Barrenechea, Gabriel R; Burman, Erik; Karakatsani, Fotini
2017-01-01
For the case of approximation of convection-diffusion equations using piecewise affine continuous finite elements a new edge-based nonlinear diffusion operator is proposed that makes the scheme satisfy a discrete maximum principle. The diffusion operator is shown to be Lipschitz continuous and linearity preserving. Using these properties we provide a full stability and error analysis, which, in the diffusion dominated regime, shows existence, uniqueness and optimal convergence. Then the algebraic flux correction method is recalled and we show that the present method can be interpreted as an algebraic flux correction method for a particular definition of the flux limiters. The performance of the method is illustrated on some numerical test cases in two space dimensions.
Hydrodynamic theory of diffusion in two-temperature multicomponent plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramshaw, J.D.; Chang, C.H.
Detailed numerical simulations of multicomponent plasmas require tractable expressions for species diffusion fluxes, which must be consistent with the given plasma current density J{sub q} to preserve local charge neutrality. The common situation in which J{sub q} = 0 is referred to as ambipolar diffusion. The use of formal kinetic theory in this context leads to results of formidable complexity. We derive simple tractable approximations for the diffusion fluxes in two-temperature multicomponent plasmas by means of a generalization of the hydrodynamical approach used by Maxwell, Stefan, Furry, and Williams. The resulting diffusion fluxes obey generalized Stefan-Maxwell equations that contain drivingmore » forces corresponding to ordinary, forced, pressure, and thermal diffusion. The ordinary diffusion fluxes are driven by gradients in pressure fractions rather than mole fractions. Simplifications due to the small electron mass are systematically exploited and lead to a general expression for the ambipolar electric field in the limit of infinite electrical conductivity. We present a self-consistent effective binary diffusion approximation for the diffusion fluxes. This approximation is well suited to numerical implementation and is currently in use in our LAVA computer code for simulating multicomponent thermal plasmas. Applications to date include a successful simulation of demixing effects in an argon-helium plasma jet, for which selected computational results are presented. Generalizations of the diffusion theory to finite electrical conductivity and nonzero magnetic field are currently in progress.« less
NASA Astrophysics Data System (ADS)
Martin-Belda, D.; Cameron, R. H.
2016-02-01
Aims: We aim to determine the effect of converging flows on the evolution of a bipolar magnetic region (BMR), and to investigate the role of these inflows in the generation of poloidal flux. We also discuss whether the flux dispersal due to turbulent flows can be described as a diffusion process. Methods: We developed a simple surface flux transport model based on point-like magnetic concentrations. We tracked the tilt angle, the magnetic flux and the axial dipole moment of a BMR in simulations with and without inflows and compared the results. To test the diffusion approximation, simulations of random walk dispersal of magnetic features were compared against the predictions of the diffusion treatment. Results: We confirm the validity of the diffusion approximation to describe flux dispersal on large scales. We find that the inflows enhance flux cancellation, but at the same time affect the latitudinal separation of the polarities of the bipolar region. In most cases the latitudinal separation is limited by the inflows, resulting in a reduction of the axial dipole moment of the BMR. However, when the initial tilt angle of the BMR is small, the inflows produce an increase in latitudinal separation that leads to an increase in the axial dipole moment in spite of the enhanced flux destruction. This can give rise to a tilt of the BMR even when the BMR was originally aligned parallel to the equator.
Asymptotic analysis of discrete schemes for non-equilibrium radiation diffusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Xia, E-mail: cui_xia@iapcm.ac.cn; Yuan, Guang-wei; Shen, Zhi-jun
Motivated by providing well-behaved fully discrete schemes in practice, this paper extends the asymptotic analysis on time integration methods for non-equilibrium radiation diffusion in [2] to space discretizations. Therein studies were carried out on a two-temperature model with Larsen's flux-limited diffusion operator, both the implicitly balanced (IB) and linearly implicit (LI) methods were shown asymptotic-preserving. In this paper, we focus on asymptotic analysis for space discrete schemes in dimensions one and two. First, in construction of the schemes, in contrast to traditional first-order approximations, asymmetric second-order accurate spatial approximations are devised for flux-limiters on boundary, and discrete schemes with second-ordermore » accuracy on global spatial domain are acquired consequently. Then by employing formal asymptotic analysis, the first-order asymptotic-preserving property for these schemes and furthermore for the fully discrete schemes is shown. Finally, with the help of manufactured solutions, numerical tests are performed, which demonstrate quantitatively the fully discrete schemes with IB time evolution indeed have the accuracy and asymptotic convergence as theory predicts, hence are well qualified for both non-equilibrium and equilibrium radiation diffusion. - Highlights: • Provide AP fully discrete schemes for non-equilibrium radiation diffusion. • Propose second order accurate schemes by asymmetric approach for boundary flux-limiter. • Show first order AP property of spatially and fully discrete schemes with IB evolution. • Devise subtle artificial solutions; verify accuracy and AP property quantitatively. • Ideas can be generalized to 3-dimensional problems and higher order implicit schemes.« less
Comparison of the Radiative Two-Flux and Diffusion Approximations
NASA Technical Reports Server (NTRS)
Spuckler, Charles M.
2006-01-01
Approximate solutions are sometimes used to determine the heat transfer and temperatures in a semitransparent material in which conduction and thermal radiation are acting. A comparison of the Milne-Eddington two-flux approximation and the diffusion approximation for combined conduction and radiation heat transfer in a ceramic material was preformed to determine the accuracy of the diffusion solution. A plane gray semitransparent layer without a substrate and a non-gray semitransparent plane layer on an opaque substrate were considered. For the plane gray layer the material is semitransparent for all wavelengths and the scattering and absorption coefficients do not vary with wavelength. For the non-gray plane layer the material is semitransparent with constant absorption and scattering coefficients up to a specified wavelength. At higher wavelengths the non-gray plane layer is assumed to be opaque. The layers are heated on one side and cooled on the other by diffuse radiation and convection. The scattering and absorption coefficients were varied. The error in the diffusion approximation compared to the Milne-Eddington two flux approximation was obtained as a function of scattering coefficient and absorption coefficient. The percent difference in interface temperatures and heat flux through the layer obtained using the Milne-Eddington two-flux and diffusion approximations are presented as a function of scattering coefficient and absorption coefficient. The largest errors occur for high scattering and low absorption except for the back surface temperature of the plane gray layer where the error is also larger at low scattering and low absorption. It is shown that the accuracy of the diffusion approximation can be improved for some scattering and absorption conditions if a reflectance obtained from a Kubelka-Munk type two flux theory is used instead of a reflection obtained from the Fresnel equation. The Kubelka-Munk reflectance accounts for surface reflection and radiation scattered back by internal scattering sites while the Fresnel reflection only accounts for surface reflections.
Scrape-off layer modeling with kinetic or diffusion description of charge-exchange atoms
NASA Astrophysics Data System (ADS)
Tokar, M. Z.
2016-12-01
Hydrogen isotope atoms, generated by charge-exchange (c-x) of neutral particles recycling from the first wall of a fusion reactor, are described either kinetically or in a diffusion approximation. In a one-dimensional (1-D) geometry, kinetic calculations are accelerated enormously by applying an approximate pass method for the assessment of integrals in the velocity space. This permits to perform an exhaustive comparison of calculations done with both approaches. The diffusion approximation is deduced directly from the velocity distribution function of c-x atoms in the limit of charge-exchanges with ions occurring much more frequently than ionization by electrons. The profiles across the flux surfaces of the plasma parameters averaged along the main part of the scrape-off layer (SOL), beyond the X-point and divertor regions, are calculated from the one-dimensional equations where parallel flows of charged particles and energy towards the divertor are taken into account as additional loss terms. It is demonstrated that the heat losses can be firmly estimated from the SOL averaged parameters only; for the particle loss the conditions in the divertor are of importance and the sensitivity of the results to the so-called "divertor impact factor" is investigated. The coupled 1-D models for neutral and charged species, with c-x atoms described either kinetically or in the diffusion approximation, are applied to assess the SOL conditions in a fusion reactor, with the input parameters from the European DEMO project. It is shown that the diffusion approximation provides practically the same profiles across the flux surfaces for the plasma density, electron, and ion temperatures, as those obtained with the kinetic description for c-x atoms. The main difference between the two approaches is observed in the characteristics of these species themselves. In particular, their energy flux onto the wall is underestimated in calculations with the diffusion approximation by 20 % - 30 % . This discrepancy can be significantly reduced if after the convergence of coupled plasma-neutral calculations, the final computation for c-x atoms is done kinetically.
Diffusion-driven fluid dynamics in ideal gases and plasmas
NASA Astrophysics Data System (ADS)
Vold, E. L.; Yin, L.; Taitano, W.; Molvig, K.; Albright, B. J.
2018-06-01
The classical transport theory based on Chapman-Enskog methods provides self-consistent approximations for the kinetic flux of mass, heat, and momentum in a fluid limit characterized with a small Knudsen number. The species mass fluxes relative to the center of mass, or "diffusive fluxes," are expressed as functions of known gradient quantities with kinetic coefficients evaluated using similar analyses for mixtures of gases or plasma components. The sum over species of the diffusive mass fluxes is constrained to be zero in the Lagrange frame, and thus results in a non-zero molar flux leading to a pressure perturbation. At an interface between two species initially in pressure equilibrium, the pressure perturbation driven by the diffusive molar flux induces a center of mass velocity directed from the species of greater atomic mass towards the lighter atomic mass species. As the ratio of the species particle masses increases, this center of mass velocity carries an increasingly greater portion of the mass across the interface and for a particle mass ratio greater than about two, the center of mass velocity carries more mass than the gradient driven diffusion flux. Early time transients across an interface between two species in a 1D plasma regime and initially in equilibrium are compared using three methods; a fluid code with closure in a classical transport approximation, a particle in cell simulation, and an implicit Fokker-Planck solver for the particle distribution functions. The early time transient phenomenology is shown to be similar in each of the computational simulation methods, including a pressure perturbation associated with the stationary "induced" component of the center of mass velocity which decays to pressure equilibrium during diffusion. At early times, the diffusive process generates pressure and velocity waves which propagate outward from the interface and are required to maintain momentum conservation. The energy in the outgoing waves dissipates as heat in viscous regions, and it is hypothesized that these diffusion driven waves may sustain fluctuations in less viscid finite domains after reflections from the boundaries. These fluid dynamic phenomena are similar in gases or plasmas and occur in flow transients with a moderate Knudsen number. The analysis and simulation results show how the kinetic flux, represented in the fluid transport closure, directly modifies the mass averaged flow described with the Euler equations.
Extrapolation techniques applied to matrix methods in neutron diffusion problems
NASA Technical Reports Server (NTRS)
Mccready, Robert R
1956-01-01
A general matrix method is developed for the solution of characteristic-value problems of the type arising in many physical applications. The scheme employed is essentially that of Gauss and Seidel with appropriate modifications needed to make it applicable to characteristic-value problems. An iterative procedure produces a sequence of estimates to the answer; and extrapolation techniques, based upon previous behavior of iterants, are utilized in speeding convergence. Theoretically sound limits are placed on the magnitude of the extrapolation that may be tolerated. This matrix method is applied to the problem of finding criticality and neutron fluxes in a nuclear reactor with control rods. The two-dimensional finite-difference approximation to the two-group neutron fluxes in a nuclear reactor with control rods. The two-dimensional finite-difference approximation to the two-group neutron-diffusion equations is treated. Results for this example are indicated.
Diminished Mercury Emission From Water Surfaces by Duckweed (Lemna minor)
NASA Astrophysics Data System (ADS)
Wollenberg, J. L.; Peters, S. C.
2007-12-01
Aquatic plants of the family Lemnaceae (generally referred to as duckweeds) are a widely distributed type of floating vegetation in freshwater systems. Under suitable conditions, duckweeds form a dense vegetative mat on the water surface, which reduces light penetration into the water column and decreases the amount of exposed water surface. These two factors would be expected to reduce mercury emission by limiting a) direct photoreduction of Hg(II), b) indirect reduction via coupled DOC photooxidation-Hg(II) reduction, and c) gas diffusion across the water-air interface. Conversely, previous studies have demonstrated transpiration of Hg(0) by plants, so it is therefore possible that the floating vegetative mat would enhance emission via transpiration of mercury vapor. The purpose of this experiment was to determine whether duckweed limits mercury flux to the atmosphere by shading and the formation of a physical barrier to diffusion, or whether it enhances emission from aquatic systems via transpiration of Hg(0). Deionized water was amended with mercury to achieve a final concentration of approximately 35 ng/L and allowed to equilibrate prior to the experiment. Experiments were conducted in rectangular polystyrene flux chambers with measured UV-B transmittance greater than 60% (spectral cutoff approximately 290 nm). Light was able to penetrate the flux chamber from the sides as well as the top throughout the experiment, limiting the effect of shading by duckweed on the water surface. Flux chambers contained 8L of water with varying percent duckweed cover, and perforated plastic sheeting was used as an abiotic control. Exposures were conducted outside on days with little to no cloud cover. Real time mercury flux was measured using atomic absorption (Mercury Instruments UT-3000). Total solar and ultraviolet radiation, as well as a suite of meteorological parameters, were also measured. Results indicate that duckweed diminishes mercury emission from the water surface as compared to open water controls. Decreases in emission rate varied linearly with percent duckweed cover, with lower fluxes occurring at higher percent cover. Mercury flux in the duckweed treatments as compared to open water treatments decreased from 17% in the lowest percent cover treatment to 67% in the highest percent cover treatment. The observed decrease in mercury emission suggests that duckweed limits emission via the formation of a physical barrier to diffusion.
Semi-Analytic Reconstruction of Flux in Finite Volume Formulations
NASA Technical Reports Server (NTRS)
Gnoffo, Peter A.
2006-01-01
Semi-analytic reconstruction uses the analytic solution to a second-order, steady, ordinary differential equation (ODE) to simultaneously evaluate the convective and diffusive flux at all interfaces of a finite volume formulation. The second-order ODE is itself a linearized approximation to the governing first- and second- order partial differential equation conservation laws. Thus, semi-analytic reconstruction defines a family of formulations for finite volume interface fluxes using analytic solutions to approximating equations. Limiters are not applied in a conventional sense; rather, diffusivity is adjusted in the vicinity of changes in sign of eigenvalues in order to achieve a sufficiently small cell Reynolds number in the analytic formulation across critical points. Several approaches for application of semi-analytic reconstruction for the solution of one-dimensional scalar equations are introduced. Results are compared with exact analytic solutions to Burger s Equation as well as a conventional, upwind discretization using Roe s method. One approach, the end-point wave speed (EPWS) approximation, is further developed for more complex applications. One-dimensional vector equations are tested on a quasi one-dimensional nozzle application. The EPWS algorithm has a more compact difference stencil than Roe s algorithm but reconstruction time is approximately a factor of four larger than for Roe. Though both are second-order accurate schemes, Roe s method approaches a grid converged solution with fewer grid points. Reconstruction of flux in the context of multi-dimensional, vector conservation laws including effects of thermochemical nonequilibrium in the Navier-Stokes equations is developed.
Relativistic electrons and whistlers in Jupiter's magnetosphere
NASA Technical Reports Server (NTRS)
Barbosa, D. D.; Coroniti, F. V.
1976-01-01
The paper examines some of the consequences of relativistic electrons in stably trapped equilibrium with parallel propagating whistlers in the inner magnetosphere of Jupiter. Approximate scaling laws for the stably trapped electron flux and equilibrium wave intensity are derived, and the equatorial growth rate for whistlers is determined. It is shown that fluxes are near the stably trapped limit, which suggests that whistler intensities may be high enough to cause significant diffusion of electrons, accounting for the observed reduction of phase space densities.
Spatial variability of the Arctic Ocean's double-diffusive staircase
NASA Astrophysics Data System (ADS)
Shibley, N. C.; Timmermans, M.-L.; Carpenter, J. R.; Toole, J. M.
2017-02-01
The Arctic Ocean thermohaline stratification frequently exhibits a staircase structure overlying the Atlantic Water Layer that can be attributed to the diffusive form of double-diffusive convection. The staircase consists of multiple layers of O(1) m in thickness separated by sharp interfaces, across which temperature and salinity change abruptly. Through a detailed analysis of Ice-Tethered Profiler measurements from 2004 to 2013, the double-diffusive staircase structure is characterized across the entire Arctic Ocean. We demonstrate how the large-scale Arctic Ocean circulation influences the small-scale staircase properties. These staircase properties (layer thicknesses and temperature and salinity jumps across interfaces) are examined in relation to a bulk vertical density ratio spanning the staircase stratification. We show that the Lomonosov Ridge serves as an approximate boundary between regions of low density ratio (approximately 3-4) on the Eurasian side and higher density ratio (approximately 6-7) on the Canadian side. We find that the Eurasian Basin staircase is characterized by fewer, thinner layers than that in the Canadian Basin, although the margins of all basins are characterized by relatively thin layers and the absence of a well-defined staircase. A double-diffusive 4/3 flux law parametrization is used to estimate vertical heat fluxes in the Canadian Basin to be O(0.1) W m-2. It is shown that the 4/3 flux law may not be an appropriate representation of heat fluxes through the Eurasian Basin staircase. Here molecular heat fluxes are estimated to be between O(0.01) and O(0.1) W m-2. However, many uncertainties remain about the exact nature of these fluxes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Broda, Jill Terese
The neutron flux across the nuclear reactor core is of interest to reactor designers and others. The diffusion equation, an integro-differential equation in space and energy, is commonly used to determine the flux level. However, the solution of a simplified version of this equation when automated is very time consuming. Since the flux level changes with time, in general, this calculation must be made repeatedly. Therefore solution techniques that speed the calculation while maintaining accuracy are desirable. One factor that contributes to the solution time is the spatial flux shape approximation used. It is common practice to use the samemore » order flux shape approximation in each energy group even though this method may not be the most efficient. The one-dimensional, two-energy group diffusion equation was solved, for the node average flux and core k-effective, using two sets of spatial shape approximations for each of three reactor types. A fourth-order approximation in both energy groups forms the first set of approximations used. The second set used combines a second-order approximation with a fourth-order approximation in energy group two. Comparison of the results from the two approximation sets show that the use of a different order spatial flux shape approximation results in considerable loss in accuracy for the pressurized water reactor modeled. However, the loss in accuracy is small for the heavy water and graphite reactors modeled. The use of different order approximations in each energy group produces mixed results. Further investigation into the accuracy and computing time is required before any quantitative advantage of the use of the second-order approximation in energy group one and the fourth-order approximation in energy group two can be determined.« less
NASA Astrophysics Data System (ADS)
Boss, Alan P.
2009-03-01
The disk instability mechanism for giant planet formation is based on the formation of clumps in a marginally gravitationally unstable protoplanetary disk, which must lose thermal energy through a combination of convection and radiative cooling if they are to survive and contract to become giant protoplanets. While there is good observational support for forming at least some giant planets by disk instability, the mechanism has become theoretically contentious, with different three-dimensional radiative hydrodynamics codes often yielding different results. Rigorous code testing is required to make further progress. Here we present two new analytical solutions for radiative transfer in spherical coordinates, suitable for testing the code employed in all of the Boss disk instability calculations. The testing shows that the Boss code radiative transfer routines do an excellent job of relaxing to and maintaining the analytical results for the radial temperature and radiative flux profiles for a spherical cloud with high or moderate optical depths, including the transition from optically thick to optically thin regions. These radial test results are independent of whether the Eddington approximation, diffusion approximation, or flux-limited diffusion approximation routines are employed. The Boss code does an equally excellent job of relaxing to and maintaining the analytical results for the vertical (θ) temperature and radiative flux profiles for a disk with a height proportional to the radial distance. These tests strongly support the disk instability mechanism for forming giant planets.
An approximate stationary solution for multi-allele neutral diffusion with low mutation rates.
Burden, Conrad J; Tang, Yurong
2016-12-01
We address the problem of determining the stationary distribution of the multi-allelic, neutral-evolution Wright-Fisher model in the diffusion limit. A full solution to this problem for an arbitrary K×K mutation rate matrix involves solving for the stationary solution of a forward Kolmogorov equation over a (K-1)-dimensional simplex, and remains intractable. In most practical situations mutations rates are slow on the scale of the diffusion limit and the solution is heavily concentrated on the corners and edges of the simplex. In this paper we present a practical approximate solution for slow mutation rates in the form of a set of line densities along the edges of the simplex. The method of solution relies on parameterising the general non-reversible rate matrix as the sum of a reversible part and a set of (K-1)(K-2)/2 independent terms corresponding to fluxes of probability along closed paths around faces of the simplex. The solution is potentially a first step in estimating non-reversible evolutionary rate matrices from observed allele frequency spectra. Copyright © 2016 Elsevier Inc. All rights reserved.
Size effects in non-linear heat conduction with flux-limited behaviors
NASA Astrophysics Data System (ADS)
Li, Shu-Nan; Cao, Bing-Yang
2017-11-01
Size effects are discussed for several non-linear heat conduction models with flux-limited behaviors, including the phonon hydrodynamic, Lagrange multiplier, hierarchy moment, nonlinear phonon hydrodynamic, tempered diffusion, thermon gas and generalized nonlinear models. For the phonon hydrodynamic, Lagrange multiplier and tempered diffusion models, heat flux will not exist in problems with sufficiently small scale. The existence of heat flux needs the sizes of heat conduction larger than their corresponding critical sizes, which are determined by the physical properties and boundary temperatures. The critical sizes can be regarded as the theoretical limits of the applicable ranges for these non-linear heat conduction models with flux-limited behaviors. For sufficiently small scale heat conduction, the phonon hydrodynamic and Lagrange multiplier models can also predict the theoretical possibility of violating the second law and multiplicity. Comparisons are also made between these non-Fourier models and non-linear Fourier heat conduction in the type of fast diffusion, which can also predict flux-limited behaviors.
Skyglow effects in UV and visible spectra: Radiative fluxes
NASA Astrophysics Data System (ADS)
Kocifaj, Miroslav; Solano Lamphar, Hector Antonio
2013-09-01
Several studies have tried to understand the mechanisms and effects of radiative transfer under different night-sky conditions. However, most of these studies are limited to the various effects of visible spectra. Nevertheless, the invisible parts of the electromagnetic spectrum can pose a more profound threat to nature. One visible threat is from what is popularly termed skyglow. Such skyglow is caused by injudiciously situated or designed artificial night lighting systems which degrade desired sky viewing. Therefore, since lamp emissions are not limited to visible electromagnetic spectra, it is necessary to consider the complete spectrum of such lamps in order to understand the physical behaviour of diffuse radiation at terrain level. In this paper, the downward diffuse radiative flux is computed in a two-stream approximation and obtained ultraviolet spectral radiative fluxes are inter-related with luminous fluxes. Such a method then permits an estimate of ultraviolet radiation if the traditionally measured illuminance on a horizontal plane is available. The utility of such a comparison of two spectral bands is shown, using the different lamp types employed in street lighting. The data demonstrate that it is insufficient to specify lamp type and its visible flux production independently of each other. Also the UV emissions have to be treated by modellers and environmental scientists because some light sources can be fairly important pollutants in the near ultraviolet. Such light sources can affect both the living organisms and ambient environment.
Nietch, C.T.; Morris, J.T.; Vroblesky, D.A.
1999-01-01
Wetland vegetation may be useful in the remediation of shallow contaminated aquifers. Mesocosm experiments were conducted to describe the regulatory mechanisms affecting trichloroethene (TCE) removal rates from groundwater by flood-adapted wetland trees at a contaminated site. TCE flux through baldcypress [Taxodium distichum (L) Rich] seedlings grown in glass- carboys decreased from day to night and from August to December. The diel fluctuation coincided with changes in leaf-level physiology, as the daytime flux was significantly correlated with net photosynthesis but not with respiration at night. A decrease in seedling water use from summer to winter explained the large seasonal difference in TCE flux. A simple model that simulates gas-phase diffusion through aerenchyma tested the importance of diffusion of TCE vapor from roots to the stem. The modeled diffusive flux was within 64% of the observed value during the winter but could only explain 8% of the summer flux. Seedling water use was a good estimator of flux during the summer. Hence, evapotranspiration (ET) in the summer may serve as a good predictor for the potential of TCE removal by baldcypress trees, while diffusive flux may better approximate potential contaminant loss in the winter.Wetland vegetation may be useful in the remediation of shallow contaminated aquifers. Mesocosm experiments were conducted to describe the regulatory mechanisms affecting trichloroethene (TCE) removal rates from groundwater by flood-adapted wetland trees at a contaminated site. TCE flux through baldcypress [Taxodium distichum (L) Rich] seedlings grown in glass-carboys decreased from day to night and from August to December. The diel fluctuation coincided with changes in leaf-level physiology, as the daytime flux was significantly correlated with net photosynthesis but not with respiration at night. A decrease in seedling water use from summer to winter explained the large seasonal difference in TCE flux. A simple model that simulates gas-phase diffusion through aerenchyma tested the importance of diffusion of TCE vapor from roots to the stem. The modeled diffusive flux was within 64% of the observed value during the winter but could only explain 8% of the summer flux. Seedling water use was a good estimator of flux during the summer. Hence, evapotranspiration (ET) in the summer may serve as a good predictor for the potential of TCE removal by baldcypress trees, while diffusive flux may better approximate potential contaminant loss in the winter.
Approximate Solution Methods for Spectral Radiative Transfer in High Refractive Index Layers
NASA Technical Reports Server (NTRS)
Siegel, R.; Spuckler, C. M.
1994-01-01
Some ceramic materials for high temperature applications are partially transparent for radiative transfer. The refractive indices of these materials can be substantially greater than one which influences internal radiative emission and reflections. Heat transfer behavior of single and laminated layers has been obtained in the literature by numerical solutions of the radiative transfer equations coupled with heat conduction and heating at the boundaries by convection and radiation. Two-flux and diffusion methods are investigated here to obtain approximate solutions using a simpler formulation than required for exact numerical solutions. Isotropic scattering is included. The two-flux method for a single layer yields excellent results for gray and two band spectral calculations. The diffusion method yields a good approximation for spectral behavior in laminated multiple layers if the overall optical thickness is larger than about ten. A hybrid spectral model is developed using the two-flux method in the optically thin bands, and radiative diffusion in bands that are optically thick.
Hollow H II regions. II - Mechanism for wind energy dissipation and diffuse X-ray emission
NASA Astrophysics Data System (ADS)
Dorland, H.; Montmerle, T.
1987-05-01
The mechanism by which stellar-wind energy is dissipated near the shock in a hollow H II region (HHR) around a massive star is investigated theoretically, in the context of the HHR model developed by Dorland et al. (1986). The principles of nonlinear thermal conduction (especially the delocalizaton of conductive heat flux postulated for laboratory fusion plasmas) are reviewed; expressions for estimating heat fluxes are derived; a two-temperature approximation is employed to describe coupling between thermal conduction and wind-energy dissipation; and the determination of the flux-limit factor from X-ray observations is explained. The model is then applied to observational data for the Rosette nebula and Eta Car, and the results are presented graphically. The diffuse X-ray temperatures of HHRs are found to be in the range 2-16 keV and to depend uniquely on stellar-wind velocity, the value for an O star with wind velocity 2500 km/s being about 5 keV.
Discrete and continuum links to a nonlinear coupled transport problem of interacting populations
NASA Astrophysics Data System (ADS)
Duong, M. H.; Muntean, A.; Richardson, O. M.
2017-07-01
We are interested in exploring interacting particle systems that can be seen as microscopic models for a particular structure of coupled transport flux arising when different populations are jointly evolving. The scenarios we have in mind are inspired by the dynamics of pedestrian flows in open spaces and are intimately connected to cross-diffusion and thermo-diffusion problems holding a variational structure. The tools we use include a suitable structure of the relative entropy controlling TV-norms, the construction of Lyapunov functionals and particular closed-form solutions to nonlinear transport equations, a hydrodynamics limiting procedure due to Philipowski, as well as the construction of numerical approximates to both the continuum limit problem in 2D and to the original interacting particle systems.
Ion-Scale Structure in Mercury's Magnetopause Reconnection Diffusion Region
NASA Technical Reports Server (NTRS)
Gershman, Daniel J.; Dorelli, John C.; DiBraccio, Gina A.; Raines, Jim M.; Slavin, James A.; Poh, Gangkai; Zurbuchen, Thomas H.
2016-01-01
The strength and time dependence of the electric field in a magnetopause diffusion region relate to the rate of magnetic reconnection between the solar wind and a planetary magnetic field. Here we use approximately 150 milliseconds measurements of energetic electrons from the Mercury Surface, Space Environment, GEochemistry, and Ranging (MESSENGER) spacecraft observed over Mercury's dayside polar cap boundary (PCB) to infer such small-scale changes in magnetic topology and reconnection rates. We provide the first direct measurement of open magnetic topology in flux transfer events at Mercury, structures thought to account for a significant portion of the open magnetic flux transport throughout the magnetosphere. In addition, variations in PCB latitude likely correspond to intermittent bursts of approximately 0.3 to 3 millivolts per meter reconnection electric fields separated by approximately 5 to10 seconds, resulting in average and peak normalized dayside reconnection rates of approximately 0.02 and approximately 0.2, respectively. These data demonstrate that structure in the magnetopause diffusion region at Mercury occurs at the smallest ion scales relevant to reconnection physics.
New upper limits on the local metagalactic ionizing radiation density
NASA Technical Reports Server (NTRS)
Vogel, Stuart N.; Weymann, Ray; Rauch, Michael; Hamilton, Tom
1995-01-01
We have obtained H-alpha observations with the Maryland-Caltech Fabry-Perot Spectrometer attached to the Cassegrain focus of the 1.5 m telescope at Palomer Observatory in order to set limits on the number of ionizing photons from the local metagalactic radiation field. We have observed the SW component of the Haynes-Giovanelli cloud H I 1225+01, an intergalactic cloud which should be optimum for measuring the metagalactic flux because it is nearly opaque to ionizing photons, it does not appear to be significantly shielded from the metagalactic radiation field, and the limits on embedded or nearby ionizing sources are unusually low. For the area of the cloud with an H I column density greater than 10(exp 19)/sq cm we set a 2 sigma limit of 1.1 x 10(exp -19) ergs/sq cm/s/sq arcsec (20 mR) for the surface brightness of diffuse H-alpha. This implies a 2 sigma upper limit on the incident one-sided ionizing flux of Phi(sub ex) is less than 3 x 10(exp 4)/sq cm/s. For a radiation field of the form J(sub nu) is approximately nu(exp -1.4), this yields a firm 2 sigma upper limit on the local metagalactic photoionization rate of Gamma is less than 2 x 10(exp -13)/s, and an upper limit for the radiation field J(sub nu) at the Lyman limit of J(sub nu0) is less than 8 x 10(exp -23) ergs/sq cm/Hz/sr. We discuss previous efforts to constrain the metagalactic ionizing flux using H-alpha surface brightness observations and also other methods, and conclude that our result places the firmest upper limit on this flux. We also observed the 7 min diameter region centered on 3C 273 in which H-alpha emission at a velocity of approximately 1700 km/s was initially reported by Williams and Schommer. In agreement with T. B. Williams (private communication) we find the initial detection was spurious. We obtain a 2 sigma upper limit of 1.8 x 10(exp -19) ergs/sq cm/s/sq arcsec (32 mR) for the mean surface brightness of diffuse H-alpha, about a factor of 6 below the published value.
TOPICAL REVIEW: Physics of thermoelectric cooling
NASA Astrophysics Data System (ADS)
Gurevich, Yu G.; Logvinov, G. N.
2005-12-01
A new approach is suggested to explain the Peltier effect. It assumes that the Peltier effect is not an isothermal effect. The approach is based on the occurrences of induced thermal fluxes in a structure which consists of two conducting media, through which a dc electric current flows. These induced thermal diffusion fluxes arise to compensate for the change in the thermal flux caused by the electric current (the drift thermal flux) flowing through the junction, in accordance with the general Le Châtelier-Braun principle. The occurrence of these thermal diffusion fluxes leads to temperature heterogeneity in the structure and, as a result, to a cooling or heating of the junction. Within the framework of this concept, the thermoelectric cooling is analysed. It is shown that in the general case the Peltier effect always occurs together with another thermoelectric effect. This thermoelectric effect is predicted for the first time, and we have called it the barrierless thermoelectric effect. Both these effects essentially depend on the junction surface thermal resistance. The Peltier effect disappears in the limiting case of a very large surface thermal resistance, while the barrierless effect disappears in the limiting case of a very small surface thermal resistance. The dependence of thermoelectric cooling on the geometrical dimensions of the structure is noted, and the corresponding interpretation of this fact is discussed. It is shown that the thermoelectric cooling (heating) is a thermodynamically reversible process in the linear approximation of the electric current applied.
NASA Astrophysics Data System (ADS)
Vargas, William E.; Amador, Alvaro; Niklasson, Gunnar A.
2006-05-01
Diffuse reflectance spectra of paint coatings with different pigment concentrations, normally illuminated with unpolarized radiation, have been measured. A four-flux radiative transfer approach is used to model the diffuse reflectance of TiO2 (rutile) pigmented coatings through the solar spectral range. The spectral dependence of the average pathlength parameter and of the forward scattering ratio for diffuse radiation, are explicitly incorporated into this four-flux model from two novel approximations. The size distribution of the pigments has been taken into account to obtain the averages of the four-flux parameters: scattering and absorption cross sections, forward scattering ratios for collimated and isotropic diffuse radiation, and coefficients involved in the expansion of the single particle phase function in terms of Legendre polynomials.
Diffusive growth of a single droplet with three different boundary conditions
NASA Astrophysics Data System (ADS)
Tavassoli, Z.; Rodgers, G. J.
2000-02-01
We study a single, motionless three-dimensional droplet growing by adsorption of diffusing monomers on a 2D substrate. The diffusing monomers are adsorbed at the aggregate perimeter of the droplet with different boundary conditions. Models with both an adsorption boundary condition and a radiation boundary condition, as well as a phenomenological model, are considered and solved in a quasistatic approximation. The latter two models allow particle detachment. In the short time limit, the droplet radius grows as a power of the time with exponents of 1/4, 1/2 and 3/4 for the models with adsorption, radiation and phenomenological boundary conditions, respectively. In the long time limit a universal growth rate as $[t/\\ln(t)]^{1/3}$ is observed for the radius of the droplet for all models independent of the boundary conditions. This asymptotic behaviour was obtained by Krapivsky \\cite{krapquasi} where a similarity variable approach was used to treat the growth of a droplet with an adsorption boundary condition based on a quasistatic approximation. Another boundary condition with a constant flux of monomers at the aggregate perimeter is also examined. The results exhibit a power law growth rate with an exponent of 1/3 for all times.
Non-kinematic Flux-transport Dynamos Including the Effects of Diffusivity Quenching
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ichimura, Chiaki; Yokoyama, Takaaki
2017-04-10
Turbulent magnetic diffusivity is quenched when strong magnetic fields suppress turbulent motion in a phenomenon known as diffusivity quenching. Diffusivity quenching can provide a mechanism for amplifying magnetic field and influencing global velocity fields through Lorentz force feedback. To investigate this effect, we conducted mean field flux-transport dynamo simulations that included the effects of diffusivity quenching in a non-kinematic regime. We found that toroidal magnetic field strength is amplified by up to approximately 1.5 times in the convection zone as a result of diffusivity quenching. This amplification is much weaker than that in kinematic cases as a result of Lorentzmore » force feedback on the system’s differential rotation. While amplified toroidal fields lead to the suppression of equatorward meridional flow locally near the base of the convection zone, large-scale equatorward transport of magnetic flux via meridional flow, which is the essential process of the flux-transport dynamo, is sustainable in our calculations.« less
CRASH: A BLOCK-ADAPTIVE-MESH CODE FOR RADIATIVE SHOCK HYDRODYNAMICS-IMPLEMENTATION AND VERIFICATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van der Holst, B.; Toth, G.; Sokolov, I. V.
We describe the Center for Radiative Shock Hydrodynamics (CRASH) code, a block-adaptive-mesh code for multi-material radiation hydrodynamics. The implementation solves the radiation diffusion model with a gray or multi-group method and uses a flux-limited diffusion approximation to recover the free-streaming limit. Electrons and ions are allowed to have different temperatures and we include flux-limited electron heat conduction. The radiation hydrodynamic equations are solved in the Eulerian frame by means of a conservative finite-volume discretization in either one-, two-, or three-dimensional slab geometry or in two-dimensional cylindrical symmetry. An operator-split method is used to solve these equations in three substeps: (1)more » an explicit step of a shock-capturing hydrodynamic solver; (2) a linear advection of the radiation in frequency-logarithm space; and (3) an implicit solution of the stiff radiation diffusion, heat conduction, and energy exchange. We present a suite of verification test problems to demonstrate the accuracy and performance of the algorithms. The applications are for astrophysics and laboratory astrophysics. The CRASH code is an extension of the Block-Adaptive Tree Solarwind Roe Upwind Scheme (BATS-R-US) code with a new radiation transfer and heat conduction library and equation-of-state and multi-group opacity solvers. Both CRASH and BATS-R-US are part of the publicly available Space Weather Modeling Framework.« less
Transfer matrix method for four-flux radiative transfer.
Slovick, Brian; Flom, Zachary; Zipp, Lucas; Krishnamurthy, Srini
2017-07-20
We develop a transfer matrix method for four-flux radiative transfer, which is ideally suited for studying transport through multiple scattering layers. The model predicts the specular and diffuse reflection and transmission of multilayer composite films, including interface reflections, for diffuse or collimated incidence. For spherical particles in the diffusion approximation, we derive closed-form expressions for the matrix coefficients and show remarkable agreement with numerical Monte Carlo simulations for a range of absorption values and film thicknesses, and for an example multilayer slab.
Energy and variance budgets of a diffusive staircase with implications for heat flux scaling
NASA Astrophysics Data System (ADS)
Hieronymus, M.; Carpenter, J. R.
2016-02-01
Diffusive convection, the mode of double-diffusive convection that occur when both temperature and salinity increase with increasing depth, is commonplace throughout the high latitude oceans and diffusive staircases constitute an important heat transport process in the Arctic Ocean. Heat and buoyancy fluxes through these staircases are often estimated using flux laws deduced either from laboratory experiments, or from simplified energy or variance budgets. We have done direct numerical simulations of double-diffusive convection at a range of Rayleigh numbers and quantified the energy and variance budgets in detail. This allows us to compare the fluxes in our simulations to those derived using known flux laws and to quantify how well the simplified energy and variance budgets approximate the full budgets. The fluxes are found to agree well with earlier estimates at high Rayleigh numbers, but we find large deviations at low Rayleigh numbers. The close ties between the heat and buoyancy fluxes and the budgets of thermal variance and energy have been utilized to derive heat flux scaling laws in the field of thermal convection. The result is the so called GL-theory, which has been found to give accurate heat flux scaling laws in a very wide parameter range. Diffusive convection has many similarities to thermal convection and an extension of the GL-theory to diffusive convection is also presented and its predictions are compared to the results from our numerical simulations.
NASA Astrophysics Data System (ADS)
Istomin, V. A.
2018-05-01
The software package Planet Atmosphere Investigator of Non-equilibrium Thermodynamics (PAINeT) has been devel-oped for studying the non-equilibrium effects associated with electronic excitation, chemical reactions and ionization. These studies are necessary for modeling process in shock tubes, in high enthalpy flows, in nozzles or jet engines, in combustion and explosion processes, in modern plasma-chemical and laser technologies. The advantages and possibilities of the package implementation are stated. Within the framework of the package implementation, based on kinetic theory approximations (one-temperature and state-to-state approaches), calculations are carried out, and the limits of applicability of a simplified description of shock-heated air flows and any other mixtures chosen by the user are given. Using kinetic theory algorithms, a numerical calculation of the heat fluxes and relaxation terms can be performed, which is necessary for further comparison of engineering simulation with experi-mental data. The influence of state-to-state distributions over electronic energy levels on the coefficients of thermal conductivity, diffusion, heat fluxes and diffusion velocities of the components of various gas mixtures behind shock waves is studied. Using the software package the accuracy of different approximations of the kinetic theory of gases is estimated. As an example state-resolved atomic ionized mixture of N/N+/O/O+/e- is considered. It is shown that state-resolved diffusion coefficients of neutral and ionized species vary from level to level. Comparing results of engineering applications with those given by PAINeT, recommendations for adequate models selection are proposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poutanen, Juri, E-mail: juri.poutanen@utu.fi
Rosseland mean opacity plays an important role in theories of stellar evolution and X-ray burst models. In the high-temperature regime, when most of the gas is completely ionized, the opacity is dominated by Compton scattering. Our aim here is to critically evaluate previous works on this subject and to compute the exact Rosseland mean opacity for Compton scattering over a broad range of temperature and electron degeneracy parameter. We use relativistic kinetic equations for Compton scattering and compute the photon mean free path as a function of photon energy by solving the corresponding integral equation in the diffusion limit. Asmore » a byproduct we also demonstrate the way to compute photon redistribution functions in the case of degenerate electrons. We then compute the Rosseland mean opacity as a function of temperature and electron degeneracy and present useful approximate expressions. We compare our results to previous calculations and find a significant difference in the low-temperature regime and strong degeneracy. We then proceed to compute the flux mean opacity in both free-streaming and diffusion approximations, and show that the latter is nearly identical to the Rosseland mean opacity. We also provide a simple way to account for the true absorption in evaluating the Rosseland and flux mean opacities.« less
Global diffusive fluxes of methane in marine sediments
NASA Astrophysics Data System (ADS)
Egger, Matthias; Riedinger, Natascha; Mogollón, José M.; Jørgensen, Bo Barker
2018-06-01
Anaerobic oxidation of methane provides a globally important, yet poorly constrained barrier for the vast amounts of methane produced in the subseafloor. Here we provide a global map and budget of the methane flux and degradation in diffusion-controlled marine sediments in relation to the depth of the methane oxidation barrier. Our new budget suggests that 45-61 Tg of methane are oxidized with sulfate annually, with approximately 80% of this oxidation occurring in continental shelf sediments (<200 m water depth). Using anaerobic oxidation as a nearly quantitative sink for methane in steady-state diffusive sediments, we calculate that 3-4% of the global organic carbon flux to the seafloor is converted to methane. We further report a global imbalance of diffusive methane and sulfate fluxes into the sulfate-methane transition with no clear trend with respect to the corresponding depth of the methane oxidation barrier. The observed global mean net flux ratio between sulfate and methane of 1.4:1 indicates that, on average, the methane flux to the sulfate-methane transition accounts for only 70% of the sulfate consumption in the sulfate-methane transition zone of marine sediments.
Integral approximations to classical diffusion and smoothed particle hydrodynamics
Du, Qiang; Lehoucq, R. B.; Tartakovsky, A. M.
2014-12-31
The contribution of the paper is the approximation of a classical diffusion operator by an integral equation with a volume constraint. A particular focus is on classical diffusion problems associated with Neumann boundary conditions. By exploiting this approximation, we can also approximate other quantities such as the flux out of a domain. Our analysis of the model equation on the continuum level is closely related to the recent work on nonlocal diffusion and peridynamic mechanics. In particular, we elucidate the role of a volumetric constraint as an approximation to a classical Neumann boundary condition in the presence of physical boundary.more » The volume-constrained integral equation then provides the basis for accurate and robust discretization methods. As a result, an immediate application is to the understanding and improvement of the Smoothed Particle Hydrodynamics (SPH) method.« less
Benthic nutrient sources to hypereutrophic upper Klamath Lake, Oregon, USA.
Kuwabara, James S; Topping, Brent R; Lynch, Dennis D; Carter, James L; Essaid, Hedeff I
2009-03-01
Three collecting trips were coordinated in April, May, and August 2006 to sample the water column and benthos of hypereutrophic Upper Klamath Lake (OR, USA) through the annual cyanophyte bloom of Aphanizomenon flos-aquae. A pore-water profiler was designed and fabricated to obtain the first high-resolution (centimeter-scale) estimates of the vertical concentration gradients of macro- and micronutrients for diffusive-flux determinations. A consistently positive benthic flux for soluble reactive phosphorus (SRP) was observed with solute release from the sediment, ranging between 0.4 and 6.1 mg/m(2)/d. The mass flux over an approximate 200-km(2) lake area was comparable in magnitude to riverine inputs. An additional concern related to fish toxicity was identified when dissolved ammonium also displayed consistently positive benthic fluxes of 4 to 134 mg/m(2)/d, again comparable to riverine inputs. Although phosphorus was a logical initial choice by water quality managers for the limiting nutrient when nitrogen-fixing cyanophytes dominate, initial trace-element results from the lake and major inflowing tributaries suggested that the role of iron limitation on primary productivity should be investigated. Dissolved iron became depleted in the lake water column during the course of the algal bloom, while dissolved ammonium and SRP increased. Elevated macroinvertebrate densities, at least of the order of 10(4) individuals/m(2), suggested that the diffusive-flux estimates may be significantly enhanced by bioturbation. In addition, heat-flux modeling indicated that groundwater advection of nutrients could also significantly contribute to internal nutrient loading. Accurate environmental assessments of lentic systems and reasonable expectations for point-source management require quantitative consideration of internal solute sources.
Benthic nutrient sources to hypereutrophic Upper Klamath Lake, Oregon, USA
Kuwabara, J.S.; Topping, B.R.; Lynch, D.D.; Carter, J.L.; Essaid, H.I.
2009-01-01
Three collecting trips were coordinated in April, May, and August 2006 to sample the water column and benthos of hypereutrophic Upper Klamath Lake (OR, USA) through the annual cyanophyte bloom of Aphanizomenon flos-aquae. A porewater profiler was designed and fabricated to obtain the first high-resolution (centimeter-scale) estimates of the vertical, concentration gradients of macro- and micronutrients for diffusive-flux determinations. A consistently positive benthic flux for soluble reactive phosphorus (SRP) was observed with solute release from the sediment, ranging between 0.4 and 6.1 mg/m2/d. The mass flux over an approximate 200-km2 lake area was comparable in magnitude to riverine inputs. An additional concern, related to fish toxicity was identified when dissolved ammonium also displayed consistently positive benthic fluxes of 4 to 134 mg/m2/d, again, comparable to riverine inputs. Although phosphorus was a logical initial choice by water quality managers for the limiting nutrient when nitrogen-fixing cyanophytes dominate, initial trace-element results from the lake and major inflowing tributaries suggested that the role of iron limitation on primary productivity should be investigated. Dissolved iron became depleted in the lake water column during the course of the algal bloom, while dissolved ammonium and SRP increased. Elevated macroinvertebrate densities, at least of the order of 104 individuals/m2, suggested, that the diffusive-flux estimates may be significantly enhanced, by bioturbation. In addition, heat-flux modeling indicated that groundwater advection of nutrients could also significantly contribute to internal nutrient loading. Accurate environmental assessments of lentic systems and reasonable expectations for point-source management require quantitative consideration of internal solute sources ?? 2009 SETAC.
Relation between the neutrino flux from Centaurus A and the associated diffuse neutrino flux
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koers, Hylke B. J.; Tinyakov, Peter; Institute for Nuclear Research, 60th October Anniversary Prospect 7a, 117312, Moscow
2008-10-15
Based on recent results obtained by the Pierre Auger Observatory (PAO), it has been hypothesized that Centaurus A (Cen A) is a source of ultrahigh-energy cosmic rays (UHECRs) and associated neutrinos. We point out that the diffuse neutrino flux may be used to constrain the source model if one assumes that the ratio between the UHECR and neutrino fluxes outputted by Cen A is representative for other sources. Under this assumption we investigate the relation between the neutrino flux from Cen A and the diffuse neutrino flux. Assuming furthermore that Cen A is the source of two UHECR events observedmore » by PAO, we estimate the all-sky diffuse neutrino flux to be {approx}200-5000 times larger than the neutrino flux from Cen A. As a result, the diffuse neutrino fluxes associated with some of the recently proposed models of UHECR-related neutrino production in Cen A are above existing limits. Regardless of the underlying source model, our results indicate that the detection of neutrinos from Cen A without the accompanying diffuse flux would mean that Cen A is an exceptionally efficient neutrino source.« less
Smith, James A.; Tisdale, Amy K.; Cho, H. Jean
1996-01-01
The upward flux of trichloroethene (TCE) vapor through the unsaturated zone above a contaminated, water-table aquifer at Picatinny Arsenal, New Jersey, has been studied under natural conditions over a 12-month period. Vertical gas-phase diffusion fluxes were estimated indirectly by measuring the TCE vapor concentration gradient in the unsaturated zone and using Fick's law to calculate the flux. The total gas-phase flux (e.g., the sum of diffusion and advection fluxes) was measured directly with a vertical flux chamber (VFC). In many cases, the upward TCE vapor flux was several orders of magnitude greater than the upward TCE diffusion flux, suggesting that mechanisms other than steady-state vapor diffusion are contributing to the vertical transport of TCE vapors through the unsaturated zone. The measured total flux of TCE vapor from the subsurface to the atmosphere is approximately 50 kg/yr and is comparable in magnitude to the removal rate of TCE from the aquifer by an existing pump-and-treat system and by discharge into a nearby stream. The net upward flux of TCE is reduced significantly during a storm event, presumably due to the mass transfer of TCE from the soil gas to the infiltrating rainwater and its subsequent downward advection. Several potential problems associated with the measurement of total gas-phase fluxes are discussed.
Mäkelä, Mikko; Fraikin, Laurent; Léonard, Angélique; Benavente, Verónica; Fullana, Andrés
2016-03-15
The effects of hydrothermal treatment on the drying properties of sludge were determined. Sludge was hydrothermally treated at 180-260 °C for 0.5-5 h using NaOH and HCl as additives to influence reaction conditions. Untreated sludge and attained hydrochar samples were then dried under identical conditions with a laboratory microdryer and an X-ray microtomograph was used to follow changes in sample dimensions. The effective moisture diffusivities of sludge and hydrochar samples were determined and the effect of process conditions on respective mean diffusivities evaluated using multiple linear regression. Based on the results the drying time of untreated sludge decreased from approximately 80 min to 37-59 min for sludge hydrochar. Drying of untreated sludge was governed by the falling rate period where drying flux decreased continuously as a function of sludge moisture content due to heat and mass transfer limitations and sample shrinkage. Hydrothermal treatment increased the drying flux of sludge hydrochar and decreased the effect of internal heat and mass transfer limitations and sample shrinkage especially at higher treatment temperatures. The determined effective moisture diffusivities of sludge and hydrochar increased as a function of decreasing moisture content and the mean diffusivity of untreated sludge (8.56·10(-9) m(2) s(-1)) and sludge hydrochar (12.7-27.5·10(-9) m(2) s(-1)) were found statistically different. The attained regression model indicated that treatment temperature governed the mean diffusivity of hydrochar, as the effects of NaOH and HCl were statistically insignificant. The attained results enabled prediction of sludge drying properties through mean moisture diffusivity based on hydrothermal treatment conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lysenko, S. A.
2018-01-01
A method for rapid calculation of a flux of stimulated fluorescence of a multilayer optically dense medium with inhomogeneous distribution of the fluorophore has been developed. The light field in the medium at the excitation wavelength of fluorescence is represented by a superposition of incident collimated, incident diffuse, and reflected diffuse fluxes. A two-stream approximation is used to describe the light field in the medium at the wavelength of emission of the fluorescence. Fluxes in adjacent elementary layers of the medium and on its surface are connected by simple matrix operators that are obtained using a combination of engineering approaches of radiation-transfer theory and single-scattering approximation. The calculations of fluorescence fluxes of a four-layer biotissue that are excited and recorded at 400-800 nm are compared with their Monte Carlo simulation with a discrepancy of 1%. The effect of the propagation medium on the fluorescence spectra of 5-ALA-induced protoporphyrin IX that are recorded from human skin was studied, and a technique for their correction that is based on measurements and quantitative analysis of the diffuse reflectance spectrum of skin was proposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tetsu, Hiroyuki; Nakamoto, Taishi, E-mail: h.tetsu@geo.titech.ac.jp
Radiation is an important process of energy transport, a force, and a basis for synthetic observations, so radiation hydrodynamics (RHD) calculations have occupied an important place in astrophysics. However, although the progress in computational technology is remarkable, their high numerical cost is still a persistent problem. In this work, we compare the following schemes used to solve the nonlinear simultaneous equations of an RHD algorithm with the flux-limited diffusion approximation: the Newton–Raphson (NR) method, operator splitting, and linearization (LIN), from the perspective of the computational cost involved. For operator splitting, in addition to the traditional simple operator splitting (SOS) scheme,more » we examined the scheme developed by Douglas and Rachford (DROS). We solve three test problems (the thermal relaxation mode, the relaxation and the propagation of linear waves, and radiating shock) using these schemes and then compare their dependence on the time step size. As a result, we find the conditions of the time step size necessary for adopting each scheme. The LIN scheme is superior to other schemes if the ratio of radiation pressure to gas pressure is sufficiently low. On the other hand, DROS can be the most efficient scheme if the ratio is high. Although the NR scheme can be adopted independently of the regime, especially in a problem that involves optically thin regions, the convergence tends to be worse. In all cases, SOS is not practical.« less
Preferential flow, diffuse flow, and perching in an interbedded fractured-rock unsaturated zone
NASA Astrophysics Data System (ADS)
Nimmo, John R.; Creasey, Kaitlyn M.; Perkins, Kim S.; Mirus, Benjamin B.
2017-03-01
Layers of strong geologic contrast within the unsaturated zone can control recharge and contaminant transport to underlying aquifers. Slow diffuse flow in certain geologic layers, and rapid preferential flow in others, complicates the prediction of vertical and lateral fluxes. A simple model is presented, designed to use limited geological site information to predict these critical subsurface processes in response to a sustained infiltration source. The model is developed and tested using site-specific information from the Idaho National Laboratory in the Eastern Snake River Plain (ESRP), USA, where there are natural and anthropogenic sources of high-volume infiltration from floods, spills, leaks, wastewater disposal, retention ponds, and hydrologic field experiments. The thick unsaturated zone overlying the ESRP aquifer is a good example of a sharply stratified unsaturated zone. Sedimentary interbeds are interspersed between massive and fractured basalt units. The combination of surficial sediments, basalts, and interbeds determines the water fluxes through the variably saturated subsurface. Interbeds are generally less conductive, sometimes causing perched water to collect above them. The model successfully predicts the volume and extent of perching and approximates vertical travel times during events that generate high fluxes from the land surface. These developments are applicable to sites having a thick, geologically complex unsaturated zone of substantial thickness in which preferential and diffuse flow, and perching of percolated water, are important to contaminant transport or aquifer recharge.
Preferential flow, diffuse flow, and perching in an interbedded fractured-rock unsaturated zone
Nimmo, John R.; Creasey, Kaitlyn M; Perkins, Kimberlie; Mirus, Benjamin B.
2017-01-01
Layers of strong geologic contrast within the unsaturated zone can control recharge and contaminant transport to underlying aquifers. Slow diffuse flow in certain geologic layers, and rapid preferential flow in others, complicates the prediction of vertical and lateral fluxes. A simple model is presented, designed to use limited geological site information to predict these critical subsurface processes in response to a sustained infiltration source. The model is developed and tested using site-specific information from the Idaho National Laboratory in the Eastern Snake River Plain (ESRP), USA, where there are natural and anthropogenic sources of high-volume infiltration from floods, spills, leaks, wastewater disposal, retention ponds, and hydrologic field experiments. The thick unsaturated zone overlying the ESRP aquifer is a good example of a sharply stratified unsaturated zone. Sedimentary interbeds are interspersed between massive and fractured basalt units. The combination of surficial sediments, basalts, and interbeds determines the water fluxes through the variably saturated subsurface. Interbeds are generally less conductive, sometimes causing perched water to collect above them. The model successfully predicts the volume and extent of perching and approximates vertical travel times during events that generate high fluxes from the land surface. These developments are applicable to sites having a thick, geologically complex unsaturated zone of substantial thickness in which preferential and diffuse flow, and perching of percolated water, are important to contaminant transport or aquifer recharge.
Border-Crossing Model for the Diffusive Coarsening of Wet Foams
NASA Astrophysics Data System (ADS)
Durian, Douglas; Schimming, Cody
For dry foams, the transport of gas from small high-pressure bubbles to large low-pressure bubbles is dominated by diffusion across the thin soap films separating neighboring bubbles. For wetter foams, the film areas become smaller as the Plateau borders and vertices inflate with liquid. So-called ``border-blocking'' models can explain some features of wet-foam coarsening based on the presumption that the inflated borders totally block the gas flux; however, this approximation dramatically fails in the wet/unjamming limit where the bubbles become close-packed spheres. Here, we account for the ever-present border-crossing flux by a new length scale defined by the average gradient of gas concentration inside the borders. We argue that it is proportional to the geometric average of film and border thicknesses, and we verify this scaling and the numerical prefactor by numerical solution of the diffusion equation. Then we show how the dA / dt =K0 (n - 6) von Neumann law is modified by the appearance of terms that depend on bubble size and shape as well as the concentration gradient length scale. Finally, we use the modified von Neumann law to compute the growth rate of the average bubble, which is not constant.
Anisotropic diffusion in mesh-free numerical magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Hopkins, Philip F.
2017-04-01
We extend recently developed mesh-free Lagrangian methods for numerical magnetohydrodynamics (MHD) to arbitrary anisotropic diffusion equations, including: passive scalar diffusion, Spitzer-Braginskii conduction and viscosity, cosmic ray diffusion/streaming, anisotropic radiation transport, non-ideal MHD (Ohmic resistivity, ambipolar diffusion, the Hall effect) and turbulent 'eddy diffusion'. We study these as implemented in the code GIZMO for both new meshless finite-volume Godunov schemes (MFM/MFV). We show that the MFM/MFV methods are accurate and stable even with noisy fields and irregular particle arrangements, and recover the correct behaviour even in arbitrarily anisotropic cases. They are competitive with state-of-the-art AMR/moving-mesh methods, and can correctly treat anisotropic diffusion-driven instabilities (e.g. the MTI and HBI, Hall MRI). We also develop a new scheme for stabilizing anisotropic tensor-valued fluxes with high-order gradient estimators and non-linear flux limiters, which is trivially generalized to AMR/moving-mesh codes. We also present applications of some of these improvements for SPH, in the form of a new integral-Godunov SPH formulation that adopts a moving-least squares gradient estimator and introduces a flux-limited Riemann problem between particles.
Inter-cusp Ion and Electron Transport in a Nstar-derivative Ion Thruster
NASA Technical Reports Server (NTRS)
Foster, John E.
2001-01-01
Diffusion of electrons and ions to anode surfaces between the magnetic cusps of a NASA Solar Electric Propulsion Technology Application Readiness ion thruster has been characterized. Ion flux measurements were made at the anode and at the screen grid electrode. The measurements indicated that the average ion current density at the anode and at the screen grid were approximately equal. Additionally, it was found that the electron flux to the anode between cusps is best described by the classical cross-field diffusion coefficient.
Ion and Electron Transport in an Nstar-derivative Ion Thruster. Revised
NASA Technical Reports Server (NTRS)
Foster, John E.
2001-01-01
Diffusion of electrons and ions to anode surfaces between the magnetic cusps of a NASA Solar Electric Propulsion Technology Application Readiness ion thruster has been characterized. Ion flux measurements were made at the anode and at the screen grid electrode. The measurements indicated that the average ion current density at the anode and at the screen grid were approximately equal. Additionally, it was found that the electron flux to the anode between cusps is best described by the classical cross-field diffusion coefficient.
Nonlinear restrictions on dynamo action. [in magnetic fields of astrophysical objects
NASA Technical Reports Server (NTRS)
Vainshtein, Samuel I.; Cattaneo, Fausto
1992-01-01
Astrophysical dynamos operate in the limit of small magnetic diffusivity. In order for magnetic reconnection to occur, very small magnetic structures must form so that diffusion becomes effective. The formation of small-scale fields is accompanied by the stretching of the field lines and therefore by an amplification of the magnetic field strength. The back reaction of the magnetic field on the motions leads to the eventual saturation of the dynamo process, thus posing a constraint on the amount of magnetic flux that can be generated by dynamo action, It is argued that in the limit of small diffusivity only a small amount of flux, many orders of magnitude less than the observed fluxes, can be created by dynamo processes.
The diffuse extreme-ultraviolet background - Constraints on hot coronal plasma
NASA Technical Reports Server (NTRS)
Paresce, F.; Stern, R.
1981-01-01
The Apollo-Soyuz data and data reported by Cash et al. (1976) have been reanalyzed in terms of both isothermal models and temperature distribution models. In the latter case, a power-law form is assumed for the relation between emission measure and temperature. A new upper limit on diffuse flux in the 20-73 eV band derived from Apollo-Soyuz observations made in the earth's shadow has been incorporated in the calculation. In the considered investigation the results of the new analysis are presented and the implications for the physical properties of the hot component of the interstellar medium are discussed. The analysis of the Berkeley extreme ultraviolet (EUV) diffuse background measurements using either isothermal or power law temperature distribution models for the emitting plasma indicates excellent qualitative agreement with hard X-ray data that suggest the sun to be immersed in a hot plasma that pervades most of space out to approximately 100 pc.
Monte Carlo charged-particle tracking and energy deposition on a Lagrangian mesh.
Yuan, J; Moses, G A; McKenty, P W
2005-10-01
A Monte Carlo algorithm for alpha particle tracking and energy deposition on a cylindrical computational mesh in a Lagrangian hydrodynamics code used for inertial confinement fusion (ICF) simulations is presented. The straight line approximation is used to follow propagation of "Monte Carlo particles" which represent collections of alpha particles generated from thermonuclear deuterium-tritium (DT) reactions. Energy deposition in the plasma is modeled by the continuous slowing down approximation. The scheme addresses various aspects arising in the coupling of Monte Carlo tracking with Lagrangian hydrodynamics; such as non-orthogonal severely distorted mesh cells, particle relocation on the moving mesh and particle relocation after rezoning. A comparison with the flux-limited multi-group diffusion transport method is presented for a polar direct drive target design for the National Ignition Facility. Simulations show the Monte Carlo transport method predicts about earlier ignition than predicted by the diffusion method, and generates higher hot spot temperature. Nearly linear speed-up is achieved for multi-processor parallel simulations.
Spatial Fluctuations in the Diffuse Cosmic X-Ray Background. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Shafer, R. A.
1983-01-01
The bright, essentially isotropic, X-ray sky flux above 2 keV yields information on the universe at large distances. However, a definitive understanding of the origin of the flux is lacking. Some fraction of the total flux is contributed by active galactic nuclei and clusters of galaxies, but less than one percent of the total is contributed by the or approximately 3 keV band resolved sources, which is the band where the sky flux is directly observed. Parametric models of AGN (quasar) luminosity function evolution are examined. Most constraints are by the total sky flux. The acceptability of particular models hinges on assumptions currently not directly testable. The comparison with the Einstein Observatory 1 to keV low flux source counts is hampered by spectral uncertainties. A tentative measurement of a large scale dipole anisotropy is consistent with the velocity and direction derived from the dipole in the microwave background. The impact of the X-ray anisotropy limits for other scales on studies of large-scale structure in the universe is sketched. Models of the origins of the X-ray sky flux are reviewed, and future observational programs outlined.
Local bounds preserving stabilization for continuous Galerkin discretization of hyperbolic systems
NASA Astrophysics Data System (ADS)
Mabuza, Sibusiso; Shadid, John N.; Kuzmin, Dmitri
2018-05-01
The objective of this paper is to present a local bounds preserving stabilized finite element scheme for hyperbolic systems on unstructured meshes based on continuous Galerkin (CG) discretization in space. A CG semi-discrete scheme with low order artificial dissipation that satisfies the local extremum diminishing (LED) condition for systems is used to discretize a system of conservation equations in space. The low order artificial diffusion is based on approximate Riemann solvers for hyperbolic conservation laws. In this case we consider both Rusanov and Roe artificial diffusion operators. In the Rusanov case, two designs are considered, a nodal based diffusion operator and a local projection stabilization operator. The result is a discretization that is LED and has first order convergence behavior. To achieve high resolution, limited antidiffusion is added back to the semi-discrete form where the limiter is constructed from a linearity preserving local projection stabilization operator. The procedure follows the algebraic flux correction procedure usually used in flux corrected transport algorithms. To further deal with phase errors (or terracing) common in FCT type methods, high order background dissipation is added to the antidiffusive correction. The resulting stabilized semi-discrete scheme can be discretized in time using a wide variety of time integrators. Numerical examples involving nonlinear scalar Burgers equation, and several shock hydrodynamics simulations for the Euler system are considered to demonstrate the performance of the method. For time discretization, Crank-Nicolson scheme and backward Euler scheme are utilized.
Multiyear search for a diffuse flux of muon neutrinos with AMANDA-II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Achterberg, A.; Duvoort, M. R.; Heise, J.
2007-08-15
A search for TeV-PeV muon neutrinos from unresolved sources was performed on AMANDA-II data collected between 2000 and 2003 with an equivalent live time of 807 days. This diffuse analysis sought to find an extraterrestrial neutrino flux from sources with nonthermal components. The signal is expected to have a harder spectrum than the atmospheric muon and neutrino backgrounds. Since no excess of events was seen in the data over the expected background, an upper limit of E{sup 2}{phi}{sub 90percentC.L.}<7.4x10{sup -8} GeV cm{sup -2} s{sup -1} sr{sup -1} is placed on the diffuse flux of muon neutrinos with a {phi}{proportional_to}E{sup -2}more » spectrum in the energy range 16 TeV to 2.5 PeV. This is currently the most sensitive {phi}{proportional_to}E{sup -2} diffuse astrophysical neutrino limit. We also set upper limits for astrophysical and prompt neutrino models, all of which have spectra different from {phi}{proportional_to}E{sup -2}.« less
Martian CH(4): sources, flux, and detection.
Onstott, T C; McGown, D; Kessler, J; Lollar, B Sherwood; Lehmann, K K; Clifford, S M
2006-04-01
Recent observations have detected trace amounts of CH(4) heterogeneously distributed in the martian atmosphere, which indicated a subsurface CH(4) flux of ~2 x 10(5) to 2 x 10(9) cm(2) s(1). Four different origins for this CH(4) were considered: (1) volcanogenic; (2) sublimation of hydrate- rich ice; (3) diffusive transport through hydrate-saturated cryosphere; and (4) microbial CH(4) generation above the cryosphere. A diffusive flux model of the martian crust for He, H(2), and CH(4) was developed based upon measurements of deep fracture water samples from South Africa. This model distinguishes between abiogenic and microbial CH(4) sources based upon their isotopic composition, and couples microbial CH(4) production to H(2) generation by H(2)O radiolysis. For a He flux of approximately 10(5) cm(2) s(1) this model yields an abiogenic CH(4) flux and a microbial CH(4) flux of approximately 10(6) and approximately 10(9) cm(2) s(1), respectively. This flux will only reach the martian surface if CH(4) hydrate is saturated in the cryosphere; otherwise it will be captured within the cryosphere. The sublimation of a hydrate-rich cryosphere could generate the observed CH(4) flux, whereas microbial CH(4) production in a hypersaline environment above the hydrate stability zone only seems capable of supplying approximately 10(5) cm(2) s(1) of CH(4). The model predicts that He/H(2)/CH(4)/C(2)H(6) abundances and the C and H isotopic values of CH(4) and the C isotopic composition of C(2)H(6) could reveal the different sources. Cavity ring-down spectrometers represent the instrument type that would be most capable of performing the C and H measurements of CH(4) on near future rover missions and pinpointing the cause and source of the CH(4) emissions.
Bounded fractional diffusion in geological media: Definition and Lagrangian approximation
NASA Astrophysics Data System (ADS)
Zhang, Yong; Green, Christopher T.; LaBolle, Eric M.; Neupauer, Roseanna M.; Sun, HongGuang
2016-11-01
Spatiotemporal fractional-derivative models (FDMs) have been increasingly used to simulate non-Fickian diffusion, but methods have not been available to define boundary conditions for FDMs in bounded domains. This study defines boundary conditions and then develops a Lagrangian solver to approximate bounded, one-dimensional fractional diffusion. Both the zero-value and nonzero-value Dirichlet, Neumann, and mixed Robin boundary conditions are defined, where the sign of Riemann-Liouville fractional derivative (capturing nonzero-value spatial-nonlocal boundary conditions with directional superdiffusion) remains consistent with the sign of the fractional-diffusive flux term in the FDMs. New Lagrangian schemes are then proposed to track solute particles moving in bounded domains, where the solutions are checked against analytical or Eulerian solutions available for simplified FDMs. Numerical experiments show that the particle-tracking algorithm for non-Fickian diffusion differs from Fickian diffusion in relocating the particle position around the reflective boundary, likely due to the nonlocal and nonsymmetric fractional diffusion. For a nonzero-value Neumann or Robin boundary, a source cell with a reflective face can be applied to define the release rate of random-walking particles at the specified flux boundary. Mathematical definitions of physically meaningful nonlocal boundaries combined with bounded Lagrangian solvers in this study may provide the only viable techniques at present to quantify the impact of boundaries on anomalous diffusion, expanding the applicability of FDMs from infinite domains to those with any size and boundary conditions.
3D Monte-Carlo study of toroidally discontinuous limiter SOL configurations of Aditya tokamak
NASA Astrophysics Data System (ADS)
Sahoo, Bibhu Prasad; Sharma, Devendra; Jha, Ratneshwar; Feng, Yühe
2017-08-01
The plasma-neutral transport in the scrape-off layer (SOL) region formed by toroidally discontinuous limiters deviates from usual uniform SOL approximations when 3D effects caused by limiter discreteness begin to dominate. In an upgrade version of the Aditya tokamak, originally having a toroidally localized poloidal ring-like limiter, the newer outboard block and inboard belt limiters are expected to have smaller connection lengths and a multiple fold toroidal periodicity. The characteristics of plasma discharges may accordingly vary from the original observations of large diffusivity, and a net improvement and the stability of the discharges are desired. The estimations related to 3D effects in the ring limiter plasma transport are also expected to be modified and are updated by predictive simulations of transport in the new block limiter configuration. A comparison between the ring limiter results and those from new simulations with block limiter SOL shows that for the grids produced using same core plasma equilibrium, the modified SOL plasma flows and flux components have enhanced poloidal periodicity in the block limiter case. These SOL modifications result in a reduced net recycling for the equivalent edge density values. Predictions are also made about the relative level of the diffusive transport and its impact on the factors limiting the operational regime.
Calculation of the neutron diffusion equation by using Homotopy Perturbation Method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koklu, H., E-mail: koklu@gantep.edu.tr; Ozer, O.; Ersoy, A.
The distribution of the neutrons in a nuclear fuel element in the nuclear reactor core can be calculated by the neutron diffusion theory. It is the basic and the simplest approximation for the neutron flux function in the reactor core. In this study, the neutron flux function is obtained by the Homotopy Perturbation Method (HPM) that is a new and convenient method in recent years. One-group time-independent neutron diffusion equation is examined for the most solved geometrical reactor core of spherical, cubic and cylindrical shapes, in the frame of the HPM. It is observed that the HPM produces excellent resultsmore » consistent with the existing literature.« less
James, W.F.; Richardson, W.B.; Soballe, D.M.
2008-01-01
Routing nitrate through backwaters of regulated floodplain rivers to increase retention could decrease loading to nitrogen (N)-sensitive coastal regions. Sediment core determinations of N flux were combined with inflow-outflow fluxes to develop mass balance approximations of N uptake and transformations in a flow-controlled backwater of the Upper Mississippi River (USA). Inflow was the dominant nitrate source (>95%) versus nitrification and varied as a function of source water concentration since flow was constant. Nitrate uptake length increased linearly, while uptake velocity decreased linearly, with increasing inflow concentration to 2 mg l-1, indicating limitation of N uptake by loading. N saturation at higher inflow concentration coincided with maximum uptake capacity, 40% uptake efficiency, and an uptake length 2 times greater than the length of the backwater. Nitrate diffusion and denitrification in sediment accounted for 27% of the backwater nitrate retention, indicating that assimilation by other biota or denitrification on other substrates were the dominant uptake mechanisms. Ammonium export from the backwater was driven by diffusive efflux from the sediment. Ammonium increased from near zero at the inflow to a maximum mid-lake, then declined slightly toward the outflow due to uptake during transport. Ammonium export was small compared to nitrate retention. ?? 2007 Springer Science+Business Media B.V.
NASA Technical Reports Server (NTRS)
Baker, D. N.; Jaynes, A. N.; Li, X.; Henderson, M. G.; Kanekal, S. G.; Reeves, G. D.; Spence, H. E.; Claudepierre, S. G.; Fennell, J. F.; Hudson, M. K.
2014-01-01
The dual-spacecraft Van Allen Probes mission has provided a new window into mega electron volt (MeV) particle dynamics in the Earth's radiation belts. Observations (up to E (is) approximately 10MeV) show clearly the behavior of the outer electron radiation belt at different timescales: months-long periods of gradual inward radial diffusive transport and weak loss being punctuated by dramatic flux changes driven by strong solar wind transient events. We present analysis of multi-MeV electron flux and phase space density (PSD) changes during March 2013 in the context of the first year of Van Allen Probes operation. This March period demonstrates the classic signatures both of inward radial diffusive energization and abrupt localized acceleration deep within the outer Van Allen zone (L (is) approximately 4.0 +/- 0.5). This reveals graphically that both 'competing' mechanisms of multi-MeV electron energization are at play in the radiation belts, often acting almost concurrently or at least in rapid succession.
Bounded fractional diffusion in geological media: Definition and Lagrangian approximation
Zhang, Yong; Green, Christopher T.; LaBolle, Eric M.; Neupauer, Roseanna M.; Sun, HongGuang
2016-01-01
Spatiotemporal Fractional-Derivative Models (FDMs) have been increasingly used to simulate non-Fickian diffusion, but methods have not been available to define boundary conditions for FDMs in bounded domains. This study defines boundary conditions and then develops a Lagrangian solver to approximate bounded, one-dimensional fractional diffusion. Both the zero-value and non-zero-value Dirichlet, Neumann, and mixed Robin boundary conditions are defined, where the sign of Riemann-Liouville fractional derivative (capturing non-zero-value spatial-nonlocal boundary conditions with directional super-diffusion) remains consistent with the sign of the fractional-diffusive flux term in the FDMs. New Lagrangian schemes are then proposed to track solute particles moving in bounded domains, where the solutions are checked against analytical or Eularian solutions available for simplified FDMs. Numerical experiments show that the particle-tracking algorithm for non-Fickian diffusion differs from Fickian diffusion in relocating the particle position around the reflective boundary, likely due to the non-local and non-symmetric fractional diffusion. For a non-zero-value Neumann or Robin boundary, a source cell with a reflective face can be applied to define the release rate of random-walking particles at the specified flux boundary. Mathematical definitions of physically meaningful nonlocal boundaries combined with bounded Lagrangian solvers in this study may provide the only viable techniques at present to quantify the impact of boundaries on anomalous diffusion, expanding the applicability of FDMs from infinite do mains to those with any size and boundary conditions.
Survey of upper band chorus and ECH waves: Implications for the diffuse aurora
NASA Astrophysics Data System (ADS)
Meredith, Nigel; Horne, Richard; Thorne, Richard; Anderson, Roger
2010-05-01
The origin of the diffuse aurora has been a source of controversy for many years. More recently the question has taken a new significance in view of the associated changes in atmospheric chemistry which may affect the middle atmosphere. Here we use CRRES data to assess the importance of upper band chorus and electron cyclotron harmonic (ECH) waves in the production of the diffuse aurora. Both wave modes increase with increasing geomagnetic activity, suggesting they are related to periods of enhanced convection and/or substorm activity. They are confined to the near-equatorial region which excludes the pre-noon sector from the wave survey. During active conditions intense ECH waves and upper band chorus, with amplitudes exceeding 1 mVm-1, are observed in the region 4 < L < 7 from 2100 to 0600 MLT approximately 20% and 6% of the time respectively. This suggests that both wave modes can put electrons on strong diffusion, but only during active conditions and not at all local times. Scattering rates fall below the strong diffusion limit at other times when the wave amplitudes are weaker. Fluxes of low energy electrons (100 eV < E < 30 keV) also increase with increasing geomagnetic activity in approximately the same region of geospace as the waves, suggesting that these electrons are responsible for the generation of the waves. The patterns of the upper band chorus, ECH waves and low energy electrons are similar to the global morphology of the diffuse aurora, suggesting that both wave modes play significant roles in the production of the diffuse aurora.
The arbitrary order mixed mimetic finite difference method for the diffusion equation
Gyrya, Vitaliy; Lipnikov, Konstantin; Manzini, Gianmarco
2016-05-01
Here, we propose an arbitrary-order accurate mimetic finite difference (MFD) method for the approximation of diffusion problems in mixed form on unstructured polygonal and polyhedral meshes. As usual in the mimetic numerical technology, the method satisfies local consistency and stability conditions, which determines the accuracy and the well-posedness of the resulting approximation. The method also requires the definition of a high-order discrete divergence operator that is the discrete analog of the divergence operator and is acting on the degrees of freedom. The new family of mimetic methods is proved theoretically to be convergent and optimal error estimates for flux andmore » scalar variable are derived from the convergence analysis. A numerical experiment confirms the high-order accuracy of the method in solving diffusion problems with variable diffusion tensor. It is worth mentioning that the approximation of the scalar variable presents a superconvergence effect.« less
Improved limit to the diffuse flux of ultrahigh energy neutrinos from the Pierre Auger Observatory
NASA Astrophysics Data System (ADS)
Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Aranda, V. M.; Arqueros, F.; Arsene, N.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Awal, N.; Badescu, A. M.; Barber, K. B.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blaess, S. G.; Blanco, A.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Borodai, N.; Brack, J.; Brancus, I.; Bridgeman, A.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Cordier, A.; Coutu, S.; Covault, C. E.; Cronin, J.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Jong, S. J.; De Mauro, G.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dorofeev, A.; Dorosti Hasankiadeh, Q.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fernandes, M.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fox, B. D.; Fratu, O.; Freire, M. M.; Fuchs, B.; Fujii, T.; García, B.; Garcia-Pinto, D.; Gate, F.; Gemmeke, H.; Gherghel-Lascu, A.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Głas, D.; Glaser, C.; Glass, H.; Golup, G.; Gómez Berisso, M.; Gómez Vitale, P. F.; González, N.; Gookin, B.; Gordon, J.; Gorgi, A.; Gorham, P.; Gouffon, P.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Hartmann, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Jarne, C.; Johnsen, J. A.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Krömer, O.; Kuempel, D.; Kunka, N.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopes, L.; López, R.; López Casado, A.; Louedec, K.; Lu, L.; Lucero, A.; Malacari, M.; Maldera, S.; Mallamaci, M.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Meissner, R.; Mello, V. B. B.; Melo, D.; Menshikov, A.; Messina, S.; Meyhandan, R.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Montanet, F.; Morello, C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Müller, S.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nguyen, P. H.; Niculescu-Oglinzanu, M.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; PÈ©kala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Petermann, E.; Peters, C.; Petrera, S.; Petrov, Y.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Purrello, V.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Rogozin, D.; Rosado, J.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scarso, C.; Schauer, M.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, D.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanca, D.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Taborda, O. A.; Tapia, A.; Tepe, A.; Theodoro, V. M.; Tiffenberg, J.; Timmermans, C.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vasquez, R.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Widom, A.; Wiencke, L.; Wilczyński, H.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yang, L.; Yapici, T.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zhu, Y.; Zimmermann, B.; Ziolkowski, M.; Zuccarello, F.; Pierre Auger Collaboration
2015-05-01
Neutrinos in the cosmic ray flux with energies near 1 EeV and above are detectable with the Surface Detector array (SD) of the Pierre Auger Observatory. We report here on searches through Auger data from 1 January 2004 until 20 June 2013. No neutrino candidates were found, yielding a limit to the diffuse flux of ultrahigh energy neutrinos that challenges the Waxman-Bahcall bound predictions. Neutrino identification is attempted using the broad time structure of the signals expected in the SD stations, and is efficiently done for neutrinos of all flavors interacting in the atmosphere at large zenith angles, as well as for "Earth-skimming" neutrino interactions in the case of tau neutrinos. In this paper the searches for downward-going neutrinos in the zenith angle bins 60°-75° and 75°-90° as well as for upward-going neutrinos, are combined to give a single limit. The 90% C.L. single-flavor limit to the diffuse flux of ultrahigh energy neutrinos with an E-2 spectrum in the energy range 1.0 ×1 017 eV - 2.5 ×1 019 eV is Eν2d Nν/d Eν<6.4 ×10-9 GeV cm-2 s-1 sr-1 .
Bioturbation, advection, and diffusion of a conserved tracer in a laboratory flume
NASA Astrophysics Data System (ADS)
Work, P. A.; Moore, P. R.; Reible, D. D.
2002-06-01
Laboratory experiments indicating the relative influences of advection, diffusion, and bioturbation on transport of NaCl tracer between a stream and streambed are described. Data were collected in a recirculating flume housing a box filled with test sediments. Peclet numbers ranged from 0 to 1.5. Sediment components included a medium sand (d50 = 0.31 mm), kaolinite, and topsoil. Lumbriculus variegatus were introduced as bioturbators. Conductivity probes were employed to document the flux of the tracer solution out of the bed. Measurements are compared to one-dimensional effective diffusion models assuming one or two horizontal sediment layers. These simple models provide a good indication of tracer half-life in the bed if a suitable effective diffusion coefficient is chosen but underpredict initial flux and overpredict flux at long times. Organism activity was limited to the upper reaches of the sediment test box but eventually exerts a secondary influence on flux from deeper regions.
Volatile Emissions from Hot Spring Basin, Yellowstone National Park, USA
NASA Astrophysics Data System (ADS)
Werner, C.; Hurwitz, S.; Bergfeld, D.; Evans, W. C.; Lowenstern, J. B.; Jaworowski, C.; Heasler, H.
2007-12-01
The flux and composition of magmatic volatiles were characterized for Hot Spring Basin (HSB), Yellowstone National Park, in August 2006. Diffuse fluxes of CO2 (228 sites) from thermal soil were elevated, with a population distribution similar to that of other acid-sulfate areas in Yellowstone. Thus the estimated diffuse emission rate at HSB is proportionately larger than other areas due to its large area, and could be as high as 1000 td-1 CO2. The diffuse flux of H2S was only above detection limits at 20 of the 31 sites measured. The estimated diffuse H2S emission rate was ~ 4 td-1. Good correlation exists between the log of CO2 flux and shallow soil temperatures, indicating linked steam and gas upflow in the subsurface. The correlation between CO2 and H2S fluxes is weak, and the CO2 / H2S diffuse flux ratio was higher than in fumarolic ratios of CO2 to H2S. This suggests that various reactions, e.g., native sulfur deposition, act to remove H2S from the original gas stream in the diffuse low- temperature environment. Dissolved sulfate flux through Shallow Creek, which drains part of HSB, was ~ 4 td-1. Comparing dissolved sulfate flux to estimates of primary emission of H2S based on fumarolic gas geochemistry gives first order estimates of the sulfur consumed in surficial or subsurface mineral deposition. Total C and S outputs from HSB are comparable to other active volcanic systems.
