Science.gov

Sample records for fluxes processing modifikatsiya

  1. High-flux solar photon processes

    NASA Astrophysics Data System (ADS)

    Lorents, Donald C.; Narang, Subhash; Huestis, David C.; Mooney, Jack L.; Mill, Theodore; Song, Her-King; Ventura, Susanna

    1992-06-01

    This study was commissioned by the National Renewable Energy Laboratory (NREL) for the purpose of identifying high-flux photoprocesses that would lead to beneficial national and commercial applications. The specific focus on high-flux photoprocesses is based on the recent development by NREL of solar concentrator technology capable of delivering record flux levels. We examined photolytic and photocatalytic chemical processes as well as photothermal processes in the search for processes where concentrated solar flux would offer a unique advantage.

  2. High-flux solar photon processes

    SciTech Connect

    Lorents, D.C.; Narang, S.; Huestis, D.C.; Mooney, J.L.; Mill, T.; Song, H.K.; Ventura, S.

    1992-06-01

    This study was commissioned by the National Renewable Energy Laboratory (NREL) for the purpose of identifying high-flux photoprocesses that would lead to beneficial national and commercial applications. The specific focus on high-flux photoprocesses is based on the recent development by NREL of solar concentrator technology capable of delivering record flux levels. We examined photolytic and photocatalytic chemical processes as well as photothermal processes in the search for processes where concentrated solar flux would offer a unique advantage. 37 refs.

  3. High-flux solar photon processes

    SciTech Connect

    Lorents, D C; Narang, S; Huestis, D C; Mooney, J L; Mill, T; Song, H K; Ventura, S

    1992-06-01

    This study was commissioned by the National Renewable Energy Laboratory (NREL) for the purpose of identifying high-flux photoprocesses that would lead to beneficial national and commercial applications. The specific focus on high-flux photoprocesses is based on the recent development by NREL of solar concentrator technology capable of delivering record flux levels. We examined photolytic and photocatalytic chemical processes as well as photothermal processes in the search for processes where concentrated solar flux would offer a unique advantage. 37 refs.

  4. Melt Process, Flux Pinning and Levitation

    NASA Astrophysics Data System (ADS)

    Murakami, M.

    The following sections are included: * INTRODUCTION * MELT PROCESSING FOR HIGH Jc * Texturing by melt process * Melt Textured Growth Process * Phase diagram * Modified MTG process * Quench and melt growth (QMG) process and Melt-Powder-Melt-Growth (MPMG)process * Outline of the MPMG process * Powder control for melt growth * Effect of Pt addition * Grain growth * Beneficial points of the MPMG process * Modified MPMG process * Seeding * CRITICAL CURRENT AND FLUX PINNING * Pinning mechanism * Introduction * Elementary pinning interaction * Anisotropy * Bulk pinning force * Flux pinning sites in melt processed Y-Ba-Cu-O * Twin planes * Stacking faults * Oxygen defects * Cracks * Dislocations * Pinning due to Y2BaCuO5 inclusion * Introduction * Comparison of Jc * The size of the pinning center * 211/123 Interface * The bulk pinning force and Jc * Scaling law * Direct observations * LEVITATION * Introduction * Force between a superconductor and a magnet * Magnetic force * Effect of microstructure on the levitation force * Magnetization and the repulsive/attractive force * APPLICATION * Introduction * Levitation * Physics experiment * Lunar telescope * Display * Suspension * Transport system on a guide rail * Transport system without magnetic guide rail * Rotation device * Magnetic bearing * Flywheel system using bulk superconductors * Application of flux trapping * SUMMARY AND PROSPECTS * Appendix I * Appendix II * Appendix III * Acknowledgements * References

  5. Powder Flux Regulation in the Laser Material Deposition Process

    NASA Astrophysics Data System (ADS)

    Arrizubieta, Jon Iñaki; Wegener, Maximiliam; Arntz, Kristian; Lamikiz, Aitzol; Ruiz, Jose Exequiel

    In the present research work a powder flux regulation system has been designed, developed and validated with the aim of improving the Laser Material Deposition (LMD) process. In this process, the amount of deposited material per substrate surface unit area depends on the real feed rate of the nozzle. Therefore, a regulation system based on a solenoid valve has been installed at the nozzle entrance in order to control the powder flux. The powder flux control has been performed based on the machine real feed rate, which is compared with the programmed feed rate. An instantaneous velocity error is calculated and the powder flow is controlled as a function of this variation using Pulse Width Modulation (PWM) signals. Thereby, in zones where the Laser Material Deposition machine reduces the feed rate due to a trajectory change, powder accumulation can be avoided and the generated clads would present a homogeneous shape.

  6. Relaxation Processes within Flux Ropes in Solar Wind

    NASA Astrophysics Data System (ADS)

    Telloni, D.; Carbone, V.; Perri, S.; Bruno, R.; Lepreti, F.; Veltri, P.

    2016-08-01

    Flux ropes are localized structures in space plasma whose tube-like organized magnetic configuration can be well approximated by a force-free field model. Both numerical simulations and simple models suggest that the ideal magnetohydrodynamics (MHD) can relax toward a minimum energy state, where magnetic helicity is conserved, characterized by force-free magnetic fields (Taylor relaxation). In this paper, we evaluate MHD rugged invariants within more than 100 flux ropes identified in the solar wind at 1 AU, showing that the magnetic and cross-helicity content carried out by these structures tend to be “attracted” toward a particular subphase in the parameter plane. The final configuration of the MHD rugged invariants in the parameter plane suggests indeed that flux ropes represent well-organized structures coming from the dynamical evolution of MHD turbulent cascade. These observational results, along with a simple model based on a truncated set of nonlinear ordinary differential equations for both the velocity and magnetic field Fourier coefficients, thus, support a scenario in which the flux ropes naturally come out from the ideal MHD decay to large-scale magnetic field in space plasmas, probably governed by relaxation processes similar to those observed in laboratory plasmas.

  7. Constraining ecosystem processes from tower fluxes and atmospheric profiles.

    PubMed

    Hill, T C; Williams, M; Woodward, F I; Moncrieff, J B

    2011-07-01

    The planetary boundary layer (PBL) provides an important link between the scales and processes resolved by global atmospheric sampling/modeling and site-based flux measurements. The PBL is in direct contact with the land surface, both driving and responding to ecosystem processes. Measurements within the PBL (e.g., by radiosondes, aircraft profiles, and flask measurements) have a footprint, and thus an integrating scale, on the order of 1-100 km. We use the coupled atmosphere-biosphere model (CAB) and a Bayesian data assimilation framework to investigate the amount of biosphere process information that can be inferred from PBL measurements. We investigate the information content of PBL measurements in a two-stage study. First, we demonstrate consistency between the coupled model (CAB) and measurements, by comparing the model to eddy covariance flux tower measurements (i.e., water and carbon fluxes) and also PBL scalar profile measurements (i.e., water, carbon dioxide, and temperature) from Canadian boreal forest. Second, we use the CAB model in a set of Bayesian inversions experiments using synthetic data for a single day. In the synthetic experiment, leaf area and respiration were relatively well constrained, whereas surface albedo and plant hydraulic conductance were only moderately constrained. Finally, the abilities of the PBL profiles and the eddy covariance data to constrain the parameters were largely similar and only slightly lower than the combination of both observations.

  8. High-flux solar photon processes: Opportunities for applications

    SciTech Connect

    Steinfeld, J.I.; Coy, S.L.; Herzog, H.; Shorter, J.A.; Schlamp, M.; Tester, J.W.; Peters, W.A.

    1992-06-01

    The overall goal of this study was to identify new high-flux solar photon (HFSP) processes that show promise of being feasible and in the national interest. Electric power generation and hazardous waste destruction were excluded from this study at sponsor request. Our overall conclusion is that there is promise for new applications of concentrated solar photons, especially in certain aspects of materials processing and premium materials synthesis. Evaluation of the full potential of these and other possible applications, including opportunities for commercialization, requires further research and testing. 100 refs.

  9. Pollutant fluxes to aquatic systems via bed-sediment processes

    SciTech Connect

    Popov, V.; Maranto, L.; Valsaraj, K.T.

    1995-10-01

    Hydrophobic organic contaminants (HOCs) sorb strongly to sediments and partition weakly into the porewater and overlying water. This leads to the detection of HOCs in sediments long after, their original introduction to the environment. Water bodies with active sediment processes have larger fluxes of HOCs to overlying water. In the absence of sediment resuspension by erosive processes, the normal life cycle activities of benthic organisms will predominate in the transport of particles from within the sediment bed to the sediment-water interface. As a result the HOCs associated with the particles are released to the water column. This process is called bioturbation and is the focus of this paper. There are a number of species that act as bioturbators. The most prevalent ones, especially in contaminated sediments across many sites in the U.S. are the Tubificidae species that burrow within the sediment and defecate at the surface. Capping with clean sediment is a possible remediation measure for isolating the aquatic system from contaminated sediments. The placement of the cap will effectively increase the pathlength for contaminant transport by diffusion and advection and, will also decrease pollutant release by direct bioturbation of contaminated particles. This paper describes our experiments on contrasting the flux of HOCs from bioturbated capped and uncapped sediments in small laboratory microcosms with those of control microcosms (capped and uncapped) without bioturbators.

  10. CO2 flux estimation errors associated with moist atmospheric processes

    NASA Astrophysics Data System (ADS)

    Parazoo, N. C.; Denning, A. S.; Kawa, S. R.; Pawson, S.; Lokupitiya, R.

    2012-07-01

    Vertical transport by moist sub-grid scale processes such as deep convection is a well-known source of uncertainty in CO2 source/sink inversion. However, a dynamical link between vertical transport, satellite based retrievals of column mole fractions of CO2, and source/sink inversion has not yet been established. By using the same offline transport model with meteorological fields from slightly different data assimilation systems, we examine sensitivity of frontal CO2 transport and retrieved fluxes to different parameterizations of sub-grid vertical transport. We find that frontal transport feeds off background vertical CO2 gradients, which are modulated by sub-grid vertical transport. The implication for source/sink estimation is two-fold. First, CO2 variations contained in moist poleward moving air masses are systematically different from variations in dry equatorward moving air. Moist poleward transport is hidden from orbital sensors on satellites, causing a sampling bias, which leads directly to small but systematic flux retrieval errors in northern mid-latitudes. Second, differences in the representation of moist sub-grid vertical transport in GEOS-4 and GEOS-5 meteorological fields cause differences in vertical gradients of CO2, which leads to systematic differences in moist poleward and dry equatorward CO2 transport and therefore the fraction of CO2 variations hidden in moist air from satellites. As a result, sampling biases are amplified and regional scale flux errors enhanced, most notably in Europe (0.43 ± 0.35 PgC yr-1). These results, cast from the perspective of moist frontal transport processes, support previous arguments that the vertical gradient of CO2 is a major source of uncertainty in source/sink inversion.

  11. CO2 Flux Estimation Errors Associated with Moist Atmospheric Processes

    NASA Technical Reports Server (NTRS)

    Parazoo, N. C.; Denning, A. S.; Kawa, S. R.; Pawson, S.; Lokupitiya, R.

    2012-01-01

    Vertical transport by moist sub-grid scale processes such as deep convection is a well-known source of uncertainty in CO2 source/sink inversion. However, a dynamical link between vertical transport, satellite based retrievals of column mole fractions of CO2, and source/sink inversion has not yet been established. By using the same offline transport model with meteorological fields from slightly different data assimilation systems, we examine sensitivity of frontal CO2 transport and retrieved fluxes to different parameterizations of sub-grid vertical transport. We find that frontal transport feeds off background vertical CO2 gradients, which are modulated by sub-grid vertical transport. The implication for source/sink estimation is two-fold. First, CO2 variations contained in moist poleward moving air masses are systematically different from variations in dry equatorward moving air. Moist poleward transport is hidden from orbital sensors on satellites, causing a sampling bias, which leads directly to small but systematic flux retrieval errors in northern mid-latitudes. Second, differences in the representation of moist sub-grid vertical transport in GEOS-4 and GEOS-5 meteorological fields cause differences in vertical gradients of CO2, which leads to systematic differences in moist poleward and dry equatorward CO2 transport and therefore the fraction of CO2 variations hidden in moist air from satellites. As a result, sampling biases are amplified and regional scale flux errors enhanced, most notably in Europe (0.43+/-0.35 PgC /yr). These results, cast from the perspective of moist frontal transport processes, support previous arguments that the vertical gradient of CO2 is a major source of uncertainty in source/sink inversion.

  12. Magnetic flux invasion in REBCO bulk magnets with varying pre-magnetized flux distributions in multiple-PFM processes

    NASA Astrophysics Data System (ADS)

    Oka, T.; Hara, K.; Takeda, A.; Ogawa, J.; Fukui, S.; Sato, T.; Yokoyama, K.; Murakami, A.

    2017-07-01

    The motion of magnetic flux invading into the HTS bulk magnets were experimentally studied in their pulsed field magnetization processes. The authors paid attention to the effects of the shapes of the pre-magnetized trapped flux distributions before the successive field applications by means of varying the M-shaped distribution. We estimated the differences of the magnetic flux motions between the Dy123 and Gd123 systems, which might have different J c properties of each sample. As for the Dy123 system, the increase of remaining flux in the periphery region of the M-shaped distribution resulted in the decrease of flux-trapping according to the promotion of flux invasion. On the other hand, trapped flux density has been raised to 3.4 T owing to the effective suppression of flux invasion for the Gd123 bulk magnet. The experiments showed that the peak heights and the positions of the formerly trapped M-shaped fluxes precisely affect the heat generation and the trapped field performance.

  13. Towards Understanding the Polymerization Process in Bitumen Bio-Fluxes

    PubMed Central

    Niczke, Łukasz

    2017-01-01

    Bitumen is a commonly used material for road construction. According to environmental regulations, vegetable-based materials are applied for binder modification. Fluxed road bitumen containing a bio-flux oxidation product increases the consistency over time. The efficiency of crosslinking depends on the number of double bonds and their position in the aliphatic chain of fatty acid. The main goal of this paper was to examine the structural changes taking place during hardening bitumen with bio-flux additives. Two types of road bitumens fluxed with two different oxidized methyl esters of rapeseed oil were used in this study. Various chemical and rheological tests were applied for the fluxed-bitumen at different stages of oxygen exposure. The oxidation of rapeseed oil methyl ester reduced the iodine amount by about 10%–30%. Hardening of the fluxed bitumen generally results in an increase of the resins content and a reduction of the aromatics and asphaltenes. In the temperature range of 0 °C to 40 °C, bio-flux results with a much higher increase in the phase angle than in temperatures above 40 °C in the bitumen binder. The increase in the proportion of the viscous component in the low and medium binder temperature is favorable due to the potential improvement of the fatigue resistance of the asphalt mixture with such binders. PMID:28891929

  14. Towards Understanding the Polymerization Process in Bitumen Bio-Fluxes.

    PubMed

    Król, Jan B; Niczke, Łukasz; Kowalski, Karol J

    2017-09-09

    Bitumen is a commonly used material for road construction. According to environmental regulations, vegetable-based materials are applied for binder modification. Fluxed road bitumen containing a bio-flux oxidation product increases the consistency over time. The efficiency of crosslinking depends on the number of double bonds and their position in the aliphatic chain of fatty acid. The main goal of this paper was to examine the structural changes taking place during hardening bitumen with bio-flux additives. Two types of road bitumens fluxed with two different oxidized methyl esters of rapeseed oil were used in this study. Various chemical and rheological tests were applied for the fluxed-bitumen at different stages of oxygen exposure. The oxidation of rapeseed oil methyl ester reduced the iodine amount by about 10%-30%. Hardening of the fluxed bitumen generally results in an increase of the resins content and a reduction of the aromatics and asphaltenes. In the temperature range of 0 °C to 40 °C, bio-flux results with a much higher increase in the phase angle than in temperatures above 40 °C in the bitumen binder. The increase in the proportion of the viscous component in the low and medium binder temperature is favorable due to the potential improvement of the fatigue resistance of the asphalt mixture with such binders.

  15. Local momentum and heat fluxes in transient transport processes and inhomogeneous systems.

    PubMed

    Chen, Youping; Diaz, Adrian

    2016-11-01

    This work examines existing formalisms for the derivation of microscopic momentum and heat fluxes. Both analytical and simulation results are provided to show that the widely used flux formulas are not applicable to transient transport processes or highly inhomogeneous systems, e.g., materials with atomically sharp interfaces. A method is formulated for formally deriving microscopic momentum and heat fluxes through the integral representation of conservation laws. The resulting flux formulas are mathematically rigorous, fully consistent with the physical concepts of momentum and heat fluxes, and applicable to nonequilibrium transient processes in atomically inhomogeneous systems with general many-body forces.

  16. Local momentum and heat fluxes in transient transport processes and inhomogeneous systems

    NASA Astrophysics Data System (ADS)

    Chen, Youping; Diaz, Adrian

    2016-11-01

    This work examines existing formalisms for the derivation of microscopic momentum and heat fluxes. Both analytical and simulation results are provided to show that the widely used flux formulas are not applicable to transient transport processes or highly inhomogeneous systems, e.g., materials with atomically sharp interfaces. A method is formulated for formally deriving microscopic momentum and heat fluxes through the integral representation of conservation laws. The resulting flux formulas are mathematically rigorous, fully consistent with the physical concepts of momentum and heat fluxes, and applicable to nonequilibrium transient processes in atomically inhomogeneous systems with general many-body forces.

  17. Properties of Bayer Red Mud Based Flux and its Application in the Steelmaking Process

    NASA Astrophysics Data System (ADS)

    Zhang, Yanling; Li, Fengshan; Wang, Ruimin

    Bayer red mud is characterized as highly oxidizing (high Fe2O3 content) and highly alkaline (high Na2O content), which tends to act as a flux and strong dephosphorizer in the steelmaking process. In this study, firstly, the thermodynamical properties of Bayer red mud based flux were predicted including the melting temperature and phosphorus capacity. Further, laboratory experiments on application of Bayer red mud-based flux in hot metal dephosphorization. The effects of influencing factors such as flux composition and basicity were discussed. The results gave necessary basic knowledge for promoting the application of Bayer red mud in the steelmaking process.

  18. Controlling Ion and UV/VUV Photon Fluxes in Pulsed Low Pressure Plasmas for Materials Processing

    NASA Astrophysics Data System (ADS)

    Tian, Peng; Kushner, Mark J.

    2012-10-01

    UV/VUV photon fluxes in plasma materials processing have a variety of effects ranging from damaging to synergistic. To optimize these processes, it is desirable to have separate control over the fluxes of ions and photons, or at least be able to control their relative fluxes or overlap in time. Pulsed plasmas may provide such control as the rates at which ion and photon fluxes respond to the pulse power deposition are different. Results from a computational investigation of pulsed plasmas will be discussed to determine methods to control the ratio of ion to photon fluxes. Simulations were performed using a 2-dimensional plasma hydrodynamics model which addresses radiation transport using a Monte Carlo Simulation. Radiation transport is frequency resolved using partial-frequency-redistribution algorithms. Results for low pressure (10s of mTorr) inductively and capacitively coupled plasmas in Ar/Cl2 mixtures will be discussed while varying duty cycle, reactor geometry, gas mixture and pressure. We found that the time averaged ratio of VUV photon-to-ion fluxes in ICPs can be controlled with duty cycle of the pulsed power. Even with radiation trapping, photon fluxes tend to follow the power pulse whereas due to their finite response times, fluxes of ions tend to average the power pulse. Due to the overshoot in electron temperature that occurs at the start of low-duty-cycle pulses, disproportionately large photon fluxes (compared to ion fluxes) can be generated.

  19. Connection stiffness and dynamical docking process of flux pinned spacecraft modules

    NASA Astrophysics Data System (ADS)

    Lu, Yong; Zhang, Mingliang; Gao, Dong

    2014-02-01

    This paper describes a novel kind of potential flux pinned docking system that consists of guidance navigation and control system, the traditional extrusion type propulsion system, and a flux pinned docking interface. Because of characteristics of passive stability of flux pinning, the docking control strategy of flux pinned docking system only needs a series of sequential control rather than necessary active feedback control, as well as avoidance of hazardous collision accident. The flux pinned force between YBaCuO (YBCO) high temperature superconductor bulk and permanent magnet is able to be given vent based on the identical current loop model and improved image dipole model, which can be validated experimentally. Thus, the connection stiffness between two flux pinned spacecraft modules can be calculated based on Hooke's law. This connection stiffness matrix at the equilibrium position has the positive definite performance, which can validate the passively stable connection of two flux pinned spacecraft modules theoretically. Furthermore, the relative orbital dynamical equation of two flux pinned spacecraft modules can be established based on Clohessy-Wiltshire's equations and improved image dipole model. The dynamical docking process between two flux pinned spacecraft modules can be obtained by way of numerical simulation, which suggests the feasibility of flux pinned docking system.

  20. Connection stiffness and dynamical docking process of flux pinned spacecraft modules

    SciTech Connect

    Lu, Yong; Zhang, Mingliang Gao, Dong

    2014-02-14

    This paper describes a novel kind of potential flux pinned docking system that consists of guidance navigation and control system, the traditional extrusion type propulsion system, and a flux pinned docking interface. Because of characteristics of passive stability of flux pinning, the docking control strategy of flux pinned docking system only needs a series of sequential control rather than necessary active feedback control, as well as avoidance of hazardous collision accident. The flux pinned force between YBaCuO (YBCO) high temperature superconductor bulk and permanent magnet is able to be given vent based on the identical current loop model and improved image dipole model, which can be validated experimentally. Thus, the connection stiffness between two flux pinned spacecraft modules can be calculated based on Hooke's law. This connection stiffness matrix at the equilibrium position has the positive definite performance, which can validate the passively stable connection of two flux pinned spacecraft modules theoretically. Furthermore, the relative orbital dynamical equation of two flux pinned spacecraft modules can be established based on Clohessy-Wiltshire's equations and improved image dipole model. The dynamical docking process between two flux pinned spacecraft modules can be obtained by way of numerical simulation, which suggests the feasibility of flux pinned docking system.

  1. Evaluation of Heat Flux Measurement as a New Process Analytical Technology Monitoring Tool in Freeze Drying.

    PubMed

    Vollrath, Ilona; Pauli, Victoria; Friess, Wolfgang; Freitag, Angelika; Hawe, Andrea; Winter, Gerhard

    2017-01-04

    This study investigates the suitability of heat flux measurement as a new technique for monitoring product temperature and critical end points during freeze drying. The heat flux sensor is tightly mounted on the shelf and measures non-invasively (no contact with the product) the heat transferred from shelf to vial. Heat flux data were compared to comparative pressure measurement, thermocouple readings, and Karl Fischer titration as current state of the art monitoring techniques. The whole freeze drying process including freezing (both by ramp freezing and controlled nucleation) and primary and secondary drying was considered. We found that direct measurement of the transferred heat enables more insights into thermodynamics of the freezing process. Furthermore, a vial heat transfer coefficient can be calculated from heat flux data, which ultimately provides a non-invasive method to monitor product temperature throughout primary drying. The end point of primary drying determined by heat flux measurements was in accordance with the one defined by thermocouples. During secondary drying, heat flux measurements could not indicate the progress of drying as monitoring the residual moisture content. In conclusion, heat flux measurements are a promising new non-invasive tool for lyophilization process monitoring and development using energy transfer as a control parameter.

  2. Analysis of microfiltration performance with constant flux processing of secondary effluent.

    PubMed

    Parameshwaran, K; Fane, A G; Cho, B D; Kim, K J

    2001-12-01

    This study involves the microfiltration (MF) of secondary effluent from a sequencing batch reactor processing industrial waste. The MF unit was a hollow fibre module with gas backwash capability, and operated with pumped permeate (controlled flux) and dead-end, crossflow or intermittent feed. The results showed that crossflow had no effect on flux and that intermittent dead-end filtration was less productive than non-intermittent operation. For dead-end filtration the cycle-time between gas backwashes depends very significantly on the imposed flux (varying from about 100 min at 30 L/m2 h to about 5 min at 90 L, m2 h) and the feed solids content. Optimal operation has to balance operating (energy for backwash) costs and the capital (membrane area) costs. Cost analysis based on capital and energy costs indicates that for lower energy cost the unit needs to be operated at lower imposed flux but to minimise total cost it is necessary to operate the unit above 60 L/m2 h imposed flux depending on the maximum transmembrane pressure (TMP) allowed before back washing. Further analysis of TMP profiles showed that membrane resistance increased over time towards a maximum, which tended to increase with imposed flux. This implies more frequent chemical cleaning for high flux operation. Specific cake resistances were deduced from the profiles and indicated cake compression at higher flux and larger maximum TMP. Results of long-term trials are also reported. Water quality analysis shows consistent quality of permeate

  3. Assessment of advanced coal-gasification processes. [AVCO high throughput gasification in process; Bell High Mass Flux process; CS-R process; and Exxon Gasification process

    SciTech Connect

    McCarthy, J.; Ferrall, J.; Charng, T.; Houseman, J.

    1981-06-01

    This report represents a technical assessment of the following advanced coal gasification processes: AVCO High Throughput Gasification (HTG) Process, Bell Single - Stage High Mass Flux (HMF) Process, Cities Service/Rockwell (CS/R) Hydrogasification Process, and the Exxon Catalytic Coal Gasification (CCG) Process. Each process is evaluated for its potential to produce SNG from a bituminous coal. In addition to identifying the new technology these processes represent, key similarities/differences, strengths/weaknesses, and potential improvements to each process are identified. The AVCO HTG and the Bell HMF gasifiers share similarities with respect to: short residence time (SRT), high throughput rate, slagging and syngas as the initial raw product gas. The CS/R Hydrogasifier is also SRT but is non-slagging and produces a raw gas high in methane content. The Exxon CCG gasifier is a long residence time, catalytic fluidbed reactor producing all of the raw product methane in the gasifier.

  4. CO2 flux estimation errors associated with moist atmospheric processes

    NASA Astrophysics Data System (ADS)

    Parazoo, N. C.; Denning, A. S.; Kawa, S. R.; Pawson, S.; Lokupitiya, R.

    2012-04-01

    Vertical transport by moist sub-grid scale processes such as deep convection is a well-known source of uncertainty in CO2 source/sink inversion. However, a dynamical link between moist transport, satellite CO2 retrievals, and source/sink inversion has not yet been established. Here we examine the effect of moist processes on (1) synoptic CO2 transport by Version-4 and Version-5 NASA Goddard Earth Observing System Data Assimilation System (NASA-DAS) meteorological analyses, and (2) source/sink inversion. We find that synoptic transport processes, such as fronts and dry/moist conveyors, feed off background vertical CO2 gradients, which are modulated by sub-grid vertical transport. The implication for source/sink estimation is two-fold. First, CO2 variations contained in moist poleward moving air masses are systematically different from variations in dry equatorward moving air. Moist poleward transport is hidden from orbital sensors on satellites, causing a sampling bias, which leads directly to continental scale source/sink estimation errors of up to 0.25 PgC yr-1 in northern mid-latitudes. Second, moist processes are represented differently in GEOS-4 and GEOS-5, leading to differences in vertical CO2 gradients, moist poleward and dry equatorward CO2 transport, and therefore the fraction of CO2 variations hidden in moist air from satellites. As a result, sampling biases are amplified, causing source/sink estimation errors of up to 0.55 PgC yr-1 in northern mid-latitudes. These results, cast from the perspective of moist frontal transport processes, support previous arguments that the vertical gradient of CO2 is a major source of uncertainty in source/sink inversion.

  5. A modeling study of benthic detritus flux's impacts on heterotrophic processes in Lake Michigan

    NASA Astrophysics Data System (ADS)

    Chen, Changsheng; Wang, Lixia; Qi, Jianhua; Liu, Hedong; Budd, Judith Wells; Schwab, David J.; Beletsky, Dmitry; Vanderploeg, Henry; Eadie, Brian; Johengen, Thomas; Cotner, James; Lavrentyev, Peter J.

    2004-10-01

    Effects of sediment resuspension-induced benthic detrital flux on the heterotrophic part of the microbial food web in Lake Michigan were examined using a three-dimensional (3-D) coupled biological and physical model. The model was driven by the realistic meteorological forcing observed in March 1999. Wind-induced surface wave dynamics were incorporated into the physical model to generate the bottom flux. The model-generated benthic detrital flux was assumed to be proportional to the difference between model-calculated and critical stresses at the bottom. The model results indicate that detrital flux at the bottom was a key factor causing a significant increase of phosphorus and detritus concentrations in the nearshore region of the springtime plume. Inside the plume the sediment-resuspended bottom detritus flux could directly enhance heterotrophic production, while outside the plume, detrital flux from river discharge might have a direct contribution to the high abundance of bacteria and microzooplankton in the nearshore region. Model-data comparison on cross-shore transects near Chicago, Gary, St. Joseph, and Racine suggests that other physical and biological processes may play a comparative role as the bottom detritus flux in terms of the spatial distribution of bacteria and microzoplankton. A more complete microbial food web model needs to be developed to simulate the heterotrophic process in southern Lake Michigan.

  6. Flux Recovery of a Forward Osmosis Membrane After a Fouling Process

    NASA Technical Reports Server (NTRS)

    Romero-Mangado, Jaione; Parodi, Jurek; Gamboa-Vazquez, Sonia; Stefanson, Ofir; Diaz-Cartagena, Diana C.; Flynn, Michael

    2016-01-01

    Wastewater treatment through forward osmosis (FO) membranes is a process that has been evaluated in the past years as an innovative technology for the Next Generation Life Support Systems. FO technologies are cost effective, and require very low energy consumption, but are subject to membrane fouling. Membrane fouling occurs when unwanted materials accumulate on the active side of the membrane during the wastewater treatment process, which leads to a decrease in membrane flux rate. The aim of this study is to identify the materials that cause flux rate reduction due to membrane fouling, as well as to evaluate the flux rate recovery after membrane treatment using commercially available antifoulants. Fourier Transform Infrared (FTIR) spectrometry results identified possible compounds that cause membrane fouling and FO testing results demonstrated flux rate recovery after membrane treatment using antifoulants.

  7. Macroscopic fluxes and local reciprocal relation in second-order stochastic processes far from equilibrium

    NASA Astrophysics Data System (ADS)

    Ge, Hao

    2015-01-01

    A stochastic process is an essential tool for the investigation of the physical and life sciences at nanoscale. In the first-order stochastic processes widely used in chemistry and biology, only the flux of mass rather than that of heat can be well defined. Here we investigate the two macroscopic fluxes in second-order stochastic processes driven by position-dependent forces and temperature gradient. We prove that the thermodynamic equilibrium defined through the vanishing of macroscopic fluxes is equivalent to that defined via time reversibility at mesoscopic scale. In the small noise limit, we find that the entropy production rate, which has previously been defined by the mesoscopic irreversible fluxes on the phase space, matches the classic macroscopic expression as the sum of the products of macroscopic fluxes and their associated thermodynamic forces. Further we show that the two pairs of forces and fluxes in such a limit follow a linear phenomenonical relation and the associated scalar coefficients always satisfy the reciprocal relation for both transient and steady states. The scalar coefficient is proportional to the square of local temperature divided by the local frictional coefficient and originated from the second moment of velocity distribution along each dimension. This result suggests the very close connection between the Soret effect (thermal diffusion) and Dufour effect at nanoscale even far from equilibrium.

  8. Revealing the flux: Using processed Husimi maps to visualize dynamics of bound systems and mesoscopic transport

    NASA Astrophysics Data System (ADS)

    Mason, Douglas J.; Borunda, Mario F.; Heller, Eric J.

    2015-04-01

    We elaborate upon the "processed Husimi map" representation for visualizing quantum wave functions using coherent states as a measurement of the local phase space to produce a vector field related to the probability flux. Adapted from the Husimi projection, the processed Husimi map is mathematically related to the flux operator under certain limits but offers a robust and flexible alternative since it can operate away from these limits and in systems that exhibit zero flux. The processed Husimi map is further capable of revealing the full classical dynamics underlying a quantum wave function since it reverse engineers the wave function to yield the underlying classical ray structure. We demonstrate the capabilities of processed Husimi maps on bound systems with and without electromagnetic fields, as well as on open systems on and off resonance, to examine the relationship between closed system eigenstates and mesoscopic transport.

  9. Capturing and Processing Soil GHG Fluxes Using the LI-COR LI-8100A

    NASA Astrophysics Data System (ADS)

    Xu, Liukang; McDermitt, Dayle; Hupp, Jason; Johnson, Mark; Madsen, Rod

    2015-04-01

    The LI-COR LI-8100A Automated Soil CO2 Flux System is designed to measure soil CO2 efflux using automated chambers and a non-steady state measurement protocol. While CO2 is an important gas in many contexts, it is not the only gas of interest for many research applications. With some simple plumbing modifications, many third party analyzers capable of measuring other trace gases, e.g. N2O, CH4, or 13CO2 etc., can be interfaced with the LI-8100A System, and LI-COR's data processing software (SoilFluxPro™) can be used to compute fluxes for these additional gases. In this paper we describe considerations for selecting an appropriate third party analyzer to interface with the system, how to integrate data into the system, and the procedure used to compute fluxes of additional gases in SoilFluxPro™. A case study is presented to demonstrate methane flux measurements using an Ultra-Portable Greenhouse Gas Analyzer (Ultra-Portable GGA, model 915-0011), manufactured by Los Gatos Research and integrated into the LI-8100A System. Laboratory and field test results show that the soil CO2 efflux based on the time series of CO2 data measured either with the LI-8100A System or with the Ultra-Portable GGA are essentially the same. This suggests that soil GHG fluxes measured with both systems are reliable.

  10. Baseliner: an open source, interactive tool for processing sap flux data from thermal dissipation probes.

    Treesearch

    Andrew C. Oishi; David Hawthorne; Ram Oren

    2016-01-01

    Estimating transpiration from woody plants using thermal dissipation sap flux sensors requires careful data processing. Currently, researchers accomplish this using spreadsheets, or by personally writing scripts for statistical software programs (e.g., R, SAS). We developed the Baseliner software to help establish a standardized protocol for processing sap...

  11. Shallow cumulus processes deduced from subcloud flux measurements and parameterization schemes

    SciTech Connect

    Oetles, Z.

    1993-01-01

    The purposes of this study are to improve understanding of shallow cumulus in the planetary boundary layer (PBL), to quantitatively measure their subcloud root processes, and to link those measurements to estimates of cloud layer processes. Subcloud aircraft turbulence data for three days from the 1986 HAPEX project in southwest France is extensively analyzed. Various parameterizations of cloud layer processes are used to estimate cumulus layer effects by employing the subcloud fluxes as boundary conditions. Case 1 (5/21/86) had active cumuli; over the forest they were deep and large in diameter, but clouds over farmland were shallow and small in diameter. Case 2 (5/9/86) has also weak active cumulus with a smaller vertical depth and case 3 (6/13/86) had only forced cumuli. Four methods of decomposition of turbulence data have been employed: by land surface-cumulus regime, by proximity to clouds and clear areas, by scale, and by turbulence process types. In the presence strong active cumuli from case 1, the turbulent fluxes and energy are intensified, due to the cloud [open quotes]root[close quotes] effects. The strong active cumuli are initiated by warm-moist thermals. Since cumulus layer flux measurements were not made during the HAPEX experiment, different parameterization schemes have been used to estimate cloud layer fluxes. The schemes are: the simple cumulus flux scheme, the Betts-Miller adjustment scheme, an eddy diffusion scheme, and a new eddy diffusion scheme with counter-gradient term which is developed as a part of this study. For the strong active cumulus regime from case 1, the liquid water potential temperature and total water fluxes obtained from different parameterization schemes yield very similar results. Unlike the other parameterization schemes, the new eddy diffusion scheme with a counter-gradient term yields upward buoyancy fluxes which are in a good agreement with earlier studies.

  12. Process for reducing series resistance of solar cell metal contact systems with a soldering flux etchant

    SciTech Connect

    Coyle, R.T.; Barrett, J.M.

    1984-10-09

    Disclosed is a process for substantially reducing the series resistance of a solar cell having a thick film metal contact assembly thereon while simultaneously removing oxide coatings from the surface of the assembly prior to applying solder therewith. The process includes applying a flux to the contact assembly and heating the cell for a period of time sufficient to substantially remove the series resistance associated with the assembly by etching the assembly with the flux while simultaneously removing metal oxides from said surface of said assembly.

  13. Process for reducing series resistance of solar cell metal contact systems with a soldering flux etchant

    DOEpatents

    Coyle, R. T.; Barrett, Joy M.

    1984-01-01

    Disclosed is a process for substantially reducing the series resistance of a solar cell having a thick film metal contact assembly thereon while simultaneously removing oxide coatings from the surface of the assembly prior to applying solder therewith. The process includes applying a flux to the contact assembly and heating the cell for a period of time sufficient to substantially remove the series resistance associated with the assembly by etching the assembly with the flux while simultaneously removing metal oxides from said surface of said assembly.

  14. Effects of Flux Precoating and Process Parameter on Welding Performance of Inconel 718 Alloy TIG Welds

    NASA Astrophysics Data System (ADS)

    Lin, Hsuan-Liang; Wu, Tong-Min; Cheng, Ching-Min

    2014-01-01

    The purpose of this study is to investigate the effect of activating flux on the depth-to-width ratio (DWR) and hot cracking susceptibility of Inconel 718 alloy tungsten inert gas (TIG) welds. The Taguchi method is employed to investigate the welding parameters that affect the DWR of weld bead and to achieve optimal conditions in the TIG welds that are coated with activating flux in TIG (A-TIG) process. There are eight single-component fluxes used in the initial experiment to evaluate the penetration capability of A-TIG welds. The experimental results show that the Inconel 718 alloy welds precoated with 50% SiO2 and 50% MoO3 flux were provided with better welding performance such as DWR and hot cracking susceptibility. The experimental procedure of TIG welding process using mixed-component flux and optimal conditions not only produces a significant increase in DWR of weld bead, but also decreases the hot cracking susceptibility of Inconel 718 alloy welds.

  15. BENTHIC AND WATER COLUMN PROCESSES IN A SUBTROPICAL ESTUARY: EFFECTS OF LIGHT ON OXYGEN FLUXES

    EPA Science Inventory

    Murrell, M.C., J.D. Hagy, J.G. Campbell and J.M. Caffrey. In press. Benthic and Water Column Processes in a Subtropical Estuary: Effects of Light on Oxygen Fluxes (Abstract). To be presented at the ASLO 2004 Summer Meeting: The Changing Landscapes of Oceans and Freshwater, 13-18 ...

  16. BENTHIC AND WATER COLUMN PROCESSES IN A SUBTROPICAL ESTUARY: EFFECTS OF LIGHT ON OXYGEN FLUXES

    EPA Science Inventory

    Murrell, M.C., J.D. Hagy, J.G. Campbell and J.M. Caffrey. In press. Benthic and Water Column Processes in a Subtropical Estuary: Effects of Light on Oxygen Fluxes (Abstract). To be presented at the ASLO 2004 Summer Meeting: The Changing Landscapes of Oceans and Freshwater, 13-18 ...

  17. Mass spectroscopy of the ion flux produced during inductively coupled plasma nitriding process

    NASA Astrophysics Data System (ADS)

    Kolodko, D. V.; Kaziev, A. V.; Ageychenkov, D. G.; Meshcheryakova, E. A.; Pisarev, A. A.; Tumarkin, A. V.

    2017-05-01

    Ion fluxes on the surface of sample embedded in inductively coupled plasma have been studied in conditions typical for titanium alloy nitriding: total pressure 0.44 Pa, Ar/N2 = 70%/30%, and RF power 1500 W. The gas composition was independently monitored by the quadrupole analyser. The ion fluxes were sampled using a specially designed electrostatic extractor and then analysed with a magnetic sector mass-separator. The extractor design allowed us to apply a bias voltage to the plasma facing electrode thus imitating interaction of ions with the surface during the plasma processing. The ion fluxes of Ar+, {{{N}}}2{}+, and N+ on the surface were measured. The mass spectroscopy diagnostics unit is suitable for extensive ion content studies in the plasma technology facilities.

  18. Use of boundary fluxes when simulating solute transport with the MODFLOW ground-water transport process

    USGS Publications Warehouse

    Konikow, L.F.; Hornberger, G.Z.

    2003-01-01

    This report describes modifications to a U.S. Geological Survey (USGS) threedimensional solute-transport model (MODFLOWGWT), which is incorporated into the USGS MODFLOW ground-water model as the Ground- Water Transport (GWT) Process. The modifications improve the capability of MODFLOW-GWT to accurately simulate solute transport in simulations that represent a nonzero flux across an aquifer boundary. In such situations, the new Boundary Flux Package (BFLX) will allow the user flexibility to assign the flux to specific cell faces, although that flexibility is limited for certain types of fluxes (such as recharge and evapotranspiration, which can only be assigned to the top face if either is to be represented as a boundary flux). The approach is consistent with that used in the MODPATH model. The application of the BFLX Package was illustrated using a test case in which the Lake Package was active. The results using the BFLX Package showed noticeably higher magnitudes of velocity in the cells adjacent to the lake than previous results without the BFLX Package. Consequently, solute was transported slightly faster through the lake-aquifer system when the BFLX Package is active. However, the overall solute distributions did not differ greatly from simulations made without using the BFLX Package.

  19. An overview of AmeriFlux data products and methods for data acquisition, processing, and publication

    NASA Astrophysics Data System (ADS)

    Pastorello, G.; Poindexter, C.; Agarwal, D.; Papale, D.; van Ingen, C.; Torn, M. S.

    2014-12-01

    The AmeriFlux network encompasses independently managed field sites measuring ecosystem carbon, water, and energy fluxes across the Americas. In close coordination with ICOS in Europe, a new set of fluxes data and metadata products is being produced and released at the FLUXNET level, including all AmeriFlux sites. This will enable continued releases of global standardized set of flux data products. In this release, new formats, structures, and ancillary information are being proposed and adopted. This presentation discusses these aspects, detailing current and future solutions. One of the major revisions was to the BADM (Biological, Ancillary, and Disturbance Metadata) protocols. The updates include structure and variable changes to address new developments in data collection related to flux towers and facilitate two-way data sharing. In particular, a new organization of templates is now in place, including changes in templates for biomass, disturbances, instrumentation, soils, and others. New variables and an extensive addition to the vocabularies used to describe BADM templates allow for a more flexible and comprehensible coverage of field sites and the data collection methods and results. Another extensive revision is in the data formats, levels, and versions for fluxes and micrometeorological data. A new selection and revision of data variables and an integrated new definition for data processing levels allow for a more intuitive and flexible notation for the variety of data products. For instance, all variables now include positional information that is tied to BADM instrumentation descriptions. This allows for a better characterization of spatial representativeness of data points, e.g., individual sensors or the tower footprint. Additionally, a new definition for data levels better characterizes the types of processing and transformations applied to the data across different dimensions (e.g., spatial representativeness of a data point, data quality checks

  20. Heavy and Superheavy Elements Production in High Intensive Neutron Fluxes of Explosive Process

    NASA Astrophysics Data System (ADS)

    Lutostansky, Yu. S.; Lyashuk, V. I.; Panov, I. V.

    2015-06-01

    Mathematical model of heavy and superheavy nuclei production in intensive pulsed neutron fluxes of explosive process is developed. The pulse character of the process allows dividing it in time into two stages: very short rapid process of multiple neutron captures with higher temperature and very intensive neutron fluxes, and relatively slower process with lesser temperature and neutron fluxes. The model was also extended for calculation of the transuranium yields in nuclear explosions takes into account the adiabatic character of the process, the probabilities of delayed fission, and the emission of delayed neutrons. Also the binary starting target isotopes compositions were included. Calculations of heavy transuranium and transfermium nuclei production were made for "Mike", "Par" and "Barbel" experiments, performed in USA. It is shown that the production of transfermium neutron-rich nuclei and superheavy elements with A ~ 295 is only possible when using binary mixture of starting isotopes with the significant addition of heavy components, such as long-lived isotopes of curium, or californium.

  1. In-situ FT-IR monitoring of a solar flux induced chemical process

    SciTech Connect

    Markham, J.R.; Cosgrove, J.E.; Nelson, C.M.; Bonanno, A.S.; Schlief, R.E.; Stoy, M.A.; Glatzmaier, G.C.; Bingham, C.E.; Lewandowski, A.A.

    1997-08-01

    The capability to perform in-situ, on-line monitoring of processes induced by concentrated solar flux will enhance the development and utilization of solar technologies. Temperature measurements and chemical concentration measurements provide an understanding of the ongoing chemistry, process limits, and process reproducibility. A Fourier transform infrared (FT-IR) spectrometer was optically coupled to a quartz flow reactor at the High Flux Solar Furnace of the National Renewable Energy Laboratory in Golden, CO. In-situ emission/transmission spectroscopy was utilized to simultaneously monitor steam temperature and the concentration of formed hydrogen bromide during the solar flux induced reaction of steam and bromine. The photochemical process is being investigated for the production of industrial quantities of hydrogen and oxygen, where downstream electrolysis of the formed hydrogen bromide provides the hydrogen and regenerates bromine. Steam temperature was measured to increase upon the addition of bromine to the reactor. Gas temperature increases of 200 C to 400 C were observed. Hydrogen bromide concentrations up to ten percent of the reactor gas volume was measured. The FT-IR system provided quantitative information of two critical parameters of the measured process and serves to accelerate this technology area.

  2. Development of a new flux map processing code for moveable detector system in PWR

    SciTech Connect

    Li, W.; Lu, H.; Li, J.; Dang, Z.; Zhang, X.

    2013-07-01

    This paper presents an introduction to the development of the flux map processing code MAPLE developed by China Nuclear Power Technology Research Institute (CNPPJ), China Guangdong Nuclear Power Group (CGN). The method to get the three-dimensional 'measured' power distribution according to measurement signal has also been described. Three methods, namely, Weight Coefficient Method (WCM), Polynomial Expand Method (PEM) and Thin Plane Spline (TPS) method, have been applied to fit the deviation between measured and predicted results for two-dimensional radial plane. The measured flux map data of the LINGAO nuclear power plant (NPP) is processed using MAPLE as a test case to compare the effectiveness of the three methods, combined with a 3D neutronics code COCO. Assembly power distribution results show that MAPLE results are reasonable and satisfied. More verification and validation of the MAPLE code will be carried out in future. (authors)

  3. Relationship between Thermodynamic Driving Force and One-Way Fluxes in Reversible Processes

    PubMed Central

    Beard, Daniel A.; Qian, Hong

    2007-01-01

    Chemical reaction systems operating in nonequilibrium open-system states arise in a great number of contexts, including the study of living organisms, in which chemical reactions, in general, are far from equilibrium. Here we introduce a theorem that relates forward and reverse fluxes and free energy for any chemical process operating in a steady state. This relationship, which is a generalization of equilibrium conditions to the case of a chemical process occurring in a nonequilibrium steady state in dilute solution, provides a novel equivalent definition for chemical reaction free energy. In addition, it is shown that previously unrelated theories introduced by Ussing and Hodgkin and Huxley for transport of ions across membranes, Hill for catalytic cycle fluxes, and Crooks for entropy production in microscopically reversible systems, are united in a common framework based on this relationship. PMID:17206279

  4. Low-cost Approaches for Flux-pinning Enhancements in YBCO Films Using Solution Processing

    SciTech Connect

    Sathyamurthy, Srivatsan; Leonard, Keith J; Bhuiyan, Md S; Aytug, Tolga; Kang, Sukill; Martin, Patrick M; Hunt, Rodney Dale; Paranthaman, Mariappan Parans

    2007-01-01

    Nanoparticles of several oxides have been synthesized using reverse micelle process. Microemulsions containing n-octane as the oil phase, cetyl trimethylammonium bromide and 1-butanol as surfactants, and an aqueous solution of metal nitrates and sodium hydroxide were used as the reaction medium. The nanoparticles obtained were characterized using differential thermal analysis, x-ray diffraction, and transmission electron microscopy. The application of these particles for flux-pinning enhancements has been studied.

  5. Post processing of CO2 flux measurements from an urban landscape

    NASA Astrophysics Data System (ADS)

    Menzer, O.; Meiring, W.; Kyriakidis, P. C.; McFadden, J. P.

    2013-12-01

    Tower based measurements of CO2 fluxes by the eddy covariance method are subject to random error, systematic error, and missing data (gaps). In homogeneous ecosystems such as forests and grasslands, the post processing methods to address these problems are relatively well established. In the urban environment, however, the assumptions of most such methods are violated due to spatial heterogeneity in the tower footprint and localized CO2 sources such as traffic emission. For this reason, work is needed to develop and test methods appropriate to the urban setting. Here, we report comparisons of post processing methods for >3 years of flux measurements from the KUOM tall tower in a suburban neighborhood of Minneapolis, Minnesota, USA. Machine learning regression approaches including Artificial Neural Networks and Gaussian Processes were used to integrate observations from remote sensing, traffic and weather stations, and to extract complex underlying functional relationships, in order to improve gap-filling and minimize uncertainties. Specifically, we tested the sensitivity of the measurements to vehicle emissions by incorporating traffic counts from nearby roads and highways. Also, the selection of the friction velocity (u*) threshold was found to be sensitive to the wind direction but consistent between years. We calculated carbon flux sums for both residential and recreational land use types in the tower footprint, and assessed the random and systematic uncertainties caused by gap-filling and u*-filtering. While these post processing methods are essential for interpreting CO2 flux measurements in urban environments, they may also be useful for other inhomogeneous sites such as logged forests or ecosystems under disturbance from fire or pests.

  6. Heat Flux Estimation of a Flame Thermal Spray Process Using a Thermally Thin Composite Calorimeter

    NASA Astrophysics Data System (ADS)

    Yi, Duo; Serio, Bruno; Lecler, Sylvain; Pfeiffer, Pierre; Costil, Sophie

    2016-12-01

    Temperature measurements take on prime importance in the field of the thermal spray coating since the temperature variation greatly affects the formation of splat morphology and also the coating properties and qualities. The evaluation of the heat flux is therefore essential since temperature variation comes from the energy transfer and conduction of the thermal system. The aim of this study is to estimate the heat flux of a flame thermal spray by solving an inverse heat conduction problem. Firstly, the substrate material and geometry are well designed so that the Biot number is small enough to conform to the lumped capacitance conditions. A lumped capacitance model of a substrate with its coating subjected to a uniform echelon heat flux is evaluated by solving a heat balance equation in the Laplace domain. Then, a thermally thin calorimeter is designed and the experimental thermogram is obtained by embedding a thin-wire micro-thermocouple onto the front and rear faces of the substrate. The forced convective heat transfer coefficient as well as the net incident heat flux density brought to the substrate during the thermal spray process are estimated. The theoretical composite surface temperature is compared to the experimental recording, the result showing a good agreement.

  7. Process-oriented modelling to identify main drivers of erosion-induced carbon fluxes

    NASA Astrophysics Data System (ADS)

    Wilken, Florian; Sommer, Michael; Van Oost, Kristof; Bens, Oliver; Fiener, Peter

    2017-05-01

    Coupled modelling of soil erosion, carbon redistribution, and turnover has received great attention over the last decades due to large uncertainties regarding erosion-induced carbon fluxes. For a process-oriented representation of event dynamics, coupled soil-carbon erosion models have been developed. However, there are currently few models that represent tillage erosion, preferential water erosion, and transport of different carbon fractions (e.g. mineral bound carbon, carbon encapsulated by soil aggregates). We couple a process-oriented multi-class sediment transport model with a carbon turnover model (MCST-C) to identify relevant redistribution processes for carbon dynamics. The model is applied for two arable catchments (3.7 and 7.8 ha) located in the Tertiary Hills about 40 km north of Munich, Germany. Our findings indicate the following: (i) redistribution by tillage has a large effect on erosion-induced vertical carbon fluxes and has a large carbon sequestration potential; (ii) water erosion has a minor effect on vertical fluxes, but episodic soil organic carbon (SOC) delivery controls the long-term erosion-induced carbon balance; (iii) delivered sediments are highly enriched in SOC compared to the parent soil, and sediment delivery is driven by event size and catchment connectivity; and (iv) soil aggregation enhances SOC deposition due to the transformation of highly mobile carbon-rich fine primary particles into rather immobile soil aggregates.

  8. An inorganic CO2 diffusion and dissolution process explains negative CO2 fluxes in saline/alkaline soils.

    PubMed

    Ma, Jie; Wang, Zhong-Yuan; Stevenson, Bryan A; Zheng, Xin-Jun; Li, Yan

    2013-01-01

    An 'anomalous' negative flux, in which carbon dioxide (CO2) enters rather than is released from the ground, was studied in a saline/alkaline soil. Soil sterilization disclosed an inorganic process of CO2 dissolution into (during the night) and out of (during the day) the soil solution, driven by variation in soil temperature. Experimental and modeling analysis revealed that pH and soil moisture were the most important determinants of the magnitude of this inorganic CO2 flux. In the extreme cases of air-dried saline/alkaline soils, this inorganic process was predominant. While the diurnal flux measured was zero sum, leaching of the dissolved inorganic carbon in the soil solution could potentially effect net carbon ecosystem exchange. This finding implies that an inorganic module should be incorporated when dealing with the CO2 flux of saline/alkaline land. Neglecting this inorganic flux may induce erroneous or misleading conclusions in interpreting CO2 fluxes of these ecosystems.

  9. Baseliner: An open-source, interactive tool for processing sap flux data from thermal dissipation probes

    NASA Astrophysics Data System (ADS)

    Oishi, A. Christopher; Hawthorne, David A.; Oren, Ram

    Estimating transpiration from woody plants using thermal dissipation sap flux sensors requires careful data processing. Currently, researchers accomplish this using spreadsheets, or by personally writing scripts for statistical software programs (e.g., R, SAS). We developed the Baseliner software to help establish a standardized protocol for processing sap flux data. Baseliner enables users to QA/QC data and process data using a combination of automated steps, visualization, and manual editing. Data processing requires establishing a zero-flow reference value, or "baseline", which varies among sensors and with time. Since no set of algorithms currently exists to reliably QA/QC and estimate the zero-flow baseline, Baseliner provides a graphical user interface to allow visual inspection and manipulation of data. Data are first automatically processed using a set of user defined parameters. The user can then view the data for additional, manual QA/QC and baseline identification using mouse and keyboard commands. The open-source software allows for user customization of data processing algorithms as improved methods are developed.

  10. An investigation into underwater wet welding using the flux cored arc welding process

    SciTech Connect

    Brydon, A.M.; Nixon, J.H.

    1995-12-31

    For the last two years, Cranfield has been carrying out a program of process investigations into wet underwater welding (Graham and Nixon 1993, Nixon and Webb 1994), and has demonstrated that it is possible to markedly improve the stability and consistency of the process by using control techniques developed for hyperbaric welding. In the project reported below, an initial evaluation of wet flux cored arc welding was undertaken. Although there continues to be considerable resistance to the use of wet welding on structures in the North Sea, continued pressure to reduce repair and maintenance costs is causing the industry to re-examine techniques previously discounted, such as wet welding (Anon 1993).

  11. Effect of jet-to-mainstream momentum flux ratio on mixing process

    NASA Astrophysics Data System (ADS)

    Gupta, Alka; Ibrahim, Mohamed Saeed; Amano, R. S.

    2016-03-01

    Temperature uniformity after a mixing process plays a very important role in many applications. Non-uniform temperature at the entrance of the turbine in gas turbine systems has an adverse effect on the life of the blades. These temperature non-uniformities cause thermal stresses in the blades leading to higher maintenance costs. This paper presents experimental and numerical results for mixing process in coaxial ducts. The effect of increased jet-to-mainstream momentum flux ratio on the temperature uniformity of the exit flow was analyzed. It was found that better mixing of primary (or hot) stream and dilution (or cold) stream was achieved at higher flux ratio. Almost 85 % of the equilibrium mixture fraction was achieved at flux ratio of 0.85 after which no significant improvement was achieved while the exergy destruction kept on increasing. A new parameter, `Cooling Rate Number', was defined to identify the potential sites for presence of cold zones within the mixing section. Parametric study reveals that the cooling rate numbers were higher near the dilution holes which may result in rapid cooling of the gases.

  12. Land-Use Change, Soil Process and Trace Gas Fluxes in the Brazilian Amazon Basin

    NASA Technical Reports Server (NTRS)

    Melillo, Jerry M.; Steudler, Paul A.

    1997-01-01

    We measured changes in key soil processes and the fluxes of CO2, CH4 and N2O associated with the conversion of tropical rainforest to pasture in Rondonia, a state in the southwest Amazon that has experienced rapid deforestation, primarily for cattle ranching, since the late 1970s. These measurements provide a comprehensive quantitative picture of the nature of surface soil element stocks, C and nutrient dynamics, and trace gas fluxes between soils and the atmosphere during the entire sequence of land-use change from the initial cutting and burning of native forest, through planting and establishment of pasture grass and ending with very old continuously-pastured land. All of our work is done in cooperation with Brazilian scientists at the Centro de Energia Nuclear na Agricultura (CENA) through an extant official bi-lateral agreement between the Marine Biological Laboratory and the University of Sao Paulo, CENA's parent institution.

  13. In-situ monitoring the realkalisation process by neutron diffraction: Electroosmotic flux and portlandite formation

    SciTech Connect

    Castellote, Marta . E-mail: martaca@ietcc.csic.es; Llorente, Irene; Andrade, Carmen; Turrillas, Xavier; Alonso, Cruz; Campo, Javier

    2006-05-15

    Even though the electroosmotic flux through hardened cementitious materials during laboratory realkalisation trials had been previously noticed, it has never been in-situ monitored, analysing at the same time the establishment of the electroosmotic flux and the microstructure changes in the surroundings of the rebar. In this paper, two series of cement pastes, cast with CEM I and CEM I substituted in a 35% by fly ash, previously carbonated at 100% CO{sub 2}, were submitted to realkalisation treatments followed on line by simultaneous acquisition of neutron diffraction data. As a result, it has been possible to confirm the electroosmosis as the driving force of carbonates towards the rebar and to determine the range of pH in the anolyte in which most of the relevant electroosmotic phenomena takes place. On the other hand, the behaviour of the main crystalline phases involved in the process has been monitored during the treatment, with the precipitation of portlandite as main result.

  14. Processing of strong flux trapping high T(subc) oxide superconductors: Center director's discretionary fund

    NASA Technical Reports Server (NTRS)

    Wu, M. K.; Higgins, C. A.; Leong, P. T.; Chou, H.; Loo, B. H.; Curreri, P. A.; Peters, P. N.; Sisk, R. C.; Huang, C. Y.; Shapira, Y.

    1989-01-01

    Magnetic suspension effect was first observed in samples of YBa2Cu3O7/AgO(Y-123/AgO) composites. Magnetization measurements of these samples show a much larger hysteresis which corresponds to a large critical current density. In addition to the Y-123AgO composites, recently similar suspension effects in other RE-123/AgO, where RE stands for rare-Earth elements, were also observed. Some samples exhibit even stronger flux pinning than that of the Y-123/AgO sample. An interesting observation was that in order to form the composite which exhibits strong flux trapping effect the sintering temperature depends on the particular RE-123 compound used. The paper presents the detailed processing conditions for the formation of these RE-123/AgO composites, as well as the magnetization and critical field data.

  15. MAGNETOHYDRODYNAMIC MODELING FOR A FORMATION PROCESS OF CORONAL MASS EJECTIONS: INTERACTION BETWEEN AN EJECTING FLUX ROPE AND AN AMBIENT FIELD

    SciTech Connect

    Shiota, Daikou; Kusano, Kanya; Miyoshi, Takahiro; Shibata, Kazunari

    2010-08-01

    We performed a magnetohydrodynamic simulation of a formation process of coronal mass ejections (CMEs), focusing on the interaction (reconnection) between an ejecting flux rope and its ambient field. We examined three cases with different ambient fields: one had no ambient field, while the other two had dipole fields with opposite directions, parallel and anti-parallel to that of the flux rope surface. We found that while the flux rope disappears in the anti-parallel case, in the other cases the flux ropes can evolve to CMEs and show different amounts of flux rope rotation. The results imply that the interaction between an ejecting flux rope and its ambient field is an important process for determining CME formation and CME orientation, and also show that the amount and direction of the magnetic flux within the flux rope and the ambient field are key parameters for CME formation. The interaction (reconnection) plays a significant role in the rotation of the flux rope especially with a process similar to 'tilting instability' in a spheromak-type experiment of laboratory plasma.

  16. Observation of the flux line lattice in MPMG-processed YBCO using a decoration technique of ferromagnetic particles

    NASA Astrophysics Data System (ADS)

    Higashida, Yutaka; Kubo, Yukio; Murakami, Masato; Fujimoto, Hiroyuki; Yamaguchi, Koji; Takata, Tsutomu; Kondoh, Akihiro; Koshizuka, Naoki

    1991-12-01

    Observation of the flux line distribution in MPMG-processed YBa2Cu3O7 has been conducted using a decoration technique of ferromagnetic particles. It has been found that the flux lines are trapped mainly at Y2BaCuO5 inclusions or the interface between the inclusion and the superconducting matrix.

  17. Neogene cratonic erosion fluxes and landform evolution processes from regional regolith mapping (Burkina Faso, West Africa)

    NASA Astrophysics Data System (ADS)

    Grimaud, Jean-Louis; Chardon, Dominique; Metelka, Václav; Beauvais, Anicet; Bamba, Ousmane

    2015-07-01

    The regionally correlated and dated regolith-paleolandform sequence of Sub-Saharan West Africa offers a unique opportunity to constrain continental-scale regolith dynamics as the key part of the sediment routing system. In this study, a regolith mapping protocol is developed and applied at the scale of Southwestern Burkina Faso. Mapping combines field survey and remote sensing data to reconstruct the topography of the last pediplain that formed over West Africa in the Early and Mid-Miocene (24-11 Ma). The nature and preservation pattern of the pediplain are controlled by the spatial variation of bedrock lithology and are partitioned among large drainage basins. Quantification of pediplain dissection and drainage growth allows definition of a cratonic background denudation rate of 2 m/My and a minimum characteristic timescale of 20 Ma for shield resurfacing. These results may be used to simulate minimum export fluxes of drainage basins of constrained size over geological timescales. Background cratonic denudation results in a clastic export flux of ~ 4 t/km2/year, which is limited by low denudation efficiency of slope processes and correlatively high regolith storage capacity of tropical shields. These salient characteristics of shields' surface dynamics would tend to smooth the riverine export fluxes of shields through geological time.

  18. Surface flux processes and evolution of characteristic eddy scales above a young Middle Rio Grande forest

    NASA Astrophysics Data System (ADS)

    Cleverly, J. R.; Thibault, J. R.; Slusher, M.; Hipps, L.; Prueger, J.; Dahm, C. N.

    2003-12-01

    The extended drought throughout the Southwest has brought water budgets and policy decisions into public purview. It is often presumed that riparian restoration, i.e. removal of non-native species, presents a water salvage panacea. The cost of such operations can be prohibitive, making reliable estimates of phreatophytic ET a crucial piece of information. This study has taken a long-term approach to monitoring ET water flux from a variety of these forests. ET monitoring towers have been established at 5 sites along the Middle Rio Grande -- 2 over mature cottonwood forests, 2 over mature saltcedar forests, and 1 over a young mixed stand of Russian olive and willow. Because there is yet no infallible method for determining ET fluxes, eddy covariance technology provides the best method for evaluating those processes in the surface layer by provided data directly into surface layer similarity relationships. ET, energy, and carbon flux were measured during the 2003 growing season from towers using the 3-dimensional sonic eddy covariance (3SEC) method. Scalar flux sensors included a 3-D sonic anemometer, Krypton hygrometer, 12.7 μ m type E fine wire thermocouple (Campbell Scientific, Inc), and LI-7500 open-path IRGA (Licor, Inc). An averaging period of 30 min was chosen based as a period of low cospectral density. The following corrections were applied to these fluxes: coordinate rotation; correction of frequency-specific signal attenuation due to instrument separation, instrument line averaging, and signal path length (Massman 2000 & 2001); krypton hygrometer calibration as a function of humidity; oxygen contribution to the krypton hygrometer signal; and flux effects on measured densities (Webb et al 1980). These corrections reduced the closure error by 5 percent. Closure was then forced using the measured Bowen Ratio as the weighting factor. Measured ET, along with leaf area index, was reduced as much as 35 percent during the prolonged drought in the southwestern U

  19. Process for the recovery of aluminum from dross without use of salt flux

    SciTech Connect

    Geus, E.H.; Lussi, V.; Spoel, H.

    1995-12-31

    A process has been developed to recover aluminum from dross which does not require the use of salt flux as commonly employed. This results in a salt-free residue which has potential industrial uses or alternatively can be safely land-filled. The dross is first heated by an air-fuel or oxy-fuel burner in a sealable rotary furnace. At a suitable temperature the burner is turned off and the temperature of the dross thereafter controlled by means of an atmosphere of oxidative and inert gases. When the free metal has agglomerated it is first discharged from the furnace, followed by the residues.

  20. The role of the scalar and enstrophy flux in entrainment processes

    NASA Astrophysics Data System (ADS)

    Mistry, Dhiren; Dawson, James R.

    2016-11-01

    Turbulent entrainment is a multi-stage, multi-scale process that describes the growth of a turbulent region of flow. Ultimately, turbulent entrainment is achieved through viscous diffusion of vorticity, and molecular diffusion in the presence of scalars, with irrotational and unmixed regions of the flow at the smallest scales. We do not fully understand how these small-scale processes are coupled to or modulated by the large-scales of turbulence. This is partly because the mean entrainment rates in turbulent shear flows can be determined by considering large-scales quantities only. We present experimental evidence that the large-scale flux of enstrophy and scalar towards the turbulent/non-turbulent interface (TNTI) coincides with a local increase in the entrainment velocity along the TNTI. This is achieved using a passive scalar (Sc >> 1) to identify the TNTI, and a time-resolved interface-tracking method to measure the local entrainment velocity. Our results indicate that the both scalar and enstrophy fluxes towards the TNTI increase the vorticity and scalar gradients increasing the local rates of diffusion. These results show how local processes of small-scale diffusion are modulated by the large-scale turbulence.

  1. Flux Recovery of a Forward Osmosis Membrane After a Fouling Process

    NASA Technical Reports Server (NTRS)

    Gamboa-Vázquez, Sonia; Flynn, Michael; Romero Mangado, Jaione; Parodi, Jurek

    2016-01-01

    Wastewater treatment through Forward Osmosis (FO) membranes is a process that has been evaluated in the past years as an innovative technology for the Next Generation Life Support Systems. FO technologies are cost effective, and require very low energy consumption, but are subject to membrane fouling. Membrane fouling occurs when unwanted materials accumulate on the active side of the membrane during the wastewater treatment process, which leads to a decrease in membrane flow rates. Membrane fouling can be reversed with the use of antifoulant solutions. The aim of this study is to identify the materials that cause flow rate reduction due to membrane fouling, as well as to evaluate the flux recovery after membrane treatment using commercially available antifoulants. 3D Laser Scanning Microscope images were taken to observe the surface of the membrane. Fourier Transform Infrared (FTIR) spectrometry results identified possible compounds that cause membrane fouling and FO testing results demonstrated flow rate recovery after membrane treatment using antifoulants.

  2. Evaluation of a Heat Flux Sensor for Spray Cooling for the Die Casting Processes

    SciTech Connect

    Sabau, Adrian S; Wu, Zhuoxi

    2007-02-01

    During the die casting process, lubricants are sprayed in order to cool the dies and facilitate the ejection of the casting. In this paper, a new technique for measuring the heat flux during lubricant application is evaluated. Data from experiments conducted using water spray are first presented. Water spray experiments were conducted for different initial plate temperatures. Measurements were conducted for the application of two different lubricants, of dilution ratios of 1/15 and 1/50 of lubricant in water. The measurement uncertainties were documented. The results show that the surface temperature decreases initially very fast. Numerical simulation results confirmed that the abrupt temperature drop is not an artifact but illustrates the thermal shock experienced by the dies during the initial stages of lubricant application. The lubricant experiments show that the sensor can be successfully used for testing die lubricants with typical dilution ratios encountered in the die casting process.

  3. Upland Forest Linkages to Seasonal Wetlands: Litter Flux, Processing, and Food Quality

    Treesearch

    Brian J. Palik; Darold P. Batzer; Christel Kern

    2005-01-01

    The flux of materials across ecosystem boundaries has significant effects on recipient systems. Because of edge effects, seasonal wetlands in upland forest are good systems to explore these linkages. The purpose of this study was to examine flux of coarse particulate organic matter as litter fall into seasonal wetlands in Minnesota, and the relationship of this flux to...

  4. New radiographic image processing tested on the simple and double-flux platform at OMEGA

    NASA Astrophysics Data System (ADS)

    Poujade, Olivier; Ferri, Michel; Geoffray, Isabelle

    2017-10-01

    Ablation fronts and shocks are two radiative/hydrodynamic features ubiquitous in inertial confinement fusion (ICF). A specially designed shock-tube experiment was tested on the OMEGA laser facility to observe that these two features evolve at once and to assess thermodynamical and radiative properties. It is a basic science experiment aimed at improving our understanding of shocked and ablated matter which is critical to ICF design. At all time, these two moving "interfaces" separate the tube into three distinct zones where matter is ablated, shocked, or unshocked. The simple-flux or double-flux experiments, respectively, one or two halfraum-plus-tube, have been thought up to observe and image these zones using x-ray and visible image diagnostic. The possibility of observing all three regions at once was instrumental in our new radiographic image processing used to remove the backlighter background otherwise detrimental to quantitative measurements. By so doing, after processing the radiographic images of the 15 shots accumulated during the 2013 and 2015 campaigns, a quantitative comparison between experiments and our radiative hydrocode simulations was made possible. One point of the principal Hugoniot of the aerogel used as a light material in the shock-tube was inferred from that comparison. Most surprisingly, rapid variations of relative-transmission in the ablated region were observed during radiographic irradiations while it remained constant in the shocked region. This effect might be attributed to the spectral distribution variability of the backlighter during the radiographic pulse. Numerically, that distribution is strongly dependent upon NLTE models and it could potentially be used as a means to discriminate among them.

  5. What's the flux? Unraveling how CO2 fluxes from trees reflect underlying physiological processes

    SciTech Connect

    Trumbore, Susan E.; Angert, Alon; Kunert, Norbert; Muhr, Jan; Chambers, Jeffrey Q.

    2012-12-18

    We report that the CO2 emitted from a stem is produced by physiological processes, but the challenge remains identifying what portion is produced by local tissues, which will facilitate much-needed mechanistic understanding of factors controlling autotrophic respiration.

  6. Serpentinization-assisted deformation processes and characterization of hydrothermal fluxes at mid-ocean ridges

    NASA Astrophysics Data System (ADS)

    Genc, Gence

    methods and techniques either in the plumes or right at sources, there is still limited knowledge of direct estimates of heat discharge particularly at the vent scale and reliable estimates of temporal variation in heat flux. Moreover, a few previously used tools to make discrete measurements were associated with mechanical complications and/or problems mostly related to electronics or irrecoverable damage due to environmental problems such as accumulation of sediments/particles from hydrothermal fluids. In this dissertation we showed the stages of design, fabrication, calibration and in-situ deployment from DSV Alvin for two unique heat flow measuring seafloor instruments; cup anemometer and turbine flow meter. The devices have proven to be robust, practical, and simple to maneuver and perform in both focused and diffuse flow milieus. Field experiments showed that these self-contained devices yielded a broad range of accurate heat flow estimates ranging from 2 cm/s to 200 cm/s with minimum required maintenance and much less on-station time compared to previous designs. This dissertation reports 63 successful point measurements of focused and diffuse fluid flow the majority of which were completed at the Main Endeavour, High Rise and Mothra hydrothermal vent fields along Endeavour Segment of Juan de Fuca Ridge. By coupling a fraction of our flow rate results with geochemical data (i.e. fluid volatile concentrations) collected with in-situ mass spectrometer, direct geochemical flux were estimated from both focused and diffuse flows. Heat and fluid flow results we have obtained complement our understanding of serpentinization assisted deformation processes at Mid-Ocean Ridges and subduction zones. This dissertation also includes a simple mathematical model developed for crustal deformation and seafloor uplift resulting from volume expansion associated with subsurface serpentinization. Application of this model shows the apparent deformation at the central portion of the

  7. Relating hyporheic fluxes, residence times, and redox-sensitive biogeochemical processes upstream of beaver dams

    USGS Publications Warehouse

    Briggs, Martin A.; Lautz, Laura; Hare, Danielle K.

    2013-01-01

    ¨hler number seemed to overestimate the actual transition as indicated by multiple secondary electron acceptors, illustrating the gradient nature of anaerobic transition. Temporal flux variability in low-flux morphologies generated a much greater range in hyporheic redox conditions compared to high-flux zones, and chemical responses to changing flux rates were consistent with those predicted from the empirical relationship between redox condition and residence time. The Raz tracer revealed that hyporheic flow paths have strong net aerobic respiration, particularly at higher residence time, but this reactive exchange did not affect the net stream signal at the reach scale.

  8. Comparisons between TiO2- and SiO2-flux assisted TIG welding processes.

    PubMed

    Tseng, Kuang-Hung; Chen, Kuan-Lung

    2012-08-01

    This study investigates the effects of flux compounds on the weld shape, ferrite content, and hardness profile in the tungsten inert gas (TIG) welding of 6 mm-thick austenitic 316 L stainless steel plates, using TiO2 and SiO2 powders as the activated fluxes. The metallurgical characterizations of weld metal produced with the oxide powders were evaluated using ferritoscope, optical microscopy, and Vickers microhardness test. Under the same welding parameters, the penetration capability of TIG welding with TiO2 and SiO2 fluxes was approximately 240% and 292%, respectively. A plasma column made with SiO2 flux exhibited greater constriction than that made with TiO2 flux. In addition, an anode root made with SiO2 flux exhibited more condensation than that made with TiO2 flux. Results indicate that energy density of SiO2-flux assisted TIG welding is higher than that of TiO2-flux assisted TIG welding.

  9. A Bayesian Deconvolution Approach to Partitioning Soil Respiration: Coupling Carbon Flux and Isotope Data with Process-based Flux and Mixing Models

    NASA Astrophysics Data System (ADS)

    Ogle, K.; Cable, J. M.; Huxman, T. E.

