimum-bias parton fragmentation, provides a quantitative description of most features of the data, although η elongation of the same-side 2D peak remains undescribed.« less

  10. Bisphenol A affects germination and tube growth in Picea meyeri pollen through modulating Ca2+ flux and disturbing actin-dependent vesicular trafficking during cell wall construction.

    PubMed

    Chang, Tongjie; Fan, Chengyu; Man, Yi; Zhou, Junhui; Jing, Yanping

    2015-09-01

    Bisphenol A (BPA), a widespread pollutant, is reportedly harmful to humans, animals and plants. However, the effect of BPA on plant pollen tube growth, as well as the mechanism involved, remains unclear. Here, we report that BPA significantly inhibited Picea meyeri pollen germination and tube elongation in a dose-dependent manner. Transmission electron microscopy showed that BPA was detrimental to organelles such as mitochondria and Golgi apparatus. Non-invasive detection revealed that BPA inhibited extracellular Ca(2+) influx and promoted intracellular Ca(2+) efflux at the pollen tube tip, thereby inducing a dissipated Ca(2+) gradient. Fluorescence labeling showed that BPA disorganized actin filaments (AFs), which subsequently led to abnormal vesicle trafficking. Furthermore, BPA reduced the activity of acid phosphatase, a typical exocytosis enzyme. Moreover, Fourier transform infrared (FTIR) analysis and subsequent fluorescence labeling revealed that BPA induced an abnormal deposition of cell wall components, including pectins and callose. Taken together, our results indicate that BPA, a ubiquitous environmental pollutant, disturbs Ca(2+) flux in P. meyeri pollen tubes, thus disrupting AF organization, resulting in abnormal actin-dependent vesicle trafficking and further affecting the deposition of cell wall components. These findings provide new insight into the mechanism of BPA toxicity in pollen tube tip growth.

  11. The relationship between absolute vorticity flux along the main flow and convection heat transfer in a tube inserting a twisted tape

    NASA Astrophysics Data System (ADS)

    Lin, Zhi-Min; Sun, Dong-Liang; Wang, Liang-Bi

    2009-09-01

    As passive enhancement devices, twisted tape insert has been used for almost a century, the most dominant heat transfer enhancement mechanism of circular tube fitted with twisted tape is the secondary flow generated by the tape. There is a parameter to specify the intensity of secondary flow, but this parameter cannot be applied to more general cases. Here cross-averaged absolute vorticity flux in the main flow direction is used to specify the intensity of secondary flow produced by twisted tape inserted in a tube. The relationship between the intensity of secondary flow and the intensity of laminar convective heat transfer is studied using a numerical method. The results reveal that the cross-averaged absolute vorticity flux in the main flow direction can reflect the intensity of secondary flow and a significant relationship between this cross-averaged absolute vorticity flux and Nusselt number exists for studied cases. The presented results validate that the cross-averaged absolute vorticity flux in the main flow direction is a general specifying of the intensity of secondary flow and can be used in other cases.

  12. Tapered pulse tube for pulse tube refrigerators

    DOEpatents

    Swift, Gregory W.; Olson, Jeffrey R.

    1999-01-01

    Thermal insulation of the pulse tube in a pulse-tube refrigerator is maintained by optimally varying the radius of the pulse tube to suppress convective heat loss from mass flux streaming in the pulse tube. A simple cone with an optimum taper angle will often provide sufficient improvement. Alternatively, the pulse tube radius r as a function of axial position x can be shaped with r(x) such that streaming is optimally suppressed at each x.

  13. The effect of a constraining metal tube on flux pinning induced stress in a long cylindrical superconductor

    NASA Astrophysics Data System (ADS)

    Yang, Xiaobin; Tu, Shan-Tung

    2012-07-01

    The use of an alloy tube to impose pressure on a superconducting cylinder during magnetizing reduces pinning-induced tensile stress in high temperature superconductors has been well established. In this paper the natural contact state between the superconducting cylinder and the metal tube is modeled. An exact solution is obtained for the isotropic magnetoelastic problem with the superconductor behaving magnetically, and an expression for the contact pressure exerted on the superconductor by the metal tube is obtained. This expression explicitly gives the contribution of the ratio of Young's modulus of the superconductor to that of the metal and the ratio of the internal to external radii of the metal tube. The stress profile in the superconductor, subjected to the restriction of metal tube, with both field cooled activation and pulse field activation is analyzed in terms of the Bean critical-state model. The results show that the metal tube can prevent radial expansion of the superconductor and can reduce the maximum tension for field-cooled and pulsed-field activations. These results are important for the selection of materials as well as the optimization of sizes of the alloy tube.

  14. Reduction-melting combined with a Na₂CO₃ flux recycling process for lead recovery from cathode ray tube funnel glass.

    PubMed

    Okada, Takashi; Yonezawa, Susumu

    2014-08-01

    With large quantity of flux (Na2CO3), lead can be recovered from the funnel glass of waste cathode-ray tubes via reduction-melting at 1000°C. To reduce flux cost, a technique to recover added flux from the generated oxide phase is also important in order to recycle the flux recovered from the reduction-melting process. In this study, the phase separation of sodium and the crystallization of water-soluble sodium silicates were induced after the reduction-melting process to enhance the leachability of sodium in the oxide phase and to extract the sodium from the phase for the recovery of Na2CO3 as flux. A reductive atmosphere promoted the phase separation and crystallization, and the leachability of sodium from the oxide phase was enhanced. The optimum temperature and treatment time for increasing the leachability were 700°C and 2h, respectively. After treatment, more than 90% of the sodium in the oxide phase was extracted in water. NaHCO3 can be recovered by carbonization of the solution containing sodium ions using carbon dioxide gas, decomposed to Na2CO3 at 50°C and recycled for use in the reduction-melting process.

  15. Three-dimensional control-volume distributed multi-point flux approximation coupled with a lower-dimensional surface fracture model

    NASA Astrophysics Data System (ADS)

    Ahmed, Raheel; Edwards, Michael G.; Lamine, Sadok; Huisman, Bastiaan A. H.; Pal, Mayur

    2015-12-01

    A novel cell-centred control-volume distributed multi-point flux approximation (CVD-MPFA) finite-volume formulation is presented for discrete fracture-matrix simulations on unstructured grids in three-dimensions (3D). The grid is aligned with fractures and barriers which are then modelled as lower-dimensional surface interfaces located between the matrix cells in the physical domain. The three-dimensional pressure equation is solved in the matrix domain coupled with a two-dimensional (2D) surface pressure equation solved over fracture networks via a novel surface CVD-MPFA formulation. The CVD-MPFA formulation naturally handles fractures with anisotropic permeabilities on unstructured grids. Matrix-fracture fluxes are expressed in terms of matrix and fracture pressures and define the transfer function, which is added to the lower-dimensional flow equation and couples the three-dimensional and surface systems. An additional transmission condition is used between matrix cells adjacent to low permeable fractures to couple the velocity and pressure jump across the fractures. Convergence and accuracy of the lower-dimensional fracture model is assessed for highly anisotropic fractures having a range of apertures and permeability tensors. A transport equation for tracer flow is coupled via the Darcy flux for single and intersecting fractures. The lower-dimensional approximation for intersecting fractures avoids the more restrictive CFL condition corresponding to the equi-dimensional approximation with explicit time discretisation. Lower-dimensional fracture model results are compared with equi-dimensional model results. Fractures and barriers are efficiently modelled by lower-dimensional interfaces which yield comparable results to those of the equi-dimensional model. Pressure continuity is built into the model across highly conductive fractures, leading to reduced local degrees of freedom in the CVD-MPFA approximation. The formulation is applied to geologically complex

  16. Thermal Analysis on Mono-Block Type Divertor Based on Subcooled Flow Boiling Critical Heat Flux Data against Inlet Subcooling in Short Vertical Tube

    NASA Astrophysics Data System (ADS)

    Hata, Koichi; Shiotsu, Masahiro; Noda, Nobuaki

    The subcooled flow boiling critical heat fluxes (CHFs) and the heat transfer coefficients (HTCs) data for the tube length, L, of 49, 99 and 149 mm with 9-mm inner diameter were applied to thermal analysis on the Mono-block type divertor of LHD. Incident CHFs for the divertor with the cooling tube diameter, d, of 10 mm and the carbon armor outer diameter, D, of 26 and 33 mm were numerically analyzed based on the measured CHFs and HTCs at the inlet pressure of around 800 kPa. The numerical solutions were also compared with those for the Flat-plate type divertor, which were numerically analyzed for the divertor with the cooling tube diameter d=10 mm and the divertor width, w, ranging from 16 to 30 mm. It is confirmed that the ratio of the one-side heating CHF data, qcr,inc, to the uniform heating CHF data, qcr,sub, can be represented as the simple equation based on the numerical solutions. The values of the qcr,inc for L=50, 100 and 150 mm were estimated with various D/d and w/d at higher pressures.

  17. The Funnel Geometry of Open Flux Tubes in the Low Solar Corona Constrained by O VI and Ne VIII Outflow

    NASA Technical Reports Server (NTRS)

    Byhring, Hanne S.; Esser, Ruth; Lie-Svendsen, Oystein

    2008-01-01

    Model calculations show that observed outflow velocities of order 7-10 km/s of C IV and O VI ions, and 15-20 km/s of Ne VIII ions, are not only consistent with models of the solar wind from coronas holes, but also place unique constraints on the degree of flow tube expansion as well as the location of the expansion in the transition region/lower corona.

  18. On the accuracy of the independent column approximation in calculating the downward fluxes in the UVA, UVB, and PAR spectral ranges

    NASA Astrophysics Data System (ADS)

    Scheirer, Ronald; Macke, Andreas

    2001-07-01

    In order to investigate the accuracy of simplification in modeling the radiative transfer in those solar spectral regions with major impacts on bio-organisms, i.e., the UVA (0.32-0.4 μm), the UVB (0.28-0.32 μm), and the photosynthetically active radiation (PAR, 0.4-0.7 μm), radiative transfer calculations with varying treatments of cloud geometries (plane-parallel homogeneous (PPHOM), independent column approximation (ICA), and three-dimensional (3-D) inhomogeneous) have been performed. The complete sets of atmospheric information for 133 cloud realizations are taken from the three-dimensional nonhydrostatic mesoscale atmospheric model (GESIMA). A Monte Carlo radiative transfer model (GRIMALDI) has been developed that simulates scattering and absorption for arbitrarily three-dimensional distributions of cloud hydrometeors, air molecules, and water vapor. Results are shown for domain-averaged direct and total transmission (and so, implicitly, diffuse transmission) at the ground surface. In the UVA the PPHOM assumption leads to an underestimation in direct (total) downward flux by as much as 43 (28) W m-2, which is about 49% (32%) of the incoming irradiation, whereas results based on the ICA are almost identical to the 3-D case, except for convective clouds where the error in the UVA for direct (total) downward flux reaches 5 (2) W m-2, or 6% (2%) of the incoming solar irradiation.

  19. The Role of the Velocity Gradient in Laminar Convective Heat Transfer through a Tube with a Uniform Wall Heat Flux

    ERIC Educational Resources Information Center

    Wang, Liang-Bi; Zhang, Qiang; Li, Xiao-Xia

    2009-01-01

    This paper aims to contribute to a better understanding of convective heat transfer. For this purpose, the reason why thermal diffusivity should be placed before the Laplacian operator of the heat flux, and the role of the velocity gradient in convective heat transfer are analysed. The background to these analyses is that, when the energy…

  20. Splitting of inviscid fluxes for real gases

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing; Vanleer, Bram; Shuen, Jian-Shun

    1988-01-01

    Flux-vector and flux-difference splittings for the inviscid terms of the compressible flow equations are derived under the assumption of a general equation of state for a real gas in equilibrium. No necessary assumptions, approximations or auxiliary quantities are introduced. The formulas derived include several particular cases known for ideal gases and readily apply to curvilinear coordinates. Applications of the formulas in a TVD algorithm to one-dimensional shock-tube and nozzle problems show their quality and robustness.

  1. Splitting of inviscid fluxes for real gases

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing; Van Leer, Bram; Shuen, Jian-Shun

    1990-01-01

    Flux-vector and flux-difference splittings for the inviscid terms of the compressible flow equations are derived under the assumption of a general equation of state for a real gas in equilibrium. No necessary assumptions, approximations for auxiliary quantities are introduced. The formulas derived include several particular cases known for ideal gases and readily apply to curvilinear coordinates. Applications of the formulas in a TVD algorithm to one-dimensional shock-tube and nozzle problems show their quality and robustness.

  2. Predicting the critical heat flux in concentric-tube open thermosiphon: a method based on support vector machine optimized by chaotic particle swarm optimization algorithm

    NASA Astrophysics Data System (ADS)

    Cai, Jiejin

    2012-08-01

    This study presents a method based on support vector machine (SVM) optimized by chaotic particle swarm optimization algorithm (CPSO) for the prediction of the critical heat flux (CHF) in concentric-tube open thermosiphon. In this process, the parameters C, ɛ and δ2 of SVM have been determined by the CPSO. As for a comparision, the traditional back propagation neural network (BPNN), radial basis function neural network (RBFNN), general regression neural network (GRNN) are also used to predict the CHF for the same experimental results under a variety of operating conditions. The MER and RMSE of SVM-CPSO model are about 45% of the BPNN model, about 60% of the RBFNN model, and about 80% of GRNN model. The simulation results demonstrate that the SVM-CPSO method can get better accuracy.

  3. Effects of EHD on heat transfer enhancement and pressure drop during two-phase condensation of pure R-134a at high mass flux in a horizontal micro-fin tube

    SciTech Connect

    Laohalertdecha, Suriyan; Wongwises, Somchai

    2006-07-15

    Effects of electrohydrodynamic (EHD) on the two-phase heat transfer enhancement and pressure drop of pure R-134a condensing inside a horizontal micro-fin tube are experimentally investigated. The test section is a 2.5m long counter flow tube-in-tube heat exchanger with refrigerant flowing in the inner tube and cooling water flowing in the annulus. The inner tube is made from micro-fin horizontal copper tubing of 9.52mm outer diameter. The electrode is made from cylindrical stainless steel of 1.47mm diameter. Positive high voltage is supplied to the electrode wire, with the micro-fin tube grounded. In the presence of the electrode, a maximum heat transfer enhancement of 1.15 is obtained at a heat flux of 10kW/m{sup 2}, mass flux of 200kg/m{sup 2}s and saturation temperature of 40{sup o}C, while the application of an EHD voltage of 2.5kV only slightly increases the pressure drop. New correlations of the experimental data based on the data gathered during this work for predicting the condensation heat transfer coefficients are proposed for practical application. (author)

  4. High-energy X-Ray Detection of G359.89-0.08 (Sgr A-E): Magnetic Flux Tube Emission Powered by Cosmic Rays?

    NASA Astrophysics Data System (ADS)

    Zhang, Shuo; Hailey, Charles J.; Baganoff, Frederick K.; Bauer, Franz E.; Boggs, Steven E.; Craig, William W.; Christensen, Finn E.; Gotthelf, Eric V.; Harrison, Fiona A.; Mori, Kaya; Nynka, Melania; Stern, Daniel; Tomsick, John A.; Zhang, William W.

    2014-03-01

    We report the first detection of high-energy X-ray (E > 10 keV) emission from the Galactic center non-thermal filament G359.89-0.08 (Sgr A-E) using data acquired with the Nuclear Spectroscopic Telescope Array (NuSTAR). The bright filament was detected up to ~50 keV during a NuSTAR Galactic center monitoring campaign. The featureless power-law spectrum with a photon index Γ ≈ 2.3 confirms a non-thermal emission mechanism. The observed flux in the 3-79 keV band is FX = (2.0 ± 0.1) × 10-12 erg cm-2 s-1, corresponding to an unabsorbed X-ray luminosity LX = (2.6 ± 0.8) × 1034 erg s-1 assuming a distance of 8.0 kpc. Based on theoretical predictions and observations, we conclude that Sgr A-E is unlikely to be a pulsar wind nebula (PWN) or supernova remnant-molecular cloud (SNR-MC) interaction, as previously hypothesized. Instead, the emission could be due to a magnetic flux tube which traps TeV electrons. We propose two possible TeV electron sources: old PWNe (up to ~100 kyr) with low surface brightness and radii up to ~30 pc or MCs illuminated by cosmic rays (CRs) from CR accelerators such as SNRs or Sgr A*.

  5. COMPARISON OF IMPLICIT SCHEMES TO SOLVE EQUATIONS OF RADIATION HYDRODYNAMICS WITH A FLUX-LIMITED DIFFUSION APPROXIMATION: NEWTON–RAPHSON, OPERATOR SPLITTING, AND LINEARIZATION

    SciTech Connect

    Tetsu, Hiroyuki; Nakamoto, Taishi

    2016-03-15

    Radiation is an important process of energy transport, a force, and a basis for synthetic observations, so radiation hydrodynamics (RHD) calculations have occupied an important place in astrophysics. However, although the progress in computational technology is remarkable, their high numerical cost is still a persistent problem. In this work, we compare the following schemes used to solve the nonlinear simultaneous equations of an RHD algorithm with the flux-limited diffusion approximation: the Newton–Raphson (NR) method, operator splitting, and linearization (LIN), from the perspective of the computational cost involved. For operator splitting, in addition to the traditional simple operator splitting (SOS) scheme, we examined the scheme developed by Douglas and Rachford (DROS). We solve three test problems (the thermal relaxation mode, the relaxation and the propagation of linear waves, and radiating shock) using these schemes and then compare their dependence on the time step size. As a result, we find the conditions of the time step size necessary for adopting each scheme. The LIN scheme is superior to other schemes if the ratio of radiation pressure to gas pressure is sufficiently low. On the other hand, DROS can be the most efficient scheme if the ratio is high. Although the NR scheme can be adopted independently of the regime, especially in a problem that involves optically thin regions, the convergence tends to be worse. In all cases, SOS is not practical.

  6. Comparison of Implicit Schemes to Solve Equations of Radiation Hydrodynamics with a Flux-limited Diffusion Approximation: Newton--Raphson, Operator Splitting, and Linearization

    NASA Astrophysics Data System (ADS)

    Tetsu, Hiroyuki; Nakamoto, Taishi

    2016-03-01

    Radiation is an important process of energy transport, a force, and a basis for synthetic observations, so radiation hydrodynamics (RHD) calculations have occupied an important place in astrophysics. However, although the progress in computational technology is remarkable, their high numerical cost is still a persistent problem. In this work, we compare the following schemes used to solve the nonlinear simultaneous equations of an RHD algorithm with the flux-limited diffusion approximation: the Newton-Raphson (NR) method, operator splitting, and linearization (LIN), from the perspective of the computational cost involved. For operator splitting, in addition to the traditional simple operator splitting (SOS) scheme, we examined the scheme developed by Douglas & Rachford (DROS). We solve three test problems (the thermal relaxation mode, the relaxation and the propagation of linear waves, and radiating shock) using these schemes and then compare their dependence on the time step size. As a result, we find the conditions of the time step size necessary for adopting each scheme. The LIN scheme is superior to other schemes if the ratio of radiation pressure to gas pressure is sufficiently low. On the other hand, DROS can be the most efficient scheme if the ratio is high. Although the NR scheme can be adopted independently of the regime, especially in a problem that involves optically thin regions, the convergence tends to be worse. In all cases, SOS is not practical.

  7. Monte Carlo simulation of false alarms and detection reliability in magnetic flux leakage inspection of steel tubes

    SciTech Connect

    Altschuler, E.; Pignotti, A.; Paiuk, J.

    1996-09-01

    The same flaw gives rise to different signals when inspected by the same nondestructive testing (NDT) equipment under closely similar circumstances. A laboratory example involving six identical cracks is shown. This is a consequence of unavoidable fluctuations in the parameters that influence the detection process and is illustrated using a Monte Carlo simulation based on a numerical model of crack detection in steel pipes by magnetic flux leakage. The effects of these uncertainties on the fault detection reliability and on the appearance of false alarms are analyzed. The occurrence of Type I errors (lack of detection of unacceptable defects) and Type II errors (false alarms) is studied as a function of the detection threshold, and guidelines for improving detection efficiency are suggested.

  8. High-energy X-ray detection of G359.89–0.08 (SGR A–E): Magnetic flux tube emission powered by cosmic rays?

    SciTech Connect

    Zhang, Shuo; Hailey, Charles J.; Gotthelf, Eric V.; Mori, Kaya; Nynka, Melania; Baganoff, Frederick K.; Bauer, Franz E.; Boggs, Steven E.; Craig, William W.; Tomsick, John A.; Christensen, Finn E.; Harrison, Fiona A.; Stern, Daniel; Zhang, William W.

    2014-03-20

    We report the first detection of high-energy X-ray (E > 10 keV) emission from the Galactic center non-thermal filament G359.89–0.08 (Sgr A–E) using data acquired with the Nuclear Spectroscopic Telescope Array (NuSTAR). The bright filament was detected up to ∼50 keV during a NuSTAR Galactic center monitoring campaign. The featureless power-law spectrum with a photon index Γ ≈ 2.3 confirms a non-thermal emission mechanism. The observed flux in the 3-79 keV band is F{sub X} = (2.0 ± 0.1) × 10{sup –12} erg cm{sup –2} s{sup –1}, corresponding to an unabsorbed X-ray luminosity L{sub X} = (2.6 ± 0.8) × 10{sup 34} erg s{sup –1} assuming a distance of 8.0 kpc. Based on theoretical predictions and observations, we conclude that Sgr A–E is unlikely to be a pulsar wind nebula (PWN) or supernova remnant-molecular cloud (SNR-MC) interaction, as previously hypothesized. Instead, the emission could be due to a magnetic flux tube which traps TeV electrons. We propose two possible TeV electron sources: old PWNe (up to ∼100 kyr) with low surface brightness and radii up to ∼30 pc or MCs illuminated by cosmic rays (CRs) from CR accelerators such as SNRs or Sgr A*.

  9. Tube support

    DOEpatents

    Mullinax, Jerry L.

    1988-01-01

    A tube support for supporting horizontal tubes from an inclined vertical support tube passing between the horizontal tubes. A support button is welded to the vertical support tube. Two clamping bars or plates, the lower edges of one bearing on the support button, are removably bolted to the inclined vertical tube. The clamping bars provide upper and lower surface support for the horizontal tubes.

  10. SCATTERING OF THE f-MODE BY SMALL MAGNETIC FLUX ELEMENTS FROM OBSERVATIONS AND NUMERICAL SIMULATIONS

    SciTech Connect

    Felipe, T.; Braun, D.; Crouch, A.; Birch, A.

    2012-10-01

    The scattering of f-modes by magnetic tubes is analyzed using three-dimensional numerical simulations. An f-mode wave packet is propagated through a solar atmosphere embedded with three different flux tube models that differ in radius and total magnetic flux. A quiet-Sun simulation without a tube present is also performed as a reference. Waves are excited inside the flux tube and propagate along the field lines, and jacket modes are generated in the surroundings of the flux tube, carrying 40% as much energy as the tube modes. The resulting scattered wave is mainly an f-mode composed of a mixture of m = 0 and m = {+-}1 modes. The amplitude of the scattered wave approximately scales with the magnetic flux. A small amount of power is scattered into the p{sub 1}-mode. We have evaluated the absorption and phase shift from a Fourier-Hankel decomposition of the photospheric vertical velocities. They are compared with the results obtained from the ensemble average of 3400 small magnetic elements observed in high-resolution MDI Doppler datacubes. The comparison shows that the observed dependence of the phase shift with wavenumber can be matched reasonably well with the simulated flux tube model. The observed variation of the phase shifts with the azimuthal order m appears to depend on details of the ensemble averaging, including possible motions of the magnetic elements and asymmetrically shaped elements.

  11. Unconventional application of the two-flux approximation for the calculation of the Ambartsumyan-Chandrasekhar function and the angular spectrum of the backward-scattered radiation for a semi-infinite isotropically scattering medium

    NASA Astrophysics Data System (ADS)

    Remizovich, V. S.

    2010-06-01

    It is commonly accepted that the Schwarzschild-Schuster two-flux approximation (1905, 1914) can be employed only for the calculation of the energy characteristics of the radiation field (energy density and energy flux density) and cannot be used to characterize the angular distribution of radiation field. However, such an inference is not valid. In several cases, one can calculate the radiation intensity inside matter and the reflected radiation with the aid of this simplest approximation in the transport theory. In this work, we use the results of the simplest one-parameter variant of the two-flux approximation to calculate the angular distribution (reflection function) of the radiation reflected by a semi-infinite isotropically scattering dissipative medium when a relatively broad beam is incident on the medium at an arbitrary angle relative to the surface. We do not employ the invariance principle and demonstrate that the reflection function exhibits the multiplicative property. It can be represented as a product of three functions: the reflection function corresponding to the single scattering and two identical h functions, which have the same physical meaning as the Ambartsumyan-Chandrasekhar function ( H) has. This circumstance allows a relatively easy derivation of simple analytical expressions for the H function, total reflectance, and reflection function. We can easily determine the relative contribution of the true single scattering in the photon backscattering at an arbitrary probability of photon survival Λ. We compare all of the parameters of the backscattered radiation with the data resulting from the calculations using the exact theory of Ambartsumyan, Chandrasekhar, et al., which was developed decades after the two-flux approximation. Thus, we avoid the application of fine mathematical methods (the Wiener-Hopf method, the Case method of singular functions, etc.) and obtain simple analytical expressions for the parameters of the scattered radiation

  12. Evaporation heat transfer and friction characteristics of R-134a flowing downward in a vertical corrugated tube

    SciTech Connect

    Aroonrat, Kanit; Wongwises, Somchai

    2011-01-15

    Differently from most previous studies, the heat transfer and friction characteristics of the pure refrigerant HFC-134a during evaporation inside a vertical corrugated tube are experimentally investigated. The double tube test sections are 0.5 m long with refrigerant flowing in the inner tube and heating water flowing in the annulus. The inner tubes are one smooth tube and two corrugated tubes, which are constructed from smooth copper tube of 8.7 mm inner diameter. The test runs are performed at evaporating temperatures of 10, 15, and 20 C, heat fluxes of 20, 25, and 30 kW/m{sup 2}, and mass fluxes of 200, 300, and 400 kg/m{sup 2} s. The quality of the refrigerant in the test section is calculated using the temperature and pressure obtained from the experiment. The pressure drop across the test section is measured directly by a differential pressure transducer. The effects of heat flux, mass flux, and evaporation temperature on the heat transfer coefficient and two-phase friction factor are also discussed. It is found that the percentage increases of the heat transfer coefficient and the two-phase friction factor of the corrugated tubes compared with those of the smooth tube are approximately 0-10% and 70-140%, respectively. (author)

  13. Ear Tubes

    MedlinePlus

    ... Marketplace Find an ENT Doctor Near You Ear Tubes Ear Tubes Patient Health Information News media interested ... throat specialist) may be considered. What are ear tubes? Ear tubes are tiny cylinders placed through the ...

  14. The dynamics of magnetic flux rings

    NASA Technical Reports Server (NTRS)

    Deluca, E. E.; Fisher, G. H.; Patten, B. M.

    1993-01-01

    The evolution of magnetic fields in the presence of turbulent convection is examined using results of numerical simulations of closed magnetic flux tubes embedded in a steady 'ABC' flow field, which approximate some of the important characteristics of a turbulent convecting flow field. Three different evolutionary scenarios were found: expansion to a steady deformed ring; collapse to a compact fat flux ring, separated from the expansion type of behavior by a critical length scale; and, occasionally, evolution toward an advecting, oscillatory state. The work suggests that small-scale flows will not have a strong effect on large-scale, strong fields.

  15. Contactless diagnostics of biophysical parameters of skin and blood on the basis of approximating functions for radiation fluxes scattered by skin

    NASA Astrophysics Data System (ADS)

    Lisenko, S. A.; Kugeiko, M. M.

    2014-03-01

    Approximating expressions are derived to calculate spectral and spatial characteristics of diffuse reflection of light from a two-layer medium mimicking human skin. The effectiveness of the use of these expressions in the optical diagnosis of skin biophysical parameters (tissue scattering parameters, concentration of melanin in the epidermis, concentration of total haemoglobin and bilirubin in the tissues of the dermis) and content of haemoglobin derivatives in blood (oxy-, deoxy-, met-, carboxy- and sulfhaemoglobin) is analysed numerically. The methods are proposed to determine in realtime these parameters without contact of the measuring instrument with the patient's body.

  16. Contactless diagnostics of biophysical parameters of skin and blood on the basis of approximating functions for radiation fluxes scattered by skin

    SciTech Connect

    Lisenko, S A; Kugeiko, M M

    2014-03-28

    Approximating expressions are derived to calculate spectral and spatial characteristics of diffuse reflection of light from a two-layer medium mimicking human skin. The effectiveness of the use of these expressions in the optical diagnosis of skin biophysical parameters (tissue scattering parameters, concentration of melanin in the epidermis, concentration of total haemoglobin and bilirubin in the tissues of the dermis) and content of haemoglobin derivatives in blood (oxy-, deoxy-, met-, carboxy- and sulfhaemoglobin) is analysed numerically. The methods are proposed to determine in realtime these parameters without contact of the measuring instrument with the patient's body. (biophotonics)

  17. How the Saturnian Magnetosphere Conserves Magnetic Flux

    NASA Astrophysics Data System (ADS)

    Powell, R. L.; Wei, H.; Russell, C. T.; Arridge, C. S.; Dougherty, M. K.

    2012-12-01

    The magnetospheric dynamics at Saturn are driven by the centrifugal force of near co-rotating water group ions released at a rate of hundreds of kilograms per second by Saturn's moon Enceladus. The plasma is accelerated up to co-rotation speed by the magnetospheric magnetic field coupled to the Saturnian ionosphere. The plasma is lost ultimately through the process of magnetic reconnection in the tail. Conservation of magnetic flux requires that plasma-depleted, "empty" flux tubes return magnetic flux to the inner magnetosphere. After completion of the initial inrush of the reconnected and largely emptied flux tubes inward of the reconnection point, the flux tubes face the outflowing plasma and must move inward against the flow. Observations of such flux tubes have been identified in the eight years of Cassini magnetometer data. The occurrence of these tubes is observed at all local times indicating slow inward transport of the tubes relative to the co-rotation speed. Depleted flux tubes observed in the equatorial region appear as an enhancement in the magnitude of the magnetic field, whereas the same flux tubes observed at higher latitudes appear as decreased field strength. The difference in appearance of the low latitude and the high latitude tubes is due to the plasma environment just outside the tube. Warm low-density plasma fills the inside of the flux tube at all latitudes. This flux tube thus will expand in the less dense regions away from the magnetic equator and will be observed as a decrease in the magnitude of the magnetic field from the background. These flux tubes near the equator, where the plasma density outside of the flux tube is much greater, will be observed as an enhancement in the magnitude of the magnetic field. Cassini magnetometer and CAPS data are examined to understand the properties of these flux tubes and their radial and latitudinal evolution throughout the Saturnian magnetospheric environment.

  18. TUBE TESTER

    DOEpatents

    Gittings, H.T. Jr.; Kalbach, J.F.

    1958-01-14

    This patent relates to tube testing, and in particular describes a tube tester for automatic testing of a number of vacuum tubes while in service and as frequently as may be desired. In it broadest aspects the tube tester compares a particular tube with a standard tube tarough a difference amplifier. An unbalanced condition in the circuit of the latter produced by excessive deviation of the tube in its characteristics from standard actuates a switch mechanism stopping the testing cycle and indicating the defective tube.

  19. Energy and energy flux in axisymmetric slow and fast waves

    NASA Astrophysics Data System (ADS)

    Moreels, M. G.; Van Doorsselaere, T.; Grant, S. D. T.; Jess, D. B.; Goossens, M.

    2015-06-01

    Aims: We aim to calculate the kinetic, magnetic, thermal, and total energy densities and the flux of energy in axisymmetric sausage modes. The resulting equations should contain as few parameters as possible to facilitate applicability for different observations. Methods: The background equilibrium is a one-dimensional cylindrical flux tube model with a piecewise constant radial density profile. This enables us to use linearised magnetohydrodynamic equations to calculate the energy densities and the flux of energy for axisymmetric sausage modes. Results: The equations used to calculate the energy densities and the flux of energy in axisymmetric sausage modes depend on the radius of the flux tube, the equilibrium sound and Alfvén speeds, the density of the plasma, the period and phase speed of the wave, and the radial or longitudinal components of the Lagrangian displacement at the flux tube boundary. Approximate relations for limiting cases of propagating slow and fast sausage modes are also obtained. We also obtained the dispersive first-order correction term to the phase speed for both the fundamental slow body mode under coronal conditions and the slow surface mode under photospheric conditions. Appendix A is available in electronic form at http://www.aanda.org

  20. Beta electron fluxes inside a magnetic plasma cavern: Calculation and comparison with experiment

    NASA Astrophysics Data System (ADS)

    Stupitskii, E. L.; Smirnov, E. V.; Kulikova, N. A.

    2010-12-01

    We study the possibility of electrostatic blanking of beta electrons in the expanding spherical blob of a radioactive plasma in a rarefied ionosphere. From numerical studies on the dynamics of beta electrons departing a cavern, we obtain the form of a function that determines the portion of departing electrons and calculate the flux density of beta electrons inside the cavern in relation to the Starfish Prime nuclear blast. We show that the flux density of electrons in geomagnetic flux tubes and inside the cavern depend on a correct allowance for the quantity of beta electrons returning to the cavern. On the basis of a physical analysis, we determine the approximate criterion for the return of electrons from a geomagnetic flux tube to the cavern. We compare calculation results in terms of the flux density of beta electrons inside the cavern with the recently published experimental results from operation Starfish Prime.