NASA Astrophysics Data System (ADS)
Sakai, K.; Watabe, D.; Minamidani, T.; Zhang, G. S.
2012-10-01
According to Godunov theorem for numerical calculations of advection equations, there exist no higher-order schemes with constant positive difference coefficients in a family of polynomial schemes with an accuracy exceeding the first-order. We propose a third-order computational scheme for numerical fluxes to guarantee the non-negative difference coefficients of resulting finite difference equations for advection-diffusion equations in a semi-conservative form, in which there exist two kinds of numerical fluxes at a cell surface and these two fluxes are not always coincident in non-uniform velocity fields. The present scheme is optimized so as to minimize truncation errors for the numerical fluxes while fulfilling the positivity condition of the difference coefficients which are variable depending on the local Courant number and diffusion number. The feature of the present optimized scheme consists in keeping the third-order accuracy anywhere without any numerical flux limiter. We extend the present method into multi-dimensional equations. Numerical experiments for advection-diffusion equations showed nonoscillatory solutions.
A model of recovering the parameters of fast nonlocal heat transport in magnetic fusion plasmas
NASA Astrophysics Data System (ADS)
Kukushkin, A. B.; Kulichenko, A. A.; Sdvizhenskii, P. A.; Sokolov, A. V.; Voloshinov, V. V.
2017-12-01
A model is elaborated for interpreting the initial stage of the fast nonlocal transport events, which exhibit immediate response, in the diffusion time scale, of the spatial profile of electron temperature to its local perturbation, while the net heat flux is directed opposite to ordinary diffusion (i.e. along the temperature gradient). We solve the inverse problem of recovering the kernel of the integral equation, which describes nonlocal (superdiffusive) transport of energy due to emission and absorption of electromagnetic (EM) waves with long free path and strong reflection from the vacuum vessel’s wall. To allow for the errors of experimental data, we use the method based on the regularized (in the framework of an ill-posed problem, using the parametric models) approximation of available experimental data. The model is applied to interpreting the data from stellarator LHD and tokamak TFTR. The EM wave transport is considered here in the single-group approximation, however the limitations of the physics model enable us to identify the spectral range of the EM waves which might be responsible for the observed phenomenon.
NASA Astrophysics Data System (ADS)
Zhou, Quanlin; Oldenburg, Curtis M.; Rutqvist, Jonny; Birkholzer, Jens T.
2017-11-01
There are two types of analytical solutions of temperature/concentration in and heat/mass transfer through boundaries of regularly shaped 1-D, 2-D, and 3-D blocks. These infinite-series solutions with either error functions or exponentials exhibit highly irregular but complementary convergence at different dimensionless times, td. In this paper, approximate solutions were developed by combining the error-function-series solutions for early times and the exponential-series solutions for late times and by using time partitioning at the switchover time, td0. The combined solutions contain either the leading term of both series for normal-accuracy approximations (with less than 0.003 relative error) or the first two terms for high-accuracy approximations (with less than 10-7 relative error) for 1-D isotropic (spheres, cylinders, slabs) and 2-D/3-D rectangular blocks (squares, cubes, rectangles, and rectangular parallelepipeds). This rapid and uniform convergence for rectangular blocks was achieved by employing the same time partitioning with individual dimensionless times for different directions and the product of their combined 1-D slab solutions. The switchover dimensionless time was determined to minimize the maximum approximation errors. Furthermore, the analytical solutions of first-order heat/mass flux for 2-D/3-D rectangular blocks were derived for normal-accuracy approximations. These flux equations contain the early-time solution with a three-term polynomial in √td and the late-time solution with the limited-term exponentials for rectangular blocks. The heat/mass flux equations and the combined temperature/concentration solutions form the ultimate kernel for fast simulations of multirate and multidimensional heat/mass transfer in porous/fractured media with millions of low-permeability blocks of varying shapes and sizes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Quanlin; Oldenburg, Curtis M.; Rutqvist, Jonny
There are two types of analytical solutions of temperature/concentration in and heat/mass transfer through boundaries of regularly shaped 1D, 2D, and 3D blocks. These infinite-series solutions with either error functions or exponentials exhibit highly irregular but complementary convergence at different dimensionless times, t d0. In this paper, approximate solutions were developed by combining the error-function-series solutions for early times and the exponential-series solutions for late times and by using time partitioning at the switchover time, t d0. The combined solutions contain either the leading term of both series for normal-accuracy approximations (with less than 0.003 relative error) or the firstmore » two terms for high-accuracy approximations (with less than 10-7 relative error) for 1D isotropic (spheres, cylinders, slabs) and 2D/3D rectangular blocks (squares, cubes, rectangles, and rectangular parallelepipeds). This rapid and uniform convergence for rectangular blocks was achieved by employing the same time partitioning with individual dimensionless times for different directions and the product of their combined 1D slab solutions. The switchover dimensionless time was determined to minimize the maximum approximation errors. Furthermore, the analytical solutions of first-order heat/mass flux for 2D/3D rectangular blocks were derived for normal-accuracy approximations. These flux equations contain the early-time solution with a three-term polynomial in √td and the late-time solution with the limited-term exponentials for rectangular blocks. The heat/mass flux equations and the combined temperature/concentration solutions form the ultimate kernel for fast simulations of multirate and multidimensional heat/mass transfer in porous/fractured media with millions of low-permeability blocks of varying shapes and sizes.« less
Zhou, Quanlin; Oldenburg, Curtis M.; Rutqvist, Jonny; ...
2017-10-24
There are two types of analytical solutions of temperature/concentration in and heat/mass transfer through boundaries of regularly shaped 1D, 2D, and 3D blocks. These infinite-series solutions with either error functions or exponentials exhibit highly irregular but complementary convergence at different dimensionless times, t d0. In this paper, approximate solutions were developed by combining the error-function-series solutions for early times and the exponential-series solutions for late times and by using time partitioning at the switchover time, t d0. The combined solutions contain either the leading term of both series for normal-accuracy approximations (with less than 0.003 relative error) or the firstmore » two terms for high-accuracy approximations (with less than 10-7 relative error) for 1D isotropic (spheres, cylinders, slabs) and 2D/3D rectangular blocks (squares, cubes, rectangles, and rectangular parallelepipeds). This rapid and uniform convergence for rectangular blocks was achieved by employing the same time partitioning with individual dimensionless times for different directions and the product of their combined 1D slab solutions. The switchover dimensionless time was determined to minimize the maximum approximation errors. Furthermore, the analytical solutions of first-order heat/mass flux for 2D/3D rectangular blocks were derived for normal-accuracy approximations. These flux equations contain the early-time solution with a three-term polynomial in √td and the late-time solution with the limited-term exponentials for rectangular blocks. The heat/mass flux equations and the combined temperature/concentration solutions form the ultimate kernel for fast simulations of multirate and multidimensional heat/mass transfer in porous/fractured media with millions of low-permeability blocks of varying shapes and sizes.« less
A screening tool for delineating subregions of steady recharge within groundwater models
Dickinson, Jesse; Ferré, T.P.A.; Bakker, Mark; Crompton, Becky
2014-01-01
We have developed a screening method for simplifying groundwater models by delineating areas within the domain that can be represented using steady-state groundwater recharge. The screening method is based on an analytical solution for the damping of sinusoidal infiltration variations in homogeneous soils in the vadose zone. The damping depth is defined as the depth at which the flux variation damps to 5% of the variation at the land surface. Groundwater recharge may be considered steady where the damping depth is above the depth of the water table. The analytical solution approximates the vadose zone diffusivity as constant, and we evaluated when this approximation is reasonable. We evaluated the analytical solution through comparison of the damping depth computed by the analytic solution with the damping depth simulated by a numerical model that allows variable diffusivity. This comparison showed that the screening method conservatively identifies areas of steady recharge and is more accurate when water content and diffusivity are nearly constant. Nomograms of the damping factor (the ratio of the flux amplitude at any depth to the amplitude at the land surface) and the damping depth were constructed for clay and sand for periodic variations between 1 and 365 d and flux means and amplitudes from nearly 0 to 1 × 10−3 m d−1. We applied the screening tool to Central Valley, California, to identify areas of steady recharge. A MATLAB script was developed to compute the damping factor for any soil and any sinusoidal flux variation.
Search for diffuse neutrino flux from astrophysical sources with MACRO
NASA Astrophysics Data System (ADS)
MACRO Collaboration; Ambrosio, M.; Antolini, R.; Auriemma, G.; Bakari, D.; Baldini, A.; Barbarino, G. C.; Barish, B. C.; Battistoni, G.; Becherini, Y.; Bellotti, R.; Bemporad, C.; Bernardini, P.; Bilokon, H.; Bloise, C.; Bower, C.; Brigida, M.; Bussino, S.; Cafagna, F.; Calicchio, M.; Campana, D.; Carboni, M.; Caruso, R.; Cecchini, S.; Cei, F.; Chiarella, V.; Choudhary, B. C.; Coutu, S.; Cozzi, M.; de Cataldo, G.; Dekhissi, H.; de Marzo, C.; de Mitri, I.; Derkaoui, J.; de Vincenzi, M.; di Credico, A.; Erriquez, O.; Favuzzi, C.; Forti, C.; Fusco, P.; Giacomelli, G.; Giannini, G.; Giglietto, N.; Giorgini, M.; Grassi, M.; Grillo, A.; Guarino, F.; Gustavino, C.; Habig, A.; Hanson, K.; Heinz, R.; Iarocci, E.; Katsavounidis, E.; Katsavounidis, I.; Kearns, E.; Kim, H.; Kyriazopoulou, S.; Lamanna, E.; Lane, C.; Levin, D. S.; Lipari, P.; Longley, N. P.; Longo, M. J.; Loparco, F.; Maaroufi, F.; Mancarella, G.; Mandrioli, G.; Margiotta, A.; Marini, A.; Martello, D.; Marzari-Chiesa, A.; Mazziotta, M. N.; Michael, D. G.; Monacelli, P.; Montaruli, T.; Monteno, M.; Mufson, S.; Musser, J.; Nicolò, D.; Nolty, R.; Orth, C.; Osteria, G.; Palamara, O.; Patera, V.; Patrizii, L.; Pazzi, R.; Peck, C. W.; Perrone, L.; Petrera, S.; Pistilli, P.; Popa, V.; Rainò, A.; Reynoldson, J.; Ronga, F.; Rrhioua, A.; Satriano, C.; Scapparone, E.; Scholberg, K.; Sciubba, A.; Serra, P.; Sioli, M.; Sirri, G.; Sitta, M.; Spinelli, P.; Spinetti, M.; Spurio, M.; Steinberg, R.; Stone, J. L.; Sulak, L. R.; Surdo, A.; Tarlè, G.; Togo, V.; Vakili, M.; Walter, C. W.; Webb, R.
2003-04-01
Many galactic and extragalactic astrophysical sources are currently considered promising candidates as high-energy neutrino emitters. Astrophysical neutrinos can be detected as upward-going muons produced in charged-current interactions with the medium surrounding the detector. The expected neutrino fluxes from various models start to dominate on the atmospheric neutrino background at neutrino energies above some tens of TeV. We present the results of a search for an excess of high-energy upward-going muons among the sample of data collected by MACRO during ~5.8 years of effective running time. No significant evidence for this signal was found. As a consequence, an upper limit on the flux of upward-going muons from high-energy neutrinos was set at the level of 1.7×10-14 cm-2s-1sr-1. The corresponding upper limit for the diffuse neutrino flux was evaluated assuming a neutrino power law spectrum. Our result was compared with theoretical predictions and upper limits from other experiments.
Problems with heterogeneous and non-isotropic media or distorted grids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hyman, J.; Shashkov, M.; Steinberg, S.
1996-08-01
This paper defines discretizations of the divergence and flux operators that produce symmetric, positive-definite, and accurate approximations to steady-state diffusion problems. Because discontinuous material properties and highly distorted grids are allowed, the flux operator, rather than the gradient, is used as a fundamental operator to be discretized. Resulting finite-difference scheme is similar to those obtained from the mixed finite-element method.
Improved limit to the diffuse flux of ultrahigh energy neutrinos from the Pierre Auger Observatory
Aab, Alexander
2015-05-26
Neutrinos in the cosmic ray flux with energies near 1 EeV and above are detectable with the Surface Detector array (SD) of the Pierre Auger Observatory. We report here on searches through Auger data from 1 January 2004 until 20 June 2013. No neutrino candidates were found, yielding a limit to the diffuse flux of ultrahigh energy neutrinos that challenges the Waxman-Bahcall bound predictions. Neutrino identification is attempted using the broad time structure of the signals expected in the SD stations, and is efficiently done for neutrinos of all flavors interacting in the atmosphere at large zenith angles, as wellmore » as for “Earth-skimming” neutrino interactions in the case of tau neutrinos. In this paper the searches for downward-going neutrinos in the zenith angle bins 60°–75° and 75°–90° as well as for upward-going neutrinos, are combined to give a single limit. In addition, the 90% C.L. single-flavor limit to the diffuse flux of ultrahigh energy neutrinos with an E –2 spectrum in the energy range 1.0 × 10 17 eV – 2.5 × 10 19 eV is E 2 νdN ν/dE ν < 6.4 × 10 –9 GeV cm –2 s –1 sr –1.« less
Quasi-analytical treatment of spatially averaged radiation transfer in complex terrain
NASA Astrophysics Data System (ADS)
LöWe, H.; Helbig, N.
2012-10-01
We provide a new quasi-analytical method to compute the subgrid topographic influences on the shortwave radiation fluxes and the effective albedo in complex terrain as required for large-scale meteorological, land surface, or climate models. We investigate radiative transfer in complex terrain via the radiosity equation on isotropic Gaussian random fields. Under controlled approximations we derive expressions for domain-averaged fluxes of direct, diffuse, and terrain radiation and the sky view factor. Domain-averaged quantities can be related to a type of level-crossing probability of the random field, which is approximated by long-standing results developed for acoustic scattering at ocean boundaries. This allows us to express all nonlocal horizon effects in terms of a local terrain parameter, namely, the mean-square slope. Emerging integrals are computed numerically, and fit formulas are given for practical purposes. As an implication of our approach, we provide an expression for the effective albedo of complex terrain in terms of the Sun elevation angle, mean-square slope, the area-averaged surface albedo, and the ratio of atmospheric direct beam to diffuse radiation. For demonstration we compute the decrease of the effective albedo relative to the area-averaged albedo in Switzerland for idealized snow-covered and clear-sky conditions at noon in winter. We find an average decrease of 5.8% and spatial patterns which originate from characteristics of the underlying relief. Limitations and possible generalizations of the method are discussed.
NASA Astrophysics Data System (ADS)
Fouvry, Jean-Baptiste; Pichon, Christophe; Chavanis, Pierre-Henri; Monk, Laura
2017-11-01
The secular thickening of a self-gravitating stellar galactic disc is investigated using the dressed collisionless Fokker-Planck equation and the inhomogeneous multicomponent Balescu-Lenard equation. The thick WKB limits for the diffusion fluxes are found using the epicyclic approximation, while assuming that only radially tightly wound transient spirals are sustained by the disc. This yields simple quadratures for the drift and diffusion coefficients, providing a clear understanding of the positions of maximum vertical orbital diffusion within the disc, induced by fluctuations either external or due to the finite number of particles. These thick limits also offer a consistent derivation of a thick disc Toomre parameter, which is shown to be exponentially boosted by the ratio of the vertical to radial scaleheights. Dressed potential fluctuations within the disc statistically induce a vertical bending of a subset of resonant orbits, triggering the corresponding increase in vertical velocity dispersion. When applied to a tepid stable tapered disc perturbed by shot noise, these two frameworks reproduce qualitatively the formation of ridges of resonant orbits towards larger vertical actions, as found in direct numerical simulations, but overestimates the time-scale involved in their appearance. Swing amplification is likely needed to resolve this discrepancy, as demonstrated in the case of razor-thin discs. Other sources of thickening are also investigated, such as fading sequences of slowing bars, or the joint evolution of a population of giant molecular clouds within the disc.
Determination of the reaction rate coefficient of sulphide mine tailings deposited under water.
Awoh, Akué Sylvette; Mbonimpa, Mamert; Bussière, Bruno
2013-10-15
The efficiency of a water cover to limit dissolved oxygen (DO) availability to underlying acid-generating mine tailings can be assessed by calculating the DO flux at the tailings-water interface. Fick's equations, which are generally used to calculate this flux, require knowing the effective DO diffusion coefficient (Dw) and the reaction (consumption) rate coefficient (Kr) of the tailings, or the DO concentration profile. Whereas Dw can be accurately estimated, few studies have measured the parameter Kr for submerged sulphide tailings. The objective of this study was to determine Kr for underwater sulphide tailings in a laboratory experiment. Samples of sulphide mine tailings (an approximately 6 cm layer) were placed in a cell under a water cover (approximately 2 cm) maintained at constant DO concentration. Two tailings were studied: TA1 with high sulphide content (83% pyrite) and TA2 with low sulphide content (2.8% pyrite). DO concentration was measured with a microelectrode at various depths above and below the tailings-water interface at 1 mm intervals. Results indicate that steady-state condition was rapidly attained. As expected, a diffusive boundary layer (DBL) was observed in all cases. An iterative back-calculation process using the numerical code POLLUTEv6 and taking the DBL into account provided the Kr values used to match calculated and experimental concentration profiles. Kr obtained for tailings TA1 and TA2 was about 80 d(-1) and 6.5 d(-1), respectively. For comparison purposes, Kr obtained from cell tests on tailings TA1 was lower than Kr calculated from the sulphate production rate obtained from shake-flask tests. Steady-state DO flux at the water-tailings interface was then calculated with POLLUTEv6 using tailings characteristics Dw and Kr. For the tested conditions, DO flux ranged from 608 to 758 mg O2/m(2)/d for tailings TA1 and from 177 to 221 mg O2/m(2)/d for tailings TA2. The impact of placing a protective layer of inert material over the tailings was also investigated for tailings TA1 (with high sulphide content). A protective layer of only 5 cm reduced the DO flux into the tailings at about 5 mg/m(2)/d, compared to 608 mg O2/m(2)/d without a protective layer, or an approximately 99% reduction in flux. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Schimming, C. D.; Durian, D. J.
2017-09-01
For dry foams, the transport of gas from small high-pressure bubbles to large low-pressure bubbles is dominated by diffusion across the thin soap films separating neighboring bubbles. For wetter foams, the film areas become smaller as the Plateau borders and vertices inflate with liquid. So-called "border-blocking" models can explain some features of wet-foam coarsening based on the presumption that the inflated borders totally block the gas flux; however, this approximation dramatically fails in the wet or unjamming limit where the bubbles become close-packed spheres and coarsening proceeds even though there are no films. Here, we account for the ever-present border-crossing flux by a new length scale defined by the average gradient of gas concentration inside the borders. We compute that it is proportional to the geometric average of film and border thicknesses, and we verify this scaling by numerical solution of the diffusion equation. We similarly consider transport across inflated vertices and surface Plateau borders in quasi-two-dimensional foams. And we show how the d A /d t =K0(n -6 ) von Neumann law is modified by the appearance of terms that depend on bubble size and shape as well as the concentration gradient length scales. Finally, we use the modified von Neumann law to compute the growth rate of the average bubble area, which is not constant.
Coupling compositional liquid gas Darcy and free gas flows at porous and free-flow domains interface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masson, R., E-mail: roland.masson@unice.fr; Team COFFEE INRIA Sophia Antipolis Méditerranée; Trenty, L., E-mail: laurent.trenty@andra.fr
This paper proposes an efficient splitting algorithm to solve coupled liquid gas Darcy and free gas flows at the interface between a porous medium and a free-flow domain. This model is compared to the reduced model introduced in [6] using a 1D approximation of the gas free flow. For that purpose, the gas molar fraction diffusive flux at the interface in the free-flow domain is approximated by a two point flux approximation based on a low-frequency diagonal approximation of a Steklov–Poincaré type operator. The splitting algorithm and the reduced model are applied in particular to the modelling of the massmore » exchanges at the interface between the storage and the ventilation galleries in radioactive waste deposits.« less
Limits on diffuse fluxes of high energy extraterrestrial neutrinos with the AMANDA-B10 detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahrens, J.; Bai, X.; Barwick, S.W.
2003-03-11
Data from the AMANDA-B10 detector taken during the austral winter of 1997 have been searched for a diffuse flux of high energy extraterrestrial muon-neutrinos, as predicted from, e.g., the sum of all active galaxies in the universe. This search yielded no excess events above those expected from the background atmospheric neutrinos, leading to upper limits on the extraterrestrial neutrino flux. For an assumed E{sup -2} spectrum, a 90 percent classical confidence level upper limit has been placed at a level E{sup 2} Phi(E) = 8.4 x 10{sup -7} GeV cm{sup -2} s{sup -1}1 sr{sup -1} (for a predominant neutrino energymore » range 6-1000 TeV) which is the most restrictive bound placed by any neutrino detector. When specific predicted spectral forms are considered, it is found that some are excluded.« less
Effects of stomata clustering on leaf gas exchange.
Lehmann, Peter; Or, Dani
2015-09-01
A general theoretical framework for quantifying the stomatal clustering effects on leaf gaseous diffusive conductance was developed and tested. The theory accounts for stomatal spacing and interactions among 'gaseous concentration shells'. The theory was tested using the unique measurements of Dow et al. (2014) that have shown lower leaf diffusive conductance for a genotype of Arabidopsis thaliana with clustered stomata relative to uniformly distributed stomata of similar size and density. The model accounts for gaseous diffusion: through stomatal pores; via concentration shells forming at pore apertures that vary with stomata spacing and are thus altered by clustering; and across the adjacent air boundary layer. Analytical approximations were derived and validated using a numerical model for 3D diffusion equation. Stomata clustering increases the interactions among concentration shells resulting in larger diffusive resistance that may reduce fluxes by 5-15%. A similar reduction in conductance was found for clusters formed by networks of veins. The study resolves ambiguities found in the literature concerning stomata end-corrections and stomatal shape, and provides a new stomata density threshold for diffusive interactions of overlapping vapor shells. The predicted reduction in gaseous exchange due to clustering, suggests that guard cell function is impaired, limiting stomatal aperture opening. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
You Don't Need Richards'... A New General 1-D Vadose Zone Solution Method that is Reliable
NASA Astrophysics Data System (ADS)
Ogden, F. L.; Lai, W.; Zhu, J.; Steinke, R. C.; Talbot, C. A.
2015-12-01
Hydrologic modelers and mathematicians have strived to improve 1-D Richards' equation (RE) solution reliability for predicting vadose zone fluxes. Despite advances in computing power and the numerical solution of partial differential equations since Richards first published the RE in 1931, the solution remains unreliable. That is to say that there is no guarantee that for a particular set of soil constitutive relations, moisture profile conditions, or forcing input that a numerical RE solver will converge to an answer. This risk of non-convergence renders prohibitive the use of RE solvers in hydrological models that need perhaps millions of infiltration solutions. In lieu of using unreliable numerical RE solutions, researchers have developed a wide array of approximate solutions that more-or-less mimic the behavior of the RE, with some notable deficiencies such as parameter insensitivity or divergence over time. The improved Talbot-Ogden (T-O) finite water-content scheme was shown by Ogden et al. (2015) to be an extremely good approximation of the 1-D RE solution, with a difference in cumulative infiltration of only 0.2 percent over an 8 month simulation comparing the improved T-O scheme with a RE numerical solver. The reason is that the newly-derived fundamental flow equation that underpins the improved T-O method is equivalent to the RE minus a term that is equal to the diffusive flux divided by the slope of the wetting front. Because the diffusive flux has zero mean, this term is not important in calculating the mean flux. The wetting front slope is near infinite (sharp) in coarser soils that produce more significant hydrological interactions between surface and ground waters, which also makes this missing term 1) disappear in the limit, and, 2) create stability challenges for the numerical solution of RE. The improved T-O method is a replacement for the 1-D RE in soils that can be simulated as homogeneous layers, where the user is willing to neglect the effects of soil water diffusivity. This presentation emphasizes the transformative nature of the improved T-O finite water-content solution, and highlights the benefits of the methods' reliability in high-resolution large watershed simulations in the high performance computing environment, and discusses coupling of the soil matrix and non-Darcian macropores.
Mass transport at rotating disk electrodes: effects of synthetic particles and nerve endings.
Chiu, Veronica M; Lukus, Peter A; Doyle, Jamie L; Schenk, James O
2011-11-01
An unstirred layer (USL) exists at the interface of solids with solutions. Thus, the particles in brain tissue preparations possess a USL as well as at the surface of a rotating disk electrode (RDE) used to measure chemical fluxes. Time constraints for observing biological kinetics based on estimated thicknesses of USLs at the membrane surface in real samples of nerve endings were estimated. Liposomes, silica, and Sephadex were used separately to model the tissue preparation particles. Within a solution stirred by the RDE, both diffusion and hydrodynamic boundary layers are formed. It was observed that the number and size of particles decreased the following: the apparent diffusion coefficient excluding Sephadex, boundary layer thicknesses excluding silica, sensitivity excluding diluted liposomes (in agreement with results from other laboratories), limiting current potentially due to an increase in the path distance, and mixing time. They have no effect on the detection limit (6 ± 2 nM). The RDE kinetically resolves transmembrane transport with a timing of approximately 30 ms. Copyright © 2011 Elsevier Inc. All rights reserved.
Understanding of flux-limited behaviors of heat transport in nonlinear regime
NASA Astrophysics Data System (ADS)
Guo, Yangyu; Jou, David; Wang, Moran
2016-01-01
The classical Fourier's law of heat transport breaks down in highly nonequilibrium situations as in nanoscale heat transport, where nonlinear effects become important. The present work is aimed at exploring the flux-limited behaviors based on a categorization of existing nonlinear heat transport models in terms of their theoretical foundations. Different saturation heat fluxes are obtained, whereas the same qualitative variation trend of heat flux versus exerted temperature gradient is got in diverse nonlinear models. The phonon hydrodynamic model is proposed to act as a standard to evaluate other heat flux limiters because of its more rigorous physical foundation. A deeper knowledge is thus achieved about the phenomenological generalized heat transport models. The present work provides deeper understanding and accurate modeling of nonlocal and nonlinear heat transport beyond the diffusive limit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, S.F.; Splendiani, A.; Freitas dos Santos, L.M.
A novel technique has been used to determine the effective diffusion coefficients for 1,1,2-trichloroethane (TCE), a nonreacting tracer, in biofilms growing on the external surface of a silicone rubber membrane tube during degradation of 1,2-dichloroethane (DCE) by Xanthobacter autotrophicus GJ10 and monochlorobenzene (MCB) by Pseudomonas JS150. Experiments were carried out in a single tube extractive membrane bioreactor (STEMB), whose configuration makes it possible to measure the transmembrane flux of substrates. A video imaging technique (VIT) was employed for in situ biofilm thickness measurement and recording. Diffusion coefficients of TCE in the biofilms and TCE mass transfer coefficients in the liquidmore » films adjacent to the biofilms were determined simultaneously using a resistances-in-series diffusion model. It was found that the flux and overall mass transfer coefficient of TCE decrease with increasing biofilm thickness, showing the importance of biofilm diffusion on the mass transfer process. Similar fluxes were observed for the nonreacting tracer (TCE) and the reactive substrates (MCB or DCE), suggesting that membrane-attached biofilm systems can be rate controlled primarily by substrate diffusion. The TCE diffusion coefficient in the JS150 biofilm appeared to be dependent on biofilm thickness, decreasing markedly for biofilm thicknesses of >1 mm. The values of the TCE diffusion coefficients in the JS150 biofilms <1-mm thick are approximately twice those in water and fall to around 30% of the water value for biofilms >1-mm thick.« less
New constraints on all flavor Galactic diffuse neutrino emission with the ANTARES telescope
NASA Astrophysics Data System (ADS)
Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Avgitas, T.; Baret, B.; Barrios-Martí, J.; Basa, S.; Belhorma, B.; Bertin, V.; Biagi, S.; Bormuth, R.; Bourret, S.; Bouwhuis, M. C.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Celli, S.; Cherkaoui El Moursli, R.; Chiarusi, T.; Circella, M.; Coelho, J. A. B.; Coleiro, A.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Díaz, A. F.; Deschamps, A.; de Bonis, G.; Distefano, C.; di Palma, I.; Domi, A.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; El Bojaddaini, I.; El Khayati, N.; Elsässer, D.; Enzenhöfer, A.; Ettahiri, A.; Fassi, F.; Felis, I.; Fusco, L. A.; Galatà, S.; Gay, P.; Giordano, V.; Glotin, H.; Grégoire, T.; Gracia Ruiz, R.; Graf, K.; Hallmann, S.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Hößl, J.; Hofestädt, J.; Hugon, C.; Illuminati, G.; James, C. W.; de Jong, M.; Jongen, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kouchner, A.; Kreter, M.; Kreykenbohm, I.; Kulikovskiy, V.; Lachaud, C.; Lahmann, R.; Lefèvre, D.; Leonora, E.; Lotze, M.; Loucatos, S.; Marcelin, M.; Margiotta, A.; Marinelli, A.; Martínez-Mora, J. A.; Mele, R.; Melis, K.; Michael, T.; Migliozzi, P.; Moussa, A.; Navas, S.; Nezri, E.; Organokov, M.; Pǎvǎlaş, G. E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Quinn, L.; Racca, C.; Riccobene, G.; Sánchez-Losa, A.; Saldaña, M.; Salvadori, I.; Samtleben, D. F. E.; Sanguineti, M.; Sapienza, P.; Schüssler, F.; Sieger, C.; Spurio, M.; Stolarczyk, Th.; Taiuti, M.; Tayalati, Y.; Trovato, A.; Turpin, D.; Tönnis, C.; Vallage, B.; van Elewyck, V.; Versari, F.; Vivolo, D.; Vizzoca, A.; Wilms, J.; Zornoza, J. D.; Zúñiga, J.; Gaggero, D.; Grasso, D.; ANTARES Collaboration
2017-09-01
The flux of very high-energy neutrinos produced in our Galaxy by the interaction of accelerated cosmic rays with the interstellar medium is not yet determined. The characterization of this flux will shed light on Galactic accelerator features, gas distribution morphology and Galactic cosmic ray transport. The central Galactic plane can be the site of an enhanced neutrino production, thus leading to anisotropies in the extraterrestrial neutrino signal as measured by the IceCube Collaboration. The ANTARES neutrino telescope, located in the Mediterranean Sea, offers a favorable view of this part of the sky, thereby allowing for a contribution to the determination of this flux. The expected diffuse Galactic neutrino emission can be obtained, linking a model of generation and propagation of cosmic rays with the morphology of the gas distribution in the Milky Way. In this paper, the so-called "gamma model" introduced recently to explain the high-energy gamma-ray diffuse Galactic emission is assumed as reference. The neutrino flux predicted by the "gamma model" depends on the assumed primary cosmic ray spectrum cutoff. Considering a radially dependent diffusion coefficient, this proposed scenario is able to account for the local cosmic ray measurements, as well as for the Galactic gamma-ray observations. Nine years of ANTARES data are used in this work to search for a possible Galactic contribution according to this scenario. All flavor neutrino interactions are considered. No excess of events is observed, and an upper limit is set on the neutrino flux of 1.1 (1.2) times the prediction of the "gamma model," assuming the primary cosmic ray spectrum cutoff at 5 (50) PeV. This limit excludes the diffuse Galactic neutrino emission as the major cause of the "spectral anomaly" between the two hemispheres measured by IceCube.
NASA Technical Reports Server (NTRS)
Mair, R. W.; Sen, P. N.; Hurlimann, M. D.; Patz, S.; Cory, D. G.; Walsworth, R. L.
2002-01-01
We report a systematic study of xenon gas diffusion NMR in simple model porous media, random packs of mono-sized glass beads, and focus on three specific areas peculiar to gas-phase diffusion. These topics are: (i) diffusion of spins on the order of the pore dimensions during the application of the diffusion encoding gradient pulses in a PGSE experiment (breakdown of the narrow pulse approximation and imperfect background gradient cancellation), (ii) the ability to derive long length scale structural information, and (iii) effects of finite sample size. We find that the time-dependent diffusion coefficient, D(t), of the imbibed xenon gas at short diffusion times in small beads is significantly affected by the gas pressure. In particular, as expected, we find smaller deviations between measured D(t) and theoretical predictions as the gas pressure is increased, resulting from reduced diffusion during the application of the gradient pulse. The deviations are then completely removed when water D(t) is observed in the same samples. The use of gas also allows us to probe D(t) over a wide range of length scales and observe the long time asymptotic limit which is proportional to the inverse tortuosity of the sample, as well as the diffusion distance where this limit takes effect (approximately 1-1.5 bead diameters). The Pade approximation can be used as a reference for expected xenon D(t) data between the short and the long time limits, allowing us to explore deviations from the expected behavior at intermediate times as a result of finite sample size effects. Finally, the application of the Pade interpolation between the long and the short time asymptotic limits yields a fitted length scale (the Pade length), which is found to be approximately 0.13b for all bead packs, where b is the bead diameter. c. 2002 Elsevier Sciences (USA).
Mair, R W; Sen, P N; Hürlimann, M D; Patz, S; Cory, D G; Walsworth, R L
2002-06-01
We report a systematic study of xenon gas diffusion NMR in simple model porous media, random packs of mono-sized glass beads, and focus on three specific areas peculiar to gas-phase diffusion. These topics are: (i) diffusion of spins on the order of the pore dimensions during the application of the diffusion encoding gradient pulses in a PGSE experiment (breakdown of the narrow pulse approximation and imperfect background gradient cancellation), (ii) the ability to derive long length scale structural information, and (iii) effects of finite sample size. We find that the time-dependent diffusion coefficient, D(t), of the imbibed xenon gas at short diffusion times in small beads is significantly affected by the gas pressure. In particular, as expected, we find smaller deviations between measured D(t) and theoretical predictions as the gas pressure is increased, resulting from reduced diffusion during the application of the gradient pulse. The deviations are then completely removed when water D(t) is observed in the same samples. The use of gas also allows us to probe D(t) over a wide range of length scales and observe the long time asymptotic limit which is proportional to the inverse tortuosity of the sample, as well as the diffusion distance where this limit takes effect (approximately 1-1.5 bead diameters). The Padé approximation can be used as a reference for expected xenon D(t) data between the short and the long time limits, allowing us to explore deviations from the expected behavior at intermediate times as a result of finite sample size effects. Finally, the application of the Padé interpolation between the long and the short time asymptotic limits yields a fitted length scale (the Padé length), which is found to be approximately 0.13b for all bead packs, where b is the bead diameter. c. 2002 Elsevier Sciences (USA).
Hybrid simplified spherical harmonics with diffusion equation for light propagation in tissues.
Chen, Xueli; Sun, Fangfang; Yang, Defu; Ren, Shenghan; Zhang, Qian; Liang, Jimin
2015-08-21
Aiming at the limitations of the simplified spherical harmonics approximation (SPN) and diffusion equation (DE) in describing the light propagation in tissues, a hybrid simplified spherical harmonics with diffusion equation (HSDE) based diffuse light transport model is proposed. In the HSDE model, the living body is first segmented into several major organs, and then the organs are divided into high scattering tissues and other tissues. DE and SPN are employed to describe the light propagation in these two kinds of tissues respectively, which are finally coupled using the established boundary coupling condition. The HSDE model makes full use of the advantages of SPN and DE, and abandons their disadvantages, so that it can provide a perfect balance between accuracy and computation time. Using the finite element method, the HSDE is solved for light flux density map on body surface. The accuracy and efficiency of the HSDE are validated with both regular geometries and digital mouse model based simulations. Corresponding results reveal that a comparable accuracy and much less computation time are achieved compared with the SPN model as well as a much better accuracy compared with the DE one.
Vaporization of a solid surface in an ambient gas
NASA Astrophysics Data System (ADS)
Benilov, M. S.; Jacobsson, S.; Kaddani, A.; Zahrai, S.
2001-07-01
The net flux of vapour from a solid surface in an ambient gas is analysed with the aim to estimate the effect of vaporization cooling on the energy balance of an arc cathode under conditions typical for a high-power current breaker. If the ratio of the equilibrium vapour pressure pv to the ambient pressure p∞ is smaller than unity, the removal of vapour from the surface is due to diffusion into the bulk of the gas. As a consequence, the net flux of the vapour from the surface is much smaller than the emitted flux. An estimate of the diffusion rate under conditions typical for a high-power current breaker indicates that vaporization cooling plays a minor role in the energy balance of the cathode in this case. If ratio pv/p∞ is above unity, the flow of the vapour from the surface appears and the net flux is comparable to the emitted flux. A simple analytical solution has been obtained for this case, which is in a good agreement with results of the Monte Carlo modelling of preceding authors. If pv/p∞ exceeds approximately 4.5, vaporization occurs as into vacuum and the net flux is about 0.82 of the emitted flux.
Wyman's equation and oxygen flux through the red cell.
McCabe, Michael; Maguire, David J
2007-01-01
Wyman's equation of 1966 describes the facilitation of flux of a reversibly bound substrate such as oxygen, consequent on the translational diffusion of the binding protein (the carrier). While Wyman's equation, or some modification of it such as that by Murray 2, may provide a realistic description of the flux of oxygen through a dilute solution of haemoglobin (see also Wittenburg), it is unlikely to be the complete explanation, nor even the basis, for oxygen transport through the intact red cell. The mature erythrocyte contains approximately 350 g/l haemoglobin, and while this suggests that only 35% of the available water volume is actually occupied by the protein, the remaining 65% is unavailable for protein translational diffusion due to the mutual exclusion of the haemoglobin molecules. For this reason we have examined other possible mechanisms whereby haemoglobin may facilitate the translational diffusion of oxygen within the erythrocyte. Possible alternatives include rotational diffusion by the haemoglobins, intracellular shuffling of haemoglobins due to shape changes by the erythrocyte, and haemoglobin rotations and oxygen exchange consequent on the charge change which accompanies substration and desubstration of the haemoglobin molecule. Finally the dipole interactions are shown to generate significant intermolecular attractions between adjacent haemoglobins.
Multi-year search for a diffuse flxu of muon neutrinos with AMANDA-II
DOE Office of Scientific and Technical Information (OSTI.GOV)
IceCube Collaboration; Klein, Spencer; Achterberg, A.
2008-04-13
A search for TeV-PeV muon neutrinos from unresolved sources was performed on AMANDA-II data collected between 2000 and 2003 with an equivalent livetime of 807 days. This diffuse analysis sought to find an extraterrestrial neutrino flux from sources with non-thermal components. The signal is expected to have a harder spectrum than the atmospheric muon and neutrino backgrounds. Since no excess of events was seen in the data over the expected background, an upper limit of E{sup 2}{Phi}{sub 90%C.L.} < 7.4 x 10{sup -8} GeV cm{sup -2} s{sup -1} sr{sup -1} is placed on the diffuse flux of muon neutrinos withmore » a {Phi} {proportional_to} E{sup -2} spectrum in the energy range 16 TeV to 2.5 PeV. This is currently the most sensitive {Phi} {proportional_to} E{sup -2} diffuse astrophysical neutrino limit. We also set upper limits for astrophysical and prompt neutrino models, all of which have spectra different than {Phi} {proportional_to} E{sup -2}.« less
NASA Astrophysics Data System (ADS)
Chatterjee, K.; Schunk, R. W.
2017-12-01
The refilling of the plasmasphere following a geomagnetic storm remains one of the longstanding problems in the area of ionosphere-magnetosphere coupling. Both diffusion and hydrodynamic approximations have been adopted for the modeling and solution of this problem. The diffusion approximation neglects the nonlinear inertial term in the momentum equation and so this approximation is not rigorously valid immediately after the storm. Over the last few years, we have developed a hydrodynamic refilling model using the flux-corrected transport method, a numerical method that is extremely well suited to handling nonlinear problems with shocks and discontinuities. The plasma transport equations are solved along 1D closed magnetic field lines that connect conjugate ionospheres and the model currently includes three ion (H+, O+, He+) and two neutral (O, H) species. In this work, each ion species under consideration has been modeled as two separate streams emanating from the conjugate hemispheres and the model correctly predicts supersonic ion speeds and the presence of high levels of Helium during the early hours of refilling. The ultimate objective of this research is the development of a 3D model for the plasmasphere refilling problem and with additional development, the same methodology can potentially be applied to the study of other complex space plasma coupling problems in closed flux tube geometries. Index Terms: 2447 Modeling and forecasting [IONOSPHERE] 2753 Numerical modeling [MAGNETOSPHERIC PHYSICS] 7959 Models [SPACE WEATHER
The OPGT/MJS plasma wave science team
NASA Technical Reports Server (NTRS)
Scarf, F. L.
1972-01-01
Some properties of a model magnetosphere for Saturn were studied in order to determine the bounds that can be set on surface field strength and trapped particle population. The primary observational constraint was that nonthermal radiation similar to the Jovian radio emissions must be undetectable from Earth. It is argued that for a Saturn surface field of approximately one gauss, particles that are energized as they diffuse in from the magnetopause with conservation of magnetic moment will produce synchrotron radiation levels that are undetectable at a range of 9.5 AU. The plasma instabilities that heat the oncoming wind particles at the bow shock and others that can limit the stably-trapped flux levels are also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horsten, N., E-mail: niels.horsten@kuleuven.be; Baelmans, M.; Dekeyser, W.
2016-01-15
We derive fluid neutral approximations for a simplified 1D edge plasma model, suitable to study the neutral behavior close to the target of a nuclear fusion divertor, and compare its solutions to the solution of the corresponding kinetic Boltzmann equation. The plasma is considered as a fixed background extracted from a detached 2D simulation. We show that the Maxwellian equilibrium distribution is already obtained very close to the target, justifying the use of a fluid approximation. We compare three fluid neutral models: (i) a diffusion model; (ii) a pressure-diffusion model (i.e., a combination of a continuity and momentum equation) assumingmore » equal neutral and ion temperatures; and (iii) the pressure-diffusion model coupled to a neutral energy equation taking into account temperature differences between neutrals and ions. Partial reflection of neutrals reaching the boundaries is included in both the kinetic and fluid models. We propose two methods to obtain an incident neutral flux boundary condition for the fluid models: one based on a diffusion approximation and the other assuming a truncated Chapman-Enskog distribution. The pressure-diffusion model predicts the plasma sources very well. The diffusion boundary condition gives slightly better results overall. Although including an energy equation still improves the results, the assumption of equal ion and neutral temperature already gives a very good approximation.« less
Comparison of transport properties models for numerical simulations of Mars entry vehicles
NASA Astrophysics Data System (ADS)
Hao, Jiaao; Wang, Jingying; Gao, Zhenxun; Jiang, Chongwen; Lee, Chunhian
2017-01-01
Effects of two different models for transport properties, including the approximate model and the collision integral model, on hypersonic flow simulations of Mars entry vehicles are numerically investigated. A least square fitting is firstly performed using the best-available data of collision integrals for Martian atmosphere species within the temperature range of 300-20,000 K. Then, the performance of these two transport properties models are compared for an equilibrium Martian atmosphere gas mixture at 10 kPa and temperatures ranging from 1000 to 10,000 K. Finally, four flight conditions chosen from the trajectory of the Mars Pathfinder entry vehicle are numerically simulated. It is indicated that the approximate model is capable of accurately providing the distributions of species mass fractions and temperatures in the flowfield. Both models give similar translational-rotational and vibrational heat fluxes. However, the chemical diffusion heat fluxes predicted by the approximate model are significantly larger than the results computed by the collision integral model, particularly in the vicinity of the forebody stagnation point, whose maximum relative error of 15% for the super-catalytic case. The diffusion model employed in the approximate model is responsible to the discrepancy. In addition, the wake structure is largely unaffected by the transport properties models.
Search for neutrino-induced cascades with five years of AMANDA data
NASA Astrophysics Data System (ADS)
Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Actis, O.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Benabderrahmane, M. L.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bissok, M.; Blaufuss, E.; Boersma, D. J.; Bohm, C.; Böser, S.; Botner, O.; Bradley, L.; Braun, J.; Buitink, S.; Carson, M.; Chirkin, D.; Christy, B.; Clem, J.; Clevermann, F.; Cohen, S.; Colnard, C.; Cowen, D. F.; D'Agostino, M. V.; Danninger, M.; Davis, J. C.; de Clercq, C.; Demirörs, L.; Depaepe, O.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; Deyoung, T.; Díaz-Vélez, J. C.; Dreyer, J.; Dumm, J. P.; Duvoort, M. R.; Ehrlich, R.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Feusels, T.; Filimonov, K.; Finley, C.; Foerster, M. M.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Ganugapati, R.; Geisler, M.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Grant, D.; Griesel, T.; Groß, A.; Grullon, S.; Gunasingha, R. M.; Gurtner, M.; Ha, C.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Helbing, K.; Herquet, P.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Homeier, A.; Hoshina, K.; Hubert, D.; Huelsnitz, W.; Hülß, J.-P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Imlay, R. L.; Ishihara, A.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Joseph, J. M.; Kampert, K.-H.; Kappes, A.; Karg, T.; Karle, A.; Kelley, J. L.; Kemming, N.; Kenny, P.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Knops, S.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Koskinen, D. J.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Krings, T.; Kroll, G.; Kuehn, K.; Kuwabara, T.; Labare, M.; Lafebre, S.; Laihem, K.; Landsman, H.; Lauer, R.; Lehmann, R.; Lennarz, D.; Lünemann, J.; Madsen, J.; Majumdar, P.; Maruyama, R.; Mase, K.; Matis, H. S.; Matusik, M.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Middell, E.; Milke, N.; Miller, J.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Nam, J. W.; Naumann, U.; Nießen, P.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; Ono, M.; Panknin, S.; Paul, L.; Pérez de Los Heros, C.; Petrovic, J.; Piegsa, A.; Pieloth, D.; Porrata, R.; Posselt, J.; Price, P. B.; Prikockis, M.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Rizzo, A.; Rodrigues, J. P.; Roth, P.; Rothmaier, F.; Rott, C.; Roucelle, C.; Ruhe, T.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Sander, H.-G.; Sarkar, S.; Schatto, K.; Schlenstedt, S.; Schmidt, T.; Schneider, D.; Schukraft, A.; Schultes, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Slipak, A.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stephens, G.; Stezelberger, T.; Stokstad, R. G.; Stoyanov, S.; Strahler, E. A.; Straszheim, T.; Sullivan, G. W.; Swillens, Q.; Taboada, I.; Tamburro, A.; Tepe, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Tosi, D.; Turčan, D.; van Eijndhoven, N.; Vandenbroucke, J.; van Overloop, A.; van Santen, J.; Voigt, B.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Wikström, G.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Woschnagg, K.; Xu, C.; Xu, X. W.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.
2011-01-01
We report on the search for electromagnetic and hadronic showers (“cascades”) produced by a diffuse flux of extraterrestrial neutrinos in the AMANDA neutrino telescope. Data for this analysis were recorded during 1001 days of detector livetime in the years 2000-2004. The observed event rates are consistent with the background expectation from atmospheric neutrinos and muons. An upper limit is derived for the diffuse flux of neutrinos of all flavors assuming a flavor ratio of νe:νμ:ντ = 1:1:1 at the detection site. The all-flavor flux of neutrinos with an energy spectrum Φ ∝ E-2 is less than 5.0 × 10-7 GeV s-1 sr-1 cm-2 at a 90% C.L. Here, 90% of the simulated signal would fall within the energy range 40 TeV to 9 PeV. We discuss flux limits in the context of several specific models of extraterrestrial and prompt atmospheric neutrino production.
Studies of the extreme ultraviolet/soft x-ray background
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stern, R.A.
1978-01-01
The results of an extensive sky survey of the extreme ultraviolet (EUV)/soft x-ray background are reported. The data were obtained with a focusing telescope designed and calibrated at U.C. Berkeley which observed EUV sources and the diffuse background as part of the Apollo-Soyuz mission in July, 1975. With a primary field-of-view of 2.3 + 0.1/sup 0/ FWHM and four EUV bandpass filters (16 to 25, 20 to 73, 80 to 108, and 80 to 250 eV) the EUV telescope obtained background data included in the final observational sample for 21 discrete sky locations and 11 large angular scans, as wellmore » as for a number of shorter observations. Analysis of the data reveals as intense flux above 80 eV energy, with upper limits to the background intensity given for the lower energy filters Ca 2 x 10/sup 4/ and 6 x 10/sup 2/ ph cm/sup -2/ sec/sup -1/ ster/sup -1/ eV/sup -1/ at 21 and 45 eV respectively). The 80 to 108 eV flux agrees within statistical errors with the earlier results of Cash, Malina and Stern (1976): the Apollo-Soyuz average reported intensity is 4.0 +- 1.3 ph cm/sup -2/ sec/sup -1/ ster/sup -1/ eV/sup -1/ at Ca 100 eV, or roughly a factor of ten higher than the corresponding 250 eV intensity. The uniformity of the background flux is uncertain due to limitations in the statistical accuracy of the data; upper limits to the point-to-point standard deviation of the background intensity are (..delta..I/I approximately less than 0.8 +- 0.4 (80 to 108 eV) and approximately less than 0.4 +- 0.2 (80 to 250 eV). No evidence is found for a correlation between the telescope count rate and earth-based parameters (zenith angle, sun angle, etc.) for E approximately greater than 80 eV (the lower energy bandpasses are significantly affected by scattered solar radiation. Unlike some previous claims for the soft x-ray background, no simple dependence upon galactic latitude is seen.« less
Radiation pressure driving of a dusty atmosphere
NASA Astrophysics Data System (ADS)
Tsang, Benny T.-H.; Milosavljević, Miloš
2015-10-01
Radiation pressure can be dynamically important in star-forming environments such as ultra-luminous infrared and submillimetre galaxies. Whether and how radiation drives turbulence and bulk outflows in star formation sites is still unclear. The uncertainty in part reflects the limitations of direct numerical schemes that are currently used to simulate radiation transfer and radiation-gas coupling. An idealized setup in which radiation is introduced at the base of a dusty atmosphere in a gravitational field has recently become the standard test for radiation-hydrodynamics methods in the context of star formation. To a series of treatments featuring the flux-limited diffusion approximation as well as a short-characteristics tracing and M1 closure for the variable Eddington tensor approximation, we here add another treatment that is based on the implicit Monte Carlo radiation transfer scheme. Consistent with all previous treatments, the atmosphere undergoes Rayleigh-Taylor instability and readjusts to a near-Eddington-limited state. We detect late-time net acceleration in which the turbulent velocity dispersion matches that reported previously with the short-characteristics-based radiation transport closure, the most accurate of the three preceding treatments. Our technical result demonstrates the importance of accurate radiation transfer in simulations of radiative feedback.
Cuticular gas exchange by Antarctic sea spiders.
Lane, Steven J; Moran, Amy L; Shishido, Caitlin M; Tobalske, Bret W; Woods, H Arthur
2018-04-25
Many marine organisms and life stages lack specialized respiratory structures, like gills, and rely instead on cutaneous respiration, which they facilitate by having thin integuments. This respiratory mode may limit body size, especially if the integument also functions in support or locomotion. Pycnogonids, or sea spiders, are marine arthropods that lack gills and rely on cutaneous respiration but still grow to large sizes. Their cuticle contains pores, which may play a role in gas exchange. Here, we examined alternative paths of gas exchange in sea spiders: (1) oxygen diffuses across pores in the cuticle, a common mechanism in terrestrial eggshells, (2) oxygen diffuses directly across the cuticle, a common mechanism in small aquatic insects, or (3) oxygen diffuses across both pores and cuticle. We examined these possibilities by modeling diffusive oxygen fluxes across all pores in the body of sea spiders and asking whether those fluxes differed from measured metabolic rates. We estimated fluxes across pores using Fick's law parameterized with measurements of pore morphology and oxygen gradients. Modeled oxygen fluxes through pores closely matched oxygen consumption across a range of body sizes, which means the pores facilitate oxygen diffusion. Furthermore, pore volume scaled hypermetrically with body size, which helps larger species facilitate greater diffusive oxygen fluxes across their cuticle. This likely presents a functional trade-off between gas exchange and structural support, in which the cuticle must be thick enough to prevent buckling due to external forces but porous enough to allow sufficient gas exchange. © 2018. Published by The Company of Biologists Ltd.
Bright X-ray arcs and the emergence of solar magnetic flux
NASA Technical Reports Server (NTRS)
Chapman, G. A.; Broussard, R. M.
1977-01-01
The Skylab S-056 and S-082A experiments and ground-based magnetograms have been used to study the role of bright X-ray arcs and the emergence of solar magnetic flux in the McMath region 12476. The S-056 X-ray images show a system of one or sometimes two bright arcs within a diffuse emitting region. The arcs seem to directly connect regions of opposite magnetic polarity in the photosphere. Magnetograms suggest the possible emergence of a magnetic flux. The width of the main arc is approximately 6 arcsec when most clearly defined, and the length is approximately 30-50 arcsec. Although the arc system is observed to vary in brightness over a period exceeding 24 hours, it remains fixed in orientation. The temperature of the main arc is approximately 3 x 10 to the 6th K. It is suggested that merging magnetic fields may provide the primary energy source, perhaps accompanied by resistive heating from a force-free current.
Molecules in motion: influences of diffusion on metabolic structure and function in skeletal muscle.
Kinsey, Stephen T; Locke, Bruce R; Dillaman, Richard M
2011-01-15
Metabolic processes are often represented as a group of metabolites that interact through enzymatic reactions, thus forming a network of linked biochemical pathways. Implicit in this view is that diffusion of metabolites to and from enzymes is very fast compared with reaction rates, and metabolic fluxes are therefore almost exclusively dictated by catalytic properties. However, diffusion may exert greater control over the rates of reactions through: (1) an increase in reaction rates; (2) an increase in diffusion distances; or (3) a decrease in the relevant diffusion coefficients. It is therefore not surprising that skeletal muscle fibers have long been the focus of reaction-diffusion analyses because they have high and variable rates of ATP turnover, long diffusion distances, and hindered metabolite diffusion due to an abundance of intracellular barriers. Examination of the diversity of skeletal muscle fiber designs found in animals provides insights into the role that diffusion plays in governing both rates of metabolic fluxes and cellular organization. Experimental measurements of metabolic fluxes, diffusion distances and diffusion coefficients, coupled with reaction-diffusion mathematical models in a range of muscle types has started to reveal some general principles guiding muscle structure and metabolic function. Foremost among these is that metabolic processes in muscles do, in fact, appear to be largely reaction controlled and are not greatly limited by diffusion. However, the influence of diffusion is apparent in patterns of fiber growth and metabolic organization that appear to result from selective pressure to maintain reaction control of metabolism in muscle.
NASA Astrophysics Data System (ADS)
Farrell, Patricio; Koprucki, Thomas; Fuhrmann, Jürgen
2017-10-01
We compare three thermodynamically consistent numerical fluxes known in the literature, appearing in a Voronoï finite volume discretization of the van Roosbroeck system with general charge carrier statistics. Our discussion includes an extension of the Scharfetter-Gummel scheme to non-Boltzmann (e.g. Fermi-Dirac) statistics. It is based on the analytical solution of a two-point boundary value problem obtained by projecting the continuous differential equation onto the interval between neighboring collocation points. Hence, it serves as a reference flux. The exact solution of the boundary value problem can be approximated by computationally cheaper fluxes which modify certain physical quantities. One alternative scheme averages the nonlinear diffusion (caused by the non-Boltzmann nature of the problem), another one modifies the effective density of states. To study the differences between these three schemes, we analyze the Taylor expansions, derive an error estimate, visualize the flux error and show how the schemes perform for a carefully designed p-i-n benchmark simulation. We present strong evidence that the flux discretization based on averaging the nonlinear diffusion has an edge over the scheme based on modifying the effective density of states.
The equilibrium-diffusion limit for radiation hydrodynamics
Ferguson, J. M.; Morel, J. E.; Lowrie, R.
2017-07-27
The equilibrium-diffusion approximation (EDA) is used to describe certain radiation-hydrodynamic (RH) environments. When this is done the RH equations reduce to a simplified set of equations. The EDA can be derived by asymptotically analyzing the full set of RH equations in the equilibrium-diffusion limit. Here, we derive the EDA this way and show that it and the associated set of simplified equations are both first-order accurate with transport corrections occurring at second order. Having established the EDA’s first-order accuracy we then analyze the grey nonequilibrium-diffusion approximation and the grey Eddington approximation and show that they both preserve this first-order accuracy.more » Further, these approximations preserve the EDA’s first-order accuracy when made in either the comoving-frame (CMF) or the lab-frame (LF). And while analyzing the Eddington approximation, we found that the CMF and LF radiation-source equations are equivalent when neglecting O(β 2) terms and compared in the LF. Of course, the radiation pressures are not equivalent. It is expected that simplified physical models and numerical discretizations of the RH equations that do not preserve this first-order accuracy will not retain the correct equilibrium-diffusion solutions. As a practical example, we show that nonequilibrium-diffusion radiative-shock solutions devolve to equilibrium-diffusion solutions when the asymptotic parameter is small.« less
Multi-Component Diffusion with Application To Computational Aerothermodynamics
NASA Technical Reports Server (NTRS)
Sutton, Kenneth; Gnoffo, Peter A.
1998-01-01
The accuracy and complexity of solving multicomponent gaseous diffusion using the detailed multicomponent equations, the Stefan-Maxwell equations, and two commonly used approximate equations have been examined in a two part study. Part I examined the equations in a basic study with specified inputs in which the results are applicable for many applications. Part II addressed the application of the equations in the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) computational code for high-speed entries in Earth's atmosphere. The results showed that the presented iterative scheme for solving the Stefan-Maxwell equations is an accurate and effective method as compared with solutions of the detailed equations. In general, good accuracy with the approximate equations cannot be guaranteed for a species or all species in a multi-component mixture. 'Corrected' forms of the approximate equations that ensured the diffusion mass fluxes sum to zero, as required, were more accurate than the uncorrected forms. Good accuracy, as compared with the Stefan- Maxwell results, were obtained with the 'corrected' approximate equations in defining the heating rates for the three Earth entries considered in Part II.
NASA Astrophysics Data System (ADS)
Yan, Hao; Wang, Shao-Qiang; Yu, Kai-Liang; Wang, Bin; Yu, Qin; Bohrer, Gil; Billesbach, Dave; Bracho, Rosvel; Rahman, Faiz; Shugart, Herman H.
2017-10-01
Diffuse radiation can increase canopy light use efficiency (LUE). This creates the need to differentiate the effects of direct and diffuse radiation when simulating terrestrial gross primary production (GPP). Here, we present a novel GPP model, the diffuse-fraction-based two-leaf model (DTEC), which includes the leaf response to direct and diffuse radiation, and treats maximum LUE for shaded leaves (ɛmsh defined as a power function of the diffuse fraction (Df)) and sunlit leaves (ɛmsu defined as a constant) separately. An Amazonian rainforest site (KM67) was used to calibrate the model by simulating the linear relationship between monthly canopy LUE and Df. This showed a positive response of forest GPP to atmospheric diffuse radiation, and suggested that diffuse radiation was more limiting than global radiation and water availability for Amazon rainforest GPP on a monthly scale. Further evaluation at 20 independent AmeriFlux sites showed that the DTEC model, when driven by monthly meteorological data and MODIS leaf area index (LAI) products, explained 70% of the variability observed in monthly flux tower GPP. This exceeded the 51% accounted for by the MODIS 17A2 big-leaf GPP product. The DTEC model's explicit accounting for the impacts of diffuse radiation and soil water stress along with its parameterization for C4 and C3 plants was responsible for this difference. The evaluation of DTEC at Amazon rainforest sites demonstrated its potential to capture the unique seasonality of higher GPP during the diffuse radiation-dominated wet season. Our results highlight the importance of diffuse radiation in seasonal GPP simulation.
NASA Astrophysics Data System (ADS)
Miller, Steven
1998-03-01
A generic stochastic method is presented that rapidly evaluates numerical bulk flux solutions to the one-dimensional integrodifferential radiative transport equation, for coherent irradiance of optically anisotropic suspensions of nonspheroidal bioparticles, such as blood. As Fermat rays or geodesics enter the suspension, they evolve into a bundle of random paths or trajectories due to scattering by the suspended bioparticles. Overall, this can be interpreted as a bundle of Markov trajectories traced out by a "gas" of Brownian-like point photons being scattered and absorbed by the homogeneous distribution of uncorrelated cells in suspension. By considering the cumulative vectorial intersections of a statistical bundle of random trajectories through sets of interior data planes in the space containing the medium, the effective equivalent information content and behavior of the (generally unknown) analytical flux solutions of the radiative transfer equation rapidly emerges. The fluxes match the analytical diffuse flux solutions in the diffusion limit, which verifies the accuracy of the algorithm. The method is not constrained by the diffusion limit and gives correct solutions for conditions where diffuse solutions are not viable. Unlike conventional Monte Carlo and numerical techniques adapted from neutron transport or nuclear reactor problems that compute scalar quantities, this vectorial technique is fast, easily implemented, adaptable, and viable for a wide class of biophotonic scenarios. By comparison, other analytical or numerical techniques generally become unwieldy, lack viability, or are more difficult to utilize and adapt. Illustrative calculations are presented for blood medias at monochromatic wavelengths in the visible spectrum.
Predicting the Kinetics of Ice Recrystallization in Aqueous Sugar Solutions
2018-01-01
The quality of stored frozen products such as foods and biomaterials generally degrades in time due to the growth of large ice crystals by recrystallization. While there is ample experimental evidence that recrystallization within such products (or model systems thereof) is often dominated by diffusion-limited Ostwald ripening, the application of Ostwald-ripening theories to predict measured recrystallization rates has only met with limited success. For a model system of polycrystalline ice within an aqueous solution of sugars, we here show recrystallization rates can be predicted on the basis of Ostwald ripening theory, provided (1) the theory accounts for the fact the solution can be nonideal, nondilute and of different density than the crystals, (2) the effect of ice-phase volume fraction on the diffusional flux of water between crystals is accurately described, and (3) all relevant material properties (involving binary Fick diffusion coefficients, the thermodynamic factor of the solution, and the surface energy of ice) are carefully estimated. To enable calculation of material properties, we derive an alternative formulation of Ostwald ripening in terms of the Maxwell–Stefan instead of the Fick approach to diffusion. First, this leads to a cancellation of the thermodynamic factor (a measure for the nonideality of a solution), which is a notoriously difficult property to obtain. Second, we show that Maxwell–Stefan diffusion coefficients can to a reasonable approximation be related to self-diffusion coefficients, which are relatively easy to measure or predict in comparison to Fick diffusion coefficients. Our approach is validated for a binary system of water and sucrose, for which we show predicted recrystallization rates of ice compare well to experimental results, with relative deviations of at most a factor of 2. PMID:29651228
Predicting the Kinetics of Ice Recrystallization in Aqueous Sugar Solutions.
van Westen, Thijs; Groot, Robert D
2018-04-04
The quality of stored frozen products such as foods and biomaterials generally degrades in time due to the growth of large ice crystals by recrystallization. While there is ample experimental evidence that recrystallization within such products (or model systems thereof) is often dominated by diffusion-limited Ostwald ripening, the application of Ostwald-ripening theories to predict measured recrystallization rates has only met with limited success. For a model system of polycrystalline ice within an aqueous solution of sugars, we here show recrystallization rates can be predicted on the basis of Ostwald ripening theory, provided (1) the theory accounts for the fact the solution can be nonideal, nondilute and of different density than the crystals, (2) the effect of ice-phase volume fraction on the diffusional flux of water between crystals is accurately described, and (3) all relevant material properties (involving binary Fick diffusion coefficients, the thermodynamic factor of the solution, and the surface energy of ice) are carefully estimated. To enable calculation of material properties, we derive an alternative formulation of Ostwald ripening in terms of the Maxwell-Stefan instead of the Fick approach to diffusion. First, this leads to a cancellation of the thermodynamic factor (a measure for the nonideality of a solution), which is a notoriously difficult property to obtain. Second, we show that Maxwell-Stefan diffusion coefficients can to a reasonable approximation be related to self-diffusion coefficients, which are relatively easy to measure or predict in comparison to Fick diffusion coefficients. Our approach is validated for a binary system of water and sucrose, for which we show predicted recrystallization rates of ice compare well to experimental results, with relative deviations of at most a factor of 2.
Geometry of the diffusive propagation region in the August 14, 1982 solar electron event
NASA Technical Reports Server (NTRS)
Evenson, P. A.
1985-01-01
On August 14, 1982, relativistic electrons arrived promptly after an impulsive gamma ray flare, indicating that very little scattering was taking place in interplanetary space. By ignoring anisotropy data the time profile of the event is well described by interplanetary diffusion except for the derived particle injection time. This discrepancy provides independent evidence that the particles are diffusing in a volume close to the Sun rather than in interplanetary space. The flux at maximum method of determining the number of particles produced is still a good approximation when appropriately applied.
A Basin-Wide Examination of the Arctic Ocean's Double-Diffusive Staircase
NASA Astrophysics Data System (ADS)
Shibley, N.; Timmermans, M. L.; Carpenter, J. R.; Toole, J. M.
2016-02-01
The Arctic Ocean thermohaline stratification frequently exhibits a staircase structure above the Atlantic Water Layer consisting of multiple mixed layers of order 1-m in height separated by sharp interfaces. This double-diffusive staircase structure is characterized across the entire Arctic Ocean through a detailed analysis of Ice-Tethered Profiler measurements acquired between 2004 and 2013. Staircase properties (mixed layer thicknesses and temperature-salinity jumps across interfaces) are examined in relation to a bulk vertical density ratio for 50-m spanning the staircase stratification. It is shown that the Lomonosov Ridge serves as an approximate boundary between regions of low density ratio (on the Eurasian side) and higher density ratio (on the Canadian side). We find that the diffusive staircase in the Eurasian Basin is characterized by fewer, thinner mixed layers than that in the Canadian Basin, although the margins of all basins are characterized by relatively thin staircase mixed layers. Using a double-diffusive 4/3 flux law parameterization, the distribution of vertical heat fluxes through the staircase is estimated across the Arctic; it is found that heat fluxes in the Eurasian Basin [O(1) W/m^2] are generally an order of magnitude larger than those in the Canadian Basin [O(0.1) W/m^2].
Anisotropic Mesoscale Eddy Transport in Ocean General Circulation Models
NASA Astrophysics Data System (ADS)
Reckinger, S. J.; Fox-Kemper, B.; Bachman, S.; Bryan, F.; Dennis, J.; Danabasoglu, G.
2014-12-01
Modern climate models are limited to coarse-resolution representations of large-scale ocean circulation that rely on parameterizations for mesoscale eddies. The effects of eddies are typically introduced by relating subgrid eddy fluxes to the resolved gradients of buoyancy or other tracers, where the proportionality is, in general, governed by an eddy transport tensor. The symmetric part of the tensor, which represents the diffusive effects of mesoscale eddies, is universally treated isotropically in general circulation models. Thus, only a single parameter, namely the eddy diffusivity, is used at each spatial and temporal location to impart the influence of mesoscale eddies on the resolved flow. However, the diffusive processes that the parameterization approximates, such as shear dispersion, potential vorticity barriers, oceanic turbulence, and instabilities, typically have strongly anisotropic characteristics. Generalizing the eddy diffusivity tensor for anisotropy extends the number of parameters to three: a major diffusivity, a minor diffusivity, and the principal axis of alignment. The Community Earth System Model (CESM) with the anisotropic eddy parameterization is used to test various choices for the newly introduced parameters, which are motivated by observations and the eddy transport tensor diagnosed from high resolution simulations. Simply setting the ratio of major to minor diffusivities to a value of five globally, while aligning the major axis along the flow direction, improves biogeochemical tracer ventilation and reduces global temperature and salinity biases. These effects can be improved even further by parameterizing the anisotropic transport mechanisms in the ocean.
Radiance limits of ceramic phosphors under high excitation fluxes
NASA Astrophysics Data System (ADS)
Lenef, Alan; Kelso, John; Zheng, Yi; Tchoul, Maxim
2013-09-01
Ceramic phosphors, excited by high radiance pump sources, offer considerable potential for high radiance conversion. Interestingly, thermodynamic arguments suggest that the radiance of the luminescent spot can even exceed that of the incoming light source. In practice, however, thermal quenching and (non-thermal) optical saturation limit the maximum attainable radiance of the luminescent source. We present experimental data for Ce:YAG and Ce:GdYAG ceramics in which these limits have been investigated. High excitation fluxes are achieved using laser pumping. Optical pumping intensities exceeding 100W/mm2 have been shown to produce only modest efficiency depreciation at low overall pump powers because of the short Ce3+ lifetime, although additional limitations exist. When pump powers are higher, heat-transfer bottlenecks within the ceramic and heat-sink interfaces limit maximum pump intensities. We find that surface temperatures of these laser-pumped ceramics can reach well over 150°C, causing thermal-quenching losses. We also find that in some cases, the loss of quantum efficiency with increasing temperature can cause a thermal run-away effect, resulting in a rapid loss in converted light, possibly over-heating the sample or surrounding structures. While one can still obtain radiances on the order of many W/mm2/sr, temperature quenching effects ultimately limit converted light radiance. Finally, we use the diffusion-approximation radiation transport models and rate equation models to simulate some of these nonlinear optical pumping and heating effects in high-scattering ceramics.
General Model of Hindered Diffusion.
Eloul, Shaltiel; Compton, Richard G
2016-11-03
The diffusion of a particle from bulk solution is slowed as it moves close to an adsorbing surface. A general model is reported that is easily applied by theoreticians and experimentalists. Specifically, it is shown here that in general and regardless of the space size, the magnitude of the effect of hindered diffusion on the flux is a property of the diffusion layer thickness. We explain and approximate the effect. Predictions of concentration profiles show that a "hindered diffusion layer" is formed near the adsorbing surface within the diffusion layer, observed even when the particle radius is just a 0.1% of the diffusion layer thickness. In particular, we focus on modern electrochemistry processes involving with impact of particles with either ultrasmall electrodes or particles in convective systems. The concept of the "hindered diffusion layer" is generally important for example in recent biophysical models of particles diffusion to small targets.
NASA Astrophysics Data System (ADS)
Heumann, Holger; Rapetti, Francesca
2017-04-01
Existing finite element implementations for the computation of free-boundary axisymmetric plasma equilibria approximate the unknown poloidal flux function by standard lowest order continuous finite elements with discontinuous gradients. As a consequence, the location of critical points of the poloidal flux, that are of paramount importance in tokamak engineering, is constrained to nodes of the mesh leading to undesired jumps in transient problems. Moreover, recent numerical results for the self-consistent coupling of equilibrium with resistive diffusion and transport suggest the necessity of higher regularity when approximating the flux map. In this work we propose a mortar element method that employs two overlapping meshes. One mesh with Cartesian quadrilaterals covers the vacuum chamber domain accessible by the plasma and one mesh with triangles discretizes the region outside. The two meshes overlap in a narrow region. This approach gives the flexibility to achieve easily and at low cost higher order regularity for the approximation of the flux function in the domain covered by the plasma, while preserving accurate meshing of the geometric details outside this region. The continuity of the numerical solution in the region of overlap is weakly enforced by a mortar-like mapping.
Pouran, Behdad; Arbabi, Vahid; Zadpoor, Amir A; Weinans, Harrie
2016-12-01
The metabolic function of cartilage primarily depends on transport of solutes through diffusion mechanism. In the current study, we use contrast enhanced micro-computed tomography to determine equilibrium concentration of solutes through different cartilage zones and solute flux in the cartilage, using osteochondral plugs from equine femoral condyles. Diffusion experiments were performed with two solutes of different charge and approximately equal molecular weight, namely iodixanol (neutral) and ioxaglate (charge=-1) in order to isolate the effects of solute's charge on diffusion. Furthermore, solute concentrations as well as bath osmolality were changed to isolate the effects of steric hindrance on diffusion. Bath concentration and bath osmolality only had minor effects on the diffusion of the neutral solute through cartilage at the surface, middle and deep zones, indicating that the diffusion of the neutral solute was mainly Fickian. The negatively charged solute diffused considerably slower through cartilage than the neutral solute, indicating a large non-Fickian contribution in the diffusion of charged molecules. The numerical models determined maximum solute flux in the superficial zone up to a factor of 2.5 lower for the negatively charged solutes (charge=-1) as compared to the neutral solutes confirming the importance of charge-matrix interaction in diffusion of molecules across cartilage. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.
Molecules in motion: influences of diffusion on metabolic structure and function in skeletal muscle
Kinsey, Stephen T.; Locke, Bruce R.; Dillaman, Richard M.
2011-01-01
Metabolic processes are often represented as a group of metabolites that interact through enzymatic reactions, thus forming a network of linked biochemical pathways. Implicit in this view is that diffusion of metabolites to and from enzymes is very fast compared with reaction rates, and metabolic fluxes are therefore almost exclusively dictated by catalytic properties. However, diffusion may exert greater control over the rates of reactions through: (1) an increase in reaction rates; (2) an increase in diffusion distances; or (3) a decrease in the relevant diffusion coefficients. It is therefore not surprising that skeletal muscle fibers have long been the focus of reaction–diffusion analyses because they have high and variable rates of ATP turnover, long diffusion distances, and hindered metabolite diffusion due to an abundance of intracellular barriers. Examination of the diversity of skeletal muscle fiber designs found in animals provides insights into the role that diffusion plays in governing both rates of metabolic fluxes and cellular organization. Experimental measurements of metabolic fluxes, diffusion distances and diffusion coefficients, coupled with reaction–diffusion mathematical models in a range of muscle types has started to reveal some general principles guiding muscle structure and metabolic function. Foremost among these is that metabolic processes in muscles do, in fact, appear to be largely reaction controlled and are not greatly limited by diffusion. However, the influence of diffusion is apparent in patterns of fiber growth and metabolic organization that appear to result from selective pressure to maintain reaction control of metabolism in muscle. PMID:21177946
Theoretical Analysis of Drug Dissolution: I. Solubility and Intrinsic Dissolution Rate.
Shekunov, Boris; Montgomery, Eda Ross
2016-09-01
The first-principles approach presented in this work combines surface kinetics and convective diffusion modeling applied to compounds with pH-dependent solubility and in different dissolution media. This analysis is based on experimental data available for approximately 100 compounds of pharmaceutical interest. Overall, there is a linear relationship between the drug solubility and intrinsic dissolution rate expressed through the total kinetic coefficient of dissolution and dimensionless numbers defining the mass transfer regime. The contribution of surface kinetics appears to be significant constituting on average ∼20% resistance to the dissolution flux in the compendial rotating disk apparatus at 100 rpm. The surface kinetics contribution becomes more dominant under conditions of fast laminar or turbulent flows or in cases when the surface kinetic coefficient may decrease as a function of solution composition or pH. Limitations of the well-known convective diffusion equation for rotating disk by Levich are examined using direct computational modeling with simultaneous dissociation and acid-base reactions in which intrinsic dissolution rate is strongly dependent on pH profile and solution ionic strength. It is shown that concept of diffusion boundary layer does not strictly apply for reacting/interacting species and that thin-film diffusion models cannot be used quantitatively in general case. Copyright © 2016. Published by Elsevier Inc.
Mapping the Spatial Distribution of CO2 release from Kīlauea Volcano, Hawaii, USA
NASA Astrophysics Data System (ADS)
Elias, T.; Werner, C. A.; Kern, C.; Sutton, A. J.; Hauri, E. H.; Kelly, P. J.
2014-12-01
Kīlauea Volcano is a large emitter of volcanic CO2 with emission rates ranging from 7500-30,000 t/d. However, Kīlauea presents a challenging situation for CO2 emission rate measurement in that the main source of SO2 is the active vent in Halema'uma'u Crater, whereas CO2 emits mainly from a large (> 1km2) diffuse region east of the vent. Previous researchers recognized this issue and advocated for the use of a plume-integrated concentration ratio paired with the SO2 emission to determine CO2 emission rates; however, this worked best prior to the opening of the summit vent in 2008, or when SO2emission was still diffuse as opposed to focused degassing from the vent. We used two techniques to study the spatial distribution and temporal variability of CO2 release from the summit caldera in July, 2014. Eddy covariance measurements made at 14 locations in the area of diffuse emission resulted in elevated fluxes that generally ranged from 500 to > 5000 g/m2d, or typical of other volcanic and hydrothermal areas worldwide. MultiGas measurements of the CO2 and SO2 concentration in air at 1-m above the ground identified approximately seven areas of elevated area of CO2 degassing in the caldera. The CO2 concentrations in air were spatially well correlated to approximately 100 m and displayed anisotropy that was consistent with the measured wind direction. Areas of highest CO2 concentration correlated with the areas of highest flux using the eddy covariance method and were found near the middle of the caldera approximately 1 km NE of the active vent. This area overlies the inferred location of the shallow summit reservoir, and is characterized by linear fractures with adhered sublimate deposits at the surface. A few of the fractures are visibly fuming, but much of the degassing in the area is not apparent. Future work includes monitoring the fluxes in this area over time, and attempting to quantify emission rates from the areas of measured flux.
Flux-trapping during the formation of field-reversed configurations
NASA Astrophysics Data System (ADS)
Armstrong, W. T.; Harding, D. G.; Crawford, E. A.; Hoffman, A. L.
1982-11-01
Flux-trapping during the early formation phases of a field-reversed configuration has been studied experimentally on the field-reversed theta-pinch TRX-1. An annular z-pinch preionizer was employed to permit ionization at high values of reverse-bias flux. Contrary to previous analysis, the rate of flux loss was not governed exclusively by inertially limited plasma convection to the tube walls. At high reverse flux levels, a pressure bearing sheath was observed to form at the tube walls and the flux loss was restricted by resistive diffusion across this sheath. The characteristic time for flux loss was 0.08rt (cm) μsec, independent of the bias field and independent of the fill pressure for fill pressures above 15 mTorr D2. Octopole barrier fields were found to be effective in limiting the inertially governed flux loss at very early times before the wall sheath formed.
AGN Obscuration from Winds: From Dusty Infrared-Driven to Warm and X-Ray Photoionized
NASA Technical Reports Server (NTRS)
Dorodnitsyn, A.; Kallman, T.
2012-01-01
We present calculations of AGN winds at approximate parsec scales, along with the associated obscuration. We take into account the pressure of infrared radiation on dust grains and the interaction of X-rays from a central black hole with hot and cold plasma. Infrared radiation (IR) is incorporated in radiation-hydrodynamic simulations adopting the flux-limited diffusion approximation. We find that in the range of X-ray luminosities L=0.05 - 0.6L(sub Edd) the Compton-thick part of the flow (aka torus) has an opening angle of approximately 72? -75? regardless of the luminosity. At L 0.1 the outflowing dusty wind provides the obscuration with IR pressure playing a major role. The global flow consists of two phases: the cold flow at inclinations (theta) greater than or approximately 70? and a hot, ionized wind of lower density at lower inclinations. The dynamical pressure of the hot wind is important in shaping the denser IR supported flow. At luminosities less than or equal to 0.1L(sub Edd) episodes of outflow are followed by extended periods when the wind switches to slow accretion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, May Wai San; Ovchinnikov, Mikhail; Wang, Minghuai
Potential ways of parameterizing vertical turbulent fluxes of hydrometeors are examined using a high-resolution cloud-resolving model. The cloud-resolving model uses the Morrison microphysics scheme, which contains prognostic variables for rain, graupel, ice, and snow. A benchmark simulation with a horizontal grid spacing of 250 m of a deep convection case carried out to evaluate three different ways of parameterizing the turbulent vertical fluxes of hydrometeors: an eddy-diffusion approximation, a quadrant-based decomposition, and a scaling method that accounts for within-quadrant (subplume) correlations. Results show that the down-gradient nature of the eddy-diffusion approximation tends to transport mass away from concentrated regions, whereasmore » the benchmark simulation indicates that the vertical transport tends to transport mass from below the level of maximum to aloft. Unlike the eddy-diffusion approach, the quadri-modal decomposition is able to capture the signs of the flux gradient but underestimates the magnitudes. The scaling approach is shown to perform the best by accounting for within-quadrant correlations, and improves the results for all hydrometeors except for snow. A sensitivity study is performed to examine how vertical transport may affect the microphysics of the hydrometeors. The vertical transport of each hydrometeor type is artificially suppressed in each test. Results from the sensitivity tests show that cloud-droplet-related processes are most sensitive to suppressed rain or graupel transport. In particular, suppressing rain or graupel transport has a strong impact on the production of snow and ice aloft. Lastly, a viable subgrid-scale hydrometeor transport scheme in an assumed probability density function parameterization is discussed.« less
Pattern formations and optimal packing.
Mityushev, Vladimir
2016-04-01
Patterns of different symmetries may arise after solution to reaction-diffusion equations. Hexagonal arrays, layers and their perturbations are observed in different models after numerical solution to the corresponding initial-boundary value problems. We demonstrate an intimate connection between pattern formations and optimal random packing on the plane. The main study is based on the following two points. First, the diffusive flux in reaction-diffusion systems is approximated by piecewise linear functions in the framework of structural approximations. This leads to a discrete network approximation of the considered continuous problem. Second, the discrete energy minimization yields optimal random packing of the domains (disks) in the representative cell. Therefore, the general problem of pattern formations based on the reaction-diffusion equations is reduced to the geometric problem of random packing. It is demonstrated that all random packings can be divided onto classes associated with classes of isomorphic graphs obtained from the Delaunay triangulation. The unique optimal solution is constructed in each class of the random packings. If the number of disks per representative cell is finite, the number of classes of isomorphic graphs, hence, the number of optimal packings is also finite. Copyright © 2016 Elsevier Inc. All rights reserved.
Short-Path Statistics and the Diffusion Approximation
NASA Astrophysics Data System (ADS)
Blanco, Stéphane; Fournier, Richard
2006-12-01
In the field of first return time statistics in bounded domains, short paths may be defined as those paths for which the diffusion approximation is inappropriate. This is at the origin of numerous open questions concerning the characterization of residence time distributions. We show here how general integral constraints can be derived that make it possible to address short-path statistics indirectly by application of the diffusion approximation to long paths. Application to the moments of the distribution at the low-Knudsen limit leads to simple practical results and novel physical pictures.
