Sample records for flying autonomous operations

  1. Results of NASA's First Autonomous Formation Flying Experiment: Earth Observing-1 (EO-1)

    NASA Technical Reports Server (NTRS)

    Folta, David C.; Hawkins, Albin; Bauer, Frank H. (Technical Monitor)

    2001-01-01

    NASA's first autonomous formation flying mission completed its primary goal of demonstrating an advanced technology called enhanced formation flying. To enable this technology, the Guidance, Navigation, and Control center at the Goddard Space Flight Center (GSFC) implemented a universal 3-axis formation flying algorithm in an autonomous executive flight code onboard the New Millennium Program's (NMP) Earth Observing-1 (EO-1) spacecraft. This paper describes the mathematical background of the autonomous formation flying algorithm and the onboard flight design and presents the validation results of this unique system. Results from functionality assessment through fully autonomous maneuver control are presented as comparisons between the onboard EO-1 operational autonomous control system called AutoCon(tm), its ground-based predecessor, and a standalone algorithm.

  2. Preliminary Results of NASA's First Autonomous Formation Flying Experiment: Earth Observing-1 (EO-1)

    NASA Technical Reports Server (NTRS)

    Folta, David; Hawkins, Albin

    2001-01-01

    NASA's first autonomous formation flying mission is completing a primary goal of demonstrating an advanced technology called enhanced formation flying. To enable this technology, the Guidance, Navigation, and Control center at the Goddard Space Flight Center has implemented an autonomous universal three-axis formation flying algorithm in executive flight code onboard the New Millennium Program's (NMP) Earth Observing-1 (EO-1) spacecraft. This paper describes the mathematical background of the autonomous formation flying algorithm and the onboard design and presents the preliminary validation results of this unique system. Results from functionality assessment and autonomous maneuver control are presented as comparisons between the onboard EO-1 operational autonomous control system called AutoCon(tm), its ground-based predecessor, and a stand-alone algorithm.

  3. NASA's Autonomous Formation Flying Technology Demonstration, Earth Observing-1(EO-1)

    NASA Technical Reports Server (NTRS)

    Folta, David; Bristow, John; Hawkins, Albin; Dell, Greg

    2002-01-01

    NASA's first autonomous formation flying mission, the New Millennium Program's (NMP) Earth Observing-1 (EO-1) spacecraft, recently completed its principal goal of demonstrating advanced formation control technology. This paper provides an overview of the evolution of an onboard system that was developed originally as a ground mission planning and operations tool. We discuss the Goddard Space Flight Center s formation flying algorithm, the onboard flight design and its implementation, the interface and functionality of the onboard system, and the implementation of a Kalman filter based GPS data smoother. A number of safeguards that allow the incremental phasing in of autonomy and alleviate the potential for mission-impacting anomalies from the on- board autonomous system are discussed. A comparison of the maneuvers planned onboard using the EO-1 autonomous control system to those from the operational ground-based maneuver planning system is presented to quantify our success. The maneuvers discussed encompass reactionary and routine formation maintenance. Definitive orbital data is presented that verifies all formation flying requirements.

  4. Organization of the Drosophila circadian control circuit.

    PubMed

    Nitabach, Michael N; Taghert, Paul H

    2008-01-22

    Molecular genetics has revealed the identities of several components of the fundamental circadian molecular oscillator - an evolutionarily conserved molecular mechanism of transcription and translation that can operate in a cell-autonomous manner. Therefore, it was surprising when studies of circadian rhythmic behavior in the fruit fly Drosophila suggested that the normal operations of circadian clock cells, which house the molecular oscillator, in fact depend on non-cell-autonomous effects - interactions between the clock cells themselves. Here we review several genetic analyses that broadly extend that viewpoint. They support a model whereby the approximately 150 circadian clock cells in the brain of the fly are sub-divided into functionally discrete rhythmic centers. These centers alternatively cooperate or compete to control the different episodes of rhythmic behavior that define the fly's daily activity profile.

  5. Enhanced Formation Flying for the Earth Observing-1 (EO-1) New Millennium Mission

    NASA Technical Reports Server (NTRS)

    Folta, David; Quinn, David

    1997-01-01

    With scientific objectives for Earth observation programs becoming more ambitious and spacecraft becoming more autonomous, the need for new technical approaches on the feasibility of achieving and maintaining formations of spacecraft has come to the forefront. The trend to develop small low cost spacecraft has led many scientists to recognize the advantage of flying several spacecraft in formation, an example of which is shown in the figure below, to achieve the correlated instrument measurements formerly possible only by flying many instruments on a single large platform. Yet, formation flying imposes additional complications on orbit maintenance, especially when each spacecraft has its own orbit requirements. However, advances in automation proposed by GSFC Codes 550 and 712 allow more of the burden in maneuver planning and execution to be placed onboard the spacecraft, mitigating some of the associated operational concerns. The purpose of this analysis is to develop the fundamentals of formation flying mechanics, concepts for understanding the relative motion of free flying spacecraft, and an operational control theory for formation maintenance of the Earth Observing-1 (EO-l) spacecraft that is part of the New Millennium. Results of this development can be used to determine the appropriateness of formation flying for a particular case as well as the operational impacts. Applications to the Mission to Planet Earth (MTPE) Earth Observing System (EOS) and New Millennium (NM) were highly considered in analysis and applications. This paper presents the proposed methods for the guidance and control of the EO-1 spacecraft to formation fly with the Landsat-7 spacecraft using an autonomous closed loop three axis navigation control, GPS, and Cross link navigation support. Simulation results using various fidelity levels of modeling, algorithms developed and implemented in MATLAB, and autonomous 'fuzzy logic' control using AutoCon will be presented. The results of these analysis on the ability to meet mission and formation flying requirements will be presented.

  6. Control of a free-flying robot manipulator system

    NASA Technical Reports Server (NTRS)

    Alexander, H.

    1986-01-01

    The development of and test control strategies for self-contained, autonomous free flying space robots are discussed. Such a robot would perform operations in space similar to those currently handled by astronauts during extravehicular activity (EVA). Use of robots should reduce the expense and danger attending EVA both by providing assistance to astronauts and in many cases by eliminating altogether the need for human EVA, thus greatly enhancing the scope and flexibility of space assembly and repair activities. The focus of the work is to develop and carry out a program of research with a series of physical Satellite Robot Simulator Vehicles (SRSV's), two-dimensionally freely mobile laboratory models of autonomous free-flying space robots such as might perform extravehicular functions associated with operation of a space station or repair of orbiting satellites. It is planned, in a later phase, to extend the research to three dimensions by carrying out experiments in the Space Shuttle cargo bay.

  7. Multicopter Design Challenge: Design, Fly, and Learn

    ERIC Educational Resources Information Center

    Sutton, Kevin G.; Busby, Joe R.; Kelly, Daniel P.

    2016-01-01

    A great deal of the nation's attention has turned to the sky as new technologies open the door for new opportunities with unmanned aerial vehicles (UAVs). UAVs are powered aerial vehicles that do not carry an operator, use aerodynamic forces to provide vehicle lift, and can fly autonomously or be piloted remotely. As people become accustomed to…

  8. An algorithm for enhanced formation flying of satellites in low earth orbit

    NASA Astrophysics Data System (ADS)

    Folta, David C.; Quinn, David A.

    1998-01-01

    With scientific objectives for Earth observation programs becoming more ambitious and spacecraft becoming more autonomous, the need for innovative technical approaches on the feasibility of achieving and maintaining formations of spacecraft has come to the forefront. The trend to develop small low-cost spacecraft has led many scientists to recognize the advantage of flying several spacecraft in formation to achieve the correlated instrument measurements formerly possible only by flying many instruments on a single large platform. Yet, formation flying imposes additional complications on orbit maintenance, especially when each spacecraft has its own orbit requirements. However, advances in automation and technology proposed by the Goddard Space Flight Center (GSFC) allow more of the burden in maneuver planning and execution to be placed onboard the spacecraft, mitigating some of the associated operational concerns. The purpose of this paper is to present GSFC's Guidance, Navigation, and Control Center's (GNCC) algorithm for Formation Flying of the low earth orbiting spacecraft that is part of the New Millennium Program (NMP). This system will be implemented as a close-loop flight code onboard the NMP Earth Orbiter-1 (EO-1) spacecraft. Results of this development can be used to determine the appropriateness of formation flying for a particular case as well as operational impacts. Simulation results using this algorithm integrated in an autonomous `fuzzy logic' control system called AutoCon™ are presented.

  9. Autonomous operations through onboard artificial intelligence

    NASA Technical Reports Server (NTRS)

    Sherwood, R. L.; Chien, S.; Castano, R.; Rabideau, G.

    2002-01-01

    The Autonomous Sciencecraft Experiment (ASE) will fly onboard the Air Force TechSat 21 constellation of three spacecraft scheduled for launch in 2006. ASE uses onboard continuous planning, robust task and goal-based execution, model-based mode identification and reconfiguration, and onboard machine learning and pattern recognition to radically increase science return by enabling intelligent downlink selection and autonomous retargeting. Demonstration of these capabilities in a flight environment will open up tremendous new opportunities in planetary science, space physics, and earth science that would be unreachable without this technology.

  10. Safe Autonomous Flight Environment (SAFE50) for the Notional Last 50 ft of Operation of 55 lb Class of UAS

    NASA Technical Reports Server (NTRS)

    Krishnakumar, Kalmanje; Kopardekar, Parimal; Ippolito, Corey; Melton, John E.; Stepanyan, Vahram; Sankararaman, Shankar; Nikaido, Ben

    2017-01-01

    The most difficult phase of small Unmanned Aerial System (sUAS) deployment is autonomous operations below the notional 50 ft in urban landscapes. Understanding the feasibility of safely flying sUAS autonomously below 50 ft is a game changer for many civilian applications. This paper outlines three areas of research currently underway which address key challenges for flight in the urban landscape. These are: (1) Off-line and On-board wind estimation and accommodation; (2) Real-time trajectory planning via characterization of obstacles using a LIDAR; (3) On-board information fusion for real-time decision-making and safe trajectory generation.

  11. Development and Evaluation of an Airborne Separation Assurance System for Autonomous Aircraft Operations

    NASA Technical Reports Server (NTRS)

    Barhydt, Richard; Palmer, Michael T.; Eischeid, Todd M.

    2004-01-01

    NASA Langley Research Center is developing an Autonomous Operations Planner (AOP) that functions as an Airborne Separation Assurance System for autonomous flight operations. This development effort supports NASA s Distributed Air-Ground Traffic Management (DAG-TM) operational concept, designed to significantly increase capacity of the national airspace system, while maintaining safety. Autonomous aircraft pilots use the AOP to maintain traffic separation from other autonomous aircraft and managed aircraft flying under today's Instrument Flight Rules, while maintaining traffic flow management constraints assigned by Air Traffic Service Providers. AOP is designed to facilitate eventual implementation through careful modeling of its operational environment, interfaces with other aircraft systems and data links, and conformance with established flight deck conventions and human factors guidelines. AOP uses currently available or anticipated data exchanged over modeled Arinc 429 data buses and an Automatic Dependent Surveillance Broadcast 1090 MHz link. It provides pilots with conflict detection, prevention, and resolution functions and works with the Flight Management System to maintain assigned traffic flow management constraints. The AOP design has been enhanced over the course of several experiments conducted at NASA Langley and is being prepared for an upcoming Joint Air/Ground Simulation with NASA Ames Research Center.

  12. FlyCap: Markerless Motion Capture Using Multiple Autonomous Flying Cameras.

    PubMed

    Xu, Lan; Liu, Yebin; Cheng, Wei; Guo, Kaiwen; Zhou, Guyue; Dai, Qionghai; Fang, Lu

    2017-07-18

    Aiming at automatic, convenient and non-instrusive motion capture, this paper presents a new generation markerless motion capture technique, the FlyCap system, to capture surface motions of moving characters using multiple autonomous flying cameras (autonomous unmanned aerial vehicles(UAVs) each integrated with an RGBD video camera). During data capture, three cooperative flying cameras automatically track and follow the moving target who performs large-scale motions in a wide space. We propose a novel non-rigid surface registration method to track and fuse the depth of the three flying cameras for surface motion tracking of the moving target, and simultaneously calculate the pose of each flying camera. We leverage the using of visual-odometry information provided by the UAV platform, and formulate the surface tracking problem in a non-linear objective function that can be linearized and effectively minimized through a Gaussian-Newton method. Quantitative and qualitative experimental results demonstrate the plausible surface and motion reconstruction results.

  13. Measurement of atmospheric surface layer turbulence using unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Bailey, Sean; Canter, Caleb

    2017-11-01

    We describe measurements of the turbulence within the atmospheric surface layer using highly instrumented and autonomous unmanned aerial vehicles (UAVs). Results from the CLOUDMAP measurement campaign in Stillwater Oklahoma are presented including turbulence statistics measured during the transition from stably stratified to convective conditions. The measurements were made using pre-fabricated fixed-wing remote-control aircraft adapted to fly autonomously and carry multi-hole pressure probes, pressure, temperature and humidity sensors. Two aircraft were flown simultaneously, with one flying a flight path intended to profile the boundary layer up to 100 m and the other flying at a constant fixed altitude of 50 m. The evolution of various turbulent statistics was determined from these flights, including Reynolds stresses, correlations, spectra and structure functions. These results were compared to those measured by a sonic anemometer located on a 7.5 m tower. This work was supported by the National Science Foundation through Grant #CBET-1351411 and by National Science Foundation award #1539070, Collaboration Leading Operational UAS Development for Meteorology and Atmospheric Physics (CLOUDMAP).

  14. Measurement of atmospheric surface layer turbulence using unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Witte, Brandon; Smith, Lorli; Schlagenhauf, Cornelia; Bailey, Sean

    2016-11-01

    We describe measurements of the turbulence within the atmospheric surface layer using highly instrumented and autonomous unmanned aerial vehicles (UAVs). Results from the CLOUDMAP measurement campaign in Stillwater Oklahoma are presented including turbulence statistics measured during the transition from stably stratified to convective conditions. The measurements were made using pre-fabricated fixed-wing remote-control aircraft adapted to fly autonomously and carry multi-hole pressure probes, pressure, temperature and humidity sensors. Two aircraft were flown simultaneously, with one flying a flight path intended to profile the boundary layer up to 100 m and the other flying at a constant fixed altitude of 50 m. The evolution of various turbulent statistics was determined from these flights, including Reynolds stresses, correlations, spectra and structure functions. These results were compared to those measured by a sonic anemometer located on a 7.5 m tower. This work was supported by the National Science Foundation through Grant #CBET-1351411 and by National Science Foundation award #1539070, Collaboration Leading Operational UAS Development for Meteorology and Atmospheric Physics (CLOUDMAP).

  15. Autonomous formation flying sensor for the Star Light Mission

    NASA Technical Reports Server (NTRS)

    Aung, M.; Purcell, G.; Tien, J.; Young, L.; Srinivasan, J.; Ciminera, M. A.; Chong, Y. J.; Amaro, L. R.; Young, L. E.

    2002-01-01

    The StarLight Mission, an element of NASA's Origins Program, was designed for first-time demonstration of two technologies: formation flying optical interferometry between spacecraft and autonomous precise formation flying of an array of spacecraft to support optical interferometry. The design overview and results of the technology effort are presented in this paper.

  16. Agent Based Software for the Autonomous Control of Formation Flying Spacecraft

    NASA Technical Reports Server (NTRS)

    How, Jonathan P.; Campbell, Mark; Dennehy, Neil (Technical Monitor)

    2003-01-01

    Distributed satellite systems is an enabling technology for many future NASA/DoD earth and space science missions, such as MMS, MAXIM, Leonardo, and LISA [1, 2, 3]. While formation flying offers significant science benefits, to reduce the operating costs for these missions it will be essential that these multiple vehicles effectively act as a single spacecraft by performing coordinated observations. Autonomous guidance, navigation, and control as part of a coordinated fleet-autonomy is a key technology that will help accomplish this complex goal. This is no small task, as most current space missions require significant input from the ground for even relatively simple decisions such as thruster burns. Work for the NMP DS1 mission focused on the development of the New Millennium Remote Agent (NMRA) architecture for autonomous spacecraft control systems. NMRA integrates traditional real-time monitoring and control with components for constraint-based planning, robust multi-threaded execution, and model-based diagnosis and reconfiguration. The complexity of using an autonomous approach for space flight software was evident when most of its capabilities were stripped off prior to launch (although more capability was uplinked subsequently, and the resulting demonstration was very successful).

  17. Using Natural Language to Enable Mission Managers to Control Multiple Heterogeneous UAVs

    NASA Technical Reports Server (NTRS)

    Trujillo, Anna C.; Puig-Navarro, Javier; Mehdi, S. Bilal; Mcquarry, A. Kyle

    2016-01-01

    The availability of highly capable, yet relatively cheap, unmanned aerial vehicles (UAVs) is opening up new areas of use for hobbyists and for commercial activities. This research is developing methods beyond classical control-stick pilot inputs, to allow operators to manage complex missions without in-depth vehicle expertise. These missions may entail several heterogeneous UAVs flying coordinated patterns or flying multiple trajectories deconflicted in time or space to predefined locations. This paper describes the functionality and preliminary usability measures of an interface that allows an operator to define a mission using speech inputs. With a defined and simple vocabulary, operators can input the vast majority of mission parameters using simple, intuitive voice commands. Although the operator interface is simple, it is based upon autonomous algorithms that allow the mission to proceed with minimal input from the operator. This paper also describes these underlying algorithms that allow an operator to manage several UAVs.

  18. Autonomous Formation Flying from Ground to Flight

    NASA Technical Reports Server (NTRS)

    Chapman, Keith B.; Dell, Gregory T.; Rosenberg, Duane L.; Bristow, John

    1999-01-01

    The cost of on-orbit operations remains a significant and increasingly visible concern in the support of satellite missions. Headway has been made in automating some ground operations; however, increased mission complexity and more precise orbital constraints have compelled continuing human involvement in mission design and maneuver planning operations. AI Solutions, Inc. in cooperation with the National Aeronautics and Space Administration's (NASA) Goddard Space Flight Center (GSFC) has tackled these more complex problems through the development of AutoCon as a tool for an automated solution. NASA is using AutoCon to automate the maneuver planning for the Earth Orbiter-1 (EO-1) mission. AutoCon was developed originally as a ground system tool. The EO-1 mission will be using a scaled version of AutoCon on-board the EO-1 satellite to command orbit adjustment maneuvers. The flight version of AutoCon plans maneuvers based on formation flying algorithms developed by GSFC, JPL, and other industry partners. In its fully autonomous mode, an AutoCon planned maneuver will be executed on-board the satellite without intervention from the ground. This paper describes how AutoCon automates maneuver planning for the formation flying constraints of the EO-1 mission. AutoCon was modified in a number of ways to automate the maneuver planning on-board the satellite. This paper describes how the interface and functionality of AutoCon were modified to support the on-board system. A significant component of this modification was the implementation of a data smoother, based on a Kalman filter, that ensures that the spacecraft states estimated by an on-board GPS receiver are as accurate as possible for maneuver planning. This paper also presents the methodology use to scale the AutoCon functionality to fit and execute on the flight hardware. This paper also presents the modes built that allow the incremental phasing in of autonomy. New technologies for autonomous operations are usually received with significant, and probably appropriate trepidation. A number of safeguards have been designed in both AutoCon and the interfacing systems to alleviate the potential of mission-impacting anomalies from the on-board autonomous system. This paper describes the error checking, input data integrity validation and limits set on maneuvers in AutoCon and the on-board system.

  19. Autonomous Formation Flying from the Ground to Flight

    NASA Technical Reports Server (NTRS)

    Chapman, Keith B.; Dell, Gregory T.; Rosenberg, Duane L.; Bristow, John

    1999-01-01

    The cost of on-orbit operations remains a significant and increasingly visible concern in the support of satellite missions. Headway has been made in automating some ground operations; however, increased mission complexity and more precise orbital constraints have compelled continuing human involvement in mission design and maneuver planning operations. AI Solutions, Inc. in cooperation with the National Aeronautics and Space Administration's (NASA) Goddard Space Flight Center (GSFC) has tackled these more complex problems through the development of AutoCon(TM) as a tool for an automated solution. NASA is using AutoCon(TM) to automate the maneuver planning for the Earth Orbiter-1 (EO-1) mission. AutoCon(TM) was developed originally as a ground system tool. The EO-1 mission will be using a scaled version of AutoCon(TM) on-board the EO-1 satellite to command orbit adjustment maneuvers. The flight version of AutoCon(TM) plans maneuvers based on formation flying algorithms developed by GSFC, JPL, and other industry partners. In its fully autonomous mode, an AutoCon(TM) planned maneuver will be executed on-board the satellite without intervention from the ground. This paper describes how AutoCon(TM) automates maneuver planning for the formation flying constraints of the EO-1 mission. AutoCon(TM) was modified in a number of ways to automate the maneuver planning on-board the satellite. This paper describes how the interface and functionality of AutoCon(TM) were modified to support the on-board system. A significant component of this modification was the implementation of a data smoother, based on a Kalman filter, that ensures that the spacecraft states estimated by an on-board GPS receiver are as accurate as possible for maneuver planning. This paper also presents the methodology used to scale the AutoCon(TM) functionality to fit and execute on the flight hardware. This paper also presents the modes built into the system that allow the incremental phasing in of autonomy. New technologies for autonomous operations are usually received with significant, and probably appropriate, trepidation. A number of safeguards have been designed in both AutoCon(TM) and the interfacing systems to alleviate the potential of mission-impacting anomalies from the on-board autonomous system. This paper describes the error checking, input data integrity validation, and limits set on maneuvers in AutoCon(TM) and the on-board system.

  20. Human-Centered Design for the Personal Satellite Assistant

    NASA Technical Reports Server (NTRS)

    Bradshaw, Jeffrey M.; Sierhuis, Maarten; Gawdiak, Yuri; Thomas, Hans; Greaves, Mark; Clancey, William J.; Swanson, Keith (Technical Monitor)

    2000-01-01

    The Personal Satellite Assistant (PSA) is a softball-sized flying robot designed to operate autonomously onboard manned spacecraft in pressurized micro-gravity environments. We describe how the Brahms multi-agent modeling and simulation environment in conjunction with a KAoS agent teamwork approach can be used to support human-centered design for the PSA.

  1. Common Aero Vehicle Autonomous Reentry Trajectory Optimization Satisfying Waypoint and No-Fly Zone Constraints

    DTIC Science & Technology

    2007-09-01

    Control Conference and Exhibit. 5-8 August 2002. AIAA-2002-4457. 25. ElGindy, Hossam and Lachlan Wetherall. “A Simple Voronoi Diagram Algorithm for a...Jacobs, Thomas H., Elan T. Smith , and Michael W. Garrambone. “Space Ac- cess Vehicles Mission and Operations Simulation (SAVMOS) For Simulating

  2. Using Model-Based Reasoning for Autonomous Instrument Operation - Lessons Learned From IMAGE/LENA

    NASA Technical Reports Server (NTRS)

    Johnson, Michael A.; Rilee, Michael L.; Truszkowski, Walt; Bailin, Sidney C.

    2001-01-01

    Model-based reasoning has been applied as an autonomous control strategy on the Low Energy Neutral Atom (LENA) instrument currently flying on board the Imager for Magnetosphere-to-Aurora Global Exploration (IMAGE) spacecraft. Explicit models of instrument subsystem responses have been constructed and are used to dynamically adapt the instrument to the spacecraft's environment. These functions are cast as part of a Virtual Principal Investigator (VPI) that autonomously monitors and controls the instrument. In the VPI's current implementation, LENA's command uplink volume has been decreased significantly from its previous volume; typically, no uplinks are required for operations. This work demonstrates that a model-based approach can be used to enhance science instrument effectiveness. The components of LENA are common in space science instrumentation, and lessons learned by modeling this system may be applied to other instruments. Future work involves the extension of these methods to cover more aspects of LENA operation and the generalization to other space science instrumentation.

  3. First Results from a Hardware-in-the-Loop Demonstration of Closed-Loop Autonomous Formation Flying

    NASA Technical Reports Server (NTRS)

    Gill, E.; Naasz, Bo; Ebinuma, T.

    2003-01-01

    A closed-loop system for the demonstration of formation flying technologies has been developed at NASA s Goddard Space Flight Center. Making use of a GPS signal simulator with a dual radio frequency outlet, the system includes two GPS space receivers as well as a powerful onboard navigation processor dedicated to the GPS-based guidance, navigation, and control of a satellite formation in real-time. The closed-loop system allows realistic simulations of autonomous formation flying scenarios, enabling research in the fields of tracking and orbit control strategies for a wide range of applications. A sample scenario has been set up where the autonomous transition of a satellite formation from an initial along-track separation of 800 m to a final distance of 100 m has been demonstrated. As a result, a typical control accuracy of about 5 m has been achieved which proves the applicability of autonomous formation flying techniques to formations of satellites as close as 50 m.

  4. Global Precipitation Measurement (GPM) Orbit Design and Autonomous Maneuvers

    NASA Technical Reports Server (NTRS)

    Folta, David; Mendelsohn, Chad; Mailhe, Laurie

    2003-01-01

    The NASA Goddard Space Flight Center's Global Precipitation Measurement (GPM) mission must meet the challenge of measuring worldwide precipitation every three hours. The GPM core spacecraft, part of a constellation, will be required to maintain a circular orbit in a high drag environment at a near-critical inclination. Analysis shows that a mean orbit altitude of 407 km is necessary to prevent ground track repeating. Combined with goals to minimize maneuver operation impacts to science data collection and to enable reasonable long-term orbit predictions, the GPM project has decided to fly the GSFC autonomous maneuver system, AutoCon(TM). This system is a follow-up version of the highly successful New Millennium Program technology flown onboard the Earth Observing-1 formation flying mission. This paper presents the driving science requirements and goals of the GPM mission and shows how they will be met. Selection of the mean semi-major axis, eccentricity, and the AV budget for several ballistic properties are presented. The architecture of the autonomous maneuvering system to meet the goals and requirements is presented along with simulations using GPM parameters. Additionally, the use of the GPM autonomous system to mitigate possible collision avoidance and to aid other spacecraft systems during navigation outages is explored.

  5. An autonomous flying vehicle for Mars exploration

    NASA Astrophysics Data System (ADS)

    Bouras, Peter; Fox, Tim

    1990-09-01

    A remotely reprogrammable, autonomous flying craft for surveying and mapping the Martian surface environment is presented. This solar powered, modified flying wing design could cover about 2000 statute miles while maneuvering at Mach 0.3. The craft is configured to fly one km above the surface, measuring atmospheric properties, performing subsurface mapping, mapping the surface topography, and searching for the presence of water and perhaps life. A 35 kg scientific payload, plus communication and control electronics, are placed spanwise inside the flying wing, removing the requirement for a normal fuselage, and reducing structural needs. Thrust is provided by a two-bladed electrically driven propeller motorized by high-efficiency solar cells.

  6. Development of autonomous controller system of high speed UAV from simulation to ready to fly condition

    NASA Astrophysics Data System (ADS)

    Yudhi Irwanto, Herma

    2018-02-01

    The development of autonomous controller system that is specially used in our high speed UAV, it’s call RKX-200EDF/TJ controlled vehicle needs to be continued as a step to mastery and to developt control system of LAPAN’s satellite launching rocket. The weakness of the existing control system in this high speed UAV needs to be repaired and replaced using the autonomous controller system. Conversion steps for ready-to-fly system involved controlling X tail fin, adjusting auto take off procedure by adding X axis sensor, procedure of way points reading and process of measuring distance and heading to the nearest way point, developing user-friendly ground station, and adding tools for safety landing. The development of this autonomous controller system also covered a real flying test in Pandanwangi, Lumajang in November 2016. Unfortunately, the flying test was not successful because the booster rocket was blown right after burning. However, the system could record the event and demonstrated that the controller system had worked according to plan.

  7. Mission Level Autonomy for USSV

    NASA Technical Reports Server (NTRS)

    Huntsberger, Terry; Stirb, Robert C.; Brizzolara, Robert

    2011-01-01

    On-water demonstration of a wide range of mission-proven, advanced technologies at TRL 5+ that provide a total integrated, modular approach to effectively address the majority of the key needs for full mission-level autonomous, cross-platform control of USV s. Wide baseline stereo system mounted on the ONR USSV was shown to be an effective sensing modality for tracking of dynamic contacts as a first step to automated retrieval operations. CASPER onboard planner/replanner successfully demonstrated realtime, on-water resource-based analysis for mission-level goal achievement and on-the-fly opportunistic replanning. Full mixed mode autonomy was demonstrated on-water with a seamless transition between operator over-ride and return to current mission plan. Autonomous cooperative operations for fixed asset protection and High Value Unit escort using 2 USVs (AMN1 & 14m RHIB) were demonstrated during Trident Warrior 2010 in JUN 2010

  8. These two NASA F/A-18 aircraft are flying a test point for the Autonomous Formation Flight project o

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Two NASA F/A-18 aircraft are flying a test point for the Autonomous Formation Flight project over California's Mojave Desert. This second flight phase is mapping the wingtip vortex of the lead aircraft, the Systems Research Aircraft (tail number 847), on the trailing F/A-18 tail number 847. Wingtip vortex is a spiraling wind flowing from the wing during flight. The project is studying the drag and fuel reduction of precision formation flying.

  9. Flying the ST-5 Constellation with "Plug and Play" Autonomy Components and the GMSEC Bus

    NASA Technical Reports Server (NTRS)

    Shendock, Bob; Witt, Ken; Stanley, Jason; Mandl, Dan; Coyle, Steve

    2006-01-01

    The Space Technology 5 (ST5) Project, part of NASA's New Millennium Program, will consist of a constellation of three micro-satellites. This viewgraph document presents the components that will allow it to operate in an autonomous mode. The ST-5 constellation will use the GSFC Mission Services Evolution Center (GMSEC) architecture to enable cost effective model based operations. The ST-5 mission will demonstrate several principles of self managing software components.

  10. Flying an Autonomous Formation Flight mission, two F/A-18s from the NASA Dryden Flight Research Cent

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Flying an Autonomous Formation Flight mission, two F/A-18's from the NASA Dryden Flight Research Center, Edwards, California, gain altitude near Rogers Dry Lake. The Systems Research Aircraft (tail number 845) and F/A-18 tail number 847 are flying the second phase of a project that is demonstrating a 15-percent fuel savings of the trailing aircraft during cruise flight. Project goal was a 10-percent savings. The drag-reduction study mimics the formation of migrating birds. Scientists have known for years that the trailing birds require less energy than flying solo.

  11. Autonomous Flying Controls Testbed

    NASA Technical Reports Server (NTRS)

    Motter, Mark A.

    2005-01-01

    The Flying Controls Testbed (FLiC) is a relatively small and inexpensive unmanned aerial vehicle developed specifically to test highly experimental flight control approaches. The most recent version of the FLiC is configured with 16 independent aileron segments, supports the implementation of C-coded experimental controllers, and is capable of fully autonomous flight from takeoff roll to landing, including flight test maneuvers. The test vehicle is basically a modified Army target drone, AN/FQM-117B, developed as part of a collaboration between the Aviation Applied Technology Directorate (AATD) at Fort Eustis,Virginia and NASA Langley Research Center. Several vehicles have been constructed and collectively have flown over 600 successful test flights.

  12. Experiments in teleoperator and autonomous control of space robotic vehicles

    NASA Technical Reports Server (NTRS)

    Alexander, Harold L.