  1. Experimental study of laminar forced convective heat transfer of deionized water based copper (I) oxide nanofluids in a tube with constant wall heat flux

    NASA Astrophysics Data System (ADS)

    Umer, Asim; Naveed, Shahid; Ramzan, Naveed

    2016-10-01

    Nanofluids, having 1-100 nm size particles in any base fluid are promising fluid for heat transfer intensification due to their enhanced thermal conductivity as compared with the base fluid. The forced convection of nanofluids is the major practical application in heat transfer equipments. In this study, heat transfer enhancements at constant wall heat flux under laminar flow conditions were investigated. Nanofluids of different volume fractions (1, 2 and 4 %) of copper (I) oxide nanoparticles in deionized water were prepared using two step technique under mechanical mixing and ultrasonication. The results were investigated by increasing the Reynolds number of the nanofluids at constant heat flux. The trends of Nusselt number variation with dimensionless length (X/D) and Reynolds numbers were studied. It was observed that heat transfer coefficient increases with increases particles volume concentration and Reynolds number. The maximum enhancement in heat transfer coefficient of 61 % was observed with 4 % particle volume concentration at Reynolds number (Re ~ 605).

  2. Green Ampt approximations

    NASA Astrophysics Data System (ADS)

    Barry, D. A.; Parlange, J.-Y.; Li, L.; Jeng, D.-S.; Crapper, M.

    2005-10-01

    The solution to the Green and Ampt infiltration equation is expressible in terms of the Lambert W-1 function. Approximations for Green and Ampt infiltration are thus derivable from approximations for the W-1 function and vice versa. An infinite family of asymptotic expansions to W-1 is presented. Although these expansions do not converge near the branch point of the W function (corresponds to Green-Ampt infiltration with immediate ponding), a method is presented for approximating W-1 that is exact at the branch point and asymptotically, with interpolation between these limits. Some existing and several new simple and compact yet robust approximations applicable to Green-Ampt infiltration and flux are presented, the most accurate of which has a maximum relative error of 5 × 10 -5%. This error is orders of magnitude lower than any existing analytical approximations.

  3. A correlation to predict the heat flux on the air-side of a vapor chamber with overturn-U flattened tubes

    NASA Astrophysics Data System (ADS)

    Srimuang, Wasan; Limkaisang, Viroj

    2016-08-01

    The heat transfer characteristics of a conventional vapor chamber (CVC) and a loop vapor chamber (LVC) are compared. The vapor chambers consisted of a stainless steel box with different covers. The results indicated that the heat flux and convective heat transfer coefficient of the air-side of LVC is higher than CVC. An empirical correlation was developed to predict the convective heat transfer coefficient of the air-side of the LVC.

  4. Three-dimensional magnetohydrodynamics of the emerging magnetic flux in the solar atmosphere

    NASA Technical Reports Server (NTRS)

    Matsumoto, R.; Tajima, T.; Shibata, K.; Kaisig, M.

    1993-01-01

    The nonlinear evolution of an emerging magnetic flux tube or sheet in the solar atmosphere is studied through 3D MHD simulations. In the initial state, a horizontal magnetic flux sheet or tube is assumed to be embedded at the bottom of MHD two isothermal gas layers, which approximate the solar photosphere/chromosphere and the corona. The magnetic flux sheet or tube is unstable against the undular mode of the magnetic buoyancy instability. The magnetic loop rises due to the linear and then later nonlinear instabilities caused by the buoyancy enhanced by precipitating the gas along magnetic field lines. We find by 3D simulation that during the ascendance of loops the bundle of flux tubes or even the flux sheet develops into dense gas filaments pinched between magnetic loops. The interchange modes help produce a fine fiber flux structure perpendicular to the magnetic field direction in the linear stage, while the undular modes determine the overall buoyant loop structure. The expansion of such a bundle of magnetic loops follows the self-similar behavior observed in 2D cases studied earlier. Our study finds the threshold flux for arch filament system (AFS) formation to be about 0.3 x 10 exp 20 Mx.

  5. Eruption of a Multiple-Turn Helical Magnetic Flux Tube in a Large Flare: Evidence for External and Internal Reconnection that Fits the Breakout Model of Solar Magnetic Eruptions

    NASA Technical Reports Server (NTRS)

    Gary, G. Allen; Moore, R. L.

    2003-01-01

    We present observations and an interpretation of a unique multiple-turn spiral flux tube eruption from AR10030 on 2002 July 15. The TRACE CIV observations clearly show a flux tube that is helical and that is erupting from within a sheared magnetic field. These observations are interpreted in the context of the breakout model for magnetic field explosions. The initiation of the helix eruption starts 25 seconds after the peak of the flare s strongest impulsive spike of microwave gryosynchrotron radiation early in the flare s explosive phase, implying that the sheared core field is not the site of the initial reconnection. Within the quadrupolar configuration of the active region, the external and internal reconnection sites are identified in each of two consecutive eruptive flares that produce a double CME. The first external breakout reconnection apparently releases an underlying sheared core field and allows it to erupt, leading to internal reconnection in the wake of the erupting helix. This internal reconnection heats the two-ribbon flare and might or might not produce the helix. These events lead to the first CME and are followed by a second breakout that initiates a second and larger halo CME. The strong magnetic shear in the region is associated with rapid proper motion and evolution of the active region. The multiple-turn helix originates from above a sheared-field magnetic inversion line within a filament channel, and starts to erupt only after fast breakout reconnection has started. These observations are counter to the standard flare model and support the breakout model for eruptive flare initiation. However, the observations are compatible with internal reconnection in a sheared magnetic arcade in the formation and eruption of the helix.

  6. Eruption of a Multiple-Turn Helical Magnetic Flux Tube in a Large Flare: Evidence for External and Internal Reconnection that Fits the Breakout Model of Solar Magnetic Eruptions

    NASA Technical Reports Server (NTRS)

    Gary, G. Allen; Moore, R. L.

    2004-01-01

    We present observations and an interpretation of a unique multiple-turn spiral flux tube eruption from active region 10030 on 2002 July 15. The TRACE C IV observations clearly show a flux tube that is helical and erupting from within a sheared magnetic field. These observations are interpreted in the context of the breakout model for magnetic field explosions. The initiation of the helix eruption. as determined by a linear backward extrapolation, starts 25 s after the peak of the flare's strongest impulsive spike of microwave gyrosynchrotron radiation early in the flare s explosive phase, implying that the sheared core field is not the site of the initial reconnection. Within the quadrupolar configuration of the active region, the external and internal reconnection sites are identified in each of two consecutive eruptive flares that produce a double coronal mass ejection (CME). The first external breakout reconnection apparently releases an underlying sheared core field and allows it to erupt, leading to internal reconnection in the wake of the erupting helix. This internal reconnection releases the helix and heats the two-ribbon flare. These events lead to the first CME and are followed by a second breakout that initiates a second and larger halo CME. The strong magnetic shear in the region is compatible with the observed rapid proper motion and evolution of the active region. The multiple-turn helix originates from above a sheared-field magnetic inversion line within a filament channel. and starts to erupt only after fast breakout reconnection has started. These observations are counter to the standard flare model and support the breakout model for eruptive flare initiation.

  7. Eddy current signal comparison for tube identification

    SciTech Connect

    Glass, S. W. E-mail: Ratko.Vojvodic@areva.com; Vojvodic, R. E-mail: Ratko.Vojvodic@areva.com

    2015-03-31

    Inspection of nuclear power plant steam generator tubes is required to justify continued safe plant operation. The steam generators consist of thousands of tubes with nominal diameters of 15 to 22mm, approximately 1mm wall thickness, and 20 to 30m in length. The tubes are inspected by passing an eddy current probe through the tubes from tube end to tube end. It is critical to know exactly which tube identification (row and column) is associated with each tube's data. This is controlled by a precision manipulator that provides the tube ID to the eddy current system. Historically there have been some instances where the manipulator incorrectly reported the tube ID. This can have serious consequences including lack of inspection of a tube, or if a pluggable indication is detected, the tube is likely to be mis-plugged thereby risking a primary to secondary leak.

  8. Eddy current signal comparison for tube identification

    NASA Astrophysics Data System (ADS)

    Glass, S. W.; Vojvodic, R.

    2015-03-01

    Inspection of nuclear power plant steam generator tubes is required to justify continued safe plant operation. The steam generators consist of thousands of tubes with nominal diameters of 15 to 22mm, approximately 1mm wall thickness, and 20 to 30m in length. The tubes are inspected by passing an eddy current probe through the tubes from tube end to tube end. It is critical to know exactly which tube identification (row and column) is associated with each tube's data. This is controlled by a precision manipulator that provides the tube ID to the eddy current system. Historically there have been some instances where the manipulator incorrectly reported the tube ID. This can have serious consequences including lack of inspection of a tube, or if a pluggable indication is detected, the tube is likely to be mis-plugged thereby risking a primary to secondary leak.

  9. Feeding Tubes

    MedlinePlus

    ... Feeding Tubes Health Information Sheet Q & A with Experts Patient Stories Social Security Disability Application Process For Kids ... Feeding Tubes Health Information Sheet Q & A with Experts Patient Stories Social Security Disability Application Process For Kids ...

  10. Design of a flux diverter and containment tube with results of tests at ACTF and CNRS. [For testing response of soils to thermal pulse of nuclear detonations

    SciTech Connect

    Gordon, B.A.; Knasel, T.M.; Sievers, R.; Bomar, S.; Royere, C.; McDonnel, M.D.

    1980-01-01

    Obtaining empirical data on the response of soils and changes in the overlying air due to the thermal pulse of nuclear detonations required development of special test apparatus and use of high fluxes in a large solar furnace. The development of such apparatus, based on non-imaging optic principles; the influence of solar furnace test series in which the apparatus and instrumentation have been tested for thoroughput, durability, and suitability for meeting the requirements are discussed. Tests were conducted at the Advanced Components Test Facility and the Centre National de la Recherche Scientifique 1 MW solar furnace. These tests resulted in apparatus redesign, and change in procedures and instrumentation in preparation for further testing.

  11. Tracheostomy tubes.

    PubMed

    Hess, Dean R; Altobelli, Neila P

    2014-06-01

    Tracheostomy tubes are used to administer positive-pressure ventilation, to provide a patent airway, and to provide access to the lower respiratory tract for airway clearance. They are available in a variety of sizes and styles from several manufacturers. The dimensions of tracheostomy tubes are given by their inner diameter, outer diameter, length, and curvature. Differences in dimensions between tubes with the same inner diameter from different manufacturers are not commonly appreciated but may have important clinical implications. Tracheostomy tubes can be cuffed or uncuffed and may be fenestrated. Some tracheostomy tubes are designed with an inner cannula. It is important for clinicians caring for patients with a tracheostomy tube to appreciate the nuances of various tracheostomy tube designs and to select a tube that appropriately fits the patient. The optimal frequency of changing a chronic tracheostomy tube is controversial. Specialized teams may be useful in managing patients with a tracheostomy. Speech can be facilitated with a speaking valve in patients with a tracheostomy tube who are breathing spontaneously. In mechanically ventilated patients with a tracheostomy, a talking tracheostomy tube, a deflated cuff technique with a speaking valve, or a deflated cuff technique without a speaking valve can be used to facilitate speech.

  12. Transport of magnetic flux in Saturn’s inner magnetosphere

    NASA Astrophysics Data System (ADS)

    Russell, Christopher T.; Lai, H. R.; Wei, H. Y.; Jia, Y. D.; Dougherty, M. K.

    2015-11-01

    The dynamics of the Saturnian magnetosphere, which rotates rapidly with an internal plasma source provided by Enceladus, qualitatively resembles those of the jovian magnetosphere powered by Io. The newly added plasma is accelerated to the corotation speed and moves outward together with the magnetic flux. In the near tail region, reconnection cuts the magnetic flux, reconnects it into plasma-depleted inward moving flux tubes and outward moving massive plasmoids. The buoyant empty tubes then convect inward against the outward flow to conserve the total magnetic flux established by the internal dynamo. In both jovian and saturnian magnetospheres, flux tubes with enhanced field strength relative to their surroundings are detected in the equatorial region. Recent observations show that there are flux tubes with reduced field strength off the equator in the saturnian magnetosphere. To understand the formation mechanism of both types of flux tubes, we have surveyed all the available 1-sec magnetic field data from Cassini. The systematic statistical study confirms the different latitudinal distributions of the two types of flux tubes. In addition, enhanced-field flux tubes are closer to the planet while reduced-field flux tubes can be detected at larger distances; both types of flux tubes become indistinguishable from the background magnetic flux inside an L-value of about 4; the local time distribution of both types of flux tubes are similar and they contain about the same amount of magnetic flux. Therefore, the two types of flux tubes are the same phenomena with different manifestations in different plasma environments. When the surrounding plasma density is high (near the equator and closer to the plasma source region), the flux tubes are compressed and have enhanced field strength inside; while in the low-plasma density region (off the equator and further from the plasma source region), the flux tubes expand and have reduced field strength inside.

  13. Approximation algorithms

    PubMed Central

    Schulz, Andreas S.; Shmoys, David B.; Williamson, David P.

    1997-01-01

    Increasing global competition, rapidly changing markets, and greater consumer awareness have altered the way in which corporations do business. To become more efficient, many industries have sought to model some operational aspects by gigantic optimization problems. It is not atypical to encounter models that capture 106 separate “yes” or “no” decisions to be made. Although one could, in principle, try all 2106 possible solutions to find the optimal one, such a method would be impractically slow. Unfortunately, for most of these models, no algorithms are known that find optimal solutions with reasonable computation times. Typically, industry must rely on solutions of unguaranteed quality that are constructed in an ad hoc manner. Fortunately, for some of these models there are good approximation algorithms: algorithms that produce solutions quickly that are provably close to optimal. Over the past 6 years, there has been a sequence of major breakthroughs in our understanding of the design of approximation algorithms and of limits to obtaining such performance guarantees; this area has been one of the most flourishing areas of discrete mathematics and theoretical computer science. PMID:9370525

  14. An approach for safe conversion of an oral endotracheal tube to a nasal endotracheal tube

    PubMed Central

    Diao, Zhiying

    2017-01-01

    We present an approach for safe management of a patient with an oral endotracheal tube who required conversion to a nasal endotracheal tube. A 35-year-old man presented for mandibular fracture repair after multiple injuries sustained in a motor vehicle accident. The patient already had an oral endotracheal tube, and the surgical team requested a nasal endotracheal tube to facilitate surgical exposure and postoperative airway management in anticipation of a wired jaw. A nasal endotracheal tube was inserted through the naris and a video laryngoscope was used to visualize the glottis. A tracheal tube introducer was inserted through the oral endotracheal tube, and the oral endotracheal tube was then withdrawn approximately 5 cm. The nasal endotracheal tube was advanced through the vocal cords alongside the tracheal tube introducer. The nasal endotracheal tube cuff was then inflated and the tracheal tube introducer was withdrawn. PMID:28127145

  15. An approach for safe conversion of an oral endotracheal tube to a nasal endotracheal tube.

    PubMed

    Hofkamp, Michael; Diao, Zhiying

    2017-01-01

    We present an approach for safe management of a patient with an oral endotracheal tube who required conversion to a nasal endotracheal tube. A 35-year-old man presented for mandibular fracture repair after multiple injuries sustained in a motor vehicle accident. The patient already had an oral endotracheal tube, and the surgical team requested a nasal endotracheal tube to facilitate surgical exposure and postoperative airway management in anticipation of a wired jaw. A nasal endotracheal tube was inserted through the naris and a video laryngoscope was used to visualize the glottis. A tracheal tube introducer was inserted through the oral endotracheal tube, and the oral endotracheal tube was then withdrawn approximately 5 cm. The nasal endotracheal tube was advanced through the vocal cords alongside the tracheal tube introducer. The nasal endotracheal tube cuff was then inflated and the tracheal tube introducer was withdrawn.

  16. Glycol/water evacuated-tube solar collector

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Report describes performance of 8 tube and 10 tube commercially produced solar collectors. Tests include thermal efficiency, time constant for temperature drop after solar flux is cut, change in efficiency with Sun angle, and temperature rise if circulation is stopped.

  17. Feeding tube insertion - gastrostomy

    MedlinePlus

    ... tube insertion; G-tube insertion; PEG tube insertion; Stomach tube insertion; Percutaneous endoscopic gastrostomy tube insertion ... and down the esophagus, which leads to the stomach. After the endoscopy tube is inserted, the skin ...

  18. Gastrostomy Tube (G-Tube)

    MedlinePlus

    ... warmth at the tube site; discharge that's yellow, green, or foul-smelling; fever) excessive bleeding or drainage from the tube site severe abdominal pain persistent vomiting or diarrhea trouble passing gas or having a bowel movement pink-red tissue (called granulation tissue) coming out ...

  19. Simulations of Emerging Magnetic Flux. II. The Formation of Unstable Coronal Flux Ropes and the Initiation of Coronal Mass Ejections

    NASA Technical Reports Server (NTRS)

    Leake, James E.; Linton, Mark G.; Antiochos, Spiro K.

    2014-01-01

    We present results from three-dimensional magnetohydrodynamic simulations of the emergence of a twisted convection zone flux tube into a pre-existing coronal dipole field. As in previous simulations, following the partial emergence of the sub-surface flux into the corona, a combination of vortical motions and internal magnetic reconnection forms a coronal flux rope. Then, in the simulations presented here, external reconnection between the emerging field and the pre-existing dipole coronal field allows further expansion of the coronal flux rope into the corona. After sufficient expansion, internal reconnection occurs beneath the coronal flux rope axis, and the flux rope erupts up to the top boundary of the simulation domain (approximately 36 Mm above the surface).We find that the presence of a pre-existing field, orientated in a direction to facilitate reconnection with the emerging field, is vital to the fast rise of the coronal flux rope. The simulations shown in this paper are able to self-consistently create many of the surface and coronal signatures used by coronal mass ejection (CME) models. These signatures include surface shearing and rotational motions, quadrupolar geometry above the surface, central sheared arcades reconnecting with oppositely orientated overlying dipole fields, the formation of coronal flux ropes underlying potential coronal field, and internal reconnection which resembles the classical flare reconnection scenario. This suggests that proposed mechanisms for the initiation of a CME, such as "magnetic breakout," are operating during the emergence of new active regions.

  20. Infrared imaging of LED lighting tubes and fluorescent tubes

    NASA Astrophysics Data System (ADS)

    Siikanen, Sami; Kivi, Sini; Kauppinen, Timo; Juuti, Mikko

    2011-05-01

    The low energy efficiency of conventional light sources is mainly caused by generation of waste heat. We used infrared (IR) imaging in order to monitor the heating of both LED tube luminaires and ordinary T8 fluorescent tubes. The IR images showed clearly how the surface temperatures of the fluorescent tube ends quickly rose up to about +50...+70°C, whereas the highest surface temperatures seen on the LED tubes were only about +30...+40°C. The IR images demonstrated how the heat produced by the individual LED chips can be efficiently guided to the supporting structure in order to keep the LED emitters cool and hence maintain efficient operation. The consumed electrical power and produced illuminance were also recorded during 24 hour measurements. In order to assess the total luminous efficacy of the luminaires, separate luminous flux measurements were made in a large integrating sphere. The currently available LED tubes showed efficacies of up to 88 lm/W, whereas a standard "cool white" T8 fluorescent tube produced ca. 75 lm/W. Both lamp types gave ca. 110 - 130 lx right below the ceiling-mounted luminaire, but the LED tubes consume only 40 - 55% of the electric power compared to fluorescent tubes.

  1. Protective tubes for sodium heated water tubes

    DOEpatents

    Essebaggers, Jan

    1979-01-01

    A heat exchanger in which water tubes are heated by liquid sodium which minimizes the results of accidental contact between the water and the sodium caused by failure of one or more of the water tubes. A cylindrical protective tube envelopes each water tube and the sodium flows axially in the annular spaces between the protective tubes and the water tubes.

  2. SURFACE ALFVEN WAVES IN SOLAR FLUX TUBES

    SciTech Connect

    Goossens, M.; Andries, J.; Soler, R.; Van Doorsselaere, T.; Arregui, I.; Terradas, J.

    2012-07-10

    Magnetohydrodynamic (MHD) waves are ubiquitous in the solar atmosphere. Alfven waves and magneto-sonic waves are particular classes of MHD waves. These wave modes are clearly different and have pure properties in uniform plasmas of infinite extent only. Due to plasma non-uniformity, MHD waves have mixed properties and cannot be classified as pure Alfven or magneto-sonic waves. However, vorticity is a quantity unequivocally related to Alfven waves as compression is for magneto-sonic waves. Here, we investigate MHD waves superimposed on a one-dimensional non-uniform straight cylinder with constant magnetic field. For a piecewise constant density profile, we find that the fundamental radial modes of the non-axisymmetric waves have the same properties as surface Alfven waves at a true discontinuity in density. Contrary to the classic Alfven waves in a uniform plasma of infinite extent, vorticity is zero everywhere except at the cylinder boundary. If the discontinuity in density is replaced with a continuous variation of density, vorticity is spread out over the whole interval with non-uniform density. The fundamental radial modes of the non-axisymmetric waves do not need compression to exist unlike the radial overtones. In thin magnetic cylinders, the fundamental radial modes of the non-axisymmetric waves with phase velocities between the internal and the external Alfven velocities can be considered as surface Alfven waves. On the contrary, the radial overtones can be related to fast-like magneto-sonic modes.

  3. Regular black holes with flux tube core

    SciTech Connect

    Zaslavskii, Oleg B.

    2009-09-15

    We consider a class of black holes for which the area of the two-dimensional spatial cross section has a minimum on the horizon with respect to a quasiglobal (Krusckal-like) coordinate. If the horizon is regular, one can generate a tubelike counterpart of such a metric and smoothly glue it to a black hole region. The resulting composite space-time is globally regular, so all potential singularities under the horizon of the original metrics are removed. Such a space-time represents a black hole without an apparent horizon. It is essential that the matter should be nonvacuum in the outer region but vacuumlike in the inner one. As an example we consider the noninteracting mixture of vacuum fluid and matter with a linear equation of state and scalar phantom fields. This approach is extended to distorted metrics, with the requirement of spherical symmetry relaxed.

  4. Multiple tube premixing device

    DOEpatents

    Uhm, Jong Ho; Varatharajan, Balachandar; Ziminsky, Willy Steve; Kraemer, Gilbert Otto; Yilmaz, Ertan; Lacy, Benjamin; Stevenson, Christian; Felling, David

    2012-12-11

    The present application provides a premixer for a combustor. The premixer may include a fuel plenum with a number of fuel tubes and a burner tube with a number of air tubes. The fuel tubes extend about the air tubes.

  5. Multiple tube premixing device

    DOEpatents

    Uhm, Jong Ho; Naidu, Balachandar; Ziminksy, Willy Steve; Kraemer, Gilbert Otto; Yilmaz, Ertan; Lacy, Benjamin; Stevenson, Christian; Felling, David

    2013-08-13

    The present application provides a premixer for a combustor. The premixer may include a fuel plenum with a number of fuel tubes and a burner tube with a number of air tubes. The fuel tubes extend about the air tubes.

  6. Ultrasonics permits brazing complex stainless steel assembly without flux

    NASA Technical Reports Server (NTRS)

    Baker, W. H.

    1967-01-01

    Ultrasonic vibration of an assembly of stainless steel instrumentation tubes ensures brazing without flux. Vibration with an ultrasonic transducer permits the brazing material to flow down each tube in contact with a seal plug installed in a pressure vessel wall.

  7. Coaxial helicity injection in open-flux low-aspect-ratio toroidal discharges

    SciTech Connect

    Redd, A. J.; Jarboe, T. R.; Nelson, B. A.; O'Neill, R. G.; Smith, R. J.

    2007-11-15

    Open-flux low-aspect-ratio toroidal discharges generated and sustained by coaxial helicity injection (CHI) in the Helicity Injected Torus device (HIT-II) are described. The discharges in this study are flux tubes directly connected to the CHI electrodes, with poloidal flux less than or equal to the CHI injector flux, and no possibility of a significant closed-flux plasma core. Theoretically derived scalings for the dependence of CHI injector current on the toroidal field current and magnitude of the injector flux are experimentally confirmed, and empirical models are developed for the poloidal magnetic field and toroidal plasma current in open-flux discharges. In particular, the toroidal plasma current is independent of the toroidal magnetic field, both theoretically and empirically. Variations in injector flux geometry demonstrate that the CHI injector current leaves the electrode surfaces at the flux strike points, and that the relative width of the CHI injector determines whether the dominant observed relaxation mechanism is a harmonic mode at the plasma edge or reconnection near the CHI electrodes. In the case of an effective interelectrode distance approximately equal to the device minor radius, the ratio of toroidal plasma current to CHI injector current is maximized. Global magnetic equilibrium quantities and local magnetic measurements are consistent with modelling these open-flux discharges as thin current sheets connected to the CHI electrodes.

  8. Tube Feedings.

    ERIC Educational Resources Information Center

    Plummer, Nancy

    This module on tube feedings is intended for use in inservice or continuing education programs for persons who work in long-term care. Instructor information, including teaching suggestions and a listing of recommended audiovisual materials and their sources appear first. The module goal and objectives are then provided. A brief discussion follows…

  9. The Physics of Twisted Magnetic Tubes Rising in a Stratified Medium: Two-dimensional Results

    NASA Astrophysics Data System (ADS)

    Emonet, T.; Moreno-Insertis, F.

    1998-01-01

    The physics of a twisted magnetic flux tube rising in a stratified medium is studied using a numerical magnetohydrodynamic (MHD) code. The problem considered is fully compressible (has no Boussinesq approximation), includes ohmic resistivity, and is two-dimensional, i.e., there is no variation of the variables in the direction of the tube axis. We study a high-plasma β-case with a small ratio of radius to external pressure scale height. The results obtained will therefore be of relevance to understanding the transport of magnetic flux across the solar convection zone. We confirm that a sufficient twist of the field lines around the tube axis can suppress the conversion of the tube into two vortex rolls. For a tube with a relative density deficit on the order of 1/β (the classical Parker buoyancy) and a radius smaller than the pressure scale height (R2<tube with this degree of twist is studied in detail, including the initial transient phase, the internal torsional oscillations, and the asymptotic, quasi-stationary phase. During the initial phase, the outermost, weakly magnetized layers of the tube are torn off its main body and endowed with vorticity. They yield a trailing magnetized wake with two vortex rolls. The fraction of the total magnetic flux that is brought to the wake is a function of the initial degree of twist. In the weakly twisted case, most of the initial tube is turned into vortex rolls. With a strong initial twist, the tube rises with only a small deformation and no substantial loss of magnetic flux. The formation of the wake and the loss of flux from the main body of the tube are basically complete after the initial transient phase. A sharp interface between the tube interior and the external flows is formed at the tube front and sides; this area has the characteristic features of a magnetic boundary layer. Its

  10. Pulse tube cooler having 1/4 wavelength resonator tube instead of reservoir

    NASA Technical Reports Server (NTRS)

    Gedeon, David R. (Inventor)

    2008-01-01

    An improved pulse tube cooler having a resonator tube connected in place of a compliance volume or reservoir. The resonator tube has a length substantially equal to an integer multiple of 1/4 wavelength of an acoustic wave in the working gas within the resonator tube at its operating frequency, temperature and pressure. Preferably, the resonator tube is formed integrally with the inertance tube as a single, integral tube with a length approximately 1/2 of that wavelength. Also preferably, the integral tube is spaced outwardly from and coiled around the connection of the regenerator to the pulse tube at a cold region of the cooler and the turns of the coil are thermally bonded together to improve heat conduction through the coil.

  11. Neutron tubes

    DOEpatents

    Leung, Ka-Ngo; Lou, Tak Pui; Reijonen, Jani

    2008-03-11

    A neutron tube or generator is based on a RF driven plasma ion source having a quartz or other chamber surrounded by an external RF antenna. A deuterium or mixed deuterium/tritium (or even just a tritium) plasma is generated in the chamber and D or D/T (or T) ions are extracted from the plasma. A neutron generating target is positioned so that the ion beam is incident thereon and loads the target. Incident ions cause D-D or D-T (or T-T) reactions which generate neutrons. Various embodiments differ primarily in size of the chamber and position and shape of the neutron generating target. Some neutron generators are small enough for implantation in the body. The target may be at the end of a catheter-like drift tube. The target may have a tapered or conical surface to increase target surface area.

  12. QUANTIZING TUBE

    DOEpatents

    Jensen, A.S.; Gray, G.W.

    1958-07-01

    Beam deflection tubes are described for use in switching or pulse amplitude analysis. The salient features of the invention reside in the target arrangement whereby outputs are obtained from a plurality of collector electrodes each correspondlng with a non-overlapping range of amplitudes of the input sigmal. The tube is provded with mcans for deflecting the electron beam a1ong a line in accordance with the amplitude of an input signal. The target structure consists of a first dymode positioned in the path of the beam wlth slots spaced a1ong thc deflection line, and a second dymode posltioned behind the first dainode. When the beam strikes the solid portions along the length of the first dymode the excited electrons are multiplied and collected in separate collector electrodes spaced along the beam line. Similarly, the electrons excited when the beam strikes the second dynode are multiplied and collected in separate electrodes spaced along the length of the second dyode.

  13. Electron tube

    DOEpatents

    Suyama, Motohiro [Hamamatsu, JP; Fukasawa, Atsuhito [Hamamatsu, JP; Arisaka, Katsushi [Los Angeles, CA; Wang, Hanguo [North Hills, CA

    2011-12-20

    An electron tube of the present invention includes: a vacuum vessel including a face plate portion made of synthetic silica and having a surface on which a photoelectric surface is provided, a stem portion arranged facing the photoelectric surface and made of synthetic silica, and a side tube portion having one end connected to the face plate portion and the other end connected to the stem portion and made of synthetic silica; a projection portion arranged in the vacuum vessel, extending from the stem portion toward the photoelectric surface, and made of synthetic silica; and an electron detector arranged on the projection portion, for detecting electrons from the photoelectric surface, and made of silicon.

  14. Chest tube insertion

    MedlinePlus

    Chest drainage tube insertion; Insertion of tube into chest; Tube thoracostomy; Pericardial drain ... When your chest tube is inserted, you will lie on your side or sit partly upright, with one arm over your head. Sometimes, ...

  15. Nasogastric feeding tube

    MedlinePlus

    Feeding - nasogastric tube; NG tube; Bolus feeding; Continuous pump feeding; Gavage tube ... If your child has an NG tube, try to keep your child from touching or pulling on the tube. After your nurse teaches you how to flush the tube ...

  16. Source Terms for HFIR Beam Tube Shielding Analyses, and a Complete Shielding Analysis of the HB-3 Tube

    SciTech Connect

    Bucholz, J.A.

    2000-07-01

    The High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory is in the midst of a massive upgrade program to enhance experimental facilities. The reactor presently has four horizontal experimental beam tubes, all of which will be replaced or redesigned. The HB-2 beam tube will be enlarged to support more guide tubes, while the HB-4 beam tube will soon include a cold neutron source.

  17. Tube-wave seismic imaging

    DOEpatents

    Korneev, Valeri A [LaFayette, CA

    2009-05-05

    The detailed analysis of cross well seismic data for a gas reservoir in Texas revealed two newly detected seismic wave effects, recorded approximately 2000 feet above the reservoir. A tube-wave (150) is initiated in a source well (110) by a source (111), travels in the source well (110), is coupled to a geological feature (140), propagates (151) through the geological feature (140), is coupled back to a tube-wave (152) at a receiver well (120), and is and received by receiver(s) (121) in either the same (110) or a different receiving well (120). The tube-wave has been shown to be extremely sensitive to changes in reservoir characteristics. Tube-waves appear to couple most effectively to reservoirs where the well casing is perforated, allowing direct fluid contact from the interior of a well case to the reservoir.

  18. Tube-wave seismic imaging

    DOEpatents

    Korneev, Valeri A.; Bakulin, Andrey

    2009-10-13

    The detailed analysis of cross well seismic data for a gas reservoir in Texas revealed two newly detected seismic wave effects, recorded approximately 2000 feet above the reservoir. A tube-wave (150) is initiated in a source well (110) by a source (111), travels in the source well (110), is coupled to a geological feature (140), propagates (151) through the geological feature (140), is coupled back to a tube-wave (152) at a receiver well (120), and is and received by receiver(s) (121) in either the same (110) or a different receiving well (120). The tube-wave has been shown to be extremely sensitive to changes in reservoir characteristics. Tube-waves appear to couple most effectively to reservoirs where the well casing is perforated, allowing direct fluid contact from the interior of a well case to the reservoir.

  19. Neutron and Gamma Fluxes and dpa Rates for HFIR Vessel Beltline Region (Present and Upgrade Designs)

    SciTech Connect

    Blakeman, E.D.

    2001-01-11

    The Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) is currently undergoing an upgrading program, a part of which is to increase the diameters of two of the four radiation beam tubes (HB-2 and HB-4). This change will cause increased neutron and gamma radiation dose rates at and near locations where the tubes penetrate the vessel wall. Consequently, the rate of radiation damage to the reactor vessel wall at those locations will also increase. This report summarizes calculations of the neutron and gamma flux (particles/cm{sup 2}/s) and the dpa rate (displacements/atom/s) in iron at critical locations in the vessel wall. The calculated dpa rate values have been recently incorporated into statistical damage evaluation codes used in the assessment of radiation induced embrittlement. Calculations were performed using models based on the discrete ordinates methodology and utilizing ORNL two-dimensional and three-dimensional discrete ordinates codes. Models for present and proposed beam tube designs are shown and their results are compared. Results show that for HB-2, the dpa rate in the vessel wall where the tube penetrates the vessel will be increased by {approximately}10 by the proposed enlargement. For HB-4, a smaller increase of {approximately}2.6 is calculated.