    2006-12-01

    The respiratory loss of carbon from terrestrial ecosystems is a major carbon flux affecting local, regional, and global carbon cycling. Such losses (e.g., soil CO2 efflux), however, are often overly simplified in biogeochemical models compared to processes such as photosynthesis. This discrepancy is partly due to the difficulty associated with partitioning soil respiration (or CO2 efflux) into its various components (e.g., autotrophic vs. heterotrophic). Different components operate at dissimilar temporal and spatial scales, thus estimation of their relative activity based on bulk soil efflux measurements is challenging. Hence, development of a robust, biophysically-inspired method for partitioning the different components is paramount to teasing- apart the mechanisms underlying carbon source-sink dynamics within and across diverse landscapes. Towards this goal, we developed a semi-mechanistic Bayesian deconvolution modeling approach for partitioning soil respiration into its component sources. While the sources can be broadly categorized as autotrophic or heterotrophic, the fundamental sources of biogenic CO2 efflux arises from specific interactions between plants, micro-organisms, and the soil environment. Potential sources have been identified based on their different turnover rates and functional roles, including, (1) activity of roots, (2) rhizomicrobial (e.g., mycorrhiza) respiration, (3) microbial decomposition of plant tissues, (4) microbial activity primed by root exudation, and (5) microbial decomposition of soil organic matter. The relative contribution of each source to soil CO2 efflux can vary within the soil matrix, depending on spatial and temporal variability in soil properties, resource and substrate availability, and microclimate. Our Bayesian deconvolution framework allows for simultaneous analysis of multiple data sources related to soil respiration dynamics, and the data are analyzed within the context of process-based models. The data include

  10. Design of single flux quantum cells for a 10-Nb-layer process

    NASA Astrophysics Data System (ADS)

    Akaike, H.; Tanaka, M.; Takagi, K.; Kataeva, I.; Kasagi, R.; Fujimaki, A.; Takagi, K.; Igarashi, M.; Park, H.; Yamanashi, Y.; Yoshikawa, N.; Fujiwara, K.; Nagasawa, S.; Hidaka, M.; Takagi, N.

    2009-10-01

    We present design of single flux quantum (SFQ) cells for a 10-Nb-layer process which has been developed to fabricate SFQ VLSI circuits. The device fabricated by the process has a structure of an active layer on the top, two passive transmission line (PTL) layers in the middle, and a DC power (DCP) layer at the bottom. We have determined a unit cell size of 30 μm × 30 μm and a unit cell structure by taking accounts of the design rules and the experimental data on the PTLs. This cell size enables us to draw two PTLs of each PTL layer. PTL driver and receiver cells have a unit cell size, whereas a half unit cell with a size of 15 μm × 15 μm is used for PTL segments and vias. On the active layer, circuit parameters in analog simulation level are based on those of CONNECT cells, except for junction parameters with McCumber parameter βc of 2.0. Major cells including logic cells and PTL driver/receiver cells have been developed. We have designed a 2 × 2 switch on-chip test circuit using the cells and successfully tested them at high speed.

  11. Influence of orographically enhanced SW monsoon flux on coastal processes along the SE Arabian Sea

    NASA Astrophysics Data System (ADS)

    Chauhan, Onkar S.; Raghavan, B. R.; Singh, Khushvir; Rajawat, A. S.; Ajai, null; Kader, U. Syed Abdul; Nayak, Shailesh

    2011-12-01

    The Arabian Sea has an excess evaporation over precipitation regime. The southeast Arabian Sea is, however, anomalous because it has ˜2800-4800 mm rainfall during the southwest monsoon (SWM). Despite a high rainfall, the fluvial influence on supply of total suspended matter (TSM) and marine productivity is deemed insignificant and remains unevaluated. We evaluated the poorly resolved influence of fluvial influx on shelf processes. We documented low salinity, stratification, high productivity, and turbidity over the entire inner shelf (chlorophyll-a ˜2.4 mg m-3; PO43- >2.5 μM; NO3- 6.8-2.1 μM; TSM 88-182 mg l-1; salinity nearshore region 26; offshore region 33.8-34.6 practical salinity units). The deeper regions (>40 m), however, had greatly reduced TSM and nutrient levels (NO3- and PO4-3 <1.0 μM), TSM (<24 mg l-1), and patches of high chlorophyll-a. Upon cessation of the SWM, nutrient levels and TSM reduced considerably. We identify two processes that contribute to the marine productivity and turbidity during the SWM. Over the deeper regions, there is a poor influence of fluvial supply and upwelling regulates productivity. Over the shallow inner shelf, the sequestering of fluvial influx due to the prevalence of strong winds, upwelling, and equatorward flow is dominant. The later processes induced high marine productivity and eutrophication in the nearshore region and may have implications for siltation of channels. Reduced turbidity, nutrient and chlorophyll-a levels, and higher salinity of the coastal waters during rest of the year imply a substantial role of fluvial fluxes on coastal processes.

  12. Process for reducing series resistance of solar-cell metal-contact systems with a soldering-flux etchant

    DOEpatents

    Coyle, R.T.; Barrett, J.M.

    1982-05-04

    Disclosed is a process for substantially reducing the series resistance of a solar cell having a thick film metal contact assembly thereon while simultaneously removing oxide coatings from the surface of the assembly prior to applying solder therewith. The process includes applying a flux to the contact assembly and heating the cell for a period of time sufficient to substantially remove the series resistance associated with the assembly by etching the assembly with the flux while simultaneously removing metal oxides from said surface of said assembly.

  13. An interactive tool for processing sap flux data from thermal dissipation probes

    Treesearch

    Andrew C. Oishi; Chelcy F. Miniat

    2016-01-01

    Sap flux sensors are an important tool for estimating tree-level transpiration in forested and urban ecosystems around the world. Thermal dissipation (TD) or Granier-type sap flux probes are among the most commonly used due to their reliability, simplicity, and low cost.

  14. Helioseismic Holography and a Study of the Process of Magnetic Flux Disappearance in Canceling Bipoles

    NASA Technical Reports Server (NTRS)

    Lindsey, Charles; Harvey, Karen L.; Braun, D.; Jones, H. P.; Penn, M.; Hassler, D.

    2001-01-01

    Project 1: We have developed and applied a technique of helioseismic holography along the lines of originally set out in our proposal. The result of the application of this diagnostic technique to solar activity and the quiet Sun has produced a number of important discoveries: (1) acoustic moats surrounding sunspots; (2) acoustic glories surround large active regions; (3) acoustic condensations beneath active regions; and (4) temporally-resolve acoustic images of a solar flare. These results have been published in a series of papers in the Astrophysical Journal. We think that helioseismic holography is now established as the most powerful and discriminating diagnostic in local helioseismology. Project 2: We conducted a collaborative observational program to define the physical character and magnetic geometry of canceling magnetic bipoles aimed at determining if the cancellation process is the result of submergence of magnetic fields. This assessment is based on ground-based observations combining photospheric and chromospheric magnetograms from NSO/KP, BBSO, and SOHO-MDI, and EUV and X-ray images from SOHO EIT/CDS, Yohkoh/SXT, and TRACE. Our study involves the analysis of data taken during three observing campaigns to define the height structure of canceling bipoles inferred from magnetic field and intensity images, and how this varies with time. We find that some canceling bipoles can be explained by the submerge of their magnetic flux. A paper on the results of this analysis will be presented at an upcoming scientific meeting and be written up for publication.

  15. Fluxes in PHA-storing microbial communities during enrichment and biopolymer accumulation processes.

    PubMed

    Janarthanan, Om Murugan; Laycock, Bronwyn; Montano-Herrera, Liliana; Lu, Yang; Arcos-Hernandez, Monica V; Werker, Alan; Pratt, Steven

    2016-01-25

    The use of mixed microbial cultures for the production of polyhydroxyalkanoates (PHAs) is emerging as a viable technology. In this study, 16S rRNA gene amplicon pyrosequencing was used to analyse fluctuations in populations over a 63-day period within a PHA-storing mixed microbial community enriched on fermented whey permeate. This community was dominated by the genera Flavisolibacter and Zoogloea as well as an unidentified organism belonging to the phylum Bacteroidetes. The population was observed to cycle through an increase in Zoogloea followed by a return to a community composition similar to the initial one (highly enriched in Flavisolibacter). It was found that the PHA accumulation capacity of the community was robust to population flux during enrichment and even PHA accumulation, with final polymer composition dependent on the overall proportion of acetic to propionic acids in the feed. This community adaptation suggests that mixed culture PHA production is a robust process. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Local structure of cobalt nanoparticles synthesized by high heat flux plasma process

    NASA Astrophysics Data System (ADS)

    Orpe, P. B.; Paris, E.; Balasubramanian, C.; Joseph, B.; Mukherjee, S.; Di Gioacchino, D.; Marcelli, A.; Saini, N. L.

    2017-08-01

    We have used high heat flux plasma synthesis process to grow Co those for the morphology, stoichiometry and the local structure as a function of plasma current. We find that the nanoparticles produced by the thermal plasma method have different shapes and size distribution with the plasma current being a key parameter in controlling the formation of composition, morphology and crystalline structure. X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) measurements at Co K-edge have revealed formation of metal and metal oxide nanoparticles with the composition mainly depending on the arc current. While low plasma current appears to produce nanoparticles solely of CoO with a small amount of Co metal, the high plasma current tends to produce nanoparticles of CoO and Co3O4 oxides with increased amount of Co metal. The results are consistent with the morphological and structural analysis, showing nanoparticles of different shapes and size depending on the arc current.

  17. Control of Crystal Morphology for Mold Flux During High-Aluminum AHSS Continuous Casting Process

    NASA Astrophysics Data System (ADS)

    GUO, Jing; SEO, Myung-Duk; SHI, Cheng-Bin; CHO, Jung-Wook; KIM, Seon-Hyo

    2016-08-01

    In the present manuscript, the efforts to control the crystal morphology are carried out aiming at improving the lubrication of lime-alumina-based mold flux for casting advanced high-strength steel with high aluminum. Jackson α factors for crystals of melt crystallization in multi-component mold fluxes are established and reasonably evaluated by applying thermodynamic databases to understand the crystal morphology control both in lime-alumina-based and lime-silica-based mold fluxes. The results show that Jackson α factor and supercooling are the most critical factors to determine the crystal morphology in a mold flux. Crystals precipitating in mold fluxes appear with different morphologies due to their different Jackson α factors and are likely to be more faceted with higher Jackson α factor. In addition, there is a critical supercooling degree for crystal morphology dendritic transition. When the supercooling over the critical value, the crystals transform from faceted shape to dendritic ones in morphology as the kinetic roughening occurs. Typically, the critical supercooling degrees for cuspidine dendritic transition in the lime-silica-based mold fluxes are evaluated to be between 0.05 and 0.06. Finally, addition of a small amount of Li2O in the mold flux can increase the Jackson α factor and decrease the supercooling for cuspidine precipitation; thus, it is favorable to enhance a faceted cuspidine crystal.

  18. Allogenic processes, sediment flux, and Carboniferous stratigraphy in the Appalachian basin

    SciTech Connect

    Cecil, C.B.; Dulong, F.T.; Edgar, N.T. )

    1992-01-01

    The origin of Carboniferous strata in the central Appalachian basin is being evaluated as a function of paleoclimatic, eustatic, and tectonic processes. Of these processes, paleoclimate has, in the past, received the least attention but appears to be of primary importance as a control on stratigraphy. For example, Upper Mississippian strata include both marine carbonates and marine dark gray to black shales. The marine carbonate units are underlain and overlain by paleosols that contain calcic peds, pseudomorphs of gypsum, and rhizoconcretions with vertical root structures suggesting low soil moisture. The marine limestone generally is in sharp contact with an underlying paleosol. The lithostratigraphy of such a sequence is consistent with a transgressive-regressive cycle under relatively dry (semiarid) climatic conditions, which limits siliciclastic influx. In contrast, the marine gray and black shales are bounded by leached paleosols containing horizontal rhizomorphs and coal beds suggestive of wet soil conditions. Terrestrial organic matter in marine shales indicate relatively high terrestrial organic productivity, and the shale units are in gradational contact with underling strata. The lithostratigraphy of the marine shale sequences is consistent with deposition under relatively wet climatic regimes (probably seasonal and subhumid), which increased siliciclastic and terrestrial organic matter input. Relatively short-term climate cycles were a primary control on sediment flux within Carboniferous deposystems in the Appalachian basin. Long-term climate change also occurred as eastern North America moved from relatively dry latitudes of the southern hemisphere through the tropical rainy belt into drier latitudes of the northern hemisphere. Long-term tectonic change provided accommodation space. Such controls can readily be observed throughout Carboniferous strata in the Appalachian basin.

  19. An analysis of the decadal variability of Carbon fluxes in European forests through process-based modelling

    NASA Astrophysics Data System (ADS)

    Delpierre, Nicolas; Soudani, Kamel; François, Christophe; Bernhofer, Christian; Kutsch, Werner; Misson, Laurent; Vesala, Timo; Dufrêne, Eric

    2010-05-01

    With several sites measuring mass and energy turbulent fluxes for more than ten years, the CarboEurope database appears as a valuable resource for addressing the question of the determinism of the interannual variability of carbon (C) balance in forests ecosystems. Apart from major climate-driven anomalies during the anomalous 2003 summer and 2007 spring, little is known about the factors driving interannual variability (IAV) of the C balance in European forests. We used the CASTANEA process-based model to simulate the C balances of four European forests for the 2000-2007 period, spanning a large latitudinal range (44-62°N). The model fairly reproduced the day-to-day variability of measured fluxes, and accounted for 36-82% (mean=63%, n=4) of the observed interannual variance in daytime NEP. We used CASTANEA as a tool for disentangling the influence of climate and biological drivers on C fluxes at mutiple time scales. A set of constrained simulation was performed to identify the proper effects of climate (PAR, temperature, relative humidity, soil water content) and biological drivers (canopy phenology, plant and soil C stocks) on flux variability. Their relative contributions to flux variance across timescales was quantified through orthonormal wavelet decomposition of the single-driver effects time series. As a general feature, we observed a declining contribution of climate drivers to flux (GPP, Reco or NEP) interannual variance from daily to annual timescale. Our analyses revealed that most (40-90%, mean=70%) of the simulated NEP interannual variance at annual scale was caused by climate anomalies, with biological drivers playing a more modest role in such mature and relatively undisturbed forests. We contrast results obtained through this novel process-based modelling approach with those arising from more classical data-mining analyses. Keywords: Process-based model, interannual variability, Carbon balance, water balance, phenology, biological drivers, climate

  20. A New Tool for Automated Data Collection and Complete On-site Flux Data Processing for Eddy Covariance Measurements

    NASA Astrophysics Data System (ADS)

    Begashaw, I. G.; Kathilankal, J. C.; Li, J.; Beaty, K.; Ediger, K.; Forgione, A.; Fratini, G.; Johnson, D.; Velgersdyk, M.; Hupp, J. R.; Xu, L.; Burba, G. G.

    2014-12-01

    The eddy covariance method is widely used for direct measurements of turbulent exchange of gases and energy between the surface and atmosphere. In the past, raw data were collected first in the field and then processed back in the laboratory to achieve fully corrected publication-ready flux results. This post-processing consumed significant amount of time and resources, and precluded researchers from accessing near real-time final flux results. A new automated measurement system with novel hardware and software designs was developed, tested, and deployed starting late 2013. The major advancements with this automated flux system include: 1) Enabling logging high-frequency, three-dimensional wind speeds and multiple gas densities (CO2, H2O and CH4), low-frequency meteorological data, and site metadata simultaneously through a specially designed file format 2) Conducting fully corrected, real-time on-site flux computations using conventional as well as user-specified methods, by implementing EddyPro Software on a small low-power microprocessor 3) Providing precision clock control and coordinate information for data synchronization and inter-site data comparison by incorporating a GPS and Precision Time Protocol. Along with these innovations, a data management server application was also developed to chart fully corrected real-time fluxes to assist remote system monitoring, to send e-mail alerts, and to automate data QA/QC, transfer and archiving at individual stations or on a network level. Combination of all of these functions was designed to help save substantial amount of time and costs associated with managing a research site by eliminating the post-field data processing, reducing user errors and facilitating real-time access to fully corrected flux results. The design, functionality, and test results from this new eddy covariance measurement tool will be presented.

  1. BENTHIC-PELAGIC PROCESSES IN PENSACOLA BAY, FL: EFFECTS OF LIGHT ON OXYGEN FLUXES

    EPA Science Inventory

    Eutrophication caused by excess nutrients can exacerbate hypoxia by increasing bottom water and sediment respiration. However, in shallow sub-tropical estuaries, the euphotic zone often extends below the pycnocline allowing oxygen fluxes in Pensacola Bay, FL, USA. Measurements we...

  2. BENTHIC-PELAGIC PROCESSES IN PENSACOLA BAY, FL: EFFECTS OF LIGHT ON OXYGEN FLUXES

    EPA Science Inventory

    Eutrophication caused by excess nutrients can exacerbate hypoxia by increasing bottom water and sediment respiration. However, in shallow sub-tropical estuaries, the euphotic zone often extends below the pycnocline allowing oxygen fluxes in Pensacola Bay, FL, USA. Measurements we...

  3. Processes and fluxes during the initial stage of acid sulfate soil formation

    NASA Astrophysics Data System (ADS)

    Gröger, J.; Hamer, K.; Schulz, H. D.

    2009-04-01

    Acid sulfate soils occur over a wide range of climatic zones, mainly in coastal landscapes. In these soils, the release of sulfuric acid by the oxidation of pyrite generates a very acidic environment (e.g., DENT and PONS, 1995, PONS, 1973). Two major types of acid sulfate soils can be distinguished: In actual acid sulfate soils, the initially contained pyrite was at least partly oxidized. This resulted in a severe acidification of the soil. Potential acid sulfate soils are generally unoxidized and contain large amounts of pyrite. Upon oxidation, these soils will turn into actual acid sulfate soils. By excavation or lowering of the groundwater table, potential acid sulfate soils can be exposed to atmospheric oxygen. During oxidation the pH drops sharply to values below pH 4. This acidification promotes the release of various metals, e.g., alumina, iron and heavy metals. Additionally, large quantities of sulfate are released. In order to assess the effects of disturbances of potential acid sulfate soils, for example by excavations during construction works, several large scale column experiments were conducted with various types of potential acid sulfate soils from Northern Germany. In these experiments, the oxidation and initial profile development of pyritic fen peats and thionic fluvisols were studied over a period of 14 months. The study focused on leaching and the translocation of various metals in the soil profile. To study mobilization processes, element fluxes and the progress of acidification, soil water and leachate were analyzed for total element concentrations. Furthermore, several redox-sensitive parameters, e.g., Fe2+ and sulfide, were measured and changes to the initial solid phase composition were analyzed. Chemical equilibria calculations of the soil water were used to gain insights into precipitation processes of secondary products of pyrite oxidation and leaching products. The results of this study will support the assessment of risks deriving from

  4. Surface renewal: an advanced micrometeorological method for measuring and processing field-scale energy flux density data.

    PubMed

    McElrone, Andrew J; Shapland, Thomas M; Calderon, Arturo; Fitzmaurice, Li; Paw U, Kyaw Tha; Snyder, Richard L

    2013-12-12

    Advanced micrometeorological methods have become increasingly important in soil, crop, and environmental sciences. For many scientists without formal training in atmospheric science, these techniques are relatively inaccessible. Surface renewal and other flux measurement methods require an understanding of boundary layer meteorology and extensive training in instrumentation and multiple data management programs. To improve accessibility of these techniques, we describe the underlying theory of surface renewal measurements, demonstrate how to set up a field station for surface renewal with eddy covariance calibration, and utilize our open-source turnkey data logger program to perform flux data acquisition and processing. The new turnkey program returns to the user a simple data table with the corrected fluxes and quality control parameters, and eliminates the need for researchers to shuttle between multiple processing programs to obtain the final flux data. An example of data generated from these measurements demonstrates how crop water use is measured with this technique. The output information is useful to growers for making irrigation decisions in a variety of agricultural ecosystems. These stations are currently deployed in numerous field experiments by researchers in our group and the California Department of Water Resources in the following crops: rice, wine and raisin grape vineyards, alfalfa, almond, walnut, peach, lemon, avocado, and corn.

  5. Surface Renewal: An Advanced Micrometeorological Method for Measuring and Processing Field-Scale Energy Flux Density Data

    PubMed Central

    McElrone, Andrew J.; Shapland, Thomas M.; Calderon, Arturo; Fitzmaurice, Li; Paw U, Kyaw Tha; Snyder, Richard L.

    2013-01-01

    Advanced micrometeorological methods have become increasingly important in soil, crop, and environmental sciences. For many scientists without formal training in atmospheric science, these techniques are relatively inaccessible. Surface renewal and other flux measurement methods require an understanding of boundary layer meteorology and extensive training in instrumentation and multiple data management programs. To improve accessibility of these techniques, we describe the underlying theory of surface renewal measurements, demonstrate how to set up a field station for surface renewal with eddy covariance calibration, and utilize our open-source turnkey data logger program to perform flux data acquisition and processing. The new turnkey program returns to the user a simple data table with the corrected fluxes and quality control parameters, and eliminates the need for researchers to shuttle between multiple processing programs to obtain the final flux data. An example of data generated from these measurements demonstrates how crop water use is measured with this technique. The output information is useful to growers for making irrigation decisions in a variety of agricultural ecosystems. These stations are currently deployed in numerous field experiments by researchers in our group and the California Department of Water Resources in the following crops: rice, wine and raisin grape vineyards, alfalfa, almond, walnut, peach, lemon, avocado, and corn. PMID:24378712

  6. Measurement of Heat Flux and Heat Transfer Coefficient Due to Spray Application for the Die Casting Process

    SciTech Connect

    Sabau, Adrian S

    2007-01-01

    Lubricant spray application experiments were conducted for the die casting process. The heat flux was measured in situ using a differential thermopile sensor for three application techniques. First, the lubricant was applied under a constant flowrate while the nozzle was held in the same position. Second, the lubricant was applied in a pulsed, static manner, in which the nozzle was held over the same surface while it was turned on and off several times. Third, the lubricant was applied in a sweeping manner, in which the nozzle was moved along the die surface while it was held open. The experiments were conducted at several die temperatures and at sweep speeds of 20, 23, and 68 cm/s. The heat flux data, which were obtained with a sensor that was located in the centre of the test plate, were presented and discussed. The sensor can be used to evaluate lubricants, monitor the consistency of die lubrication process, and obtain useful process data, such as surface temperature, heat flux, and heat transfer coefficients. The heat removed from the die surface during lubricant application is necessary for (a) designing the cooling channels in the die, i.e. their size and placement, and (b) performing accurate numerical simulations of the die casting process.

  7. A deeper understanding of processes controlling hydrogeochemical fluxes through shallow karstic critical zones (the epikarst). (Invited)

    NASA Astrophysics Data System (ADS)

    Schwartz, B.; Gerard, B.; Schreiber, M. E.; Schwinning, S.

    2013-12-01

    Predicting the magnitude and timing of hydrologic and geochemical fluxes through epikarst systems in response to environmental drivers (precipitation, evapotranspiration) is difficult. In the past, much work has focused on using hydrograph and chemograph data to estimate hydrologic properties and physical structure of the epikarst and less has been done to develop predictive models for the occurrence and magnitude of these responses. Predictive models are useful for a variety of reasons including water balance/recharge calculations and as a foundation for better characterizing the physical, chemical, and biological processes that influence infiltration into and recharge through the epikarst, and the evolution of waters along flowpaths. Over the past six years, we have collected continuous high-frequency discharge, geochemical, and environmental data at several sites in caves in Texas and Virginia, and detailed ecohydrologic data at the TX site. A simple predictive model of recharge response and magnitude has been developed for drip-site and springshed scale in TX, and a similar model is under development for the VA site. In both cases, data and modeling results allow hypothesis testing and questions to be answered regarding how the epikarst and related soil and biological systems function to store and transfer water vertically (up and down) and horizontally (via perched aquifers). Surprisingly, even though the two sites have few similarities with regard to structure, lithology, or climate, there are similarities in terms of how hydrologic responses in the caves are controlled by short-term (seasonal or shorter) environmental parameters. While these specific models are not applicable to all epikarst systems, they do suggest that similar approaches can be used to understand the most important environmental controls on infiltration and recharge in other settings. Our results highlight the importance of long-term monitoring at a range of in-cave sites with different

  8. A Review of Boiling Heat Transfer Processes at High Heat Flux

    DTIC Science & Technology

    1991-04-01

    the limit of nucleate boiling (point C) and point 0 which is known as the Leidenfrost point. The path between the points is dependent on numerous...heat flux controlled system. 4 Point Elies on a portion of the boiling curve known as film boiling. Beginning at the Leidenfrost point (point D) heat

  9. TRACC: an open source software for processing sap flux data from thermal dissipation probes

    Treesearch

    Eric J. Ward; Jean-Christophe Domec; John King; Ge Sun; Steve McNulty; Asko Noormets

    2017-01-01

    Key message TRACC is an open-source software for standardizing the cleaning, conversion, and calibration of sap flux density data from thermal dissipation probes, which addresses issues of nighttime transpiration and water storage. Abstract Thermal dissipation probes (TDPs) have become a widely used method of monitoring plant water use in recent years. The use of TDPs...

  10. Constituent loads in small streams: the process and problems of estimating sediment flux

    Treesearch

    R. B. Thomas

    1989-01-01

    Constituent loads in small streams are often estimated poorly. This is especially true for discharge-related constituents like sediment, since their flux is highly variable and mainly occurs during infrequent high-flow events. One reason for low-quality estimates is that most prevailing data collection methods ignore sampling probabilities and only partly account for...

  11. Fast-SNP: a fast matrix pre-processing algorithm for efficient loopless flux optimization of metabolic models

    PubMed Central

    Saa, Pedro A.; Nielsen, Lars K.

    2016-01-01

    Motivation: Computation of steady-state flux solutions in large metabolic models is routinely performed using flux balance analysis based on a simple LP (Linear Programming) formulation. A minimal requirement for thermodynamic feasibility of the flux solution is the absence of internal loops, which are enforced using ‘loopless constraints’. The resulting loopless flux problem is a substantially harder MILP (Mixed Integer Linear Programming) problem, which is computationally expensive for large metabolic models. Results: We developed a pre-processing algorithm that significantly reduces the size of the original loopless problem into an easier and equivalent MILP problem. The pre-processing step employs a fast matrix sparsification algorithm—Fast- sparse null-space pursuit (SNP)—inspired by recent results on SNP. By finding a reduced feasible ‘loop-law’ matrix subject to known directionalities, Fast-SNP considerably improves the computational efficiency in several metabolic models running different loopless optimization problems. Furthermore, analysis of the topology encoded in the reduced loop matrix enabled identification of key directional constraints for the potential permanent elimination of infeasible loops in the underlying model. Overall, Fast-SNP is an effective and simple algorithm for efficient formulation of loop-law constraints, making loopless flux optimization feasible and numerically tractable at large scale. Availability and Implementation: Source code for MATLAB including examples is freely available for download at http://www.aibn.uq.edu.au/cssb-resources under Software. Optimization uses Gurobi, CPLEX or GLPK (the latter is included with the algorithm). Contact: lars.nielsen@uq.edu.au Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27559155

  12. Surface and subsurface flows and fluxes in a Florida salt marsh: Measurements, mass balances and process modeling (Invited)

    NASA Astrophysics Data System (ADS)

    Meile, C. D.; Esch, M.; Gray, E. R.; Cable, J. E.

    2013-12-01

    Coastal wetlands play an important role in the exchange of carbon and nutrients between terrestrial and marine environments, with estimates exceeding 10% of the global ocean C inputs being attributed to wetlands. Constraining such contributions is challenging, as fluxes are bound to vary substantially over a range of timescales, including tidal inundation and seasons. An important factor determining export fluxes are subsurface processes, because fluid passing through the marsh subsurface becomes enriched in inorganic and organic carbon as well as nutrients released during decomposition of organic matter. Thus, even a modest flux of pore water to tidal creeks can lead to a significant loading of carbon and nutrients to the coastal ocean. Here, we present our efforts to quantify the role of groundwater in a microtidal saltmarsh located in the Big Bend region of the Florida Gulf Coast. We established a regional water balance, and from a survey of flow and dissolved organic carbon in tidal creeks between Econfina and Aucilla Rivers provide an estimate of DOC export, indicating that DOC significantly contributes to marsh carbon export. To constrain the role of subsurface processes, we also quantify seepage fluxes of pore water from tidal creek banks, using a combination of field experiments and modeling. Field work involved deploying devices designed to capture pore water seeping from creek banks at multiple heights of the bank. Results show that seepage varies dynamically with the tide, and indicate substantial spatial variability. Additionally, numerical flow modeling was used to assess the experimental design and the impact of the positioning of the seepage collector at the creek bank. Simulation results show significant variation in seepage with vertical position in the creek bank. This information on flow magnitude and dynamics was then combined with concentration measurements in creek and pore waters to scale up from individual observations to provide estimates

  13. Fast-SNP: a fast matrix pre-processing algorithm for efficient loopless flux optimization of metabolic models.

    PubMed

    Saa, Pedro A; Nielsen, Lars K

    2016-12-15

    Computation of steady-state flux solutions in large metabolic models is routinely performed using flux balance analysis based on a simple LP (Linear Programming) formulation. A minimal requirement for thermodynamic feasibility of the flux solution is the absence of internal loops, which are enforced using 'loopless constraints'. The resulting loopless flux problem is a substantially harder MILP (Mixed Integer Linear Programming) problem, which is computationally expensive for large metabolic models. We developed a pre-processing algorithm that significantly reduces the size of the original loopless problem into an easier and equivalent MILP problem. The pre-processing step employs a fast matrix sparsification algorithm-Fast- sparse null-space pursuit (SNP)-inspired by recent results on SNP. By finding a reduced feasible 'loop-law' matrix subject to known directionalities, Fast-SNP considerably improves the computational efficiency in several metabolic models running different loopless optimization problems. Furthermore, analysis of the topology encoded in the reduced loop matrix enabled identification of key directional constraints for the potential permanent elimination of infeasible loops in the underlying model. Overall, Fast-SNP is an effective and simple algorithm for efficient formulation of loop-law constraints, making loopless flux optimization feasible and numerically tractable at large scale. Source code for MATLAB including examples is freely available for download at http://www.aibn.uq.edu.au/cssb-resources under Software. Optimization uses Gurobi, CPLEX or GLPK (the latter is included with the algorithm). lars.nielsen@uq.edu.auSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  14. Causal production of the electromagnetic energy flux and role of the negative energies in the Blandford-Znajek process

    NASA Astrophysics Data System (ADS)

    Toma, Kenji; Takahara, Fumio

    2016-06-01

    The Blandford-Znajek process, the steady electromagnetic energy extraction from a rotating black hole (BH), is widely believed to work for driving relativistic jets in active galactic nuclei, gamma-ray bursts, and Galactic microquasars, although it is still under debate how the Poynting flux is causally produced and how the rotational energy of the BH is reduced. We generically discuss the Kerr BH magnetosphere filled with a collisionless plasma screening the electric field along the magnetic field, extending the arguments of Komissarov [S. S. Komissarov, Mon. Not. R. Astron. Soc., 50, 427 (2004)] and our previous [K. Toma and F. Takahara, Mon. Not. R. Astron. Soc., 442, 2855 (2014)] paper, and propose a new picture for resolving the issues. For the magnetic field lines threading the equatorial plane in the ergosphere, we find that the inflow of particles with negative energy as measured in the coordinate basis is generated near that plane as a feedback from the Poynting flux production, which appears to be a similar process to the mechanical Penrose process. For the field lines threading the event horizon, we first show that the concept of the steady inflow of negative electromagnetic energy is not physically essential, partly because the sign of the electromagnetic energy density depends on the coordinates. Then we build an analytical toy model of a time-dependent process in both the Boyer-Lindquist and Kerr-Schild coordinate systems, in which the force-free plasma injected continuously fills a vacuum, and suggest that the structure of the steady outward Poynting flux is causally constructed by the displacement current and the cross-field current at the ingoing boundary between the plasma and the vacuum. In the steady state, the Poynting flux is maintained without any electromagnetic source.

  15. Macroscale water fluxes: 3. Effects of land processes on variability of monthly river discharge

    USGS Publications Warehouse

    Milly, P.C.D.; Wetherald, R.T.

    2002-01-01

    A salient characteristic of river discharge is its temporal variability. The time series of flow at a point on a river can be viewed as the superposition of a smooth seasonal cycle and an irregular, random variation. Viewing the random component in the spectral domain facilitates both its characterization and an interpretation of its major physical controls from a global perspective. The power spectral density functions of monthly flow anomalies of many large rivers worldwide are typified by a "red noise" process: the density is higher at low frequencies (e.g., <1 y-1) than at high frequencies, indicating disproportionate (relative to uncorrelated "white noise") contribution of low frequencies to variability of monthly flow. For many high-latitude and arid-region rivers, however, the power is relatively evenly distributed across the frequency spectrum. The power spectrum of monthly flow can be interpreted as the product of the power spectrum of monthly basin total precipitation (which is typically white or slightly red) and several filters that have physical significance. The filters are associated with (1) the conversion of total precipitation (sum of rainfall and snowfall) to effective rainfall (liquid flux to the ground surface from above), (2) the conversion of effective rainfall to soil water excess (runoff), and (3) the conversion of soil water excess to river discharge. Inferences about the roles of each filter can be made through an analysis of observations, complemented by information from a global model of the ocean-atmosphere-land system. The first filter causes a snowmelt-related amplification of high-frequency variability in those basins that receive substantial snowfall. The second filter causes a relatively constant reduction in variability across all frequencies and can be predicted well by means of a semiempirical water balance relation. The third filter, associated with groundwater and surface water storage in the river basin, causes a strong

  16. A New Approach in Optimizing the Induction Heating Process Using Flux Concentrators: Application to 4340 Steel Spur Gear

    NASA Astrophysics Data System (ADS)

    Barka, Noureddine; Chebak, Ahmed; El Ouafi, Abderrazak; Jahazi, Mohammad; Menou, Abdellah

    2014-09-01

    The beneficial effects of using flux concentrators during induction heat treatment process of spur gears made of 4340 high strength steel is demonstrated using 3D finite element model. The model is developed by coupling electromagnetic field and heat transfer equations and simulated by using Comsol software. Based on an adequate formulation and taking into account material properties and process parameters, the model allows calculating temperature distribution in the gear tooth. A new approach is proposed to reduce the electromagnetic edge effect in the gear teeth which allows achieving optimum hardness profile after induction heat treatment. In the proposed method, the principal gear is positioned in sandwich between two other gears having the same geometry that act as flux concentrators. The gap between the gear and the flux concentrators was optimized by studying temperature variation between the tip and root regions of gear teeth. Using the proposed model, it was possible identifying processing conditions that allow for quasi-uniform final temperature profile in the medium and high frequency conditions during induction hardening of spur gears.

  17. Flux of a Ratchet Model and Applications to Processive Motor Proteins

    NASA Astrophysics Data System (ADS)

    Li, Jing-Hui

    2015-10-01

    In this paper, we investigate the stationary probability current (or flux) of a Brownian ratchet model as a function of the flipping rate of the fluctuating potential barrier. It is shown that, with suitably selecting the parameters' values of the ratchet system, we can get the negative resonant activation, the positive resonant activation, the double resonant activation, and the current reversal, for the stationary probability current versus the flipping rate. The appearance of these phenomena is the result of the cooperative effects of the potential's dichotomous fluctuations and the internal thermal fluctuations on the evolution of the flux versus the flipping rate of the fluctuating potential barrier. In addition, some applications of our results to the motor proteins are discussed. Supported by K.C. Wong Magna Fund in Ningbo University in China

  18. Monitoring Regional Changes in Alaskan Carbon Fluxes and Underlying Biophysical Processes Using In Situ Observations, Models and Satellite Remote Sensing

    NASA Astrophysics Data System (ADS)

    Watts, J. D.; Kimball, J. S.; Du, J.; Kim, Y.; Klene, A. E.; Moghaddam, M.; Commane, R.

    2016-12-01

    The effects of climate change within Alaskan boreal and Arctic ecosystems are evident in a lengthening non-frozen season, deepening of the permafrost active layer, and contrasting shifts in regional surface water inundation, soil wetness and patterns of vegetation greening and browning. These biophysical processes play a crucial role in greenhouse gas (CO2, CH4) exchange and the stability of carbon cycling in wetlands and other permafrost landscapes. Here we examine recent (2003-2015) changes and spatiotemporal variability in daily and seasonal carbon fluxes across Alaska, integrating observations from field measurements, eddy covariance flux towers and satellite data driven Terrestrial Carbon Flux (TCF) model simulations at 1-km resolution. The use of integrated multi-channel passive microwave remote sensing from AMSR (Advanced Microwave Scanning Radiometer) sensor records and new lower frequency (L-band) retrievals from the NASA SMAP (Soil Moisture Active Passive) mission provide a comprehensive assessment of dynamic (bi-weekly to daily) changes in vegetation biomass, surface water inundation, soil thermal and moisture conditions, with relative insensitivity to solar illumination and atmosphere constraints. The satellite microwave based environmental records are used in conjunction with MODIS optical-infrared remote sensing and ancillary meteorological data to assess daily net ecosystem carbon exchange, including CH4 emissions from anaerobic soil conditions. The flux tower observations and TCF model simulations indicate that boreal-Arctic CH4 emissions can substantially reduce the net ecosystem carbon sink, while the magnitude of reduction depends on wetland vegetation type, surface water inundation and soil moisture regimes, and the timing of seasonal warming. Considerable year-to-year variability observed in the flux tower observations and satellite records emphasizes the importance of long-term monitoring across the high northern latitudes through an

  19. Insights into rapid explosive volcanic processes from ground- and space-based intraday SO2 flux measurements

    NASA Astrophysics Data System (ADS)

    Merucci, L.; Burton, M.; Corradini, S.; Salerno, G. G.

    2010-12-01

    Observations of volcanic degassing yield insights into the sub-surface magmatic processes which control volcanic activity during both quiescent and eruptive phases. By combining information on volcanic gas flux with constraints on original dissolved volatile contents the volume of degassing magma can be determined. Comparisons between the volume of degassing magma, erupted volume, and ground deformation allow mass balance calculations to be performed, providing insight into the shallow volcanic plumbing system dynamics. For these reasons there is great interest in improving the quality and frequency of volcanic gas flux measurements. Ultraviolet and infrared remote sensing techniques allow determination of SO2 column amounts within volcanic plumes. By calculating SO2 column amounts in a profile orthogonal to the plume-wind direction and multiplying the integrated SO2 cross section by the wind speed the SO2 emission rate can be retrieved. There are currently three main approaches for determining volcanic SO2 fluxes; (i) ground-based mini-DOAS systems, (ii) ground-based SO2 imaging cameras, and (iii) satellite-based infrared and ultraviolet imaging. Here we examine SO2 fluxes obtained by the Flux Automatic Measurement (FLAME) network of scanning mini-DOAS instruments installed at Mt. Etna and by the MODIS instrument aboard the NASA EOS satellite AQUA during the 2006 eruption of Mt. Etna, Sicily, Italy. Mt. Etna produced a highly variable eruptive activity from the South-East crater, characterised by explosive sequences, which could be either ash-rich or ash-poor, lava effusion, partial flank collapse and periods of quiescence. We examined intraday variations in SO2 flux measured with FLAME and MODIS during both ash-rich and ash-poor explosive phases. In general, good agreement was found between the datasets. Of particular interest was the successful recalculation and validation of temporal variations in SO2 flux recorded in a single image from MODIS. By examining the

  20. The role of non-equilibrium fluxes in the relaxation processes of the linear chemical master equation

    SciTech Connect

    Oliveira, Luciana Renata de; Bazzani, Armando; Giampieri, Enrico; Castellani, Gastone C.

    2014-08-14

    We propose a non-equilibrium thermodynamical description in terms of the Chemical Master Equation (CME) to characterize the dynamics of a chemical cycle chain reaction among m different species. These systems can be closed or open for energy and molecules exchange with the environment, which determines how they relax to the stationary state. Closed systems reach an equilibrium state (characterized by the detailed balance condition (D.B.)), while open systems will reach a non-equilibrium steady state (NESS). The principal difference between D.B. and NESS is due to the presence of chemical fluxes. In the D.B. condition the fluxes are absent while for the NESS case, the chemical fluxes are necessary for the state maintaining. All the biological systems are characterized by their “far from equilibrium behavior,” hence the NESS is a good candidate for a realistic description of the dynamical and thermodynamical properties of living organisms. In this work we consider a CME written in terms of a discrete Kolmogorov forward equation, which lead us to write explicitly the non-equilibrium chemical fluxes. For systems in NESS, we show that there is a non-conservative “external vector field” whose is linearly proportional to the chemical fluxes. We also demonstrate that the modulation of these external fields does not change their stationary distributions, which ensure us to study the same system and outline the differences in the system's behavior when it switches from the D.B. regime to NESS. We were interested to see how the non-equilibrium fluxes influence the relaxation process during the reaching of the stationary distribution. By performing analytical and numerical analysis, our central result is that the presence of the non-equilibrium chemical fluxes reduces the characteristic relaxation time with respect to the D.B. condition. Within a biochemical and biological perspective, this result can be related to the “plasticity property” of biological systems

  1. The role of non-equilibrium fluxes in the relaxation processes of the linear chemical master equation.

    PubMed

    de Oliveira, Luciana Renata; Bazzani, Armando; Giampieri, Enrico; Castellani, Gastone C

    2014-08-14

    We propose a non-equilibrium thermodynamical description in terms of the Chemical Master Equation (CME) to characterize the dynamics of a chemical cycle chain reaction among m different species. These systems can be closed or open for energy and molecules exchange with the environment, which determines how they relax to the stationary state. Closed systems reach an equilibrium state (characterized by the detailed balance condition (D.B.)), while open systems will reach a non-equilibrium steady state (NESS). The principal difference between D.B. and NESS is due to the presence of chemical fluxes. In the D.B. condition the fluxes are absent while for the NESS case, the chemical fluxes are necessary for the state maintaining. All the biological systems are characterized by their "far from equilibrium behavior," hence the NESS is a good candidate for a realistic description of the dynamical and thermodynamical properties of living organisms. In this work we consider a CME written in terms of a discrete Kolmogorov forward equation, which lead us to write explicitly the non-equilibrium chemical fluxes. For systems in NESS, we show that there is a non-conservative "external vector field" whose is linearly proportional to the chemical fluxes. We also demonstrate that the modulation of these external fields does not change their stationary distributions, which ensure us to study the same system and outline the differences in the system's behavior when it switches from the D.B. regime to NESS. We were interested to see how the non-equilibrium fluxes influence the relaxation process during the reaching of the stationary distribution. By performing analytical and numerical analysis, our central result is that the presence of the non-equilibrium chemical fluxes reduces the characteristic relaxation time with respect to the D.B. condition. Within a biochemical and biological perspective, this result can be related to the "plasticity property" of biological systems and to their

  2. Melt processing for strong flux pinning in RE-Ba-Cu-O (RE: Nd, Sm, Eu, Gd) superconductors

    NASA Astrophysics Data System (ADS)

    Yoo, S. I.; Murakami, M.; Sakai, N.; Ohyama, T.; Higuchi, T.; Watahiki, M.; Takahashi, M.

    1995-12-01

    Factors affecting a characteristic flux pinning in light rare earth (RE)-Ba-Cu-O (RE: Nd, Sm, Eu, Gd) superconductors fabricated by the oxygen-controlled-melt-growth (OCMG) process have been investigated through a comparative study. At 77K and for the applied field parallel to the c-axis of the sample (H//c), the flux pinning of all OCMG-processed REBa2Cu3O (RE123) samples studied was very sensitive to the oxygen partial pressure (PO2) controlled during the melt growth and thus, with lowering PO2, the peak field (Bpk) in the M-H loops shifted to a high field and the irreversibility line (IL) shifted to a high H-T region. For a Ndl23 sample, as the oxygen annealing temperature increased above 300‡C, both Bpk and IL were systematically depressed. However, Bpk for all systems was insensitive to the amount of the second phase (Nd4Ba2Cu2O10 (Nd422) and RE2BaCuO5 (RE211) for the other) inclusion in the superconducting RE123 matrix, supporting that the characteristic flux pinning is due to the superconducting matrix.

  3. Monsoonal hillslope processes determine grain size-specific suspended sediment fluxes in a trans-Himalayan river

    NASA Astrophysics Data System (ADS)

    Struck, Martin; Andermann, Christoff; Hovius, Niels; Korup, Oliver; Turowski, Jens M.; Bista, Raj; Pandit, Hari P.; Dahal, Ranjan K.

    2015-04-01

    Sediments in rivers record the dynamics of erosion processes. While bulk sediment fluxes are easily and routinely obtained, sediment caliber remains underexplored when inferring erosion mechanisms. Yet sediment grain size distributions may be the key to discriminating their origin. We have studied grain size-specific suspended sediment fluxes in the Kali Gandaki, a major trans-Himalayan river. Two strategically located gauging stations enable tracing of sediment caliber on either side of the Himalayan orographic barrier. The data show that fine sediment input into the northern headwaters is persistent, while coarse sediment comes from the High Himalayas during the summer monsoon. A temporally matching landslide inventory similarly indicates the prominence of monsoon-driven hillslope mass wasting. Thus, mechanisms of sediment supply can leave strong traces in the fluvial caliber, which could project well beyond the mountain front and add to the variability of the sedimentary record of orogen erosion.

  4. Quantifying the uncertainty of eddy covariance fluxes due to the use of different software packages and combinations of processing steps in two contrasting ecosystems

    NASA Astrophysics Data System (ADS)

    Mammarella, Ivan; Peltola, Olli; Nordbo, Annika; Järvi, Leena; Rannik, Üllar

    2016-10-01

    We have carried out an inter-comparison between EddyUH and EddyPro®, two public software packages for post-field processing of eddy covariance data. Datasets including carbon dioxide, methane and water vapour fluxes measured over 2 months at a wetland in southern Finland and carbon dioxide and water vapour fluxes measured over 3 months at an urban site in Helsinki were processed and analysed. The purpose was to estimate the flux uncertainty due to the use of different software packages and to evaluate the most critical processing steps, determining the largest deviations in the calculated fluxes. Turbulent fluxes calculated with a reference combination of processing steps were in good agreement, the systematic difference between the two software packages being up to 2.0 and 6.7 % for half-hour and cumulative sum values, respectively. The raw data preparation and processing steps were consistent between the software packages, and most of the deviations in the estimated fluxes were due to the flux corrections. Among the different calculation procedures analysed, the spectral correction had the biggest impact for closed-path latent heat fluxes, reaching a nocturnal median value of 15 % at the wetland site. We found up to a 43 % median value of deviation (with respect to the run with all corrections included) if the closed-path carbon dioxide flux is calculated without the dilution correction, while the methane fluxes were up to 10 % lower without both dilution and spectroscopic corrections. The Webb-Pearman-Leuning (WPL) and spectroscopic corrections were the most critical steps for open-path systems. However, we found also large spectral correction factors for the open-path methane fluxes, due to the sensor separation effect.

  5. Measuring the energy flux at the substrate position during magnetron sputter deposition processes

    SciTech Connect

    Cormier, P.-A.; Thomann, A.-L.; Dussart, R.; Semmar, N.; Mathias, J.; Balhamri, A.; Snyders, R.; Konstantinidis, S.

    2013-01-07

    In this work, the energetic conditions at the substrate were investigated in dc magnetron sputtering (DCMS), pulsed dc magnetron sputtering (pDCMS), and high power impulse magnetron sputtering (HiPIMS) discharges by means of an energy flux diagnostic based on a thermopile sensor, the probe being set at the substrate position. Measurements were performed in front of a titanium target for a highly unbalanced magnetic field configuration. The average power was always kept to 400 W and the probe was at the floating potential. Variation of the energy flux against the pulse peak power in HiPIMS was first investigated. It was demonstrated that the energy per deposited titanium atom is the highest for short pulses (5 {mu}s) high pulse peak power (39 kW), as in this case, the ion production is efficient and the deposition rate is reduced by self-sputtering. As the argon pressure is increased, the energy deposition is reduced as the probability of scattering in the gas phase is increased. In the case of the HiPIMS discharge run at moderate peak power density (10 kW), the energy per deposited atom was found to be lower than the one measured for DCMS and pDCMS discharges. In these conditions, the HiPIMS discharge could be characterized as soft and close to a pulsed DCMS discharge run at very low duty cycle. For the sake of comparison, measurements were also carried out in DCMS mode with a balanced magnetron cathode, in the same working conditions of pressure and power. The energy flux at the substrate is significantly increased as the discharge is generated in an unbalanced field.

  6. Digital signal processing control of induction machine`s torque and stator flux utilizing the direct stator flux field orientation method

    SciTech Connect

    Seiz, Julie Burger

    1997-04-01

    This paper presents a review of the Direct Stator Flux Field Orientation control method. This method can be used to control an induction motor`s torque and flux directly and is the application of interest for this thesis. This control method is implemented without the traditional feedback loops and associated hardware. Predictions are made, by mathematical calculations, of the stator voltage vector. The voltage vector is determined twice a switching period. The switching period is fixed throughout the analysis. The three phase inverter duty cycle necessary to control the torque and flux of the induction machine is determined by the voltage space vector Pulse Width Modulation (PWM) technique. Transient performance of either the flux or torque requires an alternate modulation scheme which is also addressed in this thesis. A block diagram of this closed loop system is provided. 22 figs., 7 tabs.

  7. Dissipative Processes in the Magnetopause Boundary Layer and Flux Transfer Events Using the Interball Spacecraft

    NASA Technical Reports Server (NTRS)

    Russell, C. T.

    1999-01-01

    Work on two quite distinct projects was accomplished: a study of flux transfer events and a study of the magnetosheath-polar cusp interface. The study with Oleg Vaisberg of the Space Research Institute in Moscow used only Interball data. We analyzed the magnetometer data and to assist the observations of Flux Transfer Events (FTEs) to aid in the interpretation of the data. One of the issues was to distinguish between simple traversals of the magnetopause and encounters with FTES. Once that distinction became clear then we could examine the changes in the plasma associated with the FTE. The second study was undertaken to study the turbulent interaction of the magnetosheath flow past the polar cusp. In this study Polar Data was used inside the magnetosphere as Interball crossed through the cusp into the magnetosheath. Our most interesting but least turbulent example was on May 29, 1996 when the interplanetary magnetic field (IMF) was northward. During these conditions the magnetosheath interface with the cusp becomes streamlined due to reconnection above the polar cusp. This reconnection provides a smooth surface across which the velocity shear occurs, thus minimizing turbulence in the interaction. The magnetopause current lies closer to the Earth than the flow boundary. This current layer reverses the field direction from nortward to southward in the neighborhood of the distant cusp and is somewhat noisty but not as much as this region becomes when the IMF is southward.

  8. Simple models for stomatal conductance derived from a process model: cross-validation against sap flux data.

    PubMed

    Buckley, Thomas N; Turnbull, Tarryn L; Adams, Mark A

    2012-09-01

    Representation of stomatal physiology in models of plant-atmosphere gas exchange is minimal, and direct application of process-based models is limited by difficulty of parameter estimation. We derived simple models of stomatal conductance from a recent process-based model, and cross-validated them against measurements of sap flux (176-365 d in length) in 36 individual trees of two age classes for two Eucalyptus species across seven sites in the mountains of southeastern Australia. The derived models - which are driven by irradiance and evaporative demand and have two to four parameters that represent sums and products of biophysical parameters in the process model - reproduced a median 83-89% of observed variance in half-hourly and diurnally averaged sap flux, and performed similarly whether fitted using a random sample of all data or using 1 month of data from spring or autumn. Our simple models are an advance in predicting plant water use because their parameters are transparently related to reduced processes and properties, enabling easy accommodation of improved knowledge about how those parameters respond to environmental change and differ among species. © 2012 Blackwell Publishing Ltd.

  9. Optimization of permeate flux produced by solar energy driven membrane distillation process using central composite design approach.

    PubMed

    Bouguecha, Salah T; Boubakri, Ali; Aly, Samir E; Al-Beirutty, Mohammad H; Hamdi, Mohamed M

    2016-01-01

    Membrane distillation (MD) is considered as a relatively high-energy requirement. To overcome this drawback, it is recommended to couple the MD process with solar energy as the renewable energy source in order to provide heat energy required to optimize its performance to produce permeate flux. In the present work, an original solar energy driven direct contact membrane distillation (DCMD) pilot plant was built and tested under actual weather conditions at Jeddah, KSA, in order to model and optimize permeate flux. The dependency of permeate flux on various operating parameters such as feed temperature (46.6-63.4°C), permeate temperature (6.6-23.4°C), feed flow rate (199-451L/h) and permeate flow rate (199-451L/h) was studied by response surface methodology based on central composite design approach. The analysis of variance (ANOVA) confirmed that all independent variables had significant influence on the model (where P-value <0.05). The high coefficient of determination (R(2) = 0.9644 and R(adj)(2) = 0.9261) obtained by ANOVA demonstrated good correlation between experimental and predicted values of the response. The optimized conditions, determined using desirability function, were T(f) = 63.4°C, Tp = 6.6°C, Q(f) = 451L/h and Q(p) = 451L/h. Under these conditions, the maximum permeate flux of 6.122 kg/m(2).h was achieved, which was close to the predicted value of 6.398 kg/m(2).h.

  10. Influence of hydrological fluxes on bio-geochemical processes in a peatland

    NASA Astrophysics Data System (ADS)

    Bougon, N.; Aquilina, L.; Auterives, C.; Vandenkoornhuyse, P.

    2009-05-01

    Factors influencing the dynamics of nitrate and sulphate concentration observed in a south Normandy peatland were determined experimentally. The effects of high or low nitrate input, and oxic or anoxic conditions on microbial activity were investigated in bioreactors, using peat samples from field sites influenced by different hydrologic regimes. Site S, unlike site G, was characterized by the presence of hydrogeological gradients inducing water fluxes from river to peat during most of the hydrological cycle. Peat samples from both sites were subjected to similar experimental conditions to distinguish between the chemical effects (NO3-, O2) and the physical effects (hydrologic regimes). [Cl-], [SO42-] and [NO3-] were monitored for 240 h. Nitrate was significantly reduced in most experiments: (1) Removal of 70% of the initial nitrate content after 51 h under anoxic conditions; (2) Complete nitrate reduction after 240 h in soil from the S site. This reduction was interpreted as heterotrophic denitrification. Sulphate monitoring revealed that 400 mg/L were produced in peat from site S under aerobic conditions. Sulphate changes under anaerobiosis were not significant or, for samples from G, under any conditions. Clear differences in chloride content (deviance analysis, P<0.05), sulphate concentration and nitrate consumption dynamics (deviance analysis, P<0.0001) were observed between the G and S sites. Our results demonstrate that the rates of nitrate removal and sulphate production differ between peat samples from sites subjected to different hydrological regimes, even under similar redox and nitrate conditions. This experimental approach highlights the effect of hydrological fluxes leading to modifications of microbial activity which are likely related to changes in microbial diversity.

  11. A Strategy to Estimate the Systematic Uncertainty of Eddy Covariance Fluxes due to the Post-field Raw Data Processing

    NASA Astrophysics Data System (ADS)

    Sabbatini, Simone; Fratini, Gerardo; Fidaleo, Marcello; Papale, Dario

    2017-04-01

    Among several sources of uncertainty characterising the fluxes of atmospheric constituents to and from a given ecosystem calculated using the eddy covariance (EC) methodology, the systematic error due to the corrections applied in the post-field raw data processing is still relatively unknown. We performed an extensive analysis aiming at quantifying this portion of the uncertainty for the CO2 exchange, and at defining a strategy of processing to be generically applied as to understand this uncertainty. We selected 11 years of raw EC data from 9 stations all over the Europe, corresponding to 4 different setups. Then we chose 2 or 3 possible valid options for each of the 8 most relevant corrections to be applied to the raw data, and produced as many outputs (1-year-long calculated hourly and half-hourly fluxes) as the combinations of all the different options (full-factorial design). Statistical analysis was used to quantify and characterise the uncertainty (n-way ANOVA) both on the (half-)hourly and the yearly cumulative fluxes. Factorial design of Experiment (DOE) was used to select a relatively small sub-group of combinations of processing options (fractional factorial design) to be applied to a given dataset in order to quantify the processing uncertainty, with a limited loss of information as compared to the full factorial. Our results show that: (i) the variability as expressed by the inter-quartile range (IQR) of the cumulate CO2 flux is between 50 and 400 gC m-2 year-1. (ii) The importance of the single corrections (factors) in terms of variance explained is not constant among datasets, but a general trend is found such that the coordinate rotation (CR) and the trend removal (TR) have often a high weight on the overall uncertainty (i.e. between 10% and 50%), while the importance of the time-lag compensation (TL) is highly variable. (iii) 2x2 interactions between factors have some importance, mostly between the most relevant ones. (iv) The percentage error of

  12. Characterization of a fabrication process for the integration of superconducting qubits and rapid-single-flux-quantum circuits

    NASA Astrophysics Data System (ADS)

    Castellano, Maria Gabriella; Grönberg, Leif; Carelli, Pasquale; Chiarello, Fabio; Cosmelli, Carlo; Leoni, Roberto; Poletto, Stefano; Torrioli, Guido; Hassel, Juha; Helistö, Panu

    2006-08-01

    In order to integrate superconducting qubits with rapid-single-flux-quantum (RSFQ) control circuitry, it is necessary to develop a fabrication process that simultaneously fulfils the requirements of both elements: low critical current density, very low operating temperature (tens of millikelvin) and reduced dissipation on the qubit side; high operation frequency, large stability margins, low dissipated power on the RSFQ side. For this purpose, VTT has developed a fabrication process based on Nb trilayer technology, which allows the on-chip integration of superconducting qubits and RSFQ circuits even at very low temperature. Here we present the characterization (at 4.2 K) of the process from the point of view of the Josephson devices and show that they are suitable to build integrated superconducting qubits.

  13. Processes of bedrock groundwater seepage and their effects on soil water fluxes in a foot slope area

    NASA Astrophysics Data System (ADS)

    Masaoka, Naoya; Kosugi, Ken'ichirou; Yamakawa, Yosuke; Tsutsumi, Daizo

    2016-04-01

    The impact of bedrock groundwater seepage on surface hydrological processes in a foot slope area is an important issue in hillslope hydrology. However, properties of water flux vectors around a seepage area are poorly understood because previous studies have lacked sufficient spatial resolution to capture detailed water movements. Here, we conducted hydrometric observations using unprecedented high-resolution and three-dimensional tensiometer nests in the mountainous foot slope area of the Hirudani experimental basin (Japan). Our findings are summarized as follows: (1) a considerable quantity of groundwater seeped from the bedrock surface in the study site. A groundwater exfiltration flux occurred constantly from a seepage area regardless of rainfall conditions. Saturated lateral flow over the bedrock surface occurred constantly in the region downslope of the seepage area. Groundwater was likely to mixed with soil water infiltration and flowed toward the lower end of the slope. (2) During the wet season, the seepage area expanded ∼3 m in the upslope direction along the bedrock valley in a single season. (3) The pressure head waveform observed in the seepage area showed gradual and significant increases after large rainfall events. However, the seepage pressure propagated within a relatively narrow area: a slope distance of ∼4 m from the seepage point in the downslope direction due to the damping of seepage pressure. (4) Within the whole study area, groundwater seeped from a narrow area located at the bottom of the valley line of the bedrock surface. The shape of the seepage area changed along the valley line in the wet season. Overall, we reveal spatial and temporal variations in bedrock groundwater seepage under the soil mantle and the effects on soil water fluxes. These findings should improve the accuracy of models for predicting surface hydrogeomorphological processes in mountainous hillslopes.

  14. Flux pinning properties of GdBCO bulk through the infiltration and growth process

    NASA Astrophysics Data System (ADS)

    Zhang, Y. F.; Wang, J. J.; Zhang, X. J.; Pan, C. Y.; Zhou, W. L.; Xu, Y.; Liu, Y. S.; Izumi, M.

    2017-06-01

    REBa2Cu3O7-δ(RE123 or REBCO, RE=rare earth elements, Gd, Y, Nd, etc.) bulk high temperature superconductors (HTS) have been used in lots of aspects, such as in magnetic levitation, et al., owing to the performance of high magnetic flux trapping. GdBCO superconductor bulk with 25 mm diameter has been successfully fabricated by top-seeded infiltration and growth (TSIG) method. We chose YBa2Cu3O7-δ (Y123) particles as the liquid source, which provide enough liquid sources during the growth and encourage the growth along a-b plane of GdBCO bulk. Then the existence of Y123 liquid source partly decreases the effect of the sub-grain boundaries in a-growth sectors and improves the properties of GdBCO bulk. The shape of the trapped field is close to circle. The critical current density of C2 and B2 (JC ) enhances. The superconducting transition temperature (TC ) is around 94.5K in the different position and keeps the superconducting properties. It is the important experimental data for the engineering applications of the superconductor bulk.

  15. Geochemical investigation of weathering processes in a forested headwater catchment: Mass-balance weathering fluxes

    USGS Publications Warehouse

    Jones, B.F.; Herman, J.S.

    2008-01-01

    Geochemical research on natural weathering has often been directed towards explanations of the chemical composition of surface water and ground water resulting from subsurface water-rock interactions. These interactions are often defined as the incongruent dissolution of primary silicates, such as feldspar, producing secondary weathering products, such as clay minerals and oxyhydroxides, and solute fluxes (Meunier and Velde, 1979). The chemical composition of the clay-mineral product is often ignored. However, in earlier investigations, the saprolitic weathering profile at the South Fork Brokenback Run (SFBR) watershed, Shenandoah National Park, Virginia, was characterized extensively in terms of its mineralogical and chemical composition (Piccoli, 1987; Pochatila et al., 2006; Jones et al., 2007) and its basic hydrology. O'Brien et al. (1997) attempted to determine the contribution of primary mineral weathering to observed stream chemistry at SFBR. Mass-balance model results, however, could provide only a rough estimate of the weathering reactions because idealized mineral compositions were utilized in the calculations. Making use of detailed information on the mineral occurrence in the regolith, the objective of the present study was to evaluate the effects of compositional variation on mineral-solute mass-balance modelling and to generate plausible quantitative weathering reactions that support both the chemical evolution of the surface water and ground water in the catchment, as well as the mineralogical evolution of the weathering profile. ?? 2008 The Mineralogical Society.

  16. Exploiting diurnal variations to evaluate the ISCCP-FD flux calculations and radiative-flux-analysis-processed surface observations from BSRN, ARM, and SURFRAD

    SciTech Connect

    Zhang, Yuanchong; Long, Charles N.; Rossow, William B.; Dutton, Ellsworth G.

    2010-01-01

    Based on monthly-3-hourly and 3-hourly mean surface radiative fluxes and their associated meteorological parameters for 2004 from the International Satellite Cloud Climatology Project-FD (ISCCP-FD) and the Radiative Flux Analysis method-Produced Surface Observations (RFA-PSO) for 15 high-quality-controlled surface stations, operated by the Baseline Surface Radiation Network (BSRN), the Atmospheric Radiation Measurement (ARM) and the National Oceanic and Atmospheric Administration's Surface Radiation budget network (SURFRAD), this work, goes beyond the previous validation for FD against surface observation by introducing the Meteorological Similarity Comparison Method (MSCM) to make a more precise, mutual evaluation of both FD and PSO products. The comparison results in substantial uncertainty reduction and provides reasonable physical explanations for the flux differences. This approach compares fluxes for cases where the atmospheric and surface physical properties (specifically, the input parameters for radiative transfer model) are as close as possible to the values determined at the observational sites by matching the RFA-produced cloud fraction (CF) and/or optical thickness (Tau), etc., or alternatively, by directly changing the model input variables for FD to match PSO values, and using such-produced matched sub-datasets to make more accurate comparisons based on more similar meteorological environments between FD and PSO. The crucial part is the availability of flux-associated meteorological parameters from RFA-PSO, which was only recently made available that makes this work possible. For surface downwelling shortwave(SW) flux (SWdn) and its two components, diffuse (Dif) and direct (Dir), uncertainty for monthly mean is 15, 15 and 17 W/m2, respectively, smaller than the separately estimated uncertainty values from both FD and PSO. When applying MSCM by reducing their CF difference, the differences can be reduced by a factor of 2. The strength of

  17. Adiabatic quantum-flux-parametron cell library designed using a 10 kA cm-2 niobium fabrication process

    NASA Astrophysics Data System (ADS)

    Takeuchi, Naoki; Nagasawa, Shuichi; China, Fumihiro; Ando, Takumi; Hidaka, Mutsuo; Yamanashi, Yuki; Yoshikawa, Nobuyuki

    2017-03-01

    Adiabatic quantum-flux-parametron (AQFP) logic is an energy-efficient superconductor logic with zero static power consumption and very small switching energy. In this paper, we report a new AQFP cell library designed using the AIST 10 kA cm-2 Nb high-speed standard process (HSTP), which is a high-critical-current-density version of the AIST 2.5 kA cm-2 Nb standard process (STP2). Since the intrinsic damping of the Josephson junction (JJ) of HSTP is relatively strong, shunt resistors for JJs were removed and the energy efficiency improved significantly. Also, excitation transformers in the new cells were redesigned so that the cells can operate in a four-phase excitation mode. We described the detail of HSTP and the AQFP cell library designed using HSTP, and showed experimental results of cell test circuits.

  18. Evaluation of dry-down processes of global models (hydrological and LSMs) using flux tower evapotranspiration data

    NASA Astrophysics Data System (ADS)

    Martinez-de la Torre, Alberto; Blyth, Eleanor

    2017-04-01

    Can we find a physical parameter that characterizes model dry-down processes in water limited conditions? In the context of model evaluation for a total of 10 global hydrological and land surface models, we analyse model performance in terms of evapotranspiration decay during dry events (10-day periods of no precipitation). For the evaluation, we use a set of flux tower sites that provides half-hourly evapotranspiration data and represents different land covers and climates around the world. In order to focus on water limited conditions, the dry-down curve dependency on soil moisture conditions is also analysed. Our dry-down analysis characterizes different models on their response to water limited conditions and provides a potential constraint for future climate change model projections, linking global model processes to local behaviour through a physical parameter.

  19. Fluxes of H2, COS, and CO2 across a temperate forest snowpack driven by below snow soil microbial processes

    NASA Astrophysics Data System (ADS)

    Meredith, L. K.; McLaren, J.; Commane, R.; Munger, J. W.; Prinn, R. G.; Wofsy, S. C.; Richardson, A. D.

    2011-12-01

    Snowpack overlying temperate soils insulates soil microbial communities from wintertime subzero air temperatures that would otherwise halt most biogeochemical processes. Moreover, a porous snow matrix permits soil-atmosphere trace gas exchange to continue despite the snowpack cover. Consequently, below snow (subniveal) soil biogeochemical processes proceed throughout the winter season and continue to impact atmospheric trace gas composition. In this study, three atmospheric trace gases (H2, COS, CO2) that exhibit strong soil-atmosphere exchange are investigated to understand the following: 1) how snowpack properties affect the exchange of trace gases and 2) how different biogeochemical cycles behave throughout the low temperature subniveal winter. The selected trace gases represent largely decoupled and distinct biogeochemical cycles. Soil microorganisms act as a net sink for atmospheric hydrogen (H2) and carbonyl sulfide (COS) by oxidation (hydrogenase) and hydrolysis (carbonic anhydrase) reactions, respectively. In contrast, soil microbial respiration is a strong source of atmospheric carbon dioxide (CO2). We present continuous, high frequency atmospheric flux measurements of H2, COS, and CO2 over the winter season in a temperate deciduous forest. Significant soil-atmosphere trace gas exchange was measured above the four-month snowpack, which reached 70 cm at peak accumulation. Additionally, we use a novel camera-based method to monitor snow depth, density, and fractional extent to understand how physical snowpack properties affect the exchange of these trace gases. The episodic nature of snow fall, snow melt, and snowpack ventilation events are also considered. By comparative analysis of the H2, COS, and CO2 fluxes, we investigate differences in subniveal biogeochemical processes at different soil temperature and moisture levels throughout the winter season. Projections for global change anticipate changes in the temperate snowpack; therefore, understanding the

  20. Boiling Heat-Transfer Processes and Their Application in the Cooling of High Heat Flux Devices

    DTIC Science & Technology

    1993-06-01

    requires an understanding of the parameters that affect the cooling processes and the determination of the limiting point where the surface fails due...application requires an understanding of the parameters that affect the cooling processes and the determination of the limiting point * where the surface fails...data points within ± 25 percent. 47 AEDC-TR-93-3 (41) Gambill and Lienhard (Ref. 231) presented an interesting semiempirical approach to determining a

  1. Inter-annual and spatial variability of hillslope runoff processes and mercury flux during spring snowmelt

    NASA Astrophysics Data System (ADS)

    Mitchell, C. P.; Haynes, K. M.

    2011-12-01

    Spring snowmelt is an important period of mercury (Hg) export from watersheds; contributing a large portion of the annual Hg flux. The export of mercury and dissolved solutes such as sulphate and dissolved organic carbon in meltwaters from upland soils may affect Hg methylation rates in low-lying wetlands and subsequent methylmercury (MeHg) export. Given the toxicological and teratological effects associated with mercury and methylmercury to ecosystem and human health, understanding hydrological controls on mercury mobility, especially under a changing climate, warrants further study. However, the impact of global climate change on snowpack accumulation and spring runoff intensity, and its subsequent influence on mercury and solute mobility in forested watersheds are not fully understood. In order to assess the potential effects of climate change, inter-annual climate variability was used as a proxy by comparing hydrological flows and mercury and solute mobility in spring following winters with: 1) a severely diminished snow accumulation with an early melt (2009-10) and 2) a significantly greater winter snow accumulation with average to late melt timing (2010-11). To additionally assess spatial variability, spring runoff samples were collected from three replicate instrumented, forested hillslope plots delineated in an upland-peatland watershed at the Marcell Experimental Forest in north-central Minnesota. Installed in each plot is a shallow subsurface runoff trench equipped with digital flow datalogging. Total mercury (THg) analysis of the spring 2010 runoff period revealed an average overall THg freshet yield of approximately 520 ng m-2 upland forest area from each of the three replicate plots. For the 2011 spring snowmelt period, an average THg yield of approximately 1480 ng m-2 upland forest area was observed; nearly three times greater than that observed in 2010. Enhanced snow accumulation and a subsequently greater magnitude of runoff significantly enhances

  2. Ultra-modular 500m2 heliostat field for high flux/high temperature solar-driven processes

    NASA Astrophysics Data System (ADS)

    Romero, Manuel; González-Aguilar, José; Luque, Salvador

    2017-06-01

    The main objective of the European Project SUN-to-LIQUID is the scale-up and experimental demonstration of the complete process chain to solar liquid fuels from H2O and CO2. This implies moving from a 4 kW laboratory setup to a pre-commercial plant including a heliostat field. The small power and high irradiance onto the focal spot is forcing the optical design to behave half way between a large solar furnace and an extremely small central receiver system. The customized heliostat field makes use of the most recent developments on small size heliostats and a tower with reduced optical height (15 m) to minimize visual impact. A heliostat field of 250kWth (500 m2 reflective surface) has been built adjacent to IMDEA Energy premises at the Technology Park of Móstoles, Spain, and consists of 169 small size heliostats (1.9 m × 1.6 m). In spite of the small size and compactness of the field, when all heliostats are aligned, it is possible to fulfil the specified flux above 2500 kW/m2 for at least 50 kW and an aperture of 16 cm, with a peak flux of 3000 kW/m2.

  3. TRACC: An open source software for processing sap flux data from thermal dissipation probes

    DOE PAGES

    Ward, Eric J.; Domec, Jean-Christophe; King, John; ...

    2017-05-02

    Here, thermal dissipation probes (TDPs) have become a widely used method of monitoring plant water use in recent years. The use of TDPs requires calibration to a theoretical zero-flow value (ΔT0); usually based upon the assumption that at least some nighttime measurements represent zero-flow conditions. Fully automating the processing of data from TDPs is made exceedingly difficult due to errors arising from many sources. However, it is desirable to minimize variation arising from different researchers’ processing data, and thus, a common platform for processing data, including editing raw data and determination of ΔT0, is useful and increases the transparency andmore » replicability of TDP-based research. Here, we present the TDP data processing software TRACC (Thermal dissipation Review Assessment Cleaning and Conversion) to serve this purpose. TRACC is an open-source software written in the language R, using graphical presentation of data and on screen prompts with yes/no or simple numerical responses. It allows the user to select several important options, such as calibration coefficients and the exclusion of nights when vapor pressure deficit does not approach zero. Although it is designed for users with no coding experience, the outputs of TRACC could be easily incorporated into more complex models or software.« less

  4. Sulfur flows and biosolids processing: Using Material Flux Analysis (MFA) principles at wastewater treatment plants.

    PubMed

    Fisher, R M; Alvarez-Gaitan, J P; Stuetz, R M; Moore, S J

    2017-08-01

    High flows of sulfur through wastewater treatment plants (WWTPs) may cause noxious gaseous emissions, corrosion of infrastructure, inhibit wastewater microbial communities, or contribute to acid rain if the biosolids or biogas is combusted. Yet, sulfur is an important agricultural nutrient and the direct application of biosolids to soils enables its beneficial re-use. Flows of sulfur throughout the biosolids processing of six WWTPs were investigated to identify how they were affected by biosolids processing configurations. The process of tracking sulfur flows through the sites also identified limitations in data availability and quality, highlighting future requirements for tracking substance flows. One site was investigated in more detail showing sulfur speciation throughout the plant and tracking sulfur flows in odour control systems in order to quantify outflows to air, land and ocean sinks. While the majority of sulfur from WWTPs is removed as sulfate in the secondary effluent, the sulfur content of biosolids is valuable as it can be directly returned to soils to combat the potential sulfur deficiencies. Biosolids processing configurations, which focus on maximising solids recovery, through high efficiency separation techniques in primary sedimentation tanks, thickeners and dewatering centrifuges retain more sulfur in the biosolids. However, variations in sulfur loads and concentrations entering the WWTPs affect sulfur recovery in the biosolids, suggesting industrial emitters, and chemical dosing of iron salts are responsible for differences in recovery between sites. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Spatio-temporal rectification of tower-based eddy-covariance flux measurements for consistently informing process-based models

    NASA Astrophysics Data System (ADS)

    Metzger, S.; Xu, K.; Desai, A. R.; Taylor, J. R.; Kljun, N.; Schneider, D.; Kampe, T. U.; Fox, A. M.