    1991-01-01

    A program of research embracing teleoperator and automatic navigational control of freely flying satellite robots is presented. Current research goals include: (1) developing visual operator interfaces for improved vehicle teleoperation; (2) determining the effects of different visual interface system designs on operator performance; and (3) achieving autonomous vision-based vehicle navigation and control. This research program combines virtual-environment teleoperation studies and neutral-buoyancy experiments using a space-robot simulator vehicle currently under development. Visual-interface design options under investigation include monoscopic versus stereoscopic displays and cameras, helmet-mounted versus panel-mounted display monitors, head-tracking versus fixed or manually steerable remote cameras, and the provision of vehicle-fixed visual cues, or markers, in the remote scene for improved sensing of vehicle position, orientation, and motion.

  13. Marbles for the Imagination

    NASA Technical Reports Server (NTRS)

    Shue, Jack

    2004-01-01

    The end-to-end test would verify the complex sequence of events from lander separation to landing. Due to the large distances involved and the significant delay time in sending a command and receiving verification, the lander needed to operate autonomously after it separated from the orbiter. It had to sense conditions, make decisions, and act accordingly. We were flying into a relatively unknown set of conditions-a Martian atmosphere of unknown pressure, density, and consistency to land on a surface of unknown altitude, and one which had an unknown bearing strength. In order to touch down safely on Mars the lander had to orient itself for descent and entry, modulate itself to maintain proper lift, pop a parachute, jettison its aeroshell, deploy landing legs and radar, ignite a terminal descent engine, and fly a given trajectory to the surface. Once on the surface, it would determine its orientation, raise the high-gain antenna, perform a sweep to locate Earth, and begin transmitting information. It was this complicated, autonomous sequence that the end-to-end test was to simulate.

  14. Control of a free-flying robot manipulator system

    NASA Technical Reports Server (NTRS)

    Alexander, H.; Cannon, R. H., Jr.

    1985-01-01

    The goal of the research is to develop and test control strategies for a self-contained, free flying space robot. Such a robot would perform operations in space similar to those currently handled by astronauts during extravehicular activity (EVA). The focus of the work is to develop and carry out a program of research with a series of physical Satellite Robot Simulator Vehicles (SRSV's), two-dimensionally freely mobile laboratory models of autonomous free-flying space robots such as might perform extravehicular functions associated with operation of a space station or repair of orbiting satellites. The development of the SRSV and of some of the controller subsystems are discribed. The two-link arm was fitted to the SRSV base, and researchers explored the open-loop characteristics of the arm and thruster actuators. Work began on building the software foundation necessary for use of the on-board computer, as well as hardware and software for a local vision system for target identification and tracking.

  15. Micro air vehicle autonomous obstacle avoidance from stereo-vision

    NASA Astrophysics Data System (ADS)

    Brockers, Roland; Kuwata, Yoshiaki; Weiss, Stephan; Matthies, Lawrence

    2014-06-01

    We introduce a new approach for on-board autonomous obstacle avoidance for micro air vehicles flying outdoors in close proximity to structure. Our approach uses inverse-range, polar-perspective stereo-disparity maps for obstacle detection and representation, and deploys a closed-loop RRT planner that considers flight dynamics for trajectory generation. While motion planning is executed in 3D space, we reduce collision checking to a fast z-buffer-like operation in disparity space, which allows for significant speed-up compared to full 3d methods. Evaluations in simulation illustrate the robustness of our approach, whereas real world flights under tree canopy demonstrate the potential of the approach.

  16. Preliminary Operational Results of the TDRSS Onboard Navigation System (TONS) for the Terra Mission

    NASA Technical Reports Server (NTRS)

    Gramling, Cheryl; Lorah, John; Santoro, Ernest; Work, Kevin; Chambers, Robert; Bauer, Frank H. (Technical Monitor)

    2000-01-01

    The Earth Observing System Terra spacecraft was launched on December 18, 1999, to provide data for the characterization of the terrestrial and oceanic surfaces, clouds, radiation, aerosols, and radiative balance. The Tracking and Data Relay Satellite System (TDRSS) Onboard Navigation System (ONS) (TONS) flying on Terra provides the spacecraft with an operational real-time navigation solution. TONS is a passive system that makes judicious use of Terra's communication and computer subsystems. An objective of the ONS developed by NASA's Goddard Space Flight Center (GSFC) Guidance, Navigation and Control Center is to provide autonomous navigation with minimal power, weight, and volume impact on the user spacecraft. TONS relies on extracting tracking measurements onboard from a TDRSS forward-link communication signal and processing these measurements in an onboard extended Kalman filter to estimate Terra's current state. Terra is the first NASA low Earth orbiting mission to fly autonomous navigation which produces accurate results. The science orbital accuracy requirements for Terra are 150 meters (m) (3sigma) per axis with a goal of 5m (1 sigma) RSS which TONS is expected to meet. The TONS solutions are telemetered in real-time to the mission scientists along with their science data for immediate processing. Once set in the operational mode, TONS eliminates the need for ground orbit determination and allows for a smooth flow from the spacecraft telemetry to planning products for the mission team. This paper will present the preliminary results of the operational TONS solution available from Terra.

  17. First Results from a Hardware-in-the-Loop Demonstration of Closed-Loop Autonomous Formation Flying

    NASA Technical Reports Server (NTRS)

    Gill, E.; Naasz, Bo; Ebinuma, T.

    2003-01-01

    A closed-loop system for the demonstration of autonomous satellite formation flying technologies using hardware-in-the-loop has been developed. Making use of a GPS signal simulator with a dual radio frequency outlet, the system includes two GPS space receivers as well as a powerful onboard navigation processor dedicated to the GPS-based guidance, navigation, and control of a satellite formation in real-time. The closed-loop system allows realistic simulations of autonomous formation flying scenarios, enabling research in the fields of tracking and orbit control strategies for a wide range of applications. The autonomous closed-loop formation acquisition and keeping strategy is based on Lyapunov's direct control method as applied to the standard set of Keplerian elements. This approach not only assures global and asymptotic stability of the control but also maintains valuable physical insight into the applied control vectors. Furthermore, the approach can account for system uncertainties and effectively avoids a computationally expensive solution of the two point boundary problem, which renders the concept particularly attractive for implementation in onboard processors. A guidance law has been developed which strictly separates the relative from the absolute motion, thus avoiding the numerical integration of a target trajectory in the onboard processor. Moreover, upon using precise kinematic relative GPS solutions, a dynamical modeling or filtering is avoided which provides for an efficient implementation of the process on an onboard processor. A sample formation flying scenario has been created aiming at the autonomous transition of a Low Earth Orbit satellite formation from an initial along-track separation of 800 m to a target distance of 100 m. Assuming a low-thrust actuator which may be accommodated on a small satellite, a typical control accuracy of less than 5 m has been achieved which proves the applicability of autonomous formation flying techniques to formations of satellites as close as 50 m.

  18. Lessons Learned from Autonomous Sciencecraft Experiment

    NASA Technical Reports Server (NTRS)

    Chien, Steve A.; Sherwood, Rob; Tran, Daniel; Cichy, Benjamin; Rabideau, Gregg; Castano, Rebecca; Davies, Ashley; Mandl, Dan; Frye, Stuart; Trout, Bruce; hide

    2005-01-01

    An Autonomous Science Agent has been flying onboard the Earth Observing One Spacecraft since 2003. This software enables the spacecraft to autonomously detect and responds to science events occurring on the Earth such as volcanoes, flooding, and snow melt. The package includes AI-based software systems that perform science data analysis, deliberative planning, and run-time robust execution. This software is in routine use to fly the EO-l mission. In this paper we briefly review the agent architecture and discuss lessons learned from this multi-year flight effort pertinent to deployment of software agents to critical applications.

  19. Localization from Visual Landmarks on a Free-Flying Robot

    NASA Technical Reports Server (NTRS)

    Coltin, Brian; Fusco, Jesse; Moratto, Zack; Alexandrov, Oleg; Nakamura, Robert

    2016-01-01

    We present the localization approach for Astrobee,a new free-flying robot designed to navigate autonomously on board the International Space Station (ISS). Astrobee will conduct experiments in microgravity, as well as assisst astronauts and ground controllers. Astrobee replaces the SPHERES robots which currently operate on the ISS, which were limited to operating in a small cube since their localization system relied on triangulation from ultrasonic transmitters. Astrobee localizes with only monocular vision and an IMU, enabling it to traverse the entire US segment of the station. Features detected on a previously-built map, optical flow information,and IMU readings are all integrated into an extended Kalman filter (EKF) to estimate the robot pose. We introduce several modifications to the filter to make it more robust to noise.Finally, we extensively evaluate the behavior of the filter on atwo-dimensional testing surface.

  20. Agile Information Exchange in Autonomous Air Systems

    DTIC Science & Technology

    2013-06-01

    proportional to the information the pilot has on the target. Figure 5: Modified Procerus Unicorn UAV D. Equipment The UAV used in this experiment is...a modified Procerus Unicorn (Figure 5). Unicorns are electrically powered, Styrofoam flying wings with a 72” wingspan. Stock Unicorns are...controlled by a Kestrel autopilot, which communicates to a ground-station over a 900MHz radio link. Through the ground-station, the Unicorn operator can

  1. Autonomous rendezvous and capture development infrastructure

    NASA Technical Reports Server (NTRS)

    Bryan, Thomas C.; Roe, Fred; Coker, Cindy; Nelson, Pam; Johnson, B.

    1991-01-01

    In the development of the technology for autonomous rendezvous and docking, key infrastructure capabilities must be used for effective and economical development. This involves facility capabilities, both equipment and personnel, to devise, develop, qualify, and integrate ARD elements and subsystems into flight programs. One effective way of reducing technical risks in developing ARD technology is the use of the ultimate test facility, using a Shuttle-based reusable free-flying testbed to perform a Technology Demonstration Test Flight which can be structured to include a variety of additional sensors, control schemes, and operational approaches. This conceptual testbed and flight demonstration will be used to illustrate how technologies and facilities at MSFC can be used to develop and prove an ARD system.

  2. Synchronized Position Hold, Engage, Reorient, Experimental Satellites

    NASA Technical Reports Server (NTRS)

    Miller, David W.; Wilson, Edward; How, Jonathan; Sanenz-Otero, Alvar; Chamitoff, Gregory

    2009-01-01

    Synchronized Position Hold, Engage, Reorient, Experimental Satellites (SPHERES) are bowling-ball sized spherical satellites. They will be used inside the space station to test a set of well-defined instructions for spacecraft performing autonomous rendezvous and docking maneuvers. Three free-flying spheres will fly within the cabin of the station, performing flight formations. Each satellite is self-contained with power, propulsion, computers and navigation equipment. The results are important for satellite servicing, vehicle assembly and formation flying spacecraft configurations. SPHERES is a testbed for formation flying by satellites, the theories and calculations that coordinate the motion of multiple bodies maneuvering in microgravity. To achieve this inside the ISS cabin, bowling-ball-sized spheres perform various maneuvers (or protocols), with one to three spheres operating simultaneously . The Synchronized Position Hold, Engage, Reorient, Experimental Satellites (SPHERES) experiment will test relative attitude control and station-keeping between satellites, re-targeting and image plane filling maneuvers, collision avoidance and fuel balancing algorithms, and an array of geometry estimators used in various missions. SPHERES consists of three self-contained satellites, which are 18 sided polyhedrons that are 0.2 meter in diameter and weigh 3.5 kilograms. Each satellite contains an internal propulsion system, power, avionics, software, communications, and metrology subsystems. The propulsion system uses CO2, which is expelled through the thrusters. SPHERES satellites are powered by AA batteries. The metrology subsystem provides real-time position and attitude information. To simulate ground station-keeping, a laptop will be used to transmit navigational data and formation flying algorithms. Once these data are uploaded, the satellites will perform autonomously and hold the formation until a new command is given.

  3. Joint NASA Ames/Langley Experimental Evaluation of Integrated Air/Ground Operations for En Route Free Maneuvering

    NASA Technical Reports Server (NTRS)

    Barhydt, Richard; Kopardekar, Parimal; Battiste, Vernol; Doble, Nathan; Johnson, Walter; Lee, Paul; Prevot, Thomas; Smith, Nancy

    2005-01-01

    In order to meet the anticipated future demand for air travel, the National Aeronautics and Space Administration (NASA) is investigating a new concept of operations known as Distributed Air-Ground Traffic Management (DAG-TM). Under the En Route Free Maneuvering component of DAG-TM, appropriately equipped autonomous aircraft self separate from other autonomous aircraft and from managed aircraft that continue to fly under today s Instrument Flight Rules (IFR). Controllers provide separation services between IFR aircraft and assign traffic flow management constraints to all aircraft. To address concept feasibility issues pertaining to integrated air/ground operations at various traffic levels, NASA Ames and Langley Research Centers conducted a joint human-in-the-loop experiment. Professional airline pilots and air traffic controllers flew a total of 16 scenarios under four conditions: mixed autonomous/managed operations at three traffic levels and a baseline all-managed condition at the lowest traffic level. These scenarios included en route flights and descents to a terminal area meter fix in airspace modeled after the Dallas Ft. Worth area. Pilots of autonomous aircraft met controller assigned meter fix constraints with high success. Separation violations by subject pilots did not appear to vary with traffic level and were mainly attributable to software errors and procedural lapses. Controller workload was lower for mixed flight conditions, even at higher traffic levels. Pilot workload was deemed acceptable under all conditions. Controllers raised several safety concerns, most of which pertained to the occurrence of near-term conflicts between autonomous and managed aircraft. These issues are being addressed through better compatibility between air and ground systems and refinements to air and ground procedures.

  4. Design, Integration and Flight Test of a Pair of Autonomous Spacecraft Flying in Formation

    DTIC Science & Technology

    2013-05-01

    representatives from the Air Force Research Laboratory, NASA’s Goddard Space Flight Center, the Jet Propulsion Laboratory, Boeing, Lockheed Martin, as...categories: elliptical , hyperbolic and parabolic (known as “Keplerian orbits”), each with their own characteristics and applications. These equations...of M-SAT’s operation is that of an elliptical nature, or more precisely a near-circular orbit. The primary method of determining the orbital elements

  5. VML 3.0 Reactive Sequencing Objects and Matrix Math Operations for Attitude Profiling

    NASA Technical Reports Server (NTRS)

    Grasso, Christopher A.; Riedel, Joseph E.

    2012-01-01

    VML (Virtual Machine Language) has been used as the sequencing flight software on over a dozen JPL deep-space missions, most recently flying on GRAIL and JUNO. In conjunction with the NASA SBIR entitled "Reactive Rendezvous and Docking Sequencer", VML version 3.0 has been enhanced to include object-oriented element organization, built-in queuing operations, and sophisticated matrix / vector operations. These improvements allow VML scripts to easily perform much of the work that formerly would have required a great deal of expensive flight software development to realize. Autonomous turning and tracking makes considerable use of new VML features. Profiles generated by flight software are managed using object-oriented VML data constructs executed in discrete time by the VML flight software. VML vector and matrix operations provide the ability to calculate and supply quaternions to the attitude controller flight software which produces torque requests. Using VML-based attitude planning components eliminates flight software development effort, and reduces corresponding costs. In addition, the direct management of the quaternions allows turning and tracking to be tied in with sophisticated high-level VML state machines. These state machines provide autonomous management of spacecraft operations during critical tasks like a hypothetic Mars sample return rendezvous and docking. State machines created for autonomous science observations can also use this sort of attitude planning system, allowing heightened autonomy levels to reduce operations costs. VML state machines cannot be considered merely sequences - they are reactive logic constructs capable of autonomous decision making within a well-defined domain. The state machine approach enabled by VML 3.0 is progressing toward flight capability with a wide array of applicable mission activities.

  6. Design and implementation of satellite formations and constellations

    NASA Technical Reports Server (NTRS)

    Folta, David; Newman, Lauri Kraft; Quinn, David

    1998-01-01

    The direction to develop small low cost spacecraft has led many scientists to recognize the advantage of flying spacecraft in constellations and formations to achieve the correlated instrument measurements formerly possible only by flying many instruments on a single large platform. Yet, constellations and formation flying impose additional complications on orbit selection and orbit maintenance, especially when each spacecraft has its own orbit or science requirements. The purpose of this paper is to develop an operational control method for maintenance of these missions. Examples will be taken from the Earth Observing-1 (EO-1) spacecraft that is part of the New Millennium Program (NMP) and from proposed Earth System Science Program Office (ESSPO) constellations. Results can be used to determine the appropriateness of constellations and formation flying for a particular case as well as the operational impacts. Applications to the ESSPO and NMP are highly considered in analysis and applications. After constellation and formation analysis is completed, implementation of a maneuver maintenance strategy becomes the driver. Advances in technology and automation by GSFC's Guidance, Navigation, and Control Center allow more of the burden of the orbit selection and maneuver maintenance to be automated and ultimately placed onboard the spacecraft, mitigating most of the associated operational concerns. This paper presents the GSFC closed-loop control method to fly in either constellations or formations through the use of an autonomous closed loop three-axis navigation control and innovative orbit maintenance support. Simulation results using AutoCon(TM) and FreeFlyer(TM) with various fidelity levels of modeling and algorithms are presented.

  7. Design and Implementation of Satellite Formations and Constellations

    NASA Technical Reports Server (NTRS)

    Folta, David; Newman, Lauri Kraft; Quinn, David

    1998-01-01

    The direction to develop small low cost spacecraft has led many scientists to recognize the advantage of flying spacecraft in constellations and formations to achieve the correlated instrument measurements formerly possible only by flying many instruments on a single large platform. Yet, constellations and formation flying impose additional complications on orbit selection and orbit maintenance, especially when each spacecraft has its own orbit or science requirements. The purpose of this paper is to develop an operational control method for maintenance of these missions. Examples will be taken from the Earth Observing-1 (EO-1) spacecraft that is part of the New Millennium Program (NMP) and from proposed Earth System Science Program Office (ESSPO) constellations. Results can be used to determine the appropriateness of constellations and formation flying for a particular case as well as the operational impacts. Applications to the ESSPO and NMP are highly considered in analysis and applications. After constellation and formation analysis is completed, implementation of a maneuver maintenance strategy becomes the driver. Advances in technology and automation by GSFC's Guidance, Navigation, and Control Center allow more of the burden of the orbit selection and maneuver maintenance to be automated and ultimately placed onboard the spacecraft, mitigating most of the associated operational concerns. This paper presents the GSFC closed-loop control method to fly in either constellations or formations through the use of an autonomous closed loop three-axis navigation control and innovative orbit maintenance support. Simulation results using AutoCon(Trademark) and FreeFlyer(Trademark) with various fidelity levels of modeling and algorithms are presented.

  8. Experiments in Nonlinear Adaptive Control of Multi-Manipulator, Free-Flying Space Robots

    NASA Technical Reports Server (NTRS)

    Chen, Vincent Wei-Kang

    1992-01-01

    Sophisticated robots can greatly enhance the role of humans in space by relieving astronauts of low level, tedious assembly and maintenance chores and allowing them to concentrate on higher level tasks. Robots and astronauts can work together efficiently, as a team; but the robot must be capable of accomplishing complex operations and yet be easy to use. Multiple cooperating manipulators are essential to dexterity and can broaden greatly the types of activities the robot can achieve; adding adaptive control can ease greatly robot usage by allowing the robot to change its own controller actions, without human intervention, in response to changes in its environment. Previous work in the Aerospace Robotics Laboratory (ARL) have shown the usefulness of a space robot with cooperating manipulators. The research presented in this dissertation extends that work by adding adaptive control. To help achieve this high level of robot sophistication, this research made several advances to the field of nonlinear adaptive control of robotic systems. A nonlinear adaptive control algorithm developed originally for control of robots, but requiring joint positions as inputs, was extended here to handle the much more general case of manipulator endpoint-position commands. A new system modelling technique, called system concatenation was developed to simplify the generation of a system model for complicated systems, such as a free-flying multiple-manipulator robot system. Finally, the task-space concept was introduced wherein the operator's inputs specify only the robot's task. The robot's subsequent autonomous performance of each task still involves, of course, endpoint positions and joint configurations as subsets. The combination of these developments resulted in a new adaptive control framework that is capable of continuously providing full adaptation capability to the complex space-robot system in all modes of operation. The new adaptive control algorithm easily handles free-flying systems with multiple, interacting manipulators, and extends naturally to even larger systems. The new adaptive controller was experimentally demonstrated on an ideal testbed in the ARL-A first-ever experimental model of a multi-manipulator, free-flying space robot that is capable of capturing and manipulating free-floating objects without requiring human assistance. A graphical user interface enhanced the robot usability: it enabled an operator situated at a remote location to issue high-level task description commands to the robot, and to monitor robot activities as it then carried out each assignment autonomously.

  9. Autonomous formation flying based on GPS — PRISMA flight results

    NASA Astrophysics Data System (ADS)

    D'Amico, Simone; Ardaens, Jean-Sebastien; De Florio, Sergio

    2013-01-01

    This paper presents flight results from the early harvest of the Spaceborne Autonomous Formation Flying Experiment (SAFE) conducted in the frame of the Swedish PRISMA technology demonstration mission. SAFE represents one of the first demonstrations in low Earth orbit of an advanced guidance, navigation and control system for dual-spacecraft formations. Innovative techniques based on differential GPS-based navigation and relative orbital elements control are validated and tuned in orbit to fulfill the typical requirements of future distributed scientific instruments for remote sensing.

  10. Building intelligent systems: Artificial intelligence research at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Friedland, P.; Lum, H.

    1987-01-01

    The basic components that make up the goal of building autonomous intelligent systems are discussed, and ongoing work at the NASA Ames Research Center is described. It is noted that a clear progression of systems can be seen through research settings (both within and external to NASA) to Space Station testbeds to systems which actually fly on the Space Station. The starting point for the discussion is a truly autonomous Space Station intelligent system, responsible for a major portion of Space Station control. Attention is given to research in fiscal 1987, including reasoning under uncertainty, machine learning, causal modeling and simulation, knowledge from design through operations, advanced planning work, validation methodologies, and hierarchical control of and distributed cooperation among multiple knowledge-based systems.

  11. Building intelligent systems - Artificial intelligence research at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Friedland, Peter; Lum, Henry

    1987-01-01

    The basic components that make up the goal of building autonomous intelligent systems are discussed, and ongoing work at the NASA Ames Research Center is described. It is noted that a clear progression of systems can be seen through research settings (both within and external to NASA) to Space Station testbeds to systems which actually fly on the Space Station. The starting point for the discussion is a 'truly' autonomous Space Station intelligent system, responsible for a major portion of Space Station control. Attention is given to research in fiscal 1987, including reasoning under uncertainty, machine learning, causal modeling and simulation, knowledge from design through operations, advanced planning work, validation methodologies, and hierarchical control of and distributed cooperation among multiple knowledge-based systems.

  12. Autonomous rendezvous and capture development infrastructure

    NASA Technical Reports Server (NTRS)

    Bryan, Thomas C.

    1991-01-01

    In the development of the technology for autonomous rendezvous and docking, key infrastructure capabilities must be used for effective and economical development. This need involves facility capabilities, both equipment and personnel, to devise, develop, qualify, and integrate ARD elements and subsystems into flight programs. One effective way of reducing technical risks in developing ARD technology is the use of the Low Earth Orbit test facility. Using a reusable free-flying testbed carried in the Shuttle, as a technology demonstration test flight, can be structured to include a variety of sensors, control schemes, and operational approaches. This testbed and flight demonstration concept will be used to illustrate how technologies and facilities at MSFC can be used to develop and prove an ARD system.

  13. ROS-based ground stereo vision detection: implementation and experiments.

    PubMed

    Hu, Tianjiang; Zhao, Boxin; Tang, Dengqing; Zhang, Daibing; Kong, Weiwei; Shen, Lincheng

    This article concentrates on open-source implementation on flying object detection in cluttered scenes. It is of significance for ground stereo-aided autonomous landing of unmanned aerial vehicles. The ground stereo vision guidance system is presented with details on system architecture and workflow. The Chan-Vese detection algorithm is further considered and implemented in the robot operating systems (ROS) environment. A data-driven interactive scheme is developed to collect datasets for parameter tuning and performance evaluating. The flying vehicle outdoor experiments capture the stereo sequential images dataset and record the simultaneous data from pan-and-tilt unit, onboard sensors and differential GPS. Experimental results by using the collected dataset validate the effectiveness of the published ROS-based detection algorithm.

  14. Constrained navigation for unmanned systems

    NASA Astrophysics Data System (ADS)

    Vasseur, Laurent; Gosset, Philippe; Carpentier, Luc; Marion, Vincent; Morillon, Joel G.; Ropars, Patrice

    2005-05-01

    The French Military Robotic Study Program (introduced in Aerosense 2003), sponsored by the French Defense Procurement Agency and managed by Thales as the prime contractor, focuses on about 15 robotic themes which can provide an immediate "operational add-on value". The paper details the "constrained navigation" study (named TEL2), which main goal is to identify and test a well-balanced task sharing between man and machine to accomplish a robotic task that cannot be performed autonomously at the moment because of technological limitations. The chosen function is "obstacle avoidance" on rough ground and quite high speed (40 km/h). State of the art algorithms have been implemented to perform autonomous obstacle avoidance and following of forest borders, using scanner laser sensor and standard localization functions. Such an "obstacle avoidance" function works well most of the time, BUT fails sometimes. The study analyzed how the remote operator can manage such failures so that the system remains fully operationally reliable; he can act according to two ways: a) finely adjust the vehicle current heading; b) take the control of the vehicle "on the fly" (without stopping) and bring it back to autonomous behavior when motion is secured again. The paper also presents the results got from the military acceptance tests performed on French 4x4 DARDS ATD.

  15. Autonomous Soaring: The Montague Cross Country Challenge

    NASA Astrophysics Data System (ADS)

    Edwards, Daniel J.

    A novel method was developed for locating and allowing gliders to stay in thermals (convective updrafts). The method was applied to a 5 kg, glider, called ALOFT (autonomous locator of thermals), that was entered in the 2008 Montague Cross-Country Challenge held on 13-15 June 2008 in Montague, California. In this competition, RC (remote controlled) gliders in the 5 kg class competed on the basis of speed and distance. ALOFT was the first known autonomously soaring aircraft to enter a soaring competition and its entry provided a valuable comparison between the effectiveness of manual soaring and autonomous soaring. ALOFT placed third in the competition in overall points, outperforming manually-flown aircraft in its ability to center and utilize updrafts, especially at higher altitudes and in the presence of wind, to fly more optimal airspeeds, and to fly directly between turn points. The results confirm that autonomous soaring is a bona fide engineering sub-discipline, which is expected to be of interest to engineers who might find this has some utility in the aviation industry.

  16. Autonomous Formation Flight

    NASA Technical Reports Server (NTRS)

    Schkolnik, Gerard S.; Cobleigh, Brent

    2004-01-01

    NASA's Strategic Plan for the Aerospace Technology Enterprise includes ambitious objectives focused on affordable air travel, reduced emissions, and expanded aviation-system capacity. NASA Dryden Flight Research Center, in cooperation with NASA Ames Research Center, the Boeing Company, and the University of California, Los Angeles, has embarked on an autonomous-formation-flight project that promises to make significant strides towards these goals. For millions of years, birds have taken advantage of the aerodynamic benefit of flying in formation. The traditional "V" formation flown by many species of birds (including gulls, pelicans, and geese) enables each of the trailing birds to fly in the upwash flow field that exists just outboard of the bird immediately ahead in the formation. The result for each trailing bird is a decrease in induced drag and thus a reduction in the energy needed to maintain a given speed. Hence, for migratory birds, formation flight extends the range of the system of birds over the range of birds flying solo. The Autonomous Formation Flight (AFF) Project is seeking to extend this symbiotic relationship to aircraft.

  17. Design, aerodynamics and autonomy of the DelFly.

    PubMed

    de Croon, G C H E; Groen, M A; De Wagter, C; Remes, B; Ruijsink, R; van Oudheusden, B W

    2012-06-01

    One of the major challenges in robotics is to develop a fly-like robot that can autonomously fly around in unknown environments. In this paper, we discuss the current state of the DelFly project, in which we follow a top-down approach to ever smaller and more autonomous ornithopters. The presented findings concerning the design, aerodynamics and autonomy of the DelFly illustrate some of the properties of the top-down approach, which allows the identification and resolution of issues that also play a role at smaller scales. A parametric variation of the wing stiffener layout produced a 5% more power-efficient wing. An experimental aerodynamic investigation revealed that this could be associated with an improved stiffness of the wing, while further providing evidence of the vortex development during the flap cycle. The presented experiments resulted in an improvement in the generated lift, allowing the inclusion of a yaw rate gyro, pressure sensor and microcontroller onboard the DelFly. The autonomy of the DelFly is expanded by achieving (1) an improved turning logic to obtain better vision-based obstacle avoidance performance in environments with varying texture and (2) successful onboard height control based on the pressure sensor.

  18. Fielding An Amphibious UAV: Development, Results, and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Pisanich, Greg; Morris, Stephen

    2002-01-01

    This report summarizes the work completed on the design and flight-testing of a small, unmanned, amphibious demonstrator aircraft that flies autonomously. The aircraft named ACAT (Autonomous Cargo Amphibious Transport) is intended to be a large cargo carrying unmanned aircraft that operates from water to avoid airspace and airfield conflict issues between manned and unmanned aircraft. To demonstrate the feasibility of this concept, a demonstrator ACAT was designed, built, and flown that has a six-foot wingspan and can fly autonomously from land or water airfield. The demonstrator was designed for a 1-hour duration and 1-mile telemetry range. A sizing code was used to design the smallest demonstrator UAV to achieve these goals. The final design was a six-foot wingspan, twin hull configuration that distributes the cargo weight across the span, reducing the wing structural weight. The demonstrator airframe was constructed from balsa wood, fiberglass, and plywood. A 4-stroke model airplane engine powered by methanol fuel was mounted in a pylon above the wing and powers the ACAT UAV. Initial flight tests from land and water were conducted under manual radio control and confirmed the amphibious capability of the design. Flight avionics that were developed by MLB for production UAVs were installed in the ACAT demonstrator. The flight software was also enhanced to permit autonomous takeoff and landing from water. A complete autonomous flight from ahard runway was successfully completed on July 5, 2001 and consisted of a take-off, rectangular flight pattern, and landing under complete computer control. A completely autonomous flight that featured a water takeoff and landing was completed on October 4, 2001. This report describes these activities in detail and highlights the challenges encountered and solved during the development of the ACAT demonstrator. hard runway was successfully completed on July 5, 2001 and consisted of a take-off, rectangular flight pattern, and landing under complete computer control. A completely autonomous flight that featured a water takeoff and landing was completed on October 4, 2001. This report describes these activities in detail and highlights the challenges encountered and solved during the development of the ACAT demonstrator.

  19. Safe and Autonomous Drones for Urban Flight

    NASA Technical Reports Server (NTRS)

    Krishnakumar, Kalmanje

    2016-01-01

    Autonomous vehicles are no longer futuristic technology; in fact, there are already cars with self-driving features on the road. Over the next five years, the connected vehicles will disrupt the entire automotive and UAS ecosystems. The industry will undergo fundamental change as semi-autonomous driving and flying emerges, followed by an eventual shift to full autonomy.

  20. Relative Sensor with 4(pi) Coverage for Formation Flying Missions

    NASA Technical Reports Server (NTRS)

    Tien, Jeffrey Y.; Purcell, George H., Jr.; Sirinivasan, Jeffrey M.; Young, Lawrence E.