  20. Adiabatic Betatron deceleration of ionospheric charged particles: a new explanation for (i) the rapid outflow of ionospheric O ions, and for (ii) the increase of plasma mass density observed in magnetospheric flux tubes during main phases of geomagnetic s

    NASA Astrophysics Data System (ADS)

    Lemaire, Joseph; Pierrard, Viviane; Darrouzet, Fabien

    2013-04-01

    Using European arrays of magnetometers and the cross-phase analysis to determine magnetic field line resonance frequencies, it has been found by Kale et al. (2009) that the plasma mass density within plasmaspheric flux tubes increased rapidly after the SSC of the Hallowe'en 2003 geomagnetic storms. These observations tend to confirm other independent experimental results, suggesting that heavy ion up-flow from the ionosphere is responsible for the observed plasma density increases during main phases of geomagnetic storms. The aim of our contribution is to point out that, during main phases, reversible Betatron effect induced by the increase of the southward Dst-magnetic field component (|Δ Bz|), diminishes slightly the perpendicular kinetic energy (W?) of charged particles spiraling along field lines. Furthermore, due to the conservation of the first adiabatic invariant (μ = Wm/ Bm) the mirror points of all ionospheric ions and electrons are lifted up to higher altitudes i.e. where the mirror point magnetic field (Bm) is slightly smaller. Note that the change of the mirror point altitude is given by: Δ hm = -1/3 (RE + hm) Δ Bm / Bm. It is independent of the ion species and it does not depend of their kinetic energy. The change of kinetic energy is determined by: Δ Wm = Wm Δ Bm / Bm. Both of these equations have been verified numerically by Lemaire et al. (2005; doi: 10.1016/S0273-1177(03)00099-1) using trajectory calculations in a simple time-dependant B-field model: i.e. the Earth's magnetic dipole, plus an increasing southward B-field component: i.e. the Dst magnetic field whose intensity becomes more and more negative during the main phase of magnetic storms. They showed that a variation of Bz (or Dst) by more than - 50 nT significantly increases the mirror point altitudes by more than 100 km which is about equal to scale height of the plasma density in the topside ionosphere where particles are almost collisionless (see Fig. 2 in Lemaire et al., 2005

  1. Tube furnace

    DOEpatents

    Foster, Kenneth G.; Frohwein, Eugene J.; Taylor, Robert W.; Bowen, David W.

    1991-01-01

    A vermiculite insulated tube furnace is heated by a helically-wound resistance wire positioned within a helical groove on the surface of a ceramic cylinder, that in turn is surroundingly disposed about a doubly slotted stainless steel cylindrical liner. For uniform heating, the pitch of the helix is of shorter length over the two end portions of the ceramic cylinder. The furnace is of large volume, provides uniform temperature, offers an extremely precise programmed heating capability, features very rapid cool-down, and has a modest electrical power requirement.

  2. Tube furnace

    SciTech Connect

    Foster, K.G.; Frohwein, E.J.; Taylor, R.W.; Bowen, D.W.

    1990-12-31

    A vermiculite insulated tube furnace is heated by a helically-wound resistance wire positioned within a helical groove on the surface of a ceramic cylinder, that in turn is surroundingly disposed about a doubly slotted stainless steel cylindrical liner. For uniform heating, the pitch of the helix is of shorter length over the two end portions of the ceramic cylinder. The furnace is of large volume, provides uniform temperature, offers an extremely precise programmed heating capability, features very rapid cool-down, and has a modest electrical power requirement.

  3. Tube furnace

    SciTech Connect

    Foster, K.G.; Frohwein, E.J.; Taylor, R.W.; Bowen, D.W.

    1990-01-01

    A vermiculite insulated tube furnace is heated by a helically-wound resistance wire positioned within a helical groove on the surface of a ceramic cylinder, that in turn is surroundingly disposed about a doubly slotted stainless steel cylindrical liner. For uniform heating, the pitch of the helix is of shorter length over the two end portions of the ceramic cylinder. The furnace is of large volume, provides uniform temperature, offers an extremely precise programmed heating capability, features very rapid cool-down, and has a modest electrical power requirement.

  4. AUTOMATED WATER LEVEL MEASUREMENTS IN SMALL-DIAMETER AQUIFER TUBES

    SciTech Connect

    PETERSEN SW; EDRINGTON RS; MAHOOD RO; VANMIDDLESWORTH PE

    2011-01-14

    Groundwater contaminated with hexavalent chromium, strontium-90, and uranium discharges into the Columbia River along approximately 16 km (10 mi) of the shoreline. Various treatment systems have and will continue to be implemented to eliminate the impact of Hanford Site contamination to the river. To optimize the various remediation strategies, it is important to understand interactions between groundwater and the surface water of the Columbia River. An automated system to record water levels in aquifer sampling tubes installed in the hyporheic zone was designed and tested to (1) gain a more complete understanding of groundwater/river water interactions based on gaining and losing conditions ofthe Columbia River, (2) record and interpret data for consistent and defensible groundwater/surface water conceptual models that may be used to better predict subsurface contaminant fate and transport, and (3) evaluate the hydrodynamic influence of extraction wells in an expanded pump-and-treat system to optimize the treatment system. A system to measure water levels in small-diameter aquifer tubes was designed and tested in the laboratory and field. The system was configured to allow manual measurements to periodically calibrate the instrument and to permit aquifer tube sampling without removing the transducer tube. Manual measurements were collected with an e-tape designed and fabricated especially for this test. Results indicate that the transducer system accurately records groundwater levels in aquifer tubes. These data are being used to refine the conceptual and numeric models to better understand interactions in the hyporheic zone of the Columbia River and the adjacent river water and groundwater, and changes in hydrochemistry relative to groundwater flux as river water recharges the aquifer and then drains back out in response to changes in the river level.

  5. Tube-in-tube thermophotovoltaic generator

    DOEpatents

    Ashcroft, J.; Campbell, B.; DePoy, D.

    1998-06-30

    A thermophotovoltaic device includes at least one thermal radiator tube, a cooling tube concentrically disposed within each thermal radiator tube and an array of thermophotovoltaic cells disposed on the exterior surface of the cooling tube. A shell having a first end and a second end surrounds the thermal radiator tube. Inner and outer tubesheets, each having an aperture corresponding to each cooling tube, are located at each end of the shell. The thermal radiator tube extends within the shell between the inner tubesheets. The cooling tube extends within the shell through the corresponding apertures of the two inner tubesheets to the corresponding apertures of the two outer tubesheets. A plurality of the thermal radiator tubes can be arranged in a staggered or an in-line configuration within the shell. 8 figs.

  6. Tube-in-tube thermophotovoltaic generator

    SciTech Connect

    Ashcroft, John; Campbell, Brian; DePoy, David

    1998-01-01

    A thermophotovoltaic device includes at least one thermal radiator tube, a cooling tube concentrically disposed within each thermal radiator tube and an array of thermophotovoltaic cells disposed on the exterior surface of the cooling tube. A shell having a first end and a second end surrounds the thermal radiator tube. Inner and outer tubesheets, each having an aperture corresponding to each cooling tube, are located at each end of the shell. The thermal radiator tube extends within the shell between the inner tubesheets. The cooling tube extends within the shell through the corresponding apertures of the two inner tubesheets to the corresponding apertures of the two outer tubesheets. A plurality of the thermal radiator tubes can be arranged in a staggered or an in-line configuration within the shell.

  7. Gastrostomy feeding tube - bolus

    MedlinePlus

    Feeding - gastrostomy tube - bolus; G-tube - bolus; Gastrostomy button - bolus; Bard Button - bolus; MIC-KEY - bolus ... Your child's gastrostomy tube (G-tube) is a special tube in your child's stomach that will help deliver food and medicines until your ...

  8. Generalization of data on critical heat fluxes for flow swirled using a tape

    NASA Astrophysics Data System (ADS)

    Krug, A. F.; Kuzma-Kichta, Yu. A.; Komendantov, A. S.

    2010-03-01

    The available data on critical heat fluxes for boiling of subcooled and saturated liquid in tubes with twisted tape inserts are considered. Experimental data obtained by different researchers are generalized, and an equation for calculating critical heat fluxes for both smooth tubes and tubes with flow swirling by means of a tape is proposed.

  9. New technique of the local heat flux measurement in combustion chambers of steam boilers

    NASA Astrophysics Data System (ADS)

    Taler, Jan; Taler, Dawid; Sobota, Tomasz; Dzierwa, Piotr

    2011-12-01

    A new method for measurement of local heat flux to water-walls of steam boilers was developed. A flux meter tube was made from an eccentric tube of short length to which two longitudinal fins were attached. These two fins prevent the boiler setting from heating by a thermal radiation from the combustion chamber. The fins are not welded to the adjacent water-wall tubes, so that the temperature distribution in the heat flux meter is not influenced by neighbouring water-wall tubes. The thickness of the heat flux tube wall is larger on the fireside to obtain a greater distance between the thermocouples located inside the wall which increases the accuracy of heat flux determination. Based on the temperature measurements at selected points inside the heat flux meter, the heat flux absorbed by the water-wall, heat transfer coefficient on the inner tube surface and temperature of the water-steam mixture was determined.

  10. Interpolation and Approximation Theory.

    ERIC Educational Resources Information Center

    Kaijser, Sten

    1991-01-01

    Introduced are the basic ideas of interpolation and approximation theory through a combination of theory and exercises written for extramural education at the university level. Topics treated are spline methods, Lagrange interpolation, trigonometric approximation, Fourier series, and polynomial approximation. (MDH)

  11. Feeding tube - infants

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/007235.htm Feeding tube - infants To use the sharing features on this page, please enable JavaScript. A feeding tube is a small, soft, plastic tube placed ...

  12. Tracheostomy tube - eating

    MedlinePlus

    ... page: //medlineplus.gov/ency/patientinstructions/000464.htm Tracheostomy tube - eating To use the sharing features on this ... you swallow foods or liquids. Eating and Tracheostomy Tubes When you get your tracheostomy tube, or trach, ...

  13. Eustachian tube patency

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/001630.htm Eustachian tube patency To use the sharing features on this page, please enable JavaScript. Eustachian tube patency refers to how much the eustachian tube ...

  14. STABILITY AND DYNAMICS OF A FLUX ROPE FORMED VIA FLUX EMERGENCE INTO THE SOLAR ATMOSPHERE

    SciTech Connect

    An, J. M.; Magara, T. E-mail: magara@khu.ac.kr

    2013-08-10

    We study the stability and dynamics of a flux rope formed through the emergence of a twisted magnetic flux tube into the solar atmosphere. A three-dimensional magnetohydrodynamic simulation has been performed to investigate several key factors affecting the dynamics of the flux rope. The stability of the flux rope is examined by deriving the decay index of the coronal magnetic field surrounding the flux rope. We investigate a transition between the quasi-static and dynamic states of the flux rope through an analysis of the curvature and scale height of emerging magnetic field. A practical application of this analysis for global eruptions is also considered.

  15. Heat exchanger tube mounts

    DOEpatents

    Wolowodiuk, W.; Anelli, J.; Dawson, B.E.

    1974-01-01

    A heat exchanger in which tubes are secured to a tube sheet by internal bore welding is described. The tubes may be moved into place in preparation for welding with comparatively little trouble. A number of segmented tube support plates are provided which allow a considerable portion of each of the tubes to be moved laterally after the end thereof has been positioned in preparation for internal bore welding to the tube sheet. (auth)

  16. Diurnal changes in assimilate concentrations and fluxes in the phloem of castor bean (Ricinus communis L.) and tansy (Tanacetum vulgare L.).

    PubMed

    Kallarackal, Jose; Bauer, Susanne N; Nowak, Heike; Hajirezaei, Mohammad-Reza; Komor, Ewald

    2012-07-01

    Reports about diurnal changes of assimilates in phloem sap are controversial. We determined the diurnal changes of sucrose and amino acid concentrations and fluxes in exudates from cut aphid stylets on tansy leaves (Tanacetum vulgare), and sucrose, amino acid and K(+) concentrations and fluxes in bleeding sap of castor bean pedicel (Ricinus communis). Approximately half of the tansy sieve tubes exhibited a diurnal cycle of sucrose concentrations and fluxes in phloem sap. Data from many tansy plants indicated an increased sucrose flux in the phloem during daytime in case of low N-nutrition, not at high N-nutrition. The sucrose concentration in phloem sap of young Ricinus plants changed marginally between day and night, whereas the sucrose flux increased 1.5-fold during daytime (but not in old Ricinus plants). The amino acid concentrations and fluxes in tansy sieve tubes exhibited a similar diurnal cycle as the sucrose concentrations and fluxes, including their dependence on N-nutrition. The amino acid fluxes, but not the concentrations, in phloem sap of Ricinus were higher at daytime. The sucrose/amino acid ratio showed no diurnal cycle neither in tansy nor in Ricinus. The K(+)-concentrations in phloem sap of Ricinus, but not the K(+) fluxes, decreased slightly during daytime and the sucrose/K(+)-ratio increased. In conclusion, a diurnal cycle was observed in sucrose, amino acid and K(+) fluxes, but not necessarily in concentrations of these assimilates. Because of the large variations between different sieve tubes and different plants, the nutrient delivery to sink tissues is not homeostatic over time.

  17. Statistical study of enhanced ion fluxes in the outer plasmasphere

    NASA Astrophysics Data System (ADS)

    Menietti, J. D.; Burch, J. L.; Williams, R. L.; Gallagher, D. L.; Waite, J. H., Jr.

    Statistical studies of outer plasmaspheric ions in the northern hemisphere have been made utilizing the High Altitude Plasma Instrument (HAPI) on board the Dynamics Explorer-1 satellite. The data were collected during equinox and winter seasons and during a period of solar maximum activity conditions. The data include approximately 40 dayside and over 50 nightside plasmaspheric passes covering a range of magnetic activities (0 < Kp < 7). A total of six magnetic storms and recovery periods and a number of quiet times are included in the sampling. The range of magnetic local times on the dayside is from about 6 hours to 12 hours, while the nightside range is from about 18 hours to 23 hours. Our results indicate a clear enhancement in the low energy (5 eV < E < 30 eV) number flux during periods of large magnetic activity in both the dayside and nightside outer plasmasphere (the inner plasmasphere was not observed). The dayside plasmaspheric fluxes were predominately upward (anti-parallel to B¯) while the nightside plasmaspheric fluxes were predominately downward (parallel to B¯). The net number fluxes sometimes reached a value of over 108cm sec-1 (assuming H+ as the predominate species). The largest flows up the field line occur in the outer plasmasphere and decrease in the plasma trough. The ion temperatures in the outer plasmasphere were typically lower than those in the plasma trough and auroral regions. Since the largest flows both parallel and anti-parallel to B¯ are observed at periods of high magnetic activity, enhanced outer plasmaspheric fluxes may be due to ionospheric ions expanding into depleted plasmaspheric flux tubes. The nightside fluxes may be due to expansion of the ionosphere in the magnetic conjugate hemisphere.

  18. Line-of-sight magnetic flux imbalances caused by electric currents

    NASA Technical Reports Server (NTRS)

    Gary, G. Allen; Rabin, Douglas

    1995-01-01

    Several physical and observational effects contribute to the significant imbalances of magnetic flux that are often observed in active regions. We consider an effect not previously treated: the influence of electric currents in the photosphere. Electric currents can cause a line-of-sight flux imbalance because of the directionality of the magnetic field they produce. Currents associated with magnetic flux tubes produce larger imbalances than do smoothly-varying distributions of flux and current. We estimate the magnitude of this effect for current densities, total currents, and magnetic geometry consistent with observations. The expected imbalances lie approximately in the range 0-15%, depending on the character of the current-carying fields and the angle from which they are viewed. Observationally, current-induced flux imbalances could be indicated by a statistical dependence of the imbalance on angular distance from disk center. A general study of magnetic flux balance in active regions is needed to determine the relative importance of other- probably larger- effects such as dilute flux (too weak to measure or rendered invisible by radiative transfer effects), merging with weak background fields, and long-range connections between active regions.

  19. Evacuated-tube solar collector--performance evaluation

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Report gives thermal performance test procedures and results for commercially produced, water-filled, 8-tube collectors. Tests include efficiency, time constant for temperature drop after solar flux is cut, change in efficiency as function of sun angle, and test to see if tubes break when filled with hot water.

  20. Relaxation Processes within Flux Ropes in Solar Wind

    NASA Astrophysics Data System (ADS)

    Telloni, D.; Carbone, V.; Perri, S.; Bruno, R.; Lepreti, F.; Veltri, P.

    2016-08-01

    Flux ropes are localized structures in space plasma whose tube-like organized magnetic configuration can be well approximated by a force-free field model. Both numerical simulations and simple models suggest that the ideal magnetohydrodynamics (MHD) can relax toward a minimum energy state, where magnetic helicity is conserved, characterized by force-free magnetic fields (Taylor relaxation). In this paper, we evaluate MHD rugged invariants within more than 100 flux ropes identified in the solar wind at 1 AU, showing that the magnetic and cross-helicity content carried out by these structures tend to be “attracted” toward a particular subphase in the parameter plane. The final configuration of the MHD rugged invariants in the parameter plane suggests indeed that flux ropes represent well-organized structures coming from the dynamical evolution of MHD turbulent cascade. These observational results, along with a simple model based on a truncated set of nonlinear ordinary differential equations for both the velocity and magnetic field Fourier coefficients, thus, support a scenario in which the flux ropes naturally come out from the ideal MHD decay to large-scale magnetic field in space plasmas, probably governed by relaxation processes similar to those observed in laboratory plasmas.

  1. Bender/Coiler for Tubing

    NASA Technical Reports Server (NTRS)

    Stoltzfus, J. M.

    1983-01-01

    Easy-to-use tool makes coils of tubing. Tubing to be bend clamped with stop post. Die positioned snugly against tubing. Operator turns handle to slide die along tubing, pushing tubing into spiral groove on mandrel.

  2. Flow and convective cooling in lava tubes

    NASA Astrophysics Data System (ADS)

    Sakimoto, S. E. H.; Zuber, M. T.

    1998-11-01

    Tube-fed basaltic lava flows with lengths ranging from 10 to 200 km are inferred to exhibit similar amounts of cooling. To explain the wide range of implied cooling rates, we consider forced convection as a dominant cooling process in lava tubes and present solutions that express mean temperature versus distance down the tube as a function of flow rate and flow cross section. Our models treat forced convective thermal losses in steady laminar flow through a lava tube with constant temperature walls and constant material properties. We explore the effects of different wall temperature and heat flux rate boundary conditions for circular tube and parallel plate flows over a range of tube sizes, plate spacings, eruption temperatures, and volume flow rates. Results show that nonlinear cooling rates over distance are characteristic of constant wall temperature for a piecewise parallel plate/circular tube model. This provides the best fit to temperature observations for Hawaiian tubes. Such a model may also provide an explanation for the very low (˜10°C) cooling observed in ˜10 km long Hawaii tube flows and inferred in longer ˜50 to 150 km tube-fed flows in Queensland. The forced convective cooling model may also explain similar flow morphologies for long tube-fed basaltic lava flows in a wide variety of locations, since small variations in eruption temperature or flow rate can accommodate the entire range of flow lengths and cooling rates considered. Our results are consistent with previous suggestions that long basaltic flows may be a reflection of low slopes, a particularly steady moderate eruption rate, and well-insulated flow, rather than of high discharge rates.

  3. Neutron fluxes in radiotherapy rooms.

    PubMed

    Agosteo, S; Foglio Para, A; Maggioni, B

    1993-01-01

    The spatial distribution of the neutron flux, originated in an electron accelerator therapy room when energies above the threshold of (y,n) and (e,e'n) reactions are employed, is physically due to a direct flux, coming from the accelerator head, and to a flux diffused from the walls. In this work, the flux is described to a high degree of approximation by a set of functions whose spatial behavior is univocally determined by the angular distributions of the neutrons emitted from the shield of the accelerator head and diffused from the walls. The analytical results are verified with an extended series of Monte Carlo simulations obtained with the MCNP code.

  4. Approximate flavor symmetries

    SciTech Connect

    Rasin, A.

    1994-04-01

    We discuss the idea of approximate flavor symmetries. Relations between approximate flavor symmetries and natural flavor conservation and democracy models is explored. Implications for neutrino physics are also discussed.

  5. Lava Tube Collapse Pits

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    We will be looking at collapse pits for the next two weeks. Collapse pits on Mars are formed in several ways. In volcanic areas, channelized lava flows can form roofs which insulate the flowing lava. These features are termed lava tubes on Earth and are common features in basaltic flows. After the lava has drained, parts of the roof of the tube will collapse under its own weight. These collapse pits will only be as deep as the bottom of the original lava tube. Another type of collapse feature associated with volcanic areas arises when very large eruptions completely evacuate the magma chamber beneath the volcano. The weight of the volcano will cause the entire edifice to subside into the void space below it. Structural features including fractures and graben will form during the subsidence. Many times collapse pits will form within the graben. In addition to volcanic collapse pits, Mars has many collapse pits formed when volatiles (such as subsurface ice) are released from the surface layers. As the volatiles leave, the weight of the surrounding rock causes collapse pits to form.

    These collapse pits are found in the southern hemisphere of Mars. They are likely lava tube collapse pits related to flows from Hadriaca Patera.

    Image information: VIS instrument. Latitude -36.8, Longitude 89.6 East (270.4 West). 19 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space

  6. Steady Slug Flow in a Circular Tube

    NASA Astrophysics Data System (ADS)

    Bian, Xiaoqiang; Perlin, Marc; Schultz, William W.

    2002-11-01

    The steady motion of a water slug in a circular tube is studied. When the contact lines completely stick to the tube, the axisymmetric surface modes are solved with a spectral method for originally spherical menisci. The results agree well with a simple 0-degree approximation for lowest slosh mode. The effects of slip in natural frequencies are also discussed. The velocity and menisci geometry are measured for slugs moving in a tilted tube for dry and pre-wetted inner tube surfaces. A custom glass tube has a square outer cross section for minimizing optic distortions and measuring velocity and meniscus geometry. Asymptotic methods and numerics solve the menisci sliding on pre-wetted inner surface. These results are qualitatively compared with our experiments and those in NASA TN-515. As expected, near-meniscus behavior plays a big role in the total resistance to the moving slug.

  7. Approximation of Laws

    NASA Astrophysics Data System (ADS)

    Niiniluoto, Ilkka

    2014-03-01

    Approximation of laws is an important theme in the philosophy of science. If we can make sense of the idea that two scientific laws are "close" to each other, then we can also analyze such methodological notions as approximate explanation of laws, approximate reduction of theories, approximate empirical success of theories, and approximate truth of laws. Proposals for measuring the distance between quantitative scientific laws were given in Niiniluoto (1982, 1987). In this paper, these definitions are reconsidered as a response to the interesting critical remarks by Liu (1999).

  8. Lunar lava tube radiation safety analysis

    NASA Technical Reports Server (NTRS)

    De Angelis, Giovanni; Wilson, J. W.; Clowdsley, M. S.; Nealy, J. E.; Humes, D. H.; Clem, J. M.

    2002-01-01

    For many years it has been suggested that lava tubes on the Moon could provide an ideal location for a manned lunar base, by providing shelter from various natural hazards, such as cosmic radiation, meteorites, micrometeoroids, and impact crater ejecta, and also providing a natural environmental control, with a nearly constant temperature, unlike that of the lunar surface showing extreme variation in its diurnal cycle. An analysis of radiation safety issues on lunar lava tubes has been performed by considering radiation from galactic cosmic rays (GCR) and Solar Particle Events (SPE) interacting with the lunar surface, modeled as a regolith layer and rock. The chemical composition has been chosen as typical of the lunar regions where the largest number of lava tube candidates are found. Particles have been transported all through the regolith and the rock, and received particles flux and doses have been calculated. The radiation safety of lunar lava tubes environments has been demonstrated.

  9. Lunar lava tube radiation safety analysis.

    PubMed

    De Angelis, Giovanni; Wilson, J W; Clowdsley, M S; Nealy, J E; Humes, D H; Clem, J M

    2002-12-01

    For many years it has been suggested that lava tubes on the Moon could provide an ideal location for a manned lunar base, by providing shelter from various natural hazards, such as cosmic radiation, meteorites, micrometeoroids, and impact crater ejecta, and also providing a natural environmental control, with a nearly constant temperature, unlike that of the lunar surface showing extreme variation in its diurnal cycle. An analysis of radiation safety issues on lunar lava tubes has been performed by considering radiation from galactic cosmic rays (GCR) and Solar Particle Events (SPE) interacting with the lunar surface, modeled as a regolith layer and rock. The chemical composition has been chosen as typical of the lunar regions where the largest number of lava tube candidates are found. Particles have been transported all through the regolith and the rock, and received particles flux and doses have been calculated. The radiation safety of lunar lava tubes environments has been demonstrated.

  10. End Calorimeter Warm Tube Heater

    SciTech Connect

    Primdahl, K.; /Fermilab

    1991-08-06

    corresponding heat flux, temperature of the nichrome wire can be estimated. The possibility of frost is of genuine concern, as evidenced by the 250 K minimum temperature for the warm tube while heaters are not operating. Noting that steady state operation at 1 Amp (40 volts) allows the nichrome wire to stay below the critical temperature for Kapton, a conservative plan is to allow several days of heater operation, at 1 Amp (40 volts), before roll-back. Warm-up can be accelerated by operating the heaters in excess of 1 Amp, as evidenced by the test where a maximum of 3.2 Amp was supplied. Operating the heaters in excess of 1 Amp must be done with care since a rapid rise in temperature will likely occur once any ice present has been melted.

  11. Dual Active Surface Heat Flux Gage Probe

    NASA Technical Reports Server (NTRS)

    Liebert, Curt H.; Kolodziej, Paul

    1995-01-01

    A unique plug-type heat flux gage probe was tested in the NASA Ames Research Center 2x9 turbulent flow duct facility. The probe was fabricated by welding a miniature dual active surface heat flux gage body to the end of a hollow metal cylindrical bolt containing a metal inner tube. Cooling air flows through the inner tube, impinges onto the back of the gage body and then flows out through the annulus formed between the inner tube and the hollow bolt wall. Heat flux was generated in the duct facility with a Huels arc heater. The duct had a rectangular cross section and one wall was fabricated from 2.54 centimeter thick thermal insulation rigid surface material mounted onto an aluminum plate. To measure heat flux, the probe was inserted through the plate and insulating materials with the from of the gage located flush with the hot gas-side insulation surface. Absorbed heat fluxes measured with the probe were compared with absorbed heat fluxes measured with six water-cooled reference calorimeters. These calorimeters were located in a water-cooled metal duct wall which was located across from the probe position. Correspondence of transient and steady heat fluxes measured with the reference calorimeters and heat flux gage probe was generally within a satisfactory plus or minus 10 percent. This good correspondence was achieved even though the much cooler probe caused a large surface temperature disruption of 1000K between the metal gage and the insulation. However, this temperature disruption did not seriously effect the accuracy of the heat flux measurement. A current application for dual active surface heat flux gages is for transient and steady absorbed heat flux, surface temperature and heat transfer coefficient measurements on the surface of an oxidizer turbine inlet deflector operating in a space shuttle test bed engine.

  12. Dual active surface heat flux gage probe

    NASA Astrophysics Data System (ADS)

    Liebert, Curt H.; Kolodziej, Paul

    1995-02-01

    A unique plug-type heat flux gage probe was tested in the NASA Ames Research Center 2x9 turbulent flow duct facility. The probe was fabricated by welding a miniature dual active surface heat flux gage body to the end of a hollow metal cylindrical bolt containing a metal inner tube. Cooling air flows through the inner tube, impinges onto the back of the gage body and then flows out through the annulus formed between the inner tube and the hollow bolt wall. Heat flux was generated in the duct facility with a Huels arc heater. The duct had a rectangular cross section and one wall was fabricated from 2.54 centimeter thick thermal insulation rigid surface material mounted onto an aluminum plate. To measure heat flux, the probe was inserted through the plate and insulating materials with the from of the gage located flush with the hot gas-side insulation surface. Absorbed heat fluxes measured with the probe were compared with absorbed heat fluxes measured with six water-cooled reference calorimeters. These calorimeters were located in a water-cooled metal duct wall which was located across from the probe position. Correspondence of transient and steady heat fluxes measured with the reference calorimeters and heat flux gage probe was generally within a satisfactory plus or minus 10 percent. This good correspondence was achieved even though the much cooler probe caused a large surface temperature disruption of 1000K between the metal gage and the insulation. However, this temperature disruption did not seriously effect the accuracy of the heat flux measurement. A current application for dual active surface heat flux gages is for transient and steady absorbed heat flux, surface temperature and heat transfer coefficient measurements on the surface of an oxidizer turbine inlet deflector operating in a space shuttle test bed engine.

  13. Analytical Modeling of a Novel Transverse Flux Machine for Direct Drive Wind Turbine Applications

    SciTech Connect

    Hasan, IIftekhar; Husain, Tausif; Uddin, Md Wasi; Sozer, Yilmaz; Husain, Iqbal; Muljadi, Eduard

    2015-09-02

    This paper presents a nonlinear analytical model of a novel double sided flux concentrating Transverse Flux Machine (TFM) based on the Magnetic Equivalent Circuit (MEC) model. The analytical model uses a series-parallel combination of flux tubes to predict the flux paths through different parts of the machine including air gaps, permanent magnets (PM), stator, and rotor. The two-dimensional MEC model approximates the complex three-dimensional flux paths of the TFM and includes the effects of magnetic saturation. The model is capable of adapting to any geometry which makes it a good alternative for evaluating prospective designs of TFM as compared to finite element solvers which are numerically intensive and require more computation time. A single phase, 1 kW, 400 rpm machine is analytically modeled and its resulting flux distribution, no-load EMF and torque, verified with Finite Element Analysis (FEA). The results are found to be in agreement with less than 5% error, while reducing the computation time by 25 times.

  14. Analytical Modeling of a Novel Transverse Flux Machine for Direct Drive Wind Turbine Applications: Preprint

    SciTech Connect

    Hasan, IIftekhar; Husain, Tausif; Uddin, Md Wasi; Sozer, Yilmaz; Husain; Iqbal; Muljadi, Eduard

    2015-08-24

    This paper presents a nonlinear analytical model of a novel double-sided flux concentrating Transverse Flux Machine (TFM) based on the Magnetic Equivalent Circuit (MEC) model. The analytical model uses a series-parallel combination of flux tubes to predict the flux paths through different parts of the machine including air gaps, permanent magnets, stator, and rotor. The two-dimensional MEC model approximates the complex three-dimensional flux paths of the TFM and includes the effects of magnetic saturation. The model is capable of adapting to any geometry that makes it a good alternative for evaluating prospective designs of TFM compared to finite element solvers that are numerically intensive and require more computation time. A single-phase, 1-kW, 400-rpm machine is analytically modeled, and its resulting flux distribution, no-load EMF, and torque are verified with finite element analysis. The results are found to be in agreement, with less than 5% error, while reducing the computation time by 25 times.

  15. PEG tube insertion -- discharge

    MedlinePlus

    ... shower or bathe. Keeping the PEG-tube in Place If the feeding tube comes out, the stoma ... eds. Pfenninger and Fowler's Procedures for Primary Care . 3rd ed. Philadelphia, PA: Elsevier Mosby; 2011:chap 100. ...

  16. Glass tube splitting tool

    NASA Technical Reports Server (NTRS)

    Klein, J. A.; Murray, C. D.; Stein, J. A.

    1971-01-01

    Tool accurately splits glass tubing so cuts are aligned 180 deg apart and reassembled tube forms low pressure, gastight enclosure. Device should interest industries using cylindrical closed glass containers.

  17. Eustachian tube (image)

    MedlinePlus

    ... are more common in children because their eustachian tubes are shorter, narrower, and more horizontal than in ... become trapped when the tissue of the eustachian tube becomes swollen from colds or allergies. Bacteria trapped ...

  18. Neural Tube Defects

    MedlinePlus

    Neural tube defects are birth defects of the brain, spine, or spinal cord. They happen in the first month ... she is pregnant. The two most common neural tube defects are spina bifida and anencephaly. In spina ...

  19. A comparison of augmentation techniques during in-tube evaporation of R-113

    SciTech Connect

    Reid, R.S. ); Pate, M.B. ); Bergles, A.E. )

    1991-05-01

    An experimental study was conducted to determine the potential of three techniques for augmenting in-tube evaporation of refrigerants: high-fin tubes, microfin tubes, and twisted tape inserts. Five tubes with internal fins and one smooth tube with a twisted-tape insert were tested. Additionally, experiments were performed with two reference smooth tubes having diameters similar to the maximum inside diameters of the finned tubes. All experiments involved evaporating Refrigerant 113 (R-113) by direct electrical heating of the tube wall. Local evaporation heat transfer coefficients were measured as a function of quality for a range of mass fluxes and heat fluxes. Enhancement factors were calculated by forming ratios of the heat transfer coefficient for the augmented tube and a smooth tube of the same maximum inside diameter. Mass fluxes, pressure levels, and qualities were fixed when enhancement factors were calculated. For the internally finned tubes the enhancement factors varied from 1.1 to 2.8. An internally finned tube having helical spiral angles of 16 deg produced the largest enhancement of heat transfer. The tube with the twisted-tape insert typically had an enhancement factor of about 1.5. Pressure gradient ratios and enhancement performance ratios are also presented.

  20. Guide tube flow diffuser

    SciTech Connect

    Berringer, R.T.; Myron, D.L.

    1980-11-04

    A nuclear reactor upper internal guide tube has a flow diffuser integral with its bottom end. The guide tube provides guidance for control rods during their ascent or descent from the reactor core. The flow diffuser serves to divert the upward flow of reactor coolant around the outside of the guide tube thereby limiting the amount of coolant flow and turbulence within the guide tube, thus enhancing the ease of movement of the control rods.