    2013-12-01

    Process-based models, such as land surface models (LSMs), allow insight in the spatio-temporal distribution of stocks and the exchange of nutrients, trace gases etc. among environmental compartments. More recently, LSMs also become capable of assimilating time-series of in-situ reference observations. This enables calibrating the underlying functional relationships to site-specific characteristics, or to constrain the model results after each time-step in an attempt to minimize drift. The spatial resolution of LSMs is typically on the order of 10^2-10^4 km2, which is suitable for linking regional to continental scales and beyond. However, continuous in-situ observations of relevant stock and exchange variables, such as tower-based eddy-covariance (EC) fluxes, represent orders of magnitude smaller spatial scales (10^-6-10^1 km2). During data assimilation, this significant gap in spatial representativeness is typically either neglected, or side-stepped using simple tiling approaches. Moreover, at ';coarse' resolutions, a single LSM evaluation per time-step implies linearity among the underlying functional relationships as well as among the sub-grid land cover fractions. This, however, is not warranted for land-atmosphere exchange processes over more complex terrain. Hence, it is desirable to explicitly consider spatial variability at LSM sub-grid scales. Here we present a procedure that determines from a single EC tower the spatially integrated probability density function (PDF) of the surface-atmosphere exchange for individual land covers. These PDFs allow quantifying the expected value, as well as spatial variability over a target domain, can be assimilated in tiling-capable LSMs, and mitigate linearity assumptions at ';coarse' resolutions. The procedure is based on the extraction and extrapolation of environmental response functions (ERFs), for which a technical-oriented companion poster is submitted. In short, the subsequent steps are: (i) Time

  6. Three-dimensional adiabatic quantum-flux-parametron fabricated using a double-active-layered niobium process

    NASA Astrophysics Data System (ADS)

    Ando, Takumi; Nagasawa, Shuichi; Takeuchi, Naoki; Tsuji, Naoki; China, Fumihiro; Hidaka, Mutsuo; Yamanashi, Yuki; Yoshikawa, Nobuyuki

    2017-07-01

    Adiabatic quantum-flux-parametron (AQFP) is an ultra-low-power superconductor logic. In this study, we proposed and designed three-dimensional (3D) AQFP to achieve high circuit density and efficient interconnections. In 3D-AQFP, different AQFP logic circuits can be designed both over and under a ground plane (GP). The 3D-AQFP circuits are fabricated using the AIST 10 kA cm-2 Nb double gate process, in which two active layers are separated by a single GP. Followed by basic logic cell tests, we show an experimental demonstration of a 3D-XOR gate, the building block cells of which are vertically stacked to save circuit area and wiring length. The measurement results showed reasonable excitation current margins of more than ±16% for the 3D-XOR gate.

  7. Processing considerations for adding nanometer-scale oxides to enhance flux pinning in high-temperature superconductors

    SciTech Connect

    Xu, Y. |; Goretta, K.C.; Cuber, M.M.; Burdt, M.L.; Feng, L.R.; Chen, N.; Balachandran, U.; Xu, M.

    1997-07-01

    Several nanometer-scale oxide inclusions were added to Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub x} high-temperature superconductors to determine their effectiveness in creating intragranular flux-pinning sites. Powder pellets were fabricated and heat treated by partial-melt processing. Effects of the additives on melting response, superconducting properties, and microstructural development were examined. Al{sub 2}O{sub 3} additions exhibited the most promise for forming stable pinning centers, ZrO{sub 2} and SnO{sub 2} additions were moderately promising, TiO{sub 2}, Fe{sub 2}O{sub 3}, and ZnO additions were less promising, and Y{sub 2}O{sub 3} additions destroyed superconductivity.

  8. The Development of CaO-SiO2-B2O3-based Fluorine-Free Mold Flux for a Continuous Casting Process

    NASA Astrophysics Data System (ADS)

    Zhou, Lejun; Wang, Wanlin

    2016-09-01

    Designing and developing high-performance fluorine-free (F-free) mold flux has become a hot topic in steel continuous casting processes, with concerns of environment protection and energy saving. In conventional commercial mold flux, fluorine plays important roles on the properties as it works as a fluxing agent; however, it tends to cause serious environmental and health problems. In this paper, a new F-free mold flux based on the CaO-SiO2-B2O3 slag system has been introduced through summarizing previous works. The melting temperature range of F-free mold flux decreases with the addition of Na2O/Li2O and B2O3; the viscosity and heat flux decrease with the increase of basicity and Na2O/Li2O, as well as the decrease of B2O3 contents. Also, the crystallization temperatures of F-free mold fluxes increase with the increase of basicity and Na2O/Li2O content. The analyses of EDS and XRD show that Ca11Si4B2O22 and Ca14Mg2(SiO4)8 are the two main precipitated crystalline phases in F-free mold fluxes, and that the Ca11Si4B2O22 is a common and stable crystalline phase in the designed F-free mold fluxes system that shows the potential to replace Ca4Si2O7F2 in conventional flourine-containing mold fluxes.

  9. Processes Driving Submarine Groundwater Discharge and Nutrient Fluxes in a Semi-arid Coastal Area: Coastal South Texas

    NASA Astrophysics Data System (ADS)

    Murgulet, D.; Douglas, A. R.; Spalt, N.

    2015-12-01

    Assessments of submarine groundwater discharge (SGD), an important pathway for material transport to coastal embayments, are difficult, as there is no simple means to estimate the water flux. Because of processes like tidal pumping, non-homogeneous bottom sediment compositions, high hydrologic and hydrogeologic "heterogeneity", and the likelihood of multiple sources (i.e. different aquifers or recirculated seawater) within a study region, there could be significant variation in the magnitude of discharge. Furthermore, in highly saline semi-arid environments such as south Texas, density-driven flow will also influence the discharge rates and location of seepage faces. Thus, discharge throughout a bay is undoubtedly variable temporally and spatially so it is not reasonable to extrapolate a single flow rate to the entire surface area. Multiple approaches are necessary especially where the terrestrial groundwater is not fresh like in coastal area of south Texas. To meet this challenge, we have explored the use of high-resolution continuous subsurface imaging techniques, continuous radon monitoring, and other geochemical tracers to more precisely measure SGD and nutrient fluxes to coastal zone waters over time periods of hours and under different climatic conditions. This approach allowed us to differentiate between fresh groundwater and recirculated seawater, delineate seepage faces as dependent on / independent of sediment heterogeneity and convective flow caused by density differences. We were able to also correct SGD rates derived from continuous radon monitoring that can be significantly variable on account of observation uncertainties associated with the above-mentioned complications. Areas of significant SGD, as shown by both continuous resistivity profiling and radon and radium isotopes, were also associated with the highest non-conservative nutrient (i.e. nitrate) concentrations. Overall, this combination of methods shows promise in differentiating between flow

  10. Quantitative evaluation of stemflow flux during the rainfall-discharge process in a forested area

    NASA Astrophysics Data System (ADS)

    Ikawa, R.; Shimada, J.; Shimizu, T.

    2006-12-01

    Stemflow is very important as a point spot input of precipitation and tree solutes to the ground surface in a forest. However, it has not been attached importance for its hydrological significance because of its quantitative contribution per unit area when compared to throughfall. In the densely forested area with relatively high rainfall, some studies recently point out that stemflow has a significant influence on runoff generation, soil erosion, groundwater recharge, soil solution chemistry, and the distribution of understory vegetation and epiphytes (Levia and Frost, 2003). It is known that there exist clear differences of isotopic composition and chemistries in the gross rainfall, throughfall, and stemflow, even in a rainfall event. In order to evaluate the stemflow contribution for the infiltration into a forest soil and groundwater, the precise isotopic observation for rainfall and river discharge water during rainfall-discharge process has been conducted in a densely forested headwater catchment of Kahoku experimental forest (KHEW: 33o08'N, 133o43'E) , Kyusyu island, Japan, since June, 2004. Water samples of gross rainfall, throughfall, stemflow, and riverwater were collected every hour using automatic water sampler. These samples were analyzed for deuterium and oxygen stable isotopes, inorganic water chemistry, and dissolved Silica. To evaluate the stemflow contribution during the rainfall-discharge process, catchments scale tank model was considered by using stemflow and throughfall as an input, and an isotopic fluctuation of river water during rainfall event was calculated by this model which was evaluated by the observed isotopic fluctuation in the river water. In the AGU fall meeting, we will explain more precisely about the quantitative evaluation method of stemflow contribution during rainfall-discharge process by using chemical isotopic data and tank model.

  11. Assessing temporal flux of plant hormones in stored processing potatoes using high definition accurate mass spectrometry

    PubMed Central

    Ordaz-Ortiz, José Juan; Foukaraki, Sofia; Terry, Leon Alexander

    2015-01-01

    Plant hormones are important molecules which at low concentration can regulate various physiological processes. Mass spectrometry has become a powerful technique for the quantification of multiple classes of plant hormones because of its high sensitivity and selectivity. We developed a new ultrahigh pressure liquid chromatography–full-scan high-definition accurate mass spectrometry method, for simultaneous determination of abscisic acid and four metabolites phaseic acid, dihydrophaseic acid, 7′-hydroxy-abscisic acid and abscisic acid glucose ester, cytokinins zeatin, zeatin riboside, gibberellins (GA1, GA3, GA4 and GA7) and indole-3-acetyl-L-aspartic acid. We measured the amount of plant hormones in the flesh and skin of two processing potato cvs. Sylvana and Russet Burbank stored for up to 30 weeks at 6 °C under ambient air conditions. Herein, we report for the first time that abscisic acid glucose ester seems to accumulate in the skin of potato tubers throughout storage time. The method achieved a lowest limit of detection of 0.22 ng g−1 of dry weight and a limit of quantification of 0.74 ng g−1 dry weight (zeatin riboside), and was able to recover, detect and quantify a total of 12 plant hormones spiked on flesh and skin of potato tubers. In addition, the mass accuracy for all compounds (<5 ppm) was evaluated. PMID:26504563

  12. Assessing temporal flux of plant hormones in stored processing potatoes using high definition accurate mass spectrometry.

    PubMed

    Ordaz-Ortiz, José Juan; Foukaraki, Sofia; Terry, Leon Alexander

    2015-01-01

    Plant hormones are important molecules which at low concentration can regulate various physiological processes. Mass spectrometry has become a powerful technique for the quantification of multiple classes of plant hormones because of its high sensitivity and selectivity. We developed a new ultrahigh pressure liquid chromatography-full-scan high-definition accurate mass spectrometry method, for simultaneous determination of abscisic acid and four metabolites phaseic acid, dihydrophaseic acid, 7'-hydroxy-abscisic acid and abscisic acid glucose ester, cytokinins zeatin, zeatin riboside, gibberellins (GA1, GA3, GA4 and GA7) and indole-3-acetyl-L-aspartic acid. We measured the amount of plant hormones in the flesh and skin of two processing potato cvs. Sylvana and Russet Burbank stored for up to 30 weeks at 6 °C under ambient air conditions. Herein, we report for the first time that abscisic acid glucose ester seems to accumulate in the skin of potato tubers throughout storage time. The method achieved a lowest limit of detection of 0.22 ng g(-1) of dry weight and a limit of quantification of 0.74 ng g(-1) dry weight (zeatin riboside), and was able to recover, detect and quantify a total of 12 plant hormones spiked on flesh and skin of potato tubers. In addition, the mass accuracy for all compounds (<5 ppm) was evaluated.

  13. Effects of flux enhancing polymer on the characteristics of sludge in membrane bioreactor process.

    PubMed

    Yoon, S H; Collins, J H; Musale, D; Sundararajan, S; Tsai, S P; Hallsby, G A; Kong, J F; Koppes, J; Cachia, P

    2005-01-01

    A newly developed membrane performance enhancer (MPE) was used to prevent membrane fouling in a membrane bioreactor (MBR) process. It transpired that 1,000 mg/l of MPE reduced polysaccharide levels from 41 mg/I to 21 mg/I on average under the experimental condition. Repeated experiments also confirmed that 50-1,000 mg/l of MPE could reduce membrane fouling significantly and increase the intervals between membrane cleanings. Depending on MPE dosages and experimental conditions, trans-membrane pressure (TMP) increase was suppressed for 20-30 days, while baseline TMP surged within a few days. In addition, MPE allowed MBR operation even at 50,000 mg/l of total solid and reduced permeate COD. However, no evidence of toxicity for sludge was found from respiratory works.

  14. Ion exchange membrane bioreactor for selective removal of nitrate from drinking water: control of ion fluxes and process performance.

    PubMed

    Velizarov, Svetlozar; Crespo, João G; Reis, Maria A

    2002-01-01

    An ion exchange membrane bioreactor (IEMB), consisting of a monoanion permselective membrane dialyzer coupled to a stirred anoxic vessel with an enriched mixed denitrifying culture, has been studied for nitrate removal from drinking water. The influence of nitrate and chloride concentrations on the selectivity of nitrate transport in the IEMB process was investigated. With appropriate dosing of chloride ions to the IEMB biocompartment, it was possible to regulate the net bicarbonate flux in the system, thus maintaining the bicarbonate concentration in the treated water at the desired level. The latter was not possible to achieve in Donnan dialysis, operated as a single process in which, besides the lower nitrate removal efficiency found, bicarbonate was co-extracted together with nitrate from the polluted water stream. Residual carbon source (ethanol) and nitrite were not detected in the treated water produced in the IEMB system. With a concentration of nitrate in the polluted water three times higher than the maximum contaminant level of 50 mg L(-1) allowed, the IEMB process was successfully operated for a period of 1 month before exceeding this limit.

  15. Formation Process of Relativistic Electron Flux Through Interaction with Chorus Emissions in the Earth's Inner Magnetosphere

    NASA Astrophysics Data System (ADS)

    Omura, Y.; Miyashita, Y.; Yoshikawa, M.; Summers, D.; Hikishima, M.; Ebihara, Y.; Kubota, Y.

    2015-12-01

    We perform test particle simulations of energetic electrons interacting with whistler-mode chorus emissions. We compute trajectories of a large number of electrons forming a delta function with the same energy and pitch angle. The electrons are launched at different locations along the magnetic field line and different timings with respect to a pair of chorus emissions generated at the magnetic equator. We follow the evolution of the delta function, and obtain a distribution function in energy and equatorial pitch angle, which is a numerical Green's function for one cycle of chorus wave-particle interaction. We obtain the Green's functions for the energy range 10 keV ˜ 6 MeV and all pitch angles greater than the loss cone angle. By taking the convolution integral of the Green's functions with the distribution function of the injected electrons repeatedly, we follow a long-time evolution of the distribution function. We find that the energetic electrons are accelerated effectively by relativistic turning acceleration and ultra-relativistic acceleration through nonlinear trapping by chorus emissions, and that these processes result in the rapid formation of a dumbbell distribution of highly relativistic electrons within a few minutes after the injection of tens of keV electrons.

  16. Exploring Mass Flux Response to Local Source Zone Properties Using a Coupled-Process Adjoint Sensitivity Method

    NASA Astrophysics Data System (ADS)

    Tang, T.; Miller, E. L.; Abriola, L. M.

    2016-12-01

    Contaminant plumes emanating from DNAPL source zones pose substantial risks to the general population by transporting pollutants to receptor points. Thus, to assess potential risk, the quantification of down gradient mass flux and mass discharge has been identified as a critical component of source zone characterization. These metrics, however, are difficult to measure directly and are typically controlled by the complex interplay of a number of transport mechanisms. In an effort to improve the accuracy and efficiency of site characterization, this work employs an adjoint sensitivity method to quantify the importance of local system properties, given some initial site characterization information, on down gradient mass flux and plume persistence. Local properties that are considered in this research include: permeability, DNAPL saturation, and dissolved and sorbed contaminant mass concentrations. The utility of the adjoint sensitivity method is examined using, numerically generated, 3D heterogeneous DNAPL source zones. Conditioned spatial distributions of the four properties are generated using a joint probabilistic model associated with texture simulations based on field borehole measurements. An existing modular three-dimensional transport simulator, MT3DMS, is applied to solve the transport equation considering both DNAPL dissolution and linear and rate-limited sorption. Consistent with this process coupling, a subroutine is added to the code to solve the adjoint states, which evolves backward in time. Sensitivity analyses are developed to investigate the down-gradient plume response to the perturbation of the four local system properties. In addition, sensitivities corresponding to these four properties at different times are also compared, to explore the influence of DNAPL dissolution and desorption over time. Results demonstrate that the initial aqueous phase concentration will have a larger impact on downstream mass flux at early times after a DNAPL release

  17. Early diagenetic processes, fluxes, and reaction rates in sediments of the South Atlantic

    SciTech Connect

    Schulz, H.D.; Dahmke, A.; Schinzel, U.; Wallmann, K.; Zabel, M. )

    1994-05-01

    Porewaters recovered from sediment cores (gravity corers, box corers, and multicorers) from various subregions of the South Atlantic (Amazon River mouth, equatorial upwelling, Congo River mouth, Benguela coastal upwelling area, and Angola Basin) were investigated geochemically. Objectives included determination of Eh, pH, oxygen, nitrate, sulfate, alkalinity, phosphate, ammonium, fluoride, sulfide, Ca, Mg, Sr, Fe, Mn, and Si, in order to quantify organic matter diagenesis and related mineral precipitation and dissolution processes. Porewater profiles from the eastern upwelling areas of the South Atlantic suggest that sulfate reduction in the deeper parts of the sediment may be attributed mainly to methane oxidation, whereas organic matter degradation by sulfate reduction is restricted to the near-surface sediments. Further, a prominent concentration gradient change of sulfate and related mineralization products occurred typically in the upwelling sediments at a depth of 4 to 8 m, far below the zone of bioturbation or bioirrigation. Because other sedimentological reasons seem to fail as explanations, an early diagenetic sulfide oxidation to sulfate within the anoxic environment is discussed. Porewater profiles from the sediments of the Amazon fan area are mainly influenced by reactions with Fe(III)-phases. The remarkable linearity of the concentration gradients of sulfate supports the idea of distinct reaction layers in these sediments. In contrast to the upwelling sediments, the sulfate gradient develops from the sediment surface to a sulfate reduction zone at a depth of 5.3 m, probably because a reoxidation of sulfide is prevented by the reaction with iron oxides and the formation of iron sulfide minerals. A comparison of organic matter degradation rates from the different areas of the South Atlantic show the expected relationship to primary productivity.

  18. Investigation of heat flux processes governing the increase of groundwater temperatures beneath cities

    NASA Astrophysics Data System (ADS)

    Bayer, P.; Menberg, K.; Zhu, K.; Blum, P.

    2012-12-01

    In the subsurface of many cities there are widespread and persistent thermal anomalies. These so-called subsurface urban heat islands (UHIs), which also stimulate warming of urban aquifers, are triggered by various processes. Possible heat sources are basements of buildings, leakage of sewage systems, buried district heating networks, re-injection of cooling water and solar irradiation on paved surfaces. In the current study, the reported groundwater temperatures in several Central European cities, such as Berlin, Cologne (Germany) and Zurich (Switzerland) are compared. Available data sets are supplemented by temperature measurements and depth profiles in observation wells. Trend analyses are conducted with time series of groundwater temperatures, and three-dimensional groundwater temperature maps are provided. In all investigated cities, pronounced positive temperature anomalies are present. The distribution of groundwater temperatures appears to be spatially and temporally highly variable. Apparently, the increased heat input into the urban subsurface is controlled by very local and site-specific parameters. In the long-run, the combination of various heat sources results in an extensive temperature increase. In many cases, the maximum temperature elevation is found close to the city center. Regional groundwater temperature differences between the city center and the rural background are up to 5 °C, with local hot spots of even more pronounced anomalies. Particular heat sources, like cooling water injections or case-specific underground constructions, can cause local temperatures > 20 °C in the subsurface. Examination of the long-term variations in isotherm maps shows that temperatures have increased by about 1 °C in the city, as well as in the rural background areas over the last decades. This increase could be reproduced with trend analysis of temperature data gathered from several groundwater wells. Comparison between groundwater and air temperatures in the

  19. Surface Layer Flux Processes During Cloud Intermittency and Advection above a Middle Rio Grande Riparian Forest, New Mexico

    NASA Astrophysics Data System (ADS)

    Cleverly, J. R.; Prueger, J.; Cooper, D. I.; Hipps, L.; Eichinger, W.

    2002-12-01

    An intensive field campaign was undertaken to bring together state-of-the-art methodologies for investigating surface layer physical characteristics over a desert riparian forest. Three-dimensional sonic eddy covariance (3SEC), LIDAR, SODAR, Radiosonde, one-dimensional propeller eddy covariance (1PEC), heat dissipation sap flux, and leaf gas exchange were simultaneously in use 13 -- 21 June 1999 at Bosque del Apache National Wildlife Refuge (NWR) in New Mexico. A one hour period of intense advection was identified by /line{v} >> 0 and /line{u} = 0, indicating that wind direction was transverse to the riparian corridor. The period of highest /line{v} was 1400 h on 20 June; this hour experienced intermittent cloud cover and enhanced mesoscale forcing of surface fluxes. High-frequency (20 Hz) time series of u, v, w, q, θ , and T were collected for spectral, cospectral, and wavelet analyses. These time series analyses illustrate scales at which processes co-occur. At high frequencies (> 0.015 Hz), /line{T' q'} > 0, and (KH)/ (KW) = 1. At low frequencies, however, /line{T' q'} < 0, and (KH)/(KW) !=q 1. Under these transient conditions, frequencies below 0.015 Hz are associated with advection. While power cospectra are useful in associating processes at certain frequencies, further analysis must be performed to determine whether such examples of aphasia are localized to transient events or constant through time. Continuous wavelet transformation (CWT) sacrifices localization in frequency space for localization in time. Mother wavelets were evaluated, and Daubechies order 10 wavelet was found to reduce red noise and leakage near the spectral gap. The spectral gap is a frequency domain between synoptic and turbulent scales. Low frequency turbulent structures near the spectral gap in the time series of /line{T' q'}, /line{w' T'}, and /line{w' q'} followed a perturbation--relaxation pattern to cloud cover. Further cloud cover in the same hour did not produce the low

  20. Processes driving the episodic flux of faecal indicator organisms in streams impacting on recreational and shellfish harvesting waters.

    PubMed

    Wilkinson, Jeremy; Kay, David; Wyer, Mark; Jenkins, Alan

    2006-01-01

    Understanding the process controls on episodic fluxes of faecal indicator organisms (FIOs) is becoming increasingly important for the sustainable management and accurate modelling of water quality in both recreational and shellfish harvesting waters. Both environments exhibit transitory non-compliance with microbiological standards after rainfall episodes despite significant expenditures on control of sewage derived pollutant loadings in recent years. This paper demonstrates the role of wave propagation in the entrainment of FIOs from river channel beds as a contributor to episodes of poor microbial water quality. Previously reported data is reviewed in the light of relationships between wave and mean water travel velocities. High flows and rapid changes in river flow, driven by releases of bacterially pure reservoir water, resulted in elevated FIO concentrations and transient peaks in concentration. The new interpretation of these data suggest three modes of entrainment: (i) immediate wave-front disturbance, (ii) wave propagation lift and post-wave transport at mean flow velocity, and (iii) stochastic erosional mechanisms that maintain elevated bacterial concentrations under steady high flow conditions. This is a significant advance on the previously proposed mechanisms. Understanding these mechanisms provides an aid to managing streams intended for recreational use and emphasises the need to control the timing of high flow generation prior to use of the water body for e.g. canoeing events. In addition the processes highlighted have relevance for the protection of shellfish nurseries, drinking water supply intakes and episodes of poor bathing water quality, and associated health risks.

  1. Soil organic matter dynamics and CO2 fluxes in relation to landscape scale processes: linking process understanding to regional scale carbon mass-balances

    NASA Astrophysics Data System (ADS)

    Van Oost, Kristof; Nadeu, Elisabet; Wiaux, François; Wang, Zhengang; Stevens, François; Vanclooster, Marnik; Tran, Anh; Bogaert, Patrick; Doetterl, Sebastian; Lambot, Sébastien; Van wesemael, Bas

    2014-05-01

    In this paper, we synthesize the main outcomes of a collaborative project (2009-2014) initiated at the UCL (Belgium). The main objective of the project was to increase our understanding of soil organic matter dynamics in complex landscapes and use this to improve predictions of regional scale soil carbon balances. In a first phase, the project characterized the emergent spatial variability in soil organic matter storage and key soil properties at the regional scale. Based on the integration of remote sensing, geomorphological and soil analysis techniques, we quantified the temporal and spatial variability of soil carbon stock and pool distribution at the local and regional scales. This work showed a linkage between lateral fluxes of C in relation with sediment transport and the spatial variation in carbon storage at multiple spatial scales. In a second phase, the project focused on characterizing key controlling factors and process interactions at the catena scale. In-situ experiments of soil CO2 respiration showed that the soil carbon response at the catena scale was spatially heterogeneous and was mainly controlled by the catenary variation of soil physical attributes (soil moisture, temperature, C quality). The hillslope scale characterization relied on advanced hydrogeophysical techniques such as GPR (Ground Penetrating Radar), EMI (Electromagnetic induction), ERT (Electrical Resistivity Tomography), and geophysical inversion and data mining tools. Finally, we report on the integration of these insights into a coupled and spatially explicit model and its application. Simulations showed that C stocks and redistribution of mass and energy fluxes are closely coupled, they induce structured spatial and temporal patterns with non negligible attached uncertainties. We discuss the main outcomes of these activities in relation to sink-source behavior and relevance of erosion processes for larger-scale C budgets.

  2. Final Technical Report: The effects of climate, forest age, and disturbance history on carbon and water processes at AmeriFlux sites across gradients in Pacific Northwest forests

    SciTech Connect

    Law, Beverly E.

    2016-12-03

    Investigate the effects of disturbance and climate variables on processes controlling carbon and water processes at AmeriFlux cluster sites in semi-arid and mesic forests in Oregon. The observations were made at three existing and productive AmeriFlux research sites that represent climate and disturbance gradients as a natural experiment of the influence of climatic and hydrologic variability on carbon sequestration and resulting atmospheric CO2 feedback that includes anomalies during the warm/ dry phase of the Pacific Decadal Oscillation.

  3. A Study of the Response of Deep Tropical Clouds to Mesoscale Processes. Part 2; Sensitivities to Microphysics, Radiation, and Surface Fluxes

    NASA Technical Reports Server (NTRS)

    Johnson, Daniel; Tao, Wei-Kuo; Simpson, Joanne

    2004-01-01

    The Goddard Cumulus Ensemble (GCE) model is used to examine the sensitivities of surface fluxes, explicit radiation, and ice microphysical processes on multi-day simulations of deep tropical convection over the Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA COARE). The simulations incorporate large-scale advective temperature and moisture forcing, as well as large-scale momentum, that are updated every time step on a periodic lateral boundary grid. This study shows that when surface fluxes are eliminated, the mean atmosphere is much cooler and drier, convection and CAPE are much weaker, precipitation is less, and cloud coverage in stratiform regions much greater. Surface fluxes using the TOGA COARE flux algorithm are weaker than with the aerodynamic formulation, but closer to the observed fluxes. In addition, similar trends noted above for the case without surface fluxes are produced for the TOGA flux case, albeit to a much lesser extent. The elimination of explicit shortwave and longwave radiation is found to have only minimal effects on the mean thermodynamics, convection, and precipitation. However explicit radiation does have a significant impact on cloud temperatures and structure above 200 mb and on the overall mean vertical circulation. The removal of ice processes produces major changes in the structure of the cloud. Much of the liquid water is transported aloft and into anvils above the melting layer (600 mb), leaving narrow, but intense bands of rainfall in convective regions. The elimination of melting processes leads to greater hydrometeor mass below the melting layer, and produces a much warmer and moister boundary layer, leading to a greater mean CAPE. Finally, the elimination of the graupel species has only a small impact on mean total precipitation, thermodynamics, and dynamics of the simulation, but does produce much greater snow mass just above the melting layer. Some of these results differ from previous CRM

  4. Reduction-melting combined with a Na₂CO₃ flux recycling process for lead recovery from cathode ray tube funnel glass.

    PubMed

    Okada, Takashi; Yonezawa, Susumu

    2014-08-01

    With large quantity of flux (Na2CO3), lead can be recovered from the funnel glass of waste cathode-ray tubes via reduction-melting at 1000°C. To reduce flux cost, a technique to recover added flux from the generated oxide phase is also important in order to recycle the flux recovered from the reduction-melting process. In this study, the phase separation of sodium and the crystallization of water-soluble sodium silicates were induced after the reduction-melting process to enhance the leachability of sodium in the oxide phase and to extract the sodium from the phase for the recovery of Na2CO3 as flux. A reductive atmosphere promoted the phase separation and crystallization, and the leachability of sodium from the oxide phase was enhanced. The optimum temperature and treatment time for increasing the leachability were 700°C and 2h, respectively. After treatment, more than 90% of the sodium in the oxide phase was extracted in water. NaHCO3 can be recovered by carbonization of the solution containing sodium ions using carbon dioxide gas, decomposed to Na2CO3 at 50°C and recycled for use in the reduction-melting process.

  5. Transient Fluvial Response to Alpine Deglaciation, Mount Rainier, WA: Geomorphic Process Domains and Proglacial Flux Controls on Channel Evolution.

    NASA Astrophysics Data System (ADS)

    Beyeler, J. D.; Montgomery, D.; Kennard, P. M.

    2016-12-01

    Downwasting of all glaciers on the flanks of Mount Rainier, WA, in recent decades has debuttressed Little Ice Age glaciogenic sediments driving proglacial responses to regionally warming climate. Rivers draining the deglaciating edifice are responding to paraglacial sedimentation processes through transient storage of retreat-liberated sediments in aggrading (e.g., >5m) fluvial networks with widening channel corridors (i.e., 50-150%) post-LIA (ca., 1880-1910 locally). We hypothesize that the downstream transmission of proglacial fluxes (i.e., sediment and water) through deglaciating alpine terrain is a two-step geomorphic process. The ice-proximal portion of the proglacial system is dominated by the delivery of high sediment-to-water ratio flows (i.e., hyperconcentrated and debris slurries) and sediment retention by in-channel accumulation (e.g., confined debris fans within channel margins of valley segments) exacerbated by recruitment and accumulation of large wood (e.g., late seral stage conifers), whereas ice-distal fluvial reworking of transient sediment accumulations generates downstream aggradation. Historical Carbon River observations show restricted ice-proximal proglacial aggradation until a mainstem avulsion in 2009 initiated incision into sediment accumulations formed in recent decades, which is translating into aggradation farther down the network. Surficial morphology mapped with GPS, exposed subsurface sedimentology, and preliminary dating of buried trees suggest a transitional geomorphic process zone has persisted along the proglacial Carbon River through recent centuries and prior to the ultimate LIA glaciation. Structure-from-motion DEM differencing through the 2016 water year shows discrete zones of proglacial evolution through channel-spanning bed aggradation forced by interactions between large wood and sediment-rich flows that transition to fluvial process dominance as sediment is transported downstream. Long-term DEM differencing suggests

  6. Conceptual Process for the Manufacture of Low-Enriched Uranium/Molybdenum Fuel for the High Flux Isotope Reactor

    SciTech Connect

    Sease, J.D.; Primm, R.T. III; Miller, J.H.

    2007-09-30

    The U.S. nonproliferation policy 'to minimize, and to the extent possible, eliminate the use of HEU in civil nuclear programs throughout the world' has resulted in the conversion (or scheduled conversion) of many of the U.S. research reactors from high-enriched uranium (HEU) to low-enriched uranium (LEU). A foil fuel appears to offer the best option for using a LEU fuel in the High Flux Isotope Reactor (HFIR) without degrading the performance of the reactor. The purpose of this document is to outline a proposed conceptual fabrication process flow sheet for a new, foil-type, 19.75%-enriched fuel for HFIR. The preparation of the flow sheet allows a better understanding of the costs of infrastructure modifications, operating costs, and implementation schedule issues associated with the fabrication of LEU fuel for HFIR. Preparation of a reference flow sheet is one of the first planning steps needed in the development of a new manufacturing capacity for low enriched fuels for U.S. research and test reactors. The flow sheet can be used to develop a work breakdown structure (WBS), a critical path schedule, and identify development needs. The reference flow sheet presented in this report is specifically for production of LEU foil fuel for the HFIR. The need for an overall reference flow sheet for production of fuel for all High Performance Research Reactors (HPRR) has been identified by the national program office. This report could provide a starting point for the development of such a reference flow sheet for a foil-based fuel for all HPRRs. The reference flow sheet presented is based on processes currently being developed by the national program for the LEU foil fuel when available, processes used historically in the manufacture of other nuclear fuels and materials, and processes used in other manufacturing industries producing a product configuration similar to the form required in manufacturing a foil fuel. The processes in the reference flow sheet are within the

  7. Stable isotopes in surface waters of the Atlantic Ocean: Indicators of ocean-atmosphere water fluxes and oceanic mixing processes

    NASA Astrophysics Data System (ADS)

    Benetti, M.; Reverdin, G.; Aloisi, G.; Sveinbjörnsdóttir, Á.

    2017-06-01

    The surface ocean hydrological cycle is explored based on ˜300 new δ18O and δD measurements from surface waters of the Atlantic Ocean and the Mediterranean Sea over the period 2010-2016. Our approach combines these surface observations with salinity (S) and stable isotope measurements of atmospheric water vapor. The distinct regional S-δ distributions are used to identify different surface water masses and their horizontal advection. Moreover, based on assumptions on the δ-S characteristics of seawater sources and the isotope composition of the evaporative (δe) and meteoric water (δMW) fluxes, the δ-S distribution is used to indicate the relative importance of evaporation (E) and meteoric water inputs (MW). Here δe is estimated from the Craig and Gordon's equation using 120 days of measurements of the ambient air above the Atlantic Ocean collected during three cruises. To provide quantitative estimates of the E:MW ratio, we use the box model from Craig and Gordon (1965). This identifies the subtropical gyre as a region where E:MW ˜2 and the tropical ocean as a region were MW:E ˜2. Finally, we show that the δ18O-δD distribution is better represented by a linear fit than the δ-S relationship, even in basins governed by different hydrological processes. We interpret the δ18O-δD distribution considering the kinetic fractionation processes associated with evaporation. In the tropical region where MW exceeds E, the δ18O-δD distribution identifies the MW inputs from their kinetic signature, whereas in regions where E exceeds MW, the δ18O-δD distribution traces the humidity at the sea surface.

  8. INITIATION AND ERUPTION PROCESS OF MAGNETIC FLUX ROPE FROM SOLAR ACTIVE REGION NOAA 11719 TO EARTH-DIRECTED CME

    SciTech Connect

    Vemareddy, P.; Zhang, J.

    2014-12-20

    An eruption event launched from the solar active region (AR) NOAA 11719 is investigated based on coronal EUV observations and photospheric magnetic field measurements obtained from the Solar Dynamic Observatory. The AR consists of a filament channel originating from a major sunspot and its south section is associated with an inverse-S sigmoidal system as observed in Atmospheric Imaging Assembly passbands. We regard the sigmoid as the main body of the flux rope (FR). There also exists a twisted flux bundle crossing over this FR. This overlying flux bundle transforms in shape similar to kink-rise evolution, which corresponds with the rise motion of the FR. The emission measure and temperature along the FR exhibits an increasing trend with its rising motion, indicating reconnection in the thinning current sheet underneath the FR. Net magnetic flux of the AR, evaluated at north and south polarities, showed decreasing behavior whereas the net current in these fluxes exhibits an increasing trend. Because the negative (positive) flux has a dominant positive (negative) current, the chirality of AR flux system is likely negative (left handed) in order to be consistent with the chirality of inverse S-sigmoidal FR. This analysis of magnetic fields of the source AR suggests that the cancelling fluxes are prime factors of the monotonous twisting of the FR system, reaching to a critical state to trigger kink instability and rise motion. This rise motion may have led to the onset of the torus instability, resulting in an Earth-directed coronal mass ejection, and the progressive reconnection in the thinning current sheet beneath the rising FR led to the M6.5 flare.

  9. Identification of Micro-scale Anthropogenic CO2, heat and moisture sources - Processing eddy covariance fluxes for a dense urban environment

    NASA Astrophysics Data System (ADS)

    Kotthaus, Simone; Grimmond, C. S. B.

    2012-09-01

    Anthropogenic emissions of heat and exhaust gases play an important role in the atmospheric boundary layer, altering air quality, greenhouse gas concentrations and the transport of heat and moisture at various scales. This is particularly evident in urban areas where emission sources are integrated in the highly heterogeneous urban canopy layer and directly linked to human activities which exhibit significant temporal variability. It is common practice to use eddy covariance observations to estimate turbulent surface fluxes of latent heat, sensible heat and carbon dioxide, which can be attributed to a local scale source area. This study provides a method to assess the influence of micro-scale anthropogenic emissions on heat, moisture and carbon dioxide exchange in a highly urbanized environment for two sites in central London, UK. A new algorithm for the Identification of Micro-scale Anthropogenic Sources (IMAS) is presented, with two aims. Firstly, IMAS filters out the influence of micro-scale emissions and allows for the analysis of the turbulent fluxes representative of the local scale source area. Secondly, it is used to give a first order estimate of anthropogenic heat flux and carbon dioxide flux representative of the building scale. The algorithm is evaluated using directional and temporal analysis. The algorithm is then used at a second site which was not incorporated in its development. The spatial and temporal local scale patterns, as well as micro-scale fluxes, appear physically reasonable and can be incorporated in the analysis of long-term eddy covariance measurements at the sites in central London. In addition to the new IMAS-technique, further steps in quality control and quality assurance used for the flux processing are presented. The methods and results have implications for urban flux measurements in dense urbanised settings with significant sources of heat and greenhouse gases.

  10. The effect of linear velocity and flux on performance of ceramic graded permeability membranes when processing skim milk at 50°C.

    PubMed

    Zulewska, Justyna; Barbano, David M

    2014-05-01

    Raw milk (about 500 kg) was cold (4°C) separated and then the skim milk was pasteurized at 72°C and a holding time of 16s. The milk was cooled to 4°C and stored at ≤ 4°C until processing. The skim milk was microfiltered using a pilot-scale ceramic graded permeability (GP) microfilter system equipped with 0.1-µm nominal pore diameter ceramic Membralox membranes. First, about 155 kg of pasteurized skim milk was flushed through the system to push the water out of the system. Then, additional pasteurized skim milk (about 320 kg) was microfiltered (stage 1) in a continuous feed-and-bleed 3× process using the same membranes. The retentate from stage 1 was diluted with pasteurized reverse osmosis water in a 1:2 ratio and microfiltered (stage 2) with a GP system. This was repeated 3 times, with total of 3 stages in the process (stage 1 = microfiltration; stages 2 and 3 = diafiltration). The results from first 3 stages of the experiment were compared with previous data when processing skim milk at 50°C using ceramic uniform transmembrane pressure (UTP) membranes. Microfiltration of skim milk using ceramic UTP and GP membranes resulted in similar final retentate in terms of serum proteins (SP) removed. The SP removal rate (expressed by kilogram of SP removed per meter-squared of membrane area) was higher for GP membranes for each stage compared with UTP membranes. A higher passage of SP and SP removal rate for GP than UTP membranes was achieved by using a higher cross-flow velocity when processing skim milk. Increasing flux in subsequent stages did not affect membrane permeability and fouling. We operated under conditions that produced partial membrane fouling, due to using a flux that was less than limiting flux but higher than critical flux. Because the critical flux is a function of the cross-flow velocity, the difference in critical flux between UTP and GP membranes resulted only from operating under different cross-flow velocities (6.6 vs 7.12 for UTP and GP

  11. A process-based 222radon flux map for Europe and its comparison to long-term observations

    NASA Astrophysics Data System (ADS)

    Karstens, U.; Schwingshackl, C.; Schmithüsen, D.; Levin, I.

    2015-11-01

    Detailed 222radon (222Rn) flux maps are an essential pre-requisite for the use of radon in atmospheric transport studies. Here we present a high-resolution 222Rn flux map for Europe, based on a parameterization of 222Rn production and transport in the soil. The 222Rn exhalation rate is parameterized based on soil properties, uranium content, and modelled soil moisture from two different land-surface reanalysis data sets. Spatial variations in exhalation rates are primarily determined by the uranium content of the soil, but also influenced by soil texture and local water-table depth. Temporal variations are related to soil moisture variations as the molecular diffusion in the unsaturated soil zone depends on available air-filled pore space. The implemented diffusion parameterization was tested against campaign-based 222Rn soil profile measurements. Monthly 222Rn exhalation rates from European soils were calculated with a nominal spatial resolution of 0.083° × 0.083° and compared to long-term direct measurements of 222Rn exhalation rates in different areas of Europe. The two realizations of the 222Rn flux map, based on the different soil moisture data sets, both realistically reproduce the observed seasonality in the fluxes but yield considerable differences for absolute flux values. The mean 222Rn flux from soils in Europe is estimated to be 10 mBq m-2 s-1 (ERA-Interim/Land soil moisture) or 15 mBq m-2 s-1 (GLDAS (Global Land Data Assimilation System) Noah soil moisture) for the period 2006-2010. The corresponding seasonal variations with low fluxes in winter and high fluxes in summer range in the two realizations from ca. 7 to ca. 14 mBq m-2 s-1 and from ca. 11 to ca. 20 mBq m-2 s-1, respectively. These systematic differences highlight the importance of realistic soil moisture data for a reliable estimation of 222Rn exhalation rates. Comparison with observations suggests that the flux estimates based on the GLDAS Noah soil moisture model on average better

  12. Investigating the Role of Mesoscale Processes and Ice Dynamics in Carbon and Iron Fluxes in a Changing Amundsen Sea (INSPIRE)

    NASA Astrophysics Data System (ADS)

    Mu, L.; Yager, P. L.; St-Laurent, P.; Dinniman, M.; Oliver, H.; Stammerjohn, S. E.; Sherrell, R. M.; Hofmann, E. E.

    2016-02-01

    The Amundsen Sea, in the remote S. Pacific sector of the Southern Ocean, is one of the least studied Antarctic continental shelf regions. It shares key processes with other W. Antarctic shelf regions, such as formation of a recurring polynya, important ice shelf-ocean linkages, and high biological production, but has unique characteristics as well. The Amundsen Sea Polynya (ASP), features 1) large intrusions of modified Circumpolar Deep Water (mCDW) onto the continental shelf, 2) the fastest melting ice sheets in Antarctica, 3) the most productive coastal polynya and a large atmospheric CO2 sink, and 4) very rapid declines in seasonal sea ice. Here we report on a new effort for this region that unites independent, state-of-the-art modeling and field data synthesis efforts to address important unanswered questions about carbon fluxes, iron supply, and climate sensitivity in this key region of the coastal Antarctic. Following on the heels of a highly successful oceanographic field program, the Amundsen Sea Polynya International Research Expedition (ASPIRE; which sampled the ASP with high spatial resolution during the onset of the enormous phytoplankton bloom of 2011), the INSPIRE project is a collaboration between ASPIRE senior scientists and an experienced team of physical and biogeochemical modelers who can use ASPIRE field data to both validate and extend the capabilities of an existing Regional Ocean Modeling System (ROMS) for the Amundsen Sea. This new effort will add biology and biogeochemistry (including features potentially unique to the ASP region) to an existing physical model, allowing us to address key questions about bloom mechanisms and climate sensitivity that could not be answered by field campaigns or modeling alone. This project is expected to generate new insights and hypotheses that will ultimately guide sampling strategies of future field efforts investigating how present and future climate change impacts this important region of the world.

  13. Effects of frontal processes on marine aggregate dynamics and fluxes: An interannual study in a permanent geostrophic front (NW Mediterranean)

    NASA Astrophysics Data System (ADS)

    Stemmann, Lars; Prieur, Louis; Legendre, Louis; Taupier-Letage, Isabelle; Picheral, Marc; Guidi, Lionel; Gorsky, Gabriel

    hypothesize that the impact of frontal processes on particle and aggregate dynamics might be generalized. Since fronts exist in many other coastal regions, the vertical fluxes at sub-mesoscale may have consequences for the transport of continental particles to the ocean's interior.

  14. The effect of recycling flux on the performance and microbial community composition of a biofilm hydrolytic-aerobic recycling process treating anthraquinone reactive dyes.

    PubMed

    Wang, Yuanpeng; Zhu, Kang; Zheng, Yanmei; Wang, Haitao; Dong, Guowen; He, Ning; Li, Qingbiao

    2011-11-25

    Synthetic dyes are extensively used and rarely degraded. Microbial decomposition is a cost-effective alternative to chemical and physical degradation processes. In this study, the decomposition of simulated anthraquinone reactive dye (Reactive Blue 19; RB19) at a concentration of 400-mg/L in wastewater by a biofilm hydrolytic-aerobic recycling system was investigated over a range of recycling fluxes. The 16S rDNA-based fingerprint technique was also used to investigate the microbial community composition. Results indicated that the recycling flux was a key factor that influenced RB19 degradation. The RB19 and COD removal efficiency could reach values as high as 82.1% and 95.4%, respectively, with a recycling flux of 10 mL/min. Molecular analysis indicated that some strains were similar to Aeromonadales, Tolumonas, and some uncultured clones were assumed to be potential decolorization bacteria. However, the microbial community composition in the reactors remained relatively stable at different recycling fluxes. This study provided insights on the decolorization capability and the population dynamics during the decolorization process of anthraquinone dye wastewater.

  15. Joint assimilation of eddy covariance flux measurements and FAPAR products over temperate forests within a process-oriented biosphere model

    NASA Astrophysics Data System (ADS)

    Bacour, C.; Peylin, P.; MacBean, N.; Rayner, P. J.; Delage, F.; Chevallier, F.; Weiss, M.; Demarty, J.; Santaren, D.; Baret, F.; Berveiller, D.; Dufrêne, E.; Prunet, P.

    2015-09-01

    We investigate the benefits of assimilating in situ and satellite data of the fraction of photosynthetically active radiation (FAPAR) relative to eddy covariance flux measurements for the optimization of parameters of the ORCHIDEE (Organizing Carbon and Hydrology in Dynamic Ecosystem) biosphere model. We focus on model parameters related to carbon fixation, respiration, and phenology. The study relies on two sites—Fontainebleau (deciduous broadleaf forest) and Puechabon (Mediterranean broadleaf evergreen forest)—where measurements of net carbon exchange (NEE) and latent heat (LE) fluxes are available at the same time as FAPAR products derived from ground measurements or derived from spaceborne observations at high (SPOT (Satellite Pour l'Observation de la Terre)) and medium (MERIS (MEdium Resolution Imaging Spectrometer)) spatial resolutions. We compare the different FAPAR products, analyze their consistency with the in situ fluxes, and then evaluate the potential benefits of jointly assimilating flux and FAPAR data. The assimilation of FAPAR data leads to a degradation of the model-data agreement with respect to NEE at the two sites. It is caused by the change in leaf area required to fit the magnitude of the various FAPAR products. Assimilating daily NEE and LE fluxes, however, has a marginal impact on the simulated FAPAR. The results suggest that the main advantage of including FAPAR data is the ability to constrain the timing of leaf onset and senescence for deciduous ecosystems, which is best achieved by normalizing FAPAR time series. The joint assimilation of flux and FAPAR data leads to a model-data improvement across all variables similar to when each data stream is used independently, corresponding, however, to different and likely improved parameter values.

  16. Volatile organic compound flux from manure of cattle fed diets differing in grain processing method and co-product inclusion

    NASA Astrophysics Data System (ADS)

    Hales, Kristin; Parker, David B.; Cole, N. Andy

    2015-01-01

    Odor emissions from livestock production have become increasingly important in the past decade. Odors derived from animal feeding operations are caused by odorous VOC emitted from the mixture of feces and urine, as well as feed and silage which may be experiencing microbial fermentation. Distillers grains are a by-product of corn grain fermentation used to produce fuel ethanol, and this industry has grown rapidly throughout the U.S. in past years. Therefore, the use of wet distillers grains with solubles (WDGS) in feedlot cattle diets has also increased. The objective of this research was to determine specific VOC emissions from feces and urine or a mixture of both, from cattle fed steam flaked or dry-rolled corn (DRC)-based diets containing either 0% or 30% WDGS. Flux of dimethyl trisulfide was greater from feces of cattle fed DRC than steam-flaked corn (SFC) diets. No other differences in flux from feces were detected across dietary treatments for phenol, 4-methylphenol, indole, skatole, dimethyl disulfide, and flux of volatile fatty acids (VFA) such as acetic, propionic, isobutyric, butyric, isovaleric, and valeric acids (P > 0.15). Flux of skatole, acetic acid, and valeric acid from urine was greater for cattle fed SFC than DRC diets (P < 0.05). Moreover, dimethyl disulfide flux was greater for cattle fed DRC vs. SFC diets (P = 0.05). When evaluating WDGS inclusion in the diet, flux of acetic acid and heptanoic acid from urine was greater when cattle were fed diets containing 0% WDGS than 30% WDGS (P < 0.05). When combining urine and feces in the ratio in which they were excreted from the animal, flux of propionic acid was greater when cattle were fed DRC vs. SFC diets (P = 0.05). Based on these results, the majority of the VOC, VFA, and odor flux from cattle feeding operations is from the urine. Therefore, dietary strategies to reduce odor from cattle feeding facilities should primarily focus on reducing excretion of odorous compounds in the urine.

  17. The Net Carbon Flux due to Deforestation and Forest Re-Growth in the Brazilian Amazon: Analysis using a Process-Based Model

    NASA Technical Reports Server (NTRS)

    Hirsch, A. I.; Little, W. S.; Houghton, R. A.; Scott, N. A.; White, J. D.

    2004-01-01

    We developed a process-based model of forest growth, carbon cycling, and land cover dynamics named CARLUC (for CARbon and Land Use Change) to estimate the size of terrestrial carbon pools in terra firme (non-flooded) forests across the Brazilian Legal Amazon and the net flux of carbon resulting from forest disturbance and forest recovery from disturbance. Our goal in building the model was to construct a relatively simple ecosystem model that would respond to soil and climatic heterogeneity that allows us to study of the impact of Amazonian deforestation, selective logging, and accidental fire on the global carbon cycle. This paper focuses on the net flux caused by deforestation and forest re-growth over the period from 1970-1998. We calculate that the net flux to the atmosphere during this period reached a maximum of approx. 0.35 PgC/yr (1PgC = 1 x 10(exp I5) gC) in 1990, with a cumulative release of approx. 7 PgC from 1970- 1998. The net flux is higher than predicted by an earlier study by a total of 1 PgC over the period 1989-1 998 mainly because CARLUC predicts relatively high mature forest carbon storage compared to the datasets used in the earlier study. Incorporating the dynamics of litter and soil carbon pools into the model increases the cumulative net flux by approx. 1 PgC from 1970-1998, while different assumptions about land cover dynamics only caused small changes. The uncertainty of the net flux, calculated with a Monte-Carlo approach, is roughly 35% of the mean value (1 SD).

  18. The Net Carbon Flux due to Deforestation and Forest Re-Growth in the Brazilian Amazon: Analysis using a Process-Based Model

    NASA Technical Reports Server (NTRS)

    Hirsch, A. I.; Little, W. S.; Houghton, R. A.; Scott, N. A.; White, J. D.

    2004-01-01

    We developed a process-based model of forest growth, carbon cycling, and land cover dynamics named CARLUC (for CARbon and Land Use Change) to estimate the size of terrestrial carbon pools in terra firme (non-flooded) forests across the Brazilian Legal Amazon and the net flux of carbon resulting from forest disturbance and forest recovery from disturbance. Our goal in building the model was to construct a relatively simple ecosystem model that would respond to soil and climatic heterogeneity that allows us to study of the impact of Amazonian deforestation, selective logging, and accidental fire on the global carbon cycle. This paper focuses on the net flux caused by deforestation and forest re-growth over the period from 1970-1998. We calculate that the net flux to the atmosphere during this period reached a maximum of approx. 0.35 PgC/yr (1PgC = 1 x 10(exp I5) gC) in 1990, with a cumulative release of approx. 7 PgC from 1970- 1998. The net flux is higher than predicted by an earlier study by a total of 1 PgC over the period 1989-1 998 mainly because CARLUC predicts relatively high mature forest carbon storage compared to the datasets used in the earlier study. Incorporating the dynamics of litter and soil carbon pools into the model increases the cumulative net flux by approx. 1 PgC from 1970-1998, while different assumptions about land cover dynamics only caused small changes. The uncertainty of the net flux, calculated with a Monte-Carlo approach, is roughly 35% of the mean value (1 SD).

  19. Enhanced Ahead-of-Eye TC Coastal Ocean Cooling Processes and their Impact on Air-Sea Heat Fluxes and Storm Intensity

    NASA Astrophysics Data System (ADS)

    Seroka, G. N.; Miles, T. N.; Glenn, S. M.; Xu, Y.; Forney, R.; Roarty, H.; Schofield, O.; Kohut, J. T.

    2016-02-01

    Any landfalling tropical cyclone (TC) must first traverse the coastal ocean. TC research, however, has focused over the deep ocean, where TCs typically spend the vast majority of their lifetime. This paper will show that the ocean's response to TCs can be different between deep and shallow water, and that the additional shallow water processes must be included in coupled models for accurate air-sea flux treatment and TC intensity prediction. The authors will present newly observed coastal ocean processes that occurred in response to Hurricane Irene (2011), due to the presence of a coastline, an ocean bottom, and highly stratified conditions. These newly observed processes led to enhanced ahead-of-eye SST cooling that significantly impacted air-sea heat fluxes and Irene's operationally over-predicted storm intensity. Using semi-idealized modeling, we find that in shallow water in Irene, only 6% of cooling due to air-sea heat fluxes, 17% of cooling due to 1D vertical mixing, and 50% of cooling due to all processes (1D mixing, air-sea heat fluxes, upwelling, and advection) occurred ahead-of-eye—consistent with previous studies. Observations from an underwater glider and buoys, however, indicated 75-100% of total SST cooling over the continental shelf was ahead-of-eye. Thus, the new coastal ocean cooling processes found in this study must occur almost completely ahead-of-eye. We show that Irene's intense cooling was not captured by basic satellite SST products and coupled ocean-atmosphere hurricane models, and that including the cooling in WRF modeling mitigated the high bias in model predictions. Finally, we provide evidence that this SST cooling—not track, wind shear, or dry air intrusion—was the key missing contribution to Irene's decay just prior to NJ landfall. Ongoing work is exploring the use of coupled WRF-ROMS modeling in the coastal zone.

  20. Sea surface carbon dioxide at the Georgia time series site (2006-2007): Air-sea flux and controlling processes

    NASA Astrophysics Data System (ADS)

    Xue, Liang; Cai, Wei-Jun; Hu, Xinping; Sabine, Christopher; Jones, Stacy; Sutton, Adrienne J.; Jiang, Li-Qing; Reimer, Janet J.

    2016-01-01

    Carbon dioxide partial pressure (pCO2) in surface seawater was continuously recorded every three hours from 18 July 2006 through 31 October 2007 using a moored autonomous pCO2 (MAPCO2) system deployed on the Gray's Reef buoy off the coast of Georgia, USA. Surface water pCO2 (average 373 ± 52 μatm) showed a clear seasonal pattern, undersaturated with respect to the atmosphere in cold months and generally oversaturated in warm months. High temporal resolution observations revealed important events not captured in previous ship-based observations, such as sporadically occurring biological CO2 uptake during April-June 2007. In addition to a qualitative analysis of the primary drivers of pCO2 variability based on property regressions, we quantified contributions of temperature, air-sea exchange, mixing, and biological processes to monthly pCO2 variations using a 1-D mass budget model. Although temperature played a dominant role in the annual cycle of pCO2, river inputs especially in the wet season, biological respiration in peak summer, and biological production during April-June 2007 also substantially influenced seawater pCO2. Furthermore, sea surface pCO2 was higher in September-October 2007 than in September-October 2006, associated with increased river inputs in fall 2007. On an annual basis this site was a moderate atmospheric CO2 sink, and was autotrophic as revealed by monthly mean net community production (NCP) in the mixed layer. If the sporadic short productive events during April-May 2007 were missed by the sampling schedule, one would conclude erroneously that the site is heterotrophic. While previous ship-based pCO2 data collected around this buoy site agreed with the buoy CO2 data on seasonal scales, high resolution buoy observations revealed that the cruise-based surveys undersampled temporal variability in coastal waters, which could greatly bias the estimates of air-sea CO2 fluxes or annual NCP, and even produce contradictory results.

  1. Flux Pinning and Properties of Solid-Solution (Y,Nd)1+XBa2-x Cu3O7-delta Superconductors Processed in Air and Partial Oxygen Atmospheres (Preprint)

    DTIC Science & Technology

    2004-04-01

    AFRL-PR-WP-TP-2006-204 FLUX PINNING AND PROPERTIES OF SOLID - SOLUTION (Y,Nd)1+XBa2-xCu3O7-δ SUPERCONDUCTORS PROCESSED IN AIR AND PARTIAL...SUBTITLE FLUX PINNING AND PROPERTIES OF SOLID - SOLUTION (Y,Nd)i+),(Ba,_„ Cu3 07_5 SUPERCONDUCTORS PROCESSED IN AIR AND PARTIAL OXYGEN ATMOSPHERES (PREPRINT

  2. Can simulations of flux exchanges between the land surface and the atmosphere be improved by a more complex description of soil and plant processes?

    NASA Astrophysics Data System (ADS)

    Klein, Christian

    2013-04-01

    Can simulations of flux exchanges between the land surface and the atmosphere be improved by a more complex description of soil and plant processes? Christian Klein, Christian Biernath, Peter Hoffmann and Eckart Priesack Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Soil Ecology, Oberschleissheim, Germany christian.klein@helmholtz-muenchen.de, ++ 49 89 3187 3015 Recent studies show, that uncertainties in regional and global climate simulations are partly caused by inadequate descriptions of soil-plant-atmosphere. Therefore, we coupled the soil-plant model system Expert-N to the regional climate and weather forecast model WRF. Key features of the Expert-N model system are the simulation of water flow, heat transfer and solute transport in soils and the transpiration of grassland and forest stands. Particularly relevant for the improvement of regional weather forecast are simulations of the feedback between the land surface and atmosphere, which influences surface temperature, surface pressure and precipitation. The WRF model was modified to optionally select either the land surface model Expert-N or NOAH to simulate the exchange of water and energy fluxes between the land surface and the atmosphere for every single grid cell within the simulation domain. Where the standard land surface model NOAH interpolates monthly LAI input values to simulate interactions between plant and atmosphere Expert-N simulates a dynamic plant growth with respect to water and nutrient availability in the soil. In this way Expert-N can be applied to study the effect of dynamic vegetation growth simulation on regional climate simulation results. For model testing Expert-N was used with two different soil parameterizations. The first parametrization used the USGS soil texture classification and simplifies the soil profile to one horizon (similar to the NOAH model). The second parameterization is based on the German soil texture classification

  3. Measurement of local mass flux in a circulating fluidized bed using a Phase Doppler Particle Analyzer: A new post-processing data algorithm

    SciTech Connect

    Moortel, T. van den; Santini, R.; Tadrist, L.

    1996-12-31

    This study focused on the measurement of solid mass flux in the riser of a CFB cold pilot. The investigations were carried out using a Phase Doppler Particle Analyzer (PDPA). Inconsistencies in PDPA results were observed when investigating flows with high particle densities. It appears that the performance of the measuring technique was affected by the optical thickness of the measured medium, thus producing substantial overestimation of the global solid phase quantity (e.g., solid mass flux). To determine the origin of these inconsistencies, the measuring system was subjected to complete recalibration. It was found that in flows with high particle densities, noisy Doppler signals tend to be split into several parts by the burst detector system, thus producing inconsistencies in the number of particles counted. The parameters associated with the splitting events were analyzed, and a post-processing algorithm was developed to limit PDPA measuring errors. The aim of the post-processing algorithm was to rebuild the data and to recover the original measurements. The reconstitution process was applied to solid mass flux measurements in a CFB cold pilot.

  4. Application of Satellite Altimeter Data to Studies of Ocean Surface Heat Flux and Upper Ocean Thermal Processes

    NASA Technical Reports Server (NTRS)

    Yan, Xiao-Hal

    2003-01-01

    This is a one-year cost extension of previous grant but carrying a new award number for the administrative purpose. Supported by this one-year extension, the following research has continued and obtained significant results. 20 papers have been published (9) or submitted (11) to scientific journals in this one-year period. A brief summary of scientific results on: 1. A new method for estimation of the sensible heat flux using satellite vector winds, 2. Pacific warm pool excitation, earth rotation and El Nino Southern Oscillations, 3. A new study of the Mediterranean outflow and Meddies at 400-meter isopycnal surface using multi-sensor data, 4. Response of the coastal ocean to extremely high wind, and 5. Role of wind on the estimation of heat flux using satellite data, are provided below as examples of our many research results conducted in the last year,

  5. Avoiding the Enumeration of Infeasible Elementary Flux Modes by Including Transcriptional Regulatory Rules in the Enumeration Process Saves Computational Costs.

    PubMed

    Jungreuthmayer, Christian; Ruckerbauer, David E; Gerstl, Matthias P; Hanscho, Michael; Zanghellini, Jürgen

    2015-01-01

    Despite the significant progress made in recent years, the computation of the complete set of elementary flux modes of large or even genome-scale metabolic networks is still impossible. We introduce a novel approach to speed up the calculation of elementary flux modes by including transcriptional regulatory information into the analysis of metabolic networks. Taking into account gene regulation dramatically reduces the solution space and allows the presented algorithm to constantly eliminate biologically infeasible modes at an early stage of the computation procedure. Thereby, computational costs, such as runtime, memory usage, and disk space, are extremely reduced. Moreover, we show that the application of transcriptional rules identifies non-trivial system-wide effects on metabolism. Using the presented algorithm pushes the size of metabolic networks that can be studied by elementary flux modes to new and much higher limits without the loss of predictive quality. This makes unbiased, system-wide predictions in large scale metabolic networks possible without resorting to any optimization principle.

  6. Avoiding the Enumeration of Infeasible Elementary Flux Modes by Including Transcriptional Regulatory Rules in the Enumeration Process Saves Computational Costs

    PubMed Central

    Jungreuthmayer, Christian; Ruckerbauer, David E.; Gerstl, Matthias P.; Hanscho, Michael; Zanghellini, Jürgen

    2015-01-01

    Despite the significant progress made in recent years, the computation of the complete set of elementary flux modes of large or even genome-scale metabolic networks is still impossible. We introduce a novel approach to speed up the calculation of elementary flux modes by including transcriptional regulatory information into the analysis of metabolic networks. Taking into account gene regulation dramatically reduces the solution space and allows the presented algorithm to constantly eliminate biologically infeasible modes at an early stage of the computation procedure. Thereby, computational costs, such as runtime, memory usage, and disk space, are extremely reduced. Moreover, we show that the application of transcriptional rules identifies non-trivial system-wide effects on metabolism. Using the presented algorithm pushes the size of metabolic networks that can be studied by elementary flux modes to new and much higher limits without the loss of predictive quality. This makes unbiased, system-wide predictions in large scale metabolic networks possible without resorting to any optimization principle. PMID:26091045

  7. Quantification of vehicle mixture effects on in vitro transdermal chemical flux using a random process diffusion model.

    PubMed

    Chittenden, Jason T; Riviere, Jim E

    2015-11-10

    The effect of vehicle mixtures on transdermal permeation has been studied using transient flux profiles from porcine skin flow through diffusion cells. Such data characteristically exhibit a large amount of variability between treatments (vehicle and penetrant combinations) as well as noise within treatments. A novel mathematical model has been used that describes longitudinal variation as a time varying diffusivity. Between treatment variability was described by a mixed effects model. A quantitative structure property relationship (QSPR) was developed to describe the effects of the penetrant and vehicle mixture properties on the mean diffusivity and partition coefficient in the membrane. The relationship included terms for the logP and molecular weight of the penetrant and the refractive index of the vehicle mixture with R(2)>0.95 for K and >0.9 for partition coefficient (as K⋅D). This analysis improved on previous work, finding a more parsimonious model with higher predictability, while still identifying the mixture refractive index as a key descriptor in predicting vehicle effects. The concordance with established and expected relationships lends confidence to this new methodology for evaluating transient, finite dose, transdermal flux data collected using traditional experimental methods.

  8. Data Processing for Making Eddy Covariance Methane Flux Measurement with Laser-Based CH4 Gas Analyzer

    NASA Astrophysics Data System (ADS)

    Xu, L.; Burba, G. G.; McDermitt, D. K.

    2014-12-01

    First we will discuss the fundamental difference in the theory of operation between NDIR (Non-dispersive Infrared) based and laser-based gas analyzer. Taking LI-7500A (an open-path CO2 gas analyzer) as an example for a NDIR-based gas analyzer, the wavelength of the infrared radiation for making the gas concentration measurement is from 4.20 to 4.34 μm which includes many absorption lines. While the LI-7700 (an open-path methane gas analyzer) is a laser-based analyzer. It uses a single absorption line at 1.651 μm to make the methane concentration measurement. It employs a Herriott cell configuration with mirror spacing of 0.47 m and a total optical path length of 28.2 m. Methane density is measured using wavelength modulation spectroscopy. As a result, the measured methane density is affected by sensible heat and latent heat flux, and also by spectroscopic effects (e.g., line broadening) due to changes in temperature and water vapor content. Here we propose a new procedure to account for spectroscopic effects. Since both density effects and spectroscopic effects are predictable with the ideal gas law and HITRAN respectively, the spectroscopic effect can be incorporated into WPL correction. In this paper, we will discuss the details of this new procedure to account for the spectroscopic effect in the methane flux calculation. Field experiment results will be presented to show the accuracy of this new procedure.

  9. A process-based model to estimate gas exchange and monoterpene emission rates in the mediterranean maquis - comparisons between modelled and measured fluxes at different scales

    NASA Astrophysics Data System (ADS)

    Vitale, M.; Matteucci, G.; Fares, S.; Davison, B.

    2009-02-01

    This paper concerns the application of a process-based model (MOCA, Modelling of Carbon Assessment) as an useful tool for estimating gas exchange, and integrating the empirical algorithms for calculation of monoterpene fluxes, in a Mediterranean maquis of central Italy (Castelporziano, Rome). Simulations were carried out for a range of hypothetical but realistic canopies of the evergreen Quercus ilex (holm oak), Arbutus unedo (strawberry tree) and Phillyrea latifolia. More, the dependence on total leaf area and leaf distribution of monoterpene fluxes at the canopy scale has been considered in the algorithms. Simulation of the gas exchange rates showed higher values for P. latifolia and A. unedo (2.39±0.30 and 3.12±0.27 gC m-2 d-1, respectively) with respect to Q. ilex (1.67±0.08 gC m-2 d-1) in the measuring campaign (May-June). Comparisons of the average Gross Primary Production (GPP) values with those measured by eddy covariance were well in accordance (7.98±0.20 and 6.00±1.46 gC m-2 d-1, respectively, in May-June), although some differences (of about 30%) were evident in a point-to-point comparison. These differences could be explained by considering the non uniformity of the measuring site where diurnal winds blown S-SW direction affecting thus calculations of CO2 and water fluxes. The introduction of some structural parameters in the algorithms for monoterpene calculation allowed to simulate monoterpene emission rates and fluxes which were in accord to those measured (6.50±2.25 vs. 9.39±4.5μg g-1DW h-1 for Q. ilex, and 0.63±0.207μg g-1DW h-1 vs. 0.98±0.30μg g-1DW h-1 for P. latifolia). Some constraints of the MOCA model are discussed, but it is demonstrated to be an useful tool to simulate physiological processes and BVOC fluxes in a very complicated plant distributions and environmental conditions, and necessitating also of a low number of input data.

  10. Measurement of neutrino flux from the primary proton-proton fusion process in the Sun with Borexino detector

    NASA Astrophysics Data System (ADS)

    Smirnov, O. Yu.; Agostini, M.; Appel, S.; Bellini, G.; Benziger, J.; Bick, D.; Bonfini, G.; Bravo, D.; Caccianiga, B.; Calaprice, F.; Caminata, A.; Cavalcante, P.; Chepurnov, A.; Choi, K.; D'Angelo, D.; Davini, S.; Derbin, A.; Di Noto, L.; Drachnev, I.; Empl, A.; Etenko, A.; Fomenko, K.; Franco, D.; Gabriele, F.; Galbiati, C.; Ghiano, C.; Giammarchi, M.; Goeger-Neff, M.; Goretti, A.; Gromov, M.; Hagner, C.; Hungerford, E.; Ianni, Aldo; Ianni, Andrea; Jedrzejczak, K.; Kaiser, M.; Kobychev, V.; Korablev, D.; Korga, G.; Kryn, D.; Laubenstein, M.; Lehnert, B.; Litvinovich, E.; Lombardi, F.; Lombardi, P.; Ludhova, L.; Lukyanchenko, G.; Machulin, I.; Manecki, S.; Maneschg, W.; Marcocci, S.; Meroni, E.; Meyer, M.; Miramonti, L.; Misiaszek, M.; Mosteiro, P.; Muratova, V.; Neumair, B.; Oberauer, L.; Obolensky, M.; Ortica, F.; Otis, K.; Pagani, L.; Pallavicini, M.; Papp, L.; Perasso, L.; Pocar, A.; Ranucci, G.; Razeto, A.; Re, A.; Romani, A.; Roncin, R.; Rossi, N.; Schönert, S.; Semenov, D.; Simgen, H.; Skorokhvatov, M.; Sotnikov, A.; Sukhotin, S.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Thurn, J.; Toropova, M.; Unzhakov, E.; Vogelaar, R. B.; von Feilitzsch, F.; Wang, H.; Weinz, S.; Winter, J.; Wojcik, M.; Wurm, M.; Yokley, Z.; Zaimidoroga, O.; Zavatarelli, S.; Zuber, K.; Zuzel, G.

    2016-11-01

    Neutrino produced in a chain of nuclear reactions in the Sun starting from the fusion of two protons, for the first time has been detected in a real-time detector in spectrometric mode. The unique properties of the Borexino detector provided an oppurtunity to disentangle pp-neutrino spectrum from the background components. A comparison of the total neutrino flux from the Sun with Solar luminosity in photons provides a test of the stability of the Sun on the 105 years time scale, and sets a strong limit on the power production in the unknown energy sources in the Sun of no more than 4% of the total energy production at 90% C.L.

  11. Modeling plankton ecosystem functioning and nitrogen fluxes in the oligotrophic waters of the Beaufort Sea, Arctic Ocean: a focus on light-driven processes

    NASA Astrophysics Data System (ADS)

    Le Fouest, V.; Zakardjian, B.; Xie, H.; Raimbault, P.; Joux, F.; Babin, M.

    2013-07-01

    The Arctic Ocean (AO) undergoes profound changes of its physical and biotic environments due to climate change. In some areas of the Beaufort Sea, the stronger haline stratification observed in summer alters the plankton ecosystem structure, functioning and productivity, promoting oligotrophy. A one-dimension (1-D) physical-biological coupled model based on the large multiparametric database of the Malina project in the Beaufort Sea was used (i) to infer the plankton ecosystem functioning and related nitrogen fluxes and (ii) to assess the model sensitivity to key light-driven processes involved in nutrient recycling and phytoplankton growth. The coupled model suggested that ammonium photochemically produced from photosensitive dissolved organic nitrogen (i.e., photoammonification process) was a necessary nitrogen source to achieve the observed levels of microbial biomass and production. Photoammonification directly and indirectly (by stimulating the microbial food web activity) contributed to 70% and 18.5% of the 0-10 m and whole water column, respectively, simulated primary production (respectively 66% and 16% for the bacterial production). The model also suggested that variable carbon to chlorophyll ratios were required to simulate the observed herbivorous versus microbial food web competition and realistic nitrogen fluxes in the Beaufort Sea oligotrophic waters. In face of accelerating Arctic warming, more attention should be paid in the future to the mechanistic processes involved in food webs and functional group competition, nutrient recycling and primary production in poorly productive waters of the AO, as they are expected to expand rapidly.

  12. Flux pinning enhancement in melt processed YBa2Cu3O7 - delta through rare-earth ion (Nd, La) substitutions

    NASA Astrophysics Data System (ADS)

    Varanasi, Chakrapani; McGinn, Paul J.; Blackstead, Howard A.; Pulling, David B.

    1995-08-01

    Stoichiometric YBa2Cu3O7-δ (Y123) samples doped with excess Nd2O3 and La2O3 additions were melt processed in air. Because decomposition and reformation of 123 occurs during melt processing, lighter rare-earth ion substitution in 123 takes place. As the lighter rare-earth ion sizes (Nd, La) are comparable to that of Ba2+, in addition to Y ion site substitution, partial substitution into the Ba2+ sites is also anticipated. The Tc and magnetic properties of lighter rare-earth oxide doped samples were analyzed and compared with undoped Y123 to investigate the flux pinning enhancement due to these substitutions. The lighter rare-earth oxide doped, melt processed 123 shows significant improvement in magnetization compared to undoped samples, which is likely due to point defects created by partial substitutions of the lighter rare-earth ions.

  13. Validating soil denitrification models based on laboratory N_{2} and N_{2}O fluxes and underlying processes derived by stable isotope approaches

    NASA Astrophysics Data System (ADS)

    Well, Reinhard; Böttcher, Jürgen; Butterbach-Bahl, Klaus; Dannenmann, Michael; Deppe, Marianna; Dittert, Klaus; Dörsch, Peter; Horn, Marcus; Ippisch, Olaf; Mikutta, Robert; Müller, Carsten; Müller, Christoph; Senbayram, Mehmet; Vogel, Hans-Jörg; Wrage-Mönnig, Nicole

    2016-04-01

    Robust denitrification data suitable to validate soil N2 fluxes in denitrification models are scarce due to methodical limitations and the extreme spatio-temporal heterogeneity of denitrification in soils. Numerical models have become essential tools to predict denitrification at different scales. Model performance could either be tested for total gaseous flux (NO + N2O + N2), individual denitrification products (e.g. N2O and/or NO) or for the effect of denitrification factors (e.g. C-availability, respiration, diffusivity, anaerobic volume, etc.). While there are numerous examples for validating N2O fluxes, there are neither robust field data of N2 fluxes nor sufficiently resolved measurements of control factors used as state variables in the models. To the best of our knowledge there has been only one published validation of modelled soil N2 flux by now, using a laboratory data set to validate an ecosystem model. Hence there is a need for validation data at both, the mesocosm and the field scale including validation of individual denitrification controls. Here we present the concept for collecting model validation data which is be part of the DFG-research unit "Denitrification in Agricultural Soils: Integrated Control and Modelling at Various Scales (DASIM)" starting this year. We will use novel approaches including analysis of stable isotopes, microbial communities, pores structure and organic matter fractions to provide denitrification data sets comprising as much detail on activity and regulation as possible as a basis to validate existing and calibrate new denitrification models that are applied and/or developed by DASIM subprojects. The basic idea is to simulate "field-like" conditions as far as possible in an automated mesocosm system without plants in order to mimic processes in the soil parts not significantly influenced by the rhizosphere (rhizosphere soils are studied by other DASIM projects). Hence, to allow model testing in a wide range of conditions

  14. Quasi-linear versus potential-based formulations of force-flux relations and the GENERIC for irreversible processes: comparisons and examples

    NASA Astrophysics Data System (ADS)

    Hütter, Markus; Svendsen, Bob

    2013-11-01

    An essential part in modeling out-of-equilibrium dynamics is the formulation of irreversible dynamics. In the latter, the major task consists in specifying the relations between thermodynamic forces and fluxes. In the literature, mainly two distinct approaches are used for the specification of force-flux relations. On the one hand, quasi-linear relations are employed, which are based on the physics of transport processes and fluctuation-dissipation theorems (de Groot and Mazur in Non-equilibrium thermodynamics, North Holland, Amsterdam, 1962, Lifshitz and Pitaevskii in Physical kinetics. Volume 10, Landau and Lifshitz series on theoretical physics, Pergamon Press, Oxford, 1981). On the other hand, force-flux relations are also often represented in potential form with the help of a dissipation potential (Šilhavý in The mechanics and thermodynamics of continuous media, Springer, Berlin, 1997). We address the question of how these two approaches are related. The main result of this presentation states that the class of models formulated by quasi-linear relations is larger than what can be described in a potential-based formulation. While the relation between the two methods is shown in general terms, it is demonstrated also with the help of three examples. The finding that quasi-linear force-flux relations are more general than dissipation-based ones also has ramifications for the general equation for non-equilibrium reversible-irreversible coupling (GENERIC: e.g., Grmela and Öttinger in Phys Rev E 56:6620-6632, 6633-6655, 1997, Öttinger in Beyond equilibrium thermodynamics, Wiley Interscience Publishers, Hoboken, 2005). This framework has been formulated and used in two different forms, namely a quasi-linear (Öttinger and Grmela in Phys Rev E 56:6633-6655, 1997, Öttinger in Beyond equilibrium thermodynamics, Wiley Interscience Publishers, Hoboken, 2005) and a dissipation potential-based (Grmela in Adv Chem Eng 39:75-129, 2010, Grmela in J Non-Newton Fluid Mech

  15. A process-level evaluation of the spatiotemporal variability of CO2 fluxes predicted by terrestrial biosphere models using atmospheric data

    NASA Astrophysics Data System (ADS)

    Fang, Y.; Michalak, A. M.; Shiga, Y. P.; Yadav, V.