Conditions for supersonic bent Marshak waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Qiang, E-mail: xuqiangxu@pku.edu.cn; Ren, Xiao-dong; Li, Jing
Supersonic radiation diffusion approximation is an useful method to study the radiation transportation. Considering the 2-d Marshak theory, and an invariable source temperature, conditions for supersonic radiation diffusion are proved to be coincident with that for radiant flux domination in the early time when √(ε)x{sub f}/L≪1. However, they are even tighter than conditions for radiant flux domination in the late time when √(ε)x{sub f}/L≫1, and can be expressed as M>4(1+ε/3)/3 and τ>1. A large Mach number requires the high temperature, while the large optical depth requires the low temperature. Only when the source temperature is in a proper region themore » supersonic diffusion conditions can be satisfied. Assuming a power-low (in temperature and density) opacity and internal energy, for a given density, the supersonic diffusion regions are given theoretically. The 2-d Marshak theory is proved to be able to bound the supersonic diffusion conditions in both high and low temperature regions, however, the 1-d theory only bounds it in low temperature region. Taking SiO{sub 2} and the Au, for example, these supersonic regions are shown numerically.« less
Direct Simulation of Extinction in a Slab of Spherical Particles
NASA Technical Reports Server (NTRS)
Mackowski, D.W.; Mishchenko, Michael I.
2013-01-01
The exact multiple sphere superposition method is used to calculate the coherent and incoherent contributions to the ensemble-averaged electric field amplitude and Poynting vector in systems of randomly positioned nonabsorbing spherical particles. The target systems consist of cylindrical volumes, with radius several times larger than length, containing spheres with positional configurations generated by a Monte Carlo sampling method. Spatially dependent values for coherent electric field amplitude, coherent energy flux, and diffuse energy flux, are calculated by averaging of exact local field and flux values over multiple configurations and over spatially independent directions for fixed target geometry, sphere properties, and sphere volume fraction. Our results reveal exponential attenuation of the coherent field and the coherent energy flux inside the particulate layer and thereby further corroborate the general methodology of the microphysical radiative transfer theory. An effective medium model based on plane wave transmission and reflection by a plane layer is used to model the dependence of the coherent electric field on particle packing density. The effective attenuation coefficient of the random medium, computed from the direct simulations, is found to agree closely with effective medium theories and with measurements. In addition, the simulation results reveal the presence of a counter-propagating component to the coherent field, which arises due to the internal reflection of the main coherent field component by the target boundary. The characteristics of the diffuse flux are compared to, and found to be consistent with, a model based on the diffusion approximation of the radiative transfer theory.
A limit on the diffuse gamma-rays measured with KASCADE-Grande
NASA Astrophysics Data System (ADS)
Kang, D.; Apel, W. D.; Arteaga-Velázquez, J. C.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Feng, Z.; Fuhrmann, D.; Gherghel-Lascu, A.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huber, D.; Huege, T.; Kampert, K. H.; Klages, H. O.; Link, K.; Łuczak, P.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Mitrica, B.; Morello, C.; Oehlschläger, J.; Ostapchenko, S.; Palmieri, N.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schoo, S.; Schröder, F.; Sima, O.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Zabierowski, J.
2015-08-01
Using data measured by the KASCADE-Grande air shower array, an upper limit to the flux of ultra-high energy gamma-rays in the primary cosmic-ray flux is determined. KASCADE-Grande measures the electromagnetic and muonic components for individual air showers in the energy range from 10 PeV up to 1 EeV. The analysis is performed by selecting air showers with low muon contents. A preliminary result on the 90% C.L. upper limit to the relative intensity of gamma-ray with respect to cosmic ray primaries is presented and compared with limits reported by other measurements.
Search for a diffuse flux of astrophysical muon neutrinos with the IceCube 40-string detector
NASA Astrophysics Data System (ADS)
Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Altmann, D.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Benabderrahmane, M. L.; Benzvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Brown, A. M.; Buitink, S.; Caballero-Mora, K. S.; Carson, M.; Chirkin, D.; Christy, B.; Clem, J.; Clevermann, F.; Cohen, S.; Colnard, C.; Cowen, D. F.; D'Agostino, M. V.; Danninger, M.; Daughhetee, J.; Davis, J. C.; de Clercq, C.; Demirörs, L.; Denger, T.; Depaepe, O.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; Deyoung, T.; Díaz-Vélez, J. C.; Dierckxsens, M.; Dreyer, J.; Dumm, J. P.; Ehrlich, R.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Foerster, M. M.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Gora, D.; Grant, D.; Griesel, T.; Groß, A.; Grullon, S.; Gurtner, M.; Ha, C.; Hajismail, A.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Heinen, D.; Helbing, K.; Herquet, P.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Homeier, A.; Hoshina, K.; Hubert, D.; Huelsnitz, W.; Hülß, J.-P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Joseph, J. M.; Kampert, K.-H.; Kappes, A.; Karg, T.; Karle, A.; Kenny, P.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Krings, T.; Kroll, G.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lafebre, S.; Laihem, K.; Landsman, H.; Larson, M. J.; Lauer, R.; Lünemann, J.; Madsen, J.; Majumdar, P.; Marotta, A.; Maruyama, R.; Mase, K.; Matis, H. S.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Middell, E.; Milke, N.; Miller, J.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Nam, J. W.; Naumann, U.; Nießen, P.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Ono, M.; Panknin, S.; Paul, L.; Pérez de Los Heros, C.; Petrovic, J.; Piegsa, A.; Pieloth, D.; Porrata, R.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Rizzo, A.; Rodrigues, J. P.; Roth, P.; Rothmaier, F.; Rott, C.; Ruhe, T.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Schmidt, T.; Schönwald, A.; Schukraft, A.; Schultes, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Slipak, A.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stephens, G.; Stezelberger, T.; Stokstad, R. G.; Stössl, A.; Stoyanov, S.; Strahler, E. A.; Straszheim, T.; Stür, M.; Sullivan, G. W.; Swillens, Q.; Taavola, H.; Taboada, I.; Tamburro, A.; Tepe, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Toscano, S.; Tosi, D.; Turčan, D.; van Eijndhoven, N.; Vandenbroucke, J.; van Overloop, A.; van Santen, J.; Vehring, M.; Voge, M.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, C.; Xu, X. W.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Zoll, M.
2011-10-01
The IceCube Neutrino Observatory is a 1km3 detector currently taking data at the South Pole. One of the main strategies used to look for astrophysical neutrinos with IceCube is the search for a diffuse flux of high-energy neutrinos from unresolved sources. A hard energy spectrum of neutrinos from isotropically distributed astrophysical sources could manifest itself as a detectable signal that may be differentiated from the atmospheric neutrino background by spectral measurement. This analysis uses data from the IceCube detector collected in its half completed configuration which operated between April 2008 and May 2009 to search for a diffuse flux of astrophysical muon neutrinos. A total of 12 877 upward-going candidate neutrino events have been selected for this analysis. No evidence for a diffuse flux of astrophysical muon neutrinos was found in the data set leading to a 90% C.L. upper limit on the normalization of an E-2 astrophysical νμ flux of 8.9×10-9GeVcm-2s-1sr-1. The analysis is sensitive in the energy range between 35 TeV and 7 PeV. The 12 877 candidate neutrino events are consistent with atmospheric muon neutrinos measured from 332 GeV to 84 TeV and no evidence for a prompt component to the atmospheric neutrino spectrum is found.
Diffuse radiation increases global ecosystem-level water-use efficiency
NASA Astrophysics Data System (ADS)
Moffat, A. M.; Reichstein, M.; Cescatti, A.; Knohl, A.; Zaehle, S.
2012-12-01
Current environmental changes lead not only to rising atmospheric CO2 levels and air temperature but also to changes in air pollution and thus the light quality of the solar radiation reaching the land-surface. While rising CO2 levels are thought to enhance photosynthesis and closure of stomata, thus leading to relative water savings, the effect of diffuse radiation on transpiration by plants is less clear. It has been speculated that the stimulation of photosynthesis by increased levels of diffuse light may be counteracted by higher transpiration and consequently water depletion and drought stress. Ultimately, in water co-limited systems, the overall effect of diffuse radiation will depend on the sensitivity of canopy transpiration versus photosynthesis to diffuse light, i.e. whether water-use efficiency changes with relative levels of diffuse light. Our study shows that water-use efficiency increases significantly with higher fractions of diffuse light. It uses the ecosystem-atmosphere gas-exchange observations obtained with the eddy covariance method at 29 flux tower sites. In contrast to previous global studies, the analysis is based directly on measurements of diffuse radiation. Its effect on water-use efficiency was derived by analyzing the multivariate response of carbon and water fluxes to radiation and air humidity using a purely empirical approach based on artificial neural networks. We infer that per unit change of diffuse fraction the water-use efficiency increases up to 40% depending on diffuse fraction levels and ecosystem type. Hence, in regions with increasing diffuse radiation positive effects on primary production are expected even under conditions where water is co-limiting productivity.
Flux-limited diffusion in a scattering medium. [such as accretion-disk coronae
NASA Technical Reports Server (NTRS)
Melia, Fulvio; Zylstra, Gregory J.
1991-01-01
A diffusion equation (FDT) is presented with a coefficient that reduces to the appropriate limiting form in the streaming and near thermodynamic limits for a moving fluid in which the dominant source of opacity is Thomson scattering. The present results are compared to those obtained with the corresponding equations for an absorptive medium. It is found that FDT for a scattering medium is accurate to better than less than about 17 percent over the range of optical depths of tau in the range of about 0 to 3.
Fermi LAT Search for Dark Matter in Gamma-Ray Lines and the Inclusive Photon Spectrum
NASA Technical Reports Server (NTRS)
Ackermann, M.; Ajello, M.; Albert, A.; Baldini, L.; Barbiellini, G.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R. D.; Bloom, E. D.;
2012-01-01
Dark matter particle annihilation or decay can produce monochromatic gamma-ray lines and contribute to the diffuse gamma-ray background. Flux upper limits are presented for gamma-ray spectral lines from 7 to 200 GeV and for the diffuse gamma-ray background from 4.8 GeV to 264 GeV obtained from two years of Fermi Large Area Telescope data integrated over most of the sky. We give cross section upper limits and decay lifetime lower limits for dark matter models that produce gamma-ray lines or contribute to the diffuse spectrum, including models proposed as explanations of the PAMELA and Fermi cosmic-ray data.
Fermi LAT search for dark matter in gamma-ray lines and the inclusive photon spectrum
Ackermann, M.
2012-07-05
Dark matter particle annihilation or decay can produce monochromatic gamma-ray lines and contribute to the diffuse gamma-ray background. Furthermore, we present the flux upper limits for gamma-ray spectral lines from 7 to 200 GeV and for the diffuse gamma-ray background from 4.8 GeV to 264 GeV obtained from two years of Fermi Large Area Telescope data integrated over most of the sky. Here, we give cross-section upper limits and decay lifetime lower limits for dark matter models that produce gamma-ray lines or contribute to the diffuse spectrum, including models proposed as explanations of the PAMELA and Fermi cosmic-ray data.
NASA Astrophysics Data System (ADS)
Kunz, Matthew W.; Mouschovias, Telemachos Ch.
2009-03-01
We formulate the problem of the formation and subsequent evolution of fragments (or cores) in magnetically supported, self-gravitating molecular clouds in two spatial dimensions. The six-fluid (neutrals, electrons, molecular and atomic ions, positively charged, negatively charged, and neutral grains) physical system is governed by the radiation, nonideal magnetohydrodynamic equations. The magnetic flux is not assumed to be frozen in any of the charged species. Its evolution is determined by a newly derived generalized Ohm's law, which accounts for the contributions of both elastic and inelastic collisions to ambipolar diffusion and Ohmic dissipation. The species abundances are calculated using an extensive chemical-equilibrium network. Both MRN and uniform grain size distributions are considered. The thermal evolution of the protostellar core and its effect on the dynamics are followed by employing the gray flux-limited diffusion approximation. Realistic temperature-dependent grain opacities are used that account for a variety of grain compositions. We have augmented the publicly available Zeus-MP code to take into consideration all these effects and have modified several of its algorithms to improve convergence, accuracy, and efficiency. Results of magnetic star formation simulations that accurately track the evolution of a protostellar fragment from a density sime103 cm-3 to a density sime1015 cm-3, while rigorously accounting for both nonideal MHD processes and radiative transfer, are presented in a separate paper.
Multiple Scattering in Clouds: Insights from Three-Dimensional Diffusion/P{sub 1} Theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, Anthony B.; Marshak, Alexander
2001-03-15
In the atmosphere, multiple scattering matters nowhere more than in clouds, and being a product of its turbulence, clouds are highly variable environments. This challenges three-dimensional (3D) radiative transfer theory in a way that easily swamps any available computational resources. Fortunately, the far simpler diffusion (or P{sub 1}) theory becomes more accurate as the scattering intensifies, and allows for some analytical progress as well as computational efficiency. After surveying current approaches to 3D solar cloud-radiation problems from the diffusion standpoint, a general 3D result in steady-state diffusive transport is derived relating the variability-induced change in domain-average flux (i.e., diffuse transmittance)more » to the one-point covariance of internal fluctuations in particle density and in radiative flux. These flux variations follow specific spatial patterns in deliberately hydrodynamical language: radiative channeling. The P{sub 1} theory proves even more powerful when the photon diffusion process unfolds in time as well as space. For slab geometry, characteristic times and lengths that describe normal and transverse transport phenomena are derived. This phenomenology is used to (a) explain persistent features in satellite images of dense stratocumulus as radiative channeling, (b) set limits on current cloud remote-sensing techniques, and (c) propose new ones both active and passive.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Owen, James E.; Alvarez, Marcelo A., E-mail: jowen@ias.edu
2016-01-01
We have investigated the evaporation of close-in exoplanets irradiated by ionizing photons. We find that the properties of the flow are controlled by the ratio of the recombination time to the flow timescale. When the recombination timescale is short compared to the flow timescale, the flow is in approximate local ionization equilibrium with a thin ionization front where the photon mean free path is short compared to the flow scale. In this “recombination-limited” flow the mass-loss scales roughly with the square root of the incident flux. When the recombination time is long compared to the flow timescale the ionization frontmore » becomes thick and encompasses the entire flow with the mass-loss rate scaling linearly with flux. If the planet's potential is deep, then the flow is approximately “energy-limited”; however, if the planet's potential is shallow, then we identify a new limiting mass-loss regime, which we term “photon-limited.” In this scenario, the mass-loss rate is purely limited by the incoming flux of ionizing photons. We have developed a new numerical approach that takes into account the frequency dependence of the incoming ionizing spectrum and performed a large suite of 1D simulations to characterize UV driven mass-loss around low-mass planets. We find that the flow is “recombination-limited” at high fluxes but becomes “energy-limited” at low fluxes; however, the transition is broad occurring over several orders of magnitude in flux. Finally, we point out that the transitions between the different flow types do not occur at a single flux value but depend on the planet's properties, with higher-mass planets becoming “energy-limited” at lower fluxes.« less
NASA Astrophysics Data System (ADS)
López-Coto, R.; Hahn, J.; BenZvi, S.; Dingus, B.; Hinton, J.; Nisa, M. U.; Parsons, R. D.; Greus, F. Salesa; Zhang, H.; Zhou, H.
2018-11-01
The positron excess measured by PAMELA and AMS can only be explained if there is one or several sources injecting them. Moreover, at the highest energies, it requires the presence of nearby ( ∼ hundreds of parsecs) and middle age (maximum of ∼ hundreds of kyr) sources. Pulsars, as factories of electrons and positrons, are one of the proposed candidates to explain the origin of this excess. To calculate the contribution of these sources to the electron and positron flux at the Earth, we developed EDGE (Electron Diffusion and Gamma rays to the Earth), a code to treat the propagation of electrons and compute their diffusion from a central source with a flexible injection spectrum. Using this code, we can derive the source's gamma-ray spectrum, spatial extension, the all-electron density in space, the electron and positron flux reaching the Earth and the positron fraction measured at the Earth. We present in this paper the foundations of the code and study how different parameters affect the gamma-ray spectrum of a source and the electron flux measured at the Earth. We also studied the effect of several approximations usually performed in these studies. This code has been used to derive the results of the positron flux measured at the Earth in [1].
Johnson, Margaret E.; Hummer, Gerhard
2012-01-01
We explore the theoretical foundation of different string methods used to find dominant reaction pathways in high-dimensional configuration spaces. Pathways are assessed by the amount of reactive flux they carry and by their orientation relative to the committor function. By examining the effects of transforming between different collective coordinates that span the same underlying space, we unmask artificial coordinate dependences in strings optimized to follow the free energy gradient. In contrast, strings optimized to follow the drift vector produce reaction pathways that are significantly less sensitive to reparameterizations of the collective coordinates. The differences in these paths arise because the drift vector depends on both the free energy gradient and the diffusion tensor of the coarse collective variables. Anisotropy and position dependence of diffusion tensors arise commonly in spaces of coarse variables, whose generally slow dynamics are obtained by nonlinear projections of the strongly coupled atomic motions. We show here that transition paths constructed to account for dynamics by following the drift vector will (to a close approximation) carry the maximum reactive flux both in systems with isotropic position dependent diffusion, and in systems with constant but anisotropic diffusion. We derive a simple method for calculating the committor function along paths that follow the reactive flux. Lastly, we provide guidance for the practical implementation of the dynamic string method. PMID:22616575
NASA Technical Reports Server (NTRS)
Spjeldvik, W. N.
1981-01-01
Computer simulations of processes which control the relative abundances of ions in the trapping regions of geospace are compared with observations from discriminating ion detectors. Energy losses due to Coulomb collisions between ions and exospheric neutrals are considered, along with charge exchange losses and internal charge exchanges. The time evolution of energetic ion fluxes of equatorially mirroring ions under radial diffusion is modelled to include geomagnetic and geoelectric fluctutations. Limits to the validity of diffusion transport theory are discussed, and the simulation is noted to contain provisions for six ionic charge states and the source effect on the radiation belt oxygen ion distributions. Comparisons are made with ion flux data gathered on Explorer 45 and ISEE-1 spacecraft and results indicate that internal charge exchanges cause the radiation belt ion charge state to be independent of source charge rate characteristics, and relative charge state distribution is independent of the radially diffusive transport rate below the charge state redistribution zone.
Solar flux incident on an orbiting surface after reflection from a planet
NASA Technical Reports Server (NTRS)
Modest, M. F.
1980-01-01
Algorithms describing the solar radiation impinging on an infinitesimal surface after reflection from a gray and diffuse planet are derived. The following conditions apply: only radiation from the sunny half of the planet is taken into account; the radiation must fall on the top of the orbiting surface, and radiation must come from that part of the planet that can be seen from the orbiting body. A simple approximate formula is presented which displays excellent accuracy for all significant situations, with an error which is always less than 5% of the maximum possible reflected flux. Attention is also given to solar albedo flux on a surface directly facing the planet, the influence of solar position on albedo flux, and to solar albedo flux as a function of the surface-planet tilt angle.
NASA Astrophysics Data System (ADS)
Aksenov, A. G.; Chechetkin, V. M.
2018-04-01
Most of the energy released in the gravitational collapse of the cores of massive stars is carried away by neutrinos. Neutrinos play a pivotal role in explaining core-collape supernovae. Currently, mathematical models of the gravitational collapse are based on multi-dimensional gas dynamics and thermonuclear reactions, while neutrino transport is considered in a simplified way. Multidimensional gas dynamics is used with neutrino transport in the flux-limited diffusion approximation to study the role of multi-dimensional effects. The possibility of large-scale convection is discussed, which is interesting both for explaining SN II and for setting up observations to register possible high-energy (≳10MeV) neutrinos from the supernova. A new multi-dimensional, multi-temperature gas dynamics method with neutrino transport is presented.
Du, Ping; Wang, Shi-Jie; Zhao, Huan-Huan; Wu, Bin; Han, Chun-Mei; Fang, Ji-Dun; Li, Hui-Ying; Hosomi, Masaaki; Li, Fa-Sheng
2013-12-01
The influencing factors of benzene diffusion fluxes from sand and black soil to atmosphere were investigated using a flux chamber (30.0 cm x 17.5 cm x 29.0 cm). In this study, the benzene diffusion fluxes were estimated by measuring the benzene concentrations both in the headspace of the chamber and in the soils of different layers. The results indicated that the soil water content played an important role in benzene diffusion fluxes. The diffusion flux showed positive correlation with the initial benzene concentration and the benzene dissolution concentration for both soil types. The changes of air flow rate from 300 to 900 mL x min(-1) and temperature from 20 degrees C to 40 degrees C resulted in increases of the benzene diffusion flux. Our study of benzene diffusion fluxes from contaminated soils will be beneficial for the predicting model, and emergency management and precautions.
Analytic expressions for ULF wave radiation belt radial diffusion coefficients
Ozeke, Louis G; Mann, Ian R; Murphy, Kyle R; Jonathan Rae, I; Milling, David K
2014-01-01
We present analytic expressions for ULF wave-derived radiation belt radial diffusion coefficients, as a function of L and Kp, which can easily be incorporated into global radiation belt transport models. The diffusion coefficients are derived from statistical representations of ULF wave power, electric field power mapped from ground magnetometer data, and compressional magnetic field power from in situ measurements. We show that the overall electric and magnetic diffusion coefficients are to a good approximation both independent of energy. We present example 1-D radial diffusion results from simulations driven by CRRES-observed time-dependent energy spectra at the outer boundary, under the action of radial diffusion driven by the new ULF wave radial diffusion coefficients and with empirical chorus wave loss terms (as a function of energy, Kp and L). There is excellent agreement between the differential flux produced by the 1-D, Kp-driven, radial diffusion model and CRRES observations of differential electron flux at 0.976 MeV—even though the model does not include the effects of local internal acceleration sources. Our results highlight not only the importance of correct specification of radial diffusion coefficients for developing accurate models but also show significant promise for belt specification based on relatively simple models driven by solar wind parameters such as solar wind speed or geomagnetic indices such as Kp. Key Points Analytic expressions for the radial diffusion coefficients are presented The coefficients do not dependent on energy or wave m value The electric field diffusion coefficient dominates over the magnetic PMID:26167440
Frozen flux violation, electron demagnetization and magnetic reconnection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scudder, J. D.; Karimabadi, H.; Roytershteyn, V.
2015-10-15
We argue that the analogue in collisionless plasma of the collisional diffusion region of magnetic reconnection is properly defined in terms of the demagnetization of the plasma electrons that enable “frozen flux” slippage to occur. This condition differs from the violation of the “frozen-in” condition, which only implies that two fluid effects are involved, rather than the necessary slippage of magnetic flux as viewed in the electron frame. Using 2D Particle In Cell (PIC) simulations, this approach properly finds the saddle point region of the flux function. Our demagnetization conditions are the dimensionless guiding center approximation expansion parameters for electronsmore » which we show are observable and determined locally by the ratio of non-ideal electric to magnetic field strengths. Proxies for frozen flux slippage are developed that (a) are measurable on a single spacecraft, (b) are dimensionless with theoretically justified threshold values of significance, and (c) are shown in 2D simulations to recover distinctions theoretically possible with the (unmeasurable) flux function. A new potentially observable dimensionless frozen flux rate, Λ{sub Φ}, differentiates significant from anecdotal frozen flux slippage. A single spacecraft observable, ϒ, is shown with PIC simulations to be essentially proportional to the unobservable local Maxwell frozen flux rate. This relationship theoretically establishes electron demagnetization in 3D as the general cause of frozen flux slippage. In simple 2D cases with an isolated central diffusion region surrounded by separatrices, these diagnostics uniquely identify the traditional diffusion region (without confusing it with the two fluid “ion-diffusion” region) and clarify the role of the separatrices where frozen flux violations do occur but are not substantial. In the more complicated guide and asymmetric 2D cases, substantial flux slippage regions extend out along, but inside of, the preferred separatrices, demonstrating that Λ{sub Φ} ≠ 0 violations are present over significant distances (in ion inertial units) from the separator identified by the 2D flux function; these violations are, however, generally weaker than seen at known separators in 2D simulations.« less
Kang, Tong Mook; Markin, Vladislav S.; Hilgemann, Donald W.
2003-01-01
We have used ion-selective electrodes (ISEs) to quantify ion fluxes across giant membrane patches by measuring and simulating ion gradients on both membrane sides. Experimental conditions are selected with low concentrations of the ions detected on the membrane side being monitored. For detection from the cytoplasmic (bath) side, the patch pipette is oscillated laterally in front of an ISE. For detection on the extracellular (pipette) side, ISEs are fabricated from flexible quartz capillary tubing (tip diameters, 2–3 microns), and an ISE is positioned carefully within the patch pipette with the tip at a controlled distance from the mouth of the patch pipette. Transport activity is then manipulated by solution changes on the cytoplasmic side. Ion fluxes can be quantified by simulating the ion gradients with appropriate diffusion models. For extracellular (intrapatch pipette) recordings, ion diffusion coefficients can be determined from the time courses of concentration changes. The sensitivity and utility of the methods are demonstrated with cardiac membrane patches by measuring (a) potassium fluxes via ion channels, valinomycin, and Na/K pumps; (b) calcium fluxes mediated by Na/Ca exchangers; (c) sodium fluxes mediated by gramicidin and Na/K pumps; and (d) proton fluxes mediated by an unknown electrogenic mechanism. The potassium flux-to-current ratio for the Na/K pump is approximately twice that determined for potassium channels and valinomycin, as expected for a 3Na/2K pump stoichiometery (i.e., 2K/charge moved). For valinomycin-mediated potassium currents and gramicidin-mediated sodium currents, the ion fluxes calculated from diffusion models are typically 10–15% smaller than expected from the membrane currents. As presently implemented, the ISE methods allow reliable detection of calcium and proton fluxes equivalent to monovalent cation currents <1 pA in magnitude, and they allow detection of sodium and potassium fluxes equivalent to <5 pA currents. The capability to monitor ion fluxes, independent of membrane currents, should facilitate studies of both electrogenic and electroneutral ion–coupled transporters in giant patches. PMID:12668735
Spin-diffusions and diffusive molecular dynamics
NASA Astrophysics Data System (ADS)
Farmer, Brittan; Luskin, Mitchell; Plecháč, Petr; Simpson, Gideon
2017-12-01
Metastable configurations in condensed matter typically fluctuate about local energy minima at the femtosecond time scale before transitioning between local minima after nanoseconds or microseconds. This vast scale separation limits the applicability of classical molecular dynamics (MD) methods and has spurned the development of a host of approximate algorithms. One recently proposed method is diffusive MD which aims at integrating a system of ordinary differential equations describing the likelihood of occupancy by one of two species, in the case of a binary alloy, while quasistatically evolving the locations of the atoms. While diffusive MD has shown itself to be efficient and provide agreement with observations, it is fundamentally a model, with unclear connections to classical MD. In this work, we formulate a spin-diffusion stochastic process and show how it can be connected to diffusive MD. The spin-diffusion model couples a classical overdamped Langevin equation to a kinetic Monte Carlo model for exchange amongst the species of a binary alloy. Under suitable assumptions and approximations, spin-diffusion can be shown to lead to diffusive MD type models. The key assumptions and approximations include a well-defined time scale separation, a choice of spin-exchange rates, a low temperature approximation, and a mean field type approximation. We derive several models from different assumptions and show their relationship to diffusive MD. Differences and similarities amongst the models are explored in a simple test problem.
Temperature-Induced Increase in Methane Release from Peat Bogs: A Mesocosm Experiment
van Winden, Julia F.; Reichart, Gert-Jan; McNamara, Niall P.; Benthien, Albert; Damsté, Jaap S. Sinninghe.
2012-01-01
Peat bogs are primarily situated at mid to high latitudes and future climatic change projections indicate that these areas may become increasingly wetter and warmer. Methane emissions from peat bogs are reduced by symbiotic methane oxidizing bacteria (methanotrophs). Higher temperatures and increasing water levels will enhance methane production, but also methane oxidation. To unravel the temperature effect on methane and carbon cycling, a set of mesocosm experiments were executed, where intact peat cores containing actively growing Sphagnum were incubated at 5, 10, 15, 20, and 25°C. After two months of incubation, methane flux measurements indicated that, at increasing temperatures, methanotrophs are not able to fully compensate for the increasing methane production by methanogens. Net methane fluxes showed a strong temperature-dependence, with higher methane fluxes at higher temperatures. After removal of Sphagnum, methane fluxes were higher, increasing with increasing temperature. This indicates that the methanotrophs associated with Sphagnum plants play an important role in limiting the net methane flux from peat. Methanotrophs appear to consume almost all methane transported through diffusion between 5 and 15°C. Still, even though methane consumption increased with increasing temperature, the higher fluxes from the methane producing microbes could not be balanced by methanotrophic activity. The efficiency of the Sphagnum-methanotroph consortium as a filter for methane escape thus decreases with increasing temperature. Whereas 98% of the produced methane is retained at 5°C, this drops to approximately 50% at 25°C. This implies that warming at the mid to high latitudes may be enhanced through increased methane release from peat bogs. PMID:22768100
Multispecies diffusion models: A study of uranyl species diffusion
NASA Astrophysics Data System (ADS)
Liu, Chongxuan; Shang, Jianying; Zachara, John M.
2011-12-01
Rigorous numerical description of multispecies diffusion requires coupling of species, charge, and aqueous and surface complexation reactions that collectively affect diffusive fluxes. The applicability of a fully coupled diffusion model is, however, often constrained by the availability of species self-diffusion coefficients, as well as by computational complication in imposing charge conservation. In this study, several diffusion models with variable complexity in charge and species coupling were formulated and compared to describe reactive multispecies diffusion in groundwater. Diffusion of uranyl [U(VI)] species was used as an example in demonstrating the effectiveness of the models in describing multispecies diffusion. Numerical simulations found that a diffusion model with a single, common diffusion coefficient for all species was sufficient to describe multispecies U(VI) diffusion under a steady state condition of major chemical composition, but not under transient chemical conditions. Simulations revealed that for multispecies U(VI) diffusion under transient chemical conditions, a fully coupled diffusion model could be well approximated by a component-based diffusion model when the diffusion coefficient for each chemical component was properly selected. The component-based diffusion model considers the difference in diffusion coefficients between chemical components, but not between the species within each chemical component. This treatment significantly enhanced computational efficiency at the expense of minor charge conservation. The charge balance in the component-based diffusion model can be enforced, if necessary, by adding a secondary migration term resulting from model simplification. The effect of ion activity coefficient gradients on multispecies diffusion is also discussed. The diffusion models were applied to describe U(VI) diffusive mass transfer in intragranular domains in two sediments collected from U.S. Department of Energy's Hanford 300A, where intragranular diffusion is a rate-limiting process controlling U(VI) adsorption and desorption. The grain-scale reactive diffusion model was able to describe U(VI) adsorption/desorption kinetics that had been previously described using a semiempirical, multirate model. Compared with the multirate model, the diffusion models have the advantage to provide spatiotemporal speciation evolution within the diffusion domains.
Far-field analysis of coupled bulk and boundary layer diffusion toward an ion channel entrance.
Schumaker, M F; Kentler, C J
1998-01-01
We present a far-field analysis of ion diffusion toward a channel embedded in a membrane with a fixed charge density. The Smoluchowski equation, which represents the 3D problem, is approximated by a system of coupled three- and two-dimensional diffusions. The 2D diffusion models the quasi-two-dimensional diffusion of ions in a boundary layer in which the electrical potential interaction with the membrane surface charge is important. The 3D diffusion models ion transport in the bulk region outside the boundary layer. Analytical expressions for concentration and flux are developed that are accurate far from the channel entrance. These provide boundary conditions for a numerical solution of the problem. Our results are used to calculate far-field ion flows corresponding to experiments of Bell and Miller (Biophys. J. 45:279, 1984). PMID:9591651
On the asymptotic behavior of a subcritical convection-diffusion equation with nonlocal diffusion
NASA Astrophysics Data System (ADS)
Cazacu, Cristian M.; Ignat, Liviu I.; Pazoto, Ademir F.
2017-08-01
In this paper we consider a subcritical model that involves nonlocal diffusion and a classical convective term. In spite of the nonlocal diffusion, we obtain an Oleinik type estimate similar to the case when the diffusion is local. First we prove that the entropy solution can be obtained by adding a small viscous term μ uxx and letting μ\\to 0 . Then, by using uniform Oleinik estimates for the viscous approximation we are able to prove the well-posedness of the entropy solutions with L 1-initial data. Using a scaling argument and hyperbolic estimates given by Oleinik’s inequality, we obtain the first term in the asymptotic behavior of the nonnegative solutions. Finally, the large time behavior of changing sign solutions is proved using the classical flux-entropy method and estimates for the nonlocal operator.
Fermi-LAT and Suzaku Observations of the Radio Galaxy Centaurus B
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katsuta, Junichiro; /Stanford U., HEPL /KIPAC, Menlo Park; Tanaka, Y.T.
2012-08-17
CentaurusB is a nearby radio galaxy positioned in the Southern hemisphere close to the Galactic plane. Here we present a detailed analysis of about 43 months accumulation of Fermi-LAT data and of newly acquired Suzaku X-ray data for Centaurus B. The source is detected at GeV photon energies, although we cannot completely exclude the possibility that it is an artifact due to incorrect modeling of the bright Galactic diffuse emission in the region. The LAT image provides a weak hint of a spatial extension of the {gamma} rays along the radio lobes, which is consistent with the lack of sourcemore » variability in the GeV range. We note that the extension cannot be established statistically due to the low number of the photons. Surprisingly, we do not detect any diffuse emission of the lobes at X-ray frequencies, with the provided upper limit only marginally consistent with the previously claimed ASCA flux. The broad-band modeling shows that the observed {gamma}-ray flux of the source may be produced within the lobes, if the diffuse non-thermal X-ray emission component is not significantly below the derived Suzaku upper limit. This association would imply that efficient in-situ acceleration of the ultrarelativistic particles is occurring and that the lobes are dominated by the pressure from the relativistic particles. However, if the diffuse X-ray emission is much below the Suzaku upper limits, the observed {gamma}-ray flux is not likely to be produced within the lobes, but instead within the unresolved core of Centaurus B. In this case, the extended lobes could be dominated by the pressure of the magnetic field.« less
NASA Astrophysics Data System (ADS)
Jiang, Jiamin; Younis, Rami M.
2017-06-01
The first-order methods commonly employed in reservoir simulation for computing the convective fluxes introduce excessive numerical diffusion leading to severe smoothing of displacement fronts. We present a fully-implicit cell-centered finite-volume (CCFV) framework that can achieve second-order spatial accuracy on smooth solutions, while at the same time maintain robustness and nonlinear convergence performance. A novel multislope MUSCL method is proposed to construct the required values at edge centroids in a straightforward and effective way by taking advantage of the triangular mesh geometry. In contrast to the monoslope methods in which a unique limited gradient is used, the multislope concept constructs specific scalar slopes for the interpolations on each edge of a given element. Through the edge centroids, the numerical diffusion caused by mesh skewness is reduced, and optimal second order accuracy can be achieved. Moreover, an improved smooth flux-limiter is introduced to ensure monotonicity on non-uniform meshes. The flux-limiter provides high accuracy without degrading nonlinear convergence performance. The CCFV framework is adapted to accommodate a lower-dimensional discrete fracture-matrix (DFM) model. Several numerical tests with discrete fractured system are carried out to demonstrate the efficiency and robustness of the numerical model.
NASA Astrophysics Data System (ADS)
Pierre Auger Collaboration; Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antiči'c, T.; Aramo, C.; Arganda, E.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Balzer, M.; Barber, K. B.; Barbosa, A. F.; Bardenet, R.; Barroso, S. L. C.; Baughman, B.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellétoile, A.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanch-Bigas, O.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Bruijn, R.; Buchholz, P.; Bueno, A.; Buroker, L.; Burton, R. E.; Caballero-Mora, K. S.; Caccianiga, B.; Caramete, L.; Caruso, R.; Castellina, A.; Catalano, O.; Cataldi, G.; Cazon, L.; Cester, R.; Chauvin, J.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chirinos Diaz, J.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coppens, J.; Cordier, A.; Coutu, S.; Covault, C. E.; Creusot, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; De Donato, C.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; del Peral, L.; del Río, M.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Díaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fliescher, S.; Fracchiolla, C. E.; Fraenkel, E. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Gascon Bravo, A.; Gemmeke, H.; Ghia, P. L.; Giller, M.; Gitto, J.; Glass, H.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gouffon, P.; Grashorn, E.; Grebe, S.; Griffith, N.; Grigat, M.; Grillo, A. F.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hojvat, C.; Hollon, N.; Holmes, V. C.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Ionita, F.; Italiano, A.; Jansen, S.; Jarne, C.; Jiraskova, S.; Josebachuili, M.; Kadija, K.; Kampert, K. H.; Karhan, P.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kelley, J. L.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Koang, D.-H.; Kotera, K.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kulbartz, J. K.; Kunka, N.; La Rosa, G.; Lachaud, C.; LaHurd, D.; Latronico, L.; Lauer, R.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, J.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mazur, P. O.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Mertsch, P.; Meurer, C.; Meyhandan, R.; Mi'canovi'c, S.; Micheletti, M. I.; Minaya, I. A.; Miramonti, L.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, E.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P. T.; Niechciol, M.; Niemietz, L.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Nožka, L.; Oehlschläger, J.; Olinto, A.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parizot, E.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; Peķala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrolini, A.; Petrov, Y.; Pfendner, C.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Ponce, V. H.; Pontz, M.; Porcelli, A.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez, G.; Rodriguez Cabo, I.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saftoiu, A.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarkar, S.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovánek, P.; Schröder, F.; Schulte, S.; Schuster, D.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Silva Lopez, H. H.; Sima, O.; 'Smiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Srivastava, Y. N.; Stanic, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tapia, A.; Tartare, M.; Taşcău, O.; Tcaciuc, R.; Thao, N. T.; Thomas, D.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Travnicek, P.; Tridapalli, D. B.; Tristram, G.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Westerhoff, S.; Whelan, B. J.; Widom, A.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wommer, M.; Wundheiler, B.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano Garcia, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.
2012-08-01
The surface detector array of the Pierre Auger Observatory can detect neutrinos with energy E ν between 1017 eV and 1020 eV from point-like sources across the sky south of +55° and north of -65° declinations. A search has been performed for highly inclined extensive air showers produced by the interaction of neutrinos of all flavors in the atmosphere (downward-going neutrinos), and by the decay of tau leptons originating from tau neutrino interactions in Earth's crust (Earth-skimming neutrinos). No candidate neutrinos have been found in data up to 2010 May 31. This corresponds to an equivalent exposure of ~3.5 years of a full surface detector array for the Earth-skimming channel and ~2 years for the downward-going channel. An improved upper limit on the diffuse flux of tau neutrinos has been derived. Upper limits on the neutrino flux from point-like sources have been derived as a function of the source declination. Assuming a differential neutrino flux k PS · E -2 ν from a point-like source, 90% confidence level upper limits for k PS at the level of ≈5 × 10-7 and 2.5 × 10-6 GeV cm-2 s-1 have been obtained over a broad range of declinations from the searches for Earth-skimming and downward-going neutrinos, respectively.
Dynamical onset of superconductivity and retention of magnetic fields in cooling neutron stars
NASA Astrophysics Data System (ADS)
Ho, Wynn C. G.; Andersson, Nils; Graber, Vanessa
2017-12-01
A superconductor of paired protons is thought to form in the core of neutron stars soon after their birth. Minimum energy conditions suggest magnetic flux is expelled from the superconducting region due to the Meissner effect, such that the neutron star core is largely devoid of magnetic fields for some nuclear equation of state and proton pairing models. We show via neutron star cooling simulations that the superconducting region expands faster than flux is expected to be expelled because cooling timescales are much shorter than timescales of magnetic field diffusion. Thus magnetic fields remain in the bulk of the neutron star core for at least 106-107yr . We estimate the size of flux free regions at 107yr to be ≲100 m for a magnetic field of 1011G and possibly smaller for stronger field strengths. For proton pairing models that are narrow, magnetic flux may be completely expelled from a thin shell of approximately the above size after 105yr . This shell may insulate lower conductivity outer layers, where magnetic fields can diffuse and decay faster, from fields maintained in the highly conducting deep core.
Potential of pin-by-pin SPN calculations as an industrial reference
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fliscounakis, M.; Girardi, E.; Courau, T.
2012-07-01
This paper aims at analysing the potential of pin-by-pin SP{sub n} calculations to compute the neutronic flux in PWR cores as an alternative to the diffusion approximation. As far as pin-by-pin calculations are concerned, a SPH equivalence is used to preserve the reactions rates. The use of SPH equivalence is a common practice in core diffusion calculations. In this paper, a methodology to generalize the equivalence procedure in the SP{sub n} equations context is presented. In order to verify and validate the equivalence procedure, SP{sub n} calculations are compared to 2D transport reference results obtained with the APOLL02 code. Themore » validation cases consist in 3x3 analytical assembly color sets involving burn-up heterogeneities, UOX/MOX interfaces, and control rods. Considering various energy discretizations (up to 26 groups) and flux development orders (up to 7) for the SP{sub n} equations, results show that 26-group SP{sub 3} calculations are very close to the transport reference (with pin production rates discrepancies < 1%). This proves the high interest of pin-by-pin SP{sub n} calculations as an industrial reference when relying on 26 energy groups combined with SP{sub 3} flux development order. Additionally, the SP{sub n} results are compared to diffusion pin-by-pin calculations, in order to evaluate the potential benefit of using a SP{sub n} solver as an alternative to diffusion. Discrepancies on pin-production rates are less than 1.6% for 6-group SP{sub 3} calculations against 3.2% for 2-group diffusion calculations. This shows that SP{sub n} solvers may be considered as an alternative to multigroup diffusion. (authors)« less
NASA Astrophysics Data System (ADS)
Godoy, William F.; DesJardin, Paul E.
2010-05-01
The application of flux limiters to the discrete ordinates method (DOM), SN, for radiative transfer calculations is discussed and analyzed for 3D enclosures for cases in which the intensities are strongly coupled to each other such as: radiative equilibrium and scattering media. A Newton-Krylov iterative method (GMRES) solves the final systems of linear equations along with a domain decomposition strategy for parallel computation using message passing libraries in a distributed memory system. Ray effects due to angular discretization and errors due to domain decomposition are minimized until small variations are introduced by these effects in order to focus on the influence of flux limiters on errors due to spatial discretization, known as numerical diffusion, smearing or false scattering. Results are presented for the DOM-integrated quantities such as heat flux, irradiation and emission. A variety of flux limiters are compared to "exact" solutions available in the literature, such as the integral solution of the RTE for pure absorbing-emitting media and isotropic scattering cases and a Monte Carlo solution for a forward scattering case. Additionally, a non-homogeneous 3D enclosure is included to extend the use of flux limiters to more practical cases. The overall balance of convergence, accuracy, speed and stability using flux limiters is shown to be superior compared to step schemes for any test case.
Bissett, Andrew; Reimer, Andreas; de Beer, Dirk; Shiraishi, Fumito; Arp, Gernot
2008-01-01
Ex situ microelectrode experiments, using cyanobacterial biofilms from karst water creeks, were conducted under various pH, temperature, and constant-alkalinity conditions to investigate the effects of changing environmental parameters on cyanobacterial photosynthesis-induced calcification. Microenvironmental chemical conditions around calcifying sites were controlled by metabolic activity over a wide range of photosynthesis and respiration rates, with little influence from overlying water conditions. Regardless of overlying water pH levels (from 7.8 to 8.9), pH at the biofilm surface was approximately 9.4 in the light and 7.8 in the dark. The same trend was observed at various temperatures (4°C and 17°C). Biological processes control the calcium carbonate saturation state (Ω) in these and similar systems and are able to maintain Ω at approximately constant levels over relatively wide environmental fluctuations. Temperature did, however, have an effect on calcification rate. Calcium flux in this system is limited by its diffusion coefficient, resulting in a higher calcium flux (calcification and dissolution) at higher temperatures, despite the constant, biologically mediated pH. The ability of biological systems to mitigate the effects of environmental perturbation is an important factor that must be considered when attempting to predict the effects of increased atmospheric partial CO2 pressure on processes such as calcification and in interpreting microfossils in the fossil record. PMID:18689512
Predictive model to describe water migration in cellular solid foods during storage.
Voogt, Juliën A; Hirte, Anita; Meinders, Marcel B J
2011-11-01
Water migration in cellular solid foods during storage causes loss of crispness. To improve crispness retention, physical understanding of this process is needed. Mathematical models are suitable tools to gain this physical knowledge. Water migration in cellular solid foods involves migration through both the air cells and the solid matrix. For systems in which the water migration distance is large compared with the cell wall thickness of the solid matrix, the overall water flux through the system is dominated by the flux through the air. For these systems, water migration can be approximated well by a Fickian diffusion model. The effective diffusion coefficient can be expressed in terms of the material properties of the solid matrix (i.e. the density, sorption isotherm and diffusion coefficient of water in the solid matrix) and the morphological properties of the cellular structure (i.e. water vapour permeability and volume fraction of the solid matrix). The water vapour permeability is estimated from finite element method modelling using a simplified model for the cellular structure. It is shown that experimentally observed dynamical water profiles of bread rolls that differ in crust permeability are predicted well by the Fickian diffusion model. Copyright © 2011 Society of Chemical Industry.
KASCADE-Grande Limits on the Isotropic Diffuse Gamma-Ray Flux between 100 TeV and 1 EeV
NASA Astrophysics Data System (ADS)
Apel, W. D.; Arteaga-Velázquez, J. C.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Feng, Z.; Fuhrmann, D.; Gherghel-Lascu, A.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huege, T.; Kampert, K.-H.; Kang, D.; Klages, H. O.; Link, K.; Łuczak, P.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Mitrica, B.; Morello, C.; Oehlschläger, J.; Ostapchenko, S.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schoo, S.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Zabierowski, J.; KASCADE-Grande Collaboration
2017-10-01
KASCADE and KASCADE-Grande were multi-detector installations to measure individual air showers of cosmic rays at ultra-high energy. Based on data sets measured by KASCADE and KASCADE-Grande, 90% C.L. upper limits to the flux of gamma-rays in the primary cosmic ray flux are determined in an energy range of {10}14{--}{10}18 eV. The analysis is performed by selecting air showers with a low muon content as expected for gamma-ray-induced showers compared to air showers induced by energetic nuclei. The best upper limit of the fraction of gamma-rays to the total cosmic ray flux is obtained at 3.7× {10}15 eV with 1.1× {10}-5. Translated to an absolute gamma-ray flux this sets constraints on some fundamental astrophysical models, such as the distance of sources for at least one of the IceCube neutrino excess models.
Heat transfer in suspensions of rigid particles
NASA Astrophysics Data System (ADS)
Brandt, Luca; Niazi Ardekani, Mehdi; Abouali, Omid
2016-11-01
We study the heat transfer in laminar Couette flow of suspensions of rigid neutrally buoyant particles by means of numerical simulations. An Immersed Boundary Method is coupled with a VOF approach to simulate the heat transfer in the fluid and solid phase, enabling us to fully resolve the heat diffusion. First, we consider spherical particles and show that the proposed algorithm is able to reproduce the correlations between heat flux across the channel, the particle volume fraction and the heat diffusivity obtained in laboratory experiments and recently proposed in the literature, results valid in the limit of vanishing inertia. We then investigate the role of inertia on the heat transfer and show an increase of the suspension diffusivity at finite particle Reynolds numbers. Finally, we vary the relativity diffusivity of the fluid and solid phase and investigate its effect on the effective heat flux across the channel. The data are analyzed by considering the ensemble averaged energy equation and decomposing the heat flux in 4 different contributions, related to diffusion in the solid and fluid phase, and the correlations between wall-normal velocity and temperature fluctuations. Results for non-spherical particles will be examined before the meeting. Supported by the European Research Council Grant No. ERC-2013- CoG-616186, TRITOS. The authors acknowledge computer time provided by SNIC (Swedish National Infrastructure for Computing).
A limit to the X-ray luminosity of nearby normal galaxies
NASA Technical Reports Server (NTRS)
Worrall, D. M.; Marshall, F. E.; Boldt, E. A.
1979-01-01
Emission is studied at luminosities lower than those for which individual discrete sources can be studied. It is shown that normal galaxies do not appear to provide the numerous low luminosity X-ray sources which could make up the 2-60 keV diffuse background. Indeed, upper limits suggest luminosities comparable with, or a little less than, that of the galaxy. This is consistent with the fact that the average optical luminosity of the sample galaxies within approximately 20 Mpc is slightly lower than that of the galaxy. An upper limit of approximately 1% of the diffuse background from such sources is derived.
Chen, Gong; Kong, Xian; Lu, Diannan; Wu, Jianzhong; Liu, Zheng
2017-05-10
Molecular dynamics (MD) simulations, in combination with the Markov-state model (MSM), were applied to probe CO 2 diffusion from an aqueous solution into the active site of human carbonic anhydrase II (hCA-II), an enzyme useful for enhanced CO 2 capture and utilization. The diffusion process in the hydrophobic pocket of hCA-II was illustrated in terms of a two-dimensional free-energy landscape. We found that CO 2 diffusion in hCA-II is a rate-limiting step in the CO 2 diffusion-binding-reaction process. The equilibrium distribution of CO 2 shows its preferential accumulation within a hydrophobic domain in the protein core region. An analysis of the committors and reactive fluxes indicates that the main pathway for CO 2 diffusion into the active site of hCA-II is through a binding pocket where residue Gln 136 contributes to the maximal flux. The simulation results offer a new perspective on the CO 2 hydration kinetics and useful insights toward the development of novel biochemical processes for more efficient CO 2 sequestration and utilization.
Methane emissions from tundra environments in the Yukon-Kuskokwin Delta, Alaska
NASA Technical Reports Server (NTRS)
Bartlett, Karen B.; Crill, Patrick M.; Sass, Ronald L.; Harriss, Robert C.; Dise, Nancy B.
1992-01-01
This paper reports CH4 flux to the atmosphere from a variety of tundra environments near Bethel, Alaska during the summer months of 1988. Emissions from wet meadow tundra averaged 144 +/- 31 mg/sq m/d and ranged from 15.6 to 426 mg/sq m/d varying with soil moisture and temperature. Flux from the drier upland tundra was about two orders of magnitude lower and averaged 2.3 +/- 1.1 mg/sq m/d. Tundra lakes emit CH4 from the open water surface as well as from fringing aquatic vegetation; the presence of vegetation significantly enhanced flux over open water rates. Calculated diffusive fluxes from open water varied with lake size, the large lakes emitting 3.8 mg/sq m/d and small lakes emitting an average of 77 mg/sq m/d. An updated estimate of global emissions from tundra indicates an annual fluxes of approximately 11 +/- 3 Tg CH4.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurapov, Denis; Reiss, Jennifer; Trinh, David H.
2007-07-15
Alumina thin films were deposited onto tempered hot working steel substrates from an AlCl{sub 3}-O{sub 2}-Ar-H{sub 2} gas mixture by plasma-assisted chemical vapor deposition. The normalized ion flux was varied during deposition through changes in precursor content while keeping the cathode voltage and the total pressure constant. As the precursor content in the total gas mixture was increased from 0.8% to 5.8%, the deposition rate increased 12-fold, while the normalized ion flux decreased by approximately 90%. The constitution, morphology, impurity incorporation, and the elastic properties of the alumina thin films were found to depend on the normalized ion flux. Thesemore » changes in structure, composition, and properties induced by normalized ion flux may be understood by considering mechanisms related to surface and bulk diffusion.« less
Spatial Transport of Magnetic Flux Surfaces in Strongly Anisotropic Turbulence
NASA Astrophysics Data System (ADS)
Matthaeus, W. H.; Servidio, S.; Wan, M.; Ruffolo, D. J.; Rappazzo, A. F.; Oughton, S.
2013-12-01
Magnetic flux surfaces afford familiar descriptions of spatial structure, dynamics, and connectivity of magnetic fields, with particular relevance in contexts such as solar coronal flux tubes, magnetic field connectivity in the interplanetary and interstellar medium, as well as in laboratory plasmas and dynamo problems [1-4]. Typical models assume that field-lines are orderly, and flux tubes remain identifiable over macroscopic distances; however, a previous study has shown that flux tubes shred in the presence of fluctuations, typically losing identity after several correlation scales [5]. Here, the structure of magnetic flux surfaces is numerically investigated in a reduced magnetohydrodynamic (RMHD) model of homogeneous turbulence. Short and long-wavelength behavior is studied statistically by propagating magnetic surfaces along the mean field. At small scales magnetic surfaces become complex, experiencing an exponential thinning. At large scales, instead, the magnetic flux undergoes a diffusive behavior. The link between the diffusion of the coarse-grained flux and field-line random walk is established by means of a multiple scale analysis. Both large and small scales limits are controlled by the Kubo number. These results have consequences for understanding and interpreting processes such as magnetic reconnection and field-line diffusion in plasmas [6]. [1] E. N. Parker, Cosmical Magnetic Fields (Oxford Univ. Press, New York, 1979). [2] J. R. Jokipii and E. N. Parker, Phys. Rev. Lett. 21, 44 (1968). [3] R. Bruno et al., Planet. Space Sci. 49, 1201 (2001). [4] M. N. Rosenbluth et al., Nuclear Fusion 6, 297 (1966). [5] W. H. Matthaeus et al., Phys. Rev. Lett. 75, 2136 (1995). [6] S. Servidio et al., submitted (2013).
Thygesen, Uffe Høgsbro
2016-03-01
We consider organisms which use a renewal strategy such as run-tumble when moving in space, for example to perform chemotaxis in chemical gradients. We derive a diffusion approximation for the motion, applying a central limit theorem due to Anscombe for renewal-reward processes; this theorem has not previously been applied in this context. Our results extend previous work, which has established the mean drift but not the diffusivity. For a classical model of tumble rates applied to chemotaxis, we find that the resulting chemotactic drift saturates to the swimming velocity of the organism when the chemical gradients grow increasingly steep. The dispersal becomes anisotropic in steep gradients, with larger dispersal across the gradient than along the gradient. In contrast to one-dimensional settings, strong bias increases dispersal. We next include Brownian rotation in the model and find that, in limit of high chemotactic sensitivity, the chemotactic drift is 64% of the swimming velocity, independent of the magnitude of the Brownian rotation. We finally derive characteristic timescales of the motion that can be used to assess whether the diffusion limit is justified in a given situation. The proposed technique for obtaining diffusion approximations is conceptually and computationally simple, and applicable also when statistics of the motion is obtained empirically or through Monte Carlo simulation of the motion.
The effect of soil water deficit on the reflectance of conifer seedling canopies
NASA Technical Reports Server (NTRS)
Fox, L.
1977-01-01
The effects of soil water deficit on spruce and pine seedling canopy reflectance, needle reflectance and transmittance, and canopy density were measured in a greenhouse with a diffuse source of radiant flux. A potential for early or pre-visual detection of plant water stress was not supported by these measurements made at visible, and reflected infrared wavelengths to 1950 nm. Needles were found to transmit approximately thirty percent of the radiant flux incident on them at 780 nm, ten percent at 700 nm, and were found to be opaque at 450, 550, 600 and 650 nm.
How Hot Precursor Modify Island Nucleation: A Rate-Equation Model
NASA Astrophysics Data System (ADS)
Morales-Cifuentes, Josue; Einstein, T. L.; Pimpinelli, Alberto
2015-03-01
We describe the analysis, based on rate equations, of the hot precursor model mentioned in the previous talk. Two key parameters are the competing times of ballistic monomers decaying into thermalized monomers vs. being captured by an island, which naturally define a ``thermalization'' scale for the system. We interpret the energies and dimmensionless parameters used in the model, and provide both an implicit analytic solution and a convenient asymptotic approximation. Further analysis reveals novel scaling regimes and nonmonotonic crossovers between them. To test our model, we applied it to experiments on parahexaphenyl (6P) on sputtered mica. With the resulting parameters, the curves derived from our analytic treatment account very well for the data at the 4 different temperatures. The fit shows that the high-flux regime corresponds not to ALA (attachment-limited aggregation) or HMA (hot monomer aggregation) but rather to an intermediate scaling regime related to DLA (diffusion-limited aggregation). We hope this work stimulates further experimental investigations. Work at UMD supported by NSF CHE 13-05892.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia, Andres
Transport and reaction in zeolites and other porous materials, such as mesoporous silica particles, has been a focus of interest in recent years. This is in part due to the possibility of anomalous transport effects (e.g. single-file diffusion) and its impact in the reaction yield in catalytic processes. Computational simulations are often used to study these complex nonequilibrium systems. Computer simulations using Molecular Dynamics (MD) techniques are prohibitive, so instead coarse grained one-dimensional models with the aid of Kinetic Monte Carlo (KMC) simulations are used. Both techniques can be computationally expensive, both time and resource wise. These coarse-grained systems canmore » be exactly described by a set of coupled stochastic master equations, that describe the reaction-diffusion kinetics of the system. The equations can be written exactly, however, coupling between the equations and terms within the equations make it impossible to solve them exactly; approximations must be made. One of the most common methods to obtain approximate solutions is to use Mean Field (MF) theory. MF treatments yield reasonable results at high ratios of reaction rate k to hop rate h of the particles, but fail completely at low k=h due to the over-estimation of fluxes of particles within the pore. We develop a method to estimate fluxes and intrapore diffusivity in simple one- dimensional reaction-diffusion models at high and low k=h, where the pores are coupled to an equilibrated three-dimensional fluid. We thus successfully describe analytically these simple reaction-diffusion one-dimensional systems. Extensions to models considering behavior with long range steric interactions and wider pores require determination of multiple boundary conditions. We give a prescription to estimate the required parameters for these simulations. For one dimensional systems, if single-file diffusion is relaxed, additional parameters to describe particle exchange have to be introduced. We use Langevin Molecular Dynamics (MD) simulations to assess these parameters.« less
Moisture contamination and welding parameter effects on flux cored arc welding diffusible hydrogen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiefer, J.J.
1994-12-31
Gas metal arc (GMAW) and flux cored arc (FCAW) welding are gas shielded semiautomatic processes widely used for achieving high productivity in steel fabrication. Contamination of the shielding has can occur due to poorly maintained gas distribution systems. Moisture entering as a gas contaminant is a source of hydrogen that can cause delayed cold cracking in welds. Limiting heat-affected zone hardness is one method of controlling cracking. Even this is based on some assumptions about the hydrogen levels in the weld. A study was conducted to investigate the effect of shielding gas moisture contamination and welding parameters on the diffusiblemore » hydrogen content of gas shielded flux cored arc welding. The total wire hydrogen of various electrodes was also tested and compared to the diffusible weld hydrogen. An empirical equation has been developed that estimates the diffusible hydrogen in weld metal for gas shielded flux cored arc welding. The equation is suitable for small diameter electrodes and welding parameter ranges commonly used for out-of-position welding. by combining this with the results from the total wire hydrogen tests, it is possible to estimate diffusible hydrogen directly from measured welding parameters, shielding gas dew point, and total hydrogen of the consumable. These equations are also useful for evaluating the effect of welding procedure variations from known baseline conditions.« less
Investigation of surface boundary conditions for continuum modeling of RF plasmas
NASA Astrophysics Data System (ADS)
Wilson, A.; Shotorban, B.
2018-05-01
This work was motivated by a lacking general consensus in the exact form of the boundary conditions (BCs) required on the solid surfaces for the continuum modeling of Radiofrequency (RF) plasmas. Various kinds of number and energy density BCs on solid surfaces were surveyed, and how they interacted with the electric potential BC to affect the plasma was examined in two fundamental RF plasma reactor configurations. A second-order local mean energy approximation with equations governing the electron and ion number densities and the electron energy density was used to model the plasmas. Zero densities and various combinations of drift, diffusion, and thermal fluxes were considered to set up BCs. It was shown that the choice of BC can have a significant impact on the sheath and bulk plasma. The thermal and diffusion fluxes to the surface were found to be important. A pure drift BC for dielectric walls failed to produce a sheath.
Direct Collapse to Supermassive Black Hole Seeds with Radiative Transfer: Isolated Halos
NASA Astrophysics Data System (ADS)
Luo, Yang; Ardaneh, Kazem; Shlosman, Isaac; Nagamine, Kentaro; Wise, John H.; Begelman, Mitchell C.
2018-05-01
Direct collapse within dark matter haloes is a promising path to form supermassive black hole seeds at high redshifts. The outer part of this collapse remains optically thin. However, the innermost region of the collapse is expected to become optically thick and requires to follow the radiation field in order to understand its evolution. So far, the adiabatic approximation has been used exclusively for this purpose. We apply radiative transfer in the flux-limited diffusion (FLD) approximation to solve the evolution of coupled gas and radiation for isolated haloes. We find that (1) the photosphere forms at 10-6 pc and rapidly expands outwards. (2) A central core forms, with a mass of 1 M⊙, supported by gas pressure gradients and rotation. (3) Growing gas and radiation pressure gradients dissolve it. (4) This process is associated with a strong anisotropic outflow; another core forms nearby and grows rapidly. (5) Typical radiation luminosity emerging from the photosphere is 5 × 1037-5 × 1038 erg s-1, of the order the Eddington luminosity. (6) Two variability time-scales are associated with this process: a long one, which is related to the accretion flow within the central 10-4-10-3 pc, and 0.1 yr, related to radiation diffusion. (7) Adiabatic models evolution differs profoundly from that of the FLD models, by forming a geometrically thick disc. Overall, an adiabatic equation of state is not a good approximation to the advanced stage of direct collapse, because the radiation is capable of escaping due to anisotropy in the optical depth and associated gradients.
Improved hatch rate in helium-oxygen by reducing shell diffusion area.
Weiss, H S
1975-03-01
For eggs incubating in a He atmosphere (79% He/21% O2), covering approximately 50% of the shell with melted paraffin improves hatch rate to control values (from 20% to 74%) and decreases egg weight loss to control values (from 17% to 9%). In air (79% N2/21% O2) the same paraffin treatment depresses hatch rate. The role of the inert gases in incubation appears to be an indirect one related to their modification of the rate of gaseous flux across the shell with the adverse effects of He due to excessively rapid diffusion.
Bivelocity hydrodynamics. Diffuse mass flux vs. diffuse volume flux
NASA Astrophysics Data System (ADS)
Brenner, Howard
2013-02-01
An intimate physical connection exists between a fluid’s mass and its volume, with the density ρ serving as a proportionality factor relating these two extensive thermodynamic properties when the fluid is homogeneous. This linkage has led to the erroneous belief among many researchers that a fluid’s diffusive (dissipative) mass flux and its diffusive volume flux counterpart, both occurring in inhomogeneous fluids undergoing transport are, in fact, synonymous. However, the existence of a truly dissipative mass flux (that is, a mass flux that is physically dissipative) has recently and convincingly been shown to be a physical impossibility [H.C. Öttinger, H. Struchtrup, M. Liu, On the impossibility of a dissipative contribution to the mass flux in hydrodynamics, Phys. Rev. E 80 (2009) 056303], owing, among other things, to its violation of the principle of angular momentum conservation. Unfortunately, as a consequence of the erroneous belief in the equality of the diffuse volume and mass fluxes (sans an algebraic sign), this has led many researchers to wrongly conclude that a diffuse volume flux is equally impossible. As a consequence, owing to the fundamental role played by the diffuse volume flux in the theory of bivelocity hydrodynamics [H. Brenner, Beyond Navier-Stokes, Int. J. Eng. Sci. 54 (2012) 67-98], many researchers have been led to falsely dismiss, without due consideration, the possibility of bivelocity hydrodynamics constituting a potentially viable physical theory, which it is believed to be. The present paper corrects this misconception by using a simple concrete example involving an isothermal rotating rigid-body fluid motion to clearly confirm that whereas a diffuse mass flux is indeed impossible, this fact does not exclude the possible existence of a diffuse volume flux and, concomitantly, the possibility that bivelocity hydrodynamics is indeed a potentially viable branch of fluid mechanics.
Self-equilibration of the radius distribution in self-catalyzed GaAs nanowires
NASA Astrophysics Data System (ADS)
Leshchenko, E. D.; Turchina, M. A.; Dubrovskii, V. G.
2016-08-01
This work addresses the evolution of radius distribution function in self-catalyzed vapor-liquid-solid growth of GaAs nanowires from Ga droplets. Different growth regimes are analyzed depending on the V/III flux ratio. In particular, we find a very unusual selfequilibration regime in which the radius distribution narrows up to a certain stationary radius regardless of the initial size distribution of Ga droplets. This requires that the arsenic vapor flux is larger than the gallium one and that the V/III influx imbalance is compensated by a diffusion flux of gallium adatoms. Approximate analytical solution is compared to the numerical radius distribution obtained by solving the corresponding Fokker-Planck equation by the implicit difference scheme.
On turbulent diffusion of magnetic fields and the loss of magnetic flux from stars
NASA Technical Reports Server (NTRS)
Vainshtein, Samuel I.; Rosner, Robert
1991-01-01
The turbulent diffusion of magnetic fields in astrophysical objects, and the processes leading to magnetic field flux loss from such objects are discussed with attention to the suppression of turbulent diffusion by back-reaction of magnetic fields on small spatial scales, and on the constraint imposed on magnetic flux loss by flux-freezing within stars. Turbulent magnetic diffusion can be suppressed even for very weak large-scale magnetic fields, so that 'standard' turbulent diffusion is incapable of significant magnetic flux destruction within a star. Finally, magnetic flux loss via winds is shown to be generally ineffective, no matter what the value of the effective magnetic Reynolds number is.
The SMART Ground-based Remote Sensing for Terra/MODIS Validation
NASA Technical Reports Server (NTRS)
Tsay, Si-Chee; Ji, Q. Jack; Barenbrug, M.; Lau, William K.-M. (Technical Monitor)
2001-01-01
A ground-based remote sensing system - SMART (Surface Measurements for Atmospheric Radiative Transfer) - was deployed during both the SAFARI-2000 and the ARREX-1999 dry season campaigns. The measurement site is the Skukuza airport. The operation period for 1999 is from August 16 to September 10. The main instruments include shortwave (approximately 0.28-2.8 micrometers) and longwave (approximately 4-50 micrometers) broadband radiometers, a shadow-band radiometer, a micro-pulse lidar, and a microwave radiometer. We also did some measurements of solar spectral flux by using an ASD spectrometer. The operation period for 2000 is from August 15 to September 22. This time we added a few new features to the SMART system: a solar tracker for direct and diffuse components of solar fluxes; the scanning capability to the microwave radiometer; a whole sky camera for documenting the sky conditions every minute; and a mini-weather station for atmospheric pressure, temperature, humidity, wind speed/direction. A surface SSFR (Solar Spectral Flux Radiometer) from NASA Ames also joined us for the measurements. This is a unique data set with reasonably long observational period and high accuracy. The data show good correlation with the local weather patterns. We also see diurnal change and some special events, such as fierce fires nearby. To quantify the surface radiative forcing of biomass burning aerosols, many pyranometers, pyrgeometers, and pyrheliometers measure the global, direct, and diffuse irradiance at the surface. These fluxes combining with the collocated optical thickness retrievals from sun photometer (or shadow-band radiometer), the solar radiative forcing, proportional to delta F/delta tau, can be investigated. Integrated with measurements of other instruments at the site, these data sets will serve as "ground truth" for the satellite measurements and modeling.
Estimation of Land Surface Fluxes and Their Uncertainty via Variational Data Assimilation Approach
NASA Astrophysics Data System (ADS)
Abdolghafoorian, A.; Farhadi, L.
2016-12-01
Accurate estimation of land surface heat and moisture fluxes as well as root zone soil moisture is crucial in various hydrological, meteorological, and agricultural applications. "In situ" measurements of these fluxes are costly and cannot be readily scaled to large areas relevant to weather and climate studies. Therefore, there is a need for techniques to make quantitative estimates of heat and moisture fluxes using land surface state variables. In this work, we applied a novel approach based on the variational data assimilation (VDA) methodology to estimate land surface fluxes and soil moisture profile from the land surface states. This study accounts for the strong linkage between terrestrial water and energy cycles by coupling the dual source energy balance equation with the water balance equation through the mass flux of evapotranspiration (ET). Heat diffusion and moisture diffusion into the column of soil are adjoined to the cost function as constraints. This coupling results in more accurate prediction of land surface heat and moisture fluxes and consequently soil moisture at multiple depths with high temporal frequency as required in many hydrological, environmental and agricultural applications. One of the key limitations of VDA technique is its tendency to be ill-posed, meaning that a continuum of possibilities exists for different parameters that produce essentially identical measurement-model misfit errors. On the other hand, the value of heat and moisture flux estimation to decision-making processes is limited if reasonable estimates of the corresponding uncertainty are not provided. In order to address these issues, in this research uncertainty analysis will be performed to estimate the uncertainty of retrieved fluxes and root zone soil moisture. The assimilation algorithm is tested with a series of experiments using a synthetic data set generated by the simultaneous heat and water (SHAW) model. We demonstrate the VDA performance by comparing the (synthetic) true measurements (including profile of soil moisture and temperature, land surface water and heat fluxes, and root water uptake) with VDA estimates. In addition, the feasibility of extending the proposed approach to use remote sensing observations is tested by limiting the number of LST observations and soil moisture observations.
Hybrid stochastic simulation of reaction-diffusion systems with slow and fast dynamics.
Strehl, Robert; Ilie, Silvana
2015-12-21
In this paper, we present a novel hybrid method to simulate discrete stochastic reaction-diffusion models arising in biochemical signaling pathways. We study moderately stiff systems, for which we can partition each reaction or diffusion channel into either a slow or fast subset, based on its propensity. Numerical approaches missing this distinction are often limited with respect to computational run time or approximation quality. We design an approximate scheme that remedies these pitfalls by using a new blending strategy of the well-established inhomogeneous stochastic simulation algorithm and the tau-leaping simulation method. The advantages of our hybrid simulation algorithm are demonstrated on three benchmarking systems, with special focus on approximation accuracy and efficiency.
CO2 fluxes from diffuse degassing in Italy
NASA Astrophysics Data System (ADS)
Cardellini, C.; Chiodini, G.; Frondini, F.; Caliro, S.
2016-12-01
Central and southern Italy are affected by an intense process of CO2 Earth degassing from both active volcanoes, and tectonically active areas. Regional scale studies, based on C mass balance of groundwater of regional aquifers in not volcanically active areas, highlighted the presence of two large CO2 degassing structures that, for magnitude and the geochemical-isotopic features, were related to a regional process of mantle degassing. Quantitative estimates provided a CO2 flux of 9 Mt/y for the region (62000 km2). Besides the magnitude of the process, a strong link between the deep CO2 degassing and the seismicity of the region and a strict correlation between migration of deep CO2-rich fluids and the heat flux have been highlighted. In addition, the region is also characterised by the presence of many cold gas emissions where deeply derived CO2 is released by vents and soil diffuse degassing areas. Both direct CO2 expulsion at the surface and C-rich groundwater are different manifestations of the same process, in fact, the deeply produced gas can be dissolved by groundwater or emitted directly to the atmosphere depending on the gas flux rate, and the geological-structural and hydrogeological settings. Quantitative estimations of the CO2 fluxes are available only for a limited number ( 30) of the about 270 catalogued gas manifestations allowing an estimations of a CO2 flux of 1.4 Mt/y. Summing the two estimates the non-volcanic CO2 flux from the region results globally relevant, being from 2 to 10% of the estimated present-day global CO2 discharge from subaerial volcanoes. Large amounts of CO2 is also discharged by soil diffuse degassing in volcanic-hydrothermal systems. Specific surveys at Solfatara of Pozzuoli (Campi Flegrei Caldera) pointed out the relevance of this process. CO2 diffuse degassing at Solfatara, measured since 1998 shows a persistent CO2 flux of 1300 t/d (± 390 t/d), a flux comparable to an erupting volcano. The quantification of diffuse CO2 degassing in Italy points out the relevance of non-volcanic CO2 degassing and of soil degassing from volcanoes, suggesting that the actual underestimation of the global CO2 degassing, may arise also from the lack of specific and systematic studies of the numerous "degassing areas" of the world, that would contribute to better constrain the global CO2 budget.
Dorodnitsyn, A.; Kallman, T.
2016-01-01
We present calculations of AGN winds at ~parsec scales, along with the associated obscuration. We take into account the pressure of infrared radiation on dust grains and the interaction of X-rays from a central black hole with hot and cold plasma. Infrared radiation (IR) is incorporated in radiation-hydrodynamic simulations adopting the flux-limited diffusion approximation. We find that in the range of X-ray luminosities L=0.05 – 0.6Ledd, the Compton-thick part of the flow (aka torus) has an opening angle of approximately 72° – 75° regardless of the luminosity. At L ≳ 0.1 the outflowing dusty wind provides the obscuration with IR pressure playing a major role. The global flow consists of two phases: the cold flow at inclinations θ ≳ 70° and a hot, ionized wind of lower density at lower inclinations. The dynamical pressure of the hot wind is important in shaping the denser IR supported flow. At luminosities ≤0.1Ledd episodes of outflow are followed by extended periods when the wind switches to slow accretion. PMID:27642184
NASA Astrophysics Data System (ADS)
Babey, T.; De Dreuzy, J. R.; Pinheiro, M.; Garnier, P.; Vieublé-Gonod, L.; Rapaport, A.
2015-12-01
Micro-organisms and substrates may be heterogeneously distributed in soils. This repartition as well as transport mechanisms bringing them into contact are expected to impact the biodegradation rates. Pinheiro et al [2015] have measured in cm-large reconstructed soil cores the fate of an injection of 2,4-D pesticide for different injection conditions and initial distributions of soil pesticide degraders. Through the calibration of a reactive transport model of these experiments, we show that: i) biodegradation of diffusion-controlled pesticide fluxes is favored by a high Damköhler number (high reaction rate compared to flux rate); ii) abiotic sorption processes are negligible and do not interact strongly with biodegradation; iii) biodegradation is primarily governed by the initial repartition of pesticide and degraders for diffusion-controlled transport, as diffusion greatly limits the flux of pesticide reaching the microbial hotspot due to dilution. These results suggest that for biodegradation to be substantial, a spatial heterogeneity in the repartition of microbes and substrate has to be associated with intermittent and fast transport processes to mix them.
NASA Technical Reports Server (NTRS)
Chenette, D. L.; Stone, E. C.
1983-01-01
An analysis of the electron absorption signature observed by the Cosmic Ray System (CRS) on Voyage 2 near the orbit of Mimas is presented. We find that these observations cannot be explained as the absorption signature of Mimas. Combing Pioneer 11 and Voyager 2 measurements of the electron flux at Mimas's orbit (L=3.1), we find an electron spectrum where most of the flux above approx 100 keV is concentrated near 1 to 3 MeV. The expected Mimas absorption signature is calculated from this spectrum neglecting radial diffusion. A lower limit on the diffusion coefficient for MeV electrons is obtained. With a diffusion coefficient this large, both the Voyager 2 and the Pioneer 11 small-scale electron absorption signature observations in Mimas's orbit are enigmatic. Thus we refer to the mechanism for producing these signatures as the Mimas ghost. A cloud of material in orbit with Mimas may account for the observed electron signature if the cloud is at least 1% opaque to electrons across a region extending over a few hundred kilometers.
Slip and barodiffusion phenomena in slow flows of a gas mixture
NASA Astrophysics Data System (ADS)
Zhdanov, V. M.
2017-03-01
The slip and barodiffusion problems for the slow flows of a gas mixture are investigated on the basis of the linearized moment equations following from the Boltzmann equation. We restrict ourselves to the set of the third-order moment equations and state two general relations (resembling conservation equations) for the moments of the distribution function similar to the conditions used by Loyalka [S. K. Loyalka, Phys. Fluids 14, 2291 (1971), 10.1063/1.1693331] in his approximation method (the modified Maxwell method). The expressions for the macroscopic velocities of the gas mixture species, the partial viscous stress tensors, and the reduced heat fluxes for the stationary slow flow of a gas mixture in the semi-infinite space over a plane wall are obtained as a result of the exact solution of the linearized moment equations in the 10- and 13-moment approximations. The general expression for the slip velocity and the simple and accurate expressions for the viscous, thermal, diffusion slip, and baroslip coefficients, which are given in terms of the basic transport coefficients, are derived by using the modified Maxwell method. The solutions of moment equations are also used for investigation of the flow and diffusion of a gas mixture in a channel formed by two infinite parallel plates. A fundamental result is that the barodiffusion factor in the cross-section-averaged expression for the diffusion flux contains contributions associated with the viscous transfer of momentum in the gas mixture and the effect of the Knudsen layer. Our study revealed that the barodiffusion factor is equal to the diffusion slip coefficient (correct to the opposite sign). This result is consistent with the Onsager's reciprocity relations for kinetic coefficients following from nonequilibrium thermodynamics of the discontinuous systems.
Hall Effect–Mediated Magnetic Flux Transport in Protoplanetary Disks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bai, Xue-Ning; Stone, James M.
2017-02-10
The global evolution of protoplanetary disks (PPDs) has recently been shown to be largely controlled by the amount of poloidal magnetic flux threading the disk. The amount of magnetic flux must also coevolve with the disk, as a result of magnetic flux transport, a process that is poorly understood. In weakly ionized gas as in PPDs, magnetic flux is largely frozen in the electron fluid, except when resistivity is large. When the disk is largely laminar, we show that the relative drift between the electrons and ions (the Hall drift), and the ions and neutral fluids (ambipolar drift) can playmore » a dominant role on the transport of magnetic flux. Using two-dimensional simulations that incorporate the Hall effect and ambipolar diffusion (AD) with prescribed diffusivities, we show that when large-scale poloidal field is aligned with disk rotation, the Hall effect rapidly drags magnetic flux inward at the midplane region, while it slowly pushes flux outward above/below the midplane. This leads to a highly radially elongated field configuration as a global manifestation of the Hall-shear instability. This field configuration further promotes rapid outward flux transport by AD at the midplane, leading to instability saturation. In quasi-steady state, magnetic flux is transported outward at approximately the same rate at all heights, and the rate is comparable to the Hall-free case. For anti-aligned field polarity, the Hall effect consistently transports magnetic flux outward, leading to a largely vertical field configuration in the midplane region. The field lines in the upper layer first bend radially inward and then outward to launch a disk wind. Overall, the net rate of outward flux transport is about twice as fast as that of the aligned case. In addition, the rate of flux transport increases with increasing disk magnetization. The absolute rate of transport is sensitive to disk microphysics, which remains to be explored in future studies.« less
Nonequilibrium Fluctuations and Enhanced Diffusion of a Driven Particle in a Dense Environment
NASA Astrophysics Data System (ADS)
Illien, Pierre; Bénichou, Olivier; Oshanin, Gleb; Sarracino, Alessandro; Voituriez, Raphaël
2018-05-01
We study the diffusion of a tracer particle driven out of equilibrium by an external force and traveling in a dense environment of arbitrary density. The system evolves on a discrete lattice and its stochastic dynamics is described by a master equation. Relying on a decoupling approximation that goes beyond the naive mean-field treatment of the problem, we calculate the fluctuations of the position of the tracer around its mean value on a lattice of arbitrary dimension, and with different boundary conditions. We reveal intrinsically nonequilibrium effects, such as enhanced diffusivity of the tracer induced by both the crowding interactions and the external driving. We finally consider the high-density and low-density limits of the model and show that our approximation scheme becomes exact in these limits.
Fundamental Flux Equations for Fracture-Matrix Interactions with Linear Diffusion
NASA Astrophysics Data System (ADS)
Oldenburg, C. M.; Zhou, Q.; Rutqvist, J.; Birkholzer, J. T.
2017-12-01
The conventional dual-continuum models are only applicable for late-time behavior of pressure propagation in fractured rock, while discrete-fracture-network models may explicitly deal with matrix blocks at high computational expense. To address these issues, we developed a unified-form diffusive flux equation for 1D isotropic (spheres, cylinders, slabs) and 2D/3D rectangular matrix blocks (squares, cubes, rectangles, and rectangular parallelepipeds) by partitioning the entire dimensionless-time domain (Zhou et al., 2017a, b). For each matrix block, this flux equation consists of the early-time solution up until a switch-over time after which the late-time solution is applied to create continuity from early to late time. The early-time solutions are based on three-term polynomial functions in terms of square root of dimensionless time, with the coefficients dependent on dimensionless area-to-volume ratio and aspect ratios for rectangular blocks. For the late-time solutions, one exponential term is needed for isotropic blocks, while a few additional exponential terms are needed for highly anisotropic blocks. The time-partitioning method was also used for calculating pressure/concentration/temperature distribution within a matrix block. The approximate solution contains an error-function solution for early times and an exponential solution for late times, with relative errors less than 0.003. These solutions form the kernel of multirate and multidimensional hydraulic, solute and thermal diffusion in fractured reservoirs.
A numerical solution for the diffusion equation in hydrogeologic systems
Ishii, A.L.; Healy, R.W.; Striegl, Robert G.
1989-01-01
The documentation of a computer code for the numerical solution of the linear diffusion equation in one or two dimensions in Cartesian or cylindrical coordinates is presented. Applications of the program include molecular diffusion, heat conduction, and fluid flow in confined systems. The flow media may be anisotropic and heterogeneous. The model is formulated by replacing the continuous linear diffusion equation by discrete finite-difference approximations at each node in a block-centered grid. The resulting matrix equation is solved by the method of preconditioned conjugate gradients. The conjugate gradient method does not require the estimation of iteration parameters and is guaranteed convergent in the absence of rounding error. The matrixes are preconditioned to decrease the steps to convergence. The model allows the specification of any number of boundary conditions for any number of stress periods, and the output of a summary table for selected nodes showing flux and the concentration of the flux quantity for each time step. The model is written in a modular format for ease of modification. The model was verified by comparison of numerical and analytical solutions for cases of molecular diffusion, two-dimensional heat transfer, and axisymmetric radial saturated fluid flow. Application of the model to a hypothetical two-dimensional field situation of gas diffusion in the unsaturated zone is demonstrated. The input and output files are included as a check on program installation. The definition of variables, input requirements, flow chart, and program listing are included in the attachments. (USGS)
The importance of electrothermal terms in Ohm's law for magnetized spherical implosions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davies, J. R., E-mail: jdav@lle.rochester.edu; Betti, R.; Chang, P.-Y.