  1. Approximate spatial reasoning

    NASA Technical Reports Server (NTRS)

    Dutta, Soumitra

    1988-01-01

    A model for approximate spatial reasoning using fuzzy logic to represent the uncertainty in the environment is presented. Algorithms are developed which can be used to reason about spatial information expressed in the form of approximate linguistic descriptions similar to the kind of spatial information processed by humans. Particular attention is given to static spatial reasoning.

  2. Eight-moment approximation solar wind models

    NASA Technical Reports Server (NTRS)

    Olsen, Espen Lyngdal; Leer, Egil

    1995-01-01

    Heat conduction from the corona is important in the solar wind energy budget. Until now all hydrodynamic solar wind models have been using the collisionally dominated gas approximation for the heat conductive flux. Observations of the solar wind show particle distribution functions which deviate significantly from a Maxwellian, and it is clear that the solar wind plasma is far from collisionally dominated. We have developed a numerical model for the solar wind which solves the full equation for the heat conductive flux together with the conservation equations for mass, momentum, and energy. The equations are obtained by taking moments of the Boltzmann equation, using an 8-moment approximation for the distribution function. For low-density solar winds the 8-moment approximation models give results which differ significantly from the results obtained in models assuming the gas to be collisionally dominated. The two models give more or less the same results in high density solar winds.

  3. Microhole Tubing Bending Report

    DOE Data Explorer

    Oglesby, Ken

    2012-01-01

    A downhole tubing bending study was made and is reported herein. IT contains a report and 2 excel spreadsheets to calculate tubing bending and to estimate contact points of the tubing to the drilled hole wall (creating a new support point).

  4. 1992 tubing tables

    SciTech Connect

    Not Available

    1992-01-01

    This paper is helpful to those designing oil well completions or purchasing tubing with proprietary or premium connections. Tables contain specifications and application data for over 100 different tubing joints, including those used with fiberglass pipe. The tables this year contain dimensional and performance data for coiled tubing.

  5. Evaluation of commercial enhanced tubes in pool boiling: Topical report

    SciTech Connect

    Jung, C.; Bergles, A.E.

    1989-03-01

    In support of a study of shellside boiling with enhanced tubes, a pool boiling apparatus was developed and used to test single tubes with various structured boiling surfaces in R-113. The basic design of the tube-bundle test section was carried out and certain critical design features were tested experimentally. Copper tubes, 3/4 in. o.d. and 4 in. long, were selected with 1/4 in. diameter cartridge heaters. Four thermocouples were inserted in 3/32 in. diameter, 2 in. long holes. The pool boiling characteristics of a plain tube agree well with previous tests. Wolverine Turbo-B tubes with small, medium, and large features performed identically for a heat flux greater than 20 kW/m/sup 2/. For lower heat flux, however, the Turbo-B S was slightly superior. In general, the Wolverine Turbo-B tubes had more favorable boiling characteristics than the single Wieland Gewa-T tube that was tested. The test procedure is deemed entirely adequate for screening enhanced tubes to see which ones should be used in the tube-bundle test section. Three different ways of mounting the tubes were tested in R-113 at 65/degree/C and 5 bar gage pressure. As all three constructions sealed well, the simplest design is recommended in which a snap ring fixes the tube to the wall and an O-ring seals against the pressure. The general design features of the tube bundle test chamber are also presented. 14 refs.

  6. Enhanced shell-and-tube heat eschangers for the power and process industries. Final report

    SciTech Connect

    Bergles, A.E.; Jensen, M.K.; Somerscales, E.F.; Curcio, L.A. Jr.; Trewin, R.R.

    1994-08-01

    Single-tube pool boiling tests were performed with saturated pure refrigerants and binary mixtures of refrigerants. Generally, with pure refrigerants, the High Flux surface performed better at the higher heat fluxes compared to the Turbo-B tube, and both enhanced surfaces performed significantly better than smooth surface. In tests of R-11/R-113 mixtures, the enhanced surfaces had much less degradation in heat transfer coefficient due to mixture effects compared to smooth tubes; the largest degradation occurred at a mixture of 25% R-11/75% R-113. Under boiling in saturated aqueous solution of calcium sulfate, with a single tube, effects of fouling were more pronounced at the higher heat fluxes for all surfaces. Two staggered tube bundles were tested with tube pitch-diameter ratios of 1.17 and 1.50. For the pure refrigerant, tests on the smooth-tube bundle indicated that the effects on the heat transfer coefficient of varying mass flux, quality, and tube-bundle geometry were small, except at low heat fluxes. Neither enhanced surface showed any effect with changing mass flux or quality. The binary mixture bundle-boiling tests had results that were very similar to those obtained with the pure refrigerants. When boiling a refrigerant-oil mixture, all three surfaces (smooth, High Flux, and Turbo-B) experienced a degradation in its heat transfer coefficient; no surface studied was found to be immune or vulnerable to the presence of oil than another surface.

  7. 21 CFR 868.5800 - Tracheostomy tube and tube cuff.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Tracheostomy tube and tube cuff. 868.5800 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5800 Tracheostomy tube and tube cuff. (a) Identification. A tracheostomy tube and tube cuff is a device intended to be placed into...

  8. 21 CFR 868.5800 - Tracheostomy tube and tube cuff.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Tracheostomy tube and tube cuff. 868.5800 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5800 Tracheostomy tube and tube cuff. (a) Identification. A tracheostomy tube and tube cuff is a device intended to be placed into...

  9. 21 CFR 868.5800 - Tracheostomy tube and tube cuff.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Tracheostomy tube and tube cuff. 868.5800 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5800 Tracheostomy tube and tube cuff. (a) Identification. A tracheostomy tube and tube cuff is a device intended to be placed into...

  10. Pollen tube development.

    PubMed

    Johnson, Mark A; Kost, Benedikt

    2010-01-01

    Pollen tubes grow rapidly in a strictly polarized manner as they transport male reproductive cells through female flower tissues to bring about fertilization. Vegetative pollen tube cells are an excellent model system to investigate processes underlying directional cell expansion. In this chapter, we describe materials and methods required for (1) the identification of novel factors essential for polarized cell growth through the isolation and analysis of Arabidopsis mutants with defects in pollen tube growth and (2) the detailed functional characterization of pollen tube proteins based on transient transformation and microscopic analysis of cultured tobacco pollen tubes.

  11. REACTOR COOLANT TUBE SEAL

    DOEpatents

    Morris, W.J.

    1958-12-01

    A plle-flattenlng control element and a fluid seal therefore to permit movement of the element into a liquld contnining region of a neutronlc reactor are described. The device consists of flattened, thin-walled aluminum tubing contalnlng a uniform mixture of thermal neutron absorbing material, and a number of soft rubber closures for the process tubes, having silts capable of passing the flattened elements therethrough, but effectively sealing the process tubes against fluld leaknge by compression of the rubber. The flattened tubing is sufficiently flexible to enable it to conform to the configuratlon of the annular spacing surrounding the fuel elements ln the process tubes.

  12. Heat tube device

    NASA Technical Reports Server (NTRS)

    Khattar, Mukesh K. (Inventor)

    1990-01-01

    The present invention discloses a heat tube device through which a working fluid can be circulated to transfer heat to air in a conventional air conditioning system. The heat tube device is disposable about a conventional cooling coil of the air conditioning system and includes a plurality of substantially U-shaped tubes connected to a support structure. The support structure includes members for allowing the heat tube device to be readily positioned about the cooling coil. An actuatable adjustment device is connected to the U-shaped tubes for allowing, upon actuation thereof, for the heat tubes to be simultaneously rotated relative to the cooling coil for allowing the heat transfer from the heat tube device to air in the air conditioning system to be selectively varied.

  13. Intrinsic Nilpotent Approximation.

    DTIC Science & Technology

    1985-06-01

    RD-A1II58 265 INTRINSIC NILPOTENT APPROXIMATION(U) MASSACHUSETTS INST 1/2 OF TECH CAMBRIDGE LAB FOR INFORMATION AND, DECISION UMCLRSSI SYSTEMS C...TYPE OF REPORT & PERIOD COVERED Intrinsic Nilpotent Approximation Technical Report 6. PERFORMING ORG. REPORT NUMBER LIDS-R-1482 7. AUTHOR(.) S...certain infinite-dimensional filtered Lie algebras L by (finite-dimensional) graded nilpotent Lie algebras or g . where x E M, (x,,Z) E T*M/O. It

  14. Anomalous diffraction approximation limits

    NASA Astrophysics Data System (ADS)

    Videen, Gorden; Chýlek, Petr

    It has been reported in a recent article [Liu, C., Jonas, P.R., Saunders, C.P.R., 1996. Accuracy of the anomalous diffraction approximation to light scattering by column-like ice crystals. Atmos. Res., 41, pp. 63-69] that the anomalous diffraction approximation (ADA) accuracy does not depend on particle refractive index, but instead is dependent on the particle size parameter. Since this is at odds with previous research, we thought these results warranted further discussion.

  15. Intercostal drainage tube or intracardiac drainage tube?

    PubMed Central

    Anitha, N.; Kamath, S. Ganesh; Khymdeit, Edison; Prabhu, Manjunath

    2016-01-01

    Although insertion of chest drain tubes is a common medical practice, there are risks associated with this procedure, especially when inexperienced physicians perform it. Wrong insertion of the tube has been known to cause morbidity and occasional mortality. We report a case where the left ventricle was accidentally punctured leading to near-exsanguination. This report is to highlight the need for experienced physicians to supervise the procedure and train the younger physician in the safe performance of the procedure. PMID:27397467

  16. Approximate spatial reasoning

    NASA Technical Reports Server (NTRS)

    Dutta, Soumitra

    1988-01-01

    Much of human reasoning is approximate in nature. Formal models of reasoning traditionally try to be precise and reject the fuzziness of concepts in natural use and replace them with non-fuzzy scientific explicata by a process of precisiation. As an alternate to this approach, it has been suggested that rather than regard human reasoning processes as themselves approximating to some more refined and exact logical process that can be carried out with mathematical precision, the essence and power of human reasoning is in its capability to grasp and use inexact concepts directly. This view is supported by the widespread fuzziness of simple everyday terms (e.g., near tall) and the complexity of ordinary tasks (e.g., cleaning a room). Spatial reasoning is an area where humans consistently reason approximately with demonstrably good results. Consider the case of crossing a traffic intersection. We have only an approximate idea of the locations and speeds of various obstacles (e.g., persons and vehicles), but we nevertheless manage to cross such traffic intersections without any harm. The details of our mental processes which enable us to carry out such intricate tasks in such apparently simple manner are not well understood. However, it is that we try to incorporate such approximate reasoning techniques in our computer systems. Approximate spatial reasoning is very important for intelligent mobile agents (e.g., robots), specially for those operating in uncertain or unknown or dynamic domains.

  17. Approximate kernel competitive learning.

    PubMed

    Wu, Jian-Sheng; Zheng, Wei-Shi; Lai, Jian-Huang

    2015-03-01

    Kernel competitive learning has been successfully used to achieve robust clustering. However, kernel competitive learning (KCL) is not scalable for large scale data processing, because (1) it has to calculate and store the full kernel matrix that is too large to be calculated and kept in the memory and (2) it cannot be computed in parallel. In this paper we develop a framework of approximate kernel competitive learning for processing large scale dataset. The proposed framework consists of two parts. First, it derives an approximate kernel competitive learning (AKCL), which learns kernel competitive learning in a subspace via sampling. We provide solid theoretical analysis on why the proposed approximation modelling would work for kernel competitive learning, and furthermore, we show that the computational complexity of AKCL is largely reduced. Second, we propose a pseudo-parallelled approximate kernel competitive learning (PAKCL) based on a set-based kernel competitive learning strategy, which overcomes the obstacle of using parallel programming in kernel competitive learning and significantly accelerates the approximate kernel competitive learning for large scale clustering. The empirical evaluation on publicly available datasets shows that the proposed AKCL and PAKCL can perform comparably as KCL, with a large reduction on computational cost. Also, the proposed methods achieve more effective clustering performance in terms of clustering precision against related approximate clustering approaches.

  18. Quasistatic Modeling of Concentric Tube Robots with External Loads.

    PubMed

    Lock, Jesse; Laing, Genevieve; Mahvash, Mohsen; Dupont, Pierre E

    2010-12-03

    Concentric tube robots are a subset of continuum robots constructed by combining pre-curved elastic tubes. As the tubes are rotated and translated with respect to each other, their curvatures interact elastically, enabling control of the robot's tip configuration as well as the curvature along its length. This technology is projected to be useful in many types of minimally invasive medical procedures. Because these robots are flexible by design, they deflect considerably when applying forces to the external environment. Thus, in contrast to rigid-link robots, their kinematic and static force models are coupled. This paper derives a multi-tube quasistatic model that relates tube rotations and translations together with externally applied loads to robot shape and tip configuration. The model can be applied in robot design, procedure planning as well as control. For validation, the multi-tube model is compared experimentally to a computationally-efficient single-tube approximate model.

  19. Pulse Tube Refrigerator

    NASA Astrophysics Data System (ADS)

    Matsubara, Yoichi

    The pulse tube refrigerator is one of the regenerative cycle refrigerators such as Stirling cycle or Gifford-McMahon cycle which gives the cooling temperature below 150 K down to liquid helium temperature. In 1963, W. E. Gifford invented a simple refrigeration cycle which is composed of compressor, regenerator and simple tube named as pulse tube which gives a similar function of the expander in Stirling or Gifford-McMahon cycle. The thermodynamically performance of this pulse tube refrigerator is inferior to that of other regenerative cycles. In 1984, however, Mikulin and coworkers made a significant advance in pulse tube configuration called as orifice pulse tube. After this, several modifications of the pulse tube hot end configuration have been developed. With those modifications, the thermodynamic performance of the pulse tube refrigerator became the same order to that of Stirling and Gifford-McMahon refrigerator. This article reviews the brief history of the pulse tube refrigerator development in the view point of its thermodynamically efficiency. Simplified theories of the energy flow in the pulse tube have also been described.

  20. Simulations of emerging magnetic flux. I. The formation of stable coronal flux ropes

    SciTech Connect

    Leake, James E.; Linton, Mark G.; Török, Tibor

    2013-12-01

    We present results from three-dimensional visco-resistive magnetohydrodynamic simulations of the emergence of a convection zone magnetic flux tube into a solar atmosphere containing a pre-existing dipole coronal field, which is orientated to minimize reconnection with the emerging field. We observe that the emergence process is capable of producing a coronal flux rope by the transfer of twist from the convection zone, as found in previous simulations. We find that this flux rope is stable, with no evidence of a fast rise, and that its ultimate height in the corona is determined by the strength of the pre-existing dipole field. We also find that although the electric currents in the initial convection zone flux tube are almost perfectly neutralized, the resultant coronal flux rope carries a significant net current. These results suggest that flux tube emergence is capable of creating non-current-neutralized stable flux ropes in the corona, tethered by overlying potential fields, a magnetic configuration that is believed to be the source of coronal mass ejections.

  1. Lunar Lava Tube Sensing

    NASA Technical Reports Server (NTRS)

    York, Cheryl Lynn; Walden, Bryce; Billings, Thomas L.; Reeder, P. Douglas

    1992-01-01

    Large (greater than 300 m diameter) lava tube caverns appear to exist on the Moon and could provide substantial safety and cost benefits for lunar bases. Over 40 m of basalt and regolith constitute the lava tube roof and would protect both construction and operations. Constant temperatures of -20 C reduce thermal stress on structures and machines. Base designs need not incorporate heavy shielding, so lightweight materials can be used and construction can be expedited. Identification and characterization of lava tube caverns can be incorporated into current precursor lunar mission plans. Some searches can even be done from Earth. Specific recommendations for lunar lava tube search and exploration are (1) an Earth-based radar interferometer, (2) an Earth-penetrating radar (EPR) orbiter, (3) kinetic penetrators for lunar lava tube confirmation, (4) a 'Moon Bat' hovering rocket vehicle, and (5) the use of other proposed landers and orbiters to help find lunar lava tubes.

  2. Conduction cooled tube supports

    DOEpatents

    Worley, Arthur C.; Becht, IV, Charles

    1984-01-01

    In boilers, process tubes are suspended by means of support studs that are in thermal contact with and attached to the metal roof casing of the boiler and the upper bend portions of the process tubes. The support studs are sufficiently short that when the boiler is in use, the support studs are cooled by conduction of heat to the process tubes and the roof casing thereby maintaining the temperature of the stud so that it does not exceed 1400.degree. F.

  3. Programming DNA tube circumferences.

    PubMed

    Yin, Peng; Hariadi, Rizal F; Sahu, Sudheer; Choi, Harry M T; Park, Sung Ha; Labean, Thomas H; Reif, John H

    2008-08-08

    Synthesizing molecular tubes with monodisperse, programmable circumferences is an important goal shared by nanotechnology, materials science, and supermolecular chemistry. We program molecular tube circumferences by specifying the complementarity relationships between modular domains in a 42-base single-stranded DNA motif. Single-step annealing results in the self-assembly of long tubes displaying monodisperse circumferences of 4, 5, 6, 7, 8, 10, or 20 DNA helices.

  4. Ruggedized electronographic tube development

    NASA Technical Reports Server (NTRS)

    Nevin, S.

    1981-01-01

    Because of their glass components and lack of far ultraviolet sensitivity, currently available Spectracons are not suited for rocket launch. Technology developed for second generation image tubes and for magnetically focused image tubes can be applied to improve the optical and mechanical properties of these magnetically focused electronographic tubes whose 40 kilovolt signal electrons exit a 4-micrometer thick mica window and penetrate a photographic recording emulsion.

  5. Retrograde gastrojejunostomy tube migration.

    PubMed

    Adesina, Adeleke; Rammohan, Guhan; Jeanmonod, Rebecca

    2014-01-01

    Percutaneous enteral feeding tubes are placed about 250,000 times each year in the United States. Although they are relatively safe, their placement may be complicated by perforation, infection, bleeding, vomiting, dislodgment, and obstruction. There have been numerous reports of antegrade migration of gastrojejunostomy (G-J) tubes. We report a case of G-J tube regurgitation following protracted vomiting and discuss the management of this very rare entity.

  6. COAXIAL TUBE COUPLING

    DOEpatents

    Niemoth, H.R.

    1963-02-26

    BS>This patent shows a device for quickly coupling coaxial tubes in metal-to-metal fashion, so as to be suitable for use in a nuclear reactor. A threaded coliar urges a tapered metal extension on the outer coaxial tube into a tapered seat in the device and simultaneously exerts pressure through a coaxial helical spring so that a similar extension on the inner tube seats in a similar seat near the other end. (AEC)

  7. TUBE SPLITTING APPARATUS

    DOEpatents

    Frantz, C.E.; Cawley, W.E.

    1961-05-01

    A tool is described for cutting a coolant tube adapted to contain fuel elements to enable the tube to be removed from a graphite moderator mass. The tool splits the tube longitudinally into halves and curls the longitudinal edges of the halves inwardly so that they occupy less space and can be moved radially inwardly away from the walls of the hole in the graphite for easy removal from the graphite.

  8. Approximation methods in gravitational-radiation theory

    NASA Astrophysics Data System (ADS)

    Will, C. M.

    1986-02-01

    The observation of gravitational-radiation damping in the binary pulsar PSR 1913+16 and the ongoing experimental search for gravitational waves of extraterrestrial origin have made the theory of gravitational radiation an active branch of classical general relativity. In calculations of gravitational radiation, approximation methods play a crucial role. The author summarizes recent developments in two areas in which approximations are important: (1) the quadrupole approximation, which determines the energy flux and the radiation reaction forces in weak-field, slow-motion, source-within-the-near-zone systems such as the binary pulsar; and (2) the normal modes of oscillation of black holes, where the Wentzel-Kramers-Brillouin approximation gives accurate estimates of the complex frequencies of the modes.

  9. Critical heat flux of subcooled flow boiling with water for high heat flux application

    NASA Astrophysics Data System (ADS)

    Inasaka, Fujio; Nariai, Hideki

    1993-11-01

    Subcooled flow boiling in water is thought to be advantageous in removing high heat load of more than 10 MW/m2. Characteristics of the critical heat flux (CHF), which determines the upper limit of heat removal, are very important for the design of cooling systems. In this paper, studies on subcooled flow boiling CHF, which have been conducted by the authors, are reported. Experiments were conducted using direct current heating of stainless steel tube. For uniform heating conditions, CHF increment in small diameter tubes (1 - 3 mm inside diameter) and the CHF characteristics in tubes with internal twisted tapes were investigated, and also the existing CHF correlations for ordinary tubes (more than 3 mm inside diameter) were evaluated. For peripherally non-uniform heating conditions using the tube, whose wall thickness was partly reduced, the CHF for swirl flow was higher than the CHF under uniform heating conditions with an increase of the non-uniformity factor.

  10. Sapphire tube pressure vessel

    SciTech Connect

    Outwater, J.O.

    2000-05-23

    A pressure vessel is provided for observing corrosive fluids at high temperatures and pressures. A transparent Teflon bag contains the corrosive fluid and provides an inert barrier. The Teflon bag is placed within a sapphire tube, which forms a pressure boundary. The tube is received within a pipe including a viewing window. The combination of the Teflon bag, sapphire tube and pipe provides a strong and inert pressure vessel. In an alternative embodiment, tie rods connect together compression fittings at opposite ends of the sapphire tube.

  11. Composite Pulse Tube

    NASA Technical Reports Server (NTRS)

    Martin, Jerry L.; Cloyd, Jason H.

    2007-01-01

    A modification of the design of the pulse tube in a pulse-tube cryocooler reduces axial thermal conductance while preserving radial thermal conductance. It is desirable to minimize axial thermal conductance in the pulse-tube wall to minimize leakage of heat between the warm and cold ends of the pulse tube. At the same time, it is desirable to maximize radial thermal conductance at the cold end of the pulse tube to ensure adequate thermal contact between (1) a heat exchanger in the form of a stack of copper screens inside the pulse tube at the cold end and (2) the remainder of the cold tip, which is the object to which the heat load is applied and from which heat must be removed. The modified design yields a low-heat-leak pulse tube that can be easily integrated with a cold tip. A typical pulse tube of prior design is either a thin-walled metal tube or a metal tube with a nonmetallic lining. It is desirable that the outer surface of a pulse tube be cylindrical (in contradistinction to tapered) to simplify the design of a regenerator that is also part of the cryocooler. Under some conditions, it is desirable to taper the inner surface of the pulse tube to reduce acoustic streaming. The combination of a cylindrical outer surface and a tapered inner surface can lead to unacceptably large axial conduction if the pulse tube is made entirely of metal. Making the pulse-tube wall of a nonmetallic, lowthermal- conductivity material would not solve the problem because the wall would not afford the needed thermal contact for the stack of screens in the cold end. The modified design calls for fabricating the pulse tube in two parts: a longer, nonmetallic part that is tapered on the inside and cylindrical on the outside and a shorter, metallic part that is cylindrical on both the inside and the outside. The nonmetallic part can be made from G-10 fiberglass-reinforced epoxy or other low-thermal-conductivity, cryogenically compatible material. The metallic part must have high

  12. Wound tube heat exchanger

    DOEpatents

    Ecker, Amir L.

    1983-01-01

    What is disclosed is a wound tube heat exchanger in which a plurality of tubes having flattened areas are held contiguous adjacent flattened areas of tubes by a plurality of windings to give a double walled heat exchanger. The plurality of windings serve as a plurality of effective force vectors holding the conduits contiguous heat conducting walls of another conduit and result in highly efficient heat transfer. The resulting heat exchange bundle is economical and can be coiled into the desired shape. Also disclosed are specific embodiments such as the one in which the tubes are expanded against their windings after being coiled to insure highly efficient heat transfer.

  13. Sapphire tube pressure vessel

    DOEpatents

    Outwater, John O.

    2000-01-01

    A pressure vessel is provided for observing corrosive fluids at high temperatures and pressures. A transparent Teflon bag contains the corrosive fluid and provides an inert barrier. The Teflon bag is placed within a sapphire tube, which forms a pressure boundary. The tube is received within a pipe including a viewing window. The combination of the Teflon bag, sapphire tube and pipe provides a strong and inert pressure vessel. In an alternative embodiment, tie rods connect together compression fittings at opposite ends of the sapphire tube.

  14. Fuel nozzle tube retention

    DOEpatents

    Cihlar, David William; Melton, Patrick Benedict

    2017-02-28

    A system for retaining a fuel nozzle premix tube includes a retention plate and a premix tube which extends downstream from an outlet of a premix passage defined along an aft side of a fuel plenum body. The premix tube includes an inlet end and a spring support feature which is disposed proximate to the inlet end. The premix tube extends through the retention plate. The spring retention feature is disposed between an aft side of the fuel plenum and the retention plate. The system further includes a spring which extends between the spring retention feature and the retention plate.

  15. Multicriteria approximation through decomposition

    SciTech Connect

    Burch, C.; Krumke, S.; Marathe, M.; Phillips, C.; Sundberg, E.

    1998-06-01

    The authors propose a general technique called solution decomposition to devise approximation algorithms with provable performance guarantees. The technique is applicable to a large class of combinatorial optimization problems that can be formulated as integer linear programs. Two key ingredients of their technique involve finding a decomposition of a fractional solution into a convex combination of feasible integral solutions and devising generic approximation algorithms based on calls to such decompositions as oracles. The technique is closely related to randomized rounding. Their method yields as corollaries unified solutions to a number of well studied problems and it provides the first approximation algorithms with provable guarantees for a number of new problems. The particular results obtained in this paper include the following: (1) the authors demonstrate how the technique can be used to provide more understanding of previous results and new algorithms for classical problems such as Multicriteria Spanning Trees, and Suitcase Packing; (2) they also show how the ideas can be extended to apply to multicriteria optimization problems, in which they wish to minimize a certain objective function subject to one or more budget constraints. As corollaries they obtain first non-trivial multicriteria approximation algorithms for problems including the k-Hurdle and the Network Inhibition problems.

  16. Multicriteria approximation through decomposition

    SciTech Connect

    Burch, C. |; Krumke, S.; Marathe, M.; Phillips, C.; Sundberg, E. |

    1997-12-01

    The authors propose a general technique called solution decomposition to devise approximation algorithms with provable performance guarantees. The technique is applicable to a large class of combinatorial optimization problems that can be formulated as integer linear programs. Two key ingredients of the technique involve finding a decomposition of a fractional solution into a convex combination of feasible integral solutions and devising generic approximation algorithms based on calls to such decompositions as oracles. The technique is closely related to randomized rounding. The method yields as corollaries unified solutions to a number of well studied problems and it provides the first approximation algorithms with provable guarantees for a number of new problems. The particular results obtained in this paper include the following: (1) The authors demonstrate how the technique can be used to provide more understanding of previous results and new algorithms for classical problems such as Multicriteria Spanning Trees, and Suitcase Packing. (2) They show how the ideas can be extended to apply to multicriteria optimization problems, in which they wish to minimize a certain objective function subject to one or more budget constraints. As corollaries they obtain first non-trivial multicriteria approximation algorithms for problems including the k-Hurdle and the Network Inhibition problems.

  17. On Stochastic Approximation.

    ERIC Educational Resources Information Center

    Wolff, Hans

    This paper deals with a stochastic process for the approximation of the root of a regression equation. This process was first suggested by Robbins and Monro. The main result here is a necessary and sufficient condition on the iteration coefficients for convergence of the process (convergence with probability one and convergence in the quadratic…

  18. Approximating Integrals Using Probability

    ERIC Educational Resources Information Center

    Maruszewski, Richard F., Jr.; Caudle, Kyle A.

    2005-01-01

    As part of a discussion on Monte Carlo methods, which outlines how to use probability expectations to approximate the value of a definite integral. The purpose of this paper is to elaborate on this technique and then to show several examples using visual basic as a programming tool. It is an interesting method because it combines two branches of…

  19. Vector Magnetic Field in Emerging Flux Regions

    NASA Astrophysics Data System (ADS)

    Schmieder, B.; Pariat, E.

    A crucial phase in magnetic flux emergence is the rise of magnetic flux tubes through the solar photosphere, which represents a severe transition between the very different environments of the solar interior and corona. Multi-wavelength observations with Flare Genesis, TRACE, SoHO, and more recently with the vector magnetographs at THEMIS and Hida (DST) led to the following conclusions. The fragmented magnetic field in the emergence region - with dipped field lines or bald patches - is directly related with Ellerman bombs, arch filament systems, and overlying coronal loops. Measurements of vector magnetic fields have given evidence that undulating "serpentine" fields are present while magnetic flux tubes cross the photosphere. See the sketch below, and for more detail see Pariat et al. (2004, 2007); Watanabe et al. (2008):

  20. Steam generator tube failures

    SciTech Connect

    MacDonald, P.E.; Shah, V.N.; Ward, L.W.; Ellison, P.G.

    1996-04-01

    A review and summary of the available information on steam generator tubing failures and the impact of these failures on plant safety is presented. The following topics are covered: pressurized water reactor (PWR), Canadian deuterium uranium (CANDU) reactor, and Russian water moderated, water cooled energy reactor (VVER) steam generator degradation, PWR steam generator tube ruptures, the thermal-hydraulic response of a PWR plant with a faulted steam generator, the risk significance of steam generator tube rupture accidents, tubing inspection requirements and fitness-for-service criteria in various countries, and defect detection reliability and sizing accuracy. A significant number of steam generator tubes are defective and are removed from service or repaired each year. This wide spread damage has been caused by many diverse degradation mechanisms, some of which are difficult to detect and predict. In addition, spontaneous tube ruptures have occurred at the rate of about one every 2 years over the last 20 years, and incipient tube ruptures (tube failures usually identified with leak detection monitors just before rupture) have been occurring at the rate of about one per year. These ruptures have caused complex plant transients which have not always been easy for the reactor operators to control. Our analysis shows that if more than 15 tubes rupture during a main steam line break, the system response could lead to core melting. Although spontaneous and induced steam generator tube ruptures are small contributors to the total core damage frequency calculated in probabilistic risk assessments, they are risk significant because the radionuclides are likely to bypass the reactor containment building. The frequency of steam generator tube ruptures can be significantly reduced through appropriate and timely inspections and repairs or removal from service.

  1. Optimizing the Zeldovich approximation

    NASA Technical Reports Server (NTRS)

    Melott, Adrian L.; Pellman, Todd F.; Shandarin, Sergei F.

    1994-01-01

    We have recently learned that the Zeldovich approximation can be successfully used for a far wider range of gravitational instability scenarios than formerly proposed; we study here how to extend this range. In previous work (Coles, Melott and Shandarin 1993, hereafter CMS) we studied the accuracy of several analytic approximations to gravitational clustering in the mildly nonlinear regime. We found that what we called the 'truncated Zeldovich approximation' (TZA) was better than any other (except in one case the ordinary Zeldovich approximation) over a wide range from linear to mildly nonlinear (sigma approximately 3) regimes. TZA was specified by setting Fourier amplitudes equal to zero for all wavenumbers greater than k(sub nl), where k(sub nl) marks the transition to the nonlinear regime. Here, we study the cross correlation of generalized TZA with a group of n-body simulations for three shapes of window function: sharp k-truncation (as in CMS), a tophat in coordinate space, or a Gaussian. We also study the variation in the crosscorrelation as a function of initial truncation scale within each type. We find that k-truncation, which was so much better than other things tried in CMS, is the worst of these three window shapes. We find that a Gaussian window e(exp(-k(exp 2)/2k(exp 2, sub G))) applied to the initial Fourier amplitudes is the best choice. It produces a greatly improved crosscorrelation in those cases which most needed improvement, e.g. those with more small-scale power in the initial conditions. The optimum choice of kG for the Gaussian window is (a somewhat spectrum-dependent) 1 to 1.5 times k(sub nl). Although all three windows produce similar power spectra and density distribution functions after application of the Zeldovich approximation, the agreement of the phases of the Fourier components with the n-body simulation is better for the Gaussian window. We therefore ascribe the success of the best-choice Gaussian window to its superior treatment

  2. Creeping gaseous flows through elastic tube and annulus micro-configurations

    NASA Astrophysics Data System (ADS)

    Elbaz, Shai; Jacob, Hila; Gat, Amir

    2016-11-01

    Gaseous flows in elastic micro-configurations is relevant to biological systems (e.g. alveolar ducts in the lungs) as well as to applications such as gas actuated soft micro-robots. We here examine the effect of low-Mach-number compressibility on creeping gaseous axial flows through linearly elastic tube and annulus micro-configurations. For steady flows, the leading-order effects of elasticity on the pressure distribution and mass-flux are obtained. For transient flow in a tube with small deformations, elastic effects are shown to be negligible in leading order due to compressibility. We then examine transient flows in annular configurations where the deformation is significant compared with the gap between the inner and outer cylinders defining the annulus. Both compressibility and elasticity are obtained as dominant terms interacting with viscosity. For a sudden flux impulse, the governing non-linear leading order diffusion equation is initially approximated by a porous-medium-equation of order 2.5 for the pressure square. However, as the fluid expand and the pressure decreases, the governing equation degenerates to a porous-medium-equation of order 2 for the pressure.

  3. End Restraints for Impact-Energy-Absorbing Tube Specimens

    NASA Technical Reports Server (NTRS)

    Farley, G. L.; Modlin, J. T.

    1985-01-01

    Inexpensive device developed that eliminates tipping problem without affecting crushing process. Device consists of soft sponge-rubber insert approximately 0.5 inches (1.3 centimeters) thick, cut to same diameter as internal diameter of tube specimen. Metal washer, slightly smaller than internal diameter of tube, placed on top of rubber insert. Screw passed through washer and rubber insert and threaded into base of test machine. As screw tightened against washer, rubber insert compressed and expands radially. Radial expansion applies pressure against internal wall of tube specimen, which provides sufficient support to tube to prevent tipping.