    2004-01-01

    The Terrestrial Planet Finder (TPF) pre-project, an element of NASA's Origins program, is currently developing two architectures for a mission to search for earth-like planets around nearby stars. One of the architectures being developed is the Formation Flying Interferometer (FFI). The FFI is envisioned to consist of up to seven spacecraft (as many as six 'collectors' with IR telescopes, and a 'combiner') flying in precise formation within f 1 cm of pre-determined trajectories for synchronized observations. The spacecraft-to-spacecraft separations are variable between 20 m and 100 m or more during observations to support various configurations of the interferometer in the planet-finding mode. The challenges involved with TPF autonomous operations, ranging from formation acquisition and formation maneuvering to high precision formation control during science observations, are unprecedented. In this paper we discuss the development of the formation acquisition sensor, which uses novel modulation and duplexing schemes to enable fast signal acquisition, multiple-spacecraft operation, and mitigation of inherent jamming conditions, while providing precise formation sensing and integrated radar capability. This approach performs delay synthesis and carrier cycle ambiguity resolution to improve range measurement, and uses differential carrier cycle ambiguity resolution to make precise bearing angle measurements without calibration maneuvers.

  1. Relative Sensor with 4Pi Coverage for Formation Flying Missions

    NASA Technical Reports Server (NTRS)

    Tien, Jeffrey Y.; Purcell, George H., Jr.; Srinivasan, Jeffrey M.; Young, Lawrence E.

    2004-01-01

    The Terrestrial Planet Finder (TPF) pre-project, an element of NASA s Origins program, is currently developing two architectures for a mission to search for earth-like planets around nearby stars. One of the architectures being developed is the Formation Flying Interferometer (FFI). The FFI is envisioned to consist of up to seven spacecraft (as many as six "collectors" with IR telescopes, and a "combiner") flying in precise formation within +/-1 cm of pre-determined trajectories for synchronized observations. The spacecraft-to-spacecraft separations are variable between 20 m and 100 m or more during observations to support various configurations of the interferometer in the planet-finding mode. The challenges involved with TPF autonomous operations, ranging from formation acquisition and formation maneuvering to high precision formation control during science observations, are unprecedented. In this paper we discuss the development of the formation acquisition sensor, which uses novel modulation and duplexing schemes to enable fast signal acquisition, multiple-spacecraft operation, and mitigation of inherent jamming conditions, while providing precise formation sensing and integrated radar capability. This approach performs delay synthesis and carrier cycle ambiguity resolution to improve range measurement, and uses differential carrier cycle ambiguity resolution to make precise bearing angle measurements without calibration maneuvers.

  2. 2001 Flight Mechanics Symposium

    NASA Technical Reports Server (NTRS)

    Lynch, John P. (Editor)

    2001-01-01

    This conference publication includes papers and abstracts presented at the Flight Mechanics Symposium held on June 19-21, 2001. Sponsored by the Guidance, Navigation and Control Center of Goddard Space Flight Center, this symposium featured technical papers on a wide range of issues related to attitude/orbit determination, prediction and control; attitude simulation; attitude sensor calibration; theoretical foundation of attitude computation; dynamics model improvements; autonomous navigation; constellation design and formation flying; estimation theory and computational techniques; Earth environment mission analysis and design; and, spacecraft re-entry mission design and operations.

  3. Autonomous Path Planning for On-Orbit Servicing Vehicles

    NASA Astrophysics Data System (ADS)

    McInnes, C. R.

    On-orbit servicing has long been considered as a means of reducing mission costs. While automated on-orbit servicing of satellites in LEO and GEO has yet to be realised, the International Space Station (ISS) will require servicing in a number of forms for re-supply, external visual inspection and maintenance. This paper will discuss a unified approach to path planning for such servicing vehicles using artificial potential field methods. In particular, path constrained rendezvous and docking of the ESA Automated Transfer Vehicle (ATV) at the ISS will be investigated as will mission and path planning tools for the Daimler-Chrysler Aerospace ISS Inspector free-flying camera. Future applications for free-flying microcameras and co-operative control between multiple free-flyers for on-orbit assembly will also be considered.

  4. Development of the Lidar Atmospheric Sensing Experiment (LASE): An Advanced Airborne DIAL Instrument

    NASA Technical Reports Server (NTRS)

    Moore, Alvah S., Jr.; Brown, Kevin E.; Hall, William M.; Barnes, James C.; Edwards, William C.; Petway, Larry B.; Little, Alan D.; Luck, William S., Jr.; Jones, Irby W.; Antill, Charles W., Jr.

    1997-01-01

    The Lidar Atmospheric Sensing Experiment (LASE) Instrument is the first fully-engineered, autonomous Differential Absorption Lidar (DIAL) System for the measurement of water vapor in the troposphere (aerosol and cloud measurements are included). LASE uses a double-pulsed Ti:Sapphire laser for the transmitter with a 30 ns pulse length and 150 mJ/pulse. The laser beam is "seeded" to operate on a selected water vapor absorption line in the 815-nm region using a laser diode and an onboard absorption reference cell. A 40 cm diameter telescope collects the backscattered signals and directs them onto two detectors. LASE collects DIAL data at 5 Hz while onboard a NASA/Ames ER-2 aircraft flying at altitudes from 16-21 km. LASE was designed to operate autonomously within the environment and physical constraints of the ER-2 aircraft and to make water vapor profile measurements across the troposphere to better than 10% accuracy. LASE has flown 19 times during the development of the instrument and the validation of the science data. This paper describes the design, operation, and reliability of the LASE Instrument.

  5. Stanford Aerospace Research Laboratory research overview

    NASA Technical Reports Server (NTRS)

    Ballhaus, W. L.; Alder, L. J.; Chen, V. W.; Dickson, W. C.; Ullman, M. A.

    1993-01-01

    Over the last ten years, the Stanford Aerospace Robotics Laboratory (ARL) has developed a hardware facility in which a number of space robotics issues have been, and continue to be, addressed. This paper reviews two of the current ARL research areas: navigation and control of free flying space robots, and modelling and control of extremely flexible space structures. The ARL has designed and built several semi-autonomous free-flying robots that perform numerous tasks in a zero-gravity, drag-free, two-dimensional environment. It is envisioned that future generations of these robots will be part of a human-robot team, in which the robots will operate under the task-level commands of astronauts. To make this possible, the ARL has developed a graphical user interface (GUI) with an intuitive object-level motion-direction capability. Using this interface, the ARL has demonstrated autonomous navigation, intercept and capture of moving and spinning objects, object transport, multiple-robot cooperative manipulation, and simple assemblies from both free-flying and fixed bases. The ARL has also built a number of experimental test beds on which the modelling and control of flexible manipulators has been studied. Early ARL experiments in this arena demonstrated for the first time the capability to control the end-point position of both single-link and multi-link flexible manipulators using end-point sensing. Building on these accomplishments, the ARL has been able to control payloads with unknown dynamics at the end of a flexible manipulator, and to achieve high-performance control of a multi-link flexible manipulator.

  6. Open-Loop Performance of COBALT Precision Landing Payload on a Commercial Sub-Orbital Rocket

    NASA Technical Reports Server (NTRS)

    Restrepo, Carolina I.; Carson, John M., III; Amzajerdian, Farzin; Seubert, Carl R.; Lovelace, Ronney S.; McCarthy, Megan M.; Tse, Teming; Stelling, Richard; Collins, Steven M.

    2018-01-01

    An open-loop flight test campaign of the NASA COBALT (CoOperative Blending of Autonomous Landing Technologies) platform was conducted onboard the Masten Xodiac suborbital rocket testbed. The COBALT platform integrates NASA Guidance, Navigation and Control (GN&C) sensing technologies for autonomous, precise soft landing, including the Navigation Doppler Lidar (NDL) velocity and range sensor and the Lander Vision System (LVS) Terrain Relative Navigation (TRN) system. A specialized navigation filter running onboard COBALT fuses the NDL and LVS data in real time to produce a navigation solution that is independent of GPS and suitable for future, autonomous, planetary, landing systems. COBALT was a passive payload during the open loop tests. COBALT's sensors were actively taking data and processing it in real time, but the Xodiac rocket flew with its own GPS-navigation system as a risk reduction activity in the maturation of the technologies towards space flight. A future closed-loop test campaign is planned where the COBALT navigation solution will be used to fly its host vehicle.

  7. Autonomous Science on the EO-1 Mission

    NASA Technical Reports Server (NTRS)

    Chien, S.; Sherwood, R.; Tran, D.; Castano, R.; Cichy, B.; Davies, A.; Rabideau, G.; Tang, N.; Burl, M.; Mandl, D.; hide

    2003-01-01

    In mid-2003, we will fly software to detect science events that will drive autonomous scene selectionon board the New Millennium Earth Observing 1 (EO-1) spacecraft. This software will demonstrate the potential for future space missions to use onboard decision-making to detect science events and respond autonomously to capture short-lived science events and to downlink only the highest value science data.

  8. Autonomous planning and scheduling on the TechSat 21 mission

    NASA Technical Reports Server (NTRS)

    Sherwood, R.; Chien, S.; Castano, R.; Rabideau, G.

    2002-01-01

    The Autonomous Sciencecraft Experiment (ASE) will fly onboard the Air Force TechSat 21 constellation of three spacecraft scheduled for launch in 2006. ASE uses onboard continuous planning, robust task and goal-based execution, model-based mode identification and reconfiguration, and onboard machine learning and pattern recognition to radically increase science return by enabling intelligent downlink selection and autonomous retargeting.

  9. Virtual Machine Language

    NASA Technical Reports Server (NTRS)

    Grasso, Christopher; Page, Dennis; O'Reilly, Taifun; Fteichert, Ralph; Lock, Patricia; Lin, Imin; Naviaux, Keith; Sisino, John

    2005-01-01

    Virtual Machine Language (VML) is a mission-independent, reusable software system for programming for spacecraft operations. Features of VML include a rich set of data types, named functions, parameters, IF and WHILE control structures, polymorphism, and on-the-fly creation of spacecraft commands from calculated values. Spacecraft functions can be abstracted into named blocks that reside in files aboard the spacecraft. These named blocks accept parameters and execute in a repeatable fashion. The sizes of uplink products are minimized by the ability to call blocks that implement most of the command steps. This block approach also enables some autonomous operations aboard the spacecraft, such as aerobraking, telemetry conditional monitoring, and anomaly response, without developing autonomous flight software. Operators on the ground write blocks and command sequences in a concise, high-level, human-readable programming language (also called VML ). A compiler translates the human-readable blocks and command sequences into binary files (the operations products). The flight portion of VML interprets the uplinked binary files. The ground subsystem of VML also includes an interactive sequence- execution tool hosted on workstations, which runs sequences at several thousand times real-time speed, affords debugging, and generates reports. This tool enables iterative development of blocks and sequences within times of the order of seconds.

  10. Research on an autonomous vision-guided helicopter

    NASA Technical Reports Server (NTRS)

    Amidi, Omead; Mesaki, Yuji; Kanade, Takeo

    1994-01-01

    Integration of computer vision with on-board sensors to autonomously fly helicopters was researched. The key components developed were custom designed vision processing hardware and an indoor testbed. The custom designed hardware provided flexible integration of on-board sensors with real-time image processing resulting in a significant improvement in vision-based state estimation. The indoor testbed provided convenient calibrated experimentation in constructing real autonomous systems.

  11. Integration of Libration Point Orbit Dynamics into a Universal 3-D Autonomous Formation Flying Algorithm

    NASA Technical Reports Server (NTRS)

    Folta, David; Bauer, Frank H. (Technical Monitor)

    2001-01-01

    The autonomous formation flying control algorithm developed by the Goddard Space Flight Center (GSFC) for the New Millennium Program (NMP) Earth Observing-1 (EO-1) mission is investigated for applicability to libration point orbit formations. In the EO-1 formation-flying algorithm, control is accomplished via linearization about a reference transfer orbit with a state transition matrix (STM) computed from state inputs. The effect of libration point orbit dynamics on this algorithm architecture is explored via computation of STMs using the flight proven code, a monodromy matrix developed from a N-body model of a libration orbit, and a standard STM developed from the gravitational and coriolis effects as measured at the libration point. A comparison of formation flying Delta-Vs calculated from these methods is made to a standard linear quadratic regulator (LQR) method. The universal 3-D approach is optimal in the sense that it can be accommodated as an open-loop or closed-loop control using only state information.

  12. Exploring Concepts of Operations for On-Demand Passenger Air Transportation

    NASA Technical Reports Server (NTRS)

    Nneji, Victoria Chibuogu; Stimpson, Alexander; Cummings, Mary; Goodrich, Kenneth H.

    2017-01-01

    In recent years, a surge of interest in "flying cars" for city commutes has led to rapid development of new technologies to help make them and similar on-demand mobility platforms a reality. To this end, this paper provides analyses of the stakeholders involved, their proposed operational concepts, and the hazards and regulations that must be addressed. Three system architectures emerged from the analyses, ranging from conventional air taxi to revolutionary fully autonomous aircraft operations, each with vehicle safety functions allocated differently between humans and machines. Advancements for enabling technologies such as distributed electric propulsion and artificial intelligence have had major investments and initial experimental success, but may be some years away from being deployed for on-demand passenger air transportation at scale.

  13. Localization from Visual Landmarks on a Free-Flying Robot

    NASA Technical Reports Server (NTRS)

    Coltin, Brian; Fusco, Jesse; Moratto, Zack; Alexandrov, Oleg; Nakamura, Robert

    2016-01-01

    We present the localization approach for Astrobee, a new free-flying robot designed to navigate autonomously on the International Space Station (ISS). Astrobee will accommodate a variety of payloads and enable guest scientists to run experiments in zero-g, as well as assist astronauts and ground controllers. Astrobee will replace the SPHERES robots which currently operate on the ISS, whose use of fixed ultrasonic beacons for localization limits them to work in a 2 meter cube. Astrobee localizes with monocular vision and an IMU, without any environmental modifications. Visual features detected on a pre-built map, optical flow information, and IMU readings are all integrated into an extended Kalman filter (EKF) to estimate the robot pose. We introduce several modifications to the filter to make it more robust to noise, and extensively evaluate the localization algorithm.

  14. End-to-End Commitment

    NASA Technical Reports Server (NTRS)

    Newcomb, John

    2004-01-01

    The end-to-end test would verify the complex sequence of events from lander separation to landing. Due to the large distances involved and the significant delay time in sending a command and receiving verification, the lander needed to operate autonomously after it separated from the orbiter. It had to sense conditions, make decisions, and act accordingly. We were flying into a relatively unknown set of conditions-a Martian atmosphere of unknown pressure, density, and consistency to land on a surface of unknown altitude, and one which had an unknown bearing strength.

  15. Concepts for autonomous flight control for a balloon on Mars

    NASA Technical Reports Server (NTRS)

    Heinsheimer, Thomas F.; Friend, Robyn C.; Siegel, Neil G.

    1988-01-01

    Balloons operating as airborne rovers have been suggested as ideal candidates for early exploration of the Martian surface. An international study team composed of scientists from the U.S.S.R., France, and the U.S.A. is planning the launching in 1994 of a balloon system to fly on Mars. The current likely design is a dual thermal/gas balloon that consists of a gas balloon suspended above a solar-heated thermal balloon. At night, the thermal balloon provides no lift, and the balloon system drifts just above the Martian surface; the lift of the gas balloon is just sufficient to prevent the science payload from hitting the ground. During the day, the balloon system flies at an altitude of 4 to 5 kilometers, rising due to the added lift provided by the thermal balloon. Over the course of a single Martian day, there may be winds in several directions, and in fact it can be expected that there will be winds simultaneously in different directions at different altitudes. Therefore, a balloon system capable of controlling its own altitude, via an autonomous flight control system, can take advantage of these different winds to control its direction, thereby greatly increasing both its mission utility and its longevity.

  16. Ka-Band Autonomous Formation Flying Sensor

    NASA Technical Reports Server (NTRS)

    Tien, Jeffrey; Purcell, George, Jr.; Srinivasan, Jeffrey; Ciminera, Michael; Srinivasan, Meera; Meehan, Thomas; Young, Lawrence; Aung, MiMi; Amaro, Luis; Chong, Yong; hide

    2004-01-01

    Ka-band integrated range and bearing-angle formation sensor called the Autonomous Formation Flying (AFF) Sensor has been developed to enable deep-space formation flying of multiple spacecraft. The AFF Sensor concept is similar to that of the Global Positioning System (GPS), but the AFF Sensor would not use the GPS. The AFF Sensor would reside in radio transceivers and signal-processing subsystems aboard the formation-flying spacecraft. A version of the AFF Sensor has been developed for initial application to the two-spacecraft StarLight optical-interferometry mission, and several design investigations have been performed. From the prototype development, it has been concluded that the AFF Sensor can be expected to measure distances and directions with standard deviations of 2 cm and 1 arc minute, respectively, for spacecraft separations ranging up to about 1 km. It has also been concluded that it is necessary to optimize performance of the overall mission through design trade-offs among the performance of the AFF Sensor, the field of view of the AFF Sensor, the designs of the spacecraft and the scientific instruments that they will carry, the spacecraft maneuvers required for formation flying, and the design of a formation-control system.

  17. Reconfigurable Software for Controlling Formation Flying

    NASA Technical Reports Server (NTRS)

    Mueller, Joseph B.

    2006-01-01

    Software for a system to control the trajectories of multiple spacecraft flying in formation is being developed to reflect underlying concepts of (1) a decentralized approach to guidance and control and (2) reconfigurability of the control system, including reconfigurability of the software and of control laws. The software is organized as a modular network of software tasks. The computational load for both determining relative trajectories and planning maneuvers is shared equally among all spacecraft in a cluster. The flexibility and robustness of the software are apparent in the fact that tasks can be added, removed, or replaced during flight. In a computational simulation of a representative formation-flying scenario, it was demonstrated that the following are among the services performed by the software: Uploading of commands from a ground station and distribution of the commands among the spacecraft, Autonomous initiation and reconfiguration of formations, Autonomous formation of teams through negotiations among the spacecraft, Working out details of high-level commands (e.g., shapes and sizes of geometrically complex formations), Implementation of a distributed guidance law providing autonomous optimization and assignment of target states, and Implementation of a decentralized, fuel-optimal, impulsive control law for planning maneuvers.

  18. Telerobotic workstation design aid

    NASA Technical Reports Server (NTRS)

    Corker, K.; Hudlicka, E.; Young, D.; Cramer, N.

    1989-01-01

    Telerobot systems are being developed to support a number of space mission applications. In low earth orbit, telerobots and teleoperated manipulators will be used in shuttle operations and space station construction/maintenance. Free flying telerobotic service vehicles will be used at low and geosynchronous orbital operations. Rovers and autonomous vehicles will be equipped with telerobotic devices in planetary exploration. In all of these systems, human operators will interact with the robot system at varied levels during the scheduled operations. The human operators may be in either orbital or ground-based control systems. To assure integrated system development and maximum utility across these systems, designers must be sensitive to the constraints and capabilities that the human brings to system operation and must be assisted in applying these human factors to system development. The simulation and analysis system is intended to serve the needs of system analysis/designers as an integrated workstation in support of telerobotic design.

  19. Remotely Piloted Vehicles for Experimental Flight Control Testing

    NASA Technical Reports Server (NTRS)

    Motter, Mark A.; High, James W.

    2009-01-01

    A successful flight test and training campaign of the NASA Flying Controls Testbed was conducted at Naval Outlying Field, Webster Field, MD during 2008. Both the prop and jet-powered versions of the subscale, remotely piloted testbeds were used to test representative experimental flight controllers. These testbeds were developed by the Subsonic Fixed Wing Project s emphasis on new flight test techniques. The Subsonic Fixed Wing Project is under the Fundamental Aeronautics Program of NASA's Aeronautics Research Mission Directorate (ARMD). The purpose of these testbeds is to quickly and inexpensively evaluate advanced concepts and experimental flight controls, with applications to adaptive control, system identification, novel control effectors, correlation of subscale flight tests with wind tunnel results, and autonomous operations. Flight tests and operator training were conducted during four separate series of tests during April, May, June and August 2008. Experimental controllers were engaged and disengaged during fully autonomous flight in the designated test area. Flaps and landing gear were deployed by commands from the ground control station as unanticipated disturbances. The flight tests were performed NASA personnel with support from the Maritime Unmanned Development and Operations (MUDO) team of the Naval Air Warfare Center, Aircraft Division

  20. Shuttlecock detection system for fully-autonomous badminton robot with two high-speed video cameras

    NASA Astrophysics Data System (ADS)

    Masunari, T.; Yamagami, K.; Mizuno, M.; Une, S.; Uotani, M.; Kanematsu, T.; Demachi, K.; Sano, S.; Nakamura, Y.; Suzuki, S.

    2017-02-01

    Two high-speed video cameras are successfully used to detect the motion of a flying shuttlecock of badminton. The shuttlecock detection system is applied to badminton robots that play badminton fully autonomously. The detection system measures the three dimensional position and velocity of a flying shuttlecock, and predicts the position where the shuttlecock falls to the ground. The badminton robot moves quickly to the position where the shuttle-cock falls to, and hits the shuttlecock back into the opponent's side of the court. In the game of badminton, there is a large audience, and some of them move behind a flying shuttlecock, which are a kind of background noise and makes it difficult to detect the motion of the shuttlecock. The present study demonstrates that such noises can be eliminated by the method of stereo imaging with two high-speed cameras.

  1. Simulation to Flight Test for a UAV Controls Testbed

    NASA Technical Reports Server (NTRS)

    Motter, Mark A.; Logan, Michael J.; French, Michael L.; Guerreiro, Nelson M.

    2006-01-01

    The NASA Flying Controls Testbed (FLiC) is a relatively small and inexpensive unmanned aerial vehicle developed specifically to test highly experimental flight control approaches. The most recent version of the FLiC is configured with 16 independent aileron segments, supports the implementation of C-coded experimental controllers, and is capable of fully autonomous flight from takeoff roll to landing, including flight test maneuvers. The test vehicle is basically a modified Army target drone, AN/FQM-117B, developed as part of a collaboration between the Aviation Applied Technology Directorate (AATD) at Fort Eustis, Virginia and NASA Langley Research Center. Several vehicles have been constructed and collectively have flown over 600 successful test flights, including a fully autonomous demonstration at the Association of Unmanned Vehicle Systems International (AUVSI) UAV Demo 2005. Simulations based on wind tunnel data are being used to further develop advanced controllers for implementation and flight test.

  2. Precision Formation Keeping at L2 Using the Autonomous Formation Flying Sensor

    NASA Technical Reports Server (NTRS)

    McLoughlin, Terence H.; Campbell, Mark

    2004-01-01

    Recent advances in formation keeping for large numbers of spacecraft using the Autonomous Formation Flying are presented. This sensor, currently under development at JPL, has been identified as a key component in future formation flying spacecraft missions. The sensor provides accurate range and bearing measurements between pairs of spacecraft using GPS technology. Previous theoretical work by the authors has focused on developing a decentralized scheduling algorithm to control the tasking of such a sensor between the relative range and bearing measurements to each node in the formation. The resulting algorithm has been modified to include switching constraints in the sensor. This paper also presents a testbed for real time validation of a sixteen-node formation based on the Stellar Imager mission. Key aspects of the simulation include minimum fuel maneuvers based on free-body dynamics and a three body propagator for simulating the formation at L2.

  3. Towards collaboration between unmanned aerial and ground vehicles for precision agriculture

    NASA Astrophysics Data System (ADS)

    Bhandari, Subodh; Raheja, Amar; Green, Robert L.; Do, Dat

    2017-05-01

    This paper presents the work being conducted at Cal Poly Pomona on the collaboration between unmanned aerial and ground vehicles for precision agriculture. The unmanned aerial vehicles (UAVs), equipped with multispectral/hyperspectral cameras and RGB cameras, take images of the crops while flying autonomously. The images are post processed or can be processed onboard. The processed images are used in the detection of unhealthy plants. Aerial data can be used by the UAVs and unmanned ground vehicles (UGVs) for various purposes including care of crops, harvest estimation, etc. The images can also be useful for optimized harvesting by isolating low yielding plants. These vehicles can be operated autonomously with limited or no human intervention, thereby reducing cost and limiting human exposure to agricultural chemicals. The paper discuss the autonomous UAV and UGV platforms used for the research, sensor integration, and experimental testing. Methods for ground truthing the results obtained from the UAVs will be used. The paper will also discuss equipping the UGV with a robotic arm for removing the unhealthy plants and/or weeds.

  4. Fly's Eye camera system: optical imaging using a hexapod platform

    NASA Astrophysics Data System (ADS)

    Jaskó, Attila; Pál, András.; Vida, Krisztián.; Mészáros, László; Csépány, Gergely; Mező, György

    2014-07-01

    The Fly's Eye Project is a high resolution, high coverage time-domain survey in multiple optical passbands: our goal is to cover the entire visible sky above the 30° horizontal altitude with a cadence of ~3 min. Imaging is going to be performed by 19 wide-field cameras mounted on a hexapod platform resembling a fly's eye. Using a hexapod developed and built by our team allows us to create a highly fault-tolerant instrument that uses the sky as a reference to define its own tracking motion. The virtual axis of the platform is automatically aligned with the Earth's rotational axis; therefore the same mechanics can be used independently from the geographical location of the device. Its enclosure makes it capable of autonomous observing and withstanding harsh environmental conditions. We briefly introduce the electrical, mechanical and optical design concepts of the instrument and summarize our early results, focusing on sidereal tracking. Due to the hexapod design and hence the construction is independent from the actual location, it is considerably easier to build, install and operate a network of such devices around the world.

  5. Development of a Crosslink Channel Simulator for Simulation of Formation Flying Satellite Systems

    NASA Technical Reports Server (NTRS)

    Hart, Roger; Hunt, Chris; Burns, Rich D.

    2003-01-01

    Multi-vehicle missions are an integral part of NASA s and other space agencies current and future business. These multi-vehicle missions generally involve collectively utilizing the array of instrumentation dispersed throughout the system of space vehicles, and communicating via crosslinks to achieve mission goals such as formation flying, autonomous operation, and collective data gathering. NASA s Goddard Space Flight Center (GSFC) is developing the Formation Flying Test Bed (FFTB) to provide hardware-in- the-loop simulation of these crosslink-based systems. The goal of the FFTB is to reduce mission risk, assist in mission planning and analysis, and provide a technology development platform that allows algorithms to be developed for mission hctions such as precision formation flying, synchronization, and inter-vehicle data synthesis. The FFTB will provide a medium in which the various crosslink transponders being used in multi-vehicle missions can be plugged in for development and test. An integral part of the FFTB is the Crosslink Channel Simulator (CCS),which is placed into the communications channel between the crosslinks under test, and is used to simulate on-orbit effects to the communications channel due to relative vehicle motion or antenna misalignment. The CCS is based on the Starlight software programmable platform developed at General Dynamics Decision Systems which provides the CCS with the ability to be modified on the fly to adapt to new crosslink formats or mission parameters.

  6. Unmanned Aerial Vehicles unique cost estimating requirements

    NASA Astrophysics Data System (ADS)

    Malone, P.; Apgar, H.; Stukes, S.; Sterk, S.

    Unmanned Aerial Vehicles (UAVs), also referred to as drones, are aerial platforms that fly without a human pilot onboard. UAVs are controlled autonomously by a computer in the vehicle or under the remote control of a pilot stationed at a fixed ground location. There are a wide variety of drone shapes, sizes, configurations, complexities, and characteristics. Use of these devices by the Department of Defense (DoD), NASA, civil and commercial organizations continues to grow. UAVs are commonly used for intelligence, surveillance, reconnaissance (ISR). They are also use for combat operations, and civil applications, such as firefighting, non-military security work, surveillance of infrastructure (e.g. pipelines, power lines and country borders). UAVs are often preferred for missions that require sustained persistence (over 4 hours in duration), or are “ too dangerous, dull or dirty” for manned aircraft. Moreover, they can offer significant acquisition and operations cost savings over traditional manned aircraft. Because of these unique characteristics and missions, UAV estimates require some unique estimating methods. This paper describes a framework for estimating UAV systems total ownership cost including hardware components, software design, and operations. The challenge of collecting data, testing the sensitivities of cost drivers, and creating cost estimating relationships (CERs) for each key work breakdown structure (WBS) element is discussed. The autonomous operation of UAVs is especially challenging from a software perspective.

  7. Satellite Servicing's Autonomous Rendezvous and Docking Testbed on the International Space Station

    NASA Technical Reports Server (NTRS)

    Naasz, Bo J.; Strube, Matthew; Van Eepoel, John; Barbee, Brent W.; Getzandanner, Kenneth M.

    2011-01-01

    The Space Servicing Capabilities Project (SSCP) at NASA's Goddard Space Flight Center (GSFC) has been tasked with developing systems for servicing space assets. Starting in 2009, the SSCP completed a study documenting potential customers and the business case for servicing, as well as defining several notional missions and required technologies. In 2010, SSCP moved to the implementation stage by completing several ground demonstrations and commencing development of two International Space Station (ISS) payloads-the Robotic Refueling Mission (RRM) and the Dextre Pointing Package (DPP)--to mitigate new technology risks for a robotic mission to service existing assets in geosynchronous orbit. This paper introduces the DPP, scheduled to fly in July of 2012 on the third operational SpaceX Dragon mission, and its Autonomous Rendezvous and Docking (AR&D) instruments. The combination of sensors and advanced avionics provide valuable on-orbit demonstrations of essential technologies for servicing existing vehicles, both cooperative and non-cooperative.

  8. Technology test results from an intelligent, free-flying robot for crew and equipment retrieval in space

    NASA Technical Reports Server (NTRS)

    Erickson, J.; Goode, R.; Grimm, K.; Hess, C.; Norsworthy, R.; Anderson, G.; Merkel, L.; Phinney, D.

    1992-01-01

    The ground-based demonstrations of Extra Vehicular Activity (EVA) Retriever, a voice-supervised, intelligent, free-flying robot, are designed to evaluate the capability to retrieve objects (astronauts, equipment, and tools) which have accidentally separated from the Space Station. The EVA Retriever software is required to autonomously plan and execute a target rendezvous, grapple, and return to base while avoiding stationary and moving obstacles with subsequent object handover. The software architecture incorporates a heirarchical decomposition of the control system that is horizontally partitioned into five major functional subsystems: sensing, perception, world model, reasoning, and acting. The design provides for supervised autonomy as the primary mode of operation. It is intended to be an evolutionary system improving in capability over time and as it earns crew trust through reliable and safe operation. This paper gives an overview of the hardware, a focus on software, and a summary of results achieved recently from both computer simulations and air bearing floor demonstrations. Limitations of the technology used are evaluated. Plans for the next phase, during which moving targets and obstacles drive realtime behavior requirements, are discussed.

  9. Technology test results from an intelligent, free-flying robot for crew and equipment retrieval in space

    NASA Astrophysics Data System (ADS)

    Erickson, Jon D.; Goode, R.; Grimm, K. A.; Hess, Clifford W.; Norsworthy, Robert S.; Anderson, Greg D.; Merkel, L.; Phinney, Dale E.

    1992-03-01

    The ground-based demonstrations of Extra Vehicular Activity (EVA) Retriever, a voice- supervised, intelligent, free-flying robot, are designed to evaluate the capability to retrieve objects (astronauts, equipment, and tools) which have accidentally separated from the space station. The EVA Retriever software is required to autonomously plan and execute a target rendezvous, grapple, and return to base while avoiding stationary and moving obstacles with subsequent object handover. The software architecture incorporates a hierarchical decomposition of the control system that is horizontally partitioned into five major functional subsystems: sensing, perception, world model, reasoning, and acting. The design provides for supervised autonomy as the primary mode of operation. It is intended to be an evolutionary system improving in capability over time and as it earns crew trust through reliable and safe operation. This paper gives an overview of the hardware, a focus on software, and a summary of results achieved recently from both computer simulations and air bearing floor demonstrations. Limitations of the technology used are evaluated. Plans for the next phase, during which moving targets and obstacles drive realtime behavior requirements, are discussed.