2015-11-15
The magnetohydrodynamics (MHD) of magnetic-field compression in laser-driven spherical targets is considered. Magnetic-field evolution is cast in terms of an effective fluid velocity, a convective term resulting from resistivity gradients, a resistive diffusion term, and a source term. Effective velocity is the sum of fluid velocity, drift velocity, and heat-flux velocity, given by electron heat flux divided by electron enthalpy density, which has two components: the perpendicular or Nernst velocity and the cross-field velocity. The Nernst velocity compresses the magnetic field as the heat front moves into gas. The cross-field velocity leads to dynamo generation of an azimuthal magnetic field.more » It is proposed that the heat-flux velocity should be flux limited using a “Nernst” flux limiter independent of the thermal flux limiter but should not exceed it. The addition of the MHD routines to the 1D, Lagrangian hydrocode LILAC and the Eulerian version of the 2D hydrocode DRACO is described, and the codes are used to model a magnetized spherical compression on the OMEGA laser. Thermal flux limiting at a shock front is found to cause unphysical electron temperature gradients that lead to large, unphysical magnetic fields caused by the resistivity gradient, so thermal flux limiting in the gas is removed. The Nernst term reduces the benefits of magnetization in inertial fusion. A Nernst flux limiter ≤0.12 is required in the gas in order to agree with measured neutron yield and increases in the neutron-averaged ion temperature caused by magnetization. This corresponds to preventing the Nernst velocity from exceeding the shock velocity, which prevents significant decoupling of the magnetic field and gas compression.« less
The importance of electrothermal terms in Ohm's law for magnetized spherical implosions
Davies, J. R.; Betti, R.; Chang, P. -Y.; ...
2015-11-06
The magnetohydrodynamics (MHD) of magnetic-field compression in laser-driven spherical targets is considered. Magnetic-field evolution is cast in terms of an effective fluid velocity, a convective term resulting from resistivity gradients, a resistive diffusion term, and a source term. Effective velocity is the sum of fluid velocity, drift velocity, and heat-flux velocity, given by electron heat flux divided by electron enthalpy density, which has two components: the perpendicular or Nernst velocity and the cross-field velocity. The Nernst velocity compresses the magnetic field as a heat front moves into the gas. The cross-field velocity leads to dynamo generation of an azimuthal magneticmore » field. It is proposed that the heat-flux velocity should be flux limited using a “Nernst” flux limiter independent of the thermal flux limiter but should not exceed it. The addition of MHD routines to the 1-D, Lagrangian hydrocode LILAC and the Eulerian version of the 2-D hydrocode DRACO is described, and the codes are used to model a magnetized spherical compression on the OMEGA laser. Thermal flux limiting at a shock front is found to cause unphysical electron temperature gradients that lead to large, unphysical magnetic fields caused by the resistivity gradient, so thermal flux limiting in the gas is removed. The Nernst term reduces the benefits of magnetization in inertial fusion. In addition, a Nernst flux limiter ≤ 0.12 is required in the gas in order to agree with measured neutron yield and increases in the neutron-averaged ion temperature caused by magnetization. This corresponds to maintaining the Nernst velocity below the shock velocity, which prevents significant decoupling of the magnetic field and gas compression.« less
Chloride Transport in Porous Lipid Bilayer Membranes
Andreoli, Thomas E.; Watkins, Mary L.
1973-01-01
This paper describes dissipative Cl- transport in "porous" lipid bilayer membranes, i.e., cholesterol-containing membranes exposed to 1–3 x 10-7 M amphotericin B. P DCl (cm·s-1), the diffusional permeability coefficient for Cl-, estimated from unidirectional 36Cl- fluxes at zero volume flow, varied linearly with the membrane conductance (Gm, Ω-1·cm-2) when the contributions of unstirred layers to the resistance to tracer diffusion were relatively small with respect to the membranes; in 0.05 M NaCl, P DCl was 1.36 x 10-4 cm·s-1 when Gm was 0.02 Ω-1·cm-2. Net chloride fluxes were measured either in the presence of imposed concentration gradients or electrical potential differences. Under both sets of conditions: the values of P DCl computed from zero volume flow experiments described net chloride fluxes; the net chloride fluxes accounted for ∼90–95% of the membrane current density; and, the chloride flux ratio conformed to the Ussing independence relationship. Thus, it is likely that Cl- traversed aqueous pores in these anion-permselective membranes via a simple diffusion process. The zero current membrane potentials measured when the aqueous phases contained asymmetrical NaCl solutions could be expressed in terms of the Goldman-Hodgkin-Katz constant field equation, assuming that the P DNa/P DCl ratio was 0.05. In symmetrical salt solutions, the current-voltage properties of these membranes were linear; in asymmetrical NaCl solutions, the membranes exhibited electrical rectification consistent with constant-field theory. It seems likely that the space charge density in these porous membranes is sufficiently low that the potential gradient within the membranes is approximately linear; and, that the pores are not electrically neutral, presumably because the Debye length within the membrane phase approximates the membrane thickness. PMID:4708408
NASA Astrophysics Data System (ADS)
Ashworth, J. R.; Birdi, J. J.; Emmett, T. F.
1992-01-01
Retrograde coronas of Caledonian age, between clinopyroxene and plagioclase in the Jotun Nappe Complex, Norway, illustrate the effects of diffusion kinetics on mineral distributions among layers and on the compositions of hornblende-actinolite. One corona type comprises a symplectite of epidote + quartz adjacent to plagioclase, and a less well-organized intergrowth of amphibole + quartz replacing clinopyroxene. The observed mineral proportions imply an open-system reaction, but the similarity of Al/Si ratios in reactant plagioclase and product symplectite indicates approximate conservation of Al2O3 and SiO2. The largest inferred open-system flux is a loss of CaO, mostly derived from consumption of clinopyroxene. The approximate layer structure, Pl|Ep + Qtz|Hbl + Qtz|Act±Hbl + Qtz|Cpx, is modelled using the theory of steady-state diffusion-controlled growth with local equilibrium. To obtain a solution, it is necessary to use a reactant plagioclase composition which takes into account aluminous (epidote) inclusions. The results indicate that, in terms of Onsager diffusion coefficients L ii , Ca is more mobile than AL ( L CaCa/ L AlAl≳3.) (where ≳ means greater than or approximately equal to). This behaviour of Ca is comparable with that of Mg in previously studied coronas around olivine. Si is non-diffusing in the present modelling, because of silica saturation. Oxidation of some Fe2+ to Fe3+ occurs within the corona. Mg diffuses towards its source (clinopyroxene) to maintain local equilibrium. Other coronas consist of two layers, hornblende adjacent to plagioclase and zoned amphibole + quartz adjacent to clinopyroxene. In the zoned layer, actinolitic hornblende forms relict patches, separated from quartz blebs by more aluminous hornblende. A preliminary steady-state, local-equilibrium model of grain-boundary diffusion explains the formation of low-Al and high-Al layers as due to Al immobility. Zoning and replacement are qualitatively explained in terms of evolution of actinolite to more stable aluminous compositions. This is modelled by a non-steady-state modification of the theory, retaining local equilibrium in grain boundaries while relatively steep zoning profiles develop in grain interiors through slow intracrystalline diffusion. Replacement of actinolite by hornblende does not require a change in P- T conditions if actinolite is a kinetically determined, non-equilibrium product. The common preservation of a sharp contact between hornblende and actionolite layers may be explained by ineffectiveness of intracrystalline diffusion: according to the theory, given sufficient grain-boundary Al flux, a metastable actinolite + quartz layer in contact with hornblende may be diffusionally stable and may continue to grow in a steady state.
A pore-pressure diffusion model for estimating landslide-inducing rainfall
Reid, M.E.
1994-01-01
Many types of landslide movement are induced by large rainstorms, and empirical rainfall intensity/duration thresholds for initiating movement have been determined for various parts of the world. In this paper, I present a simple pressure diffusion model that provides a physically based hydrologic link between rainfall intensity/duration at the ground surface and destabilizing pore-water pressures at depth. The model approximates rainfall infiltration as a sinusoidally varying flux over time and uses physical parameters that can be determined independently. Using a comprehensive data set from an intensively monitored landslide, I demonstrate that the model is capable of distinguishing movement-inducing rainstorms. -Author
NASA Astrophysics Data System (ADS)
Yang, Fan; Dames, Chris
2015-04-01
The heating-frequency dependence of the apparent thermal conductivity in a semi-infinite body with periodic planar surface heating is explained by an analytical solution to the Boltzmann transport equation. This solution is obtained using a two-flux model and gray mean free time approximation and verified numerically with a lattice Boltzmann method and numerical results from the literature. Extending the gray solution to the nongray regime leads to an integral transform and accumulation-function representation of the phonon scattering spectrum, where the natural variable is mean free time rather than mean free path, as often used in previous work. The derivation leads to an approximate cutoff conduction similar in spirit to that of Koh and Cahill [Phys. Rev. B 76, 075207 (2007), 10.1103/PhysRevB.76.075207] except that the most appropriate criterion involves the heater frequency rather than thermal diffusion length. The nongray calculations are consistent with Koh and Cahill's experimental observation that the apparent thermal conductivity shows a stronger heater-frequency dependence in a SiGe alloy than in natural Si. Finally these results are demonstrated using a virtual experiment, which fits the phase lag between surface temperature and heat flux to obtain the apparent thermal conductivity and accumulation function.
Annan, Kodwo
2012-01-01
The efficiency of a high-flux dialyzer in terms of buffering and toxic solute removal largely depends on the ability to use convection-diffusion mechanism inside the membrane. A two-dimensional transient convection-diffusion model coupled with acid-base correction term was developed. A finite volume technique was used to discretize the model and to numerically simulate it using MATLAB software tool. We observed that small solute concentration gradients peaked and were large enough to activate solute diffusion process in the membrane. While CO2 concentration gradients diminished from their maxima and shifted toward the end of the membrane, HCO3 − concentration gradients peaked at the same position. Also, CO2 concentration decreased rapidly within the first 47 minutes while optimal HCO3 − concentration was achieved within 30 minutes of the therapy. Abnormally high diffusion fluxes were observed near the blood-membrane interface that increased diffusion driving force and enhanced the overall diffusive process. While convective flux dominated total flux during the dialysis session, there was a continuous interference between convection and diffusion fluxes that call for the need to seek minimal interference between these two mechanisms. This is critical for the effective design and operation of high-flux dialyzers. PMID:23197994
Hybrid stochastic simulation of reaction-diffusion systems with slow and fast dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strehl, Robert; Ilie, Silvana, E-mail: silvana@ryerson.ca
2015-12-21
In this paper, we present a novel hybrid method to simulate discrete stochastic reaction-diffusion models arising in biochemical signaling pathways. We study moderately stiff systems, for which we can partition each reaction or diffusion channel into either a slow or fast subset, based on its propensity. Numerical approaches missing this distinction are often limited with respect to computational run time or approximation quality. We design an approximate scheme that remedies these pitfalls by using a new blending strategy of the well-established inhomogeneous stochastic simulation algorithm and the tau-leaping simulation method. The advantages of our hybrid simulation algorithm are demonstrated onmore » three benchmarking systems, with special focus on approximation accuracy and efficiency.« less
NASA Technical Reports Server (NTRS)
Mair, R. W.; Hurlimann, M. D.; Sen, P. N.; Schwartz, L. M.; Patz, S.; Walsworth, R. L.
2001-01-01
We have extended the utility of NMR as a technique to probe porous media structure over length scales of approximately 100-2000 microm by using the spin 1/2 noble gas 129Xe imbibed into the system's pore space. Such length scales are much greater than can be probed with NMR diffusion studies of water-saturated porous media. We utilized Pulsed Gradient Spin Echo NMR measurements of the time-dependent diffusion coefficient, D(t), of the xenon gas filling the pore space to study further the measurements of both the pore surface-area-to-volume ratio, S/V(p), and the tortuosity (pore connectivity) of the medium. In uniform-size glass bead packs, we observed D(t) decreasing with increasing t, reaching an observed asymptote of approximately 0.62-0.65D(0), that could be measured over diffusion distances extending over multiple bead diameters. Measurements of D(t)/D(0) at differing gas pressures showed this tortuosity limit was not affected by changing the characteristic diffusion length of the spins during the diffusion encoding gradient pulse. This was not the case at the short time limit, where D(t)/D(0) was noticeably affected by the gas pressure in the sample. Increasing the gas pressure, and hence reducing D(0) and the diffusion during the gradient pulse served to reduce the previously observed deviation of D(t)/D(0) from the S/V(p) relation. The Pade approximation is used to interpolate between the long and short time limits in D(t). While the short time D(t) points lay above the interpolation line in the case of small beads, due to diffusion during the gradient pulse on the order of the pore size, it was also noted that the experimental D(t) data fell below the Pade line in the case of large beads, most likely due to finite size effects.
Effect of vacuum processing on outgassing within an orbiting molecular shield
NASA Technical Reports Server (NTRS)
Outlaw, R. A.
1982-01-01
The limiting hydrogen number density in an orbiting molecular shield is highly dependent on the outgassing rates from the materials of construction for the shield, experimental apparatus, and other hardware contained within the shield. Ordinary degassing temperatures used for ultrahigh vacuum studies (less than 450 C) are not sufficient to process metals so that the contribution to the number density within the shield due to outgassing is less than the theoretically attainable level (approximately 200 per cu. cm). Pure aluminum and type 347 stainless steel were studied as candidate shield materials. Measurements of their hydrogen concentration and diffusion coefficients were made, and the effects of high temperature vacuum processing (greater than 600 C) on their resulting outgassing rates was determined. The densities in a molecular shield due to the outgassing from either metal were substantially less ( 0.003) than the density due to the ambient atomic hydrogen flux at an orbital altitude of 500 km.
NASA Technical Reports Server (NTRS)
Taylor, Robert P.; Luck, Rogelio
1995-01-01
The view factors which are used in diffuse-gray radiation enclosure calculations are often computed by approximate numerical integrations. These approximately calculated view factors will usually not satisfy the important physical constraints of reciprocity and closure. In this paper several view-factor rectification algorithms are reviewed and a rectification algorithm based on a least-squares numerical filtering scheme is proposed with both weighted and unweighted classes. A Monte-Carlo investigation is undertaken to study the propagation of view-factor and surface-area uncertainties into the heat transfer results of the diffuse-gray enclosure calculations. It is found that the weighted least-squares algorithm is vastly superior to the other rectification schemes for the reduction of the heat-flux sensitivities to view-factor uncertainties. In a sample problem, which has proven to be very sensitive to uncertainties in view factor, the heat transfer calculations with weighted least-squares rectified view factors are very good with an original view-factor matrix computed to only one-digit accuracy. All of the algorithms had roughly equivalent effects on the reduction in sensitivity to area uncertainty in this case study.
Ares I Reaction Control System Propellant Feedline Decontamination Modeling
NASA Technical Reports Server (NTRS)
Pasch, James J.
2010-01-01
The objective of the work presented here is to quantify the effects of purge gas temperature, pressure, and mass flow rate on Hydrazine (Hz) decontamination rates of the Ares I Roll Control System and Reaction Control System. A survey of experts in this field revealed the absence of any decontamination rate prediction models. Three basic decontamination methods were identified for analysis and modeling. These include low pressure eduction, high flow rate purge, and pulse purge. For each method, an approach to predict the Hz mass transfer rate, as a function of system pressure, temperature, and purge gas mass flow rate, is developed based on the applicable physics. The models show that low pressure eduction is two orders of magnitude more effective than the high velocity purge, which in turn is two orders of magnitude more effective than the pure diffusion component of pulse purging of deadheads. Eduction subjects the system to low pressure conditions that promote the extraction of Hz vapors. At 120 F, Hz is saturated at approximately 1 psia. At lower pressures and 120 F, Hz will boil, which is an extremely efficient means to remove liquid Hz. The Hz boiling rate is predicted by equating the rate at which energy is added to the saturated liquid Hz through heaters at the tube outer wall with the energy removed from the liquid through evaporation. Boil-off fluxes were predicted by iterating through the range of local pressures with limits set by the minimum allowed pressure of 0.2 psia and maximum allowed wall temperature of 120 F established by the heaters, which gives a saturation pressure of approximately 1.0 psia. Figure 1 shows the resulting boil-off fluxes as a function of local eduction pressure. As depicted in figure 1, the flux is a strong inverse function of eduction pressure, and that minimizing the eduction pressure maximizes the boil-off flux. Also, higher outer wall temperatures lead to higher boil-off fluxes and allow for boil-off over a greater range of eduction pressures.
Tillman, Fred D; Smith, James A
2004-11-01
To determine if an aquifer contaminated with volatile organic compounds (VOCs) has potential for natural remediation, all natural processes affecting the fate and transport of VOCs in the subsurface must be identified and quantified. This research addresses the quantification of air-phase volatile organic compounds (VOCs) leaving the unsaturated zone soil gas and entering the atmosphere-including the additional flux provided by advective soil-gas movement induced by barometric pumping. A simple and easy-to-use device for measuring VOC flux under natural conditions is presented. The vertical flux chamber (VFC) was designed using numerical simulations and evaluated in the laboratory. Mass-balance numerical simulations based on continuously stirred tank reactor equations (CSTR) provided information on flux measurement performance of several sampling configurations with the final chamber configuration measuring greater than 96% of model-simulated fluxes. A laboratory device was constructed to evaluate the flux chamber under both diffusion-only and advection-plus-diffusion transport conditions. The flux chamber measured an average of 82% of 15 diffusion-only fluxes and an average of 95% of 15 additional advection-plus-diffusion flux experiments. The vertical flux chamber has the capability of providing reliable measurement of VOC flux from the unsaturated zone under both diffusion and advection transport conditions.
Photoionization of the diffuse interstellar medium and galactic halo by OB associtations
NASA Technical Reports Server (NTRS)
Dove, James B.; Shull, J. Michael
1994-01-01
Assuming smoothly varying H I distributions in te Galactic disk, we have calculated the geometry of diffuse II regions due to OB associations in the Galactic plane. Near the solar circle, OB associations with a Lyman continuum (Lyc) photon luminosity Psi(sub Lyc) = 3.3 x 10(exp 7) cm(exp -2) s(exp -1), produce H II regions that are density bounded in the vertical direction (H II chimneys) allowing Lyc to escape the gaseous disk and penetrate into the Galactic halo. We provide analytic formulae for the Lyc escape fraction as functions of S(sub 0) O-star catalog of Garmany and a new Lyc stellar stellar Lyc stellar flux calibration, we find a production rate of Lyc photons by OB associations within 2.5 kpc of Psi(sub Lyc) = 3.3 x 10(exp 7) cm(exp -2) s(exp -1). Integrating the fraction of Lyc photons that escape the disk over our adopted luminosity function of OB associations, we estimate that approximately 7% of the ionizing photons, or Phi(sub Lyc) = 2.3 x 10(exp 6) cm(exp -2) s(exp -1), escape each side of the H I disk layer and penetrate the diffuse ionized medium ('Reynolds layer'). This flux is sufficient to explain the potoionization of this, although we have not constructed a model for the observed H-alpha emission and pulsar dispersion measures that is fully consistent with the absorption rate of Lyc in the H II layer. Since our quiescent model does not account for the effects of dynamic chimneys and superbubbles, which should enhance Lyc escape, we conclude the O stars are the probable source of ionizing radiation for the Reynolds layer. For a random distribution of OB associations throughout the disk, the Lyc flux is nearly uniform for heights Z is greater than approximately 0.8 kpc above the midplane.
Chapman Enskog-maximum entropy method on time-dependent neutron transport equation
NASA Astrophysics Data System (ADS)
Abdou, M. A.
2006-09-01
The time-dependent neutron transport equation in semi and infinite medium with linear anisotropic and Rayleigh scattering is proposed. The problem is solved by means of the flux-limited, Chapman Enskog-maximum entropy for obtaining the solution of the time-dependent neutron transport. The solution gives the neutron distribution density function which is used to compute numerically the radiant energy density E(x,t), net flux F(x,t) and reflectivity Rf. The behaviour of the approximate flux-limited maximum entropy neutron density function are compared with those found by other theories. Numerical calculations for the radiant energy, net flux and reflectivity of the proposed medium are calculated at different time and space.
Microfabricated valveless devices for thermal bioreactions based on diffusion-limited evaporation.
Wang, Fang; Yang, Ming; Burns, Mark A
2008-01-01
Microfluidic devices that reduce evaporative loss during thermal bioreactions such as PCR without microvalves have been developed by relying on the principle of diffusion-limited evaporation. Both theoretical and experimental results demonstrate that the sample evaporative loss can be reduced by more than 20 times using long narrow diffusion channels on both sides of the reaction region. In order to further suppress the evaporation, the driving force for liquid evaporation is reduced by two additional techniques: decreasing the interfacial temperature using thermal isolation and reducing the vapor concentration gradient by replenishing water vapor in the diffusion channels. Both thermal isolation and vapor replenishment techniques can limit the sample evaporative loss to approximately 1% of the reaction content.
Cross-tail magnetic flux ropes as observed by the GEOTAIL spacecraft
NASA Technical Reports Server (NTRS)
Lepping, R. P.; Fairfield, D. H.; Jones, J.; Frank, L. A.; Paterson, W. R.; Kokubun, S.; Yamamoto, T.
1995-01-01
Ten transient magnetic structures in Earth's magnetotail, as observed in GEOTAIL measurements, selected for early 1993 (at (-) X(sub GSM) = 90 - 130 Earth radii), are shown to have helical magnetic field configurations similar to those of interplanetary magnetic clouds at 1 AU but smaller in size by a factor of approximately = 700. Such structures are shown to be well approximated by a comprehensive magnetic force-free flux-rope model. For this limited set of 10 events the rope axes are seen to be typically aligned with the Y(sub GSM) axis and the average diameter of these structures is approximately = 15 Earth radii.
Innermost Van Allen Radiation Belt for High Energy Protons at Saturn
NASA Technical Reports Server (NTRS)
Cooper, John F.
2008-01-01
The high energy proton radiation belts of Saturn are energetically dominated by the source from cosmic ray albedo neutron decay (CRAND), trapping of protons from beta decay of neutrons emitted from galactic cosmic ray nuclear interactions with the main rings. These belts were originally discovered in wide gaps between the A-ring, Janus/Epimetheus, Mimas, and Enceladus. The narrow F and G rings significant affected the CRAND protons but did not produce total depletion. Voyager 2 measurements subsequently revealed an outermost CRAND proton belt beyond Enceladus. Although the source rate is small, the trapping times limited by radial magnetospheric diffusion are very long, about ten years at peak measured flux inwards of the G ring, so large fluxes can accumulate unless otherwise limited in the trapping region by neutral gas, dust, and ring body interactions. One proposed final extension of the Cassini Orbiter mission would place perikrone in a 3000-km gap between the inner D ring and the upper atmosphere of Saturn. Experience with CRAND in the Earth's inner Van Allen proton belt suggests that a similar innermost belt might be found in this comparably wide region at Saturn. Radial dependence of magnetospheric diffusion, proximity to the ring neutron source, and northward magnetic offset of Saturn's magnetic equator from the ring plane could potentially produce peak fluxes several orders of magnitude higher than previously measured outside the main rings. Even brief passes through such an intense environment of highly penetrating protons would be a significant concern for spacecraft operations and science observations. Actual fluxes are limited by losses in Saturn's exospheric gas and in a dust environment likely comparable to that of the known CRAND proton belts. The first numerical model of this unexplored radiation belt is presented to determine limits on peak magnitude and radial profile of the proton flux distribution.
NASA Astrophysics Data System (ADS)
Liu, Ruo-Yu; Taylor, Andrew; Wang, Xiang-Yu; Aharonian, Felix
2017-01-01
By interacting with the cosmic background photons during their propagation through intergalactic space, ultrahigh energy cosmic rays (UHECRs) produce energetic electron/positron pairs and photons which will initiate electromagnetic cascades, contributing to the isotropic gamma-ray background (IGRB). The generated gamma-ray flux level highly depends on the redshift evolution of the UHECR sources. Recently, the Fermi-LAT collaboration reported that 86-14+16 of the total extragalactic gamma-ray flux comes from extragalactic point sources including those unresolved ones. This leaves a limited room for the diffusive gamma ray generated via UHECR propagation, and subsequently constrains their source distribution in the Universe. Normalizing the total cosmic ray energy budget with the observed UHECR flux in the energy band of (1-4)×1018 eV, we calculate the diffuse gamma-ray flux generated through UHECR propagation. We find that in order to not overshoot the new IGRB limit, these sub-ankle UHECRs should be produced mainly by nearby sources, with a possible non-negligible contribution from our Galaxy. The distance for the majority of UHECR sources can be further constrained if a given fraction of the observed IGRB at 820 GeV originates from UHECR. We note that our result should be conservative since there may be various other contributions to the IGRB that is not included here.
Energetic particle diffusion and the A ring: Revisiting noise from Cassini's orbital insertion
NASA Astrophysics Data System (ADS)
Crary, Frank; Kollmann, Peter
2016-04-01
Immediately following Cassini's orbital insertion on July 1, 2004 the Cassini spacecraft passed over the Saturn's main rings. In anticipation of the final phase of the Cassini mission, with orbits inside and over the main rings, we have re-examined data from the CAPS instrument taken during the orbital insertion period. One previously-neglected feature is the detector noise in the ELS sensor. This has proven to be a sensitive, relative measure of omni-directional energetic (>5 MeV) electron flux. The data are obtained at 31.25 ms time resolution, corresponding to 0.46 km spatial resolution. Over the A ring, the energetic electron flux was essentially zero (~3 counts per sample.) At the edge of the A ring, this dramatically increased to approximately 2500 counts per sample in the space of 17.5 km. We use these results to derive the energetic particle diffusion rate and the absorption (optical depth) of the ring.
Galerkin methods for Boltzmann-Poisson transport with reflection conditions on rough boundaries
NASA Astrophysics Data System (ADS)
Morales Escalante, José A.; Gamba, Irene M.
2018-06-01
We consider in this paper the mathematical and numerical modeling of reflective boundary conditions (BC) associated to Boltzmann-Poisson systems, including diffusive reflection in addition to specularity, in the context of electron transport in semiconductor device modeling at nano scales, and their implementation in Discontinuous Galerkin (DG) schemes. We study these BC on the physical boundaries of the device and develop a numerical approximation to model an insulating boundary condition, or equivalently, a pointwise zero flux mathematical condition for the electron transport equation. Such condition balances the incident and reflective momentum flux at the microscopic level, pointwise at the boundary, in the case of a more general mixed reflection with momentum dependant specularity probability p (k →). We compare the computational prediction of physical observables given by the numerical implementation of these different reflection conditions in our DG scheme for BP models, and observe that the diffusive condition influences the kinetic moments over the whole domain in position space.
Turbulent nitrate fluxes in the Lower St. Lawrence Estuary, Canada
NASA Astrophysics Data System (ADS)
Cyr, Frédéric; Bourgault, Daniel; Galbraith, Peter S.; Gosselin, Michel
2015-03-01
Turbulent vertical nitrate fluxes were calculated using new turbulent microstructure observations in the Lower St. Lawrence Estuary (LSLE), Canada. Two stations were compared: the head of the Laurentian Channel (HLC), where intense mixing occurs on the shallow sill that marks the upstream limit of the LSLE, and another station located about 100 km downstream (St. 23), more representative of the LSLE mean mixing conditions. Mean turbulent diffusivities and nitrate fluxes at the base of the surface layer for both stations were, respectively (with 95% confidence intervals): K¯HLC = 8.6>(3.2,19>) × 10-3 m2 s-1,K¯23 = 4.4>(2.3,7.6>) × 10-5 m2 s-1,F¯HLC = 95>(18,300>) mmol m-2 d-1, and F¯23 = 0.21>(0.12,0.33>) mmol m-2 d-1. Observations suggest that the interplay between large isopleth heaving near the sill and strong turbulence is the key mechanism to sustain such high turbulent nitrate fluxes at the HLC (two to three orders of magnitude higher than those at Station 23). Calculations also suggest that nitrate fluxes at the HLC alone can sustain primary production rates of 3.4>(0.6,11>) g C m-2 mo-1 over the whole LSLE, approximately enough to account for a large part of the phytoplankton bloom and for most of the postbloom production. Surfacing nitrates are also believed to be consumed within the LSLE, not leaving much to be exported to the rest of the Gulf of St. Lawrence. This article was corrected on 13 APR 2015. See the end of the full text for details.
NASA Astrophysics Data System (ADS)
Marcinko, Steven; Curreli, Davide
2018-02-01
The Hybrid Illinois Device for Research and Applications (HIDRA) is a new device for education and Plasma-Material Interaction research at the University of Illinois at Urbana-Champaign. In advance of its first operational campaign, EMC3-EIRENE simulations have been run on the device. EMC3-EIRENE has been modified to calculate a per-plasma-cell relaxed Bohm-like diffusivity simultaneously with the electron temperature at each iteration. In our characterization, the electron temperature, diffusivity, heat fluxes, and particle fluxes have been obtained for varying power levels on a HIDRA magnetic grid, and scaling laws have been extracted, using constraints from previous experimental data taken when the device was operated in Germany (WEGA facility). Peak electron temperatures and heat fluxes were seen to follow a power-law dependence on the deposited radiofrequency (RF) power of type f (PR F)∝a PRF b , with typical exponents in the range of b ˜0.55 to 0.60. Higher magnetic fields have the tendency to linearize the heat flux dependence on the RF power, with exponents in the range of b ˜ 0.75. Particle fluxes are seen to saturate first, and then slightly decline for RF powers above 120 kW in the low-field case and 180 kW in the high-field case.
Hellander, Andreas; Lawson, Michael J; Drawert, Brian; Petzold, Linda
2015-01-01
The efficiency of exact simulation methods for the reaction-diffusion master equation (RDME) is severely limited by the large number of diffusion events if the mesh is fine or if diffusion constants are large. Furthermore, inherent properties of exact kinetic-Monte Carlo simulation methods limit the efficiency of parallel implementations. Several approximate and hybrid methods have appeared that enable more efficient simulation of the RDME. A common feature to most of them is that they rely on splitting the system into its reaction and diffusion parts and updating them sequentially over a discrete timestep. This use of operator splitting enables more efficient simulation but it comes at the price of a temporal discretization error that depends on the size of the timestep. So far, existing methods have not attempted to estimate or control this error in a systematic manner. This makes the solvers hard to use for practitioners since they must guess an appropriate timestep. It also makes the solvers potentially less efficient than if the timesteps are adapted to control the error. Here, we derive estimates of the local error and propose a strategy to adaptively select the timestep when the RDME is simulated via a first order operator splitting. While the strategy is general and applicable to a wide range of approximate and hybrid methods, we exemplify it here by extending a previously published approximate method, the Diffusive Finite-State Projection (DFSP) method, to incorporate temporal adaptivity. PMID:26865735
Hellander, Andreas; Lawson, Michael J; Drawert, Brian; Petzold, Linda
2014-06-01
The efficiency of exact simulation methods for the reaction-diffusion master equation (RDME) is severely limited by the large number of diffusion events if the mesh is fine or if diffusion constants are large. Furthermore, inherent properties of exact kinetic-Monte Carlo simulation methods limit the efficiency of parallel implementations. Several approximate and hybrid methods have appeared that enable more efficient simulation of the RDME. A common feature to most of them is that they rely on splitting the system into its reaction and diffusion parts and updating them sequentially over a discrete timestep. This use of operator splitting enables more efficient simulation but it comes at the price of a temporal discretization error that depends on the size of the timestep. So far, existing methods have not attempted to estimate or control this error in a systematic manner. This makes the solvers hard to use for practitioners since they must guess an appropriate timestep. It also makes the solvers potentially less efficient than if the timesteps are adapted to control the error. Here, we derive estimates of the local error and propose a strategy to adaptively select the timestep when the RDME is simulated via a first order operator splitting. While the strategy is general and applicable to a wide range of approximate and hybrid methods, we exemplify it here by extending a previously published approximate method, the Diffusive Finite-State Projection (DFSP) method, to incorporate temporal adaptivity.
Hydrogen in tungsten as plasma-facing material
NASA Astrophysics Data System (ADS)
Roth, Joachim; Schmid, Klaus
2011-12-01
Materials facing plasmas in fusion experiments and future reactors are loaded with high fluxes (1020-1024 m-2 s-1) of H, D and T fuel particles at energies ranging from a few eV to keV. In this respect, the evolution of the radioactive T inventory in the first wall, the permeation of T through the armour into the coolant and the thermo-mechanical stability after long-term exposure are key parameters determining the applicability of a first wall material. Tungsten exhibits fast hydrogen diffusion, but an extremely low solubility limit. Due to the fast diffusion of hydrogen and the short ion range, most of the incident ions will quickly reach the surface and recycle into the plasma chamber. For steady-state operation the solute hydrogen for the typical fusion reactor geometry and wall conditions can reach an inventory of about 1 kg. However, in short-pulse operation typical of ITER, solute hydrogen will diffuse out after each pulse and the remaining inventory will consist of hydrogen trapped in lattice defects, such as dislocations, grain boundaries and irradiation-induced traps. In high-flux areas the hydrogen energies are too low to create displacement damage. However, under these conditions the solubility limit will be exceeded within the ion range and the formation of gas bubbles and stress-induced damage occurs. In addition, simultaneous neutron fluxes from the nuclear fusion reaction D(T,n)α will lead to damage in the materials and produce trapping sites for diffusing hydrogen atoms throughout the bulk. The formation and diffusive filling of these different traps will determine the evolution of the retained T inventory. This paper will concentrate on experimental evidence for the influence different trapping sites have on the hydrogen inventory in W as studied in ion beam experiments and low-temperature plasmas. Based on the extensive experimental data, models are validated and applied to estimate the contribution of different traps to the tritium inventory in future fusion reactors.
Diffuse radio emission in the complex merging galaxy cluster Abell2069
NASA Astrophysics Data System (ADS)
Drabent, A.; Hoeft, M.; Pizzo, R. F.; Bonafede, A.; van Weeren, R. J.; Klein, U.
2015-03-01
Context. Galaxy clusters with signs of a recent merger in many cases show extended diffuse radio features. This emission originates from relativistic electrons that suffer synchrotron losses due to the intracluster magnetic field. The mechanisms of particle acceleration and the properties of the magnetic field are still poorly understood. Aims: We search for diffuse radio emission in galaxy clusters. Here, we study the complex galaxy cluster Abell 2069, for which X-ray observations indicate a recent merger. Methods: We investigate the cluster's radio continuum emission by deep Westerbork Synthesis Radio Telescope (WSRT) observations at 346 MHz and Giant Metrewave Radio Telescope (GMRT) observations at 322 MHz. Results: We find an extended diffuse radio feature roughly coinciding with the main component of the cluster. We classify this emission as a radio halo and estimate its lower limit flux density at 25 ± 9 mJy. Moreover, we find a second extended diffuse source located at the cluster's companion and estimate its flux density at 15 ± 2 mJy. We speculate that this is a small halo or a mini-halo. If true, this cluster is the first example of a double-halo in a single galaxy cluster.
Search for Ultra-High-Energy Neutrinos with AMANDA-II
NASA Astrophysics Data System (ADS)
Ackermann, M.; Adams, J.; Ahrens, J.; Andeen, K.; Auffenberg, J.; Bai, X.; Baret, B.; Barwick, S. W.; Bay, R.; Beattie, K.; Becka, T.; Becker, J. K.; Becker, K.-H.; Beimforde, M.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Blaufuss, E.; Boersma, D. J.; Bohm, C.; Bolmont, J.; Böser, S.; Botner, O.; Bouchta, A.; Braun, J.; Burgess, T.; Castermans, T.; Chirkin, D.; Christy, B.; Clem, J.; Cowen, D. F.; D'Agostino, M. V.; Davour, A.; Day, C. T.; De Clercq, C.; Demirörs, L.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; DeYoung, T.; Diaz-Velez, J. C.; Dreyer, J.; Dumm, J. P.; Duvoort, M. R.; Edwards, W. R.; Ehrlich, R.; Eisch, J.; Ellsworth, R. W.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Filimonov, K.; Finley, C.; Foerster, M. M.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Ganugapati, R.; Geenen, H.; Gerhardt, L.; Goldschmidt, A.; Goodman, J. A.; Gozzini, R.; Griesel, T.; Groß, A.; Grullon, S.; Gunasingha, R. M.; Gurtner, M.; Ha, C.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Hardtke, D.; Hardtke, R.; Hasegawa, Y.; Hauschildt, T.; Heise, J.; Helbing, K.; Hellwig, M.; Herquet, P.; Hill, G. C.; Hodges, J.; Hoffman, K. D.; Hommez, B.; Hoshina, K.; Hubert, D.; Hughey, B.; Hülß, J.-P.; Hulth, P. O.; Hultqvist, K.; Hundertmark, S.; Inaba, M.; Ishihara, A.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Joseph, J. M.; Kampert, K.-H.; Kappes, A.; Karg, T.; Karle, A.; Kawai, H.; Kelley, J. L.; Kiryluk, J.; Kislat, F.; Kitamura, N.; Klein, S. R.; Klepser, S.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Kuehn, K.; Kuwabara, T.; Labare, M.; Laihem, K.; Landsman, H.; Lauer, R.; Leich, H.; Leier, D.; Liubarsky, I.; Lundberg, J.; Lünemann, J.; Madsen, J.; Maruyama, R.; Mase, K.; Matis, H. S.; McCauley, T.; McParland, C. P.; Meagher, K.; Meli, A.; Messarius, T.; Mészáros, P.; Miyamoto, H.; Montaruli, T.; Morey, A.; Morse, R.; Movit, S. M.; Münich, K.; Nahnhauer, R.; Nam, J. W.; Nießen, P.; Nygren, D. R.; Olivas, A.; Ono, M.; Patton, S.; Pérez de los Heros, C.; Piegsa, A.; Pieloth, D.; Pohl, A. C.; Porrata, R.; Pretz, J.; Price, P. B.; Przybylski, G. T.; Rawlins, K.; Razzaque, S.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Rizzo, A.; Robbins, S.; Robbins, W. J.; Roth, P.; Rothmaier, F.; Rott, C.; Roucelle, C.; Rutledge, D.; Ryckbosch, D.; Sander, H.-G.; Sarkar, S.; Satalecka, K.; Schlenstedt, S.; Schmidt, T.; Schneider, D.; Schultz, O.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Smith, A. J.; Song, C.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stezelberger, T.; Stokstad, R. G.; Stoufer, M. C.; Stoyanov, S.; Strahler, E. A.; Straszheim, T.; Sulanke, K.-H.; Sullivan, G. W.; Sumner, T. J.; Swillens, Q.; Taboada, I.; Tarasova, O.; Tepe, A.; Thollander, L.; Tilav, S.; Tluczykont, M.; Toale, P. A.; Tosi, D.; Turčan, D.; van Eijndhoven, N.; Vandenbroucke, J.; Van Overloop, A.; Viscomi, V.; Vogt, C.; Voigt, B.; Wagner, W.; Walck, C.; Waldmann, H.; Waldenmaier, T.; Walter, M.; Wang, Y.-R.; Wendt, C.; Wiebusch, C. H.; Wiedemann, C.; Wikström, G.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Woschnagg, K.; Xu, X. W.; Yodh, G.; Yoshida, S.; Zornoza, J. D.; IceCube Collaboration
2008-03-01
A search for diffuse neutrinos with energies in excess of 105 GeV is conducted with AMANDA-II data recorded between 2000 and 2002. Above 107 GeV, the Earth is essentially opaque to neutrinos. This fact, combined with the limited overburden of the AMANDA-II detector (roughly 1.5 km), concentrates these ultra-high-energy neutrinos at the horizon. The primary background for this analysis is bundles of downgoing, high-energy muons from the interaction of cosmic rays in the atmosphere. No statistically significant excess above the expected background is seen in the data, and an upper limit is set on the diffuse all-flavor neutrino flux of E2Φ90% CL < 2.7 × 10-7 GeV cm-2 s-1 sr-1 valid over the energy range of 2 × 105 to 109 GeV. A number of models that predict neutrino fluxes from active galactic nuclei are excluded at the 90% confidence level.
Diffusional limits to the consumption of atmospheric methane by soils
Striegl, Robert G.
1993-01-01
Net transport of atmospheric gases into and out of soil systems is primarily controlled by diffusion along gas partial pressure gradients. Gas fluxes between soil and the atmosphere can therefore be estimated by a generalization of the equation for ordinary gaseous diffusion in porous unsaturated media. Consumption of CH4 by methylotrophic bacteria in the top several centimeters of soil causes the uptake of atmospheric CH4 by aerated soils. The capacity of the methylotrophs to consume CH4 commonly exceeds the potential of CH4 to diffuse from the atmosphere to the consumers. The maximum rate of uptake of atmospheric CH4 by soil is, therefore, limited by diffusion and can be calculated from soil physical properties and the CH4 concentration gradient. The CH4 concentration versus depth profile is theoretically described by the equation for gaseous diffusion with homogeneous chemical reaction in porous unsaturated media. This allows for calculation of the in situ rate of CH4 consumption within specified depth intervals.
Error analysis of multipoint flux domain decomposition methods for evolutionary diffusion problems
NASA Astrophysics Data System (ADS)
Arrarás, A.; Portero, L.; Yotov, I.
2014-01-01
We study space and time discretizations for mixed formulations of parabolic problems. The spatial approximation is based on the multipoint flux mixed finite element method, which reduces to an efficient cell-centered pressure system on general grids, including triangles, quadrilaterals, tetrahedra, and hexahedra. The time integration is performed by using a domain decomposition time-splitting technique combined with multiterm fractional step diagonally implicit Runge-Kutta methods. The resulting scheme is unconditionally stable and computationally efficient, as it reduces the global system to a collection of uncoupled subdomain problems that can be solved in parallel without the need for Schwarz-type iteration. Convergence analysis for both the semidiscrete and fully discrete schemes is presented.
Martelli, F; Contini, D; Taddeucci, A; Zaccanti, G
1997-07-01
In our companion paper we presented a model to describe photon migration through a diffusing slab. The model, developed for a homogeneous slab, is based on the diffusion approximation and is able to take into account reflection at the boundaries resulting from the refractive index mismatch. In this paper the predictions of the model are compared with solutions of the radiative transfer equation obtained by Monte Carlo simulations in order to determine the applicability limits of the approximated theory in different physical conditions. A fitting procedure, carried out with the optical properties as fitting parameters, is used to check the application of the model to the inverse problem. The results show that significant errors can be made if the effect of the refractive index mismatch is not properly taken into account. Errors are more important when measurements of transmittance are used. The effects of using a receiver with a limited angular field of view and the angular distribution of the radiation that emerges from the slab have also been investigated.
Nanometric depth resolution from multi-focal images in microscopy.
Dalgarno, Heather I C; Dalgarno, Paul A; Dada, Adetunmise C; Towers, Catherine E; Gibson, Gavin J; Parton, Richard M; Davis, Ilan; Warburton, Richard J; Greenaway, Alan H
2011-07-06
We describe a method for tracking the position of small features in three dimensions from images recorded on a standard microscope with an inexpensive attachment between the microscope and the camera. The depth-measurement accuracy of this method is tested experimentally on a wide-field, inverted microscope and is shown to give approximately 8 nm depth resolution, over a specimen depth of approximately 6 µm, when using a 12-bit charge-coupled device (CCD) camera and very bright but unresolved particles. To assess low-flux limitations a theoretical model is used to derive an analytical expression for the minimum variance bound. The approximations used in the analytical treatment are tested using numerical simulations. It is concluded that approximately 14 nm depth resolution is achievable with flux levels available when tracking fluorescent sources in three dimensions in live-cell biology and that the method is suitable for three-dimensional photo-activated localization microscopy resolution. Sub-nanometre resolution could be achieved with photon-counting techniques at high flux levels.
Nanometric depth resolution from multi-focal images in microscopy
Dalgarno, Heather I. C.; Dalgarno, Paul A.; Dada, Adetunmise C.; Towers, Catherine E.; Gibson, Gavin J.; Parton, Richard M.; Davis, Ilan; Warburton, Richard J.; Greenaway, Alan H.
2011-01-01
We describe a method for tracking the position of small features in three dimensions from images recorded on a standard microscope with an inexpensive attachment between the microscope and the camera. The depth-measurement accuracy of this method is tested experimentally on a wide-field, inverted microscope and is shown to give approximately 8 nm depth resolution, over a specimen depth of approximately 6 µm, when using a 12-bit charge-coupled device (CCD) camera and very bright but unresolved particles. To assess low-flux limitations a theoretical model is used to derive an analytical expression for the minimum variance bound. The approximations used in the analytical treatment are tested using numerical simulations. It is concluded that approximately 14 nm depth resolution is achievable with flux levels available when tracking fluorescent sources in three dimensions in live-cell biology and that the method is suitable for three-dimensional photo-activated localization microscopy resolution. Sub-nanometre resolution could be achieved with photon-counting techniques at high flux levels. PMID:21247948
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. L. Lewicki; G. E. Hilley; L. Dobeck
A set of CO2 flux, geochemical, and hydrologic measurement techniques was used to characterize the source of and quantify gaseous and dissolved CO2 discharges from the area of Soda Springs, southeastern Idaho. An eddy covariance system was deployed for approximately one month near a bubbling spring and measured net CO2 fluxes from - 74 to 1147 g m- 2 d- 1. An inversion of measured eddy covariance CO2 fluxes and corresponding modeled source weight functions mapped the surface CO2 flux distribution within and quantified CO2 emission rate (24.9 t d- 1) from a 0.05 km2 area surrounding the spring. Soilmore » CO2 fluxes (< 1 to 52,178 g m- 2 d- 1) were measured within a 0.05 km2 area of diffuse degassing using the accumulation chamber method. The estimated CO2 emission rate from this area was 49 t d- 1. A carbon mass balance approach was used to estimate dissolved CO2 discharges from contributing sources at nine springs and the Soda Springs geyser. Total dissolved inorganic carbon (as CO2) discharge for all sampled groundwater features was 57.1 t d- 1. Of this quantity, approximately 3% was derived from biogenic carbon dissolved in infiltrating groundwater, 35% was derived from carbonate mineral dissolution within the aquifer(s), and 62% was derived from deep source(s). Isotopic compositions of helium (1.74–2.37 Ra) and deeply derived carbon (d13C approximately 3‰) suggested contribution of volatiles from mantle and carbonate sources. Assuming that the deeply derived CO2 discharge estimated for sampled groundwater features (approximately 35 t d- 1) is representative of springs throughout the study area, the total rate of deeply derived CO2 input into the groundwater system within this area could be ~ 350 t d- 1, similar to CO2 emission rates from a number of quiescent volcanoes.« less
NASA Astrophysics Data System (ADS)
Lisenko, S. A.; Kugeiko, M. M.
2014-03-01
Approximating expressions are derived to calculate spectral and spatial characteristics of diffuse reflection of light from a two-layer medium mimicking human skin. The effectiveness of the use of these expressions in the optical diagnosis of skin biophysical parameters (tissue scattering parameters, concentration of melanin in the epidermis, concentration of total haemoglobin and bilirubin in the tissues of the dermis) and content of haemoglobin derivatives in blood (oxy-, deoxy-, met-, carboxy- and sulfhaemoglobin) is analysed numerically. The methods are proposed to determine in realtime these parameters without contact of the measuring instrument with the patient's body.
Characterization of double diffusive convection step and heat budget in the deep Arctic Ocean
NASA Astrophysics Data System (ADS)
Zhou, S.; Lu, Y.
2013-12-01
In this paper, we explore the hydrographic structure and heat budget in deep Canada Basin using data measured with McLane-Moored-Profilers (MMPs), bottom-pressure-recorders (BPRs), and conductivity-temperature-depth (CTD) profilers. From the bottom upward, a homogenous bottom layer and its overlaying double diffusive convection (DDC) steps are well identified at Mooring A (75oN, 150oW). We find that the deep water is in weak diapycnal mixing because the effective diffusivity of the bottom layer is ~1.8×10-5 m 2s-1 while that of the other steps is ~10-6 m 2s-1. The vertical heat flux through DDC steps is evaluated with different methods. We find that the heat flux (0.1-11 mWm-2) is much smaller than geothermal heating (~50 mWm-2), which suggests that the stack of DDC steps acts as a thermal barrier in the deep basin. Moreover, the temporal distributions of temperature and salinity differences across the interface are exponential, while those of heat flux and effective diffusivity are found to be approximately log-normal. Both are the result of strong intermittency. Between 2003 and 2011, temperature fluctuation close to the sea floor distributed asymmetrically and skewed towards positive values, which provides direct indication that geothermal heating is transferred into ocean. Both BPR and CTD data suggest that geothermal heating, not the warming of upper ocean, is the dominant mechanism responsible for the warming of deep water. As the DDC steps prevent the vertical heat transfer, geothermal heating will be unlikely to have significant effect on the middle and upper oceans.
Characterization of double diffusive convection steps and heat budget in the deep Arctic Ocean
NASA Astrophysics Data System (ADS)
Zhou, Sheng-Qi; Lu, Yuan-Zheng
2013-12-01
In this paper, we explore the hydrographic structure and heat budget in the deep Canada Basin by using data measured with McLane-Moored-Profilers (MMP), bottom pressure recorders (BPR), and conductivity-temperature-depth (CTD) profilers. Upward from the bottom, a homogeneous bottom layer and its overlaying double diffusive convection (DDC) steps are well identified at Mooring A (75°N,150°W). We find that the deep water is in weak diapycnal mixing because the effective diffusivity of the bottom layer is ˜1.8 × 10-5 m2s-1, while that of the other steps is ˜10-6 m2s-1. The vertical heat flux through the DDC steps is evaluated by using different methods. We find that the heat flux (0.1-11 mWm -2) is much smaller than geothermal heating (˜50 mWm -2). This suggests that the stack of DDC steps acts as a thermal barrier in the deep basin. Moreover, the temporal distributions of temperature and salinity differences across the interface are exponential, whereas those of heat flux and effective diffusivity are found to be approximately lognormal. Both are the result of strong intermittency. Between 2003 and 2011, temperature fluctuations close to the sea floor were distributed asymmetrically and skewed toward positive values, which provide a direct observation that geothermal heating was transferred into the ocean. Both BPR and CTD data suggest that geothermal heating and not the warming of the upper ocean is the dominant mechanism responsible for the warming of deep water. As the DDC steps prevent vertical heat transfer, geothermal heating is unlikely to have a significant effect on the middle and upper Arctic Ocean.
Gyrokinetic modelling of the quasilinear particle flux for plasmas with neutral-beam fuelling
NASA Astrophysics Data System (ADS)
Narita, E.; Honda, M.; Nakata, M.; Yoshida, M.; Takenaga, H.; Hayashi, N.
2018-02-01
A quasilinear particle flux is modelled based on gyrokinetic calculations. The particle flux is estimated by determining factors, namely, coefficients of off-diagonal terms and a particle diffusivity. In this paper, the methodology to estimate the factors is presented using a subset of JT-60U plasmas. First, the coefficients of off-diagonal terms are estimated by linear gyrokinetic calculations. Next, to obtain the particle diffusivity, a semi-empirical approach is taken. Most experimental analyses for particle transport have assumed that turbulent particle fluxes are zero in the core region. On the other hand, even in the stationary state, the plasmas in question have a finite turbulent particle flux due to neutral-beam fuelling. By combining estimates of the experimental turbulent particle flux and the coefficients of off-diagonal terms calculated earlier, the particle diffusivity is obtained. The particle diffusivity should reflect a saturation amplitude of instabilities. The particle diffusivity is investigated in terms of the effects of the linear instability and linear zonal flow response, and it is found that a formula including these effects roughly reproduces the particle diffusivity. The developed framework for prediction of the particle flux is flexible to add terms neglected in the current model. The methodology to estimate the quasilinear particle flux requires so low computational cost that a database consisting of the resultant coefficients of off-diagonal terms and particle diffusivity can be constructed to train a neural network. The development of the methodology is the first step towards a neural-network-based particle transport model for fast prediction of the particle flux.
Energy transfers in internal tide generation, propagation and dissipation in the deep ocean
NASA Astrophysics Data System (ADS)
Floor, J. W.; Auclair, F.; Marsaleix, P.
The energy transfers associated with internal tide (IT) generation by a semi-diurnal surface tidal wave impinging on a supercritical meridionally uniform deep ocean ridge on the f-plane, and subsequent IT-propagation are analysed using the Boussinesq, free-surface, terrain-following ocean model Symphonie. The energy diagnostics are explicitly based on the numerical formulation of the governing equations, permitting a globally conservative, high-precision analysis of all physical and numerical/artificial energy transfers in a sub-domain with open lateral boundaries. The net primary energy balances are quantified using a moving average of length two tidal periods in a simplified control simulation using a single time-step, minimal diffusion, and a no-slip sea floor. This provides the basis for analysis of enhanced vertical and horizontal diffusion and a free-slip bottom boundary condition. After a four tidal period spin-up, the tidally averaged (net) primary energy balance in the generation region, extending ±20 km from the ridge crest, shows that the surface tidal wave loses approximately C = 720 W/m or 0.3% of the mean surface tidal energy flux (2.506 × 10 5 W/m) in traversing the ridge. This corresponds mainly to the barotropic-to-baroclinic energy conversion due to stratified flow interaction with sloping topography. Combined with a normalised net advective flux of baroclinic potential energy of 0.9 × C this causes a net local baroclinic potential energy gain of 0.72 × C and a conversion into baroclinic kinetic energy through the baroclinic buoyancy term of 1.18 × C. Tidally averaged, about 1.14 × C is radiated into the abyssal ocean through the total baroclinic flux of internal pressure associated with the IT- and background density field. This total baroclinic pressure flux is therefore not only determined by the classic linear surface-to-internal tide conversion, but also by the net advection of baroclinic (background) potential energy, indicating the importance of local processes other than linear IT-motion. In the propagation region (PR), integrated over the areas between 20 and 40 km from the ridge crest, the barotropic and baroclinic tide are decoupled. The net incoming total baroclinic pressure flux is balanced by local potential energy gain and outward baroclinic flux of potential energy associated with the total baroclinic density. The primary net energy balances are robust to changes in the vertical diffusion coefficient, whereas relatively weak horizontal diffusion significantly reduces the outward IT energy flux. Diapycnal mixing due to vertical diffusion causes an available potential energy loss of about 1% of the total domain-averaged potential energy gain, which matches {km-1}/{km}ρ0KVN2 to within 0.5%, for km linearly distributed grid-levels and constant background density ρ0, vertical diffusivity ( KV) and buoyancy frequency ( N).
NASA Astrophysics Data System (ADS)
Hyvönen, Nuutti
2007-10-01
The aim of optical tomography is to reconstruct the optical properties inside a physical body, e.g. a neonatal head, by illuminating it with near-infrared light and measuring the outward flux of photons on the object boundary. Because a brain consists of strongly scattering tissue with imbedded cavities filled by weakly scattering cerebrospinal fluid, propagation of near-infrared photons in the human head can be treated by combining the diffusion approximation of the radiative transfer equation with geometrical optics to obtain the radiosity-diffusion forward model of optical tomography. At the moment, a disadvantage with the radiosity-diffusion model is that the locations of the transparent cavities must be known in advance in order to be able to reconstruct the physiologically interesting quantities, i.e., the absorption and the scatter in the strongly scattering brain tissue. In this work we show that the boundary measurement map of optical tomography is Fréchet differentiable with respect to the shape of a strongly convex nonscattering region. Using this result, we introduce a numerical algorithm for approximating an unknown nonscattering cavity by a ball if the background diffuse optical properties of the object are known. The functionality of the method is demonstrated through two-dimensional numerical experiments.
Anisotropic mesoscale eddy transport in ocean general circulation models
NASA Astrophysics Data System (ADS)
Reckinger, Scott; Fox-Kemper, Baylor; Bachman, Scott; Bryan, Frank; Dennis, John; Danabasoglu, Gokhan
2014-11-01
In modern climate models, the effects of oceanic mesoscale eddies are introduced by relating subgrid eddy fluxes to the resolved gradients of buoyancy or other tracers, where the proportionality is, in general, governed by an eddy transport tensor. The symmetric part of the tensor, which represents the diffusive effects of mesoscale eddies, is universally treated isotropically. However, the diffusive processes that the parameterization approximates, such as shear dispersion and potential vorticity barriers, typically have strongly anisotropic characteristics. Generalizing the eddy diffusivity tensor for anisotropy extends the number of parameters from one to three: major diffusivity, minor diffusivity, and alignment. The Community Earth System Model (CESM) with the anisotropic eddy parameterization is used to test various choices for the parameters, which are motivated by observations and the eddy transport tensor diagnosed from high resolution simulations. Simply setting the ratio of major to minor diffusivities to a value of five globally, while aligning the major axis along the flow direction, improves biogeochemical tracer ventilation and reduces temperature and salinity biases. These effects can be improved by parameterizing the oceanic anisotropic transport mechanisms.
The Role of Nonlocal Heat Flow in Hohlraums
NASA Astrophysics Data System (ADS)
Town, R. P. J.; Short, R. W.; Verdon, C. P.; Afeyan, B. B.; Glenzer, S. H.; Suter, L. J.
1997-11-01
Glenzer,(Submitted to Physical Review Letters.)* using the Thomson scattering technique, has measured the time evolution of the electron temperature in scale-1 hohlraums. The measured peak electron temperature was 5 keV. Lasnex simulations, using a flux-limited Spitzer heat diffusion model with the standard sharp-cutoff flux limiter of 0.05, gave a peak electron temperature of only 3 keV. Good agreement between simulation and experiment was found when Lasnex simulations employed a time-varying flux limiter, which had a value of 0.01 when the main drive came on. The need to severly inhibit heat transport over the entire volume of hot plasma at late time suggests that nonlocal heat flow could be important in explaining these experimental observations. In this presentation we will report on Fokker--Planck calculations of idealized hohlraums and compare them to standard hydrodynamic calculations using flux-limited Spitzer heat flow. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC03-92SF19460. Also, work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract W-7405-ENG-48.
NASA Technical Reports Server (NTRS)
Thomas, R. N.
1982-01-01
Observational data on atmospheric structure and mass fluxes from the sun and Be stars are applied to test the adequacy of the original Parker 'hot corona' approach to predicting atmospheric structure and the size of the mass flux from only the radiative and nonradiative energy fluxes, and from gravity, and imposing the condition that thermal and escape points must coincide. Observations do not support this latter condition. It is concluded that the Parker approach is an asymptotic approximation to the very low mass flux limit in a nonvariable stellar atmosphere.
Chen, Zheng; Huang, Hongying; Yan, Jue
2015-12-21
We develop 3rd order maximum-principle-satisfying direct discontinuous Galerkin methods [8], [9], [19] and [21] for convection diffusion equations on unstructured triangular mesh. We carefully calculate the normal derivative numerical flux across element edges and prove that, with proper choice of parameter pair (β 0,β 1) in the numerical flux formula, the quadratic polynomial solution satisfies strict maximum principle. The polynomial solution is bounded within the given range and third order accuracy is maintained. There is no geometric restriction on the meshes and obtuse triangles are allowed in the partition. As a result, a sequence of numerical examples are carried outmore » to demonstrate the accuracy and capability of the maximum-principle-satisfying limiter.« less
Hillman, Stanley S; Hancock, Thomas V; Hedrick, Michael S
2013-02-01
Maximal aerobic metabolic rates (MMR) in vertebrates are supported by increased conductive and diffusive fluxes of O(2) from the environment to the mitochondria necessitating concomitant increases in CO(2) efflux. A question that has received much attention has been which step, respiratory or cardiovascular, provides the principal rate limitation to gas flux at MMR? Limitation analyses have principally focused on O(2) fluxes, though the excess capacity of the lung for O(2) ventilation and diffusion remains unexplained except as a safety factor. Analyses of MMR normally rely upon allometry and temperature to define these factors, but cannot account for much of the variation and often have narrow phylogenetic breadth. The unique aspect of our comparative approach was to use an interclass meta-analysis to examine cardio-respiratory variables during the increase from resting metabolic rate to MMR among vertebrates from fish to mammals, independent of allometry and phylogeny. Common patterns at MMR indicate universal principles governing O(2) and CO(2) transport in vertebrate cardiovascular and respiratory systems, despite the varied modes of activities (swimming, running, flying), different cardio-respiratory architecture, and vastly different rates of metabolism (endothermy vs. ectothermy). Our meta-analysis supports previous studies indicating a cardiovascular limit to maximal O(2) transport and also implicates a respiratory system limit to maximal CO(2) efflux, especially in ectotherms. Thus, natural selection would operate on the respiratory system to enhance maximal CO(2) excretion and the cardiovascular system to enhance maximal O(2) uptake. This provides a possible evolutionary explanation for the conundrum of why the respiratory system appears functionally over-designed from an O(2) perspective, a unique insight from previous work focused solely on O(2) fluxes. The results suggest a common gas transport blueprint, or Bauplan, in the vertebrate clade.
Enhanced Diffusion of Chlorinated Organic Compounds into Aquitards due to Cracking
NASA Astrophysics Data System (ADS)
Ayral, D.; Otero, M.; Chung, S.; Goltz, M. N.; Huang, J.; Demond, A. H.
2012-12-01
Despite great efforts, remediation of sites contaminated with dense non-aqueous phase liquids (DNAPLs) is very challenging because, even at residual saturations, DNAPLs can act as a long-term source for a dissolved phase contaminant plume. Current models consider the possibility of diffusion and storage of these compounds in unfractured low permeability layers. However, there is a need to consider the impact of cracks, whether naturally occurring or induced by the interaction between low permeable layers and DNAPLs. To evaluate the impact on diffusive fluxes, diffusion coefficients were measured in low permeability materials representative of aquitards at steady-state using the time-lag method. The experimental setup comprised silty soil, packed into a retaining ring, sandwiched in between two reservoirs. The analytical solution for the time-lag method requires constant conditions in the upper and lower reservoirs. The lower reservoir contained pure trichloroethylene (TCE), while the upper reservoir was maintained at a concentration of zero by bubbling air through it, sweeping TCE into toluene trap. In order to predict the flux, the experimental effective diffusion coefficients were used to calculate the flux through uncracked matrix whereas bulk diffusion coefficient was used to calculate flux through the cracks. By using the experimentally-obtained diffusion coefficients and experimentally-measured crack intensity factors (the ratio of the area of cracks to the uncracked area), the total flux was estimated over extended time periods. These calculations, based on experimental data, were used to evaluate if diffusive-based fluxes in the presence of cracks were significantly greater than in the case of diffusion into an uncracked matrix. The enhanced diffusive fluxes were evaluated to determine whether there is the potential for significantly greater storage in the low permeable layers in the case of cracks, or whether the possibility of advective fluxes into the cracks needs to be considered as well.
A Theory of Density Layering in Stratified Turbulence using Statistical State Dynamics
NASA Astrophysics Data System (ADS)
Fitzgerald, J.; Farrell, B.
2016-12-01
Stably stratified turbulent fluids commonly develop density structures that are layered in the vertical direction (e.g., Manucharyan et al., 2015). Within layers, density is approximately constant and stratification is weak. Between layers, density varies rapidly and stratification is strong. A common explanation for the existence of layers invokes the negative diffusion mechanism of Phillips (1972) & Posmentier (1977). The physical principle underlying this mechanism is that the flux-gradient relationship connecting the turbulent fluxes of buoyancy to the background stratification must have the special property of weakening fluxes with strengthening gradient. Under these conditions, the evolution of the stratification is governed by a negative diffusion problem which gives rise to spontaneous layer formation. In previous work on stratified layering, this flux-gradient property is often assumed (e.g, Posmentier, 1977) or drawn from phenomenological models of turbulence (e.g., Balmforth et al., 1998).In this work we develop the theoretical underpinnings of layer formation by applying stochastic turbulence modeling and statistical state dynamics (SSD) to predict the flux-gradient relation and analyze layer formation directly from the equations of motion. We show that for stochastically-forced homogeneous 2D Boussinesq turbulence, the flux-gradient relation can be obtained analytically and indicates that the fluxes always strengthen with stratification. The Phillips mechanism thus does not operate in this maximally simplified scenario. However, when the problem is augmented to include a large scale background shear, we show that the flux-gradient relationship is modified so that the fluxes weaken with stratification. Sheared and stratified 2D Boussinesq turbulence thus spontaneously forms density layers through the Phillips mechanism. Using SSD (Farrell & Ioannou 2003), we obtain a closed, deterministic dynamics for the stratification and the statistical turbulent state. We show that density layers form as a linear instability of the sheared turbulence, associated with a supercritical bifurcation. We further show that SSD predicts the nonlinear equilibration and maintenance of the layers, and captures the phenomena of layer growth and mergers (Radko, 2007).
Computation of the unsteady facilitated transport of oxygen in hemoglobin
NASA Technical Reports Server (NTRS)
Davis, Sanford
1990-01-01
The transport of a reacting permeant diffusing through a thin membrane is extended to more realistic dissociation models. A new nonlinear analysis of the reaction-diffusion equations, using implicit finite-difference methods and direct block solvers, is used to study the limits of linearized and equilibrium theories. Computed curves of molecular oxygen permeating through hemoglobin solution are used to illustrate higher-order reaction models, the effect of concentration boundary layers at the membrane interfaces, and the transient buildup of oxygen flux.
NASA Technical Reports Server (NTRS)
Baker, D. N.; Jaynes, A. N.; Kanekal, S. G.; Foster, J.C.; Erickson, P. J.; Fennell, Joseph; Blake, J. B.; Zhao, H.; Li, X.; Elkington, S. R.;
2016-01-01
Two of the largest geomagnetic storms of the last decade were witnessed in 2015. On 17 March 2015, a coronal mass ejection-driven event occurred with a Dst (Disturbance Storm Time Ring Current Index) value reaching 223 nanoteslas. On 22 June 2015 another strong storm (Dst reaching 204 nanoteslas) was recorded. These two storms each produced almost total loss of radiation belt high-energy (E (Energy) greater than or approximately equal to 1 millielectronvolt) electron fluxes. Following the dropouts of radiation belt fluxes there were complex and rather remarkable recoveries of the electrons extending up to nearly 10 millielectronvolts in kinetic energy. The energized outer zone electrons showed a rich variety of pitch angle features including strong butterfly distributions with deep minima in flux at alpha equals 90 degrees. However, despite strong driving of outer zone earthward radial diffusion in these storms, the previously reported impenetrable barrier at L (L-shell magnetic field line value) approximately equal to 2.8 was pushed inward, but not significantly breached, and no E (Energy) greater than or approximately equal to 2.0 millielectronvolts electrons were seen to pass through the radiation belt slot region to reach the inner Van Allen zone. Overall, these intense storms show a wealth of novel features of acceleration, transport, and loss that are demonstrated in the present detailed analysis.
Li, Chun; Huang, Liang; Snigdha, Gayatri Pongur; Yu, Yifei; Cao, Linyou
2012-10-23
We report a synthesis of single-crystalline two-dimensional GeS nanosheets using vapor deposition processes and show that the growth behavior of the nanosheet is substantially different from those of other nanomaterials and thin films grown by vapor depositions. The nanosheet growth is subject to strong influences of the diffusion of source materials through the boundary layer of gas flows. This boundary layer diffusion is found to be the rate-determining step of the growth under typical experimental conditions, evidenced by a substantial dependence of the nanosheet's size on diffusion fluxes. We also find that high-quality GeS nanosheets can grow only in the diffusion-limited regime, as the crystalline quality substantially deteriorates when the rate-determining step is changed away from the boundary layer diffusion. We establish a simple model to analyze the diffusion dynamics in experiments. Our analysis uncovers an intuitive correlation of diffusion flux with the partial pressure of source materials, the flow rate of carrier gas, and the total pressure in the synthetic setup. The observed significant role of boundary layer diffusions in the growth is unique for nanosheets. It may be correlated with the high growth rate of GeS nanosheets, ~3-5 μm/min, which is 1 order of magnitude higher than other nanomaterials (such as nanowires) and thin films. This fundamental understanding of the effect of boundary layer diffusions may generally apply to other chalcogenide nanosheets that can grow rapidly. It can provide useful guidance for the development of general paradigms to control the synthesis of nanosheets.
New Solution of Diffusion-Advection Equation for Cosmic-Ray Transport Using Ultradistributions
NASA Astrophysics Data System (ADS)
Rocca, M. C.; Plastino, A. R.; Plastino, A.; Ferri, G. L.; de Paoli, A.
2015-11-01
In this paper we exactly solve the diffusion-advection equation (DAE) for cosmic-ray transport. For such a purpose we use the Theory of Ultradistributions of J. Sebastiao e Silva, to give a general solution for the DAE. From the ensuing solution, we obtain several approximations as limiting cases of various situations of physical and astrophysical interest. One of them involves Solar cosmic-rays' diffusion.
Effects of phloretin and theophylline on 3-O-methylglucose transport by intestinal epithelial cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Randles, J.; Kimmich, G.A.
1978-03-01
Phloretin and theophylline each exert an immediate inhibitory effect on the Na/sup +/-independent, facilitated-diffusion transport system for sugar associated with intestinal epithelial cells. Phloretin inhibits approximately 50% more of the total Na/sup +/-independent sugar flux than theophylline. Neither agent has an immediate effect on the Na/sup +/-dependent, concentrative sugar transport system, although preincubation of the cells with phloretin causes a significant inhibition. The slowly developing effect is correlated with a decrease in cellular adenosine triphosphate (ATP) and an elevation of intracellular Na/sup +/. Other agents which elevate cell Na/sup +/ also inhibit Na/sup +/-dependent sugar influx, even if ATP levelsmore » are not depleted. On the other hand, if ATP is depleted by phloretin under conditions in which the cells do not gain Na/sup +/, the inhibitory effect on Na/sup +/-dependent sugar flux tends to disappear. The slow-onset phloretin effects are due to transinhibition of the Na/sup +/-dependent sugar carrier by cellular Na/sup +/. When the passive sugar carrier is inhibited by phloretin or theophylline, the concentrative system can establish an enhanced sugar gradient. Because of the secondary metabolic effects of phloretin, theophylline induces a greater gradient enhancement despite its more limited effect on the passive sugar-transport system. Sugar gradients as large as 20-fold are induced by theophylline, in contrast to 12-fold gradients observed in the presence of phloretin and approximately 7- to 8-fold for untreated cells. These results are discussed in terms of conceptual questions regarding the energetics of Na/sup +/-dependent transport systems.« less
Effects of phloretin and theophylline on 3-O-methylglucose transport by intestinal epithelial cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Randles, J.; Kimmich, G.A.
1978-01-01
Phloretin and theophylline each exert an immediate inhibitory effect on the Na/sup +/-independent, facilitated-diffusion transport system for sugar associated with intestinal epithelial cells. Phloretin inhibits approximately 50% more of the total Na/sup +/-independent sugar flux than theophylline. Neither agent has an immediate effect on the Na/sup +/-dependent, concentrative sugar transport system, although preincubation of the cells with phloretin causes a significant inhibition. The slowly developing effect is correlated with a decrease in cellular adenosine triphosphate (ATP) and an evaluation of intracellular Na/sup +/. Other agents which elevate cell Na/sup +/ also inhibit Na/sup +/-dependent sugar influx, even if ATP levelsmore » are not depleted. On the other hand, if ATP is depleted by phloretin under conditions in which the cells do not gain Na/sup +/, the inhibitory effect on Na/sup +/-dependent sugar flux tends to disappear. The slow-onset phloretin effects are due to transinhibition of the Na/sup +/-dependent sugar carrier by cellular Na/sup +/. When the passive sugar carrier is inhibited by phloretin or theophylline, the concentrative system can establish an enhanced sugar gradient. Because of the secondary metabolic effects of phloretin, theophylline induces a greater gradient enhancement despite its more limited effect on the passive sugar-transport system. Sugar gradients as large as 20-fold are induced by theophylline, in contrast to 12-fold gradients observed in the presence of phloretin and approximately 7- to 8-fold for untreated cells. These results are discussed in terms of conceptual questions regarding the energetics of Na/sup +/-dependent transport systems.« less
Permeation of deuterium implanted into V-15Cr-5Ti
NASA Astrophysics Data System (ADS)
Anderl, R. A.; Longhurst, G. R.; Struttmann, D. A.
1987-02-01
Permeation and reemission of deuterium for the vanadium alloy, V-15Cr-5Ti, was investigated using 3 keV, D 3+ ion beams from a small accelerator. The experiments consisted of measurement of the deuterium reemission and permeation rates as a function of implantation fluence for 0.5 mm thick specimens heated to temperatures from 623 K to 823 K. Implantation-side surface characterization was made by simultaneous measurements of sputtered ions with a secondary ion mass spectrometer (SIMS). For the experimental conditions used, the steady-state deuterium permeation flux in V-15Cr-5Ti is approximately 18% of the implantation flux. This is approximately 1000 times that seen in the austenitic stainless steel, PCA, and 200 times that seen in the ferritic steel, HT-9, under comparable conditions. Measurement of deuterium diffusivity in V-15Cr-5Ti using permeation break-through times indicates that D = 1.4 × 10 -8 exp( -0.11 eV/ kT) (m 2/s), over the temperature range 723 K to 823 K.
Self-similar solutions for multi-species plasma mixing by gradient driven transport
NASA Astrophysics Data System (ADS)
Vold, E.; Kagan, G.; Simakov, A. N.; Molvig, K.; Yin, L.
2018-05-01
Multi-species transport of plasma ions across an initial interface between DT and CH is shown to exhibit self-similar species density profiles under 1D isobaric conditions. Results using transport theory from recent studies and using a Maxwell–Stephan multi-species approximation are found to be in good agreement for the self-similar mix profiles of the four ions under isothermal and isobaric conditions. The individual ion species mass flux and molar flux profile results through the mixing layer are examined using transport theory. The sum over species mass flux is confirmed to be zero as required, and the sum over species molar flux is related to a local velocity divergence needed to maintain pressure equilibrium during the transport process. The light ion species mass fluxes are dominated by the diagonal coefficients of the diffusion transport matrix, while for the heaviest ion species (C in this case), the ion flux with only the diagonal term is reduced by about a factor two from that using the full diffusion matrix, implying the heavy species moves more by frictional collisions with the lighter species than by its own gradient force. Temperature gradient forces were examined by comparing profile results with and without imposing constant temperature gradients chosen to be of realistic magnitude for ICF experimental conditions at a fuel-capsule interface (10 μm scale length or greater). The temperature gradients clearly modify the relative concentrations of the ions, for example near the fuel center, however the mixing across the fuel-capsule interface appears to be minimally influenced by the temperature gradient forces within the expected compression and burn time. Discussion considers the application of the self-similar profiles to specific conditions in ICF.
NASA Astrophysics Data System (ADS)
Yates, S. R.; Ashworth, D. J.; Zheng, W.; Knuteson, J.; van Wesenbeeck, I. J.
2016-07-01
Fumigating soil is important for the production of many high-value vegetable, fruit, and tree crops, but fumigants are toxic pesticides with relatively high volatility, which can lead to significant atmospheric emissions. A field experiment was conducted to measure emissions and subsurface diffusion of a mixture of 1,3-dichloropropene (1,3-D) and chloropicrin after shank injection to bare soil at 61 cm depth (i.e., deep injection). Three on-field methods, the aerodynamic (ADM), integrated horizontal flux (IHF), and theoretical profile shape (TPS) methods, were used to obtain fumigant flux density and cumulative emission values. Two air dispersion models (CALPUFF and ISCST3) were also used to back-calculate the flux density using air concentration measurements surrounding the fumigated field. Emissions were continuously measured for 16 days and the daily peak emission rates for the five methods ranged from 13 to 33 μg m-2 s-1 for 1,3-D and 0.22-3.2 μg m-2 s-1 for chloropicrin. Total 1,3-D mass lost to the atmosphere was approximately 23-41 kg ha-1, or 15-27% of the applied active ingredient and total mass loss of chloropicrin was <2%. Based on the five methods, deep injection reduced total emissions by approximately 2-24% compared to standard fumigation practices where fumigant injection is at 46 cm depth. Given the relatively wide range in emission-reduction percentages, a fumigant diffusion model was used to predict the percentage reduction in emissions by injecting at 61 cm, which yielded a 21% reduction in emissions. Significant reductions in emissions of 1,3-D and chloropicrin are possible by injecting soil fumigants deeper in soil.
Effect of ionization and vehicle on skin absorption and penetration of azelaic acid.
Li, Nan; Wu, Xiaohong; Jia, Weibu; Zhang, Michelle C; Tan, Fengping; Zhang, Jerry
2012-08-01
The aim of this study is to investigate the effect of ionization and vehicle of topical formulations on skin absorption and penetration of azelaic acid (AZA). In vitro transport of AZA was determined for two topical formulations containing AZA with pH values of 3.9 and 4.9, respectively. FINACEA(®) (15% AZA gel), a US Food and Drug Administration approved drug for treatment of acne and rosacea, was also used for comparison. Release profile and flux of AZA were determined in an in vitro hairless mouse skin model using Franz Diffusion Cell. The data have shown that a higher concentration of AZA is retained in the epidermis/dermis layer and the whole skin for the formulation with pH = 4.9 as compared to that with pH = 3.9 at an active loading level of 2.82 mg/cm(2). In addition, the flux of ionized species of AZA in the pH 4.9 formulation (128.4 ± 35.9 μg/cm(2)/h) is approximately five-fold greater than that in the pH 3.9 formulation (27.7 ± 4.0 μg/cm(2)/h). The results suggest that the ionized AZA penetrates through the skin and accounts for majority of the total flux. This study has demonstrated that the penetration and absorption of AZA show a strong pH- and vehicle-dependency. Solubilization is the rate-limiting step in percutaneous absorption of AZA.
Multispecies lottery competition: a diffusion analysis
Hatfield, J.S.; Chesson, P.L.; Tuljapurkar, S.; Caswell, H.
1997-01-01
The lottery model is a stochastic competition model designed for space-limited communities of sedentary organisms. Examples of such communities include coral reef fishes, aquatic sessile organisms, and many plant communities. Explicit conditions for the coexistence of two species and the stationary distribution of the two-species model were determined previously using an approximation with a diffusion process. In this chapter, a diffusion approximation is presented for the multispecies model for communities of two or more species, and a stage-structured model is investigated. The stage-structured model would be more reasonable for communities of long-lived species such as trees in a forest in which recruitment and death rates depend on the age or stage of the individuals.
NASA Astrophysics Data System (ADS)
Dore, J. E.; Kaiser, K.; Seybold, E. C.; McGlynn, B. L.
2012-12-01
Forest soils are sources of carbon dioxide (CO2) to the atmosphere and can act as either sources or sinks of methane (CH4) and nitrous oxide (N2O), depending on redox conditions and other factors. Soil moisture is an important control on microbial activity, redox conditions and gas diffusivity. Direct chamber measurements of soil-air CO2 fluxes are facilitated by the availability of sensitive, portable infrared sensors; however, corresponding CH4 and N2O fluxes typically require the collection of time-course physical samples from the chamber with subsequent analyses by gas chromatography (GC). Vertical profiles of soil gas concentrations may also be used to derive CH4 and N2O fluxes by the gradient method; this method requires much less time and many fewer GC samples than the direct chamber method, but requires that effective soil gas diffusivities are known. In practice, soil gas diffusivity is often difficult to accurately estimate using a modeling approach. In our study, we apply both the chamber and gradient methods to estimate soil trace gas fluxes across a complex Rocky Mountain forested watershed in central Montana. We combine chamber flux measurements of CO2 (by infrared sensor) and CH4 and N2O (by GC) with co-located soil gas profiles to determine effective diffusivity in soil for each gas simultaneously, over-determining the diffusion equations and providing constraints on both the chamber and gradient methodologies. We then relate these soil gas diffusivities to soil type and volumetric water content in an effort to arrive at empirical parameterizations that may be used to estimate gas diffusivities across the watershed, thereby facilitating more accurate, frequent and widespread gradient-based measurements of trace gas fluxes across our study system. Our empirical approach to constraining soil gas diffusivity is well suited for trace gas flux studies over complex landscapes in general.
Diffusion in porous layers with memory
NASA Astrophysics Data System (ADS)
Caputo, Michele; Plastino, Wolfango
2004-07-01
The process of diffusion of fluid in porous media and biological membranes has usually been modelled with Darcy's constitutive equation, which states that the flux is proportional to the pressure gradient. However, when the permeability of the matrix changes during the process, solution of the equations governing the diffusion presents severe analytical difficulties because the variation of permeability is not known a priori. A diverse formulation of the constitutive law of diffusion is therefore needed and many authors have studied this problem using various methods and solutions. In this paper Darcy's constitutive equation is modified with the introduction of a memory formalism. We have also modified the second constitutive equation of diffusion which relates the density variations in the fluid to the pressure, introducing rheology in the fluid represented by memory formalisms operating on pressure variations as well as on density variations. The memory formalisms are then specified as derivatives of fractional order, solving the problem in the case of a porous layer when constant pressures are applied to its sides. For technical reasons many studies of diffusion are devoted to the flux rather than to the pressure; in this work we shall devote our attention to studying the pressure and compute the Green's function of the pressure in the layer when a constant pressure is applied to the boundary (Case A) for which we have found closed-form formulae. The described problem has already been considered for a half space (Caputo 2000); however, the results for a half space are mostly qualitative since in most practical problems the diffusion occurs in layers. The solution is also readily extended to the case when a periodic pressure is applied to one of the boundary planes while on the other the pressure is constant (Case B) which mimics the effect of the tides on sea coasts. In this case we have found a skin effect for the flux which limits the flux to a surface layer whose thickness decreases with increasing frequency. Regarding the effect of pressure due to tidal waters on the coast, it has been observed that when the medium is sand and the fluid is water, for a sinusoidal pressure of 2 × 104 Pa and a period of 24 hr at one of the boundaries and zero pressure at the other boundary, the flux is sinusoidal with the same period and amplitude decaying exponentially with distance to become negligible at a distance of a few hundred metres. A brief discussion is given concerning the mode of determination of the parameters of memory formalisms governing the diffusion using the observed pressure at several frequencies. We shall also see that, as in the classic case of pure Darcy's law behaviour, the equation governing the flux resulting in the diffusion through porous media with memory is the same as that governing the pressure.
An Explicit Upwind Algorithm for Solving the Parabolized Navier-Stokes Equations
NASA Technical Reports Server (NTRS)
Korte, John J.
1991-01-01
An explicit, upwind algorithm was developed for the direct (noniterative) integration of the 3-D Parabolized Navier-Stokes (PNS) equations in a generalized coordinate system. The new algorithm uses upwind approximations of the numerical fluxes for the pressure and convection terms obtained by combining flux difference splittings (FDS) formed from the solution of an approximate Riemann (RP). The approximate RP is solved using an extension of the method developed by Roe for steady supersonic flow of an ideal gas. Roe's method is extended for use with the 3-D PNS equations expressed in generalized coordinates and to include Vigneron's technique of splitting the streamwise pressure gradient. The difficulty associated with applying Roe's scheme in the subsonic region is overcome. The second-order upwind differencing of the flux derivatives are obtained by adding FDS to either an original forward or backward differencing of the flux derivative. This approach is used to modify an explicit MacCormack differencing scheme into an upwind differencing scheme. The second order upwind flux approximations, applied with flux limiters, provide a method for numerically capturing shocks without the need for additional artificial damping terms which require adjustment by the user. In addition, a cubic equation is derived for determining Vegneron's pressure splitting coefficient using the updated streamwise flux vector. Decoding the streamwise flux vector with the updated value of Vigneron's pressure splitting improves the stability of the scheme. The new algorithm is applied to 2-D and 3-D supersonic and hypersonic laminar flow test cases. Results are presented for the experimental studies of Holden and of Tracy. In addition, a flow field solution is presented for a generic hypersonic aircraft at a Mach number of 24.5 and angle of attack of 1 degree. The computed results compare well to both experimental data and numerical results from other algorithms. Computational times required for the upwind PNS code are approximately equal to an explicit PNS MacCormack's code and existing implicit PNS solvers.