  4. Applied Routh approximation

    NASA Technical Reports Server (NTRS)

    Merrill, W. C.

    1978-01-01

    The Routh approximation technique for reducing the complexity of system models was applied in the frequency domain to a 16th order, state variable model of the F100 engine and to a 43d order, transfer function model of a launch vehicle boost pump pressure regulator. The results motivate extending the frequency domain formulation of the Routh method to the time domain in order to handle the state variable formulation directly. The time domain formulation was derived and a characterization that specifies all possible Routh similarity transformations was given. The characterization was computed by solving two eigenvalue-eigenvector problems. The application of the time domain Routh technique to the state variable engine model is described, and some results are given. Additional computational problems are discussed, including an optimization procedure that can improve the approximation accuracy by taking advantage of the transformation characterization.

  5. Method for shaping polyethylene tubing

    NASA Technical Reports Server (NTRS)

    Kramer, R. C.

    1981-01-01

    Method forms polyethylene plastic tubing into configurations previously only possible with metal tubing. By using polyethylene in place of copper or stain less steel tubing inlow pressure systems, fabrication costs are significantly reduced. Polyethylene tubing can be used whenever low pressure tubing is needed in oil operations, aircraft and space applications, powerplants, and testing laboratories.

  6. Topics in Metric Approximation

    NASA Astrophysics Data System (ADS)

    Leeb, William Edward

    This thesis develops effective approximations of certain metrics that occur frequently in pure and applied mathematics. We show that distances that often arise in applications, such as the Earth Mover's Distance between two probability measures, can be approximated by easily computed formulas for a wide variety of ground distances. We develop simple and easily computed characterizations both of norms measuring a function's regularity -- such as the Lipschitz norm -- and of their duals. We are particularly concerned with the tensor product of metric spaces, where the natural notion of regularity is not the Lipschitz condition but the mixed Lipschitz condition. A theme that runs throughout this thesis is that snowflake metrics (metrics raised to a power less than 1) are often better-behaved than ordinary metrics. For example, we show that snowflake metrics on finite spaces can be approximated by the average of tree metrics with a distortion bounded by intrinsic geometric characteristics of the space and not the number of points. Many of the metrics for which we characterize the Lipschitz space and its dual are snowflake metrics. We also present applications of the characterization of certain regularity norms to the problem of recovering a matrix that has been corrupted by noise. We are able to achieve an optimal rate of recovery for certain families of matrices by exploiting the relationship between mixed-variable regularity conditions and the decay of a function's coefficients in a certain orthonormal basis.

  7. Pyrotechnic Tubing Connector

    NASA Technical Reports Server (NTRS)

    Graves, Thomas J.; Yang, Robert A.

    1988-01-01

    Tool forms mechanical seal at joint without levers or hydraulic apparatus. Proposed tool intended for use in outer space used on Earth by heavily garbed workers to join tubing in difficult environments. Called Pyrotool, used with Lokring (or equivalent) fittings. Piston slides in cylinder when pushed by gas from detonating pyrotechnic charge. Impulse of piston compresses fittings, sealing around butting ends of tubes.

  8. Method for making heat exchange tubes

    SciTech Connect

    Cunningham, J.L.; Campbell, B.J.

    1987-09-15

    This patent describes a method of making a heat exchange tube from difficult to work materials such as titanium and stainless steel in a single finning pass. It consists of inserting a mandrel having at least a first larger diameter portion and a second smaller diameter portion inside a plain tube. Then move the axes of a rotating disc carrying finning arbors toward the tube so that first and second sets of discs on the arbors, which are separated from each other by a spacer member, will sequentially force portions of the tube toward the first and second portions of the mandrel. The first set of discs serve to initially form the fins on the tube to at least approximately their final outside diameter and the second set of discs, whose discs are axially spaced so as to have a greater pitch than the discs of the first set, serve to reduce the root diameter of the fins previously formed by the first set of discs without substantially changing the outer diameter of the fins formed by the first set of discs. The greater pitch of the second set of discs causes an elongation of the tube and reduces its tendency to twist during finning.

  9. Fallopian Tube Catheterization

    PubMed Central

    Thurmond, Amy Suzanne

    2013-01-01

    Fallopian tube catheterization is used for treatment of infertility caused by proximal tubal occlusion, and has replaced surgical treatment for this condition. More recently, fallopian tube catheterization has been used for tubal sterilization. Interventional radiologists tested numerous methods for tubal occlusion using the rabbit as an animal model. As a result, a tubal device has recently been Food and Drug Administration approved for permanent sterilization using hysteroscopic guidance; it can also be placed fluoroscopically by fallopian tube catheterization as an “off-label” procedure. This is a 5-year continuation and update on a procedure that has been done by interventional radiologists for 25 years; history of the development of fallopian tube catheterization in women has been published in detail in this journal. Highlighted in this article will be description of the basic components needed for fallopian tube catheterization. PMID:24436565

  10. Ovalization of Tubes Under Bending and Compression

    NASA Technical Reports Server (NTRS)

    Demer, L J; Kavanaugh, E S

    1944-01-01

    An empirical equation has been developed that gives the approximate amount of ovalization for tubes under bending loads. Tests were made on tubes in the d/t range from 6 to 14, the latter d/t ratio being in the normal landing gear range. Within the range of the series of tests conducted, the increase in ovalization due to a compression load in combination with a bending load was very small. The bending load, being the principal factor in producing the ovalization, is a rather complex function of the bending moment, d/t ratio, cantilever length, and distance between opposite bearing faces. (author)

  11. Femtolensing: Beyond the semiclassical approximation

    NASA Technical Reports Server (NTRS)

    Ulmer, Andrew; Goodman, Jeremy

    1995-01-01

    Femtolensoing is a gravitational lensing effect in which the magnification is a function not only of the position and sizes of the source and lens, but also of the wavelength of light. Femtolensing is the only known effect of 10(exp -13) - 10(exp -16) solar mass) dark-matter objects and may possibly be detectable in cosmological gamma-ray burst spectra. We present a new and efficient algorithm for femtolensing calculation in general potentials. The physical optics results presented here differ at low frequencies from the semiclassical approximation, in which the flux is attributed to a finite number of mutually coherent images. At higher frequencies, our results agree well with the semicalssical predictions. Applying our method to a point-mass lens with external shear, we find complex events that have structure at both large and small spectral resolution. In this way, we show that femtolensing may be observable for lenses up to 10(exp -11) solar mass, much larger than previously believed. Additionally, we discuss the possibility of a search femtolensing of white dwarfs in the Large Magellanic Cloud at optical wavelengths.

  12. Study of Critical Heat Flux Mechanism in Flow Boiling Using Bubble Crowding Model

    NASA Astrophysics Data System (ADS)

    Kinoshita, Hidetaka; Nariai, Hideki; Inasaka, Fujio

    Critical heat flux (CHF) of Subcooled Flow Boiling with water in a tube was investigated from the viewpoint of mechanistic models. The Weisman-Pei bubble crowding model was selected to predict CHF in a short tube and in a tube with an internal twisted tape under nonuniform heating conditions, Based on the results of bubble behavior observation and preliminary analysis. The original Weisman-Pei model was modified in order to explain the physical phenomena of CHF. The modified model predicted well CHF in a smooth tube including the very short tube and the tube with an internal twisted tape under uniform and nonuniform heating conditions.

  13. Approximate model for laser ablation of carbon

    NASA Astrophysics Data System (ADS)

    Shusser, Michael

    2010-08-01

    The paper presents an approximate kinetic theory model of ablation of carbon by a nanosecond laser pulse. The model approximates the process as sublimation and combines conduction heat transfer in the target with the gas dynamics of the ablated plume which are coupled through the boundary conditions at the interface. The ablated mass flux and the temperature of the ablating material are obtained from the assumption that the ablation rate is restricted by the kinetic theory limitation on the maximum mass flux that can be attained in a phase-change process. To account for non-uniform distribution of the laser intensity while keeping the calculation simple the quasi-one-dimensional approximation is used in both gas and solid phases. The results are compared with the predictions of the exact axisymmetric model that uses the conservation relations at the interface derived from the momentum solution of the Boltzmann equation for arbitrary strong evaporation. It is seen that the simpler approximate model provides good accuracy.

  14. An approximate classical unimolecular reaction rate theory

    NASA Astrophysics Data System (ADS)

    Zhao, Meishan; Rice, Stuart A.

    1992-05-01

    We describe a classical theory of unimolecular reaction rate which is derived from the analysis of Davis and Gray by use of simplifying approximations. These approximations concern the calculation of the locations of, and the fluxes of phase points across, the bottlenecks to fragmentation and to intramolecular energy transfer. The bottleneck to fragment separation is represented as a vibration-rotation state dependent separatrix, which approximation is similar to but extends and improves the approximations for the separatrix introduced by Gray, Rice, and Davis and by Zhao and Rice. The novel feature in our analysis is the representation of the bottlenecks to intramolecular energy transfer as dividing surfaces in phase space; the locations of these dividing surfaces are determined by the same conditions as locate the remnants of robust tori with frequency ratios related to the golden mean (in a two degree of freedom system these are the cantori). The flux of phase points across each dividing surface is calculated with an analytic representation instead of a stroboscopic mapping. The rate of unimolecular reaction is identified with the net rate at which phase points escape from the region of quasiperiodic bounded motion to the region of free fragment motion by consecutively crossing the dividing surfaces for intramolecular energy exchange and the separatrix. This new theory generates predictions of the rates of predissociation of the van der Waals molecules HeI2, NeI2 and ArI2 which are in very good agreement with available experimental data.

  15. Approximate option pricing

    SciTech Connect

    Chalasani, P.; Saias, I.; Jha, S.

    1996-04-08

    As increasingly large volumes of sophisticated options (called derivative securities) are traded in world financial markets, determining a fair price for these options has become an important and difficult computational problem. Many valuation codes use the binomial pricing model, in which the stock price is driven by a random walk. In this model, the value of an n-period option on a stock is the expected time-discounted value of the future cash flow on an n-period stock price path. Path-dependent options are particularly difficult to value since the future cash flow depends on the entire stock price path rather than on just the final stock price. Currently such options are approximately priced by Monte carlo methods with error bounds that hold only with high probability and which are reduced by increasing the number of simulation runs. In this paper the authors show that pricing an arbitrary path-dependent option is {number_sign}-P hard. They show that certain types f path-dependent options can be valued exactly in polynomial time. Asian options are path-dependent options that are particularly hard to price, and for these they design deterministic polynomial-time approximate algorithms. They show that the value of a perpetual American put option (which can be computed in constant time) is in many cases a good approximation to the value of an otherwise identical n-period American put option. In contrast to Monte Carlo methods, the algorithms have guaranteed error bounds that are polynormally small (and in some cases exponentially small) in the maturity n. For the error analysis they derive large-deviation results for random walks that may be of independent interest.

  16. Approximate Qualitative Temporal Reasoning

    DTIC Science & Technology

    2001-01-01

    i.e., their boundaries can be placed in such a way that they coincide with the cell boundaries of the appropriate partition of the time-line. (Think of...respect to some appropriate partition of the time-line. For example, I felt well on Saturday. When I measured my temperature I had a fever on Monday and on...Bittner / Approximate Qualitative Temporal Reasoning 49 [27] I. A. Goralwalla, Y. Leontiev , M. T. Özsu, D. Szafron, and C. Combi. Temporal granularity for

  17. [Enteral tube feeding].

    PubMed

    Haller, Alois

    2014-03-01

    Tube feeding is an integral part of medical therapies, and can be easily managed also in the outpatient setting. Tube feeding by the stomach or small intestine with nasogastral or nasojejunal tubes is common in clinical practice. Long-term nutrition is usually provided through a permanent tube, i. e. a percutaneous endoscopic gastrostomy (PEG). Modern portable nutrition pumps are used to cover the patient's nutritional needs. Enteral nutrition is always indicated if patients can not or should not eat or if nutritional requirements cannot be covered within 3 days after an intervention, e. g. after abdominal surgery. Industrially produced tube feedings with defined substrate concentrations are being used; different compositions of nutrients, such as glutamine fish oil etc., are used dependent on the the condition of the patient. Enteral nutrition may be associated with complications of the tube, e. g. dislocation, malposition or obstruction, as well as the feeding itself, e. g.hyperglycaemia, electrolyte disturbances, refeeding syndrome diarrhea or aspiration). However, the benefit of tube feeding usually exceeds the potential harm substantially.

  18. Approximation methods in gravitational-radiation theory

    NASA Technical Reports Server (NTRS)

    Will, C. M.

    1986-01-01

    The observation of gravitational-radiation damping in the binary pulsar PSR 1913 + 16 and the ongoing experimental search for gravitational waves of extraterrestrial origin have made the theory of gravitational radiation an active branch of classical general relativity. In calculations of gravitational radiation, approximation methods play a crucial role. Recent developments are summarized in two areas in which approximations are important: (a) the quadrupole approxiamtion, which determines the energy flux and the radiation reaction forces in weak-field, slow-motion, source-within-the-near-zone systems such as the binary pulsar; and (b) the normal modes of oscillation of black holes, where the Wentzel-Kramers-Brillouin approximation gives accurate estimates of the complex frequencies of the modes.

  19. Modeling and experimental study of nucleate boiling on a vertical array of horizontal plain tubes

    SciTech Connect

    Ribatski, Gherhardt; Saiz Jabardo, Jose M.

    2008-09-15

    An investigation of nucleate boiling on a vertical array of horizontal plain tubes is presented in this paper. Experiments were performed with refrigerant R123 at reduced pressures varying from 0.022 to 0.64, tube pitch to diameter ratios of 1.32, 1.53 and 2.00, and heat fluxes from 0.5 to 40 kW/m{sup 2}. Brass tubes with external diameters of 19.05 mm and average roughness of 0.12 {mu}m were used in the experiments. The effect of the tube spacing on the local heat transfer coefficient along the tube array was negligible within the present range of experimental conditions. For partial nucleate boiling, characterized by low heat fluxes, and low reduced pressures, the tube positioning shows a remarkable effect on the heat transfer coefficient. Based on these data, a general correlation for the prediction of the nucleate boiling heat transfer coefficient on a vertical array of horizontal tubes under flooded conditions was proposed. According to this correlation, the ratio between the heat transfer coefficients of a given tube and the lowest tube in the array depends only on the tube row number, the reduced pressure and the heat flux. By using the proposed correlation, most of the experimental heat transfer coefficients obtained in the present study were predicted within {+-}15%. The new correlation compares reasonably well with independent data from the literature. (author)

  20. Numerical model for swirl cooling in high-heat-flux particle beam targets and the design of a swirl-flow-based plasma limiter

    NASA Astrophysics Data System (ADS)

    Milora, S. L.; Combs, S. K.; Foster, C. A.

    1984-11-01

    An unsteady, two-dimensional heat conduction code was used to study the performance of swirl-flow-based neutral particle beam targets. The model includes the effects of two-phase heat transfer and asymmetric heating of tubular elements. The calorimeter subjected to 30-s neutral beam pulses with incident heat flux intensities of greater than or equal to 5 kW/cu cm, is modeled. The numerical results indicate that local heat fluxes in excess of 7 kW/sq cm occur at the water cooled surface on the side exposed to the beam. This exceeds critical heat flux limits for uniformly heated tubes with straight flow by approximately a factor of 5. The design of a plasma limiter based on swirl flow heat transfer is presented.

  1. Numerical model for swirl flow cooling in high-heat-flux particle beam targets and the design of a swirl-flow-based plasma limiter

    SciTech Connect

    Milora, S.L.; Combs, S.K.; Foster, C.A.

    1984-11-01

    An unsteady, two-dimensional heat conduction code has been used to study the performance of swirl-flow-based neutral particle beam targets. The model includes the effects of two-phase heat transfer and asymmetric heating of tubular elements. The calorimeter installed in the Medium Energy Test Facility, which has been subjected to 30-s neutral beam pulses with incident heat flux intensities of greater than or equal to 5 kW/cm/sup 2/, has been modeled. The numerical results indicate that local heat fluxes in excess of 7 kW/cm/sup 2/ occur at the water-cooled surface on the side exposed to the beam. This exceeds critical heat flux limits for uniformly heated tubes wih straight flow by approximately a factor of 5. The design of a plasma limiter based on swirl flow heat transfer is presented.

  2. Using wave intensity analysis to determine local reflection coefficient in flexible tubes.

    PubMed

    Li, Ye; Parker, Kim H; Khir, Ashraf W

    2016-09-06

    It has been shown that reflected waves affect the shape and magnitude of the arterial pressure waveform, and that reflected waves have physiological and clinical prognostic values. In general the reflection coefficient is defined as the ratio of the energy of the reflected to the incident wave. Since pressure has the units of energy per unit volume, arterial reflection coefficient are traditionally defined as the ratio of reflected to the incident pressure. We demonstrate that this approach maybe prone to inaccuracies when applied locally. One of the main objectives of this work is to examine the possibility of using wave intensity, which has units of energy flux per unit area, to determine the reflection coefficient. We used an in vitro experimental setting with a single inlet tube joined to a second tube with different properties to form a single reflection site. The second tube was long enough to ensure that reflections from its outlet did not obscure the interactions of the initial wave. We generated an approximately half sinusoidal wave at the inlet of the tube and took measurements of pressure and flow along the tube. We calculated the reflection coefficient using wave intensity (RdI and RdI(0.5)) and wave energy (RI and RI(0.5)) as well as the measured pressure (RdP) and compared these results with the reflection coefficient calculated theoretically based on the mechanical properties of the tubes. The experimental results show that the reflection coefficients determined by all the techniques we studied increased or decreased with distance from the reflection site, depending on the type of reflection. In our experiments, RdP, RdI(0.5) and RI(0.5) are the most reliable parameters to measure the mean reflection coefficient, whilst RdI and RI provide the best measure of the local reflection coefficient, closest to the reflection site. Additional work with bifurcations, tapered tubes and in vivo experiments are needed to further understand, validate the method

  3. Hierarchical Approximate Bayesian Computation

    PubMed Central

    Turner, Brandon M.; Van Zandt, Trisha

    2013-01-01

    Approximate Bayesian computation (ABC) is a powerful technique for estimating the posterior distribution of a model’s parameters. It is especially important when the model to be fit has no explicit likelihood function, which happens for computational (or simulation-based) models such as those that are popular in cognitive neuroscience and other areas in psychology. However, ABC is usually applied only to models with few parameters. Extending ABC to hierarchical models has been difficult because high-dimensional hierarchical models add computational complexity that conventional ABC cannot accommodate. In this paper we summarize some current approaches for performing hierarchical ABC and introduce a new algorithm called Gibbs ABC. This new algorithm incorporates well-known Bayesian techniques to improve the accuracy and efficiency of the ABC approach for estimation of hierarchical models. We then use the Gibbs ABC algorithm to estimate the parameters of two models of signal detection, one with and one without a tractable likelihood function. PMID:24297436

  4. String/flux tube duality on the light cone

    SciTech Connect

    Brower, Richard C.; Tan, C.-I; Thorn, Charles B.

    2006-06-15

    The equivalence of quantum field theory and string theory as exemplified by the AdS/CFT correspondence is explored from the point of view of light cone quantization. On the string side we discuss the light cone version of the static string connecting a heavy external quark source to a heavy external antiquark source, together with small oscillations about the static string configuration. On the field theory side we analyze the weak/strong coupling transition in a ladder diagram model of the quark-antiquark system, also from the point of view of the light cone. Our results are completely consistent with those obtained by more standard covariant methods in the limit of infinitely massive quarks.

  5. Heat transfer to throat tubes in a square-chambered rocket engine at the NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Nesbitt, James A.; Brindley, William J.

    1989-01-01

    A gaseous H2/O2 rocket engine was constructed at the NASA-Lewis to provide a high heat flux source representative of the heat flux to the blades in the high pressure fuel turbopump (HPFTP) during startup of the space shuttle main engines. The high heat flux source was required to evaluate the durability of thermal barrier coatings being investigated for use on these blades. The heat transfer, and specifically, the heat flux to tubes located at the throat of the test rocket engine was evaluated and compared to the heat flux to the blades in the HPFTP during engine startup. Gas temperatures, pressures and heat transfer coefficients in the test rocket engine were measured. Near surface metal temperatures below thin thermal barrier coatings were also measured at various angular orientations around the throat tube to indicate the angular dependence of the heat transfer coefficients. A finite difference model for a throat tube was developed and a thermal analysis was performed using the measured gas temperatures and the derived heat transfer coefficients to predict metal temperatures in the tube. Near surface metal temperatures of an uncoated throat tube were measured at the stagnation point and showed good agreement with temperatures predicted by the thermal model. The maximum heat flux to the throat tube was calculated and compared to that predicted for the leading edge of an HPFTP blade. It is shown that the heat flux to an uncooled throat tube is slightly greater than the heat flux to an HPFTP blade during engine startup.

  6. The effects of photon flux on energy spectra and imaging characteristics in a photon-counting x-ray detector.

    PubMed

    Cho, H-M; Kim, H-J; Choi, Y-N; Lee, S-W; Ryu, H-J; Lee, Y-J

    2013-07-21

    The purpose of this paper was to investigate the effect of photon flux on the recorded energy spectrum and images produced with a photon-counting detector. We used a photon-counting cadmium telluride (CdTe) x-ray detector (model PID350, Oy Ajat, Finland). The CdTe array was composed of 16 384 pixels, each 0.35 × 0.35 × 0.75 mm(3) in dimension. The photon flux is controlled by an additional aluminum filter (1, 10, 20, 30 and 40 mm). Images were acquired at three different tube voltages (50, 70 and 90 kVp) with various thicknesses of photon flux control (PFC) filters. The data acquisition time was changed to acquire an approximately equal number of counts within the selected energy window between different thicknesses of PFC filters at the same tube voltage. A phantom was manufactured to evaluate the photon flux effect on the image. The phantom was made from polymethyl methacrylate and four concentrations of iodine. The photon flux effect on the image was evaluated by the signal-difference-to-noise ratio (SDNR) between iodine and the background material. The changes of photon flux affected the recorded energy spectra and image. The thickness of the PFC filter that showed the maximum SDNR differed according to the tube voltage. The 10 mm PFC filter showed the highest SDNR at 50 and 70 kVp, while the 30 mm PFC filter exhibited the highest SDNR at 90 kVp. The SDNR was improved up to, on average, 30-fold in optimal photon flux conditions which acquired a spectrum including the lowest electronic noise with no pulse pile-up effect. The results of this study showed that the photon flux affected not only the acquired energy spectrum but also the image. Based on these results, the spectral distortion correction should be considered in connection with the image that is the ultimate purpose of medical imaging.

  7. The effects of photon flux on energy spectra and imaging characteristics in a photon-counting x-ray detector

    NASA Astrophysics Data System (ADS)

    Cho, H.-M.; Kim, H.-J.; Choi, Y.-N.; Lee, S.-W.; Ryu, H.-J.; Lee, Y.-J.

    2013-07-01

    The purpose of this paper was to investigate the effect of photon flux on the recorded energy spectrum and images produced with a photon-counting detector. We used a photon-counting cadmium telluride (CdTe) x-ray detector (model PID350, Oy Ajat, Finland). The CdTe array was composed of 16 384 pixels, each 0.35 × 0.35 × 0.75 mm3 in dimension. The photon flux is controlled by an additional aluminum filter (1, 10, 20, 30 and 40 mm). Images were acquired at three different tube voltages (50, 70 and 90 kVp) with various thicknesses of photon flux control (PFC) filters. The data acquisition time was changed to acquire an approximately equal number of counts within the selected energy window between different thicknesses of PFC filters at the same tube voltage. A phantom was manufactured to evaluate the photon flux effect on the image. The phantom was made from polymethyl methacrylate and four concentrations of iodine. The photon flux effect on the image was evaluated by the signal-difference-to-noise ratio (SDNR) between iodine and the background material. The changes of photon flux affected the recorded energy spectra and image. The thickness of the PFC filter that showed the maximum SDNR differed according to the tube voltage. The 10 mm PFC filter showed the highest SDNR at 50 and 70 kVp, while the 30 mm PFC filter exhibited the highest SDNR at 90 kVp. The SDNR was improved up to, on average, 30-fold in optimal photon flux conditions which acquired a spectrum including the lowest electronic noise with no pulse pile-up effect. The results of this study showed that the photon flux affected not only the acquired energy spectrum but also the image. Based on these results, the spectral distortion correction should be considered in connection with the image that is the ultimate purpose of medical imaging.

  8. Snorkeling and Jones tubes.

    PubMed

    Lam, Lewis Y W; Weatherhead, Robert G

    2015-01-01

    We report a case of tympanic membrane rupture during snorkeling in a 17-year-old young man who had previously undergone bilateral Jones tubes placed for epiphora. To our knowledge, this phenomenon has not been previously reported.

  9. Enteral nutrition by tube.

    PubMed

    Armstrong, P J; Hand, M S; Frederick, G S

    1990-01-01

    When oral intake is unsatisfactory or contraindicated, maintenance of nutrition by tube feeding is an alternative to the parenteral route. A large volume of research data supports the decision to use the enteral route whenever possible. Entry of food into the alimentary tract is a stimulus to structural and functional maintenance of that tract. Enteral nutrition can be given via indwelling nasoesophageal, pharyngostomy, esophagostomy, percutaneous or surgical gastrostomy, or enterostomy tube. Use of an appropriate catheter, familiarity with the technique used, and careful patient selection and monitoring are important factors in successful tube feeding. Blenderized pet food diets should be fed whenever possible; commercially available liquid diets provide an alternative when tube caliber or patient factors preclude the use of blenderized foods.

  10. Integrated structure vacuum tube

    NASA Technical Reports Server (NTRS)

    Dimeff, J.; Kerwin, W. J. (Inventor)

    1976-01-01

    High efficiency, multi-dimensional thin film vacuum tubes suitable for use in high temperature, high radiation environments are described. The tubes are fabricated by placing thin film electrode members in selected arrays on facing interior wall surfaces of an alumina substrate envelope. Cathode members are formed using thin films of triple carbonate. The photoresist used in photolithography aids in activation of the cathodes by carbonizing and reacting with the reduced carbonates when heated in vacuum during forming. The finely powdered triple carbonate is mixed with the photoresist used to delineate the cathode locations in the conventional solid state photolithographic manner. Anode and grid members are formed using thin films of refractory metal. Electron flow in the tubes is between grid elements from cathode to anode as in a conventional three-dimensional tube.

  11. Tube-Forming Assays.

    PubMed

    Brown, Ryan M; Meah, Christopher J; Heath, Victoria L; Styles, Iain B; Bicknell, Roy

    2016-01-01

    Angiogenesis involves the generation of new blood vessels from the existing vasculature and is dependent on many growth factors and signaling events. In vivo angiogenesis is dynamic and complex, meaning assays are commonly utilized to explore specific targets for research into this area. Tube-forming assays offer an excellent overview of the molecular processes in angiogenesis. The Matrigel tube forming assay is a simple-to-implement but powerful tool for identifying biomolecules involved in angiogenesis. A detailed experimental protocol on the implementation of the assay is described in conjunction with an in-depth review of methods that can be applied to the analysis of the tube formation. In addition, an ImageJ plug-in is presented which allows automatic quantification of tube images reducing analysis times while removing user bias and subjectivity.

  12. Kinking of medical tubes.

    PubMed

    Ingles, David

    2004-05-01

    The phenomenon of kinking in medical tubing remains a problem for some applications, particularly critical ones such as transporting gasses or fluids. Design features are described to prevent its occurrence.

  13. Ear tube insertion

    MedlinePlus

    ... Ear tube surgery - what to ask your doctor Review Date 8/5/2015 Updated by: Sumana Jothi ... Otolaryngology, NCHCS VA, SFVA, San Francisco, CA. Internal review and update on 09/01/2016 by David ...

  14. Ear tube insertion - slideshow

    MedlinePlus

    ... this page: //medlineplus.gov/ency/presentations/100045.htm Ear tube insertion - series—Normal anatomy To use the ... 4 Overview The eardrum (tympanic membrane) separates the ear canal from the middle ear. Review Date 8/ ...

  15. Tracheostomy tube - speaking

    MedlinePlus

    Air passing through vocal cords (larynx) causes them to vibrate, creating sounds and speech. A tracheostomy tube blocks most of the air from passing through your vocal cords. Instead, your breath (air) goes out ...

  16. Gastrostomy tube placement - slideshow

    MedlinePlus

    ... presentations/100125.htm Gastrostomy tube placement - series—Normal anatomy To use the sharing features on this page, ... Bethesda, MD 20894 U.S. Department of Health and Human Services National Institutes of Health Page last updated: ...

  17. Radially Focused Eddy Current Sensor for Detection of Longitudinal Flaws in Metallic Tubes

    NASA Technical Reports Server (NTRS)

    Wincheski, Russell A. (Inventor); Simpson, John W. (Inventor); Fulton, James P. (Inventor); Nath, Shridhar C. (Inventor); Todhunter, Ronald G. (Inventor); Namkung, Min (Inventor)

    1999-01-01

    A radially focused eddy current sensor detects longitudinal flaws in a metal tube. A drive coil induces eddy currents within the wall of the metal tube. A pick-up cod is spaced apart from the drive coil along the length of the metal tube. The pick@up coil is positioned with one end thereof lying adjacent the wall of the metal tube such that the pick-up coil's longitudinal axis is perpendicular to the wall of the metal tube. To isolate the pick-up coil from the magnetic flux of the drive coil and the flux from the induced eddy currents. except the eddy currents diverted by a longitudinal flaw. an electrically conducting material high in magnetic permeability surrounds all of the pick-up coil except its one end that is adjacent the walls of the metal tube. The electrically conducting material can extend into and through the drive coil in a coaxial relationship therewith.

  18. Clearing obstructed feeding tubes.

    PubMed

    Marcuard, S P; Stegall, K L; Trogdon, S

    1989-01-01

    This is a report of an in vitro study evaluating the ability of six solutions to dissolve clotted enteral feeding, which can cause feeding tube occlusion. The following clotted enteral feeding products were tested: Ensure Plus, Ensure Plus with added protein (Promod 20 g/liter), Osmolite, Enrich, and Pulmocare. Clot dissolution was then tested by adding Adolf's Meat Tenderizer, Viokase, Sprite, Pepsi, Coke, or Mountain Dew. Distilled water served as control. Dissolution score for each mixture was assessed blindly. Best dissolution was observed with Viokase in pH 7.9 solution (p less than 0.01). Similar results were obtained when feeding tube patency was restored in eight in vitro occluded feeding tubes (Dobbhoff, French size 8) by using first Pepsi (two/eight successful) and then Viokase in pH 7.9 (six/six successful). We also report our experience in the first 10 patients with occluded feeding tubes using this Viokase solution injected through a Drum catheter into the feeding tube. In seven patients, this method proved to be successful, and the reasons for failure in three patients include a knotted tube, impacted tablet powder, and a formula clot fo 24 hr duration and 45 cm in length.

  19. Countably QC-Approximating Posets

    PubMed Central

    Mao, Xuxin; Xu, Luoshan

    2014-01-01

    As a generalization of countably C-approximating posets, the concept of countably QC-approximating posets is introduced. With the countably QC-approximating property, some characterizations of generalized completely distributive lattices and generalized countably approximating posets are given. The main results are as follows: (1) a complete lattice is generalized completely distributive if and only if it is countably QC-approximating and weakly generalized countably approximating; (2) a poset L having countably directed joins is generalized countably approximating if and only if the lattice σc(L)op of all σ-Scott-closed subsets of L is weakly generalized countably approximating. PMID:25165730

  20. Explosively driven air blast in a conical shock tube

    SciTech Connect

    Stewart, Joel B. Pecora, Collin

    2015-03-15

    Explosively driven shock tubes present challenges in terms of safety concerns and expensive upkeep of test facilities but provide more realistic approximations to the air blast resulting from free-field detonations than those provided by gas-driven shock tubes. Likewise, the geometry of conical shock tubes can naturally approximate a sector cut from a spherically symmetric blast, leading to a better agreement with the blast profiles of free-field detonations when compared to those provided by shock tubes employing constant cross sections. The work presented in this article documents the design, fabrication, and testing of an explosively driven conical shock tube whose goal was to closely replicate the blast profile seen from a larger, free-field detonation. By constraining the blast through a finite area, large blasts (which can add significant damage and safety constraints) can be simulated using smaller explosive charges. The experimental data presented herein show that a close approximation to the free-field air blast profile due to a 1.5 lb charge of C4 at 76 in. can be achieved by using a 0.032 lb charge in a 76-in.-long conical shock tube (which translates to an amplification factor of nearly 50). Modeling and simulation tools were used extensively in designing this shock tube to minimize expensive fabrication costs.

  1. Modelling of heat flux received by a bubble pump of absorption-diffusion refrigeration cycles

    NASA Astrophysics Data System (ADS)

    Benhmidene, Ali; Chaouachi, Béchir; Gabsi, Slimane; Bourouis, Mahmoud

    2011-11-01

    In the present study, the heat flux received by a bubble pump, which was simulated to a vertical tube 1 m long and with a variable diameter, was optimized. A numerical study was carried out in order to solve balance equations concerning the water-ammonia mixture in the up flow. The two-fluid model was used to derive the equations. A numerical study was carried out on a heat flux between 1 and 70 kW m-2 and the liquid velocity was determined. The optimum flux was determined for a tube diameter equal to 4, 6, 8 and 10 mm and a mass flow rate ranging from 10 to 90 kg m-2 s-1. The optimum heat flux was correlated as a function of the tube diameter and mass flow rate, while the minimum heat flux required for pumping was correlated as a function of the tube diameter.