    2013-12-01

    Terrestrial biosphere models (TBMs) are used to extrapolate local observations and process-level understanding of land-atmosphere carbon exchange to larger regions, and can serve as a predictive tool for examining carbon-climate interactions and global change. Understanding and improving the performance of TBMs is thus crucial to the carbon cycle research community. In this work, we evaluate the spatiotemporal patterns of net ecosystem exchange (NEE) simulated by TBMs using atmospheric CO2 observations and a Geostatistical Inverse Modeling (GIM) framework. The evaluation methodology is based on the ability (or inability) of the spatiotemporal patterns in NEE estimates to explain the variability observed in atmospheric CO2 distribution. More simply, we examine whether the spatiotemporal patterns of NEE simulated by TBMs (including CASA-GFED, ORCHIDEE, VEGAS2 and SiB3) are consistent with the variations observed in the atmosphere. A similar GIM methodology is also applied using environmental variables (such as water availability, temperature, radiation, etc.) rather than TBMs, to explore the environmental processes associated with the variability of NEE, and determine which processes are associated with good/poor performance in TBMs. We find that NEE simulated by TBMs is consistent with that seen by atmospheric measurements more often during growing season months (Apr-Sept) than during the non-growing season. Over Temperate Broadleaf and Mixed Forests, Temperate Coniferous Forests and Temperate Grasslands, Savannas and Shrublands, atmospheric measurements are sufficiently sensitive to NEE fluxes to constrain the evaluation of model performance during the majority of the year (about 7-8 months in a year, mostly in growing season). For these regions and months, at least one of the TBMs is found to be able to reproduce the observed variability, but the most representative TBM varies by region and month. For the remaining months, none of the TBMs are able to reproduce

  16. Estimating the greenhouse gas fluxes of European grasslands with a process-based model: 2. Simulations at the continental level

    NASA Astrophysics Data System (ADS)

    Vuichard, Nicolas; Ciais, Philippe; Viovy, Nicolas; Calanca, Pierluigi; Soussana, Jean-FrançOis

    2007-03-01

    We apply a simulation model in order to quantify the patterns of carbon and nitrogen cycling within European grasslands. We map the fluxes of CO2, N2O and CH4 exchanged with the atmosphere as controlled by climate and management conditions. We distinguish between grazing and cutting practice. Because geo-referenced management information for grasslands does not exist at the scale of Europe, we develop a new and robust set of rules defining some management variables. We then perform realistic simulations in term of N fertilization using a national level data set. The model results at European scale are compared with agricultural statistics (yield, animal stocks), which shows that our very simple management calculation is reasonably realistic. We also compare the simulated seasonal cycle of grassland phenology as calculated by PASIM with remote sensing observations from the EOS-TERRA-MODIS satellite, which shows a good general agreement. Emission factors for soil N2O and grazing animals CH4 emissions are diagnosed from the model runs and shown to be comparable to those of previous experimental surveys. We investigate impact of N fertilization on NPP and C storage potential, N2O emissions by soils and CH4 emissions by ruminants. We conclude that, for different time horizon, CH4 and N2O sources are lower than the potential sink of CO2, on a carbon equivalent basis. This result is independent of fertilization intensity but assumes that the current soil C stocks are below the long-term equilibrium values.

  17. A new system for sodium flux growth of bulk GaN. Part II: in situ investigation of growth processes

    NASA Astrophysics Data System (ADS)

    Von Dollen, Paul; Pimputkar, Siddha; Alreesh, Mohammed Abo; Nakamura, Shuji; Speck, James S.

    2016-12-01

    We report recent results of bulk GaN crystal growth using the sodium flux method in a new crucible-free growth system. We observed a (0001) Ga face (+c-plane) growth rate >50 μm/h for growth at a N2 overpressure of 5 MPa and 860 °C, which is the highest crystal growth rate reported for this technique to date. Omega X-ray rocking curve (ω-XRC) measurements indicated the presence of multiple grains, though full width at half maximum (FWHM) values for individual peaks were <100 arcseconds. Oxygen impurity concentrations as measured by secondary ion mass spectroscopy (SIMS) were >1020 atoms/cm3. By monitoring the nitrogen pressure decay over the course of the crystal growth, we developed an in situ method that correlates gas phase changes with precipitation of GaN from the sodium-gallium melt. Based on this analysis, the growth rate may have actually been as high as 90 μm/h, as it would suggest GaN growth ceased prior to the end of the run. We also observed gas phase behavior identified as likely characteristic of GaN polynucleation.

  18. Evaluation of tunable diode laser absorption spectroscopy for in-process water vapor mass flux measurements during freeze drying.

    PubMed

    Gieseler, Henning; Kessler, William J; Finson, Michael; Davis, Steven J; Mulhall, Phillip A; Bons, Vincent; Debo, David J; Pikal, Michael J

    2007-07-01

    The goal of this work was to demonstrate the use of Tunable Diode Laser Absorption Spectroscopy (TDLAS) as a noninvasive method to continuously measure the water vapor concentration and the vapor flow velocity in the spool connecting a freeze-dryer chamber and condenser. The instantaneous measurements were used to determine the water vapor mass flow rate (g/s). The mass flow determinations provided a continuous measurement of the total amount of water removed. Full load runs of pure water at different pressure and shelf temperature settings and a 5% (w/w) mannitol product run were performed in both laboratory and pilot scale freeze dryers. The ratio of "gravimetric/TDLAS" measurements of water removed was 1.02 +/- 0.06. A theoretical heat transfer model was used to predict the mass flow rate and the model results were compared to both the gravimetric and TDLAS data. Good agreement was also observed in the "gravimetric/TDLAS" ratio for the 5% mannitol runs dried in both freeze dryers. The endpoints of primary and secondary drying for the product runs were clearly identified. Comparison of the velocity and mass flux profiles between the laboratory and pilot dryers indicated a higher restriction to mass flow for the lab scale freeze dryer. Copyright 2007 Wiley-Liss, Inc.

  19. Field Micrometeorological Measurements, Process-Level Studies and Modeling of Methane and Carbon Dioxide Fluxes in a Boreal Wetland Ecosystem

    NASA Technical Reports Server (NTRS)

    Verma, S. B.; Arkebauer, T. J.; Ullman, F. G.; Valentine, D. W.; Parton, W. J.; Schimel, D. S.

    1998-01-01

    The main instrumentation platform consisted of eddy correlation sensors mounted on a scaffold tower at a height of 4.2 m above the peat surface. The sensors were attached to a boom assembly which could be rotated into the prevailing winds. The boom assembly was mounted on a movable sled which, when extended, allowed sensors to be up to 2 m away from the scaffolding structure to minimize flow distortion. When retracted, the sensors could easily be installed, serviced or rotated. An electronic level with linear actuators allowed the sensors to be remotely levelled once the sled was extended. Two instrument arrays were installed. A primary (fast-response) array consisted of a three-dimensional sonic anemometer, a methane sensor (tunable diode laser spectrometer), a carbon dioxide/water vapor sensor, a fine wire thermocouple and a backup one-dimensional sonic anemometer. The secondary array consisted of a one-dimensional sonic anemometer, a fine wire thermocouple and a Krypton hygrometer. Descriptions of these sensors may be found in other reports (e.g., Verma; Suyker and Verma). Slow-response sensors provided supporting measurements including mean air temperature and humidity, mean horizontal windspeed and direction, incoming and reflected solar radiation, net radiation, incoming and reflected photosynthetically active radiation (PAR), soil heat flux, peat temperature, water-table elevation and precipitation. A data acquisition system (consisting of an IBM compatible microcomputer, amplifiers and a 16 bit analog-to-digital converter), housed in a small trailer, was used to record the fast response signals. These signals were low-pass filtered (using 8-pole Butterworth active filters with a 12.5 Hz cutoff frequency) and sampled at 25 Hz. Slow-response signals were sampled every 5 s using a network of CR21X (Campbell Scientific, Inc., Logan Utah) data loggers installed in the fen. All signals were averaged over 30-minute periods (runs).

  20. Major ion chemistry of the Ganga-Brahmaputra river system: Weathering processes and fluxes to the Bay of Bengal

    SciTech Connect

    Sarin, M.M.; Krishnaswami, S.; Dilli, K.; Somayajulu, B.L.K. ); Moore, W.S. )

    1989-05-01

    The Ganga-Brahmaputra, one of the worlds's largest river systems, is first in terms of sediment transport and fourth in terms of water discharge. A detailed and systematic study of the major ion chemistry of these rivers and their tributaries, as well as the clay mineral composition of the bed sediments has been conducted. The chemistry of the highland rivers are all dominated by carbonate weathering; (Ca + Mg) and HCO{sub 3} account for about 80% of the cations and anions. In the lowland rivers, HCO{sub 3} excess over (Ca + Mg) and a relatively high contribution of (Na + K) to the total cations indicate that silicate weathering and/or contributions from alkaline/saline soils and ground waters could be important sources of major ions to these waters. The chemistry of the Ganga and the Yamuna in the lower reaches is by and large dictated by the chemistry of their tributaries and their mixing proportions. The highland rivers weather acidic rocks, whereas the others flow initially through basic effusives. The Ganga-Brahmaputra river system transports about 130 million tons of dissolved salts to the Bay of Bengal, which is nearly 3% of the global river flux to the oceans. The chemical denudation rates for the Ganga and the Brahmaputra basins are about 72 and 105 tons{center dot}km{sup {minus}2}{center dot}yr{sup {minus}1}, respectively, which are factors of 2 to 3 higher than the global average. The high denudation rate, particularly in the Brahmaputra, is attributable to high relief and heavy rainfall.

  1. Major ion chemistry of the Ganga-Brahmaputra river system: Weathering processes and fluxes to the Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Sarin, M. M.; Krishnaswami, S.; Dilli, K.; Somayajulu, B. L. K.; Moore, W. S.

    1989-05-01

    The Ganga-Brahmaputra, one of the world's largest river systems, is first in terms of sediment transport and fourth in terms of water discharge. A detailed and systematic study of the major ion chemistry of these rivers and their tributaries, as well as the clay mineral composition of the bed sediments has been conducted. The chemistry of the highland rivers (upper reaches of the Ganga, the Yamuna, the Brahmaputra, the Gandak and the Ghaghra) are all dominated by carbonate weathering; (Ca + Mg) and HCO 3 account for about 80% of the cations and anions. In the lowland rivers (the Chambal, the Betwa and the Ken), HCO 3 excess over (Ca + Mg) and a relatively high contribution of (Na + K) to the total cations indicate that silicate weathering and/or contributions from alkaline/saline soils and groundwaters could be important sources of major ions to these waters. The chemistry of the Ganga and the Yamuna in the lower reaches is by and large dictated by the chemistry of their tributaries and their mixing proportions. Illite is the dominant clay mineral (about 80%) in the bedload sediments of the highland rivers. Kaolinite and chlorite together constitute the remaining 20% of the clays. In the Chambal, Betwa and Ken, smectite accounts for about 80% of the clays. This difference in the clay mineral composition of the bed sediments is a reflection of the differences in the geology of their drainage basins. The highland rivers weather acidic rocks, whereas the others flow initially through basic effusives. The Ganga-Brahmaputra river system transports about 130 million tons of dissolved salts to the Bay of Bengal, which is nearly 3% of the global river flux to the oceans. The chemical denudation rates for the Ganga and the Brahmaputra basins are about 72 and 105 tons· km -· yr -1, respectively, which are factors of 2 to 3 higher than the global average. The high denudation rate, particularly in the Brahmaputra, is attributable to high relief and heavy rainfall.

  2. Linking carbon-water- and nitrogen fluxes at forest ecosystems throughout Europe with a coupled soil-vegetation process model "LandscapeDNDC"

    NASA Astrophysics Data System (ADS)

    Molina Herrera, Saul; Grote, Rüdiger; Haas, Edwin; Kiese, Ralf; Butterbach-Bahl, Klaus

    2013-04-01

    Forest ecosystems in Europe play a key role in the emission reduction commitment agreed in the Kyoto Protocol for mitigating climatic change. Forest ecological functioning and potential services (such as carbon sequestration) are a matter of debate for policy decision makers resulting from the need of identifying affordable strategies for forest management and exploitation against climate change. Forest ecosystem functioning and the linkages governing carbon-, water- and nitrogen fluxes at site scale was evaluated for three dominant tree species (Pinus sylvestris, Picea abies and Fagus sylvatica) grown on 10 different sites across Europe. We did answer in particular the following questions: a) is LandscapeDNDC able to represent NEE, GPP, TER and ET fluxes for dominant forest types in Europe at different sites with only a species specific parameterization? b) What is the relation between carbon input into the ecosystem and on the emission of carbon and nitrogen from the forest soil? Furthermore we analyzed the interaction between carbon-, nitrogen-, and water cycle, in particular the dependence of gaseous fluxes on water and litter availability. LandscapeDNDC is a process based model that integrates modules for carbon, nitrogen and water cycling within terrestrial ecosystems (i.e. forest) on the site and regional scale. Biosphere, atmosphere and hydrosphere processes in forest ecosystems are linked by daily time step integration of the microclimate, water cycle, soil biogeochemistry and tree physiology and dimensional growth modules which balances all three aforementioned cycles. All processes and state variables are considered in a vertically structured one dimensional vertical column that reaches from rooting depth (more than 1 m depth) to the uppermost canopy layer. LandscapeDNDC was tested against long term (about 10 years) field data. The capability of the applied model for reproducing daily derived GPP and TER was accompanied by a high statistical precision (r

  3. Method of flicker-noise spectroscopy of cosmic ray muon flux variations caused by non-stationary processes

    NASA Astrophysics Data System (ADS)

    Borog, V. V.; Dmitrieva, A. N.; Kovylyaeva, A. A.

    2017-01-01

    A new method of identifying signals in a statistically noisy non-stationary time series is presented. Unlike in the Fourier and wavelet analyses, in the processing of data no assumptions about the structure of analyzed signal is made. The proposed method of flicker-noise spectroscopy is illustrated with a real time series related to monitoring of solar and cosmic radiation during GLE#72 event using ground-level muon hodoscope. The method is applicable for the analysis of a wide range of various helio- and geophysical processes.

  4. Integrating functional diversity, food web processes, and biogeochemical carbon fluxes into a conceptual approach for modeling the upper ocean in a high-CO2 world

    NASA Astrophysics Data System (ADS)

    Legendre, Louis; Rivkin, Richard B.

    2005-09-01

    Marine food webs influence climate by channeling carbon below the permanent pycnocline, where it can be sequestered. Because most of the organic matter exported from the euphotic zone is remineralized within the "upper ocean" (i.e., the water column above the depth of sequestration), the resulting CO2 would potentially return to the atmosphere on decadal timescales. Thus ocean-climate models must consider the cycling of carbon within and from the upper ocean down to the depth of sequestration, instead of only to the base of the euphotic zone. Climate-related changes in the upper ocean will influence the diversity and functioning of plankton functional types. In order to predict the interactions between the changing climate and the ocean's biology, relevant models must take into account the roles of functional biodiversity and pelagic ecosystem functioning in determining the biogeochemical fluxes of carbon. We propose the development of a class of models that consider the interactions, in the upper ocean, of functional types of plankton organisms (e.g., phytoplankton, heterotrophic bacteria, microzooplankton, large zooplankton, and microphagous macrozooplankton), food web processes that affect organic matter (e.g., synthesis, transformation, and remineralization), and biogeochemical carbon fluxes (e.g., photosynthesis, calcification, respiration, and deep transfer). Herein we develop a framework for this class of models, and we use it to make preliminary predictions for the upper ocean in a high-CO2 world, without and with iron fertilization. Finally, we suggest a general approach for implementing our proposed class of models.

  5. Effect of Se flux on CuGaSe2 absorbers deposited on ITO-coated SLG substrates by using a three-stage co-evaporation process

    NASA Astrophysics Data System (ADS)

    Yoo, Jinsu; Eo, Young-Joo; Cho, Jun-Sik; Yun, Jae-Ho; Choi, Jang Hun; Kim, Kihwan; Park, Ju Hyung; Kong, Seong Ho

    2016-11-01

    As the key factor for top-cell application in a tandem structure, wide-bandgap chalcopyrite CuGaSe2 (CGS) absorbers were deposited at a thickness of 2 μm on soda-lime glass (SLG) which was coated with radio-frequency sputtered indium-tin-oxide (ITO) films. The semi-transparent CGS absorbers with a bandgap energy of 1.65 eV were grown by using a three-stage co-evaporation process with Cu, Ga, and Se elemental sources. During CGS absorber growth, the composition ratio [Cu]/[Ga] was fixed at about 0.85 and the Se-to-Ga flux ratio P [ Se]/[ Ga] was varied from 22 to 61 by increasing the temperature of the Se source. In this study, the compositional, structural, optical and electrical properties of top-cell CGS absorbers, which absorbed the short wavelength range of the solar spectrums for tandem solar cell application, were investigated as a function of the Se flux. On the basis of our experimental results, the highest CGS solar cell efficiency of 4.7 % in the cell structure described as Al/ZnO:Al/i-ZnO/CdS/CGS/ITO/SLG was demonstrated using a P [ Se]/[ Ga] value of 22.

  6. Spatio-temporal dynamics of biogeochemical processes and air-sea CO2 fluxes in the Western English Channel based on two years of FerryBox deployment

    NASA Astrophysics Data System (ADS)

    Marrec, P.; Cariou, T.; Latimier, M.; Macé, E.; Morin, P.; Vernet, M.; Bozec, Y.

    2014-12-01

    From January 2011 to January 2013, a FerryBox system was installed on a Voluntary Observing Ship (VOS), which crossed the Western English Channel (WEC) between Roscoff (France) and Plymouth (UK) up to 3 times a day. The FerryBox continuously measured sea surface temperature (SST), sea surface salinity (SSS), dissolved oxygen (DO), fluorescence and partial pressure of CO2 (from April 2012) along the ferry track. Sensors were calibrated based on 714 bimonthly surface samplings with precisions of 0.016 for SSS, 3.3 μM for DO, 0.40 μg L- 1 for Chlorophyll-a (Chl-a) (based on fluorescence measurements) and 5.2 μatm for pCO2. Over the 2 years of deployment (900 crossings), we reported 9% of data lost due to technical issues and quality checked data was obtained to allow investigation of the dynamics of biogeochemical processes related to air-sea CO2 fluxes in the WEC. Based on this unprecedented high-frequency dataset, the physical structure of the WEC was assessed using SST anomalies and the presence of a thermal front was observed around the latitude 49.5°N, which divided the WEC in two main provinces: the seasonally stratified northern WEC (nWEC) and the all-year well-mixed southern WEC (sWEC). These hydrographical properties strongly influenced the spatial and inter-annual distributions of phytoplankton blooms, which were mainly limited by nutrients and light availability in the nWEC and the sWEC, respectively. Air-sea CO2 fluxes were also highly related to hydrographical properties of the WEC between late April and early September 2012, with the sWEC a weak source of CO2 to the atmosphere of 0.9 mmol m- 2 d- 1, whereas the nWEC acted as a sink for atmospheric CO2 of 6.9 mmol m- 2 d- 1. The study of short time-scale dynamics of air-sea CO2 fluxes revealed that an intense and short (less than 10 days) summer bloom in the nWEC contributed to 29% of the CO2 sink during the productive period, highlighting the necessity for high frequency observations in coastal

  7. Long-term records of global radiation, carbon and water fluxes derived from multi-satellite data and a process-based model

    NASA Astrophysics Data System (ADS)

    Ryu, Youngryel; Jiang, Chongya

    2016-04-01

    To gain insights about the underlying impacts of global climate change on terrestrial ecosystem fluxes, we present a long-term (1982-2015) global radiation, carbon and water fluxes products by integrating multi-satellite data with a process-based model, the Breathing Earth System Simulator (BESS). BESS is a coupled processed model that integrates radiative transfer in the atmosphere and canopy, photosynthesis (GPP), and evapotranspiration (ET). BESS was designed most sensitive to the variables that can be quantified reliably, fully taking advantages of remote sensing atmospheric and land products. Originally, BESS entirely relied on MODIS as input variables to produce global GPP and ET during the MODIS era. This study extends the work to provide a series of long-term products from 1982 to 2015 by incorporating AVHRR data. In addition to GPP and ET, more land surface processes related datasets are mapped to facilitate the discovery of the ecological variations and changes. The CLARA-A1 cloud property datasets, the TOMS aerosol datasets, along with the GLASS land surface albedo datasets, were input to a look-up table derived from an atmospheric radiative transfer model to produce direct and diffuse components of visible and near infrared radiation datasets. Theses radiation components together with the LAI3g datasets and the GLASS land surface albedo datasets, were used to calculate absorbed radiation through a clumping corrected two-stream canopy radiative transfer model. ECMWF ERA interim air temperature data were downscaled by using ALP-II land surface temperature dataset and a region-dependent regression model. The spatial and seasonal variations of CO2 concentration were accounted by OCO-2 datasets, whereas NOAA's global CO2 growth rates data were used to describe interannual variations. All these remote sensing based datasets are used to run the BESS. Daily fluxes in 1/12 degree were computed and then aggregated to half-month interval to match with the spatial

  8. Origin, speciation, and fluxes of trace-element gases at Augustine volcano, Alaska: Insights into magma degassing and fumarolic processes

    NASA Astrophysics Data System (ADS)

    Symonds, Robert B.; Reed, Mark H.; Rose, William I.

    1992-02-01

    Thermochemical modeling predicts that trace elements in the Augustine gas are transported from near-surface magma as simple chloride (NaCl, KCl, FeCl 2, ZnCl 2, PbCl 2, CuCl, SbCl 3, LiCl, MnCl 2, NiCl 2, BiCl, SrCl 2), oxychloride (MoO 2Cl 2), sulfide (AsS), and elemental (Cd) gas species. However, Si, Ca, Al, Mg, Ti, V, and Cr are actually more concentrated in solids, beta-quartz (SiO 2), wollastonite (CaSiO 3), anorthite (CaAl 2Si 2O 8), diopside (CaMgSi 2O 6), sphene (CaTiSiO 5), V 2O 3(c), and Cr 2O 3(c), respectively, than in their most abundant gaseous species, SiF 4, CaCl 2, AlF 2O, MgCl 2 TiCl 4, VOCl 3, and CrO 2Cl 2. These computed solids are not degassing products, but reflect contaminants in our gas condensates or possible problems with our modeling due to "missing" gas species in the thermochemical data base. Using the calculated distribution of gas species and the COSPEC SO 2 fluxes, we have estimated the emission rates for many species (e.g., COS, NaCl, KCl, HBr, AsS, CuCl). Such forecasts could be useful to evaluate the effects of these trace species on atmospheric chemistry. Because of the high volatility of metal chlorides (e.g., FeCl 2, NaCl, KCl, MnCl 2, CuCl), the extremely HCl-rich Augustine volcanic gases are favorable for transporting metals from magma. Thermochemical modeling shows that equilibrium degassing of magma near 870°C can account for the concentrations of Fe, Na, K, Mn, Cu, Ni and part of the Mg in the gases escaping from the dome fumaroles on the 1986 lava dome. These calculations also explain why gases escaping from the lower temperature but highly oxidized moat vents on the 1976 lava dome should transport less Fe, Na, K, Mn and Ni, but more Cu; oxidation may also account for the larger concentrations of Zn and Mo in the moat gases. Nonvolatile elements (e.g., Al, Ca, Ti, Si) in the gas condensates came from eroded rock particles that dissolved in our samples or, for Si, from contamination from the silica sampling tube. Only a

  9. Fractionation and fluxes of metals and radionuclides during the recycling process of phosphogypsum wastes applied to mineral CO₂ sequestration.

    PubMed

    Contreras, M; Pérez-López, R; Gázquez, M J; Morales-Flórez, V; Santos, A; Esquivias, L; Bolívar, J P

    2015-11-01

    The industry of phosphoric acid produces a calcium-rich by-product known as phosphogypsum, which is usually stored in large stacks of millions of tons. Up to now, no commercial application has been widely implemented for its reuse because of the significant presence of potentially toxic contaminants. This work confirmed that up to 96% of the calcium of phosphogypsum could be recycled for CO2 mineral sequestration by a simple two-step process: alkaline dissolution and aqueous carbonation, under ambient pressure and temperature. This CO2 sequestration process based on recycling phosphogypsum wastes would help to mitigate greenhouse gasses emissions. Yet this work goes beyond the validation of the sequestration procedure; it tracks the contaminants, such as trace metals or radionuclides, during the recycling process in the phosphogypsum. Thus, most of the contaminants were transferred from raw phosphogypsum to portlandite, obtained by dissolution of the phosphogypsum in soda, and from portlandite to calcite during aqueous carbonation. These findings provide valuable information for managing phosphogypsum wastes and designing potential technological applications of the by-products of this environmentally-friendly proposal.

  10. Difference in explanations of CO2 flux and ecosystem dynamics between five European open peatlands - Merging data and process oriented modelling

    NASA Astrophysics Data System (ADS)

    Metzger, Christine; Jansson, Per-Erik; Lohila, Annalea; Aurela, Mika; Eickenscheid, Tim; Belelli-Marchesini, Luca; Dinsmore, Kerry; Drewer, Julia; van Huissteden, Ko; Drösler, Matthias

    2014-05-01

    Five different open peatland systems across Europe with a wide gradient in landuse intensity, water table depth, soil fertility and climate were simulated with the process oriented CoupModel. The aim of the study was to find out to what extent the sites differ in respect to carbon dioxide (CO2) fluxes and related processes. Therefore the model was calibrated to fit to measured CO2 fluxes, soil temperature, snow depth and leaf area index (LAI) and differences in model parameters were analysed. Finding a site independent configuration would mean that the differences in the measurements can be solely explained by the model input parameters: water table, metrological data, management and soil inventory data. In general a good explanation to the seasonality of various major fluxes was obtained. Differences between sites were found for parameters related to photosynthetic efficiency, the rate of soil organic decomposition and the regulation of mobile carbon (C) pool from senescence to shooting in the next year. The largest difference between the sites was the high rate of heterotrophic respiration from the managed grassland sites that were both strong source for CO2 emissions. All unmanaged and abandoned sites showed a tendency to be sinks for carbon because of the high water level and low decomposition rates. A common model for the timing of emergence and senescence and minimum temperature for photosynthesis could be applied even though the gradient in site latitude ranged from northern Finland to South-Germany. Also a common water and temperature response for decomposition could be used for all sites. However the possibility to constrain parameters in respect to water response was limited due to either very low water table fluctuation on some sites or low measurement frequency on others. The model had limitations in explaining the very high respiration losses in summer and corresponding low respiration in winter for the managed grassland sites. At the Dutch site, the

  11. Using Lagrangian-based process studies to test satellite algorithms of vertical carbon flux in the eastern North Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Stukel, M. R.; Kahru, M.; Benitez-Nelson, C. R.; Décima, M.; Goericke, R.; Landry, M. R.; Ohman, M. D.

    2015-11-01

    The biological carbon pump is responsible for the transport of ˜5-20 Pg C yr-1 from the surface into the deep ocean but its variability is poorly understood due to an incomplete mechanistic understanding of the complex underlying planktonic processes. In fact, algorithms designed to estimate carbon export from satellite products incorporate fundamentally different assumptions about the relationships between plankton biomass, productivity, and export efficiency. To test the alternate formulations of export efficiency in remote-sensing algorithms formulated by Dunne et al. (2005), Laws et al. (2011), Henson et al. (2011), and Siegel et al. (2014), we have compiled in situ measurements (temperature, chlorophyll, primary production, phytoplankton biomass and size structure, grazing rates, net chlorophyll change, and carbon export) made during Lagrangian process studies on seven cruises in the California Current Ecosystem and Costa Rica Dome. A food-web based approach formulated by Siegel et al. (2014) performs as well or better than other empirical formulations, while simultaneously providing reasonable estimates of protozoan and mesozooplankton grazing rates. By tuning the Siegel et al. (2014) algorithm to match in situ grazing rates more accurately, we also obtain better in situ carbon export measurements. Adequate representations of food-web relationships and grazing dynamics are therefore crucial to improving the accuracy of export predictions made from satellite-derived products. Nevertheless, considerable unexplained variance in export remains and must be explored before we can reliably use remote sensing products to assess the impact of climate change on biologically mediated carbon sequestration.

  12. The influence of melt flux and crustal processing on Re-Os isotope systematics of ocean island basalts: Constraints from Galápagos

    NASA Astrophysics Data System (ADS)

    Gibson, S. A.; Dale, C. W.; Geist, D. J.; Day, J. A.; Brügmann, G.; Harpp, K. S.

    2016-09-01

    New rhenium-osmium data for high-MgO (>9 wt.%) basalts from the Galápagos Archipelago reveal a large variation in 187Os/188Os (0.1304 to 0.173), comparable with the range shown by primitive global ocean island basalts (OIBs). Basalts with the least radiogenic 187Os/188Os occur closest to the Galápagos plume stem: those in western Galápagos have low 187Os/188Os, moderate 87Sr/86Sr, 143Nd/144Nd, 206Pb/204Pb and high 3He/4He whereas basalts in the south also have low 187Os/188Os but more radiogenic 87Sr/86Sr, 143Nd/144Nd, 206Pb/204Pb and 3He/4He. Our new Os isotope data are consistent with the previously established spatial zonation of the common global isotopic mantle reservoir ;C; and ancient recycled oceanic crust in the mantle plume beneath western and southern parts of Galápagos, respectively. Galápagos basalts with the most radiogenic 187Os/188Os (up to 0.1875) typically have moderate MgO (7-9 wt.%) and low Os (<50 pg g-1) but have contrastingly unenriched Sr, Nd and Pb isotope signatures. We interpret this decoupling of chalcophile and lithophile isotopic systems as due to assimilation of young Pacific lower crust during crystal fractionation. Mixing models show the assimilated crust must have higher contents of Re and Os, and more radiogenic 187Os/188Os (0.32), than previously proposed for oceanic gabbros. We suggest the inferred, exceptionally-high radiogenic 187Os of the Pacific crust may be localised and due to sulfides precipitated from hydrothermal systems established at the Galápagos Spreading Centre. High 187Os/188Os Galápagos basalts are found where plume material is being dispersed laterally away from the plume stem to the adjacent spreading centre (i.e. in central and NE parts of the archipelago). The extent to which crustal processing influences 187Os/188Os appears to be primarily controlled by melt flux: as distance from the stem of the Galápagos plume increases, the melt flux decreases and crustal assimilation becomes proportionally

  13. Effects of lateral nitrate flux and instream processes on dissolved inorganic nitrogen export in a forested catchment: A model sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Lin, Laurence; Webster, Jackson R.; Hwang, Taehee; Band, Lawrence E.

    2015-04-01

    The importance of terrestrial and aquatic ecosystems in controlling nitrogen dynamics in streams is a key interest of ecologists studying dissolved inorganic nitrogen (DIN) export from watersheds. In this study, we coupled a stream model with a terrestrial ecohydrological model and conducted a global sensitivity analysis to evaluate the relative importance of both ecosystems to nitrogen export. We constructed two scenarios ("normal" and high nitrate loads) to explore conditions under which terrestrial (lateral nitrate flux) or aquatic ecosystems (instream nutrient processes) may be more important in controlling DIN export. In a forest catchment, although the forest ecosystem controls the nitrogen load to streams, sensitivity results suggested that most nitrogen output from the terrestrial ecosystem was taken up by instream microbial immobilization associated with benthic detritus and retained in detritus. Later the immobilized nitrogen was remineralized as DIN. Therefore, the intra-annual pattern of DIN concentration in the stream was low in fall and became high in spring. Not only was instream microbial immobilization saturated with the high nitrogen load scenario, but also the net effect of immobilization and mineralization on DIN export was minimized because nitrogen cycling between organic and inorganic forms was accelerated. Overall, our linked terrestrial-aquatic model simulations demonstrated that stream process could significantly affect the amount and timing of watershed nitrogen export when nitrogen export from the terrestrial system is low. However, when nitrogen export from the terrestrial system is high, the effect of stream processes is minimal.

  14. Processing arctic eddy-flux data using a simple carbon-exchange model embedded in the ensemble Kalman filter.

    PubMed

    Rastetter, Edward B; Williams, Mathew; Griffin, Kevin L; Kwiatkowski, Bonnie L; Tomasky, Gabrielle; Potosnak, Mark J; Stoy, Paul C; Shaver, Gaius R; Stieglitz, Marc; Hobbie, John E; Kling, George W

    2010-07-01

    Continuous time-series estimates of net ecosystem carbon exchange (NEE) are routinely made using eddy covariance techniques. Identifying and compensating for errors in the NEE time series can be automated using a signal processing filter like the ensemble Kalman filter (EnKF). The EnKF compares each measurement in the time series to a model prediction and updates the NEE estimate by weighting the measurement and model prediction relative to a specified measurement error estimate and an estimate of the model-prediction error that is continuously updated based on model predictions of earlier measurements in the time series. Because of the covariance among model variables, the EnKF can also update estimates of variables for which there is no direct measurement. The resulting estimates evolve through time, enabling the EnKF to be used to estimate dynamic variables like changes in leaf phenology. The evolving estimates can also serve as a means to test the embedded model and reconcile persistent deviations between observations and model predictions. We embedded a simple arctic NEE model into the EnKF and filtered data from an eddy covariance tower located in tussock tundra on the northern foothills of the Brooks Range in northern Alaska, USA. The model predicts NEE based only on leaf area, irradiance, and temperature and has been well corroborated for all the major vegetation types in the Low Arctic using chamber-based data. This is the first application of the model to eddy covariance data. We modified the EnKF by adding an adaptive noise estimator that provides a feedback between persistent model data deviations and the noise added to the ensemble of Monte Carlo simulations in the EnKF. We also ran the EnKF with both a specified leaf-area trajectory and with the EnKF sequentially recalibrating leaf-area estimates to compensate for persistent model-data deviations. When used together, adaptive noise estimation and sequential recalibration substantially improved filter

  15. Uncovering the effects of Arundo invasion & forest restoration on riparian soils: Plant controls on microbial processes & trace gas flux in a California watershed

    NASA Astrophysics Data System (ADS)

    Dowdy, K. L.; Dudley, T.; Schimel, J.

    2016-12-01

    The opportunistic reed Arundo donax has invaded riparian zones in many California watersheds, altering hydrological and ecological processes. There have been intense efforts to restore these watersheds to native vegetation. How the shifts in communities—native to invaded to restored—affect soil conditions and processes, however, remains unclear. Because riparian zones are hotspots of nutrient cycling and greenhouse gas flux, it is critical to understand how plant community composition (and associated litter contributions) governs riparian biogeochemistry. How do organic matter inputs in invaded and restored plant communities alter soil microbial processes and trace gas dynamics? In this study, we use laboratory incubations to compare microbial cycling of C and nitrogen (N) and trace gas flux between the soils and litter of the invasive Arundo and three native riparian species: Populus tricocarpa, Salix laevigata, and Baccharis salicifolia (or, black cotton wood, red willow, and mulefat). Soils beneath Arundo and Salix produced CO2 at a similar rate ( 250 ug CO2 g dry soil-1 hour-1), while Populus and Baccharis produced less ( 170 ug CO2 g dry soil-1 hour-1). All soils consumed CH4; however, Arundo soils consumed more than native-restored species, which consumed similar quantities (-0.013 CH4 g dry soil-1 hour-1 in Arundo vs. -0.009 CH4 g dry soil-1 hour-1 in native). Arundo soils also produced less N2O (0.02 ug N2O g dry soil-1 hour-1) than all native species ( 0.09 ug N2O g dry soil-1 hour-1). Arundo contributed far less litter inputs than native-restored species, as Arundo leaves senesce and remain on the stalk; furthermore, Arundo litter has been shown to have a higher C:N (40.2) than Salix and Baccharis (30.9). Greater CH4 consumption and lower N2O production in Arundo soils may be the result of enhanced porosity compared to restored soils, leading to more aeration and less methanogenesis and denitrification, or it may be that there is lower N availability

  16. Microbial processes dominate P fluxes in a low-phosphorus temperate forest soil: insights provided by 33P and 18O in phosphate

    NASA Astrophysics Data System (ADS)

    Pistocchi, Chiara; Tamburini, Federica; Bünemann, Else; Mészáros, Éva; Frossard, Emmanuel

    2016-04-01

    The classical view of the P cycle in forests is that trees and mycorrhizal fungi associated with them take up most of their phosphorus as phosphate (P) from the soil solution. The soil solution is then replenished by the release of P from sorbed phases, by the dissolution of P containing minerals or by biological mineralization and/or enzymatic hydrolysis of organic P compounds. Direct insight into the processes phosphate goes through at the ecosystem level is, however, missing. Assessing the relevance of inorganic and biological processes controlling P cycling requires the use of appropriate approaches and tracers. Within the German Priority Program "Ecosystem Nutrition: Forest Strategies for limited Phosphorus Resources" we studied P forms and dynamics in organic horizons (Of/Oh) of temperate beech forest soils in Germany with contrasting soil P availability (P-poor and P-rich). We followed the fate of P from the litter into the soil pools, using isotopes as tracers (stable oxygen isotopes in water and phosphate and 33P) and relied on measurements in experimental forest sites and a three-months incubation experiment with litter addition. Using an isotopic dilution approach we were able to estimate gross (7 mg P kg-1 d-1 over the first month) and net mineralization rates (about 5 mg P kg-1 d-1 over the first 10 days) in the P-poor soil. In this soil the immobilization of P in the microbial biomass ranged from 20 to 40% of gross mineralization during the incubation, meaning that a considerable part of mineralized P contributed to replenish the available P pool. In the P-rich soil, physicochemical processes dominated exchangeable P to the point that the contribution of biological/biochemical processes was non-detectable. Oxygen isotopes in phosphate elucidated that organic P mineralization by enzymatic hydrolysis gains more importance with decreasing P availability, both under controlled and under field conditions. In summary, microbial processes dominated P fluxes

  17. Roles of biological and physical processes in driving seasonal air-sea CO2 flux in the Southern Ocean: New insights from CARIOCA pCO2

    NASA Astrophysics Data System (ADS)

    Merlivat, L.; Boutin, J.; Antoine, D.

    2015-07-01

    On a mean annual basis, the Southern Ocean is a sink for atmospheric CO2. However the seasonality of the air-sea CO2 flux in this region is poorly documented. We investigate processes regulating air-sea CO2 flux in a large area of the Southern Ocean (38°S-55°S, 60°W-60°E) that represents nearly one third of the subantarctic zone. A seasonal budget of CO2 partial pressure, pCO2 and of dissolved inorganic carbon, DIC in the mixed layer is assessed by quantifying the impacts of biology, physics and thermodynamical effect on seawater pCO2. A focus is made on the quantification at a monthly scale of the biological consumption as it is the dominant process removing carbon from surface waters. In situ biological carbon production rates are estimated from high frequency estimates of DIC along the trajectories of CARIOCA drifters in the Atlantic and Indian sector of the Southern Ocean during four spring-summer seasons over the 2006-2009 period. Net community production (NCP) integrated over the mixed layer is derived from the daily change of DIC, and mixed layer depth estimated from Argo profiles. Eleven values of NCP are estimated and range from 30 to 130 mmol C m- 2 d- 1. They are used as a constraint for validating satellite net primary production (NPP). A satellite data-based global model is used to compute depth integrated net primary production, NPP, for the same periods along the trajectories of the buoys. Realistic NCP/NPP ratios are obtained under the condition that the SeaWiFS chlorophyll are corrected by a factor of ≈ 2-3, which is an underestimation previously reported for the Southern Ocean. Monthly satellite based NPP are computed over the 38°S-55°S, 60°W-60°E area. pCO2 derived from these NPP combined with an export ratio, and taking into account the impact of physics and thermodynamics is in good agreement with the pCO2 seasonal climatology of Takahashi (2009). On an annual timescale, mean NCP values, 4.4 to 4.9 mol C m- 2 yr- 1 are ≈ 4-5 times

  18. Latent Heat in Soil Heat Flux Measurements

    USDA-ARS?s Scientific Manuscript database

    The surface energy balance includes a term for soil heat flux. Soil heat flux is difficult to measure because it includes conduction and convection heat transfer processes. Accurate representation of soil heat flux is an important consideration in many modeling and measurement applications. Yet, the...

  19. Quantification of terrestrial ecosystem carbon dynamics in the conterminous United States combining a process-based biogeochemical model and MODIS and AmeriFlux data

    USDA-ARS?s Scientific Manuscript database

    Satellite remote sensing provides continuous temporal and spatial information of terrestrial ecosystems. Using these remote sensing data and eddy flux measurements and biogeochemical models, such as the Terrestrial Ecosystem Model (TEM), should provide a more adequate quantification of carbon dynami...

  20. Annual Cycles of Deep-ocean, Biogeochemical Export Fluxes and Biological Pump Processes in Subtropical and Subantarctic Waters, Southwest Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Nodder, S.; Chiswell, S.; Northcote, L.

    2016-02-01

    One of the key aspects of the global carbon cycle is the efficiency and spatio-temporal variability of the biological pump. In this paper, the annual cycles of particle fluxes, derived from moored sediment trap data collected from 2000-12 in subtropical (STW) and subantarctic waters (SAW), east of New Zealand, are presented. These observations are the most comprehensive export flux time-series from temperate Southern Hemisphere latitudes to date. With high levels of variability, fluxes in SAW were markedly lower than in STW, reflecting the picophytoplankton-dominated communities in the iron-limited, high nutrient-low chlorophyll SAW. Austral spring chlorophyll blooms in surface STW were near-synchronous with elevated fluxes of bio-siliceous, carbonate and organic carbon-rich materials to the deep ocean, probably facilitated by diatom sedimentation. Lithogenic fluxes were also high in STW, compared to SAW, reflecting proximity to the New Zealand landmass. In contrast, the highest biogenic fluxes in SAW occurred in spring when surface chlorophyll concentrations were low, while highest annual chlorophyll concentrations were in summer with no associated flux increase. We hypothesize that the high spring export in SAW occurs from subsurface chlorophyll accumulations that are not evident from remote-sensing satellites. This material was also rich in biogenic silica, perhaps related to the preferential export of diatoms and other silica-producing organisms, such as silicoflagellates and radiolarians. Particle fluxes in STW are similar to that of other mesotrophic to oligotrophic waters ( 6-7 mgC m-2 d-1), whereas export from SAW is below global averages ( 3 mgC m-2 d-1), and is characterized by carbonate-dominated and prominent bio-siliceous deposition.

  1. Magnetospheric-ionospheric Poynting flux

    NASA Technical Reports Server (NTRS)

    Thayer, Jeffrey P.

    1994-01-01

    Over the past three years of funding SRI, in collaboration with the University of Texas at Dallas, has been involved in determining the total electromagnetic energy flux into the upper atmosphere from DE-B electric and magnetic field measurements and modeling the electromagnetic energy flux at high latitudes, taking into account the coupled magnetosphere-ionosphere system. This effort has been very successful in establishing the DC Poynting flux as a fundamental quantity in describing the coupling of electromagnetic energy between the magnetosphere and ionosphere. The DE-B satellite electric and magnetic field measurements were carefully scrutinized to provide, for the first time, a large data set of DC, field-aligned, Poynting flux measurement. Investigations describing the field-aligned Poynting flux observations from DE-B orbits under specific geomagnetic conditions and from many orbits were conducted to provide a statistical average of the Poynting flux distribution over the polar cap. The theoretical modeling effort has provided insight into the observations by formulating the connection between Poynting's theorem and the electromagnetic energy conversion processes that occur in the ionosphere. Modeling and evaluation of these processes has helped interpret the satellite observations of the DC Poynting flux and improved our understanding of the coupling between the ionosphere and magnetosphere.

  2. Magnetospheric-ionospheric Poynting flux

    NASA Astrophysics Data System (ADS)

    Thayer, Jeffrey P.

    1994-08-01

    Over the past three years of funding SRI, in collaboration with the University of Texas at Dallas, has been involved in determining the total electromagnetic energy flux into the upper atmosphere from DE-B electric and magnetic field measurements and modeling the electromagnetic energy flux at high latitudes, taking into account the coupled magnetosphere-ionosphere system. This effort has been very successful in establishing the DC Poynting flux as a fundamental quantity in describing the coupling of electromagnetic energy between the magnetosphere and ionosphere. The DE-B satellite electric and magnetic field measurements were carefully scrutinized to provide, for the first time, a large data set of DC, field-aligned, Poynting flux measurement. Investigations describing the field-aligned Poynting flux observations from DE-B orbits under specific geomagnetic conditions and from many orbits were conducted to provide a statistical average of the Poynting flux distribution over the polar cap. The theoretical modeling effort has provided insight into the observations by formulating the connection between Poynting's theorem and the electromagnetic energy conversion processes that occur in the ionosphere. Modeling and evaluation of these processes has helped interpret the satellite observations of the DC Poynting flux and improved our understanding of the coupling between the ionosphere and magnetosphere.

  3. Coupling simultaneous dissolved nitrate measurements with quantum cascade laser based nitrous oxide flux and isotopocule analysis to investigate the biogeochemical processes occurring in a denitrifying bioreactor.

    NASA Astrophysics Data System (ADS)

    Williams, D. J.; Maxwell, B.; Deshmukh, P.; Chen, H.

    2016-12-01

    Denitrifying bioreactors are used to treat nitrogen enriched water from agricultural operations. These systems may also be an important source of nitrous oxide emissions, a potent greenhouse gas. Bioreactors also provide researchers with an opportunity to investigate the biogeochemical processes occurring in soils under controlled conditions. A pilot-scale bioreactor with woodchip media was injected with KNO3 at a constant flow rate through the system. The water-filled-pore-space (WFPS) was varied in separate experiments to create differing aerobic conditions. A quantum cascade laser spectroscopy system was used to determine the flux and isotopic signature of N2O emissions from woodchip bioreactor media over time. Simultaneous nitrate concentration measurements were made using an optical method at multiple points in the bioreactor. Isotopic site-preference (SP) characterization of N2O emissions was used to estimate production sources from soil nitrification and denitrification. A dynamic gas sampling method was used to measure N2O mixing ratios, which required ambient air to equalize chamber atmospheric pressure during sampling. Precise instrument calibration using gas samples of known isotopic abundances, provided by the Swiss Federal Labs (EMPA), together with a Keeling plot method to account for variations in isotopocule composition in ambient air, produced reliable SP estimates. Initial experiments during 100% WFPS show that SP and δ15Nbulk values were varied from -6‰ to 3‰ and -23‰ to -12‰, respectively. The trend of these values indicated that the N2O source was slightly changed from partial nitrification to denitrification during the measuring period of time. The peak rate of nitrous oxide production occurred 7 hours after peak nitrate removal. These results and others to be presented show the utility of coupling real-time dissolved and gas phase measurements for studying nitrogen cycling in soils.

  4. Frontolysis by surface heat flux in the Agulhas Return Current region with a focus on mixed layer processes: observation and a high-resolution CGCM

    NASA Astrophysics Data System (ADS)

    Ohishi, Shun; Tozuka, Tomoki; Komori, Nobumasa

    2016-12-01

    Detailed mechanisms for frontogenesis/frontolysis of the Agulhas Return Current (ARC) Front, defined as the maximum of the meridional sea surface temperature (SST) gradient at each longitude within the ARC region (40°-50°E, 55°-35°S), are investigated using observational datasets. Due to larger (smaller) latent heat release to the atmosphere on the northern (southern) side of the front, the meridional gradient of surface net heat flux (NHF) is found throughout the year. In austral summer, surface warming is weaker (stronger) on the northern (southern) side, and thus the NHF tends to relax the SST front. The weaker (stronger) surface warming, at the same time, leads to the deeper (shallower) mixed layer on the northern (southern) side. This enhances the frontolysis, because deeper (shallower) mixed layer is less (more) sensitive to surface warming. In austral winter, stronger (weaker) surface cooling on the northern (southern) side contributes to the frontolysis. However, deeper (shallower) mixed layer is induced by stronger (weaker) surface cooling on the northern (southern) side and suppresses the frontolysis, because the deeper (shallower) mixed layer is less (more) sensitive to surface cooling. Therefore, the frontolysis by the NHF becomes stronger (weaker) through the mixed layer processes in austral summer (winter). The cause of the meridional gradient of mixed layer depth is estimated using diagnostic entrainment velocity and the Monin-Obukhov depth. Furthermore, the above mechanisms obtained from the observation are confirmed using outputs from a high-resolution coupled general circulation model. Causes of model biases are also discussed.

  5. Fast flux locked loop

    DOEpatents

    Ganther, Jr., Kenneth R.; Snapp, Lowell D.

    2002-09-10

    A flux locked loop for providing an electrical feedback signal, the flux locked loop employing radio-frequency components and technology to extend the flux modulation frequency and tracking loop bandwidth. The flux locked loop of the present invention has particularly useful application in read-out electronics for DC SQUID magnetic measurement systems, in which case the electrical signal output by the flux locked loop represents an unknown magnetic flux applied to the DC SQUID.

  6. Aqueous cleaning of flux residue from solder joints. Final report

    SciTech Connect

    Krska, C.M.

    1992-08-01

    Solder joints have traditionally been cleaned using chlorinated or fluorinated solvents. This study addressed alternate processing. One process involved using a saponifier/water solution to remove rosin flux residues; the other process involved using a water-soluble flux and water to remove the residues. Although both processes were satisfactory, the water-soluble flux with water cleaning proved to be the best.

  7. Aqueous cleaning of flux residue from solder joints

    SciTech Connect

    Krska, C.M.

    1992-08-01

    Solder joints have traditionally been cleaned using chlorinated or fluorinated solvents. This study addressed alternate processing. One process involved using a saponifier/water solution to remove rosin flux residues; the other process involved using a water-soluble flux and water to remove the residues. Although both processes were satisfactory, the water-soluble flux with water cleaning proved to be the best.

  8. Magnetic-flux pump

    NASA Technical Reports Server (NTRS)

    Hildebrandt, A. F.; Elleman, D. D.; Whitmore, F. C. (Inventor)

    1966-01-01

    A magnetic flux pump is described for increasing the intensity of a magnetic field by transferring flux from one location to the magnetic field. The device includes a pair of communicating cavities formed in a block of superconducting material, and a piston for displacing the trapped magnetic flux into the secondary cavity producing a field having an intense flux density.

  9. Using environmental variables and soil processes to forecast denitrification potential and nitrous oxide fluxes in coastal plain wetlands across different land uses

    NASA Astrophysics Data System (ADS)

    Morse, Jennifer L.; Ardón, Marcelo; Bernhardt, Emily S.

    2012-06-01

    We examined relationships between denitrification (DNF) and nitrous oxide (N2O) fluxes and potentially important chemical and physical predictors to build a predictive understanding of gaseous N losses from coastal plain wetlands. We collected soil, gas, and pore water samples from 48 sampling locations across a large (440 ha) restored wetland, an adjacent drained agricultural field, and nearby forested wetlands every two months over two years. In summer and fall 2007, we measured soil DNF potential (21.6-3560 mg N m-3 d-1) and N2O efflux (-4.36-8.81 mg N m-2 d-1), along with 17 predictor variables. We developed statistical models for the most comprehensive subset of the data set (fall 2007) and used another subset (summer 2007) for cross-validation. Soil pH and total soil nitrogen were the best predictors of DNF potential (Radj2 = 0.68). A regression using carbon dioxide flux and soil temperature together with soil extractable NH4+ and DNF potential explained 85% of the variation in fall N2O fluxes. The model for DNF performed reasonably well when cross-validated with summer data (R2 = 0.40), while the N2O model did not predict summer N2O fluxes (R2 < 0.1). Poor model performance was likely due to nonlinear responses to high temperatures and/or higher and more variable root respiration by plants during the growing season, leading to overprediction of N2O flux. Our results suggest that soil DNF potential may be modeled fairly effectively from a small number of soil parameters, that DNF potential is uncorrelated with N2O effluxes, and that successful estimation of wetland N2O effluxes will require finer-scale models that incorporate seasonal dynamics.

  10. Quantification of terrestrial ecosystem carbon dynamics in the conterminous United States combining a process-based biogeochemical model and MODIS and AmeriFlux data

    NASA Astrophysics Data System (ADS)

    Chen, M.; Zhuang, Q.; Cook, D. R.; Coulter, R.; Pekour, M.; Scott, R. L.; Munger, J. W.; Bible, K.

    2011-03-01

    Satellite remote sensing provides continuous temporal and spatial information of terrestrial ecosystems. Using these remote sensing data and eddy flux measurements and biogeochemical models, such as the Terrestrial Ecosystem Model (TEM), should provide a more adequate quantification of carbon dynamics of terrestrial ecosystems. Here we use Moderate Resolution Imaging Spectroradiometer (MODIS) Enhanced Vegetation Index (EVI), Land Surface Water Index (LSWI) and carbon flux data of AmeriFlux to conduct such a study. We first modify the Gross Primary Production (GPP) modeling in TEM by incorporating EVI and LSWI to account for the effects of the changes of canopy photosynthetic capacity, phenology and water stress. Second, we parameterize and verify the new version of TEM with eddy flux data. We then apply the model to the conterminous United States over the period 2000-2005 at a 0.05°×0.05° spatial resolution. We find that the new version of TEM generally captured the expected temporal and spatial patterns of regional carbon dynamics. We estimate that regional GPP is between 7.02 and 7.78 Pg C yr-1 and Net Primary Production (NPP) ranges from 3.81 to 4.38 Pg C yr-1 and Net Ecosystem Production (NEP) varies within 0.08-0.73 Pg C yr-1 over the period 2000-2005 for the conterminous United States. The uncertainty due to parameterization is 0.34, 0.65 and 0.18 Pg C yr-1 for the regional estimates of GPP, NPP and NEP, respectively. The effects of extreme climate and disturbances such as severe drought in 2002 and destructive Hurricane Katrina in 2005 were captured by the model. Our study provides a new independent and more adequate measure of carbon fluxes for the conterminous United States, which will benefit studies of carbon-climate feedback and facilitate policy-making of carbon management and climate.

  11. Quantification of terrestrial ecosystem carbon dynamics in the conterminous United States combining a process-based biogeochemical model and MODIS and AmeriFlux data

    NASA Astrophysics Data System (ADS)

    Chen, M.; Zhuang, Q.; Cook, D. R.; Coulter, R.; Pekour, M.; Scott, R. L.; Munger, J. W.; Bible, K.

    2011-09-01

    Satellite remote sensing provides continuous temporal and spatial information of terrestrial ecosystems. Using these remote sensing data and eddy flux measurements and biogeochemical models, such as the Terrestrial Ecosystem Model (TEM), should provide a more adequate quantification of carbon dynamics of terrestrial ecosystems. Here we use Moderate Resolution Imaging Spectroradiometer (MODIS) Enhanced Vegetation Index (EVI), Land Surface Water Index (LSWI) and carbon flux data of AmeriFlux to conduct such a study. We first modify the gross primary production (GPP) modeling in TEM by incorporating EVI and LSWI to account for the effects of the changes of canopy photosynthetic capacity, phenology and water stress. Second, we parameterize and verify the new version of TEM with eddy flux data. We then apply the model to the conterminous United States over the period 2000-2005 at a 0.05° × 0.05° spatial resolution. We find that the new version of TEM made improvement over the previous version and generally captured the expected temporal and spatial patterns of regional carbon dynamics. We estimate that regional GPP is between 7.02 and 7.78 Pg C yr-1 and net primary production (NPP) ranges from 3.81 to 4.38 Pg C yr-1 and net ecosystem production (NEP) varies within 0.08-0.73 Pg C yr-1 over the period 2000-2005 for the conterminous United States. The uncertainty due to parameterization is 0.34, 0.65 and 0.18 Pg C yr-1 for the regional estimates of GPP, NPP and NEP, respectively. The effects of extreme climate and disturbances such as severe drought in 2002 and destructive Hurricane Katrina in 2005 were captured by the model. Our study provides a new independent and more adequate measure of carbon fluxes for the conterminous United States, which will benefit studies of carbon-climate feedback and facilitate policy-making of carbon management and climate.

  12. Pulse flux measuring device

    DOEpatents

    Riggan, William C.

    1985-01-01

    A device for measuring particle flux comprises first and second photodiode detectors for receiving flux from a source and first and second outputs for producing first and second signals representing the flux incident to the detectors. The device is capable of reducing the first output signal by a portion of the second output signal, thereby enhancing the accuracy of the device. Devices in accordance with the invention may measure distinct components of flux from a single source or fluxes from several sources.

  13. Simulations of the Cleft Ion Fountain outflows resulting from the passage of Storm Enhanced Density (SED) plasma flux tubes through the dayside cleft auroral processes region

    NASA Astrophysics Data System (ADS)

    Horwitz, James; Zeng, Wen

    2007-10-01

    Foster et al. [2002] reported elevated ionospheric density regions convected from subauroral plasmaspheric regions toward noon, in association with convection of plasmaspheric tails. These Storm Enhanced Density (SED) regions could supply cleft ion fountain outflows. Here, we will utilize our Dynamic Fluid Kinetic (DyFK) model to simulate the entry of a high-density ``plasmasphere-like'' flux tube entering the cleft region and subjected to an episode of wave-driven transverse ion heating. It is found that the O^+ ion density at higher altitudes increases and the density at lower altitudes decreases, following this heating episode, indicating increased fluxes of O^+ ions from the ionospheric source gain sufficient energy to reach higher altitudes after the effects of transverse wave heating. Foster, J. C., P. J. Erickson, A. J. Coster, J. Goldstein, and F. J. Rich, Ionospheric signatures of plasmaspheric tails, Geophys. Res. Lett., 29(13), 1623, doi:10.1029/2002GL015067, 2002.

  14. Considerations in the development of a process to manufacture low-enriched uranium foil fuel for the high flux isotope reactor

    SciTech Connect

    Sease, J.D.; Primm, R.T. III Miller, J.H.

    2008-07-15

    A reference flow sheet is the one of the first planning steps in the development of a manufacturing capacity for low enriched uranium foil fuels and can be used to develop a work structure, a critical path schedule and identify development needs. The reference flow sheet presented is specific to the High Flux Isotope Reactor and is used to estimate the change in HFIR operating cost due to fuel conversion. (author)

  15. Analysis of snowpack accumulation and the melting process of wet snow using a heat balance approach that emphasizes the role of underground heat flux

    NASA Astrophysics Data System (ADS)

    Maruyama, Toshisuke; Takimoto, Hiroshi; Ogura, Akira; Yoshida, Masashi

    2015-03-01

    Snowpack accumulation and melting, including the role of the heat flux underground, were investigated by employing the bulk transfer method and setting roughness lengths of ZO = ZT = 0.005 m and ZT = 0.007 m. Heat balance data were recorded for a period of 4 years, from the fall of 2009 to the spring of 2013, at a forest experiment station in the Hokuriku region, which lies along the Japan Sea. The findings of the research are as follows: (1) The observed temporal changes in the snowpack depth were well reproduced by our model using observed and estimated densities. (2) The importance and roles of the heat balance components were clarified. The total heat input during the 4 years was 252.2 MJ/m2 on average; 41.4% was provided by net radiation (Rn), 37.8% by sensible heat flux (H), and 13.2% by underground heat flux (G). The total output was 120.7 MJ/m2, of which 56.2% was accounted for by Rn and 31.1% by latent heat flux (lE). (3) Of the total heat input, 45.2% was released as freezing energy from the surface side and 2.6% was released from the bottom. (4) In the very cold season (December-February), the total input energy was 115.8 MJ/m2 on average; 75.0% was supplied by the surface and the remaining 25.0% from underground. In an anomalous year, 40.8% of the energy was supplied from underground.

  16. Why should autophagic flux be assessed?

    PubMed Central

    Zhang, Xiao-jie; Chen, Sheng; Huang, Kai-xing; Le, Wei-dong

    2013-01-01

    As autophagy is involved in cell growth, survival, development and death, impaired autophagic flux has been linked to a variety of human pathophysiological processes, including neurodegeneration, cancer, myopathy, cardiovascular and immune-mediated disorders. There is a growing need to identify and quantify the status of autophagic flux in different pathological conditions. Given that autophagy is a highly dynamic and complex process that is regulated at multiple steps, it is often assessed accurately. This perspective review article will focus on the autophagic flux defects in different human disorders and update the current methods of monitoring autophagic flux. This knowledge is essential for developing autophagy-related therapeutics for treating the diseases. PMID:23474710

  17. Methane flux from Minnesota peatlands

    SciTech Connect

    Crill, P.M.; Bartlett, K.B.; Harriss, R.C.; Gorham, E.; Verry, E.S. )

    1988-12-01

    Northern (> 40 deg N) wetlands have been suggested as the largest natural source of methane (CH{sub 4}) to the troposphere. To refine the authors estimates of source strengths from this region and to investigate climatic controls on the process, fluxes were measured from a variety of Minnesota peatlands during May, June, and August 1986. Late spring and summer fluxes ranged from 11 to 866 mg CH{sub 4}/sq/m/day, averaging 207 mg CH{sub 4} sq/m/day overall. At Marcell Forest, forested bogs and fen sites had lower fluxes than open bogs. In the Red Lake peatland, circumneutral fens, with standing water above the peat surface, produced more methane than acid bog sites in which the water table was beneath the moss surface. Peat temperature was an important control. Methane flux increased in response to increasing soil temperature. It is estimated that the methane flux from all peatlands north of 40 deg may be on the order of 70 to 90 Tg/yr though estimates of this sort are plagued by uncertainties in the areal extent of peatlands, length of the CH{sub 4} producing season, and the spatial and temporal variability of the flux. 60 refs., 7 figs., 5 tabs.

  18. Quantification of terrestrial ecosystem carbon dynamics in the conterminous United States combining a process-based biogeochemical model and MODIS and AmeriFlux data

    SciTech Connect

    Chen, Min; Zhuang, Qianlai; Cook, D.; Coulter, Richard L.; Pekour, Mikhail S.; Scott, Russell L.; Munger, J. W.; Bible, Ken

    2011-08-31

    Satellite remote sensing provides continuous temporal and spatial information of terrestrial ecosystems. Using these remote sensing data and eddy flux measurements and biogeochemical models, such as the Terrestrial Ecosystem Model (TEM), should provide a more adequate quantification of carbon dynamics of terrestrial ecosystems. Here we use Moderate Resolution Imaging Spectroradiometer (MODIS) Enhanced Vegetation Index (EVI), Land Surface Water Index (LSWI) and carbon flux data of AmeriFlux to conduct such a study. We first modify the gross primary production (GPP) modeling in TEM by incorporating EVI and LSWI to account for the effects of the changes of canopy photosynthetic capacity, phenology and water stress. Second, we parameterize and verify the new version of TEM with eddy flux data. We then apply the model to the conterminous United States over the period 2000-2005 at a 0.05-0.05 spatial resolution. We find that the new version of TEM made improvement over the previous version and generally captured the expected temporal and spatial patterns of regional carbon dynamics. We estimate that regional GPP is between 7.02 and 7.78 PgC yr{sup -1} and net primary production (NPP) ranges from 3.81 to 4.38 Pg Cyr{sup -1} and net ecosystem production (NEP) varies within 0.08- 0.73 PgC yr{sup -1} over the period 2000-2005 for the conterminous United States. The uncertainty due to parameterization is 0.34, 0.65 and 0.18 PgC yr{sup -1} for the regional estimates of GPP, NPP and NEP, respectively. The effects of extreme climate and disturbances such as severe drought in 2002 and destructive Hurricane Katrina in 2005 were captured by the model. Our study provides a new independent and more adequate measure of carbon fluxes for the conterminous United States, which will benefit studies of carbon-climate feedback and facilitate policy-making of carbon management and climate.

  19. Quantification of Terrestrial Ecosystem Carbon Dynamics in the Conterminous United States Combining a Process-Based Biogeochemical Model and MODIS and AmeriFlux data

    SciTech Connect

    Chen, Min; Zhuang, Qianlai; Cook, David R.; Coulter, Richard L.; Pekour, Mikhail S.; Scott, Russell L.; Munger, J. W.; Bible, Ken

    2011-09-21

    Satellite remote sensing provides continuous temporal and spatial information of terrestrial 24 ecosystems. Using these remote sensing data and eddy flux measurements and biogeochemical 25 models, such as the Terrestrial Ecosystem Model (TEM), should provide a more adequate 26 quantification of carbon dynamics of terrestrial ecosystems. Here we use Moderate Resolution 27 Imaging Spectroradiometer (MODIS) Enhanced Vegetation Index (EVI), Land Surface Water Index 28 (LSWI) and carbon flux data of AmeriFlux to conduct such a study. We first modify the gross primary 29 production (GPP) modeling in TEM by incorporating EVI and LSWI to account for the effects of the 30 changes of canopy photosynthetic capacity, phenology and water stress. Second, we parameterize and 31 verify the new version of TEM with eddy flux data. We then apply the model to the conterminous 32 United States over the period 2000-2005 at a 0.05o ×0.05o spatial resolution. We find that the new 33 version of TEM generally captured the expected temporal and spatial patterns of regional carbon 34 dynamics. We estimate that regional GPP is between 7.02 and 7.78 Pg C yr-1 and net primary 35 production (NPP) ranges from 3.81 to 4.38 Pg C yr-1 and net ecosystem production (NEP) varies 36 within 0.08-0.73 Pg C yr-1 over the period 2000-2005 for the conterminous United States. The 37 uncertainty due to parameterization is 0.34, 0.65 and 0.18 Pg C yr-1 for the regional estimates of GPP, 38 NPP and NEP, respectively. The effects of extreme climate and disturbances such as severe drought in 39 2002 and destructive Hurricane Katrina in 2005 were captured by the model. Our study provides a 40 new independent and more adequate measure of carbon fluxes for the conterminous United States, 41 which will benefit studies of carbon-climate feedback and facilitate policy-making of carbon 42 management and climate.

  20. Quantification of terrestrial ecosystem carbon dynamics in the conterminous United States combining a process-based biogeochemical model and MODIS and AmeriFlux data

    SciTech Connect

    Chen, M.; Zhuang, Q.; Cook, D. R.; Coulter, R.; Pekour, M.; Scott, R. L.; Munger, J. W.; Bible, K.

    2011-09-21

    Satellite remote sensing provides continuous temporal and spatial information of terrestrial ecosystems. Using these remote sensing data and eddy flux measurements and biogeochemical models, such as the Terrestrial Ecosystem Model (TEM), should provide a more adequate quantification of carbon dynamics of terrestrial ecosystems. Here we use Moderate Resolution Imaging Spectroradiometer (MODIS) Enhanced Vegetation Index (EVI), Land Surface Water Index (LSWI) and carbon flux data of AmeriFlux to conduct such a study. First we modify the gross primary production (GPP) modeling in TEM by incorporating EVI and LSWI to account for the effects of the changes of canopy photosynthetic capacity, phenology and water stress. Second, we parameterize and verify the new version of TEM with eddy flux data. We then apply the model to the conterminous United States over the period 2000–2005 at a 0.05° × 0.05° spatial resolution. We find that the new version of TEM made improvement over the previous version and generally captured the expected temporal and spatial patterns of regional carbon dynamics. We estimate that regional GPP is between 7.02 and 7.78 PgC yr-1 and net primary production (NPP) ranges from 3.81 to 4.38 Pg Cyr-1 and net ecosystem production (NEP) varies within 0.08– 0.73 PgC yr-1 over the period 2000–2005 for the conterminous United States. The uncertainty due to parameterization is 0.34, 0.65 and 0.18 PgC yr-1 for the regional estimates of GPP, NPP and NEP, respectively. The effects of extreme climate and disturbances such as severe drought in 2002 and destructive Hurricane Katrina in 2005 were captured by the model. Lastly, our study provides a new independent and more adequate measure of carbon fluxes for the conterminous United States, which will benefit studies of carbon-climate feedback and facilitate policy-making of carbon management and climate.

  1. Quantification of terrestrial ecosystem carbon dynamics in the conterminous United States combining a process-based biogeochemical model and MODIS and AmeriFlux data

    DOE PAGES

    Chen, M.; Zhuang, Q.; Cook, D. R.; ...

    2011-09-21

    Satellite remote sensing provides continuous temporal and spatial information of terrestrial ecosystems. Using these remote sensing data and eddy flux measurements and biogeochemical models, such as the Terrestrial Ecosystem Model (TEM), should provide a more adequate quantification of carbon dynamics of terrestrial ecosystems. Here we use Moderate Resolution Imaging Spectroradiometer (MODIS) Enhanced Vegetation Index (EVI), Land Surface Water Index (LSWI) and carbon flux data of AmeriFlux to conduct such a study. First we modify the gross primary production (GPP) modeling in TEM by incorporating EVI and LSWI to account for the effects of the changes of canopy photosynthetic capacity, phenologymore » and water stress. Second, we parameterize and verify the new version of TEM with eddy flux data. We then apply the model to the conterminous United States over the period 2000–2005 at a 0.05° × 0.05° spatial resolution. We find that the new version of TEM made improvement over the previous version and generally captured the expected temporal and spatial patterns of regional carbon dynamics. We estimate that regional GPP is between 7.02 and 7.78 PgC yr-1 and net primary production (NPP) ranges from 3.81 to 4.38 Pg Cyr-1 and net ecosystem production (NEP) varies within 0.08– 0.73 PgC yr-1 over the period 2000–2005 for the conterminous United States. The uncertainty due to parameterization is 0.34, 0.65 and 0.18 PgC yr-1 for the regional estimates of GPP, NPP and NEP, respectively. The effects of extreme climate and disturbances such as severe drought in 2002 and destructive Hurricane Katrina in 2005 were captured by the model. Lastly, our study provides a new independent and more adequate measure of carbon fluxes for the conterminous United States, which will benefit studies of carbon-climate feedback and facilitate policy-making of carbon management and climate.« less

  2. Importance of crop varieties and management practices: evaluation of a process-based model for simulating CO2 and H2O fluxes at five European maize (Zea mays L.) sites

    NASA Astrophysics Data System (ADS)

    Li, L.; Vuichard, N.; Viovy, N.; Ciais, P.; Ceschia, E.; Jans, W.; Wattenbach, M.; Béziat, P.; Gruenwald, T.; Lehuger, S.; Bernhofer, C.

    2011-03-01

    Crop varieties and management practices such as planting and harvest dates, irrigation, and fertilization have important effects on the water and carbon fluxes over croplands, and lack or inaccuracy of this information may cause large uncertainties in hydraulic and carbon modeling. Yet the magnitude of uncertainties has not been investigated in detail. This paper provides a comprehensive assessment of the performances of a process-based ecosystem model called ORCHIDEE-STICS (a coupled model between generic ecosystem model ORCHIDEE and the crop growth model STICS), against eddy-covariance observations of CO2 and H2O fluxes at five European maize cultivation sites. The results show that ORCHIDEE-STICS has a good potential to simulate energy, water vapor and carbon dioxide fluxes from maize croplands on a daily basis. The model explains 23-75% of the observed daily net ecosystem exchange (NEE) variance at five sites, and 26-79% of the latent heat flux (LE) variance. Similarly, 34-83% of the variance in observed gross primary productivity (GPP) is accounted for by the model. However, only 3-81% of the variance of observed terrestrial ecosystem respiration (TER) is explained. Therefore, simulating TER is shown to be much more difficult than GPP. We conclude that structural deficiencies of the model in the determination of LAI and TER are the main sources of errors in simulating carbon dioxide and water vapor fluxes. A group of sensitivity analyses, by setting different crop variety, nitrogen fertilization, irrigation, and planting date, indicate that any of these factors is able to cause more than 15% change in simulated NEE although the response of these fluxes to management parameters is site-dependent. Varying management practice in the model is shown to affect not only the daily values of NEE and LE, but also the total seasonal cumulative values, and therefore the annual carbon and water budgets. However, LE is found to be less sensitive to management practices than

  3. Regulation of the interplanetary magnetic flux

    SciTech Connect

    McComas, D.J.; Gosling, J.T.; Phillips, J.L.

    1991-01-01

    In this study we use a recently developed technique for measuring the 2-D magnetic flux in the ecliptic plane to examine (1) the long term variation of the magnetic flux in interplanetary space and (2) the apparent rate at which coronal mass ejections (CMEs) may be opening new flux from the Sun. Since there is a substantial variation ({approximately}50%) of the flux in the ecliptic plane over the solar cycle, we conclude that there must be some means whereby new flux can be opened from the Sun and previously open magnetic flux can be closed off. We briefly describe recently discovered coronal disconnections events which could serve to close off previously open magnetic flux. CMEs appear to retain at least partial magnetic connection to the Sun and hence open new flux, while disconnections appear to be likely signatures of the process that returns closed flux to the Sun; the combination of these processes could regulate the amount of open magnetic flux in interplanetary space. 6 refs., 3 figs.