On the persistence of spatiotemporal oscillations generated by invasion
NASA Astrophysics Data System (ADS)
Kay, A. L.; Sherratt, J. A.
1999-10-01
Many systems in biology and chemistry are oscillatory, with a stable, spatially homogeneous steady state which consists of periodic temporal oscillations in the interacting species, and such systems have been extensively studied on infinite or semi-infinite spatial domains. We consider the effect of a finite domain, with zero-flux boundary conditions, on the behaviour of solutions to oscillatory reaction-diffusion equations after invasion. We begin by considering numerical simulations of various oscillatory predatory-prey systems. We conclude that when regular spatiotemporal oscillations are left in the wake of invasion, these die out, beginning with a decrease in the spatial frequency of the oscillations at one boundary, which then propagates across the domain. The long-time solution in this case is purely temporal oscillations, corresponding to the limit cycle of the kinetics. Contrastingly, when irregular spatiotemporal oscillations are left in the wake of invasion, they persist, even in very long time simulations. To study this phenomenon in more detail, we consider the {lambda}-{omega} class of reaction-diffusion systems. Numerical simulations show that these systems also exhibit die-out of regular spatiotemporal oscillations and persistence of irregular spatiotemporal oscillations. Exploiting the mathematical simplicity of the {lambda}-{omega} form, we derive analytically an approximation to the transition fronts in r and {theta}x which occur during the die-out of the regular oscillations. We then use this approximation to describe how the die-out occurs, and to derive a measure of its rate, as a function of parameter values. We discuss applications of our results to ecology, calcium signalling and chemistry.
Discrete ordinates solutions of nongray radiative transfer with diffusely reflecting walls
NASA Technical Reports Server (NTRS)
Menart, J. A.; Lee, Haeok S.; Kim, Tae-Kuk
1993-01-01
Nongray gas radiation in a plane parallel slab bounded by gray, diffusely reflecting walls is studied using the discrete ordinates method. The spectral equation of transfer is averaged over a narrow wavenumber interval preserving the spectral correlation effect. The governing equations are derived by considering the history of multiple reflections between two reflecting wails. A closure approximation is applied so that only a finite number of reflections have to be explicitly included. The closure solutions express the physics of the problem to a very high degree and show relatively little error. Numerical solutions are obtained by applying a statistical narrow-band model for gas properties and a discrete ordinates code. The net radiative wail heat fluxes and the radiative source distributions are obtained for different temperature profiles. A zeroth-degree formulation, where no wall reflection is handled explicitly, is sufficient to predict the radiative transfer accurately for most cases considered, when compared with increasingly accurate solutions based on explicitly tracing a larger number of wail reflections without any closure approximation applied.
Gas Flux and Density Surrounding a Cylindrical Aperture in the Free Molecular Flow Regime
NASA Technical Reports Server (NTRS)
Soulas, George C.
2011-01-01
The equations for rigorously calculating the particle flux and density surrounding a cylindrical aperture in the free molecular flow regime are developed and presented. The fundamental equations for particle flux and density from a reservoir and a diffusely reflecting surface will initially be developed. Assumptions will include a Maxwell-Boltzmann speed distribution, equal particle and wall temperatures, and a linear flux distribution along the cylindrical aperture walls. With this information, the equations for axial flux and density surrounding a cylindrical aperture will be developed. The cylindrical aperture will be divided into multiple volumes and regions to rigorously determine the surrounding axial flux and density, and appropriate limits of integration will be determined. The results of these equations will then be evaluated. The linear wall flux distribution assumption will be assessed. The axial flux and density surrounding a cylindrical aperture with a thickness-to-radius ratio of 1.25 will be presented. Finally, the equations determined in this study will be verified using multiple methods.
Magnetosphere-Ionosphere Energy Interchange in the Electron Diffuse Aurora
NASA Technical Reports Server (NTRS)
Khazanov, George V.; Glocer, Alex; Himwich, E. W.
2014-01-01
The diffuse aurora has recently been shown to be a major contributor of energy flux into the Earth's ionosphere. Therefore, a comprehensive theoretical analysis is required to understand its role in energy redistribution in the coupled ionosphere-magnetosphere system. In previous theoretical descriptions of precipitated magnetospheric electrons (E is approximately 1 keV), the major focus has been the ionization and excitation rates of the neutral atmosphere and the energy deposition rate to thermal ionospheric electrons. However, these precipitating electrons will also produce secondary electrons via impact ionization of the neutral atmosphere. This paper presents the solution of the Boltzman-Landau kinetic equation that uniformly describes the entire electron distribution function in the diffuse aurora, including the affiliated production of secondary electrons (E greater than 600 eV) and their ionosphere-magnetosphere coupling processes. In this article, we discuss for the first time how diffuse electron precipitation into the atmosphere and the associated secondary electron production participate in ionosphere-magnetosphere energy redistribution.
Analysis of the 0.511 MeV radiation at the OSO-7 satellite. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Dunphy, P. P.
1974-01-01
Observations of the 0.511 MeV positron annihilation, gamma ray on the OSO-7 satellite are presented. Variables which affect the counting rate are discussed. An upper limit flux of .0076 photons/sq cm/sec is obtained for the quiet sun and a positive solar flux of .063(+ or - .0002) photons/sq cm/sec is obtained for the 3B flare of 4 August 1972. The width of this annihilation line gives an upper limit temperature for the annihilation region of approximately 6 million K. An analysis of the line width and position also shows that the contribution to the line from positronium annihilation is less than 100% at the 99% confidence level. An upper limit is also found for an isotropic cosmic flux.
Numerical Experiments Based on the Catastrophe Model of Solar Eruptions
NASA Astrophysics Data System (ADS)
Xie, X. Y.; Ziegler, U.; Mei, Z. X.; Wu, N.; Lin, J.
2017-11-01
On the basis of the catastrophe model developed by Isenberg et al., we use the NIRVANA code to perform the magnetohydrodynamics (MHD) numerical experiments to look into various behaviors of the coronal magnetic configuration that includes a current-carrying flux rope used to model the prominence levitating in the corona. These behaviors include the evolution in equilibrium heights of the flux rope versus the change in the background magnetic field, the corresponding internal equilibrium of the flux rope, dynamic properties of the flux rope after the system loses equilibrium, as well as the impact of the referential radius on the equilibrium heights of the flux rope. In our calculations, an empirical model of the coronal density distribution given by Sittler & Guhathakurta is used, and the physical diffusion is included. Our experiments show that the deviation of simulations in the equilibrium heights from the theoretical results exists, but is not apparent, and the evolutionary features of the two results are similar. If the flux rope is initially locate at the stable branch of the theoretical equilibrium curve, the flux rope will quickly reach the equilibrium position in the simulation after several rounds of oscillations as a result of the self-adjustment of the system; and the flux rope lose the equilibrium if the initial location of the flux rope is set at the critical point on the theoretical equilibrium curve. Correspondingly, the internal equilibrium of the flux rope can be reached as well, and the deviation from the theoretical results is somewhat apparent since the approximation of the small radius of the flux rope is lifted in our experiments, but such deviation does not affect the global equilibrium in the system. The impact of the referential radius on the equilibrium heights of the flux rope is consistent with the prediction of the theory. Our calculations indicate that the motion of the flux rope after the loss of equilibrium is consistent with which is predicted by the Lin-Forbes model and observations. Formation of the fast mode shock ahead of the flux rope is observed in our experiments. Outward motions of the flux rope are smooth, and magnetic energy is continuously converted into the other types of energy because both the diffusions are considered in calculations, and magnetic reconnection is allowed to occur successively in the current sheet behind the flux rope.
NASA Astrophysics Data System (ADS)
Couto, Nicole; Martinson, Douglas G.; Kohut, Josh; Schofield, Oscar
2017-07-01
We use autonomous underwater vehicles to characterize the spatial distribution of Upper Circumpolar Deep Water (UCDW) on the continental shelf of the West Antarctic Peninsula (WAP) and present the first near-synoptic measurements of mesoscale features (eddies) containing UCDW on the WAP. Thirty-three subsurface eddies with widths on the order of 10 km were detected during four glider deployments. Each eddy contributed an average of 5.8 × 1016 J to the subpycnocline waters, where a cross-shelf heat flux of 1.37 × 1019 J yr-1 is required to balance the diffusive loss of heat to overlying winter water and to the near-coastal waters. Approximately two-thirds of the heat coming onto the shelf diffuses across the pycnocline and one-third diffuses to the coastal waters; long-term warming of the subpycnocline waters is a small residual of this balance. Sixty percent of the profiles that contained UCDW were part of a coherent eddy. Between 20% and 53% of the lateral onshore heat flux to the WAP can be attributed to eddies entering Marguerite Trough, a feature in the southern part of the shelf which is known to be an important conduit for UCDW. A northern trough is identified as additional important location for eddy intrusion.
NASA Astrophysics Data System (ADS)
Mcnicol, G.; Knox, S. H.; Sturtevant, C. S.; Baldocchi, D. D.; Silver, W. L.
2015-12-01
Seminal wetland research in the 1990s demonstrated that annual methane (CH4) fluxes scaled positively with ecosystem production across distinctive wetlands globally. This relationship implies a model of flooded wetland ecosystems as 'methanogenic black-boxes'; poised at a low redox state, and tending to release a fixed fraction of incoming annual productivity as CH4. In contrast, recent studies have reported high ratios of carbon dioxide (CO2) to CH4 emissions, and are adding to a body of evidence suggesting wetlands can vary more widely in their redox state. To explore this apparent incongruence we used principles of redox thermodynamics and laboratory experiments to develop predictions of wetland greenhouse gas (GHG) fluxes under different redox regimes. We then used a field study to test the hypothesis that ecosystem seasonality in gross primary productivity (GPP) and temperature would drive changes in GHG emissions, mediated by a dynamic - as opposed to static - redox regime. We estimated wetland GHG emissions from an emergent marsh in the Sacramento Delta, CA from March 2014-2015. We measured CO2, CH4 and N2O emissions via diffusion and ebullition with manual sampling, and whole-ecosystem fluxes of CO2 and CH4 using eddy-covariance. Ebullition and diffusive CH4 fluxes were strongly seasonal, with minimum rates (0.86 and 0.35 mg C-CH4 m-2 yr-1, respectively) during winter, and maximum rates (1.3 and 1.8 g C-CH4 m-2 yr-1, respectively) during the summer growing season. In contrast, winter diffusive CO2 fluxes (494 g C-CO2 m-2 yr-1) and fall bubble CO2 concentrations (1.49%) were highest, despite being seasons of lower GPP, temperature, and CH4 flux. Further, diffusive and ebullition fluxes of N2O showed zero net flux only during spring and summer months, whereas the wetland was a significant source of N2O during winter (81.2 ± 24.4 mg N-N2O m-2 yr-1). These seasonal flux dynamics contradict a 'methanogenic black box' model of wetland redox, which predicts carbon limitation of, and concurrent maxima in, heterotrophic CO2 and CH4 emissions, and no significant N2O emissions. Rather these results suggest that wetlands can function as dynamic redox environments where GHG emission rate and composition varies predictably in time with seasonal changes in GPP and temperature.
NASA Technical Reports Server (NTRS)
Weedman, Daniel W.
1987-01-01
The infrared properties of star-forming galaxies, primarily as determined by the Infrared Astronomy Satellite (IRAS), are compared to X-ray, optical, and radio properties. Luminosity functions are reviewed and combined with those derived from optically discovered samples using 487 Markarian galaxies with redshifts and published IRAS 60 micron fluxes, and 1074 such galaxies in the Center for Astrophysics redshift survey. It is found that the majority of infrared galaxies which could be detected are low luminosity sources already known from the optical samples, but non-infrared surveys have found only a very small fraction of the highest luminosity sources. Distributions of infrared to optical fluxes and available spectra indicate that the majority of IRAS-selected galaxies are starburst galaxies. Having a census of starburst galaxies and associated dust allow severl important global calculations. The source counts are predicted as a function of flux limits for both infrared and radio fluxes. These galaxies are found to be important radio sources at faint flux limits. Taking the integrated flux to z = 3 indicates that such galaxies are a significant component of the diffuse X-ray background, and could be the the dominant component depending on the nature of the X-ray spectra and source evolution.
Search for lightly ionizing particles with the MACRO detector
NASA Astrophysics Data System (ADS)
Ambrosio, M.; Antolini, R.; Auriemma, G.; Bakari, D.; Baldini, A.; Barbarino, G. C.; Barish, B. C.; Battistoni, G.; Bellotti, R.; Bemporad, C.; Bernardini, P.; Bilokon, H.; Bisi, V.; Bloise, C.; Bower, C.; Brigida, M.; Bussino, S.; Cafagna, F.; Calicchio, M.; Campana, D.; Carboni, M.; Cecchini, S.; Cei, F.; Chiarella, V.; Choudhary, B. C.; Coutu, S.; de Cataldo, G.; Dekhissi, H.; de Marzo, C.; de Mitri, I.; Derkaoui, J.; de Vincenzi, M.; di Credico, A.; Erriquez, O.; Favuzzi, C.; Forti, C.; Fusco, P.; Giacomelli, G.; Giannini, G.; Giglietto, N.; Giorgini, M.; Grassi, M.; Gray, L.; Grillo, A.; Guarino, F.; Gustavino, C.; Habig, A.; Hanson, K.; Heinz, R.; Iarocci, E.; Katsavounidis, E.; Katsavounidis, I.; Kearns, E.; Kim, H.; Kyriazopoulou, S.; Lamanna, E.; Lane, C.; Levin, D. S.; Lipari, P.; Longley, N. P.; Longo, M. J.; Loparco, F.; Maaroufi, F.; Mancarella, G.; Mandrioli, G.; Margiotta, A.; Marini, A.; Martello, D.; Marzari-Chiesa, A.; Mazziotta, M. N.; Michael, D. G.; Mikheyev, S.; Miller, L.; Monacelli, P.; Montaruli, T.; Monteno, M.; Mufson, S.; Musser, J.; Nicolò, D.; Nolty, R.; Orth, C.; Okada, C.; Osteria, G.; Ouchrif, M.; Palamara, O.; Patera, V.; Patrizii, L.; Pazzi, R.; Peck, C. W.; Perrone, L.; Petrera, S.; Pistilli, P.; Popa, V.; Rainò, A.; Reynoldson, J.; Ronga, F.; Satriano, C.; Satta, L.; Scapparone, E.; Scholberg, K.; Sciubba, A.; Serra, P.; Sioli, M.; Sitta, M.; Spinelli, P.; Spinetti, M.; Spurio, M.; Steinberg, R.; Stone, J. L.; Sulak, L. R.; Surdo, A.; Tarlè, G.; Togo, V.; Vakili, M.; Vilela, E.; Walter, C. W.; Webb, R.
2000-09-01
A search for lightly ionizing particles has been performed with the MACRO detector. This search was sensitive to particles with charges between 15 e and close to the charge of an electron, with β between approximately 0.25 and 1.0. Unlike previous searches both single track events and tracks buried within high multiplicity muon showers were examined. In a period of approximately one year no candidates were observed. Assuming an isotropic flux, for the single track sample this corresponds to a 90% C.L. upper flux limit Φ<=9.2×10-15 cm-2 s-1 sr-1.
Chamber and Diffusive Based Carbon Flux Measurements in an Alaskan Arctic Ecosystem
NASA Astrophysics Data System (ADS)
Wilkman, E.; Oechel, W. C.; Zona, D.
2013-12-01
Eric Wilkman, Walter Oechel, Donatella Zona Comprising an area of more than 7 x 106 km2 and containing over 11% of the world's organic matter pool, Arctic terrestrial ecosystems are vitally important components of the global carbon cycle, yet their structure and functioning are sensitive to subtle changes in climate and many of these functional changes can have large effects on the atmosphere and future climate regimes (Callaghan & Maxwell 1995, Chapin et al. 2002). Historically these northern ecosystems have acted as strong C sinks, sequestering large stores of atmospheric C due to photosynthetic dominance in the short summer season and low rates of decomposition throughout the rest of the year as a consequence of cold, nutrient poor, and generally water-logged conditions. Currently, much of this previously stored carbon is at risk of loss to the atmosphere due to accelerated soil organic matter decomposition in warmer future climates (Grogan & Chapin 2000). Although there have been numerous studies on Arctic carbon dynamics, much of the previous soil flux work has been done at limited time intervals, due to both the harshness of the environment and labor and time constraints. Therefore, in June of 2013 an Ultraportable Greenhouse Gas Analyzer (UGGA - Los Gatos Research Inc.) was deployed in concert with the LI-8100A Automated Soil Flux System (LI-COR Biosciences) in Barrow, AK to gather high temporal frequency soil CO2 and CH4 fluxes from a wet sedge tundra ecosystem. An additional UGGA in combination with diffusive probes, installed in the same location, provides year-round soil and snow CO2 and CH4 concentrations. When used in combination with the recently purchased AlphaGUARD portable radon monitor (Saphymo GmbH), continuous soil and snow diffusivities and fluxes of CO2 and CH4 can be calculated (Lehmann & Lehmann 2000). Of particular note, measuring soil gas concentration over a diffusive gradient in this way allows one to separate both net production and consumption, whereas chamber and eddy covariance methodologies only document net production from the surface. Also, the capability to measure spring, summer and fall chamber fluxes, and to continuously determine year-round CO2 and CH4 fluxes under even the most extreme weather conditions, allows an unprecedented level of data continuity and local spatial coverage. Comparison to a nearby eddy covariance tower measuring CO2 and CH4 fluxes with an LGR Fast Greenhouse Gas Analyzer add additional power to this set of measurements. Thus, inter-comparison between diffusive, chamber, and tower-based carbon fluxes should lend much insight into the spatial and temporal controls on carbon cycling in this ecosystem.
NASA Astrophysics Data System (ADS)
Bremmer, Rolf H.; van Gemert, Martin J. C.; Faber, Dirk J.; van Leeuwen, Ton G.; Aalders, Maurice C. G.
2013-08-01
Diffuse reflectance spectra are used to determine the optical properties of biological samples. In medicine and forensic science, the turbid objects under study often possess large absorption and/or scattering properties. However, data analysis is frequently based on the diffusion approximation to the radiative transfer equation, implying that it is limited to tissues where the reduced scattering coefficient dominates over the absorption coefficient. Nevertheless, up to absorption coefficients of 20 m at reduced scattering coefficients of 1 and 11.5 mm-1, we observed excellent agreement (r2=0.994) between reflectance measurements of phantoms and the diffuse reflectance equation proposed by Zonios et al. [Appl. Opt.
Abnormal growth kinetics of h-BN epitaxial monolayer on Ru(0001) enhanced by subsurface Ar species
NASA Astrophysics Data System (ADS)
Wei, Wei; Meng, Jie; Meng, Caixia; Ning, Yanxiao; Li, Qunxiang; Fu, Qiang; Bao, Xinhe
2018-04-01
Growth kinetics of epitaxial films often follows the diffusion-limited aggregation mechanism, which shows a "fractal-to-compact" morphological transition with increasing growth temperature or decreasing deposition flux. Here, we observe an abnormal "compact-to-fractal" morphological transition with increasing growth temperature for hexagonal boron nitride growth on the Ru(0001) surface. The unusual growth process can be explained by a reaction-limited aggregation (RLA) mechanism. Moreover, introduction of the subsurface Ar atoms has enhanced this RLA growth behavior by decreasing both reaction and diffusion barriers. Our work may shed light on the epitaxial growth of two-dimensional atomic crystals and help to control their morphology.
Albedo and flux extinction coefficient of impure snow for diffuse shortwave radiation
NASA Technical Reports Server (NTRS)
Choudhury, B. J.; Mo, T.; Wang, J. R.; Chang, A. T. C.
1981-01-01
Impurities enter a snowpack as a result of fallout of scavenging by falling snow crystals. Albedo and flux extinction coefficient of soot contaminated snowcovers were studied using a two stream approximation of the radiative transfer equation. The effect of soot was calculated by two methods: independent scattering by ice grains and impurities and average refractive index for ice grains. Both methods predict a qualitatively similar effect of soot; the albedo is decreased and the extinction coefficient is increased compared to that for pure snow in the visible region; the infrared properties are largely unaffected. Quantitatively, however, the effect of soot is more pronounced in the average refractive index method. Soot contamination provides a qualitative explanation for several snow observations.
NASA Astrophysics Data System (ADS)
Istomin, V. A.; Kustova, E. V.
2017-02-01
The influence of electronic excitation on transport processes in non-equilibrium high-temperature ionized mixture flows is studied. Two five-component mixtures, N 2 / N2 + / N / N + / e - and O 2 / O2 + / O / O + / e - , are considered taking into account the electronic degrees of freedom for atomic species as well as the rotational-vibrational-electronic degrees of freedom for molecular species, both neutral and ionized. Using the modified Chapman-Enskog method, the transport coefficients (thermal conductivity, shear viscosity and bulk viscosity, diffusion and thermal diffusion) are calculated in the temperature range 500-50 000 K. Thermal conductivity and bulk viscosity coefficients are strongly affected by electronic states, especially for neutral atomic species. Shear viscosity, diffusion, and thermal diffusion coefficients are not sensible to electronic excitation if the size of excited states is assumed to be constant. The limits of applicability for the Stokes relation are discussed; at high temperatures, this relation is violated not only for molecular species but also for electronically excited atomic gases. Two test cases of strongly non-equilibrium flows behind plane shock waves corresponding to the spacecraft re-entry (Hermes and Fire II) are simulated numerically. Fluid-dynamic variables and heat fluxes are evaluated in gases with electronic excitation. In inviscid flows without chemical-radiative coupling, the flow-field is weakly affected by electronic states; however, in viscous flows, their influence can be more important, in particular, on the convective heat flux. The contribution of different dissipative processes to the heat transfer is evaluated as well as the effect of reaction rate coefficients. The competition of diffusion and heat conduction processes reduces the overall effect of electronic excitation on the convective heating, especially for the Fire II test case. It is shown that reliable models of chemical reaction rates are of great importance for accurate predictions of the fluid dynamic variables and heat fluxes.
Effects of cloudiness on global and diffuse UV irradiance in a high-mountain area
NASA Astrophysics Data System (ADS)
Blumthaler, M.; Ambach, W.; Salzgeber, M.
1994-03-01
At the high-mountain station Jungfraujoch (3576 m a.s.l., Switzerland), measurements of the radiation fluxes were made during 16 periods of six to eight weeks by means of a Robertson—Berger sunburn meter (UVB data), an Eppley UVA radiometer and an Eppley pyranometer. Cloudiness, opacity and altitude of clouds were recorded at 30-minute intervals. A second set of instruments was employed for separate measurement of the diffuse radiation fluxes using shadow bands. The global and diffuse UVA- and UVB radiation fluxes change less with cloudiness than the corresponding total radiation fluxes. When the sun is covered by clouds, the global UVA- and UVB radiation fluxes are also affected less than the global total radiation flux. The roughly equal influence of cloudiness on the UVA- and UVB radiation fluxes suggests that the reduction is influenced more by scattering than by ozone. Also, the share of diffuse irradiance in global irradiance is considerably higher for UVA- and UVB irradiance than for total irradiance. At 50° solar elevation and 0/10 cloudiness, the share is 39% for UVB irradiance, 34% for UVA irradiance and 11% for total irradiance. The increased aerosol turbidity after the eruptions of El Chichon and Pinatubo has caused a significant increase in diffuse total irradiance but has not produced any significant changes in diffuse UVA- and UVB irradiances.
Volume Diffusion Growth Kinetics and Step Geometry in Crystal Growth
NASA Technical Reports Server (NTRS)
Mazuruk, Konstantin; Ramachandran, Narayanan
1998-01-01
The role of step geometry in two-dimensional stationary volume diff4sion process used in crystal growth kinetics models is investigated. Three different interface shapes: a) a planar interface, b) an equidistant hemispherical bumps train tAx interface, and c) a train of right angled steps, are used in this comparative study. The ratio of the super-saturation to the diffusive flux at the step position is used as a control parameter. The value of this parameter can vary as much as 50% for different geometries. An approximate analytical formula is derived for the right angled steps geometry. In addition to the kinetic models, this formula can be utilized in macrostep growth models. Finally, numerical modeling of the diffusive and convective transport for equidistant steps is conducted. In particular, the role of fluid flow resulting from the advancement of steps and its contribution to the transport of species to the steps is investigated.
Triangle based TVD schemes for hyperbolic conservation laws
NASA Technical Reports Server (NTRS)
Durlofsky, Louis J.; Osher, Stanley; Engquist, Bjorn
1990-01-01
A triangle based total variation diminishing (TVD) scheme for the numerical approximation of hyperbolic conservation laws in two space dimensions is constructed. The novelty of the scheme lies in the nature of the preprocessing of the cell averaged data, which is accomplished via a nearest neighbor linear interpolation followed by a slope limiting procedures. Two such limiting procedures are suggested. The resulting method is considerably more simple than other triangle based non-oscillatory approximations which, like this scheme, approximate the flux up to second order accuracy. Numerical results for linear advection and Burgers' equation are presented.
Relevance of cosmic gamma rays to the mass of gas in the galaxy
NASA Technical Reports Server (NTRS)
Bhat, C. L.; Mayer, C. J.; Wolfendale, A. W.
1985-01-01
The bulk of the diffuse gamma-ray flux comes from cosmic ray interactions in the interstellar medium. A knowledge of the large scale spatial distribution of the Galactic gamma-rays and the cosmic rays enables the distribution of the target gas to be examined. An approach of this type is used here to estimate the total mass of the molecular gas in the galaxy. It is shown to be much less than that previously derived, viz., approximately 6 x 10 to the 8th power solar masses within the solar radius as against approximately 3 x 10 to the 9th power based on 2.6 mm CO measurements.
Solution of a cauchy problem for a diffusion equation in a Hilbert space by a Feynman formula
NASA Astrophysics Data System (ADS)
Remizov, I. D.
2012-07-01
The Cauchy problem for a class of diffusion equations in a Hilbert space is studied. It is proved that the Cauchy problem in well posed in the class of uniform limits of infinitely smooth bounded cylindrical functions on the Hilbert space, and the solution is presented in the form of the so-called Feynman formula, i.e., a limit of multiple integrals against a gaussian measure as the multiplicity tends to infinity. It is also proved that the solution of the Cauchy problem depends continuously on the diffusion coefficient. A process reducing an approximate solution of an infinite-dimensional diffusion equation to finding a multiple integral of a real function of finitely many real variables is indicated.
Dispersion in Rectangular Networks: Effective Diffusivity and Large-Deviation Rate Function
NASA Astrophysics Data System (ADS)
Tzella, Alexandra; Vanneste, Jacques
2016-09-01
The dispersion of a diffusive scalar in a fluid flowing through a network has many applications including to biological flows, porous media, water supply, and urban pollution. Motivated by this, we develop a large-deviation theory that predicts the evolution of the concentration of a scalar released in a rectangular network in the limit of large time t ≫1 . This theory provides an approximation for the concentration that remains valid for large distances from the center of mass, specifically for distances up to O (t ) and thus much beyond the O (t1 /2) range where a standard Gaussian approximation holds. A byproduct of the approach is a closed-form expression for the effective diffusivity tensor that governs this Gaussian approximation. Monte Carlo simulations of Brownian particles confirm the large-deviation results and demonstrate their effectiveness in describing the scalar distribution when t is only moderately large.
NASA Technical Reports Server (NTRS)
Eriksson, S.; Wilder, F. D.; Ergun, R. E.; Schwartz, S. J.; Cassak, P. A.; Burch, J. L.; Chen, Li-Jen; Torbert, R. B.; Phan, T. D.; Lavraud, B.;
2016-01-01
We report observations from the Magnetospheric Multiscale (MMS) satellites of a large guide field magnetic reconnection event. The observations suggest that two of the four MMS spacecraft sampled the electron diffusion region, whereas the other two spacecraft detected the exhaust jet from the event. The guide magnetic field amplitude is approximately 4 times that of the reconnecting field. The event is accompanied by a significant parallel electric field (E(sub parallel lines) that is larger than predicted by simulations. The high-speed (approximately 300 km/s) crossing of the electron diffusion region limited the data set to one complete electron distribution inside of the electron diffusion region, which shows significant parallel heating. The data suggest that E(sub parallel lines) is balanced by a combination of electron inertia and a parallel gradient of the gyrotropic electron pressure.
NASA Astrophysics Data System (ADS)
Chen, M. W.; Schulz, M.; Lu, G.
2001-12-01
We obtain distributions of precipitating electrons by tracing drift shells of plasmasheet electrons in the limit of strong pitch angle diffusion in Dungey's model magnetosphere, which consists of a dipolar magnetic field plus a uniform southward field. Under strong pitch-angle diffusion particles drift so as to conserve an adiabatic invariant Λ equal to the enclosed phase-space volume (i.e., the cube of the particle momentum p times the occupied flux-tube volume per unit magnetic flux). In the past we applied a quiescent Stern-Volland electric-field model with a cross-tail potential drop of 25 kV and added to it a storm-associated Brice-Nishida cross-magnetospheric electric field with impulses to represent substorm effects. For the present study we use the more realistic Assimilative Model of Ionospheric Electrodynamics (AMIE). We use an analytical expansion to express the AMIE ionospheric potential as a function of latitude and magnetic local time. We map this AMIE potential to latitudes >= 50^o to magnetospheric field lines with (L \\ge 2.5) in Dungey's magnetic field model. We trace the bounce-averaged drift motion of representative plasmasheet electrons for values of \\Lambda corresponding to energies of 0.25-64 keV on field lines of equatorial radial distance r = 6 R_E (L = 5.7), which maps to \\approx 65^o$ latitude in the ionosphere. We use the simulation results to map stormtime phase space distributions taking into account loss due to precipitation. We consider 2 models of electron scattering: (1) the limit of strong scattering everywhere, and (2) an MLT-dependent scattering that is less than everywhere strong in the plasma sheet. From the phase space distributions we calculate the total precipitating electron energy flux into the ionosphere. For this study we focus on the October 19, 1998, storm. We compare qualitatively the simulated energy flux with X-ray intensity from Polar/PIXIE images during this storm.
Search for Ultra-High-Energy Neutrinos with AMANDA-II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ackermann, M.; Bernardini, E.; Adams, J.
2008-03-10
A search for diffuse neutrinos with energies in excess of 10{sup 5} GeV is conducted with AMANDA-II data recorded between 2000 and 2002. Above 10{sup 7} GeV, the Earth is essentially opaque to neutrinos. This fact, combined with the limited overburden of the AMANDA-II detector (roughly 1.5 km), concentrates these ultra-high-energy neutrinos at the horizon. The primary background for this analysis is bundles of downgoing, high-energy muons from the interaction of cosmic rays in the atmosphere. No statistically significant excess above the expected background is seen in the data, and an upper limit is set on the diffuse all-flavor neutrinomore » flux of E{sup 2}{phi}{sub 90%CL} < 2.7 x 10{sup -7} GeV cm{sup -2} s{sup -1} sr{sup -1} valid over the energy range of 2 x 10{sup 5} to 10{sup 9} GeV. A number of models that predict neutrino fluxes from active galactic nuclei are excluded at the 90% confidence level.« less
Search for Ultra High-Energy Neutrinos with AMANDA-II
DOE Office of Scientific and Technical Information (OSTI.GOV)
IceCube Collaboration; Klein, Spencer; Ackermann, M.
2007-11-19
A search for diffuse neutrinos with energies in excess of 10{sup 5} GeV is conducted with AMANDA-II data recorded between 2000 and 2002. Above 10{sup 7} GeV, the Earth is essentially opaque to neutrinos. This fact, combined with the limited overburden of the AMANDA-II detector (roughly 1.5 km), concentrates these ultra high-energy neutrinos at the horizon. The primary background for this analysis is bundles of downgoing, high-energy muons from the interaction of cosmic rays in the atmosphere. No statistically significant excess above the expected background is seen in the data, and an upper limit is set on the diffuse all-flavormore » neutrino flux of E{sup 2} {Phi}{sub 90%CL} < 2.7 x 10{sup -7} GeV cm{sup -2}s{sup -1} sr{sup -1} valid over the energy range of 2 x 10{sup 5} GeV to 10{sup 9} GeV. A number of models which predict neutrino fluxes from active galactic nuclei are excluded at the 90% confidence level.« less
NASA Astrophysics Data System (ADS)
Yan, Zhiqiang; Yan, Xingpeng; Jiang, Xiaoyu; Gao, Hui; Wen, Jun
2017-11-01
An integral imaging based light field display method is proposed by use of holographic diffuser, and enhanced viewing resolution is gained over conventional integral imaging systems. The holographic diffuser is fabricated with controlled diffusion characteristics, which interpolates the discrete light field of the reconstructed points to approximate the original light field. The viewing resolution can thus be improved and independent of the limitation imposed by Nyquist sampling frequency. An integral imaging system with low Nyquist sampling frequency is constructed, and reconstructed scenes of high viewing resolution using holographic diffuser are demonstrated, verifying the feasibility of the method.
Viscosity and viscoelasticity of two-phase systems having diffuse interfaces
NASA Technical Reports Server (NTRS)
Hopper, R. W.
1976-01-01
The equilibrium stability criterion for diffuse interfaces in a two-component solution with a miscibility gap requires that the interdiffusion flux vanish. If the system is continuously deformed, convective fluxes disrupt the equilibrium in the interface regions and induce a counter diffusive flux, which is dissipative and contributes to the apparent viscosity of the mixture. Chemical free energy is recoverably stored, causing viscoelastic phenomena. Both effects are significant.
The flux qubit revisited to enhance coherence and reproducibility
Yan, Fei; Gustavsson, Simon; Kamal, Archana; Birenbaum, Jeffrey; Sears, Adam P; Hover, David; Gudmundsen, Ted J.; Rosenberg, Danna; Samach, Gabriel; Weber, S; Yoder, Jonilyn L.; Orlando, Terry P.; Clarke, John; Kerman, Andrew J.; Oliver, William D.
2016-01-01
The scalable application of quantum information science will stand on reproducible and controllable high-coherence quantum bits (qubits). Here, we revisit the design and fabrication of the superconducting flux qubit, achieving a planar device with broad-frequency tunability, strong anharmonicity, high reproducibility and relaxation times in excess of 40 μs at its flux-insensitive point. Qubit relaxation times T1 across 22 qubits are consistently matched with a single model involving resonator loss, ohmic charge noise and 1/f-flux noise, a noise source previously considered primarily in the context of dephasing. We furthermore demonstrate that qubit dephasing at the flux-insensitive point is dominated by residual thermal-photons in the readout resonator. The resulting photon shot noise is mitigated using a dynamical decoupling protocol, resulting in T2≈85 μs, approximately the 2T1 limit. In addition to realizing an improved flux qubit, our results uniquely identify photon shot noise as limiting T2 in contemporary qubits based on transverse qubit–resonator interaction. PMID:27808092
Vapor Transport Within the Thermal Diffusion Cloud Chamber
NASA Technical Reports Server (NTRS)
Ferguson, Frank T.; Heist, Richard H.; Nuth, Joseph A., III
2000-01-01
A review of the equations used to determine the 1-D vapor transport in the thermal diffusion cloud chamber (TDCC) is presented. These equations closely follow those of the classical Stefan tube problem in which there is transport of a volatile species through a noncondensible, carrier gas. In both cases, the very plausible assumption is made that the background gas is stagnant. Unfortunately, this assumption results in a convective flux which is inconsistent with the momentum and continuity equations for both systems. The approximation permits derivation of an analytical solution for the concentration profile in the Stefan tube, but there is no computational advantage in the case of the TDCC. Furthermore, the degree of supersaturation is a sensitive function of the concentration profile in the TD CC and the stagnant background gas approximation can make a dramatic difference in the calculated supersaturation. In this work, the equations typically used with a TDCC are compared with very general transport equations describing the 1-D diffusion of the volatile species. Whereas no pressure dependence is predicted with the typical equations, a strong pressure dependence is present with the more general equations given in this work. The predicted behavior is consistent with observations in diffusion cloud experiments. It appears that the new equations may account for much of the pressure dependence noted in TDCC experiments, but a comparison between the new equations and previously obtained experimental data are needed for verification.
The relationship between diffuse auroral and plasma sheet electron distributions near local midnight
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schumaker, T.L.; Gussenhoven, M.S.; Hardy, D.A.
1989-08-01
A study of the relationship between diffuse auroral and plasma sheet electron distributions in the energy range from 50 eV to 20 keV in the midnight region was conducted using data from the P78-1 and SCATHA satellites. From 1 1/2 years of data, 14 events were found where the polar-orbiting P78-1 satellite and the near-geosynchronous SCATHA satellite were approximately on the same magnetic field line simultaneously, with SCATHA in the plasma sheet and P78-1 in the diffuse auroral region. For all cases the spectra from the two satellites are in good quantitative agreement. For 13 of the 14 events themore » pitch angle distribution measured at P78-1 was isotropic for angles mapping into the loss cone at the SCATHA orbit. For one event the P78-1 electron flux decreased with pitch angle toward the field line direction. At SCATHA the distributions outside the loss cone were most commonly butterfly or pancake, although distributions peaked toward the field line were sometimes observed at energies below 1 keV. Electron distributions, as measured where there is isotropy within the loss cone but anisotropy outside the loss cone, are inconsistent with current theories for the scattering of cone for the distribution measured at SCATHA, the electron precipitation lifetimes were calculated for the 14 events. Because the distributions are anisotropic at pitch angles away from the loss cone, the calculated lifetimes significantly exceed the lifetimes in the limit when the flu is isotropic at all pitch angles. The computed precipitation lifetimes are found to be weakly dependent on magnetic activity. The average lifetimes exceed those for the case of isotropy at all pitch angles by a factor between 2 and 3 for {ital Kp}{le}2 and approximately 1.5 for {ital Kp}{gt}2. {copyright} American Geophysical Union 1989« less
On the flux of fluctuation energy in a collisional grain flow at a flat, frictional wall
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jenkins, J.T.; Louge, M.Y.
We consider a flow of colliding spheres that interacts with a flat, frictional wall and calculate the flux of fluctuation energy in two limits. In the first limit, all spheres slide upon contact with the wall. Here, we refine the calculations of Jenkins [J. Appl. Mech. {bold 59}, 120 (1992)] and show that a correlation between two orthogonal components of the fluctuation velocity of the point of contact of the grains with the wall provides a substantial correction to the flux originally predicted. In the other limit, the granular material is agitated but the mean velocity of the contact pointsmore » with respect to the wall is zero and Jenkins{close_quote} earlier calculation is improved by distinguishing between those contacts that slide in a collision and those that stick. The new expressions for the flux agree well with the computer simulations of Louge [Phys. Fluids {bold 6}, 2253 (1994)]. Finally, we extend the expression for zero mean sliding to incorporate small sliding and obtain an approximate expression for the flux between the two limits. {copyright} {ital 1997 American Institute of Physics.}« less
Confronting Practical Problems for Initiation of On-line Hemodiafiltration Therapy.
Kim, Yang Wook; Park, Sihyung
2016-06-01
Conventional hemodialysis, which is based on the diffusive transport of solutes, is the most widely used renal replacement therapy. It effectively removes small solutes such as urea and corrects fluid, electrolyte and acid-base imbalance. However, solute diffusion coefficients decreased rapidly as molecular size increased. Because of this, middle and large molecules are not removed effectively and clinical problem such as dialysis amyloidosis might occur. Online hemodiafiltration which is combined by diffusive and convective therapies can overcome such problems by removing effectively middle and large solutes. Online hemodiafiltration is safe, very effective, economically affordable, improving session tolerance and may improve the mortality superior to high flux hemodialysis. However, there might be some potential limitations for setting up online hemodiafiltaration. In this article, we review the uremic toxins associated with dialysis, definition of hemodiafiltration, indication and prescription of hemodiafiltration and the limitations of setting up hemodiafiltration.
ULTRA-SHARP solution of the Smith-Hutton problem
NASA Technical Reports Server (NTRS)
Leonard, B. P.; Mokhtari, Simin
1992-01-01
Highly convective scalar transport involving near-discontinuities and strong streamline curvature was addressed in a paper by Smith and Hutton in 1982, comparing several different convection schemes applied to a specially devised test problem. First order methods showed significant artificial diffusion, whereas higher order methods gave less smearing but had a tendency to overshoot and oscillate. Perhaps because unphysical oscillations are more obvious than unphysical smearing, the intervening period has seen a rise in popularity of low order artificially diffusive schemes, especially in the numerical heat transfer industry. The present paper describes an alternate strategy of using non-artificially diffusive high order methods, while maintaining strictly monotonic transitions through the use of simple flux limited constraints. Limited third order upwinding is usually found to be the most cost effective basic convection scheme. Tighter resolution of discontinuities can be obtained at little additional cost by using automatic adaptive stencil expansion to higher order in local regions, as needed.
Jet Launching in Resistive GR-MHD Black Hole–Accretion Disk Systems
NASA Astrophysics Data System (ADS)
Qian, Qian; Fendt, Christian; Vourellis, Christos
2018-05-01
We investigate the launching mechanism of relativistic jets from black hole sources, in particular the strong winds from the surrounding accretion disk. Numerical investigations of the disk wind launching—the simulation of the accretion–ejection transition—have so far almost only been done for nonrelativistic systems. From these simulations we know that resistivity, or magnetic diffusivity, plays an important role for the launching process. Here we extend this treatment to general relativistic magnetohydrodynamics (GR-MHD), applying the resistive GR-MHD code rHARM. Our model setup considers a thin accretion disk threaded by a large-scale open magnetic field. We run a series of simulations with different Kerr parameter, field strength, and diffusivity level. Indeed, we find strong disk winds with, however, mildly relativistic speed, the latter most probably due to our limited computational domain. Further, we find that magnetic diffusivity lowers the efficiency of accretion and ejection, as it weakens the efficiency of the magnetic lever arm of the disk wind. As a major driving force of the disk wind we disentangle the toroidal magnetic field pressure gradient; however, magnetocentrifugal driving may also contribute. Black hole rotation in our simulations suppresses the accretion rate owing to an enhanced toroidal magnetic field pressure that seems to be induced by frame dragging. Comparing the energy fluxes from the Blandford–Znajek-driven central spine and the surrounding disk wind, we find that the total electromagnetic energy flux is dominated by the total matter energy flux of the disk wind (by a factor of 20). The kinetic energy flux of the matter outflow is comparatively small and comparable to the Blandford–Znajek electromagnetic energy flux.
Fermi-LAT and Suzaku observations of the radio galaxy Centaurus B
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katsuta, J.; Tanaka, Y. T.; Stawarz, Ł.
2013-01-28
Centaurus B is a nearby radio galaxy positioned in the southern hemisphere close to the Galactic plane. Here, in this work, we present a detailed analysis of about 43 months of accumulated Fermi-LAT data of the γ-ray counterpart of the source initially reported in the 2nd Fermi-LAT catalog, and of newly acquired Suzaku X-ray data. We confirm its detection at GeV photon energies and analyze the extension and variability of the γ-ray source in the LAT dataset, in which it appears as a steady γ-ray emitter. The X-ray core of Centaurus B is detected as a bright source of amore » continuum radiation. We do not detect, however, any diffuse X-ray emission from the known radio lobes, with the provided upper limit only marginally consistent with the previously claimed ASCA flux. Two scenarios that connect the X-ray and γ-ray properties are considered. In the first one, we assume that the diffuse non-thermal X-ray emission component is not significantly below the derived Suzaku upper limit. In this case, modeling the inverse-Compton emission shows that the observed γ-ray flux of the source may in principle be produced within the lobes. This association would imply that efficient in-situ acceleration of the radiating electrons is occurring and that the lobes are dominated by the pressure from the relativistic particles. In the second scenario, with the diffuse X-ray emission well below the Suzaku upper limits, the lobes in the system are instead dominated by the magnetic pressure. In this case, the observed γ-ray flux is not likely to be produced within the lobes, but instead within the nuclear parts of the jet. In conclusion, by means of synchrotron self-Compton modeling, we show that this possibility could be consistent with the broad-band data collected for the unresolved core of Centaurus B, including the newly derived Suzaku spectrum.« less
Gebrekristos, R.A.; Shapiro, A.M.; Usher, B.H.
2008-01-01
An in situ method of estimating the effective diffusion coefficient for a chemical constituent that diffuses into the primary porosity of a rock is developed by abruptly changing the concentration of the dissolved constituent in a borehole in contact with the rock matrix and monitoring the time-varying concentration. The experiment was conducted in a borehole completed in mudstone on the campus of the University of the Free State in Bloemfontein, South Africa. Numerous tracer tests were conducted at this site, which left a residual concentration of sodium chloride in boreholes that diffused into the rock matrix over a period of years. Fresh water was introduced into a borehole in contact with the mudstone, and the time-varying increase of chloride was observed by monitoring the electrical conductivity (EC) at various depths in the borehole. Estimates of the effective diffusion coefficient were obtained by interpreting measurements of EC over 34 d. The effective diffusion coefficient at a depth of 36 m was approximately 7.8??10-6 m2/d, but was sensitive to the assumed matrix porosity. The formation factor and mass flux for the mudstone were also estimated from the experiment. ?? Springer-Verlag 2007.
NASA Technical Reports Server (NTRS)
Stephens, Graeme L.; Slingo, Anthony; Webb, Mark J.; Minnett, Peter J.; Daum, Peter H.; Kleinman, Lawrence; Wittmeyer, Ian; Randall, David A.
1994-01-01
This paper introduces a simple method for deriving climatological values of the longwave flux emitted from the clear sky atmosphere to the ice-free ocean surface. It is shown using both theory and data from simulations how the ratio of the surface to top-of-atmosphere (TOA) flux is a simple function of water vapor (W) and a validation of the simple relationship is presented based on a limited set of surface flux measurements. The rms difference between the retrieved surface fluxes and the simulated surface fluxes is approximately 6 W/sq m. The clear sky column cooling rate of the atmosphere is derived from the Earth Radiation Budget Experiment (ERBE) values of the clear sky TOA flux and the surface flux retrieved using Special Scanning Microwave Imager (SSM/I) measurements of w together with ERBE clear sky fluxes. The relationship between this column cooling rate, w, and the sea surface temperature (SST) is explored and it is shown how the cooling rate systematically increases as both w and SST increase. The uncertainty implied in these estmates of cooling are approximately +/- 0.2 K/d. The effects of clouds on this longwave cooling are also explored by placing bounds on the possible impact of clouds on the column cooling rate based on certain assumptions about the effect of clouds on the longwave flux to the surface. It is shown how the longwave effects of clouds in a moist atmosphere where the column water vapor exceeds approximately 30 kg/sq m may be estimated from presently available satellite data with an uncertainty estimated to be approximately 0.2 K/d. Based on an approach described in this paper, we show how clouds in these relatively moist regions decrease the column cooling by almost 50% of the clear sky values and the existence of significant longitudinal gradients in column radiative heating across the equatorial and subtropical Pacific Ocean.
Quasi-linear diffusion coefficients for highly oblique whistler mode waves
NASA Astrophysics Data System (ADS)
Albert, J. M.
2017-05-01
Quasi-linear diffusion coefficients are considered for highly oblique whistler mode waves, which exhibit a singular "resonance cone" in cold plasma theory. The refractive index becomes both very large and rapidly varying as a function of wave parameters, making the diffusion coefficients difficult to calculate and to characterize. Since such waves have been repeatedly observed both outside and inside the plasmasphere, this problem has received renewed attention. Here the diffusion equations are analytically treated in the limit of large refractive index μ. It is shown that a common approximation to the refractive index allows the associated "normalization integral" to be evaluated in closed form and that this can be exploited in the numerical evaluation of the exact expression. The overall diffusion coefficient formulas for large μ are then reduced to a very simple form, and the remaining integral and sum over resonances are approximated analytically. These formulas are typically written for a modeled distribution of wave magnetic field intensity, but this may not be appropriate for highly oblique whistlers, which become quasi-electrostatic. Thus, the analysis is also presented in terms of wave electric field intensity. The final results depend strongly on the maximum μ (or μ∥) used to model the wave distribution, so realistic determination of these limiting values becomes paramount.
Grosbois, C; Schäfer, J; Bril, H; Blanc, G; Bossy, A
2009-03-01
The Upper Isle River (SW France) drains the second most productive gold-mining district of France. A high resolution survey during one hydrological year of As, Cl(-), Cr, Fe, Mn, Mo, SO(4)(2-), Th and U dissolved concentrations in surface water aimed to better understand pathways of trace element export to the river system downstream from the mining district. Dissolved concentrations of As (up to 35000 ng/L) and Mo (up to 292 ng/L) were about 3-fold higher than the regional dissolved background and showed a negative logarithmic relation with discharge. Dissolved concentrations of Cr (up to 483 ng/L), Th (up to 48 ng/L) and U (up to 184 ng/L) increased with discharge. Geochemical relationships between molar ratios in surface water, geochemical background as well as rain- and groundwater data were combined. The contrasting behavior of distinct element groups was explained by a scenario involving three seasonal components: (i) The high flow component is poorly concentrated in As and Mo but highly concentrated in Cr, Th, U. This has been attributed to diffuse sources such as water-soil interactions, atmospheric inputs, bedrock and bed sediment weathering. Although this component probably also includes a contribution by weathering of sulfide veins, this signal is masked by dilution. (ii) One low flow component presents high SO(4)(2-), Fe, As and Mo and moderate Cr, Th and U concentrations. This component has been attributed to point sources such as mine gallery effluents, mining waste weathering and groundwater inputs from natural and/or mining-induced sulfide oxidation in the ore deposit. (iii) A second low flow component showing high As plus Mo concentrations associated with very low SO(4)(2-), Fe, Cr, Th and U concentrations, probably reflects trace element scavenging by ferric oxyhydroxide formation in the adjacent aquifer. This is supported by the decrease of Fe, Cr, Th and U in surface waters. Flux estimates suggest contrasting element-specific impacts on annual dissolved fluxes. Runoff may account for the major part of annual dissolved As, Mo, Th and U fluxes in the Upper Isle River. Inputs related to sulfide oxidation respectively contributed approximately 30% and approximately 24% to annual As and Mo fluxes. The formation of ferric oxyhydroxides strongly retained Cr, Th and U during the low flow, limiting their dissolved concentrations in surface waters. If this process may eventually decrease As mobility, its impact on dissolved As concentrations in surface water may be limited or/and counterbalanced by As release during sulfide oxidation.
Glaus, M A; Aertsens, M; Maes, N; Van Laer, L; Van Loon, L R
2015-01-01
Valuable techniques to measure effective diffusion coefficients in porous media are an indispensable prerequisite for a proper understanding of the migration of chemical-toxic and radioactive micropollutants in the subsurface and geosphere. The present article discusses possible pitfalls and difficulties in the classical through-diffusion technique applied to situations where large diffusive fluxes of cations in compacted clay minerals or clay rocks occur. The results obtained from a benchmark study, in which the diffusion of (85)Sr(2+) tracer in compacted illite has been studied using different experimental techniques, are presented. It is shown that these techniques may yield valuable results provided that an appropriate model is used for numerical simulations. It is further shown that effective diffusion coefficients may be systematically underestimated when the concentration at the downstream boundary is not taken adequately into account in modelling, even for very low concentrations. A criterion is derived for quasi steady-state situations, by which it can be decided whether the simplifying assumption of a zero-concentration at the downstream boundary in through-diffusion is justified or not. The application of the criterion requires, however, knowledge of the effective diffusion coefficient of the clay sample. Such knowledge is often absent or only approximately available during the planning phase of a diffusion experiment. Copyright © 2015 Elsevier B.V. All rights reserved.
Asinari, Pietro
2009-11-01
A finite difference lattice Boltzmann scheme for homogeneous mixture modeling, which recovers Maxwell-Stefan diffusion model in the continuum limit, without the restriction of the mixture-averaged diffusion approximation, was recently proposed [P. Asinari, Phys. Rev. E 77, 056706 (2008)]. The theoretical basis is the Bhatnagar-Gross-Krook-type kinetic model for gas mixtures [P. Andries, K. Aoki, and B. Perthame, J. Stat. Phys. 106, 993 (2002)]. In the present paper, the recovered macroscopic equations in the continuum limit are systematically investigated by varying the ratio between the characteristic diffusion speed and the characteristic barycentric speed. It comes out that the diffusion speed must be at least one order of magnitude (in terms of Knudsen number) smaller than the barycentric speed, in order to recover the Navier-Stokes equations for mixtures in the incompressible limit. Some further numerical tests are also reported. In particular, (1) the solvent and dilute test cases are considered, because they are limiting cases in which the Maxwell-Stefan model reduces automatically to Fickian cases. Moreover, (2) some tests based on the Stefan diffusion tube are reported for proving the complete capabilities of the proposed scheme in solving Maxwell-Stefan diffusion problems. The proposed scheme agrees well with the expected theoretical results.
Limits on soft X-ray flux from distant emission regions
NASA Technical Reports Server (NTRS)
Burrows, D. N.; Mccammon, D.; Sanders, W. T.; Kraushaar, W. L.
1984-01-01
The all-sky soft X-ray data of McCammon et al. and the new N sub H survey (Stark et al. was used to place limits on the amount of the soft X-ray diffuse background that can originate beyond the neutral gas of the galactic disk. The X-ray data for two regions of the sky near the galactic poles are shown to be uncorrelated with 21 cm column densities. Most of the observed x-ray flux must therefore originate on the near side of the most distant neutral gas. The results from these regions are consistent with X-ray emission from a locally isotropic, unabsorbed source, but require large variations in the emission of the local region over large angular scales.
An Investigation of Diffusion Rates in Wadsleyite at 21 GPa and 1500-1900 ° C
NASA Astrophysics Data System (ADS)
Murray, J.; Van Orman, J. A.; Fei, Y.
2002-05-01
Diffusion experiments on high-pressure solid phases provide important constraints on the viscosity of the mantle. We measured diffusion rates in wadsleyite, thought to be one of the most common minerals in the mantle transition zone, using a rim growth method. In each experiment a periclase (MgO) single crystal was surrounded by MgSiO3 glass and compressed in a multianvil device. The MgSiO3 glass rapidly transformed to ilmenite or majorite during heating, as confirmed by a "zero-time" experiment in which the sample was heated to the final run temperature at 100 K/min and then immediately quenched. Each sample was annealed at constant temperature for up to 47 hours to produce a reaction rim of polycrystalline wadsleyite (Mg2SiO4) with ~1 μ m grain size. Growth of the reaction rim was enabled by diffusion of chemical species across the wadsleyite layer, and the bulk diffusion coefficient of the rate-limiting species was calculated from the final rim width using the method described by Fisler and Mackwell (1994 Phys. Chem. Minerals 21:156-165). This method depends on knowledge of the change in chemical potential from the periclase/wadsleyite interface to the wadsleyite/ilmenite(majorite) interface, which we calculated using the internally consistent thermodynamic dataset of Fei et al. (1990 J. Geophys. Res. 95:6915-6928). In some of the experiments we coated the periclase crystal with a thin layer ( ~100 nm) of gold to mark the initial interface and indicate the relative fluxes of chemical species across the growing wadsleyite rim. In every case the gold remained adjacent to the periclase/wadsleyite interface, indicating that the flux of Mg and O across the reaction rim was much greater than the counterflux of Si, and that Mg and O were the more mobile species. For simplicity we assumed that Si was immobile and calculated Mg and O diffusivities assuming that each in turn was the rate-limiting species. The calculated Mg diffusivity is much slower than determined by Chakraborty et al. (1999 Science 283:362-364) and by Farber et al. (2000 J. Geophys. Res. 105:513-529). We therefore conclude that oxygen is the rate limiting species and that diffusion rates increase in the order DSi
Zhao, Renjie; Evans, James W.; Oliveira, Tiago J.
2016-04-08
Here, a discrete version of deposition-diffusion equations appropriate for description of step flow on a vicinal surface is analyzed for a two-dimensional grid of adsorption sites representing the stepped surface and explicitly incorporating kinks along the step edges. Model energetics and kinetics appropriately account for binding of adatoms at steps and kinks, distinct terrace and edge diffusion rates, and possible additional barriers for attachment to steps. Analysis of adatom attachment fluxes as well as limiting values of adatom densities at step edges for nonuniform deposition scenarios allows determination of both permeability and kinetic coefficients. Behavior of these quantities is assessedmore » as a function of key system parameters including kink density, step attachment barriers, and the step edge diffusion rate.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Renjie; Evans, James W.; Oliveira, Tiago J.
Here, a discrete version of deposition-diffusion equations appropriate for description of step flow on a vicinal surface is analyzed for a two-dimensional grid of adsorption sites representing the stepped surface and explicitly incorporating kinks along the step edges. Model energetics and kinetics appropriately account for binding of adatoms at steps and kinks, distinct terrace and edge diffusion rates, and possible additional barriers for attachment to steps. Analysis of adatom attachment fluxes as well as limiting values of adatom densities at step edges for nonuniform deposition scenarios allows determination of both permeability and kinetic coefficients. Behavior of these quantities is assessedmore » as a function of key system parameters including kink density, step attachment barriers, and the step edge diffusion rate.« less
X-ray Spectra and Pulse Frequency Changes in SAX J2103.5+4545
NASA Technical Reports Server (NTRS)
Baykal, A.; Stark, M. J.; Swank, J. H.; White, Nicholas E. (Technical Monitor)
2002-01-01
The November 1999 outburst of the transient pulsar SAX J2103.5+4545 was monitored with the large area detectors of the Rossi X-Ray Timing Explorer until the pulsar faded after a year. The 358 s pulsar was spun up for 150 days, at which point the flux dropped quickly by a factor of approximately 7, the frequency saturated and, as the flux continued to decline, a weak spin-down began. The pulses remained strong during the decay and the spin-up/flux correlation can be fit to the Ghosh and Lamb derivations for the spin-up caused by accretion from a thin, pressure-dominated disk, for a distance approximately 3.2 kpc and a surface magnetic field approximately 1.2 x 10(exp 13) Gauss. During the bright spin-up part of the outburst, the flux was subject to strong orbital modulation, peaking approximately 3 days after periastron of the eccentric 12.68 day orbit, while during the faint part, there was little orbital modulation. The X-ray spectra were typical of accreting pulsars, describable by a cut-off power-law, with an emission line near the 6.4 keV of Kappa(sub alpha) fluorescence from cool iron. The equivalent width of this emission did not share the orbital modulation, but nearly doubled during the faint phase, despite little change in the column density. The outburst could have been caused by an episode of increased wind from a Be star, such that a small accretion disk is formed during each periastron passage. A change in the wind and disk structure apparently occurred after 5 months such that the accretion rate was no longer modulated or the diffusion time was longer. The distance estimate implies the X-ray luminosity observed was between 1 X 10(exp 36) ergs s(exp -1) and 6 x 10(exp 34) ergs s(exp -1), with a small but definite correlation of the intrinsic power-law spectral index.
Reconnection in Compressible Plasmas: Extended Conversion Region
NASA Technical Reports Server (NTRS)
Birn, J.; Hesse, M.; Zenitani, S.
2011-01-01
The classical Sweet-Parker approach to steady-state magnetic reconnection is extended into the regime of large resistivity (small magnetic Reynolds or Lundquist number) when the aspect ratio between the outflow and inflow scale, delta = d/L, approaches unity. In a previous paper the vicinity of the dissipation site ("diffusion region") was investigated. In this paper, the approach is extended to cover larger sites, in which the energy transfer and conversion is not confined to the diffusion region. Consistent with the results of Paper I, we find that increasing aspect ratio delta is associated with increasing compression, increasing reconnect ion rate for low Beta, but slightly decreasing rate for higher Beta, decreasing outflow speed, and increasing outflow magnetic field. These trends are stronger for lower Beta. Deviations from the traditional Sweet-Parker limit delta approaches 0 become significant for R(sub m) approx < 10, where R(sub m) is the magnetic Reynolds number (Lundquist number) based on the half-thickness of the current layer responsible for the Ohmic dissipation. They are also more significant for small gamma, that is, for increasing compressibility. In contrast to the results of Paper I, but consistent with earlier results for delta much < 1,nu(sub A) we find that in this limit the outflow speed is given by the Alfven speed nu(sub A) in the inflow region and the energy conversion is given by an even split of Poynting flux into enthalpy flux and bulk kinetic energy flux. However, with increasing delta the conversion to enthalpy flux becomes more and more dominant.
Laboratory Photoionization Fronts in Nitrogen Gas: A Numerical Feasibility and Parameter Study
NASA Astrophysics Data System (ADS)
Gray, William J.; Keiter, P. A.; Lefevre, H.; Patterson, C. R.; Davis, J. S.; van Der Holst, B.; Powell, K. G.; Drake, R. P.
2018-05-01
Photoionization fronts play a dominant role in many astrophysical situations but remain difficult to achieve in a laboratory experiment. We present the results from a computational parameter study evaluating the feasibility of the photoionization experiment presented in the design paper by Drake et al. in which a photoionization front is generated in a nitrogen medium. The nitrogen gas density and the Planckian radiation temperature of the X-ray source define each simulation. Simulations modeled experiments in which the X-ray flux is generated by a laser-heated gold foil, suitable for experiments using many kJ of laser energy, and experiments in which the flux is generated by a “z-pinch” device, which implodes a cylindrical shell of conducting wires. The models are run using CRASH, our block-adaptive-mesh code for multimaterial radiation hydrodynamics. The radiative transfer model uses multigroup, flux-limited diffusion with 30 radiation groups. In addition, electron heat conduction is modeled using a single-group, flux-limited diffusion. In the theory, a photoionization front can exist only when the ratios of the electron recombination rate to the photoionization rate and the electron-impact ionization rate to the recombination rate lie in certain ranges. These ratios are computed for several ionization states of nitrogen. Photoionization fronts are found to exist for laser-driven models with moderate nitrogen densities (∼1021 cm‑3) and radiation temperatures above 90 eV. For “z-pinch”-driven models, lower nitrogen densities are preferred (<1021 cm‑3). We conclude that the proposed experiments are likely to generate photoionization fronts.
NASA Astrophysics Data System (ADS)
Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Benabderrahmane, M. L.; Benzvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brown, A. M.; Buitink, S.; Carson, M.; Chirkin, D.; Christy, B.; Clem, J.; Clevermann, F.; Cohen, S.; Colnard, C.; Cowen, D. F.; D'Agostino, M. V.; Danninger, M.; Daughhetee, J.; Davis, J. C.; de Clercq, C.; Demirörs, L.; Depaepe, O.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; Deyoung, T.; Díaz-Vélez, J. C.; Dierckxsens, M.; Dreyer, J.; Dumm, J. P.; Ehrlich, R.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Foerster, M. M.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Geisler, M.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Grant, D.; Griesel, T.; Groß, A.; Grullon, S.; Gurtner, M.; Ha, C.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Heinen, D.; Helbing, K.; Herquet, P.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Homeier, A.; Hoshina, K.; Hubert, D.; Huelsnitz, W.; Hülß, J.-P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Joseph, J. M.; Kampert, K.-H.; Kappes, A.; Karg, T.; Karle, A.; Kelley, J. L.; Kemming, N.; Kenny, P.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Krings, T.; Kroll, G.; Kuehn, K.; Kuwabara, T.; Labare, M.; Lafebre, S.; Laihem, K.; Landsman, H.; Larson, M. J.; Lauer, R.; Lehmann, R.; Lünemann, J.; Madsen, J.; Majumdar, P.; Marotta, A.; Maruyama, R.; Mase, K.; Matis, H. S.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Middell, E.; Milke, N.; Miller, J.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Nam, J. W.; Naumann, U.; Nießen, P.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Ono, M.; Panknin, S.; Paul, L.; Pérez de Los Heros, C.; Petrovic, J.; Piegsa, A.; Pieloth, D.; Porrata, R.; Posselt, J.; Price, P. B.; Prikockis, M.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Rizzo, A.; Rodrigues, J. P.; Roth, P.; Rothmaier, F.; Rott, C.; Ruhe, T.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Schmidt, T.; Schoenwald, A.; Schukraft, A.; Schultes, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Slipak, A.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stephens, G.; Stezelberger, T.; Stokstad, R. G.; Stoyanov, S.; Strahler, E. A.; Straszheim, T.; Sullivan, G. W.; Swillens, Q.; Taavola, H.; Taboada, I.; Tamburro, A.; Tarasova, O.; Tepe, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Toscano, S.; Tosi, D.; Turčan, D.; van Eijndhoven, N.; Vandenbroucke, J.; van Overloop, A.; van Santen, J.; Vehring, M.; Voge, M.; Voigt, B.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Wolf, M.; Woschnagg, K.; Xu, C.; Xu, X. W.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.
2011-10-01
We report on the first search for atmospheric and for diffuse astrophysical neutrino-induced showers (cascades) in the IceCube detector using 257 days of data collected in the year 2007-2008 with 22 strings active. A total of 14 events with energies above 16 TeV remained after event selections in the diffuse analysis, with an expected total background contribution of 8.3±3.6. At 90% confidence we set an upper limit of E2Φ90%CL<3.6×10-7GeV·cm-2·s-1·sr-1 on the diffuse flux of neutrinos of all flavors in the energy range between 24 TeV and 6.6 PeV assuming that Φ∝E-2 and the flavor composition of the νe∶νμ∶ντ flux is 1∶1∶1 at the Earth. The atmospheric neutrino analysis was optimized for lower energies. A total of 12 events were observed with energies above 5 TeV. The observed number of events is consistent with the expected background, within the uncertainties.
NASA Technical Reports Server (NTRS)
Glownia, James H.; Sorokin, Peter P.
1994-01-01
In this paper, a new model is proposed to account for the DIB's (Diffuse Interstellar Bands). In this model, the DIB's result from a non-linear effect: resonantly-enhanced two-photon absorption of H(2+) ions located near the surface of the Stromgren sphere that surrounds an O- or B- type star. The strong light that is required to 'drive' the two-photon transition is provided by L(alpha) light emerging from the Stromgren sphere that bounds the H II region surrounding the star. A value of approximately 100 micro W/sq cm is estimated for the L(alpha) flux at the Stromgren radius, R(s), of a strong (O5) star. It is shown that a c.w. L(alpha) flux of this intensity should be sufficient to induce a few percent absorption for visible light radiated by the same star at a frequency (omega2) that completes an allowed two-photon transition, provided (1) the L(alpha) radiation happens to be nearly resonant with the frequency of a fully-allowed absorber transition that effectively represents the first step in the two-photon transition, and (2) an effective column density approximately 10(sup18)/sq cm of the absorber is present near the Stromgren sphere radius, R(sub s).
Optimal approximation of harmonic growth clusters by orthogonal polynomials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teodorescu, Razvan
2008-01-01
Interface dynamics in two-dimensional systems with a maximal number of conservation laws gives an accurate theoreticaI model for many physical processes, from the hydrodynamics of immiscible, viscous flows (zero surface-tension limit of Hele-Shaw flows), to the granular dynamics of hard spheres, and even diffusion-limited aggregation. Although a complete solution for the continuum case exists, efficient approximations of the boundary evolution are very useful due to their practical applications. In this article, the approximation scheme based on orthogonal polynomials with a deformed Gaussian kernel is discussed, as well as relations to potential theory.
TEMPEST simulations of the plasma transport in a single-null tokamak geometry
NASA Astrophysics Data System (ADS)
Xu, X. Q.; Bodi, K.; Cohen, R. H.; Krasheninnikov, S.; Rognlien, T. D.
2010-06-01
We present edge kinetic ion transport simulations of tokamak plasmas in magnetic divertor geometry using the fully nonlinear (full-f) continuum code TEMPEST. Besides neoclassical transport, a term for divergence of anomalous kinetic radial flux is added to mock up the effect of turbulent transport. To study the relative roles of neoclassical and anomalous transport, TEMPEST simulations were carried out for plasma transport and flow dynamics in a single-null tokamak geometry, including the pedestal region that extends across the separatrix into the scrape-off layer and private flux region. A series of TEMPEST simulations were conducted to investigate the transition of midplane pedestal heat flux and flow from the neoclassical to the turbulent limit and the transition of divertor heat flux and flow from the kinetic to the fluid regime via an anomalous transport scan and a density scan. The TEMPEST simulation results demonstrate that turbulent transport (as modelled by large diffusion) plays a similar role to collisional decorrelation of particle orbits and that the large turbulent transport (large diffusion) leads to an apparent Maxwellianization of the particle distribution. We also show the transition of parallel heat flux and flow at the entrance to the divertor plates from the fluid to the kinetic regime. For an absorbing divertor plate boundary condition, a non-half-Maxwellian is found due to the balance between upstream radial anomalous transport and energetic ion endloss.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orange, N. Brice; Chesny, David L.; Gendre, Bruce
Solar variability investigations that include magnetic energy coupling are paramount to solving many key solar/stellar physics problems, particularly for understanding the temporal variability of magnetic energy redistribution and heating processes. Using three years of observations from the Solar Dynamics Observatory ’ s Atmospheric Imaging Assembly and Heliosemic Magnetic Imager, we measured radiative and magnetic fluxes from gross features and at full-disk scales, respectively. Magnetic energy coupling analyses support radiative flux descriptions via the plasma heating connectivity of dominant (magnetic) and diffuse components, specifically of the predominantly closed-field corona. Our work shows that this relationship favors an energetic redistribution efficiency acrossmore » large temperature gradients, and potentially sheds light on the long-standing issue of diffuse unresolved low corona emission. The close connection between magnetic energy redistribution and plasma conditions revealed by this work lends significant insight into the field of stellar physics, as we have provided possible means for probing distant sources in currently limited and/or undetectable radiation distributions.« less
Inventory of File gdas1.t06z.sfluxgrbf06.grib2
hour ave Visible Diffuse Downward Solar Flux [W/m^2] 036 surface NBDSF 0-6 hour ave Near IR Beam Downward Solar Flux [W/m^2] 037 surface NDDSF 0-6 hour ave Near IR Diffuse Downward Solar Flux [W/m^2] 038
Inventory of File gfs.t06z.sfluxgrbf06.grib2
hour ave Visible Diffuse Downward Solar Flux [W/m^2] 036 surface NBDSF 0-6 hour ave Near IR Beam Downward Solar Flux [W/m^2] 037 surface NDDSF 0-6 hour ave Near IR Diffuse Downward Solar Flux [W/m^2] 038
Merritt, M.L.
1993-01-01
The simulation of the transport of injected freshwater in a thin brackish aquifer, overlain and underlain by confining layers containing more saline water, is shown to be influenced by the choice of the finite-difference approximation method, the algorithm for representing vertical advective and dispersive fluxes, and the values assigned to parametric coefficients that specify the degree of vertical dispersion and molecular diffusion that occurs. Computed potable water recovery efficiencies will differ depending upon the choice of algorithm and approximation method, as will dispersion coefficients estimated based on the calibration of simulations to match measured data. A comparison of centered and backward finite-difference approximation methods shows that substantially different transition zones between injected and native waters are depicted by the different methods, and computed recovery efficiencies vary greatly. Standard and experimental algorithms and a variety of values for molecular diffusivity, transverse dispersivity, and vertical scaling factor were compared in simulations of freshwater storage in a thin brackish aquifer. Computed recovery efficiencies vary considerably, and appreciable differences are observed in the distribution of injected freshwater in the various cases tested. The results demonstrate both a qualitatively different description of transport using the experimental algorithms and the interrelated influences of molecular diffusion and transverse dispersion on simulated recovery efficiency. When simulating natural aquifer flow in cross-section, flushing of the aquifer occurred for all tested coefficient choices using both standard and experimental algorithms. ?? 1993.
Results of a search for monopoles and tachyons in horizontal cosmic ray flux
NASA Technical Reports Server (NTRS)
Ashitkov, V. D.; Kirina, T. M.; Klimakov, A. P.; Kokoulin, R. P.; Petrukhin, A. A.
1985-01-01
A search for monopoles and tachyons at ground level was carried out using an arrangement consisting of an ionization calorimeter and two hodoscope detectors. No clear evidence for these particles was obtained. The flux of monopoles with velocities beta approximately 0.01 is found to be less than 5.1 x 10 to the minus 13th power square centimeters s(-1) sr(-1) (95% cl.). The upper limit on the tachyon flux density is set as a 6 x 10 the minus 9th power particle/square centimeter event.
Interplanetary magnetic flux - Measurement and balance
NASA Technical Reports Server (NTRS)
Mccomas, D. J.; Gosling, J. T.; Phillips, J. L.
1992-01-01
A new method for determining the approximate amount of magnetic flux in various solar wind structures in the ecliptic (and solar rotation) plane is developed using single-spacecraft measurements in interplanetary space and making certain simplifying assumptions. The method removes the effect of solar wind velocity variations and can be applied to specific, limited-extent solar wind structures as well as to long-term variations. Over the 18-month interval studied, the ecliptic plane flux of coronal mass ejections was determined to be about 4 times greater than that of HFDs.
NASA Astrophysics Data System (ADS)
Machida, Manabu
2017-01-01
We consider the radiative transport equation in which the time derivative is replaced by the Caputo derivative. Such fractional-order derivatives are related to anomalous transport and anomalous diffusion. In this paper we describe how the time-fractional radiative transport equation is obtained from continuous-time random walk and see how the equation is related to the time-fractional diffusion equation in the asymptotic limit. Then we solve the equation with Legendre-polynomial expansion.
NASA Astrophysics Data System (ADS)
Huang, Ke; Keiser, Dennis D.; Sohn, Yongho
2013-02-01
U-Mo alloys are being developed as low enrichment uranium fuels under the Reduced Enrichment for Research and Test Reactor (RERTR) Program. In order to understand the fundamental diffusion behavior of this system, solid-to-solid pure U vs Mo diffusion couples were assembled and annealed at 923 K, 973 K, 1073 K, 1173 K, and 1273 K (650 °C, 700 °C, 800 °C, 900 °C, and 1000 °C) for various times. The interdiffusion microstructures and concentration profiles were examined via scanning electron microscopy and electron probe microanalysis, respectively. As the Mo concentration increased from 2 to 26 at. pct, the interdiffusion coefficient decreased, while the activation energy increased. A Kirkendall marker plane was clearly identified in each diffusion couple and utilized to determine intrinsic diffusion coefficients. Uranium intrinsically diffused 5-10 times faster than Mo. Molar excess Gibbs free energy of U-Mo alloy was applied to calculate the thermodynamic factor using ideal, regular, and subregular solution models. Based on the intrinsic diffusion coefficients and thermodynamic factors, Manning's formalism was used to calculate the tracer diffusion coefficients, atomic mobilities, and vacancy wind parameters of U and Mo at the marker composition. The tracer diffusion coefficients and atomic mobilities of U were about five times larger than those of Mo, and the vacancy wind effect increased the intrinsic flux of U by approximately 30 pct.
Analytic non-Maxwellian electron velocity distribution function in a Hall discharge plasma
NASA Astrophysics Data System (ADS)
Shagayda, Andrey; Tarasov, Alexey
2017-10-01
The electron velocity distribution function in the low-pressure discharges with the crossed electric and magnetic fields, which occur in magnetrons, plasma accelerators, and Hall thrusters with a closed electron drift, is not Maxwellian. A deviation from equilibrium is caused by a large electron mean free path relative to the Larmor radius and the size of the discharge channel. In this study, we derived in the relaxation approximation the analytical expression of the electron velocity distribution function in a weakly ionized Lorentz plasma with the crossed electric and magnetic fields in the presence of the electron density and temperature gradients in the direction of the electric field. The solution was obtained in the stationary approximation far from boundary surfaces, when diffusion and mobility are determined by the classical effective collision frequency of electrons with ions and atoms. The moments of the distribution function including the average velocity, the stress tensor, and the heat flux were calculated and compared with the classical hydrodynamic expressions. It was shown that a kinetic correction to the drift velocity stems from a contribution of the off-diagonal component of the stress tensor. This correction becomes essential if the drift velocity in the crossed electric and magnetic fields would be comparable to the thermal velocity of electrons. The electron temperature has three different components at a nonzero effective collision frequency and two different components in the limit when the collision frequency tends to zero. It is shown that, in the presence of ionization collisions, the components of the heat flux have additives that are not related to the temperature gradient, and arise because of the electron drift.
The development of a peak-time criterion for designing controlled-release devices.
Simon, Laurent; Ospina, Juan
2016-08-25
This work consists of estimating dynamic characteristics for topically-applied drugs when the magnitude of the flux increases to a maximum value, called peak flux, before declining to zero. This situation is typical of controlled-released systems with a finite donor or vehicle volume. Laplace transforms were applied to the governing equations and resulted in an expression for the flux in terms of the physical characteristics of the system. After approximating this function by a second-order model, three parameters of this reduced structure captured the essential features of the original process. Closed-form relationships were then developed for the peak flux and time-to-peak based on the empirical representation. Three case studies that involve mechanisms, such as diffusion, partitioning, dissolution and elimination, were selected to illustrate the procedure. The technique performed successfully as shown by the ability of the second-order flux to match the prediction of the original transport equations. A main advantage of the proposed method is that it does not require a solution of the original partial differential equations. Less accurate results were noted for longer lag times. Copyright © 2016 Elsevier B.V. All rights reserved.
Diffuse gamma-ray emission from pulsars in the Large Magellanic Cloud
NASA Technical Reports Server (NTRS)
Hartmann, Dieter H.; Brown, Lawrence E.; Schnepf, Neil
1993-01-01
We investigate the contribution of pulsars to the diffuse gamma-ray emission from the LMC. The pulsar birth rate in the LMC is a factor of about 10 lower than that of the Galaxy and the distance to pulsars in the LMC is about 5-10 times larger than to Galactic pulsars. The resulting total integrated photon flux from LMC pulsars is thus reduced by a factor of about 100 to 1000. However, the surface brightness is not reduced by the same amount because of the much smaller angular extent of the LMC in comparison to the diffuse glow from the Galactic plane. We show that gamma-ray emission due to pulsars born in the LMC could produce gamma-ray fluxes that are larger than the inverse Compton component from relativistic cosmic-ray electrons and a significant fraction of the extragalactic isotropic background or the diffuse Galactic background in that direction. The diffuse pulsar glow above 100 MeV should therefore be included in models of high-energy emission from the LMC. For a gamma-ray beaming fraction of order unity the detected emissions from the LMC constrain the pulsar birth rate to less than one per 50 yr. This limit is about one order of magnitude above the supernova rate inferred from the historic record or from the star-formation rate.
Sap Flux Scaled Transpiration in Ring-porous Tree Species: Assumptions, Pitfalls and Calibration
NASA Astrophysics Data System (ADS)
Bush, S. E.; Hultine, K. R.; Ehleringer, J. R.
2008-12-01
Thermal dissipation probes for measuring sap flow (Granier-type) at the whole tree and stand level are routinely used in forest ecology and site water balance studies. While the original empirical relationship used to calculate sap flow was reported as independent of wood anatomy (ring-porous, diffuse-porous, tracheid), it has been suggested that potentially large errors in sap flow calculations may occur when using the original calibration for ring-porous species, due to large radial trends in sap velocity and/or shallow sapwood depth. Despite these concerns, sap flux measurements have rarely been calibrated in ring-porous taxa. We used a simple technique to calibrate thermal dissipation sap flux measurements on ring-porous trees in the lab. Calibration measurements were conducted on five ring-porous species in the Salt Lake City, USA metropolitan area including Quercus gambelii (Gambel oak), Gleditsia triacanthos (Honey locust), Elaeagnus angustifolia (Russian olive), Sophora japonica (Japanese pagoda), and Celtis occidentalis (Common hackberry). Six stems per species of approximately 1 m in length were instrumented with heat dissipation probes to measure sap flux concurrently with gravimetric measurements of water flow through each stem. Safranin dye was pulled through the stems following flow rate measurements to determine sapwood area. As expected, nearly all the conducting sapwood area was limited to regions within the current year growth rings. Consequently, we found that the original Granier equation underestimated sap flux density for all species considered. Our results indicate that the use of thermal dissipation probes for measuring sap flow in ring-porous species should be independently calibrated, particularly when species- specific calibration data are not available. Ring-porous taxa are widely distributed and represent an important component of the regional water budgets of many temperate regions. Our results are important for evaluating plant water use of ring-porous tree species with thermal dissipation probes at multiple spatial scales.
NASA Astrophysics Data System (ADS)
Zou, Y.; Nishimura, Y.; Lyons, L. R.; Shiokawa, K.; Burchill, J. K.; Knudsen, D. J.; Buchert, S. C.; Chen, S.; Nicolls, M. J.; Ruohoniemi, J. M.; McWilliams, K. A.; Nishitani, N.
2016-12-01
Although airglow patches are traditionally regarded as high-density plasma unrelated to local field-aligned currents (FACs) and precipitation, past observations were limited to storm-time conditions. Recent non-storm time observations show patches to be associated with azimuthally narrow ionospheric fast flow channels that substantially contribute to plasma transportation across the polar cap and connect dayside and nightside explosive disturbances. We examine whether non-storm time patches are related also to localized polar cap FACs and precipitation using Swarm- and FAST-imager-radar conjunctions. In Swarm data, we commonly (66%) identify substantial magnetic perturbations indicating FAC enhancements around patches. These FACs have substantial densities (0.1-0.2 μA/m-2) and can be approximated as infinite current sheets (typically 75 km wide) orientated roughly parallel to patches. They usually exhibit a Region-1 sense, i.e. a downward FAC lying eastward of an upward FAC, and can close through Pedersen currents in the ionosphere, implying that the locally enhanced dawn-dusk electric field across the patch is imposed by processes in the magnetosphere. In FAST data, we identify localized precipitation that is enhanced within patches in comparison to weak polar rain outside patches. The precipitation consists of structured or diffuse soft electron fluxes. While the latter resembles polar rain only with higher fluxes, the former consists of discrete fluxes enhanced by 1-2 orders of magnitude from several to several hundred eV. Although the precipitation is not a major contributor to patch ionization, it implies that newly reconnected flux tubes that retain electrons of magnetosheath origin can rapidly traverse the polar cap from the dayside. Therefore non-storm time patches should be regarded as part of a localized magnetosphere-ionosphere coupling system along open magnetic field lines, and their transpolar evolution as a reflection of reconnected flux tubes traveling from the dayside to nightside magnetosphere.