  10. Science, technology and the future of small autonomous drones.

    PubMed

    Floreano, Dario; Wood, Robert J

    2015-05-28

    We are witnessing the advent of a new era of robots - drones - that can autonomously fly in natural and man-made environments. These robots, often associated with defence applications, could have a major impact on civilian tasks, including transportation, communication, agriculture, disaster mitigation and environment preservation. Autonomous flight in confined spaces presents great scientific and technical challenges owing to the energetic cost of staying airborne and to the perceptual intelligence required to negotiate complex environments. We identify scientific and technological advances that are expected to translate, within appropriate regulatory frameworks, into pervasive use of autonomous drones for civilian applications.

  11. Autonomous Relative Navigation for Formation-Flying Satellites Using GPS

    NASA Technical Reports Server (NTRS)

    Gramling, Cheryl; Carpenter, J. Russell; Long, Anne; Kelbel, David; Lee, Taesul

    2000-01-01

    The Goddard Space Flight Center is currently developing advanced spacecraft systems to provide autonomous navigation and control of formation flyers. This paper discusses autonomous relative navigation performance for a formation of four eccentric, medium-altitude Earth-orbiting satellites using Global Positioning System (GPS) Standard Positioning Service (SPS) and "GPS-like " intersatellite measurements. The performance of several candidate relative navigation approaches is evaluated. These analyses indicate that an autonomous relative navigation position accuracy of 1meter root-mean-square can be achieved by differencing high-accuracy filtered solutions if only measurements from common GPS space vehicles are used in the independently estimated solutions.

  12. Intelligent agents: adaptation of autonomous bimodal microsystems

    NASA Astrophysics Data System (ADS)

    Smith, Patrice; Terry, Theodore B.

    2014-03-01

    Autonomous bimodal microsystems exhibiting survivability behaviors and characteristics are able to adapt dynamically in any given environment. Equipped with a background blending exoskeleton it will have the capability to stealthily detect and observe a self-chosen viewing area while exercising some measurable form of selfpreservation by either flying or crawling away from a potential adversary. The robotic agent in this capacity activates a walk-fly algorithm, which uses a built in multi-sensor processing and navigation subsystem or algorithm for visual guidance and best walk-fly path trajectory to evade capture or annihilation. The research detailed in this paper describes the theoretical walk-fly algorithm, which broadens the scope of spatial and temporal learning, locomotion, and navigational performances based on optical flow signals necessary for flight dynamics and walking stabilities. By observing a fly's travel and avoidance behaviors; and, understanding the reverse bioengineering research efforts of others, we were able to conceptualize an algorithm, which works in conjunction with decisionmaking functions, sensory processing, and sensorimotor integration. Our findings suggest that this highly complex decentralized algorithm promotes inflight or terrain travel mobile stability which is highly suitable for nonaggressive micro platforms supporting search and rescue (SAR), and chemical and explosive detection (CED) purposes; a necessity in turbulent, non-violent structured or unstructured environments.

  13. Astronaut Susan Helms on aft flight deck with RMS controls

    NASA Image and Video Library

    1994-09-12

    STS064-05-028 (9-20 Sept. 1994) --- On the space shuttle Discovery's aft flight deck, astronaut Susan J. Helms handles controls for the Remote Manipulator System (RMS). The robot arm operated by Helms, who remained inside the cabin, was used to support several tasks performed by the crew during the almost 11-day mission. Those tasks included the release and retrieval of the free-flying Shuttle Pointed Autonomous Research Tool For Astronomy 201 (SPARTAN 201), a six-hour spacewalk and the Shuttle Plume Impingement Flight Experiment (SPIFEX). Photo credit: NASA or National Aeronautics and Space Administration

  14. Autonomous Navigation Using Celestial Objects

    NASA Technical Reports Server (NTRS)

    Folta, David; Gramling, Cheryl; Leung, Dominic; Belur, Sheela; Long, Anne

    1999-01-01

    In the twenty-first century, National Aeronautics and Space Administration (NASA) Enterprises envision frequent low-cost missions to explore the solar system, observe the universe, and study our planet. Satellite autonomy is a key technology required to reduce satellite operating costs. The Guidance, Navigation, and Control Center (GNCC) at the Goddard Space Flight Center (GSFC) currently sponsors several initiatives associated with the development of advanced spacecraft systems to provide autonomous navigation and control. Autonomous navigation has the potential both to increase spacecraft navigation system performance and to reduce total mission cost. By eliminating the need for routine ground-based orbit determination and special tracking services, autonomous navigation can streamline spacecraft ground systems. Autonomous navigation products can be included in the science telemetry and forwarded directly to the scientific investigators. In addition, autonomous navigation products are available onboard to enable other autonomous capabilities, such as attitude control, maneuver planning and orbit control, and communications signal acquisition. Autonomous navigation is required to support advanced mission concepts such as satellite formation flying. GNCC has successfully developed high-accuracy autonomous navigation systems for near-Earth spacecraft using NASA's space and ground communications systems and the Global Positioning System (GPS). Recently, GNCC has expanded its autonomous navigation initiative to include satellite orbits that are beyond the regime in which use of GPS is possible. Currently, GNCC is assessing the feasibility of using standard spacecraft attitude sensors and communication components to provide autonomous navigation for missions including: libration point, gravity assist, high-Earth, and interplanetary orbits. The concept being evaluated uses a combination of star, Sun, and Earth sensor measurements along with forward-link Doppler measurements from the command link carrier to autonomously estimate the spacecraft's orbit and reference oscillator's frequency. To support autonomous attitude determination and control and maneuver planning and control, the orbit determination accuracy should be on the order of kilometers in position and centimeters per second in velocity. A less accurate solution (one hundred kilometers in position) could be used for acquisition purposes for command and science downloads. This paper provides performance results for both libration point orbiting and high Earth orbiting satellites as a function of sensor measurement accuracy, measurement types, measurement frequency, initial state errors, and dynamic modeling errors.

  15. Autonomous Science Analysis with the New Millennium Program-Autonomous Sciencecraft Experiment

    NASA Astrophysics Data System (ADS)

    Doggett, T.; Davies, A. G.; Castano, R. A.; Baker, V. R.; Dohm, J. M.; Greeley, R.; Williams, K. K.; Chien, S.; Sherwood, R.

    2002-12-01

    The NASA New Millennium Program (NMP) is a testbed for new, high-risk technologies, including new software and hardware. The Autonomous Sciencecraft Experiment (ASE) will fly on the Air Force Research Laboratory TechSat-21 mission in 2006 is such a NMP mission, and is managed by the Jet Propulsion Laboratory, California Institute of Technology. TechSat-21 consists of three satellites, each equipped with X-band Synthetic Aperture Radar (SAR) that will occupy a 13-day repeat track Earth orbit. The main science objectives of ASE are to demonstrate that process-related change detection and feature identification can be conducted autonomously during space flight, leading to autonomous onboard retargeting of the spacecraft. This mission will observe transient geological and environmental processes using SAR. Examples of geologic processes that may be observed and investigated include active volcanism, the movement of sand dunes and transient features in desert environments, water flooding, and the formation and break-up of lake ice. Science software onboard the spacecraft will allow autonomous processing and formation of SAR images and extraction of scientific information. The subsequent analyses, performed on images formed onboard from the SAR data, will include feature identification using scalable feature "templates" for each target, change detection through comparison of current and archived images, and science discovery, a search for other features of interest in each image. This approach results in obtaining the same science return for a reduced amount of resource use (such as downlink) when compared to that from a mission operating without ASE technology. Redundant data is discarded. The science-driven goals of ASE will evolve during the ASE mission through onboard replanning software that can re-task satellite operations. If necessary, as a result of a discovery made autonomously by onboard science processing, existing observation sequences will be pre-empted to obtain data of potential high scientific content. Flight validation of this software will enable radically different missions with significant onboard decision-making and novel science concepts (onboard decision making and selective data return). This work has been carried out at the Jet Propulsion Laboratory-California Institute of Technology, under contract to NASA.

  16. The development of an autonomous gust insensitive unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Pisano, William James

    The study of a small Unmanned Aerial Vehicle (UAV) that is designed towards eventual operation in harsh storm-like conditions is presented. Investigation of the aircraft equations of motion shows that the selection of certain aerodynamic derivatives has a significant effect on the gust response of a small unmanned aircraft. Analytical comparison of this newly formulated Autonomous Gust Insensitive Aircraft (AGIA) to a conventionally designed aircraft shows a significant reduction in undesirable roll motion caused by gusts. A simulation is presented showing that the AGIA is capable of operating in more extreme environments than a conventional aircraft, and puts less strain on the control system components in both extreme and calm environments. The role that aircraft size plays in gust response is also studied. Pilot instinct dictates that smaller aircraft are more difficult to fly in windy environments than larger ones. This phenomenon is investigated using an analytic approach, providing insight into why smaller aircraft are indeed more difficult to fly in more challenging environments. As an aircraft gets smaller, its natural aerodynamic modes and response get faster. In an ideal system, this does not limit small aircraft to poor performance (in fact it will be shown that idealized small aircraft theoretically perform better than their larger counterparts). A more realistic system is presented that includes not only aerodynamics, but also realistic sensor and actuator dynamics. It is shown that these additional dynamics become a limiting factor in control system performance, and thus limit the closed-loop flight performance of small aircraft in turbulent environments. It is shown that the AGIA design approach plays a more significant role the as an aircraft gets smaller. To provide experimental validation of the gust insensitive theory presented herein, a representative small conventional aircraft was built alongside a similar aircraft that incorporated the AGIA design characteristics. These two aircraft were flown simultaneously and autonomously using the autopilot developed by the Author. Data from this experiment strongly supports the hypothesis that the AGIA is less sensitive to gusts than its conventional counterpart, and that flight of the AGIA puts less strain on the control system components in flight.

  17. Formation Flying for Satellites and Unmanned Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    Merrill, Garrick

    2015-01-01

    The shrinking size of satellites and unmanned aerial vehicles (UAVs) is enabling lower cost missions. As sensors and electronics continue to downsize, the next step is multiple vehicles providing different perspectives or variations for more precise measurements. While flying a single satellite or UAV autonomously is a challenge, flying multiple vehicles in a precise formation is even more challenging. The goal of this project is to develop a scalable mesh network between vehicles (satellites or UAVs) to share real-time position data and maintain formations autonomously. Newly available low-cost, commercial off-the-shelf credit card size computers will be used as the basis for this network. Mesh networking techniques will be used to provide redundant links and a flexible network. The Small Projects Rapid Integration and Test Environment Lab will be used to simulate formation flying of satellites. UAVs built by the Aero-M team will be used to demonstrate the formation flying in the West Test Area. The ability to test in flight on NASA-owned UAVs allows this technology to achieve a high Technology Readiness Level (TRL) (TRL-4 for satellites and TRL-7 for UAVs). The low cost of small UAVs and the availability of a large test range (West Test Area) dramatically reduces the expense of testing. The end goal is for this technology to be ready to use on any multiple satellite or UAV mission.

  18. Autonomous Space Shuttle

    NASA Technical Reports Server (NTRS)

    Siders, Jeffrey A.; Smith, Robert H.

    2004-01-01

    The continued assembly and operation of the International Space Station (ISS) is the cornerstone within NASA's overall Strategic P an. As indicated in NASA's Integrated Space Transportation Plan (ISTP), the International Space Station requires Shuttle to fly through at least the middle of the next decade to complete assembly of the Station, provide crew transport, and to provide heavy lift up and down mass capability. The ISTP reflects a tight coupling among the Station, Shuttle, and OSP programs to support our Nation's space goal . While the Shuttle is a critical component of this ISTP, there is a new emphasis for the need to achieve greater efficiency and safety in transporting crews to and from the Space Station. This need is being addressed through the Orbital Space Plane (OSP) Program. However, the OSP is being designed to "complement" the Shuttle as the primary means for crew transfer, and will not replace all the Shuttle's capabilities. The unique heavy lift capabilities of the Space Shuttle is essential for both ISS, as well as other potential missions extending beyond low Earth orbit. One concept under discussion to better fulfill this role of a heavy lift carrier, is the transformation of the Shuttle to an "un-piloted" autonomous system. This concept would eliminate the loss of crew risk, while providing a substantial increase in payload to orbit capability. Using the guidelines reflected in the NASA ISTP, the autonomous Shuttle a simplified concept of operations can be described as; "a re-supply of cargo to the ISS through the use of an un-piloted Shuttle vehicle from launch through landing". Although this is the primary mission profile, the other major consideration in developing an autonomous Shuttle is maintaining a crew transportation capability to ISS as an assured human access to space capability.

  19. Deployable reconnaissance from a VTOL UAS in urban environments

    NASA Astrophysics Data System (ADS)

    Barnett, Shane; Bird, John; Culhane, Andrew; Sharkasi, Adam; Reinholtz, Charles

    2007-04-01

    Reconnaissance collection in unknown or hostile environments can be a dangerous and life threatening task. To reduce this risk, the Unmanned Systems Group at Virginia Tech has produced a fully autonomous reconnaissance system able to provide live video reconnaissance from outside and inside unknown structures. This system consists of an autonomous helicopter which launches a small reconnaissance pod inside a building and an operator control unit (OCU) on a ground station. The helicopter is a modified Bergen Industrial Twin using a Rotomotion flight controller and can fly missions of up to one half hour. The mission planning OCU can control the helicopter remotely through teleoperation or fully autonomously by GPS waypoints. A forward facing camera and template matching aid in navigation by identifying the target building. Once the target structure is identified, vision algorithms will center the UAS adjacent to open windows or doorways. Tunable parameters in the vision algorithm account for varying launch distances and opening sizes. Launch of the reconnaissance pod may be initiated remotely through a human in the loop or autonomously. Compressed air propels the half pound stationary pod or the larger mobile pod into the open portals. Once inside the building, the reconnaissance pod will then transmit live video back to the helicopter. The helicopter acts as a repeater node for increased video range and simplification of communication back to the ground station.

  20. Integration of unmanned systems for tactical operations within hostile environments

    NASA Astrophysics Data System (ADS)

    Maddux, Gary A.; Bosco, Charles D.; Lawrence, James D.

    2006-05-01

    The University of Alabama in Huntsville (UAH) is currently investigating techniques and technologies for the integration of a small unmanned aerial vehicle (SUAV) with small unmanned ground vehicles (SUGV). Each vehicle has its own set of unique capabilities, but the efficient integration of the two for a specific application requires modifying and integrating both systems. UAH has been flying and testing an autonomously-controlled small helicopter, called the Flying Bassett (Base Airborne Surveillance and Sensing for Emergency Threat Tracking) for over a year. Recently, integrated operations were performed with four SUGVs, the Matilda (Mesa Robotics, Huntsville, AL), the US Navy Vanguard, the UAH Rover, and the Penetrator (Mesa Robotics). The program has progressed from 1) building an air and ground capability for video and infrared surveillance, 2) integration with ground vehicles in realistic scenarios, to 3) deployment and recovery of ground vehicles. The work was done with the cooperation of the US Army at Ft. Benning, GA and Redstone Arsenal, AL, the Federal Bureau of Investigation in Huntsville, AL, the US Naval Reserve in Knoxville, TN, and local emergency organizations. The results so far have shown that when the air and ground systems are employed together, their utility is greatly enhanced.

  1. SAMURAI: Polar AUV-Based Autonomous Dexterous Sampling

    NASA Astrophysics Data System (ADS)

    Akin, D. L.; Roberts, B. J.; Smith, W.; Roderick, S.; Reves-Sohn, R.; Singh, H.

    2006-12-01

    While autonomous undersea vehicles are increasingly being used for surveying and mapping missions, as of yet there has been little concerted effort to create a system capable of performing physical sampling or other manipulation of the local environment. This type of activity has typically been performed under teleoperated control from ROVs, which provides high-bandwidth real-time human direction of the manipulation activities. Manipulation from an AUV will require a completely autonomous sampling system, which implies both advanced technologies such as machine vision and autonomous target designation, but also dexterous robot manipulators to perform the actual sampling without human intervention. As part of the NASA Astrobiology Science and Technology for Exploring the Planets (ASTEP) program, the University of Maryland Space Systems Laboratory has been adapting and extending robotics technologies developed for spacecraft assembly and maintenance to the problem of autonomous sampling of biologicals and soil samples around hydrothermal vents. The Sub-polar ice Advanced Manipulator for Universal Sampling and Autonomous Intervention (SAMURAI) system is comprised of a 6000-meter capable six-degree-of-freedom dexterous manipulator, along with an autonomous vision system, multi-level control system, and sampling end effectors and storage mechanisms to allow collection of samples from vent fields. SAMURAI will be integrated onto the Woods Hole Oceanographic Institute (WHOI) Jaguar AUV, and used in Arctic during the fall of 2007 for autonomous vent field sampling on the Gakkel Ridge. Under the current operations concept, the JAGUAR and PUMA AUVs will survey the water column and localize on hydrothermal vents. Early mapping missions will create photomosaics of the vents and local surroundings, allowing scientists on the mission to designate desirable sampling targets. Based on physical characteristics such as size, shape, and coloration, the targets will be loaded into the SAMURAI control system, and JAGUAR (with SAMURAI mounted to the lower forward hull) will return to the designated target areas. Once on site, vehicle control will be turned over to the SAMURAI controller, which will perform vision-based guidance to the sampling site and will then ground the AUV to the sea bottom for stability. The SAMURAI manipulator will collect samples, such as sessile biologicals, geological samples, and (potentially) vent fluids, and store the samples for the return trip. After several hours of sampling operations on one or several sites, JAGUAR control will be returned to the WHOI onboard controller for the return to the support ship. (Operational details of AUV operations on the Gakkel Ridge mission are presented in other papers at this conference.) Between sorties, SAMURAI end effectors can be changed out on the surface for specific targets, such as push cores or larger biologicals such as tube worms. In addition to the obvious challenges in autonomous vision-based manipulator control from a free-flying support vehicle, significant development challenges have been the design of a highly capable robotic arm within the mass limitations (both wet and dry) of the JAGUAR vehicle, the development of a highly robust manipulator with modular maintenance units for extended polar operations, and the creation of a robot-based sample collection and holding system for multiple heterogeneous samples on a single extended sortie.

  2. STS-63 crew insignia

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Designed by the crew members, the crew patch depicts the Orbiter maneuving to rendezvous with Russia's Space Station Mir. The name is printed in Cyrillic on the side of the station. Visible in the Orbiter's payload bay are the commercial space laboratory Spacehab and the Shuttle Pointed Autonomous Research Tool for Astronomy (SPARTAN) satellite which are major payloads on the flight. The six points on the rising sun and the three stars are symbolic of the mission's Space Transportation System (STS) numerical designation. Flags of the United States and Russia at the bottom of the patch symbolize the cooperative operations of this mission. The crew will be flying aboard the space shuttle Discovery.

  3. GROVER: An autonomous vehicle for ice sheet research

    NASA Astrophysics Data System (ADS)

    Trisca, G. O.; Robertson, M. E.; Marshall, H.; Koenig, L.; Comberiate, M. A.

    2013-12-01

    The Goddard Remotely Operated Vehicle for Exploration and Research or Greenland Rover (GROVER) is a science enabling autonomous robot specifically designed to carry a low-power, large bandwidth radar for snow accumulation mapping over the Greenland Ice Sheet. This new and evolving technology enables reduced cost and increased safety for polar research. GROVER was field tested at Summit, Greenland in May 2013. The robot traveled over 30 km and was controlled both by line of sight wireless and completely autonomously with commands and telemetry via the Iridium Satellite Network, from Summit as well as remotely from Boise, Idaho. Here we describe GROVER's unique abilities and design. The software stack features a modular design that can be adapted for any application that requires autonomous behavior, reliable communications using different technologies and low level control of peripherals. The modules are built to communicate using the publisher-subscriber design pattern to maximize data-reuse and allow for graceful failures at the software level, along with the ability to be loaded or unloaded on-the-fly, enabling the software to adopt different behaviors based on power constraints or specific processing needs. These modules can also be loaded or unloaded remotely for servicing and telemetry can be configured to contain any kind of information being generated by the sensors or scientific instruments. The hardware design protects the electronic components and the control system can change functional parameters based on sensor input. Power failure modes built into the hardware prevent the vehicle from running out of energy permanently by monitoring voltage levels and triggering software reboots when the levels match pre-established conditions. This guarantees that the control software will be operational as soon as there is enough charge to sustain it, giving the vehicle increased longevity in case of a temporary power loss. GROVER demonstrates that autonomous rovers can be a revolutionary tool for data collection, and that both the technology and the software are available and ready to be implemented to create scientific data collection platforms.

  4. A Benchmark Problem for Development of Autonomous Structural Modal Identification

    NASA Technical Reports Server (NTRS)

    Pappa, Richard S.; Woodard, Stanley E.; Juang, Jer-Nan

    1996-01-01

    This paper summarizes modal identification results obtained using an autonomous version of the Eigensystem Realization Algorithm on a dynamically complex, laboratory structure. The benchmark problem uses 48 of 768 free-decay responses measured in a complete modal survey test. The true modal parameters of the structure are well known from two previous, independent investigations. Without user involvement, the autonomous data analysis identified 24 to 33 structural modes with good to excellent accuracy in 62 seconds of CPU time (on a DEC Alpha 4000 computer). The modal identification technique described in the paper is the baseline algorithm for NASA's Autonomous Dynamics Determination (ADD) experiment scheduled to fly on International Space Station assembly flights in 1997-1999.

  5. Protocol for Communication Networking for Formation Flying

    NASA Technical Reports Server (NTRS)

    Jennings, Esther; Okino, Clayton; Gao, Jay; Clare, Loren

    2009-01-01

    An application-layer protocol and a network architecture have been proposed for data communications among multiple autonomous spacecraft that are required to fly in a precise formation in order to perform scientific observations. The protocol could also be applied to other autonomous vehicles operating in formation, including robotic aircraft, robotic land vehicles, and robotic underwater vehicles. A group of spacecraft or other vehicles to which the protocol applies could be characterized as a precision-formation- flying (PFF) network, and each vehicle could be characterized as a node in the PFF network. In order to support precise formation flying, it would be necessary to establish a corresponding communication network, through which the vehicles could exchange position and orientation data and formation-control commands. The communication network must enable communication during early phases of a mission, when little positional knowledge is available. Particularly during early mission phases, the distances among vehicles may be so large that communication could be achieved only by relaying across multiple links. The large distances and need for omnidirectional coverage would limit communication links to operation at low bandwidth during these mission phases. Once the vehicles were in formation and distances were shorter, the communication network would be required to provide high-bandwidth, low-jitter service to support tight formation-control loops. The proposed protocol and architecture, intended to satisfy the aforementioned and other requirements, are based on a standard layered-reference-model concept. The proposed application protocol would be used in conjunction with conventional network, data-link, and physical-layer protocols. The proposed protocol includes the ubiquitous Institute of Electrical and Electronics Engineers (IEEE) 802.11 medium access control (MAC) protocol to be used in the datalink layer. In addition to its widespread and proven use in diverse local-area networks, this protocol offers both (1) a random- access mode needed for the early PFF deployment phase and (2) a time-bounded-services mode needed during PFF-maintenance operations. Switching between these two modes could be controlled by upper-layer entities using standard link-management mechanisms. Because the early deployment phase of a PFF mission can be expected to involve multihop relaying to achieve network connectivity (see figure), the proposed protocol includes the open shortest path first (OSPF) network protocol that is commonly used in the Internet. Each spacecraft in a PFF network would be in one of seven distinct states as the mission evolved from initial deployment, through coarse formation, and into precise formation. Reconfiguration of the formation to perform different scientific observations would also cause state changes among the network nodes. The application protocol provides for recognition and tracking of the seven states for each node and for protocol changes under specified conditions to adapt the network and satisfy communication requirements associated with the current PFF mission phase. Except during early deployment, when peer-to-peer random access discovery methods would be used, the application protocol provides for operation in a centralized manner.

  6. Integrated orbit and attitude hardware-in-the-loop simulations for autonomous satellite formation flying

    NASA Astrophysics Data System (ADS)

    Park, Han-Earl; Park, Sang-Young; Kim, Sung-Woo; Park, Chandeok

    2013-12-01

    Development and experiment of an integrated orbit and attitude hardware-in-the-loop (HIL) simulator for autonomous satellite formation flying are presented. The integrated simulator system consists of an orbit HIL simulator for orbit determination and control, and an attitude HIL simulator for attitude determination and control. The integrated simulator involves four processes (orbit determination, orbit control, attitude determination, and attitude control), which interact with each other in the same way as actual flight processes do. Orbit determination is conducted by a relative navigation algorithm using double-difference GPS measurements based on the extended Kalman filter (EKF). Orbit control is performed by a state-dependent Riccati equation (SDRE) technique that is utilized as a nonlinear controller for the formation control problem. Attitude is determined from an attitude heading reference system (AHRS) sensor, and a proportional-derivative (PD) feedback controller is used to control the attitude HIL simulator using three momentum wheel assemblies. Integrated orbit and attitude simulations are performed for a formation reconfiguration scenario. By performing the four processes adequately, the desired formation reconfiguration from a baseline of 500-1000 m was achieved with meter-level position error and millimeter-level relative position navigation. This HIL simulation demonstrates the performance of the integrated HIL simulator and the feasibility of the applied algorithms in a real-time environment. Furthermore, the integrated HIL simulator system developed in the current study can be used as a ground-based testing environment to reproduce possible actual satellite formation operations.

  7. Spitzer observatory operations: increasing efficiency in mission operations

    NASA Astrophysics Data System (ADS)

    Scott, Charles P.; Kahr, Bolinda E.; Sarrel, Marc A.

    2006-06-01

    This paper explores the how's and why's of the Spitzer Mission Operations System's (MOS) success, efficiency, and affordability in comparison to other observatory-class missions. MOS exploits today's flight, ground, and operations capabilities, embraces automation, and balances both risk and cost. With operational efficiency as the primary goal, MOS maintains a strong control process by translating lessons learned into efficiency improvements, thereby enabling the MOS processes, teams, and procedures to rapidly evolve from concept (through thorough validation) into in-flight implementation. Operational teaming, planning, and execution are designed to enable re-use. Mission changes, unforeseen events, and continuous improvement have often times forced us to learn to fly anew. Collaborative spacecraft operations and remote science and instrument teams have become well integrated, and worked together to improve and optimize each human, machine, and software-system element. Adaptation to tighter spacecraft margins has facilitated continuous operational improvements via automated and autonomous software coupled with improved human analysis. Based upon what we now know and what we need to improve, adapt, or fix, the projected mission lifetime continues to grow - as does the opportunity for numerous scientific discoveries.

  8. An Overview of the StarLight Mission

    NASA Technical Reports Server (NTRS)

    Lay, Oliver; Blackwood, Gary; Dubovitsky, Serge; Duren, Riley

    2004-01-01

    An overview of the Starlight Mission is presented. Mission summary: June 2006 launch to heliocentric orbit; Nominal 6 month mission with option of additional 6 month extension; Validate autonomous formation flying system: range control to 10 cm bearing, control to 4 arcmin; Demonstrate formation flying optical interferometry.The original 3 spacecraft design did not fit the budget. 2 spacecraft concept demonstrates all key areas of formation flying interferometry. Collector flown on the surface of a virtual paraboloid, with combiner at the focus. It Gives a baseline of 125 m with a fixed delay of only 14 m.

  9. Autonomous Mission Operations Roadmap

    NASA Technical Reports Server (NTRS)

    Frank, Jeremy David

    2014-01-01

    As light time delays increase, the number of such situations in which crew autonomy is the best way to conduct the mission is expected to increase. However, there are significant open questions regarding which functions to allocate to ground and crew as the time delays increase. In situations where the ideal solution is to allocate responsibility to the crew and the vehicle, a second question arises: should the activity be the responsibility of the crew or an automated vehicle function? More specifically, we must answer the following questions: What aspects of mission operation responsibilities (Plan, Train, Fly) should be allocated to ground based or vehicle based planning, monitoring, and control in the presence of significant light-time delay between the vehicle and the Earth?How should the allocated ground based planning, monitoring, and control be distributed across the flight control team and ground system automation? How should the allocated vehicle based planning, monitoring, and control be distributed between the flight crew and onboard system automation?When during the mission should responsibility shift from flight control team to crew or from crew to vehicle, and what should the process of shifting responsibility be as the mission progresses? NASA is developing a roadmap of capabilities for Autonomous Mission Operations for human spaceflight. This presentation will describe the current state of development of this roadmap, with specific attention to in-space inspection tasks that crews might perform with minimum assistance from the ground.

  10. A Review of Biological Communication Mechanisms Applicable to Small Autonomous Systems

    DTIC Science & Technology

    2010-09-01

    studies of cochlear potentials of the Myotis lucifugus indicate that the bat’s sensitivity to an acoustic signal is poor at low frequencies, improves as...1991]). 2.3.1 Antennae Insect antennae can be extremely sensitive to air flow and displacement. Many arthropods, including crickets, cockroaches...flies also use their antennae to estimate flight speed by the amount of air flowing past them. Currently, researchers are investigating how flies

  11. Chemical/Light-Powered Hybrid Micromotors with "On-the-Fly" Optical Brakes.

    PubMed

    Chen, Chuanrui; Tang, Songsong; Teymourian, Hazhir; Karshalev, Emil; Zhang, Fangyu; Li, Jinxing; Mou, Fangzhi; Liang, Yuyan; Guan, Jianguo; Wang, Joseph

    2018-07-02

    Hybrid micromotors capable of both chemically powered propulsion and fuel-free light-driven actuation and offering built-in optical brakes for chemical propulsion are described. The new hybrid micromotors are designed by combining photocatalytic TiO 2 and catalytic Pt surfaces into a Janus microparticle. The chemical reactions on the different surfaces of the Janus particle hybrid micromotor can be tailored by using chemical or light stimuli that generate counteracting propulsion forces on the catalytic Pt and photocatalytic TiO 2 sides. Such modulation of the surface chemistry on a single micromotor leads to switchable propulsion modes and reversal of the direction of motion that reflect the tuning of the local ion concentration and hence the dominant propulsion force. An intermediate Au layer (under the Pt surface) plays an important role in determining the propulsion mechanism and operation of the hybrid motor. The built-in optical braking system allows "on-the-fly" control of the chemical propulsion through a photocatalytic reaction on the TiO 2 side to counterbalance the chemical propulsion force generated on the Pt side. The adaptive dual operation of these chemical/light hybrid micromotors, associated with such control of the surface chemistry, holds considerable promise for designing smart nanomachines that autonomously reconfigure their propulsion mode for various on-demand operations. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Biomechanics and biomimetics in insect-inspired flight systems

    PubMed Central

    Liu, Hao; Ravi, Sridhar; Kolomenskiy, Dmitry; Tanaka, Hiroto

    2016-01-01

    Insect- and bird-size drones—micro air vehicles (MAV) that can perform autonomous flight in natural and man-made environments are now an active and well-integrated research area. MAVs normally operate at a low speed in a Reynolds number regime of 104–105 or lower, in which most flying animals of insects, birds and bats fly, and encounter unconventional challenges in generating sufficient aerodynamic forces to stay airborne and in controlling flight autonomy to achieve complex manoeuvres. Flying insects that power and control flight by flapping wings are capable of sophisticated aerodynamic force production and precise, agile manoeuvring, through an integrated system consisting of wings to generate aerodynamic force, muscles to move the wings and a control system to modulate power output from the muscles. In this article, we give a selective review on the state of the art of biomechanics in bioinspired flight systems in terms of flapping and flexible wing aerodynamics, flight dynamics and stability, passive and active mechanisms in stabilization and control, as well as flapping flight in unsteady environments. We further highlight recent advances in biomimetics of flapping-wing MAVs with a specific focus on insect-inspired wing design and fabrication, as well as sensing systems. This article is part of the themed issue ‘Moving in a moving medium: new perspectives on flight’. PMID:27528780

  13. Flying Boresight for Advanced Testing and Calibration of Tracking Antennas and Flight Path Simulations

    NASA Astrophysics Data System (ADS)

    Hafner, D.