  4. Clustering of Emerging Flux

    NASA Technical Reports Server (NTRS)

    Ruzmaikin, A.

    1997-01-01

    Observations show that newly emerging flux tends to appear on the Solar surface at sites where there is flux already. This results in clustering of solar activity. Standard dynamo theories do not predict this effect.

  5. Microstructure measurements and heat flux calculations of a triple-diffusive process in a lake within the diffusive layer convection regime

    NASA Astrophysics Data System (ADS)

    SáNchez, X.; Roget, E.

    2007-02-01

    Microstructure measurements of a triple-diffusive staircase with a stability ratio of 1.1 are presented. Data were recorded at Lake Banyoles, a small lake in Catalonia, Spain, with a warm, salty, and turbid underground inflow. Turbulent scales are well resolved in the two observed convective layers and allow determination of the dissipation rates of the turbulent kinetic energy, ɛ, and of the turbulent temperature fluctuations, χ, which are found to be 3.3 × 10-7 C2/s and 2.7 × 10-9 W/kg for one of the layers and 5.9 × 10-7 C2/s and 3.8 × 10-9 W/kg for the other. Thermal spectra for the convective layers look universal in viscous-diffusive and viscous-convective subranges. Characteristic vertical displacements within convective layers could also be obtained on the basis of Thorpe scales and were found to be 0.3 times the layer thickness. Vertical convective fluctuations were estimated and found to be of the order of 10-4 m/s. When turbulent fluxes were determined within the convective layers on the basis of microstructure data and compared to those at the diffusive interfaces, they showed a stationary state with a mean thermal flux of 3.5 × 10-6 C m/s. A comparison of experimental heat fluxes to different models favors the scaling model of Grossman and Lohse (2000) for Rayleigh-Bénard convection and the double-diffusive convection model of Fernando (1979a, 1979b) for low stability. If the 4/3 power law is assumed, then the parameterization proposed by Taylor (1988) for diffusive interfaces at low values of the density ratio is also in accordance with our data.

  6. Topology of magnetic flux ropes and formation of fossil flux transfer events and boundary layer plasmas

    NASA Technical Reports Server (NTRS)

    Lee, L. C.; Ma, Z. W.; Fu, Z. F.; Otto, A.

    1993-01-01

    A mechanism for the formation of fossil flux transfer events and the low-level boundary layer within the framework of multiple X-line reconnection is proposed. Attention is given to conditions for which the bulk of magnetic flux in a flux rope of finite extent has a simple magnetic topology, where the four possible connections of magnetic field lines are: IMF to MSP, MSP to IMF, IMF to IMF, and MSP to MSP. For a sufficient relative shift of the X lines, magnetic flux may enter a flux rope from the magnetosphere and exit into the magnetosphere. This process leads to the formation of magnetic flux ropes which contain a considerable amount of magnetosheath plasma on closed magnetospheric field lines. This process is discussed as a possible explanation for the formation of fossil flux transfer events in the magnetosphere and the formation of the low-latitude boundary layer.

  7. Topology of magnetic flux ropes and formation of fossil flux transfer events and boundary layer plasmas

    NASA Technical Reports Server (NTRS)

    Lee, L. C.; Ma, Z. W.; Fu, Z. F.; Otto, A.

    1993-01-01

    A mechanism for the formation of fossil flux transfer events and the low-level boundary layer within the framework of multiple X-line reconnection is proposed. Attention is given to conditions for which the bulk of magnetic flux in a flux rope of finite extent has a simple magnetic topology, where the four possible connections of magnetic field lines are: IMF to MSP, MSP to IMF, IMF to IMF, and MSP to MSP. For a sufficient relative shift of the X lines, magnetic flux may enter a flux rope from the magnetosphere and exit into the magnetosphere. This process leads to the formation of magnetic flux ropes which contain a considerable amount of magnetosheath plasma on closed magnetospheric field lines. This process is discussed as a possible explanation for the formation of fossil flux transfer events in the magnetosphere and the formation of the low-latitude boundary layer.

  8. High flux solar energy transformation

    DOEpatents

    Winston, Roland; Gleckman, Philip L.; O'Gallagher, Joseph J.

    1991-04-09

    Disclosed are multi-stage systems for high flux transformation of solar energy allowing for uniform solar intensification by a factor of 60,000 suns or more. Preferred systems employ a focusing mirror as a primary concentrative device and a non-imaging concentrator as a secondary concentrative device with concentrative capacities of primary and secondary stages selected to provide for net solar flux intensification of greater than 2000 over 95 percent of the concentration area. Systems of the invention are readily applied as energy sources for laser pumping and in other photothermal energy utilization processes.

  9. High flux solar energy transformation

    DOEpatents

    Winston, R.; Gleckman, P.L.; O'Gallagher, J.J.

    1991-04-09

    Disclosed are multi-stage systems for high flux transformation of solar energy allowing for uniform solar intensification by a factor of 60,000 suns or more. Preferred systems employ a focusing mirror as a primary concentrative device and a non-imaging concentrator as a secondary concentrative device with concentrative capacities of primary and secondary stages selected to provide for net solar flux intensification of greater than 2000 over 95 percent of the concentration area. Systems of the invention are readily applied as energy sources for laser pumping and in other photothermal energy utilization processes. 7 figures.

  10. FLUXES FOR MECHANIZED ELECTRIC WELDING,

    DTIC Science & Technology

    WELDING FLUXES, WELDING ), (* WELDING , WELDING FLUXES), ARC WELDING , WELDS, STABILITY, POROSITY, WELDING RODS, STEEL, CERAMIC MATERIALS, FLUXES(FUSION), TITANIUM ALLOYS, ALUMINUM ALLOYS, COPPER ALLOYS, ELECTRODEPOSITION

  11. Minkowski vacuum transitions in (nongeometric) flux compactifications

    SciTech Connect

    Herrera-Suarez, Wilberth; Loaiza-Brito, Oscar

    2010-02-15

    In this work we study the generalization of twisted homology to geometric and nongeometric backgrounds. In the process, we describe the necessary conditions to wrap a network of D-branes on twisted cycles. If the cycle is localized in time, we show how by an instantonic brane mediation, some D-branes transform into fluxes on different backgrounds, including nongeometric fluxes. As a consequence, we show that in the case of a IIB six-dimensional torus compactification on a simple orientifold, the flux superpotential is not invariant by this brane-flux transition, allowing the connection among different Minkowski vacuum solutions. For the case in which nongeometric fluxes are turned on, we also discuss some topological restrictions for the transition to occur. In this context, we show that there are some vacuum solutions protected to change by a brane-flux transition.

  12. Organic vapor fluxes through the vadose zone

    SciTech Connect

    Smith, J.A.; Tisdale, A.K.; Cho, H.J.

    1996-10-01

    Volatilization from shallow ground water followed by air-phase transport through the unsaturated zone is a poorly understood process that may be a significant natural remediation mechanism for volatile organic pollutants including chlorinated solvents and gasoline constituents (e.g., benzene, toluene, etc.). To improve understanding of this process, the upward flux of trichloroethene (TCE) vapor through the unsaturated zone above a contaminated, water-table aquifer at Picatinny Arsenal, New Jersey, has been studied under natural conditions over a 12-mo period. Vertical gas-phase diffusion fluxes were determined indirectly by measuring the TCE vapor concentration gradient in the unsaturated zone and using Fick`s Law to calculate the flux. The total gas-phase flux (e.g., the sum of diffusion and advection fluxes) was measured directly with a vertical flux chamber (VFC). In many cases, the upward TCE vapor flux was several orders of magnitude greater than the upward TCE diffusion flux, suggesting that the vertical transport of TCE vapors by gas advection is significant relative to vertical transport by diffusion. The measured total flux of TCE vapor from the subsurface to the atmosphere is approximately 50 kg/yr and is comparable in magnitude to the removal rate of TCE from the aquifer by an existing pump-and-treat system and by discharge into a nearby stream.

  13. How the Saturnian Magnetosphere Conserves Magnetic Flux

    NASA Astrophysics Data System (ADS)

    Powell, R. L.; Wei, H.; Russell, C. T.; Arridge, C. S.; Dougherty, M. K.

    2012-12-01

    The magnetospheric dynamics at Saturn are driven by the centrifugal force of near co-rotating water group ions released at a rate of hundreds of kilograms per second by Saturn's moon Enceladus. The plasma is accelerated up to co-rotation speed by the magnetospheric magnetic field coupled to the Saturnian ionosphere. The plasma is lost ultimately through the process of magnetic reconnection in the tail. Conservation of magnetic flux requires that plasma-depleted, "empty" flux tubes return magnetic flux to the inner magnetosphere. After completion of the initial inrush of the reconnected and largely emptied flux tubes inward of the reconnection point, the flux tubes face the outflowing plasma and must move inward against the flow. Observations of such flux tubes have been identified in the eight years of Cassini magnetometer data. The occurrence of these tubes is observed at all local times indicating slow inward transport of the tubes relative to the co-rotation speed. Depleted flux tubes observed in the equatorial region appear as an enhancement in the magnitude of the magnetic field, whereas the same flux tubes observed at higher latitudes appear as decreased field strength. The difference in appearance of the low latitude and the high latitude tubes is due to the plasma environment just outside the tube. Warm low-density plasma fills the inside of the flux tube at all latitudes. This flux tube thus will expand in the less dense regions away from the magnetic equator and will be observed as a decrease in the magnitude of the magnetic field from the background. These flux tubes near the equator, where the plasma density outside of the flux tube is much greater, will be observed as an enhancement in the magnitude of the magnetic field. Cassini magnetometer and CAPS data are examined to understand the properties of these flux tubes and their radial and latitudinal evolution throughout the Saturnian magnetospheric environment.

  14. Evaluation of the Effect of the Volume Throughput and Maximum Flux of Low-Surface-Tension Fluids on Bacterial Penetration of 0.2 Micron-Rated Filters during Process-Specific Filter Validation Testing.

    PubMed

    Folmsbee, Martha

    2015-01-01

    Approximately 97% of filter validation tests result in the demonstration of absolute retention of the test bacteria, and thus sterile filter validation failure is rare. However, while Brevundimonas diminuta (B. diminuta) penetration of sterilizing-grade filters is rarely detected, the observation that some fluids (such as vaccines and liposomal fluids) may lead to an increased incidence of bacterial penetration of sterilizing-grade filters by B. diminuta has been reported. The goal of the following analysis was to identify important drivers of filter validation failure in these rare cases. The identification of these drivers will hopefully serve the purpose of assisting in the design of commercial sterile filtration processes with a low risk of filter validation failure for vaccine, liposomal, and related fluids. Filter validation data for low-surface-tension fluids was collected and evaluated with regard to the effect of bacterial load (CFU/cm(2)), bacterial load rate (CFU/min/cm(2)), volume throughput (mL/cm(2)), and maximum filter flux (mL/min/cm(2)) on bacterial penetration. The data set (∼1162 individual filtrations) included all instances of process-specific filter validation failures performed at Pall Corporation, including those using other filter media, but did not include all successful retentive filter validation bacterial challenges. It was neither practical nor necessary to include all filter validation successes worldwide (Pall Corporation) to achieve the goals of this analysis. The percentage of failed filtration events for the selected total master data set was 27% (310/1162). Because it is heavily weighted with penetration events, this percentage is considerably higher than the actual rate of failed filter validations, but, as such, facilitated a close examination of the conditions that lead to filter validation failure. In agreement with our previous reports, two of the significant drivers of bacterial penetration identified were the total

  15. Fluxes of CO2, CH4, CO, BVOCs, NOx, and O3 in an Old Growth Amazonian Forest: Ecosystem Processes, Carbon Cycle, Atmospheric Chemistry, and Feedbacks on Climate

    SciTech Connect

    Wofsy, Steven C.

    2016-12-20

    part of the cycling processes occurring in the top layers. Methane fluxes showed no statistical difference between 2015 wet and dry seasons, and the forest at this site appear to be a methane sink throughout the year. The vertical profiles suggest that if a methane source exists in this forest, it might be in the canopy. Next steps include modeling and analysis using the Master Chemical Mechanism (Jenkin et al., 1997; Saunders et al., 2003 (A/B); http://mcm.leeds.ac.uk/MCM/) and the Ecosystem Demography-2 (ED-2) model. A final manuscript with the results from this work is in preparation and expected to be submitted for publication within the next several months. Publications to date are listed below.

  16. Flux flow and flux dynamics in high-Tc superconductors

    NASA Technical Reports Server (NTRS)

    Bennett, L. H.; Turchinskaya, M.; Swartzendruber, L. J.; Roitburd, A.; Lundy, D.; Ritter, J.; Kaiser, D. L.

    1991-01-01

    Because high temperature superconductors, including BYCO and BSSCO, are type 2 superconductors with relatively low H(sub c 1) values and high H(sub c 2) values, they will be in a critical state for many of their applications. In the critical state, with the applied field between H(sub c 1) and H(sub c 2), flux lines have penetrated the material and can form a flux lattice and can be pinned by structural defects, chemical inhomogeneities, and impurities. A detailed knowledge of how flux penetrates the material and its behavior under the influence of applied fields and current flow, and the effect of material processing on these properties, is required in order to apply, and to improve the properties of these superconductors. When the applied field is changed rapidly, the time dependence of flux change can be divided into three regions, an initial region which occurs very rapidly, a second region in which the magnetization has a 1n(t) behavior, and a saturation region at very long times. A critical field is defined for depinning, H(sub c,p) as that field at which the hysteresis loop changes from irreversible to reversible. As a function of temperature, it is found that H(sub c,p) is well described by a power law with an exponent between 1.5 and 2.5. The behavior of H(sub c,p) for various materials and its relationship to flux flow and flux dynamics are discussed.

  17. OpenFLUX: efficient modelling software for 13C-based metabolic flux analysis

    PubMed Central

    Quek, Lake-Ee; Wittmann, Christoph; Nielsen, Lars K; Krömer, Jens O

    2009-01-01

    Background The quantitative analysis of metabolic fluxes, i.e., in vivo activities of intracellular enzymes and pathways, provides key information on biological systems in systems biology and metabolic engineering. It is based on a comprehensive approach combining (i) tracer cultivation on 13C substrates, (ii) 13C labelling analysis by mass spectrometry and (iii) mathematical modelling for experimental design, data processing, flux calculation and statistics. Whereas the cultivation and the analytical part is fairly advanced, a lack of appropriate modelling software solutions for all modelling aspects in flux studies is limiting the application of metabolic flux analysis. Results We have developed OpenFLUX as a user friendly, yet flexible software application for small and large scale 13C metabolic flux analysis. The application is based on the new Elementary Metabolite Unit (EMU) framework, significantly enhancing computation speed for flux calculation. From simple notation of metabolic reaction networks defined in a spreadsheet, the OpenFLUX parser automatically generates MATLAB-readable metabolite and isotopomer balances, thus strongly facilitating model creation. The model can be used to perform experimental design, parameter estimation and sensitivity analysis either using the built-in gradient-based search or Monte Carlo algorithms or in user-defined algorithms. Exemplified for a microbial flux study with 71 reactions, 8 free flux parameters and mass isotopomer distribution of 10 metabolites, OpenFLUX allowed to automatically compile the EMU-based model from an Excel file containing metabolic reactions and carbon transfer mechanisms, showing it's user-friendliness. It reliably reproduced the published data and optimum flux distributions for the network under study were found quickly (<20 sec). Conclusion We have developed a fast, accurate application to perform steady-state 13C metabolic flux analysis. OpenFLUX will strongly facilitate and enhance the design

  18. Characterization of a hybrid powdered activated carbon-dynamic membrane bioreactor (PAC-DMBR) process with high flux by gravity flow: Operational performance and sludge properties.

    PubMed

    Hu, Yisong; Wang, Xiaochang C; Sun, Qiyuan; Ngo, Huu Hao; Yu, Zhenzhen; Tang, Jialing; Zhang, Qionghua

    2017-01-01

    Three PAC-DMBRs were developed for wastewater treatment under different PAC dosages with biomass concentrations averaged at 2.5, 3.5 and 5.0g/L. The DMBRs could be continuously operated at 40-100L/m(2)h, while higher fluxes were obtained within the PAC-DMBRs with hydraulic retention times varying in 4-10h. A dose of 1g/L PAC brought about obvious improvement in the sludge particle size distribution, settling, flocculating and dewatering properties due to the formation of biological PAC, and the sludge properties were further improved at a higher PAC dose (3g/L). The addition of PAC notably shortened the DM formation time after air backwashing and enhanced pollutant removal. Moreover, under a long solid retention time (approximately 150d), the concentrations of both soluble and bound extracellular polymeric substances (EPS) decreased substantially because of the adsorption and biodegradation effects of the biological PAC. No obvious impact on biomass activity was observed with PAC addition.

  19. Fluid-kinetic simulations of the passage of Storm Enhanced Density (SED) plasma flux tubes through the dayside cleft auroral processes region

    NASA Astrophysics Data System (ADS)

    Zeng, W.; Horwitz, J. L.

    2007-12-01

    Foster et al. [2002] and others have reported on elevated ionospheric density regions being convected from the subauroral plasmaspheric region toward noon, in association with convection of plasmaspheric tails in the dayside magnetosphere. It has been suggested that these so-called Storm Enhanced Density (SED) regions could serve as ionospheric plasma source populations for cleft ion fountain outflows. To investigate this scenario, we have used our Dynamic Fluid Kinetic (DyFK) model to simulate the entry of a high-density "plasmasphere-like" flux tube entering the cleft region and subjected to an episode of wave-driven transverse ion heating. We find that the O+ ion density at higher altitudes increases and the density at lower altitudes decreases, following this heating episode, indicating increased numbers of O+ ions from the ionospheric source gain sufficient energy to reach higher altitudes after the effects of transverse wave heating. We also find that O+- H+ crossing point in topside ionosphere moves upward as the wave heating continues. Foster, J. C., P. J. Erickson, A. J. Coster, J. Goldstein, and F. J. Rich, Ionospheric signatures of plasmaspheric tails, Geophys. Res. Lett., 29(13), 1623, doi:10.1029/2002GL015067, 2002.

  20. Aspects of flux compactification

    NASA Astrophysics Data System (ADS)

    Liu, Tao

    In this thesis, we study three main aspects of flux compactifications: (1) classify supergravity solutions from flux compactification; (2) construct flux-deformed geometry and 4D low-energy theory to describe these flux vacua; and (3) study 4D particle phenomenology and cosmology of flux vacua. In the first part, we review G-structure, the basic tool to study supersymmetric flux solutions, and some typical solutions obtained in heterotic, type IIA and type IIB string theories. Then we present a comprehensive classification of supersymmetric vacua of M-theory compactification on 7D manifolds with general four-form fluxes. We analyze the cases where the resulting four-dimensional vacua have N = 1, 2, 3, 4 supersymmetry and the internal space allows for SU(2)-, SU(3)- or G 2-structures. In particular, we find for N = 2 supersymmetry, that the external space-time is Minkowski and the base manifold of the internal space is conformally Kahler for SU(2) structures, while for SU(3) structures the internal space has to be Einstein-Sasaki and no internal fluxes are allowed. Moreover, we provide a new vacuum with N = 1 supersymmetry and SU(3) structure, where all fluxes are non-zero and the first order differential equations are solved. In the second part, we simply review the methods used to construct one subclass of fluxed-deformed geometry or the so-called "twisted manifold", and the associated 4D effective theory describing these flux vacua. Then by employing (generalized) Scherk-Schwarz reduction, we construct the geometric twisting for Calabi-Yau manifolds of Voisin-Borcea type (K 3 x T2)/ Z2 and study the superpotential in a type IIA orientifold based on this geometry. The twists modify the direct product by fibering the K 3 over T2 while preserving the Z2 involution. As an important application, the Voisin-Borcea class contains T6/( Z2 x Z2 ), the usual setting for intersecting D6 brane model building. Past work in this context considered only those twists inherited

  1. Phase versus flux coupling between resonator and superconducting flux qubit

    NASA Astrophysics Data System (ADS)

    Birenbaum, J. S.; O'Kelley, S. R.; Anton, S. M.; Nugroho, C. D.; Orlyanchik, V.; Dove, A. H.; Yoscovits, Z. R.; Olson, G. A.; van Harlingen, D. J.; Eckstein, J.; Braje, D. A.; Johnson, R. C.; Oliver, W. D.; Clarke, John

    2013-03-01

    The dispersive coupling of qubits to microwave resonators has become widely used for qubit readout. Recent advances in coupling qubits to 3D resonators have demonstrated the importance of the nature of the qubit-resonator coupling in determining the qubit relaxation and decoherence times, T1 and T2*. We study the effect of phase versus flux coupling on flux qubits coupled to planar resonators. Using an aluminum shadow evaporation technique we fabricate a low-loss planar resonator, consisting of a meandering inductor and interdigitated capacitor, and a flux qubit, all in a single processing step. Whereas the qubit and resonator are always flux coupled via a geometric mutual inductance, a phase coupling can be added by including a shared trace between the qubit and resonator. This technique allows us to control both the magnitude and nature of the qubit-resonator coupling without significantly affecting either the qubit or resonator design. We characterize the dependence of the qubit parameters T1, T2*, and spin echo time Techo on the resonator coupling parameters to gain insight into possible sources of decoherence and loss. This work was supported by ARO, IARPA, and the US Government

  2. Video Meteor Fluxes

    NASA Technical Reports Server (NTRS)

    Campbell-Brown, M. D.; Braid, D.

    2011-01-01

    The flux of meteoroids, or number of meteoroids per unit area per unit time, is critical for calibrating models of meteoroid stream formation and for estimating the hazard to spacecraft from shower and sporadic meteors. Although observations of meteors in the millimetre to centimetre size range are common, flux measurements (particularly for sporadic meteors, which make up the majority of meteoroid flux) are less so. It is necessary to know the collecting area and collection time for a given set of observations, and to correct for observing biases and the sensitivity of the system. Previous measurements of sporadic fluxes are summarized in Figure 1; the values are given as a total number of meteoroids striking the earth in one year to a given limiting mass. The Gr n et al. (1985) flux model is included in the figure for reference. Fluxes for sporadic meteoroids impacting the Earth have been calculated for objects in the centimeter size range using Super-Schmidt observations (Hawkins & Upton, 1958); this study used about 300 meteors, and used only the physical area of overlap of the cameras at 90 km to calculate the flux, corrected for angular speed of meteors, since a large angular speed reduces the maximum brightness of the meteor on the film, and radiant elevation, which takes into account the geometric reduction in flux when the meteors are not perpendicular to the horizontal. They bring up corrections for both partial trails (which tends to increase the collecting area) and incomplete overlap at heights other than 90 km (which tends to decrease it) as effects that will affect the flux, but estimated that the two effects cancelled one another. Halliday et al. (1984) calculated the flux of meteorite-dropping fireballs with fragment masses greater than 50 g, over the physical area of sky accessible to the MORP fireball cameras, counting only observations in clear weather. In the micron size range, LDEF measurements of small craters on spacecraft have been used to

  3. Chemistry and fluxes of magmatic gases powering the explosive trachyandesitic phase of Eyjafjallajokull 2010 eruption: constraints on degassing magma volumes and processes

    NASA Astrophysics Data System (ADS)

    Allard, P.; Burton, M. R.; Oskarsson, N.; Michel, A.; Polacci, M.

    2010-12-01

    The 2010 Eyjafjallajökull eruption developed in two distinct phases, with initial lateral effusion of alkali basalt since March 20, followed by highly explosive extrusion of a quite homogenous and crystal-poor trachyandesitic magma [1] through the central volcano ice cap between April 14 and May 24. As usual, magmatic volatiles played a key role in the eruption dynamics. Here we report on the chemical composition and the mass output of magmatic gases powering intense explosive activity during the second eruptive phase in early May. On May 8 we could measure the composition of magmatic gases directly issuing from the eruptive vents, by using OP-FTIR spectroscopy from the crater rim (~900 m distance) and molten lava blocks as IR radiation source. FTIR spectra reveal a variable mixture between two gas components equally rich in H2O (91.3 mol%) and CO2 (8%) but differing in their SO2/HCl ratio (up to 3.5 for the main one and 0.5 for the Cl-richer second one). Analysis of S-Cl-F in ash leachates and in ash and lava bomb samples (pyrohydrolysis) show that this second component was generated by greater chlorine loss during extensive magma fragmentation into fine ash. S/Cl and Cl/F ratios from both these analyses and solar occultation FTIR plume sensing indicate a modest fluorine content in emitted gas and its preferential adsorption onto solid particles during plume transport. DOAS traverses under the volcanic plume (4-6 km height), though hampered by dense ash load, gave most reliable SO2 fluxes of 4500-6600 tons d-1 on May 9, consistent with OMI satellite data [2]. These imply the daily co-emission of 7.2x105 tons of H2O, 1.5x105 tons of CO2, 2000 tons of HCl and ≤200 tons of HF. Eyjafjallajökull thus produced more hydrous and relatively CO2-poorer gas, in much greater quantities, during that stage than during its first basaltic phase [3]. Linear variations of dissolved S with TiO2/FeO ratio in nearby Katla alkali magmas [4] suggest possible pre-eruptive S contents

  4. Metal-fluxes characterization at a catchment scale: Study of mixing processes and end-member analysis in the Meca River watershed (SW Spain)

    NASA Astrophysics Data System (ADS)

    Cánovas, C. R.; Macías, F.; Olías, M.; López, R. Pérez; Nieto, J. M.

    2017-07-01

    Fluxes of acidity and contaminants from acid mine drainage (AMD) sources to the receiving surface water bodies were studied in a mining-impacted watershed (Meca River, SW Spain) using a novel methodology based on the joint application of EMMA and MIX codes. The application of EMMA and elemental ratios allowed delimiting the end-members responsible for water quality variations at a catchment scale. The further application of MIX quantified the significant impact of AMD on the river quality; less than 10% of AMD relative contribution is enough to maintain acidic conditions during most of the year. The mixing model also provided information about the element mobility, distinguishing those elements with a quasi-conservative behavior (e.g., Cu, Zn, Al, Co or Ni) from those affected by mineral precipitation/dissolution (e.g., K, Si, Na, Sr, Ca, Fe, Pb, or As). Floods are the main driver of dissolved and, mainly particulate, contaminants in the catchment. Thus, the first rainfall events in November only accounted for 19% of the annual Meca flow but yielded between 26 and 43% of the net acidity and dissolved metal loads (mainly, Fe, As and Pb). Concerning particulate transport, around 332 tons of particulate Fe, 49 tons of Al, 0.79 tons of As and 0.37 tons of Pb were recorded during these first floods. The particulate As concentration can be up to 34 times higher than the dissolved one during floods and between 2 and 4 times higher for Fe, Pb and Cr. This integrated modeling approach could be a promising and useful tool to face future restoration plans in derelict mines worldwide. This approach would allow prioritizing remedial measures, achieving an environmental and cost-effective restoration of degraded areas.

  5. Electron heat flux instability

    NASA Astrophysics Data System (ADS)

    Saeed, Sundas; Sarfraz, M.; Yoon, P. H.; Lazar, M.; Qureshi, M. N. S.

    2017-02-01

    The heat flux instability is an electromagnetic mode excited by a relative drift between the protons and two-component core-halo electrons. The most prominent application may be in association with the solar wind where drifting electron velocity distributions are observed. The heat flux instability is somewhat analogous to the electrostatic Buneman or ion-acoustic instability driven by the net drift between the protons and bulk electrons, except that the heat flux instability operates in magnetized plasmas and possesses transverse electromagnetic polarization. The heat flux instability is also distinct from the electrostatic counterpart in that it requires two electron species with relative drifts with each other. In the literature, the heat flux instability is often called the 'whistler' heat flux instability, but it is actually polarized in the opposite sense to the whistler wave. This paper elucidates all of these fundamental plasma physical properties associated with the heat flux instability starting from a simple model, and gradually building up more complexity towards a solar wind-like distribution functions. It is found that the essential properties of the instability are already present in the cold counter-streaming electron model, and that the instability is absent if the protons are ignored. These instability characteristics are highly reminiscent of the electron firehose instability driven by excessive parallel temperature anisotropy, propagating in parallel direction with respect to the ambient magnetic field, except that the free energy source for the heat flux instability resides in the effective parallel pressure provided by the counter-streaming electrons.

  6. Latent heat sink in soil heat flux measurements

    USDA-ARS?s Scientific Manuscript database

    The surface energy balance includes a term for soil heat flux. Soil heat flux is difficult to measure because it includes conduction and convection heat transfer processes. Accurate representation of soil heat flux is an important consideration in many modeling and measurement applications. Yet, the...

  7. Flux Compression Magnetic Nozzle

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Schafer, Charles (Technical Monitor)

    2001-01-01

    In pulsed fusion propulsion schemes in which the fusion energy creates a radially expanding plasma, a magnetic nozzle is required to redirect the radially diverging flow of the expanding fusion plasma into a rearward axial flow, thereby producing a forward axial impulse to the vehicle. In a highly electrically conducting plasma, the presence of a magnetic field B in the plasma creates a pressure B(exp 2)/2(mu) in the plasma, the magnetic pressure. A gradient in the magnetic pressure can be used to decelerate the plasma traveling in the direction of increasing magnetic field, or to accelerate a plasma from rest in the direction of decreasing magnetic pressure. In principle, ignoring dissipative processes, it is possible to design magnetic configurations to produce an 'elastic' deflection of a plasma beam. In particular, it is conceivable that, by an appropriate arrangement of a set of coils, a good approximation to a parabolic 'magnetic mirror' may be formed, such that a beam of charged particles emanating from the focal point of the parabolic mirror would be reflected by the mirror to travel axially away from the mirror. The degree to which this may be accomplished depends on the degree of control one has over the flux surface of the magnetic field, which changes as a result of its interaction with a moving plasma.

  8. Filament Interaction Modeled by Flux Rope Reconnection

    NASA Astrophysics Data System (ADS)

    Török, T.; Chandra, R.; Pariat, E.; Démoulin, P.; Schmieder, B.; Aulanier, G.; Linton, M. G.; Mandrini, C. H.

    2011-02-01

    Hα observations of solar active region NOAA 10501 on 2003 November 20 revealed a very uncommon dynamic process: during the development of a nearby flare, two adjacent elongated filaments approached each other, merged at their middle sections, and separated again, thereby forming stable configurations with new footpoint connections. The observed dynamic pattern is indicative of "slingshot" reconnection between two magnetic flux ropes. We test this scenario by means of a three-dimensional zero β magnetohydrodynamic simulation, using a modified version of the coronal flux rope model by Titov and Démoulin as the initial condition for the magnetic field. To this end, a configuration is constructed that contains two flux ropes which are oriented side-by-side and are embedded in an ambient potential field. The choice of the magnetic orientation of the flux ropes and of the topology of the potential field is guided by the observations. Quasi-static boundary flows are then imposed to bring the middle sections of the flux ropes into contact. After sufficient driving, the ropes reconnect and two new flux ropes are formed, which now connect the former adjacent flux rope footpoints of opposite polarity. The corresponding evolution of filament material is modeled by calculating the positions of field line dips at all times. The dips follow the morphological evolution of the flux ropes, in qualitative agreement with the observed filaments.

  9. Sediment-water fluxes of mercury in Lavaca Bay, Texas

    SciTech Connect

    Gill, G.A.; Bloom, N.S.; Cappellino, S.; Driscoll, C.T.; Dobbs, C.; McShea, L.; Mason, R.; Rudd, J.W.M.

    1999-03-01

    The aqueous flux of inorganic Hg and monomethyl Hg from sediments to the water column was determined at several sites in Lavaca Bay, an estuary along the Texas Coast, historically impacted by Hg discharges. Diffusive fluxes were calculated at 15 sites using interstitial pore water gradients and compared to direct flux measurements obtained at two sites using benthic flux chambers. The diffusive flux of monomethyl mercury (MMHg), when modeled as a chloride species, varied over 3 orders /of magnitude from 0.2 to 1500 ng m{sup {minus}2} day{sup {minus}1}. Diffusive fluxes determined at a single site revealed that MMHg fluxes varied seasonally; maximal fluxes occurred in late winter to early spring. Flux chamber deployments at an impacted site revealed t hat MMHg was the Hg species entering the water column from sediments and the flux was not in steady-state; there was a strong diurnal signal with most of the MMHg flux occurring during dark periods. The flux of inorganic Hg was smaller and not as easily discernible by this method. The MMHg flux during the dark period was about 6 times greater than the estimated diffusional flux for MMHgCl, suggesting that biological and/or chemical processes near the sediment-water interface were strongly mediating the sediment-water exchange of MMHg.

  10. Directed flux motor

    NASA Technical Reports Server (NTRS)

    Wilson, Andrew (Inventor); Punnoose, Andrew (Inventor); Strausser, Katherine (Inventor); Parikh, Neil (Inventor)

    2011-01-01

    A directed flux motor described utilizes the directed magnetic flux of at least one magnet through ferrous material to drive different planetary gear sets to achieve capabilities in six actuated shafts that are grouped three to a side of the motor. The flux motor also utilizes an interwoven magnet configuration which reduces the overall size of the motor. The motor allows for simple changes to modify the torque to speed ratio of the gearing contained within the motor as well as simple configurations for any number of output shafts up to six. The changes allow for improved manufacturability and reliability within the design.

  11. Directed flux motor

    NASA Technical Reports Server (NTRS)

    Wilson, Andrew (Inventor); Punnoose, Andrew (Inventor); Strausser, Katherine (Inventor); Parikh, Neil (Inventor)

    2011-01-01

    A directed flux motor described utilizes the directed magnetic flux of at least one magnet through ferrous material to drive different planetary gear sets to achieve capabilities in six actuated shafts that are grouped three to a side of the motor. The flux motor also utilizes an interwoven magnet configuration which reduces the overall size of the motor. The motor allows for simple changes to modify the torque to speed ratio of the gearing contained within the motor as well as simple configurations for any number of output shafts up to six. The changes allow for improved manufacturability and reliability within the design.

  12. Charged Particle Flux Sensor

    NASA Technical Reports Server (NTRS)

    Gregory, D. A.; Stocks, C. D.

    1983-01-01

    Improved version of Faraday cup increases accuracy of measurements of flux density of charged particles incident along axis through collection aperture. Geometry of cone-and-sensing cup combination assures most particles are trapped.

  13. GEWEX Radiative Flux Assessment

    Atmospheric Science Data Center

    2016-05-20

    ... climate components (atmosphere, ocean, land, cryosphere, biosphere). The GEWEX Radiative Flux Assessment (RFA) project will provide a ... Spatial Coverage: (-20.45, -2.43)(-62.87, -47.90) Full Product Page ...

  14. Cryogenic flux-concentrator

    NASA Technical Reports Server (NTRS)

    Bailey, B. M.; Brechna, H.; Hill, D. A.

    1969-01-01

    Flux concentrator has high primary to secondary coupling efficiency enabling it to produce high magnetic fields. The device provides versatility in pulse duration, magnetic field strengths and power sources.

  15. Reappraisal of soil C storage processes. The controversy on structural diversity of humic substances as biogeochemical driver for soil C fluxes

    NASA Astrophysics Data System (ADS)

    Almendros, Gonzalo; Gonzalez-Vila, Francisco J.; Gonzalez-Perez, Jose Antonio; Knicker, Heike

    2016-04-01

    The functional relationships between the macromolecular structure of the humic substances (HS) and a series of biogeochemical processes related with the C sequestration performance in soils have been recently questioned. In this communication we collect recent data from a wide array of different ecosystems where the C storage in soils has been studied and explained as a possible cause-to-effect relationship or has been found significantly correlated (multivariate statistical models) with a series of structural characteristics of humic materials. The study of humic materials has methodological analytical limitations that are derived from its complex, chaotic and not completely understood structure, that reflects its manifold precursors as well as the local impact of environmental/depositional factors. In this work we attempt to design an exploratory, multiomic approach based on the information provided by the molecular characterization of the soil organic matter (SOM). Massive data harvesting was carried out of statistical variables, to infer biogeochemical proxies (spectroscopic, chromatographic, mass spectrometric quantitative descriptors). The experimental data were acquired from advanced instrumental methodologies, viz, analytical pyrolysis, compound-specific stable isotope analysis (CSIA), derivative infrared (FTIR) spectroscopy, solid-state C-13 and N-15 nuclear magnetic resonance (NMR) and mass spectrometry (MS) data after direct injection (thermoevaporation), previous pyrolysis, or ion averaging of specific m/z ranges from classical GC/MS chromatograms. In the transversal exploratory analysis of the multianalytical information, the data were coded for on-line processing in a stage in which there is no need for interpretation, in molecular or structural terms, of the quantitative data consisting of e.g., peak intensities, signal areas, chromatographic (GC) total abundances, etc. A series of forecasting chemometric approaches (aiming to express SOM

  16. O-GlcNAcylation and the Metabolic Shift in High-Proliferating Cells: All the Evidence Suggests that Sugars Dictate the Flux of Lipid Biogenesis in Tumor Processes

    PubMed Central

    Baldini, Steffi F.; Lefebvre, Tony

    2016-01-01

    Cancer cells are characterized by their high capability to proliferate. This imposes an accelerated biosynthesis of membrane compounds to respond to the need for increasing the membrane surface of dividing cells and remodeling the structure of lipid microdomains. Recently, attention has been paid to the upregulation of O-GlcNAcylation processes observed in cancer cells. Although O-GlcNAcylation of lipogenic transcriptional regulators is described in the literature (e.g., FXR, LXR, ChREBP), little is known about the regulation of the enzymes that drive lipogenesis: acetyl co-enzyme A carboxylase and fatty acid synthase (FAS). The expression and catalytic activity of both FAS and O-GlcNAc transferase (OGT) are high in cancer cells but the reciprocal regulation of the two enzymes remains unexplored. In this perspective, we collected data linking FAS and OGT and, in so doing, pave the way for the exploration of the intricate functions of these two actors that play a central role in tumor growth. PMID:26835421

  17. Dynamical Processes of Gravity Waves Propagation and Dissipation, and Statistical Characteristics of Their Momentum Flux in the Mesosphere and Lower Thermosphere

    NASA Astrophysics Data System (ADS)

    Cao, Bing

    The mesosphere and lower thermosphere (MLT) (˜80-110 km) is dominated by abundant atmospheric waves, of which gravity waves are one of the least understood due to large varieties in wave characteristics as well as potential sources. Gravity waves play an important role in the atmosphere by influencing the thermal balance and helping to drive the global circulation. But due to their sub-grid scale, the effects of gravity waves in General Circulation Models (GCMs) are mostly parameterized. The investigations of gravity waves in this dissertation are from two perspectives: the dynamical processes of gravity wave propagation and dissipation in the MLT region, and the climatology and statistical characteristics of gravity waves as physical basics of gravity wave parameterization. The studies are based on the data acquired from an airglow imager and a sodium lidar, with the assistance of some simulation data from a meso-scale numerical model and GCMs. To understand the dynamical processes in gravity wave propagation and dissipation, a gravity wave should be resolved as fully as possible. The first topic of this dissertation is motivated by the fact that most observational instruments can only capture part of the gravity waves spectrum, either horizontal or vertical structures. Observations from multiple complementary instruments are used to study gravity waves in 3-D space. There are two cases included in this topic. In case 1, a co-located sodium lidar and an airglow imager were used to depict a comprehensive picture of a wave event at altitude between 95-105 km. Thus, the horizontal and vertical gravity waves structures and their ambient atmosphere states were fully characterized, which suggests that a gravity wave undergoes reflection at two different altitudes and near-critical layer filtering in-between. All the retrieved parameters were then applied to a 2-D numerical model whose outputs help to interpret the observations. In case 2, the lidar system is configured

  18. Using stable isotopes in process-based ecohydrologic modelling to infer vegetation imprint on water fluxes, partitioning and storage in boreal ecosystems

    NASA Astrophysics Data System (ADS)

    Kuppel, S.; Tetzlaff, D.; Maneta, M. P.; Soulsby, C.

    2016-12-01

    Tracing stable water isotopes has been extensively used in a wide range of geographical environments as a means to understand the sources, flow paths and transit times of the water leaving a landscape via evapotranspiration, surface runoff and/or stream flow. By integrated analysis of the measured isotopic signature of plant xylem water with that of precipitation, soil water, groundwater and stream flow, recent attention has been given to assessing how plant water use may affect preferential hydrologic pathways and storage compartments in the critical zone. While these datasets provide invaluable information to further refine modelling approaches, in most cases their use has been limited to informing conceptual hydrologic models with simplified vegetation and energy balance (e.g., rainfall-runoff models), making it difficult to disentangle key controls among biological and physical processes. This issue is especially relevant in northern latitudes where the hydrological implications of projected environmental change are essentially unknown though expected to be marked. In this study we have implemented isotopic tracers in a physical, grid-based ecohydrologic model which combines a hydrologic scheme of intermediate complexity with an explicit representation of plant growth and phenology while resolving the energy balance across the soil-vegetation-atmosphere continuum. This calibrated approach is informed by/compared to datasets resulting from extensive field campaigns (e.g., water isotopes, streamflow, local geophysics, micrometeorology) conducted within the ERC-funded "VeWa" project across six long-term experimental sites across the wider North (Scotland, Sweden, Canada and the US). This effort is a first step towards understanding ecohydrologic functioning of northern environments across spatial and temporal scales.

  19. Sediment flux and the Anthropocene.

    PubMed

    Syvitski, James P M; Kettner, Albert

    2011-03-13

    Data and computer simulations are reviewed to help better define the timing and magnitude of human influence on sediment flux--the Anthropocene epoch. Impacts on the Earth surface processes are not spatially or temporally homogeneous. Human influences on this sediment flux have a secondary effect on floodplain and delta-plain functions and sediment dispersal into the coastal ocean. Human impact on sediment production began 3000 years ago but accelerated more widely 1000 years ago. By the sixteenth century, societies were already engineering their environment. Early twentieth century mechanization has led to global signals of increased sediment flux in most large rivers. By the 1950s, this sediment disturbance signal reversed for many rivers owing to the proliferation of dams, and sediment load reduction below pristine conditions is the dominant signal today. A delta subsidence signal began in the 1930s and is now a dominant signal in terms of sea level for many coastal environments, overwhelming even the global warming imprint on sea level. Humans have engineered how most water and sediment are discharged into the coastal ocean. Hyperpycnal flow events have become more common for some rivers, and less common for other rivers. Bottom trawling is now widespread, suggesting that even continental shelves have received a significant but as yet quantified Anthropocene impact. The Anthropocene attains the level of a geological climate event, such as that seen in the transition between the Pleistocene and the Holocene.

  20. SAMOS Surface Fluxes

    NASA Astrophysics Data System (ADS)

    Smith, Shawn; Bourassa, Mark

    2014-05-01

    The development of a new surface flux dataset based on underway meteorological observations from research vessels will be presented. The research vessel data center at the Florida State University routinely acquires, quality controls, and distributes underway surface meteorological and oceanographic observations from over 30 oceanographic vessels. These activities are coordinated by the Shipboard Automated Meteorological and Oceanographic System (SAMOS) initiative in partnership with the Rolling Deck to Repository (R2R) project. Recently, the SAMOS data center has used these underway observations to produce bulk flux estimates for each vessel along individual cruise tracks. A description of this new flux product, along with the underlying data quality control procedures applied to SAMOS observations, will be provided. Research vessels provide underway observations at high-temporal frequency (1 min. sampling interval) that include navigational (position, course, heading, and speed), meteorological (air temperature, humidity, wind, surface pressure, radiation, rainfall), and oceanographic (surface sea temperature and salinity) samples. Vessels recruited to the SAMOS initiative collect a high concentration of data within the U.S. continental shelf and also frequently operate well outside routine shipping lanes, capturing observations in extreme ocean environments (Southern, Arctic, South Atlantic, and South Pacific oceans). These observations are atypical for their spatial and temporal sampling, making them very useful for many applications including validation of numerical models and satellite retrievals, as well as local assessments of natural variability. Individual SAMOS observations undergo routine automated quality control and select vessels receive detailed visual data quality inspection. The result is a quality-flagged data set that is ideal for calculating turbulent flux estimates. We will describe the bulk flux algorithms that have been applied to the

  1. Meromorphic flux compactification

    NASA Astrophysics Data System (ADS)

    Damian, Cesar; Loaiza-Brito, Oscar

    2017-04-01

    We present exact solutions of four-dimensional Einstein's equations related to Minkoswki vacuum constructed from Type IIB string theory with non-trivial fluxes. Following [1, 2] we study a non-trivial flux compactification on a fibered product by a four-dimensional torus and a two-dimensional sphere punctured by 5- and 7-branes. By considering only 3-form fluxes and the dilaton, as functions on the internal sphere coordinates, we show that these solutions correspond to a family of supersymmetric solutions constructed by the use of G-theory. Meromorphicity on functions constructed in terms of fluxes and warping factors guarantees that flux and 5-brane contributions to the scalar curvature vanish while fulfilling stringent constraints as tadpole cancelation and Bianchi identities. Different Einstein's solutions are shown to be related by U-dualities. We present three supersymmetric non-trivial Minkowski vacuum solutions and compute the corresponding soft terms. We also construct a non-supersymmetric solution and study its stability.

  2. Inflation from flux cascades

    NASA Astrophysics Data System (ADS)

    D'Amico, Guido; Gobbetti, Roberto; Kleban, Matthew; Schillo, Marjorie L.

    2013-10-01

    When electric-type flux threads compact extra dimensions, a quantum nucleation event can break a flux line and initiate a cascade that unwinds many units of flux. Here, we present a novel mechanism for inflation based on this phenomenon. From the 4D point of view, the cascade begins with the formation of a bubble containing an open Friedmann-Robertson-Walker cosmology, but the vacuum energy inside the bubble is initially only slightly reduced, and subsequently decreases gradually throughout the cascade. If the initial flux number Q0 ≳ O (100), during the cascade the universe can undergo N ≳ 60 efolds of inflationary expansion with gradually decreasing Hubble constant, producing a nearly scale-invariant spectrum of adiabatic density perturbations with amplitude and tilt consistent with observation, and a potentially observable level of non-Gaussianity and tensor modes. The power spectrum has a small oscillatory component that does not decay away during inflation, with a period set approximately by the light-crossing time of the compact dimension(s). Since the ingredients are fluxes threading compact dimensions, this mechanism fits naturally into the string landscape, but does not appear to suffer from the eta problem or require fine-tuning (beyond the usual anthropic requirement of small vacuum energy after reheating).

  3. Protected Flux Pairing Qubit

    NASA Astrophysics Data System (ADS)

    Bell, Matthew; Zhang, Wenyuan; Ioffe, Lev; Gershenson, Michael

    2014-03-01

    We have studied the coherent flux tunneling in a qubit containing two submicron Josephson junctions shunted by a superinductor (a dissipationless inductor with an impedance much greater than the resistance quantum). The two low energy quantum states of this device, 0 and 1, are represented by even and odd number of fluxes in the loop, respectively. This device is dual to the charge pairing Josephson rhombi qubit. The spectrum of the device, studied by microwave spectroscopy, reflects the interference between coherent quantum phase slips in the two junctions (the Aharonov-Casher effect). The time domain measurements demonstrate the suppression of the qubit's energy relaxation in the protected regime, which illustrates the potential of this flux pairing device as a protected quantum circuit. Templeton Foundation, NSF, and ARO.

  4. Flux flow microelectronics

    NASA Astrophysics Data System (ADS)

    Martens, J. S.; Hietala, V. M.; Plut, T. A.; Ginley, D. S.; Vawter, G. A.; Tigges, C. P.; Siegal, M. P.; Phillips, J. M.; Hou, S. Y.

    Flux-flow based devices such as the superconducting flux flow transistor and magnetically controlled long junctions have been made from thin films of TlCaBaCuO and YBaCuO. The devices are based on the magnetic control of flux flow in their respective structures: a long junction or an array of weak links. The equivalent circuits of the two devices are similar: a low impedance input control line, an output impedance of 3 - 20 ohm and an active current-controlled element. The long junctions have tended to be slower, have lower gain and be somewhat less noisy than their counterparts. The performance of circuits such as narrowband and distributed amplifiers (50 GHz bandwidths, noise figures less than 3 dB), phase shifters (continuous with less than 2 dB loss 4 - 40 GHz), logic gates (2 - 3 ps gate delays) and memories made using these devices will be compared and analyzed.

  5. Chesapeake Bay sediment flux model. Final report

    SciTech Connect

    Di Toro, D.M.; Fitzpatrick, J.J.

    1993-06-01

    Formulation and application of a predictive diagenetic sediment model are described in this report. The model considers two benthic sediment layers: a thin aerobic layer in contact with the water column and a thicker anaerobic layer. Processes represented include diagenesis, diffusion, particle mixing, and burial. Deposition of organic matter, water column concentrations, and temperature are treated as independent variables that influence sediment-water fluxes. Sediment oxygen demand and sediment-water fluxes of sulfide, ammonium, nitrate, phosphate, and silica are predicted. The model was calibrated using sediment-water flux observations collected in Chesapeake Bay 1985-1988. When independent variables were specified based on observations, the model correctly represented the time series of sediment-water fluxes observed at eight stations in the Bay and tributaries.... Chesapeake Bay, Models, Sediments, Dissolved oxygen, Nitrogen Eutrophication, Phosphorus.

  6. Magnetic Flux Cancellation and Formation of Prominence

    NASA Astrophysics Data System (ADS)

    Miley, George; Kim, Mun Song; Chon Nam, Sok; Kim, Kyong Chol

    2015-08-01

    Magnetic flux cancellation appears to be closely related to various kinds of solar activities such as flares, microflares/surges/jets, X-ray bright points, erupting mini-filaments, transition region explosive events, filament formation, filament activation and eruption, and coronal mass ejections. It is commonly believed that magnetic reconnections in the low atmosphere are responsible for canceling magnetic features, and magnetic fragments are observed to originate as bipoles. According to the Sweet-Parker type reconnection model, the inflow speed closely corresponds to the converging speed of each pole in a canceling magnetic feature and the rate of flux cancellation must be explained by the observed converging speed. As distinct from the corona, the efficiency of photospheric magnetic reconnection may be due to the small Cowling conductivity, instead of the Spitzer, of weakly ionized and magnetized plasma in the low atmosphere of the sun. Using the VAL-C atmospheric model and Cowling conductivity, we have computed the parameters describing Sweet-Parker type reconnecting current sheets in the plasma of the solar photosphere and chromosphere, and particularly for the phenomena of magnetic flux cancellation and dark filament formation which occurred on July 2, 1994 we have estimated the rate of flux cancellation, the inflow speed(the converging speed) and the upward mass flux to compare with the observation. The results show that when taking account of the Cowling conductivity in the low atmosphere, large flux cancellation rates(>1019Mxhr-1) in solar active regions are better explained than by the Spitzer conductivity-considered reconnection model. Particularly for the flux cancellation event on July 2, 1994, the inflow speed(0.26kms-1)is almost similar to the converging speed(0.22kms-1)and the upward mass flux(3.3X1012gs-1) in the model is sufficient for the large dark filament formation in a time of several hours through magnetic flux cancellation process.

  7. On calculating the potential vorticity flux

    SciTech Connect

    Hsu, Pei-Chun; Diamond, P. H.

    2015-03-15

    We discuss and compare different approaches to calculating the dynamics of anisotropic flow structure formation in quasi two-dimensional turbulence based on potential vorticity (PV) transport in real space. The general structure of the PV flux in the relaxation processes is deduced non-perturbatively. The transport coefficients of the PV flux are then systematically calculated using perturbation theory. We develop two non-perturbative relaxation models: the first is a mean field theory for the dynamics of minimum enstrophy relaxation based on the requirement that the mean flux of PV dissipates total potential enstrophy but conserves total fluid kinetic energy. The results show that the structure of PV flux has the form of a sum of a positive definite hyper-viscous and a negative or positive viscous flux of PV. Turbulence spreading is shown to be related to PV mixing via the link of turbulence energy flux to PV flux. In the relaxed state, the ratio of the PV gradient to zonal flow velocity is homogenized. This homogenized quantity sets a constraint on the amplitudes of PV and zonal flow in the relaxed state. The second relaxation model is derived from symmetry principles alone. The form of PV flux contains a nonlinear convective term in addition to viscous and hyper-viscous terms. For both cases, the transport coefficients are calculated using perturbation theory. For a broad turbulence spectrum, a modulational calculation of the PV flux gives both a negative viscosity and a positive hyper-viscosity. For a narrow turbulence spectrum, the result of a parametric instability analysis shows that PV transport is also convective. In both relaxation and perturbative analyses, it is shown that turbulent PV transport is sensitive to flow structure, and the transport coefficients are nonlinear functions of flow shear.

  8. Optical heat flux gauge

    DOEpatents

    Noel, Bruce W.; Borella, Henry M.; Cates, Michael R.; Turley, W. Dale; MaCarthur, Charles D.; Cala, Gregory C.

    1991-01-01

    A heat flux gauge comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable.

  9. Optical heat flux gauge

    DOEpatents

    Noel, Bruce W.; Borella, Henry M.; Cates, Michael R.; Turley, W. Dale; MacArthur, Charles D.; Cala, Gregory C.

    1991-01-01

    A heat flux gauge comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator, wherein each thermographic layer comprises a plurality of respective thermographic sensors in a juxtaposed relationship with respect to each other. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable.

  10. Optical heat flux gauge

    DOEpatents

    Noel, Bruce W.; Borella, Henry M.; Cates, Michael R.; Turley, W. Dale; MacArthur, Charles D.; Cala, Gregory C.

    1991-01-01

    A heat flux gauge comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator wherein each thermographic layer comprises a plurality of respective thermographic phosphors. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable.

  11. Optical heat flux gauge

    SciTech Connect

    Noel, B.W.; Borella, H.M.; Cates, M.R.; Turley, W.D.; MacArthur, C.D.; Cala, G.C.

    1991-06-25

    A heat flux gauge is described comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator wherein each thermographic layer comprises respective thermographic phosphors. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable.

  12. Optical heat flux gauge

    SciTech Connect

    Noel, B.W.; Borella, H.M.; Cates, M.R.; Turley, W.D.; MacArthur, C.D.; Cala, G.C.

    1989-06-07

    A heat flux gauge comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable. 9 figs.

  13. Optical heat flux gauge

    SciTech Connect

    Noel, B.W.; Borella, H.M.; Cates, M.R.; Turley, W.D.; MaCarthur, C.D.; Cala, G.C.

    1991-09-03

    A heat flux gauge is described comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable. 9 figures.

  14. Estimating methane fluxes at a landscape scale

    NASA Astrophysics Data System (ADS)

    Stockdale, James; MacBean, Natasha

    2010-05-01

    Terrestrial methane fluxes are an important component of peatland carbon budgets. Using a well-studied peatland site in Wales as a case study, we present a variety of approaches to quantifying annual methane fluxes at a landscape scale, with a focus on the comparison between a simple stratification method, an empirical regression-based method and a process-based method. The simplest approach relies on in situ methane flux measurements which, due to the indirect effects on methane flux from the vascular transport mechanism and co-variation with hydrological conditions, were stratified by vegetation type. Aside from this initial classification, an annual landscape flux was produced through a linear scaling model without attempting to consider any physical, chemical or biological processes known to control methane fluxes. The regression-based approach attempted to model fluxes using repeated measurements from across the study site over a 12 months period, together with environmental variables from associated locations. This method classifies the landscape by vegetation in a similar way to the first method and also takes into consideration variables commonly known to influence methane flux such as temperature and water table. However, no direct consideration of methane production or consumption is included in this empirical regression model. In contrast to both the preceding methods, estimates of methane flux using a process-based model were constructed for the same landscape. This method uses the Carnegie-Ames-Stanford Approach (CASA) model (Potter et al., 1993), which has been modified to include a representation of methane dynamics. The model is calibrated with ground-based measurements of net CH4 flux and water table depth using a Metropolis Hastings Markov Chain Monte Carlo approach. Comparison of these approaches shows that, while simple methods of stratification and scaling are computationally inexpensive and quick to perform, they are least successful when

  15. Standardized Automated CO2/H2O Flux Systems for Individual Research Groups and Flux Networks

    NASA Astrophysics Data System (ADS)

    Burba, George; Begashaw, Israel; Fratini, Gerardo; Griessbaum, Frank; Kathilankal, James; Xu, Liukang; Franz, Daniela; Joseph, Everette; Larmanou, Eric; Miller, Scott; Papale, Dario; Sabbatini, Simone; Sachs, Torsten; Sakai, Ricardo; McDermitt, Dayle

    2017-04-01

    In recent years, spatial and temporal flux data coverage improved significantly, and on multiple scales, from a single station to continental networks, due to standardization, automation, and management of data collection, and better handling of the extensive amounts of generated data. With more stations and networks, larger data flows from each station, and smaller operating budgets, modern tools are required to effectively and efficiently handle the entire process. Such tools are needed to maximize time dedicated to authoring publications and answering research questions, and to minimize time and expenses spent on data acquisition, processing, and quality control. Thus, these tools should produce standardized verifiable datasets and provide a way to cross-share the standardized data with external collaborators to leverage available funding, promote data analyses and publications. LI-COR gas analyzers are widely used in past and present flux networks such as AmeriFlux, ICOS, AsiaFlux, OzFlux, NEON, CarboEurope, and FluxNet-Canada, etc. These analyzers have gone through several major improvements over the past 30 years. However, in 2016, a three-prong development was completed to create an automated flux system which can accept multiple sonic anemometer and datalogger models, compute final and complete fluxes on-site, merge final fluxes with supporting weather soil and radiation data, monitor station outputs and send automated alerts to researchers, and allow secure sharing and cross-sharing of the station and data access. Two types of these research systems were developed: open-path (LI-7500RS) and enclosed-path (LI-7200RS). Key developments included: • Improvement of gas analyzer performance • Standardization and automation of final flux calculations onsite, and in real-time • Seamless integration with latest site management and data sharing tools In terms of the gas analyzer performance, the RS analyzers are based on established LI-7500/A and LI-7200

  16. Generic flux coupling analysis.

    PubMed

    Reimers, Arne C; Goldstein, Yaron; Bockmayr, Alexander

    2015-04-01

    Flux coupling analysis (FCA) has become a useful tool for aiding metabolic reconstructions and guiding genetic manipulations. Originally, it was introduced for constraint-based models of metabolic networks that are based on the steady-state assumption. Recently, we have shown that the steady-state assumption can be replaced by a weaker lattice-theoretic property related to the supports of metabolic fluxes. In this paper, we further extend our approach and develop an efficient algorithm for generic flux coupling analysis that works with any kind of qualitative pathway model. We illustrate our method by thermodynamic flux coupling analysis (tFCA), which allows studying steady-state metabolic models with loop-law thermodynamic constraints. These models do not satisfy the lattice-theoretic properties required in our previous work. For a selection of genome-scale metabolic network reconstructions, we discuss both theoretically and practically, how thermodynamic constraints strengthen the coupling results that can be obtained with classical FCA. A prototype implementation of tFCA is available at http://hoverboard.io/L4FC. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. High flux heat exchanger

    NASA Astrophysics Data System (ADS)

    Flynn, Edward M.; Mackowski, Michael J.

    1993-01-01

    This interim report documents the results of the first two phases of a four-phase program to develop a high flux heat exchanger for cooling future high performance aircraft electronics. Phase 1 defines future needs for high flux heat removal in advanced military electronics systems. The results are sorted by broad application categories: (1) commercial digital systems, (2) military data processors, (3) power processors, and (4) radar and optical systems. For applications expected to be fielded in five to ten years, the outlook is for steady state flux levels of 30-50 W/sq cm for digital processors and several hundred W/sq cm for power control applications. In Phase 1, a trade study was conducted on emerging cooling technologies which could remove a steady state chip heat flux of 100 W/sq cm while holding chip junction temperature to 90 C. Constraints imposed on heat exchanger design, in order to reflect operation in a fighter aircraft environment, included a practical lower limit on coolant supply temperature, the preference for a nontoxic, nonflammable, and nonfreezing coolant, the need to minimize weight and volume, and operation in an accelerating environment. The trade study recommended the Compact High Intensity Cooler (CHIC) for design, fabrication, and test in the final two phases of this program.

  18. Carbon Flux Explorers

    SciTech Connect

    Bishop, Jim

    2016-09-09

    Jim Bishop, senior scientist at Berkeley Lab and professor at UC Berkeley, is leading a project to deploy robotic floats that provide data on how microorganisms sequester carbon in the ocean. He recently led a research team on a 10-day voyage, funded by the National Science Foundation, to put the Carbon Flux Explorers to the test.

  19. Muon and neutrino fluxes

    NASA Technical Reports Server (NTRS)

    Edwards, P. G.; Protheroe, R. J.

    1985-01-01

    The result of a new calculation of the atmospheric muon and neutrino fluxes and the energy spectrum of muon-neutrinos produced in individual extensive air showers (EAS) initiated by proton and gamma-ray primaries is reported. Also explained is the possibility of detecting atmospheric nu sub mu's due to gamma-rays from these sources.

  20. Soluble organic nutrient fluxes

    Treesearch

    Robert G. Qualls; Bruce L. Haines; Wayne Swank

    2014-01-01

    Our objectives in this study were (i) compare fluxes of the dissolved organic nutrients dissolved organic carbon (DOC), DON, and dissolved organic phosphorus (DOP) in a clearcut area and an adjacent mature reference area. (ii) determine whether concentrations of dissolved organic nutrients or inorganic nutrients were greater in clearcut areas than in reference areas,...

  1. Advanced Surface Flux Parameterization

    DTIC Science & Technology

    2001-09-30

    within PE 0602435N are BE-35-2-18, for the Mesoscale Modeling of the Atmos- phere and Aerosols, BE-35-2-19, and for the Exploratory Data Assimilation ... Methods . Related project at NPS is N0001401WR20242 for Evaluating Surface Flux and Boundary Layer Parameterizations in Mesoscale Models Using

  2. Flux Tube Model

    NASA Astrophysics Data System (ADS)

    Steiner, O.

    2011-05-01

    This Fortran code computes magnetohydrostatic flux tubes and sheets according to the method of Steiner, Pneuman, & Stenflo (1986) A&A 170, 126-137. The code has many parameters contained in one input file that are easily modified. Extensive documentation is provided in README files.

  3. Radiative Flux Analysis

    DOE Data Explorer

    Long, Chuck [NOAA

    2008-05-14

    The Radiative Flux Analysis is a technique for using surface broadband radiation measurements for detecting periods of clear (i.e. cloudless) skies, and using the detected clear-sky data to fit functions which are then used to produce continuous clear-sky estimates. The clear-sky estimates and measurements are then used in various ways to infer cloud macrophysical properties.

  4. Carbon Flux Explorers

    ScienceCinema

    Bishop, Jim

    2016-10-12

    Jim Bishop, senior scientist at Berkeley Lab and professor at UC Berkeley, is leading a project to deploy robotic floats that provide data on how microorganisms sequester carbon in the ocean. He recently led a research team on a 10-day voyage, funded by the National Science Foundation, to put the Carbon Flux Explorers to the test.

  5. The C-shunt Flux Qubit: A New Generation of Superconducting Flux Qubit

    NASA Astrophysics Data System (ADS)

    Birenbaum, Jeffrey Scott

    While quantum computation has the potential to revolutionize the scientific community, to date no architecture has been developed which offers the necessary combination of high coherence times and massive scalability. Superconducting flux qubits satisfy the second requirement well but to date useful devices are limited to coherence times of typically only a few mus. In this dissertation we examine the possibilities of improving the coherence performance of the flux qubit to the levels required for fault-tolerant quantum computation. We find that coherence times for many devices are limited by photon-induced quasiparticles and mitigation of these quasiparticles increases coherence times by more than a factor of two. Beyond this, however, we find little improvement in flux qubit performance compared to prior results. Despite improved fabrication techniques and varied device designs we find flux qubit coherence times are still typically below 5 mus. Furthermore, wide device-to-device variations are observed which prevent effective scaling of the flux qubit to quantum information circuits. Based on the proposal by You, et al. we develop of a capacitively-shunted version of the flux qubit called the C-shunt flux qubit. With the addition of a capacitive shunt across the small junction of the flux qubit we are able to reduce the amplitude sensitivity to both charge and flux noise by more than a factor of three. The result is a predicted ten-fold enhancement in the coherence times compared to the unshunted flux qubit. At the same time we preserve much of the anharmonicity of the flux qubit resulting in a device with coherence times comparable to modern transmons but with a factor of four better anharmonicity and more flexible coupling configurations. By using a high-quality MBE aluminum shunt process on an annealed sapphire substrate coupled with a more conventional electron-beam-evaporated aluminum Josephson junction process we fabricate hybrid C-shunt flux qubits. We

  6. Metabolic process engineering of Clostridium tyrobutyricum Δack-adhE2 for enhanced n-butanol production from glucose: effects of methyl viologen on NADH availability, flux distribution, and fermentation kinetics.

    PubMed

    Du, Yinming; Jiang, Wenyan; Yu, Mingrui; Tang, I-Ching; Yang, Shang-Tian

    2015-04-01

    Butanol biosynthesis through aldehyde/alcohol dehydrogenase (adhE2) is usually limited by NADH availability, resulting in low butanol titer, yield, and productivity. To alleviate this limitation and improve n-butanol production by Clostridium tyrobutyricum Δack-adhE2 overexpressing adhE2, the NADH availability was increased by using methyl viologen (MV) as an artificial electron carrier to divert electrons from ferredoxin normally used for H2 production. In the batch fermentation with the addition of 500 μM MV, H2 , acetate, and butyrate production was reduced by more than 80-90%, while butanol production increased more than 40% to 14.5 g/L. Metabolic flux analysis revealed that butanol production increased in the fermentation with MV because of increased NADH availability as a result of reduced H2 production. Furthermore, continuous butanol production of ∼55 g/L with a high yield of ∼0.33 g/g glucose and extremely low ethanol, acetate, and butyrate production was obtained in fed-batch fermentation with gas stripping for in situ butanol recovery. This study demonstrated a stable and reliable process for high-yield and high-titer n-butanol production by metabolically engineered C. tyrobutyricum by applying MV as an electron carrier to increase butanol biosynthesis.

  7. Flux frequency analysis of seasonally dry ecosystem fluxes in two unique biomes of Sonora Mexico

    NASA Astrophysics Data System (ADS)

    Verduzco, V. S.; Yepez, E. A.; Robles-Morua, A.; Garatuza, J.; Rodriguez, J. C.; Watts, C.

    2013-05-01

    Complex dynamics from the interactions of ecosystems processes makes difficult to model the behavior of ecosystems fluxes of carbon and water in response to the variation of environmental and biological drivers. Although process oriented ecosystem models are critical tools for studying land-atmosphere fluxes, its validity depends on the appropriate parameterization of equations describing temporal and spatial changes of model state variables and their interactions. This constraint often leads to discrepancies between model simulations and observed data that reduce models reliability especially in arid and semiarid ecosystems. In the semiarid north western Mexico, ecosystem processes are fundamentally controlled by the seasonality of water and the intermittence of rain pulses which are conditions that require calibration of specific fitting functions to describe the response of ecosystem variables (i.e. NEE, GPP, ET, respiration) to these wetting and drying periods. The goal is to find functions that describe the magnitude of ecosystem fluxes during individual rain pulses and the seasonality of the ecosystem. Relaying on five years of eddy covariance flux data of a tropical dry forest and a subtropical shrubland we present a flux frequency analysis that describe the variation of net ecosystem exchange (NEE) of CO2 to highlight the relevance of pulse driven dynamics controlling this flux. Preliminary results of flux frequency analysis of NEE indicate that these ecosystems are strongly controlled by the frequency distribution of rain. Also, the output of fitting functions for NEE, GPP, ET and respiration using semi-empirical functions applied at specific rain pulses compared with season-long statistically generated simulations do not agree. Seasonality and the intrinsic nature of individual pulses have different effects on ecosystem flux responses. This suggests that relationships between the nature of seasonality and individual pulses can help improve the

  8. Flux compactifications grow lumps

    NASA Astrophysics Data System (ADS)

    Dahlen, Alex; Zukowski, Claire

    2014-12-01

    The simplest flux compactifications are highly symmetric—a q -form flux is wrapped uniformly around an extra-dimensional q -sphere. In this paper, we investigate solutions that break the internal SO (q +1 ) symmetry down to SO (q )×Z2 ; we find a large number of such lumpy solutions, and show that often at least one of them has lower vacuum energy, larger entropy, and is more stable than the symmetric solution. We construct the phase diagram of lumpy solutions, and provide an interpretation in terms of an effective potential. Finally, we provide evidence that the perturbatively stable vacua have a nonperturbative instability to spontaneously sprout lumps. We give an estimate of the decay rate and argue that generically it is exponentially faster than all other known decays.

  9. Optical heat flux gauge

    DOEpatents

    Noel, B.W.; Borella, H.M.; Cates, M.R.; Turley, W.D.; MacArthur, C.D.; Cala, G.C.

    1991-04-09

    A heat flux gauge is disclosed comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator, wherein each thermographic layer comprises a plurality of respective thermographic sensors in a juxtaposed relationship with respect to each other. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable. 9 figures.

  10. Lobotomy of flux compactifications

    NASA Astrophysics Data System (ADS)

    Dibitetto, Giuseppe; Guarino, Adolfo; Roest, Diederik

    2014-05-01

    We provide the dictionary between four-dimensional gauged supergravity and type II compactifications on 6 with metric and gauge fluxes in the absence of supersymmetry breaking sources, such as branes and orientifold planes. Secondly, we prove that there is a unique isotropic compactification allowing for critical points. It corresponds to a type IIA background given by a product of two 3-tori with SO(3) twists and results in a unique theory (gauging) with a non-semisimple gauge algebra. Besides the known four AdS solutions surviving the orientifold projection to = 4 induced by O6-planes, this theory contains a novel AdS solution that requires non-trivial orientifold-odd fluxes, hence being a genuine critical point of the = 8 theory.

  11. NEUTRON FLUX INTENSITY DETECTION

    DOEpatents

    Russell, J.T.

    1964-04-21

    A method of measuring the instantaneous intensity of neutron flux in the core of a nuclear reactor is described. A target gas capable of being transmuted by neutron bombardment to a product having a resonance absorption line nt a particular microwave frequency is passed through the core of the reactor. Frequency-modulated microwave energy is passed through the target gas and the attenuation of the energy due to the formation of the transmuted product is measured. (AEC)

  12. Reconnecting Flux Ropes

    NASA Astrophysics Data System (ADS)

    Gekelman, Walter; van Compernolle, Bart

    2012-10-01

    Magnetic flux ropes are due to helical currents and form a dense carpet of arches on the surface of the sun. Occasionally one tears loose as a coronal mass ejection and its rope structure is detected by satellites close to the earth. Current sheets can tear into filaments and these are nothing other than flux ropes. Ropes are not static, they exert mutual JxB forces causing them to twist about each other and merge. Kink instabilities cause them to violently smash into each other and reconnect at the point of contact. We report on experiments done in the large plasma device (LAPD) at UCLA (L=17m,dia=60cm,0.3<=B0z<=2.5kG,n˜2x10^12cm-3)on three dimensional flux ropes. Two, three or more magnetic flux ropes are generated from initially adjacent pulsed current channels in a background magnetized plasma. The currents and magnetic fields form exotic shapes with no ignorable direction and no magnetic nulls. Volumetric space-time data show multiple reconnection sites with time-dependent locations. The concept of a quasi-separatrix layer (QSL), a tool to understand 3D reconnection without null points. In our experiment the QSL is a narrow ribbon-like region(s) that twists between field lines. Within the QSL(s) field lines that start close to one another rapidly diverge as they pass through one or more reconnection regions. When the field lines are tracked they are observed to slip along the QSL when reconnection occurs. The Heating and other co-existing waves will be presented.

  13. Heat Flux Sensor Testing

    NASA Astrophysics Data System (ADS)

    Clark, D. W.

    2002-07-01

    This viewgraph presentation provides information on the following objectives: Developing secondary calibration capabilities for MSFC's (Marshall Space Flight Center) Hot Gas Facility (HGF), a Mach 4 Aerothermal Wind Tunnel; Evaluating ASTM (American Society for Testing and Materials) slug/ thinskin calorimeters against current HGF heat flux sensors; Providing verification of baselined AEDC (Arnold Engineering Development Center) / Medtherm gage calibrations; Addressing future calibration issues involving NIST (National Institute of Standards and Technology) certified radiant gages.

  14. Heat Flux Sensor Testing

    NASA Technical Reports Server (NTRS)

    Clark, D. W.

    2002-01-01

    This viewgraph presentation provides information on the following objectives: Developing secondary calibration capabilities for MSFC's (Marshall Space Flight Center) Hot Gas Facility (HGF), a Mach 4 Aerothermal Wind Tunnel; Evaluating ASTM (American Society for Testing and Materials) slug/ thinskin calorimeters against current HGF heat flux sensors; Providing verification of baselined AEDC (Arnold Engineering Development Center) / Medtherm gage calibrations; Addressing future calibration issues involving NIST (National Institute of Standards and Technology) certified radiant gages.

  15. Automated force-free flux rope identification

    NASA Astrophysics Data System (ADS)

    Smith, A. W.; Slavin, J. A.; Jackman, C. M.; Fear, R. C.; Poh, G.-K.; DiBraccio, G. A.; Jasinski, J. M.; Trenchi, L.

    2017-01-01

    We describe a method developed to automatically identify quasi force-free magnetotail flux ropes from in situ spacecraft magnetometer data. The method locates significant (greater than 1σ) deflections of the north-south component of the magnetic field coincident with enhancements in other field components. The magnetic field data around the deflections are then processed using Minimum Variance Analysis (MVA) to narrow the selection down to those that exhibit the characteristics of flux ropes. The subset of candidates that fulfills the requirements are then compared to a cylindrical, linear (constant-α) force-free model. Those that can be well approximated as force free are then accepted. The model fit also provides a measure of the physical parameters that describe the flux rope (i.e., core field and radius). This process allows for the creation of a repeatable, consistent catalog of flux ropes. Automation allows a greater volume of data to be covered, saving time and allowing the exploration of potential selection biases. The technique is applied to MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) magnetometer data in the Hermean magnetotail and successfully locates flux ropes, some of which match previously known encounters. Assumptions of the method and potential future applications are discussed.

  16. Physics of magnetic flux ropes

    NASA Astrophysics Data System (ADS)

    Russell, C. T.; Priest, E. R.; Lee, L. C.