  2. Multidimensional WKB approximation for particle tunneling

    SciTech Connect

    Zamastil, J.

    2005-08-15

    A method for obtaining the WKB wave function describing the particle tunneling outside of a two-dimensional potential well is suggested. The Cartesian coordinates (x,y) are chosen in such a way that the x axis has the direction of the probability flux at large distances from the well. The WKB wave function is then obtained by simultaneous expansion of the wave function in the coordinate y and the parameter determining the curvature of the escape path. It is argued, both physically and mathematically, that these two expansions are mutually consistent. It is shown that the method provides systematic approximation to the outgoing probability flux. Both the technical and conceptual advantages of this approach in comparison with the usual approach based on the solution of classical equations of motion are pointed out. The method is applied to the problem of the coupled anharmonic oscillators and verified through the dispersion relations.

  3. Erosion of heat exchanger tubes in fluidized beds

    SciTech Connect

    Johnson, E.K.; Flemmer, R.L.C.

    1991-01-01

    This final report describes the activities of the 3-year project entitled Erosion of Heat Exchanger Tubes In Fluidized Beds.'' which was completed at the end of 1990. Project accomplishments include the collection of a substantial body of wear data In a 24in. [times] 24in. fluidized bed, comparative wear results In a 6in. [times] 6in. fluidized bed, the development of a dragometer and the collection of a comprehensive set of drag force data in the 24in. [times] 24in. bed, Fast Fourier Transform (FFT) analysis of bubble probe data to establish dominant bubble frequencies in the 24in. [times] 24in. bed, the use of a heat flux gauge for measurement of heat transfer coefficients in the 24in. [times] 24in. bed and the modeling of the tube wear in the 24in. [times] 24in. bed. Analysis of the wear data from the 24in. square bed indicates that tube wear increases with increase in superficial velocity, and with increase in tube height. The latter effect is a result of the tubes higher up in the bed seeing greater movement of dense phase than tubes lower down In the bed. In addition, tube wear was found to decrease with increase in particle size, for constant superficial velocity. Three models of tube wear were formulated and provided acceptable prediction of wear when compared with the experimental data.

  4. Kennedy Space Center Fixation Tube (KFT)

    NASA Technical Reports Server (NTRS)

    Richards, Stephanie E.; Levine, Howard G.; Romero, Vergel

    2016-01-01

    Experiments performed on the International Space Station (ISS) frequently require the experimental organisms to be preserved until they can be returned to earth for analysis in the appropriate laboratory facility. The Kennedy Fixation Tube (KFT) was developed to allow astronauts to apply fixative, chemical compounds that are often toxic, to biological samples without the use of a glovebox while maintaining three levels of containment (Fig. 1). KFTs have been used over 200 times on-orbit with no leaks of chemical fixative. The KFT is composed of the following elements: a polycarbonate main tube where the fixative is loaded preflight, the sample tube where the plant or other biological specimens is placed during operations, the expansion plug, actuator, and base plug that provides fixative containment (Fig. 2). The main tube is pre-filled with 25 mL of fixative solution prior to flight. When actuated, the specimen contained within the sample tube is immersed with approximately 22 mL (+/- 2 mL) of the fixative solution. The KFT has been demonstrated to maintain its containment at ambient temperatures, 4degC refrigeration and -100 C freezing conditions.

  5. Coiled tubing operations and services

    SciTech Connect

    Jaworsky, A.S. II )

    1991-11-01

    Coiled tubing offers many advantages over conventional jointed tubing used for drilling in oil fields, including time savings, pumping flexibility, fluid placement, reduced formation damage and safety. The article gives an overview of coiled tubing history and development. Operating concepts are explained, along with descriptions of the major equipment and components associated with coiled tubing use in the oil field today.

  6. Plasma momentum meter for momentum flux measurements

    DOEpatents

    Zonca, Fulvio; Cohen, Samuel A.; Bennett, Timothy; Timberlake, John R.

    1993-01-01

    Invention comprises an instrument in which momentum flux onto a biasable target plate is transferred via a suspended quartz tube onto a sensitive force transducer--a capacitance-type pressure gauge. The transducer is protected from thermal damage, arcing and sputtering, and materials used in the target and pendulum are electrically insulating, rigid even at elevated temperatures, and have low thermal conductivity. The instrument enables measurement of small forces (10.sup.-5 to 10.sup.3 N) accompanied by high heat fluxes which are transmitted by energetic particles with 10's of eV of kinetic energy in a intense magnetic field and pulsed plasma environment.

  7. Fast flux locked loop

    DOEpatents

    Ganther, Jr., Kenneth R.; Snapp, Lowell D.

    2002-09-10

    A flux locked loop for providing an electrical feedback signal, the flux locked loop employing radio-frequency components and technology to extend the flux modulation frequency and tracking loop bandwidth. The flux locked loop of the present invention has particularly useful application in read-out electronics for DC SQUID magnetic measurement systems, in which case the electrical signal output by the flux locked loop represents an unknown magnetic flux applied to the DC SQUID.

  8. Fluid mechanics and heat transfer spirally fluted tubing

    NASA Astrophysics Data System (ADS)

    Larue, J. C.; Libby, P. A.; Yampolsky, J. S.

    1981-08-01

    The objective of this program is to develop both a qualitative and a quantitative understanding of the fluid mechanics and heat transfer mechanisms that underlie the measured performance of the spirally fluted tubes under development at General Atomic. The reason for the interest in the spirally fluted tubes is that results to date have indicated three advantages to this tubing concept: The fabrication technique of rolling flutes on strip and subsequently spiralling and simultaneously welding the strip to form tubing results in low fabrication costs, approximately equal to those of commercially welded tubing. The heat transfer coefficient is increased without a concomitant increase of the friction coefficient on the inside of the tube. In single-phase axial flow of water, the helical flutes continuously induce rotation of the flow both within and without the tube as a result of the effect of curvature. An increase in condensation heat transfer on the outside of the tube is achieved. In a vertical orientation with fluid condensing on the outside of the helically fluted tube, the flutes provide a channel for draining the condensed fluid.

  9. Numerical Simulation of Liquid Nitrogen Chilldown of a Vertical Tube

    NASA Technical Reports Server (NTRS)

    Darr, Samuel; Hu, Hong; Schaeffer, Reid; Chung, Jacob; Hartwig, Jason; Majumdar, Alok

    2015-01-01

    This paper presents the results of a one-dimensional numerical simulation of the transient chilldown of a vertical stainless steel tube with liquid nitrogen. The direction of flow is downward (with gravity) through the tube. Heat transfer correlations for film, transition, and nucleate boiling, as well as critical heat flux, rewetting temperature, and the temperature at the onset of nucleate boiling were used to model the convection to the tube wall. Chilldown curves from the simulations were compared with data from 55 recent liquid nitrogen chilldown experiments. With these new correlations the simulation is able to predict the time to rewetting temperature and time to onset of nucleate boiling to within 25% for mass fluxes ranging from 61.2 to 1150 kg/(sq m s), inlet pressures from 175 to 817 kPa, and subcooled inlet temperatures from 0 to 14 K below the saturation temperature.

  10. Thermal stress analysis of eccentric tube receiver using concentrated solar radiation

    SciTech Connect

    Wang, Fuqiang; Shuai, Yong; Yuan, Yuan; Yang, Guo; Tan, Heping

    2010-10-15

    In the parabolic trough concentrator with tube receiver system, the heat transfer fluid flowing through the tube receiver can induce high thermal stress and deflection. In this study, the eccentric tube receiver is introduced with the aim to reduce the thermal stresses of tube receiver. The ray-thermal-structural sequential coupled numerical analyses are adopted to obtain the concentrated heat flux distributions, temperature distributions and thermal stress fields of both the eccentric and concentric tube receivers. During the sequential coupled numerical analyses, the concentrated heat flux distribution on the bottom half periphery of tube receiver is obtained by Monte-Carlo ray tracing method, and the fitting function method is introduced for the calculated heat flux distribution transformation from the Monte-Carlo ray tracing model to the CFD analysis model. The temperature distributions and thermal stress fields are obtained by the CFD and FEA analyses, respectively. The effects of eccentricity and oriented angle variation on the thermal stresses of eccentric tube receiver are also investigated. It is recommended to adopt the eccentric tube receiver with optimum eccentricity and 90 oriented angle as tube receiver for the parabolic trough concentrator system to reduce the thermal stresses. (author)

  11. General view looking down the approximate centerline of the expansion ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view looking down the approximate centerline of the expansion nozzle of a Space Shuttle Main Engine (SSME) mounted on a SSME Engine Handler in the SSME Processing Facility at Kennedy Space Center. This view shows the 1080 cooling tubes used to regeneratively cool the Nozzle and Combustion Chamber by circulating relatively low temperature fuel through the tubes and manifolds before being ignited in the Main Combustion Chamber. - Space Transportation System, Space Shuttle Main Engine, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  12. Circle nephrostomy tube revisited

    PubMed Central

    Noureldin, Yasser A.; Diab, Christian; Valenti, David; Andonian, Sero

    2016-01-01

    Introduction: There are few options for patients requiring chronic urinary drainage using nephrostomy tubes. Although circle nephrostomy tube (CNT) was invented in 1954, it is rarely used. Its advantages include longer indwelling time such that it is changed semi-annually when compared with the standard nephrostomy tube (SNT), which is changed monthly. However, there are no studies comparing indwelling times and costs with these two tubes. The aim of the present study was to compare CNT with SNT in terms of frequency of tube changes, reasons for earlier tube changes, and associated costs. Methods: Patients who had CNT inserted between 2009 and 2015 were reviewed. The indications for chronic indwelling nephrostomy tubes were tabulated. The frequency of tube changes was compared between CNT and SNT in the same patients. Furthermore, costs associated with insertion and exchange of CNT and SNT were analyzed. Results: Seven patients with mean age of 71.9 ± 7.6 years (range 43–96) had a total of 36 CNT changes. The mean number of CNT changes was four (range 2–5) at a mean interval of 168.3 ± 15.6 days (range 120–231). All patients had SNT prior to converting to CNT. When compared with the mean interval for SNT changes, the mean interval for CNT changes was significantly longer (44.8 ± 19.4 vs. 168.3 ± 41.3 days; p=0.028). Tube blockage and urinary leakage were the most common reasons for earlier than scheduled CNT changes. In our centre, CNT insertion and exchange cost $1965.48 and $923.96 compared with $1450.43 and $803.81 for SNT, respectively. There was an estimated cost savings of $46 861.10 (range $87 414.30 –$40 553.20) for the whole cohort by switching from SNTs to CNTs. Conclusions: Despite the small sample size as the main limitation, this study confirms that CNTs are associated with significantly fewer changes and lower cost when compared with SNTs for poor-surgical-risk patients requiring chronic NTs.

  13. Passively cooled glass CO2 laser tubes for severe environments

    NASA Technical Reports Server (NTRS)

    Walker, H. E.; Johnson, E. H.

    1974-01-01

    The objective of this effort was to design a glass CO2 laser tube that could survive the Titan 3 C launch environment and at the same time provide adequate thermal conductivity to maintain the wall of the laser tube below approximately equal to 50 C for efficient lasing. The approach that was taken to satisfy these requirements was to pot the tube in an aluminum heat sink using a space qualified polyurethane potting material. Two configurations of the laser tube successfully passed the complete Titan 3 C qualification level sine and random vibration specification and satisfied the thermal requirements. Fabrication details and test results are presented that indicate this could be a practical solution for laser tubes used in a severe environment and where flowing coolants are impractical or undesirable.

  14. Neural tube defects and folate: case far from closed.

    PubMed

    Blom, Henk J; Shaw, Gary M; den Heijer, Martin; Finnell, Richard H

    2006-09-01

    Neural tube closure takes place during early embryogenesis and requires interactions between genetic and environmental factors. Failure of neural tube closure is a common congenital malformation that results in morbidity and mortality. A major clinical achievement has been the use of periconceptional folic acid supplements, which prevents approximately 50-75% of cases of neural tube defects. However, the mechanism underlying the beneficial effects of folic acid is far from clear. Biochemical, genetic and epidemiological observations have led to the development of the methylation hypothesis, which suggests that folic acid prevents neural tube defects by stimulating cellular methylation reactions. Exploring the methylation hypothesis could direct us towards additional strategies to prevent neural tube defects.

  15. Neural tube defects.

    PubMed

    Greene, Nicholas D E; Copp, Andrew J

    2014-01-01

    Neural tube defects (NTDs), including spina bifida and anencephaly, are severe birth defects of the central nervous system that originate during embryonic development when the neural tube fails to close completely. Human NTDs are multifactorial, with contributions from both genetic and environmental factors. The genetic basis is not yet well understood, but several nongenetic risk factors have been identified as have possibilities for prevention by maternal folic acid supplementation. Mechanisms underlying neural tube closure and NTDs may be informed by experimental models, which have revealed numerous genes whose abnormal function causes NTDs and have provided details of critical cellular and morphological events whose regulation is essential for closure. Such models also provide an opportunity to investigate potential risk factors and to develop novel preventive therapies.

  16. Regulation of the interplanetary magnetic flux

    SciTech Connect

    McComas, D.J.; Gosling, J.T.; Phillips, J.L.

    1991-01-01

    In this study we use a recently developed technique for measuring the 2-D magnetic flux in the ecliptic plane to examine (1) the long term variation of the magnetic flux in interplanetary space and (2) the apparent rate at which coronal mass ejections (CMEs) may be opening new flux from the Sun. Since there is a substantial variation ({approximately}50%) of the flux in the ecliptic plane over the solar cycle, we conclude that there must be some means whereby new flux can be opened from the Sun and previously open magnetic flux can be closed off. We briefly describe recently discovered coronal disconnections events which could serve to close off previously open magnetic flux. CMEs appear to retain at least partial magnetic connection to the Sun and hence open new flux, while disconnections appear to be likely signatures of the process that returns closed flux to the Sun; the combination of these processes could regulate the amount of open magnetic flux in interplanetary space. 6 refs., 3 figs.

  17. Generation of nanosecond neutron pulses in vacuum accelerating tubes

    NASA Astrophysics Data System (ADS)

    Didenko, A. N.; Shikanov, A. E.; Rashchikov, V. I.; Ryzhkov, V. I.; Shatokhin, V. L.

    2014-06-01

    The generation of neutron pulses with a duration of 1-100 ns using small vacuum accelerating tubes is considered. Two physical models of acceleration of short deuteron bunches in pulse neutron generators are described. The dependences of an instantaneous neutron flux in accelerating tubes on the parameters of pulse neutron generators are obtained using computer simulation. The results of experimental investigation of short-pulse neutron generators based on the accelerating tube with a vacuum-arc deuteron source, connected in the circuit with a discharge peaker, and an accelerating tube with a laser deuteron source, connected according to the Arkad'ev-Marx circuit, are given. In the experiments, the neutron yield per pulse reached 107 for a pulse duration of 10-100 ns. The resultant experimental data are in satisfactory agreement with the results of computer simulation.

  18. Thermal Phenomena in Gas Confinement Dielectric Tube of the VASIMR Helicon Plasma

    NASA Astrophysics Data System (ADS)

    Berisford, Dan; Bengtson, R.; Raja, L.; Squire, J.; Cassidy, L.; Chauncery, J.; McCaskill, G.

    2007-11-01

    A quartz dielectric tube provides gas confinement in the helicon discharge of the VASIMR (Variable Specific Impulse Magnetoplasma Rocket) experiment. Despite highly aligned magnetic field lines to confine the plasma in the discharge, significant thermal heating of the dielectric tube occurs. We perform infrared camera imaging studies of heating of the tube with varying operational parameters of the experiment. Results show decreased heating of the tube as the plasma becomes more highly magnetized and less collisional. The data follows a trend that is well represented by a Bohm transport of ions perpendicular to the magnetic field lines suggesting that ion impact on the tube rather than radiation is the primary heating mechanism. Highly localized heating is also observed directly under the antenna in regions where the coils lie closest to the tube surface. This phenomenon is attributed to capacitive coupling effects that accelerate ions under the antenna coils, increasing the local energy flux to the tube surface.

  19. The electrostatic storage tube

    NASA Technical Reports Server (NTRS)

    Rutherford, R. E., Jr.

    1973-01-01

    An electrostatic camera system is discussed which is based on the electrostatic storage tube. The development of the system was begun following a series of experiments which indicated that the device offers signficantly improved performance over currently available devices. The approach used in developing the high performance camera involves: converting the input image to an electron image at low loss, applying a low noise gain process, and storing the resulting charge pattern in a low-loss target. The basic processes and elements of the electrostatic storage tube are illustrated and discussed. Graphs that depict the camera performance characteristics are included.

  20. PRODUCTION OF URANIUM TUBING

    DOEpatents

    Creutz, E.C.

    1958-04-15

    The manufacture of thin-walled uranium tubing by the hot-piercing techique is described. Uranium billets are preheated to a temperature above 780 d C. The heated billet is fed to a station where it is engaged on its external surface by three convex-surfaced rotating rollers which are set at an angle to the axis of the billet to produce a surface friction force in one direction to force the billet over a piercing mandrel. While being formed around the mandrel and before losing the desired shape, the tube thus formed is cooled by a water spray.

  1. Investigation of two pitot-static tubes at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Hasel, Lowell E; Coletti, Donald E

    1948-01-01

    The results of tests at a Mach number of 1.94 of an ogives-nose cylindrical pitot-static tube and similar tests at Mach numbers of 1.93 and 1.62 of a service pitot-static tube to determine body static pressures and indicated Mach numbers are presented and discussed. The radial pressure distribution on the cylindrical bodies is compared with that calculated by an approximate theory.

  2. Magnetic-flux pump

    NASA Technical Reports Server (NTRS)

    Hildebrandt, A. F.; Elleman, D. D.; Whitmore, F. C. (Inventor)

    1966-01-01

    A magnetic flux pump is described for increasing the intensity of a magnetic field by transferring flux from one location to the magnetic field. The device includes a pair of communicating cavities formed in a block of superconducting material, and a piston for displacing the trapped magnetic flux into the secondary cavity producing a field having an intense flux density.

  3. Supercritical convection, critical heat flux, and coking characteristics of propane

    NASA Technical Reports Server (NTRS)

    Rousar, D. C.; Gross, R. S.; Boyd, W. C.

    1984-01-01

    The heat transfer characteristics of propane at subcritical and supercritical pressure were experimentally evaluated using electrically heated Monel K-500 tubes. A design correlation for supercritical heat transfer coefficient was established using the approach previously applied to supercritical oxygen. Flow oscillations were observed and the onset of these oscillations at supercritical pressures was correlated with wall-to-bulk temperature ratio and velocity. The critical heat flux measured at subcritical pressure was correlated with the product of velocity and subcooling. Long duration tests at fixed heat flux conditions were conducted to evaluate coking on the coolant side tube wall and coking rates comparable to RP-1 were observed.

  4. Manufacturing SP-100 rhenium tubes

    NASA Astrophysics Data System (ADS)

    Sayre, Edwin D.; Ruffo, Thomas J.

    1992-01-01

    A process for producing high quality, thin walled, wrought, rhenium tubing was successfully developed and qualified in the SP-100 fuel fabrication program. Rhenium was selected for the fuel-cladding barrier versus tungsten because of the cold workability and nuclear characteristics of rhenium. Several tube fabricating processes including swaging, drawing, and extruding sintered tube shells and chemical vapor deposition were evaluated before a drawn tube made by forming and electron beam welding rhenium strip was selected as the most cost effective. The process for making the rhenium tubes is discussed in general and the tube, room temperature, tensile properties are compared favorably with the properties reported in the literature.

  5. Hybrid modeling of convective laminar flow in a permeable tube associated with the cross-flow process

    NASA Astrophysics Data System (ADS)

    Venezuela, A. L.; Pérez-Guerrero, J. S.; Fontes, S. R.

    2009-03-01

    The confined flows in tubes with permeable surfaces are associated to tangential filtration processes (microfiltration or ultrafiltration). The complexity of the phenomena do not allow for the development of exact analytical solutions, however, approximate solutions are of great interest for the calculation of the transmembrane outflow and estimate of the concentration polarization phenomenon. In the present work, the generalized integral transform technique (GITT) was employed in solving the laminar and permanent flow in permeable tubes of Newtonian and incompressible fluid. The mathematical formulation employed the parabolic differential equation of chemical species conservation (convective-diffusive equation). The velocity profiles for the entrance region flow, which are found in the connective terms of the equation, were assessed by solutions obtained from literature. The velocity at the permeable wall was considered uniform, with the concentration at the tube wall regarded as variable with an axial position. A computational methodology using global error control was applied to determine the concentration in the wall and concentration boundary layer thickness. The results obtained for the local transmembrane flux and the concentration boundary layer thickness were compared against others in literature.

  6. Heat-shrink plastic tubing seals joints in glass tubing

    NASA Technical Reports Server (NTRS)

    Del Duca, B.; Downey, A.

    1968-01-01

    Small units of standard glass apparatus held together by short lengths of transparent heat-shrinkable polyolefin tubing. The tubing is shrunk over glass O-ring type connectors having O-rings but no lubricant.

  7. Electrically heated tube investigation of cooling channel geometry effects

    NASA Technical Reports Server (NTRS)

    Meyer, Michael L.

    1995-01-01

    The results of an experimental investigation on the combined effects of cooling channel aspect ratio and curvature for rocket engines are presented. Symmetrically heated tubes with average heat fluxes up to 1.7 MW/m(exp 2) were used. The coolant was gaseous nitrogen at an inlet temperature of 280 K (500 R) and inlet pressures up to 1.0 x 10(exp 7) N/m(exp 2) (1500 psia). Two different tube geometries were tested: a straight, circular cross-section tube, and an aspect-ratio 10 cross-section tube with a 45 deg bend. The circular tube results are compared to classical models from the literature as validation of the system. The curvature effect data from the curved aspect-ratio 10 tube compare favorably to the empirical equations available in the literature for low aspect ratio tubes. This latter results suggest that thermal stratification of the coolant due to diminished curvature effect mixing may not be an issue for high aspect-ratio cooling channels.

  8. DALI: Derivative Approximation for LIkelihoods

    NASA Astrophysics Data System (ADS)

    Sellentin, Elena

    2015-07-01

    DALI (Derivative Approximation for LIkelihoods) is a fast approximation of non-Gaussian likelihoods. It extends the Fisher Matrix in a straightforward way and allows for a wider range of posterior shapes. The code is written in C/C++.

  9. Pulse flux measuring device

    DOEpatents

    Riggan, William C.

    1985-01-01

    A device for measuring particle flux comprises first and second photodiode detectors for receiving flux from a source and first and second outputs for producing first and second signals representing the flux incident to the detectors. The device is capable of reducing the first output signal by a portion of the second output signal, thereby enhancing the accuracy of the device. Devices in accordance with the invention may measure distinct components of flux from a single source or fluxes from several sources.

  10. Absolute flux measurements for swift atoms

    NASA Technical Reports Server (NTRS)

    Fink, M.; Kohl, D. A.; Keto, J. W.; Antoniewicz, P.

    1987-01-01

    While a torsion balance in vacuum can easily measure the momentum transfer from a gas beam impinging on a surface attached to the balance, this measurement depends on the accommodation coefficients of the atoms with the surface and the distribution of the recoil. A torsion balance is described for making absolute flux measurements independent of recoil effects. The torsion balance is a conventional taut suspension wire design and the Young modulus of the wire determines the relationship between the displacement and the applied torque. A compensating magnetic field is applied to maintain zero displacement and provide critical damping. The unique feature is to couple the impinging gas beam to the torsion balance via a Wood's horn, i.e., a thin wall tube with a gradual 90 deg bend. Just as light is trapped in a Wood's horn by specular reflection from the curved surfaces, the gas beam diffuses through the tube. Instead of trapping the beam, the end of the tube is open so that the atoms exit the tube at 90 deg to their original direction. Therefore, all of the forward momentum of the gas beam is transferred to the torsion balance independent of the angle of reflection from the surfaces inside the tube.

  11. Snorkeling and Jones tubes

    PubMed Central

    Lam, Lewis Y. W.; Weatherhead, Robert G.

    2015-01-01

    Summary We report a case of tympanic membrane rupture during snorkeling in a 17-year-old young man who had previously undergone bilateral Jones tubes placed for epiphora. To our knowledge, this phenomenon has not been previously reported. PMID:27330470

  12. Tube Feeding Transition Plateaus

    ERIC Educational Resources Information Center

    Klein, Marsha Dunn

    2007-01-01

    The journey children make from tube feeding to oral feeding is personal for each child and family. There is a sequence of predictable plateaus that children climb as they move toward orally eating. By better understanding this sequence, parents and children can maximize the development, learning, enjoyment and confidence at each plateau. The…

  13. Misdirected Minitracheostomy Tube

    PubMed Central

    Singh, Ajmer; Nanda, Chinmaya; Mehta, Yatin

    2017-01-01

    We report a patient who after an uneventful coronary artery bypass graft surgery and left ventricular aneurysmorrhaphy developed intracerebral hemorrhage and subsequently required minitracheostomy. Chest X-ray showed misdirected minitracheostomy tube facing upward toward the laryngeal opening which was repositioned using bronchoscope. PMID:28074805

  14. Misdirected minitracheostomy tube.

    PubMed

    Singh, Ajmer; Nanda, Chinmaya; Mehta, Yatin

    2017-01-01

    We report a patient who after an uneventful coronary artery bypass graft surgery and left ventricular aneurysmorrhaphy developed intracerebral hemorrhage and subsequently required minitracheostomy. Chest X-ray showed misdirected minitracheostomy tube facing upward toward the laryngeal opening which was repositioned using bronchoscope.

  15. Investigation of Pitot tubes

    NASA Technical Reports Server (NTRS)

    Herschel, W H; Buckingham, E

    1917-01-01

    Report describes the principles of operation and characteristics of some of the instruments which have been devised or used to measure both low and high speeds of aeroplanes. Since the pitot tube is the instrument which has been most commonly used in the United States and Great Britain as a speedometer for aeroplanes, it is treated first and somewhat more fully than the others.

  16. Downhole pulse tube refrigerators

    SciTech Connect

    Swift, G.; Gardner, D.

    1997-12-01

    This report summarizes a preliminary design study to explore the plausibility of using pulse tube refrigeration to cool instruments in a hot down-hole environment. The original motivation was to maintain Dave Reagor`s high-temperature superconducting electronics at 75 K, but the study has evolved to include three target design criteria: cooling at 30 C in a 300 C environment, cooling at 75 K in a 50 C environment, cooling at both 75 K and 30 C in a 250 C environment. These specific temperatures were chosen arbitrarily, as representative of what is possible. The primary goals are low cost, reliability, and small package diameter. Pulse-tube refrigeration is a rapidly growing sub-field of cryogenic refrigeration. The pulse tube refrigerator has recently become the simplest, cheapest, most rugged and reliable low-power cryocooler. The authors expect this technology will be applicable downhole because of the ratio of hot to cold temperatures (in absolute units, such as Kelvin) of interest in deep drilling is comparable to the ratios routinely achieved with cryogenic pulse-tube refrigerators.

  17. Taylor Approximations and Definite Integrals

    ERIC Educational Resources Information Center

    Gordon, Sheldon P.

    2007-01-01

    We investigate the possibility of approximating the value of a definite integral by approximating the integrand rather than using numerical methods to approximate the value of the definite integral. Particular cases considered include examples where the integral is improper, such as an elliptic integral. (Contains 4 tables and 2 figures.)

  18. Inviscid flux-splitting algorithms for real gases with non-equilibrium chemistry

    NASA Technical Reports Server (NTRS)

    Shuen, Jian-Shun; Liou, Meng-Sing; Van Leer, Bram

    1990-01-01

    Formulations of inviscid flux splitting algorithms for chemical nonequilibrium gases are presented. A chemical system for air dissociation and recombination is described. Numerical results for one-dimensional shock tube and nozzle flows of air in chemical nonequilibrium are examined.

  19. An experimental study of pulsatile flow through compliant tubes

    NASA Astrophysics Data System (ADS)

    Sturgeon, Victoria; Savas, Omer; Saloner, David

    2006-11-01

    An experimental investigation is made into transitional behaviors and instability of oscillatory input flows through elastic tubes, a problem with applications to hemodynamics and flows in the pulmonary system. Sinusoidal input flow is driven through a compliant silicone model in a series of experiments to investigate the effects of wall motion. A novel mechanism allows active control and feedback over the pressure on the tube exterior. By comparing the pressure within and outside of the tube and modifying the exterior pressure accordingly, the tube is inflated in a controlled manner without altering the input flow. In these experiments, the tube wall is deformed sinusoidally with an amplitude of approximately ten percent of its radius. Experiments are conducted using varying values of the parameters α= a √φν and β= δx √φν where a is the tube radius, φ the angular velocity of the input flow, ν the kinematic viscosity, and δx the cross-stream averaged periodic displacement of a fluid particle undergoing pulsatile motion. For a given α, it is found that indications of conditional turbulence appear in this flow through elastic tubes at far lower values of β - and thus at lower amplitudes of oscillation - than are reported in the literature for flows through rigid tubing.

  20. Thermal performance and stress analyses of the cavity receiver tube in the parabolic trough solar collector

    NASA Astrophysics Data System (ADS)

    Cao, F.; Li, Y.; Wang, L.; Zhu, T. Y.

    2016-08-01

    A light ray tracing model and a heat transfer model were built to analyse the heat flux distribution and heat transfer in a 1m cavity receiver tube with Parabolic Trough Collectors as the concentrator. The numerical methods were used to simulate the thermal stress and deformation of the receiver tube. The temperature fields of the receiver tube and the thermal stress distribution in the steel tube at the cross section and along the fluid flowing direction were presented. It is obtained from this study that non-uniform heat flux distribution is absorbed at the receiver tube outer surface due to the structure of the cavity receiver tube. Temperature fields in the steel receiver tube at the inlet and the outlet match well with the incident solar radiation. An eccentric circle temperature gradient is observed at cross section of the outlet fluid. The equivalent stress is a complex result of solar heating flux, energy transfer inside the PTC and the fluid and steel characteristics. Highest deformation is 3.1mm at 0.82m. On increasing the fluid mass flow rate, higher fluid mass flow rate results in higher equivalent stress along the absorber tube.

  1. A comparison of the CHF between tubes and annuli under PWR thermal-hydraulic conditions

    SciTech Connect

    Herer, C.

    1995-09-01

    Critical Heat Flux (CHF) tests were carried out in three tubes with inside diameters of 8, 13, and 19.2 mm and in two annuli with an inner tube of 9.5 mm and an outer tube of 13 or 19.2 mm. All axial heat flux distributions in the test sections were uniform. The coolant fluid was Refrigerant 12 (Freon-12) under PWR thermal-hydraulic conditions (equivalent water conditions - Pressure: 7 to 20 MPa, Mass Velocity: 1000 to 6000 kg/m2/s, Local Quality: -75% to +45%). The effect of tube diameter is correlated for qualities under 15%. The change from the tube to the annulus configuration is correctly taken into account by the equivalent hydraulic diameter. Useful information is also provided concerning the effect of a cold wall in an annulus.

  2. Biased Brownian motion in extremely corrugated tubes

    NASA Astrophysics Data System (ADS)

    Martens, S.; Schmid, G.; Schimansky-Geier, L.; Hänggi, P.

    2011-12-01

    Biased Brownian motion of point-size particles in a three-dimensional tube with varying cross-section is investigated. In the fashion of our recent work, Martens et al. [Phys. Rev. E 83, 051135 (2011)] we employ an asymptotic analysis to the stationary probability density in a geometric parameter of the tube geometry. We demonstrate that the leading order term is equivalent to the Fick-Jacobs approximation. Expression for the higher order corrections to the probability density is derived. Using this expansion orders, we obtain that in the diffusion dominated regime the average particle current equals the zeroth order Fick-Jacobs result corrected by a factor including the corrugation of the tube geometry. In particular, we demonstrate that this estimate is more accurate for extremely corrugated geometries compared with the common applied method using a spatially-dependent diffusion coefficient D(x, f) which substitutes the constant diffusion coefficient in the common Fick-Jacobs equation. The analytic findings are corroborated with the finite element calculation of a sinusoidal-shaped tube.

  3. Rubens Flame-Tube Demonstration.

    ERIC Educational Resources Information Center

    Ficken, George W.; Stephenson, Francis C.

    1979-01-01

    Investigates and explains the phenomenon associated with Rubens flame-tube demonstration, specifically the persistance of flames at regular intervals along the tube for few minutes after the gas is turned off. (GA)

  4. Tubing For Sampling Hydrazine Vapor

    NASA Technical Reports Server (NTRS)

    Travis, Josh; Taffe, Patricia S.; Rose-Pehrsson, Susan L.; Wyatt, Jeffrey R.

    1993-01-01

    Report evaluates flexible tubing used for transporting such hypergolic vapors as those of hydrazines for quantitative analysis. Describes experiments in which variety of tubing materials, chosen for their known compatibility with hydrazine, flexibility, and resistance to heat.

  5. Calculation of RABBIT and Simulator Worth in the HFIR Hydraulic Tube and Comparison with Measured Values

    SciTech Connect

    Slater, CO

    2005-09-08

    To aid in the determinations of reactivity worths for target materials in a proposed High Flux Isotope Reactor (HFIR) target configuration containing two additional hydraulic tubes, the worths of cadmium rabbits within the current hydraulic tube were calculated using a reference model of the HFIR and the MCNP5 computer code. The worths were compared to measured worths for both static and ejection experiments. After accounting for uncertainties in the calculations and the measurements, excellent agreement between the two was obtained. Computational and measurement limitations indicate that accurate estimation of worth is only possible when the worth exceeds 10 cents. Results indicate that MCNP5 and the reactor model can be used to predict reactivity worths of various samples when the expected perturbations are greater than 10 cents. The level of agreement between calculation and experiment indicates that the accuracy of such predictions would be dependent solely on the quality of the nuclear data for the materials to be irradiated. Transients that are approximated by ''piecewise static'' computational models should likewise have an accuracy that is dependent solely on the quality of the nuclear data.