Simulations of sooting turbulent jet flames using a hybrid flamelet/stochastic Eulerian field method
NASA Astrophysics Data System (ADS)
Consalvi, Jean-Louis; Nmira, Fatiha; Burot, Daria
2016-03-01
The stochastic Eulerian field method is applied to simulate 12 turbulent C1-C3 hydrocarbon jet diffusion flames covering a wide range of Reynolds numbers and fuel sooting propensities. The joint scalar probability density function (PDF) is a function of the mixture fraction, enthalpy defect, scalar dissipation rate and representative soot properties. Soot production is modelled by a semi-empirical acetylene/benzene-based soot model. Spectral gas and soot radiation is modelled using a wide-band correlated-k model. Emission turbulent radiation interactions (TRIs) are taken into account by means of the PDF method, whereas absorption TRIs are modelled using the optically thin fluctuation approximation. Model predictions are found to be in reasonable agreement with experimental data in terms of flame structure, soot quantities and radiative loss. Mean soot volume fractions are predicted within a factor of two of the experiments whereas radiant fractions and peaks of wall radiative fluxes are within 20%. The study also aims to assess approximate radiative models, namely the optically thin approximation (OTA) and grey medium approximation. These approximations affect significantly the radiative loss and should be avoided if accurate predictions of the radiative flux are desired. At atmospheric pressure, the relative errors that they produced on the peaks of temperature and soot volume fraction are within both experimental and model uncertainties. However, these discrepancies are found to increase with pressure, suggesting that spectral models describing properly the self-absorption should be considered at over-atmospheric pressure.
Self-diffusion in a system of interacting Langevin particles
NASA Astrophysics Data System (ADS)
Dean, D. S.; Lefèvre, A.
2004-06-01
The behavior of the self-diffusion constant of Langevin particles interacting via a pairwise interaction is considered. The diffusion constant is calculated approximately within a perturbation theory in the potential strength about the bare diffusion constant. It is shown how this expansion leads to a systematic double expansion in the inverse temperature β and the particle density ρ . The one-loop diagrams in this expansion can be summed exactly and we show that this result is exact in the limit of small β and ρβ constants. The one-loop result can also be resummed using a semiphenomenological renormalization group method which has proved useful in the study of diffusion in random media. In certain cases the renormalization group calculation predicts the existence of a diverging relaxation time signaled by the vanishing of the diffusion constant, possible forms of divergence coming from this approximation are discussed. Finally, at a more quantitative level, the results are compared with numerical simulations, in two dimensions, of particles interacting via a soft potential recently used to model the interaction between coiled polymers.
NASA Technical Reports Server (NTRS)
Dorodnitsyn, Anton V.; Kallman, Timothy R.
2012-01-01
We present calculations of active galactic nucleus winds at approx.parsec scales along with the associated obscuration. We take into account the pressure of infrared radiation on dust grains and the interaction of X-rays from a central black hole with hot and cold plasma. Infrared radiation (IR) is incorporated in radiation-hydrodynamic simulations adopting the flux-limited diffusion approximation. We find that in the range of X-ray luminosities L = 0.05-0.6 L(sub Edd), the Compton-thick part of the flow (aka torus) has an opening angle of approximately 72deg - 75deg regardless of the luminosity. At L > or approx. 0.1, the outflowing dusty wind provides the obscuration with IR pressure playing a major role. The global flow consists of two phases: the cold flow at inclinations (theta) > or approx.70deg and a hot, ionized wind of lower density at lower inclinations. The dynamical pressure of the hot wind is important in shaping the denser IR-supported flow. At luminosities < or = 0.1 L(sub Edd) episodes of outflow are followed by extended periods when the wind switches to slow accretion. Key words: acceleration of particles . galaxies: active . hydrodynamics . methods: numerical Online-only material: color figures
Hubble Space Telescope Planetary Camera observations of Arp 220
NASA Technical Reports Server (NTRS)
Shaya, Edward J.; Dowling, Daniel M.; Currie, Douglas G.; Faber, S. M.; Groth, Edward J.
1994-01-01
Planetary Camera images of peculiar galaxy Arp 220 taken with V, R, and I band filters reveal a very luminous object near the position of the western radio continuum source, assumed to be the major nucleus, ans seven lesser objects within 2 sec of this position. The most luminous object is formally coincident with the radio source to within the errors of Hubble Space Telescope (HST) pointing accuracy, but we have found an alternate, more compelling alignment of maps in which the eastern radio source coincides with one of the lesser objects and the OH radio sources reside near the surfaces of other optical objects. The proposed centering places the most luminous object 150 pc (0.4 sec) away from the western radio source. We explore the possibilities that the objects are either holes in the dense dust distribution, dusty clouds reflecting a hidden bright nucleus, or associations of bright young stars. We favor the interpretation that at least the brightest two objects are massive young star associations with luminosities 10(exp 9) to 10(exp 11) solar luminosity, but highly extinguished by intervening dust. These massive associations should fall into the nucleus on a time scale of 10(exp 8) yr. About 10% of the enigmatic far-IR flux arises from the observed objects. In addition, if the diffuse starlight out to a radius of 8 sec is dominated by stars with typical ages of order 10(exp 8) yr (the time since the alleged merger of two galaxies), as indicated by the blue colors at larger radius, then the lower limit to the reradiation of diffuse starlight contributes 3 x 10(exp 11) solar luminosity to the far-infrared flux, or greater than or equal to 25% of the total far-IR flux. Three additional bright objects (M(sub V) approximately equals -13) located about 6 sec from the core are likely young globular clusters, but any of these could be recently exploded supernovae instead. The expected supernovae rate, if the dominant energy source is young stars, is about one per month for the region where the intense far-infrared flux originates. Also, individual giant dust clouds are visible in these images. Their typical size is 300 pc (1 sec).
NASA Astrophysics Data System (ADS)
Safranyos, Richard G. A.; Caveney, Stanley; Miller, James G.; Petersen, Nils O.
1987-04-01
Intercellular (tissue) diffusion of molecules requires cytoplasmic diffusion and diffusion through gap junctional (or cell-to-cell) channels. The rates of tissue and cytoplasmic diffusion of fluorescent tracers, expressed as an effective diffusion coefficient, De, and a cytoplasmic diffusion coefficient, Dcyt, have been measured among the developing epidermal cells of a larval beetle, Tenebrio molitor L., to determine the contribution of the junctional channels to intercellular diffusion. Tracer diffusion was measured by injecting fluorescent tracers into cells and quantitating the rate of subsequent spread into adjacent cells. Cytoplasmic diffusion was determined by fluorescence photobleaching. These experiments show that gap junctional channels constitute approximately 70-80% of the total cell-to-cell resistance to the diffusion of organic tracers at high concentrations in this tissue. At low concentrations, however, the binding of tracer to cytoplasm slows down the cytoplasmic diffusion, which may limit intercellular diffusion.
Diminished mercury emission from waters with duckweed cover
NASA Astrophysics Data System (ADS)
Wollenberg, Jennifer L.; Peters, Stephen C.
2009-06-01
Duckweeds (Lemnaceae) are a widely distributed type of floating vegetation in freshwater systems. Under suitable conditions, duckweeds form a dense vegetative mat on the water surface, which reduces light penetration into the water column and limits gas exchange at the water-air interface by decreasing the area of open water surface. Experiments were conducted to determine whether duckweed decreases mercury emission by limiting gas diffusion across the water-air interface and attenuating light, or, conversely, enhances emission via transpiration of mercury vapor. Microcosm flux chamber experiments indicate that duckweed decreases mercury emission from the water surface compared to open water controls. Fluxes under duckweed were 17-67% lower than in controls, with lower fluxes occurring at higher percent cover. The decrease in mercury emission suggests that duckweed may limit emission through one of several mechanisms, including limited gas transport across the air-water interface, decreased photoreactions due to light attenuation, and plant-mercury interactions. The results of this experiment were applied to a model lake system to illustrate the magnitude of potential effects on mercury cycling. The mercury retained in the lake as a result of hindered emission may increase bioaccumulation potential in lakes with duckweed cover.
A Least-Squares-Based Weak Galerkin Finite Element Method for Second Order Elliptic Equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mu, Lin; Wang, Junping; Ye, Xiu
Here, in this article, we introduce a least-squares-based weak Galerkin finite element method for the second order elliptic equation. This new method is shown to provide very accurate numerical approximations for both the primal and the flux variables. In contrast to other existing least-squares finite element methods, this new method allows us to use discontinuous approximating functions on finite element partitions consisting of arbitrary polygon/polyhedron shapes. We also develop a Schur complement algorithm for the resulting discretization problem by eliminating all the unknowns that represent the solution information in the interior of each element. Optimal order error estimates for bothmore » the primal and the flux variables are established. An extensive set of numerical experiments are conducted to demonstrate the robustness, reliability, flexibility, and accuracy of the least-squares-based weak Galerkin finite element method. Finally, the numerical examples cover a wide range of applied problems, including singularly perturbed reaction-diffusion equations and the flow of fluid in porous media with strong anisotropy and heterogeneity.« less
A Least-Squares-Based Weak Galerkin Finite Element Method for Second Order Elliptic Equations
Mu, Lin; Wang, Junping; Ye, Xiu
2017-08-17
Here, in this article, we introduce a least-squares-based weak Galerkin finite element method for the second order elliptic equation. This new method is shown to provide very accurate numerical approximations for both the primal and the flux variables. In contrast to other existing least-squares finite element methods, this new method allows us to use discontinuous approximating functions on finite element partitions consisting of arbitrary polygon/polyhedron shapes. We also develop a Schur complement algorithm for the resulting discretization problem by eliminating all the unknowns that represent the solution information in the interior of each element. Optimal order error estimates for bothmore » the primal and the flux variables are established. An extensive set of numerical experiments are conducted to demonstrate the robustness, reliability, flexibility, and accuracy of the least-squares-based weak Galerkin finite element method. Finally, the numerical examples cover a wide range of applied problems, including singularly perturbed reaction-diffusion equations and the flow of fluid in porous media with strong anisotropy and heterogeneity.« less
Radio observations of the double-relic galaxy cluster Abell 1240
NASA Astrophysics Data System (ADS)
Hoang, D. N.; Shimwell, T. W.; van Weeren, R. J.; Intema, H. T.; Röttgering, H. J. A.; Andrade-Santos, F.; Akamatsu, H.; Bonafede, A.; Brunetti, G.; Dawson, W. A.; Golovich, N.; Best, P. N.; Botteon, A.; Brüggen, M.; Cassano, R.; de Gasperin, F.; Hoeft, M.; Stroe, A.; White, G. J.
2018-05-01
We present LOFAR 120 - 168 MHz images of the merging galaxy cluster Abell 1240 that hosts double radio relics. In combination with the GMRT 595 - 629 MHz and VLA 2 - 4 GHz data, we characterised the spectral and polarimetric properties of the radio emission. The spectral indices for the relics steepen from their outer edges towards the cluster centre and the electric field vectors are approximately perpendicular to the major axes of the relics. The results are consistent with the picture that these relics trace large-scale shocks propagating outwards during the merger. Assuming diffusive shock acceleration (DSA), we obtain shock Mach numbers of M=2.4 and 2.3 for the northern and southern shocks, respectively. For M≲ 3 shocks, a pre-existing population of mildly relativistic electrons is required to explain the brightness of the relics due to the high (>10 per cent) particle acceleration efficiency required. However, for M≳ 4 shocks the required efficiency is ≳ 1% and ≳ 0.5%, respectively, which is low enough for shock acceleration directly from the thermal pool. We used the fractional polarization to constrain the viewing angle to ≥53 ± 3° and ≥39 ± 5° for the northern and southern shocks, respectively. We found no evidence for diffuse emission in the cluster central region. If the halo spans the entire region between the relics (˜1.8 Mpc) our upper limit on the power is P1.4GHz = (1.4 ± 0.6) × 1023 W Hz-1 which is approximately equal to the anticipated flux from a cluster of this mass. However, if the halo is smaller than this, our constraints on the power imply that the halo is underluminous.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munoz-Jaramillo, Andres; Martens, Petrus C. H.; Nandy, Dibyendu
The emergence of tilted bipolar active regions (ARs) and the dispersal of their flux, mediated via processes such as diffusion, differential rotation, and meridional circulation, is believed to be responsible for the reversal of the Sun's polar field. This process (commonly known as the Babcock-Leighton mechanism) is usually modeled as a near-surface, spatially distributed {alpha}-effect in kinematic mean-field dynamo models. However, this formulation leads to a relationship between polar field strength and meridional flow speed which is opposite to that suggested by physical insight and predicted by surface flux-transport simulations. With this in mind, we present an improved double-ring algorithmmore » for modeling the Babcock-Leighton mechanism based on AR eruption, within the framework of an axisymmetric dynamo model. Using surface flux-transport simulations, we first show that an axisymmetric formulation-which is usually invoked in kinematic dynamo models-can reasonably approximate the surface flux dynamics. Finally, we demonstrate that our treatment of the Babcock-Leighton mechanism through double-ring eruption leads to an inverse relationship between polar field strength and meridional flow speed as expected, reconciling the discrepancy between surface flux-transport simulations and kinematic dynamo models.« less
Mass Transfer in a Nanoscale Material Enhanced by an Opposing Flux
NASA Astrophysics Data System (ADS)
Chmelik, Christian; Bux, Helge; Caro, Jürgen; Heinke, Lars; Hibbe, Florian; Titze, Tobias; Kärger, Jörg
2010-02-01
Diffusion is known to be quantified by measuring the rate of molecular fluxes in the direction of falling concentration. In contrast with intuition, considering methanol diffusion in a novel type of nanoporous material (MOF ZIF-8), this rate has now been found to be enhanced rather than slowed down by an opposing flux of labeled molecules. In terms of the key quantities of random particle movement, this result means that the self-diffusivity exceeds the transport diffusivity. It is rationalized by considering the strong intermolecular interaction and the dominating role of intercage hopping in mass transfer in the systems under study.
Krueger, R D; Campbell, J W; Fahrney, D E
1986-09-15
The archaebacterium Methanobacterium thermoautotrophicum was grown at 65 degrees C in H2- and Pi-limited chemostat cultures at dilution rates corresponding to 3- and 4-h doubling times, respectively. Under these conditions the steady state concentration of cyclic 2,3-diphosphoglycerate was 44 mM in the H2-limited cells and 13 mM in the cells grown under Pi limitation. Flux of Pi into the cyclic pyrophosphate pool was estimated by two 32P-labeling procedures: approach to isotopic equilibrium and replacement of prelabeled cyclic diphosphoglycerate with unlabeled compound. The results unequivocally demonstrate turnover of the phosphoryl groups; either both phosphoryl groups of the cyclic pyrophosphate leave together or the second leaves at a faster rate. The half-life of the rate-determining step for loss of the phosphoryl groups was approximately equal to the culture doubling time. The Pi flowing into the cyclic diphosphoglycerate pool accounted for 19% of the total Pi flux into Pi-limited cells and 43% of the total for H2-limited cells. The high phosphate flux through the large cyclic diphosphoglycerate pool suggests that this molecule plays an important role in the phosphorus metabolism of this methanogen.
CO2 diffusion into pore spaces limits weathering rate of an experimental basalt landscape
van Haren, Joost; Dontsova, Katerina; Barron-Gafford, Greg A.; Troch, Peter A.; Chorover, Jon; DeLong, Stephen B.; Breshears, David D.; Huxman, Travis E.; Pelletier, Jon D.; Saleska, Scott; Zeng, Xubin; Ruiz, Joaquin
2017-01-01
Basalt weathering is a key control over the global carbon cycle, though in situ measurements of carbon cycling are lacking. In an experimental, vegetation-free hillslope containing 330 m3 of ground basalt scoria, we measured real-time inorganic carbon dynamics within the porous media and seepage flow. The hillslope carbon flux (0.6–5.1 mg C m–2 h–1) matched weathering rates of natural basalt landscapes (0.4–8.8 mg C m–2 h–1) despite lacking the expected field-based impediments to weathering. After rainfall, a decrease in CO2 concentration ([CO2]) in pore spaces into solution suggested rapid carbon sequestration but slow reactant supply. Persistent low soil [CO2] implied that diffusion limited CO2 supply, while when sufficiently dry, reaction product concentrations limited further weathering. Strong influence of diffusion could cause spatial heterogeneity of weathering even in natural settings, implying that modeling studies need to include variable soil [CO2] to improve carbon cycling estimates associated with potential carbon sequestration methods.
Evolution of a magnetic flux tube in two-dimensional penetrative convection
NASA Technical Reports Server (NTRS)
Jennings, R. L.; Brandenburg, A.; Nordlund, A.; Stein, R. F.
1992-01-01
Highly supercritical compressible convection is simulated in a two-dimensional domain in which the upper half is unstable to convection while the lower half is stably stratified. This configuration is an idealization of the layers near the base of the solar convection zone. Once the turbulent flow is well developed, a toroidal magnetic field B sub tor is introduced to the stable layer. The field's evolution is governed by an advection-diffusion-type equation, and the Lorentz force does not significantly affect the flow. After many turnover times the field is stratified such that the absolute value of B sub tor/rho is approximately constant in the convective layer, where rho is density, while in the stable layer this ratio decreases linearly with depth. Consequently most of the magnetic flux is stored in the overshoot layer. The inclusion of rotation leads to travelling waves which transport magnetic flux latitudinally in a manner reminiscent of the migrations seen during the solar cycle.
Applicability of a diffusion model to lateral transport in the terrestrial and lunar exospheres.
NASA Technical Reports Server (NTRS)
Hodges, R. R., Jr.
1972-01-01
Kinetic theory is used to determine a series expansion of the vertical flux of particles in an exosphere in terms of time and space derivatives of particle concentration, exobase velocity, and temperature. For sufficiently large scale variations of these parameters in time and space, the series can be truncated to a form that is similar to a diffusion equation. Owing to this analogy, it is possible to unite the mathematical description of molecular diffusion, which governs thermospheric flow, and the corresponding exospheric equation by using effective transport coefficients which change smoothly with altitude through the transition from thermosphere to exosphere. A new definition of the exobase for lateral flow emerges from the analogy of exospheric and thermospheric diffusion, as the altitude where the horizontal mean free path length equals the mean horizontal extent of ballistic trajectories of the transported gas, as opposed to the scale height of the dominant gas which determines the exobase for escape. It is shown that the approximation of exospheric lateral flow as a diffusion process is applicable to global scale problems concerning terrestrial helium and heavier gases, and lunar gases heavier than helium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hazra, Gopal; Karak, Bidya Binay; Choudhuri, Arnab Rai, E-mail: ghazra@physics.iisc.ernet.in
The solar activity cycle is successfully modeled by the flux transport dynamo, in which the meridional circulation of the Sun plays an important role. Most of the kinematic dynamo simulations assume a one-cell structure of the meridional circulation within the convection zone, with the equatorward return flow at its bottom. In view of the recent claims that the return flow occurs at a much shallower depth, we explore whether a meridional circulation with such a shallow return flow can still retain the attractive features of the flux transport dynamo (such as a proper butterfly diagram, the proper phase relation betweenmore » the toroidal and poloidal fields). We consider additional cells of the meridional circulation below the shallow return flow—both the case of multiple cells radially stacked above one another and the case of more complicated cell patterns. As long as there is an equatorward flow in low latitudes at the bottom of the convection zone, we find that the solar behavior is approximately reproduced. However, if there is either no flow or a poleward flow at the bottom of the convection zone, then we cannot reproduce solar behavior. On making the turbulent diffusivity low, we still find periodic behavior, although the period of the cycle becomes unrealistically large. In addition, with a low diffusivity, we do not get the observed correlation between the polar field at the sunspot minimum and the strength of the next cycle, which is reproduced when diffusivity is high. On introducing radially downward pumping, we get a more reasonable period and more solar-like behavior even with low diffusivity.« less
Effects of anisotropies in turbulent magnetic diffusion in mean-field solar dynamo models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pipin, V. V.; Kosovichev, A. G.
2014-04-10
We study how anisotropies of turbulent diffusion affect the evolution of large-scale magnetic fields and the dynamo process on the Sun. The effect of anisotropy is calculated in a mean-field magnetohydrodynamics framework assuming that triple correlations provide relaxation to the turbulent electromotive force (so-called the 'minimal τ-approximation'). We examine two types of mean-field dynamo models: the well-known benchmark flux-transport model and a distributed-dynamo model with a subsurface rotational shear layer. For both models, we investigate effects of the double- and triple-cell meridional circulation, recently suggested by helioseismology and numerical simulations. To characterize the anisotropy effects, we introduce a parameter ofmore » anisotropy as a ratio of the radial and horizontal intensities of turbulent mixing. It is found that the anisotropy affects the distribution of magnetic fields inside the convection zone. The concentration of the magnetic flux near the bottom and top boundaries of the convection zone is greater when the anisotropy is stronger. It is shown that the critical dynamo number and the dynamo period approach to constant values for large values of the anisotropy parameter. The anisotropy reduces the overlap of toroidal magnetic fields generated in subsequent dynamo cycles, in the time-latitude 'butterfly' diagram. If we assume that sunspots are formed in the vicinity of the subsurface shear layer, then the distributed dynamo model with the anisotropic diffusivity satisfies the observational constraints from helioseismology and is consistent with the value of effective turbulent diffusion estimated from the dynamics of surface magnetic fields.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Ying; Field, Kevin G.; Allen, Todd R.
2016-02-23
A detailed analysis of the diffusion fluxes near and at grain boundaries of irradiated Fe–Cr–Ni alloys, induced by preferential atom-vacancy and atom-interstitial coupling, is presented. The diffusion flux equations were based on the Perks model formulated through the linear theory of the thermodynamics of irreversible processes. The preferential atom-vacancy coupling was described by the mobility model, whereas the preferential atom-interstitial coupling was described by the interstitial binding model. The composition dependence of the thermodynamic factor was modeled using the CALPHAD approach. The calculated fluxes up to 10 dpa suggested the dominant diffusion mechanism for chromium and iron is via vacancy,more » while that for nickel can swing from the vacancy to the interstitial dominant mechanism. The diffusion flux in the vicinity of a grain boundary was found to be greatly modified by the segregation induced by irradiation, leading to the oscillatory behavior of alloy compositions in this region.« less
Spatio-temporal variability of lake CH4 fluxes and its influence on annual estimates
NASA Astrophysics Data System (ADS)
Natchimuthu, S.; Sundgren, I.; Gålfalk, M.; Klemedtsson, L.; Crill, P. M.; Danielsson, Å.; Bastviken, D.
2014-12-01
Lakes are major sources of methane (CH4) to the atmosphere and it has been shown that lakes contribute significantly to the global CH4 budget. However, the data behind these global estimates are snapshots in time and space only and they typically lack information on spatial and temporal variability of fluxes which can potentially lead to biased estimates. Recent studies have shown that diffusive flux, gas exchange velocity (k), ebullition and concentration of CH4 in the surface water can vary significantly in space within lakes. CH4 fluxes can also change at a broad range of temporal scales in response to seasons, temperature, lake mixing events, short term weather events like pressure variations, shifting winds and diel cycles. We sampled CH4 fluxes and surface water concentrations from three lakes of differing characteristics in southwest Sweden over two annual cycles, approximately every 14 days from April to October 2012 and from April to November 2013. CH4 fluxes were measured using floating chambers distributed in the lakes based on depth categories and dissolved CH4 concentrations were determined by a headspace equilibration method. We observed significant differences in CH4 concentration, diffusion, ebullition and total fluxes between and within the lakes. The fluxes increased exponentially with temperature in all three lakes and water temperature, for example, explained 53-78% of variations in total fluxes in the lakes. Based on our data which relied on improved spatial and temporal information, we demonstrate that measurements which do not take into account of the spatial variability in the lakes could substantially bias the whole lake estimates. For instance, in one of the lakes, measurements from the central parts of the lake represented only 58% of our estimates from all chambers on an average. In addition, we consider how intensive sampling in one season of the year may affect the annual estimates due to the complex interaction of temperature, air pressure and lake mixing events on CH4 fluxes. For example, samples collected when the average air temperatures during chamber deployments were above 15 °C overestimated the total fluxes by 17-157% in all lakes when compared to averages from all measurement times.
NASA Astrophysics Data System (ADS)
Pettijohn, J. C.; Salvucci, G. D.
2008-12-01
Archived global measurements of water loss from evaporation pans constitute an important indirect measure of evaporative flux. Historical data from evaporation pans shows a decreasing trend over the last half century, but the relationship between pan evaporation and moisture-limited terrestrial evaporation is complex, leading to ambiguities in the interpretation of this data. Under energy-limited conditions, pan evaporation (Epan) and moisture-limited terrestrial evaporation (E) increase or decrease together, while in moisture- limited conditions these fluxes form a complementary relation in which increases in one rate accompany decreases in the other. This has lead to debate about the meaning of the observed trends in the context of changing climate. Here a two-dimensional numerical model of a wet pan in a drying landscape is used to demonstrate that, over a wide range of realistic atmospheric and surface conditions, the influence that changes in E have on Epan (1) are complementary and linear, (2) do not depend upon surface wind speed, and (3) are strikingly asymmetrical, in that a unit decrease in E causes approximately a five-fold increase in Epan, as found in a recent analysis of daily evaporation from US grasslands (Kahler and Brutsaert, 2006). Previous attempts to explain the CR have been based on one dimensional diffusion and energy balance arguments, leading to analytic solutions based on Penman-type bulk difference equations. But without acknowledging the spatially complex multidimensional humidity and temperature field around the pan, and specifically how these fields change as the contrast between the wet pan and the drying land surface increases, such integrated bulk difference equations are a priori incomplete (they ignore important divergence terms), and thus these explanations must be considered physically incomplete. Results of the present study improve the theoretical foundation of the CR, thus increasing the reliability with which it can be applied to estimate water balance and to understand the pan evaporation record of climate change.
NASA Technical Reports Server (NTRS)
Leventis, Nicholas; Oh, Woon Su; Gao, Xue-Rong; Rawashdeh, Abdel Monem M.
2003-01-01
At the potential range where both decamethylferrocene (dMeFc) and ferrocene (Fc) are oxidized with rates controlled by linear diffusion, electrogenerated Fc(+) radicals diffusing outwards from the electrode react quantitatively (K23 C=5.8 x 10(exp 8) with dMeFc diffusing towards the electrode and produce Fc and dMeFc. That reaction replaces dMeFc with Fc, whose diffusion coefficient is higher than that of dMeFc(+), and the total mass-transfer limited current from the mixture is increased by approximately 10%. Analogous observations are made when mass-transfer is controlled by convective-diffusion as in RDE voltammetry. Similar results have been obtained with another, and for all practical purposes randomly selected pair of redox-active substances, [Co(bipy)3](2+) and N - methylphenothiazine (MePTZ); reaction of MePTZ(+) with [Co(bipy)3](2+) replaces the latter with MePTZ, which diffuses faster and the current increases by approximately 20%. The experimental voltammograms have been simulated numerically and the role of (a) the rate constant of the homogeneous reaction; (b) the relative concentrations; and, (c) the diffusion coefficients of all species involved have been studied in detail. Importantly, it was also identified that within any given redox system the dependence of the mass-transfer limited current on the bulk concentrations of the redox-active species is expected to be non-linear. These findings are discussed in terms of their electroanalytical implications.
Constraints on the extremely-high energy cosmic neutrino flux with the IceCube 2008-2009 data
NASA Astrophysics Data System (ADS)
Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Benabderrahmane, M. L.; Benzvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brown, A. M.; Buitink, S.; Carson, M.; Chirkin, D.; Christy, B.; Clem, J.; Clevermann, F.; Cohen, S.; Colnard, C.; Cowen, D. F.; D'Agostino, M. V.; Danninger, M.; Daughhetee, J.; Davis, J. C.; de Clercq, C.; Demirörs, L.; Denger, T.; Depaepe, O.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; Deyoung, T.; Díaz-Vélez, J. C.; Dierckxsens, M.; Dreyer, J.; Dumm, J. P.; Ehrlich, R.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Foerster, M. M.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Geisler, M.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Gora, D.; Grant, D.; Griesel, T.; Groß, A.; Grullon, S.; Gurtner, M.; Ha, C.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Heinen, D.; Helbing, K.; Herquet, P.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Homeier, A.; Hoshina, K.; Hubert, D.; Huelsnitz, W.; Hülß, J.-P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Joseph, J. M.; Kampert, K.-H.; Kappes, A.; Karg, T.; Karle, A.; Kelley, J. L.; Kenny, P.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Krings, T.; Kroll, G.; Kuwabara, T.; Labare, M.; Lafebre, S.; Laihem, K.; Landsman, H.; Larson, M. J.; Lauer, R.; Lünemann, J.; Madsen, J.; Majumdar, P.; Marotta, A.; Maruyama, R.; Mase, K.; Matis, H. S.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Middell, E.; Milke, N.; Miller, J.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Nam, J. W.; Naumann, U.; Nießen, P.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Ono, M.; Panknin, S.; Paul, L.; Pérez de Los Heros, C.; Petrovic, J.; Piegsa, A.; Pieloth, D.; Porrata, R.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Rizzo, A.; Rodrigues, J. P.; Roth, P.; Rothmaier, F.; Rott, C.; Ruhe, T.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Schmidt, T.; Schönwald, A.; Schukraft, A.; Schultes, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Slipak, A.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stephens, G.; Stezelberger, T.; Stokstad, R. G.; Stössl, A.; Stoyanov, S.; Strahler, E. A.; Straszheim, T.; Stür, M.; Sullivan, G. W.; Swillens, Q.; Taavola, H.; Taboada, I.; Tamburro, A.; Tepe, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Toscano, S.; Tosi, D.; Turčan, D.; van Eijndhoven, N.; Vandenbroucke, J.; van Overloop, A.; van Santen, J.; Vehring, M.; Voge, M.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, C.; Xu, X. W.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.
2011-05-01
We report on a search for extremely-high energy neutrinos with energies greater than 106GeV using the data taken with the IceCube detector at the South Pole. The data was collected between April 2008 and May 2009 with the half-completed IceCube array. The absence of signal candidate events in the sample of 333.5 days of live time significantly improves model-independent limits from previous searches and allows to place a limit on the diffuse flux of cosmic neutrinos with an E-2 spectrum in the energy range 2.0×106-6.3×109GeV to a level of E2ϕ≤3.6×10-8GeVcm-2sec-1sr-1.
(Fe II) 1.53 and 1.64 micron emission from pre-main-sequence stars
NASA Technical Reports Server (NTRS)
Hamann, Fred; Simon, Michal; Carr, John S.; Prato, Lisa
1994-01-01
We present flux-calibrated profiles of the (Fe II) 1.53 and 1.64 micron lines in five pre-main-sequence stars, PV Cep, V1331 Cyg, R Mon, and DG and HL Tau. The line centroids are blueshifted in all five sources, and four of the five have only blueshifted flux. In agreement with previous studies, we attribute the line asymmetries to local obscuration by dusty circumstellar disks. The absence of redshifted flux implies a minimum column density of obscuring material. The largest limit, N(sub H) greater than 3 x 10(exp 22)/sq cm, derived for V1331 Cyg, suggests disk surface densities greater than 0.05 g/sq cm and disk masses greater than 0.001 solar mass within a radius of approximately 200 AU. The narrow high-velocity lines in PV Cep, V1331 Cyg, and HL Tau require formation in well collimated winds. The maximum full opening angles of their winds range from less than 20 deg in V1331 Cyg to less than 40 deg in HL Tau. The (Fe II) data also yield estimates of the electron densities (n(sub e) approximately 10(exp 4)/cu cm), hydrogen ionization fractions (f(sub H(+)) approximately 1/3), mass-loss rates (approximately 10(exp -7) to 2 x 10(exp -6) solar mass/yr), and characteristic radii of the emitting regions (approximately 32 to approximately 155 AU). The true radial extents will be larger, and the mass-loss rates smaller, by factors of a few for the outflows with limited opening angles. In our small sample the higher mass stars have stronger lines, larger emitting regions, and greater mass-loss rates. These differences are probably limited to the scale and energetics of the envelopes, because the inferred geometries, kinematics and physical conditions are similar. The measured (Fe II) profiles samples both 'high'- and 'low'-velocity environments. Recent studies indicate that these regions have some distinct physical properties and may be spatially separate. The (Fe II) data show that similar sizes and densities can occur in both environments.
(Fe II) 1.53 and 1.64 micron emission from pre-main-sequence stars
NASA Astrophysics Data System (ADS)
Hamann, Fred; Simon, Michal; Carr, John S.; Prato, Lisa
1994-11-01
We present flux-calibrated profiles of the (Fe II) 1.53 and 1.64 micron lines in five pre-main-sequence stars, PV Cep, V1331 Cyg, R Mon, and DG and HL Tau. The line centroids are blueshifted in all five sources, and four of the five have only blueshifted flux. In agreement with previous studies, we attribute the line asymmetries to local obscuration by dusty circumstellar disks. The absence of redshifted flux implies a minimum column density of obscuring material. The largest limit, NH greater than 3 x 1022/sq cm, derived for V1331 Cyg, suggests disk surface densities greater than 0.05 g/sq cm and disk masses greater than 0.001 solar mass within a radius of approximately 200 AU. The narrow high-velocity lines in PV Cep, V1331 Cyg, and HL Tau require formation in well collimated winds. The maximum full opening angles of their winds range from less than 20 deg in V1331 Cyg to less than 40 deg in HL Tau. The (Fe II) data also yield estimates of the electron densities (ne approximately 104/cu cm), hydrogen ionization fractions (fH(+) approximately 1/3), mass-loss rates (approximately 10-7 to 2 x 10-6 solar mass/yr), and characteristic radii of the emitting regions (approximately 32 to approximately 155 AU). The true radial extents will be larger, and the mass-loss rates smaller, by factors of a few for the outflows with limited opening angles. In our small sample the higher mass stars have stronger lines, larger emitting regions, and greater mass-loss rates. These differences are probably limited to the scale and energetics of the envelopes, because the inferred geometries, kinematics and physical conditions are similar. The measured (Fe II) profiles samples both 'high'- and 'low'-velocity environments. Recent studies indicate that these regions have some distinct physical properties and may be spatially separate. The (Fe II) data show that similar sizes and densities can occur in both environments.
Tritium plume dynamics in the shallow unsaturated zone in an arid environment
Maples, S.R.; Andraski, Brian J.; Stonestrom, David A.; Cooper, C.A.; Pohll, G.; Michel, R.L.
2014-01-01
The spatiotemporal variability of a tritium plume in the shallow unsaturated zone and the mechanisms controlling its transport were evaluated during a 10-yr study. Plume movement was minimal and its mass declined by 68%. Upward-directed diffusive-vapor tritium fluxes and radioactive decay accounted for most of the observed plume-mass declines.Effective isolation of tritium (3H) and other contaminants at waste-burial facilities requires improved understanding of transport processes and pathways. Previous studies documented an anomalously widespread (i.e., theoretically unexpected) distribution of 3H (>400 m from burial trenches) in a dry, sub-root-zone gravelly layer (1–2-m depth) adjacent to a low-level radioactive waste (LLRW) burial facility in the Amargosa Desert, Nevada, that closed in 1992. The objectives of this study were to: (i) characterize long-term, spatiotemporal variability of 3H plumes; and (ii) quantify the processes controlling 3H behavior in the sub-root-zone gravelly layer beneath native vegetation adjacent to the facility. Geostatistical methods, spatial moment analyses, and mass flux calculations were applied to a spatiotemporally comprehensive, 10-yr data set (2001–2011). Results showed minimal bulk-plume advancement during the study period and limited Fickian spreading of mass. Observed spreading rates were generally consistent with theoretical vapor-phase dispersion. The plume mass diminished more rapidly than would be expected from radioactive decay alone, indicating net efflux from the plume. Estimates of upward 3H efflux via diffusive-vapor movement were >10× greater than by dispersive-vapor or total-liquid movement. Total vertical fluxes were >20× greater than lateral diffusive-vapor fluxes, highlighting the importance of upward migration toward the land surface. Mass-balance calculations showed that radioactive decay and upward diffusive-vapor fluxes contributed the majority of plume loss. Results indicate that plume losses substantially exceeded any continuing 3H contribution to the plume from the LLRW facility during 2001 to 2011 and suggest that the widespread 3H distribution resulted from transport before 2001.
Design and Performance of the GAMMA-400 Gamma-Ray Telescope for Dark Matter Searches
NASA Technical Reports Server (NTRS)
Galper, A. M.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Boezio, M.; Bonvicini, V.; Boyarchuk, K. A.; Fradkin, M. I.; Gusakov, Yu V.;
2012-01-01
The GAMMA-400 gamma-ray telescope is designed to measure the fluxes of gamma-rays and cosmic-ray electrons (+) positrons, which can be produced by annihilation or decay of the dark matter particles, as well as to survey the celestial sphere in order to study point and extended sources of gamma-rays, measure energy spectra of Galactic and extragalactic diffuse gamma-ray emission, gamma-ray bursts, and gamma-ray emission from the Sun. GAMMA-400 covers the energy range from 100 MeV to 3000 GeV. Its angular resolution is approximately 0.01deg (E(sub gamma) greater than 100 GeV), the energy resolution approximately 1% (E(sub gamma) greater than 10 GeV), and the proton rejection factor approximately 10(exp 6). GAMMA-400 will be installed on the Russian space platform Navigator. The beginning of observations is planned for 2018.
Study of sorption-retarded U(VI) diffusion in Hanford silt/clay material.
Bai, Jing; Liu, Chongxuan; Ball, William P
2009-10-15
A diffusion cell method was applied to measure the effective pore diffusion coefficient (Dp) for U(VI) under strictly controlled chemical conditions in a silt/clay sediment from the U.S. Department of Energy Hanford site, WA. "Inward-flux" diffusion studies were conducted in which [U(VI)] in both aqueous and solid phases was measured as a function of distance in the diffusion cell under conditions of constant concentration at the cell boundaries. A sequential extraction method was developed to measure sorbed contaminant U(VI) in the solid phase containing extractable background U(VI). The effect of sorption kinetics on U(VI) interparticle diffusion was evaluated by comparing sorption-retarded diffusion models with sorption described either as equilibrium or intraparticle diffusion-limited processes. Both experimental and modeling results indicated that (1) a single pore diffusion coefficient can simulate the diffusion of total aqueous U(VI), and (2) the local equilibrium assumption (LEA) is appropriate for modeling sorption-retarded diffusion under the given experimental conditions. Dp of 1.6-1.7 x 10(-6) cm2/s was estimated in aqueous solution at pH 8.0 and saturated with respect to calcite, as relevant to some subsurface regions of the Hanford site.
Finite Volume Methods: Foundation and Analysis
NASA Technical Reports Server (NTRS)
Barth, Timothy; Ohlberger, Mario
2003-01-01
Finite volume methods are a class of discretization schemes that have proven highly successful in approximating the solution of a wide variety of conservation law systems. They are extensively used in fluid mechanics, porous media flow, meteorology, electromagnetics, models of biological processes, semi-conductor device simulation and many other engineering areas governed by conservative systems that can be written in integral control volume form. This article reviews elements of the foundation and analysis of modern finite volume methods. The primary advantages of these methods are numerical robustness through the obtention of discrete maximum (minimum) principles, applicability on very general unstructured meshes, and the intrinsic local conservation properties of the resulting schemes. Throughout this article, specific attention is given to scalar nonlinear hyperbolic conservation laws and the development of high order accurate schemes for discretizing them. A key tool in the design and analysis of finite volume schemes suitable for non-oscillatory discontinuity capturing is discrete maximum principle analysis. A number of building blocks used in the development of numerical schemes possessing local discrete maximum principles are reviewed in one and several space dimensions, e.g. monotone fluxes, E-fluxes, TVD discretization, non-oscillatory reconstruction, slope limiters, positive coefficient schemes, etc. When available, theoretical results concerning a priori and a posteriori error estimates are given. Further advanced topics are then considered such as high order time integration, discretization of diffusion terms and the extension to systems of nonlinear conservation laws.
NASA Astrophysics Data System (ADS)
Delettrez, J. A.; Collins, T. J. B.; Shvydky, A.; Moses, G.; Cao, D.; Marinak, M. M.
2012-10-01
A nonlocal, multigroup diffusion model for thermal electron transportfootnotetextG. P. Schurtz, Ph. D. Nicola"i, and M. Busquet, Phys. Plasmas 7, 4238 (2000). has been added to the 2-D hydrodynamic code DRACO. This model has been applied to simulations of polar-drive (PD) NIF ignition designs. Previous simulations were carried out with a constant flux-limiter model in both the radial and transverse directions. Due to the nonsymmetry of PD illumination, these implosions suffer from low-mode nonuniformities that affect their performance. Nonlocal electron transport in both directions is expected to reduce these nonuniformities. The 2-D thermal electron flux from simulations, using either the nonlocal model or the standard flux-limited approach, will be compared and the effect of the nonlocal transport model on the growth of the nonuniformities and on target performance will be presented. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC52-08NA28302.
A flux-limited treatment for the conductive evaporation of spherical interstellar gas clouds
NASA Technical Reports Server (NTRS)
Dalton, William W.; Balbus, Steven A.
1993-01-01
In this work, we present and analyze a new analytic solution for the saturated (flux-limited) thermal evaporation of a spherical cloud. This work is distinguished from earlier analytic studies by allowing the thermal conductivity to change continuously from a diffusive to a saturated form, in a manner usually employed only in numerical calculations. This closed form solution will be of interest as a computational benchmark. Using our calculated temperature profiles and mass-loss rates, we model the thermal evaporation of such a cloud under typical interstellar medium (ISM) conditions, with some restrictions. We examine the ionization structure of the cloud-ISM interface and evaluate column densities of carbon, nitrogen, oxygen, neon, and silicon ions toward the cloud. In accord with other investigations, we find that ionization equilibrium is far from satisfied under the assumed conditions. Since the inclusion of saturation effects in the heat flux narrows the thermal interface relative to its classical structure, we also find that saturation effects tend to lower predicted column densities.
Search for gamma-rays above 400 GeV from Geminga
NASA Technical Reports Server (NTRS)
Cawley, M. F.; Fegan, D. J.; Gibbs, K.; Gorham, P. W.; Lamb, R. C.; Liebing, D. F.; Mackeown, P. K.; Porter, N. A.; Stenger, V. J.; Weekes, T. C.
1985-01-01
Observations of Geminga made at the Whipple Observatory using the atmospheric Cherenkov technique during the moonless periods of November 1983 to February 1984 and November 1984 till February 1985 were examined for evidence for the emission of gamma rays with energy in excess of approx 400 GeV. Evidence of either a steady flux or a flux pulsed with a period near 60 seconds were studied. In neither case was any significant effect observed, enabling the establishment 3 of sigma upper limits of 5.5 x 10 to the -11th power photons/sq cm/s and 2.0 x 10 to the -11th power photons/sq cm/s for the steady and pulsed emission respectively. The limit to the pulsed flux is approximately a factor of six below that predicted.
NASA Technical Reports Server (NTRS)
Khazanov, George V.; Sibeck, David G.
2013-01-01
The interaction of electrons with coherent chorus waves in the random phase approximation can be described as quasi-linear diffusion for waves with amplitudes below some limit. The limit is calculated for relativistic and non-relativistic electrons. For stronger waves, the friction force should be taken into account.
Diffusive flux in a model of stochastically gated oxygen transport in insect respiration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berezhkovskii, Alexander M.; Shvartsman, Stanislav Y.
Oxygen delivery to insect tissues is controlled by transport through a branched tubular network that is connected to the atmosphere by valve-like gates, known as spiracles. In certain physiological regimes, the spiracles appear to be randomly switching between open and closed states. Quantitative analysis of this regime leads a reaction-diffusion problem with stochastically switching boundary condition. We derive an expression for the diffusive flux at long times in this problem. Our approach starts with the derivation of the passage probability for a single particle that diffuses between a stochastically gated boundary, which models the opening and closing spiracle, and themore » perfectly absorbing boundary, which models oxygen absorption by the tissue. This passage probability is then used to derive an expression giving the diffusive flux as a function of the geometric parameters of the tube and characteristic time scales of diffusion and gate dynamics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinavicius, A.; Abrasonis, G.; Moeller, W.
2011-10-01
The nitrogen diffusivity in single-crystalline AISI 316L austenitic stainless steel (ASS) during ion nitriding has been investigated at different crystal orientations ((001), (110), (111)) under variations of ion flux (0.3-0.7 mA cm{sup -2}), ion energy (0.5-1.2 keV), and temperature (370-430 deg. C). The nitrogen depth profiles obtained from nuclear reaction analysis are in excellent agreement with fits using the model of diffusion under the influence of traps, from which diffusion coefficients were extracted. At fixed ion energy and flux, the diffusivity varies by a factor up to 2.5 at different crystal orientations. At (100) orientation, it increases linearly with increasingmore » ion flux or energy. The findings are discussed on the basis of atomistic mechanisms of interstitial diffusion, potential lattice distortions, local decomposition, and ion-induced lattice vibrational excitations.« less
Diffusive flux in a model of stochastically gated oxygen transport in insect respiration.
Berezhkovskii, Alexander M; Shvartsman, Stanislav Y
2016-05-28
Oxygen delivery to insect tissues is controlled by transport through a branched tubular network that is connected to the atmosphere by valve-like gates, known as spiracles. In certain physiological regimes, the spiracles appear to be randomly switching between open and closed states. Quantitative analysis of this regime leads a reaction-diffusion problem with stochastically switching boundary condition. We derive an expression for the diffusive flux at long times in this problem. Our approach starts with the derivation of the passage probability for a single particle that diffuses between a stochastically gated boundary, which models the opening and closing spiracle, and the perfectly absorbing boundary, which models oxygen absorption by the tissue. This passage probability is then used to derive an expression giving the diffusive flux as a function of the geometric parameters of the tube and characteristic time scales of diffusion and gate dynamics.
Small particle transport across turbulent nonisothermal boundary layers
NASA Technical Reports Server (NTRS)
Rosner, D. E.; Fernandez De La Mora, J.
1982-01-01
The interaction between turbulent diffusion, Brownian diffusion, and particle thermophoresis in the limit of vanishing particle inertial effects is quantitatively modeled for applications in gas turbines. The model is initiated with consideration of the particle phase mass conservation equation for a two-dimensional boundary layer, including the thermophoretic flux term directed toward the cold wall. A formalism of a turbulent flow near a flat plate in a heat transfer problem is adopted, and variable property effects are neglected. Attention is given to the limit of very large Schmidt numbers and the particle concentration depletion outside of the Brownian sublayer. It is concluded that, in the parameter range of interest, thermophoresis augments the high Schmidt number mass-transfer coefficient by a factor equal to the product of the outer sink and the thermophoretic suction.
NASA Technical Reports Server (NTRS)
Mahan, J. R.; Eskin, L. D.
1981-01-01
A viable alternative to the net exchange method of radiative analysis which is equally applicable to diffuse and diffuse-specular enclosures is presented. It is particularly more advantageous to use than the net exchange method in the case of a transient thermal analysis involving conduction and storage of energy as well as radiative exchange. A new quantity, called the distribution factor is defined which replaces the angle factor and the configuration factor. Once obtained, the array of distribution factors for an ensemble of surface elements which define an enclosure permits the instantaneous net radiative heat fluxes to all of the surfaces to be computed directly in terms of the known surface temperatures at that instant. The formulation of the thermal model is described, as is the determination of distribution factors by application of a Monte Carlo analysis. The results show that when fewer than 10,000 packets are emitted, an unsatisfactory approximation for the distribution factors is obtained, but that 10,000 packets is sufficient.
Magnetic flux concentration and zonal flows in magnetorotational instability turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bai, Xue-Ning; Stone, James M., E-mail: xbai@cfa.harvard.edu
2014-11-20
Accretion disks are likely threaded by external vertical magnetic flux, which enhances the level of turbulence via the magnetorotational instability (MRI). Using shearing-box simulations, we find that such external magnetic flux also strongly enhances the amplitude of banded radial density variations known as zonal flows. Moreover, we report that vertical magnetic flux is strongly concentrated toward low-density regions of the zonal flow. Mean vertical magnetic field can be more than doubled in low-density regions, and reduced to nearly zero in high-density regions in some cases. In ideal MHD, the scale on which magnetic flux concentrates can reach a few diskmore » scale heights. In the non-ideal MHD regime with strong ambipolar diffusion, magnetic flux is concentrated into thin axisymmetric shells at some enhanced level, whose size is typically less than half a scale height. We show that magnetic flux concentration is closely related to the fact that the turbulent diffusivity of the MRI turbulence is anisotropic. In addition to a conventional Ohmic-like turbulent resistivity, we find that there is a correlation between the vertical velocity and horizontal magnetic field fluctuations that produces a mean electric field that acts to anti-diffuse the vertical magnetic flux. The anisotropic turbulent diffusivity has analogies to the Hall effect, and may have important implications for magnetic flux transport in accretion disks. The physical origin of magnetic flux concentration may be related to the development of channel flows followed by magnetic reconnection, which acts to decrease the mass-to-flux ratio in localized regions. The association of enhanced zonal flows with magnetic flux concentration may lead to global pressure bumps in protoplanetary disks that helps trap dust particles and facilitates planet formation.« less
Watson, K.; Hummer-Miller, S.
1981-01-01
A method based solely on remote sensing data has been developed to estimate those meteorological effects which are required for thermal-inertia mapping. It assumes that the atmospheric fluxes are spatially invariant and that the solar, sky, and sensible heat fluxes can be approximated by a simple mathematical form. Coefficients are determined from least-squares method by fitting observational data to our thermal model. A comparison between field measurements and the model-derived flux shows the type of agreement which can be achieved. An analysis of the limitations of the method is also provided. ?? 1981.
Reactive fluxes delivered by dielectric barrier discharge filaments to slightly wounded skin
NASA Astrophysics Data System (ADS)
Babaeva, Natalia Yu; Kushner, Mark J.
2013-01-01
The application of atmospheric-pressure plasmas to human tissue has been shown to have therapeutic effects for wound healing and in treatment of skin diseases. In this paper, we report on a computational study of the intersection of plasma filaments in a dielectric barrier discharge (DBD) with a small wound in human skin in the context of plasma medicine. The wound is represented as a small cut in the epidermal layer of cells. Intracellular structures and their electrical properties were incorporated into the two-dimensional computational mesh in order to self-consistently couple gas phase plasma transport with the charging of the surface of the wound. We quantify the fluxes of reactive oxygen and nitrogen species, ions and photons produced in or diffusing into the wound as might occur during the first few discharge pulses of treatment. Comparison is made to fluxes predicted by global modelling. We show that the relative location of the plasma filament with respect to the wound is important on plasma time scales (ns) for ions and photons, and for radicals directly produced by electron impact processes. On the longer-term diffusion time scales (ms) the position of the plasma filament relative to the wound is not so critical. For typical DBD conditions, the magnitude of these fluxes to the cellular surfaces corresponds to fluences of radicals nearly equal to the surface site density. These results imply that the biological reactivity is limited by reaction probabilities and not the availability of radical fluxes.
TEMPEST Simulations of the Plasma Transport in a Single-Null Tokamak Geometry
X. Q. Xu; Bodi, K.; Cohen, R. H.; ...
2010-05-28
We present edge kinetic ion transport simulations of tokamak plasmas in magnetic divertor geometry using the fully nonlinear (full-f) continuum code TEMPEST. Besides neoclassical transport, a term for divergence of anomalous kinetic radial flux is added to mock up the effect of turbulent transport. In order to study the relative roles of neoclassical and anomalous transport, TEMPEST simulations were carried out for plasma transport and flow dynamics in a single-null tokamak geometry, including the pedestal region that extends across the separatrix into the scrape-off layer and private flux region. In a series of TEMPEST simulations were conducted to investigate themore » transition of midplane pedestal heat flux and flow from the neoclassical to the turbulent limit and the transition of divertor heat flux and flow from the kinetic to the fluid regime via an anomalous transport scan and a density scan. The TEMPEST simulation results demonstrate that turbulent transport (as modelled by large diffusion) plays a similar role to collisional decorrelation of particle orbits and that the large turbulent transport (large diffusion) leads to an apparent Maxwellianization of the particle distribution. Moreover, we show the transition of parallel heat flux and flow at the entrance to the divertor plates from the fluid to the kinetic regime. For an absorbing divertor plate boundary condition, a non-half-Maxwellian is found due to the balance between upstream radial anomalous transport and energetic ion endloss.« less
TEMPEST Simulations of the Plasma Transport in a Single-Null Tokamak Geometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
X. Q. Xu; Bodi, K.; Cohen, R. H.
We present edge kinetic ion transport simulations of tokamak plasmas in magnetic divertor geometry using the fully nonlinear (full-f) continuum code TEMPEST. Besides neoclassical transport, a term for divergence of anomalous kinetic radial flux is added to mock up the effect of turbulent transport. In order to study the relative roles of neoclassical and anomalous transport, TEMPEST simulations were carried out for plasma transport and flow dynamics in a single-null tokamak geometry, including the pedestal region that extends across the separatrix into the scrape-off layer and private flux region. In a series of TEMPEST simulations were conducted to investigate themore » transition of midplane pedestal heat flux and flow from the neoclassical to the turbulent limit and the transition of divertor heat flux and flow from the kinetic to the fluid regime via an anomalous transport scan and a density scan. The TEMPEST simulation results demonstrate that turbulent transport (as modelled by large diffusion) plays a similar role to collisional decorrelation of particle orbits and that the large turbulent transport (large diffusion) leads to an apparent Maxwellianization of the particle distribution. Moreover, we show the transition of parallel heat flux and flow at the entrance to the divertor plates from the fluid to the kinetic regime. For an absorbing divertor plate boundary condition, a non-half-Maxwellian is found due to the balance between upstream radial anomalous transport and energetic ion endloss.« less
Cosmic ray albedo gamma rays from the quiet sun
NASA Technical Reports Server (NTRS)
Seckel, D.; Stanev, T.; Gaisser, T. K.
1992-01-01
We estimate the flux of gamma-rays that result from collisions of high energy galactic cosmic rays with the solar atmosphere. An important aspect of our model is the propagation of cosmic rays through the magnetic fields of the inner solar systems. We use diffusion to model propagation down to the bottom of the corona. Below the corona we trace particle orbits through the photospheric fields to determine the location of cosmic ray interactions in the solar atmosphere and evolve the resultant cascades. For our nominal choice of parameters, we predict an integrated flux of gamma rays (at 1 AU) of F(E(sub gamma) greater than 100 MeV) approximately = 5 x 10(exp -8)/sq cm sec. This can be an order of magnitude above the galactic background and should be observable by the Energetic Gamma Ray experiment telescope (EGRET).
High field superconductors for superconducting machines
NASA Astrophysics Data System (ADS)
Rupp, G.; Wilhelm, M.; Wohlleben, K.; Ziegler, G.; Springer, E.
1980-11-01
High current capacity Nb3Sn multifilament conductors were fabricated. A solid state diffusion process was used. The number of conductor filaments approaches 70,000 with filament diameters being approximately 1.5 microns. Effective current densities reach 86,000 A/sq cm at a magnetic flux density of 10 T and operating temperature of 4.2 K. Calibrated flattened cables of twisted strands were fabricated for higher currents (up to 1000 A at 10 T). Generally, quantitative relations can be given for the rise in the critical current of Nb3Sn multifilament conductors, observed under the influence of mechanical stresses. Long lengths (km) of these conductors were used to manufacture superconducting solenoids two different ways. These rise to the short sample current, usually without conditioning, and deliver magnetic flux densities up to 14 T with an 8.5 T NbTi background field.
NASA Technical Reports Server (NTRS)
Coirier, William J.; Vanleer, Bram
1991-01-01
The accuracy of various numerical flux functions for the inviscid fluxes when used for Navier-Stokes computations is studied. The flux functions are benchmarked for solutions of the viscous, hypersonic flow past a 10 degree cone at zero angle of attack using first order, upwind spatial differencing. The Harten-Lax/Roe flux is found to give a good boundary layer representation, although its robustness is an issue. Some hybrid flux formulas, where the concepts of flux-vector and flux-difference splitting are combined, are shown to give unsatisfactory pressure distributions; there is still room for improvement. Investigations of low diffusion, pure flux-vector splittings indicate that a pure flux-vector splitting can be developed that eliminates spurious diffusion across the boundary layer. The resulting first-order scheme is marginally stable and not monotone.
Evaporation enhancement in soils: a critical review
NASA Astrophysics Data System (ADS)
Rutten, Martine; van de Giesen, Nick
2015-04-01
Temperature gradients in the top layer of the soil are, especially during the daytime, steeper than would be expected if thermal conduction was the primary heat transfer mechanism. Evaporation seems to have significant influence on the soil heat budget. Only part of the surface soil heat flux is conducted downwards, increasing the soil temperatures, and part is used for evaporation, acting as a sink to the soil heat budget. For moist soils, the evaporation is limited by the transport of water molecules to the surface. The classical view is that water vapor is transported from the evaporation front to the surface by diffusion. Diffusion is mixing due to the random movement of molecules resulting in flattening concentration gradients. In soil, the diffusive vapor flux and the resulting latent heat flux are generally small. We found that transport enhancement is necessary in order to sustain vapor fluxes that are large enough to sustain latent heat fluxes, as well as being large enough to explain the observed temperature gradients. Enhancement of vapor diffusion is a known phenomenon, subject to debate on the explanations of underlying mechanism. In an extensive literature review on vapor enhancement in soils, the plausibility of various mechanisms was assessed. We reviewed mechanisms based on (combinations of) diffusive, viscous, buoyant, capillary and external pressure forces including: thermodiffusion, dispersion, Stefan's flow, Knudsen diffusion, liquid island effect, hydraulic lift, free convection, double diffusive convection and forced convection. The analysis of the order of magnitude of the mechanisms based on first principles clearly distinguished between plausible and implausible mechanisms. Thermodiffusion, Stefan's flow, Knudsen effects, liquid islands do not significantly contribute to enhanced evaporation. Double diffusive convection seemed unlikely due to lack of experimental evidence, but could not be completely excluded from the list of potential mechanisms. Hydraulic lift, the mechanism that small capillaries lift liquid water to the surface where it evaporates, does significantly contribute to enhanced evaporation from soils, also from dryer soils. The experimental evidence for and the theoretical underpinnings of this mechanism are convincing. However, we sought mechanisms that both explain enhanced evaporation and steep temperature gradients in the soil during the daytime. These often observed gradients consist of a sharp decrease of temperature with a depth up to the depth of the evaporation front. Hydraulic lift cannot explain this because the evaporation front is located at the surface. One remaining mechanism is forced convection due to atmospheric pressure fluctuations, also referred to as wind pumping. Wind pumping causes displacement and flow velocities too small for significant convective and too small for significant dispersive transport, when steady state dispersion formulations are used. However, experiments do indicate significant dispersive transport that can be explained by dispersion under unsteady flow conditions. Forced convection due to pressure fluctuations seems to be the only mechanism that can explain both enhanced evaporation and the steep temperature gradients.
The influence of clouds and diffuse radiation on ecosystem-atmosphere CO2 and CO18O exhanges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Still, C.J.; Riley, W.J.; Biraud, S.C.
2009-05-01
This study evaluates the potential impact of clouds on ecosystem CO{sub 2} and CO{sub 2} isotope fluxes ('isofluxes') in two contrasting ecosystems (a broadleaf deciduous forest and a C{sub 4} grassland), in a region for which cloud cover, meteorological, and isotope data are available for driving the isotope-enabled land surface model, ISOLSM. Our model results indicate a large impact of clouds on ecosystem CO{sub 2} fluxes and isofluxes. Despite lower irradiance on partly cloudy and cloudy days, predicted forest canopy photosynthesis was substantially higher than on clear, sunny days, and the highest carbon uptake was achieved on the cloudiest day.more » This effect was driven by a large increase in light-limited shade leaf photosynthesis following an increase in the diffuse fraction of irradiance. Photosynthetic isofluxes, by contrast, were largest on partly cloudy days, as leaf water isotopic composition was only slightly depleted and photosynthesis was enhanced, as compared to adjacent clear sky days. On the cloudiest day, the forest exhibited intermediate isofluxes: although photosynthesis was highest on this day, leaf-to-atmosphere isofluxes were reduced from a feedback of transpiration on canopy relative humidity and leaf water. Photosynthesis and isofluxes were both reduced in the C{sub 4} grass canopy with increasing cloud cover and diffuse fraction as a result of near-constant light limitation of photosynthesis. These results suggest that some of the unexplained variation in global mean {delta}{sup 18}O of CO{sub 2} may be driven by large-scale changes in clouds and aerosols and their impacts on diffuse radiation, photosynthesis, and relative humidity.« less
STATISTICS OF GAMMA-RAY POINT SOURCES BELOW THE FERMI DETECTION LIMIT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malyshev, Dmitry; Hogg, David W., E-mail: dm137@nyu.edu
2011-09-10
An analytic relation between the statistics of photons in pixels and the number counts of multi-photon point sources is used to constrain the distribution of gamma-ray point sources below the Fermi detection limit at energies above 1 GeV and at latitudes below and above 30 deg. The derived source-count distribution is consistent with the distribution found by the Fermi Collaboration based on the first Fermi point-source catalog. In particular, we find that the contribution of resolved and unresolved active galactic nuclei (AGNs) to the total gamma-ray flux is below 20%-25%. In the best-fit model, the AGN-like point-source fraction is 17%more » {+-} 2%. Using the fact that the Galactic emission varies across the sky while the extragalactic diffuse emission is isotropic, we put a lower limit of 51% on Galactic diffuse emission and an upper limit of 32% on the contribution from extragalactic weak sources, such as star-forming galaxies. Possible systematic uncertainties are discussed.« less
Photospheric Magnetic Diffusion by Measuring Moments of Active Regions
NASA Astrophysics Data System (ADS)
Engell, Alexander; Longcope, D.
2013-07-01
Photospheric magnetic surface diffusion is an important constraint for the solar dynamo. The HMI Active Region Patches (HARPs) program automatically identify all magnetic regions above a certain flux. In our study we measure the moments of ARs that are no longer actively emerging and can thereby give us good statistical constraints on photospheric diffusion. We also present the diffusion properties as a function of latitude, flux density, and single polarity (leading or following) within each HARP.
Modelling thermal radiation in buoyant turbulent diffusion flames
NASA Astrophysics Data System (ADS)
Consalvi, J. L.; Demarco, R.; Fuentes, A.
2012-10-01
This work focuses on the numerical modelling of radiative heat transfer in laboratory-scale buoyant turbulent diffusion flames. Spectral gas and soot radiation is modelled by using the Full-Spectrum Correlated-k (FSCK) method. Turbulence-Radiation Interactions (TRI) are taken into account by considering the Optically-Thin Fluctuation Approximation (OTFA), the resulting time-averaged Radiative Transfer Equation (RTE) being solved by the Finite Volume Method (FVM). Emission TRIs and the mean absorption coefficient are then closed by using a presumed probability density function (pdf) of the mixture fraction. The mean gas flow field is modelled by the Favre-averaged Navier-Stokes (FANS) equation set closed by a buoyancy-modified k-ɛ model with algebraic stress/flux models (ASM/AFM), the Steady Laminar Flamelet (SLF) model coupled with a presumed pdf approach to account for Turbulence-Chemistry Interactions, and an acetylene-based semi-empirical two-equation soot model. Two sets of experimental pool fire data are used for validation: propane pool fires 0.3 m in diameter with Heat Release Rates (HRR) of 15, 22 and 37 kW and methane pool fires 0.38 m in diameter with HRRs of 34 and 176 kW. Predicted flame structures, radiant fractions, and radiative heat fluxes on surrounding surfaces are found in satisfactory agreement with available experimental data across all the flames. In addition further computations indicate that, for the present flames, the gray approximation can be applied for soot with a minor influence on the results, resulting in a substantial gain in Computer Processing Unit (CPU) time when the FSCK is used to treat gas radiation.
NASA Astrophysics Data System (ADS)
Plouhinec, J.; Lucotte, M. M.; Ouellet, A.; Gelinas, Y.
2012-12-01
The processes that fuel heterotrophy and thus contribute to CO2 production in lakes and reservoirs of the boreal region in Quebec are still not fully understood. To shed light on some of the factors controlling heterotrophy, we evaluated the importance of photodechemical mineralization of dissolved organic mater relative to other sources of CO2 production in six natural or human-perturbed lakes through logging on their watersheds and two reservoirs of the Quebec boreal forest over a period of 1.5 year. Rates of CO2 production in the water column were measured through incubation/irradiation experiments, using a series of filtrations to isolate the effects of photochemical mineralization, bacterial respiration, and planktonic respiration. Total CO2 fluxes measured in this study compared well to total diffusive fluxes measured through the traditional thin boundary layer method, thus validating our incubation approach. We calculated the daily integrated production of CO2 through photochemical mineralization (DIPMCO2) of dissolved organic matter over the entire water column using the calculation of the spectrum yield (Φλ). DIPMCO2 appeared as a robust indicator strongly correlated to the absorption coefficient of chromophoric dissolved organic matter (CDOM) at 360 nm (R2=0.81, p<0.01). DIPMCO2 accounts for 15% ± 14% of the total diffusive flux of CO2 to the atmosphere, independently of water body type or perturbation level. Our data also suggests that photochemical mineralization and photosynthesis processes are strongly correlated (R2=0.79, p<0.01), which is due to the fact that the strong photosynthetically active radiation (PAR) attenuation derives from a terrestrial organic matter (TOM) input into the water column. Also, the total diffusive fluxes of CO2 towards the atmosphere (fCO2) are correlated to the DIPMCO2 values (R2=0.49, p<0.01). We have evaluated theoretical CO2 fluxes emitted from the photic zone (f°CO2 ) by photochemical mineralization, bacterial respiration and CO2 consumption by phosynthesis based on measurements obtained from incubation/irradiation experiments. Finally, the relationship between fCO2 and the theoretical CO2 fluxes after production and consumption of CO2 considered only in the epilimnitic zone (R2=0.97, p<0.01) shows that, independently of the environmental conditions, the passive CO2 fluxes are approximately equal to 10 mmol.CO2.m-2.d-1.
Asymptotic, multigroup flux reconstruction and consistent discontinuity factors
Trahan, Travis J.; Larsen, Edward W.
2015-05-12
Recent theoretical work has led to an asymptotically derived expression for reconstructing the neutron flux from lattice functions and multigroup diffusion solutions. The leading-order asymptotic term is the standard expression for flux reconstruction, i.e., it is the product of a shape function, obtained through a lattice calculation, and the multigroup diffusion solution. The first-order asymptotic correction term is significant only where the gradient of the diffusion solution is not small. Inclusion of this first-order correction term can significantly improve the accuracy of the reconstructed flux. One may define discontinuity factors (DFs) to make certain angular moments of the reconstructed fluxmore » continuous across interfaces between assemblies in 1-D. Indeed, the standard assembly discontinuity factors make the zeroth moment (scalar flux) of the reconstructed flux continuous. The inclusion of the correction term in the flux reconstruction provides an additional degree of freedom that can be used to make two angular moments of the reconstructed flux continuous across interfaces by using current DFs in addition to flux DFs. Thus, numerical results demonstrate that using flux and current DFs together can be more accurate than using only flux DFs, and that making the second angular moment continuous can be more accurate than making the zeroth moment continuous.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Detrixhe, M.; Besson, D.; Frankenfeld, C.
We have conducted a search for extended energy deposition trails left by ultrarelativistic magnetic monopoles interacting in Antarctic ice. The nonobservation of any satisfactory candidates in the 31 days of accumulated ANITA-II (Antarctic Impulsive Transient Antenna) flight data results in an upper limit on the diffuse flux of relativistic monopoles. We obtain a 90% C.L. limit of order 10{sup -19} (cm{sup 2} s sr){sup -1} for values of Lorentz factor, {gamma}, 10{sup 10{<=}{gamma}} at the anticipated energy E{sub tot}=10{sup 16} GeV. This bound is stronger than all previously published experimental limits for this kinematic range.
Hydrogen mitigation in submerged arc welding
NASA Astrophysics Data System (ADS)
Klimowicz, Steven
With the role of hydrogen in weld metal well understood in its relation to cold cracking, there has been a push to produce welds with lower and lower diffusible hydrogen contents. The push for lower diffusible hydrogen contents has placed pressure on consumables manufactures to create consumables that can achieve the requirements for lower diffusible hydrogen content. Currently EM12K flux is produced so that it can achieve below 4 ml of diffusible hydrogen for every 100g of weld metal deposited (ml/100g) for submerged arc welding (SAW). The recent trend for industry is to preferentially achieve diffusible hydrogen contents below 3 ml/100g. Making it necessary to find a way to modify the flux to achieve a lower diffusible hydrogen content for the welds it produces. To achieve this goal a two phase plan was developed. The first phase was to characterize the entire welding system for hydrogen. Since the goal of the project is hydrogen mitigation, any amount of hydrogen that could be reduced is helpful and therefore must first be discovered. Sources of hydrogen may be found by analyzing the welding wire and base metal, as well as breaking the flux down into its components and production steps. The wire was analyzed for total hydrogen content as was the base metal. The flux and its components were analyzed using differential thermal analysis-simultaneous thermal analysis (DTA-STA) and later vacuum degassing for moisture content. The analysis of the wire showed that the copper coating on the wire was the largest contributor of hydrogen. There was lubricant present on the wire surface as well, but it did not contribute as much as the copper coating. It was found that a simple low temperature baking of the wire was enough to remove the lubricant and coating moisture. The base metal was found to have a similar total hydrogen content to that of the wire. The breakdown of the flux and production process for moisture content analysis revealed that the production process removes the moisture that is added by the water based binder. The second phase of the project was to modify the flux with fluoride additions to remove hydrogen from the arc while welding. The introduction of fluorine into the arc would lower the amount of hydrogen that may be absorbed as diffusible hydrogen by the weld metal. To select the fluorides a series of thermodynamic calculations were performed as well as simple tests to determine the fluorides behavior in a welding arc and flux. From these tests the following fluorides were selected to be used to be added to EM12K flux as oneweight percent additions: SrF 2, K2TiF6, K2SiF6, and LiF. Welds were then run with the experimental fluxes according to AWS A4.3 standard for diffusible hydrogen testing. From these tests it was found that none experimental fluxes were able to achieve a diffusible hydrogen content lower than the original EM12K flux. It was also found that fluoride reduction in a simple flux is a better predictor of fluoride effectiveness than decomposition temperature.
Diffuse γ-ray emission from misaligned active galactic nuclei
Di Mauro, M.; Calore, F.; Donato, F.; ...
2013-12-20
Active galactic nuclei (AGNs) with jets seen at small viewing angles are the most luminous and abundant objects in the γ-ray sky. AGNs with jets misaligned along the line of sight appear fainter in the sky but are more numerous than the brighter blazars. Here, we calculate the diffuse γ-ray emission due to the population of misaligned AGNs (MAGNs) unresolved by the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (Fermi). Furthermore, a correlation between the γ-ray luminosity and the radio-core luminosity is established and demonstrated to be physical by statistical tests, as well as compatible with uppermore » limits based on Fermi-LAT data for a large sample of radio-loud MAGNs. We constrain the derived γ-ray luminosity function by means of the source-count distribution of the radio galaxies detected by the Fermi-LAT. We finally calculate the diffuse γ-ray flux due to the whole MAGN population. These results demonstrate that MAGNs can contribute from 10% up to nearly the entire measured isotropic gamma-ray background. We evaluate a theoretical uncertainty on the flux of almost an order of magnitude.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prinja, A. K.
The Karhunen-Loeve stochastic spectral expansion of a random binary mixture of immiscible fluids in planar geometry is used to explore asymptotic limits of radiation transport in such mixtures. Under appropriate scalings of mixing parameters - correlation length, volume fraction, and material cross sections - and employing multiple- scale expansion of the angular flux, previously established atomic mix and diffusion limits are reproduced. When applied to highly contrasting material properties in the small cor- relation length limit, the methodology yields a nonstandard reflective medium transport equation that merits further investigation. Finally, a hybrid closure is proposed that produces both small andmore » large correlation length limits of the closure condition for the material averaged equations.« less
The estimation method on diffusion spot energy concentration of the detection system
NASA Astrophysics Data System (ADS)
Gao, Wei; Song, Zongxi; Liu, Feng; Dan, Lijun; Sun, Zhonghan; Du, Yunfei
2016-09-01
We propose a method to estimate the diffusion spot energy of the detection system. We do outdoor observation experiments in Xinglong Observatory, by using a detection system which diffusion spot energy concentration is estimated (the correlation coefficient is approximate 0.9926).The aperture of system is 300mm and limiting magnitude of system is 14.15Mv. Observation experiments show that the highest detecting magnitude of estimated system is 13.96Mv, and the average detecting magnitude of estimated system is about 13.5Mv. The results indicate that this method can be used to evaluate the energy diffusion spot concentration level of detection system efficiently.
NASA Technical Reports Server (NTRS)
Harris, Michael J.; Share, Gerald H.; Leising, Mark D.
1994-01-01
We have search spectra obtained by the Solar Maximum Mission Gamma-Ray Spectrometer during 1981-1988 for evidence of transient gamma-ray lines from the Crab Nebula which have been reported by previous experiments at energies 400-460 keV and 539 keV. We find no evidence for significant emission in any of these lines on time scales between aproximately 1 day and approximately 1 yr. Our 3 sigma upper limits on the transient flux during 1 d intervals are approximately equal to 2.2 x 10(exp -3) photons/sq cm/s for narrow lines at any energy, and approximately equal to 2.9 x 10(exp -3) photons/sq cm/s for the 539 keV line if it is as broad as 42 keV Full Width at Half Maximum (FWHM). We also searched our data during the approximately 5 hr period on 1981 June 6 during which Owens, Myers, & Thompson (1985) reported a strong line at 405 keV. We detected no line down to a 3 upper sigma limit of 3.3 x 10(exp -3) photons/sq cm/s in disagreement with the flux 7.2 +/- 2.1 x 10(exp -3) photos/sq cm/s measured by Owens et al.
A search for optical pulsations from GX 1+4 at H-alpha
NASA Technical Reports Server (NTRS)
Krzeminski, W.; Priedhorsky, W. C.
1978-01-01
H-alpha observations of the binary-star candidate for the slowly pulsating hard X-ray source GX 1+4 are reported which were undertaken to search for pulsations in the H-alpha flux that are synchronous with the X-ray period of about 2 min. No significant periodic variation of the candidate star was detected in the frequency band searched. Three-sigma upper limits of 1.7% (sinusoidal pulse shape) and 0.7% (X-ray pulse shape) are set for the pulsed fraction of the H-alpha flux. It is noted that because of possible diffusion from a cloud that is optically thick to Balmer radiation, the observed lack of pulsations in the H-alpha flux need not compromise the identification of GX 1+4 with the candidate star.
Comparative study of silver nanoparticle permeation using Side-Bi-Side and Franz diffusion cells
NASA Astrophysics Data System (ADS)
Trbojevich, Raul A.; Fernandez, Avelina; Watanabe, Fumiya; Mustafa, Thikra; Bryant, Matthew S.
2016-03-01
Better understanding the mechanisms of nanoparticle permeation through membranes and packaging polymers has important implications for the evaluation of drug transdermal uptake, in food safety and the environmental implications of nanotechnology. In this study, permeation of 21 nm diameter silver nanoparticles (AgNPs) was tested using Side-Bi-Side and Franz static diffusion cells through hydrophilic 0.1 and 0.05 µm pore diameter 125 µm thick synthetic cellulose membranes, and 16 and 120 µm thick low-density polyethylene (LDPE) films. Experiments performed with LDPE films discarded permeation of AgNPs or Ag ions over the investigated time-frame in both diffusion systems. But controlled release of AgNPs has been quantified using semipermeable hydrophilic membranes. The permeation followed a quasi-linear time-dependent model during the experimental time-frame, which represents surface reaction-limited permeation. Diffusive flux, diffusion coefficients, and membrane permeability were determined as a function of pore size and diffusion model. Concentration gradient and pore size were key to understand mass transfer phenomena in the diffusion systems.
Temporal integration of soil N2O fluxes: validation of IPNOA station automatic chamber prototype.
Laville, P; Bosco, S; Volpi, I; Virgili, G; Neri, S; Continanza, D; Bonari, E
2017-09-04
The assessment of nitrous oxide (N 2 O) fluxes from agricultural soil surfaces still poses a major challenge to the scientific community. The evaluations of integrated soil fluxes of N 2 O are difficult owing to their lower emissions when compared with CO 2 . These emissions are also sporadic as environmental conditions act as a limiting factor. A station prototype was developed to integrate annual N 2 O and CO 2 emissions using an automatic chamber technique and infrared spectrometers within the LIFE project (IPNOA: LIFE11 ENV/IT/00032). It was installed from June 2014 to October 2015 in an experimental maize field in Tuscany. The detection limits for the fluxes were evaluated up to 1.6 ng N-N 2 O m 2 s -1 and 0.3 μg C-CO 2 m 2 s -1 . A cross-comparison carried out in September 2015 with the "mobile IPNOA prototype"; a high-sensibility transportable instrument already validated provided evidence of very similar values and highlighted flux assessment limitations according to the gas analyzers used. The permanent monitoring device showed that temporal distribution of N 2 O fluxes can be very large and discontinuous over short periods of less than 10 days and that N 2 O fluxes were below the detection limit of the instrumentation during approximately 70% of the measurement time. The N 2 O emission factors were estimated to 1.9% in 2014 and 1.7% in 2015, within the range of IPCC assessments.
Xie, Chiyu; Liu, Guangzhi; Wang, Moran
2016-08-16
The evaporation flux distribution of sessile drops is investigated by molecular dynamic simulations. Three evaporating modes are classified, including the diffusion dominant mode, the substrate heating mode, and the environment heating mode. Both hydrophilic and hydrophobic drop-substrate interactions are considered. To count the evaporation flux distribution, which is position dependent, we proposed an azimuthal-angle-based division method under the assumption of spherical crown shape of drops. The modeling results show that the edge evaporation, i.e., near the contact line, is enhanced for hydrophilic drops in all the three modes. The surface diffusion of liquid molecular absorbed on solid substrate for hydrophilic cases plays an important role as well as the space diffusion on the enhanced evaporation rate at the edge. For hydrophobic drops, the edge evaporation flux is higher for the substrate heating mode, but lower than elsewhere of the drop for the diffusion dominant mode; however, a nearly uniform distribution is found for the environment heating mode. The evidence shows that the temperature distribution inside drops plays a key role in the position-dependent evaporation flux.
NASA Technical Reports Server (NTRS)
Chenette, D. L.; Stone, E. C.
1983-01-01
An analysis of the electron-absorption signature observed by the cosmic-ray system on Voyager 2 near the orbit of Mimas is presented. It is found that these observations cannot be explained as the absorption signature of Mimas. By combining Pioneer 11 and Voyager 2 measurements of the electron flux at Mimas's orbit (L = 3.1), an electron spectrum is found in which most of the flux above about 100 keV is concentrated near 1 to 3 MeV. This spectral form is qualitatively consistent with the bandpass filter model of Van Allen et al. (1980). The expected Mimas absorption signature is calculated from this spectrum neglecting radial diffusion. Since no Mimas absorption signature was observed in the inbound Voyager 2 data, a lower limit on the diffusion coefficient for MeV electrons at L = 3.1 of D greater than 10 to the -8th sq Saturn radii/sec is obtained. With a diffusion coefficient this large, both the Voyager 2 and the Pioneer 11 small-scale electron-absorption-signature observations in Mimas's orbit are enigmatic. Thus the mechanism for producing these signatures is referred to as the Mimas ghost. A cloud of material in orbit with Mimas may account for the observed electron signature if the cloud is at least 1-percent opaque to electrons across a region extending over a few hundred kilometers.
Doan, Phuong T K; Watson, Sue B; Markovic, Stefan; Liang, Anqi; Guo, Jay; Mugalingam, Shan; Stokes, Jonathan; Morley, Andrew; Zhang, Weitao; Arhonditsis, George B; Dittrich, Maria
2018-04-24
Internal phosphorus (P) loading significantly contributes to hysteresis in ecosystem response to nutrient remediation, but the dynamics of sediment P transformations are often poorly characterized. Here, we applied a reaction-transport diagenetic model to investigate sediment P dynamics in the Bay of Quinte, a polymictic, spatially complex embayment of Lake Ontario, (Canada). We quantified spatial and temporal variability of sediment P binding forms and estimated P diffusive fluxes and sediment P retention in different parts of the bay. Our model supports the notion that diagenetic recycling of redox sensitive and organic bound P forms drive sediment P release. In the recent years, summer sediment P diffusive fluxes varied in the range of 3.2-3.6 mg P m -2 d -1 in the upper bay compared to 1.5 mg P m -2 d -1 in the middle-lower bay. Meanwhile sediment P retention ranged between 71% and 75% in the upper and middle-lower bay, respectively. The reconstruction of temporal trends of internal P loading in the past century, suggests that against the backdrop of reduced external P inputs, sediment P exerts growing control over the lake nutrient budget. Higher sediment P diffusive fluxes since mid-20th century with particular increase in the past 20 years in the shallower upper basins, emphasize limited sediment P retention potential and suggest prolonged ecosystem recovery, highlighting the importance of ongoing P control measures. Copyright © 2018 Elsevier B.V. All rights reserved.
Comments on the Diffusive Behavior of Two Upwind Schemes
NASA Technical Reports Server (NTRS)
Wood, William A.; Kleb, William L.
1998-01-01
The diffusive characteristics of two upwind schemes, multi-dimensional fluctuation splitting and locally one-dimensional finite volume, are compared for scalar advection-diffusion problems. Algorithms for the two schemes are developed for node-based data representation on median-dual meshes associated with unstructured triangulations in two spatial dimensions. Four model equations are considered: linear advection, non-linear advection, diffusion, and advection-diffusion. Modular coding is employed to isolate the effects of the two approaches for upwind flux evaluation, allowing for head-to-head accuracy and efficiency comparisons. Both the stability of compressive limiters and the amount of artificial diffusion generated by the schemes is found to be grid-orientation dependent, with the fluctuation splitting scheme producing less artificial diffusion than the finite volume scheme. Convergence rates are compared for the combined advection-diffusion problem, with a speedup of 2.5 seen for fluctuation splitting versus finite volume when solved on the same mesh. However, accurate solutions to problems with small diffusion coefficients can be achieved on coarser meshes using fluctuation splitting rather than finite volume, so that when comparing convergence rates to reach a given accuracy, fluctuation splitting shows a speedup of 29 over finite volume.
Diffusion Characteristics of Upwind Schemes on Unstructured Triangulations
NASA Technical Reports Server (NTRS)
Wood, William A.; Kleb, William L.