    The present work encompasses papers on the structure, waves, and instabilities of magnetic flux ropes (MFRs), photospheric flux tubes (PFTs), the structure and heating of coronal loops, solar prominences, coronal mass ejections and magnetic clouds, flux ropes in planetary ionospheres, the magnetopause, magnetospheric field-aligned currents and flux tubes, and the magnetotail. Attention is given to the equilibrium of MFRs, resistive instability, magnetic reconnection and turbulence in current sheets, dynamical effects and energy transport in intense flux tubes, waves in solar PFTs, twisted flux ropes in the solar corona, an electrodynamical model of solar flares, filament cooling and condensation in a sheared magnetic field, the magnetopause, the generation of twisted MFRs during magnetic reconnection, ionospheric flux ropes above the South Pole, substorms and MFR structures, evidence for flux ropes in the earth magnetotail, and MFRs in 3D MHD simulations.

  17. Methane Fluxes from Subtropical Wetlands

    NASA Astrophysics Data System (ADS)

    DeLucia, N.; Gomez-Casanovas, N.; Bernacchi, C.

    2013-12-01

    It is well documented that green house gas concentrations have risen at unequivocal rates since the industrial revolution but the disparity between anthropogenic sources and natural sources is uncertain. Wetlands are one example of a natural ecosystem that can be a substantial source or sink for methane (CH4) depending on climate conditions. Due to strict anaerobic conditions required for CH4-generating microorganisms, natural wetlands are one of the main sources for biogenic CH4. Although wetlands occupy less than 5% of total land surface area, they contribute approximately 20% of total CH4 emissions to the atmosphere. The processes regulating CH4 emissions are sensitive to land use and management practices of areas surrounding wetlands. Variation in adjacent vegetation or grazing intensity by livestock can, for example, alter CH4 fluxes from wetland soils by altering nutrient balance, carbon inputs and hydrology. Therefore, understanding how these changes will affect wetland source strength is essential to understand the impact of wetland management practices on the global climate system. In this study we quantify wetland methane fluxes from subtropical wetlands on a working cattle ranch in central Florida near Okeechobee Lake (27o10'52.04'N, 81o21'8.56'W). To determine differences in CH4 fluxes associated with land use and management, a replicated (n = 4) full factorial experiment was designed for wetlands where the surrounding vegetation was (1) grazed or un-grazed and (2) composed of native vegetation or improved pasture. Net exchange of CH4 and CO2 between the land surface and the atmosphere were sampled with a LICOR Li-7700 open path CH4 analyzer and Li-7500A open path CO2/H20 analyzer mounted in a 1-m3 static gas-exchange chamber. Our results showed and verified that CH4 emissions from subtropical wetlands were larger when high soil moisture was coupled with high temperatures. The presence of cattle only amplified these results. These results help quantify

  18. SEP flux mapping with PHOEBUS

    NASA Astrophysics Data System (ADS)

    Grimani, C.; Bagni, G.; Fabi, M.; Vicerè, A.; Marconi, L.; Stanga, R.; Bosi, L.; Vocca, H.; Araújo, H.; Shaul, D.; Sumner, T.; Wass, P.; Boatella, C.; Lobo, A.; Chmeissani, M.; Martinez, I.

    2006-03-01

    We report about PHOEBUS (PHysics Of Events BUrsted by the Sun): a proposal for solar physics and space weather investigation with LISA (Laser Interferometer Space Antenna). Galactic and solar cosmic-ray particles with energies larger than 100 MeV(/n) penetrate and charge the LISA test masses. Spurious forces occur between the test masses and the surrounding electrodes mimicking gravitational wave signals. This process constitutes one of the major sources of acceleration noise for LISA. Silicon particle detectors will be placed on board the LISA-PF and LISA missions to monitor the overall energetic incident cosmic-ray fluxes. These telescopes can be also used to carry out a map of shock accelerated Solar Energetic Particle (SEPs) fluxes associated with evolving Coronal Mass Ejections (CMEs) at different steps in longitude. We discuss the role of protons, helium nuclei, galactic heavy nuclei and solar ions. We aim to contribute to the COST724 (European CO-operation in the field of Scientific and Technical Research) action inside WG1/WP13000 developing appropriate simulations of the dynamics of CMEs by using space-based data and theoretical models.

  19. Estimates of carbon cycle surface fluxes from the NASA Carbon Monitoring System Flux Pilot Project

    NASA Astrophysics Data System (ADS)

    Bowman, K. W.; Liu, J.; Lee, M.; Gurney, K. R.; Menemenlis, D.; Brix, H.; Hill, C. N.; Denning, S.; Haynes, K.; Baker, I. T.; Henze, D. K.; Bousserez, N.; Marland, G.; Marland, E.; Badurek, C. A.

    2013-12-01

    The goal of NASA Carbon Monitoring Study (CMS) Flux Pilot Project is to incorporate the full suite of NASA observational, modeling, and assimilation capabilities in order to attribute changes in globally distributed CO2 concentrations to spatially resolved surface fluxes across the entire carbon cycle. To that end, CMS has initiated a coordinated effort between land surface, ocean, fossil fuel, and atmospheric scientists to provide global estimates of CO2 constrained by satellite observations and informed by contemporaneous estimates of 'bottom up' fluxes from land surface, ocean, and fossil fuel models. The CMS Flux has evolved to incorporate a spatially explicit fossil fuel data assimilation system (FFDAS), an updated ECCO2 Darwin biogeochemical adjoint ocean state estimation system, and the new Simple Biospheric Model (Sib4) terrestrial ecosystem model. We compare GOSAT xCO2 observations, processed by the JPL ACOS v33, to predicted CMS Flux atmospheric CO2 concentrations for 2010-2011, and attribute the differences to spatially-resolved fluxes. We examine these fluxes in terms of interannual variability, correlative satellite measurements, and uncertainty across the carbon cycle

  20. Simulations of emerging magnetic flux. I. The formation of stable coronal flux ropes

    SciTech Connect

    Leake, James E.; Linton, Mark G.; Török, Tibor

    2013-12-01

    We present results from three-dimensional visco-resistive magnetohydrodynamic simulations of the emergence of a convection zone magnetic flux tube into a solar atmosphere containing a pre-existing dipole coronal field, which is orientated to minimize reconnection with the emerging field. We observe that the emergence process is capable of producing a coronal flux rope by the transfer of twist from the convection zone, as found in previous simulations. We find that this flux rope is stable, with no evidence of a fast rise, and that its ultimate height in the corona is determined by the strength of the pre-existing dipole field. We also find that although the electric currents in the initial convection zone flux tube are almost perfectly neutralized, the resultant coronal flux rope carries a significant net current. These results suggest that flux tube emergence is capable of creating non-current-neutralized stable flux ropes in the corona, tethered by overlying potential fields, a magnetic configuration that is believed to be the source of coronal mass ejections.

  1. Production of Welding Fluxes Using Waste Slag Formed in Silicomanganese Smelting

    NASA Astrophysics Data System (ADS)

    Kozyrev, N. A.; Kryukov, R. E.; Kozyreva, O. E.; Lipatova, U. I.; Filonov, A. V.

    2016-04-01

    The possibility in principle of using slag, which is formed in the silicon-manganese smelting process, in producing welding fluxes is shown. The composition of and technology used for a new fused flux has been designed. A comparative evaluation of the new flux and the widely used AN-348 type flux was done. It has been proved that the new flux has high strength properties.

  2. Insects, infestations and nutrient fluxes

    NASA Astrophysics Data System (ADS)

    Michalzik, B.

    2012-04-01

    Forest ecosystems are characterized by a high temporal and spatial variability in the vertical transfer of energy and matter within the canopy and the soil compartment. The mechanisms and controlling factors behind canopy processes and system-internal transfer dynamics are imperfectly understood at the moment. Seasonal flux diversities and inhomogeneities in throughfall composition have been reported from coniferous and deciduous forests, and in most cases leaf leaching has been considered as principle driver for differences in the amount and quality of nutrients and organic compounds (Tukey and Morgan 1963). Since herbivorous insects and the processes they initiate received less attention in past times, ecologists now emphasize the need for linking biological processes occurring in different ecosystem strata to explain rates and variability of nutrient cycling (Bardgett et al. 1998, Wardle et al. 2004). Consequently, herbivore insects in the canopies of forests are increasingly identified to play an important role for the (re)cycling and availability of nutrients, or, more generally, for the functioning of ecosystems not only in outbreak situations but also at endemic (non-outbreak) density levels (Stadler et al. 2001, Hunter et al. 2003). Before, little attention was paid to insect herbivores when quantifying element and energy fluxes through ecosystems, although the numerous and different functions insects fulfill in ecosystems (e.g. as pollinators, herbivores or detritivores) were unanimously recognized (Schowalter 2000). Amongst the reasons for this restraint was the argument that the total biomass of insects tends to be relatively low compared to the biomass of trees or the pool of soil organic matter (Ohmart et al. 1983). A second argument which was put forward to justify the inferior role of insects in nutrient cycling were the supposed low defoliation losses between 5-10% of the annual leaf biomass, or net primary production, due to insect herbivory under

  3. Characterizing In Situ Uranium and Groundwater Flux

    NASA Astrophysics Data System (ADS)

    Cho, J.; Newman, M. A.; Stucker, V.; Peacock, A.; Ranville, J.; Cabaniss, S.; Hatfield, K.; Annable, M. D.; Klammler, H.; Perminova, I. V.

    2010-12-01

    The goal of this project is to develop a new sensor that incorporates the field-tested concepts of the passive flux meter to provide direct in situ measures of uranium and groundwater fluxes. The sensor uses two sorbents and resident tracers to measure uranium flux and specific discharge directly; but, sensor principles and design should also apply to fluxes of other radionuclides. Flux measurements will assist with obtaining field-scale quantification of subsurface processes affecting uranium transport (e.g., advection) and transformation (e.g., uranium attenuation) and further advance conceptual and computational models for field scale simulations. Project efforts will expand our current understanding of how field-scale spatial variations in uranium fluxes and those for salient electron donor/acceptors, and groundwater are coupled to spatial variations in measured microbial biomass/community composition, effective field-scale uranium mass balances, attenuation, and stability. The new sensor uses an anion exchange resin to measure uranium fluxes and activated carbon with resident tracers to measure water fluxes. Several anion-exchange resins including Dowex 21K and 21K XLT, Purolite A500, and Lewatit S6328 were tested as sorbents for capturing uranium on the sensor and Lewatit S6328 was determined to be the most effective over the widest pH range. Four branched alcohols proved useful as resident tracers for measuring groundwater flows using activated carbon for both laboratory and field conditions. The flux sensor was redesigned to prevent the discharge of tracers to the environment, and the new design was tested in laboratory box aquifers and the field. Geochemical modeling of equilibrium speciation using Visual Minteq and an up-to-date thermodynamic data base suggested Ca-tricarbonato-uranyl complexes predominate under field conditions, while calculated uranyl ion activities were sensitive to changes in pH, dissolved inorganic carbon (DIC) and alkaline earth

  4. Thermal flux transfer system

    NASA Technical Reports Server (NTRS)

    Freggens, R. A. (Inventor)

    1973-01-01

    A thermal flux transfer system for use in maintaining the thrust chamber of an operative reaction motor at given temperatures is described. The system is characterized by an hermetically sealed chamber surrounding a thrust chamber to be cooled, with a plurality of parallel, longitudinally spaced, disk-shaped wick members formed of a metallic mesh and employed in delivering a working fluid, in its liquid state, radially toward the thrust chamber and delivering the working fluid, in its vapor state, away from the nozzle for effecting a cooling of the nozzle, in accordance with known principles of an operating heat pipe.

  5. High flux reactor

    DOEpatents

    Lake, James A.; Heath, Russell L.; Liebenthal, John L.; DeBoisblanc, Deslonde R.; Leyse, Carl F.; Parsons, Kent; Ryskamp, John M.; Wadkins, Robert P.; Harker, Yale D.; Fillmore, Gary N.; Oh, Chang H.

    1988-01-01

    A high flux reactor is comprised of a core which is divided into two symetric segments housed in a pressure vessel. The core segments include at least one radial fuel plate. The spacing between the plates functions as a coolant flow channel. The core segments are spaced axially apart such that a coolant mixing plenum is formed between them. A channel is provided such that a portion of the coolant bypasses the first core section and goes directly into the mixing plenum. The outlet coolant from the first core segment is mixed with the bypass coolant resulting in a lower inlet temperature to the lower core segment.

  6. [The flux of historiography].

    PubMed

    Mazzolini, R G

    2001-01-01

    The author places Grmek's editorial within the flux of the historiographical debate which, since the middle of the 1970s, has concentrated on two major crises due to the end of social science-oriented 'scientific history' and to the 'linguistic turn'. He also argues that Grmek's historiographical work of the 1980s and 1990s was to some extent an alternative to certain observed changes in historical fashion and has achieved greater intelligibility because of its commitment to a rational vision of science and historiography.

  7. A helically distorted MHD flux rope model

    NASA Technical Reports Server (NTRS)

    Theobald, Michael L.; Montgomery, David

    1990-01-01

    A flux rope model is proposed which has a variable degree of helical distortion from axisymmetry. The basis for this suggestion is a series of numerical and analytical investigations of magnetohydrodynamic states which result when an axial electric current is directed down on dc magnetic field. The helically distorted states involve a flow velocity and seem to be favored because of their lower rate of energy dissipation. Emphasis is on the magnetometer and particle energy analyzer traces that might be characteristic of such flux ropes. It is shown that even a fractionally small helical distortion may considerably alter the traces in minimum-variance coordinates. In short, what may be fairly common MHD processes can render a flux rope almost unrecognizable under standard diagnostics, even if the departures from axisymmetry are not great.

  8. Turbulent transport across invariant canonical flux surfaces

    SciTech Connect

    Hollenberg, J.B.; Callen, J.D.

    1994-07-01

    Net transport due to a combination of Coulomb collisions and turbulence effects in a plasma is investigated using a fluid moment description that allows for kinetic and nonlinear effects via closure relations. The model considered allows for ``ideal`` turbulent fluctuations that distort but preserve the topology of species-dependent canonical flux surfaces {psi}{sub {number_sign},s} {triple_bond} {integral} dF {center_dot} B{sub {number_sign},s} {triple_bond} {gradient} {times} [A + (m{sub s}/q{sub s})u{sub s}] in which u{sub s} is the flow velocity of the fluid species. Equations for the net transport relative to these surfaces due to ``nonideal`` dissipative processes are found for the total number of particles and total entropy enclosed by a moving canonical flux surface. The corresponding particle transport flux is calculated using a toroidal axisymmetry approximation of the ideal surfaces. The resulting Lagrangian transport flux includes classical, neoclassical-like, and anomalous contributions and shows for the first time how these various contributions should be summed to obtain the total particle transport flux.

  9. CO2 flux from Javanese mud volcanism.

    PubMed

    Queißer, M; Burton, M R; Arzilli, F; Chiarugi, A; Marliyani, G I; Anggara, F; Harijoko, A

    2017-06-01

    Studying the quantity and origin of CO2 emitted by back-arc mud volcanoes is critical to correctly model fluid-dynamical, thermodynamical, and geochemical processes that drive their activity and to constrain their role in the global geochemical carbon cycle. We measured CO2 fluxes of the Bledug Kuwu mud volcano on the Kendeng Fold and thrust belt in the back arc of Central Java, Indonesia, using scanning remote sensing absorption spectroscopy. The data show that the expelled gas is rich in CO2 with a volume fraction of at least 16 vol %. A lower limit CO2 flux of 1.4 kg s(-1) (117 t d(-1)) was determined, in line with the CO2 flux from the Javanese mud volcano LUSI. Extrapolating these results to mud volcanism from the whole of Java suggests an order of magnitude total CO2 flux of 3 kt d(-1), comparable with the expected back-arc efflux of magmatic CO2. After discussing geochemical, geological, and geophysical evidence we conclude that the source of CO2 observed at Bledug Kuwu is likely a mixture of thermogenic, biogenic, and magmatic CO2, with faulting controlling potential pathways for magmatic fluids. This study further demonstrates the merit of man-portable active remote sensing instruments for probing natural gas releases, enabling bottom-up quantification of CO2 fluxes.

  10. T2K neutrino flux prediction

    NASA Astrophysics Data System (ADS)

    Abe, K.; Abgrall, N.; Aihara, H.; Akiri, T.; Albert, J. B.; Andreopoulos, C.; Aoki, S.; Ariga, A.; Ariga, T.; Assylbekov, S.; Autiero, D.; Barbi, M.; Barker, G. J.; Barr, G.; Bass, M.; Batkiewicz, M.; Bay, F.; Bentham, S. W.; Berardi, V.; Berger, B. E.; Berkman, S.; Bertram, I.; Beznosko, D.; Bhadra, S.; Blaszczyk, F. d. M.; Blondel, A.; Bojechko, C.; Boyd, S.; Bravar, A.; Bronner, C.; Brook-Roberge, D. G.; Buchanan, N.; Calland, R. G.; Caravaca Rodríguez, J.; Cartwright, S. L.; Castillo, R.; Catanesi, M.-G.; Cervera, A.; Cherdack, D.; Christodoulou, G.; Clifton, A.; Coleman, J.; Coleman, S. J.; Collazuol, G.; Connolly, K.; Curioni, A.; Dabrowska, A.; Danko, I.; Das, R.; Davis, S.; Day, M.; de André, J. P. A. M.; de Perio, P.; De Rosa, G.; Dealtry, T.; Densham, C.; Di Lodovico, F.; Di Luise, S.; Dobson, J.; Duboyski, T.; Dufour, F.; Dumarchez, J.; Dytman, S.; Dziewiecki, M.; Dziomba, M.; Emery, S.; Ereditato, A.; Escudero, L.; Esposito, L. S.; Finch, A. J.; Frank, E.; Friend, M.; Fujii, Y.; Fukuda, Y.; Galymov, V.; Gaudin, A.; Giffin, S.; Giganti, C.; Gilje, K.; Golan, T.; Gomez-Cadenas, J. J.; Gonin, M.; Grant, N.; Gudin, D.; Guzowski, P.; Hadley, D. R.; Haesler, A.; Haigh, M. D.; Hansen, D.; Hara, T.; Hartz, M.; Hasegawa, T.; Hastings, N. C.; Hayato, Y.; Hearty, C.; Helmer, R. L.; Hignight, J.; Hillairet, A.; Himmel, A.; Hiraki, T.; Holeczek, J.; Horikawa, S.; Huang, K.; Hyndman, A.; Ichikawa, A. K.; Ieki, K.; Ieva, M.; Ikeda, M.; Imber, J.; Insler, J.; Ishida, T.; Ishii, T.; Ives, S. J.; Iyogi, K.; Izmaylov, A.; Jamieson, B.; Johnson, R. A.; Jo, J. H.; Jonsson, P.; Joo, K. K.; Jover-Manas, G. V.; Jung, C. K.; Kaji, H.; Kajita, T.; Kakuno, H.; Kameda, J.; Kanazawa, Y.; Karlen, D.; Karpikov, I.; Kearns, E.; Khabibullin, M.; Khanam, F.; Khotjantsev, A.; Kielczewska, D.; Kikawa, T.; Kilinski, A.; Kim, J. Y.; Kim, J.; Kim, S. B.; Kirby, B.; Kisiel, J.; Kitching, P.; Kobayashi, T.; Kogan, G.; Konaka, A.; Kormos, L. L.; Korzenev, A.; Koseki, K.; Koshio, Y.; Kowalik, K.; Kreslo, I.; Kropp, W.; Kubo, H.; Kudenko, Y.; Kumaratunga, S.; Kurjata, R.; Kutter, T.; Lagoda, J.; Laihem, K.; Laing, A.; Laveder, M.; Lawe, M.; Lee, K. P.; Licciardi, C.; Lim, I. T.; Lindner, T.; Lister, C.; Litchfield, R. P.; Longhin, A.; Lopez, G. D.; Ludovici, L.; Macaire, M.; Magaletti, L.; Mahn, K.; Malek, M.; Manly, S.; Marchionni, A.; Marino, A. D.; Marteau, J.; Martin, J. F.; Maruyama, T.; Marzec, J.; Masliah, P.; Mathie, E. L.; Matsumura, C.; Matsuoka, K.; Matveev, V.; Mavrokoridis, K.; Mazzucato, E.; McCauley, N.; McFarland, K. S.; McGrew, C.; McLachlan, T.; Messina, M.; Metelko, C.; Mezzetto, M.; Mijakowski, P.; Miller, C. A.; Minamino, A.; Mineev, O.; Mine, S.; Missert, A.; Miura, M.; Monfregola, L.; Moriyama, S.; Mueller, Th. A.; Murakami, A.; Murdoch, M.; Murphy, S.; Myslik, J.; Nagasaki, T.; Nakadaira, T.; Nakahata, M.; Nakai, T.; Nakajima, K.; Nakamura, K.; Nakayama, S.; Nakaya, T.; Nakayoshi, K.; Naples, D.; Nicholls, T. C.; Nielsen, C.; Nishikawa, K.; Nishimura, Y.; O'Keeffe, H. M.; Obayashi, Y.; Ohta, R.; Okumura, K.; Oryszczak, W.; Oser, S. M.; Otani, M.; Owen, R. A.; Oyama, Y.; Pac, M. Y.; Palladino, V.; Paolone, V.; Payne, D.; Pearce, G. F.; Perevozchikov, O.; Perkin, J. D.; Pinzon Guerra, E. S.; Plonski, P.; Poplawska, E.; Popov, B.; Posiadala, M.; Poutissou, J.-M.; Poutissou, R.; Przewlocki, P.; Quilain, B.; Radicioni, E.; Ratoff, P. N.; Ravonel, M.; Rayner, M. A.; Reeves, M.; Reinherz-Aronis, E.; Retiere, F.; Rodrigues, P. A.; Rondio, E.; Rossi, B.; Roth, S.; Rubbia, A.; Ruterbories, D.; Sacco, R.; Sakashita, K.; Sánchez, F.; Scantamburlo, E.; Scholberg, K.; Schwehr, J.; Scott, M.; Scully, D. I.; Seiya, Y.; Sekiguchi, T.; Sekiya, H.; Shibata, M.; Shiozawa, M.; Short, S.; Shustrov, Y.; Sinclair, P.; Smith, B.; Smith, R. J.; Smy, M.; Sobczyk, J. T.; Sobel, H.; Sorel, M.; Southwell, L.; Stamoulis, P.; Steinmann, J.; Still, B.; Sulej, R.; Suzuki, A.; Suzuki, K.; Suzuki, S. Y.; Suzuki, Y.; Szeglowski, T.; Szeptycka, M.; Tacik, R.; Tada, M.; Takahashi, S.; Takeda, A.; Takeuchi, Y.; Tanaka, H. A.; Tanaka, M.; Tanaka, M. M.; Taylor, I. J.; Terhorst, D.; Terri, R.; Thompson, L. F.; Thorley, A.; Tobayama, S.; Toki, W.; Tomura, T.; Totsuka, Y.; Touramanis, C.; Tsukamoto, T.; Tzanov, M.; Uchida, Y.; Ueno, K.; Vacheret, A.; Vagins, M.; Vasseur, G.; Wachala, T.; Waldron, A. V.; Walter, C. W.; Wang, J.; Wark, D.; Wascko, M. O.; Weber, A.; Wendell, R.; Wikström, G.; Wilkes, R. J.; Wilking, M. J.; Wilkinson, C.; Williamson, Z.; Wilson, J. R.; Wilson, R. J.; Wongjirad, T.; Yamada, Y.; Yamamoto, K.; Yanagisawa, C.; Yano, T.; Yen, S.; Yershov, N.; Yokoyama, M.; Yuan, T.; Zalewska, A.; Zambelli, L.; Zaremba, K.; Ziembicki, M.; Zimmerman, E. D.; Zito, M.; Żmuda, J.

    2013-01-01

    The Tokai-to-Kamioka (T2K) experiment studies neutrino oscillations using an off-axis muon neutrino beam with a peak energy of about 0.6 GeV that originates at the Japan Proton Accelerator Research Complex accelerator facility. Interactions of the neutrinos are observed at near detectors placed at 280 m from the production target and at the far detector—Super-Kamiokande—located 295 km away. The flux prediction is an essential part of the successful prediction of neutrino interaction rates at the T2K detectors and is an important input to T2K neutrino oscillation and cross section measurements. A FLUKA and GEANT3-based simulation models the physical processes involved in the neutrino production, from the interaction of primary beam protons in the T2K target, to the decay of hadrons and muons that produce neutrinos. The simulation uses proton beam monitor measurements as inputs. The modeling of hadronic interactions is reweighted using thin target hadron production data, including recent charged pion and kaon measurements from the NA61/SHINE experiment. For the first T2K analyses the uncertainties on the flux prediction are evaluated to be below 15% near the flux peak. The uncertainty on the ratio of the flux predictions at the far and near detectors is less than 2% near the flux peak.

  11. CO2 flux from Javanese mud volcanism

    NASA Astrophysics Data System (ADS)

    Queißer, M.; Burton, M. R.; Arzilli, F.; Chiarugi, A.; Marliyani, G. I.; Anggara, F.; Harijoko, A.

    2017-06-01

    Studying the quantity and origin of CO2 emitted by back-arc mud volcanoes is critical to correctly model fluid-dynamical, thermodynamical, and geochemical processes that drive their activity and to constrain their role in the global geochemical carbon cycle. We measured CO2 fluxes of the Bledug Kuwu mud volcano on the Kendeng Fold and thrust belt in the back arc of Central Java, Indonesia, using scanning remote sensing absorption spectroscopy. The data show that the expelled gas is rich in CO2 with a volume fraction of at least 16 vol %. A lower limit CO2 flux of 1.4 kg s-1 (117 t d-1) was determined, in line with the CO2 flux from the Javanese mud volcano LUSI. Extrapolating these results to mud volcanism from the whole of Java suggests an order of magnitude total CO2 flux of 3 kt d-1, comparable with the expected back-arc efflux of magmatic CO2. After discussing geochemical, geological, and geophysical evidence we conclude that the source of CO2 observed at Bledug Kuwu is likely a mixture of thermogenic, biogenic, and magmatic CO2, with faulting controlling potential pathways for magmatic fluids. This study further demonstrates the merit of man-portable active remote sensing instruments for probing natural gas releases, enabling bottom-up quantification of CO2 fluxes.

  12. CO2 flux from Javanese mud volcanism

    PubMed Central

    Burton, M. R.; Arzilli, F.; Chiarugi, A.; Marliyani, G. I.; Anggara, F.; Harijoko, A.

    2017-01-01

    Abstract Studying the quantity and origin of CO2 emitted by back‐arc mud volcanoes is critical to correctly model fluid‐dynamical, thermodynamical, and geochemical processes that drive their activity and to constrain their role in the global geochemical carbon cycle. We measured CO2 fluxes of the Bledug Kuwu mud volcano on the Kendeng Fold and thrust belt in the back arc of Central Java, Indonesia, using scanning remote sensing absorption spectroscopy. The data show that the expelled gas is rich in CO2 with a volume fraction of at least 16 vol %. A lower limit CO2 flux of 1.4 kg s−1 (117 t d−1) was determined, in line with the CO2 flux from the Javanese mud volcano LUSI. Extrapolating these results to mud volcanism from the whole of Java suggests an order of magnitude total CO2 flux of 3 kt d−1, comparable with the expected back‐arc efflux of magmatic CO2. After discussing geochemical, geological, and geophysical evidence we conclude that the source of CO2 observed at Bledug Kuwu is likely a mixture of thermogenic, biogenic, and magmatic CO2, with faulting controlling potential pathways for magmatic fluids. This study further demonstrates the merit of man‐portable active remote sensing instruments for probing natural gas releases, enabling bottom‐up quantification of CO2 fluxes. PMID:28944134

  13. Genetic modification of flux for flux prediction of mutants.

    PubMed

    Zhao, Quanyu; Kurata, Hiroyuki

    2009-07-01

    Gene deletion and overexpression are critical technologies for designing or improving the metabolic flux distribution of microbes. Some algorithms including flux balance analysis (FBA) and minimization of metabolic adjustment (MOMA) predict a flux distribution from a stoichiometric matrix in the mutants in which some metabolic genes are deleted or non-functional, but there are few algorithms that predict how a broad range of genetic modifications, such as over- and underexpression of metabolic genes, alters the phenotypes of the mutants at the metabolic flux level. To overcome such existing limitations, we develop a novel algorithm that predicts the flux distribution of the mutants with a broad range of genetic modification, based on elementary mode analysis. It is denoted as genetic modification of flux (GMF), which couples two algorithms that we have developed: modified control effective flux (mCEF) and enzyme control flux (ECF). mCEF is proposed based on CEF to estimate the gene expression patterns in genetically modified mutants in terms of specific biological functions. GMF is demonstrated to predict the flux distribution of not only gene deletion mutants, but also the mutants with underexpressed and overexpressed genes in Escherichia coli and Corynebacterium glutamicum. This achieves breakthrough in the a priori flux prediction of a broad range of genetically modified mutants. Supplementary file and programs are available at Bioinformatics online or http://www.cadlive.jp.

  14. Helicity charging and eruption of magnetic flux from the Sun

    NASA Technical Reports Server (NTRS)

    Rust, David M.; Kumar, A.

    1994-01-01

    The ejection of helical toroidal fields from the solar atmosphere and their detection in interplanetary space are described. The discovery that solar magnetic fields are twisted and that they are segregated by hemisphere according to their chirality has important implications for the escape process. The roles played by erupting prominences, coronal mass ejections (CME's) and active region (AR) loops in expressing the escape of magnetic flux and helicity are discussed. Sporadic flux escape associated with filament eruptions accounts for less than one-tenth the flux loss. Azimuthal flux loss by CME's could account for more, but the major contributor to flux escape may be AR loop expansion. It is shown how the transfer of magnetic helicity from the sun's interior into emerged loops ('helicity charging') could be the effective driver of solar eruptions and of flux loss from the sun.

  15. Power loss in electrical steel under elliptically rotating flux conditions

    SciTech Connect

    Salz, W.; Hempel, K.A.

    1996-03-01

    The power loss of electrical steel sheet given in the data sheets of the steel manufacturers is related to linearly alternating flux conditions, measured with an Epstein frame or a single sheet tester, respectively. In the application of the material in electrical machines, the authors find large areas with rotational flux conditions, i.e., in the T-joint region of three-phase power transformers or above the stator teeth of three-phase motors and generators. The most general description of the magnetization process in this case is an elliptically rotating flux. The paper outlines the magnetic behavior of steel sheet under these flux conditions, and finally defines a simple method to predict the total power loss under elliptically rotating flux from data measured under linearly alternating and circularly rotating flux conditions only.

  16. New evidence for flux cutting in type II superconductors

    NASA Astrophysics Data System (ADS)

    Leblanc, David

    New evidence is presented for cross flow and cutting of nonparallel flux lines in type-II superconductors. A dramatic reversal is observed in the evolution of the axial flux density in the cavity of a hollow cylinder when the magnitude of a helical magnetic field is increased or decreased along the cylinder surfaces. Measurements of the concurrent evolution of the axial flux density threading the cylinder wall complement the above data. These two phenomena are explained, based on the ideas of two way traffic of sublattices of nonparallel flux lines traversing each other via flux line cutting processes. The classical critical state concept is reviewed and the essential features of the flux cutting process, cross traversal of flux line sheets, and attendant breathing modes are outlined. A generalized critical state model incorporating a phenomenological framework based on Maxwell's equations, standard physical constraints, and two separate energy dissipation mechanisms is summarized. Data curves are presented and it is shown in qualitative detail that the observed behavior demonstrates that flux line cutting occurs and associated breathing in and out of nonparallel flux lines takes places across the surface of type-II superconductors subjected to a varying helical magnetic field.

  17. First Reconnected Flux Tubes

    NASA Astrophysics Data System (ADS)

    Andersson, L.; Lapenta, G.; Newman, D. L.; Markidis, S.; Spanswick, E. L.; Baker, J. B.; Clausen, L. B.; Larson, D. E.; Ergun, R. E.; Frey, H. U.; Singer, H. J.; Angelopoulos, V.; Bonnell, J. W.; McFadden, J. P.; Glassmeier, K.; Wolfgang, B.

    2011-12-01

    THEMIS observations from the magnetic equator (the equatorial plane) in the near-earth tail reveal a great amount of information regarding the plasma environment in the vicinity of the first reconnected flux tubes (a subgroup of dipolarization fronts). Two sequential observations of dipolarization fronts are analyzed in detail using three of the THEMIS spacecraft. Particle acceleration to high energies (>50 keV) is observed together with a void region interpreted as a region to which the full electron distribution has incomplete access. Whistler waves, which are observed, could be driven by one of the two electron populations located in the wake of the first reconnected flux tubes. The detailed observations are compared with 2D and 3D implicit kinetic simulation of reconnection events. This presentation focuses on the similarity between observation and simulation. One key aspect of this presentation is a demonstration of how different the signature is when observing at vs off the magnetic equator, since most observations in the literature (unlike the observations presented here) are from off the equator. For this event, additional spacecraft and ground observations have been analyzed, which demonstrate that a reconfiguration of the magnetosphere is taking place. However, the focus of this presentation is on the small scale (<~10 di), rather than the large scale (~20 Re).

  18. Computing the Flux Footprint

    NASA Astrophysics Data System (ADS)

    Wilson, J. D.

    2015-07-01

    We address the flux footprint for measurement heights in the atmospheric surface layer, comparing eddy diffusion solutions with those furnished by the first-order Lagrangian stochastic (or "generalized Langevin") paradigm. The footprint given by Langevin models differs distinctly from that given by the random displacement model (i.e. zeroth-order Lagrangian stochastic model) corresponding to its "diffusion limit," which implies that a well-founded theory of the flux footprint must incorporate the turbulent velocity autocovariance. But irrespective of the choice of the eddy diffusion or Langevin class of model as basis for the footprint, tuning relative to observations is ultimately necessary. Some earlier treatments assume Monin-Obukhov profiles for the mean wind and eddy diffusivity and that the effective Schmidt number (ratio of eddy viscosity to the tracer eddy diffusivity) in the neutral limit , while others calibrate the model to the Project Prairie Grass dispersion trials. Because there remains uncertainty as to the optimal specification of (or a related parameter in alternative theories, e.g. the Kolmogorov coefficient in Langevin models) it is recommended that footprint models should be explicit in this regard.

  19. Mapping AmeriFlux footprints: Towards knowing the flux source area across a network of towers

    NASA Astrophysics Data System (ADS)

    Menzer, O.; Pastorello, G.; Metzger, S.; Poindexter, C.; Agarwal, D.; Papale, D.

    2014-12-01

    The AmeriFlux network collects long-term carbon, water and energy flux measurements obtained with the eddy covariance method. In order to attribute fluxes to specific areas of the land surface, flux source calculations are essential. Consequently, footprint models can support flux up-scaling exercises to larger regions, often based on remote sensing data. However, flux footprints are not currently being routinely calculated; different approaches exist but have not been standardized. In part, this is due to varying instrumentation and data processing methods at the site level. The goal of this work is to map tower footprints for a future standardized AmeriFlux product to be generated at the network level. These footprints can be estimated by analytical models, Lagrangian simulations, and large-eddy simulations. However, for many sites, the datasets currently submitted to central databases generally do not include all variables required. The AmeriFlux network is moving to collection of raw data and expansion of the variables requested from sites, giving the possibility to calculate all parameters and variables needed to run most of the available footprint models. In this pilot study, we are applying state of the art footprint models across a subset of AmeriFlux sites, to evaluate the feasibility and merit of developing standardized footprint results. In addition to comparing outcomes from several footprint models, we will attempt to verify and validate the results in two ways: (i) Verification of our footprint calculations at sites where footprints have been experimentally estimated. (ii) Validation at towers situated in heterogeneous landscapes: here, variations in the observed fluxes are expected to correlate with spatiotemporal variations of the source area composition. Once implemented, the footprint results can be used as additional information within the AmeriFlux database that can support data interpretation and data assimilation. Lastly, we will explore the

  20. NITRATE RELEASE BY SALT MARSH PLANTS: AN OVERLOOKED NUTRIENT FLUX MECHANISM

    EPA Science Inventory

    Salt marshes provide water purification as an important ecosystem service in part by storing, transforming and releasing nutrients. This service can be quantified by measuring nutrient fluxes between marshes and surface waters. Many processes drive these fluxes, including photosy...

  1. NITRATE RELEASE BY SALT MARSH PLANTS: AN OVERLOOKED NUTRIENT FLUX MECHANISM

    EPA Science Inventory

    Salt marshes provide water purification as an important ecosystem service in part by storing, transforming and releasing nutrients. This service can be quantified by measuring nutrient fluxes between marshes and surface waters. Many processes drive these fluxes, including photosy...

  2. The Solar Internetwork. I. Contribution to the Network Magnetic Flux

    NASA Astrophysics Data System (ADS)

    Gošić, M.; Bellot Rubio, L. R.; Orozco Suárez, D.; Katsukawa, Y.; del Toro Iniesta, J. C.

    2014-12-01

    The magnetic network (NE) observed on the solar surface harbors a sizable fraction of the total quiet Sun flux. However, its origin and maintenance are not well known. Here we investigate the contribution of internetwork (IN) magnetic fields to the NE flux. IN fields permeate the interior of supergranular cells and show large emergence rates. We use long-duration sequences of magnetograms acquired by Hinode and an automatic feature tracking algorithm to follow the evolution of NE and IN flux elements. We find that 14% of the quiet Sun (QS) flux is in the form of IN fields with little temporal variations. IN elements interact with NE patches and modify the flux budget of the NE either by adding flux (through merging processes) or by removing it (through cancellation events). Mergings appear to be dominant, so the net flux contribution of the IN is positive. The observed rate of flux transfer to the NE is 1.5 × 1024 Mx day-1 over the entire solar surface. Thus, the IN supplies as much flux as is present in the NE in only 9-13 hr. Taking into account that not all the transferred flux is incorporated into the NE, we find that the IN would be able to replace the entire NE flux in approximately 18-24 hr. This renders the IN the most important contributor to the NE, challenging the view that ephemeral regions are the main source of flux in the QS. About 40% of the total IN flux eventually ends up in the NE.

  3. Quantifying Representativeness Importance Values for AmeriFlux Sites

    NASA Astrophysics Data System (ADS)

    Hargrove, W. W.; Hoffman, F. M.

    2005-12-01

    We are using a multivariate statistical clustering analysis to determine how well the current distribution of sites in the AmeriFlux network is representative of the dominant combinations of vegetation, soils, and climate which are present in the conterminous US. Statistical indices based on multivariate representativeness and site importance indicate how well the current network of towers "samples" the population of flux environments within the nation. The same empirical approach provides a repeatable rationale for the selection of additional flux tower sites by determining any number of additional locations such that the representation of the overall network is maximized by their addition. A representativeness importance value for each existing eddy covariance tower to the AmeriFlux network can be calculated. We have statistically created a series of nine sets of flux-relevant ecoregions which divide the conterminous U.S. into a set of areas within which the carbon flux from terrestrial ecosystems is expected to be relatively uniform and homogeneous. Starting with digital GIS layers of factors deemed important in regulating carbon fixation and loss from terrestrial ecosystems, we assembled a set of maps of multivariate factors which describe and characterize the flux environment in each map cell. Then, we used a k-means clustering procedure to classify each map cell into a particular group whose cells have sufficiently similar environments. Because there were as many as 30 environmental descriptors, each with nearly 8 million cells, it was necessary to perform the clustering process on a parallel supercomputer. Because the statistical process is quantitative, the similarity of a selected flux-ecoregion to every other ecoregion in the map can be calculated. Maps can be produced that show the degree of similarity to the chosen flux-ecoregion as a series of gray shades. By sequentially selecting flux ecoregions currently containing an AmeriFlux tower, maps showing

  4. How Much Flux does a Flux Transfer Event Transfer?

    NASA Astrophysics Data System (ADS)

    Fear, R. C.; Trenchi, L.; Coxon, J.; Milan, S. E.

    2016-12-01

    Flux transfer events are bursts of reconnection at the dayside magnetopause, which give rise to characteristic signatures that are observed by a range of magnetospheric/ionospheric instrumentation. Spacecraft situated near the magnetopause observe a bipolar variation in the component of the magnetic field normal to the magnetopause (BN); auroral instrumentation (either ground- or space-based) observe poleward moving auroral forms which indicate the convection of newly-opened flux into the polar cap, and ionospheric radars similarly observe pulsed ionospheric flows or poleward moving radar auroral forms. One outstanding problem is the fact that there is a fundamental mismatch between the estimates of the flux that is opened by each flux transfer event - in other words, their overall significance in the Dungey cycle. Spacecraft-based estimates of the flux content of individual FTEs correspond to each event transferring flux equivalent to approximately 1% of the open flux in the magnetosphere, whereas studies based on global-scale radar and auroral observations suggest this figure could be more like 10%. In the former case, flux transfer events would be a minor detail in the Dungey cycle, but in the latter they could be its main driver. We present observations of a conjunction between flux transfer event signatures observed by the Cluster spacecraft, and pulsed ionospheric flows observed by the SuperDARN network on the 8th February 2002. Over the course of an hour, a similar number of FTE signatures were observed by Cluster (at 13 MLT) and the Prince George radar (at 7 MLT). We argue that the reason for the existing mismatch in flux estimates is that implicit assumptions about flux transfer event structure lead to a major underestimate of the flux content based on spacecraft observations. If these assumptions are removed, a much better match is found.

  5. Permanent magnet flux-biased magnetic actuator with flux feedback

    NASA Technical Reports Server (NTRS)

    Groom, Nelson J. (Inventor)

    1991-01-01

    The invention is a permanent magnet flux-biased magnetic actuator with flux feedback for adjustably suspending an element on a single axis. The magnetic actuator includes a pair of opposing electromagnets and provides bi-directional forces along the single axis to the suspended element. Permanent magnets in flux feedback loops from the opposing electromagnets establish a reference permanent magnet flux-bias to linearize the force characteristics of the electromagnets to extend the linear range of the actuator without the need for continuous bias currents in the electromagnets.

  6. The Oceanic Flux Program: A three decade time-series of particle flux in the deep Sargasso Sea

    NASA Astrophysics Data System (ADS)

    Weber, J. C.; Conte, M. H.

    2010-12-01

    The Oceanic Flux Program (OFP), 75 km SE of Bermuda, is the longest running time-series of its kind. Initiated in 1978, the OFP has produced an unsurpassed, nearly continuous record of temporal variability in deep ocean fluxes, with a >90% temporal coverage at 3200m depth. The OFP, in conjunction with the co-located Bermuda-Atlantic Time Series (BATS) and the Bermuda Testbed Mooring (BTM) time-series, has provided key observations enabling detailed assessment of how seasonal and non-seasonal variability in the deep ocean is linked with the overlying physical and biogeochemical environment. This talk will focus on the short-term flux variability that overlies the seasonal flux pattern in the Sargasso Sea, emphasizing episodic extreme flux events. Extreme flux events are responsible for much of the year-to-year variability in mean annual flux and are most often observed during early winter and late spring when surface stratification is weak or transient. In addition to biological phenomena (e.g. salp blooms), passage of productive meso-scale features such as eddies, which alter surface water mixing characteristics and surface export fluxes, may initiate some extreme flux events. Yet other productive eddies show a minimal influence on the deep flux, underscoring the importance of upper ocean ecosystem structure and midwater processes on the coupling between the surface ocean environment and deep fluxes. Using key organic and inorganic tracers, causative processes that influence deep flux generation and the strength of the coupling with the surface ocean environment can be identified.

  7. Shedding light on daytime flux partitioning

    NASA Astrophysics Data System (ADS)

    Wohlfahrt, Georg

    2017-04-01

    Flux partitioning, that is disaggregating the measured net ecosystem carbon dioxide exchange into the underlying gross primary productivity (GPP) and ecosystem respiration (ER), has become a key component of the FLUXNET processing chain and the resulting products are widely used by experimentalists and modellers alike. Here I review flux partitioning based on light response curve modelling, commonly termed the daytime flux partitioning approach. In particular I tackle the question whether daytime flux partitioning is able to account for the reduction in daytime ER relative to nighttime due to the reduction in leaf mitochondrial respiration in the presence of daylight. To this end I use synthetic data (with realistic noise superimposed) generated (i) by light response curve models upon which a daytime reduction in ER was imposed, (ii) results from a process-oriented soil-vegetation-atmosphere-transfer model, as well as (iii) experimental data from a simple ecosystem, where daytime ER was estimated based on a combination of complementary measurements and a canopy model.

  8. Sediment Diagenesis and Benthic Flux

    NASA Astrophysics Data System (ADS)

    Emerson, S.; Hedges, J.

    2003-12-01

    Chemical reactions in marine sediments and the resulting fluxes across the sediment-water interface influence the global carbon cycle and the pH of the sea and affect the abundance of CaCO3 and opal-forming plankton in the ocean. On very long timescales these diagenetic reactions control carbon burial in sedimentary rocks and the oxygen content of the atmosphere. Sedimentary deposits that remain after diagenesis are the geochemical artifacts used for interpreting past changes in ocean circulation, biogeochemical cycles, and climate. This chapter is about the processes of diagenesis and burial of the chemical elements that make up the bulk of the particulate matter that reaches the seafloor (organic matter, CaCO3, SiO2, Fe, Mn, and aluminosilicates).Understanding of sediment diagenesis and benthic fluxes has evolved with advances in both experimental methods and modeling. Measurements of chemical concentrations in sediments, their associated pore waters and fluxes at the sediment-water interface have been used to identify the most important reactions. Because transport in pore waters is usually by molecular diffusion, this medium is conducive to interpretation by models of heterogeneous chemical equilibrium and kinetics. Large chemical changes and manageable transport mechanisms have led to elegant models of sediment diagenesis and great advances in understanding of diagenetic processes.We shall see, though, that the environment does not yield totally to simple models of chemical equilibrium and chemical kinetics, and laboratory determined constants often cannot explain the field observations. For example, organic matter degradation rate constants determined from modeling are so variable that there are essentially no constraints on these values from laboratory experiments. In addition, reaction rates of CaCO3 and opal dissolution determined from modeling pore waters usually cannot be reproduced in laboratory experiments of these reactions. The inability to

  9. California's Future Carbon Flux

    NASA Astrophysics Data System (ADS)

    Xu, L.; Pyles, R. D.; Paw U, K.; Gertz, M.

    2008-12-01

    The diversity of the climate and vegetation systems in the state of California provides a unique opportunity to study carton dioxide exchange between the terrestrial biosphere and the atmosphere. In order to accurately calculate the carbon flux, this study couples the sophisticated analytical surface layer model ACASA (Advance Canopy-Atmosphere-Soil Algorithm, developed in the University of California, Davis) with the newest version of mesoscale model WRF (the Weather Research & Forecasting Model, developed by NCAR and several other agencies). As a multilayer, steady state model, ACASA incorporates higher-order representations of vertical temperature variations, CO2 concentration, radiation, wind speed, turbulent statistics, and plant physiology. The WRF-ACASA coupling is designed to identify how multiple environmental factors, in particularly climate variability, population density, and vegetation distribution, impact on future carbon cycle prediction across a wide geographical range such as in California.

  10. Studying the Formation and Evolution of Eruptive Magnetic Flux Ropes

    NASA Astrophysics Data System (ADS)

    Linton, Mark

    2017-08-01

    Solar magnetic eruptions are dramatic sources of solar activity, and dangerous sources of space weather hazards. Many of these eruptions take the form of magnetic flux ropes, i.e., magnetic fieldlines wrapping around a core magnetic flux tube. Investigating the processes which form these flux ropes both prior to and during eruption, and investigating their evolution after eruption, can give us a critical window into understanding the sources of and processes involved in these eruptions. This presentation will discuss modeling and observational investigations into these various phases of flux rope formation, eruption, and evolution, and will discuss how these different explorations can be used to develop a more complete picture of erupting flux rope dynamics.

  11. An introduction to the Australian and New Zealand flux tower network - OzFlux

    NASA Astrophysics Data System (ADS)

    Beringer, Jason; Hutley, Lindsay B.; McHugh, Ian; Arndt, Stefan K.; Campbell, David; Cleugh, Helen A.; Cleverly, James; Resco de Dios, Víctor; Eamus, Derek; Evans, Bradley; Ewenz, Cacilia; Grace, Peter; Griebel, Anne; Haverd, Vanessa; Hinko-Najera, Nina; Huete, Alfredo; Isaac, Peter; Kanniah, Kasturi; Leuning, Ray; Liddell, Michael J.; Macfarlane, Craig; Meyer, Wayne; Moore, Caitlin; Pendall, Elise; Phillips, Alison; Phillips, Rebecca L.; Prober, Suzanne M.; Restrepo-Coupe, Natalia; Rutledge, Susanna; Schroder, Ivan; Silberstein, Richard; Southall, Patricia; Yee, Mei Sun; Tapper, Nigel J.; van Gorsel, Eva; Vote, Camilla; Walker, Jeff; Wardlaw, Tim

    2016-10-01

    OzFlux is the regional Australian and New Zealand flux tower network that aims to provide a continental-scale national research facility to monitor and assess trends, and improve predictions, of Australia's terrestrial biosphere and climate. This paper describes the evolution, design, and current status of OzFlux as well as provides an overview of data processing. We analyse measurements from all sites within the Australian portion of the OzFlux network and two sites from New Zealand. The response of the Australian biomes to climate was largely consistent with global studies except that Australian systems had a lower ecosystem water-use efficiency. Australian semi-arid/arid ecosystems are important because of their huge extent (70 %) and they have evolved with common moisture limitations. We also found that Australian ecosystems had a similar radiation-use efficiency per unit leaf area compared to global values that indicates a convergence toward a similar biochemical efficiency. The two New Zealand sites represented extremes in productivity for a moist temperate climate zone, with the grazed dairy farm site having the highest GPP of any OzFlux site (2620 gC m-2 yr-1) and the natural raised peat bog site having a very low GPP (820 gC m-2 yr-1). The paper discusses the utility of the flux data and the synergies between flux, remote sensing, and modelling. Lastly, the paper looks ahead at the future direction of the network and concludes that there has been a substantial contribution by OzFlux, and considerable opportunities remain to further advance our understanding of ecosystem response to disturbances, including drought, fire, land-use and land-cover change, land management, and climate change, which are relevant both nationally and internationally. It is suggested that a synergistic approach is required to address all of the spatial, ecological, human, and cultural challenges of managing the delicately balanced ecosystems in Australasia.

  12. Neutron fluxes in test reactors

    SciTech Connect

    Youinou, Gilles Jean-Michel

    2017-01-01

    Communicate the fact that high-power water-cooled test reactors such as the Advanced Test Reactor (ATR), the High Flux Isotope Reactor (HFIR) or the Jules Horowitz Reactor (JHR) cannot provide fast flux levels as high as sodium-cooled fast test reactors. The memo first presents some basics physics considerations about neutron fluxes in test reactors and then uses ATR, HFIR and JHR as an illustration of the performance of modern high-power water-cooled test reactors.

  13. Flux based active filter controller

    SciTech Connect

    Bhattacharya, S.; Divan, D.M.; Lorenz, R.D.; Veltman, A. |

    1995-12-31

    This paper presents a synchronous frame flux based control method for a parallel active filer application. The flux based controller directly implements the inverter switchings in the synchronous reference frame by a hysteresis rule based carrierless PWM strategy to achieve high current bandwidth. This paper addresses the issues and impact on parallel active filtering requirements for utility interface of commonly used harmonic front-ends. The synchronous frame flux based controller provides additional insights for harmonic current compensation requirements. Simulation results provide the validation of the flux based active filter controller to meet IEEE 519 recommended harmonic standards for large rated non-linear loads under balanced and unbalanced supply conditions.

  14. Neutron fluxes in radiotherapy rooms.

    PubMed

    Agosteo, S; Foglio Para, A; Maggioni, B

    1993-01-01

    The spatial distribution of the neutron flux, originated in an electron accelerator therapy room when energies above the threshold of (y,n) and (e,e'n) reactions are employed, is physically due to a direct flux, coming from the accelerator head, and to a flux diffused from the walls. In this work, the flux is described to a high degree of approximation by a set of functions whose spatial behavior is univocally determined by the angular distributions of the neutrons emitted from the shield of the accelerator head and diffused from the walls. The analytical results are verified with an extended series of Monte Carlo simulations obtained with the MCNP code.

  15. The local time-dependant characteristics of flux rope at Saturn

    NASA Astrophysics Data System (ADS)

    Guo, Ruilong; Yao, Zhonghua; Wei, Yong

    2017-04-01

    Flux rope, which is often called as plasmoid when the guide field is small, is an important process to transfer magnetic flux and plasmas in the magnetosphere of terrestrial and planetary magnetosphere. At Earth, the formation of flux rope in the magnetotail is mainly controlled by the "Dungey-cycle", which is associated with the acceleration of electrons and loss of plasma in the magnetosphere. At giant planets (i.e., Saturn and Jupiter), the "Vasyliunas-cycle" is an additional important (might be dominant) process to generate flux ropes. The information of how flux rope is formed and evolved at giant planets is pivotal in understanding the energy coupling process at these planets. The Cassini spacecraft has detected an amount of flux rope events in the Saturnian magnetosphere. In this work, the guide field, axis orientation, and electron properties are compared between the flux ropes recorded at different local times. We also compare the characteristics with the flux rope at Earth.

  16. Radial Flux Distribution of Low-Energy Neutrons.

    ERIC Educational Resources Information Center

    Higinbotham, J.

    1979-01-01

    Describes an experiment designed to illustrate the basic principle involved in the process of moderation of fast neutrons by water, and the monitoring of the low-energy neutron flux using indium as a probe. (GA)

  17. Radial Flux Distribution of Low-Energy Neutrons.

    ERIC Educational Resources Information Center

    Higinbotham, J.

    1979-01-01

    Describes an experiment designed to illustrate the basic principle involved in the process of moderation of fast neutrons by water, and the monitoring of the low-energy neutron flux using indium as a probe. (GA)

  18. MAGNETIC FLUX PARADIGM FOR RADIO LOUDNESS OF ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Sikora, Marek; Begelman, Mitchell C. E-mail: mitch@jila.colorado.edu

    2013-02-20

    We argue that the magnetic flux threading the black hole (BH), rather than BH spin or Eddington ratio, is the dominant factor in launching powerful jets and thus determining the radio loudness of active galactic nuclei (AGNs). Most AGNs are radio quiet because the thin accretion disks that feed them are inefficient in depositing magnetic flux close to the BH. Flux accumulation is more likely to occur during a hot accretion (or thick disk) phase, and we argue that radio-loud quasars and strong emission-line radio galaxies occur only when a massive, cold accretion event follows an episode of hot accretion. Such an event might be triggered by the merger of a giant elliptical galaxy with a disk galaxy. This picture supports the idea that flux accumulation can lead to the formation of a so-called magnetically choked accretion flow. The large observed range in radio loudness reflects not only the magnitude of the flux pressed against the BH, but also the decrease in UV flux from the disk, due to its disruption by the ''magnetosphere'' associated with the accumulated flux. While the strongest jets result from the secular accumulation of flux, moderate jet activity can also be triggered by fluctuations in the magnetic flux deposited by turbulent, hot inner regions of otherwise thin accretion disks, or by the dissipation of turbulent fields in accretion disk coronae. These processes could be responsible for jet production in Seyferts and low-luminosity AGNs, as well as jets associated with X-ray binaries.

  19. Dynamic ignition regime of condensed system by radiate heat flux

    NASA Astrophysics Data System (ADS)

    Arkhipov, V. A.; Zolotorev, N. N.; Korotkikh, A. G.; Kuznetsov, V. T.

    2017-05-01

    The main ignition characteristics of high-energy materials are the ignition time and critical heat flux allowing evaluation of the critical conditions for ignition, fire and explosive safety for the test solid propellants. The ignition process is typically studied in stationary conditions of heat input at constant temperature of the heating surface, environment or the radiate heat flux on the sample surface. In real conditions, ignition is usually effected at variable time-dependent values of the heat flux. In this case, the heated layer is formed on the sample surface in dynamic conditions and significantly depends on the heat flux change, i.e. increasing or decreasing falling heat flux in the reaction period of the propellant sample. This paper presents a method for measuring the ignition characteristics of a high-energy material sample in initiation of the dynamic radiant heat flux, which includes the measurement of the ignition time when exposed to a sample time varying radiant heat flux given intensity. In case of pyroxyline containing 1 wt. % of soot, it is shown that the ignition times are reduced by 20-50 % depending on the initial value of the radiant flux density in initiation by increasing or decreasing radiant heat flux compared with the stationary conditions of heat supply in the same ambient conditions.

  20. Hall Effect-Mediated Magnetic Flux Transport in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Bai, Xue-Ning; Stone, James M.

    2017-02-01

    The global evolution of protoplanetary disks (PPDs) has recently been shown to be largely controlled by the amount of poloidal magnetic flux threading the disk. The amount of magnetic flux must also coevolve with the disk, as a result of magnetic flux transport, a process that is poorly understood. In weakly ionized gas as in PPDs, magnetic flux is largely frozen in the electron fluid, except when resistivity is large. When the disk is largely laminar, we show that the relative drift between the electrons and ions (the Hall drift), and the ions and neutral fluids (ambipolar drift) can play a dominant role on the transport of magnetic flux. Using two-dimensional simulations that incorporate the Hall effect and ambipolar diffusion (AD) with prescribed diffusivities, we show that when large-scale poloidal field is aligned with disk rotation, the Hall effect rapidly drags magnetic flux inward at the midplane region, while it slowly pushes flux outward above/below the midplane. This leads to a highly radially elongated field configuration as a global manifestation of the Hall-shear instability. This field configuration further promotes rapid outward flux transport by AD at the midplane, leading to instability saturation. In quasi-steady state, magnetic flux is transported outward at approximately the same rate at all heights, and the rate is comparable to the Hall-free case. For anti-aligned field polarity, the Hall effect consistently transports magnetic flux outward, leading to a largely vertical field configuration in the midplane region. The field lines in the upper layer first bend radially inward and then outward to launch a disk wind. Overall, the net rate of outward flux transport is about twice as fast as that of the aligned case. In addition, the rate of flux transport increases with increasing disk magnetization. The absolute rate of transport is sensitive to disk microphysics, which remains to be explored in future studies.

  1. Carbon Dioxide Flux Measurement Systems (CO2Flux) Handbook

    SciTech Connect

    Fischer, M

    2005-01-01

    The Southern Great Plains (SGP) carbon dioxide flux (CO2 flux) measurement systems provide half-hour average fluxes of CO2, H2O (latent heat), and sensible heat. The fluxes are obtained by the eddy covariance technique, which computes the flux as the mean product of the vertical wind component with CO2 and H2O densities, or estimated virtual temperature. A three-dimensional sonic anemometer is used to obtain the orthogonal wind components and the virtual (sonic) temperature. An infrared gas analyzer is used to obtain the CO2 and H2O densities. A separate sub-system also collects half-hour average measures of meteorological and soil variables from separate 4-m towers.

  2. South Atlantic meridional fluxes

    NASA Astrophysics Data System (ADS)

    Garzoli, Silvia L.; Baringer, Molly O.; Dong, Shenfu; Perez, Renellys C.; Yao, Qi

    2013-01-01

    The properties of the meridional overturning circulation (MOC) and associated meridional heat transport (MHT) and salt fluxes are analyzed in the South Atlantic. The oceanographic data used for the study consist of Expendable bathythermograph (XBT) data collected along 27 sections at nominally 35°S for the period of time 2002-2011, and Argo profile data collected in the region. Previous estimates obtained with a shorter record are improved and extended, using new oceanographic sections and wind fields. Different wind products are analyzed to determine the uncertainty in the Ekman component of the MHT derived from their use. Results of the analysis provide a 9-year time series of MHT, and volume transport in the upper layer of the MOC. Salt fluxes at 35°S are estimated using a parameter introduced by numerical studies, the Mov that represents the salt flux and helps determine the basin scale salt feedback associated with the MOC. Volume and heat transport by the western and eastern boundary currents are estimated, and their covariablity is examined. Analysis of the data shows that the South Atlantic is responsible for a northward MHT with a mean value of 0.54±0.14 PW. The MHT exhibits no significant trend from 2002 to 2011. The MOC varies from 14.4 to 22.7 Sv with a mean value of 18.1±2.3 Sv and the maximum overturning transport is found at a mean depth of 1250 m. Statistical analysis suggests that an increase of 1 Sv in the MOC leads to an increase of the MHT of 0.04±0.02 PW. Estimates of the Mov from data collected from three different kinds of observations, contrary to those obtained from models, feature a positive salt advection feedback (Mov<0) suggesting that freshwater perturbations will be amplified and that the MOC is bistable. In other words, the MOC might collapse with a large enough freshwater perturbation. Observations indicate that the mean value of the Brazil Current is -8.6±4.1 Sv at 24°S and -19.4±4.3 Sv at 35°S, increasing towards the

  3. Wind-Speed—Surface-Heat-Flux Feedback in Dust Devils

    NASA Astrophysics Data System (ADS)

    Ito, Junshi; Niino, Hiroshi

    2016-11-01

    Strong winds associated with dust devils can induce locally large heat fluxes from the surface, and resulting enhanced buoyancy may further intensify the dust devils. This positive wind—surface-heat-flux feedback is studied using a large-eddy simulation of a convective boundary layer. A comparison of the results with and without the feedback process for the same environment demonstrates the significance of the feedback process for simulated dust devils.

  4. Flux change in basophil membrane is not the main pathogenesis for hypersensitivity

    PubMed Central

    Wiwanitkit, Viroj

    2007-01-01

    The oxidation process is one of the most important natural processes. Oxidative change in hypersensitivity is believed to be an important process in the pathogenesis. However, the clear explanation on the transmembrane flux change of basophil and its correlation to hypersensitivity pathogenesis has never been reported. Here, the author determines the transmembrane oxidation flux in basophil. The simulation test to determine the oxidation flux change based on nanomedicine technique is used. Of interest, no change of flux can be detected. Therefore, this work can support the finding that the oxidation flux change is not an important part in the pathogenesis of basophil-related hypersensitivity. PMID:18203432

  5. From elementary flux modes to elementary flux vectors: Metabolic pathway analysis with arbitrary linear flux constraints

    PubMed Central

    Klamt, Steffen; Gerstl, Matthias P.; Jungreuthmayer, Christian; Mahadevan, Radhakrishnan; Müller, Stefan

    2017-01-01

    Elementary flux modes (EFMs) emerged as a formal concept to describe metabolic pathways and have become an established tool for constraint-based modeling and metabolic network analysis. EFMs are characteristic (support-minimal) vectors of the flux cone that contains all feasible steady-state flux vectors of a given metabolic network. EFMs account for (homogeneous) linear constraints arising from reaction irreversibilities and the assumption of steady state; however, other (inhomogeneous) linear constraints, such as minimal and maximal reaction rates frequently used by other constraint-based techniques (such as flux balance analysis [FBA]), cannot be directly integrated. These additional constraints further restrict the space of feasible flux vectors and turn the flux cone into a general flux polyhedron in which the concept of EFMs is not directly applicable anymore. For this reason, there has been a conceptual gap between EFM-based (pathway) analysis methods and linear optimization (FBA) techniques, as they operate on different geometric objects. One approach to overcome these limitations was proposed ten years ago and is based on the concept of elementary flux vectors (EFVs). Only recently has the community started to recognize the potential of EFVs for metabolic network analysis. In fact, EFVs exactly represent the conceptual development required to generalize the idea of EFMs from flux cones to flux polyhedra. This work aims to present a concise theoretical and practical introduction to EFVs that is accessible to a broad audience. We highlight the close relationship between EFMs and EFVs and demonstrate that almost all applications of EFMs (in flux cones) are possible for EFVs (in flux polyhedra) as well. In fact, certain properties can only be studied with EFVs. Thus, we conclude that EFVs provide a powerful and unifying framework for constraint-based modeling of metabolic networks. PMID:28406903

  6. From elementary flux modes to elementary flux vectors: Metabolic pathway analysis with arbitrary linear flux constraints.

    PubMed

    Klamt, Steffen; Regensburger, Georg; Gerstl, Matthias P; Jungreuthmayer, Christian; Schuster, Stefan; Mahadevan, Radhakrishnan; Zanghellini, Jürgen; Müller, Stefan

    2017-04-01

    Elementary flux modes (EFMs) emerged as a formal concept to describe metabolic pathways and have become an established tool for constraint-based modeling and metabolic network analysis. EFMs are characteristic (support-minimal) vectors of the flux cone that contains all feasible steady-state flux vectors of a given metabolic network. EFMs account for (homogeneous) linear constraints arising from reaction irreversibilities and the assumption of steady state; however, other (inhomogeneous) linear constraints, such as minimal and maximal reaction rates frequently used by other constraint-based techniques (such as flux balance analysis [FBA]), cannot be directly integrated. These additional constraints further restrict the space of feasible flux vectors and turn the flux cone into a general flux polyhedron in which the concept of EFMs is not directly applicable anymore. For this reason, there has been a conceptual gap between EFM-based (pathway) analysis methods and linear optimization (FBA) techniques, as they operate on different geometric objects. One approach to overcome these limitations was proposed ten years ago and is based on the concept of elementary flux vectors (EFVs). Only recently has the community started to recognize the potential of EFVs for metabolic network analysis. In fact, EFVs exactly represent the conceptual development required to generalize the idea of EFMs from flux cones to flux polyhedra. This work aims to present a concise theoretical and practical introduction to EFVs that is accessible to a broad audience. We highlight the close relationship between EFMs and EFVs and demonstrate that almost all applications of EFMs (in flux cones) are possible for EFVs (in flux polyhedra) as well. In fact, certain properties can only be studied with EFVs. Thus, we conclude that EFVs provide a powerful and unifying framework for constraint-based modeling of metabolic networks.

  7. Partitioning of integrated energy fluxes in four tail reconnection events observed by Cluster

    NASA Astrophysics Data System (ADS)

    Tyler, Evan; Cattell, Cynthia; Thaller, Scott; Wygant, John; Gurgiolo, Chris; Goldstein, Melvyn; Mouikis, Christopher

    2016-12-01

    We present the partitioning of integrated energy flux from four tail reconnection events observed by Cluster, focusing on the relative contributions of Poynting flux, electron, H+ and O+ enthalpy, and kinetic energy flux in the tailward and earthward directions in order to study temporal and spatial features of each event. We further subdivide the Poynting flux into three frequency bands to examine the possible structures and waves that contribute most significantly to the total Poynting flux from the reconnection region. Our results indicate that H+ enthalpy flux is often dominant, but O+ enthalpy, electron enthalpy, Poynting flux, and H+ kinetic energy flux can contribute significant or greater total energy flux depending on spacecraft location with respect the current sheet, flow direction, temporal scale, and local conditions. We observe integrated H+ enthalpy fluxes that differ by factors of 3-4 between satellites, even over ion inertial length scales. We observe strong differences in behavior between H+ and O+ enthalpy fluxes in all events, highlighting the importance of species-specific energization mechanisms. We find tailward-earthward asymmetry in H+ enthalpy flux, possibly indicative of the influence of the closed earthward boundary of the magnetotail system. Frequency filtering of the Poynting flux shows that current sheet surface waves and structures on the timescale of current sheet flapping contribute significantly, while large-scale structure contributions are relatively small. We observe that the direction and behavior of the Poynting flux differs between bands, indicating that the observed flux originates from multiple distinct sources or processes.

  8. Methane flux from the Central Amazonian Floodplain

    NASA Technical Reports Server (NTRS)

    Bartlett, Karen B.; Crill, Patrick M.; Sebacher, Daniel I.; Harriss, Robert C.; Wilson, John O.; Melack, John M.

    1987-01-01

    A total of 186 methane measurements from the three primary Amazon floodplain environments of open water lakes, flood forests, and floating grass mats were made over the period 18 July through 2 September 1985. These data indicate that emissions were lowest over open water lakes. Flux from flooded forests and grass mats was significantly higher. At least three transport processes contribute to tropospheric emissions: ebullition from sediments, diffusion along the concentration gradient from sediment to overlaying water to air, and transport through the roots and stems of aquatic plants. Measurements indicate that the first two of these processes are most significant. It was estimated that on the average bubbling makes up 49% of the flux from open water, 54% of that from flooded forests, and 64% of that from floating mats. If the measurements were applied to the entire Amazonian floodplain, it is calculated that the region could supply up to 12% of the estimated global natural sources of methane.

  9. Anthropogenic methane ebullition and continuous flux measurement

    NASA Astrophysics Data System (ADS)

    Alshboul, Zeyad

    2017-04-01

    Keywords: Methane, Wastewater, Effluent, Anaerobic treatment. Municipal wastewater treatment plants (WWTPs) have shown to emit significant amount of methane during treatment processes. While most of studies cover only in-plant diffusive methane flux, magnitude and sources of methane ebullition have not well assessed. Moreover, the reported results of methane emissions from WWTPs are based on low spatial and temporal resolution. Using a continuous measurement approach of methane flux rate for effluent system and secondary clarifier treatment process at one WWTP in Southwest Germany, our results show that high percentage of methane is emitted by ebullition during the anaerobic treatment (clarification pond) with high spatial and temporal variability. Our measurements revealed that no ebullition is occur at the effluent system. The observed high contribution of methane ebullition to the total in-plant methane emission, emphasizes the need for considering in-plant methane emission by ebullition as well as the spatial and temporal variability of these emissions.

  10. High flux reactor

    SciTech Connect

    Lake, J.A.; Heath, R.L.; Liebenthal, J.L.; DeBoisblanc, D.R.; Leyse, C.F.; Parsons, K.; Ryskamp, J.M.; Wadkins, R.P.; Harker, Y.D.; Fillmore, G.N.

    1988-08-16

    A high flux nuclear reactor is described comprising: (a) a pressure vessel including reactor coolant inlet means at the first end thereof and reactor coolant outlet means at the second end thereof; (b) a reactor coolant; (c) a first core segment housed within the pressure vessel, the first core segment including a plurality of concentric, circumferential fuel plates, the spacing between the concentric fuel plates forming coolant flow channels, each fuel plate being thin relative to the spacing between the fuel plates; (d) means for stationarily supporting the first core segment from the pressure vessel; (e) a second core segment housed within the pressure vessel and spaced axialy apart from the first core segment such that a coolant mixing plenum is formed therebetween, the second core segment including a plurality of concentric, circumferential fuel plates, the spacing between the concentric fuel plates forming coolant flow channels, each fuel plate being thin relative to the spacing between the fuel plates; (f) means for stationarily supporting the second core segment from the pressure vessel; and (g) first core coolant bypass means for channeling a volume of the coolant between the inlet means and the coolant mixing plenum such that the coolant volume bypasses the first core segment.

  11. Chaos in Magnetic Flux Ropes

    NASA Astrophysics Data System (ADS)

    Gekelman, W. N.; DeHaas, T.; Van Compernolle, B.

    2013-12-01

    Magnetic Flux Ropes Immersed in a uniform magnetoplasma are observed to twist about themselves, writhe about each other and rotate about a central axis. They are kink unstable and smash into one another as they move. Full three dimensional magnetic field and flows are measured at thousands of time steps. Each collision results in magnetic field line generation and the generation of a quasi-seperatrix layer and induced electric fields. Three dimensional magnetic field lines are computed by conditionally averaging the data using correlation techniques. The permutation entropy1 ,which is related to the Lyapunov exponent, can be calculated from the the time series of the magnetic field data (this is also done with flows) and used to calculate the positions of the data on a Jensen Shannon complexity map2. The location of data on this map indicates if the magnetic fields are stochastic, or fall into regions of minimal or maximal complexity. The complexity is a function of space and time. The complexity map, and analysis will be explained in the course of the talk. Other types of chaotic dynamical models such as the Lorentz, Gissinger and Henon process also fall on the map and can give a clue to the nature of the flux rope turbulence. The ropes fall in the region of the C-H plane where chaotic systems lie. The entropy and complexity change in space and time which reflects the change and possibly type of chaos associated with the ropes. The maps give insight as to the type of chaos (deterministic chaos, fractional diffusion , Levi flights..) and underlying dynamical process. The power spectra of much of the magnetic and flow data is exponential and Lorentzian structures in the time domain are embedded in them. Other quantities such as the Hurst exponent are evaluated for both magnetic fields and plasma flow. Work Supported by a UC-LANL Lab fund and the Basic Plasma Science Facility which is funded by DOE and NSF. 1) C. Bandt, B. Pompe, Phys. Rev. Lett., 88,174102 (2007) 2

  12. Energy flux density in a thermoacoustic couple

    SciTech Connect

    Cao, N.; Chen, S. |; Olson, R.; Swift, G.W.

    1996-06-01

    The hydro- and thermodynamical processes near and within a thermoacoustic couple are simulated and analyzed by numerical solution of the compressible Navier-Stokes, continuity, and energy equations for an ideal gas, concentrating on the time-averaged energy flux density in the gas. The numerical results show details of the heat sink at one end of the plates in the thermoacoustic couple. 15 refs., 10 figs., 1 tab.

  13. The Measurement of Air-Sea Fluxes

    DTIC Science & Technology

    1990-10-09

    induced by the motion of the wave (in a wave following coordinate system the rotor appears as an eddy in the wave trough). Strictly speaking, this is a...Droplet distribution and dispersion processes on breaking wind waves . jai. e . Tohoku University er. , Geophysics, 21, 1-25. Lai R.J. and O.H. Shemdin ...seaspray, Chapter 10 in Surface Waves and Fluxes: Current Theory ana Remote Sensing, G. Geernaert and W. Plant, Ed., Reidel, Holland. -4- 1 I 3. Fairall

  14. Self-Shielded Flux Cored Wire Evaluation

    DTIC Science & Technology

    1980-12-01

    shipbuilding industry . SMAW , like all welding processes however, is not utopian and has certain cost effective shortcomings relative to productivity. As a means...Knoop Hardness Traverse Typical Microstructure of the Heating & Cooling Effects of Multipass Welding Typical Ampsrages Used for Flat Position Welding...Appendix Typical Amperages Used for Vertical Up Welding III E7018 SMAW Electrodes vs. Gasless Flux Cored Wires v LIST OF TABLES Table Page 1 2 3 4 5 6

  15. Magnetoresistive Flux Focusing Eddy Current Flaw Detection

    NASA Technical Reports Server (NTRS)

    Wincheski, Russell A. (Inventor); Namkung, Min (Inventor); Simpson, John W. (Inventor)

    2005-01-01

    A giant magnetoresistive flux focusing eddy current device effectively detects deep flaws in thick multilayer conductive materials. The probe uses an excitation coil to induce eddy currents in conducting material perpendicularly oriented to the coil s longitudinal axis. A giant magnetoresistive (GMR) sensor, surrounded by the excitation coil, is used to detect generated fields. Between the excitation coil and GMR sensor is a highly permeable flux focusing lens which magnetically separates the GMR sensor and excitation coil and produces high flux density at the outer edge of the GMR sensor. The use of feedback inside the flux focusing lens enables complete cancellation of the leakage fields at the GMR sensor location and biasing of the GMR sensor to a location of high magnetic field sensitivity. In an alternate embodiment, a permanent magnet is positioned adjacent to the GMR sensor to accomplish the biasing. Experimental results have demonstrated identification of flaws up to 1 cm deep in aluminum alloy structures. To detect deep flaws about circular fasteners or inhomogeneities in thick multi-layer conductive materials, the device is mounted in a hand-held rotating probe assembly that is connected to a computer for system control, data acquisition, processing and storage.