  6. Organic vapor fluxes through the vadose zone

    SciTech Connect

    Smith, J.A.; Tisdale, A.K.; Cho, H.J.

    1996-10-01

    Volatilization from shallow ground water followed by air-phase transport through the unsaturated zone is a poorly understood process that may be a significant natural remediation mechanism for volatile organic pollutants including chlorinated solvents and gasoline constituents (e.g., benzene, toluene, etc.). To improve understanding of this process, the upward flux of trichloroethene (TCE) vapor through the unsaturated zone above a contaminated, water-table aquifer at Picatinny Arsenal, New Jersey, has been studied under natural conditions over a 12-mo period. Vertical gas-phase diffusion fluxes were determined indirectly by measuring the TCE vapor concentration gradient in the unsaturated zone and using Fick`s Law to calculate the flux. The total gas-phase flux (e.g., the sum of diffusion and advection fluxes) was measured directly with a vertical flux chamber (VFC). In many cases, the upward TCE vapor flux was several orders of magnitude greater than the upward TCE diffusion flux, suggesting that the vertical transport of TCE vapors by gas advection is significant relative to vertical transport by diffusion. The measured total flux of TCE vapor from the subsurface to the atmosphere is approximately 50 kg/yr and is comparable in magnitude to the removal rate of TCE from the aquifer by an existing pump-and-treat system and by discharge into a nearby stream.

  7. ON THE ERUPTION OF CORONAL FLUX ROPES

    SciTech Connect

    Fan, Y.

    2010-08-10

    We present three-dimensional MHD simulations of the evolution of the magnetic field in the corona where the emergence of a twisted magnetic flux tube is driven at the lower boundary into a pre-existing coronal potential arcade field. Through a sequence of simulations in which we vary the amount of twisted flux transported into the corona before the emergence is stopped, we investigate the conditions that lead to a dynamic eruption of the resulting coronal flux rope. It is found that the critical condition for the onset of eruption is for the center of the flux rope to reach a critical height at which the corresponding potential field declines with height at a sufficiently steep rate, consistent with the onset of the torus instability of the flux rope. In some cases, immediately after the emergence is stopped, the coronal flux rope first settles into a quasi-static rise with an underlying sigmoid-shaped current layer developing. Preferential heating of field lines going through this current layer may give rise to the observed quiescent X-ray sigmoid loops before eruption. Reconnections in the current layer during the initial quasi-static stage is found to add detached flux to the coronal flux rope, allowing it to rise quasi-statically to the critical height and dynamic eruption of the flux rope then ensues. By identifying field lines whose tops are in the most intense part of the current layer during the eruption, we deduce the evolution and morphology of the post-flare X-ray loops and the flare ribbons at their footpoints.

  8. Natural convection from vertical helical coiled tubes in air

    SciTech Connect

    Ali, M.E.

    1999-07-01

    Helically coiled tubes are used in many engineering applications, such as heating, refrigerating and HVAC systems. They are used also in steam generator and condenser design in power plants because of their large surface area per unit volume. In spite of their widespread use, there is very little information available in the literature on natural convection from such coils. Two experimental investigation have been reported on steady state laminar and transition natural convection from the outer surface of vertically oriented helical coiled tubes in air. Four coils at constant heat flux boundary condition have been used with coil diameter to tube diameter ratio of 16.45 and 23.94. Six more coils have been used at variable surface temperature boundary condition with coil diameter to tube diameter ratio 19.923, 15.904, and 12.798. Local average heat transfer coefficients are obtained for laminar and transition natural convection. The data are correlated with Rayleigh number using the tube diameter as a characteristic length. It has been found that the Nusselt number decreases as Rayleigh number increases for constant heat flux. Transition to turbulent natural convection regime has obtained at a critical Rayleigh number of about 5,000 and it characterizes by a waveform like relation between Nusselt number and Rayleigh number.

  9. Magnetic flux ropes at planetary magnetopauses

    NASA Astrophysics Data System (ADS)

    Hasegawa, H.

    2015-12-01

    Magnetic flux ropes at the magnetopause are generated as a result of magnetopause reconnection involving more than one X-line, and constitute a subgroup of flux transfer events which are believed to result from transient, localized, and/or multiple X-line reconnection, i.e., time-dependent forms of magnetopause reconnection. Single X-line reconnection at the low-latitude magnetopause erodes the dayside closed field lines and contributes to magnetic flux transport into the magnetotail, which forms the basis for dynamic phenomena in the magnetosphere such as substorms and storms. On the other hand, multiple X-line reconnection can produce the field lines of various topologies and/or can cause complex interactions of reconnection jets or reconnected flux tubes, thus possibly reducing the efficiency of magnetic energy transfer into the tail. This presentation discusses in situ observations at the terrestrial, Hermean, and Kronian magnetopauses and models for the generation, of magnetic flux ropes. In particular, we emphasize that magnetic field (e.g., bipolar) signatures alone cannot be taken as evidence for the flux ropes, and plasma signatures (Alfvenic ion jets, electron pitch-angle anisotropy, etc.) help identify their topological structure. We also present our recent studies using multi-spacecraft (Cluster or THEMIS) measurements at the terrestrial magnetopause for the reconstruction of their two-dimensional and three-dimensional structures based on the Grad-Shafranov and magneto-hydrostatic equations, respectively.

  10. Collapse pressure of coiled tubing

    SciTech Connect

    Yang, Y.S.

    1996-09-01

    The collapse pressure is a measure of an external force required to collapse a tube in the absence of internal pressure. It is defined as the minimum pressure required to yield the tube in the absence of internal pressure. Coiled tubing is sometimes used in high-pressure wells. If the external pressure becomes too high, the coiled tubing will collapse. This could not only lead to serious well-control problems, but may result in extensive fishing operations. A reliable safety criterion of collapse pressure for the coiled tubing is needed by the coiled tubing operators. Theoretical models of collapse pressure are well developed for perfectly round coiled tubing but not for oval coiled tubing. Coiled tubing is initially manufactured with nearly perfect roundness, sometimes having a small ovality (typically {le} 0.5%). Perfectly round CT becomes oval owing to the plastic mechanical deformation of the coiled tubing as it spooled on and off the reel and over the gooseneck. As the cycling continues, the ovality usually increases. This ovality significantly decreases the collapse failure pressure as compared to perfectly round tubing. In this paper, an analytical model of collapse pressure for oval tubing under axial tension or compression is developed based on elastic instability theory and the von Mises criterion. The theoretical model shows satisfactory agreement with experimental data.

  11. Enteral Tube Feeding and Pneumonia

    ERIC Educational Resources Information Center

    Gray, David Sheridan; Kimmel, David

    2006-01-01

    To determine the effects of enteral tube feeding on the incidence of pneumonia, we performed a retrospective review of all clients at our institution who had gastrostomy or jejunostomy tubes placed over a 10-year period. Ninety-three subjects had a history of pneumonia before feeding tube insertion. Eighty had gastrostomy and 13, jejunostomy…

  12. YouTube Physics

    NASA Astrophysics Data System (ADS)

    Riendeau, Diane

    2012-09-01

    To date, this column has presented videos to show in class, Don Mathieson from Tulsa Community College suggested that YouTube could be used in another fashion. In Don's experience, his students are not always prepared for the mathematic rigor of his course. Even at the high school level, math can be a barrier for physics students. Walid Shihabi, a colleague of Don's, decided to compile a list of YouTube videos that his students could watch to relearn basic mathematics. I thought this sounded like a fantastic idea and a great service to the students. Walid graciously agreed to share his list and I have reproduced a large portion of it below.

  13. Tube coupling device

    NASA Technical Reports Server (NTRS)

    Myers, William N. (Inventor); Hein, Leopold A. (Inventor)

    1987-01-01

    A first annular ring of a tube coupling device has a keyed opening sized to fit around the nut region of a male coupling, and a second annular ring has a keyed opening sized to fit around the nut of a female coupling. Each ring has mating ratchet teeth and these rings are biased together, thereby engaging these teeth and preventing rotation of these rings. This in turn prevents the rotation of the male nut region with respect to the female nut. For tube-to-bulkhead locking, one facet of one ring is notched, and a pin is pressed into an opening in the bulkhead. This pin is sized to fit within one of the notches in the ring, thereby preventing rotation of this ring with respect to the bulkhead.

  14. Induction plasma tube

    DOEpatents

    Hull, D.E.

    1982-07-02

    An induction plasma tube having a segmented, fluid-cooled internal radiation shield is disclosed. The individual segments are thick in cross-section such that the shield occupies a substantial fraction of the internal volume of the plasma enclosure, resulting in improved performance and higher sustainable plasma temperatures. The individual segments of the shield are preferably cooled by means of a counterflow fluid cooling system wherein each segment includes a central bore and a fluid supply tube extending into the bore. The counterflow cooling system results in improved cooling of the individual segments and also permits use of relatively larger shield segments which permit improved electromagnetic coupling between the induction coil and a plasma located inside the shield. Four embodiments of the invention, each having particular advantages, are disclosed.

  15. Induction plasma tube

    DOEpatents

    Hull, Donald E.

    1984-01-01

    An induction plasma tube having a segmented, fluid-cooled internal radiation shield is disclosed. The individual segments are thick in cross-section such that the shield occupies a substantial fraction of the internal volume of the plasma enclosure, resulting in improved performance and higher sustainable plasma temperatures. The individual segments of the shield are preferably cooled by means of a counterflow fluid cooling system wherein each segment includes a central bore and a fluid supply tube extending into the bore. The counterflow cooling system results in improved cooling of the individual segments and also permits use of relatively larger shield segments which permit improved electromagnetic coupling between the induction coil and a plasma located inside the shield. Four embodiments of the invention, each having particular advantages, are disclosed.

  16. Effects of oil on boiling of replacement refrigerants flowing normal to a tube bundle -- Part 1: R-123

    SciTech Connect

    Tatara, R.A.; Payvar, P.

    2000-07-01

    Local experimental heat transfer coefficients have been obtained for boiling refrigerant flowing up and across a tube bundle segment representing a full flooded evaporator tube bundle. R-123 data with a structured enhanced boiling tube are available.The refrigerant enters at 15% vapor quality and exits at nearly 100% vapor in order to simulate an actual flooded evaporator bundle. Both heat flux, 2,607 to 10,427 Btu/h{center_dot}ft{sup 2} (8,224 to 32,893 W/m{sup 2}), and oil content, 0--15% (by weight), are varied; the mass flux is not varied independently but set by the heat flux. Local tube and bulk fluid temperatures are measured directly, by thermocouples, to calculate the refrigerant-side heat transfer coefficients. The bundle segment saturation temperature set point (taken at the top of the tube bundle) is 40 F (4.4 C).

  17. Condensation of R-11 on the outside of vertical enhanced tubes

    SciTech Connect

    Domingo, N.

    1981-01-01

    A review of condensation experiments with enhanced surface is presented in support of the program to develop improved condensers for geothermal binary power cycles. Experiments were conducted to determine heat transfer performance with Refrigerant-11 (R-11) condensing on the enhanced (outside) surface of single vertical tubes. Twelve tubes of 2.54-cm (1-in.) nominal OD and 1.22 m (4 ft) length with fluted, spiralled, roped, and corrugated surfaces were tested; several of the tested tubes also featured internal enhanced geometries. A smooth tube served as the basis of comparison. Composite heat transfer coefficients (coefficients that include the resistances of both the condensing film and the tube wall), based on total tube outside area, are repoted for all tubes, except a double-(internal/external) fluted tube, where only overall heat transfer data are presented. The main conclusions from this study are: (a) for a given heat flux, an external fluted tube can increase composite condensing heat transfer coefficients by up to 5.5 times the smooth tube values, giving better condensing performance than any of the other geometries tested; (b) a further increase in composite condensing coefficients can be achived by using drip skirts to remove the condensate from the surface at intervals along the condensing length; and (c) for a given overall temperature difference and water flow rate, internal flutes can increase the overall performance by up to 17% over that for a tube with identical outside flutes and a smooth inside surface.

  18. Joined concentric tubes

    DOEpatents

    DeJonghe, Lutgard; Jacobson, Craig; Tucker, Michael; Visco, Steven

    2013-01-01

    Tubular objects having two or more concentric layers that have different properties are joined to one another during their manufacture primarily by compressive and friction forces generated by shrinkage during sintering and possibly mechanical interlocking. It is not necessary for the concentric tubes to display adhesive-, chemical- or sinter-bonding to each other in order to achieve a strong bond. This facilitates joining of dissimilar materials, such as ceramics and metals.

  19. Combining global and local approximations

    NASA Technical Reports Server (NTRS)

    Haftka, Raphael T.

    1991-01-01

    A method based on a linear approximation to a scaling factor, designated the 'global-local approximation' (GLA) method, is presented and shown capable of extending the range of usefulness of derivative-based approximations to a more refined model. The GLA approach refines the conventional scaling factor by means of a linearly varying, rather than constant, scaling factor. The capabilities of the method are demonstrated for a simple beam example with a crude and more refined FEM model.

  20. Combining global and local approximations

    SciTech Connect

    Haftka, R.T. )

    1991-09-01

    A method based on a linear approximation to a scaling factor, designated the 'global-local approximation' (GLA) method, is presented and shown capable of extending the range of usefulness of derivative-based approximations to a more refined model. The GLA approach refines the conventional scaling factor by means of a linearly varying, rather than constant, scaling factor. The capabilities of the method are demonstrated for a simple beam example with a crude and more refined FEM model. 6 refs.

  1. Apparatus Splits Glass Tubes Longitudinally

    NASA Technical Reports Server (NTRS)

    Shaw, Ernest; Manahan, Robert O'neil

    1993-01-01

    Tubes split into half cylinders by hot-wire/thermal-shock method. Tube to be cut placed on notched jig in apparatus. Nichrome wire stretched between arms of pivoted carriage and oriented parallel to notch. Wire heated by electrical current while resting on tube. After heating for about 1 minute for each millimeter of thickness of glass, tube quenched in water and split by resulting thermal shock. Apparatus used to split tubes in sizes ranging from 3/8 in. in diameter by 1 in. long to 1 1/2 in. in diameter by 4 in. long.

  2. Tube bundle system

    PubMed Central

    Marchewka, W.; Mohamed, K.; Addis, J.; Karnack, F.

    2015-01-01

    A tube bundle system (TBS) is a mechanical system for continuously drawing gas samples through tubes from multiple monitoring points located in an underground coal mine. The gas samples are drawn via vacuum pump to the surface and are typically analyzed for oxygen, methane, carbon dioxide and carbon monoxide. Results of the gas analyses are displayed and recorded for further analysis. Trends in the composition of the mine atmosphere, such as increasing methane or carbon monoxide concentration, can be detected early, permitting rapid intervention that prevents problems, such as a potentially explosive atmosphere behind seals, fire or spontaneous combustion. TBS is a well-developed technology and has been used in coal mines around the world for more than 50 years. Most longwall coal mines in Australia deploy a TBS, usually with 30 to 40 monitoring points as part of their atmospheric monitoring. The primary uses of a TBS are detecting spontaneous combustion and maintaining sealed areas inert. The TBS might also provide mine atmosphere gas composition data after a catastrophe occurs in an underground mine, if the sampling tubes are not damaged. TBSs are not an alternative to statutory gas and ventilation airflow monitoring by electronic sensors or people; rather, they are an option to consider in an overall mine atmosphere monitoring strategy. This paper describes the hardware, software and operation of a TBS and presents one example of typical data from a longwall coal mine PMID:26306052

  3. Traveling-Wave Tubes

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.

    1998-01-01

    The traveling-wave tube (TWT) is a vacuum device invented in the early 1940's used for amplification at microwave frequencies. Amplification is attained by surrendering kinetic energy from an electron beam to a radio frequency (RF) electromagnetic wave. The demand for vacuum devices has been decreased largely by the advent of solid-state devices. However, although solid state devices have replaced vacuum devices in many areas, there are still many applications such as radar, electronic countermeasures and satellite communications, that require operating characteristics such as high power (Watts to Megawatts), high frequency (below 1 GHz to over 100 GHz) and large bandwidth that only vacuum devices can provide. Vacuum devices are also deemed irreplaceable in the music industry where musicians treasure their tube-based amplifiers claiming that the solid-state and digital counterparts could never provide the same "warmth" (3). The term traveling-wave tube includes both fast-wave and slow-wave devices. This article will concentrate on slow-wave devices as the vast majority of TWTs in operation fall into this category.

  4. Concentric tube support assembly

    DOEpatents

    Rubio, Mark F.; Glessner, John C.

    2012-09-04

    An assembly (45) includes a plurality of separate pie-shaped segments (72) forming a disk (70) around a central region (48) for retaining a plurality of tubes (46) in a concentrically spaced apart configuration. Each segment includes a support member (94) radially extending along an upstream face (96) of the segment and a plurality of annularly curved support arms (98) transversely attached to the support member and radially spaced apart from one another away from the central region for receiving respective upstream end portions of the tubes in arc-shaped spaces (100) between the arms. Each segment also includes a radial passageway (102) formed in the support member for receiving a fluid segment portion (106) and a plurality of annular passageways (104) formed in the support arms for receiving respective arm portions (108) of the fluid segment portion from the radial passageway and for conducting the respective arm portions into corresponding annular spaces (47) formed between the tubes retained by the disk.

  5. TUBE SHEARING VALVE

    DOEpatents

    Wilner, L.B.

    1960-05-24

    Explosive operated valves can be used to join two or more containers in fluid flow relationship, one such container being a sealed reservoir. The valve is most simply disposed by mounting it on the reservoir so thst a tube extends from the interior of the reservoir through the valve body, terminating at the bottom of the bore in a closed end; other containers may be similarly connected or may be open connected, as desired. The piston of the valve has a cutting edge at its lower end which shears off the closed tube ends and a recess above the cutting edge to provide a flow channel. Intermixing of the fluid being transferred with the explosion gases is prevented by a copper ring at the top of the piston which is force fitted into the bore at the beginning of the stroke. Although designed to avoid backing up of the piston at pressures up to 10,000 psi in the transferred fluid, proper operation is independent of piston position, once the tube ends were sheared.

  6. Phenomenological applications of rational approximants

    NASA Astrophysics Data System (ADS)

    Gonzàlez-Solís, Sergi; Masjuan, Pere

    2016-08-01

    We illustrate the powerfulness of Padé approximants (PAs) as a summation method and explore one of their extensions, the so-called quadratic approximant (QAs), to access both space- and (low-energy) time-like (TL) regions. As an introductory and pedagogical exercise, the function 1 zln(1 + z) is approximated by both kind of approximants. Then, PAs are applied to predict pseudoscalar meson Dalitz decays and to extract Vub from the semileptonic B → πℓνℓ decays. Finally, the π vector form factor in the TL region is explored using QAs.

  7. In-reactor deformation of cold-worked Zr 2.5Nb pressure tubes

    NASA Astrophysics Data System (ADS)

    Holt, R. A.

    2008-01-01

    Over forty years of in-reactor testing and over thirty years of operating experience in power reactors have provided a broad understanding of the in-reactor deformation of cold-worked Zr-2.5Nb pressure tubes, and an extensive data-base upon which to base models for managing the life of existing reactors and for designing new ones. The effects of the major operating variables and many of the metallurgical variables are broadly understood. The deformation is often considered to comprise three components: thermal creep, irradiation growth and irradiation creep. Of the three, irradiation growth is best understood - it is thought to be driven by the diffusional anisotropy difference (DAD). It is still not clear whether the enhancement of creep by irradiation is due to climb-plus-glide (CPG), stress-induced preferred absorption (SIPA) or elasto-diffusion (ED). The least understood area is the transition between thermal creep and irradiation where the fast neutron flux may either suppress or enhance the creep rate. The three components are generally treated as additive in the models, although it is recognized that this is only a crude approximation of reality. There are still significant gaps in our knowledge besides the thermal- to irradiation-creep transition, for example, the effect of Mo which is produced from Nb by transmutation in the thermal neutron flux is not known, and on-going work is required in a number of areas. This paper reviews the current state of knowledge of the in-reactor deformation of cold-worked Zr-2.5Nb pressure tubes, and highlights areas for further research.

  8. Reliability of steam generator tubing

    SciTech Connect

    Kadokami, E.

    1997-02-01

    The author presents results on studies made of the reliability of steam generator (SG) tubing. The basis for this work is that in Japan the issue of defects in SG tubing is addressed by the approach that any detected defect should be repaired, either by plugging the tube or sleeving it. However, this leaves open the issue that there is a detection limit in practice, and what is the effect of nondetectable cracks on the performance of tubing. These studies were commissioned to look at the safety issues involved in degraded SG tubing. The program has looked at a number of different issues. First was an assessment of the penetration and opening behavior of tube flaws due to internal pressure in the tubing. They have studied: penetration behavior of the tube flaws; primary water leakage from through-wall flaws; opening behavior of through-wall flaws. In addition they have looked at the question of the reliability of tubing with flaws during normal plant operation. Also there have been studies done on the consequences of tube rupture accidents on the integrity of neighboring tubes.

  9. Hybrid endotracheal tubes

    NASA Astrophysics Data System (ADS)

    Sakezles, Christopher Thomas

    Intubation involves the placement of a tube into the tracheal lumen and is prescribed in any setting in which the airway must be stabilized or the patient anesthetized. The purpose of the endotracheal tube in these procedures is to maintain a viable airway, facilitate mechanical ventilation, allow the administration of anesthetics, and prevent the reflux of vomitus into the lungs. In order to satisfy these requirements a nearly airtight seal must be maintained between the tube and the tracheal lining. Most conventional endotracheal tubes provide this seal by employing a cuff that is inflated once the tube is in place. However, the design of this cuff and properties of the material are a source of irritation and injury to the tracheal tissues. In fact, the complication rate for endotracheal intubation is reported to be between 10 and 60%, with manifestations ranging from severe sore throat to erosion through the tracheal wall. These complications are caused by a combination of the materials employed and the forces exerted by the cuff on the tracheal tissues. In particular, the abrasive action of the cuff shears cells from the lining, epithelium adhering to the cuff is removed during extubation, and normal forces exerted on the basement tissues disrupt the blood supply and cause pressure necrosis. The complications associated with tracheal intubation may be reduced or eliminated by employing airway devices constructed from hydrogel materials. Hydrogels are a class of crosslinked polymers which swell in the presence of moisture, and may contain more than 95% water by weight. For the current study, several prototype airway devices were constructed from hydrogel materials including poly(vinyl alcohol), poly(hydroxyethyl methacrylate), and poly(vinyl pyrrolidone). The raw hydrogel materials from this group were subjected to tensile, swelling, and biocompatibility testing, while the finished devices were subjected to extensive mechanical simulation and animal trials

  10. Martian CH(4): sources, flux, and detection.

    PubMed

    Onstott, T C; McGown, D; Kessler, J; Lollar, B Sherwood; Lehmann, K K; Clifford, S M

    2006-04-01

    Recent observations have detected trace amounts of CH(4) heterogeneously distributed in the martian atmosphere, which indicated a subsurface CH(4) flux of ~2 x 10(5) to 2 x 10(9) cm(2) s(1). Four different origins for this CH(4) were considered: (1) volcanogenic; (2) sublimation of hydrate- rich ice; (3) diffusive transport through hydrate-saturated cryosphere; and (4) microbial CH(4) generation above the cryosphere. A diffusive flux model of the martian crust for He, H(2), and CH(4) was developed based upon measurements of deep fracture water samples from South Africa. This model distinguishes between abiogenic and microbial CH(4) sources based upon their isotopic composition, and couples microbial CH(4) production to H(2) generation by H(2)O radiolysis. For a He flux of approximately 10(5) cm(2) s(1) this model yields an abiogenic CH(4) flux and a microbial CH(4) flux of approximately 10(6) and approximately 10(9) cm(2) s(1), respectively. This flux will only reach the martian surface if CH(4) hydrate is saturated in the cryosphere; otherwise it will be captured within the cryosphere. The sublimation of a hydrate-rich cryosphere could generate the observed CH(4) flux, whereas microbial CH(4) production in a hypersaline environment above the hydrate stability zone only seems capable of supplying approximately 10(5) cm(2) s(1) of CH(4). The model predicts that He/H(2)/CH(4)/C(2)H(6) abundances and the C and H isotopic values of CH(4) and the C isotopic composition of C(2)H(6) could reveal the different sources. Cavity ring-down spectrometers represent the instrument type that would be most capable of performing the C and H measurements of CH(4) on near future rover missions and pinpointing the cause and source of the CH(4) emissions.

  11. Flux Compression Magnetic Nozzle

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Schafer, Charles (Technical Monitor)

    2001-01-01

    In pulsed fusion propulsion schemes in which the fusion energy creates a radially expanding plasma, a magnetic nozzle is required to redirect the radially diverging flow of the expanding fusion plasma into a rearward axial flow, thereby producing a forward axial impulse to the vehicle. In a highly electrically conducting plasma, the presence of a magnetic field B in the plasma creates a pressure B(exp 2)/2(mu) in the plasma, the magnetic pressure. A gradient in the magnetic pressure can be used to decelerate the plasma traveling in the direction of increasing magnetic field, or to accelerate a plasma from rest in the direction of decreasing magnetic pressure. In principle, ignoring dissipative processes, it is possible to design magnetic configurations to produce an 'elastic' deflection of a plasma beam. In particular, it is conceivable that, by an appropriate arrangement of a set of coils, a good approximation to a parabolic 'magnetic mirror' may be formed, such that a beam of charged particles emanating from the focal point of the parabolic mirror would be reflected by the mirror to travel axially away from the mirror. The degree to which this may be accomplished depends on the degree of control one has over the flux surface of the magnetic field, which changes as a result of its interaction with a moving plasma.

  12. Coiled tubing: Early warning system to detect flaws in flat sheet prior to rolling and welding

    SciTech Connect

    Edens, C.W. )

    1994-05-01

    Through experimentation and dynamic evaluation of skelp at a coiled tubing mill, the use of leakage flux solid state sensing devices shows clearly that the requirement for nondestructively testing skelp can be met. As coiled tubing for drilling purposes gains wider usage, its skelp can take advantage of upstream inspection prior to forming the tubes. A reliable coiled tubing product is one in which every aspect of its manufacturing was considered, from raw material through final inspection. In no other way can the concept of total quality management be satisfied providing reliability of product use. A guarantee of fitness for purpose falls directly on the coiled tubing manufacturer. Purveyors of jointed electronic resistance weld tubulars may also take advantage of this inspection method. The American Petroleum Institute (API) has recently established a committee to study and formulate recommended practices for coiled tubing operations.

  13. Shear dispersion in a capillary tube with a porous wall.

    PubMed

    Dejam, Morteza; Hassanzadeh, Hassan; Chen, Zhangxin

    2016-01-01

    An analytical expression is presented for the shear dispersion during solute transport in a coupled system comprised of a capillary tube and a porous medium. The dispersion coefficient is derived in a capillary tube with a porous wall by considering an accurate boundary condition, which is the continuity of concentration and mass flux, at the interface between the capillary tube and porous medium. A comparison of the obtained results with that in a non-coupled system identifies three regimes including: diffusion-dominated, transition, and advection-dominated. The results reveal that it is essential to include the exchange of solute between the capillary tube and porous medium in development of the shear dispersion coefficient for the last two regimes. The resulting equivalent transport equation revealed that due to mass transfer between the capillary tube and the porous medium, the dispersion coefficient is decreased while the effective velocity in the capillary tube increases. However, a larger effective advection term leads to faster breakthrough of a solute and enhances mass delivery to the porous medium as compared with the classical double-porosity model with a non-coupled dispersion coefficient. The obtained results also indicate that the finite porous medium gives faster breakthrough of a solute as compared with the infinite one. These results find applications in solute transport in porous capillaries and membranes.

  14. DYNAMICS OF MAGNETIZED VORTEX TUBES IN THE SOLAR CHROMOSPHERE

    SciTech Connect

    Kitiashvili, I. N.; Kosovichev, A. G.; Mansour, N. N.; Wray, A. A.

    2012-05-20

    We use three-dimensional radiative MHD simulations to investigate the formation and dynamics of small-scale (less than 0.5 Mm in diameter) vortex tubes spontaneously generated by turbulent convection in quiet-Sun regions with an initially weak (10 G) mean magnetic field. The results show that the vortex tubes penetrate into the chromosphere and substantially affect the structure and dynamics of the solar atmosphere. The vortex tubes are mostly concentrated in intergranular lanes and are characterized by strong (near sonic) downflows and swirling motions that capture and twist magnetic field lines, forming magnetic flux tubes that expand with height and attain magnetic field strengths ranging from 200 G in the chromosphere to more than 1 kG in the photosphere. We investigate in detail the physical properties of these vortex tubes, including thermodynamic properties, flow dynamics, and kinetic and current helicities, and conclude that magnetized vortex tubes provide an important path for energy and momentum transfer from the convection zone into the chromosphere.

  15. Approximating Functions with Exponential Functions

    ERIC Educational Resources Information Center

    Gordon, Sheldon P.

    2005-01-01

    The possibility of approximating a function with a linear combination of exponential functions of the form e[superscript x], e[superscript 2x], ... is considered as a parallel development to the notion of Taylor polynomials which approximate a function with a linear combination of power function terms. The sinusoidal functions sin "x" and cos "x"…

  16. On current sheet approximations in models of eruptive flares

    NASA Technical Reports Server (NTRS)

    Bungey, T. N.; Forbes, T. G.

    1994-01-01

    We consider an approximation sometimes used for current sheets in flux-rope models of eruptive flares. This approximation is based on a linear expansion of the background field in the vicinity of the current sheet, and it is valid when the length of the current sheet is small compared to the scale length of the coronal magnetic field. However, we find that flux-rope models which use this approximation predict the occurrence of an eruption due to a loss of ideal-MHD equilibrium even when the corresponding exact solution shows that no such eruption occurs. Determination of whether a loss of equilibrium exists can only be obtained by including higher order terms in the expansion of the field or by using the exact solution.

  17. An apparatus for the measurement of regenerator performance in pulse tube refrigerators

    NASA Technical Reports Server (NTRS)

    Rawlins, Wayne; Radebaugh, Ray

    1990-01-01

    This paper discusses the design and construction of an apparatus to measure the ineffectiveness of regenerators used for pulse tube refrigerators. Because of the fairly large mass flow rates which occur in pulse tube refrigerators, the regenerator ineffectiveness must be made quite small. The apparatus described here allows for the measurement of the refrigerator. A low temperature heat sink of liquid nitrogen is used since it approximates the temperatures normally achieved in a one-stage pulse tube.

  18. Tube structures of probable microbial origin in the Neoarchean Carawine Dolomite, Hamersley Basin, Western Australia.

    PubMed

    Murphy, M A; Sumner, D Y

    2008-01-01

    The approximately 2.63 Ga Carawine Dolomite, Hamersley Basin, Western Australia, preserves tube structures of probable microbial origin that formed in a low energy environment. The tubes are 0.4-1.8 cm in diameter and at least 10-16 cm long in outcrop. The tubes are defined by dark, 45-microm-thick dolomicritic walls, whereas the tube fill and host rock are composed of 30 microm, cloudy dolomite crystals and rare 170- to 425-microm-wide, dark well-sorted clasts. Closely spaced, rarely discontinuous laminae coat the insides of tubes; less closely spaced, peaked, discontinuous laminae coat the outsides of tubes. The laminae on the outsides of tubes are often intercalated with mammilate structures. The presence of probable microbial coatings on both the insides and the outsides of the tube walls requires that the tubes formed above the sediment-water interface. These tube structures probably formed during gas-charged fluid escape, similar to tubes observed in ancient and modern hydrocarbon seeps and cylindrical water transfer structures in sandstones. The laminae that coat the tubes have very similar geometries to modern biofilms that form in both turbulent and laminar flow, and their geometries probably reflect flow conditions during the fluid escape. The identification of these structures suggests that the preserved interaction between fluid escape and microbial growth in carbonates may be more common than previously thought.

  19. Development of ITER Divertor Vertical Target with Annular Flow Concept - I: Thermal-Hydraulic Characteristics of Annular Swirl Tube

    SciTech Connect

    Ezato, K.; Dairaku, M.; Taniguchi, M.; Sato, K.; Suzuki, S.; Akiba, M.; Ibbott, C.; Tivey, R.

    2004-12-15

    Thermal-hydraulic tests for pressurized water in an annular tube with a twist fin have been performed to examine its applicability to high-heat-flux components of the International Thermonuclear Experimental Reactor (ITER) divertor. The annular swirl tube consists of two concentric tubes: an outer smooth tube and an inner tube with an external twist fin to enhance heat transfer of the cooling water in the annulus section between the outer and the inner tubes. Critical heat flux (CHF) tests under one-sided-heating conditions show that the annular swirl tube has as high removal limitation as the conventional swirl tube, the dimensions of which are similar to those of the outer tube of the annular swirl tube. A minimum axial velocity of 7.1 m/s is required for 28 MW/m{sup 2}, the ITER design value. Pressure drops in the annulus section and the end return have been measured. The applicability of the existing correlations for heat transfer and CHF to the annular swirl tube has also been examined.

  20. Magnetic flux ropes in 3-dimensional MHD simulations

    NASA Technical Reports Server (NTRS)

    Ogino, Tatsuki; Walker, Raymond J.; Ashour-Abdalla, Maha

    1990-01-01

    The interaction of the solar wind and the earth's magnetosphere is presently simulated by a 3D, time-dependent, global MHD method in order to model the magnetopause and magnetotail generation of magnetic flux ropes. It is noted that strongly twisted and localized magnetic flux tubes simular to magnetic flux ropes appear at the subpolar magnetopause when the IMF has a large azimuthal component, as well as a southward component. Plasmoids are generated in the magnetotail after the formation of a near-earth magnetic neutral line; the magnetic field lines have a helical structure that is connected from dawn to dusk.