    2015-09-01

    The application of ground-based boresight sources for calibration and testing of tracking antennas usually entails various difficulties, mostly due to unwanted ground effects. To avoid this problem, DLR MORABA developed a small, lightweight, frequency-adjustable S-band boresight source, mounted on a small remote-controlled multirotor aircraft. Highly accurate GPS-supported, position and altitude control functions allow both, very steady positioning of the aircraft in mid-air, and precise waypoint-based, semi-autonomous flights. In contrast to fixed near-ground boresight sources this flying setup enables to avoid obstructions in the Fresnel zone between source and antenna. Further, it minimizes ground reflections and other multipath effects which can affect antenna calibration. In addition, the large operating range of a flying boresight simplifies measurements in the far field of the antenna and permits undisturbed antenna pattern tests. A unique application is the realistic simulation of sophisticated flight paths, including overhead tracking and demanding trajectories of fast objects such as sounding rockets. Likewise, dynamic tracking tests are feasible which provide crucial information about the antenna pedestal performance — particularly at high elevations — and reveal weaknesses in the autotrack control loop of tracking antenna systems. During acceptance tests of MORABA's new tracking antennas, a manned aircraft was never used, since the Flying Boresight surpassed all expectations regarding usability, efficiency, and precision. Hence, it became an integral part of MORABA's standard antenna setup and calibration procedures.

  14. Grasping rigid objects in zero-g

    NASA Astrophysics Data System (ADS)

    Anderson, Greg D.

    1993-12-01

    The extra vehicular activity helper/retriever (EVAHR) is a prototype for an autonomous free- flying robotic astronaut helper. The ability to grasp a moving object is a fundamental skill required for any autonomous free-flyer. This paper discusses an algorithm that couples resolved acceleration control with potential field based obstacle avoidance to enable a manipulator to track and capture a rigid object in (imperfect) zero-g while avoiding joint limits, singular configurations, and unintentional impacts between the manipulator and the environment.

  15. The autonomous sciencecraft constellations

    NASA Technical Reports Server (NTRS)

    Sherwood, R. L.; Chien, S.; Castano, R.; Rabideau, G.

    2003-01-01

    The Autonomous Sciencecraft Experiment (ASE) will fly onboard the Air Force TechSat 21 constellation of three spacecraft scheduled for launch in 2006. ASE uses onboard continuous planning, robust task and goal-based execution, model-based mode identification and reconfiguration, and onboard machine learning and pattern recognition to radically increase science return by enabling intelligent downlink selection and autonomous retargeting. In this paper we discuss how these AI technologies are synergistically integrated in a hybrid multi-layer control architecture to enable a virtual spacecraft science agent. Demonstration of these capabilities in a flight environment will open up tremendous new opportunities in planetary science, space physics, and earth science that would be unreachable without this technology.

  16. Control of intelligent robots in space

    NASA Technical Reports Server (NTRS)

    Freund, E.; Buehler, CH.

    1989-01-01

    In view of space activities like International Space Station, Man-Tended-Free-Flyer (MTFF) and free flying platforms, the development of intelligent robotic systems is gaining increasing importance. The range of applications that have to be performed by robotic systems in space includes e.g., the execution of experiments in space laboratories, the service and maintenance of satellites and flying platforms, the support of automatic production processes or the assembly of large network structures. Some of these tasks will require the development of bi-armed or of multiple robotic systems including functional redundancy. For the development of robotic systems which are able to perform this variety of tasks a hierarchically structured modular concept of automation is required. This concept is characterized by high flexibility as well as by automatic specialization to the particular sequence of tasks that have to be performed. On the other hand it has to be designed such that the human operator can influence or guide the system on different levels of control supervision, and decision. This leads to requirements for the hardware and software concept which permit a range of application of the robotic systems from telemanipulation to autonomous operation. The realization of this goal requires strong efforts in the development of new methods, software and hardware concepts, and the integration into an automation concept.

  17. Passive detection of subpixel obstacles for flight safety

    NASA Astrophysics Data System (ADS)

    Nixon, Matthew D.; Loveland, Rohan C.

    2001-12-01

    Military aircraft fly below 100 ft. above ground level in support of their missions. These aircraft include fixed and rotary wing and may be manned or unmanned. Flying at these low altitudes presents a safety hazard to the aircrew and aircraft, due to the occurrences of obstacles within the aircraft's flight path. The pilot must rely on eyesight and in some cases, infrared sensors to see obstacles. Many conditions can exacerbate visibility creating a situation in which obstacles are essentially invisible, creating a safety hazard, even to an alerted aircrew. Numerous catastrophic accidents have occurred in which aircraft have collided with undetected obstacles. Accidents of this type continue to be a problem for low flying military and commercial aircraft. Unmanned Aerial Vehicles (UAVs) have the same problem, whether operating autonomously or under control of a ground operator. Boeing-SVS has designed a passive, small, low- cost (under $100k) gimbaled, infrared imaging based system with advanced obstacle detection algorithms. Obstacles are detected in the infrared band, and linear features are analyzed by innovative cellular automata based software. These algorithms perform detection and location of sub-pixel linear features. The detection of the obstacles is performed on a frame by frame basis, in real time. Processed images are presented to the aircrew on their display as color enhanced features. The system has been designed such that the detected obstacles are displayed to the aircrew in sufficient time to react and maneuver the aircraft to safety. A patent for this system is on file with the US patent office, and all material herein should be treated accordingly.

  18. From wheels to wings with evolutionary spiking circuits.

    PubMed

    Floreano, Dario; Zufferey, Jean-Christophe; Nicoud, Jean-Daniel

    2005-01-01

    We give an overview of the EPFL indoor flying project, whose goal is to evolve neural controllers for autonomous, adaptive, indoor micro-flyers. Indoor flight is still a challenge because it requires miniaturization, energy efficiency, and control of nonlinear flight dynamics. This ongoing project consists of developing a flying, vision-based micro-robot, a bio-inspired controller composed of adaptive spiking neurons directly mapped into digital microcontrollers, and a method to evolve such a neural controller without human intervention. This article describes the motivation and methodology used to reach our goal as well as the results of a number of preliminary experiments on vision-based wheeled and flying robots.

  19. Distributed cooperating processes in a mobile robot control system

    NASA Technical Reports Server (NTRS)

    Skillman, Thomas L., Jr.

    1988-01-01

    A mobile inspection robot has been proposed for the NASA Space Station. It will be a free flying autonomous vehicle that will leave a berthing unit to accomplish a variety of inspection tasks around the Space Station, and then return to its berth to recharge, refuel, and transfer information. The Flying Eye robot will receive voice communication to change its attitude, move at a constant velocity, and move to a predefined location along a self generated path. This mobile robot control system requires integration of traditional command and control techniques with a number of AI technologies. Speech recognition, natural language understanding, task and path planning, sensory abstraction and pattern recognition are all required for successful implementation. The interface between the traditional numeric control techniques and the symbolic processing to the AI technologies must be developed, and a distributed computing approach will be needed to meet the real time computing requirements. To study the integration of the elements of this project, a novel mobile robot control architecture and simulation based on the blackboard architecture was developed. The control system operation and structure is discussed.

  20. Enabling Spacecraft Formation Flying in Any Earth Orbit Through Spaceborne GPS and Enhanced Autonomy Technologies

    NASA Technical Reports Server (NTRS)

    Bauer, F. H.; Bristow, J. O.; Carpenter, J. R.; Garrison, J. L.; Hartman, K. R.; Lee, T.; Long, A. C.; Kelbel, D.; Lu, V.; How, J. P.; hide

    2000-01-01

    Formation flying is quickly revolutionizing the way the space community conducts autonomous science missions around the Earth and in space. This technological revolution will provide new, innovative ways for this community to gather scientific information, share this information between space vehicles and the ground, and expedite the human exploration of space. Once fully matured, this technology will result in swarms of space vehicles flying as a virtual platform and gathering significantly more and better science data than is possible today. Formation flying will be enabled through the development and deployment of spaceborne differential Global Positioning System (GPS) technology and through innovative spacecraft autonomy techniques, This paper provides an overview of the current status of NASA/DoD/Industry/University partnership to bring formation flying technology to the forefront as quickly as possible, the hurdles that need to be overcome to achieve the formation flying vision, and the team's approach to transfer this technology to space. It will also describe some of the formation flying testbeds, such as Orion, that are being developed to demonstrate and validate these innovative GPS sensing and formation control technologies.

  1. Opportunity Science Using the Juno Magnetometer Investigation Star Trackers

    NASA Astrophysics Data System (ADS)

    Joergensen, J. L.; Connerney, J. E.; Bang, A. M.; Denver, T.; Oliversen, R. J.; Benn, M.; Lawton, P.

    2013-12-01

    The magnetometer experiment onboard Juno is equipped with four non-magnetic star tracker camera heads, two of which reside on each of the magnetometer sensor optical benches. These are located 10 and 12 m from the spacecraft body at the end of one of the three solar panel wings. The star tracker, collectively referred to as the Advanced Stellar Compass (ASC), provides high accuracy attitude information for the magnetometer sensors throughout science operations. The star tracker camera heads are pointed +/- 13 deg off the spin vector, in the anti-sun direction, imaging a 13 x 20 deg field of view every ¼ second as Juno rotates at 1 or 2 rpm. The ASC is a fully autonomous star tracker, producing a time series of attitude quaternions for each camera head, utilizing a suite of internal support functions. These include imaging capabilities, autonomous object tracking, automatic dark-sky monitoring, and related capabilities; these internal functions may be accessed via telecommand. During Juno's cruise phase, this capability can be tapped to provide unique science and engineering data available along the Juno trajectory. We present a few examples of the JUNO ASC opportunity science here. As the Juno spacecraft approached the Earth-Moon system for the close encounter with the Earth on October 9, 2013, one of the ASC camera heads obtained imagery of the Earth-Moon system while the other three remained in full science (attitude determination) operation. This enabled the first movie of the Earth and Moon obtained by a spacecraft flying past the Earth in gravity assist. We also use the many artificial satellites in orbit about the Earth as calibration targets for the autonomous asteroid detection system inherent to the ASC autonomous star tracker. We shall also profile the zodiacal dust disk, using the interstellar image data, and present the outlook for small asteroid body detection and distribution being performed during Juno's passage from Earth flyby to Jovian orbit insertion.

  2. AERCam Autonomy: Intelligent Software Architecture for Robotic Free Flying Nanosatellite Inspection Vehicles

    NASA Technical Reports Server (NTRS)

    Fredrickson, Steven E.; Duran, Steve G.; Braun, Angela N.; Straube, Timothy M.; Mitchell, Jennifer D.

    2006-01-01

    The NASA Johnson Space Center has developed a nanosatellite-class Free Flyer intended for future external inspection and remote viewing of human spacecraft. The Miniature Autonomous Extravehicular Robotic Camera (Mini AERCam) technology demonstration unit has been integrated into the approximate form and function of a flight system. The spherical Mini AERCam Free Flyer is 7.5 inches in diameter and weighs approximately 10 pounds, yet it incorporates significant additional capabilities compared to the 35-pound, 14-inch diameter AERCam Sprint that flew as a Shuttle flight experiment in 1997. Mini AERCam hosts a full suite of miniaturized avionics, instrumentation, communications, navigation, power, propulsion, and imaging subsystems, including digital video cameras and a high resolution still image camera. The vehicle is designed for either remotely piloted operations or supervised autonomous operations, including automatic stationkeeping, point-to-point maneuvering, and waypoint tracking. The Mini AERCam Free Flyer is accompanied by a sophisticated control station for command and control, as well as a docking system for automated deployment, docking, and recharge at a parent spacecraft. Free Flyer functional testing has been conducted successfully on both an airbearing table and in a six-degree-of-freedom closed-loop orbital simulation with avionics hardware in the loop. Mini AERCam aims to provide beneficial on-orbit views that cannot be obtained from fixed cameras, cameras on robotic manipulators, or cameras carried by crewmembers during extravehicular activities (EVA s). On Shuttle or International Space Station (ISS), for example, Mini AERCam could support external robotic operations by supplying orthogonal views to the intravehicular activity (IVA) robotic operator, supply views of EVA operations to IVA and/or ground crews monitoring the EVA, and carry out independent visual inspections of areas of interest around the spacecraft. To enable these future benefits with minimal impact on IVA operators and ground controllers, the Mini AERCam system architecture incorporates intelligent systems attributes that support various autonomous capabilities. 1) A robust command sequencer enables task-level command scripting. Command scripting is employed for operations such as automatic inspection scans over a region of interest, and operator-hands-off automated docking. 2) A system manager built on the same expert-system software as the command sequencer provides detection and smart-response capability for potential system-level anomalies, like loss of communications between the Free Flyer and control station. 3) An AERCam dynamics manager provides nominal and off-nominal management of guidance, navigation, and control (GN&C) functions. It is employed for safe trajectory monitoring, contingency maneuvering, and related roles. This paper will describe these architectural components of Mini AERCam autonomy, as well as the interaction of these elements with a human operator during supervised autonomous control.

  3. Design and optimal control of on-orbit servicing trajectory for target vehicle in non-coplanar elliptical orbit

    NASA Astrophysics Data System (ADS)

    Zhou, Wenyong; Yuan, Jianping; Luo, Jianjun

    2005-11-01

    Autonomous on-orbit servicing provides flexibility to space systems and has great value both in civil and in military. When a satellite performs on-orbit servicing tasks, flying around is the basic type of motion. This paper is concerned with the design and control problems of a chaser satellite flying around a target spacecraft in non-coplanar elliptical orbit for a long time. At first, a mathematical model used to design a long-term flying around trajectory is presented, which is applicable to the situation that the target spacecraft flies in an elliptical orbit. The conditions of the target at the centre of the flying around path are deduced. Considering the safety and task requirements, a long-term flying around trajectory is designed. Taking into account perturbations and navigation errors which can cause the trajectory unstable and mission impossible, a two-impulse control method is put forward. Genetic algorithm is used to minimize the cost function which considers fuel consumption and bias simultaneously. Some simulation works are carried out and the results indicate the flying around mathematical model and the trajectory control method can be used in the design and control of a long-term flying around trajectory.

  4. UWB Tracking System Design for Free-Flyers

    NASA Technical Reports Server (NTRS)

    Ni, Jianjun; Arndt, Dickey; Phan, Chan; Ngo, Phong; Gross, Julia; Dusl, John

    2004-01-01

    This paper discusses an ultra-wideband (UWB) tracking system design effort for Mini-AERCam (Autonomous Extra-vehicular Robotic Camera), a free-flying video camera system under development at NASA Johnson Space Center for aid in surveillance around the International Space Station (ISS). UWB technology is exploited to implement the tracking system due to its properties, such as high data rate, fine time resolution, and low power spectral density. A system design using commercially available UWB products is proposed. A tracking algorithm TDOA (Time Difference of Arrival) that operates cooperatively with the UWB system is developed in this research effort. Matlab simulations show that the tracking algorithm can achieve fine tracking resolution with low noise TDOA data. Lab experiments demonstrate the UWB tracking capability with fine resolution.

  5. Flocking algorithm for autonomous flying robots.

    PubMed

    Virágh, Csaba; Vásárhelyi, Gábor; Tarcai, Norbert; Szörényi, Tamás; Somorjai, Gergő; Nepusz, Tamás; Vicsek, Tamás

    2014-06-01

    Animal swarms displaying a variety of typical flocking patterns would not exist without the underlying safe, optimal and stable dynamics of the individuals. The emergence of these universal patterns can be efficiently reconstructed with agent-based models. If we want to reproduce these patterns with artificial systems, such as autonomous aerial robots, agent-based models can also be used in their control algorithms. However, finding the proper algorithms and thus understanding the essential characteristics of the emergent collective behaviour requires thorough and realistic modeling of the robot and also the environment. In this paper, we first present an abstract mathematical model of an autonomous flying robot. The model takes into account several realistic features, such as time delay and locality of communication, inaccuracy of the on-board sensors and inertial effects. We present two decentralized control algorithms. One is based on a simple self-propelled flocking model of animal collective motion, the other is a collective target tracking algorithm. Both algorithms contain a viscous friction-like term, which aligns the velocities of neighbouring agents parallel to each other. We show that this term can be essential for reducing the inherent instabilities of such a noisy and delayed realistic system. We discuss simulation results on the stability of the control algorithms, and perform real experiments to show the applicability of the algorithms on a group of autonomous quadcopters. In our case, bio-inspiration works in two ways. On the one hand, the whole idea of trying to build and control a swarm of robots comes from the observation that birds tend to flock to optimize their behaviour as a group. On the other hand, by using a realistic simulation framework and studying the group behaviour of autonomous robots we can learn about the major factors influencing the flight of bird flocks.

  6. Control of free-flying space robot manipulator systems

    NASA Technical Reports Server (NTRS)

    Cannon, Robert H., Jr.

    1990-01-01

    New control techniques for self contained, autonomous free flying space robots were developed and tested experimentally. Free flying robots are envisioned as a key element of any successful long term presence in space. These robots must be capable of performing the assembly, maintenance, and inspection, and repair tasks that currently require human extravehicular activity (EVA). A set of research projects were developed and carried out using lab models of satellite robots and a flexible manipulator. The second generation space robot models use air cushion vehicle (ACV) technology to simulate in 2-D the drag free, zero g conditions of space. The current work is divided into 5 major projects: Global Navigation and Control of a Free Floating Robot, Cooperative Manipulation from a Free Flying Robot, Multiple Robot Cooperation, Thrusterless Robotic Locomotion, and Dynamic Payload Manipulation. These projects are examined in detail.

  7. Biomechanics and biomimetics in insect-inspired flight systems.

    PubMed

    Liu, Hao; Ravi, Sridhar; Kolomenskiy, Dmitry; Tanaka, Hiroto

    2016-09-26

    Insect- and bird-size drones-micro air vehicles (MAV) that can perform autonomous flight in natural and man-made environments are now an active and well-integrated research area. MAVs normally operate at a low speed in a Reynolds number regime of 10(4)-10(5) or lower, in which most flying animals of insects, birds and bats fly, and encounter unconventional challenges in generating sufficient aerodynamic forces to stay airborne and in controlling flight autonomy to achieve complex manoeuvres. Flying insects that power and control flight by flapping wings are capable of sophisticated aerodynamic force production and precise, agile manoeuvring, through an integrated system consisting of wings to generate aerodynamic force, muscles to move the wings and a control system to modulate power output from the muscles. In this article, we give a selective review on the state of the art of biomechanics in bioinspired flight systems in terms of flapping and flexible wing aerodynamics, flight dynamics and stability, passive and active mechanisms in stabilization and control, as well as flapping flight in unsteady environments. We further highlight recent advances in biomimetics of flapping-wing MAVs with a specific focus on insect-inspired wing design and fabrication, as well as sensing systems.This article is part of the themed issue 'Moving in a moving medium: new perspectives on flight'. © 2016 The Author(s).

  8. Development of a GPS/INS/MAG navigation system and waypoint navigator for a VTOL UAV

    NASA Astrophysics Data System (ADS)

    Meister, Oliver; Mönikes, Ralf; Wendel, Jan; Frietsch, Natalie; Schlaile, Christian; Trommer, Gert F.

    2007-04-01

    Unmanned aerial vehicles (UAV) can be used for versatile surveillance and reconnaissance missions. If a UAV is capable of flying automatically on a predefined path the range of possible applications is widened significantly. This paper addresses the development of the integrated GPS/INS/MAG navigation system and a waypoint navigator for a small vertical take-off and landing (VTOL) unmanned four-rotor helicopter with a take-off weight below 1 kg. The core of the navigation system consists of low cost inertial sensors which are continuously aided with GPS, magnetometer compass, and a barometric height information. Due to the fact, that the yaw angle becomes unobservable during hovering flight, the integration with a magnetic compass is mandatory. This integration must be robust with respect to errors caused by the terrestrial magnetic field deviation and interferences from surrounding electronic devices as well as ferrite metals. The described integration concept with a Kalman filter overcomes the problem that erroneous magnetic measurements yield to an attitude error in the roll and pitch axis. The algorithm provides long-term stable navigation information even during GPS outages which is mandatory for the flight control of the UAV. In the second part of the paper the guidance algorithms are discussed in detail. These algorithms allow the UAV to operate in a semi-autonomous mode position hold as well an complete autonomous waypoint mode. In the position hold mode the helicopter maintains its position regardless of wind disturbances which ease the pilot job during hold-and-stare missions. The autonomous waypoint navigator enable the flight outside the range of vision and beyond the range of the radio link. Flight test results of the implemented modes of operation are shown.

  9. Egnos-Based Multi-Sensor Accurate and Reliable Navigation in Search-And Missions with Uavs

    NASA Astrophysics Data System (ADS)

    Molina, P.; Colomina, I.; Vitoria, T.; Silva, P. F.; Stebler, Y.; Skaloud, J.; Kornus, W.; Prades, R.

    2011-09-01

    This paper will introduce and describe the goals, concept and overall approach of the European 7th Framework Programme's project named CLOSE-SEARCH, which stands for 'Accurate and safe EGNOS-SoL Navigation for UAV-based low-cost SAR operations'. The goal of CLOSE-SEARCH is to integrate in a helicopter-type unmanned aerial vehicle, a thermal imaging sensor and a multi-sensor navigation system (based on the use of a Barometric Altimeter (BA), a Magnetometer (MAGN), a Redundant Inertial Navigation System (RINS) and an EGNOS-enabled GNSS receiver) with an Autonomous Integrity Monitoring (AIM) capability, to support the search component of Search-And-Rescue operations in remote, difficult-to-access areas and/or in time critical situations. The proposed integration will result in a hardware and software prototype that will demonstrate an end-to-end functionality, that is to fly in patterns over a region of interest (possibly inaccessible) during day or night and also under adverse weather conditions and locate there disaster survivors or lost people through the detection of the body heat. This paper will identify the technical challenges of the proposed approach, from navigating with a BA/MAGN/RINS/GNSS-EGNOSbased integrated system to the interpretation of thermal images for person identification. Moreover, the AIM approach will be described together with the proposed integrity requirements. Finally, this paper will show some results obtained in the project during the first test campaign performed on November 2010. On that day, a prototype was flown in three different missions to assess its high-level performance and to observe some fundamental mission parameters as the optimal flying height and flying speed to enable body recognition. The second test campaign is scheduled for the end of 2011.

  10. Common aero vehicle autonomous reentry trajectory optimization satisfying waypoint and no-fly zone constraints

    NASA Astrophysics Data System (ADS)

    Jorris, Timothy R.

    2007-12-01

    To support the Air Force's Global Reach concept, a Common Aero Vehicle is being designed to support the Global Strike mission. "Waypoints" are specified for reconnaissance or multiple payload deployments and "no-fly zones" are specified for geopolitical restrictions or threat avoidance. Due to time critical targets and multiple scenario analysis, an autonomous solution is preferred over a time-intensive, manually iterative one. Thus, a real-time or near real-time autonomous trajectory optimization technique is presented to minimize the flight time, satisfy terminal and intermediate constraints, and remain within the specified vehicle heating and control limitations. This research uses the Hypersonic Cruise Vehicle (HCV) as a simplified two-dimensional platform to compare multiple solution techniques. The solution techniques include a unique geometric approach developed herein, a derived analytical dynamic optimization technique, and a rapidly emerging collocation numerical approach. This up-and-coming numerical technique is a direct solution method involving discretization then dualization, with pseudospectral methods and nonlinear programming used to converge to the optimal solution. This numerical approach is applied to the Common Aero Vehicle (CAV) as the test platform for the full three-dimensional reentry trajectory optimization problem. The culmination of this research is the verification of the optimality of this proposed numerical technique, as shown for both the two-dimensional and three-dimensional models. Additionally, user implementation strategies are presented to improve accuracy and enhance solution convergence. Thus, the contributions of this research are the geometric approach, the user implementation strategies, and the determination and verification of a numerical solution technique for the optimal reentry trajectory problem that minimizes time to target while satisfying vehicle dynamics and control limitation, and heating, waypoint, and no-fly zone constraints.

  11. Visual control of navigation in insects and its relevance for robotics.

    PubMed

    Srinivasan, Mandyam V

    2011-08-01

    Flying insects display remarkable agility, despite their diminutive eyes and brains. This review describes our growing understanding of how these creatures use visual information to stabilize flight, avoid collisions with objects, regulate flight speed, detect and intercept other flying insects such as mates or prey, navigate to a distant food source, and orchestrate flawless landings. It also outlines the ways in which these insights are now being used to develop novel, biologically inspired strategies for the guidance of autonomous, airborne vehicles. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. RME 1323 and DTO 671 during second EVA of STS-87

    NASA Image and Video Library

    1997-12-03

    STS087-752-035 (19 November – 5 December 1997) --- This out-the-window view shows the Autonomous Extravehicular Activity Robotic Camera Sprint (AERCam Sprint) free-flying in the vicinity of the cargo bay of the Earth-orbiting Space Shuttle Columbia. The AERCam Sprint is a prototype free-flying television camera that could be used for remote inspections of the exterior of the International Space Station (ISS). This view, backdropped over southern Madagascar, was taken during this flight's second Extravehicular Activity (EVA), on December 3, 1997.

  13. RME 1323 and DTO 671 during second EVA of STS-87

    NASA Image and Video Library

    1997-12-03

    STS087-752-034 (19 November - 5 December 1997) --- This out-the-window view shows the Autonomous Extravehicular Activity Robotic Camera Sprint (AERCam Sprint) free-flying in the vicinity of the cargo bay of the Earth-orbiting Space Shuttle Columbia. The AERCam Sprint is a prototype free-flying television camera that could be used for remote inspections of the exterior of the International Space Station (ISS). This view, backdropped over southern Madagascar, was taken during this flight's second extravehicular activity (EVA), on December 3, 1997.

  14. Mathematical model of unmanned aerial vehicle used for endurance autonomous monitoring

    NASA Astrophysics Data System (ADS)

    Chelaru, Teodor-Viorel; Chelaru, Adrian

    2014-12-01

    The paper purpose is to present some aspects regarding the control system of unmanned aerial vehicle - UAV, used to local observations, surveillance and monitoring interest area. The calculus methodology allows a numerical simulation of UAV evolution in bad atmospheric conditions by using nonlinear model, as well as a linear one for obtaining guidance command. The UAV model which will be presented has six DOF (degrees of freedom), and autonomous control system. This theoretical development allows us to build stability matrix, command matrix and control matrix and finally to analyse the stability of autonomous UAV flight. A robust guidance system, based on uncoupled state will be evaluated for different fly conditions and the results will be presented. The flight parameters and guidance will be analysed.

  15. Drift Recovery and Station Keeping for the CanX-4 & CanX-5 Nanosatellite Formation Flying Mission

    NASA Astrophysics Data System (ADS)

    Newman, Joshua Zachary

    Canadian Advanced Nanospace eXperiments 4 & 5 (CanX-4&5) are a pair of formation flying nanosatellites that demonstrated autonomous sub-metre formation control at ranges of 1000 to 50 m. To facilitate the autonomous formation flight mission, it is necessary that the two spacecraft be brought within a few kilometres of one another, with a low relative velocity. Therefore, a system to calculate fuel-efficient recovery trajectories and produce the corresponding spacecraft commands was required. This system was also extended to provide station keeping capabilities. In this thesis, the overall drift recovery strategy is outlined, and the design of the controller is detailed. A method of putting the formation into a passively safe state, where the spacecraft cannot collide, is also presented. Monte-Carlo simulations are used to estimate the fuel losses associated with navigational and attitude errors. Finally, on-orbit results are presented, validating both the design and the error expectations.

  16. Adjustably Autonomous Multi-agent Plan Execution with an Internal Spacecraft Free-Flying Robot Prototype

    NASA Technical Reports Server (NTRS)

    Dorais, Gregory A.; Nicewarner, Keith

    2006-01-01

    We present an multi-agent model-based autonomy architecture with monitoring, planning, diagnosis, and execution elements. We discuss an internal spacecraft free-flying robot prototype controlled by an implementation of this architecture and a ground test facility used for development. In addition, we discuss a simplified environment control life support system for the spacecraft domain also controlled by an implementation of this architecture. We discuss adjustable autonomy and how it applies to this architecture. We describe an interface that provides the user situation awareness of both autonomous systems and enables the user to dynamically edit the plans prior to and during execution as well as control these agents at various levels of autonomy. This interface also permits the agents to query the user or request the user to perform tasks to help achieve the commanded goals. We conclude by describing a scenario where these two agents and a human interact to cooperatively detect, diagnose and recover from a simulated spacecraft fault.

  17. Autonomous Science Operations Technologies for Deep Space Gateway

    NASA Astrophysics Data System (ADS)

    Barnes, P. K.; Haddock, A. T.; Cruzen, C. A.

    2018-02-01

    Autonomous Science Operations Technologies for Deep Space Gateway (DSG) is an overview of how the DSG would benefit from autonomous systems utilizing proven technologies performing telemetry monitoring and science operations.

  18. Development of a low-volume sprayer for an unmanned autonomous helicopter

    USDA-ARS?s Scientific Manuscript database

    An UAV (Unmanned Aerial Vehicle) can fly over much smaller areas with much lower flight altitudes than conventional, piloted airplanes. In agriculture, UAVs have been mainly developed and used for chemical application and remote sensing. Application of fertilizers and chemicals is frequently needed ...

  19. Development of a hardware-in-the-loop testbed to demonstrate multiple spacecraft operations in proximity

    NASA Astrophysics Data System (ADS)

    Eun, Youngho; Park, Sang-Young; Kim, Geuk-Nam

    2018-06-01

    This paper presents a new state-of-the-art ground-based hardware-in-the-loop test facility, which was developed to verify and demonstrate autonomous guidance, navigation, and control algorithms for space proximity operations and formation flying maneuvers. The test facility consists of two complete spaceflight simulators, an aluminum-based operational arena, and a set of infrared motion tracking cameras; thus, the testbed is capable of representing space activities under circumstances prevailing on the ground. The spaceflight simulators have a maximum of five-degree-of-freedom in a quasi-momentum-free environment, which is produced by a set of linear/hemispherical air-bearings and a horizontally leveled operational arena. The tracking system measures the real-time three-dimensional position and attitude to provide state variables to the agents. The design of the testbed is illustrated in detail for every element throughout the paper. The practical hardware characteristics of the active/passive measurement units and internal actuators are identified in detail from various perspectives. These experimental results support the successful development of the entire facility and enable us to implement and verify the spacecraft proximity operation strategy in the near future.