1998-01-01
The diffusive characteristics of two upwind schemes, multi-dimensional fluctuation splitting and dimensionally-split finite volume, are compared for scalar advection-diffusion problems. Algorithms for the two schemes are developed for node-based data representation on median-dual meshes associated with unstructured triangulations in two spatial dimensions. Four model equations are considered: linear advection, non-linear advection, diffusion, and advection-diffusion. Modular coding is employed to isolate the effects of the two approaches for upwind flux evaluation, allowing for head-to-head accuracy and efficiency comparisons. Both the stability of compressive limiters and the amount of artificial diffusion generated by the schemes is found to be grid-orientation dependent, with the fluctuation splitting scheme producing less artificial diffusion than the dimensionally-split finite volume scheme. Convergence rates are compared for the combined advection-diffusion problem, with a speedup of 2-3 seen for fluctuation splitting versus finite volume when solved on the same mesh. However, accurate solutions to problems with small diffusion coefficients can be achieved on coarser meshes using fluctuation splitting rather than finite volume, so that when comparing convergence rates to reach a given accuracy, fluctuation splitting shows a 20-25 speedup over finite volume.
Probing dim point sources in the inner Milky Way using PCAT
NASA Astrophysics Data System (ADS)
Daylan, Tansu; Portillo, Stephen K. N.; Finkbeiner, Douglas P.
2017-01-01
Poisson regression of the Fermi-LAT data in the inner Milky Way reveals an extended gamma-ray excess. An important question is whether the signal is coming from a collection of unresolved point sources, possibly old recycled pulsars, or constitutes a truly diffuse emission component. Previous analyses have relied on non-Poissonian template fits or wavelet decomposition of the Fermi-LAT data, which find evidence for a population of dim point sources just below the 3FGL flux limit. In order to be able to draw conclusions about the flux distribution of point sources at the dim end, we employ a Bayesian trans-dimensional MCMC framework by taking samples from the space of catalogs consistent with the observed gamma-ray emission in the inner Milky Way. The software implementation, PCAT (Probabilistic Cataloger), is designed to efficiently explore that catalog space in the crowded field limit such as in the galactic plane, where the model PSF, point source positions and fluxes are highly degenerate. We thus generate fair realizations of the underlying MSP population in the inner galaxy and constrain the population characteristics such as the radial and flux distribution of such sources.
Transport of Internetwork Magnetic Flux Elements in the Solar Photosphere
NASA Astrophysics Data System (ADS)
Agrawal, Piyush; Rast, Mark P.; Gošić, Milan; Bellot Rubio, Luis R.; Rempel, Matthias
2018-02-01
The motions of small-scale magnetic flux elements in the solar photosphere can provide some measure of the Lagrangian properties of the convective flow. Measurements of these motions have been critical in estimating the turbulent diffusion coefficient in flux-transport dynamo models and in determining the Alfvén wave excitation spectrum for coronal heating models. We examine the motions of internetwork flux elements in Hinode/Narrowband Filter Imager magnetograms and study the scaling of their mean squared displacement and the shape of their displacement probability distribution as a function of time. We find that the mean squared displacement scales super-diffusively with a slope of about 1.48. Super-diffusive scaling has been observed in other studies for temporal increments as small as 5 s, increments over which ballistic scaling would be expected. Using high-cadence MURaM simulations, we show that the observed super-diffusive scaling at short increments is a consequence of random changes in barycenter positions due to flux evolution. We also find that for long temporal increments, beyond granular lifetimes, the observed displacement distribution deviates from that expected for a diffusive process, evolving from Rayleigh to Gaussian. This change in distribution can be modeled analytically by accounting for supergranular advection along with granular motions. These results complicate the interpretation of magnetic element motions as strictly advective or diffusive on short and long timescales and suggest that measurements of magnetic element motions must be used with caution in turbulent diffusion or wave excitation models. We propose that passive tracer motions in measured photospheric flows may yield more robust transport statistics.
Discontinuous Galerkin method for multicomponent chemically reacting flows and combustion
NASA Astrophysics Data System (ADS)
Lv, Yu; Ihme, Matthias
2014-08-01
This paper presents the development of a discontinuous Galerkin (DG) method for application to chemically reacting flows in subsonic and supersonic regimes under the consideration of variable thermo-viscous-diffusive transport properties, detailed and stiff reaction chemistry, and shock capturing. A hybrid-flux formulation is developed for treatment of the convective fluxes, combining a conservative Riemann-solver and an extended double-flux scheme. A computationally efficient splitting scheme is proposed, in which advection and diffusion operators are solved in the weak form, and the chemically stiff substep is advanced in the strong form using a time-implicit scheme. The discretization of the viscous-diffusive transport terms follows the second form of Bassi and Rebay, and the WENO-based limiter due to Zhong and Shu is extended to multicomponent systems. Boundary conditions are developed for subsonic and supersonic flow conditions, and the algorithm is coupled to thermochemical libraries to account for detailed reaction chemistry and complex transport. The resulting DG method is applied to a series of test cases of increasing physico-chemical complexity. Beginning with one- and two-dimensional multispecies advection and shock-fluid interaction problems, computational efficiency, convergence, and conservation properties are demonstrated. This study is followed by considering a series of detonation and supersonic combustion problems to investigate the convergence-rate and the shock-capturing capability in the presence of one- and multistep reaction chemistry. The DG algorithm is then applied to diffusion-controlled deflagration problems. By examining convergence properties for polynomial order and spatial resolution, and comparing these with second-order finite-volume solutions, it is shown that optimal convergence is achieved and that polynomial refinement provides advantages in better resolving the localized flame structure and complex flow-field features associated with multidimensional and hydrodynamic/thermo-diffusive instabilities in deflagration and detonation systems. Comparisons with standard third- and fifth-order WENO schemes are presented to illustrate the benefit of the DG scheme for application to detonation and multispecies flow/shock-interaction problems.
NASA Astrophysics Data System (ADS)
Zhong, Z. H.; Tang, R. X.; Zhou, M.; Deng, X. H.; Pang, Y.; Paterson, W. R.; Giles, B. L.; Burch, J. L.; Tobert, R. B.; Ergun, R. E.; Khotyaintsev, Y. V.; Lindquist, P.-A.
2018-02-01
Secondary flux ropes are suggested to play important roles in energy dissipation and particle acceleration during magnetic reconnection. However, their generation mechanism is not fully understood. In this Letter, we present the first direct evidence that a secondary flux rope was generated due to the evolution of an electron vortex, which was driven by the electron Kelvin-Helmholtz instability in an ion diffusion region as observed by the Magnetospheric Multiscale mission. The subion scale (less than the ion inertial length) flux rope was embedded within the electron vortex, which contained a secondary electron diffusion region at the trailing edge of the flux rope. We propose that intense electron shear flow produced by reconnection generated the electron Kelvin-Helmholtz vortex, which induced a secondary reconnection in the exhaust of the primary X line and then led to the formation of the flux rope. This result strongly suggests that secondary electron Kelvin-Helmholtz instability is important for reconnection dynamics.
Zhong, Z H; Tang, R X; Zhou, M; Deng, X H; Pang, Y; Paterson, W R; Giles, B L; Burch, J L; Tobert, R B; Ergun, R E; Khotyaintsev, Y V; Lindquist, P-A
2018-02-16
Secondary flux ropes are suggested to play important roles in energy dissipation and particle acceleration during magnetic reconnection. However, their generation mechanism is not fully understood. In this Letter, we present the first direct evidence that a secondary flux rope was generated due to the evolution of an electron vortex, which was driven by the electron Kelvin-Helmholtz instability in an ion diffusion region as observed by the Magnetospheric Multiscale mission. The subion scale (less than the ion inertial length) flux rope was embedded within the electron vortex, which contained a secondary electron diffusion region at the trailing edge of the flux rope. We propose that intense electron shear flow produced by reconnection generated the electron Kelvin-Helmholtz vortex, which induced a secondary reconnection in the exhaust of the primary X line and then led to the formation of the flux rope. This result strongly suggests that secondary electron Kelvin-Helmholtz instability is important for reconnection dynamics.
Seasonal variability of light availability and utilization in the Sargasso Sea
NASA Technical Reports Server (NTRS)
Siegel, David A.; Michaels, Anthony F.; Sorensen, Jens C.; O'Brein, Margaret C.; Hammer, Melodie A.
1995-01-01
A 2 year time series of optical, biogeochemical, and physical parameters, taken near the island of Bermuda, is used to evaluate the sources of temporal variability in light avaliability and utilization in the Sargasso Sea. Integrated assessments of light availability are made by examining the depth of constant percent incident photosynthetically available radiation (% PAR) isolumes. To first order, changes in the depth %PAR isolumes were caused by physical processes: deep convection mixing in the winter which led to the spring bloom and concurrent shallowing of %PAR depths and the occurrence of anomalous thermohaline water masses during the summer and fall seasons. Spectral light availability variations are assessed using determinations of diffuse attenuation coefficient spectra which illustrates a significant seasonal cycle in colored detrital particulate and/or dissolved materials that is unrelated to changes in chlorophyll pigment concentrations. Temporal variations in the photosynthetic light utilization index Psi are used to assess vertically intergrated light utilization variations. Values of Psi are highly variable and show no apparent seasonal pattern which indicates that Psi is not simply a 'biogeochemical constant.' Determinations of in situ primary production rates and daily mean PAR fluxes are used to diagnose the relative role of light limitation in determining vertically integrated rates of primary production integral PP. The mean depth of the light-saturated zone (the vertical region where the daily mean PAR flux was greater than or equal to the saturation irradiance) is only approximately 40 m, although more than one half of interal PP occurred within this zone. Production model results illustrate that accurate predictions of integral PP are dependent upon rates of light-saturated production rather than upon indices of light limitation. It seems unlikely that significant improvements in simple primary production models will come from the partitioning of the Earth's seas into biogeochemical provinces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rueda-Fonseca, P.; Orrù, M.; CNRS, Institut NEEL, F-38000 Grenoble
With ZnTe as an example, we use two different methods to unravel the characteristics of the growth of nanowires (NWs) by gold-catalyzed molecular beam epitaxy at low temperature. In the first approach, CdTe insertions have been used as markers, and the nanowires have been characterized by scanning transmission electron microscopy, including geometrical phase analysis and energy dispersive electron spectrometry; the second approach uses scanning electron microscopy and the statistics of the relationship between the length of the tapered nanowires and their base diameter. Axial and radial growth are quantified using a diffusion-limited model adapted to the growth conditions; analytical expressionsmore » describe well the relationship between the NW length and the total molecular flux (taking into account the orientation of the effusion cells), and the catalyst-nanowire contact area. A long incubation time is observed. This analysis allows us to assess the evolution of the diffusion lengths on the substrate and along the nanowire sidewalls, as a function of temperature and deviation from stoichiometric flux.« less
Albert, A; André, M; Anghinolfi, M; Anton, G; Ardid, M; Aubert, J-J; Avgitas, T; Baret, B; Barrios-Martí, J; Basa, S; Bertin, V; Biagi, S; Bormuth, R; Bourret, S; Bouwhuis, M C; Bruijn, R; Brunner, J; Busto, J; Capone, A; Caramete, L; Carr, J; Celli, S; Chiarusi, T; Circella, M; Coelho, J A B; Coleiro, A; Coniglione, R; Costantini, H; Coyle, P; Creusot, A; Deschamps, A; De Bonis, G; Distefano, C; Di Palma, I; Domi, A; Donzaud, C; Dornic, D; Drouhin, D; Eberl, T; El Bojaddaini, I; Elsässer, D; Enzenhöfer, A; Felis, I; Folger, F; Fusco, L A; Galatà, S; Gay, P; Giordano, V; Glotin, H; Grégoire, T; Gracia Ruiz, R; Graf, K; Hallmann, S; van Haren, H; Heijboer, A J; Hello, Y; Hernández-Rey, J J; Hößl, J; Hofestädt, J; Hugon, C; Illuminati, G; James, C W; de Jong, M; Jongen, M; Kadler, M; Kalekin, O; Katz, U; Kießling, D; Kouchner, A; Kreter, M; Kreykenbohm, I; Kulikovskiy, V; Lachaud, C; Lahmann, R; Lefèvre, D; Leonora, E; Lotze, M; Loucatos, S; Marcelin, M; Margiotta, A; Marinelli, A; Martínez-Mora, J A; Mele, R; Melis, K; Michael, T; Migliozzi, P; Moussa, A; Nezri, E; Organokov, M; Păvălaş, G E; Pellegrino, C; Perrina, C; Piattelli, P; Popa, V; Pradier, T; Quinn, L; Racca, C; Riccobene, G; Sánchez-Losa, A; Saldaña, M; Salvadori, I; Samtleben, D F E; Sanguineti, M; Sapienza, P; Schüssler, F; Sieger, C; Spurio, M; Stolarczyk, Th; Taiuti, M; Tayalati, Y; Trovato, A; Turpin, D; Tönnis, C; Vallage, B; Van Elewyck, V; Versari, F; Vivolo, D; Vizzoca, A; Wilms, J; Zornoza, J D; Zúñiga, J
2017-01-01
A novel algorithm to reconstruct neutrino-induced particle showers within the ANTARES neutrino telescope is presented. The method achieves a median angular resolution of [Formula: see text] for shower energies below 100 TeV. Applying this algorithm to 6 years of data taken with the ANTARES detector, 8 events with reconstructed shower energies above 10 TeV are observed. This is consistent with the expectation of about 5 events from atmospheric backgrounds, but also compatible with diffuse astrophysical flux measurements by the IceCube collaboration, from which 2-4 additional events are expected. A [Formula: see text] C.L. upper limit on the diffuse astrophysical neutrino flux with a value per neutrino flavour of [Formula: see text] is set, applicable to the energy range from 23 TeV to 7.8 PeV, assuming an unbroken [Formula: see text] spectrum and neutrino flavour equipartition at Earth.
Diffusion of naltrexone across reconstituted human oral epithelium and histomorphological features.
Giannola, Libero Italo; De Caro, Viviana; Giandalia, Giulia; Siragusa, Maria Gabriella; Campisi, Giuseppina; Florena, Ada Maria; Ciach, Tomasz
2007-02-01
In transbuccal absorption a major limitation could be the low permeability of the mucosa which implies low drug bioavailability. The ability of naltrexone hydrochloride (NLX) to penetrate a resembling histologically human buccal mucosa was assessed and the occurrence of any histomorphological changes observed. We used reconstituted human oral (RHO) non-keratinised epithelium as mucosal section and a Transwell diffusion cells system as bicompartmental model. Buccal permeation was expressed in terms of drug flux (J(s)) and permeability coefficients (K(p)). Data were collected using both artificial and natural human saliva. The main finding was that RHO does not restrain NLX permeation. Drug transport across the epithelium was observed also in presence of various concentrations of penetration enhancers, without any significant differences. On the contrary, the flux throughout the mucosa was extensively affected by iontophoresis. Histologically, no sign of flogosis was observed in any specimen under experiment without iontophoresis, whereas cytoarchitectural changes, up to nuclear pycnosis or cellular swelling, were determined as a consequence of the application of electric fields.
Correlation of transarterial transport of various dextrans with their physicochemical properties.
Elmalak, O; Lovich, M A; Edelman, E
2000-11-01
Local vascular drug delivery provides elevated concentrations of drug in the target tissue while minimizing systemic side effects. To better characterize local pharmacokinetics we examined the arterial transport of locally applied dextran and dextran derivatives in vivo. Using a two-compartment pharmacokinetic model to correct the measured transmural flux of these compounds for systemic redistribution and elimination as delivered from a photopolymerizable hydrogel surrounding rat carotid arteries, we found that the diffusivities and the transendothelial permeabilities were strongly dependent on molecular weight and charge. For neutral dextrans, the effective diffusive resistance in the media increased with molecular weight approximately 4.1-fold between the molecular weights of 10 and 282 kDa. Similarly, endothelial resistance increased 28-fold over the same molecular weight range. The effective medial diffusive resistance was unaffected by cationic charge as such molecules moved identically to neutral compounds, but increased approximately 40% when dextrans were negatively charged. Transendothelial resistance was 20-fold lower for the cationic dextrans, and 11-fold higher for the anionic dextrans, when both were compared to neutral counterparts. These results suggest that, while low molecular weight drugs will rapidly traverse the arterial wall with the endothelium posing a minimal barrier, the reverse is true for high molecular weight agents. With these data, the deposition and distribution of locally released vasotherapeutic compounds might be predicted based upon chemical properties, such as molecular weight and charge.
Meteoroid Flux from Lunar Impact Monitoring
NASA Technical Reports Server (NTRS)
Suggs, Robert; Moser, Danielle; Cooke, William; Suggs, Ronnie
2015-01-01
The flux of kilogram-sized meteoroids has been determined from the first 5 years of observations by NASA's Lunar Impact Monitoring Program (Suggs et al. 2014). Telescopic video observations of 126 impact flashes observed during photometric conditions were calibrated and the flux of meteoroids to a limiting mass of 30 g was determined to be 6.14 x 10(exp -10) m(exp -2) yr(exp -1) at the Moon, in agreement with the Grun et al. (1985) model value of 7.5 x 10(exp -10) m(exp -2) yr(exp -1). After accounting for gravitational focusing effects, the flux at the Earth to a limiting impact energy of 3.0 x10(exp -6) kilotons of TNT (1.3 x 10(exp 7) J) was determined to be consistent with the results in Brown et al. (2002). Approximately 62% of the impact flashes were correlated with major meteor showers as cataloged in visual/optical meteor shower databases. These flux measurements, coupled with cratering and ejecta models, can be used to develop impact ejecta engineering environments for use in lunar surface spacecraft design and risk analyses.
P1 Nonconforming Finite Element Method for the Solution of Radiation Transport Problems
NASA Technical Reports Server (NTRS)
Kang, Kab S.
2002-01-01
The simulation of radiation transport in the optically thick flux-limited diffusion regime has been identified as one of the most time-consuming tasks within large simulation codes. Due to multimaterial complex geometry, the radiation transport system must often be solved on unstructured grids. In this paper, we investigate the behavior and the benefits of the unstructured P(sub 1) nonconforming finite element method, which has proven to be flexible and effective on related transport problems, in solving unsteady implicit nonlinear radiation diffusion problems using Newton and Picard linearization methods. Key words. nonconforrning finite elements, radiation transport, inexact Newton linearization, multigrid preconditioning
NASA Astrophysics Data System (ADS)
Wyers, G. P.; Otjes, R. P.; Slanina, J.
A new diffusion denuder is described for the continuous measurement of atmospheric ammonia. Ammonia is collected in an absorption solution in a rotating denuder, separated from interfering compounds by diffusion through a semi-permeable membrane and detected by conductometry. The method is free from interferences by other atmospheric gases, with the exception of volatile amines. The detection limit is 6 ng m -3 for a 30-min integration time. This compact instrument is fully automated and suited for routine deployment in field studies. The precision is sufficiently high for micrometeorological studies of air-surface exchange of ammonia.
The diffusive boundary layer of sediments: oxygen microgradients over a microbial mat
NASA Technical Reports Server (NTRS)
Jorgensen, B. B.; Des Marais, D. J.
1990-01-01
Oxygen microelectrodes were used to analyze the distribution of the diffusive boundary layer (DBL) at the sediment-water interface in relation to surface topography and flow velocity. The sediment, collected from saline ponds, was covered by a microbial mat that had high oxygen consumption rate and well-defined surface structure. Diffusion through the DBL constituted an important rate limitation to the oxygen uptake of the sediment. The mean effective DBL thickness decreased from 0.59 to 0.16 mm as the flow velocity of the overlying water was increased from 0.3 to 7.7 cm s-1 (measured 1 cm above the mat). The oxygen uptake rate concurrently increased from 3.9 to 9.4 nmol cm-2 min-1. The effects of surface roughness and topography on the thickness and distribution of the DBL were studied by three-dimensional mapping of the sediment-water interface and the upper DBL boundary at 0.1-mm spatial resolution. The DBL boundary followed mat structures that had characteristic dimensions > 1/2 DBL thickness but the DBL had a dampened relief relative to the mat. The effective surface area of the sediment-water interface and of the upper DBL boundary were 31 and 14% larger, respectively, than a flat plane. Surface topography thereby increased the oxygen flux across the sediment-water interface by 49% relative to a one-dimensional diffusion flux calculated from the vertical oxygen microgradients.
Borbás, Enikő; Nagy, Zsombor K; Nagy, Brigitta; Balogh, Attila; Farkas, Balázs; Tsinman, Oksana; Tsinman, Konstantin; Sinkó, Bálint
2018-03-01
In this study, brand and four generic formulations of telmisartan, an antihypertensive drug, were used in in vitro simultaneous dissolution-absorption, investigating the effect of different formulation additives on dissolution and on absorption through an artificial membrane. The in vitro test was found to be sensitive enough to show even small differences between brand and generic formulations caused by the use of different excipients. By only changing the type of filler from sorbitol to mannitol in the formulation, the flux through the membrane was reduced by approximately 10%. Changing the salt forming agent as well resulted in approximately 20% of flux reduction compared to the brand formulation. This significant difference was clearly shown in the published in vivo results as well. The use of additional lactose monohydrate in the formulation also leads to approximately 10% reduction in flux. The results show that by changing excipients, the dissolution of telmisartan was not altered significantly, but the flux through the membrane was found to be significantly changed. These results pointed out the limitations of traditional USP dissolution tests and emphasized the importance of simultaneously measuring dissolution and absorption, which allows the complex effect of formulation excipients on both processes to be measured. Moreover, the in vivo predictive power of the simultaneous dissolution-absorption test was demonstrated by comparing the in vitro fluxes to in vivo bioequivalence study results. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lewis, Benjamin T.; Bate, Matthew R.
2018-07-01
We present the results of 18 magnetohydrodynamical calculations of the collapse of a molecular cloud core to form a protostar. Some calculations include radiative transfer in the flux-limited diffusion approximation, while others employ a barotropic equation of state. We cover a wide parameter space, with mass-to-flux ratios ranging from μ = 5 to 20; initial turbulent amplitudes ranging from a laminar calculation (i.e. where the Mach number, M = 0) to transonic M = 1; and initial rotation rates from βrot = 0.005 to 0.02. We first show that using a radiative transfer scheme produces warmer pseudo-discs than the barotropic equation of state, making them more stable. We then `shake' the core by increasing the initial turbulent velocity field, and find that at all three mass-to-flux ratios transonic cores are weakly bound and do not produce pseudo-discs; M = 0.3 cores produce very disrupted discs; and M = 0.1 cores produce discs broadly comparable to a laminar core. In our previous paper, we showed that a pseudo-disc coupled with sufficient magnetic field is necessary to form a bipolar outflow. Here, we show that only weakly turbulent cores exhibit collimated jets. We finally take the M = 1.0, μ = 5 core and `stir' it by increasing the initial angular momentum, finding that once the degree of rotational energy exceeds the turbulent energy in the core the disc returns, with a corresponding (though slower), outflow. These conclusions place constraints on the initial mixtures of rotation and turbulence in molecular cloud cores which are conducive to the formation of bipolar outflows early in the star formation process.
Hage, J C; Van Houten, R T; Tramper, J; Hartmans, S
2004-06-01
A membrane-aerated biofilm reactor (MBR) with a biofilm of Pseudomonas sp. strain DCA1 was studied for the removal of 1,2-dichloroethane (DCA) from water. A hydrophobic membrane was used to create a barrier between the liquid and the gas phase. Inoculation of the MBR with cells of strain DCA1 grown in a continuous culture resulted in the formation of a stable and active DCA-degrading biofilm on the membrane. The maximum removal rate of the MBR was reached at a DCA concentration of approximately 80 micro M. Simulation of the DCA fluxes into the biofilm showed that the MBR performance at lower concentrations was limited by the DCA diffusion rate rather than by kinetic constraints of strain DCA1. Aerobic biodegradation of DCA present in anoxic water could be achieved by supplying oxygen solely from the gas phase to the biofilm grown on the liquid side of the membrane. As a result, direct aeration of the water, which leads to undesired coagulation of iron oxides, could be avoided.
Boundary based on exchange symmetry theory for multilevel simulations. I. Basic theory.
Shiga, Motoyuki; Masia, Marco
2013-07-28
In this paper, we lay the foundations for a new method that allows multilevel simulations of a diffusive system, i.e., a system where a flux of particles through the boundaries might disrupt the primary region. The method is based on the use of flexible restraints that maintain the separation between inner and outer particles. It is shown that, by introducing a bias potential that accounts for the exchange symmetry of the system, the correct statistical distribution is preserved. Using a toy model consisting of non-interacting particles in an asymmetric potential well, we prove that the method is formally exact, and that it could be simplified by considering only up to a couple of particle exchanges without a loss of accuracy. A real-world test is then made by considering a hybrid MM(∗)/MM calculation of cesium ion in water. In this case, the single exchange approximation is sound enough that the results superimpose to the exact solutions. Potential applications of this method to many different hybrid QM/MM systems are discussed, as well as its limitations and strengths in comparison to existing approaches.
Plasma viscosity with mass transport in spherical inertial confinement fusion implosion simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vold, E. L.; Molvig, K.; Joglekar, A. S.
2015-11-15
The effects of viscosity and small-scale atomic-level mixing on plasmas in inertial confinement fusion (ICF) currently represent challenges in ICF research. Many current ICF hydrodynamic codes ignore the effects of viscosity though recent research indicates viscosity and mixing by classical transport processes may have a substantial impact on implosion dynamics. We have implemented a Lagrangian hydrodynamic code in one-dimensional spherical geometry with plasma viscosity and mass transport and including a three temperature model for ions, electrons, and radiation treated in a gray radiation diffusion approximation. The code is used to study ICF implosion differences with and without plasma viscosity andmore » to determine the impacts of viscosity on temperature histories and neutron yield. It was found that plasma viscosity has substantial impacts on ICF shock dynamics characterized by shock burn timing, maximum burn temperatures, convergence ratio, and time history of neutron production rates. Plasma viscosity reduces the need for artificial viscosity to maintain numerical stability in the Lagrangian formulation and also modifies the flux-limiting needed for electron thermal conduction.« less
Deionization shocks in microstructures
NASA Astrophysics Data System (ADS)
Mani, Ali; Bazant, Martin Z.
2011-12-01
Salt transport in bulk electrolytes is limited by diffusion and advection, but in microstructures with charged surfaces (e.g., microfluidic devices, porous media, soils, or biological tissues) surface conduction and electro-osmotic flow also contribute to ionic fluxes. For small applied voltages, these effects lead to well known linear electrokinetic phenomena. In this paper, we predict some surprising nonlinear dynamics that can result from the competition between bulk and interfacial transport at higher voltages. When counterions are selectively removed by a membrane or electrode, a “deionization shock” can propagate through the microstructure, leaving in its wake an ultrapure solution, nearly devoid of coions and colloidal impurities. We elucidate the basic physics of deionization shocks and develop a mathematical theory of their existence, structure, and stability, allowing for slow variations in surface charge or channel geometry. Via asymptotic approximations and similarity solutions, we show that deionization shocks accelerate and sharpen in narrowing channels, while they decelerate and weaken, and sometimes disappear, in widening channels. These phenomena may find applications in separations (deionization, decontamination, biological assays) and energy storage (batteries, supercapacitors) involving electrolytes in microstructures.
Plasma viscosity with mass transport in spherical inertial confinement fusion implosion simulations
Vold, Erik Lehman; Joglekar, Archis S.; Ortega, Mario I.; ...
2015-11-20
The effects of viscosity and small-scale atomic-level mixing on plasmas in inertial confinement fusion(ICF) currently represent challenges in ICF research. Many current ICF hydrodynamic codes ignore the effects of viscosity though recent research indicates viscosity and mixing by classical transport processes may have a substantial impact on implosion dynamics. In this paper, we have implemented a Lagrangian hydrodynamic code in one-dimensional spherical geometry with plasmaviscosity and mass transport and including a three temperature model for ions, electrons, and radiation treated in a gray radiation diffusion approximation. The code is used to study ICF implosion differences with and without plasmaviscosity andmore » to determine the impacts of viscosity on temperature histories and neutron yield. It was found that plasmaviscosity has substantial impacts on ICF shock dynamics characterized by shock burn timing, maximum burn temperatures, convergence ratio, and time history of neutron production rates. Finally, plasmaviscosity reduces the need for artificial viscosity to maintain numerical stability in the Lagrangian formulation and also modifies the flux-limiting needed for electron thermal conduction.« less
NASA Astrophysics Data System (ADS)
Zimbardo, G.; Pommois, P.; Veltri, P.
2003-09-01
The influence of magnetic turbulence on magnetic field line diffusion has been known since the early days of space and plasma physics. However, the importance of ``stochastic diffusion'' for energetic particles has been challenged on the basis of the fact that sharp gradients of either energetic particles or ion composition are often observed in the solar wind. Here we show that fast transverse field line and particle diffusion can coexist with small magnetic structures, sharp gradients, and with long lived magnetic flux tubes. We show, by means of a numerical realization of three dimensional magnetic turbulence and by use of the concepts of deterministic chaos and turbulent transport, that turbulent diffusion is different from Gaussian diffusion, and that transport can be inhomogeneous even if turbulence homogeneously fills the heliosphere. Several diagnostics of field line transport and flux tube evolution are shown, and the size of small magnetic structures in the solar wind, like gradient scales and flux tube thickness, are estimated and compared to the observations.
Heat Diffusion in Gases, Including Effects of Chemical Reaction
NASA Technical Reports Server (NTRS)
Hansen, C. Frederick
1960-01-01
The diffusion of heat through gases is treated where the coefficients of thermal conductivity and diffusivity are functions of temperature. The diffusivity is taken proportional to the integral of thermal conductivity, where the gas is ideal, and is considered constant over the temperature interval in which a chemical reaction occurs. The heat diffusion equation is then solved numerically for a semi-infinite gas medium with constant initial and boundary conditions. These solutions are in a dimensionless form applicable to gases in general, and they are used, along with measured shock velocity and heat flux through a shock reflecting surface, to evaluate the integral of thermal conductivity for air up to 5000 degrees Kelvin. This integral has the properties of a heat flux potential and replaces temperature as the dependent variable for problems of heat diffusion in media with variable coefficients. Examples are given in which the heat flux at the stagnation region of blunt hypersonic bodies is expressed in terms of this potential.
Gebauer, Tobias; Horna, Viviana; Leuschner, Christoph
2008-12-01
Forest transpiration estimates are frequently based on xylem sap flux measurements in the outer sections of the hydro-active stem sapwood. We used Granier's constant-heating technique with heating probes at various xylem depths to analyze radial patterns of sap flux density in the sapwood of seven broad-leaved tree species differing in wood density and xylem structure. Study aims were to (1) compare radial sap flux density profiles between diffuse- and ring-porous trees and (2) analyze the relationship between hydro-active sapwood area and stem diameter. In all investigated species except the diffuse-porous beech (Fagus sylvatica L.) and ring-porous ash (Fraxinus excelsior L.), sap flux density peaked at a depth of 1 to 4 cm beneath the cambium, revealing a hump-shaped curve with species-specific slopes. Beech and ash reached maximum sap flux densities immediately beneath the cambium in the youngest annual growth rings. Experiments with dyes showed that the hydro-active sapwood occupied 70 to 90% of the stem cross-sectional area in mature trees of diffuse-porous species, whereas it occupied only about 21% in ring-porous ash. Dendrochronological analyses indicated that vessels in the older sapwood may remain functional for 100 years or more in diffuse-porous species and for up to 27 years in ring-porous ash. We conclude that radial sap flux density patterns are largely dependent on tree species, which may introduce serious bias in sap-flux-derived forest transpiration estimates, if non-specific sap flux profiles are assumed.
Modified Chapman-Enskog moment approach to diffusive phonon heat transport.
Banach, Zbigniew; Larecki, Wieslaw
2008-12-01
A detailed treatment of the Chapman-Enskog method for a phonon gas is given within the framework of an infinite system of moment equations obtained from Callaway's model of the Boltzmann-Peierls equation. Introducing no limitations on the magnitudes of the individual components of the drift velocity or the heat flux, this method is used to derive various systems of hydrodynamic equations for the energy density and the drift velocity. For one-dimensional flow problems, assuming that normal processes dominate over resistive ones, it is found that the first three levels of the expansion (i.e., the zeroth-, first-, and second-order approximations) yield the equations of hydrodynamics which are linearly stable at all wavelengths. This result can be achieved either by examining the dispersion relations for linear plane waves or by constructing the explicit quadratic Lyapunov entropy functionals for the linear perturbation equations. The next order in the Chapman-Enskog expansion leads to equations which are unstable to some perturbations. Precisely speaking, the linearized equations of motion that describe the propagation of small disturbances in the flow have unstable plane-wave solutions in the short-wavelength limit of the dispersion relations. This poses no problem if the equations are used in their proper range of validity.
Rotureau, Elise; Billard, Patrick; Duval, Jérôme F L
2015-01-20
Bioavailability of trace metals is a key parameter for assessment of toxicity on living organisms. Proper evaluation of metal bioavailability requires monitoring the various interfacial processes that control metal partitioning dynamics at the biointerface, which includes metal transport from solution to cell membrane, adsorption at the biosurface, internalization, and possible excretion. In this work, a methodology is proposed to quantitatively describe the dynamics of Cd(II) uptake by Pseudomonas putida. The analysis is based on the kinetic measurement of Cd(II) depletion from bulk solution at various initial cell concentrations using electroanalytical probes. On the basis of a recent formalism on the dynamics of metal uptake by complex biointerphases, the cell concentration-dependent depletion time scales and plateau values reached by metal concentrations at long exposure times (>3 h) are successfully rationalized in terms of limiting metal uptake flux, rate of excretion, and metal affinity to internalization sites. The analysis shows the limits of approximate depletion models valid in the extremes of high and weak metal affinities. The contribution of conductive diffusion transfer of metals from the solution to the cell membrane in governing the rate of Cd(II) uptake is further discussed on the basis of estimated resistances for metal membrane transfer and extracellular mass transport.
NASA Astrophysics Data System (ADS)
Nagai, Shingo
2013-11-01
We report estimation of the effective diffusion coefficient of moisture through a barrier coating to develop an encapsulation technology for the thin-film electronics industry. This investigation targeted a silicon oxide (SiOx) film that was deposited on a plastic substrate by a large-process-area web coater. Using the finite difference method based on diffusion theory, our estimation of the effective diffusion coefficient of a SiOx film corresponded to that of bulk glass that was previously reported. This result suggested that the low diffusivities of barrier films can be obtained on a mass-production level in the factory. In this investigation, experimental observations and mathematical confirmation revealed the limit of the water vapor transmission rate on the single barrier coating.
Effects of thermal vapor diffusion on seasonal dynamics of water in the unsaturated zone
Milly, Paul C.D.
1996-01-01
The response of water in the unsaturated zone to seasonal changes of temperature (T) is determined analytically using the theory of nonisothermal water transport in porous media, and the solutions are tested against field observations of moisture potential and bomb fallout isotopic (36Cl and 3H) concentrations. Seasonally varying land surface temperatures and the resulting subsurface temperature gradients induce thermal vapor diffusion. The annual mean vertical temperature gradient is close to zero; however, the annual mean thermal vapor flux is downward, because the temperature‐dependent vapor diffusion coefficient is larger, on average, during downward diffusion (occurring at high T) than during upward diffusion (low T). The annual mean thermal vapor flux is shown to decay exponentially with depth; the depth (about 1 m) at which it decays to e−1of its surface value is one half of the corresponding decay depth for the amplitude of seasonal temperature changes. This depth‐dependent annual mean flux is effectively a source of water, which must be balanced by a flux divergence associated with other transport processes. In a relatively humid environment the liquid fluxes greatly exceed the thermal vapor fluxes, so such a balance is readily achieved without measurable effect on the dynamics of water in the unsaturated zone. However, if the mean vertical water flux through the unsaturated zone is very small (<1 mm y−1), as it may be at many locations in a desert landscape, the thermal vapor flux must be balanced mostly by a matric‐potential‐induced upward flux of water. This return flux may include both vapor and liquid components. Below any near‐surface zone of weather‐related fluctuations of matric potential, maintenance of this upward flux requires an increase with depth in the annual mean matric potential; this theoretical prediction is supported by long‐term field measurements in the Chihuahuan Desert. The analysis also makes predictions, confirmed by the field observations, regarding the seasonal variations of matric potential at a given depth. The conceptual model of unsaturated zone water transport developed here implies the possibility of near‐surface trapping of any aqueous constituent introduced at the surface.
Lan, Chuwen; Bi, Ke; Fu, Xiaojian; Li, Bo; Zhou, Ji
2016-10-03
Metamaterials offer a powerful way to manipulate a variety of physical fields ranging from wave fields (electromagnetic field, acoustic field, elastic wave, etc.), static fields (static magnetic field, static electric field) to diffusive fields (thermal field, diffusive mass). However, the relevant reports and studies are usually limited to a single physical field or functionality. In this study, we proposed and experimentally demonstrated a bifunctional metamaterial which could manipulate thermal and electric fields simultaneously and independently. Specifically, a composite with independently controllable thermal and electric conductivity was introduced, on the basis of which a bifunctional device capable of shielding thermal flux and concentrating electric current simultaneously was designed, fabricated and characterized. This work provides an encouraging example of metamaterials transcending their natural limitations, which offers a promising future in building a broad platform for the manipulation of multi-physics fields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zechlin, Hannes-S.; Cuoco, Alessandro; Donato, Fiorenza
The source-count distribution as a function of their flux, dN/dS, is one of the main quantities characterizing gamma-ray source populations. In this paper, we employ statistical properties of the Fermi Large Area Telescope (LAT) photon counts map to measure the composition of the extragalactic gamma-ray sky at high latitudes (|b| greater-than or slanted equal to 30°) between 1 and 10 GeV. We present a new method, generalizing the use of standard pixel-count statistics, to decompose the total observed gamma-ray emission into (a) point-source contributions, (b) the Galactic foreground contribution, and (c) a truly diffuse isotropic background contribution. Using the 6more » yr Fermi-LAT data set (P7REP), we show that the dN/dS distribution in the regime of so far undetected point sources can be consistently described with a power law with an index between 1.9 and 2.0. We measure dN/dS down to an integral flux of ~2 x 10 -11cm -2s -1, improving beyond the 3FGL catalog detection limit by about one order of magnitude. The overall dN/dS distribution is consistent with a broken power law, with a break at 2.1 +1.0 -1.3 x 10 -8cm -2s -1. The power-law index n 1 = 3.1 +0.7 -0.5 for bright sources above the break hardens to n 2 = 1.97 ± 0.03 for fainter sources below the break. A possible second break of the dN/dS distribution is constrained to be at fluxes below 6.4 x 10 -11cm -2s -1 at 95% confidence level. Finally, the high-latitude gamma-ray sky between 1 and 10 GeV is shown to be composed of ~25% point sources, ~69.3% diffuse Galactic foreground emission, and ~6% isotropic diffuse background.« less
Zechlin, Hannes-S.; Cuoco, Alessandro; Donato, Fiorenza; ...
2016-07-26
The source-count distribution as a function of their flux, dN/dS, is one of the main quantities characterizing gamma-ray source populations. In this paper, we employ statistical properties of the Fermi Large Area Telescope (LAT) photon counts map to measure the composition of the extragalactic gamma-ray sky at high latitudes (|b| greater-than or slanted equal to 30°) between 1 and 10 GeV. We present a new method, generalizing the use of standard pixel-count statistics, to decompose the total observed gamma-ray emission into (a) point-source contributions, (b) the Galactic foreground contribution, and (c) a truly diffuse isotropic background contribution. Using the 6more » yr Fermi-LAT data set (P7REP), we show that the dN/dS distribution in the regime of so far undetected point sources can be consistently described with a power law with an index between 1.9 and 2.0. We measure dN/dS down to an integral flux of ~2 x 10 -11cm -2s -1, improving beyond the 3FGL catalog detection limit by about one order of magnitude. The overall dN/dS distribution is consistent with a broken power law, with a break at 2.1 +1.0 -1.3 x 10 -8cm -2s -1. The power-law index n 1 = 3.1 +0.7 -0.5 for bright sources above the break hardens to n 2 = 1.97 ± 0.03 for fainter sources below the break. A possible second break of the dN/dS distribution is constrained to be at fluxes below 6.4 x 10 -11cm -2s -1 at 95% confidence level. Finally, the high-latitude gamma-ray sky between 1 and 10 GeV is shown to be composed of ~25% point sources, ~69.3% diffuse Galactic foreground emission, and ~6% isotropic diffuse background.« less
2010-04-01
factorization scheme (Lower-Upper Symmetric Gauss- Seidel ) can be used for time integration. Additional convergence acceleration is achieved by the...of the full Stefan -Maxwell equations. The diffusive mass flux of species S is computed according to: for 1 for jS S S Sm j jm S j eS jd S S S j j j...approximate factorization scheme (Lower-Upper Symmetric Gauss- Seidel ). For steady state problems, equation (69) reduces to R=0 because ddU t
SAMPEX observations of energetic hydrogen isotopes in the inner zone
NASA Technical Reports Server (NTRS)
Looper, M. D.; Blake, J. B.; Cummings, J. R.; Mewaldt, R. A.
1996-01-01
We report observations of geomagnetically-trapped hydrogen isotopes at low altitudes, near the feet of field lines in the inner zone, made with the PET instrument aboard the SAMPEX satellite. We have mapped protons from 19 to 500 MeV, and have discovered a collocated belt of deuterons, which we have mapped from 18 to 58 MeV/nucleon. We found deuterium at about 1% of the level of the proton flux at the same energy per nucleon, and no tritium at energies of tens of MeV/nucleon with an upper limit of about 0.1% of the proton flux. Protons and deuterons showed similar time dependence, with fluxes approximately tripling from July 1992 to March 1996, and similar pitch-angle dependence. The high-L limits of the proton and deuteron belts as functions of energy were organized by rigidity, as was to be expected if these limits were set for both species by inability of particles to sustain adiabatic motion and stable trapping.
NASA Astrophysics Data System (ADS)
Maples, S.; Andraski, B. J.; Stonestrom, D. A.; Cooper, C. A.; Pohll, G.
2011-12-01
Studies at the U.S. Geological Survey's Amargosa Desert Research Site (ADRS) in southern Nevada have documented long-distance (>400-m) tritium (3H) transport adjacent to a commercial, low-level radioactive waste disposal facility. Transport at this scale is orders of magnitude greater than anticipated; however, lateral 3H fluxes through the shallow unsaturated zone (UZ) have not been investigated in detail. The objective of this study is to estimate and compare lateral and vertical tritiated water-vapor (3HHOg) fluxes in the shallow UZ and their relation to the observed plume migration. Previous studies have recognized two distinct plumes of 3H emanating from the facility. Shallow (0.5 and 1.5-m depth) soil-water vapor samples were collected yearly along 400-m long transects through both plumes from 2003-09. Within the south plume, 3H concentrations at 1.5-m depth have decreased by 44 ± 0.3% during this period, and plume advancement there has effectively ceased (i.e., rate of advance equals rate of decay). During the same period, the west plume showed a net decrease in concentration of 34 ± 0.9% within 100-m of the facility; however, plume advancement is observed at the leading edge of the plume, and concentrations 200-300-m from the facility show an increase in 3H concentration of 64 ± 28.4%. Lateral and vertical diffusive fluxes within both plumes were calculated using 3HHOg concentrations from 2006. Lateral 3HHOg diffusive fluxes within both plumes have been estimated 25-300-m from the facility at 1.5-m depth. Mean lateral 3HHOg diffusive fluxes are 10-14 g m-2 yr-1 within the south plume, and 10-13 g m-2 yr-1 within the west plume. Mean lateral fluxes in the south plume are an order of magnitude lower than in the west plume. This behavior corresponds with the observed relative immobility of the south plume, while the elevated west plume fluxes agree with the plume advancement seen there. Shallow, upward directed, mean vertical 3HHOg fluxes 25-300-m from the facility are estimated to be 10-12 g m-2 yr-1 in the south plume and 10-11 g m-2 yr-1 in the west plume. Within both plumes, mean vertical diffusive fluxes are two orders of magnitude greater than mean lateral diffusive fluxes. Lateral diffusive 3HHOg fluxes have been calculated similarly using 2001 south plume data and were compared to 2001 south plume vertical diffusive 3HHOg fluxes published by Andraski et al. (2005). Here, too, mean vertical fluxes dwarf mean lateral fluxes (10-11 g m-2 yr-1 vs. 10-14 g m-2 yr-1). This behavior highlights the importance of upward movement and release of 3H to the atmosphere. The potential role of advective lateral transport and its contribution to observed plume migration is also under investigation.
XMM-Newton Observations of Solar Wind Charge Exchange Emission
NASA Technical Reports Server (NTRS)
Snowden, S. L.; Collier, M. R.; Kuntz, K. D.
2004-01-01
We present an XMM-Newton spectrum of diffuse X-ray emission from within the solar system. The spectrum is dominated by O VII and O VIII lines at 0.57 keV and 0.65 keV, O VIII (and possibly Fe XVII) lines at approximately 0.8 keV, Ne IX lines at approximately 0.92 keV, and Mg XI lines at approximately 1.35 keV. This spectrum is consistent with what is expected from charge exchange emission between the highly ionized solar wind and either interstellar neutrals in the heliosphere or material from Earth's exosphere. The emission is clearly seen as a low-energy ( E less than 1.5 keV) spectral enhancement in one of a series of observations of the Hubble Deep Field North. The X-ray enhancement is concurrent with an enhancement in the solar wind measured by the ACE satellite. The solar wind enhancement reaches a flux level an order of magnitude more intense than typical fluxes at 1 AU, and has ion ratios with significantly enhanced higher ionization states. Whereas observations of the solar wind plasma made at a single point reflect only local conditions which may only be representative of solar wind properties with spatial scales ranging from less than half of an Earth radii (approximately 10 s) to 100 Earth radii, X-ray observations of solar wind charge exchange are remote sensing measurements which may provide observations which are significantly more global in character. Besides being of interest in its own right for studies of the solar system, this emission can have significant consequences for observations of more cosmological objects. It can provide emission lines at zero redshift which are of particular interest (e.g., O VII and O VIII) in studies of diffuse thermal emission, and which can therefore act as contamination in objects which cover the entire detector field of view. We propose the use of solar wind monitoring data, such as from the ACE and Wind spacecraft, as a diagnostic to screen for such possibilities.
Compact high-flux two-stage solar collectors based on tailored edge-ray concentrators
NASA Astrophysics Data System (ADS)
Friedman, Robert P.; Gordon, Jeffrey M.; Ries, Harald
1995-08-01
Using the recently-invented tailored edge-ray concentrator (TERC) approach for the design of compact two-stage high-flux solar collectors--a focusing primary reflector and a nonimaging TERC secondary reflector--we present: 1) a new primary reflector shape based on the TERC approach and a secondary TERC tailored to its particular flux map, such that more compact concentrators emerge at flux concentration levels in excess of 90% of the thermodynamic limit; and 2) calculations and raytrace simulations result which demonstrate the V-cone approximations to a wide variety of TERCs attain the concentration of the TERC to within a few percent, and hence represent practical secondary concentrators that may be superior to corresponding compound parabolic concentrator or trumpet secondaries.
NASA Astrophysics Data System (ADS)
Hoffmann, M.; Schulz-Hanke, M.; Garcia Alba, J.; Jurisch, N.; Hagemann, U.; Sachs, T.; Sommer, M.; Augustin, J.
2015-08-01
Processes driving the production, transformation and transport of methane (CH4) in wetland ecosystems are highly complex. Thus, serious challenges are constitutes in terms of the mechanistic process understanding, the identification of potential environmental drivers and the calculation of reliable CH4 emission estimates. We present a simple calculation algorithm to separate open-water CH4 fluxes measured with automatic chambers into diffusion- and ebullition-derived components, which helps facilitating the identification of underlying dynamics and potential environmental drivers. Flux separation is based on ebullition related sudden concentration changes during single measurements. A variable ebullition filter is applied, using the lower and upper quartile and the interquartile range (IQR). Automation of data processing is achieved by using an established R-script, adjusted for the purpose of CH4 flux calculation. The algorithm was tested using flux measurement data (July to September 2013) from a former fen grassland site, converted into a shallow lake as a result of rewetting ebullition and diffusion contributed 46 and 55 %, respectively, to total CH4 emissions, which is comparable to those previously reported by literature. Moreover, the separation algorithm revealed a concealed shift in the diurnal trend of diffusive fluxes throughout the measurement period.
Comparison of Four Mixed Layer Mesoscale Parameterizations and the Equation for an Arbitrary Tracer
NASA Technical Reports Server (NTRS)
Canuto, V. M.; Dubovikov, M. S.
2011-01-01
In this paper we discuss two issues, the inter-comparison of four mixed layer mesoscale parameterizations and the search for the eddy induced velocity for an arbitrary tracer. It must be stressed that our analysis is limited to mixed layer mesoscales since we do not treat sub-mesoscales and small turbulent mixing. As for the first item, since three of the four parameterizations are expressed in terms of a stream function and a residual flux of the RMT formalism (residual mean theory), while the fourth is expressed in terms of vertical and horizontal fluxes, we needed a formalism to connect the two formulations. The standard RMT representation developed for the deep ocean cannot be extended to the mixed layer since its stream function does not vanish at the ocean's surface. We develop a new RMT representation that satisfies the surface boundary condition. As for the general form of the eddy induced velocity for an arbitrary tracer, thus far, it has been assumed that there is only the one that originates from the curl of the stream function. This is because it was assumed that the tracer residual flux is purely diffusive. On the other hand, we show that in the case of an arbitrary tracer, the residual flux has also a skew component that gives rise to an additional bolus velocity. Therefore, instead of only one bolus velocity, there are now two, one coming from the curl of the stream function and other from the skew part of the residual flux. In the buoyancy case, only one bolus velocity contributes to the mean buoyancy equation since the residual flux is indeed only diffusive.
NASA Technical Reports Server (NTRS)
Chang, Sin-Chung
1993-01-01
A new numerical framework for solving conservation laws is being developed. This new approach differs substantially in both concept and methodology from the well-established methods--i.e., finite difference, finite volume, finite element, and spectral methods. It is conceptually simple and designed to avoid several key limitations to the above traditional methods. An explicit model scheme for solving a simple 1-D unsteady convection-diffusion equation is constructed and used to illuminate major differences between the current method and those mentioned above. Unexpectedly, its amplification factors for the pure convection and pure diffusion cases are identical to those of the Leapfrog and the DuFort-Frankel schemes, respectively. Also, this explicit scheme and its Navier-Stokes extension have the unusual property that their stabilities are limited only by the CFL condition. Moreover, despite the fact that it does not use any flux-limiter or slope-limiter, the Navier-Stokes solver is capable of generating highly accurate shock tube solutions with shock discontinuities being resolved within one mesh interval. An accurate Euler solver also is constructed through another extension. It has many unusual properties, e.g., numerical diffusion at all mesh points can be controlled by a set of local parameters.
Kuwabara, James S.; Topping, Brent R.; Carter, James L.; Parcheso, Francis; Cameron, Jason M.; Asbill, Jessica R.; Fend, Steven V.; Duff, John H.; Engelstad, Anita C.
2010-01-01
Four sampling trips were coordinated after planned levee breaches that hydrologically reconnected both Upper Klamath Lake and Agency Lake, Oregon, to adjacent wetlands. Sets of nonmetallic pore-water profilers were deployed during these trips in November 2007, June 2008, May 2009, and July 2009. Deployments temporally spanned the annual cyanophyte bloom of Aphanizomenon flos-aquae (AFA) and spatially involved three lake and four wetland sites. Profilers, typically deployed in triplicate at each lake or wetland site, provided high-resolution (centimeter-scale) estimates of the vertical concentration gradients for diffusive-flux determinations. Estimates based on molecular diffusion may underestimate benthic flux because solute transport across the sediment-water interface can be enhanced by processes including bioturbation, bioirrigation and groundwater advection. Water-column and benthic samples were also collected to help interpret spatial and temporal trends in diffusive-flux estimates. Data from these samples complement taxonomic and geochemical analyses of bottom-sediments taken from Upper Klamath Lake (UKL) in prior studies. This ongoing study provides information necessary for developing process-interdependent solute-transport models for the watershed (that is, models integrating physical, geochemical, and biological processes) and supports efforts to evaluate remediation or load-allocation strategies. To augment studies funded by the U.S. Bureau of Reclamation (USBR), the Department of the Interior supported an additional full deployment of pore-water profilers in November 2007 and July 2009, immediately following the levee breaches and after the crash of the annual summer AFA bloom. As observed consistently since 2006, benthic flux of 0.2-micron filtered, soluble reactive phosphorus (that is, biologically available phosphorus, primarily as orthophosphate; SRP) was consistently positive (that is, out of the sediment into the overlying water column) and ranged from a negligible value (-0.19?0.91 milligrams per square meter per day; mg m-2 d-1) within wetlands of the Upper Klamath National Wildlife Refuge to 74?48 mg m-2 d-1 at the newly restored wetland site removed from the levee breach (TNC1); both observed in May 2009 before the annual AFA bloom. When areally averaged (13 km2 for the newly restored wetlands), an SRP flux to the overlying water column is determined of approximately 87,000 kilograms (kg) over the 3-month AFA bloom season that exceeds the magnitude of riverine inputs (42,000 kg for the season). Elevated SRP benthic flux at TNC1 relative to all other lake and wetland sites (including TNC2 near the breached levee) in 2009 suggests that the restored wetlands, at least chemically, remain in a transition period after engineered blasts on October 30, 2007, restored hydrologic connectivity between lake and wetland environments. As reported in previous lake studies, ammonium fluxes to the water column were consistently positive, with the exception of two measurements at the restored wetland sites (TNC1 and TNC2) immediately following the levee breaches in November 2007. The flux of ammonia, particularly at elevated pH in the overlying water column, has toxicological implications for endangered fish populations in both lake and wetland environments. For dissolved nitrate, with the exception of a single positive flux measurement at TNC1 in June 2008 (0.16?0.02 mg m-2 d-1), consistently negative (consumed by the sediment) or undetectable nitrate-flux values were observed (-21?12 mg m-2 d-1 to undetectable fluxes due to concentrations for dissolved nitrate <0.03 milligrams per liter (mg L-1) in both porewaters and overlying waters near the sediment-water interface). Such negative fluxes for dissolved nitrate are typical of microbial transformations, such as dinitrification (dissimilatory nitrate reduction), that benthically consume nitrate from the water column. The diffusive-flux measurements reported herei
NASA Technical Reports Server (NTRS)
Chang, C. H.
1999-01-01
The relationship between Joule heating, diffusion fluxes, and friction forces has been studied for both total and electron thermal energy equations, using general expressions for multicomponent diffusion in two-temperature plasmas with the velocity dependent Lorentz force acting on charged species in a magnetic field. It is shown that the derivation of Joule heating terms requires both diffusion fluxes and friction between species which represents the resistance experienced by the species moving at different relative velocities. It is also shown that the familiar Joule heating term in the electron thermal energy equation includes artificial effects produced by switching the convective velocity from the species velocity to the mass-weighted velocity, and thus should not be ignored even when there is no net energy dissipation.
Feng, Yan; Wu, Chen-Chou; Bao, Lian-Jun; Shi, Lei; Song, Lin; Zeng, Eddy Y
2016-12-01
The fate of hydrophobic organic compounds in aquatic environment are largely determined by their exchange at sediment-water interface, which is highly dynamic and subject to rapidly evolving environmental conditions. In turn, environmental conditions may be governed by both physicochemical parameters and anthropogenic events. To examine the importance of various impact factors, passive sampling devices were deployed at the seafloor of Hailing Bay, an urbanized estuarine bay in Guangdong Province of South China to measure the sediment-water diffusion fluxes of several metabolites of dichlorodiphenyltrichloroethane (DDT), p,p'-DDE, p,p'-DDD and o,p'-DDD. The physicochemical properties of water (temperature, pH, salinity and dissolved oxygen) and surface sediment (sediment organic matter, physical composition, pH, water content, colony forming unit and catalase activity) were also measured. The results showed that the diffusion fluxes of o,p'-DDD, p,p'-DDD and p,p'-DDE at sites A1 and A2 near a fishing boat maintenance facility ranged from 0.42 to 4.73 ng m -2 d -1 (from sediment to overlying water), whereas those at offshore sites varied between -0.03 and -3.02 ng m -2 d -1 (from overlying water to sediment), implicating A1 and A2 as the sources of the target compounds. The distribution patterns of the diffusion fluxes of the target compounds were different from those of water and sediment parameters (water temperature, salinity, sediment texture, pH, colony forming unit and catalase activity) at six sampling sites. This finding suggested that none of these parameters were critical in dictating the sediment-water diffusion fluxes. Besides, decreases in the contents of kerogen and black carbon by 6.7% and 11% would enhance the diffusion fluxes of the target compounds by 11-14% and 12-23%, respectively, at site A1, indicating that kerogen and black carbon were the key factors in mediating the sediment-water diffusion fluxes of DDT-related compounds in field environments. Copyright © 2016 Elsevier Ltd. All rights reserved.
Benthic phosphorus regeneration in the Potomac River Estuary
Callender, E.
1982-01-01
The flux of dissolved reactive phosphate from Potomac riverine and estuarine sediments is controlled by processes occurring at the water-sediment interface and within surficial sediment. In situ benthic fluxes (0.1 to 2.0 mmoles m-2 day-1) are generally five to ten times higher than calculated diffusive fluxes (0.020 to 0.30 mmoles m-2 day-1). The discrepancy between the two flux estimates is greatest in the transition zone (river mile 50 to 70) and is attributd to macrofaunal irrigation. Both in situ and diffusive fluxes of dissolved reactive phosphate from Potomac tidal river sediments are low while those from anoxic lower estuarine sediments are high. The net accumulation rate of phosphorus in benthic sediment exhibits an inverse pattern. Thus a large fraction of phosphorus is retained by Potomac tidal river sediments, which contain a surficial oxidized layer and oligochaete worms tolerant of low oxygen conditions, and a large fraction of phosphorus is released from anoxic lower estuary sediments. Tidal river sediment pore waters are in equilibrium with amorphous Fe (OH)3 while lower estuary pore waters are significantly undersaturated with respect to this phase. Benthic regeneration of dissolved reactive phosphorus is sufficient to supply all the phosphorus requirements for net primary production in the lower tidal river and transition-zone waters of the Potomac River Estuary. Benthic regeneration supplies approximately 25% as much phosphorus as inputs from sewage treatment plants and 10% of all phosphorus inputs to the tidal Potomac River. When all available point source phosphorus data are put into a steady-state conservation of mass model and reasonable coefficients for uptake of dissolved phosphorus, remineralization of particulate phosphorus, and sedimentation of particulate phosphorus are used in the model, a reasonably accurate simulation of dissolved and particulate phosphorus in the water column is obtained for the summer of 1980. ?? 1982 Dr W. Junk Publishers.
Distribution and sources of polyfluoroalkyl substances (PFAS) in the River Rhine watershed.
Möller, Axel; Ahrens, Lutz; Surm, Renate; Westerveld, Joke; van der Wielen, Frans; Ebinghaus, Ralf; de Voogt, Pim
2010-10-01
The concentration profile of 40 polyfluoroalkyl substances (PFAS) in surface water along the River Rhine watershed from the Lake Constance to the North Sea was investigated. The aim of the study was to investigate the influence of point as well as diffuse sources, to estimate fluxes of PFAS into the North Sea and to identify replacement compounds of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA). In addition, an interlaboratory comparison of the method performance was conducted. The PFAS pattern was dominated by perfluorobutane sulfonate (PFBS) and perfluorobutanoic acid (PFBA) with concentrations up to 181 ng/L and 335 ng/L, respectively, which originated from industrial point sources. Fluxes of SigmaPFAS were estimated to be approximately 6 tonnes/year which is much higher than previous estimations. Both, the River Rhine and the River Scheldt, seem to act as important sources of PFAS into the North Sea. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poirier, M. R.; Burket, P. R.; Duignan, M. R.
2015-03-12
The Savannah River Site (SRS) is currently treating radioactive liquid waste with the Actinide Removal Process (ARP) and the Modular Caustic Side Solvent Extraction Unit (MCU). The low filter flux through the ARP has limited the rate at which radioactive liquid waste can be treated. Recent filter flux has averaged approximately 5 gallons per minute (gpm). Salt Batch 6 has had a lower processing rate and required frequent filter cleaning. Savannah River Remediation (SRR) has a desire to understand the causes of the low filter flux and to increase ARP/MCU throughput. In addition, at the time the testing started, SRRmore » was assessing the impact of replacing the 0.1 micron filter with a 0.5 micron filter. This report describes testing of MST filterability to investigate the impact of filter pore size and MST particle size on filter flux and testing of filter enhancers to attempt to increase filter flux. The authors constructed a laboratory-scale crossflow filter apparatus with two crossflow filters operating in parallel. One filter was a 0.1 micron Mott sintered SS filter and the other was a 0.5 micron Mott sintered SS filter. The authors also constructed a dead-end filtration apparatus to conduct screening tests with potential filter aids and body feeds, referred to as filter enhancers. The original baseline for ARP was 5.6 M sodium salt solution with a free hydroxide concentration of approximately 1.7 M.3 ARP has been operating with a sodium concentration of approximately 6.4 M and a free hydroxide concentration of approximately 2.5 M. SRNL conducted tests varying the concentration of sodium and free hydroxide to determine whether those changes had a significant effect on filter flux. The feed slurries for the MST filterability tests were composed of simple salts (NaOH, NaNO 2, and NaNO 3) and MST (0.2 – 4.8 g/L). The feed slurry for the filter enhancer tests contained simulated salt batch 6 supernate, MST, and filter enhancers.« less
Ghosh, Subhadip; Adhikari, Aniruddha; Sen Mojumdar, Supratik; Bhattacharyya, Kankan
2010-05-06
The mobility of the organic dye DCM (4-dicyanomethylene-2-methyl-6-p-dimethyl aminostyryl-4H-pyran) in the gel and fluid phases of a lipid vesicle is studied by fluorescence correlation spectroscopy (FCS). Using FCS, translational diffusion of DCM is determined in the gel phase and fluid phase of a single lipid vesicle adhered to a glass surface. The size of a lipid vesicle (average diameter approximately 100 nm) is smaller than the diffraction limited spot size (approximately 250 nm) of the microscope. Thus, the vesicle is confined within the laser focus. Three lipid vesicles (1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)) having different gel transition temperatures (-1, 23, and 41 degrees C, respectively) were studied. The diffusion coefficient of the dye DCM in bulk water is approximately 300 microm(2)/s. In the lipid vesicle, the average D(t) decreases markedly to approximately 5 microm(2)/s (approximately 60 times) in the gel phase (for DPPC at 20 degrees C) and 40 microm(2)/s ( approximately 8 times) in the fluid phase (for DLPC at 20 degrees C). This clearly demonstrates higher mobility in the fluid phase compared with the gel phase of a lipid. It is observed that the D(t) values vary from lipid to lipid and there is a distribution of D(t) values. The diffusion of the hydrophobic dye DCM (D(t) approximately 5 microm(2)/s) in the DPPC vesicle is found to be 8 times smaller than that of a hydrophilic anioinic dye C343 (D(t) approximately 40 microm(2)/s). This is attributed to different locations of the hydrophobic (DCM) and hydrophilic (C343) dyes.
Gas transport in unsaturated porous media: the adequacy of Fick's law
Thorstenson, D.C.; Pollock, D.W.
1989-01-01
The increasing use of natural unsaturated zones as repositories for landfills and disposal sites for hazardous wastes (chemical and radioactive) requires a greater understanding of transport processes in the unsaturated zone. For volatile constituents an important potential transport mechanism is gaseous diffusion. Diffusion, however, cannot be treated as an independent isolated transport mechanism. A complete understanding of multicomponent gas transport in porous media (unsaturated zones) requires a knowledge of Knudsen transport, the molecular and nonequimolar components of diffusive flux, and viscous (pressure driven) flux. This review presents a brief discussion of the underlying principles and interrelationships among each of the above flux mechanisms. -from Authors
A microscale turbine driven by diffusive mass flux.
Yang, Mingcheng; Liu, Rui; Ripoll, Marisol; Chen, Ke
2015-10-07
An external diffusive mass flux is shown to be able to generate a mechanical torque on a microscale object based on anisotropic diffusiophoresis. In light of this finding, we propose a theoretical prototype micro-turbine driven purely by diffusive mass flux, which is in strong contrast to conventional turbines driven by convective mass flows. The rotational velocity of the proposed turbine is determined by the external concentration gradient, the geometry and the diffusiophoretic properties of the turbine. This scenario is validated by performing computer simulations. Our finding thus provides a new type of chemo-mechanical response which could be used to exploit existing chemical energies at small scales.
THE CONTRIBUTION OF FERMI -2LAC BLAZARS TO DIFFUSE TEV–PEV NEUTRINO FLUX
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aartsen, M. G.; Abraham, K.; Ackermann, M.
2017-01-20
The recent discovery of a diffuse cosmic neutrino flux extending up to PeV energies raises the question of which astrophysical sources generate this signal. Blazars are one class of extragalactic sources which may produce such high-energy neutrinos. We present a likelihood analysis searching for cumulative neutrino emission from blazars in the 2nd Fermi -LAT AGN catalog (2LAC) using IceCube neutrino data set 2009-12, which was optimized for the detection of individual sources. In contrast to those in previous searches with IceCube, the populations investigated contain up to hundreds of sources, the largest one being the entire blazar sample in themore » 2LAC catalog. No significant excess is observed, and upper limits for the cumulative flux from these populations are obtained. These constrain the maximum contribution of 2LAC blazars to the observed astrophysical neutrino flux to 27% or less between around 10 TeV and 2 PeV, assuming the equipartition of flavors on Earth and a single power-law spectrum with a spectral index of −2.5. We can still exclude the fact that 2LAC blazars (and their subpopulations) emit more than 50% of the observed neutrinos up to a spectral index as hard as −2.2 in the same energy range. Our result takes into account the fact that the neutrino source count distribution is unknown, and it does not assume strict proportionality of the neutrino flux to the measured 2LAC γ -ray signal for each source. Additionally, we constrain recent models for neutrino emission by blazars.« less
Impact of current speed on mass flux to a model flexible seagrass blade
NASA Astrophysics Data System (ADS)
Lei, Jiarui; Nepf, Heidi
2016-07-01
Seagrass and other freshwater macrophytes can acquire nutrients from surrounding water through their blades. This flux may depend on the current speed (U), which can influence both the posture of flexible blades (reconfiguration) and the thickness of the flux-limiting diffusive layer. The impact of current speed (U) on mass flux to flexible blades of model seagrass was studied through a combination of laboratory flume experiments, numerical modeling and theory. Model seagrass blades were constructed from low-density polyethylene (LDPE), and 1, 2-dichlorobenzene was used as a tracer chemical. The tracer mass accumulation in the blades was measured at different unidirectional current speeds. A numerical model was used to estimate the transfer velocity (K) by fitting the measured mass uptake to a one-dimensional diffusion model. The measured transfer velocity was compared to predictions based on laminar and turbulent boundary layers developing over a flat plate parallel to flow, for which K∝U0.5 and ∝U, respectively. The degree of blade reconfiguration depended on the dimensionless Cauchy number, Ca, which is a function of both the blade stiffness and flow velocity. For large Ca, the majority of the blade was parallel to the flow, and the measured transfer velocity agreed with laminar boundary layer theory, K∝U0.5. For small Ca, the model blades remained upright, and the flux to the blade was diminished relative to the flat-plate model. A meadow-scale analysis suggests that the mass exchange at the blade scale may control the uptake at the meadow scale.
Quantifying benthic nitrogen fluxes in Puget Sound, Washington: a review of available data
Sheibley, Richard W.; Paulson, Anthony J.
2014-01-01
Understanding benthic fluxes is important for understanding the fate of materials that settle to the Puget Sound, Washington, seafloor, as well as the impact these fluxes have on the chemical composition and biogeochemical cycles of marine waters. Existing approaches used to measure benthic nitrogen flux in Puget Sound and elsewhere were reviewed and summarized, and factors for considering each approach were evaluated. Factors for selecting an appropriate approach for gathering information about benthic flux include: availability of resources, objectives of projects, and determination of which processes each approach measures. An extensive search of literature was undertaken to summarize known benthic nitrogen fluxes in Puget Sound. A total of 138 individual flux chamber measurements and 38 sets of diffusive fluxes were compiled for this study. Of the diffusive fluxes, 35 new datasets were located, and new flux calculations are presented in this report. About 65 new diffusive flux calculations are provided across all nitrogen species (nitrate, NO3-; nitrite, NO2-; ammonium, NH4+). Data analysis of this newly compiled benthic flux dataset showed that fluxes beneath deep (greater than 50 meters) water tended to be lower than those beneath shallow (less than 50 meters) water. Additionally, variability in flux at the shallow depths was greater, possibly indicating a more dynamic interaction between the benthic and pelagic environments. The overall range of bottom temperatures from studies in the Puget Sound area were small (5–16 degrees Celsius), and only NH4+ flux showed any pattern with temperature. For NH4+, flux values and variability increased at greater than about 12 degrees Celsius. Collection of additional study site metadata about environmental factors (bottom temperature, depth, sediment porosity, sediment type, and sediment organic matter) will help with development of a broader regional understanding benthic nitrogen flux in the Puget Sound.
NASA Astrophysics Data System (ADS)
Lord, Jesse W.; Boley, A. C.; Durisen, R. H.
2006-12-01
We present a comparison between two three-dimensional radiative hydrodynamics simulations of a gravitationally unstable 0.07 Msun protoplanetary disk around a 0.5 Msun star. The first simulation is the radiatively cooled disk described in Boley et al. (2006, ApJ, 651). This simulation employed an algorithm that uses 3D flux-limited diffusion wherever the vertical Rosseland optical depth is greater than 2/3, which defines the optically thick region. The optically thin atmosphere of the disk, which cools according to its emissivity, is coupled to the optically thick region through an Eddington-like boundary condition. The second simulation employed an algorithm that uses a combination of solving the radiative transfer equation along rays in the z direction and flux limited diffusion in the r and phi directions on a cylindrical grid. We compare the following characteristics of the disk simulations: the mass transport and torques induced by gravitational instabilities, the effective temperature profiles of the disks, the gravitational and Reynolds stresses measured in the disk and those expected in an alpha-disk, and the amplitudes of the Fourier modes. This work has been supported by the National Science Foundation through grant AST-0452975 (astronomy REU program to Indiana University).
NASA Astrophysics Data System (ADS)
van den Bout, Bastian; Jetten, Victor
2017-04-01
Within hydrological models, flow approximations are commonly used to reduce computation time. The validity of these approximations is strongly determined by flow height, flow velocity, the spatial resolution of the model, and by the manner in which flow routing is implemented. The assumptions of these approximations can furthermore limit emergent behavior, and influence flow behavior under space-time scaling. In this presentation, the validity and performance of the kinematic, diffusive and dynamic flow approximations are investigated for use in a catchment-based flood model. Particularly, the validity during flood events and for varying spatial resolutions is investigated. The OpenLISEM hydrological model is extended to implement these flow approximations and channel flooding based on dynamic flow. The kinematic routing uses a predefined converging flow network, the diffusive and dynamic routing uses a 2D flow solution over a DEM. The channel flow in all cases is a 1D kinematic wave approximation. The flow approximations are used to recreate measured discharge in three catchments of different size in China, Spain and Italy, among which is the hydrograph of the 2003 flood event in the Fella river basin (Italy). Furthermore, spatial resolutions are varied for the flood simulation in order to investigate the influence of spatial resolution on these flow approximations. Results show that the kinematic, diffusive and dynamic flow approximation provide least to highest accuracy, respectively, in recreating measured temporal variation of the discharge. Kinematic flow, which is commonly used in hydrological modelling, substantially over-estimates hydrological connectivity in the simulations with a spatial resolution of below 30 meters. Since spatial resolutions of models have strongly increased over the past decades, usage of routed kinematic flow should be reconsidered. In the case of flood events, spatial modelling of kinematic flow substantially over-estimates hydrological connectivity and flow concentration, leading to significant errors. The combination of diffusive or dynamic overland flow and dynamic channel flooding provides high accuracy in recreating the 2003 Fella river flood event. Finally, flow approximations substantially influenced the predictive potential of the (flash) flood model.
NASA Astrophysics Data System (ADS)
Zacharegkas, Georgios; Isliker, Heinz; Vlahos, Loukas
2016-11-01
The limitation of the Quasilinear Theory (QLT) to describe the diffusion of electrons and ions in velocity space when interacting with a spectrum of large amplitude electrostatic Langmuir, Upper and Lower hybrid waves, is analyzed. We analytically and numerically estimate the threshold for the amplitude of the waves above which the QLT breaks down, using a test particle code. The evolution of the velocity distribution, the velocity-space diffusion coefficients, the driven current, and the heating of the particles are investigated, for the interaction with small and large amplitude electrostatic waves, that is, in both regimes, where QLT is valid and where it clearly breaks down.
A new solar cycle model including meridional circulation
NASA Technical Reports Server (NTRS)
Wang, Y.-M.; Sheeley, N. R., Jr.; Nash, A. G.
1991-01-01
A kinematic model is presented for the solar cycle which includes not only the transport of magnetic flux by supergranular diffusion and a poleward bulk flow at the sun's surface, but also the effects of turbulent diffusion and an equatorward 'return flow' beneath the surface. As in the earlier models of Babcock and Leighton, the rotational shearing of a subsurface poloidal field generates toroidal flux that erupts at the surface in the form of bipolar magnetic regions. However, such eruptions do not result in any net loss of toroidal flux from the sun (as assumed by Babcock and Leighton); instead, the large-scale toroidal field is destroyed both by 'unwinding' as the local poloidal field reverses its polarity, and by diffusion as the toroidal flux is transported equatorward by the subsurface flow and merged with its opposite hemisphere counterpart. The inclusion of meridional circulation allows stable oscillations of the magnetic field, accompanied by the equatorward progression of flux eruptions, to be achieved even in the absence of a radial gradient in the angular velocity. An illustrative case in which a subsurface flow speed of order 1 m/s and subsurface diffusion rate of order 10 sq km/s yield 22-yr oscillations in qualitative agreement with observations.
Magnetic flux and heat losses by diffusive, advective, and Nernst effects in MagLIF-like plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Velikovich, A. L., E-mail: sasha.velikovich@nrl.navy.mil; Giuliani, J. L., E-mail: sasha.velikovich@nrl.navy.mil; Zalesak, S. T.
2014-12-15
The MagLIF approach to inertial confinement fusion involves subsonic/isobaric compression and heating of a DT plasma with frozen-in magnetic flux by a heavy cylindrical liner. The losses of heat and magnetic flux from the plasma to the liner are thereby determined by plasma advection and gradient-driven transport processes, such as thermal conductivity, magnetic field diffusion and thermomagnetic effects. Theoretical analysis based on obtaining exact self-similar solutions of the classical collisional Braginskii's plasma transport equations in one dimension demonstrates that the heat loss from the hot plasma to the cold liner is dominated by the transverse heat conduction and advection, andmore » the corresponding loss of magnetic flux is dominated by advection and the Nernst effect. For a large electron Hall parameter ω{sub e}τ{sub e} effective diffusion coefficients determining the losses of heat and magnetic flux are both shown to decrease with ω{sub e}τ{sub e} as does the Bohm diffusion coefficient, which is commonly associated with low collisionality and two-dimensional transport. This family of exact solutions can be used for verification of codes that model the MagLIF plasma dynamics.« less
Effect of heat release on the spatial stability of a supersonic reacting mixing layer
NASA Technical Reports Server (NTRS)
Jackson, T. L.; Grosch, C. E.
1988-01-01
A numerical study of the stability of compressible mixing layers in which a diffusion flame is embedded is described. The mean velocity profile has been approximated by a hyperbolic tangent profile and the limit of infinite activation energy taken, which reduces the diffusion flame to a flame sheet. The addition of combustion in the form of a flame sheet was found to have important, and complex, effects on the flow stability.
Photonic Devices Based on Surface and Composition-Engineered Infrared Colloidal Nanocrystals
2012-01-27
NQD/P3HT solar cells , the need for submicron-phase-separated polymer-NQD blends is therefore expressed by the limiting exciton diffusion length ...P3HT:PbSe are very critical in designing the PM-HJ solar cells : The thickness of P3HT should approximate to the thickness of exciton diffuse length in... cells , luminescent solar concentrators, light emitting diodes, lasers, photonic crystals, CdSe, PbSe, Germanium Jian Xu Pennsylvania State University
An Analytical Diffusion–Expansion Model for Forbush Decreases Caused by Flux Ropes
NASA Astrophysics Data System (ADS)
Dumbović, Mateja; Heber, Bernd; Vršnak, Bojan; Temmer, Manuela; Kirin, Anamarija
2018-06-01
We present an analytical diffusion–expansion Forbush decrease (FD) model ForbMod, which is based on the widely used approach of an initially empty, closed magnetic structure (i.e., flux rope) that fills up slowly with particles by perpendicular diffusion. The model is restricted to explaining only the depression caused by the magnetic structure of the interplanetary coronal mass ejection (ICME). We use remote CME observations and a 3D reconstruction method (the graduated cylindrical shell method) to constrain initial boundary conditions of the FD model and take into account CME evolutionary properties by incorporating flux rope expansion. Several flux rope expansion modes are considered, which can lead to different FD characteristics. In general, the model is qualitatively in agreement with observations, whereas quantitative agreement depends on the diffusion coefficient and the expansion properties (interplay of the diffusion and expansion). A case study was performed to explain the FD observed on 2014 May 30. The observed FD was fitted quite well by ForbMod for all expansion modes using only the diffusion coefficient as a free parameter, where the diffusion parameter was found to correspond to an expected range of values. Our study shows that, in general, the model is able to explain the global properties of an FD caused by a flux rope and can thus be used to help understand the underlying physics in case studies.
Core-based intrinsic fiber-optic absorption sensor for the detection of volatile organic compounds
NASA Astrophysics Data System (ADS)
Klunder, Gregory L.; Russo, Richard E.
1995-03-01
A core-based intrinsic fiber-optic absorption sensor has been developed and tested for the detection of volatile organic compounds. The distal ends of transmitting and receiving fibers are connected by a small cylindrical section of an optically clear silicone rubber. The silicone rubber acts both as a light pipe and as a selective membrane into which the analyte molecules can diffuse. The sensor has been used to detect volatile organics (trichloroethylene, 1,1-dichloroethylene, and benzene) in both aqueous solutions and in the vapor phase or headspace. Absorption spectra obtained in the near-infrared (near-IR) provide qualitative and quantitative information about the analyte. Water, which has strong broad-band absorption in the near-IR, is excluded from the spectra because of the hydrophobic properties of the silicone rubber. The rate-limiting step is shown to be the diffusion through the Nernstian boundary layer surrounding the sensor and not the diffusion through the silicone polymer. The rate of analyte diffusion into the sensor, as measured by the t(sub 90) values (the time required for the sensor to reach 90% of the equilibrium value), is 30 min for measurements in aqueous solutions and approximately 3 min for measurements made in the headspace. The limit of detection obtained with this sensor is approximately 1.1 ppm for trichloroethylene in an aqueous solution.
Morphology and time variation of the Jovian Far UV aurora: Hubble Space Telescope observations
NASA Technical Reports Server (NTRS)
Gerard, Jean-Claude; Dols, Vincent; Paresce, Francesco; Prange, Renee
1993-01-01
High spatial resolution images of the north polar region of Jupiter have been obtained with the Faint Object Camera (FOC) on board the Hubble Space Telescope (HST). The first set of two images collected 87 min apart in February 1992 shows a bright (approximately or equal to 180 kR) emission superimposed on the background in rotation with the planet. Both Ly alpha images show common regions of enhanced emission but differences are also observed, possibly due to temporal variations. The second group of images obtained on June 23 and 26, 1992 isolates a spectral region near 153 nm dominated by the H2 Lyman bands and continuum. Both pictures exhibit a narrow arc structure fitting the L = 30 magnetotail field line footprint in the morning sector and a broader diffuse aurora in the afternoon. They show no indication of an evening twilight enhancement. Although the central meridian longitudes were similar, significant differences are seen in the two exposures, especially in the region of diffuse emission, and interpreted as signatures of temporal variations. The total power radiated in the H2 bands is approximately or equal to 2 x 10(exp 12) W, in agreement with previous UV spectrometer observations. The high local H2 emission rates (approximately 450 kR) imply a particle precipitation carrying an energy flux of about 5 x 10(exp -2) W/sq m.
Passive Rocket Diffuser Theory: A Re-Examination of Minimum Second Throat Size
NASA Technical Reports Server (NTRS)
Jones, Daniel R.
2016-01-01
Second-throat diffusers serve to isolate rocket engines from the effects of ambient back pressure during testing without using active control systems. Among the most critical design parameters is the relative area of the diffuser throat to that of the nozzle throat. A smaller second throat is generally desirable because it decreases the stagnation-to-ambient pressure ratio the diffuser requires for nominal operation. There is a limit, however. Below a certain size, the second throat can cause pressure buildup within the diffuser and prevent it from reaching the start condition that protects the nozzle from side-load damage. This paper presents a method for improved estimation of the minimum second throat area which enables diffuser start. The new 3-zone model uses traditional quasi-one-dimensional compressible flow theory to approximate the structure of two distinct diffuser flow fields observed in Computational Fluid Dynamics (CFD) simulations and combines them to provide a less-conservative estimate of the second throat size limit. It is unique among second throat sizing methods in that it accounts for all major conical nozzle and second throat diffuser design parameters within its limits of application. The performance of the 3-zone method is compared to the historical normal shock and force balance methods, and verified against a large number of CFD simulations at specific heat ratios of 1.4 and 1.25. Validation is left as future work, and the model is currently intended to function only as a first-order design tool.