  1. Cosmic muon flux measurements at the Kimballton Underground Research Facility

    NASA Astrophysics Data System (ADS)

    Kalousis, L. N.; Guarnaccia, E.; Link, J. M.; Mariani, C.; Pelkey, R.

    2014-08-01

    In this article, the results from a series of muon flux measurements conducted at the Kimballton Underground Research Facility (KURF), Virginia, United States, are presented. The detector employed for these investigations, is made of plastic scintillator bars readout by wavelength shifting fibers and multianode photomultiplier tubes. Data was taken at several locations inside KURF, spanning rock overburden values from ~ 200 to 1450 m.w.e. From the extracted muon rates an empirical formula was devised, that estimates the muon flux inside the mine as a function of the overburden. The results are in good agreement with muon flux calculations based on analytical models and MUSIC.

  2. Approximate circuits for increased reliability

    DOEpatents

    Hamlet, Jason R.; Mayo, Jackson R.

    2015-12-22

    Embodiments of the invention describe a Boolean circuit having a voter circuit and a plurality of approximate circuits each based, at least in part, on a reference circuit. The approximate circuits are each to generate one or more output signals based on values of received input signals. The voter circuit is to receive the one or more output signals generated by each of the approximate circuits, and is to output one or more signals corresponding to a majority value of the received signals. At least some of the approximate circuits are to generate an output value different than the reference circuit for one or more input signal values; however, for each possible input signal value, the majority values of the one or more output signals generated by the approximate circuits and received by the voter circuit correspond to output signal result values of the reference circuit.

  3. Approximate circuits for increased reliability

    SciTech Connect

    Hamlet, Jason R.; Mayo, Jackson R.

    2015-08-18

    Embodiments of the invention describe a Boolean circuit having a voter circuit and a plurality of approximate circuits each based, at least in part, on a reference circuit. The approximate circuits are each to generate one or more output signals based on values of received input signals. The voter circuit is to receive the one or more output signals generated by each of the approximate circuits, and is to output one or more signals corresponding to a majority value of the received signals. At least some of the approximate circuits are to generate an output value different than the reference circuit for one or more input signal values; however, for each possible input signal value, the majority values of the one or more output signals generated by the approximate circuits and received by the voter circuit correspond to output signal result values of the reference circuit.

  4. Capillary Penetration into Inclined Circular Glass Tubes.

    PubMed

    Trabi, Christophe L; Ouali, F Fouzia; McHale, Glen; Javed, Haadi; Morris, Robert H; Newton, Michael I

    2016-02-09

    The spontaneous penetration of a wetting liquid into a vertical tube against the force of gravity and the imbibition of the same liquid into a horizontal tube (or channel) are both driven by capillary forces and described by the same fundamental equations. However, there have been few experimental studies of the transition from one orientation to the other. We report systematic measurements of capillary penetration of polydimethylsiloxane oils of viscosities 9.6, 19.2, and 48.0 mPa·s into glass capillary tubes. We first report the effect of tube radii R between 140 and 675 μm on the dynamics of spontaneous imbibition. We show that the data can be fitted using the exact numerical solution to the governing equations and that these are similar to fits using the analytical viscogravitational approximation. However, larger diameter tubes show a rate of penetration slower than expected using an equilibrium contact angle and the known value of liquid viscosity. To account for the slowness, an increase in viscosity by a factor (η/ρ)(scaling) is needed. We show full agreement with theory requires the ratio R/κ(-1) ∼ 0.1 or less, where κ(-1) is the capillary length. In addition, we propose an experimental method that enables the determination of the dynamic contact angle during imbibition, which gives values that agree with the literature values. We then report measurements of dynamic penetration into the tubes of R = 190 and 650 μm for a range of inclination angles to the horizontal, φ, from 5 to 90°. We show that capillary penetration can still be fitted using the viscogravitational solution, rather than the Bosanquet solution which describes imbibition without gravity, even for inclination angles as low as 10°. Moreover, at these low angles, the effect of the tube radius is found to diminish and this appears to relate to an effective capillary length, κ(-1)(φ) = (γ(LV)/ρg sin φ)(1/2).

  5. The experimental investigation and thermodynamic analysis of vortex tubes

    NASA Astrophysics Data System (ADS)

    Celik, Adem; Yilmaz, Mehmet; Kaya, Mehmet; Karagoz, Sendogan

    2017-02-01

    In the present study, it was aimed to produce a fundamental i nformation and to investigate the effects of various design parameters on tube performance characteristics by setting up vortex tube experimental system in order to study the parameters predetermined for the design of vortex tubes and by conducting thermodynamic analysis. According to the findings of experiments, as the mass flow rate of cold flow increases (yc) temperature of cold flow also increases, while the temperature of warm flow increases approximately to yc = 0.6 and then decreases. Increases in inlet pressure, inlet nozzle surface and diameter of the cold outlet orifice increased temperature differences between cold and warm flows. Tube with L/D = 10 showed better performance than with L/D = 20. The finding that irreversibility parameter is very close to critical threshold of irreversibility proved that process in vortex tube is considerably irreversible. Coefficient of performance (COP) values in vortex tube were much lower than other heating and cooling systems. This situation may show that vortex tubes are convenient in the processes where productivity is at the second rate compared to other factors.

  6. Thermally induced stresses and deformations in layered composite tubes

    NASA Technical Reports Server (NTRS)

    Cooper, D. E.; Cohen, D.; Rousseau, C. Q.; Hyer, M. W.; Tompkins, S. S.

    1985-01-01

    The thermally induced stresses and deformations in layered, orthotropic tubes are studied. The motivation for studying tubes is their likely application for use in space structures. Tubes are a strong candidate for this application because of their high structural efficiency, as measured by stiffness per unit weight, and their relative ease of fabrication. Also, tubes have no free edges to deteriorate or delaminate. An anticipated thermal condition for tubes in space is a circumferential temperature gradient. This type of gradient will introduce dimensional changes into the structure and may cause stresses large enough to cause damage to the material. There are potentially large differences in temperatures at different circumferential locations on the tube. Because of this, the effects of temperature dependent material properties on the stresses and deformations may be important. The study is composed of three parts: experiments to determine the functional form of the circumferential gradient and to measure tube deflections; an elasticity solution to compute the stresses and deformations; and an approximate approach to determine the effects of temperature dependent material properties.

  7. Creating porous tubes by centrifugal forces for soft tissue application.

    PubMed

    Dalto, P D; Shoichet, M S

    2001-10-01

    Chemically crosslinked poly(2-hydroxyethyl methacrylate) (PHEMA) tubes were synthesized by applying centrifugal forces to propagating polymer chains in solution. Initiated monomer solutions, with a composition typical for PHEMA sponges, were placed into a cylindrical mold that was rotated about its long axis. As polymerization proceeded, phase separated PHEMA formed a sediment at the periphery under centrifugal action. The solvent remained in the center of the mold while the PHEMA phase gelled, resulting in a tube. By controlling the rotational speed and the formulation chemistry (i.e., monomer, initiator and crosslinking agent concentrations), the tube dimensions and wall morphology were manipulated. Tube manufacture was limited by a critical casting concentration [M]c, above which only rods formed. All tubes had an outer diameter of 2.4 mm, reflecting the internal diameter of the mold and a wall thickness of approximately 40-400 microm. Wall morphologies varied from interconnecting polymer and water phases to a closed cell, gel-like, structure. Concentric tubes were successfully prepared by using formulations that enhanced phase separation over gelation/network formation. This was achieved by using formulations with lower concentrations of monomer and crosslinking agent and higher concentrations of initiator. This technique offers a new approach to the synthesis of polymeric tubes for use in soft tissue applications, such as nerve guidance channels.

  8. FLUXES FOR MECHANIZED ELECTRIC WELDING,

    DTIC Science & Technology

    WELDING FLUXES, WELDING ), (* WELDING , WELDING FLUXES), ARC WELDING , WELDS, STABILITY, POROSITY, WELDING RODS, STEEL, CERAMIC MATERIALS, FLUXES(FUSION), TITANIUM ALLOYS, ALUMINUM ALLOYS, COPPER ALLOYS, ELECTRODEPOSITION

  9. AmeriFlux US-WCr Willow Creek

    DOE Data Explorer

    Desai, Ankur [University of Wisconsin

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-WCr Willow Creek. Site Description - Upland decduous broadleaf forest. Mainly sugar maple, also basswood. Uniform stand atop a very modest hill. Clearcut approximately 80 years ago. Chosen to be representative of the upland deciduous broadleaf forests within the WLEF tall tower flux footprint. It appears to be more heavily forested and more productive than most of the upland deciduous broadleaf forests in the WLEF flux footprint (see publications for more details). It is also important that SE winds are screened from the flux data (see Cook et al, 2004 for details). Propane generator power.

  10. Tube thoracostomy; chest tube implantation and follow up

    PubMed Central

    Kuhajda, Ivan; Zarogoulidis, Konstantinos; Kougioumtzi, Ioanna; Huang, Haidong; Li, Qiang; Dryllis, Georgios; Kioumis, Ioannis; Pitsiou, Georgia; Machairiotis, Nikolaos; Katsikogiannis, Nikolaos; Papaiwannou, Antonis; Lampaki, Sofia; Papaiwannou, Antonis; Zaric, Bojan; Branislav, Perin; Porpodis, Konstantinos

    2014-01-01

    Pneumothorax is an urgent medical situation that requires urgent treatment. We can divide this entity based on the etiology to primary and secondary. Chest tube implantation can be performed either in the upper chest wall or lower. Both thoracic surgeons and pulmonary physicians can place a chest tube with minimal invasive techniques. In our current work, we will demonstrate chest tube implantation to locations, methodology and tools. PMID:25337405

  11. Enhancement of critical heat flux in subcooled flow boiling of water by use of a volatile additive

    SciTech Connect

    Pabisz, R.A. Jr.; Bergles, A.E.

    1996-12-31

    The present investigation considers the effect of a 1-pentanol additive in water on the critical heat flux (CHF) and pressure drop in forced subcooled boiling. A small quantity of 1-pentanol was added to distilled water with the objective of getting an approximate 2% by weight mixture, which had been found to give superior performance in previous studies of pool and flow boiling. Experiments were performed using stainless steel tubes with internal diameters of 4.4 and 6.1 mm. Tests were conducted with mass fluxes of 4,400 kg/m{sup 2}s, exit pressures of 9 bar, length-to-diameter ratios of 25, and exit subcoolings from 65 to 90 C. Test sections were heated directly by DC power, and critical heat flux data were inferred from test-section burnout. The alcohol concentration was periodically checked by draining off a sample and performing a Proton Nuclear Magnetic Resonance scan on the mixture. At high subcoolings, the mixture exhibited an increase in the critical heat flux over that of pure water. However at low subcoolings there is a decrease in the critical heat flux. The increases in critical heat flux noted with the 1-pentanol mixture in this experiment were not as large as would be expected from saturated pool boiling results published by Van Stralen (1959). Pressure drop data for both the mixture and the pure water also were recorded. The 1-pentanol mixture, in general, exhibited larger pressure drops for the same conditions. Subcooled flow boiling has a wide array of commercial cooling applications, including blades in gas turbines, high power laser optics, plasma-facing components in fusion reactors, supercomputers, etc.

  12. Gun Tube Heating

    DTIC Science & Technology

    1991-12-01

    for computing the interior boundary condition at the wall, given a proper convective coefficient, which must include the effects of pressure , gas...calculated z ,(Pz’AZ) x 1 , (1)Pz using a Mach number weighted pressure Pz = M4 1),2 (2) where M= U (3) The compressible Reynolds number is then computed as...shown to work fairly well for short periods of firing (Talley 1989). Due to the boundary at the breech of tha gun tube, this velocity- dependent

  13. Approximating subtree distances between phylogenies.

    PubMed

    Bonet, Maria Luisa; St John, Katherine; Mahindru, Ruchi; Amenta, Nina

    2006-10-01

    We give a 5-approximation algorithm to the rooted Subtree-Prune-and-Regraft (rSPR) distance between two phylogenies, which was recently shown to be NP-complete. This paper presents the first approximation result for this important tree distance. The algorithm follows a standard format for tree distances. The novel ideas are in the analysis. In the analysis, the cost of the algorithm uses a "cascading" scheme that accounts for possible wrong moves. This accounting is missing from previous analysis of tree distance approximation algorithms. Further, we show how all algorithms of this type can be implemented in linear time and give experimental results.

  14. Science Requirements for Limits on Vent Tube Stray Light

    NASA Astrophysics Data System (ADS)

    Petro, L.

    2007-12-01

    The design of the WFC3 UVIS and IR detector vent tubes is intended to assure that the stray light on the science detectors from illumination by the bright Earth at the vent tube radiator openings is greatly attenuated. The limits on that stray light and the nominal attenuation required in order that the scientific quality of images is not significantly degraded are presented here. The stray light signal rate in the UVIS detector should be less than 5.0 electrons/sec/cm2, and less than 75 electrons/sec/cm2 for the IR detector. In order to meet these limits, the incident flux of the bright Earth on the vent tube opening must be attenuated at the detector by greater than 2×10^16 in the UVIS channel and 3-10^15 in the IR channel.

  15. Computer-aided simulation study of photomultiplier tubes

    NASA Technical Reports Server (NTRS)

    Zaghloul, Mona E.; Rhee, Do Jun

    1989-01-01

    A computer model that simulates the response of photomultiplier tubes (PMTs) and the associated voltage divider circuit is developed. An equivalent circuit that approximates the operation of the device is derived and then used to develop a computer simulation of the PMT. Simulation results are presented and discussed.

  16. FluxBase: An Interactive Art Exhibition.

    ERIC Educational Resources Information Center

    Huntley, Joan S.; Partridge, Michael

    1992-01-01

    Describes a computer program that gives Fluxus exhibition attendees an opportunity to experience the Flux objects in the spirit in which they were originally created. Suggests that the computer program provides a virtual approximation to the original art works without damaging them. (RS)

  17. Steam generator tube integrity program

    SciTech Connect

    Dierks, D.R.; Shack, W.J.; Muscara, J.

    1996-03-01

    A new research program on steam generator tubing degradation is being sponsored by the U.S. Nuclear Regulatory Commission (NRC) at Argonne National Laboratory. This program is intended to support a performance-based steam generator tube integrity rule. Critical areas addressed by the program include evaluation of the processes used for the in-service inspection of steam generator tubes and recommendations for improving the reliability and accuracy of inspections; validation and improvement of correlations for evaluating integrity and leakage of degraded steam generator tubes, and validation and improvement of correlations and models for predicting degradation in steam generator tubes as aging occurs. The studies will focus on mill-annealed Alloy 600 tubing, however, tests will also be performed on replacement materials such as thermally-treated Alloy 600 or 690. An overview of the technical work planned for the program is given.

  18. Effective rheology of bubbles moving in a capillary tube.

    PubMed

    Sinha, Santanu; Hansen, Alex; Bedeaux, Dick; Kjelstrup, Signe

    2013-02-01

    We calculate the average volumetric flux versus pressure drop of bubbles moving in a single capillary tube with varying diameter, finding a square-root relation from mapping the flow equations onto that of a driven overdamped pendulum. The calculation is based on a derivation of the equation of motion of a bubble train, considering the capillary forces and the entropy production associated with the viscous flow. We also calculate the configurational probability of the positions of the bubbles.

  19. Applicability of uniform heat flux Nusselt number correlations to thermosyphon heat exchangers for solar water heaters

    SciTech Connect

    Dahl, S.; Davidson, J.

    1999-05-01

    Nusselt numbers are measured in three counterflow tube-in-shell heat exchangers with flow rates and temperatures representative of thermosyphon operation in solar water heating systems. Mixed convection heat transfer correlations for these tube-in-shell heat exchangers were previously developed in Dahl and Davidson (1998) from data obtained in carefully controlled experiments with uniform heat flux at the tube walls. The data presented in this paper confirm that the uniform heat flux correlations apply under more realistic conditions. Water flows in the shell and 50 percent ethylene glycol circulates in the tubes. Actual Nusselt numbers are within 15 percent of the values predicted for a constant heat flux boundary condition. The data reconfirm the importance of mixed convection in determining heat transfer rates. Under most operating conditions, natural convection heat transfer accounts for more than half of the total heat transfer rate.

  20. Applicability of uniform heat flux Nusselt number correlations to thermosyphon heat exchangers for solar water heaters

    SciTech Connect

    Dahl, S.; Davidson, J.

    1999-07-01

    Nusselt numbers are measured in three counterflow tube-in-shell heat exchangers with flow rates and temperatures representative of thermosyphon operation in solar water heating systems. Mixed convection heat transfer correlations for these tube-in-shell heat exchangers were previously developed in Dahl and Davidson (1998) from data obtained in carefully controlled experiments with uniform heat flux at the tube walls. The data presented in this paper confirm that the uniform heat flux correlations apply under more realistic conditions. Water flows in the shell and 50% ethylene glycol is circulated in the tubes. Actual Nusselt numbers are within 15% of the values predicted for a constant heat flux boundary condition. The data reconfirm the importance of mixed convection in determining heat transfer rates. Under most operating conditions, natural convection heat transfer accounts for more than half of the total heat transfer rate.

  1. Dual approximations in optimal control

    NASA Technical Reports Server (NTRS)

    Hager, W. W.; Ianculescu, G. D.

    1984-01-01

    A dual approximation for the solution to an optimal control problem is analyzed. The differential equation is handled with a Lagrange multiplier while other constraints are treated explicitly. An algorithm for solving the dual problem is presented.

  2. Mathematical algorithms for approximate reasoning

    NASA Technical Reports Server (NTRS)

    Murphy, John H.; Chay, Seung C.; Downs, Mary M.

    1988-01-01

    Most state of the art expert system environments contain a single and often ad hoc strategy for approximate reasoning. Some environments provide facilities to program the approximate reasoning algorithms. However, the next generation of expert systems should have an environment which contain a choice of several mathematical algorithms for approximate reasoning. To meet the need for validatable and verifiable coding, the expert system environment must no longer depend upon ad hoc reasoning techniques but instead must include mathematically rigorous techniques for approximate reasoning. Popular approximate reasoning techniques are reviewed, including: certainty factors, belief measures, Bayesian probabilities, fuzzy logic, and Shafer-Dempster techniques for reasoning. A group of mathematically rigorous algorithms for approximate reasoning are focused on that could form the basis of a next generation expert system environment. These algorithms are based upon the axioms of set theory and probability theory. To separate these algorithms for approximate reasoning various conditions of mutual exclusivity and independence are imposed upon the assertions. Approximate reasoning algorithms presented include: reasoning with statistically independent assertions, reasoning with mutually exclusive assertions, reasoning with assertions that exhibit minimum overlay within the state space, reasoning with assertions that exhibit maximum overlay within the state space (i.e. fuzzy logic), pessimistic reasoning (i.e. worst case analysis), optimistic reasoning (i.e. best case analysis), and reasoning with assertions with absolutely no knowledge of the possible dependency among the assertions. A robust environment for expert system construction should include the two modes of inference: modus ponens and modus tollens. Modus ponens inference is based upon reasoning towards the conclusion in a statement of logical implication, whereas modus tollens inference is based upon reasoning away

  3. Exponential approximations in optimal design

    NASA Technical Reports Server (NTRS)

    Belegundu, A. D.; Rajan, S. D.; Rajgopal, J.

    1990-01-01

    One-point and two-point exponential functions have been developed and proved to be very effective approximations of structural response. The exponential has been compared to the linear, reciprocal and quadratic fit methods. Four test problems in structural analysis have been selected. The use of such approximations is attractive in structural optimization to reduce the numbers of exact analyses which involve computationally expensive finite element analysis.

  4. Free compression tube. Applications

    NASA Astrophysics Data System (ADS)

    Rusu, Ioan

    2012-11-01

    During the flight of vehicles, their propulsion energy must overcome gravity, to ensure the displacement of air masses on vehicle trajectory, to cover both energy losses from the friction between a solid surface and the air and also the kinetic energy of reflected air masses due to the impact with the flying vehicle. The flight optimization by increasing speed and reducing fuel consumption has directed research in the aerodynamics field. The flying vehicles shapes obtained through studies in the wind tunnel provide the optimization of the impact with the air masses and the airflow along the vehicle. By energy balance studies for vehicles in flight, the author Ioan Rusu directed his research in reducing the energy lost at vehicle impact with air masses. In this respect as compared to classical solutions for building flight vehicles aerodynamic surfaces which reduce the impact and friction with air masses, Ioan Rusu has invented a device which he named free compression tube for rockets, registered with the State Office for Inventions and Trademarks of Romania, OSIM, deposit f 2011 0352. Mounted in front of flight vehicles it eliminates significantly the impact and friction of air masses with the vehicle solid. The air masses come into contact with the air inside the free compression tube and the air-solid friction is eliminated and replaced by air to air friction.

  5. Improved Mechanical Seals For Tubes

    NASA Technical Reports Server (NTRS)

    Babel, Henry W.; Anderson, Raymond H.; Fuson, Phillip L.; Chickles, Colin D.; Jones, Cherie A.

    1996-01-01

    Improved tube-to-fitting seals made by application of soft metal pieces to either ends of tubes or to interior of fittings. Metal silver, gold, platinum, tin, or other easily malleable metal selected to be inert with fluid of use. Metal plated, evaporated, or sputter-deposited. Coat of soft metal thin, so no changes required in design or tolerances of standard fittings. Technique suitable for hydraulic or other fluid systems in which leakage from mechanically joined sections of tubes occur.

  6. Ion plated electronic tube device

    DOEpatents

    Meek, T.T.

    1983-10-18

    An electronic tube and associated circuitry which is produced by ion plating techniques. The process is carried out in an automated process whereby both active and passive devices are produced at very low cost. The circuitry is extremely reliable and is capable of functioning in both high radiation and high temperature environments. The size of the electronic tubes produced are more than an order of magnitude smaller than conventional electronic tubes.

  7. YouTube Sharathon Crackerbarrel

    NASA Astrophysics Data System (ADS)

    Riendeau, Diane

    2012-10-01

    This year at the AAPT Summer Meeting in Philadelphia, there was a session called ``YouTube Sharathon Crackerbarrel.'' The session allowed many teachers to share their YouTube videos and explain how they use YouTube in their classroom. Unfortunately, I had a conflicting meeting and had to miss this session. Dean Baird was the originator of the session and also served as host. In addition, he forwarded a few of the best videos to me.

  8. Tubing for augmented heat transfer

    SciTech Connect

    Yampolsky, J.S.; Pavlics, P.

    1983-08-01

    The objectives of the program reported were: to determine the heat transfer and friction characteristics on the outside of spiral fluted tubing in single phase flow of water, and to assess the relative cost of a heat exchanger constructed with spiral fluted tubing with one using conventional smooth tubing. An application is examined where an isolation water/water heat exchanger was used to transfer the heat from a gaseous diffusion plant to an external system for energy recovery. (LEW)

  9. Oscillatory Flow in Curved and Straight Tubes: Transport and Transition.

    NASA Astrophysics Data System (ADS)

    Eckmann, David Matthew

    Transport of soluble material is analyzed for volume-cycled oscillatory flow in a curved tube. The Navier -Stokes equations of motion are solved using a regular perturbation method for small ratio of tube radius to radius of curvature and order unity amplitude over a range of the Womersley parameter. A stream function definition of the lateral velocities is defined to satisfy the conservation of mass equation exactly. A pressure-gradient amplitude is specified to satisfy the fluid volume-cycling constraint imposed. Axial velocity profiles and cross-sectional steady streaming velocity profiles are compared to previous theories and experiments. The convection-diffusion transport equation is similarly solved by a regular perturbation scheme where uniform steady end concentrations and no wall flux are assumed. The time-average axial transport, consisting of the diffusive and convective flux of solute is calculated. There is substantial modification of transport compared to the straight tube case and the results are interpreted with respect to pulmonary gas exchange. A Laser Doppler Anemometer is used to analyze volume-cycled oscillatory flow of a Newtonian viscous fluid in a straight circular tube. The working fluid is chosen to match index of refraction with the Plexiglas test section. The axial velocity is measured at radial positions across the diameter of the tube for a wide range of amplitude A = stroke distance/tube radius (2.4 <=q A <=q 21.6) and Womersley parameter (9 < alpha < 33). Transition to turbulence is detected during the decelerating phase of fluid motion for 500 < R_delta < 875, where R_delta = alphaAsurd2 is the Reynolds number based on Stokes layer thickness. This instability is confined to the viscous boundary layer and does not appear in the inviscid core as reported by previous investigators, unless a source of vorticity such as a hot -wire anemometer probe is resident in the flow.

  10. Transient diffusion in a tube with dead ends.

    PubMed

    Dagdug, Leonardo; Berezhkovskii, Alexander M; Makhnovskii, Yurii A; Zitserman, Vladimir Yu

    2007-12-14

    A particle diffusing in a tube with dead ends, from time to time enters a dead end, spends some time in the dead end, and then comes back to the tube. As a result, the particle spends in the tube only a part of the entire observation time that leads to slowdown of its diffusion along the tube. We study the transient diffusion in a tube with periodic identical dead ends formed by cavities of volume V(cav) connected to the tube by cylindrical channels of length L and radius a, which is assumed to be much smaller than the tube radius R and the distance l between neighboring dead ends. Assuming that the particle initial position is uniformly distributed over the tube, we analyze the monotonic decrease of the particle diffusion coefficient D(t) from its initial value D(0)=D, which characterizes diffusion in the tube without dead ends, to its asymptotic long-time value D(infinity)=D(eff)approximations used when developing the theory.

  11. Approximating random quantum optimization problems

    NASA Astrophysics Data System (ADS)

    Hsu, B.; Laumann, C. R.; Läuchli, A. M.; Moessner, R.; Sondhi, S. L.

    2013-06-01

    We report a cluster of results regarding the difficulty of finding approximate ground states to typical instances of the quantum satisfiability problem k-body quantum satisfiability (k-QSAT) on large random graphs. As an approximation strategy, we optimize the solution space over “classical” product states, which in turn introduces a novel autonomous classical optimization problem, PSAT, over a space of continuous degrees of freedom rather than discrete bits. Our central results are (i) the derivation of a set of bounds and approximations in various limits of the problem, several of which we believe may be amenable to a rigorous treatment; (ii) a demonstration that an approximation based on a greedy algorithm borrowed from the study of frustrated magnetism performs well over a wide range in parameter space, and its performance reflects the structure of the solution space of random k-QSAT. Simulated annealing exhibits metastability in similar “hard” regions of parameter space; and (iii) a generalization of belief propagation algorithms introduced for classical problems to the case of continuous spins. This yields both approximate solutions, as well as insights into the free energy “landscape” of the approximation problem, including a so-called dynamical transition near the satisfiability threshold. Taken together, these results allow us to elucidate the phase diagram of random k-QSAT in a two-dimensional energy-density-clause-density space.

  12. Alternate tube plugging criteria for steam generator tubes

    SciTech Connect

    Cueto-Felgueroso, C.; Aparicio, C.B.

    1997-02-01

    The tubing of the Steam Generators constitutes more than half of the reactor coolant pressure boundary. Specific requirements governing the maintenance of steam generator tubes integrity are set in Plant Technical Specifications and in Section XI of the ASME Boiler and Pressure Vessel Code. The operating experience of Steam Generator tubes of PWR plants has shown the existence of some types of degradatory processes. Every one of these has an specific cause and affects one or more zones of the tubes. In the case of Spanish Power Plants, and depending on the particular Plant considered, they should be mentioned the Primary Water Stress Corrosion Cracking (PWSCC) at the roll transition zone (RTZ), the Outside Diameter Stress Corrosion Cracking (ODSCC) at the Tube Support Plate (TSP) intersections and the fretting with the Anti-Vibration Bars (AVBs) or with the Support Plates in the preheater zone. The In-Service Inspections by Eddy Currents constitutes the standard method for assuring the SG tubes integrity and they permit the monitoring of the defects during the service life of the plant. When the degradation reaches a determined limit, called the plugging limit, the SG tube must be either repaired or retired from service by plugging. Customarily, the plugging limit is related to the depth of the defect. Such depth is typically 40% of the wall thickness of the tube and is applicable to any type of defect in the tube. In its origin, that limit was established for tubes thinned by wastage, which was the predominant degradation in the seventies. The application of this criterion for axial crack-like defects, as, for instance, those due to PWSCC in the roll transition zone, has lead to an excessive and unnecessary number of tubes being plugged. This has lead to the development of defect specific plugging criteria. Examples of the application of such criteria are discussed in the article.

  13. Learning from YouTube [Video Book

    ERIC Educational Resources Information Center

    Juhasz, Alexandra

    2011-01-01

    YouTube is a mess. YouTube is for amateurs. YouTube dissolves the real. YouTube is host to inconceivable combos. YouTube is best for corporate-made community. YouTube is badly baked. These are a few of the things Media Studies professor Alexandra Juhasz (and her class) learned about YouTube when she set out to investigate what actually happens…

  14. Robotic Booking Of Coolant Tubes

    NASA Technical Reports Server (NTRS)

    Wagner, Garret E.; Gutow, David A.; Gilbert, Jeffrey L.; Deily, David C.

    1994-01-01

    Robotic tube-booking subsystem proposed for use in automated manufacturing cell described in "Robotic Processing of Rocket-Engine Nozzles" (MFS-29927). Includes electric or pneumatic end effector that inspects gaps under guidance of control processor connected to robotic vision subsystem. After inspecting each gap, end effector books tubes in vicinity, then reinspects to ensure attainment of desired gap. Makes entire tube-gap area brazeable, without damage to tubes, with consistent results. In addition, robotic booking takes less time and costs less than manual booking.

  15. Coiled tubing; Operations and services

    SciTech Connect

    Welch, J.L.; Stephens, R.K. )

    1992-09-01

    This paper reports on coiled tubing units which are used for many types of remedial well operations, including sand plugbacks, cement squeezes, fill cleanouts, underreaming, acid stimulations, and fishing. Fishing operations include removal of inflatable bridge plugs, lock mandrels stuck in profile nipples, coiled tubing, coiled tubing bottomhole assemblies (BHAs) and wireline. Recommended guidelines for selecting candidates, proper tool string configuration and operational techniques are presented here to assist coiled tubing supervisors and company representatives in the planning and implementation of efficient and effective fishing operations. Treatment of these areas are not intended to be exhaustive, but rather generally representative of common applications. Each fishing operation requires individualized analysis and planning.

  16. Coiled tubing. operations and services

    SciTech Connect

    Hightower, C.M. )

    1992-11-01

    Coiled tubing is being used with increasing frequency in conventional or traditional production operations. Demand for coiled pipe in these types of applications is expected to experience rapid growth as standard 2 (3/8) and 2 (7/8)-in. OD tubing sizes and units equipped to run larger pipe become more readily available. This paper reports on a recent market survey which indicated that coiled tubing used for velocity strings and standard production tubing installations are two areas with the most potential for immediate and near-term expansion. Other applications include: well casing and liners, gravel packing, artificial lift, flowlines and pipelines.

  17. Rubber tubes in the sea.

    PubMed

    Farley, F J M; Rainey, R C T; Chaplin, J R

    2012-01-28

    A long tube with elastic walls containing water is immersed in the sea aligned in the direction of wave travel. The waves generate bulges that propagate at a speed determined by the distensibility of the tube. If the bulge speed is close to the phase velocity of the waves, there is a resonant transfer of energy from the sea wave to the bulge. At the end of the tube, useful energy can be extracted. This paper sets out the theory of bulge tubes in the sea, and describes some experiments on the model scale and practical problems. The potential of a full-scale device is assessed.

  18. Circular Scan Streak Tube Development

    NASA Technical Reports Server (NTRS)

    Nevin, S.

    1980-01-01

    A streak tube having circular scan was designed, built and tested. Continuous circular scan, easily derived from out of phase sine waves applied to the conventional deflection plates, permits the timing of pulses traveling long baselines. At the tube's output a circular array of 720 elements is scanned to provide 30 to 40 picosecond resolution. Initial difficulties with electron bombarded silicon arrays were circumvented by using microchannel plates within the streak tube to provide the needed electronic amplification and digital sensitivity and coupling the 720 element arrays to the electron beam by means of a phosphor on a fiber optics. Two ceramic body tubes with S-20 photocathodes were tested and delivered.

  19. YouTube and 'psychiatry'.

    PubMed

    Gordon, Robert; Miller, John; Collins, Noel

    2015-12-01

    YouTube is a video-sharing website that is increasingly used to share and disseminate health-related information, particularly among younger people. There are reports that social media sites, such as YouTube, are being used to communicate an anti-psychiatry message but this has never been confirmed in any published analysis of YouTube clip content. This descriptive study revealed that the representation of 'psychiatry' during summer 2012 was predominantly negative. A subsequent smaller re-analysis suggests that the negative portrayal of 'psychiatry' on YouTube is a stable phenomenon. The significance of this and how it could be addressed are discussed.

  20. Electron tubes for industrial applications

    NASA Astrophysics Data System (ADS)

    Gellert, Bernd

    1994-05-01

    This report reviews research and development efforts within the last years for vacuum electron tubes, in particular power grid tubes for industrial applications. Physical and chemical effects are discussed that determine the performance of todays devices. Due to the progress made in the fundamental understanding of materials and newly developed processes the reliability and reproducibility of power grid tubes could be improved considerably. Modern computer controlled manufacturing methods ensure a high reproducibility of production and continuous quality certification according to ISO 9001 guarantees future high quality standards. Some typical applications of these tubes are given as an example.