  16. Magnetoresistive flux focusing eddy current flaw detection

    NASA Technical Reports Server (NTRS)

    Wincheski, Russell A. (Inventor); Namkung, Min (Inventor); Simpson, John W. (Inventor)

    2005-01-01

    A giant magnetoresistive flux focusing eddy current device effectively detects deep flaws in thick multilayer conductive materials. The probe uses an excitation coil to induce eddy currents in conducting material perpendicularly oriented to the coil's longitudinal axis. A giant magnetoresistive (GMR) sensor, surrounded by the excitation coil, is used to detect generated fields. Between the excitation coil and GMR sensor is a highly permeable flux focusing lens which magnetically separates the GMR sensor and excitation coil and produces high flux density at the outer edge of the GMR sensor. The use of feedback inside the flux focusing lens enables complete cancellation of the leakage fields at the GMR sensor location and biasing of the GMR sensor to a location of high magnetic field sensitivity. In an alternate embodiment, a permanent magnet is positioned adjacent to the GMR sensor to accomplish the biasing. Experimental results have demonstrated identification of flaws up to 1 cm deep in aluminum alloy structures. To detect deep flaws about circular fasteners or inhomogeneities in thick multilayer conductive materials, the device is mounted in a hand-held rotating probe assembly that is connected to a computer for system control, data acquisition, processing and storage.

  17. Terrestrial water fluxes dominated by transpiration.

    PubMed

    Jasechko, Scott; Sharp, Zachary D; Gibson, John J; Birks, S Jean; Yi, Yi; Fawcett, Peter J

    2013-04-18

    Renewable fresh water over continents has input from precipitation and losses to the atmosphere through evaporation and transpiration. Global-scale estimates of transpiration from climate models are poorly constrained owing to large uncertainties in stomatal conductance and the lack of catchment-scale measurements required for model calibration, resulting in a range of predictions spanning 20 to 65 per cent of total terrestrial evapotranspiration (14,000 to 41,000 km(3) per year) (refs 1, 2, 3, 4, 5). Here we use the distinct isotope effects of transpiration and evaporation to show that transpiration is by far the largest water flux from Earth's continents, representing 80 to 90 per cent of terrestrial evapotranspiration. On the basis of our analysis of a global data set of large lakes and rivers, we conclude that transpiration recycles 62,000 ± 8,000 km(3) of water per year to the atmosphere, using half of all solar energy absorbed by land surfaces in the process. We also calculate CO2 uptake by terrestrial vegetation by connecting transpiration losses to carbon assimilation using water-use efficiency ratios of plants, and show the global gross primary productivity to be 129 ± 32 gigatonnes of carbon per year, which agrees, within the uncertainty, with previous estimates. The dominance of transpiration water fluxes in continental evapotranspiration suggests that, from the point of view of water resource forecasting, climate model development should prioritize improvements in simulations of biological fluxes rather than physical (evaporation) fluxes.

  18. Methane flux in the Great Dismal Swamp

    NASA Technical Reports Server (NTRS)

    Harriss, R. C.; Sebacher, D. I.; Day, F. P., Jr.

    1982-01-01

    The paper reports measurements made over a 17-month period of the methane flux in the Great Dismal Swamp of Virginia in light of the potential implications of variations in atmospheric methane concentrations. Gas flux measurements were made by a technique combining a gas filter correlation IR absorption analyzer with improved sampling chambers that enclose a soil area under conditions ranging from totally flooded soils to dry soils resulting from drought conditions. Methane emissions are found to range from 0.0013 g CH4/sq m per day to 0.019 g CH4/sq m per day, depending on temperature and season, when the soil is in a waterlogged state. During drought conditions, the peat soils in the swamp were a sink for atmospheric methane, with fluxes from less than 0.001 to 0.005 g CH4/sq m per day and decreasing with decreasing temperature. Results illustrate the potential complexity of the processes which regulate the net flux of methane between wetland soils and the atmosphere.

  19. Designing with null flux coils

    SciTech Connect

    Davey, K.R.

    1997-09-01

    Null flux were suggested by Danby and Powell in the late 1960`s as a useful means for realizing induced lift with little drag. As an array of alternating magnets is translated past a set of null flux coils, the currents induced in these coils act to vertically center the magnets on those coils. At present, one Japanese MAGLEV system company and two American-based companies are employing either null flux or flux eliminating coils in their design for high speed magnetically levitated transportation. The principle question addressed in paper is: what is the proper choice of coil length to magnet length in a null flux system? A generic analysis in the time and frequency domain is laid out with the intent of showing the optimal design specification in terms of coil parameters.

  20. An integrated radon flux monitor

    NASA Astrophysics Data System (ADS)

    Abdelrazek, M. M.

    1984-07-01

    A radon flux monitor suitable for measuring radon flux emanating from cracks or small surface areas is described. The monitor consists of a charcoal canister, an air pump and a steel container. Radon gas exhaled from a crack or from a surface is collected inside a steel container (10 cm × 10 cm × 10 cm) and is simultaneously circulated through a charcoal canister using an air pump. Radon flux is estimated by measuring the gamma ray activity of the radon gas absorbed by the charcoal. Experimental investigations showed that an air flow of 8 1/min was found adequate for the purpose of the present work. A calibration coefficient representing the ratio of radon flux measured by the monitor to the actual flux was found to be 0.81∓0.03. Experimental results showed that this monitor gives fairly accurate and reliable results.

  1. Aerosol fluxes in the marine boundary layer

    NASA Astrophysics Data System (ADS)

    Petelski, Tomasz; Zieliński, Tymon; Makuch, Przemysław; Kowalczyk, Jakub; Ponczkowska, Agnieszka; Drozdowska, Violetta; Piskozub, Jacek

    2010-05-01

    We present aerosol emission fluxes and concentrations calculated from in-situ measurement in the Nordic Sea from R/V Oceania. We compare vertical fluxes calculated with the eddy correlation and gradient methods. We use the results to test the hypothesis that marine aerosol emitted from the sea surface helps to clear the boundary layer from other aerosol particles. As the emitted droplets do not dry out in the highly humid surface layer air and because of their sizes most of them are deposited quickly at the sea surface. Therefore marine aerosol has many features of rain meaning that the deposition in the marine boundary layer in high wind events is controlled not only by the "dry" processes but also by the "wet" scavenging. We have estimated the effectiveness of the process using our own measurements of vertical aerosol fluxes in the Nordic Seas. This process could explain observed phenomenon of lower Arctic aerosol optical thickness (AOT) when the air masses moved over open sea than over sea-ice. We show a negative correlation between the sea-ice coverage in the seas adjacent to Svalbard and monthly AOT values in Ny Alesund.

  2. Flux growth utilizing the reaction between flux and crucible

    DOE PAGES

    Yan, J. -Q.

    2015-01-22

    Flux growth involves dissolving the components of the target compound in an appropriate flux at high temperatures and then crystallizing under supersaturation controlled by cooling or evaporating the flux. A refractory crucible is generally used to contain the high temperature melt. Moreover, the reaction between the melt and crucible materials can modify the composition of the melt, which typically results in growth failure, or contaminates the crystals. Thus one principle in designing a flux growth is to select suitable flux and crucible materials thus to avoid any reaction between them. In this paper, we review two cases of flux growthmore » in which the reaction between flux and Al2O3 crucible tunes the oxygen content in the melt and helps the crystallization of desired compositions. For the case of La5Pb3O, the Al2O3 crucible oxidizes La to form a passivating La2O3 layer which not only prevents further oxidization of La in the melt but also provides [O] to the melt. Finally, in the case of La0.4Na0.6Fe2As2, it is believed that the Al2O3 crucible reacts with NaAsO2 and the reaction consumes oxygen in the melt thus maintaining an oxygen-free environment.« less

  3. PHLUX: Photographic Flux Tools for Solar Glare and Flux

    SciTech Connect

    2010-12-02

    A web-based tool to a) analytically and empirically quantify glare from reflected light and determine the potential impact (e.g., temporary flash blindness, retinal burn), and b) produce flux maps for central receivers. The tool accepts RAW digital photographs of the glare source (for hazard assessment) or the receiver (for flux mapping), as well as a photograph of the sun for intensity and size scaling. For glare hazard assessment, the tool determines the retinal irradiance (W/cm2) and subtended source angle for an observer and plots the glare source on a hazard spectrum (i.e., low-potential for flash blindness impact, potential for flash blindness impact, retinal burn). For flux mapping, the tool provides a colored map of the receiver scaled by incident solar flux (W/m2) and unwraps the physical dimensions of the receiver while accounting for the perspective of the photographer (e.g., for a flux map of a cylindrical receiver, the horizontal axis denotes receiver angle in degrees and the vertical axis denotes vertical position in meters; for a flat panel receiver, the horizontal axis denotes horizontal position in meters and the vertical axis denotes vertical position in meters). The flux mapping capability also allows the user to specify transects along which the program plots incident solar flux on the receiver.

  4. Flux canceling in three-dimensional radiative magnetohydrodynamic simulations

    NASA Astrophysics Data System (ADS)

    Thaler, Irina; Spruit, H. C.

    2017-05-01

    We aim to study the processes involved in the disappearance of magnetic flux between regions of opposite polarity on the solar surface using realistic three-dimensional (3D) magnetohydrodynamic (MHD) simulations. "Retraction" below the surface driven by magnetic forces is found to be a very effective mechanism of flux canceling of opposite polarities. The speed at which flux disappears increases strongly with initial mean flux density. In agreement with existing inferences from observations we suggest that this is a key process of flux disappearance within active complexes. Intrinsic kG strength concentrations connect the surface to deeper layers by magnetic forces, and therefore the influence of deeper layers on the flux canceling process is studied. We do this by comparing simulations extending to different depths. For average flux densities of 50 G, and on length scales on the order of 3 Mm in the horizontal and 10 Mm in depth, deeper layers appear to have only a mild influence on the effective rate of diffusion.

  5. Flux analysis in plant metabolic networks: increasing throughput and coverage.

    PubMed

    Junker, Björn H

    2014-04-01

    Quantitative information about metabolic networks has been mainly obtained at the level of metabolite contents, transcript abundance, and enzyme activities. However, the active process of metabolism is represented by the flow of matter through the pathways. These metabolic fluxes can be predicted by Flux Balance Analysis or determined experimentally by (13)C-Metabolic Flux Analysis. These relatively complicated and time-consuming methods have recently seen significant improvements at the level of coverage and throughput. Metabolic models have developed from single cell models into whole-organism dynamic models. Advances in lab automation and data handling have significantly increased the throughput of flux measurements. This review summarizes advances to increase coverage and throughput of metabolic flux analysis in plants.

  6. Gaussian mixture models as flux prediction method for central receivers

    NASA Astrophysics Data System (ADS)

    Grobler, Annemarie; Gauché, Paul; Smit, Willie

    2016-05-01

    Flux prediction methods are crucial to the design and operation of central receiver systems. Current methods such as the circular and elliptical (bivariate) Gaussian prediction methods are often used in field layout design and aiming strategies. For experimental or small central receiver systems, the flux profile of a single heliostat often deviates significantly from the circular and elliptical Gaussian models. Therefore a novel method of flux prediction was developed by incorporating the fitting of Gaussian mixture models onto flux profiles produced by flux measurement or ray tracing. A method was also developed to predict the Gaussian mixture model parameters of a single heliostat for a given time using image processing. Recording the predicted parameters in a database ensures that more accurate predictions are made in a shorter time frame.

  7. Study on Crystallization Properties of Mold Flux in Magnetic Field

    NASA Astrophysics Data System (ADS)

    Zhang, Congjing; Wang, Yu; Hu, Lang; Zhu, Mingmei; Wang, Hongpo

    Magnetic field has a great effect on the crystallization behavior of mold flux and properties of the flux film between mold and strand, on which the surface quality of strand was deeply depended in continuous casting process. Therefore, studying the change law of the crystallization properties of mold flux in magnetic field is of great significant. In the present work, based on intensity of the applied magnetic field with the range from 0mT to 60mT, the crystallization ratio, crystal size and mineralogical phases of the flux film were discussed. The results show that crystallization ratio increases with the increasing magnetic field intensity, and the crystal size becomes bigger at the same time. The magnetic field promotes the crystallization ratio and growth speed of the crystallized grains of mold flux. However, magnetic field doesn't change types of the mineralogical phases.

  8. Flux cutting in high- Tc superconductors

    SciTech Connect

    Vlasko-Vlasov, V.; Koshelev, A.; Glatz, A.; Phillips, C.; Welp, U.; Kwok, W.

    2015-01-01

    We performed magneto-optical study of flux distributions in a YBCO crystal under various applied crossed- field orientations to elucidate the complex nature of magnetic flux cutting in superconductors. Our study reveals unusual vortex patterns induced by the interplay between flux-cutting and vortex pinning. We observe strong flux penetration anisotropy of the normal flux B⊥ in the presence of an in-plane field H|| and associate the modified flux dynamics with staircase structure of tilted vortices in YBCO and the flux-cutting process. We demonstrate that flux-cutting can effectively delay vortex entry in the direction transverse to H||. Finally, we elucidate details of the vortex-cutting and reconnection process using time-dependent Ginzburg-Landau simulations.

  9. Energy balance and non-turbulent fluxes

    NASA Astrophysics Data System (ADS)

    Moderow, Uta; Feigenwinter, Christian; Bernhofer, Christian

    2010-05-01

    Often, the sum of the turbulent fluxes of sensible heat and latent heat from eddy covariance (EC) measurements does not match the available energy (sum of net radiation, ground heat flux and storage changes). This is referred to as energy balance closure gap. The reported imbalances vary between 0% and 50% (Laubach 1996). In various publications, it has been shown that the uncertainty of the available energy itself does not explain the gap (Vogt et al. 1996; Moderow et al. 2009). Among other reasons, the underestimation is attributed to an underestimation of turbulent fluxes and undetected non-turbulent transport processes, i.e. advection (e.g. Foken et al. 2006). The imbalance is typically larger during nighttime than during daytime as the EC method fails to capture non-turbulent transports that can be significant during night (e.g. Aubinet 2008). Results for the budget of CO2 showed that including non-turbulent fluxes can change the budgets considerably. Hence, it is interesting to see how the budget of energy is changed. Here, the consequences of including advective fluxes of sensible heat and latent heat in the energy balance are explored with focus on nighttime conditions. Non-turbulent fluxes will be inspected critically regarding their plausibility. Following Bernhofer et al. (2003), a ratio similar to Bowen's ratio of the turbulent fluxes are defined for the non-turbulent fluxes and compared to each other. This might have implications for the partitioning of the available energy into sensible heat and latent heat. Data of the ADVEX-campaigns (Feigenwinter et al. 2008) of three different sites across Europe are used and selected periods are inspected. References Aubinet M (2008) Eddy covariance CO2-flux measurements in nocturnal conditions: An analysis of the problem. Ecol Appl 18: 1368-1378 Bernhofer C, Grünwald T, Schwiebus A, Vogt R (2003) Exploring the consequences of non-zero energy balance closure for total surface flux. In: Bernhofer C (ed

  10. Sodium Flux Growth of Bulk Gallium Nitride

    NASA Astrophysics Data System (ADS)

    Von Dollen, Paul Martin

    This dissertation focused on development of a novel apparatus and techniques for crystal growth of bulk gallium nitride (GaN) using the sodium flux method. Though several methods exist to produce bulk GaN, none have been commercialized on an industrial scale. The sodium flux method offers potentially lower cost production due to relatively mild process conditions while maintaining high crystal quality. But the current equipment and methods for sodium flux growth of bulk GaN are generally not amenable to large-scale crystal growth or in situ investigation of growth processes, which has hampered progress. A key task was to prevent sodium loss or migration from the sodium-gallium growth melt while permitting N2 gas to access the growing crystal, which was accomplished by implementing a reflux condensing stem along with a reusable sealed capsule. The reflux condensing stem also enabled direct monitoring and control of the melt temperature, which has not been previously reported for the sodium flux method. Molybdenum-based materials were identified from a corrosion study as candidates for direct containment of the corrosive sodium-gallium melt. Successful introduction of these materials allowed implementation of a crucible-free containment system, which improved process control and can potentially reduce crystal impurity levels. Using the new growth system, the (0001) Ga face (+c plane) growth rate was >50 mum/hr, which is the highest bulk GaN growth rate reported for the sodium flux method. Omega X-ray rocking curve (?-XRC) measurements indicated the presence of multiple grains, though full width at half maximum (FWHM) values for individual peaks were <100 arcseconds. Oxygen impurity concentrations as measured by secondary ion mass spectroscopy (SIMS) were >1020 atoms/cm3, possibly due to reactor cleaning and handling procedures. This dissertation also introduced an in situ technique to correlate changes in N2 pressure with dissolution of nitrogen and precipitation of

  11. MAGNETIC FLUX SUPPLEMENT TO CORONAL BRIGHT POINTS

    SciTech Connect

    Mou, Chaozhou; Huang, Zhenghua; Xia, Lidong; Li, Bo; Fu, Hui; Jiao, Fangran; Hou, Zhenyong; Madjarska, Maria S.

    2016-02-10

    Coronal bright points (BPs) are associated with magnetic bipolar features (MBFs) and magnetic cancellation. Here we investigate how BP-associated MBFs form and how the consequent magnetic cancellation occurs. We analyze longitudinal magnetograms from the Helioseismic and Magnetic Imager to investigate the photospheric magnetic flux evolution of 70 BPs. From images taken in the 193 Å passband of the Atmospheric Imaging Assembly (AIA) we dermine that the BPs’ lifetimes vary from 2.7 to 58.8 hr. The formation of the BP MBFs is found to involve three processes, namely, emergence, convergence, and local coalescence of the magnetic fluxes. The formation of an MBF can involve more than one of these processes. Out of the 70 cases, flux emergence is the main process of an MBF buildup of 52 BPs, mainly convergence is seen in 28, and 14 cases are associated with local coalescence. For MBFs formed by bipolar emergence, the time difference between the flux emergence and the BP appearance in the AIA 193 Å passband varies from 0.1 to 3.2 hr with an average of 1.3 hr. While magnetic cancellation is found in all 70 BPs, it can occur in three different ways: (I) between an MBF and small weak magnetic features (in 33 BPs); (II) within an MBF with the two polarities moving toward each other from a large distance (34 BPs); (III) within an MBF whose two main polarities emerge in the same place simultaneously (3 BPs). While an MBF builds up the skeleton of a BP, we find that the magnetic activities responsible for the BP heating may involve small weak fields.

  12. Magnetic Flux Supplement to Coronal Bright Points

    NASA Astrophysics Data System (ADS)

    Mou, Chaozhou; Huang, Zhenghua; Xia, Lidong; Madjarska, Maria S.; Li, Bo; Fu, Hui; Jiao, Fangran; Hou, Zhenyong

    2016-02-01

    Coronal bright points (BPs) are associated with magnetic bipolar features (MBFs) and magnetic cancellation. Here we investigate how BP-associated MBFs form and how the consequent magnetic cancellation occurs. We analyze longitudinal magnetograms from the Helioseismic and Magnetic Imager to investigate the photospheric magnetic flux evolution of 70 BPs. From images taken in the 193 Å passband of the Atmospheric Imaging Assembly (AIA) we dermine that the BPs’ lifetimes vary from 2.7 to 58.8 hr. The formation of the BP MBFs is found to involve three processes, namely, emergence, convergence, and local coalescence of the magnetic fluxes. The formation of an MBF can involve more than one of these processes. Out of the 70 cases, flux emergence is the main process of an MBF buildup of 52 BPs, mainly convergence is seen in 28, and 14 cases are associated with local coalescence. For MBFs formed by bipolar emergence, the time difference between the flux emergence and the BP appearance in the AIA 193 Å passband varies from 0.1 to 3.2 hr with an average of 1.3 hr. While magnetic cancellation is found in all 70 BPs, it can occur in three different ways: (I) between an MBF and small weak magnetic features (in 33 BPs); (II) within an MBF with the two polarities moving toward each other from a large distance (34 BPs); (III) within an MBF whose two main polarities emerge in the same place simultaneously (3 BPs). While an MBF builds up the skeleton of a BP, we find that the magnetic activities responsible for the BP heating may involve small weak fields.

  13. Pharmacologic vitreodynamics and molecular flux.

    PubMed

    Goldenberg, David T; Trese, Michael T

    2009-01-01

    Several enzymatic agents, such as autologous plasmin enzyme and recombinant microplasmin, are able to cause vitreous liquefaction and a complete posterior vitreous detachment (PVD). Advancements in research have helped to explain the complex interactions that occur in the vitreous cavity after a PVD is created. The development of a PVD is a dynamic process that is thought to have a larger impact on the vitreous cavity milieu than just a separation of the posterior cortical vitreous from the retina. Pharmacologic vitreodynamics attempts to explain the mechanical and biochemical changes that occur at the vitreoretinal junction after a PVD is formed. The flow of molecules into and out of the vitreous cavity and across the vitreoretinal junction is thought to be influenced by the presence or absence of a PVD. A microplasmin-induced PVD has been shown to alter the vitreous levels of several molecules, and a PVD may have a protective role in multiple diseases. Significant progress has been made in the field of pharmacologic vitreodynamics. As we improve our understanding of the molecular flux in the vitreous cavity, pharmacologic vitreodynamics will likely become more important as it may allow for improved manipulation of intravitreal molecules.

  14. Interpreting Flux from Broadband Photometry

    NASA Astrophysics Data System (ADS)

    Brown, Peter J.; Breeveld, Alice; Roming, Peter W. A.; Siegel, Michael

    2016-10-01

    We discuss the transformation of observed photometry into flux for the creation of spectral energy distributions (SED) and the computation of bolometric luminosities. We do this in the context of supernova studies, particularly as observed with the Swift spacecraft, but the concepts and techniques should be applicable to many other types of sources and wavelength regimes. Traditional methods of converting observed magnitudes to flux densities are not very accurate when applied to UV photometry. Common methods for extinction and the integration of pseudo-bolometric fluxes can also lead to inaccurate results. The sources of inaccuracy, though, also apply to other wavelengths. Because of the complicated nature of translating broadband photometry into monochromatic flux densities, comparison between observed photometry and a spectroscopic model is best done by forward modeling the spectrum into the count rates or magnitudes of the observations. We recommend that integrated flux measurements be made using a spectrum or SED which is consistent with the multi-band photometry rather than converting individual photometric measurements to flux densities, linearly interpolating between the points, and integrating. We also highlight some specific areas where the UV flux can be mischaracterized.

  15. Zircons reveal magma fluxes in the Earth's crust.

    PubMed

    Caricchi, Luca; Simpson, Guy; Schaltegger, Urs

    2014-07-24

    Magma fluxes regulate the planetary thermal budget, the growth of continents and the frequency and magnitude of volcanic eruptions, and play a part in the genesis and size of magmatic ore deposits. However, because a large fraction of the magma produced on the Earth does not erupt at the surface, determinations of magma fluxes are rare and this compromises our ability to establish a link between global heat transfer and large-scale geological processes. Here we show that age distributions of zircons, a mineral often present in crustal magmatic rocks, in combination with thermal modelling, provide an accurate means of retrieving magma fluxes. The characteristics of zircon age populations vary significantly and systematically as a function of the flux and total volume of magma accumulated in the Earth's crust. Our approach produces results that are consistent with independent determinations of magma fluxes and volumes of magmatic systems. Analysis of existing age population data sets using our method suggests that porphyry-type deposits, plutons and large eruptions each require magma input over different timescales at different characteristic average fluxes. We anticipate that more extensive and complete magma flux data sets will serve to clarify the control that the global heat flux exerts on the frequency of geological events such as volcanic eruptions, and to determine the main factors controlling the distribution of resources on our planet.

  16. Optical sampling of the flux tower footprint

    NASA Astrophysics Data System (ADS)

    Gamon, J. A.

    2015-03-01

    ecophysiological function. In addition to an enhanced mechanistic understanding of ecosystem processes, this integration of remote sensing with flux measurements offers many rich opportunities for upscaling, satellite validation, and informing practical management objectives ranging form assessing ecosystem health and productivity to quantifying biospheric carbon sequestration.

  17. Why different gas flux velocity parameterizations result in so similar flux results in the North Atlantic?

    NASA Astrophysics Data System (ADS)

    Piskozub, Jacek; Wróbel, Iwona

    2016-04-01

    The North Atlantic is a crucial region for both ocean circulation and the carbon cycle. Most of ocean deep waters are produced in the basin making it a large CO2 sink. The region, close to the major oceanographic centres has been well covered with cruises. This is why we have performed a study of net CO2 flux dependence upon the choice of gas transfer velocity k parameterization for this very region: the North Atlantic including European Arctic Seas. The study has been a part of a ESA funded OceanFlux GHG Evolution project and, at the same time, a PhD thesis (of I.W) funded by Centre of Polar Studies "POLAR-KNOW" (a project of the Polish Ministry of Science). Early results have been presented last year at EGU 2015 as a PICO presentation EGU2015-11206-1. We have used FluxEngine, a tool created within an earlier ESA funded project (OceanFlux Greenhouse Gases) to calculate the North Atlantic and global fluxes with different gas transfer velocity formulas. During the processing of the data, we have noticed that the North Atlantic results for different k formulas are more similar (in the sense of relative error) that global ones. This was true both for parameterizations using the same power of wind speed and when comparing wind squared and wind cubed parameterizations. This result was interesting because North Atlantic winds are stronger than the global average ones. Was the flux result similarity caused by the fact that the parameterizations were tuned to the North Atlantic area where many of the early cruises measuring CO2 fugacities were performed? A closer look at the parameterizations and their history showed that not all of them were based on North Atlantic data. Some of them were tuned to the South Ocean with even stronger winds while some were based on global budgets of 14C. However we have found two reasons, not reported before in the literature, for North Atlantic fluxes being more similar than global ones for different gas transfer velocity parametrizations

  18. Correlation of SiO maser flux with stellar flux

    SciTech Connect

    Cahn, J.H.

    1981-12-01

    A survey of available SiO maser observations of the 43.122-GHz, v = 1, J = 1..-->..0 transition has been made in order to further investigate the question of a correlation of maser flux with bolometric flux. This correlation has been shown to exist both for data which have been phase shifted to mean maximum and for those which have not.

  19. On Potential Vorticity Flux Vectors.

    NASA Astrophysics Data System (ADS)

    Bannon, Peter R.; Schmidli, Jürg; Schär, Christoph

    2003-12-01

    Dynamical, rather than kinematical, considerations indicate that a generalized potential vorticity in terms of the gradient of an arbitrary scalar function requires that the potential vorticity flux vector contain a contribution due to gravity and the pressure gradient force. It is shown that such a potential vorticity flux vector has a simpler definition in terms of the gradient of the kinetic energy rather than that of a Bernoulli function. This result is valid for multicomponent fluids. Flux vectors for a salty ocean and a moist atmosphere with hydrometeors are presented.

  20. Untangling Autophagy Measurements: All Fluxed Up

    PubMed Central

    Gottlieb, Roberta A.; Andres, Allen M.; Sin, Jon; Taylor, David

    2015-01-01

    Autophagy is an important physiological process in the heart, and alterations in autophagic activity can exacerbate or mitigate injury during various pathological processes. Methods to assess autophagy have changed rapidly as the field of research has expanded. As with any new field, methods and standards for data analysis and interpretation evolve as investigators acquire experience and insight. The purpose of this review is to summarize current methods to measure autophagy, selective mitochondrial autophagy (mitophagy), and autophagic flux. We will examine several published studies where confusion arose in in data interpretation, in order to illustrate the challenges. Finally we will discuss methods to assess autophagy in vivo and in patients. PMID:25634973

  1. Subcanopy Flux Measurements in Forest Ecosystems

    NASA Astrophysics Data System (ADS)

    Wolf, Sebastian; Paul-Limoges, Eugenie; Baldocchi, Dennis

    2017-04-01

    Eddy-covariance measurements of carbon dioxide, water vapour and energy provide direct evidence for the biosphere-atmosphere exchange at the ecosystem scale. Such continuous measurements are typically performed in the atmospheric surface layer above the canopy and integrate fluxes over the entire ecosystem within the footprint. Forest ecosystems, however, have complex vertical structures composed of several layers with different functional properties that are represented to a limited extend by above canopy measurements. Concurrent eddy-covariance measurements below canopy (subcanopy) can provide valuable insights on (1) understory processes, (2) their contributions to total ecosystem fluxes, and (3) the partitioning of component fluxes. Accordingly, there is a large potential for including standardized subcanopy forest measurements into large-scale monitoring networks such as FLUXNET, ICOS or NEON. However, our understanding of the performance and limitations for such measurements is still very limited. To gain a better understanding of subcanopy measurements, we conducted (I) a survey across FLUXNET on their availability, and (II) a literature review on published subcanopy measurements. We will present the results from our survey, summarize the current process understanding (from a literature review), and discuss research priorities for concurrent below and above canopy eddy-covariance measurements.

  2. The pulsating magnetosphere and flux transfer events

    SciTech Connect

    Potemra, T.A.; Zanetti, L.J. ); Elphinstone, R.; Murphree, J.S. ); Klumpar, D.M. )

    1992-08-03

    A unique positioning of the GOES 5, GOES 6, AMPTE/CCE, and Viking satellites on the dayside of the magnetosphere has provided the opportunity to study the relationship of periodic variations in magnetic fields, energetic particle fluxes, and images of UV auroral forms. On March 25, 1986, at about 1725 UT, two cycles of 10-min-period magnetic field oscillations were observed by all four satellites and by the Huancayo magnetic ground station. The UV images acquired by Viking showed intense emissions in a wide area near noon at 1730 UT, but near dawn 11 min. later. The authors interpret these observations as being associated with anti-sunward-moving periodic compressions of the magnetopause, which precipitated low-energy electrons that produced the enhanced UV emissions. In the midst of the longer-period variations, the magnetic field intensity measured by CCE near the magnetopause decreased sharply for a 105-sec period. This may be interpreted as being due to a flux transfer event that occurred during the longer (10-min) periodic compressions of the magnetosphere. These observations support the view that the magnetosphere often varies in a periodic way because of its own resonant processes and processes driven by the solar wind. A wide range of phenomena is associated with these variations including dayside auroral emissions, magnetic field variations throughout the magnetosphere and on the Earth's surface, and flux transfer events.

  3. PROMINENCE FORMATION ASSOCIATED WITH AN EMERGING HELICAL FLUX ROPE

    SciTech Connect

    Okamoto, Takenori J.; Tsuneta, Saku; Katsukawa, Yukio; Suematsu, Yoshinori; Lites, Bruce W.; Kubo, Masahito; Yokoyama, Takaaki; Berger, Thomas E.; Shine, Richard A.; Tarbell, Theodore D.; Title, Alan M.; Shimizu, Toshifumi

    2009-05-20

    The formation and evolution process and magnetic configuration of solar prominences remain unclear. In order to study the formation process of prominences, we examine continuous observations of a prominence in NOAA AR 10953 with the Solar Optical Telescope on the Hinode satellite. As reported in our previous Letter, we find a signature suggesting that a helical flux rope emerges from below the photosphere under a pre-existing prominence. Here we investigate more detailed properties and photospheric indications of the emerging helical flux rope, and discuss their relationship to the formation of the prominence. Our main conclusions are: (1) a dark region with absence of strong vertical magnetic fields broadens and then narrows in Ca II H-line filtergrams. This phenomenon is consistent with the emergence of the helical flux rope as photospheric counterparts. The size of the flux rope is roughly 30,000 km long and 10,000 km wide. The width is larger than that of the prominence. (2) No shear motion or converging flows are detected, but we find diverging flows such as mesogranules along the polarity inversion line. The presence of mesogranules may be related to the emergence of the helical flux rope. (3) The emerging helical flux rope reconnects with magnetic fields of the pre-existing prominence to stabilize the prominence for the next several days. We thus conjecture that prominence coronal magnetic fields emerge in the form of helical flux ropes that contribute to the formation and maintenance of the prominence.

  4. Flux boundary conditions in particle simulations.

    PubMed

    Flekkøy, Eirik G; Delgado-Buscalioni, Rafael; Coveney, Peter V

    2005-08-01

    Flux boundary conditions are interesting in a number of contexts ranging from multiscale simulations to simulations of molecular hydrodynamics in nanoscale systems. Here we introduce, analyze, and test a general scheme to impose boundary conditions that simultaneously control the momentum and energy flux into open particle systems The scheme is shown to handle far from equilibrium simulations. It acquires its main characteristics from the requirement that it fulfills the second law of thermodynamics and thus minimizes the entropy production, when it is applied to reversible processes. It is shown both theoretically and through simulations that the scheme emulates the effect of an extended particle system as far as particle number fluctuations, temperature, and density profiles are concerned. The numerical scheme is further shown to be accurate and stable in both equilibrium and far from equilibrium contexts.

  5. Earth-like sand fluxes on Mars.

    PubMed

    Bridges, N T; Ayoub, F; Avouac, J-P; Leprince, S; Lucas, A; Mattson, S

    2012-05-09

    Strong and sustained winds on Mars have been considered rare, on the basis of surface meteorology measurements and global circulation models, raising the question of whether the abundant dunes and evidence for wind erosion seen on the planet are a current process. Recent studies showed sand activity, but could not determine whether entire dunes were moving--implying large sand fluxes--or whether more localized and surficial changes had occurred. Here we present measurements of the migration rate of sand ripples and dune lee fronts at the Nili Patera dune field. We show that the dunes are near steady state, with their entire volumes composed of mobile sand. The dunes have unexpectedly high sand fluxes, similar, for example, to those in Victoria Valley, Antarctica, implying that rates of landscape modification on Mars and Earth are similar.

  6. 2 π -flux loop semimetals

    NASA Astrophysics Data System (ADS)

    Li, Linhu; Chesi, Stefano; Yin, Chuanhao; Chen, Shu

    2017-08-01

    We introduce a model of 2 π -flux loop semimetals which holds nodal loops described by a winding number ν =2 . By adding some extra terms, this model can be transformed into a recently discovered Hopf-link semimetal, and the symmetries distinguishing these two types of semimetals are studied. We also propose a simpler physical implementation of 2 π -flux loops and of Hopf-link semimetals which only involves nearest-neighbor hoppings, although in the presence of spin-orbit interactions. Finally, we investigate the Floquet properties of the 2 π -flux loop, and find that such a loop may be driven into two separated π -flux loops or four Weyl points by light with circular polarization in certain directions.

  7. Solar flux and its variations

    NASA Technical Reports Server (NTRS)

    Smith, E. V. P.; Gottlieb, D. M.

    1975-01-01

    Data are presented on the solar irradiance as derived from a number of sources. An attempt was made to bring these data onto a uniform scale. Summation of fluxes at all wavelengths yields a figure of 1357.826 for the solar constant. Estimates are made of the solar flux variations due to flares, active regions (slowly varying component), 27-day period, and the 11-yr cycle. Solar activity does not produce a significant variation in the value of the solar constant. Variations in the X-ray and EUV portions of the solar flux may be several orders of magnitude during solar activity, especially at times of major flares. It is established that these short wavelength flux enhancements cause significant changes in the terrestrial ionosphere.

  8. Conical electromagnetic radiation flux concentrator

    NASA Technical Reports Server (NTRS)

    Miller, E. R.

    1972-01-01

    Concentrator provides method of concentrating a beam of electromagnetic radiation into a smaller beam, presenting a higher flux density. Smaller beam may be made larger by sending radiation through the device in the reverse direction.

  9. Flux networks in metabolic graphs

    NASA Astrophysics Data System (ADS)

    Warren, P. B.; Duarte Queiros, S. M.; Jones, J. L.

    2009-12-01

    A metabolic model can be represented as a bipartite graph comprising linked reaction and metabolite nodes. Here it is shown how a network of conserved fluxes can be assigned to the edges of such a graph by combining the reaction fluxes with a conserved metabolite property such as molecular weight. A similar flux network can be constructed by combining the primal and dual solutions to the linear programming problem that typically arises in constraint-based modelling. Such constructions may help with the visualization of flux distributions in complex metabolic networks. The analysis also explains the strong correlation observed between metabolite shadow prices (the dual linear programming variables) and conserved metabolite properties. The methods were applied to recent metabolic models for Escherichia coli, Saccharomyces cerevisiae and Methanosarcina barkeri. Detailed results are reported for E. coli; similar results were found for other organisms.

  10. Boundary fluxes for nonlocal diffusion

    NASA Astrophysics Data System (ADS)

    Cortazar, Carmen; Elgueta, Manuel; Rossi, Julio D.; Wolanski, Noemi

    We study a nonlocal diffusion operator in a bounded smooth domain prescribing the flux through the boundary. This problem may be seen as a generalization of the usual Neumann problem for the heat equation. First, we prove existence, uniqueness and a comparison principle. Next, we study the behavior of solutions for some prescribed boundary data including blowing up ones. Finally, we look at a nonlinear flux boundary condition.

  11. UVIS G280 Flux Calibration

    NASA Astrophysics Data System (ADS)

    Bushouse, Howard

    2009-07-01

    Flux calibration, image displacement, and spectral trace of the UVIS G280 grism will be established using observations of the HST flux standard start GD71. Accompanying direct exposures will provide the image displacement measurements and wavelength zeropoints for dispersed exposures. The calibrations will be obtained at the central position of each CCD chip and at the center of the UVIS field. No additional field-dependent variations will be derived.

  12. Flux growth utilizing the reaction between flux and crucible

    SciTech Connect

    Yan, J. -Q.

    2015-01-22

    Flux growth involves dissolving the components of the target compound in an appropriate flux at high temperatures and then crystallizing under supersaturation controlled by cooling or evaporating the flux. A refractory crucible is generally used to contain the high temperature melt. Moreover, the reaction between the melt and crucible materials can modify the composition of the melt, which typically results in growth failure, or contaminates the crystals. Thus one principle in designing a flux growth is to select suitable flux and crucible materials thus to avoid any reaction between them. In this paper, we review two cases of flux growth in which the reaction between flux and Al2O3 crucible tunes the oxygen content in the melt and helps the crystallization of desired compositions. For the case of La5Pb3O, the Al2O3 crucible oxidizes La to form a passivating La2O3 layer which not only prevents further oxidization of La in the melt but also provides [O] to the melt. Finally, in the case of La0.4Na0.6Fe2As2, it is believed that the Al2O3 crucible reacts with NaAsO2 and the reaction consumes oxygen in the melt thus maintaining an oxygen-free environment.

  13. Flux flow and flux dynamics in high-T(sub c) superconductors

    NASA Technical Reports Server (NTRS)

    Bennett, L. H.; Turchinskaya, M.; Roytburd, A.; Swartzendruber, L. J.

    1990-01-01

    Because high temperature superconductors, including BYCO and BSCCO, are type 2 superconductors with relatively low H(sub c 1) values and high H(sub c 2) values, they will be in a critical state for many of their applications. In the critical state, with the applied field between H(sub c 1) and H(sub c 2), flux lines have penetrated the material and can form a flux lattice and can be pinned by structural defects, chemical inhomogeneities, and impurities. A detailed knowledge of how flux penetrates the material and its behavior under the influence of applied fields and current flow, and the effect of material processing on these properties, is required in order to apply, and to improve the properties of, these superconductors. When the applied field is changed rapidly, the time dependence of flux change can be divided into three regions, an initial region which occurs very rapidly, a second region in which the magnetization has a 1n(t) behavior, and a saturation region at very long times. A critical field is defined for depinning, H(sub c,p) as that field at which the hysteresis loop changes from irreversible to reversible. As a function of temperature it is found that H(sub c,p) is well described by a power law with an exponent between 1.5 and 2.5. The behavior of H(sub c,p) for various materials and its relationship to flux flow and flux dynamics are discussed.

  14. What the flux? Deriving empirical estimates of riverine Mo fluxes over Earth history

    NASA Astrophysics Data System (ADS)

    Romaniello, S. J.; Ostrander, C. M.; Johnson, A.; Planavsky, N.; Anbar, A. D.

    2016-12-01

    Molybdenum (Mo) is a key micronutrient in the marine nitrogen cycle and thus plays an important role in regulating global marine primary productivity and biogeochemistry. At present, Mo is the most abundant transition metal in seawater, despite being one of the least abundant transition metals in crustal rocks. This counterintuitive behavior is the result of the high solubility and mobile nature of the molybdate anion under oxidizing conditions. However, previous studies have pointed out that the oxidative weathering flux of Mo to the ocean was likely much lower under Archean conditions, and that when coupled with reduced solubility of Mo in anoxic seawater, portions of the ocean may have been Mo starved. With few exceptions, riverine fluxes of elements have been only poorly constrained over geologic time. In the absence of strong empirical constraints, fluxes are either imagined to have been similar to today, or radically different, depending primarily on the chemistry of the element and model implored by the authors. Based on large variations of Mo concentrations in shales, several authors have invoked models where riverine Mo fluxes vary in response to atmospheric O2 availability but it has been difficult to provide independent constraints to support or refute these models. Here we demonstrate a novel approach for constraining riverine Mo fluxes from the Archean to present by independently estimating the seawater Mo inventory from Mo/TOC ratios and the Mo residence time from Mo isotope ratios. At steady state, the riverine flux is then the ratio of these parameters. Surprisingly, despite strong secular evolution of seawater Mo concentrations and residence time, this approach suggests the overall rate of Mo supply to the ocean was probably relatively constant within one order of magnitude over most of Earth history. This result provides new insights into both the processes controlling Mo availability to the oceans and, more broadly, the controls on oxidative

  15. Element flux in cleaved limestones

    SciTech Connect

    McNaught, M.A.; Erslev, E.A. . Dept. of Earth Resources)

    1992-01-01

    Spaced cleavage in limestone is commonly assumed to result from dissolution of carbonate minerals and passive concentration of other minerals in cleavage zones. More complicated processes are suggested by new element data acquired with the CSU XRF-macroprobe. Overlapping spot analyses were made along bed parallel traverses across cleavage zones in samples from the Twin Creek Formation (TCF) of southeast Idaho and the Poxono Island Formation (PIF) of eastern Pennsylvania. If calcite is the sole mobile phase, Ca should decrease as the other immobile elements increase proportionately. Though Ca is the only major element which consistently decreases in cleavage zones, changes in the relative proportions of the other elements indicate varying degrees of mobility. Al and Ti both increase in cleavage zones and maintain a constant ratio, suggesting immobile behavior. Because Al is more abundant than Ti, mobilities of other elements are determined relative to Al. Mg/Al and Fe/Al ratios are constant for PIF samples but show no systematic relationships in TCF samples, which have lower phyllosilicate contents. Si/Al ratios are relatively constant for most samples but in some PIF samples Si/Al ratios decrease in cleavage zones. This may be the result of dissolution of quartz or Si loss during phyllosilicate reactions. K/Al ratios are constant for limestones with average K/Al atomic ratios of 1/3 whereas samples lower K/Al ratios show increasing K/Al in cleavage zones. This suggests that the growth of new phyllosilicates in the K-poor cleavage zones causes preferential scavenging of potassium. In rocks with K/Al ratios of illite or muscovite, K appears to accumulate with Al by residual concentration. Thus, Al and Ti may be the only viable major element markers for calculating volume flux.

  16. Magnetic topology of emerging flux regions

    NASA Astrophysics Data System (ADS)

    Pariat, Etienne

    Coronal magnetic fields structure and governs the dynamics of the solar atmosphere. These magnetic fields are often complex, composed of multiples domains of magnetic-field-lines connectivity. The topology of the magnetic field allows a synthetic description of these complex magnetic field by highlighting the structural elements that are important for the dynamic and the activity of the corona. Topology identifies the key elements where magnetic reconnection will preferentially occurs, and allows to explain and predict the evolution of the coronal plasma. However the topological elements - such as null points, separatrices, separators - do not appear out of thin air. Along with energy, and helicity, the magnetic topology of an active region is build up as the consequence of flux emergence. Some topological elements, such as bald-patches, are even fully part of the mechanism of flux emergence mechanism and drive the evolution and the structuration of the coronal magnetic field as it crosses the lower layer of the solar atmosphere. In the present talk I will therefore review our current understanding of the formation of active region in terms of magnetic topology. I will speak on how the topological structures which are key to solar activity are formed. Meanwhile I'll also discus the topological properties of emerging active region and how topology influences the very process of flux emergence.

  17. Photospheric Magnetic Flux Transport - Supergranules Rule

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.; Rightmire-Upton, Lisa

    2012-01-01

    Observations of the transport of magnetic flux in the Sun's photosphere show that active region magnetic flux is carried far from its origin by a combination of flows. These flows have previously been identified and modeled as separate axisymmetric processes: differential rotation, meridional flow, and supergranule diffusion. Experiments with a surface convective flow model reveal that the true nature of this transport is advection by the non-axisymmetric cellular flows themselves - supergranules. Magnetic elements are transported to the boundaries of the cells and then follow the evolving boundaries. The convective flows in supergranules have peak velocities near 500 m/s. These flows completely overpower the superimposed 20 m/s meridional flow and 100 m/s differential rotation. The magnetic elements remain pinned at the supergranule boundaries. Experiments with and without the superimposed axisymmetric photospheric flows show that the axisymmetric transport of magnetic flux is controlled by the advection of the cellular pattern by underlying flows representative of deeper layers. The magnetic elements follow the differential rotation and meridional flow associated with the convection cells themselves -- supergranules rule!

  18. Complexity and diffusion of magnetic flux surfaces in anisotropic turbulence

    SciTech Connect

    Servidio, S.; Matthaeus, W. H.; Wan, M.; Rappazzo, A. F.; Ruffolo, D.; Oughton, S.

    2014-04-10

    The complexity of magnetic flux surfaces is investigated analytically and numerically in static homogeneous magnetic turbulence. Magnetic surfaces are computed to large distances in magnetic fields derived from a reduced magnetohydrodynamic model. The question addressed is whether one can define magnetic surfaces over large distances when turbulence is present. Using a flux surface spectral analysis, we show that magnetic surfaces become complex at small scales, experiencing an exponential thinning that is quantified here. The computation of a flux surface is of either exponential or nondeterministic polynomial complexity, which has the conceptual implication that global identification of magnetic flux surfaces and flux exchange, e.g., in magnetic reconnection, can be intractable in three dimensions. The coarse-grained large-scale magnetic flux experiences diffusive behavior. The link between the diffusion of the coarse-grained flux and field-line random walk is established explicitly through multiple scale analysis. The Kubo number controls both large and small scale limits. These results have consequences for interpreting processes such as magnetic reconnection and field-line diffusion in astrophysical plasmas.

  19. Magnetic field characters of returning flux tubes in Saturn's magnetosphere

    NASA Astrophysics Data System (ADS)

    Lai, Hairong; Russell, Christopher; Jia, Yingdong; Wei, Hanying

    2016-04-01

    Deep in the Saturnian magnetosphere, water-group neutrals are ionized after being released from the plume of Enceladus at 4 RS. This forms a plasma disk from 2.5 to 8 RS around Saturn and the typical source rate is 12~250 kg/s. Such plasma addition must be shed to the solar wind ultimately to maintain the plasma density in the magnetosphere in long term average. In this plasma transfer process, the magnetic flux also convects outward. To conserve the total magnetic flux imposed on the magnetosphere by the planet's internal dynamo, the magnetic flux has to return to the inner magnetosphere. Flux tubes are found to be the major form of such return. Determining such flux tubes is essential in understanding the breathing of Saturn magnetosphere. We investigated 10 years of Cassini magnetometer data to identify over six hundred flux-returning events between 4 and 18 in L. Statistical properties are presented, to constrain the origin, transport and evolution of these flux tubes.

  20. Seasonal fluxes of carbonyl sulfide in a midlatitude forest.

    PubMed

    Commane, Róisín; Meredith, Laura K; Baker, Ian T; Berry, Joseph A; Munger, J William; Montzka, Stephen A; Templer, Pamela H; Juice, Stephanie M; Zahniser, Mark S; Wofsy, Steven C

    2015-11-17

    Carbonyl sulfide (OCS), the most abundant sulfur gas in the atmosphere, has a summer minimum associated with uptake by vegetation and soils, closely correlated with CO2. We report the first direct measurements to our knowledge of the ecosystem flux of OCS throughout an annual cycle, at a mixed temperate forest. The forest took up OCS during most of the growing season with an overall uptake of 1.36 ± 0.01 mol OCS per ha (43.5 ± 0.5 g S per ha, 95% confidence intervals) for the year. Daytime fluxes accounted for 72% of total uptake. Both soils and incompletely closed stomata in the canopy contributed to nighttime fluxes. Unexpected net OCS emission occurred during the warmest weeks in summer. Many requirements necessary to use fluxes of OCS as a simple estimate of photosynthesis were not met because OCS fluxes did not have a constant relationship with photosynthesis throughout an entire day or over the entire year. However, OCS fluxes provide a direct measure of ecosystem-scale stomatal conductance and mesophyll function, without relying on measures of soil evaporation or leaf temperature, and reveal previously unseen heterogeneity of forest canopy processes. Observations of OCS flux provide powerful, independent means to test and refine land surface and carbon cycle models at the ecosystem scale.

  1. The Evolution of Solar Flux: Quantitative Estimates for Planetary Studies

    NASA Astrophysics Data System (ADS)

    Claire, M.; Sheets, J.; Cohen, M.; Ribas, I.; Meadows, V. S.; Catling, D. C.

    2012-12-01

    The Sun has a profound impact on planetary atmospheres, driving such diverse processes as the vertical temperature profile, molecular reaction rates, and atmospheric escape. Understanding the time-dependence of the solar flux is therefore essential to understanding atmospheric evolution of planets and satellites in the solar system. We present numerical models of the solar flux applicable temporally and spatially throughout the solar system (Claire et al. ApJ, 2012, in press.) We combine data from the Sun and solar analogs to estimate enhanced FUV and Xray continuum and strong line fluxes for the young Sun. In addition, we describe a new parameterization for the near UV, where both the chromosphere and photosphere contribute to the flux, and use Kurucz models to estimate variable visible and infrared fluxes. The modeled fluxes are valid at nanometer resolution from 0.1 nm through the infrared, and from 0.6 Gyr through 6.7 Gyr, with extensions from the solar zero age main sequence to 8.0 Gyr (subject to additional uncertainties). This work enables quantitative estimates of the wavelength dependence of solar flux for a range of paleodates that are relevant to studies of the chemical evolution of planetary atmospheres in the solar system (or around other G-type stars). We apply this parameterization to an early Earth photochemical model, which reveals changes in photolysis reaction rates significant larger than the intrinsic model uncertainties.

  2. Seasonal fluxes of carbonyl sulfide in a midlatitude forest

    NASA Astrophysics Data System (ADS)

    Commane, Róisín; Meredith, Laura K.; Baker, Ian T.; Berry, Joseph A.; Munger, J. William; Montzka, Stephen A.; Templer, Pamela H.; Juice, Stephanie M.; Zahniser, Mark S.; Wofsy, Steven C.

    2015-11-01

    Carbonyl sulfide (OCS), the most abundant sulfur gas in the atmosphere, has a summer minimum associated with uptake by vegetation and soils, closely correlated with CO2. We report the first direct measurements to our knowledge of the ecosystem flux of OCS throughout an annual cycle, at a mixed temperate forest. The forest took up OCS during most of the growing season with an overall uptake of 1.36 ± 0.01 mol OCS per ha (43.5 ± 0.5 g S per ha, 95% confidence intervals) for the year. Daytime fluxes accounted for 72% of total uptake. Both soils and incompletely closed stomata in the canopy contributed to nighttime fluxes. Unexpected net OCS emission occurred during the warmest weeks in summer. Many requirements necessary to use fluxes of OCS as a simple estimate of photosynthesis were not met because OCS fluxes did not have a constant relationship with photosynthesis throughout an entire day or over the entire year. However, OCS fluxes provide a direct measure of ecosystem-scale stomatal conductance and mesophyll function, without relying on measures of soil evaporation or leaf temperature, and reveal previously unseen heterogeneity of forest canopy processes. Observations of OCS flux provide powerful, independent means to test and refine land surface and carbon cycle models at the ecosystem scale.

  3. Investigation of spectrally resolved actinic flux in mountainous terrain

    NASA Astrophysics Data System (ADS)

    Wagner, J. E.; Blumthaler, M.; Fitzka, M.; Gobbi, J. P.; Kift, R.; Kreuter, A.; Rieder, H. E.; Simic, S.; Webb, A.; Weihs, P.

    2009-09-01

    Since the discovery of anthropogenic ozone depletion more than 30 year ago, the scientific community has shown an increasing interest in UV radiation. However for photochemical reactions and various biological processes actinic flux is more important. Therefore, three measurement campaigns had been conducted in alpine areas of Austria (Innsbruck and Hoher Sonnblick). The goal was to investigate the impact of alpine terrain in combination with snow cover on spectral actinic flux under clear sky conditions. This contribution uses the ground-based UV actinic flux measurements to evaluate two different calculation methods. The modified (with topography) 3-D radiative transfer model GRIMALDI was used to calculate the distribution of actinic flux at the ground for selected clear sky situations. To estimate the impact of 3-D effects on actinic flux, the measurement results are also compared with the output of 1-D-model (SDISORT) runs. Apart from border problems due to periodic boundary conditions the spatial distribution of actinic flux is well reproduced by the 3-D-model. Shadowing effects and increasing actinic flux with altitude are realistically reproduced in the calculated 3-D-radiation field.

  4. Seasonal fluxes of carbonyl sulfide in a midlatitude forest

    PubMed Central

    Commane, Róisín; Meredith, Laura K.; Baker, Ian T.; Berry, Joseph A.; Munger, J. William; Montzka, Stephen A.; Templer, Pamela H.; Juice, Stephanie M.; Zahniser, Mark S.; Wofsy, Steven C.

    2015-01-01

    Carbonyl sulfide (OCS), the most abundant sulfur gas in the atmosphere, has a summer minimum associated with uptake by vegetation and soils, closely correlated with CO2. We report the first direct measurements to our knowledge of the ecosystem flux of OCS throughout an annual cycle, at a mixed temperate forest. The forest took up OCS during most of the growing season with an overall uptake of 1.36 ± 0.01 mol OCS per ha (43.5 ± 0.5 g S per ha, 95% confidence intervals) for the year. Daytime fluxes accounted for 72% of total uptake. Both soils and incompletely closed stomata in the canopy contributed to nighttime fluxes. Unexpected net OCS emission occurred during the warmest weeks in summer. Many requirements necessary to use fluxes of OCS as a simple estimate of photosynthesis were not met because OCS fluxes did not have a constant relationship with photosynthesis throughout an entire day or over the entire year. However, OCS fluxes provide a direct measure of ecosystem-scale stomatal conductance and mesophyll function, without relying on measures of soil evaporation or leaf temperature, and reveal previously unseen heterogeneity of forest canopy processes. Observations of OCS flux provide powerful, independent means to test and refine land surface and carbon cycle models at the ecosystem scale. PMID:26578759

  5. Technical note: Dynamic INtegrated Gap-filling and partitioning for OzFlux (DINGO)

    NASA Astrophysics Data System (ADS)

    Beringer, Jason; McHugh, Ian; Hutley, Lindsay B.; Isaac, Peter; Kljun, Natascha

    2017-03-01

    Standardised, quality-controlled and robust data from flux networks underpin the understanding of ecosystem processes and tools necessary to support the management of natural resources, including water, carbon and nutrients for environmental and production benefits. The Australian regional flux network (OzFlux) currently has 23 active sites and aims to provide a continental-scale national research facility to monitor and assess Australia's terrestrial biosphere and climate for improved predictions. Given the need for standardised and effective data processing of flux data, we have developed a software suite, called the Dynamic INtegrated Gap-filling and partitioning for OzFlux (DINGO), that enables gap-filling and partitioning of the primary fluxes into ecosystem respiration (Fre) and gross primary productivity (GPP) and subsequently provides diagnostics and results. We outline the processing pathways and methodologies that are applied in DINGO (v13) to OzFlux data, including (1) gap-filling of meteorological and other drivers; (2) gap-filling of fluxes using artificial neural networks; (3) the u* threshold determination; (4) partitioning into ecosystem respiration and gross primary productivity; (5) random, model and u* uncertainties; and (6) diagnostic, footprint calculation, summary and results outputs. DINGO was developed for Australian data, but the framework is applicable to any flux data or regional network. Quality data from robust systems like DINGO ensure the utility and uptake of the flux data and facilitates synergies between flux, remote sensing and modelling.

  6. The photospheric Poynting flux and coronal heating

    NASA Astrophysics Data System (ADS)

    Welsch, Brian T.

    2015-04-01

    Some models of coronal heating suppose that convective motions at the photosphere shuffle the footpoints of coronal magnetic fields and thereby inject sufficient magnetic energy upward to account for observed coronal and chromospheric energy losses in active regions. Using high-resolution observations of plage magnetic fields made with the Solar Optical Telescope aboard the Hinode satellite, we investigate this idea by estimating the upward transport of magnetic energy-the vertical Poynting flux, Sz-across the photosphere in a plage region. To do so, we combine the following: (i) estimates of photospheric horizontal velocities, vh, determined by local correlation tracking applied to a sequence of line-of-sight magnetic field maps from the Narrowband Filter Imager, with (ii) a vector magnetic field measurement from the SpectroPolarimeter. Plage fields are ideal observational targets for estimating energy injection by convection, because they are (i) strong enough to be measured with relatively small uncertainties, (ii) not so strong that convection is heavily suppressed (as within umbrae), and (iii) unipolar, so Sz in plage is not influenced by mixed-polarity processes (e.g., flux emergence) unrelated to heating in stable, active-region fields. In this plage region, we found that the average Sz varied in space, but was positive (upward) and sufficient to explain coronal heating, with values near (5 ± 1) × 107 erg cm-2 s-1. We find the energy input per unit magnetic flux to be on the order of 105 erg s-1 Mx-1. A comparison of intensity in a Ca II image co-registered with one plage magnetogram shows stronger spatial correlations with both total field strength and unsigned vertical field, |Bz|, than either Sz or horizontal flux density, Bh. The observed Ca II brightness enhancement, however, probably contains a strong contribution from a near-photosphere hot-wall effect, which is unrelated to heating in the solar atmosphere.

  7. The Photospheric Poynting Flux and Coronal Heating

    NASA Astrophysics Data System (ADS)

    Welsch, Brian

    2014-06-01

    Some models of coronal heating suppose that random (cf., coherent) convective motions at the photosphere shuffle the footpoints of coronal magnetic fields and thereby inject sufficient magnetic energy upward to account for observed coronal and chromospheric energy losses in active regions. Using high-resolution observations of plage magnetic fields made with the Solar Optical Telescope aboard the Hinode satellite, we observationally test this idea by estimating the upward transport of magnetic energy --- the vertical Poynting flux, S_z --- across the photosphere in a plage region. To do so, we combine: (i) estimates of photospheric horizontal velocities, v_h, determined by local correlation tracking applied to a sequence of line-of-sight magnetic field maps from the Narrowband Filter Imager, with (ii) a vector magnetic field measurement from the SpectroPolarimeter. Plage fields are ideal observational targets for estimating energy injection by convection, because they are: (i) strong enough to be measured with relatively small uncertainties; (ii) not so strong that convection is heavily suppressed (as within umbrae); and (iii) unipolar, so S_z in plage is not influenced by mixed-polarity processes (e.g., flux emergence) that cannot explain steady heating in stable, active-region fields. In this and a previously analyzed plage region, we found that the average S_z varied between the regions, but was positive (upward) and sufficient to explain coronal heating, with values near 2 x 10^7 erg/ cm^2/ s. We find the energy input per unit magnetic flux to be on the order of a few times 10^4 erg/ s/ Mx. A comparison of intensity in a Ca II image co-registered with one plage magnetogram shows stronger spatial correlation with unsigned vertical field, |B_z|, than either S_z or horizontal flux density, |B_h|.

  8. Two fluxes multistage induction coilgun

    NASA Astrophysics Data System (ADS)

    Gherman, L.; Pearsica, M.; Circiu, I.; Rotaru, C.

    2017-05-01

    This paper presents a brand new induction electromagnetic launcher, which uses two magnetic fluxes in order to accelerate a projectile. One magnetic flux induce a current in the armature and the second magnetic flux is creating a radial magnetic field. This aproach offer multiple advantages over single flux designs. First we are able to control the induced current in armature because we use the coil just to induce current inside the ring with a great efficiency. Second advantage is the angle of 900 between magnetic field density B and the ring. We used the induction to avoid contact between armature and accelerator. In order to create the magnetic field radial we used four coils perpendicular on armature. This approach alove us to control the phase difference between induced current in armature and current in magnetic field coils for a maximum force. The phase difference is obtained by changing the frequency of magnetic field coils power source. We used simulation software to analyze, and simulate a multistage induction coilgun design with two fluxes. The simulation results demonstrated the theoretical results.

  9. Calibration of Ocean Forcing with satellite Flux Estimates (COFFEE)

    NASA Astrophysics Data System (ADS)

    Barron, Charlie; Jan, Dastugue; Jackie, May; Rowley, Clark; Smith, Scott; Spence, Peter; Gremes-Cordero, Silvia

    2016-04-01

    Predicting the evolution of ocean temperature in regional ocean models depends on estimates of surface heat fluxes and upper-ocean processes over the forecast period. Within the COFFEE project (Calibration of Ocean Forcing with satellite Flux Estimates, real-time satellite observations are used to estimate shortwave, longwave, sensible, and latent air-sea heat flux corrections to a background estimate from the prior day's regional or global model forecast. These satellite-corrected fluxes are used to prepare a corrected ocean hindcast and to estimate flux error covariances to project the heat flux corrections for a 3-5 day forecast. In this way, satellite remote sensing is applied to not only inform the initial ocean state but also to mitigate errors in surface heat flux and model representations affecting the distribution of heat in the upper ocean. While traditional assimilation of sea surface temperature (SST) observations re-centers ocean models at the start of each forecast cycle, COFFEE endeavors to appropriately partition and reduce among various surface heat flux and ocean dynamics sources. A suite of experiments in the southern California Current demonstrates a range of COFFEE capabilities, showing the impact on forecast error relative to a baseline three-dimensional variational (3DVAR) assimilation using operational global or regional atmospheric forcing. Experiment cases combine different levels of flux calibration with assimilation alternatives. The cases use the original fluxes, apply full satellite corrections during the forecast period, or extend hindcast corrections into the forecast period. Assimilation is either baseline 3DVAR or standard strong-constraint 4DVAR, with work proceeding to add a 4DVAR expanded to include a weak constraint treatment of the surface flux errors. Covariance of flux errors is estimated from the recent time series of forecast and calibrated flux terms. While the California Current examples are shown, the approach is

  10. Advances in the Surface Renewal Flux Measurement Method

    NASA Astrophysics Data System (ADS)

    Shapland, T. M.; McElrone, A.; Paw U, K. T.; Snyder, R. L.

    2011-12-01

    The measurement of ecosystem-scale energy and mass fluxes between the planetary surface and the atmosphere is crucial for understanding geophysical processes. Surface renewal is a flux measurement technique based on analyzing the turbulent coherent structures that interact with the surface. It is a less expensive technique because it does not require fast-response velocity measurements, but only a fast-response scalar measurement. It is therefore also a useful tool for the study of the global cycling of trace gases. Currently, surface renewal requires calibration against another flux measurement technique, such as eddy covariance, to account for the linear bias of its measurements. We present two advances in the surface renewal theory and methodology that bring the technique closer to becoming a fully independent flux measurement method. The first advance develops the theory of turbulent coherent structure transport associated with the different scales of coherent structures. A novel method was developed for identifying the scalar change rate within structures at different scales. Our results suggest that for canopies less than one meter in height, the second smallest coherent structure scale dominates the energy and mass flux process. Using the method for resolving the scalar exchange rate of the second smallest coherent structure scale, calibration is unnecessary for surface renewal measurements over short canopies. This study forms the foundation for analysis over more complex surfaces. The second advance is a sensor frequency response correction for measuring the sensible heat flux via surface renewal. Inexpensive fine-wire thermocouples are frequently used to record high frequency temperature data in the surface renewal technique. The sensible heat flux is used in conjunction with net radiation and ground heat flux measurements to determine the latent heat flux as the energy balance residual. The robust thermocouples commonly used in field experiments

  11. Comparison of herbicide runoff and volatilization fluxes over multiple years

    USDA-ARS?s Scientific Manuscript database

    Surface runoff and volatilization are two processes critical to herbicide off-site transport. To determine critical field scale processes influence off-site herbicide transport, runoff and turbulent vapor fluxes were simultaneously monitored on the same site for eight years. Site location, herbici...

  12. Flux Cancelation: The Key to Solar Eruptions

    NASA Technical Reports Server (NTRS)

    Panesar, Navdeep K.; Sterling, Alphonse; Moore, Ronald; Chakrapani, Prithi; Innes, Davina; Schmit, Don; Tiwari, Sanjiv

    2017-01-01

    Solar coronal jets are magnetically channeled eruptions that occur in all types of solar environments (e.g. active regions, quiet-Sun regions and coronal holes). Recent studies show that coronal jets are driven by the eruption of small-scare filaments (minifilaments). Once the eruption is underway magnetic reconnection evidently makes the jet spire and the bright emission in the jet base. However, the triggering mechanism of these eruptions and the formation mechanism of the pre-jet minifilaments are still open questions. In this talk, mainly using SDOAIA and SDOHIM data, first I will address the question: what triggers the jet-driving minifilament eruptions in different solar environments (coronal holes, quiet regions, active regions)? Then I will talk about the magnetic field evolution that produces the pre-jet minifilaments. By examining pre-jet evolutionary changes in line-of-sight HMI magnetograms while examining concurrent EUV images of coronal and transition-region emission, we find clear evidence that flux cancelation is the main process that builds pre-jet minifilaments, and is also the main process that triggers the eruptions. I will also present results from our ongoing work indicating that jet-driving minifilament eruptions are analogous to larger-scare filament eruptions that make flares and CMEs. We find that persistent flux cancellation at the neutral line of large-scale filaments often triggers their eruptions. From our observations we infer that flux cancelation is the fundamental process from the buildup and triggering of solar eruptions of all sizes.

  13. Observations of flux transfer events: Are FTEs flux ropes, islands, or surface waves

    SciTech Connect

    Elphic, R.C.

    1989-01-01

    Flux transfer events (FTEs) are widely regarded as a signature of transient magnetic reconnection between the solar wind and magnetospheric plasmas. However, there is disagreement on what form this reconnection takes: Are FTEs tearing islands, or time-varying single x-line reconnection We reexamine the evidence that first led to the suggestion that FTEs are related to a non-time-stationary reconnection process. In particular we discuss how the combination of field and plasma variations suggest that FTEs are magnetic flux ropes. Both time-varying single x-line reconnection and multiple x-line merging can produce a signature which 'mimics' that of a flux rope, but without the flux rope topology. Finally, we review the evidence that FTEs cannot be merely surface waves: their occurrence during southward IMF, mixture of solar wind and magnetospheric plasmas, leakage of energetic particles, accelerated plasma flows and peculiarities of the magnetic signature all point to a reconnection-related phenomenon. 38 refs., 16 figs.

  14. Neutron Distribution in the Nuclear Fuel Cell using Collision Probability Method with Quadratic Flux Approach

    NASA Astrophysics Data System (ADS)

    Shafii, M. A.; Fitriyani, D.; Tongkukut, S. H. J.; Abdullah, A. G.

    2017-03-01

    To solve the integral neutron transport equation using collision probability (CP) method usually requires flat flux (FF) approach. In this research, it has been carried out in the cylindrical nuclear fuel cell with the spatial of mesh with quadratic flux approach. This means that the neutron flux at any region of the nuclear fuel cell is forced to follow the pattern of a quadratic function. The mechanism may be referred to as the process of non-flat flux (NFF) approach. The parameters that calculated in this study are the k-eff and the distribution of neutron flux. The result shows that all parameters are in accordance with the result of SRAC.

  15. Reconnecting flux-rope dynamo.

    PubMed

    Baggaley, Andrew W; Barenghi, Carlo F; Shukurov, Anvar; Subramanian, Kandaswamy

    2009-11-01

    We develop a model of the fluctuation dynamo in which the magnetic field is confined to thin flux ropes advected by a multiscale model of turbulence. Magnetic dissipation occurs only via reconnection of the flux ropes. This model can be viewed as an implementation of the asymptotic limit R_{m}-->infinity for a continuous magnetic field, where magnetic dissipation is strongly localized to small regions of strong-field gradients. We investigate the kinetic-energy release into heat mediated by the dynamo action, both in our model and by solving the induction equation with the same flow. We find that a flux-rope dynamo is an order of magnitude more efficient at converting mechanical energy into heat. The probability density of the magnetic energy release in reconnections has a power-law form with the slope -3 , consistent with the solar corona heating by nanoflares.

  16. Reconnecting flux-rope dynamo

    NASA Astrophysics Data System (ADS)

    Baggaley, Andrew W.; Barenghi, Carlo F.; Shukurov, Anvar; Subramanian, Kandaswamy

    2009-11-01

    We develop a model of the fluctuation dynamo in which the magnetic field is confined to thin flux ropes advected by a multiscale model of turbulence. Magnetic dissipation occurs only via reconnection of the flux ropes. This model can be viewed as an implementation of the asymptotic limit Rm→∞ for a continuous magnetic field, where magnetic dissipation is strongly localized to small regions of strong-field gradients. We investigate the kinetic-energy release into heat mediated by the dynamo action, both in our model and by solving the induction equation with the same flow. We find that a flux-rope dynamo is an order of magnitude more efficient at converting mechanical energy into heat. The probability density of the magnetic energy release in reconnections has a power-law form with the slope -3 , consistent with the solar corona heating by nanoflares.

  17. Chesapeake Bay Sediment Flux Model

    DTIC Science & Technology

    1993-06-01

    KL12J [N0 3(2)] = [N0 3 (l) 1 KNo3 .H KL2 (4) The equality s - K LoM, (eq.II-14), is used for the surface mass transfer coefficient where s - SOD/0 2 (O...L 2 = 0.01 (m/d), and KNo3 ., - 0.1 (m/d). Note that the normalized flux data exhibits an increased flux for intermediate s and an upward curvature...to compute the denitrification flux: [N2(g)]i, j= KN03. ,H,[NO3 (1)],.J KNO3 . 2 H 2 [N0 3 (2)],., 2 / (Tl. 1-20) - 0X•NO3𔃻"NO3$,. _ [N03(l)],. ’+VNO3

  18. Diffuse fluxes of cosmic high energy neutrinos

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1978-01-01

    Production spectra of high-energy neutrinos from galactic cosmic ray interactions with interstellar gas and extragalactic ultrahigh energy cosmic-ray interactions with microwave black-body photons are presented and discussed. These production processes involve the decay of charged pions and are thus related to the production of cosmic gamma-rays from the decay of neutral pions. Estimates of the neutrino fluxes from various diffuse cosmic sources are then made and the reasons fro significant differences with previous estimates are discussed. Predicted event rates for a DUMAND type detection system are significantly lower than early estimates indicated.

  19. Cloud identification for ERBE radiative flux retrieval

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A.; Green, Richard N.

    1989-01-01

    A maximum likelihood estimation (MLE) technique to the problem of cloud identification using coarse resolution broadband satellite data is developed and tested using simulated satellite observations. The results suggest that, in the determination of cloud conditions for the inversion of satellite-measured radiances to fluxes, the MLE method is an improvement over a Lambertian earth assumption and the clear/cloud threshold used in the inversion of Nimbus 3 and Nimbus 7 data. The use of the MLE method in the operational processing of Earth Radiation Budget Experiment scanner data is considered.

  20. Rotating reverse osmosis: a dynamic model for flux and rejection

    NASA Technical Reports Server (NTRS)

    Lee, S.; Lueptow, R. M.

    2001-01-01

    Reverse osmosis (RO) is a compact process for the removal of ionic and organic pollutants from contaminated water. However, flux decline and rejection deterioration due to concentration polarization and membrane fouling hinders the application of RO technology. In this study, a rotating cylindrical RO membrane is theoretically investigated as a novel method to reduce polarization and fouling. A dynamic model based on RO membrane transport incorporating concentration polarization is used to predict the performance of rotating RO system. Operating parameters such as rotational speed and transmembrane pressure play an important role in determining the flux and rejection in rotating RO. For a given geometry, a rotational speed sufficient to generate Taylor vortices in the annulus is essential to maintain high flux as well as high rejection. The flux and rejection were calculated for wide range of operating pressures and rotational speeds. c 2001 Elsevier Science B.V. All rights reserved.

  1. Rotating reverse osmosis: a dynamic model for flux and rejection

    NASA Technical Reports Server (NTRS)

    Lee, S.; Lueptow, R. M.

    2001-01-01

    Reverse osmosis (RO) is a compact process for the removal of ionic and organic pollutants from contaminated water. However, flux decline and rejection deterioration due to concentration polarization and membrane fouling hinders the application of RO technology. In this study, a rotating cylindrical RO membrane is theoretically investigated as a novel method to reduce polarization and fouling. A dynamic model based on RO membrane transport incorporating concentration polarization is used to predict the performance of rotating RO system. Operating parameters such as rotational speed and transmembrane pressure play an important role in determining the flux and rejection in rotating RO. For a given geometry, a rotational speed sufficient to generate Taylor vortices in the annulus is essential to maintain high flux as well as high rejection. The flux and rejection were calculated for wide range of operating pressures and rotational speeds. c 2001 Elsevier Science B.V. All rights reserved.

  2. Quantum transport in coupled resonators enclosed synthetic magnetic flux

    NASA Astrophysics Data System (ADS)

    Jin, L.

    2016-07-01

    Quantum transport properties are instrumental to understanding quantum coherent transport processes. Potential applications of quantum transport are widespread, in areas ranging from quantum information science to quantum engineering, and not restricted to quantum state transfer, control and manipulation. Here, we study light transport in a ring array of coupled resonators enclosed synthetic magnetic flux. The ring configuration, with an arbitrary number of resonators embedded, forms a two-arm Aharonov-Bohm interferometer. The influence of magnetic flux on light transport is investigated. Tuning the magnetic flux can lead to resonant transmission, while half-integer magnetic flux quantum leads to completely destructive interference and transmission zeros in an interferometer with two equal arms.