  20. Proceedings of the 20th International Symposium on Space Flight Dynamics

    NASA Technical Reports Server (NTRS)

    Woodard, Mark (Editor); Stengle, Tom (Editor)

    2007-01-01

    Topics include: Measuring Image Navigation and Registration Performance at the 3-Sigma Level Using Platinum Quality Landmarks; Flight Dynamics Performances of the MetOp A Satellite during the First Months of Operations; Visual Navigation - SARE Mission; Determining a Method of Enabling and Disabling the Integral Torque in the SDO Science and Inertial Mode Controllers; Guaranteeing Pointing Performance of the SDO Sun-Pointing Controllers in Light of Nonlinear Effects; SDO Delta H Mode Design and Analysis; Observing Mode Attitude Controller for the Lunar Reconnaissance Orbiter; Broken-Plane Maneuver Applications for Earth to Mars Trajectories; ExoMars Mission Analysis and Design - Launch, Cruise and Arrival Analyses; Mars Reconnaissance Orbiter Aerobraking Daily Operations and Collision Avoidance; Mars Reconnaissance Orbiter Interplanetary Cruise Navigation; Motion Parameters Determination of the SC and Phobos in the Project Phobos-Grunt; GRAS NRT Precise Orbit Determination: Operational Experience; Orbit Determination of LEO Satellites for a Single Pass through a Radar: Comparison of Methods; Orbit Determination System for Low Earth Orbit Satellites; Precise Orbit Determination for ALOS; Anti-Collision Function Design and Performances of the CNES Formation Flying Experiment on the PRISMA Mission; CNES Approaching Guidance Experiment within FFIORD; Maneuver Recovery Analysis for the Magnetospheric Multiscale Mission; SIMBOL-X: A Formation Flying Mission on HEO for Exploring the Universe; Spaceborne Autonomous and Ground Based Relative Orbit Control for the TerraSAR-X/TanDEM-X Formation; First In-Orbit Experience of TerraSAR-X Flight Dynamics Operations; Automated Target Planning for FUSE Using the SOVA Algorithm; Space Technology 5 Post-Launch Ground Attitude Estimation Experience; Standardizing Navigation Data: A Status Update; and A Study into the Method of Precise Orbit Determination of a HEO Orbiter by GPS and Accelerometer.

  1. NASA Johnson Space Center: Mini AERCam Testing with GSS6560

    NASA Technical Reports Server (NTRS)

    Cryant, Scott P.

    2004-01-01

    This slide presentation reviews the testing of the Miniature Autonomous Extravehicular Robotic Camera (Mini AERCam) with the GPS/SBAS simulation system, GSS6560. There is a listing of several GPS based programs at NASA Johnson, including the testing of Shuttle testing of the GPS system. Including information about Space Integrated GPS/INS (SIGI) testing. There is also information about the standalone ISS SIGI test,and testing of the SIGI for the Crew Return Vehicle. The Mini AERCam is a small, free-flying camera for remote inspections of the ISS, it uses precise relative navigation with differential carrier phase GPS to provide situational awareness to operators. The closed loop orbital testing with and without the use of the GSS6550 system of the Mini AERCam system is reviewed.

  2. Imaging Flash Lidar for Autonomous Safe Landing and Spacecraft Proximity Operation

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Roback, Vincent E.; Brewster, Paul F.; Hines, Glenn D.; Bulyshev, Alexander E.

    2016-01-01

    3-D Imaging flash lidar is recognized as a primary candidate sensor for safe precision landing on solar system bodies (Moon, Mars, Jupiter and Saturn moons, etc.), and autonomous rendezvous proximity operations and docking/capture necessary for asteroid sample return and redirect missions, spacecraft docking, satellite servicing, and space debris removal. During the final stages of landing, from about 1 km to 500 m above the ground, the flash lidar can generate 3-Dimensional images of the terrain to identify hazardous features such as craters, rocks, and steep slopes. The onboard fli1ght computer can then use the 3-D map of terrain to guide the vehicle to a safe location. As an automated rendezvous and docking sensor, the flash lidar can provide relative range, velocity, and bearing from an approaching spacecraft to another spacecraft or a space station from several kilometers distance. NASA Langley Research Center has developed and demonstrated a flash lidar sensor system capable of generating 16k pixels range images with 7 cm precision, at a 20 Hz frame rate, from a maximum slant range of 1800 m from the target area. This paper describes the lidar instrument design and capabilities as demonstrated by the closed-loop flight tests onboard a rocket-propelled free-flyer vehicle (Morpheus). Then a plan for continued advancement of the flash lidar technology will be explained. This proposed plan is aimed at the development of a common sensor that with a modest design adjustment can meet the needs of both landing and proximity operation and docking applications.

  3. Development of a UAV system for VNIR-TIR acquisitions in precision agriculture

    NASA Astrophysics Data System (ADS)

    Misopolinos, L.; Zalidis, Ch.; Liakopoulos, V.; Stavridou, D.; Katsigiannis, P.; Alexandridis, T. K.; Zalidis, G.

    2015-06-01

    Adoption of precision agriculture techniques requires the development of specialized tools that provide spatially distributed information. Both flying platforms and airborne sensors are being continuously evolved to cover the needs of plant and soil sensing at affordable costs. Due to restrictions in payload, flying platforms are usually limited to carry a single sensor on board. The aim of this work is to present the development of a vertical take-off and landing autonomous unmanned aerial vehicle (VTOL UAV) system for the simultaneous acquisition of high resolution vertical images at the visible, near infrared (VNIR) and thermal infrared (TIR) wavelengths. A system was developed that has the ability to trigger two cameras simultaneously with a fully automated process and no pilot intervention. A commercial unmanned hexacopter UAV platform was optimized to increase reliability, ease of operation and automation. The designed systems communication platform is based on a reduced instruction set computing (RISC) processor running Linux OS with custom developed drivers in an efficient way, while keeping the cost and weight to a minimum. Special software was also developed for the automated image capture, data processing and on board data and metadata storage. The system was tested over a kiwifruit field in northern Greece, at flying heights of 70 and 100m above the ground. The acquired images were mosaicked and geo-corrected. Images from both flying heights were of good quality and revealed unprecedented detail within the field. The normalized difference vegetation index (NDVI) was calculated along with the thermal image in order to provide information on the accurate location of stressors and other parameters related to the crop productivity. Compared to other available sources of data, this system can provide low cost, high resolution and easily repeatable information to cover the requirements of precision agriculture.

  4. Autonomous Commanding of the WIRE Spacecraft

    NASA Technical Reports Server (NTRS)

    Prior, Mike; Walyus, Keith; Saylor, Rick

    1999-01-01

    This paper presents the end-to-end design architecture for an autonomous commanding capability to be used on the Wide Field Infrared Explorer (WIRE) mission for the uplink of command loads during unattended station contacts. The WIRE mission is the fifth and final mission of NASA's Goddard Space Flight Center Small Explorer (SMEX) series to be launched in March of 1999. Its primary mission is the targeting of deep space fields using an ultra-cooled infrared telescope. Due to its mission design WIRE command loads are large (approximately 40 Kbytes per 24 hours) and must be performed daily. To reduce the cost of mission operations support that would be required in order to uplink command loads, the WIRE Flight Operations Team has implemented an autonomous command loading capability. This capability allows completely unattended operations over a typical two- day weekend period. The key factors driving design and implementation of this capability were: 1) Integration with already existing ground system autonomous capabilities and systems, 2) The desire to evolve autonomous operations capabilities based upon previous SMEX operations experience 3) Integration with ground station operations - both autonomous and man-tended, 4) Low cost and quick implementation, and 5) End-to-end system robustness. A trade-off study was performed to examine these factors in light of the low-cost, higher-risk SMEX mission philosophy. The study concluded that a STOL (Spacecraft Test and Operations Language) based script, highly integrated with other scripts used to perform autonomous operations, was best suited given the budget and goals of the mission. Each of these factors is discussed to provide an overview of the autonomous operations capabilities implemented for the mission. The capabilities implemented on the WIRE mission are an example of a low-cost, robust, and efficient method for autonomous command loading when implemented with other autonomous features of the ground system. They can be used as a design and implementation template by other small satellite missions interested in evolving toward autonomous and lower cost operations.

  5. Particulate inhalation in rats causes concentration-dependent electrocardiographic, autonomic, and cardiac microRNA expression changes

    EPA Science Inventory

    Recently, investigators in key epidemiologic studies have demonstrated associations between fine particulate matter (PM)-associated metals and increased hospital admissions (Ni and V; Bell et al. 2009) and cardiovascular mortality (Ni and Fe; Ostro et a1. 2007). Residual oil fly ...

  6. Safety Ellipse Motion with Coarse Sun Angle Optimization

    NASA Technical Reports Server (NTRS)

    Naasz, Bo

    2005-01-01

    The Hubble Space Telescope Robotic Servicing and De-orbit Mission (HRSDM) was t o be performed by the unmanned Hubble Robotic Vehicle (HRV) consisting of a Deorbit Module (DM), responsible for the ultimate disposal of Hubble Space Telescope (HST) at the end of science operations, and an Ejection Module (EM), responsible for robotically servicing the HST to extend its useful operational lifetime. HRSDM consisted of eight distinct phases, including: launch, pursuit, proximity operations, capture, servicing, EM jettison and disposal, science operations, and deorbit. The scope of this paper is limited to the Proximity Operations phase of HRSDM. It introduces a relative motion strategy useful for Autonomous Rendezvous and Docking (AR&D) or Formation Flying missions where safe circumnavigation trajectories, or close proximity operations (tens or hundreds of meters) are required for extended periods of time. Parameters and algorithms used to model the relative motion of HRV with respect to HST during the Proximity Operations phase of the HRSDM are described. Specifically, the Safety Ellipse (SE) concept, convenient parameters for describing SE motion, and a concept for initializing SE motion around a target vehicle to coarsely optimize sun and relative navigation sensor angles are presented. The effects of solar incidence angle variations on sun angle optimization, and the effects of orbital perturbations and navigation uncertainty on long term SE motion are discussed.

  7. Tethered Vehicle Control and Tracking System

    NASA Technical Reports Server (NTRS)

    North, David D. (Inventor); Aull, Mark J. (Inventor)

    2017-01-01

    A kite system includes a kite and a ground station. The ground station includes a sensor that can be utilized to determine an angular position and velocity of the kite relative to the ground station. A controller utilizes a fuzzy logic control system to autonomously fly the kite. The system may include a ground station having powered winding units that generate power as the lines to the kite are unreeled. The control system may be configured to fly the kite in a crosswind trajectory to increase line tension for power generation. The sensors for determining the position of the kite are preferably ground-based.

  8. Tethered Vehicle Control and Tracking System

    NASA Technical Reports Server (NTRS)

    North, David D. (Inventor); Aull, Mark J. (Inventor)

    2014-01-01

    A kite system includes a kite and a ground station. The ground station includes a sensor that can be utilized to determine an angular position and velocity of the kite relative to the ground station. A controller utilizes a fuzzy logic control system to autonomously fly the kite. The system may include a ground station having powered winding units that generate power as the lines to the kite are unreeled. The control system may be configured to fly the kite in a crosswind trajectory to increase line tension for power generation. The sensors for determining the position of the kite are preferably ground-based.

  9. Vision in flying insects.

    PubMed

    Egelhaaf, Martin; Kern, Roland

    2002-12-01

    Vision guides flight behaviour in numerous insects. Despite their small brain, insects easily outperform current man-made autonomous vehicles in many respects. Examples are the virtuosic chasing manoeuvres male flies perform as part of their mating behaviour and the ability of bees to assess, on the basis of visual motion cues, the distance travelled in a novel environment. Analyses at both the behavioural and neuronal levels are beginning to unveil reasons for such extraordinary capabilities of insects. One recipe for their success is the adaptation of visual information processing to the specific requirements of the behavioural tasks and to the specific spatiotemporal properties of the natural input.

  10. A multimodal micro air vehicle for autonomous flight in near-earth environments

    NASA Astrophysics Data System (ADS)

    Green, William Edward

    Reconnaissance, surveillance, and search-and-rescue missions in near-Earth environments such as caves, forests, and urban areas pose many new challenges to command and control (C2) teams. Of great significance is how to acquire situational awareness when access to the scene is blocked by enemy fire, rubble, or other occlusions. Small bird-sized aerial robots are expendable and can fly over obstacles and through small openings to assist in the acquisition and distribution of intelligence. However, limited flying space and densely populated obstacle fields requires a vehicle that is capable of hovering, but also maneuverable. A secondary flight mode was incorporated into a fixed-wing aircraft to preserve its maneuverability while adding the capability of hovering. An inertial measurement sensor and onboard flight control system were interfaced and used to transition the hybrid prototype from cruise to hover flight and sustain a hover autonomously. Furthermore, the hovering flight mode can be used to maneuver the aircraft through small openings such as doorways. An ultrasonic and infrared sensor suite was designed to follow exterior building walls until an ingress route was detected. Reactive control was then used to traverse the doorway and gather reconnaissance. Entering a dangerous environment to gather intelligence autonomously will provide an invaluable resource to any C2 team. The holistic approach of platform development, sensor suite design, and control serves as the philosophy of this work.

  11. Advancing Autonomous Operations Technologies for NASA Missions

    NASA Technical Reports Server (NTRS)

    Cruzen, Craig; Thompson, Jerry Todd

    2013-01-01

    This paper discusses the importance of implementing advanced autonomous technologies supporting operations of future NASA missions. The ability for crewed, uncrewed and even ground support systems to be capable of mission support without external interaction or control has become essential as space exploration moves further out into the solar system. The push to develop and utilize autonomous technologies for NASA mission operations stems in part from the need to reduce operations cost while improving and increasing capability and safety. This paper will provide examples of autonomous technologies currently in use at NASA and will identify opportunities to advance existing autonomous technologies that will enhance mission success by reducing operations cost, ameliorating inefficiencies, and mitigating catastrophic anomalies.

  12. Extended Range Aerial Delivery Using an Unpowered Autonomous Tailless UAV

    NASA Astrophysics Data System (ADS)

    Kraft, Tyler E.

    An alternative approach for precision aerial delivery utilizing a flying wing for controllable forward glide is presented. Although effective, current delivery methods either display a lack of control, or require close standoff distances, potentially endangering aircraft personnel as well as bystanders. Hardware-in-the-loop simulations provide an efficient method for evaluating various wing designs and actuation configurations. Four control surface configurations are presented and evaluated, encompassing traditional aircraft and ram-air parafoil control approaches. Fixed-wing and multirotor unmanned aircraft-based flight tests were conducted to evaluate the controllability and handling performance of the various configurations of both a fixed wing model and a model with collapsing wings. A manufacturing process was developed to allow repeatable results in the field using cheap, mostly disposable materials. A powered flying wing model was used to maximize data collection in later stages of software development. Data collected during flight tests was used to create a model of the system and develop a Nonlinear Dynamic Inversion controller for autonomous flight. The NDI controller was able to provide stable flight in pitch, but will need more development to control yaw, instead an intentional bias was built in to show proof of concept for direct yaw control. The results demonstrate the feasibility of the flying wing-based aerial delivery; however, significant challenges remain regarding the stability and scalability of the system.

  13. Using Model-Based Reasoning for Autonomous Instrument Operation

    NASA Technical Reports Server (NTRS)

    Johnson, Mike; Rilee, M.; Truszkowski, W.; Powers, Edward I. (Technical Monitor)

    2000-01-01

    Multiprobe missions are an important part of NASA's future: Cluster, Magnetospheric Multi Scale, Global Electrodynamics and Magnetospheric Constellation are representatives from the Sun-Earth Connections Theme. To make such missions robust, reliable, and affordable, ideally the many spacecraft of a constellation must be at least as easy to operate as one spacecraft is today. To support this need for scalability, science instrumentation must become increasingly easy to operate, even as this same instrumentation becomes more capable and advanced. Communication and control resources will be at a premium for future instruments. Many missions will be out of contact with ground operators for extended periods either to reduce operations cost or because of orbits that limit communication to weekly perigee transits. Autonomous capability is necessary if such missions are to effectively achieve their operational objectives. An autonomous system is one that acts given its situation in a mission appropriate manner without external direction to achieve mission goals. To achieve this capability autonomy must be built into the system through judicious design or through a built-in intelligence that recognizes system state and manages system response. To recognize desired or undesired system states, the system must have an implicit or explicit understanding of its expected states given its history and self observations. The systems we are concerned with, science instruments, can have stringent requirements for system state knowledge in addition to requirements driven by health and safety concerns. Without accurate knowledge of the system state, the usefulness of the science instrument may be severely limited. At the same time, health and safety concerns often lead to overly conservative instrument operations further reducing the effectiveness of the instrument. These requirements, coupled with overall mission requirements including lack of communication opportunities and tolerance of environmental hazards, frame the problem of constructing autonomous science instruments. we are developing a model of the Low Energy Neutral Atom instrument (LENA) that is currently flying on board the Imager for Magnetosphere-to-Aurora Global Exploration (IMAGE) spacecraft. LENA is a particle detector that uses high voltage electrostatic optics and time-of-flight mass spectrometry to image neutral atom emissions from the denser regions of the Earth's magnetosphere. As with most spacecraft borne science instruments, phenomena in addition to neutral atoms are detected by LENA. Solar radiation and energetic particles from Earth's radiation belts are of particular concern because they may help generate currents that may compromise LENA's long term performance. An explicit model of the instrument response has been constructed and is currently in use on board IMAGE to dynamically adapt LENA to the presence or absence of energetic background radiations. The components of LENA are common in space science instrumentation, and lessons learned by modelling this system may be applied to other instruments. This work demonstrates that a model-based approach can be used to enhance science instrument effectiveness. Our future work involves the extension of these methods to cover more aspects of LENA operation and the generalization to other space science instrumentation.

  14. The Earth Science Afternoon Constellation: Preparing for Autonomous but Coordinated Operations

    NASA Technical Reports Server (NTRS)

    Case, Warren; Kelly, Angelita C.; Work, Kevin; Guit, William

    2005-01-01

    This paper describes how the challenges of coordinating the autonomous operations of geographically dispersed mission control centers for several small and large satellites are being overcome. The Earth Science Afternoon Constellation, also referred to as the "A-Train", is an international grouping of five NASA satellites (two major NASA EOS missions and three NASA/Earth System Science Pathfinder missions) and one French satellite orbiting in close proximity. This grouping of satellites provides scientists with the opportunity to perform coincident observations using data from two or more instruments on various satellites with measurements taken at approximately the same time. Three of the six missions are currently on-orbit, with the two missions expected to join the constellation later this year and one mission in 2007. The operational challenges are daunting for several reasons. There are several Mission Control Centers (widely separated on two continents), operating autonomously under tight budget constraints. All of the Mission Control Centers have reasons to be concerned about safety while flying in close proximity to other satellites, but most Centers did not have the resources or the desire to address this concern alone - the interfaces are too numerous and anticipated operations too costly. Clearly, an efficient approach was needed. This paper describes the steps taken to make this Earth science constellation a reality. Agreements were forged to allow the Mission Control Centers to maintain their autonomy, while ensuring their satellite's safety. Each member mission in the constellation operates independently in accordance with its own mission requirements, but the member missions have agreed to coordinate their operations, i.e., orbital positions and control to ensure the safety of the entire constellation. A centralized system was developed at NASA Goddard Space Flight Center to collect, analyze, and distribute ephemeris data used by each of the mission teams to determine the positions of the satellites in the constellation. The system issues warnings regarding possible dangerous configurations, eliminating the need for redundant capabilities at each Mission Control Center. On-orbit contingency situations were identified and analyzed; agreements were reached in advance of contingency operations to ensure that coordination between the Mission Control Centers can be handled expeditiously and fairly. In this manner, recovery from anomalous situations can be more quickly realized, thereby increasing the science return and reducing costs. The process used to develop these contingency procedures and the systems used to facilitate the contingency resolution are described as well.

  15. System Design and Nonlinear State-Dependent Riccati Equation Control of an Autonomous Y-4 Tilt-Rotor Aerobot for Martian Exploration

    NASA Astrophysics Data System (ADS)

    Collins, Nathan Scott

    Surrey Space Centre (SSC) has been working on an autonomous fixed-wing all-electric vertical take-off and landing (VTOL) aerobot for the exploration of Mars for several years. SSC's previous designs have incorporated separate vertical lift and horizontal pusher rotors as well as a mono tilt-rotor configuration. The Martian aerobot's novel Y-4 tilt-rotor (Y4TR) design is a combination of two previous SSC designs and a step forward for planetary aerobots. The aerobot will fly as a Y4 multi-rotor during vertical flight and as a conventional flying wing during horizontal flight. The more robust Y4TR configuration utilizes two large fixed coaxial counter rotating rotors and two small tilt-rotors for vertical takeoff. The front tilt-rotors rotate during transition flight into the main horizontal flight configuration. The aerobot is a blended wing design with the wings using the "Zagi 10" airfoil blended to a center cover for the coaxial rotors. The open source design and analysis programs XROTOR, CROTOR, Q-BLADE, XFLR5, and OpenVSP were used to design and model the aerobot's four rotors and body. The baseline mission of the Y4TR remains the same as previously reported and will investigate the Isidis Planitia region on Mars over a month long period using optical sensors during flight and a surface science package when landed. During flight operations the aerobot will take off vertically, transition to horizontal flight, fly for around an hour, transition back to vertical flight, and land vertically. The flight missions will take place close to local noon to maximize power production via solar cells during flight. A nonlinear six degree of freedom (6DoF) dynamic model incorporating aerodynamic models of the aerobot's body and rotors has been developed to model the vertical, transition, and horizontal phases of flight. A nonlinear State-Dependent Riccati Equation (SDRE) controller has been developed for each of these flight phases. The nonlinear dynamic model was transformed into a pseudo-linear form based on the states and implemented in the SDRE controller. During transition flight the aerobot is over actuated and the weighted least squares (WLS) method is used for allocation of control effectors. Simulations of the aerobot flying in different configurations were performed to verify the performance of the SDRE controllers, including hover, transition, horizontal flight, altitude changes, and landing scenarios. Results from the simulations show the SDRE controller is a viable option for controlling the novel Y4TR Martian Aerobot.

  16. Pilot In Command: A Feasibility Assessment of Autonomous Flight Management Operations

    NASA Technical Reports Server (NTRS)

    Wing, David J.; Ballin, Mark G.; Krishnamurthy, Karthik

    2004-01-01

    Several years of NASA research have produced the air traffic management operational concept of Autonomous Flight Management with high potential for operational feasibility, significant system and user benefits, and safety. Among the chief potential benefits are demand-adaptive or scalable capacity, user flexibility and autonomy that may finally enable truly successful business strategies, and compatibility with current-day operations such that the implementation rate can be driven from within the user community. A concept summary of Autonomous Flight Management is provided, including a description of how these operations would integrate in shared airspace with existing ground-controlled flight operations. The mechanisms enabling the primary benefits are discussed, and key findings of a feasibility assessment of airborne autonomous operations are summarized. Concept characteristics that impact safety are presented, and the potential for initially implementing Autonomous Flight Management is discussed.

  17. Autonomous Operations System: Development and Application

    NASA Technical Reports Server (NTRS)

    Toro Medina, Jaime A.; Wilkins, Kim N.; Walker, Mark; Stahl, Gerald M.

    2016-01-01

    Autonomous control systems provides the ability of self-governance beyond the conventional control system. As the complexity of mechanical and electrical systems increases, there develops a natural drive for developing robust control systems to manage complicated operations. By closing the bridge between conventional automated systems to knowledge based self-awareness systems, nominal control of operations can evolve into relying on safe critical mitigation processes to support any off-nominal behavior. Current research and development efforts lead by the Autonomous Propellant Loading (APL) group at NASA Kennedy Space Center aims to improve cryogenic propellant transfer operations by developing an automated control and health monitoring system. As an integrated systems, the center aims to produce an Autonomous Operations System (AOS) capable of integrating health management operations with automated control to produce a fully autonomous system.

  18. Proceedings from the 2nd International Symposium on Formation Flying Missions and Technologies

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Topics discussed include: The Stellar Imager (SI) "Vision Mission"; First Formation Flying Demonstration Mission Including on Flight Nulling; Formation Flying X-ray Telescope in L2 Orbit; SPECS: The Kilometer-baseline Far-IR Interferometer in NASA's Space Science Roadmap Presentation; A Tight Formation for Along-track SAR Interferometry; Realization of the Solar Power Satellite using the Formation Flying Solar Reflector; SIMBOL-X : Formation Flying for High-Energy Astrophysics; High Precision Optical Metrology for DARWIN; Close Formation Flight of Micro-Satellites for SAR Interferometry; Station-Keeping Requirements for Astronomical Imaging with Constellations of Free-Flying Collectors; Closed-Loop Control of Formation Flying Satellites; Formation Control for the MAXIM Mission; Precision Formation Keeping at L2 Using the Autonomous Formation Flying Sensor; Robust Control of Multiple Spacecraft Formation Flying; Virtual Rigid Body (VRB) Satellite Formation Control: Stable Mode-Switching and Cross-Coupling; Electromagnetic Formation Flight (EMFF) System Design, Mission Capabilities, and Testbed Development; Navigation Algorithms for Formation Flying Missions; Use of Formation Flying Small Satellites Incorporating OISL's in a Tandem Cluster Mission; Semimajor Axis Estimation Strategies; Relative Attitude Determination of Earth Orbiting Formations Using GPS Receivers; Analysis of Formation Flying in Eccentric Orbits Using Linearized Equations of Relative Motion; Conservative Analytical Collision Probabilities for Orbital Formation Flying; Equations of Motion and Stability of Two Spacecraft in Formation at the Earth/Moon Triangular Libration Points; Formations Near the Libration Points: Design Strategies Using Natural and Non-Natural Ares; An Overview of the Formation and Attitude Control System for the Terrestrial Planet Finder Formation Flying Interferometer; GVE-Based Dynamics and Control for Formation Flying Spacecraft; GNC System Design for a New Concept of X-Ray Distributed Telescope; GNC System for the Deployment and Fine Control of the DARWIN Free-Flying Interferometer; Formation Algorithm and Simulation Testbed; and PLATFORM: A Formation Flying, RvD and Robotic Validation Test-bench.

  19. Networks for Autonomous Formation Flying Satellite Systems

    NASA Technical Reports Server (NTRS)

    Knoblock, Eric J.; Konangi, Vijay K.; Wallett, Thomas M.; Bhasin, Kul B.

    2001-01-01

    The performance of three communications networks to support autonomous multi-spacecraft formation flying systems is presented. All systems are comprised of a ten-satellite formation arranged in a star topology, with one of the satellites designated as the central or "mother ship." All data is routed through the mother ship to the terrestrial network. The first system uses a TCP/lP over ATM protocol architecture within the formation the second system uses the IEEE 802.11 protocol architecture within the formation and the last system uses both of the previous architectures with a constellation of geosynchronous satellites serving as an intermediate point-of-contact between the formation and the terrestrial network. The simulations consist of file transfers using either the File Transfer Protocol (FTP) or the Simple Automatic File Exchange (SAFE) Protocol. The results compare the IF queuing delay, and IP processing delay at the mother ship as well as application-level round-trip time for both systems, In all cases, using IEEE 802.11 within the formation yields less delay. Also, the throughput exhibited by SAFE is better than FTP.

  20. Autonomous mission management for UAVs using soar intelligent agents

    NASA Astrophysics Data System (ADS)

    Gunetti, Paolo; Thompson, Haydn; Dodd, Tony

    2013-05-01

    State-of-the-art unmanned aerial vehicles (UAVs) are typically able to autonomously execute a pre-planned mission. However, UAVs usually fly in a very dynamic environment which requires dynamic changes to the flight plan; this mission management activity is usually tasked to human supervision. Within this article, a software system that autonomously accomplishes the mission management task for a UAV will be proposed. The system is based on a set of theoretical concepts which allow the description of a flight plan and implemented using a combination of Soar intelligent agents and traditional control techniques. The system is capable of automatically generating and then executing an entire flight plan after being assigned a set of objectives. This article thoroughly describes all system components and then presents the results of tests that were executed using a realistic simulation environment.

  1. Analysis of Navy Flight Scheduling Methods Using FlyAwake

    DTIC Science & Technology

    2009-09-01

    28 Figure 4. FlyAwake Schedule Builder Screenshot..........................................................28...Figure 5. FlyAwake Work Schedule Builder Screenshot................................................29 Figure 6. FlyAwake Graphical Output Screenshot... disqualifies crewmembers from participating in the following day’s flight operations. These rules are subject to operational requirements and deviation

  2. Cold Regions Issues for Off-Road Autonomous Vehicles

    DTIC Science & Technology

    2004-04-01

    the operation of off-road autonomous vehicles . Low-temperature effects on lubricants, materials, and batteries can impair a robot’s ability to operate...demanding that off-road autonomous vehicles must be designed for and tested in cold regions if they are expected to operate there successfully.

  3. Onboard Autonomous Corrections for Accurate IRF Pointing.

    NASA Astrophysics Data System (ADS)

    Jorgensen, J. L.; Betto, M.; Denver, T.

    2002-05-01

    Over the past decade, the Noise Equivalent Angle (NEA) of onboard attitude reference instruments, has decreased from tens-of-arcseconds to the sub-arcsecond level. This improved performance is partly due to improved sensor-technology with enhanced signal to noise ratios, partly due to improved processing electronics which allows for more sophisticated and faster signal processing. However, the main reason for the increased precision, is the application of onboard autonomy, which apart from simple outlier rejection also allows for removal of "false positive" answers, and other "unexpected" noise sources, that otherwise would degrade the quality of the measurements (e.g. discrimination between signals caused by starlight and ionizing radiation). The utilization of autonomous signal processing has also provided the means for another onboard processing step, namely the autonomous recovery from lost in space, where the attitude instrument without a priori knowledge derive the absolute attitude, i.e. in IRF coordinates, within fractions of a second. Combined with precise orbital state or position data, the absolute attitude information opens for multiple ways to improve the mission performance, either by reducing operations costs, by increasing pointing accuracy, by reducing mission expendables, or by providing backup decision information in case of anomalies. The Advanced Stellar Compass's (ASC) is a miniature, high accuracy, attitude instrument which features fully autonomous operations. The autonomy encompass all direct steps from automatic health checkout at power-on, over fully automatic SEU and SEL handling and proton induced sparkle removal, to recovery from "lost in space", and optical disturbance detection and handling. But apart from these more obvious autonomy functions, the ASC also features functions to handle and remove the aforementioned residuals. These functions encompass diverse operators such as a full orbital state vector model with automatic cloud filtered GPS updates, a world time clock, astrometric correction tables, and a attitude output transform system, that allow the ASC to deliver the spacecraft attitude relative to the Inertial Reference Frame (IRF) in realtime. This paper describes the operations of the onboard autonomy of the ASC, which in realtime removes the residuals from the attitude measurements, whereby a timely IRF attitude at arcsecond level, is delivered to the AOCS (or sent to ground). A discussion about achievable robustness and accuracy is given, and compared to inflight results from the operations of the two Advanced Stellar Compass's (ASC), which are flying in LEO onboard the German geo-potential research satellite CHAMP. The ASC's onboard CHAMP are dual head versions, i.e. each processing unit is attached to two star camera heads. The dual head configuration is primarily employed to achieve a carefree AOCS control with respect to the Sun, Moon and Earth, and to increase the attitude accuracy, but it also enables onboard estimation and removal of thermal generated biases.

  4. Alternative Fuels Data Center

    Science.gov Websites

    Autonomous Vehicle Operation A person can operate a fully autonomous vehicle with the automated federal motor vehicle safety standards and is registered as a fully autonomous vehicle. Other conditions

  5. A Flight Deck Decision Support Tool for Autonomous Airborne Operations

    NASA Technical Reports Server (NTRS)

    Ballin, Mark G.; Sharma, Vivek; Vivona, Robert A.; Johnson, Edward J.; Ramiscal, Ermin

    2002-01-01

    NASA is developing a flight deck decision support tool to support research into autonomous operations in a future distributed air/ground traffic management environment. This interactive real-time decision aid, referred to as the Autonomous Operations Planner (AOP), will enable the flight crew to plan autonomously in the presence of dense traffic and complex flight management constraints. In assisting the flight crew, the AOP accounts for traffic flow management and airspace constraints, schedule requirements, weather hazards, aircraft operational limits, and crew or airline flight-planning goals. This paper describes the AOP and presents an overview of functional and implementation design considerations required for its development. Required AOP functionality is described, its application in autonomous operations research is discussed, and a prototype software architecture for the AOP is presented.