Two methods for estimating limits to large-scale wind power generation
Miller, Lee M.; Brunsell, Nathaniel A.; Mechem, David B.; Gans, Fabian; Monaghan, Andrew J.; Vautard, Robert; Keith, David W.; Kleidon, Axel
2015-01-01
Wind turbines remove kinetic energy from the atmospheric flow, which reduces wind speeds and limits generation rates of large wind farms. These interactions can be approximated using a vertical kinetic energy (VKE) flux method, which predicts that the maximum power generation potential is 26% of the instantaneous downward transport of kinetic energy using the preturbine climatology. We compare the energy flux method to the Weather Research and Forecasting (WRF) regional atmospheric model equipped with a wind turbine parameterization over a 105 km2 region in the central United States. The WRF simulations yield a maximum generation of 1.1 We⋅m−2, whereas the VKE method predicts the time series while underestimating the maximum generation rate by about 50%. Because VKE derives the generation limit from the preturbine climatology, potential changes in the vertical kinetic energy flux from the free atmosphere are not considered. Such changes are important at night when WRF estimates are about twice the VKE value because wind turbines interact with the decoupled nocturnal low-level jet in this region. Daytime estimates agree better to 20% because the wind turbines induce comparatively small changes to the downward kinetic energy flux. This combination of downward transport limits and wind speed reductions explains why large-scale wind power generation in windy regions is limited to about 1 We⋅m−2, with VKE capturing this combination in a comparatively simple way. PMID:26305925
NASA Astrophysics Data System (ADS)
Cao, Ning; Liang, Xuwei; Zhuang, Qi; Zhang, Jun
2009-02-01
Magnetic Resonance Imaging (MRI) techniques have achieved much importance in providing visual and quantitative information of human body. Diffusion MRI is the only non-invasive tool to obtain information of the neural fiber networks of the human brain. The traditional Diffusion Tensor Imaging (DTI) is only capable of characterizing Gaussian diffusion. High Angular Resolution Diffusion Imaging (HARDI) extends its ability to model more complex diffusion processes. Spherical harmonic series truncated to a certain degree is used in recent studies to describe the measured non-Gaussian Apparent Diffusion Coefficient (ADC) profile. In this study, we use the sampling theorem on band-limited spherical harmonics to choose a suitable degree to truncate the spherical harmonic series in the sense of Signal-to-Noise Ratio (SNR), and use Monte Carlo integration to compute the spherical harmonic transform of human brain data obtained from icosahedral schema.
Loskutov, V V; Sevriugin, V A
2013-05-01
This article presents a new approximation describing fluid diffusion in porous media. Time dependence of the self-diffusion coefficient D(t) in the permeable porous medium is studied based on the assumption that diffusant molecules move randomly. An analytical expression for time dependence of the self-diffusion coefficient was obtained in the following form: D(t)=(D0-D∞)exp(-D0t/λ)+D∞, where D0 is the self-diffusion coefficient of bulk fluid, D∞ is the asymptotic value of the self-diffusion coefficient in the limit of long time values (t→∞), λ is the characteristic parameter of this porous medium with dimensionality of length. Applicability of the solution obtained to the analysis of experimental data is shown. The possibility of passing to short-time and long-time regimes is discussed. Copyright © 2013 Elsevier Inc. All rights reserved.
Making it stick: convection, reaction and diffusion in surface-based biosensors.
Squires, Todd M; Messinger, Robert J; Manalis, Scott R
2008-04-01
The past decade has seen researchers develop and apply novel technologies for biomolecular detection, at times approaching hard limits imposed by physics and chemistry. In nearly all sensors, the transport of target molecules to the sensor can play as critical a role as the chemical reaction itself in governing binding kinetics, and ultimately performance. Yet rarely does an analysis of the interplay between diffusion, convection and reaction motivate experimental design or interpretation. Here we develop a physically intuitive and practical understanding of analyte transport for researchers who develop and employ biosensors based on surface capture. We explore the qualitatively distinct behaviors that result, develop rules of thumb to quickly determine how a given system will behave, and derive order-of-magnitude estimates for fundamental quantities of interest, such as fluxes, collection rates and equilibration times. We pay particular attention to collection limits for micro- and nanoscale sensors, and highlight unexplained discrepancies between reported values and theoretical limits.
Approximate models for the ion-kinetic regime in inertial-confinement-fusion capsule implosions
Hoffman, Nelson M.; Zimmerman, George B.; Molvig, Kim; ...
2015-05-19
“Reduced” (i.e., simplified or approximate) ion-kinetic (RIK) models in radiation-hydrodynamic simulations permit a useful description of inertial-confinement-fusion (ICF) implosions where kinetic deviations from hydrodynamic behavior are important. For implosions in or near the kinetic regime (i.e., when ion mean free paths are comparable to the capsule size), simulations using a RIK model give a detailed picture of the time- and space-dependent structure of imploding capsules, allow an assessment of the relative importance of various kinetic processes during the implosion, enable explanations of past and current observations, and permit predictions of the results of future experiments. The RIK simulation method describedmore » here uses moment-based reduced kinetic models for transport of mass, momentum, and energy by long-mean-free-path ions, a model for the decrease of fusion reactivity owing to the associated modification of the ion distribution function, and a model of hydrodynamic turbulent mixing. Transport models are based on local gradient-diffusion approximations for the transport of moments of the ion distribution functions, with coefficients to impose flux limiting or account for transport modification. After calibration against a reference set of ICF implosions spanning the hydrodynamic-to-kinetic transition, the method has useful, quantifiable predictive ability over a broad range of capsule parameter space. Calibrated RIK simulations show that an important contributor to ion species separation in ICF capsule implosions is the preferential flux of longer-mean-free-path species out of the fuel and into the shell, leaving the fuel relatively enriched in species with shorter mean free paths. Also, the transport of ion thermal energy is enhanced in the kinetic regime, causing the fuel region to have a more uniform, lower ion temperature, extending over a larger volume, than implied by clean simulations. Furthermore, we expect that the success of our simple approach will motivate continued theoretical research into the development of first-principles-based, comprehensive, self-consistent, yet useable models of kinetic multispecies ion behavior in ICF plasmas.« less
Hołyst, Robert; Litniewski, Marek; Jakubczyk, Daniel
2017-09-13
Transport of heat to the surface of a liquid is a limiting step in the evaporation of liquids into an inert gas. Molecular dynamics (MD) simulations of a two component Lennard-Jones (LJ) fluid revealed two modes of energy transport from a vapour to an interface of an evaporating droplet of liquid. Heat is transported according to the equation of temperature diffusion, far from the droplet of radius R. The heat flux, in this region, is proportional to temperature gradient and heat conductivity in the vapour. However at some distance from the interface, Aλ, (where λ is the mean free path in the gas), the temperature has a discontinuity and heat is transported ballistically i.e. by direct individual collisions of gas molecules with the interface. This ballistic transport reduces the heat flux (and consequently the mass flux) by the factor R/(R + Aλ) in comparison to the flux obtained from temperature diffusion. Thus it slows down the evaporation of droplets of sizes R ∼ Aλ and smaller (practically for sizes from 10 3 nm down to 1 nm). We analyzed parameter A as a function of interactions between molecules and their masses. The rescaled parameter, A(k B T b /ε 11 ) 1/2 , is a linear function of the ratio of the molecular mass of the liquid molecules to the molecular mass of the gas molecules, m 1 /m 2 (for a series of chemically similar compounds). Here ε 11 is the interaction parameter between molecules in the liquid (proportional to the enthalpy of evaporation) and T b is the temperature of the gas in the bulk. We tested the predictions of MD simulations in experiments performed on droplets of ethylene glycol, diethylene glycol, triethylene glycol and tetraethylene glycol. They were suspended in an electrodynamic trap and evaporated into dry nitrogen gas. A changes from ∼1 (for ethylene glycol) to approximately 10 (for tetraethylene glycol) and has the same dependence on molecular parameters as obtained for the LJ fluid in MD simulations. The value of x = A(k B T b /ε 11 ) 1/2 is of the order of 1 (for water x = 1.8, glycerol x = 1, ethylene glycol x = 0.4, tetraethylene glycol x = 2.1 evaporating into dry nitrogen at room temperature and for Lennard-Jones fluids x = 2 for m 1 /m 2 = 1 and low temperature).
DOE Office of Scientific and Technical Information (OSTI.GOV)
2010-02-01
Neutron transport, calculation of multiplication factor and neutron fluxes in 2-D configurations: cell calculations, 2-D diffusion and transport, and burnup. Preparation of a cross section library for the code BOXER from a basic library in ENDF/B format (ETOBOX).
The radio emission from the ultraluminous far-infrared galaxy NGC 6240
NASA Technical Reports Server (NTRS)
Colbert, Edward J. M.; Wilson, Andrew S.; Bland-Hawthorn, Jonathan
1994-01-01
We present new radio observations of the 'prototypical' ultraluminous far-infrared galaxy NGC 6240, obtained using the Very Large Array (VLA) at lambda = 20 cm in B-configuration and at lambda = 3.6 cm in A-configuration. These data, along with those from four previous VLA observations, are used to perform a comprehensive study of the radio emission from NGC 6240. Approximately 70% (approximately 3 x 10(exp 23) W/Hz) of the total radio power at 20 cm originates from the nuclear region (approximately less than 1.5 kpc), of which half is emitted by two unresolved (R approximately less than 36 pc) cores and half by a diffuse component. The radio spectrum of the nuclear emission is relatively flat (alpha approximately equals 0.6; S(sub nu) proportional to nu(exp -alpha). The supernova rate required to power the diffuse component is consistent with that predicted by the stellar evolution models of Rieke et al. (1985). If the radio emission from the two compact cores is powered by supernova remnants, then either the remnants overlap and form hot bubbles in the cores, or they are very young (approximately less than 100 yr.) Nearly all of the remaining 30% of the total radio power comes from an 'armlike' region extending westward from the nuclear region. The western arm emission has a steep spectrum (alpha approximately equals 1.0), suggestive of aging effects from synchrotron or inverse-Compton losses, and is not correlated with starlight; we suggest that it is synchrotron emission from a shell of material driven by a galactic superwind. Inverse Compton scattering of far-infrared photons in the radio sources is expected to produce an X-ray flux of approximately 2 - 6 x 10(exp -14) ergs/s/sq cm in the 2 - 10 keV band. No significant radio emission is detected from or near the possible ultramassive 'dark core'.
NASA Technical Reports Server (NTRS)
Mostrel, M. M.
1988-01-01
New shock-capturing finite difference approximations for solving two scalar conservation law nonlinear partial differential equations describing inviscid, isentropic, compressible flows of aerodynamics at transonic speeds are presented. A global linear stability theorem is applied to these schemes in order to derive a necessary and sufficient condition for the finite element method. A technique is proposed to render the described approximations total variation-stable by applying the flux limiters to the nonlinear terms of the difference equation dimension by dimension. An entropy theorem applying to the approximations is proved, and an implicit, forward Euler-type time discretization of the approximation is presented. Results of some numerical experiments using the approximations are reported.
Diffuse versus discrete venting at the Tour Eiffel vent site, Lucky Strike hydrothermal field
NASA Astrophysics Data System (ADS)
Mittelstaedt, E. L.; Escartin, J.; Gracias, N.; Olive, J. L.; Barreyre, T.; Davaille, A. B.; Cannat, M.
2010-12-01
Two styles of fluid flow at the seafloor are widely recognized: (1) localized outflows of high temperature (>300°C) fluids, often black or grey color in color (“black smokers”) and (2) diffuse, lower temperature (<100°C), fluids typically transparent and which escape through fractures, porous rock, and sediment. The partitioning of heat flux between these two types of hydrothermal venting is debated and estimates of the proportion of heat carried by diffuse flow at ridge axes range from 20% to 90% of the total axial heat flux. Here, we attempt to improve estimates of this partitioning by carefully characterizing the heat fluxes carried by diffuse and discrete flows at a single vent site, Tour Eiffel in the Lucky Strike hydrothermal field along the Mid-Atlantic Ridge. Fluid temperature and video data were acquired during the recent Bathyluck’09 cruise to the Lucky Strike hydrothermal field (September, 2009) by Victor aboard “Pourquoi Pas?” (IFREMER, France). Temperature measurements were made of fluid exiting discrete vents, of diffuse effluents immediately above the seafloor, and of vertical temperature gradients within discrete hydrothermal plumes. Video data allow us to calculate the fluid velocity field associated with these outflows: for diffuse fluids, Diffuse Flow Velocimetry tracks the displacement of refractive index anomalies through time; for individual hydrothermal plumes, Particle Image Velocimetry tracks eddies by cross-correlation of pixels intensities between subsequent images. Diffuse fluids exhibit temperatures of 8-60°C and fluid velocities of ~1-10 cm s-1. Discrete outflows at 204-300°C have velocities of ~1-2 m s-1. Combined fluid flow velocities, temperature measurements, and full image mosaics of the actively venting areas are used to estimate heat flux of both individual discrete vents and diffuse outflow. The total integrated heat flux and the partitioning between diffuse and discrete venting at Tour Eiffel, and its implications for the nature of hydrothermal activity across the Lucky Strike site are discussed along with the implications for crustal permeability, associated ecosystems, and mid-ocean ridge processes.
NASA Technical Reports Server (NTRS)
Moses, Julianne I.; Bezard, Bruno; Lellouch, Emmanuel; Gladstone, G. Randall; Feuchtgruber, Helmut; Allen, Mark
2000-01-01
To investigate the details of hydrocarbon photochemistry on Saturn, we have developed a one-dimensional diurnally averaged model that couples hydrocarbon and oxygen photochemistry, molecular and eddy diffusion, radiative transfer, and condensation. The model results are compared with observations from the Infrared Space Observatory (ISO) to place tighter constraints on molecular abundances, to better define Saturn's eddy diffusion coefficient profile, and to identify important chemical schemes that control the abundances of the observable hydrocarbons in Saturn's upper atmosphere. From the ISO observations, we determine that the column 12 densities of CH3, CH3C2H, and C4H2 above 10 mbar are 4 (sup +2) (sub -1.5) x 10 (exp 13) cm (sup -2), (1.1 plus or minus 0.3) x 10 (exp 15) cm (exp -2), and (1.2 plus or minus 0.3) x 10 (exp 14) cm (sup -2), respectively. The observed ISO emission features also indicate C2H2 mixing ratios of 1.2 (sup +0.9) (sub -0.6) x 10 (exp -6) at 0.3 mbar and (2.7 plus or minus 0.8) x 10 (exp -7) at 1.4 mbar, and a C2H6 mixing ratio of (9 plus or minus 2.5) x 10 (exp -6) at 0.5 mbar. Upper limits are provided for C2H4, CH2CCH2, C3H8, and C6H2 sensitivity of the model results to variations in the eddy diffusion coefficient profile, the solar flux, the CH4 photolysis branching ratios, the atomic hydrogen influx, and key reaction rates are discussed in detail. We find that C4H2 and CH3C2H are particularly good tracers of important chemical processes and physical conditions in Saturn's upper atmosphere, and C2H6 is a good tracer of the eddy diffusion coefficient in Saturn's lower stratosphere. The eddy diffusion coefficient must be smaller than approximately 3 x 10 (exp 4) sq cm s (sup -1) at pressures greater than 1 mbar in order to reproduce the C2H6 abundance inferred from ISO observations. The eddy diffusion coefficients in the upper stratosphere could be constrained by observations of CH3 radicals if the low-temperature chemistry of CH3 were better understood. We also discuss the implications of our modeling for aerosol formation in Saturn's lower stratosphere-diacetylene, butane, and water condense between approximately 1 and 300 mbar in our model and will dominate stratospheric haze formation at nonauroral latitudes. Our photochemical models will be useful for planning observational sequences and for analyzing data from the upcoming Cassini mission.
Rasilo, Terhi; Prairie, Yves T; Del Giorgio, Paul A
2015-03-01
Lakes are a major component of boreal landscapes, and whereas lake CO2 emissions are recognized as a major component of regional C budgets, there is still much uncertainty associated to lake CH4 fluxes. Here, we present a large-scale study of the magnitude and regulation of boreal lake summer diffusive CH4 fluxes, and their contribution to total lake carbon (C) emissions, based on in situ measurements of concentration and fluxes of CH4 and CO2 in 224 lakes across a wide range of lake type and environmental gradients in Québec. The diffusive CH4 flux was highly variable (mean 11.6 ± 26.4 SD mg m(-2) d(-1) ), and it was positively correlated with temperature and lake nutrient status, and negatively correlated with lake area and colored dissolved organic matter (CDOM). The relationship between CH4 and CO2 concentrations fluxes was weak, suggesting major differences in their respective sources and/or regulation. For example, increasing water temperature leads to higher CH4 flux but does not significantly affect CO2 flux, whereas increasing CDOM concentration leads to higher CO2 flux but lower CH4 flux. CH4 contributed to 8 ± 23% to the total lake C emissions (CH4 + CO2 ), but 18 ± 25% to the total flux in terms of atmospheric warming potential, expressed as CO2 -equivalents. The incorporation of ebullition and plant-mediated CH4 fluxes would further increase the importance of lake CH4 . The average Q10 of CH4 flux was 3.7, once other covarying factors were accounted for, but this apparent Q10 varied with lake morphometry and was higher for shallow lakes. We conclude that global climate change and the resulting shifts in temperature will strongly influence lake CH4 fluxes across the boreal biome, but these climate effects may be altered by regional patterns in lake morphometry, nutrient status, and browning. © 2014 John Wiley & Sons Ltd.
A Theoretical Understanding of Circular Polarization Memory in Random Media
NASA Astrophysics Data System (ADS)
Dark, Julia
Radiative transport theory describes the propagation of light in random media that absorb, scatter, and emit radiation. To describe the propagation of light, the full polarization state is quantified using the Stokes parameters. For the sake of mathematical convenience, the polarization state of light is often neglected leading to the scalar radiative transport equation for the intensity only. For scalar transport theory, there is a well-established body of literature on numerical and analytic approximations to the radiative transport equation. We extend the scalar theory to the vector radiative transport equation (vRTE). In particular, we are interested in the theoretical basis for a phenomena called circular polarization memory. Circular polarization memory is the physical phenomena whereby circular polarization retains its ellipticity and handedness when propagating in random media. This is in contrast to the propagation of linear polarization in random media, which depolarizes at a faster rate, and specular reflection of circular polarization, whereby the circular polarization handedness flips. We investigate two limits that are of known interest in the phenomena of circular polarization memory. The first limit we investigate is that of forward-peaked scattering, i.e. the limit where most scattering events occur in the forward or near-forward directions. The second limit we consider is that of strong scattering and weak absorption. In the forward-peaked scattering limit we approximate the vRTE by a system of partial differential equations motivated by the scalar Fokker-Planck approximation. We call the leading order approximation the vector Fokker-Planck approximation. The vector Fokker Planck approximation predicts that strongly forward-peaked media exhibit circular polarization memory where the strength of the effect can be calculated from the expansion of the scattering matrix in special functions. In addition, we find in this limit that total intensity, linear polarization, and circular polarization decouple. From this result we conclude, that in the Fokker-Planck limit the scalar approximation is an appropriate leading order approximation. In the strong scattering and weak absorbing limit the vector radiative transport equation can be analyzed using boundary layer theory. In this case, the problem of light scattering in an optically thick medium is reduced to a 1D vRTE near the boundary and a 3D diffusion equation in the interior. We develop and implement a numerical solver for the boundary layer problem by using a discrete ordinate solver in the boundary layer and a spectral method to solve the diffusion approximation in the interior. We implement the method in Fortran 95 with external dependencies on BLAS, LAPACK, and FFTW. By analyzing the spectrum of the discretized vRTE in the boundary layer, we are able to predict the presence of circular polarization memory in a given medium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Zheng; Huang, Hongying; Yan, Jue
We develop 3rd order maximum-principle-satisfying direct discontinuous Galerkin methods [8], [9], [19] and [21] for convection diffusion equations on unstructured triangular mesh. We carefully calculate the normal derivative numerical flux across element edges and prove that, with proper choice of parameter pair (β 0,β 1) in the numerical flux formula, the quadratic polynomial solution satisfies strict maximum principle. The polynomial solution is bounded within the given range and third order accuracy is maintained. There is no geometric restriction on the meshes and obtuse triangles are allowed in the partition. As a result, a sequence of numerical examples are carried outmore » to demonstrate the accuracy and capability of the maximum-principle-satisfying limiter.« less
NUMERICAL ANALYSES FOR TREATING DIFFUSION IN SINGLE-, TWO-, AND THREE-PHASE BINARY ALLOY SYSTEMS
NASA Technical Reports Server (NTRS)
Tenney, D. R.
1994-01-01
This package consists of a series of three computer programs for treating one-dimensional transient diffusion problems in single and multiple phase binary alloy systems. An accurate understanding of the diffusion process is important in the development and production of binary alloys. Previous solutions of the diffusion equations were highly restricted in their scope and application. The finite-difference solutions developed for this package are applicable for planar, cylindrical, and spherical geometries with any diffusion-zone size and any continuous variation of the diffusion coefficient with concentration. Special techniques were included to account for differences in modal volumes, initiation and growth of an intermediate phase, disappearance of a phase, and the presence of an initial composition profile in the specimen. In each analysis, an effort was made to achieve good accuracy while minimizing computation time. The solutions to the diffusion equations for single-, two-, and threephase binary alloy systems are numerically calculated by the three programs NAD1, NAD2, and NAD3. NAD1 treats the diffusion between pure metals which belong to a single-phase system. Diffusion in this system is described by a one-dimensional Fick's second law and will result in a continuous composition variation. For computational purposes, Fick's second law is expressed as an explicit second-order finite difference equation. Finite difference calculations are made by choosing the grid spacing small enough to give convergent solutions of acceptable accuracy. NAD2 treats diffusion between pure metals which form a two-phase system. Diffusion in the twophase system is described by two partial differential equations (a Fick's second law for each phase) and an interface-flux-balance equation which describes the location of the interface. Actual interface motion is obtained by a mass conservation procedure. To account for changes in the thicknesses of the two phases as diffusion progresses, a variable grid technique developed by Murray and Landis is employed. These equations are expressed in finite difference form and solved numerically. Program NAD3 treats diffusion between pure metals which form a two-phase system with an intermediate third phase. Diffusion in the three-phase system is described by three partial differential expressions of Fick's second law and two interface-flux-balance equations. As with the two-phase case, a variable grid finite difference is used to numerically solve the diffusion equations. Computation time is minimized without sacrificing solution accuracy by treating the three-phase problem as a two-phase problem when the thickness of the intermediate phase is less than a preset value. Comparisons between these programs and other solutions have shown excellent agreement. The programs are written in FORTRAN IV for batch execution on the CDC 6600 with a central memory requirement of approximately 51K (octal) 60 bit words.
NASA Astrophysics Data System (ADS)
Tan, Z.; Schneider, T.; Teixeira, J.; Lam, R.; Pressel, K. G.
2014-12-01
Sub-grid scale (SGS) closures in current climate models are usually decomposed into several largely independent parameterization schemes for different cloud and convective processes, such as boundary layer turbulence, shallow convection, and deep convection. These separate parameterizations usually do not converge as the resolution is increased or as physical limits are taken. This makes it difficult to represent the interactions and smooth transition among different cloud and convective regimes. Here we present an eddy-diffusivity mass-flux (EDMF) closure that represents all sub-grid scale turbulent, convective, and cloud processes in a unified parameterization scheme. The buoyant updrafts and precipitative downdrafts are parameterized with a prognostic multiple-plume mass-flux (MF) scheme. The prognostic term for the mass flux is kept so that the life cycles of convective plumes are better represented. The interaction between updrafts and downdrafts are parameterized with the buoyancy-sorting model. The turbulent mixing outside plumes is represented by eddy diffusion, in which eddy diffusivity (ED) is determined from a turbulent kinetic energy (TKE) calculated from a TKE balance that couples the environment with updrafts and downdrafts. Similarly, tracer variances are decomposed consistently between updrafts, downdrafts and the environment. The closure is internally coupled with a probabilistic cloud scheme and a simple precipitation scheme. We have also developed a relatively simple two-stream radiative scheme that includes the longwave (LW) and shortwave (SW) effects of clouds, and the LW effect of water vapor. We have tested this closure in a single-column model for various regimes spanning stratocumulus, shallow cumulus, and deep convection. The model is also run towards statistical equilibrium with climatologically relevant large-scale forcings. These model tests are validated against large-eddy simulation (LES) with the same forcings. The comparison of results verifies the capacity of this closure to realistically represent different cloud and convective processes. Implementation of the closure in an idealized GCM allows us to study cloud feedbacks to climate change and to study the interactions between clouds, convections, and the large-scale circulation.
High-Order Semi-Discrete Central-Upwind Schemes for Multi-Dimensional Hamilton-Jacobi Equations
NASA Technical Reports Server (NTRS)
Bryson, Steve; Levy, Doron; Biegel, Bran R. (Technical Monitor)
2002-01-01
We present high-order semi-discrete central-upwind numerical schemes for approximating solutions of multi-dimensional Hamilton-Jacobi (HJ) equations. This scheme is based on the use of fifth-order central interpolants like those developed in [1], in fluxes presented in [3]. These interpolants use the weighted essentially nonoscillatory (WENO) approach to avoid spurious oscillations near singularities, and become "central-upwind" in the semi-discrete limit. This scheme provides numerical approximations whose error is as much as an order of magnitude smaller than those in previous WENO-based fifth-order methods [2, 1]. Thee results are discussed via examples in one, two and three dimensions. We also pregnant explicit N-dimensional formulas for the fluxes, discuss their monotonicity and tl!e connection between this method and that in [2].
Self-learning kinetic Monte Carlo simulations of diffusion in ferromagnetic α-Fe-Si alloys
NASA Astrophysics Data System (ADS)
Nandipati, Giridhar; Jiang, Xiujuan; Vemuri, Rama S.; Mathaudhu, Suveen; Rohatgi, Aashish
2018-01-01
Diffusion of Si atom and vacancy in the A2-phase of α-Fe-Si alloys in the ferromagnetic state, with and without magnetic order and in various temperature ranges, are studied using AKSOME, an on-lattice self-learning KMC code. Diffusion of the Si atom and the vacancy are studied in the dilute limit and up to 12 at.% Si, respectively, in the temperature range 350-700 K. Local Si neighborhood dependent activation energies for vacancy hops were calculated on-the-fly using a broken-bond model based on pairwise interaction. The migration barrier and prefactor for the Si diffusion in the dilute limit were obtained and found to agree with published data within the limits of uncertainty. Simulations results show that the prefactor and the migration barrier for the Si diffusion are approximately an order of magnitude higher, and a tenth of an electron-volt higher, respectively, in the magnetic disordered state than in the fully ordered state. However, the net result is that magnetic disorder does not have a significant effect on Si diffusivity within the range of parameters studied in this work. Nevertheless, with increasing temperature, the magnetic disorder increases and its effect on the Si diffusivity also increases. In the case of vacancy diffusion, with increasing Si concentration, its diffusion prefactor decreases while the migration barrier more or less remained constant and the effect of magnetic disorder increases with Si concentration. Important vacancy-Si/Fe atom exchange processes and their activation barriers were identified, and the effect of energetics on ordered phase formation in Fe-Si alloys are discussed.
Double-diffusive instabilities in ancient seawater
NASA Astrophysics Data System (ADS)
Pawlowicz, Rich; Scheifele, Ben; Zaloga, Artem; Wuest, Alfred; Sommer, Tobias
2015-04-01
Powell Lake, British Columbia, Canada is a geothermally heated lake about 350m deep with a saline lower layer that was isolated from the ocean by coastal uplift about 11000 years ago, after the last ice age. Careful temperature and conductivity profiling measurements show consistent, stable, and spatially/temporally coherent steps resulting from double-diffusive processes in certain ranges of depth, vertically interspersed with other depth ranges where these signatures are not present. These features are quasi-stable for at least several years. Although molecular diffusion has removed about half the salt from the deepest waters and biogeochemical processes have slightly modified the water composition, the lack of tidal processes and shear-driven mixing, as well as an accurate estimate of heat flux from both sediment heat flux measurements and gradient measurements in a region not susceptible to diffusive instabilities, makes this a unique geophysical laboratory to study double diffusion. Here we present a detailed picture of the structure of Powell Lake and its double-diffusive stair cases, and suggest shortcomings with existing parameterizations for fluxes through such staircases.
An Ultrathin Nanoporous Membrane Evaporator.
Lu, Zhengmao; Wilke, Kyle L; Preston, Daniel J; Kinefuchi, Ikuya; Chang-Davidson, Elizabeth; Wang, Evelyn N
2017-10-11
Evaporation is a ubiquitous phenomenon found in nature and widely used in industry. Yet a fundamental understanding of interfacial transport during evaporation remains limited to date owing to the difficulty of characterizing the heat and mass transfer at the interface, especially at high heat fluxes (>100 W/cm 2 ). In this work, we elucidated evaporation into an air ambient with an ultrathin (≈200 nm thick) nanoporous (≈130 nm pore diameter) membrane. With our evaporator design, we accurately monitored the temperature of the liquid-vapor interface, reduced the thermal-fluidic transport resistance, and mitigated the clogging risk associated with contamination. At a steady state, we demonstrated heat fluxes of ≈500 W/cm 2 across the interface over a total evaporation area of 0.20 mm 2 . In the high flux regime, we showed the importance of convective transport caused by evaporation itself and that Fick's first law of diffusion no longer applies. This work improves our fundamental understanding of evaporation and paves the way for high flux phase-change devices.
NASA Astrophysics Data System (ADS)
Lohmann, Christoph; Kuzmin, Dmitri; Shadid, John N.; Mabuza, Sibusiso
2017-09-01
This work extends the flux-corrected transport (FCT) methodology to arbitrary order continuous finite element discretizations of scalar conservation laws on simplex meshes. Using Bernstein polynomials as local basis functions, we constrain the total variation of the numerical solution by imposing local discrete maximum principles on the Bézier net. The design of accuracy-preserving FCT schemes for high order Bernstein-Bézier finite elements requires the development of new algorithms and/or generalization of limiting techniques tailored for linear and multilinear Lagrange elements. In this paper, we propose (i) a new discrete upwinding strategy leading to local extremum bounded low order approximations with compact stencils, (ii) high order variational stabilization based on the difference between two gradient approximations, and (iii) new localized limiting techniques for antidiffusive element contributions. The optional use of a smoothness indicator, based on a second derivative test, makes it possible to potentially avoid unnecessary limiting at smooth extrema and achieve optimal convergence rates for problems with smooth solutions. The accuracy of the proposed schemes is assessed in numerical studies for the linear transport equation in 1D and 2D.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abbasi, R.; Aguilar, J. A.; Andeen, K.
2011-10-01
We report on the first search for atmospheric and for diffuse astrophysical neutrino-induced showers (cascades) in the IceCube detector using 257 days of data collected in the year 2007-2008 with 22 strings active. A total of 14 events with energies above 16 TeV remained after event selections in the diffuse analysis, with an expected total background contribution of 8.3{+-}3.6. At 90% confidence we set an upper limit of E{sup 2}{Phi}{sub 90%CL}<3.6x10{sup -7} GeV{center_dot}cm{sup -2}{center_dot}s{sup -1}{center_dot}sr{sup -1} on the diffuse flux of neutrinos of all flavors in the energy range between 24 TeV and 6.6 PeV assuming that {Phi}{proportional_to}E{sup -2} andmore » the flavor composition of the {nu}{sub e} ratio {nu}{sub {mu}} ratio {nu}{sub {tau}} flux is 1 ratio 1 ratio 1 at the Earth. The atmospheric neutrino analysis was optimized for lower energies. A total of 12 events were observed with energies above 5 TeV. The observed number of events is consistent with the expected background, within the uncertainties.« less
Constraints on Galactic Neutrino Emission with Seven Years of IceCube Data
NASA Astrophysics Data System (ADS)
Aartsen, M. G.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Samarai, I. Al; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; Anton, G.; Argüelles, C.; Auffenberg, J.; Axani, S.; Bagherpour, H.; Bai, X.; Barron, J. P.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; BenZvi, S.; Berley, D.; Bernardini, E.; Besson, D. Z.; Binder, G.; Bindig, D.; Blaufuss, E.; Blot, S.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Bourbeau, J.; Bradascio, F.; Braun, J.; Brayeur, L.; Brenzke, M.; Bretz, H.-P.; Bron, S.; Burgman, A.; Carver, T.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Cross, R.; Day, M.; de André, J. P. A. M.; De Clercq, C.; DeLaunay, J. J.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dujmovic, H.; Dumm, J. P.; Dunkman, M.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Eller, P.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Franckowiak, A.; Friedman, E.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Giang, W.; Glauch, T.; Glüsenkamp, T.; Goldschmidt, A.; Gonzalez, J. G.; Grant, D.; Griffith, Z.; Haack, C.; Hallgren, A.; Halzen, F.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Hokanson-Fasig, B.; Hoshina, K.; Huang, F.; Huber, M.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Kalacynski, P.; Kang, W.; Kappes, A.; Karg, T.; Karle, A.; Katz, U.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kheirandish, A.; Kim, J.; Kim, M.; Kintscher, T.; Kiryluk, J.; Kittler, T.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Köpke, L.; Kopper, C.; Kopper, S.; Koschinsky, J. P.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, M.; Krückl, G.; Kunnen, J.; Kunwar, S.; Kurahashi, N.; Kuwabara, T.; Kyriacou, A.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lauber, F.; Lennarz, D.; Lesiak-Bzdak, M.; Leuermann, M.; Liu, Q. R.; Lu, L.; Lünemann, J.; Luszczak, W.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mancina, S.; Maruyama, R.; Mase, K.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meier, M.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Micallef, J.; Momenté, G.; Montaruli, T.; Moore, R. W.; Moulai, M.; Nahnhauer, R.; Nakarmi, P.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Peiffer, P.; Pepper, J. A.; Pérez de los Heros, C.; Pieloth, D.; Pinat, E.; Plum, M.; Price, P. B.; Przybylski, G. T.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Reimann, R.; Relethford, B.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Rysewyk, D.; Sälzer, T.; Sanchez Herrera, S. E.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Sarkar, S.; Satalecka, K.; Schlunder, P.; Schmidt, T.; Schneider, A.; Schoenen, S.; Schöneberg, S.; Schumacher, L.; Seckel, D.; Seunarine, S.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stachurska, J.; Stanev, T.; Stasik, A.; Stettner, J.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taboada, I.; Tatar, J.; Tenholt, F.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Tung, C. F.; Turcati, A.; Turley, C. F.; Ty, B.; Unger, E.; Usner, M.; Vandenbroucke, J.; Van Driessche, W.; van Eijndhoven, N.; Vanheule, S.; van Santen, J.; Vehring, M.; Vogel, E.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandler, F. D.; Wandkowsky, N.; Waza, A.; Weaver, C.; Weiss, M. J.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Wickmann, S.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wolf, M.; Wood, J.; Wood, T. R.; Woolsey, E.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Yuan, T.; Zoll, M.; IceCube Collaboration
2017-11-01
The origins of high-energy astrophysical neutrinos remain a mystery despite extensive searches for their sources. We present constraints from seven years of IceCube Neutrino Observatory muon data on the neutrino flux coming from the Galactic plane. This flux is expected from cosmic-ray interactions with the interstellar medium or near localized sources. Two methods were developed to test for a spatially extended flux from the entire plane, both of which are maximum likelihood fits but with different signal and background modeling techniques. We consider three templates for Galactic neutrino emission based primarily on gamma-ray observations and models that cover a wide range of possibilities. Based on these templates and in the benchmark case of an unbroken {E}-2.5 power-law energy spectrum, we set 90% confidence level upper limits, constraining the possible Galactic contribution to the diffuse neutrino flux to be relatively small, less than 14% of the flux reported in Aartsen et al. above 1 TeV. A stacking method is also used to test catalogs of known high-energy Galactic gamma-ray sources.
Resolving power for the diffusion orientation distribution function.
Jensen, Jens H; Helpern, Joseph A
2016-08-01
The diffusion orientation distribution function (dODF) is primarily used for white matter fiber tractography. Here the resolving power of the dODF is investigated for a simple diffusion model of two intersecting axonal fiber bundles. The resolving power for the dODF is evaluated using the Sparrow criterion. This is determined for the exact dODF and also for q-space imaging (QSI), q-ball, and kurtosis approximations. Based on theoretical and numerical calculations, the resolving power is found to depend on the eigenvalues of the diffusion model and on the degree of radial weighting for the dODF. The resolving powers of the QSI and q-ball dODFs improve with increased b-value. The kurtosis dODF has a resolving power similar to that of the exact dODF. The dODFs, whether exact or approximate, have finite resolving powers that limit their sensitivity to fiber crossings. The resolving powers for the different dODFs considered here provide convenient benchmarks for assessing and comparing their performance. Magn Reson Med 76:679-688, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kavenoky, A.
1973-01-01
From national topical meeting on mathematical models and computational techniques for analysis of nuclear systems; Ann Arbor, Michigan, USA (8 Apr 1973). In mathematical models and computational techniques for analysis of nuclear systems. APOLLO calculates the space-and-energy-dependent flux for a one dimensional medium, in the multigroup approximation of the transport equation. For a one dimensional medium, refined collision probabilities have been developed for the resolution of the integral form of the transport equation; these collision probabilities increase accuracy and save computing time. The interaction between a few cells can also be treated by the multicell option of APOLLO. The diffusionmore » coefficient and the material buckling can be computed in the various B and P approximations with a linearly anisotropic scattering law, even in the thermal range of the spectrum. Eventually this coefficient is corrected for streaming by use of Benoist's theory. The self-shielding of the heavy isotopes is treated by a new and accurate technique which preserves the reaction rates of the fundamental fine structure flux. APOLLO can perform a depletion calculation for one cell, a group of cells or a complete reactor. The results of an APOLLO calculation are the space-and-energy-dependent flux, the material buckling or any reaction rate; these results can also be macroscopic cross sections used as input data for a 2D or 3D depletion and diffusion code in reactor geometry. 10 references. (auth)« less
Energetic Ion and Electron Irradiation of the Icy Galilean Satellites
NASA Technical Reports Server (NTRS)
Cooper, John F.; Johnson, Robert E.; Mauk, Barry H.; Garrett, Henry B.; Gehrels, Neil
2001-01-01
Galileo Orbiter measurements of energetic ions (20 keV to 100 MeV) and electrons (20-700 keV) in Jupiter's magnetosphere are used, in conjunction with the JPL electron model (less than 40 MeV), to compute irradiation effects in the surface layers of Europa, Ganymede, and Callisto. Significant elemental modifications are produced on unshielded surfaces to approximately centimeter depths in times of less than or equal to 10(exp 6) years, whereas micrometer depths on Europa are fully processed in approximately 10 years. Most observations of surface composition are limited to optical depths of approximately 1 mm, which are indirect contact with the space environment. Incident flux modeling includes Stormer deflection by the Ganymede dipole magnetic field, likely variable over that satellite's irradiation history. Delivered energy flux of approximately 8 x 10(exp 10) keV/square cm-s at Europa is comparable to total internal heat flux in the same units from tidal and radiogenic sources, while exceeding that for solar UV energies (greater than 6 eV) relevant to ice chemistry. Particle energy fluxes to Ganymede's equator and Callisto are similar at approximately 2-3 x 10(exp 8) keV/square cm-s with 5 x 10(exp 9) at Ganymede's polar cap, the latter being comparable to radiogenic energy input. Rates of change in optical reflectance and molecular composition on Europa, and on Ganymede's polar cap, are strongly driven by energy from irradiation, even in relatively young regions. Irradiation of nonice materials can produce SO2 and CO2, detected on Callisto and Europa, and simple to complex hydrocarbons. Iogenic neutral atoms and meteoroids deliver negligible energy approximately 10(exp 4-5) keV/square cm-s but impacts of the latter are important for burial or removal of irradiation products. Downward transport of radiation produced oxidants and hydrocarbons could deliver significant chemical energy into the satellite interiors for astrobiological evolution in putative sub-surface oceans.
NASA Astrophysics Data System (ADS)
López-López, J. M.; Moncho-Jordá, A.; Schmitt, A.; Hidalgo-Álvarez, R.
2005-09-01
Binary diffusion-limited cluster-cluster aggregation processes are studied as a function of the relative concentration of the two species. Both, short and long time behaviors are investigated by means of three-dimensional off-lattice Brownian Dynamics simulations. At short aggregation times, the validity of the Hogg-Healy-Fuerstenau approximation is shown. At long times, a single large cluster containing all initial particles is found to be formed when the relative concentration of the minority particles lies above a critical value. Below that value, stable aggregates remain in the system. These stable aggregates are composed by a few minority particles that are highly covered by majority ones. Our off-lattice simulations reveal a value of approximately 0.15 for the critical relative concentration. A qualitative explanation scheme for the formation and growth of the stable aggregates is developed. The simulations also explain the phenomenon of monomer discrimination that was observed recently in single cluster light scattering experiments.
Variational description of the positive column with two-stem ionization
NASA Technical Reports Server (NTRS)
Crawford, F. W.
1979-01-01
The ionization balance in diffusion dominated discharges which depends on both one and two step ionization processes is considered. The Spenke diffusion equation (D sq delta n + neutrino n + sq kn =0) describing such conditions is solved by the Rayleigh-Ritz variational method. Simple analytic approximations to the density profile, and the similarity relation between neutrino,k,D and the discharge dimensions, are derived for planar and cylindrical geometry, and compared with exact computations for certain limiting cases.
CO2 flux monitoring using Continuous Timeseries-Forced Diffusion (CT-FD): Development, Validation
NASA Astrophysics Data System (ADS)
McArthur, G. S.; Risk, D. A.; Nickerson, N. R.; Creelman, C. A.; Beltrami, H.
2009-12-01
Land-based CO2 flux measurements are a key indicator of the biological, chemical and physical processes occurring in the soil. While highly dense temporal flux measurements can be acquired using Eddy Covariance towers, or flux chambers, the challenge of gathering data that is rich both temporally and spatially persists. Over the past two years we have developed a new technique for measuring soil CO2 fluxes, called continuous timeseries-forced diffusion (CT-FD) attempts to satisfy the need for spatially and temporally rich data. The CT-FD probe consists of a Vaisala CO2 sensor, embodied in a PVC casing, with tear/UV resistant Tyvek membranes at both the inlet and outlet. The probe delivers continuous flux data and can be inexpensively replicated across the landscape.The CT-FD technique works by forcing a known diffusive regime between the soil and the atmosphere, allowing the calculation of fluxes across the soil/atmosphere boundary to be made from; the internal concentration of a CT-FD probe placed at the soil surface; and a common reference probe designed to capture the atmospheric CO2. For every concentration measurement, the difference between the probe and the reference concentration is indicative of a unique flux value. Here we examine properties of the instrument and method, as documented by a long series of developmental studies involving numerical gas transport modeling, laboratory and field experiments. A suite of 1D and 3D modeling experiments were needed to optimize embodiment and geometries of the probe. These show that the probe should have a relatively long collar, with relatively high diffusivity made possible by having large, highly diffusive membranes, both of which help to induce 1D movement of gases into the probe and reduce the lateral diffusion around the probe. Modeling also shows that correction for lateral diffusion is feasible. As for error, sensor error transfers linearly to errors in the flux, and that the sensor can be used in non free-atmospheric environments, for example when snow falls and persists. For calibration purposes we designed and built a flux generator, allowing us to test different mathematical approaches for reliability and calibrations which is done by plotting the known flux against the difference between probe and atmospheric CO2 measurements. Validation of the technique was also carried out in the lab using soil plots in which heating cables drove diurnal microbial CO2 production, and we found CT-FD to have an excellent correspondence with LI-8100, showing similar accuracy and precision. Using CT-FD we performed two extensive winter campaigns and one summer campaign in a salt marsh with both CO2-capable and CH4-capable (METS sensor-based) probes. Here we found the CT-FD capable of long, unattended deployments, continued effectiveness when buried under deep snowpack, exposed to long term freezing temperatures, and heavy rain events.
NASA Astrophysics Data System (ADS)
le Roux, J. A.
2017-12-01
We developed previously a focused transport kinetic theory formalism with Fokker-plank coefficients (and its Parker transport limit) to model large-scale energetic particle transport and acceleration in solar wind regions with multiple contracting and merging small-scale flux ropes on MHD (inertial) scales (Zank et al. 2014; le Roux et al. 2015). The theory unifies the main acceleration mechanisms identified in particle simulations for particles temporarily trapped in such active flux rope structures, such as acceleration by the parallel electric field in reconnection regions between merging flux ropes, curvature drift acceleration in incompressible/compressible contracting and merging flux ropes, and betatron acceleration (e.g., Dahlin et al 2016). Initial analytical solutions of the Parker transport equation in the test particle limit showed that the energetic particle pressure from efficient flux-rope energization can potentially be high in turbulent solar wind regions containing active flux-rope structures. This requires taking into account the back reaction of energetic particles on flux ropes to more accurately determine the efficiency of energetic particles acceleration by small-scale flux ropes. To accomplish this goal we developed recently an extension of the kinetic theory to a kinetic-MHD level. We will present the extended theory showing the focused transport equation to be coupled to a solar wind MHD transport equation for small-scale flux-rope energy density extracted from a recently published nearly incompressible theory for solar wind MHD turbulence with a plasma beta of 1 (Zank et al. 2017). In the flux-rope transport equation appears new expressions for the damping/growth rates of flux-rope energy derived from assuming energy conservation in the interaction between energetic particles and small-scale flux ropes for all the main flux-rope acceleration mechanisms, whereas previous expressions for average particle acceleration rates have been explored in more detail. Future applications will involve exploring the relative role of diffusive shock and flux-ropes acceleration in the vicinity of traveling shocks in the supersonic solar wind near Earth where many flux-rope structures were detected recently (Hu et al 2017, this session).
Energy release and transfer in guide field reconnection
NASA Astrophysics Data System (ADS)
Birn, J.; Hesse, M.
2010-01-01
Properties of energy release and transfer by magnetic reconnection in the presence of a guide field are investigated on the basis of 2.5-dimensional magnetohydrodynamic (MHD) and particle-in-cell (PIC) simulations. Two initial configurations are considered: a plane current sheet with a uniform guide field of 80% of the reconnecting magnetic field component and a force-free current sheet in which the magnetic field strength is constant but the field direction rotates by 180° through the current sheet. The onset of reconnection is stimulated by localized, temporally limited compression. Both MHD and PIC simulations consistently show that the outgoing energy fluxes are dominated by (redirected) Poynting flux and enthalpy flux, whereas bulk kinetic energy flux and heat flux (in the PIC simulation) are small. The Poynting flux is mainly associated with the magnetic energy of the guide field which is carried from inflow to outflow without much alteration. The conversion of annihilated magnetic energy to enthalpy flux (that is, thermal energy) stems mainly from the fact that the outflow occurs into a closed field region governed by approximate force balance between Lorentz and pressure gradient forces. Therefore, the energy converted from magnetic to kinetic energy by Lorentz force acceleration becomes immediately transferred to thermal energy by the work done by the pressure gradient force. Strong similarities between late stages of MHD and PIC simulations result from the fact that conservation of mass and entropy content and footpoint displacement of magnetic flux tubes, imposed in MHD, are also approximately satisfied in the PIC simulations.
Cooperative simulation of lithography and topography for three-dimensional high-aspect-ratio etching
NASA Astrophysics Data System (ADS)
Ichikawa, Takashi; Yagisawa, Takashi; Furukawa, Shinichi; Taguchi, Takafumi; Nojima, Shigeki; Murakami, Sadatoshi; Tamaoki, Naoki
2018-06-01
A topography simulation of high-aspect-ratio etching considering transports of ions and neutrals is performed, and the mechanism of reactive ion etching (RIE) residues in three-dimensional corner patterns is revealed. Limited ion flux and CF2 diffusion from the wide space of the corner is found to have an effect on the RIE residues. Cooperative simulation of lithography and topography is used to solve the RIE residue problem.
NASA Astrophysics Data System (ADS)
Karak, Bidya Binay; Cameron, Robert
2016-05-01
We investigate the role of downward magnetic pumping near the surface using a kinematic Babcock-Leighton model. We find that the pumping causes the poloidal field to become predominately radial in the near-surface shear layer. This allows the negative radial shear in the near-surface layer to effectively act on the radial field to produce a toroidal field. Consequently, we observe a clear equatorward migration of the toroidal field at low latitudes even when there is no meridional flow in the deep CZ. We show a case where the period of a dynamo wave solution is approximately 11 years. Flux transport models are also shown with periods close to 11 years. Both the dynamo wave and flux transport dynamo are thus able to reproduce some of the observed features of solar cycle. The main difference between the two types of dynamo is the value of $\\alpha$ required to produce dynamo action. In both types of dynamo, the surface meridional flow helps to advect and build the polar field in high latitudes, while in flux transport dynamo the equatorward flow near the bottom of CZ advects toroidal field to cause the equatorward migration in butterfly wings and this advection makes the dynamo easier by transporting strong toroidal field to low latitudes where $\\alpha$ effect works. Another conclusion of our study is that the magnetic pumping suppresses the diffusion of fields through the photospheric surface which helps to achieve the 11-year dynamo cycle at a moderately larger value of magnetic diffusivity than has previously been used.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barajas-Solano, David A.; Tartakovsky, A. M.
2016-10-13
We present a hybrid scheme for the coupling of macro and microscale continuum models for reactive contaminant transport in fractured and porous media. The transport model considered is the advection-dispersion equation, subject to linear heterogeneous reactive boundary conditions. The Multiscale Finite Volume method (MsFV) is employed to define an approximation to the microscale concentration field defined in terms of macroscopic or \\emph{global} degrees of freedom, together with local interpolator and corrector functions capturing microscopic spatial variability. The macroscopic mass balance relations for the MsFV global degrees of freedom are coupled with the macroscopic model, resulting in a global problem for the simultaneous time-stepping of all macroscopic degrees of freedom throughout the domain. In order to perform the hybrid coupling, the micro and macroscale models are applied over overlapping subdomains of the simulation domain, with the overlap denoted as the handshake subdomainmore » $$\\Omega^{hs}$$, over which continuity of concentration and transport fluxes between models is enforced. Continuity of concentration is enforced by posing a restriction relation between models over $$\\Omega^{hs}$$. Continuity of fluxes is enforced by prolongating the macroscopic model fluxes across the boundary of $$\\Omega^{hs}$$ to microscopic resolution. The microscopic interpolator and corrector functions are solutions to local microscopic advection-diffusion problems decoupled from the global degrees of freedom and from each other by virtue of the MsFV decoupling ansatz. The error introduced by the decoupling ansatz is reduced iteratively by the preconditioned GMRES algorithm, with the hybrid MsFV operator serving as the preconditioner.« less
vddsf.xx.YYYYMMDDHH.daily.grb2 Not Available CFS Near IR Diffuse Downward Solar Flux Filename Inventory Available CFS Near IR Diffuse Downward Solar Flux Filename Inventory nddsf.xx.YYYYMMDDHH.daily.grb2 6hrly Image of NCEP logo For questions related to this website, send mail to Web Manager. NCEP/NCO Production
Advective and diapycnal diffusive oceanic flux in Tenerife - La Gomera Channel
NASA Astrophysics Data System (ADS)
Marrero-Díaz, A.; Rodriguez-Santana, A.; Hernández-Arencibia, M.; Machín, F.; García-Weil, L.
2012-04-01
During the year 2008, using the commercial passenger ship Volcán de Tauce of the Naviera Armas company several months, it was possible to obtain vertical profiles of temperature from expandable bathythermograph probes in eight stations across the Tenerife - La Gomera channel. With these data of temperature we have been estimated vertical sections of potential density and geostrophic transport with high spatial and temporal resolution (5 nm between stations, and one- two months between cruises). The seasonal variability obtained for the geostrophic transport in this channel shows important differences with others Canary Islands channels. From potential density and geostrophic velocity data we estimated the vertical diffusion coefficients and diapycnal diffusive fluxes, using a parameterization that depends of Richardson gradient number. In the center of the channel and close to La Gomera Island, we found higher values for these diffusive fluxes. Convergence and divergence of these fluxes requires further study so that we can draw conclusions about its impact on the distribution of nutrients in the study area and its impact in marine ecosystems. This work is being used in research projects TRAMIC and PROMECA.
Coherent Coupled Qubits for Quantum Annealing
NASA Astrophysics Data System (ADS)
Weber, Steven J.; Samach, Gabriel O.; Hover, David; Gustavsson, Simon; Kim, David K.; Melville, Alexander; Rosenberg, Danna; Sears, Adam P.; Yan, Fei; Yoder, Jonilyn L.; Oliver, William D.; Kerman, Andrew J.
2017-07-01
Quantum annealing is an optimization technique which potentially leverages quantum tunneling to enhance computational performance. Existing quantum annealers use superconducting flux qubits with short coherence times limited primarily by the use of large persistent currents Ip. Here, we examine an alternative approach using qubits with smaller Ip and longer coherence times. We demonstrate tunable coupling, a basic building block for quantum annealing, between two flux qubits with small (approximately 50-nA) persistent currents. Furthermore, we characterize qubit coherence as a function of coupler setting and investigate the effect of flux noise in the coupler loop on qubit coherence. Our results provide insight into the available design space for next-generation quantum annealers with improved coherence.
Accounting for magnetic diffusion in core flow inversions from geomagnetic secular variation
NASA Astrophysics Data System (ADS)
Amit, Hagay; Christensen, Ulrich R.
2008-12-01
We use numerical dynamos to investigate the possible role of magnetic diffusion at the top of the core. We find that the contribution of radial magnetic diffusion to the secular variation is correlated with that of tangential magnetic diffusion for a wide range of control parameters. The correlation between the two diffusive terms is interpreted in terms of the variation in the strength of poloidal flow along a columnar flow tube. The amplitude ratio of the two diffusive terms is used to estimate the probable contribution of radial magnetic diffusion to the secular variation at Earth-like conditions. We then apply a model where radial magnetic diffusion is proportional to tangential diffusion to core flow inversions of geomagnetic secular variation data. We find that including magnetic diffusion does not change dramatically the global flow but some significant local variations appear. In the non frozen-flux core flow models (termed `diffusive'), the hemispherical dichotomy between the active Atlantic and quiet Pacific is weaker, a cyclonic vortex below North America emerges and the vortex below Asia is stronger. Our results have several important geophysical implications. First, our diffusive flow models contain some flow activity at low latitudes in the Pacific, suggesting a local balance between magnetic field advection and diffusion in that region. Second, the cyclone below North America in our diffusive flows reconciles the difference between mantle-driven thermal wind predictions and frozen-flux core flow models, and is consistent with the prominent intense magnetic flux patch below North America in geomagnetic field models. Finally, we hypothesize that magnetic diffusion near the core surface plays a larger role in the geomagnetic secular variation than usually assumed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makhnovskii, Yurii A.; Berezhkovskii, Alexander M.; Antipov, Anatoly E.
This paper is devoted to particle transport in a tube formed by alternating wide and narrow sections, in the presence of an external biasing force. The focus is on the effective transport coefficients—mobility and diffusivity, as functions of the biasing force and the geometric parameters of the tube. Dependences of the effective mobility and diffusivity on the tube geometric parameters are known in the limiting cases of no bias and strong bias. The approximations used to obtain these results are inapplicable at intermediate values of the biasing force. To bridge the two limits Brownian dynamics simulations were run to determinemore » the transport coefficients at intermediate values of the force. The simulations were performed for a representative set of tube geometries over a wide range of the biasing force. They revealed that there is a range of the narrow section length, where the force dependence of the mobility has a maximum. In contrast, the diffusivity is a monotonically increasing function of the force. A simple formula is proposed, which reduces to the known dependences of the diffusivity on the tube geometric parameters in both limits of zero and strong bias. At intermediate values of the biasing force, the formula catches the diffusivity dependence on the narrow section length, if the radius of these sections is not too small.« less
Atmospheric energy for subsurface life on Mars?
NASA Technical Reports Server (NTRS)
Weiss, B. P.; Yung, Y. L.; Nealson, K. H.
2000-01-01
The location and density of biologically useful energy sources on Mars will limit the biomass, spatial distribution, and organism size of any biota. Subsurface Martian organisms could be supplied with a large energy flux from the oxidation of photochemically produced atmospheric H(2) and CO diffusing into the regolith. However, surface abundance measurements of these gases demonstrate that no more than a few percent of this available flux is actually being consumed, suggesting that biological activity driven by atmospheric H(2) and CO is limited in the top few hundred meters of the subsurface. This is significant because the available but unused energy is extremely large: for organisms at 30-m depth, it is 2,000 times previous estimates of hydrothermal and chemical weathering energy and far exceeds the energy derivable from other atmospheric gases. This also implies that the apparent scarcity of life on Mars is not attributable to lack of energy. Instead, the availability of liquid water may be a more important factor limiting biological activity because the photochemical energy flux can only penetrate to 100- to 1,000-m depth, where most H(2)O is probably frozen. Because both atmospheric and Viking lander soil data provide little evidence for biological activity, the detection of short-lived trace gases will probably be a better indicator of any extant Martian life.
Atmospheric energy for subsurface life on Mars?
Weiss, B P; Yung, Y L; Nealson, K H
2000-02-15
The location and density of biologically useful energy sources on Mars will limit the biomass, spatial distribution, and organism size of any biota. Subsurface Martian organisms could be supplied with a large energy flux from the oxidation of photochemically produced atmospheric H(2) and CO diffusing into the regolith. However, surface abundance measurements of these gases demonstrate that no more than a few percent of this available flux is actually being consumed, suggesting that biological activity driven by atmospheric H(2) and CO is limited in the top few hundred meters of the subsurface. This is significant because the available but unused energy is extremely large: for organisms at 30-m depth, it is 2,000 times previous estimates of hydrothermal and chemical weathering energy and far exceeds the energy derivable from other atmospheric gases. This also implies that the apparent scarcity of life on Mars is not attributable to lack of energy. Instead, the availability of liquid water may be a more important factor limiting biological activity because the photochemical energy flux can only penetrate to 100- to 1,000-m depth, where most H(2)O is probably frozen. Because both atmospheric and Viking lander soil data provide little evidence for biological activity, the detection of short-lived trace gases will probably be a better indicator of any extant Martian life.
Degryse, Fien; Shahbazi, Afsaneh; Verheyen, Liesbeth; Smolders, Erik
2012-01-01
It has long been recognized that diffusive boundary layers affect the determination of active transport parameters, but this has been largely overlooked in plant physiological research. We studied the short-term uptake of cadmium (Cd), zinc (Zn), and nickel (Ni) by spinach (Spinacia oleracea) and tomato (Lycopersicon esculentum) in solutions with or without metal complexes. At same free ion concentration, the presence of complexes, which enhance the diffusion flux, increased the uptake of Cd and Zn, whereas Ni uptake was unaffected. Competition effects of protons on Cd and Zn uptake were observed only at a very large degree of buffering, while competition of magnesium ions on Ni uptake was observed even in unbuffered solutions. These results strongly suggest that uptake of Cd and Zn is limited by diffusion of the free ion to the roots, except at very high degree of solution buffering, whereas Ni uptake is generally internalization limited. All results could be well described by a model that combined a diffusion equation with a competitive Michaelis-Menten equation. Direct uptake of the complex was estimated to be a major contribution only at millimolar concentrations of the complex or at very large ratios of complex to free ion concentration. The true Km for uptake of Cd2+ and Zn2+ was estimated at <5 nm, three orders of magnitude smaller than the Km measured in unbuffered solutions. Published Michaelis constants for plant uptake of Cd and Zn likely strongly overestimate physiological ones and should not be interpreted as an indicator of transporter affinity. PMID:22864584
Internal loading of phosphorus in western Lake Erie
Matisoff, Gerald; Kaltenberg, Eliza M.; Steely, Rebecca L.; Hummel, Stephanie K.; Seo, Jinyu; Gibbons, Kenneth J.; Bridgeman, Thomas B.; Seo, Youngwoo; Behbahani, Mohsen; James, William F.; Johnson, Laura; Doan, Phuong; Dittrich, Maria; Evans, Mary Anne; Chaffin, Justin D.
2016-01-01
This study applied eight techniques to obtain estimates of the diffusive flux of phosphorus (P) from bottom sediments throughout the western basin of Lake Erie. The flux was quantified from both aerobic and anaerobic incubations of whole cores; by monitoring the water encapsulated in bottom chambers; from pore water concentration profiles measured with a phosphate microelectrode, a diffusive equilibrium in thin films (DET) hydrogel, and expressed pore waters; and from mass balance and biogeochemical diagenetic models. Fluxes under aerobic conditions at summertime temperatures averaged 1.35 mg P/m2/day and displayed spatial variability on scales as small as a centimeter. Using two different temperature correction factors, the flux was adjusted to mean annual temperature yielding average annual fluxes of 0.43–0.91 mg P/m2/day and a western basin-wide total of 378–808 Mg P/year as the diffusive flux from sediments. This is 3–7% of the 11,000 Mg P/year International Joint Commission (IJC) target load for phosphorus delivery to Lake Erie from external sources. Using these average aerobic fluxes, the sediment contributes 3.0–6.3 μg P/L as a background internal contribution that represents 20–42% of the IJC Target Concentration of 15 μg P/L for the western basin. The implication is that this internal diffusive recycling of P is unlikely to trigger cyanobacterial blooms by itself but is sufficiently large to cause blooms when combined with external loads. This background flux may be also responsible for delayed response of the lake to any decrease in the external loading.
IRMHD: an implicit radiative and magnetohydrodynamical solver for self-gravitating systems
NASA Astrophysics Data System (ADS)
Hujeirat, A.
1998-07-01
The 2D implicit hydrodynamical solver developed by Hujeirat & Rannacher is now modified to include the effects of radiation, magnetic fields and self-gravity in different geometries. The underlying numerical concept is based on the operator splitting approach, and the resulting 2D matrices are inverted using different efficient preconditionings such as ADI (alternating direction implicit), the approximate factorization method and Line-Gauss-Seidel or similar iteration procedures. Second-order finite volume with third-order upwinding and second-order time discretization is used. To speed up convergence and enhance efficiency we have incorporated an adaptive time-step control and monotonic multilevel grid distributions as well as vectorizing the code. Test calculations had shown that it requires only 38 per cent more computational effort than its explicit counterpart, whereas its range of application to astrophysical problems is much larger. For example, strongly time-dependent, quasi-stationary and steady-state solutions for the set of Euler and Navier-Stokes equations can now be sought on a non-linearly distributed and strongly stretched mesh. As most of the numerical techniques used to build up this algorithm have been described by Hujeirat & Rannacher in an earlier paper, we focus in this paper on the inclusion of self-gravity, radiation and magnetic fields. Strategies for satisfying the condition ∇.B=0 in the implicit evolution of MHD flows are given. A new discretization strategy for the vector potential which allows alternating use of the direct method is prescribed. We investigate the efficiencies of several 2D solvers for a Poisson-like equation and compare their convergence rates. We provide a splitting approach for the radiative flux within the FLD (flux-limited diffusion) approximation to enhance consistency and accuracy between regions of different optical depths. The results of some test problems are presented to demonstrate the accuracy and robustness of the code.
The vertical structure of the boundary layer around compact objects
NASA Astrophysics Data System (ADS)
Hertfelder, Marius; Kley, Wilhelm
2017-09-01
Context. Mass transfer due to Roche lobe overflow leads to the formation of an accretion disk around a weakly magnetized white dwarf (WD) in cataclysmic variables. At the inner edge of the disk, the gas comes upon the surface of the WD and has to get rid of its excess kinetic energy in order to settle down on the more slowly rotating outer stellar layers. This region is known as the boundary layer (BL). Aims: In this work we investigate the vertical structure of the BL, which is still poorly understood. We shall provide details of the basic structure of the two-dimensional (2D) BL and how it depends on parameters such as stellar mass and rotation rate, as well as the mass-accretion rate. We further investigate the destination of the disk material and compare our results with previous one-dimensional (1D) simulations. Methods: We solve the 2D equations of radiation hydrodynamics in a spherical (r-ϑ) geometry using a parallel grid-based code that employs a Riemann solver. The radiation energy is considered in the two-temperature approach with a radiative flux given by the flux-limited diffusion approximation. Results: The BL around a non-rotating WD is characterized by a steep drop in angular velocity over a width of only 1% of the stellar radius, a heavy depletion of mass, and a high temperature ( 500 000 K) as a consequence of the strong shear. Variations in Ω∗,M∗, and Ṁ influence the extent of the changes of the variables in the BL but not the general structure. Depending on Ω∗, the disk material travels up to the poles or is halted at a certain latitude. The extent of mixing with the stellar material also depends on Ω∗. We find that the 1D approximation matches the 2D data well, apart from an underestimated temperature.
NASA Astrophysics Data System (ADS)
Kolesnichenko, A. V.; Marov, M. Ya.
2018-01-01
The defining relations for the thermodynamic diffusion and heat fluxes in a multicomponent, partially ionized gas mixture in an external electromagnetic field have been obtained by the methods of the kinetic theory. Generalized Stefan-Maxwell relations and algebraic equations for anisotropic transport coefficients (the multicomponent diffusion, thermal diffusion, electric and thermoelectric conductivity coefficients as well as the thermal diffusion ratios) associated with diffusion-thermal processes have been derived. The defining second-order equations are derived by the Chapman-Enskog procedure using Sonine polynomial expansions. The modified Stefan-Maxwell relations are used for the description of ambipolar diffusion in the Earth's ionospheric plasma (in the F region) composed of electrons, ions of many species, and neutral particles in a strong electromagnetic field.
NASA Technical Reports Server (NTRS)
Lockwood, J. A.; Webber, W. R.; Friling, L. A.; Macri, J.; Hsieh, L.
1981-01-01
Balloon-borne measurements of the atmospheric and diffuse gamma-ray flux in the energy range 0.4-7.0 MeV with a Compton telescope, which included pulse-shape discrimination of the first scattering detector and a time-of-flight system between the first and second detector elements, are reported. Comparison of the diffuse cosmic gamma-ray flux to the atmospheric gamma rays indicates that 0.2-5.0 MeV is the optimum energy range for measurements made at the top of the earth's atmosphere. The measured total atmospheric gamma-ray flux between zero and 40 deg has an energy spectrum that agrees with the calculations of Ling (1975). Observations indicate that the ratio of the diffuse to atmospheric gamma ray fluxes at 3.5 g/sq cm is a maximum, about 1.0, between 0.7 and 3.0 MeV.
Relationship between mass-flux reduction and source-zone mass removal: analysis of field data.
Difilippo, Erica L; Brusseau, Mark L
2008-05-26
The magnitude of contaminant mass-flux reduction associated with a specific amount of contaminant mass removed is a key consideration for evaluating the effectiveness of a source-zone remediation effort. Thus, there is great interest in characterizing, estimating, and predicting relationships between mass-flux reduction and mass removal. Published data collected for several field studies were examined to evaluate relationships between mass-flux reduction and source-zone mass removal. The studies analyzed herein represent a variety of source-zone architectures, immiscible-liquid compositions, and implemented remediation technologies. There are two general approaches to characterizing the mass-flux-reduction/mass-removal relationship, end-point analysis and time-continuous analysis. End-point analysis, based on comparing masses and mass fluxes measured before and after a source-zone remediation effort, was conducted for 21 remediation projects. Mass removals were greater than 60% for all but three of the studies. Mass-flux reductions ranging from slightly less than to slightly greater than one-to-one were observed for the majority of the sites. However, these single-snapshot characterizations are limited in that the antecedent behavior is indeterminate. Time-continuous analysis, based on continuous monitoring of mass removal and mass flux, was performed for two sites, both for which data were obtained under water-flushing conditions. The reductions in mass flux were significantly different for the two sites (90% vs. approximately 8%) for similar mass removals ( approximately 40%). These results illustrate the dependence of the mass-flux-reduction/mass-removal relationship on source-zone architecture and associated mass-transfer processes. Minimal mass-flux reduction was observed for a system wherein mass removal was relatively efficient (ideal mass-transfer and displacement). Conversely, a significant degree of mass-flux reduction was observed for a site wherein mass removal was inefficient (non-ideal mass-transfer and displacement). The mass-flux-reduction/mass-removal relationship for the latter site exhibited a multi-step behavior, which cannot be predicted using some of the available simple estimation functions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moll, Ryan; Garaud, Pascale; Stellmach, Stephan, E-mail: rmoll@soe.ucsc.edu
2016-05-20
Oscillatory double-diffusive convection (ODDC; also known as semi-convection) refers to a type of double-diffusive instability that occurs in regions of planetary and stellar interiors that have a destabilizing thermal stratification and a stabilizing mean molecular weight stratification. In this series of papers, we use an extensive suite of three-dimensional (3D) numerical simulations to quantify the transport of heat and chemical species by ODDC. Rosenblum et al. first showed that ODDC can either spontaneously form layers that significantly enhance the transport of heat and chemical species compared to microscopic transport or remain in a state dominated by large-scale gravity waves, inmore » which there is a more modest enhancement of the turbulent transport rates. Subsequent studies in this series focused on identifying under what conditions layers form and quantifying transport through layered systems. Here we proceed to characterize transport through systems that are unstable to ODDC, but do not undergo spontaneous layer formation. We measure the thermal and compositional fluxes in non-layered ODDC from both two-dimensional (2D) and 3D numerical simulations, and show that 3D simulations are well approximated by similar simulations in a 2D domain. We find that the turbulent mixing rate in this regime is weak and can, to a first-level approximation, be neglected. We conclude by summarizing the findings of papers I through III into a single prescription for transport systems unstable to ODDC.« less
Electron confinement at diffuse ZnMgO/ZnO interfaces
NASA Astrophysics Data System (ADS)
Coke, Maddison L.; Kennedy, Oscar W.; Sagar, James T.; Warburton, Paul A.
2017-01-01
Abrupt interfaces between ZnMgO and ZnO are strained due to lattice mismatch. This strain is relaxed if there is a gradual incorporation of Mg during growth, resulting in a diffuse interface. This strain relaxation is however accompanied by reduced confinement and enhanced Mg-ion scattering of the confined electrons at the interface. Here we experimentally study the electronic transport properties of the diffuse heteroepitaxial interface between single-crystal ZnO and ZnMgO films grown by molecular-beam epitaxy. The spatial extent of the interface region is controlled during growth by varying the zinc flux. We show that, as the spatial extent of the graded interface is reduced, the enhancement of electron mobility due to electron confinement more than compensates for any suppression of mobility due to increased strain. Furthermore, we determine the extent to which scattering of impurities in the ZnO substrate limits the electron mobility in diffuse ZnMgO-ZnO interfaces.
Protein gradients in single cells induced by their coupling to "morphogen"-like diffusion
NASA Astrophysics Data System (ADS)
Nandi, Saroj Kumar; Safran, Sam A.
2018-05-01
One of the many ways cells transmit information within their volume is through steady spatial gradients of different proteins. However, the mechanism through which proteins without any sources or sinks form such single-cell gradients is not yet fully understood. One of the models for such gradient formation, based on differential diffusion, is limited to proteins with large ratios of their diffusion constants or to specific protein-large molecule interactions. We introduce a novel mechanism for gradient formation via the coupling of the proteins within a single cell with a molecule, that we call a "pronogen," whose action is similar to that of morphogens in multi-cell assemblies; the pronogen is produced with a fixed flux at one side of the cell. This coupling results in an effectively non-linear diffusion degradation model for the pronogen dynamics within the cell, which leads to a steady-state gradient of the protein concentration. We use stability analysis to show that these gradients are linearly stable with respect to perturbations.
Numerical applications of the advective-diffusive codes for the inner magnetosphere
NASA Astrophysics Data System (ADS)
Aseev, N. A.; Shprits, Y. Y.; Drozdov, A. Y.; Kellerman, A. C.
2016-11-01
In this study we present analytical solutions for convection and diffusion equations. We gather here the analytical solutions for the one-dimensional convection equation, the two-dimensional convection problem, and the one- and two-dimensional diffusion equations. Using obtained analytical solutions, we test the four-dimensional Versatile Electron Radiation Belt code (the VERB-4D code), which solves the modified Fokker-Planck equation with additional convection terms. The ninth-order upwind numerical scheme for the one-dimensional convection equation shows much more accurate results than the results obtained with the third-order scheme. The universal limiter eliminates unphysical oscillations generated by high-order linear upwind schemes. Decrease in the space step leads to convergence of a numerical solution of the two-dimensional diffusion equation with mixed terms to the analytical solution. We compare the results of the third- and ninth-order schemes applied to magnetospheric convection modeling. The results show significant differences in electron fluxes near geostationary orbit when different numerical schemes are used.
Gross CO2 and CH4 emissions from the Nam Ngum and Nam Leuk sub-tropical reservoirs in Lao PDR.
Chanudet, Vincent; Descloux, Stéphane; Harby, Atle; Sundt, Håkon; Hansen, Bjørn Henrik; Brakstad, Odd; Serça, Dominique; Guerin, Frédéric
2011-11-15
Gross CO2 and CH4 emissions (degassing and diffusion from the reservoir) and the carbon balance were assessed in 2009-2010 in two Southeast Asian sub-tropical reservoirs: the Nam Ngum and Nam Leuk Reservoirs (Lao PDR). These two reservoirs are within the same climatic area but differ mainly in age, size, residence time and initial biomass stock. The Nam Leuk Reservoir was impounded in 1999 after partial vegetation clearance and burning. However, GHG emissions are still significant 10 years after impoundment. CH4 diffusive flux ranged from 0.8 (January 2010) to 11.9 mmol m(-2) d(-1) (April 2009) and CO2 diffusive flux ranged from -10.6 (October 2009) to 38.2 mmol m(-2) d(-1) (April 2009). These values are comparable to other tropical reservoirs. Moreover, degassing fluxes at the outlet of the powerhouse downstream of the turbines were very low. The tentative annual carbon balance calculation indicates that this reservoir was a carbon source with an annual carbon export (atmosphere+downstream river) of about 2.2±1.0 GgC yr(-1). The Nam Ngum Reservoir was impounded in 1971 without any significant biomass removal. Diffusive and degassing CO2 and CH4 fluxes were lower than for other tropical reservoirs. Particularly, CO2 diffusive fluxes were always negative with values ranging from -21.2 (April 2009) to -2.7 mmol m(-2) d(-1) (January 2010). CH4 diffusive flux ranged from 0.1 (October 2009) to 0.6 mmol m(-2) d(-1) (April 2009) and no degassing downstream of the turbines was measured. As a consequence of these low values, the reservoir was a carbon sink with an estimated annual uptake of - 53±35 GgC yr(-1). Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Liegler, A.; Bakkar Hindeleh, H.; Deering, C. D.; Fentress, S. E.
2015-12-01
Volcanic gas emissions are a key component for monitoring volcanic activity, magmatic input of volatiles to the atmosphere and the assessment of geothermal potential in volcanic regions. Diffuse soil degassing has been shown to represent a major part of volcanic gas emissions. However, this type of gas emission has not yet been quantified in the Guanacaste province of Costa Rica; a region of the country with several large, active or dormant volcanoes. We conducted the first study of diffuse CO2 degassing at Rincón de la Vieja and Miravalles volcanoes, both located in Guanacaste. Diffuse degassing was measured using the accumulation chamber method to quantify CO2 flux in regions where hydrothermal surface features indicate anomalous activity. The total diffuse carbon dioxide flux estimated at Miravalles in two areas, together roughly 2 km2 in size, was 135 t/day and in several areas at Rincón de la Vieja a minimum of 4 t/day. Comparatively low flux values and a very local concentration (few m2) of CO2 flux were observed at the active Rincón de la Vieja volcano, compared to the dormant Miravalles volcano, where significant soil flux was found over extended areas, not only around vents. Our assessment of the origin of these differences leads to two possibilities depending on if the surface features on the two volcanoes are fed by a common hydrothermal system or two separate ones. In the former case, the different intensity of diffuse CO2 flux could indicate a different degassing behavior and stronger concentration of gas emissions at the active vent areas at Rincon de la Vieja. In the latter case, where the hydrothermal systems are not linked, the amount of CO2 degassed through the flanks of the volcanoes could indicate that different physical and chemical conditions are governing the degassing of the two systems.
2010-01-01
Background The goal of physiologically based pharmacokinetics (PBPK) is to predict drug kinetics from an understanding of the organ/blood exchange. The standard approach is to assume that the organ is "flow limited" which means that the venous blood leaving the organ equilibrates with the well-stirred tissue compartment. Although this assumption is valid for most solutes, it has been shown to be incorrect for several very highly fat soluble compounds which appear to be "diffusion limited". This paper describes the physical basis of this adipose diffusion limitation and its quantitative dependence on the blood/water (Kbld-wat) and octanol/water (Kow) partition coefficient. Methods Experimental measurements of the time dependent rat blood and adipose concentration following either intravenous or oral input were used to estimate the "apparent" adipose perfusion rate (FA) assuming that the tissue is flow limited. It is shown that the ratio of FA to the anatomic perfusion rate (F) provides a measure of the diffusion limitation. A quantitative relationship between this diffusion limitation and Kbld-wat and Kow is derived. This analysis was applied to previously published data, including the Oberg et. al. measurements of the rat plasma and adipose tissue concentration following an oral dose of a mixture of 13 different polychlorinated biphenyls. Results Solutes become diffusion limited at values of log Kow greater than about 5.6, with the adipose-blood exchange rate reduced by a factor of about 30 for a solute with a log Kow of 7.36. Quantitatively, a plot of FA/F versus Kow is well described assuming an adipose permeability-surface area product (PS) of 750/min. This PS corresponds to a 0.14 micron aqueous layer separating the well-stirred blood from the adipose lipid. This is approximately equal to the thickness of the rat adipose capillary endothelium. Conclusions These results can be used to quantitate the adipose-blood diffusion limitation as a function of Kow. This is especially important for the highly fat soluble persistent organic chemicals (e.g. polychlorinated biphenyls, dioxins) whose pharmacokinetics are primarily determined by the adipose-blood exchange kinetics. PMID:20055995
Levitt, David G
2010-01-07
The goal of physiologically based pharmacokinetics (PBPK) is to predict drug kinetics from an understanding of the organ/blood exchange. The standard approach is to assume that the organ is "flow limited" which means that the venous blood leaving the organ equilibrates with the well-stirred tissue compartment. Although this assumption is valid for most solutes, it has been shown to be incorrect for several very highly fat soluble compounds which appear to be "diffusion limited". This paper describes the physical basis of this adipose diffusion limitation and its quantitative dependence on the blood/water (Kbld-wat) and octanol/water (Kow) partition coefficient. Experimental measurements of the time dependent rat blood and adipose concentration following either intravenous or oral input were used to estimate the "apparent" adipose perfusion rate (FA) assuming that the tissue is flow limited. It is shown that the ratio of FA to the anatomic perfusion rate (F) provides a measure of the diffusion limitation. A quantitative relationship between this diffusion limitation and Kbld-wat and Kow is derived. This analysis was applied to previously published data, including the Oberg et. al. measurements of the rat plasma and adipose tissue concentration following an oral dose of a mixture of 13 different polychlorinated biphenyls. Solutes become diffusion limited at values of log Kow greater than about 5.6, with the adipose-blood exchange rate reduced by a factor of about 30 for a solute with a log Kow of 7.36. Quantitatively, a plot of FA/F versus Kow is well described assuming an adipose permeability-surface area product (PS) of 750/min. This PS corresponds to a 0.14 micron aqueous layer separating the well-stirred blood from the adipose lipid. This is approximately equal to the thickness of the rat adipose capillary endothelium. These results can be used to quantitate the adipose-blood diffusion limitation as a function of Kow. This is especially important for the highly fat soluble persistent organic chemicals (e.g. polychlorinated biphenyls, dioxins) whose pharmacokinetics are primarily determined by the adipose-blood exchange kinetics.
Extreme current fluctuations in lattice gases: Beyond nonequilibrium steady states
NASA Astrophysics Data System (ADS)
Meerson, Baruch; Sasorov, Pavel V.
2014-01-01
We use the macroscopic fluctuation theory (MFT) to study large current fluctuations in nonstationary diffusive lattice gases. We identify two universality classes of these fluctuations, which we call elliptic and hyperbolic. They emerge in the limit when the deterministic mass flux is small compared to the mass flux due to the shot noise. The two classes are determined by the sign of compressibility of effective fluid, obtained by mapping the MFT into an inviscid hydrodynamics. An example of the elliptic class is the symmetric simple exclusion process, where, for some initial conditions, we can solve the effective hydrodynamics exactly. This leads to a super-Gaussian extreme current statistics conjectured by Derrida and Gerschenfeld [J. Stat. Phys. 137, 978 (2009), 10.1007/s10955-009-9830-1] and yields the optimal path of the system. For models of the hyperbolic class, the deterministic mass flux cannot be neglected, leading to a different extreme current statistics.
A critical test of bivelocity hydrodynamics for mixtures.
Brenner, Howard
2010-10-21
The present paper provides direct noncircumstantial evidence in support of the existence of a diffuse flux of volume j(v) in mixtures. As such, it supersedes an earlier paper [H. Brenner, J. Chem. Phys. 132, 054106 (2010)], which offered only indirect circumstantial evidence in this regard. Given the relationship of the diffuse volume flux to the fluid's volume velocity, this finding adds additional credibility to the theory of bivelocity hydrodynamics for both gaseous and liquid continua, wherein the term bivelocity refers to the independence of the fluid's respective mass and volume velocities. Explicitly, the present work provides a new and unexpected linkage between a pair of diffuse fluxes entering into bivelocity mixture theory, fluxes that were previously regarded as constitutively independent, except possibly for their coupling arising as a consequence of Onsager reciprocity. In particular, for the case of a binary mixture undergoing an isobaric, isothermal, external force-free, molecular diffusion process we establish by purely macroscopic arguments-while subsequently confirming by purely molecular arguments-the validity of the ansatz j(v)=(v(1)-v(2))j(1) relating the diffuse volume flux j(v) to the diffuse mass fluxes j(1)(=-j(2)) of the two species and, jointly, their partial specific volumes v(1),v(2). Confirmation of that relation is based upon the use of linear irreversible thermodynamic principles to embed this ansatz in a broader context, and to subsequently establish the accord thereof with Shchavaliev's solution of the multicomponent Boltzmann equation for dilute gases [M. Sh. Shchavaliev, Fluid Dyn. 9, 96 (1974)]. Moreover, because the terms v(1), v(2), and j(1) appearing on the right-hand side of the ansatz are all conventional continuum fluid-mechanical terms (with j(1) given, for example, by Fick's law for thermodynamically ideal solutions), parity requires that j(v) appearing on the left-hand side of that relation also be a continuum term. Previously, diffuse volume fluxes, whether in mixtures or single-component fluids, were widely believed to be noncontinuum in nature, and hence of interest only to those primarily concerned with transport phenomena in rarefied gases. This demonstration of the continuum nature of bivelocity hydrodynamics suggests that the latter subject should be of general interest to all fluid mechanicians, even those with no special interest in mixtures.
Many-body Effects in a Laterally Inhomogeneous Semiconductor Quantum Well
NASA Technical Reports Server (NTRS)
Ning, Cun-Zheng; Li, Jian-Zhong; Biegel, Bryan A. (Technical Monitor)
2002-01-01
Many body effects on conduction and diffusion of electrons and holes in a semiconductor quantum well are studied using a microscopic theory. The roles played by the screened Hartree-Fock (SHE) terms and the scattering terms are examined. It is found that the electron and hole conductivities depend only on the scattering terms, while the two-component electron-hole diffusion coefficients depend on both the SHE part and the scattering part. We show that, in the limit of the ambipolax diffusion approximation, however, the diffusion coefficients for carrier density and temperature are independent of electron-hole scattering. In particular, we found that the SHE terms lead to a reduction of density-diffusion coefficients and an increase in temperature-diffusion coefficients. Such a reduction or increase is explained in terms of a density-and temperature dependent energy landscape created by the bandgap renormalization.