  3. Flux noise in ion-implanted nanoSQUIDs

    NASA Astrophysics Data System (ADS)

    Tettamanzi, Giuseppe C.; Pakes, Christopher I.; Lam, Simon K. H.; Prawer, Steven

    2009-06-01

    Focused ion-beam (FIB) technology has been used to fabricate miniature Nb DC SQUIDs (superconducting quantum interference devices) which incorporate resistively shunted microbridge junctions and a central loop with a hole diameter ranging from 1058 to 50 nm. The smallest device, with a 50 nm hole diameter, has a white flux noise level of 2.6 µΦ0 Hz-1/2 at 104 Hz. The scaling of the flux noise properties and focusing effect of the SQUID with the hole size were examined. The observed low frequency flux noises of different devices were compared with the contribution due to the spin fluctuation of defects introduced during FIB processing and of thermally activated flux hopping in the SQUID washer.

  4. Carbon monoxide fluxes from natural, managed, or cultivated savannah grasslands

    NASA Astrophysics Data System (ADS)

    Sanhueza, Eugenio; Donoso, Loreto; Scharffe, Dieter; Crutzen, Paul J.

    1994-08-01

    As part of a comprehensive study on tropical land use change and its effect on atmospheric trace gas fluxes, we report the CO fluxes recorded at a natural grassland site and the changes produced when this ecosystem was managed or cultivated. The field site is located in the central part of the savannah climatic region of Venezuela. Fluxes were measured in the dark using the enclosed chamber technique. CO was analyzed with a reduction-gas detector in combination with a molecular sieve 5A columm for CO separation. At all sites, CO fluxes exhibited a strong diurnal variation, with net emission during daytime and consumption or no fluxes during nightime. In unplowed soils no differences were observed between dry and rainy season. A large disparity was observed between unplowed and plowed grassland soils. Plowed soil shows a much smaller emission during daytime and a larger consumption at night. The 24-hour integrated fluxes indicate that the nonperturbed grassland switches from being a net source of CO (3.4×1010 molecules cm-2 s-1) to being a net sink (-1.6×1010 molecules cm-2s-1) after plowing. It is likely that burial of surface litter reduces the production of CO in the top soil and that the diffusion of CO to deeper layers (where CO is consumed by microbiological processes) is promoted in decompacted soils. As the rainy season progressed the plowed soil gradually compacted and CO fluxes changed back, and after 3 months the fluxes from plowed soils and the original unplowed soils were equal. Even though the various cultivated fields (corn, sorghum, and pasture) received differing inorganic fertilization treatments, no significant difference in the CO fluxes resulted. Measurements during the dry season suggest that "degrading dry (dead) vegetation" produces CO under dark conditions.

  5. Carbon monoxide fluxes from natural, managed, or cultivated savannah grasslands

    SciTech Connect

    Sanhueza, E.; Donoso, L.; Scharffe, D.; Crutzen, P.J.

    1994-08-20

    As part of a comprehensive study on tropical land use change and its effect on atmospheric trace gas fluxes, we report the CO fluxes recorded at a natural grassland site and the changes produced when this ecosystem was managed or cultivated. The field site is located in the central part of the savannah climatic region of Venezuela. Fluxes were measured in the dark using the enclosed chamber technique. CO was analyzed with a reduction-gas detector in combination with a molecular sieve 5A column for CO separation. At all sites, CO fluxes exhibited a strong diurnal variation, with net emission during daytime and consumption or no fluxes during nighttime. In unplowed soils no differences were observed between dry and rainy season. A large disparity was observed between unplowed and plowed grassland soils. Plowed soil shows a much smaller emission during daytime and a larger consumption at night. The 24-hour integrated fluxes indicate that the nonperturbed grassland switches from being a net source of CO (3.4 x 10{sup 10} molecules cm{sup {minus}2} s{sup {minus}1}) to being a net sink (-1.6 x 10{sup 10} molecules cm{sup {minus}2} s{sup {minus}1}) after plowing. It is likely that burial of surface litter reduces the production of CO in the top soil and that the diffusion of CO to deeper layers (where CO is consumed by microbiological processes) is promoted in decompacted soils. As the rainy season progressed the plowed soil gradually compacted and CO fluxes changed back, and after 3 months the fluxes from plowed soils and the original unplowed soils were equal. Even though the various cultivated fields (corn, sorghum, and pasture) received differing inorganic fertilization treatments, no significant difference in the CO fluxes resulted. Measurements during the dry season suggest that {open_quotes}degrading dry (dead) vegetation{close_quotes} produces CO under dark conditions. 14 refs., 5 figs., 3 tabs.

  6. Where is the Open Flux?

    NASA Astrophysics Data System (ADS)

    Linker, Jon A.; Downs, Cooper; Caplan, Ronald M.; Lionello, Roberto; Mikic, Zoran; Riley, Pete; Henney, Carl John; Arge, Charles; Owens, Matthew

    2017-08-01

    The Sun’s magnetic field has been observed in the photosphere from ground- and space-based observatories for many years. Global maps of the solar magnetic field based on full disk magnetograms (either built up over a solar rotation, or evolved using flux transport models) are commonly used as boundary conditions for coronal and solar wind models. Maps from different observatories typically agree qualitatively but often disagree quantitatively. Estimation of the coronal/solar wind physics can range from potential field source surface (PFSS) models with empirical prescriptions to magnetohydrodynamic (MHD) models with realistic energy transport and sub-grid scale descriptions of heating and acceleration. Two primary observational constraints on the models are (1) The open field regions in the model should approximately correspond to coronal holes observed in emission, and (2) the magnitude of the open magnetic flux in the model should match that inferred from in situ spacecraft measurements. We have investigated the July 2010 time period, using PFSS and MHD models computed using several available magnetic maps, coronal hole boundaries detected from STEREO and SDO EUV observations, and estimates of the interplanetary magnetic flux from in situ ACE measurements. We show that for all the model/map combinations, models that agree for (1) underestimate the interplanetary magnetic flux, or, conversely, for models to match (2), the modeled open field regions are larger than observed coronal holes. Alternatively, we estimate the open magnetic flux entirely from solar observations by combining detected coronal hole boundaries with observatory synoptic magnetic maps, and show that this method also underestimates the interplanetary magnetic flux. We discuss possible resolutions.Research supported by NASA, AFOSR, and NSF.

  7. Ocean Winds and Turbulent Air-Sea Fluxes Inferred From Remote Sensing

    NASA Technical Reports Server (NTRS)

    Bourassa, Mark A.; Gille, Sarah T.; Jackson, Daren L.; Roberts, J. Brent; Wick, Gary A.

    2010-01-01

    Air-sea turbulent fluxes determine the exchange of momentum, heat, freshwater, and gas between the atmosphere and ocean. These exchange processes are critical to a broad range of research questions spanning length scales from meters to thousands of kilometers and time scales from hours to decades. Examples are discussed (section 2). The estimation of surface turbulent fluxes from satellite is challenging and fraught with considerable errors (section 3); however, recent developments in retrievals (section 3) will greatly reduce these errors. Goals for the future observing system are summarized in section 4. Surface fluxes are defined as the rate per unit area at which something (e.g., momentum, energy, moisture, or CO Z ) is transferred across the air/sea interface. Wind- and buoyancy-driven surface fluxes are called surface turbulent fluxes because the mixing and transport are due to turbulence. Examples of nonturbulent processes are radiative fluxes (e.g., solar radiation) and precipitation (Schmitt et al., 2010). Turbulent fluxes are strongly dependent on wind speed; therefore, observations of wind speed are critical for the calculation of all turbulent surface fluxes. Wind stress, the vertical transport of horizontal momentum, also depends on wind direction. Stress is very important for many ocean processes, including upper ocean currents (Dohan and Maximenko, 2010) and deep ocean currents (Lee et al., 2010). On short time scales, this horizontal transport is usually small compared to surface fluxes. For long-term processes, transport can be very important but again is usually small compared to surface fluxes.

  8. 13C metabolic flux analysis.

    PubMed

    Wiechert, W

    2001-07-01

    Metabolic flux analysis using 13C-labeled substrates has become an important tool in metabolic engineering. It allows the detailed quantification of all intracellular fluxes in the central metabolism of a microorganism. The method has strongly evolved in recent years by the introduction of new experimental procedures, measurement techniques, and mathematical data evaluation methods. Many of these improvements require advanced skills in the application of nuclear magnetic resonance and mass spectrometry techniques on the one hand and computational and statistical experience on the other hand. This minireview summarizes these recent developments and sketches the major practical problems. An outlook to possible future developments concludes the text.

  9. Beta ray flux measuring device

    DOEpatents

    Impink, Jr., Albert J.; Goldstein, Norman P.

    1990-01-01

    A beta ray flux measuring device in an activated member in-core instrumentation system for pressurized water reactors. The device includes collector rings positioned about an axis in the reactor's pressure boundary. Activated members such as hydroballs are positioned within respective ones of the collector rings. A response characteristic such as the current from or charge on a collector ring indicates the beta ray flux from the corresponding hydroball and is therefore a measure of the relative nuclear power level in the region of the reactor core corresponding to the specific exposed hydroball within the collector ring.

  10. Modeling Coronal Jets with FLUX

    NASA Astrophysics Data System (ADS)

    Rachmeler, L. A.; Pariat, E.; Antiochos, S. K.; Deforest, C. E.

    2008-05-01

    We report on a comparative study of coronal jet formation with and without reconnection using two different simulation strategies. Coronal jets are features on the solar surface that appear to have some properties in common with coronal mass ejections, but are less energetic, massive, and broad. Magnetic free energy is built up over time and then suddenly released, which accelerates plasma outward in the form of a coronal jet. We compare results from the ARMS adaptive mesh and FLUX reconnection-less codes to study the role of reconnection in this system. This is the first direct comparison between FLUX and a numerical model with a 3D spatial grid.

  11. Charm production in flux tubes

    NASA Astrophysics Data System (ADS)

    Aguiar, C. E.; Kodama, T.; Nazareth, R. A. M. S.; Pech, G.

    1996-01-01

    We argue that the nonperturbative Schwinger mechanism may play an important role in the hadronic production of charm. We present a flux tube model which assumes that the colliding hadrons become color charged because of gluon exchange, and that a single nonelementary flux tube is built up as they recede. The strong chromoelectric field inside this tube creates quark pairs (including charmed ones) and the ensuing color screening breaks the tube into excited hadronic clusters. In their turn these clusters, or ``fireballs,'' decay statistically into the final hadrons. The model is able to account for the soft production of charmed, strange, and lighter hadrons within a unified framework.

  12. Spatial-temporal variability in GHG fluxes and their functional interpretation in RusFluxNet

    NASA Astrophysics Data System (ADS)

    Vasenev, Ivan; Meshalkina, Julia; Sarzhanov, Dmitriy; Mazirov, Ilia; Yaroslavtsev, Alex; Komarova, Tatiana; Tikhonova, Maria

    2016-04-01

    different meso- or micro-relief forms, natural or man-made succession studies, topsoil texture or organic matter state, subsoil or perched groundwater features. Zonal, seasonal and functional subdividing the monitoring data allows essentially increase the regression links between GHG fluxes and air or soil temperature and moisture (to 0.75-0.87) that is very important for their modeling and prediction. In taiga and mix-forest zones usually there is stronger effect on GHG fluxes by air temperature than soil one due to comparatively thin (from 3 till 10 cm) layer of principal soil organic and/or humus-accumulative horizons with maximum biological activity that usually determines the total rate of GHG soil fluxes. Unfavorable seasonal conditions (dry season or low temperature) determine essential (in 1.5-2 times) decreasing not only in soil GHG fluxes but in level of their spatial variability, intraseasonal and daily dynamics too. These trends are most obvious in case of more open and sensitive to the external factors ecosystems, for example in case of industrial area lawns or at the first stages of the windthrow or fallow-forest successions. Understanding the principal regional and land-use-determined regularities of spatial and temporal changes in ecosystem and soil GHG fluxes help better modeling them in the process of spatial intra- and extrapolations, seasonal and interseasonal predictions, taking into attention basic and current principal ecological factors limiting GHG fluxes and balances. Their introduction in the ecological or agroecological models and land-use decision support systems allows improve the quality of environmental/agroecological monitoring and control not only for GHG emission but also for soil organic matter conservation, manure and nitrogen fertilizer application that is often crucially important for sustainable rural development and profitable farming.

  13. Orienting and Applying Flux to Solar Cells

    NASA Technical Reports Server (NTRS)

    Feder, H.; Frasch, W.

    1982-01-01

    Solar cells are oriented and fluxed automatically at first work station along solar-array assembly line. In under 2 seconds rotary drive rotates cell into proper position for applying solder flux to bus pad on collector side. When contact bus pad is in correct position, capstan drive is disengaged, and vacuum holddown beneath cell is turned on. Flux system lowers and applies preset amount of solder flux to bus pad. Two interconnect tabs are soldered to fluxed areas.

  14. Quantifying benthic nitrogen fluxes in Puget Sound, Washington: a review of available data

    USGS Publications Warehouse

    Sheibley, Richard W.; Paulson, Anthony J.

    2014-01-01

    Understanding benthic fluxes is important for understanding the fate of materials that settle to the Puget Sound, Washington, seafloor, as well as the impact these fluxes have on the chemical composition and biogeochemical cycles of marine waters. Existing approaches used to measure benthic nitrogen flux in Puget Sound and elsewhere were reviewed and summarized, and factors for considering each approach were evaluated. Factors for selecting an appropriate approach for gathering information about benthic flux include: availability of resources, objectives of projects, and determination of which processes each approach measures. An extensive search of literature was undertaken to summarize known benthic nitrogen fluxes in Puget Sound. A total of 138 individual flux chamber measurements and 38 sets of diffusive fluxes were compiled for this study. Of the diffusive fluxes, 35 new datasets were located, and new flux calculations are presented in this report. About 65 new diffusive flux calculations are provided across all nitrogen species (nitrate, NO3-; nitrite, NO2-; ammonium, NH4+). Data analysis of this newly compiled benthic flux dataset showed that fluxes beneath deep (greater than 50 meters) water tended to be lower than those beneath shallow (less than 50 meters) water. Additionally, variability in flux at the shallow depths was greater, possibly indicating a more dynamic interaction between the benthic and pelagic environments. The overall range of bottom temperatures from studies in the Puget Sound area were small (5–16 degrees Celsius), and only NH4+ flux showed any pattern with temperature. For NH4+, flux values and variability increased at greater than about 12 degrees Celsius. Collection of additional study site metadata about environmental factors (bottom temperature, depth, sediment porosity, sediment type, and sediment organic matter) will help with development of a broader regional understanding benthic nitrogen flux in the Puget Sound.

  15. A Review of Mold Flux Development for the Casting of High-Al Steels

    NASA Astrophysics Data System (ADS)

    Wang, Wanlin; Lu, Boxun; Xiao, Dan

    2016-02-01

    Mold flux plays key roles during the continuous casting process of molten steel, which accounts for the quality of final slabs. With the development of advanced high strength steels (AHSS), certain amounts of Al have been added into steels that would introduce severe slag/metal interaction problems during process of continuous casting. The reaction is between Al and SiO2 that is the major component in the mold flux system. Intensive efforts have been conducted to optimize the mold flux and a CaO-Al2O3-based mold flux system has been proposed, which shows the potential to be applied for the casting process of AHSS. The latest developments for this new mold flux system were summarized with the aim to offer technical guidance for the design of new generation mold flux system for the casting of AHSS.

  16. Uncertainty in eddy covariance flux estimates resulting from spectral attenuation [Chapter 4

    Treesearch

    W. J. Massman; R. Clement

    2004-01-01

    Surface exchange fluxes measured by eddy covariance tend to be underestimated as a result of limitations in sensor design, signal processing methods, and finite flux-averaging periods. But, careful system design, modern instrumentation, and appropriate data processing algorithms can minimize these losses, which, if not too large, can be estimated and corrected using...

  17. Radon fluxes measured with the MANOP bottom lander

    NASA Astrophysics Data System (ADS)

    Berelson, W. M.; Buchholtz, M. R.; Hammond, D. E.; Santschi, P. H.

    1987-07-01

    At five Pacific Ocean sites, radon fluxes were determined from water samples collected by the MANOP Lander, from measurements of 222Rn and 226Ra concentrations in Lander-collected box core sediments, and from measurements of excess radon in the water column. At MANOP sites H and M, fluxes (all in atoms m -2 s -1) determined with Lander water samples (2200 and 1540 ± 480) agree within the measurement uncertainty with water column standing crop measurements (2220 ± 450, 2040 ± 470). At MANOP site C, the diffusive flux calculated from measurements of 226Ra in box core sediments (550 ± 20), the integrated deficiency of 222Rn in the sediments (720 ± 90), and the water column standing crop (500 ± 160) are in agreement, but all are about twice as large as the single Lander water measurement of the radon flux (330). At MANOP site S radon fluxes from measurements of Lander water (3000 ± 260) are in agreement with the predicted diffusive flux from site S sediments (2880), and both fluxes are close to the lower end of the range of water column standing crop measurements (3000-5170). In San Clemente Basin, California, the Lander water flux measurements at four different sites vary by a factor of 3 due to variability in the sediment radium distribution, but the average (1030 ± 190) is close to the water column standing crop value (780 ± 230). Because there is excellent agreement between the fluxes measured with Lander water samples and the predicted diffusive fluxes in most cases, diffusion must be the primary process controlling benthic exchange of radon at the sites studied. The agreement between the Lander water flux estimates and the water column standing crop estimates indicates that the MANOP Lander functions as an accurate benthic flux chamber in water depths ranging from 1900 to 4900 m. In San Clemente Basin, surficial sediments are enriched in manganese and radium, due to manganese cycling near the sediment-water interface. Molecular diffusion of radon from

  18. AmeriFlux Site and Data Exploration System

    NASA Astrophysics Data System (ADS)

    Krassovski, M.; Boden, T.; Yang, B.; Jackson, B.

    2011-12-01

    The AmeriFlux network was established in 1996. The network provides continuous observations of ecosystem-level exchanges of CO2, water, energy and momentum spanning diurnal, synoptic, seasonal, and interannual time scales. The current network, including both active and inactive sites, consists of 141 sites in North, Central, and South America. The Carbon Dioxide Information Analysis Center (CDIAC) at Oak Ridge National Laboratory (ORNL) provides data management support for the AmeriFlux network including long-term data storage and dissemination. AmeriFlux offers a broad suite of value-added data products: Level 1 data products at 30 minute or hourly time intervals provided by the site teams, Level 2 data processed by CDIAC and Level 3 and 4 files created using CarboEurope algorithms. CDIAC has developed a relational database to house the vast array of AmeriFlux data and information and a web-based interface to the database, the AmeriFlux Site and Data Exploration System (http://ameriflux.ornl.gov), to help users worldwide identify, and more recently, download desired AmeriFlux data. AmeriFlux and CDIAC offer numerous value-added AmeriFlux data products (i.e., Level 1-4 data products, biological data) and most of these data products are or will be available through the new data system. Vital site information (e.g., location coordinates, dominant species, land-use history) is also displayed in the new system. The data system provides numerous ways to explore and extract data. Searches can be done by site, location, measurement status, available data products, vegetation types, and by reported measurements just to name a few. Data can be accessed through the links to full data sets reported by a site, organized by types of data products, or by creating customized datasets based on user search criteria. The new AmeriFlux download module contains features intended to ease compliance of the AmeriFlux fair-use data policy, acknowledge the contributions of submitting

  19. Black branes in flux compactifications

    SciTech Connect

    Torroba, Gonzalo; Wang, Huajia

    2013-10-01

    We construct charged black branes in type IIA flux compactifications that are dual to (2 + 1)-dimensional field theories at finite density. The internal space is a general Calabi-Yau manifold with fluxes, with internal dimensions much smaller than the AdS radius. Gauge fields descend from the 3-form RR potential evaluated on harmonic forms of the Calabi-Yau, and Kaluza-Klein modes decouple. Black branes are described by a four-dimensional effective field theory that includes only a few light fields and is valid over a parametrically large range of scales. This effective theory determines the low energy dynamics, stability and thermodynamic properties. Tools from flux compactifications are also used to construct holographic CFTs with no relevant scalar operators, that can lead to symmetric phases of condensed matter systems stable to very low temperatures. The general formalism is illustrated with simple examples such as toroidal compactifications and manifolds with a single size modulus. We initiate the classification of holographic phases of matter described by flux compactifications, which include generalized Reissner-Nordstrom branes, nonsupersymmetric AdS2×R2 and hyperscaling violating solutions.

  20. High flux compact neutron generators

    SciTech Connect

    Reijonen, J.; Lou, T.-P.; Tolmachoff, B.; Leung, K.-N.; Verbeke, J.; Vujic, J.

    2001-06-15

    Compact high flux neutron generators are developed at the Lawrence Berkeley National Laboratory. The neutron production is based on D-D or D-T reaction. The deuterium or tritium ions are produced from plasma using either a 2 MHz or 13.56 MHz radio frequency (RF) discharge. RF-discharge yields high fraction of atomic species in the beam which enables higher neutron output. In the first tube design, the ion beam is formed using a multiple hole accelerator column. The beam is accelerated to energy of 80 keV by means of a three-electrode extraction system. The ion beam then impinges on a titanium target where either the 2.4 MeV D-D or 14 MeV D-T neutrons are generated. The MCNP computation code has predicted a neutron flux of {approximately}10{sup 11} n/s for the D-D reaction at beam intensity of 1.5 A at 150 kV. The neutron flux measurements of this tube design will be presented. Recently new compact high flux tubes are being developed which can be used for various applications. These tubes also utilize RF-discharge for plasma generation. The design of these tubes and the first measurements will be discussed in this presentation.

  1. Superconducting flux flow digital circuits

    DOEpatents

    Hietala, Vincent M.; Martens, Jon S.; Zipperian, Thomas E.

    1995-01-01

    A NOR/inverter logic gate circuit and a flip flop circuit implemented with superconducting flux flow transistors (SFFTs). Both circuits comprise two SFFTs with feedback lines. They have extremely low power dissipation, very high switching speeds, and the ability to interface between Josephson junction superconductor circuits and conventional microelectronics.

  2. Superconducting flux flow digital circuits

    DOEpatents

    Hietala, V.M.; Martens, J.S.; Zipperian, T.E.

    1995-02-14

    A NOR/inverter logic gate circuit and a flip flop circuit implemented with superconducting flux flow transistors (SFFTs) are disclosed. Both circuits comprise two SFFTs with feedback lines. They have extremely low power dissipation, very high switching speeds, and the ability to interface between Josephson junction superconductor circuits and conventional microelectronics. 8 figs.

  3. The Airborne Measurements of Methane Fluxes (AIRMETH) Arctic Campaign (Invited)

    NASA Astrophysics Data System (ADS)

    Serafimovich, A.; Metzger, S.; Hartmann, J.; Kohnert, K.; Sachs, T.

    2013-12-01

    One of the most pressing questions with regard to climate feedback processes in a warming Arctic is the regional-scale methane release from Arctic permafrost areas. The Airborne Measurements of Methane Fluxes (AIRMETH) campaign is designed to quantitatively and spatially explicitly address this question. Ground-based eddy covariance (EC) measurements provide continuous in-situ observations of the surface-atmosphere exchange of methane. However, these observations are rare in the Arctic permafrost zone and site selection is bound by logistical constraints among others. Consequently, these observations cover only small areas that are not necessarily representative of the region of interest. Airborne measurements can overcome this limitation by covering distances of hundreds of kilometers over time periods of a few hours. Here, we present the potential of environmental response functions (ERFs) for quantitatively linking methane flux observations in the atmospheric surface layer to meteorological and biophysical drivers in the flux footprints. For this purpose thousands of kilometers of AIRMETH data across the Alaskan North Slope are utilized, with the aim to extrapolate the airborne EC methane flux observations to the entire North Slope. The data were collected aboard the research aircraft POLAR 5, using its turbulence nose boom and fast response methane and meteorological sensors. After thorough data pre-processing, Reynolds averaging is used to derive spatially integrated fluxes. To increase spatial resolution and to derive ERFs, we then use wavelet transforms of the original high-frequency data. This enables much improved spatial discretization of the flux observations, and the quantification of continuous and biophysically relevant land cover properties in the flux footprint of each observation. A machine learning technique is then employed to extract and quantify the functional relationships between the methane flux observations and the meteorological and

  4. Ecosystem-scale VOC fluxes during an extreme drought in a ...

    EPA Pesticide Factsheets

    Considerable amounts and varieties of biogenic volatile organic compounds (BVOCs) are exchanged between vegetation and the surrounding air. These BVOCs play key ecological and atmospheric roles that must be adequately represented for accurately modeling the coupled biosphere-atmosphere-climate Earth system. One key uncertainty in existing models is the response of BVOC fluxes to an important global change process: drought. We describe the diurnal and seasonal variation in isoprene, monoterpene and methanol fluxes from a temperate forest ecosystem before, during, and after an extreme 2012 drought event in the Ozark region of the central USA. BVOC fluxes were dominated by isoprene, which attained high emission rates of up to 35.4 mg m-2 h-1 at midday. Methanol fluxes were characterized by net deposition in the morning, changing to a net emission flux through the rest of the daylight hours. Net flux of CO2 reached its seasonal maximum approximately a month earlier than isoprenoid fluxes, which highlights the differential response of photosynthesis and isoprenoid emissions to progressing drought conditions. Nevertheless, both processes were strongly suppressed under extreme drought, although isoprene fluxes remained relatively high compared to reported fluxes from other ecosystems. Methanol exchange was less affected by drought throughout the season, confirming the complex processes driving biogenic methanol fluxes. The fraction of daytime (7-17 h) assimilated carbo

  5. Seasonal and diurnal variation in CO fluxes from an agricultural bioenergy crop

    NASA Astrophysics Data System (ADS)

    Pihlatie, Mari; Rannik, Üllar; Haapanala, Sami; Peltola, Olli; Shurpali, Narasinha; Martikainen, Pertti J.; Lind, Saara; Hyvönen, Niina; Virkajärvi, Perttu; Zahniser, Mark; Mammarella, Ivan

    2016-10-01

    Carbon monoxide (CO) is an important reactive trace gas in the atmosphere, while its sources and sinks in the biosphere are poorly understood. Soils are generally considered as a sink of CO due to microbial oxidation processes, while emissions of CO have been reported from a wide range of soil-plant systems. We measured CO fluxes using the micrometeorological eddy covariance method from a bioenergy crop (reed canary grass) in eastern Finland from April to November 2011. Continuous flux measurements allowed us to assess the seasonal and diurnal variability and to compare the CO fluxes to simultaneously measured net ecosystem exchange of CO2, N2O and heat fluxes as well as to relevant meteorological, soil and plant variables in order to investigate factors driving the CO exchange.The reed canary grass (RCG) crop was a net source of CO from mid-April to mid-June and a net sink throughout the rest of the measurement period from mid-June to November 2011, excluding a measurement break in July. CO fluxes had a distinct diurnal pattern with a net CO uptake in the night and a net CO emission during the daytime with a maximum emission at noon. This pattern was most pronounced in spring and early summer. During this period the most significant relationships were found between CO fluxes and global radiation, net radiation, sensible heat flux, soil heat flux, relative humidity, N2O flux and net ecosystem exchange. The strong positive correlation between CO fluxes and radiation suggests abiotic CO production processes, whereas the relationship between CO fluxes and net ecosystem exchange of CO2, and night-time CO fluxes and N2O emissions indicate biotic CO formation and microbial CO uptake respectively. The study shows a clear need for detailed process studies accompanied by continuous flux measurements of CO exchange to improve the understanding of the processes associated with CO exchange.

  6. Abrupt change in magma generation processes across the Central American arc in southeastern Guatemala: flux-dominated melting near the base of the wedge to decompression melting near the top of the wedge

    NASA Astrophysics Data System (ADS)

    Walker, J. A.; Carr, M. J.; Patino, L. C.; Johnson, C. M.; Feigenson, M. D.; Ward, R. L.

    1995-07-01

    Lavas erupted behind the volcanic front in southeastern Guatemala have many important distinctions from lavas erupted on the volcanic front. These include: generally higher MgO, Nb, Sr, TiO2, and rare earth element concentrations; higher La/Yb and Nb/Y ratios; and lower Ba/La, La/Nb, Ba/Zr and Zr/Nb ratios. These major and trace element distinctions are caused by reduced fractionation during ascent and storage in the crust, lower degrees of melting in the source, and greatly reduced contributions from the subducted Cocos plate in the source. In addition, because all of these important distinctions are even borne in lavas erupted within 20 km of the front, there is little apparent petrogenetic continuity between front and behind-the-front magmas. What little geochemical continuity exists is in radiogenic isotopes: 143Nd/144Nd falls across the arc, Pb isotopic ratios (except 206Pb/204Pb) rise across the arc, and 87Sr/86Sr rise across the arc after an initial discontinuity within 20 km of the front. These continuous across-arc changes in radiogenic isotopes are caused by increased contamination with older, more isotopically disparate rocks, away from the front. Once the effects of crustal contamination are removed, the remaining isotopic variability behind the front is non-systematic and reflects the inherent isotopic heterogeneity of the source, the mantle wedge. Geochemical disconnection in southeastern Guatemala suggests that behind-the-front magmas are produced by decompression melting near the top of the wedge, not by flux-dominated melting near the base of the wedge.

  7. On Process.

    ERIC Educational Resources Information Center

    Waxler, Robert P.

    1987-01-01

    Claims that the product approach to business writing prescribes a way of operating similar to imitation and creates an illusion of a static world when, in reality, the business environment is constantly in flux. Argues that the process approach to writing instruction should be used in business communication classes. (JD)

  8. Towards GERB Edition 2 TOA fluxes

    NASA Astrophysics Data System (ADS)

    Ipe, Alessandro; Baudrez, Edward; Clerbaux, Nicolas; Moreels, Johan; Urbain, Manon; Velazquez Blazquez, Almudena

    2016-04-01

    The Geostationary Earth Radiation Budget (GERB) dataset currently covers more than 10 years from 2004 and makes it an unique record for the climate and the numerical weather prediction scientific communities through assimilation in various models and climate studies. Indeed, the geostationary platform of this broadband radiometer flying together with the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) on board of the Meteosat Second Generation (MSG) satellites allows to estimate TOA solar and thermal fluxes every 15 minutes at spatial resolutions upto 10 km (nadir). In this contribution, we will discuss the improvements that were developped for the Edition 1 post-processing. These includes terminator and sunglint modeling through scene identification extrapolation. Moreover, with the experience acquired by generating the Edition 1 dataset as well as through its critical assessment, an improved Edition 2 of the processing is been implemented. This second version aims to fulfill climate data record standards. Such goal will be achieved by improving the scene identification for the selection of solar angular dependency models (ADMs), the solar and thermal narrow-to-broadband conversion schemes, as well as including new thermal ADMs for radiance-to-flux conversion and GERB instrument ageing correction schemes.

  9. Interbasin Flux Measurements Using Simple Methods

    SciTech Connect

    John Watson; Daniel Freeman

    2005-01-13

    The Vertical Transport and Mixing (VTMX) campaign, sponsored by the US Department of Energy, took place in the Salt Lake Valley during October, 2000. The purpose of VTMX was to further understanding of meteorological processes that govern vertical transport and mixing in complex terrain, particularly during nocturnal stable periods and their morning and evening transition periods. These meteorological processes were the subject of numerous sponsored studies during VTMX. The Salt Lake (Salt Lake City) Basin and the Utah Basin to its south are separated by the Traverse Range. Near-surface airflow between the basins is channeled through the Jordan Narrows, also the channel for the Jordan River that flows from the Utah Basin into Salt Lake via the Salt Lake Basin. Jordan Narrows is thus a potentially significant corridor for pollutant transport between the two basins. This paper describes simple and direct pollutant (PM{sub 10}) measurements, with concurrent continuous meteorological monitoring, to characterize pollutant transport between the two basins via low-level stable nocturnal drainage flow, with an emphasis on its vertical variability when mixing is limited. The Jordan Narrows has similarities to other transport corridors where direct in-corridor monitoring of pollutant flux might enhance pollution forecasts during transport conditions. Thus their more general objective is to assess the usefulness of direct methods to characterize pollutant flux in similar environments.

  10. Methane flux from the central Amazonian floodplain

    NASA Technical Reports Server (NTRS)

    Bartlett, Karen B.; Crill, Patrick M.; Sebacher, Daniel I.; Harriss, Robert C.; Wilson, John O.

    1988-01-01

    A total of 186 methane measurements from the three primary Amazon floodplain environments of open water lakes, flood forests, and floating grass mats were made over the period 18 July through 2 September 1985. These data indicate that emissions were lowest over open water lakes. Flux from flooded forests and grass mats was significantly higher. At least three transport processes contribute to tropospheric emissions: ebullition from sediments, diffusion along the concentration gradient from sediment to overlaying water to air, and transport through the roots and stems of aquatic plants. Measurements indicate that the first two of these processes are most significant. It was estimated that on the average bubbling makes up 49 percent of the flux from open water, 54 percent of that from flooded forests, and 64 percent of that from floating mats. If the measurements were applied to the entire Amazonian floodplain, it is calculated that the region could supply up to 12 percent of the estimated global natural sources of methane.

  11. Methane flux from the central Amazonian floodplain

    NASA Technical Reports Server (NTRS)

    Bartlett, Karen B.; Crill, Patrick M.; Sebacher, Daniel I.; Harriss, Robert C.; Wilson, John O.

    1988-01-01

    A total of 186 methane measurements from the three primary Amazon floodplain environments of open water lakes, flood forests, and floating grass mats were made over the period 18 July through 2 September 1985. These data indicate that emissions were lowest over open water lakes. Flux from flooded forests and grass mats was significantly higher. At least three transport processes contribute to tropospheric emissions: ebullition from sediments, diffusion along the concentration gradient from sediment to overlaying water to air, and transport through the roots and stems of aquatic plants. Measurements indicate that the first two of these processes are most significant. It was estimated that on the average bubbling makes up 49 percent of the flux from open water, 54 percent of that from flooded forests, and 64 percent of that from floating mats. If the measurements were applied to the entire Amazonian floodplain, it is calculated that the region could supply up to 12 percent of the estimated global natural sources of methane.

  12. Automated calculation of surface energy fluxes with high-frequency lake buoy data

    USGS Publications Warehouse

    Woolway, R Iestyn; Jones, Ian D; Hamilton, David P.; Maberly, Stephen C; Muroaka, Kohji; Read, Jordan S.; Smyth, Robyn L; Winslow, Luke A.

    2015-01-01

    Lake Heat Flux Analyzer is a program used for calculating the surface energy fluxes in lakes according to established literature methodologies. The program was developed in MATLAB for the rapid analysis of high-frequency data from instrumented lake buoys in support of the emerging field of aquatic sensor network science. To calculate the surface energy fluxes, the program requires a number of input variables, such as air and water temperature, relative humidity, wind speed, and short-wave radiation. Available outputs for Lake Heat Flux Analyzer include the surface fluxes of momentum, sensible heat and latent heat and their corresponding transfer coefficients, incoming and outgoing long-wave radiation. Lake Heat Flux Analyzer is open source and can be used to process data from multiple lakes rapidly. It provides a means of calculating the surface fluxes using a consistent method, thereby facilitating global comparisons of high-frequency data from lake buoys.

  13. On the origins of magnetic flux ropes in near-Mars magnetotail current sheets

    NASA Astrophysics Data System (ADS)

    Hara, Takuya; Harada, Yuki; Mitchell, David L.; DiBraccio, Gina A.; Espley, Jared R.; Brain, David A.; Halekas, Jasper S.; Seki, Kanako; Luhmann, Janet G.; McFadden, James P.; Mazelle, Christian; Jakosky, Bruce M.

    2017-08-01

    We analyze Mars Atmosphere and Volatile EvolutioN (MAVEN) observations of magnetic flux ropes embedded in Martian magnetotail current sheets, in order to evaluate the role of magnetotail reconnection in their generations. We conduct a minimum variance analysis to infer the generation processes of magnetotail flux ropes from the geometrical configuration of the individual flux rope axial orientation with respect to the overall current sheet. Of 23 flux ropes detected in current sheets in the near-Mars (˜1-3 Martian radii downstream) magnetotail, only 3 (possibly 4) can be explained by the magnetotail reconnection scenario, while the vast majority of the events (19 events) are more consistent with flux ropes that are originally generated in the dayside ionosphere and subsequently transported into the nightside magnetotail. The mixed origins of the detected flux ropes imply complex nature of generation and transport of Martian magnetotail flux ropes.

  14. Comparisons of Earthward Poynting flux and the kinetic energy flux of up-flowing transversely heated ions from the Polar spacecraft on cusp magnetic field lines

    NASA Astrophysics Data System (ADS)

    Tian, S.; Wygant, J. R.; Cattell, C. A.; Scudder, J. D.; Mozer, F.; Russell, C. T.

    2013-12-01

    This paper presents estimates of the Poynting flux flowing along magnetic field lines in the Earth's cusp region over altitudes from 0.8 Re to 7 Re using measurements during several passes from the Polar spacecraft. The Poynting flux is calculated from measurements of electric fields from the University of California, Berkeley double probe electric field instrument, and from magnetic field measurements from the U.C.L.A. fluxgate magnetometer. The estimates of Poynting flux are of special interest because the high altitude mapping of the cusp magnetic flux tubes may connect to newly reconnected field lines and the low altitude mapping of these field lines is the scene of powerful acceleration processes, most notably transverse heating and outflow of ions. The data show that the Poynting flux is predominantly downward over the frequency range from 1 mHz to 1 Hz . This frequency range includes the Poynting flux due to steady state convection and field-aligned current systems, Alfven waves, and kinetic Alfven waves. Measurement of transversely heated ions over the energy ranges from 10 eV to several keV and their associated ion kinetic energy flux are presented from the University of Iowa Hydra instrument and compared to the values of the downward Poynting flux. Generally the downward Poynting flux exceeds the upward kinetic energy flux of the ions.

  15. Time and Space Resolved Heat Flux Measurements During Nucleate Boiling with Constant Heat Flux Boundary Conditions

    NASA Technical Reports Server (NTRS)

    Yerramilli, Vamsee K.; Myers, Jerry G.; Hussey, Sam W.; Yee, Glenda F.; Kim, Jungho

    2005-01-01

    The lack of temporally and spatially resolved measurements under nucleate bubbles has complicated efforts to fully explain pool-boiling phenomena. The objective of this current work was to acquire time and space resolved temperature distributions under nucleating bubbles on a constant heat flux surface using a microheater array with 100x 100 square microns resolution, then numerically determine the wall to liquid heat flux. This data was then correlated with high speed (greater than l000Hz) visual recordings of The bubble growth and departure from the heater surface acquired from below and from the side of the heater. The data indicate that microlayer evaporation and contact line heat transfer are not major heat transfer mechanisms for bubble growth. The dominant heat transfer mechanism appears to be transient conduction into the liquid as the liquid rewets the wall during the bubble departure process.

  16. Modification of flux profiles using a faceted concentrator

    SciTech Connect

    Lewandowski, A.; Scholl, K.; Bingham, C.

    1993-01-01

    The use of a faceted solar concentrator allows for some flexibility in aiming strategy and in the intensity of the resulting flux profile at the target. This can be an advantage when considering applications that do not necessarily require maximum concentration, particularly emerging, new applications in solar processed advanced materials. This paper will describe both an analysis of predicted flux profiles for several different aiming strategies using the SOLFUR computer code and experiments to characterize the actual flux profiles realized with a selected aiming strategy. The SOLFUR code models each of the furnace components explicitly. Aim points for each facet can be specified. Thus many strategies for adjusting aim points can be easily explored. One strategy calls for creating as uniform a flux over as large an area as possible. We explored this strategy analytically and experimentally. The experimental data consist of flux maps generated by a video imaging system calibrated against absolute flux measurements taken with circular foil calorimeters. Results from the analytical study and a comparison with the experimental data indicate that uniform profiles can be produced over fairly large areas.

  17. Quantum transport in coupled resonators enclosed synthetic magnetic flux

    SciTech Connect

    Jin, L.

    2016-07-15

    Quantum transport properties are instrumental to understanding quantum coherent transport processes. Potential applications of quantum transport are widespread, in areas ranging from quantum information science to quantum engineering, and not restricted to quantum state transfer, control and manipulation. Here, we study light transport in a ring array of coupled resonators enclosed synthetic magnetic flux. The ring configuration, with an arbitrary number of resonators embedded, forms a two-arm Aharonov–Bohm interferometer. The influence of magnetic flux on light transport is investigated. Tuning the magnetic flux can lead to resonant transmission, while half-integer magnetic flux quantum leads to completely destructive interference and transmission zeros in an interferometer with two equal arms. -- Highlights: •The light transport is investigated through ring array of coupled resonators enclosed synthetic magnetic field. •Aharonov–Bohm ring interferometer of arbitrary configuration is investigated. •The half-integer magnetic flux quantum leads to destructive interference and transmission zeros for two-arm at equal length. •Complete transmission is available via tuning synthetic magnetic flux.

  18. Simulating Heat Flux and Bubble Nucleation using Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Karayiannis, Tassos; Smith, Edward; Sefiane, Khellil; Matar, Omar

    2016-11-01

    Modelling the heat flux in multiphase flow situations must account for nucleation of bubbles, non-linear heat transfer coefficients, complex molecular interaction at the surface, detailed surface textures as well as build up of material on the surface. These complex factors combine to define the well known boiling curve, which characterises the heat flux for a given temperature gradient. Understanding and optimisation of this boiling curve, and its critical heat flux (CHF), is a problem of great importance. Molecular dynamics (MD), by modelling the motion of the individual molecules, can replicate the bubble nucleation and heat flux. Details of the wall-fluid interaction are represented with complex textures and the surface materials can be explicitly reproduced. In this talk, MD simulation results are presented for bubble nucleation and heat flux. The heat flux is matched to experimental results and the process of nucleation explored for both fractal and textured surfaces. The unique insights from the molecular scale are discussed and potential applications including surface design and coupled molecular to continuum simulation are presented. EPSRC UK platform Grant MACIPh (EP/L020564/1).

  19. Software applications toward quantitative metabolic flux analysis and modeling.

    PubMed

    Dandekar, Thomas; Fieselmann, Astrid; Majeed, Saman; Ahmed, Zeeshan

    2014-01-01

    Metabolites and their pathways are central for adaptation and survival. Metabolic modeling elucidates in silico all the possible flux pathways (flux balance analysis, FBA) and predicts the actual fluxes under a given situation, further refinement of these models is possible by including experimental isotopologue data. In this review, we initially introduce the key theoretical concepts and different analysis steps in the modeling process before comparing flux calculation and metabolite analysis programs such as C13, BioOpt, COBRA toolbox, Metatool, efmtool, FiatFlux, ReMatch, VANTED, iMAT and YANA. Their respective strengths and limitations are discussed and compared to alternative software. While data analysis of metabolites, calculation of metabolic fluxes, pathways and their condition-specific changes are all possible, we highlight the considerations that need to be taken into account before deciding on a specific software. Current challenges in the field include the computation of large-scale networks (in elementary mode analysis), regulatory interactions and detailed kinetics, and these are discussed in the light of powerful new approaches.

  20. The INES system. IV. The IUE absolute flux scale

    NASA Astrophysics Data System (ADS)

    González-Riestra, R.; Cassatella, A; Wamsteker, W.

    2001-07-01

    This paper deals with the definition of the input fluxes used for the calibration of the IUE Final Archive. The method adopted consists in the determination of the shape of the detector's sensitivity curves using IUE low resolution observations with model fluxes of the DA white dwarf G191-B2B. A scale factor was then determined so that the IUE observations of some bright OAO-2 standards match the original measurements from Meade (\\cite{meade}) in the spectral region 2100-2300 Å. The ultraviolet fluxes of six standard stars used as input for the Final Archive photometric calibration together with the model fluxes of G191-B2B normalized to the OAO-2 scale are given. A comparison with the independent FOS calibration shows that the IUE flux scale for the Ultraviolet is 7.2% lower. We consider this mainly to be caused by the different normalization procedures. It is shown that the present flux calibration applies to spectra processed with the INES low resolution extraction software.

  1. Phytoplankton size impact on export flux in the global ocean

    NASA Astrophysics Data System (ADS)

    Mouw, Colleen B.; Barnett, Audrey; McKinley, Galen A.; Gloege, Lucas; Pilcher, Darren

    2016-10-01

    Efficiency of the biological pump of carbon to the deep ocean depends largely on biologically mediated export of carbon from the surface ocean and its remineralization with depth. Global satellite studies have primarily focused on chlorophyll concentration and net primary production (NPP) to understand the role of phytoplankton in these processes. Recent satellite retrievals of phytoplankton composition now allow for the size of phytoplankton cells to be considered. Here we improve understanding of phytoplankton size structure impacts on particle export, remineralization, and transfer. A global compilation of particulate organic carbon (POC) flux estimated from sediment traps and 234Th are utilized. Annual climatologies of NPP, percent microplankton, and POC flux at four time series locations and within biogeochemical provinces are constructed. Parameters that characterize POC flux versus depth (export flux ratio, labile fraction, and remineralization length scale) are fit for time series locations, biogeochemical provinces, and times of the year dominated by small and large phytoplankton cells where phytoplankton cell size show enough dynamic range over the annual cycle. Considering all data together, our findings support the idea of high export flux but low transfer efficiency in productive regions and vice versa for oligotrophic regions. However, when parsing by dominant size class, we find periods dominated by small cells to have both greater export flux efficiency and lower transfer efficiency than periods when large cells comprise a greater proportion of the phytoplankton community.

  2. Low methane flux from a constructed boreal wetland

    NASA Astrophysics Data System (ADS)

    Clark, M. G.; Humphreys, E.; Carey, S. K.

    2016-12-01

    The Sandhill Fen Watershed project in northern Alberta, Canada, is a pilot study in reconstructing a mixed upland and lowland boreal plain ecosystem. The physical construction of the 50 ha area was completed in 2012 and revegetation programs, through planting and seeding, began that same year and continued into 2013. Since then, the vegetation has developed a substantial cover over the reclaimed soil and peat substrates used to cap the engineered topography constructed from mine tailings. To monitor the dynamics of carbon cycling processes in this novel ecosystem, near weekly gas chamber measurements of methane fluxes were carried out over 3 growing seasons. Soil moisture, temperature and ion flux measurements, using Plant Root Simulator probes, were also collected alongside the gas flux plots. In the 3rd season, a transect was established in the lowlands along a moisture gradient to collect continuous reduction-oxidation potential measurements along with these other variables. Overall, methane effluxes remained low relative to what is expected for rewetted organic substrates. However, there is a trend over time towards increasing methane gas emissions that coincides with increasing fluxes of reduced metal ions and decreasing fluxes of sulphate in the fully saturated substrates. The suppressed levels of methane fluxes are possibly due to naturally occurring high levels of sulphate in the donor materials used to cap the ecosystem construction.

  3. Space proton flux and the temporal distribution of cardiovascular deaths

    NASA Astrophysics Data System (ADS)

    Stoupel, E.; Abramson, J.; Domarkiene, S.; Shimshoni, M.; Sulkes, J.

    The influence of solar activity (SA) and geomagnetic activity (GMA) on human homeostasis has long been investigated. The aim of the present study was to analyse the relationship between monthly proton flux (>90 MeV) and other SA and GMA parameters and between proton flux and temporal (monthly) distribution of total and cardiovascular-related deaths. The data from 180 months (1974-1989) of distribution in the Beilinson Campus of the Rabin Medical Centre, Israel, and of 108 months (1983-1991) from the Kaunas Medical Academy, were analysed and compared with SA, GMA and space proton flux (>90 MeV). It was concluded: (1) monthly levels of SA, GMA and radiowave propagation (Fof2) are significantly and adversely correlated with monthly space proton flux (>90 MeV); (2) medical-biological phenomena that increase during periods of low solar and/or geomagnetic activity may be stimulated by physical processes provoked by the concomitant increase in proton flux; (3) the monthly number of deaths related (positively or negatively) to SA are significantly and adversely related to the space proton flux (>90 MeV).

  4. New observations of flux ropes in the magnetotail reconnection region

    NASA Astrophysics Data System (ADS)

    Huang, Shiyong; Retino, Alessandro; Phan, Tai; Daughton, W. Bill; Vaivads, Andris; Karimabadi, Homa; Pang, Ye; Zhou, Meng; Sahraoui, Fouad; Li, Guanlai; Yuan, Zhigang; Deng, Xiaohua; Fu, Huishan; Fu, Song; Wang, Dedong

    2016-04-01

    Magnetic reconnection is a fundamental physical process that enables the rapid transfer of magnetic energy into plasma kinetic and thermal energy in the laboratory, astrophysical and space plasma. Flux ropes have been suggested to play important role in controlling the micro-scale physics of magnetic reconnection and electron acceleration. In this presentation, we report new observations of flux ropes in the magnetotail reconnection region based on the Cluster multi-spacecraft data. Firstly, two consecutive magnetic flux ropes, separated by less than 30 s (Δt < 30 s), are observed within one magnetic reconnection diffusion region without strong guide field. In spite of the small but non-trivial global scale negative guide field (-By), there exists a directional change of the core fields of two flux ropes, i.e. -By for the first one, and +By for the second one. This is inconsistent with any theory and simulations. Therefore, we suggest that the core field of flux ropes is formed by compression of the local preexisting By, and that the directional change of core field is due to the change of local preexisting By. Such a change in ambientBy might be caused by some microscale physics. Secondary, we will present in-situ observations of a small scale flux rope locally formed at the separatrix region of magnetic reconnection without large guide field. Bidirectional electron beams (cold and hot beams) and density cavity accompanied by intense wave activities substantiate the crossing of the separatrix region. Density compression and one parallel electron beam are detected inside the flux rope. We suggest that this flux rope is locally generated at the separatrix region due to the tearing instability within the separatrix current layer. This observation sheds new light on the 3D picture of magnetic reconnection in space plasma.

  5. Fluxes across a thermohaline interface

    NASA Astrophysics Data System (ADS)

    Fleury, M.; Lueck, R. G.

    1991-07-01

    Measurements of velocity and temperature microstructure and hydrography were made with a towed vehicle moving in and around a single interface in a double-diffusive staircase. The interface was traversed 222 times in a saw-tooth pattern over a track 35 km long. The salinity and potential temperature and density in the mixed layers adjacent to the interface were spatially uniform except for one 8 km long anomaly. The rate of dissipation of kinetic energy was uniformly low in the interface and in the mixed layers, except for one section 600 m long where a Kelvin-Helmholtz instability generated turbulence. For the non-turbulent section of the interface, the mean rate of dissipation was 30.2 × 10 -10 W kg -1 in the mixed layers and 9.5 × 10 -10 W kg -1 in the interface. The non-dimensional dissipation rate, ɛ/vN 2, was almost always less than 16 in the interface and therfore, there was no turblent buoyancy flux according to ROHRet al. (1988, Journal of Fluid Mechanics, 195, 77-111). The average double-diffusive flux of buoyancy by heat was 3.6 × 10 -10 W kg -1. Under certain assumptions the ratio of the flux of buoyancy by heat and salt can be estimated to be 0.53 ± 0.10, in good agreement with laboratory and theoretical estimates for salt fingers. The average Cox number was about 8 in the interface, consistent with the theories of STERN (1975, Ocean circulation physics, Academic Press) and KUNZE (1987, Journal of Marine Research, 45 533-556), but displayed an inverse dependence on the vertical temperature gradient which was not predicted. As a result, the flux of buoyancy, as well as the individual contributions by heat and salt, were independent of the local mean vertical temperature gradient and the buoyancy frequency. The length of the turbulent section of the interface was only 1.7% of the total length observed. However, the turbulence was intense—the mean rate of dissipation was 2.5 × 10 -8 W kg -1—and may have sufficiently enhanced the flux of heat to

  6. Integrated Belowground Greenhouse Gas Flux Modeling (Invited)

    NASA Astrophysics Data System (ADS)

    Davidson, E. A.; Savage, K. E.

    2013-12-01

    Soil greenhouse gas (GHG) emissions play a significant role as biotic feedbacks to climate change. However, these complex processes, involving C, N, and O2 substrates and inhibitors, interactions with plant processes, and environmental influences of temperature, moisture, and gas transport, remain challenging to simulate in process models. Because CO2, CH4, and N2O production and consumption processes are inter-linked through common substrates and the contrasting effects of O2 as either an essential substrate or a potential inhibitor, the simulation of fluxes of any one gas must be consistent with mechanistic simulations and observations of fluxes of the other gases. Simulating the fluxes of one gas alone is a simpler task, but simulating all three gases simultaneously would provide multiple constraints and would afford greater confidence that the most important mechanisms are aptly simulated. A case in point is the challenge of resolving the apparent paradox of observed simultaneous CO2 production by aerobic respiration, CH4 uptake (oxidation), CH4 production, and N2O uptake (reduction) in the same soil profile. Consumption of atmospheric N2O should occur only under reducing conditions, and yet we have observed uptake of atmospheric CH4 (oxidation) and N2O (reduction) simultaneously. One of the great challenges of numerical modeling is determining the appropriate level of complexity when representing the most important environmental controllers. Ignoring complexity, such as simulating microbial processes with only simple Q10 functions, often results in poor model performance, because soil moisture and substrate supply can also be important factors. On the other hand, too much complexity, while perhaps mechanistically compelling, may result in too many poorly constrained parameters. Here we explore a parsimonious modeling framework for consistently integrated mechanistic and mathematical representation of the biophysical processes of belowground GHG production and

  7. An odor flux model for cattle feedlots

    SciTech Connect

    Ormerod, R.J.

    1994-12-31

    Odor nuisance associated with cattle feedlots has been an issue of major interest and concern to regulators, rural communities and the beef industry in Australia over the past decade. Methods of assessing the likely impacts of new feedlots on community odor exposure are still being developed, but in the past few years much has been learnt about the processes of odor generation, flux and dispersion as well as the acceptability of feedlot odor to exposed communities. This paper outlines a model which simulates the complex physical and chemical processes leading to odor emissions in a simple and practical framework. The model, named BULSMEL, has been developed as a response to regulatory requirements for quantitative assessments of odor impact. It will continue to be refined as more data are gathered.

  8. Origin of flux ropes in Venus' ionosphere

    NASA Technical Reports Server (NTRS)

    Cole, Keith D.

    1994-01-01

    The joule dissipation inside flux ropes in Venus' ionosphere is so great that they must be formed near, and maintained at, the place where they are observed. Thus ropes are not formed by a Kelvin-Helmholtz instability of the ionopause. The hypothesis that ropes may be formed by the dynamo action of internal gravity waves in Venus' thermosphere (Luhmann and Elphic, 1985; Cole, 1993) is strengthened by discussion of a magnetic evolution equation which includes neutral air motion. However, the dynamo process would work only at altitudes at which v(sub in) is greater than or equal to omega(sub i). At altitudes or parts of a rope where v(sub in) is much less than omega(sub i), the process does not work. A solar wind dynamo is therefore examined to account for the ropes. Thereby a major new heat source for ions of the Venus ionosphere associated with the ropes is uncovered.

  9. Control of exciton fluxes in an excitonic integrated circuit.

    PubMed

    High, Alex A; Novitskaya, Ekaterina E; Butov, Leonid V; Hanson, Micah; Gossard, Arthur C

    2008-07-11

    Efficient signal communication uses photons. Signal processing, however, uses an optically inactive medium, electrons. Therefore, an interconnection between electronic signal processing and optical communication is required at the integrated circuit level. We demonstrated control of exciton fluxes in an excitonic integrated circuit. The circuit consists of three exciton optoelectronic transistors and performs operations with exciton fluxes, such as directional switching and merging. Photons transform into excitons at the circuit input, and the excitons transform into photons at the circuit output. The exciton flux from the input to the output is controlled by a pattern of the electrode voltages. The direct coupling of photons, used in communication, to excitons, used as the device-operation medium, may lead to the development of efficient exciton-based optoelectronic devices.

  10. Measurement of neutrino flux from neutrino-electron elastic scattering

    NASA Astrophysics Data System (ADS)

    Park, J.; Aliaga, L.; Altinok, O.; Bellantoni, L.; Bercellie, A.; Betancourt, M.; Bodek, A.; Bravar, A.; Budd, H.; Cai, T.; Carneiro, M. F.; Christy, M. E.; Chvojka, J.; da Motta, H.; Dytman, S. A.; Díaz, G. A.; Eberly, B.; Felix, J.; Fields, L.; Fine, R.; Gago, A. M.; Galindo, R.; Ghosh, A.; Golan, T.; Gran, R.; Harris, D. A.; Higuera, A.; Kleykamp, J.; Kordosky, M.; Le, T.; Maher, E.; Manly, S.; Mann, W. A.; Marshall, C. M.; Martinez Caicedo, D. A.; McFarland, K. S.; McGivern, C. L.; McGowan, A. M.; Messerly, B.; Miller, J.; Mislivec, A.; Morfín, J. G.; Mousseau, J.; Naples, D.; Nelson, J. K.; Norrick, A.; Nuruzzaman; Osta, J.; Paolone, V.; Patrick, C. E.; Perdue, G. N.; Rakotondravohitra, L.; Ramirez, M. A.; Ray, H.; Ren, L.; Rimal, D.; Rodrigues, P. A.; Ruterbories, D.; Schellman, H.; Solano Salinas, C. J.; Tagg, N.; Tice, B. G.; Valencia, E.; Walton, T.; Wolcott, J.; Wospakrik, M.; Zavala, G.; Zhang, D.; Miner ν A Collaboration

    2016-06-01

    Muon-neutrino elastic scattering on electrons is an observable neutrino process whose cross section is precisely known. Consequently a measurement of this process in an accelerator-based νμ beam can improve the knowledge of the absolute neutrino flux impinging upon the detector; typically this knowledge is limited to ˜10 % due to uncertainties in hadron production and focusing. We have isolated a sample of 135 ±17 neutrino-electron elastic scattering candidates in the segmented scintillator detector of MINERvA, after subtracting backgrounds and correcting for efficiency. We show how this sample can be used to reduce the total uncertainty on the NuMI νμ flux from 9% to 6%. Our measurement provides a flux constraint that is useful to other experiments using the NuMI beam, and this technique is applicable to future neutrino beams operating at multi-GeV energies.

  11. Measurement of neutrino flux from neutrino-electron elastic scattering

    SciTech Connect

    Park, J.; Aliaga, L.; Altinok, O.; Bellantoni, L.; Bercellie, A.; Betancourt, M.; Bodek, A.; Bravar, A.; Budd, H.; Cai, T.; Carneiro, M. F.; Christy, M. E.; Chvojka, J.; da Motta, H.; Dytman, S. A.; Díaz, G. A.; Eberly, B.; Felix, J.; Fields, L.; Fine, R.; Gago, A. M.; Galindo, R.; Ghosh, A.; Golan, T.; Gran, R.; Harris, D. A.; Higuera, A.; Kleykamp, J.; Kordosky, M.; Le, T.; Maher, E.; Manly, S.; Mann, W. A.; Marshall, C. M.; Martinez Caicedo, D. A.; McFarland, K. S.; McGivern, C. L.; McGowan, A. M.; Messerly, B.; Miller, J.; Mislivec, A.; Morfín, J. G.; Mousseau, J.; Naples, D.; Nelson, J. K.; Norrick, A.; Nuruzzaman,; Osta, J.; Paolone, V.; Patrick, C. E.; Perdue, G. N.; Rakotondravohitra, L.; Ramirez, M. A.; Ray, H.; Ren, L.; Rimal, D.; Rodrigues, P. A.; Ruterbories, D.; Schellman, H.; Solano Salinas, C. J.; Tagg, N.; Tice, B. G.; Valencia, E.; Walton, T.; Wolcott, J.; Wospakrik, M.; Zavala, G.; Zhang, D.

    2016-06-10

    Muon-neutrino elastic scattering on electrons is an observable neutrino process whose cross section is precisely known. Consequently, a measurement of this process in an accelerator-based νμ beam can improve the knowledge of the absolute neutrino flux impinging upon the detector; typically this knowledge is limited to ~10% due to uncertainties in hadron production and focusing. We also isolated a sample of 135±17 neutrino-electron elastic scattering candidates in the segmented scintillator detector of MINERvA, after subtracting backgrounds and correcting for efficiency. We show how this sample can be used to reduce the total uncertainty on the NuMI νμ flux from 9% to 6%. Finally, our measurement provides a flux constraint that is useful to other experiments using the NuMI beam, and this technique is applicable to future neutrino beams operating at multi-GeV energies.

  12. Measurement of neutrino flux from neutrino-electron elastic scattering

    SciTech Connect

    Park, J.; Aliaga, L.; Altinok, O.; Bellantoni, L.; Bercellie, A.; Betancourt, M.; Bodek, A.; Bravar, A.; Budd, H.; Cai, T.; Carneiro, M. F.; Christy, M. E.; Chvojka, J.; da Motta, H.; Dytman, S. A.; Díaz, G. A.; Eberly, B.; Felix, J.; Fields, L.; Fine, R.; Gago, A. M.; Galindo, R.; Ghosh, A.; Golan, T.; Gran, R.; Harris, D. A.; Higuera, A.; Kleykamp, J.; Kordosky, M.; Le, T.; Maher, E.; Manly, S.; Mann, W. A.; Marshall, C. M.; Martinez Caicedo, D. A.; McFarland, K. S.; McGivern, C. L.; McGowan, A. M.; Messerly, B.; Miller, J.; Mislivec, A.; Morfín, J. G.; Mousseau, J.; Naples, D.; Nelson, J. K.; Norrick, A.; Nuruzzaman,; Osta, J.; Paolone, V.; Patrick, C. E.; Perdue, G. N.; Rakotondravohitra, L.; Ramirez, M. A.; Ray, H.; Ren, L.; Rimal, D.; Rodrigues, P. A.; Ruterbories, D.; Schellman, H.; Solano Salinas, C. J.; Tagg, N.; Tice, B. G.; Valencia, E.; Walton, T.; Wolcott, J.; Wospakrik, M.; Zavala, G.; Zhang, D.

    2016-06-10

    Muon-neutrino elastic scattering on electrons is an observable neutrino process whose cross section is precisely known. Consequently, a measurement of this process in an accelerator-based νμ beam can improve the knowledge of the absolute neutrino flux impinging upon the detector; typically this knowledge is limited to ~10% due to uncertainties in hadron production and focusing. We also isolated a sample of 135±17 neutrino-electron elastic scattering candidates in the segmented scintillator detector of MINERvA, after subtracting backgrounds and correcting for efficiency. We show how this sample can be used to reduce the total uncertainty on the NuMI νμ flux from 9% to 6%. Finally, our measurement provides a flux constraint that is useful to other experiments using the NuMI beam, and this technique is applicable to future neutrino beams operating at multi-GeV energies.

  13. Measurement of neutrino flux from neutrino-electron elastic scattering

    DOE PAGES

    Park, J.; Aliaga, L.; Altinok, O.; ...

    2016-06-10

    Muon-neutrino elastic scattering on electrons is an observable neutrino process whose cross section is precisely known. Consequently, a measurement of this process in an accelerator-based νμ beam can improve the knowledge of the absolute neutrino flux impinging upon the detector; typically this knowledge is limited to ~10% due to uncertainties in hadron production and focusing. We also isolated a sample of 135±17 neutrino-electron elastic scattering candidates in the segmented scintillator detector of MINERvA, after subtracting backgrounds and correcting for efficiency. We show how this sample can be used to reduce the total uncertainty on the NuMI νμ flux from 9%more » to 6%. Finally, our measurement provides a flux constraint that is useful to other experiments using the NuMI beam, and this technique is applicable to future neutrino beams operating at multi-GeV energies.« less

  14. Constraints on geothermal heat flux under the Greenland ice sheet

    NASA Astrophysics Data System (ADS)

    Purucker, M. E.; Nicholas, J. B.; Sabaka, T. J.

    2012-12-01

    The geothermal heat flux depends on geologic conditions such as crustal heat production, mantle heat flux, and the tectonic history of the crust, all of which vary spatially. Underneath ice sheets, the geothermal heat flux influences the basal ice. Heat flux is an important boundary condition in ice sheet modeling. Using magnetic data to constrain heat flux is possible because the magnetic properties of rocks are temperature dependent until they reach the Curie temperature. In the absence of remanent magnetism, the crustal magnetic signal can be described either as a spatially varying magnetic susceptibility or a spatially varying magnetic crustal thickness. Our assumed thermal model uses a steady state, one-dimensional heat conduction and constant thermal conductivity, and assumes that the lower boundary of the magnetic crust is the Curie isotherm. To account for radioactive heat production in the crust, a model of exponentially decreasing heat production with depth is applied. Based on models of the lithospheric magnetic field from CHAMP, and the recently launched Swarm mission, this technique utilizes the 3SMAC thermal and compositional model as a starting model, and modifies it in an iterative fashion with the observed lithospheric magnetic field until the magnetic field produced by the model matches that field to within a specified error tolerance. This is done globally at a horizontal scale comparable to the spacecraft altitude, and in the 2nd stage the model heat flux is calculated based on a 1-D heat conduction equation. We validate our heat flux estimates by assessing the possible contributions from remanent magnetism, from unmodeled external magnetic fields, and from the assumptions utilized in the heat flux calculations. Our updated technique now uses improved regularizations (Tikhonov) and variance component estimation and we are in the process of updating the oceanic remanence model based on Muller et al. (2008). The technique has applications to

  15. Magnetic Flux Compression Experiments Using Plasma Armatures

    NASA Technical Reports Server (NTRS)

    Turner, M. W.; Hawk, C. W.; Litchford, R. J.

    2003-01-01

    Magnetic flux compression reaction chambers offer considerable promise for controlling the plasma flow associated with various micronuclear/chemical pulse propulsion and power schemes, primarily because they avoid thermalization with wall structures and permit multicycle operation modes. The major physical effects of concern are the diffusion of magnetic flux into the rapidly expanding plasma cloud and the development of Rayleigh-Taylor instabilities at the plasma surface, both of which can severely degrade reactor efficiency and lead to plasma-wall impact. A physical parameter of critical importance to these underlying magnetohydrodynamic (MHD) processes is the magnetic Reynolds number (R(sub m), the value of which depends upon the product of plasma electrical conductivity and velocity. Efficient flux compression requires R(sub m) less than 1, and a thorough understanding of MHD phenomena at high magnetic Reynolds numbers is essential to the reliable design and operation of practical reactors. As a means of improving this understanding, a simplified laboratory experiment has been constructed in which the plasma jet ejected from an ablative pulse plasma gun is used to investigate plasma armature interaction with magnetic fields. As a prelude to intensive study, exploratory experiments were carried out to quantify the magnetic Reynolds number characteristics of the plasma jet source. Jet velocity was deduced from time-of-flight measurements using optical probes, and electrical conductivity was measured using an inductive probing technique. Using air at 27-inHg vacuum, measured velocities approached 4.5 km/s and measured conductivities were in the range of 30 to 40 kS/m.

  16. Metabolic fuels: regulating fluxes to select mix.

    PubMed

    Weber, Jean-Michel

    2011-01-15

    Animals must regulate the fluxes of multiple fuels to support changing metabolic rates that result from variation in physiological circumstances. The aim of fuel selection strategies is to exploit the advantages of individual substrates while minimizing the impact of disadvantages. All exercising mammals share a general pattern of fuel selection: at the same %V(O(2,max)) they oxidize the same ratio of lipids to carbohydrates. However, highly aerobic species rely more on intramuscular fuels because energy supply from the circulation is constrained by trans-sarcolemmal transfer. Fuel selection is performed by recruiting different muscles, different fibers within the same muscles or different pathways within the same fibers. Electromyographic analyses show that shivering humans can modulate carbohydrate oxidation either through the selective recruitment of type II fibers within the same muscles or by regulating pathway recruitment within type I fibers. The selection patterns of shivering and exercise are different: at the same %V(O(2,max)), a muscle producing only heat (shivering) or significant movement (exercise) strikes a different balance between lipid and carbohydrate oxidation. Long-distance migrants provide an excellent model to characterize how to increase maximal substrate fluxes. High lipid fluxes are achieved through the coordinated upregulation of mobilization, transport and oxidation by activating enzymes, lipid-solubilizing proteins and membrane transporters. These endurance athletes support record lipolytic rates in adipocytes, use lipoprotein shuttles to accelerate transport and show increased capacity for lipid oxidation in muscle mitochondria. Some migrant birds use dietary omega-3 fatty acids as performance-enhancing agents to boost their ability to process lipids. These dietary fatty acids become incorporated in membrane phospholipids and bind to peroxisome proliferator-activated receptors to activate membrane proteins and modify gene expression.

  17. The Photosheric Poynting Flux and Coronal Heating

    NASA Astrophysics Data System (ADS)

    Welsch, B. T.

    2014-12-01

    Some models of coronal heating suppose that convective motions at thephotosphere shuffle the footpoints of coronal magnetic fields andthereby inject sufficient magnetic energy upward to account forobserved coronal and chromospheric energy losses in active regions.Using high-resolution observations of plage magnetic fields made withthe Solar Optical Telescope aboard the Hinode satellite, weinvestigate this idea by estimating the upward transport of magneticenergy --- the vertical Poynting flux, S_z --- across the photospherein a plage region. To do so, we combine: (i) estimates ofphotospheric horizontal velocities, v_h, determined by localcorrelation tracking applied to a sequence of line-of-sight magneticfield maps from the Narrowband Filter Imager, with (ii) a vectormagnetic field measurement from the SpectroPolarimeter. Plage fieldsare ideal observational targets for estimating energy injection byconvection, because they are: (i) strong enough to be measured withrelatively small uncertainties; (ii) not so strong that convection isheavily suppressed (as within umbrae); and (iii) unipolar, so S_z inplage is not influenced by mixed-polarity processes (e.g., fluxemergence) unrelated to heating in stable, active-region fields. Inthis plage region, we found that the average S_z varied in space, butwas positive (upward) and sufficient to explain coronal heating, withvalues near (5 +/- 1) x 107 erg / cm2 / s. We find the energy inputper unit magnetic flux to be on the order of 105 erg / s / Mx. Acomparison of intensity in a Ca II image co-registered with one plagemagnetogram shows stronger spatial correlations with both total fieldstrength and unsigned vertical field, |B_z|, than either S_z orhorizontal flux density, B_h. The observed Ca II brightnessenhancement, however, probably contains a strong contribution from anear-photosphere hot-wall effect, which is unrelated to heating in thesolar atmosphere.

  18. Intercomparison results for FIFE flux aircraft

    NASA Technical Reports Server (NTRS)

    Macpherson, J. I.; Grossman, R. L.; Kelly, R. D.

    1992-01-01

    Three atmospheric research aircraft were used to explore the atmospheric boundary layer during FIFE: the National Research Council of Canada Twin Otter, the National Center for Atmospheric Research (NCAR) King Air, and the University of Wyoming King Air. The aircraft were used to measure the mean and turbulent structure of the boundary layer and its variation with height, time, and space. These measurements are important to FIFE because they are being used to scale up point surface observations to landscape scales and because they can be used to relate satellite radiance measurements to boundary layer processes. Because the aircraft were used in coordinated flight patterns to investigate changes within and between intensive field campaigns, wing-to-wing intercomparisons were made so that measurements from one aircraft could be related to another. Intercomparisons were flown on 4 days in 1987 and 3 days in 1989. The eddy correlation measurements of the mixed layer fluxes of moisture and sensible heat were of particular interest to FIFE. Sensible heat fluxes agreed within 15 W/sq m and moisture fluxes agreed within 21 W/sq m. Mean wind component differences were within 1.0 m/s, air temperature within 0.3 C, and mixing ratio within 2 g/kg. Standard deviations showed similar good agreement, with mean differences generally less than 0.1 m/s for the wind components and 0.03 C for potential temperature. Intercomparisons between the NCAR King Air and the Twin Otter showed better agreement in 1989 than in 1987. Overall, the results suggest that data from the FIFE boundary layer aircraft will need little correction to account for instrument biases and spurious fluctuations.

  19. Intercomparison results for FIFE flux aircraft

    NASA Technical Reports Server (NTRS)

    Macpherson, J. I.; Grossman, R. L.; Kelly, R. D.

    1992-01-01

    Three atmospheric research aircraft were used to explore the atmospheric boundary layer during FIFE: the National Research Council of Canada Twin Otter, the National Center for Atmospheric Research (NCAR) King Air, and the University of Wyoming King Air. The aircraft were used to measure the mean and turbulent structure of the boundary layer and its variation with height, time, and space. These measurements are important to FIFE because they are being used to scale up point surface observations to landscape scales and because they can be used to relate satellite radiance measurements to boundary layer processes. Because the aircraft were used in coordinated flight patterns to investigate changes within and between intensive field campaigns, wing-to-wing intercomparisons were made so that measurements from one aircraft could be related to another. Intercomparisons were flown on 4 days in 1987 and 3 days in 1989. The eddy correlation measurements of the mixed layer fluxes of moisture and sensible heat were of particular interest to FIFE. Sensible heat fluxes agreed within 15 W/sq m and moisture fluxes agreed within 21 W/sq m. Mean wind component differences were within 1.0 m/s, air temperature within 0.3 C, and mixing ratio within 2 g/kg. Standard deviations showed similar good agreement, with mean differences generally less than 0.1 m/s for the wind components and 0.03 C for potential temperature. Intercomparisons between the NCAR King Air and the Twin Otter showed better agreement in 1989 than in 1987. Overall, the results suggest that data from the FIFE boundary layer aircraft will need little correction to account for instrument biases and spurious fluctuations.

  20. HOMOLOGOUS FLUX ROPES OBSERVED BY THE SOLAR DYNAMICS OBSERVATORY ATMOSPHERIC IMAGING ASSEMBLY

    SciTech Connect

    Li, Ting; Zhang, Jun E-mail: zjun@nao.cas.cn

    2013-12-01

    We present the first Solar Dynamics Observatory observations of four homologous flux ropes in the active region (AR) 11745 on 2013 May 20-22. The four flux ropes are all above the neutral line of the AR, with endpoints anchoring at the same region, and have a generally similar morphology. The first three flux ropes rose with a velocity of less than 30 km s{sup –1} after their appearance, and subsequently their intensities at 131 Å decreased and the flux ropes became obscure. The fourth flux rope erupted last, with a speed of about 130 km s{sup –1} and formed a coronal mass ejection (CME). The associated filament showed an obvious anti-clockwise twist motion at the initial stage, and the twist was estimated at 4π. This indicates that kink instability possibly triggers the early rise of the fourth flux rope. The activated filament material was spatially within the flux rope and showed consistent evolution in the early stages. Our findings provide new clues for understanding the characteristics of flux ropes. Firstly, multiple flux ropes are successively formed at the same location during an AR evolution process. Secondly, a slow-rise flux rope does not necessarily result in a CME, and a fast-eruption flux rope does result in a CME.