  6. The Joint Tactical Aerial Resupply Vehicle Impact on Sustainment Operations

    DTIC Science & Technology

    2017-06-09

    Artificial Intelligence , Sustainment Operations, Rifle Company, Autonomous Aerial Resupply, Joint Tactical Autonomous Aerial Resupply System 16...Integrations and Development System AI Artificial Intelligence ARCIC Army Capabilities Integration Center ARDEC Armament Research, Development and...semi- autonomous systems, and fully autonomous systems. Autonomy of machines depends on sophisticated software, including Artificial Intelligence

  7. An intelligent, free-flying robot

    NASA Technical Reports Server (NTRS)

    Reuter, G. J.; Hess, C. W.; Rhoades, D. E.; Mcfadin, L. W.; Healey, K. J.; Erickson, J. D.

    1988-01-01

    The ground-based demonstration of EVA Retriever, a voice-supervised, intelligent, free-flying robot, is designed to evaluate the capability to retrieve objects (astronauts, equipment, and tools) which have accidentally separated from the Space Station. The major objective of the EVA Retriever Project is to design, develop, and evaluate an integrated robotic hardware and on-board software system which autonomously: (1) performs system activation and check-out, (2) searches for and acquires the target, (3) plans and executes a rendezvous while continuously tracking the target, (4) avoids stationary and moving obstacles, (5) reaches for and grapples the target, (6) returns to transfer the object, and (7) returns to base.

  8. An intelligent, free-flying robot

    NASA Technical Reports Server (NTRS)

    Reuter, G. J.; Hess, C. W.; Rhoades, D. E.; Mcfadin, L. W.; Healey, K. J.; Erickson, J. D.; Phinney, Dale E.

    1989-01-01

    The ground based demonstration of the extensive extravehicular activity (EVA) Retriever, a voice-supervised, intelligent, free flying robot, is designed to evaluate the capability to retrieve objects (astronauts, equipment, and tools) which have accidentally separated from the Space Station. The major objective of the EVA Retriever Project is to design, develop, and evaluate an integrated robotic hardware and on-board software system which autonomously: (1) performs system activation and check-out; (2) searches for and acquires the target; (3) plans and executes a rendezvous while continuously tracking the target; (4) avoids stationary and moving obstacles; (5) reaches for and grapples the target; (6) returns to transfer the object; and (7) returns to base.

  9. The impact of flying qualities on helicopter operational agility

    NASA Technical Reports Server (NTRS)

    Padfield, Gareth D.; Lappos, Nick; Hodgkinson, John

    1993-01-01

    Flying qualities standards are formally set to ensure safe flight and therefore reflect minimum, rather than optimum, requirements. Agility is a flying quality but relates to operations at high, if not maximum, performance. While the quality metrics and test procedures for flying, as covered for example in ADS33C, may provide an adequate structure to encompass agility, they do not currently address flight at high performance. This is also true in the fixed-wing world and a current concern in both communities is the absence of substantiated agility criteria and possible conflicts between flying qualities and high performance. AGARD is sponsoring a working group (WG19) title 'Operational Agility' that deals with these and a range of related issues. This paper is condensed from contributions by the three authors to WG19, relating to flying qualities. Novel perspectives on the subject are presented including the agility factor, that quantifies performance margins in flying qualities terms; a new parameter, based on maneuver acceleration is introduced as a potential candidate for defining upper limits to flying qualities. Finally, a probabilistic analysis of pilot handling qualities ratings is presented that suggests a powerful relationship between inherent airframe flying qualities and operational agility.

  10. On-board autonomous attitude maneuver planning for planetary spacecraft using genetic algorithms

    NASA Technical Reports Server (NTRS)

    Kornfeld, Richard P.

    2003-01-01

    A key enabling technology that leads to greater spacecraft autonomy is the capability to autonomously and optimally slew the spacecraft from and to different attitudes while operating under a number of celestial and dynamic constraints. The task of finding an attitude trajectory that meets all the constraints is a formidable one, in particular for orbiting or fly-by spacecraft where the constraints and initial and final conditions are of time-varying nature. This paper presents an approach for attitude path planning that makes full use of a priori constraint knowledge and is computationally tractable enough to be executed on-board a spacecraft. The approach is based on incorporating the constraints into a cost function and using a Genetic Algorithm to iteratively search for and optimize the solution. This results in a directed random search that explores a large part of the solution space while maintaining the knowledge of good solutions from iteration to iteration. A solution obtained this way may be used 'as is' or as an initial solution to initialize additional deterministic optimization algorithms. A number of example simulations are presented including the case examples of a generic Europa Orbiter spacecraft in cruise as well as in orbit around Europa. The search times are typically on the order of minutes, thus demonstrating the viability of the presented approach. The results are applicable to all future deep space missions where greater spacecraft autonomy is required. In addition, onboard autonomous attitude planning greatly facilitates navigation and science observation planning, benefiting thus all missions to planet Earth as well.

  11. Improving Human/Autonomous System Teaming Through Linguistic Analysis

    NASA Technical Reports Server (NTRS)

    Meszaros, Erica L.

    2016-01-01

    An area of increasing interest for the next generation of aircraft is autonomy and the integration of increasingly autonomous systems into the national airspace. Such integration requires humans to work closely with autonomous systems, forming human and autonomous agent teams. The intention behind such teaming is that a team composed of both humans and autonomous agents will operate better than homogenous teams. Procedures exist for licensing pilots to operate in the national airspace system and current work is being done to define methods for validating the function of autonomous systems, however there is no method in place for assessing the interaction of these two disparate systems. Moreover, currently these systems are operated primarily by subject matter experts, limiting their use and the benefits of such teams. Providing additional information about the ongoing mission to the operator can lead to increased usability and allow for operation by non-experts. Linguistic analysis of the context of verbal communication provides insight into the intended meaning of commonly heard phrases such as "What's it doing now?" Analyzing the semantic sphere surrounding these common phrases enables the prediction of the operator's intent and allows the interface to supply the operator's desired information.

  12. High specific energy and specific power aluminum/air battery for micro air vehicles

    NASA Astrophysics Data System (ADS)

    Kindler, A.; Matthies, L.

    2014-06-01

    Micro air vehicles developed under the Army's Micro Autonomous Systems and Technology program generally need a specific energy of 300 - 550 watt-hrs/kg and 300 -550 watts/kg to operate for about 1 hour. At present, no commercial cell can fulfill this need. The best available commercial technology is the Lithium-ion battery or its derivative, the Li- Polymer cell. This chemistry generally provides around 15 minutes flying time. One alternative to the State-of-the Art is the Al/air cell, a primary battery that is actually half fuel cell. It has a high energy battery like aluminum anode, and fuel cell like air electrode that can extract oxygen out of the ambient air rather than carrying it. Both of these features tend to contribute to a high specific energy (watt-hrs/kg). High specific power (watts/kg) is supported by high concentration KOH electrolyte, a high quality commercial air electrode, and forced air convection from the vehicles rotors. The performance of this cell with these attributes is projected to be 500 watt-hrs/kg and 500 watts/kg based on simple model. It is expected to support a flying time of approximately 1 hour in any vehicle in which the usual limit is 15 minutes.

  13. Seeing Which Way the Wind Blows: New Doppler Radar Takes Flight on This Summer's HS3 Mission

    NASA Image and Video Library

    2017-12-08

    Most aircraft carrying Doppler radar look like they’ve grown a tail, developed a dorsal fin, or sprouted a giant pancake on their backs. But when the unmanned Global Hawk carries a radar system this summer, its cargo will be hard to see. The autonomous and compact High-altitude Imaging Wind and Rain Profiler, or HIWRAP, a dual-frequency conical-scanning Doppler radar, will hang under the aircraft’s belly as it flies above hurricanes to measure wind and rain and to test a new method for retrieving wind data. HIWRAP is one of the instruments that will fly in this summer's mission to explore Atlantic Ocean hurricanes. NASA's Hurricane and Severe Storm Sentinel, or HS3, airborne mission will investigate tropical cyclones using a number of instruments and two Global Hawks. The HS3 mission will operate between Aug. 20 and Sept. 23. Read more: 1.usa.gov/18TYPt7 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  14. Amnioserosa cell constriction but not epidermal actin cable tension autonomously drives dorsal closure.

    PubMed

    Pasakarnis, Laurynas; Frei, Erich; Caussinus, Emmanuel; Affolter, Markus; Brunner, Damian

    2016-11-01

    Tissue morphogenesis requires coordination of multiple force-producing components. During dorsal closure in fly embryogenesis, an epidermis opening closes. A tensioned epidermal actin/MyosinII cable, which surrounds the opening, produces a force that is thought to combine with another MyosinII force mediating apical constriction of the amnioserosa cells that fill the opening. A model proposing that each force could autonomously drive dorsal closure was recently challenged by a model in which the two forces combine in a ratchet mechanism. Acute force elimination via selective MyosinII depletion in one or the other tissue shows that the amnioserosa tissue autonomously drives dorsal closure while the actin/MyosinII cable cannot. These findings exclude both previous models, although a contribution of the ratchet mechanism at dorsal closure onset remains likely. This shifts the current view of dorsal closure being a combinatorial force-component system to a single tissue-driven closure event.

  15. Alternative Fuels Data Center

    Science.gov Websites

    Autonomous Vehicle Regulations and Committee A fully autonomous vehicle is defined as a vehicle tactical control functions of the vehicle at any time.Effective December 1, 2017, the operator of a fully autonomous vehicle is not required to be licensed to operate a motor vehicle. A person may operate a fully

  16. Relative Navigation for Formation Flying of Spacecraft

    NASA Technical Reports Server (NTRS)

    Alonso, Roberto; Du, Ju-Young; Hughes, Declan; Junkins, John L.; Crassidis, John L.

    2001-01-01

    This paper presents a robust and efficient approach for relative navigation and attitude estimation of spacecraft flying in formation. This approach uses measurements from a new optical sensor that provides a line of sight vector from the master spacecraft to the secondary satellite. The overall system provides a novel, reliable, and autonomous relative navigation and attitude determination system, employing relatively simple electronic circuits with modest digital signal processing requirements and is fully independent of any external systems. Experimental calibration results are presented, which are used to achieve accurate line of sight measurements. State estimation for formation flying is achieved through an optimal observer design. Also, because the rotational and translational motions are coupled through the observation vectors, three approaches are suggested to separate both signals just for stability analysis. Simulation and experimental results indicate that the combined sensor/estimator approach provides accurate relative position and attitude estimates.

  17. Classifications, applications, and design challenges of drones: A review

    NASA Astrophysics Data System (ADS)

    Hassanalian, M.; Abdelkefi, A.

    2017-05-01

    Nowadays, there is a growing need for flying drones with diverse capabilities for both civilian and military applications. There is also a significant interest in the development of novel drones which can autonomously fly in different environments and locations and can perform various missions. In the past decade, the broad spectrum of applications of these drones has received most attention which led to the invention of various types of drones with different sizes and weights. In this review paper, we identify a novel classification of flying drones that ranges from unmanned air vehicles to smart dusts at both ends of this spectrum, with their new defined applications. Design and fabrication challenges of micro drones, existing methods for increasing their endurance, and various navigation and control approaches are discussed in details. Limitations of the existing drones, proposed solutions for the next generation of drones, and recommendations are also presented and discussed.

  18. Comparing the aerodynamic forces produced by dragonfly forewings during inverted and non-inverted flight

    NASA Astrophysics Data System (ADS)

    Shumway, Nathan; Gabryszuk, Mateusz; Laurence, Stuart

    2017-11-01

    Experiments were conducted with live dragonflies to determine their wing kinematics during free flight. The motion of one forewing in two different tests, one where the dragonfly is inverted, is described using piecewise functions and simulated using the OVERTURNS Reynolds-averaged Navier-Stokes solver that has been used in previous work to determine trim conditions for a fruit fly model. For the inverted dragonfly the upstrokes were significantly longer than the downstrokes, pitching amplitude is lower than that for the right-side up flight and the flap amplitude is larger. Simulations of dragonfly kinematics of a single forewing are presented to determine how the forces differ for a dragonfly flying inverted and a dragonfly flying right-side up. This work was supported by the United States Army Research Laboratory's Micro Autonomous Systems and Technology Collaborative Technology Alliance Project MCE-16-17 1.2.

  19. Scalable autonomous operations of unmanned assets

    NASA Astrophysics Data System (ADS)

    Jung, Sunghun

    Although there have been great theoretical advances in the region of Unmanned Aerial Vehicle (UAV) autonomy, applications of those theories into real world are still hesitated due to unexpected disturbances. Most of UAVs which are currently used are mainly, strictly speaking, Remotely Piloted Vehicles (RPA) since most works related with the flight control, sensor data analysis, and decision makings are done by human operators. To increase the degree of autonomy, many researches are focused on developing Unmanned Autonomous Aerial Vehicle (UAAV) which can takeoff, fly to the interested area by avoiding unexpected obstacles, perform various missions with decision makings, come back to the base station, and land on by itself without any human operators. To improve the performance of UAVs, the accuracies of position and orientation sensors are enhanced by integrating a Unmanned Ground Vehicle (UGV) or a solar compass to a UAV; Position sensor accuracy of a GPS sensor on a UAV is improved by referencing the position of a UGV which is calculated by using three GPS sensors and Weighted Centroid Localization (WCL) method; Orientation sensor accuracy is improved as well by using Three Pixel Theorem (TPT) and integrating a solar compass which composed of nine light sensors to a magnetic compass. Also, improved health management of a UAV is fulfilled by developing a wireless autonomous charging station which uses four pairs of transmitter and receiver magnetic loops with four robotic arms. For the software aspect, I also analyze the error propagation of the proposed mission planning hierarchy to achieve the safest size of the buffer zone. In addition, among seven future research areas regarding UAV, this paper mainly focuses on developing algorithms of path planning, trajectory generation, and cooperative tactics for the operations of multiple UAVs using GA based multiple Traveling Salesman Problem (mTSP) which is solved by dividing into m number of Traveling Salesman Problems (TSP) using two region division methods such as Uniform Region Division (URD) and K-means Voronoi Region Division (KVRD). The topic of the maximum fuel efficiency is also dealt to ensure the minimum amount fuel consumption to perform surveillance on a given region using multiple UAVs. Last but not least, I present an application example of cattle roundup with two UAVs and two animals using the feedback linearization controller.

  20. Dual Liquid Flyback Booster for the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Blum, C.; Jones, P.; Meinders, B.

    1998-01-01

    Liquid Flyback Boosters provide an opportunity to improve shuttle safety, increase performance, and reduce operating costs. The objective of the LFBB study is to establish the viability of a LFBB configuration to integrate into the shuffle vehicle and meet the goals of the Space Shuttle upgrades program. The design of a technically viable LFBB must integrate into the shuffle vehicle with acceptable impacts to the vehicle elements, i.e. orbiter and external tank and the shuttle operations infrastructure. The LFBB must also be capable of autonomous return to the launch site. The smooth integration of the LFBB into the space shuttle vehicle and the ability of the LFBB to fly back to the launch site are not mutually compatible capabilities. LFBB wing configurations optimized for ascent must also provide flight quality during the powered return back to the launch site. This paper will focus on the core booster design and ascent performance. A companion paper 'Conceptual Design for a Space Shuttle Liquid Flyback Booster' will focus on the flyback system design and performance. The LFBB study developed design and aerodynamic data to demonstrate the viability of a dual booster configuration to meet the shuttle upgrade goals, i.e. enhanced safety, improved performance and reduced operations costs.

  1. Dual Liquid Flyback Booster for the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Blum, C.; Jones, Patti; Meinders, B.

    1998-01-01

    Liquid Flyback Boosters provide an opportunity to improve shuttle safety, increase performance, and reduce operating costs. The objective of the LFBB study is to establish the viability of a LFBB configuration to integrate into the shuttle vehicle and meet the goals of the Space Shuttle upgrades program. The design of a technically viable LFBB must integrate into the shuttle vehicle with acceptable impacts to the vehicle elements, i.e. orbiter and external tank and the shuttle operations infrastructure. The LFBB must also be capable of autonomous return to the launch site. The smooth integration of the LFBB into the space shuttle vehicle and the ability of the LFBB to fly back to the launch site are not mutually compatible capabilities. LFBB wing configurations optimized for ascent must also provide flight quality during the powered return back to the launch site. This paper will focus on the core booster design and ascent performance. A companion paper, "Conceptual Design for a Space Shuttle Liquid Flyback Booster" will focus on the flyback system design and performance. The LFBB study developed design and aerodynamic data to demonstrate the viability of a dual booster configuration to meet the shuttle upgrade goals, i.e. enhanced safety, improved performance and reduced operations costs.

  2. Method and associated apparatus for capturing, servicing, and de-orbiting earth satellites using robotics

    NASA Technical Reports Server (NTRS)

    Cepollina, Frank J. (Inventor); Corbo, James E. (Inventor); Burns, Richard D. (Inventor); Jedhrich, Nicholas M. (Inventor); Holz, Jill M. (Inventor)

    2009-01-01

    This invention is a method and supporting apparatus for autonomously capturing, servicing and de-orbiting a free-flying spacecraft, such as a satellite, using robotics. The capture of the spacecraft includes the steps of optically seeking and ranging the satellite using LIDAR, and matching tumble rates, rendezvousing and berthing with the satellite. Servicing of the spacecraft may be done using supervised autonomy, which is allowing a robot to execute a sequence of instructions without intervention from a remote human-occupied location. These instructions may be packaged at the remote station in a script and uplinked to the robot for execution upon remote command giving authority to proceed. Alternately, the instructions may be generated by Artificial Intelligence (AI) logic onboard the robot. In either case, the remote operator maintains the ability to abort an instruction or script at any time as well as the ability to intervene using manual override to teleoperate the robot.

  3. GlobalHawk_SHOUT_ElNino

    NASA Image and Video Library

    2016-05-01

    NASA’s autonomously flown Global Hawk aircraft flew a series of flights over the Pacific Ocean during February 2016, as part of the NOAA-led mission called Sensing Hazards Operational Unmanned Technology, or SHOUT. This year’s El Nino season offered a unique opportunity for the aircraft to contribute data directly to NOAA’s El Nino Rapid Response field campaign. The campaign is seeking to determine key mechanisms affecting El Niño's impacts on the U.S. and their implications for improving NOAA's observational systems, models and predictions. The Global Hawk aircraft offers both NASA and NOAA scientists an exclusive vantage point to observe atmospheric conditions with the plane's ability to fly at 65,000 feet for a time period up to 30 hours. These long-endurance and high-altitude observations give NOAA scientists the opportunity to see a larger picture of how atmospheric changes in the tropics are directly impacting weather activity in the Western U.S.

  4. Customizing the JPL Multimission Ground Data System: Lessons learned

    NASA Technical Reports Server (NTRS)

    Murphy, Susan C.; Louie, John J.; Guerrero, Ana Maria; Hurley, Daniel; Flora-Adams, Dana

    1994-01-01

    The Multimission Ground Data System (MGDS) at NASA's Jet Propulsion Laboratory has brought improvements and new technologies to mission operations. It was designed as a generic data system to meet the needs of multiple missions and avoid re-inventing capabilities for each new mission and thus reduce costs. It is based on adaptable tools that can be customized to support different missions and operations scenarios. The MGDS is based on a distributed client/server architecture, with powerful Unix workstations, incorporating standards and open system architectures. The distributed architecture allows remote operations and user science data exchange, while also providing capabilities for centralized ground system monitor and control. The MGDS has proved its capabilities in supporting multiple large-class missions simultaneously, including the Voyager, Galileo, Magellan, Ulysses, and Mars Observer missions. The Operations Engineering Lab (OEL) at JPL has been leading Customer Adaptation Training (CAT) teams for adapting and customizing MGDS for the various operations and engineering teams. These CAT teams have typically consisted of only a few engineers who are familiar with operations and with the MGDS software and architecture. Our experience has provided a unique opportunity to work directly with the spacecraft and instrument operations teams and understand their requirements and how the MGDS can be adapted and customized to minimize their operations costs. As part of this work, we have developed workstation configurations, automation tools, and integrated user interfaces at minimal cost that have significantly improved productivity. We have also proved that these customized data systems are most successful if they are focused on the people and the tasks they perform and if they are based upon user confidence in the development team resulting from daily interactions. This paper will describe lessons learned in adapting JPL's MGDS to fly the Voyager, Galileo, and Mars Observer missions. We will explain how powerful, existing ground data systems can be adapted and packaged in a cost effective way for operations of small and large planetary missions. We will also describe how the MGDS was adapted to support operations within the Galileo Spacecraft Testbed. The Galileo testbed provided a unique opportunity to adapt MGDS to support command and control operations for a small autonomous operations team of a handful of engineers flying the Galileo Spacecraft flight system model.

  5. Advancing Autonomous Operations Technologies for NASA Missions

    NASA Technical Reports Server (NTRS)

    Cruzen, Craig; Thompson, Jerry T.

    2013-01-01

    This paper discusses the importance of implementing advanced autonomous technologies supporting operations of future NASA missions. The ability for crewed, uncrewed and even ground support systems to be capable of mission support without external interaction or control has become essential as space exploration moves further out into the solar system. The push to develop and utilize autonomous technologies for NASA mission operations stems in part from the need to reduce cost while improving and increasing capability and safety. This paper will provide examples of autonomous technologies currently in use at NASA and will identify opportunities to advance existing autonomous technologies that will enhance mission success by reducing cost, ameliorating inefficiencies, and mitigating catastrophic anomalies

  6. SPHERES: Design of a Formation Flying Testbed for ISS

    NASA Astrophysics Data System (ADS)

    Sell, S. W.; Chen, S. E.

    2002-01-01

    The SPHERES (Synchronized Position Hold Engage and Reorient Experimental Satellites) payload is an innovative formation-flying spacecraft testbed currently being developed for use internally aboard the International Space Station (ISS). The purpose of the testbed is to provide a cost-effective, long duration, replenishable, and easily reconfigurable platform with representative dynamics for the development and validation of metrology, formation flying, and autonomy algorithms. The testbed components consist of three 8-inch diameter free-flying "satellites," five ultrasound beacons, and an ISS laptop workstation. Each satellite is self-contained with on-board battery power, cold-gas propulsion (CO2), and processing systems. Satellites use two packs of eight standard AA batteries for approximately 90 minutes of lifetime while beacons last the duration of the mission powered by a single AA battery. The propulsion system uses pressurized carbon dioxide gas, stored in replaceable tanks, distributed through an adjustable regulator and associated tubing to twelve thrusters located on the faces of the satellites. A Texas Instruments C6701 DSP handles control algorithm data while an FPGA manages all sensor data, timing, and communication processes on the satellite. All three satellites communicate with each other and with the controlling laptop via a wireless RF link. Five ultrasound beacons, located around a predetermined work area, transmit ultrasound signals that are received by each satellite. The system effectively acts as a pseudo-GPS system, allowing the satellites to determine position and attitude and to navigate within the test arena. The payload hardware are predominantly Commercial Off The Shelf (COTS) products with the exception of custom electronics boards, selected propulsion system adaptors, and beacon and satellite structural elements. Operationally, SPHERES will run in short duration test sessions with approximately two weeks between each session. During operations, satellites will autonomously perform various maneuvers with one to three satellites operating simultaneously, involving a crew member only to upload protocols and replace satellite consumables (gas and power) during the test session. Once completed, data will be downlinked to the ground for analysis by the SPHERES team, facilitating the iterative process of new and/or modified protocols being uplinked for use in the next test session. SPHERES has prior flight experience on the NASA KC-135 Reduced Gravity aircraft and has also been in constant use in laboratory air table testing for almost two years. Slated for launch to the International Space Station on ISS12A.1, SPHERES will use its six-month flight to conduct risk-reduction investigations involving the coordinated motion of multiple satellites in a micro-gravity environment.

  7. Anti-Collision Function Design and Performances of the CNES Formation Flying Experiment on the PRISMA Mission

    NASA Technical Reports Server (NTRS)

    Cayeux, P.; Raballand, F.; Borde, J.; Berges, J.-C.; Meyssignac, B.

    2007-01-01

    Within the framework of a partnership agreement, EADS ASTRIUM has worked since June 2006 for the CNES formation flying experiment on the PRISMA mission. EADS ASTRIUM is responsible for the anti-collision function. This responsibility covers the design and the development of the function as a Matlab/Simulink library, as well as its functional validation and performance assessment. PRISMA is a technology in-orbit testbed mission from the Swedish National Space Board, mainly devoted to formation flying demonstration. PRISMA is made of two micro-satellites that will be launched in 2009 on a quasi-circular SSO at about 700 km of altitude. The CNES FFIORD experiment embedded on PRISMA aims at flight validating an FFRF sensor designed for formation control, and assessing its performances, in preparation to future formation flying missions such as Simbol X; FFIORD aims as well at validating various typical autonomous rendezvous and formation guidance and control algorithms. This paper presents the principles of the collision avoidance function developed by EADS ASTRIUM for FFIORD; three kinds of maneuvers were implemented and are presented in this paper with their performances.

  8. Advanced avionics concepts: Autonomous spacecraft control

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A large increase in space operations activities is expected because of Space Station Freedom (SSF) and long range Lunar base missions and Mars exploration. Space operations will also increase as a result of space commercialization (especially the increase in satellite networks). It is anticipated that the level of satellite servicing operations will grow tenfold from the current level within the next 20 years. This growth can be sustained only if the cost effectiveness of space operations is improved. Cost effectiveness is operational efficiency with proper effectiveness. A concept is presented of advanced avionics, autonomous spacecraft control, that will enable the desired growth, as well as maintain the cost effectiveness (operational efficiency) in satellite servicing operations. The concept of advanced avionics that allows autonomous spacecraft control is described along with a brief description of each component. Some of the benefits of autonomous operations are also described. A technology utilization breakdown is provided in terms of applications.

  9. Sensors and actuators inherent in biological species

    NASA Astrophysics Data System (ADS)

    Taya, Minoru; Stahlberg, Rainer; Li, Fanghong; Zhao, Ying Joyce

    2007-04-01

    This paper addresses examples of sensing and active mechanisms inherent in some biological species where both plants and animals cases are discussed: mechanosensors and actuators in Venus Fly Trap and cucumber tendrils, chemosensors in insects, two cases of interactions between different kingdoms, (i) cotton plant smart defense system and (ii) bird-of-paradise flower and hamming bird interaction. All these cases lead us to recognize how energy-efficient and flexible the biological sensors and actuators are. This review reveals the importance of integration of sensing and actuation functions into an autonomous system if we make biomimetic design of a set of new autonomous systems which can sense and actuate under a number of different stimuli and threats.

  10. Mapping Heart Development in Flies: Src42A Acts Non-Autonomously to Promote Heart Tube Formation in Drosophila

    PubMed Central

    Vanderploeg, Jessica; Jacobs, J. Roger

    2017-01-01

    Congenital heart defects, clinically identified in both small and large animals, are multifactorial and complex. Although heritable factors are known to have a role in cardiovascular disease, the full genetic aetiology remains unclear. Model organism research has proven valuable in providing a deeper understanding of the essential factors in heart development. For example, mouse knock-out studies reveal a role for the Integrin adhesion receptor in cardiac tissue. Recent research in Drosophila melanogaster (the fruit fly), a powerful experimental model, has demonstrated that the link between the extracellular matrix and the cell, mediated by Integrins, is required for multiple aspects of cardiogenesis. Here we test the hypothesis that Integrins signal to the heart cells through Src42A kinase. Using the powerful genetics and cell biology analysis possible in Drosophila, we demonstrate that Src42A acts in early events of heart tube development. Careful examination of mutant heart tissue and genetic interaction data suggests that Src42A’s role is independent of Integrin and the Integrin-related Focal Adhesion Kinase. Rather, Src42A acts non-autonomously by promoting programmed cell death of the amnioserosa, a transient tissue that neighbors the developing heart. PMID:29056682

  11. Development and Testing of the Phase 0 Autonomous Formation Flight Research System

    NASA Technical Reports Server (NTRS)

    Petersen, Shane; Fantini, Jay; Norlin, Ken; Theisen, John; Krasiewski, Steven

    2004-01-01

    The Autonomous Formation Flight (AFF) project was initiated in 1995 to demonstrate at least 10-percent drag reduction by positioning a trailing aircraft in the wingtip vortex of a leading aircraft. If successful, this technology would provide increased fuel savings, reduced emissions, and extended flight duration for fleet aircraft flying in formation. To demonstrate this technology, the AFF project at NASA Dryden Flight Research Center developed a system architecture incorporating two F-18 aircraft flying in leading-trailing formation. The system architecture has been designed to allow the trailing aircraft to maintain station-keeping position relative to the leading aircraft within +/-10 ft. Development of this architecture would be directed at the design and development of a computing system to feed surface position commands into the flight control computers, thereby controlling the longitudinal and lateral position of the trailing aircraft. In addition, modification to the instrumentation systems of both aircraft, pilot displays, and a means of broadcasting the leading aircraft inertial and global positioning system-based positional data to the trailing aircraft would be needed. This presentation focuses on the design and testing of the AFF Phase 0 research system.

  12. Advanced model-based FDIR techniques for aerospace systems: Today challenges and opportunities

    NASA Astrophysics Data System (ADS)

    Zolghadri, Ali

    2012-08-01

    This paper discusses some trends and recent advances in model-based Fault Detection, Isolation and Recovery (FDIR) for aerospace systems. The FDIR challenges range from pre-design and design stages for upcoming and new programs, to improvement of the performance of in-service flying systems. For space missions, optimization of flight conditions and safe operation is intrinsically related to GNC (Guidance, Navigation & Control) system of the spacecraft and includes sensors and actuators monitoring. Many future space missions will require autonomous proximity operations including fault diagnosis and the subsequent control and guidance recovery actions. For upcoming and future aircraft, one of the main issues is how early and robust diagnosis of some small and subtle faults could contribute to the overall optimization of aircraft design. This issue would be an important factor for anticipating the more and more stringent requirements which would come in force for future environmentally-friendlier programs. The paper underlines the reasons for a widening gap between the advanced scientific FDIR methods being developed by the academic community and technological solutions demanded by the aerospace industry.

  13. Systems, methods and apparatus for quiesence of autonomic safety devices with self action

    NASA Technical Reports Server (NTRS)

    Hinchey, Michael G. (Inventor); Sterritt, Roy (Inventor)

    2011-01-01

    Systems, methods and apparatus are provided through which in some embodiments an autonomic environmental safety device may be quiesced. In at least one embodiment, a method for managing an autonomic safety device, such as a smoke detector, based on functioning state and operating status of the autonomic safety device includes processing received signals from the autonomic safety device to obtain an analysis of the condition of the autonomic safety device, generating one or more stay-awake signals based on the functioning status and the operating state of the autonomic safety device, transmitting the stay-awake signal, transmitting self health/urgency data, and transmitting environment health/urgency data. A quiesce component of an autonomic safety device can render the autonomic safety device inactive for a specific amount of time or until a challenging situation has passed.

  14. A Paradigm for Operant Conditioning in Blow Flies ("Phormia Terrae Novae" Robineau-Desvoidy, 1830)

    ERIC Educational Resources Information Center

    Sokolowski, Michel B. C.; Disma, Gerald; Abramson, Charles I.

    2010-01-01

    An operant conditioning situation for the blow fly ("Protophormia terrae novae") is described. Individual flies are trained to enter and reenter a hole as the operant response. Only a few sessions of contingent reinforcement are required to increase response rates. When the response is no longer followed by food, the rate of entering the hole…

  15. The Jet Propulsion Laboratory shared control architecture and implementation

    NASA Technical Reports Server (NTRS)

    Backes, Paul G.; Hayati, Samad

    1990-01-01

    A hardware and software environment for shared control of telerobot task execution has been implemented. Modes of task execution range from fully teleoperated to fully autonomous as well as shared where hand controller inputs from the human operator are mixed with autonomous system inputs in real time. The objective of the shared control environment is to aid the telerobot operator during task execution by merging real-time operator control from hand controllers with autonomous control to simplify task execution for the operator. The operator is the principal command source and can assign as much autonomy for a task as desired. The shared control hardware environment consists of two PUMA 560 robots, two 6-axis force reflecting hand controllers, Universal Motor Controllers for each of the robots and hand controllers, a SUN4 computer, and VME chassis containing 68020 processors and input/output boards. The operator interface for shared control, the User Macro Interface (UMI), is a menu driven interface to design a task and assign the levels of teleoperated and autonomous control. The operator also sets up the system monitor which checks safety limits during task execution. Cartesian-space degrees of freedom for teleoperated and/or autonomous control inputs are selected within UMI as well as the weightings for the teleoperation and autonmous inputs. These are then used during task execution to determine the mix of teleoperation and autonomous inputs. Some of the autonomous control primitives available to the user are Joint-Guarded-Move, Cartesian-Guarded-Move, Move-To-Touch, Pin-Insertion/Removal, Door/Crank-Turn, Bolt-Turn, and Slide. The operator can execute a task using pure teleoperation or mix control execution from the autonomous primitives with teleoperated inputs. Presently the shared control environment supports single arm task execution. Work is presently underway to provide the shared control environment for dual arm control. Teleoperation during shared control is only Cartesian space control and no force-reflection is provided. Force-reflecting teleoperation and joint space operator inputs are planned extensions to the environment.

  16. Autonomous Dirigible Airships: A Comparative Analysis and Operational Efficiency Evaluation for Logistical Use in Complex Environments

    DTIC Science & Technology

    2012-06-01

    This document was downloaded on August 16, 2012 at 10:14:04 Author(s) Acton, Brian E.; Taylor, David L. Title Autonomous Dirigible Airships: a ...Autonomous Dirigible Airships: A Comparative Analysis and Operational Efficiency Evaluation for Logistical Use in Complex Environments...2. REPORT DATE June 2012 3. REPORT TYPE AND DATES COVERED MBA Professional Report 4. TITLE AND SUBTITLE: Autonomous Dirigible Airships: A

  17. Towards Autonomous Airport Surface Operations: NextGen Flight Deck Implications

    NASA Technical Reports Server (NTRS)

    Foyle, David C.; Hooey, Becky Lee; Bakowski, Deborah Lee

    2017-01-01

    Surface Trajectory-based Operations (STBO) is a potential concept candidate for flight deck autonomous operations. Existing research will be reviewed and possible architectures and research issues will be presented.

  18. Wi-Fi and satellite-based location techniques for intelligent agricultural machinery controlled by a human operator.

    PubMed

    Drenjanac, Domagoj; Tomic, Slobodanka; Agüera, Juan; Perez-Ruiz, Manuel

    2014-10-22

    In the new agricultural scenarios, the interaction between autonomous tractors and a human operator is important when they jointly perform a task. Obtaining and exchanging accurate localization information between autonomous tractors and the human operator, working as a team, is a critical to maintaining safety, synchronization, and efficiency during the execution of a mission. An advanced localization system for both entities involved in the joint work, i.e., the autonomous tractors and the human operator, provides a basis for meeting the task requirements. In this paper, different localization techniques for a human operator and an autonomous tractor in a field environment were tested. First, we compared the localization performances of two global navigation satellite systems' (GNSS) receivers carried by the human operator: (1) an internal GNSS receiver built into a handheld device; and (2) an external DGNSS receiver with centimeter-level accuracy. To investigate autonomous tractor localization, a real-time kinematic (RTK)-based localization system installed on autonomous tractor developed for agricultural applications was evaluated. Finally, a hybrid localization approach, which combines distance estimates obtained using a wireless scheme with the position of an autonomous tractor obtained using an RTK-GNSS system, is proposed. The hybrid solution is intended for user localization in unstructured environments in which the GNSS signal is obstructed. The hybrid localization approach has two components: (1) a localization algorithm based on the received signal strength indication (RSSI) from the wireless environment; and (2) the acquisition of the tractor RTK coordinates when the human operator is near the tractor. In five RSSI tests, the best result achieved was an average localization error of 4 m. In tests of real-time position correction between rows, RMS error of 2.4 cm demonstrated that the passes were straight, as was desired for the autonomous tractor. From these preliminary results, future work will address the use of autonomous tractor localization in the hybrid localization approach.

  19. Wi-Fi and Satellite-Based Location Techniques for Intelligent Agricultural Machinery Controlled by a Human Operator

    PubMed Central

    Drenjanac, Domagoj; Tomic, Slobodanka; Agüera, Juan; Perez-Ruiz, Manuel

    2014-01-01

    In the new agricultural scenarios, the interaction between autonomous tractors and a human operator is important when they jointly perform a task. Obtaining and exchanging accurate localization information between autonomous tractors and the human operator, working as a team, is a critical to maintaining safety, synchronization, and efficiency during the execution of a mission. An advanced localization system for both entities involved in the joint work, i.e., the autonomous tractors and the human operator, provides a basis for meeting the task requirements. In this paper, different localization techniques for a human operator and an autonomous tractor in a field environment were tested. First, we compared the localization performances of two global navigation satellite systems’ (GNSS) receivers carried by the human operator: (1) an internal GNSS receiver built into a handheld device; and (2) an external DGNSS receiver with centimeter-level accuracy. To investigate autonomous tractor localization, a real-time kinematic (RTK)-based localization system installed on autonomous tractor developed for agricultural applications was evaluated. Finally, a hybrid localization approach, which combines distance estimates obtained using a wireless scheme with the position of an autonomous tractor obtained using an RTK-GNSS system, is proposed. The hybrid solution is intended for user localization in unstructured environments in which the GNSS signal is obstructed. The hybrid localization approach has two components: (1) a localization algorithm based on the received signal strength indication (RSSI) from the wireless environment; and (2) the acquisition of the tractor RTK coordinates when the human operator is near the tractor. In five RSSI tests, the best result achieved was an average localization error of 4 m. In tests of real-time position correction between rows, RMS error of 2.4 cm demonstrated that the passes were straight, as was desired for the autonomous tractor. From these preliminary results, future work will address the use of autonomous tractor localization in the hybrid localization approach. PMID:25340450

  20. Investigation into legislative action needed to accommodate the future safe operation of autonomous vehicles in the state of Louisiana.

    DOT National Transportation Integrated Search

    2016-10-01

    This report addresses the matter of autonomous vehicles and the regulation of their operation in the : state of Louisiana. It was prepared in response to a request from the Louisiana State Legislature to : study the subject of autonomous vehicles and...

  1. Autonomous Control of Space Reactor Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belle R. Upadhyaya; K. Zhao; S.R.P. Perillo

    2007-11-30

    Autonomous and semi-autonomous control is a key element of space reactor design in order to meet the mission requirements of safety, reliability, survivability, and life expectancy. Interrestrial nuclear power plants, human operators are avilable to perform intelligent control functions that are necessary for both normal and abnormal operational conditions.

  2. Autonomous Systems, Robotics, and Computing Systems Capability Roadmap: NRC Dialogue

    NASA Technical Reports Server (NTRS)

    Zornetzer, Steve; Gage, Douglas

    2005-01-01

    Contents include the following: Introduction. Process, Mission Drivers, Deliverables, and Interfaces. Autonomy. Crew-Centered and Remote Operations. Integrated Systems Health Management. Autonomous Vehicle Control. Autonomous Process Control. Robotics. Robotics for Solar System Exploration. Robotics for Lunar and Planetary Habitation. Robotics for In-Space Operations. Computing Systems. Conclusion.

  3. Agent Technology, Complex Adaptive Systems, and Autonomic Systems: Their Relationships

    NASA Technical Reports Server (NTRS)

    Truszkowski, Walt; Rash, James; Rouff, Chistopher; Hincheny, Mike

    2004-01-01

    To reduce the cost of future spaceflight missions and to perform new science, NASA has been investigating autonomous ground and space flight systems. These goals of cost reduction have been further complicated by nanosatellites for future science data-gathering which will have large communications delays and at times be out of contact with ground control for extended periods of time. This paper describes two prototype agent-based systems, the Lights-out Ground Operations System (LOGOS) and the Agent Concept Testbed (ACT), and their autonomic properties that were developed at NASA Goddard Space Flight Center (GSFC) to demonstrate autonomous operations of future space flight missions. The paper discusses the architecture of the two agent-based systems, operational scenarios of both, and the two systems autonomic properties.

  4. A Robust Compositional Architecture for Autonomous Systems

    NASA Technical Reports Server (NTRS)

    Brat, Guillaume; Deney, Ewen; Farrell, Kimberley; Giannakopoulos, Dimitra; Jonsson, Ari; Frank, Jeremy; Bobby, Mark; Carpenter, Todd; Estlin, Tara

    2006-01-01

    Space exploration applications can benefit greatly from autonomous systems. Great distances, limited communications and high costs make direct operations impossible while mandating operations reliability and efficiency beyond what traditional commanding can provide. Autonomous systems can improve reliability and enhance spacecraft capability significantly. However, there is reluctance to utilizing autonomous systems. In part this is due to general hesitation about new technologies, but a more tangible concern is that of reliability of predictability of autonomous software. In this paper, we describe ongoing work aimed at increasing robustness and predictability of autonomous software, with the ultimate goal of building trust in such systems. The work combines state-of-the-art technologies and capabilities in autonomous systems with advanced validation and synthesis techniques. The focus of this paper is on the autonomous system architecture that has been defined, and on how it enables the application of validation techniques for resulting autonomous systems.

  5. An Evaluation of Potential Operating Systems for Autonomous Underwater Vehicles

    DTIC Science & Technology

    2013-02-01

    Remotely Operated Vehicle RTOS Real-Time Operating System SAUC -E Student Autonomous Underwater Vehicle Challenge - Europe TCP Transmission Control Protocol...popularity, with examples including the Student Autonomous Underwater Vehicle Challenge - Europe ( SAUC -E) [7] and the AUVSI robosub competition [8]. For...28] for entry into AUV competitions such as SAUC -E [7], and AUVSI [8]. 8 UNCLASSIFIED UNCLASSIFIED DSTO–TN–1194 3.4 Windows CE Windows CE

  6. JOMAR: Joint Operations with Mobile Autonomous Robots

    DTIC Science & Technology

    2015-12-21

    AFRL-AFOSR-JP-TR-2015-0009 JOMAR: Joint Operations with Mobile Autonomous Robots Edwin Olson UNIVERSITY OF MICHIGAN Final Report 12/21/2015...SUBTITLE JOMAR: Joint Operations with Mobile Autonomous Robots 5a. CONTRACT NUMBER FA23861114024 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...14. ABSTRACT Under this grant, we formulated and implemented a variety of novel algorithms that address core problems in multi- robot systems. These

  7. Intelligent (Autonomous) Power Controller Development for Human Deep Space Exploration

    NASA Technical Reports Server (NTRS)

    Soeder, James; Raitano, Paul; McNelis, Anne

    2016-01-01

    As NASAs Evolvable Mars Campaign and other exploration initiatives continue to mature they have identified the need for more autonomous operations of the power system. For current human space operations such as the International Space Station, the paradigm is to perform the planning, operation and fault diagnosis from the ground. However, the dual problems of communication lag as well as limited communication bandwidth beyond GEO synchronous orbit, underscore the need to change the operation methodology for human operation in deep space. To address this need, for the past several years the Glenn Research Center has had an effort to develop an autonomous power controller for human deep space vehicles. This presentation discusses the present roadmap for deep space exploration along with a description of conceptual power system architecture for exploration modules. It then contrasts the present ground centric control and management architecture with limited autonomy on-board the spacecraft with an advanced autonomous power control system that features ground based monitoring with a spacecraft mission manager with autonomous control of all core systems, including power. It then presents a functional breakdown of the autonomous power control system and examines its operation in both normal and fault modes. Finally, it discusses progress made in the development of a real-time power system model and how it is being used to evaluate the performance of the controller and well as using it for verification of the overall operation.

  8. 9 CFR 355.15 - Inedible material operating and storage rooms; outer premises, docks, driveways, etc.; fly...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... storage rooms; outer premises, docks, driveways, etc.; fly-breeding material; nuisances. 355.15 Section....15 Inedible material operating and storage rooms; outer premises, docks, driveways, etc.; fly... departments where certified products are prepared, handled, or stored. Docks and areas where cars and vehicles...

  9. 9 CFR 355.15 - Inedible material operating and storage rooms; outer premises, docks, driveways, etc.; fly...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... storage rooms; outer premises, docks, driveways, etc.; fly-breeding material; nuisances. 355.15 Section....15 Inedible material operating and storage rooms; outer premises, docks, driveways, etc.; fly... departments where certified products are prepared, handled, or stored. Docks and areas where cars and vehicles...

  10. 9 CFR 355.15 - Inedible material operating and storage rooms; outer premises, docks, driveways, etc.; fly...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... storage rooms; outer premises, docks, driveways, etc.; fly-breeding material; nuisances. 355.15 Section....15 Inedible material operating and storage rooms; outer premises, docks, driveways, etc.; fly... departments where certified products are prepared, handled, or stored. Docks and areas where cars and vehicles...

  11. A paradigm for operant conditioning in blow flies (Phormia terrae novae Robineau-Desvoidy, 1830).

    PubMed

    Sokolowski, Michel B C; Disma, Gérald; Abramson, Charles I

    2010-01-01

    An operant conditioning situation for the blow fly (Protophormia terrae novae) is described. Individual flies are trained to enter and reenter a hole as the operant response. Only a few sessions of contingent reinforcement are required to increase response rates. When the response is no longer followed by food, the rate of entering the hole decreases. Control procedures revealed that rate of responding is not a simple overall result of feeding or of aging. The flies entered into the hole only if the response was required to obtain the food.

  12. Autonomous Command Operations of the WIRE Spacecraft

    NASA Technical Reports Server (NTRS)

    Walyus, Keith; Prior, Mike; Saylor, Richard

    1999-01-01

    This paper presents operational innovations which will be introduced on NASA's Wide Field Infrared Explorer (WIRE) mission. These innovations include an end-to-end design architecture for an autonomous commanding capability for the uplink of command loads during unattended station contacts. The WIRE mission is the fifth and final mission of NASA's Goddard Space Flight Center Small Explorer (SMEX) series to be launched in March of 1999. Its primary mission is the targeting of deep space fields using an ultra-cooled infrared telescope. Due to its mission design WIRE command loads are large (approximately 40 Kbytes per 24 hours) and must be performed daily. To reduce the cost of mission operations support that would be required in order to uplink command loads, the WIRE Flight Operations Team has implemented all autonomous command loading capability. This capability allows completely unattended operations over a typical two-day weekend period. The key factors driving design and implementation of this capability were: 1) integration with already existing ground system autonomous capabilities and systems, 2) the desire to evolve autonomous operations capabilities based upon previous SMEX operations experience - specifically the TRACE mission, 3) integration with ground station operations - both autonomous and man-tended, 4) low cost and quick implementation, and 5) end-to-end system robustness. A trade-off study was performed to examine these factors in light of the low-cost, higher-risk SMEX mission philosophy. The study concluded that a STOL (Spacecraft Test and Operations Language) based script, highly integrated with other scripts used to perform autonomous operations, was best suited given the budget and goals of the mission. Each of these factors is discussed in addition to use of the TRACE mission as a testbed for autonomous commanding prior to implementation on WIRE. The capabilities implemented on the WIRE mission are an example of a low-cost, robust, and efficient method for autonomous command loading when implemented with other autonomous features of the ground system. They call be used as a design and implementation template by other missions interested in evolving toward autonomous and lower cost operations. Additionally, the WIRE spacecraft will be used as an operational testbed upon completion of its nominal mission later in 1999. One idea being studied is advanced on-board modeling. Advanced on-board modeling techniques will be used to more efficiently display the spacecraft state. This health and safety information could be used by engineers on the ground or could be used by tile spacecraft for its own assessments. Additionally, this same state information could also be input into the event-driven scheduling system, as the scheduling system will need to assess the spacecraft state before undertaking a new activity. Advanced modeling techniques are being evaluated for a number of NASA missions including The Next Generation Space Telescope (NGST), which is scheduled to launch in 2007.

  13. Results from teleoperated free-flying spacecraft simulations in the Martin Marietta space operations simulator lab

    NASA Technical Reports Server (NTRS)

    Hartley, Craig S.

    1990-01-01

    To augment the capabilities of the Space Transportation System, NASA has funded studies and developed programs aimed at developing reusable, remotely piloted spacecraft and satellite servicing systems capable of delivering, retrieving, and servicing payloads at altitudes and inclinations beyond the reach of the present Shuttle Orbiters. Since the mid 1970's, researchers at the Martin Marietta Astronautics Group Space Operations Simulation (SOS) Laboratory have been engaged in investigations of remotely piloted and supervised autonomous spacecraft operations. These investigations were based on high fidelity, real-time simulations and have covered a wide range of human factors issues related to controllability. Among these are: (1) mission conditions, including thruster plume impingements and signal time delays; (2) vehicle performance variables, including control authority, control harmony, minimum impulse, and cross coupling of accelerations; (3) maneuvering task requirements such as target distance and dynamics; (4) control parameters including various control modes and rate/displacement deadbands; and (5) display parameters involving camera placement and function, visual aids, and presentation of operational feedback from the spacecraft. This presentation includes a brief description of the capabilities of the SOS Lab to simulate real-time free-flyer operations using live video, advanced technology ground and on-orbit workstations, and sophisticated computer models of on-orbit spacecraft behavior. Sample results from human factors studies in the five categories cited above are provided.

  14. Using ANTS to explore small body populations in the solar system.

    NASA Astrophysics Data System (ADS)

    Clark, P. E.; Rilee, M.; Truszkowski, W.; Curtis, S.; Marr, G.; Chapman, C.

    2001-11-01

    ANTS (Autonomous Nano-Technology Swarm), a NASA advanced mission concept, is a large (100 to 1000 member) swarm of pico-class (1 kg) totally autonomous spacecraft that prospect the asteroid belt. Little data is available for asteroids because the vast majority are too small to be observed except in close proximity. Light curves are available for thousands of asteroids, confirmed trajectories for tens of thousands, detailed shape models for approximately ten. Asteroids originated in the transitional region between the inner (rocky) and outer (solidified gases) solar system. Many have remained largely unmodified since formation, and thus have more primitive composition than planetary surfaces. Determination of the systematic distribution of physical and compositional properties within the asteroid population is crucial in the understanding of solar system formation. The traditional exploration approach of using few, large spacecraft for sequential exploration, could be improved. Our far more cost-effective approach utilizes distributed intelligence in a swarm of tiny highly maneuverable spacecraft, each with specialized instrument capability (e.g., advanced computing, imaging, spectrometry). NASA is at the forefront of Intelligent Software Agents (ISAs) research, performing experiments in space and on the ground to advance deliberative and collaborative autonomous control techniques. The advanced development under consideration here is in the use of ISAs at a strategic level, to explore remote frontiers of the solar system, potentially involving a large class of objects such as asteroids. Supervised clusters of spacecraft operate simultaneously within a broadly defined framework of goals to select targets (> 1000) from among available candidates while developing scenarios for studying targets. Swarm members use solar sails to fly directly to asteroids > 1 kilometer in diameter, and then perform maneuvers appropriate for the instrument carried, ranging from hovering to orbiting. Selected members return with data and are replaced as needed.

  15. Operator Informational Needs for Multiple Autonomous Small Vehicles

    NASA Technical Reports Server (NTRS)

    Trujillo, Anna C.; Fan, Henry; Cross, Charles D.; Hempley, Lucas E.; Cichella, Venanzio; Puig-Navarro, Javier; Mehdi, Syed Bilal

    2015-01-01

    With the anticipated explosion of small unmanned aerial vehicles, it is highly likely that operators will be controlling fleets of autonomous vehicles. To fulfill the promise of autonomy, vehicle operators will not be concerned with manual control of the vehicle; instead, they will deal with the overall mission. Furthermore, the one operator to many vehicles is becoming a constant meme with various industries including package delivery, search and rescue, and utility companies. In order for an operator to concurrently control several vehicles, his station must look and behave very differently than the current ground control station instantiations. Furthermore, the vehicle will have to be much more autonomous, especially during non-normal operations, in order to accommodate the knowledge deficit or the information overload of the operator in charge of several vehicles. The expected usage increase of small drones requires presenting the operational information generated by a fleet of heterogeneous autonomous agents to an operator. NASA Langley Research Center's Autonomy Incubator has brought together researchers in various disciplines including controls, trajectory planning, systems engineering, and human factors to develop an integrated system to study autonomy issues. The initial human factors effort is focusing on mission displays that would give an operator the overall status of all autonomous agents involved in the current mission. This paper will discuss the specifics of the mission displays for operators controlling several vehicles.

  16. Swarm autonomic agents with self-destruct capability

    NASA Technical Reports Server (NTRS)

    Hinchey, Michael G. (Inventor); Sterritt, Roy (Inventor)

    2009-01-01

    Systems, methods and apparatus are provided through which in some embodiments an autonomic entity manages a system by generating one or more stay alive signals based on the functioning status and operating state of the system. In some embodiments, an evolvable synthetic neural system is operably coupled to one or more evolvable synthetic neural systems in a hierarchy. The evolvable neural interface receives and generates heartbeat monitor signals and pulse monitor signals that are used to generate a stay alive signal that is used to manage the operations of the synthetic neural system. In another embodiment an asynchronous Alice signal (Autonomic license) requiring valid credentials of an anonymous autonomous agent is initiated. An unsatisfactory Alice exchange may lead to self-destruction of the anonymous autonomous agent for self-protection.

  17. Swarm autonomic agents with self-destruct capability

    NASA Technical Reports Server (NTRS)

    Hinchey, Michael G. (Inventor); Sterritt, Roy (Inventor)

    2011-01-01

    Systems, methods and apparatus are provided through which in some embodiments an autonomic entity manages a system by generating one or more stay alive signals based on the functioning status and operating state of the system. In some embodiments, an evolvable synthetic neural system is operably coupled to one or more evolvable synthetic neural systems in a hierarchy. The evolvable neural interface receives and generates heartbeat monitor signals and pulse monitor signals that are used to generate a stay alive signal that is used to manage the operations of the synthetic neural system. In another embodiment an asynchronous Alice signal (Autonomic license) requiring valid credentials of an anonymous autonomous agent is initiated. An unsatisfactory Alice exchange may lead to self-destruction of the anonymous autonomous agent for self-protection.

  18. PHM Enabled Autonomous Propellant Loading Operations

    NASA Technical Reports Server (NTRS)

    Walker, Mark; Figueroa, Fernando

    2017-01-01

    The utility of Prognostics and Health Management (PHM) software capability applied to Autonomous Operations (AO) remains an active research area within aerospace applications. The ability to gain insight into which assets and subsystems are functioning properly, along with the derivation of confident predictions concerning future ability, reliability, and availability, are important enablers for making sound mission planning decisions. When coupled with software that fully supports mission planning and execution, an integrated solution can be developed that leverages state assessment and estimation for the purposes of delivering autonomous operations. The authors have been applying this integrated, model-based approach to the autonomous loading of cryogenic spacecraft propellants at Kennedy Space Center.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chelaru, Teodor-Viorel, E-mail: teodor.chelaru@upb.ro; Chelaru, Adrian, E-mail: achelaru@incas.ro

    The paper purpose is to present some aspects regarding the control system of unmanned aerial vehicle - UAV, used to local observations, surveillance and monitoring interest area. The calculus methodology allows a numerical simulation of UAV evolution in bad atmospheric conditions by using nonlinear model, as well as a linear one for obtaining guidance command. The UAV model which will be presented has six DOF (degrees of freedom), and autonomous control system. This theoretical development allows us to build stability matrix, command matrix and control matrix and finally to analyse the stability of autonomous UAV flight. A robust guidance system,more » based on uncoupled state will be evaluated for different fly conditions and the results will be presented. The flight parameters and guidance will be analysed.« less

  20. Guidance and Control of a Small Unmanned Aerial Vehicle and Autonomous Flight Experiments

    NASA Astrophysics Data System (ADS)

    Fujinaga, Jin; Tokutake, Hiroshi; Sunada, Shigeru

    This paper describes the development of a fixed-wing small-size UAV and the design of its flight controllers. The developed UAV’s wing span is 0.6m, and gross weight is 0.27kg. In order to ensure robust performances of the longitudinal and lateral-directional motions of the UAV, flight controllers are designed for these motions with μ-synthesis. Numerical simulations show that the designed controllers attain good robust stabilities and performances, and have good tracking performance for command. After an order-reduction and discretization, the designed flight controllers were implemented in the UAV. A flight test was performed, and the ability of the UAV to fly autonomously, passing over waypoints, was demonstrated.

  1. Drogue tracking using 3D flash lidar for autonomous aerial refueling

    NASA Astrophysics Data System (ADS)

    Chen, Chao-I.; Stettner, Roger

    2011-06-01

    Autonomous aerial refueling (AAR) is an important capability for an unmanned aerial vehicle (UAV) to increase its flying range and endurance without increasing its size. This paper presents a novel tracking method that utilizes both 2D intensity and 3D point-cloud data acquired with a 3D Flash LIDAR sensor to establish relative position and orientation between the receiver vehicle and drogue during an aerial refueling process. Unlike classic, vision-based sensors, a 3D Flash LIDAR sensor can provide 3D point-cloud data in real time without motion blur, in the day or night, and is capable of imaging through fog and clouds. The proposed method segments out the drogue through 2D analysis and estimates the center of the drogue from 3D point-cloud data for flight trajectory determination. A level-set front propagation routine is first employed to identify the target of interest and establish its silhouette information. Sufficient domain knowledge, such as the size of the drogue and the expected operable distance, is integrated into our approach to quickly eliminate unlikely target candidates. A statistical analysis along with a random sample consensus (RANSAC) is performed on the target to reduce noise and estimate the center of the drogue after all 3D points on the drogue are identified. The estimated center and drogue silhouette serve as the seed points to efficiently locate the target in the next frame.

  2. Search Problems in Mission Planning and Navigation of Autonomous Aircraft. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Krozel, James A.

    1988-01-01

    An architecture for the control of an autonomous aircraft is presented. The architecture is a hierarchical system representing an anthropomorphic breakdown of the control problem into planner, navigator, and pilot systems. The planner system determines high level global plans from overall mission objectives. This abstract mission planning is investigated by focusing on the Traveling Salesman Problem with variations on local and global constraints. Tree search techniques are applied including the breadth first, depth first, and best first algorithms. The minimum-column and row entries for the Traveling Salesman Problem cost matrix provides a powerful heuristic to guide these search techniques. Mission planning subgoals are directed from the planner to the navigator for planning routes in mountainous terrain with threats. Terrain/threat information is abstracted into a graph of possible paths for which graph searches are performed. It is shown that paths can be well represented by a search graph based on the Voronoi diagram of points representing the vertices of mountain boundaries. A comparison of Dijkstra's dynamic programming algorithm and the A* graph search algorithm from artificial intelligence/operations research is performed for several navigation path planning examples. These examples illustrate paths that minimize a combination of distance and exposure to threats. Finally, the pilot system synthesizes the flight trajectory by creating the control commands to fly the aircraft.

  3. X-34 Vehicle Aerodynamic Characteristics

    NASA Technical Reports Server (NTRS)

    Brauckmann, Gregory J.

    1998-01-01

    The X-34, being designed and built by the Orbital Sciences Corporation, is an unmanned sub-orbital vehicle designed to be used as a flying test bed to demonstrate key vehicle and operational technologies applicable to future reusable launch vehicles. The X-34 will be air-launched from an L-1011 carrier aircraft at approximately Mach 0.7 and 38,000 feet altitude, where an onboard engine will accelerate the vehicle to speeds above Mach 7 and altitudes to 250,000 feet. An unpowered entry will follow, including an autonomous landing. The X-34 will demonstrate the ability to fly through inclement weather, land horizontally at a designated site, and have a rapid turn-around capability. A series of wind tunnel tests on scaled models was conducted in four facilities at the NASA Langley Research Center to determine the aerodynamic characteristics of the X-34. Analysis of these test results revealed that longitudinal trim could be achieved throughout the design trajectory. The maximum elevon deflection required to trim was only half of that available, leaving a margin for gust alleviation and aerodynamic coefficient uncertainty. Directional control can be achieved aerodynamically except at combined high Mach numbers and high angles of attack, where reaction control jets must be used. The X-34 landing speed, between 184 and 206 knots, is within the capabilities of the gear and tires, and the vehicle has sufficient rudder authority to control the required 30-knot crosswind.

  4. Autonomous Metabolomics for Rapid Metabolite Identification in Global Profiling

    DOE PAGES

    Benton, H. Paul; Ivanisevic, Julijana; Mahieu, Nathaniel G.; ...

    2014-12-12

    An autonomous metabolomic workflow combining mass spectrometry analysis with tandem mass spectrometry data acquisition was designed to allow for simultaneous data processing and metabolite characterization. Although previously tandem mass spectrometry data have been generated on the fly, the experiments described herein combine this technology with the bioinformatic resources of XCMS and METLIN. We can analyze large profiling datasets and simultaneously obtain structural identifications, as a result of this unique integration. Furthermore, validation of the workflow on bacterial samples allowed the profiling on the order of a thousand metabolite features with simultaneous tandem mass spectra data acquisition. The tandem mass spectrometrymore » data acquisition enabled automatic search and matching against the METLIN tandem mass spectrometry database, shortening the current workflow from days to hours. Overall, the autonomous approach to untargeted metabolomics provides an efficient means of metabolomic profiling, and will ultimately allow the more rapid integration of comparative analyses, metabolite identification, and data analysis at a systems biology level.« less

  5. In Situ Surveying of Saturn's Rings

    NASA Technical Reports Server (NTRS)

    Clark, P. E.; Curtis, S. A.; Rilee, M. L.; Cheung, C.

    2004-01-01

    The Saturn Autonomous Ring Array (SARA) mission concept is a new application for the Autonomous Nano-Technology Swarm (ANTS) architecture, a paradigm being developed for exploration of high surface area and/or multibody targets to minimize costs and maximize effectiveness of survey operations. Systems designed with ANTS architecture are built from potentially very large numbers of highly autonomous, yet socially interactive, specialists, in approximately ten specialist classes. Here, we analyze requirements for such a mission as well as specialized autonomous operations which would support this application.

  6. Visual control of flight speed in Drosophila melanogaster.

    PubMed

    Fry, Steven N; Rohrseitz, Nicola; Straw, Andrew D; Dickinson, Michael H

    2009-04-01

    Flight control in insects depends on self-induced image motion (optic flow), which the visual system must process to generate appropriate corrective steering maneuvers. Classic experiments in tethered insects applied rigorous system identification techniques for the analysis of turning reactions in the presence of rotating pattern stimuli delivered in open-loop. However, the functional relevance of these measurements for visual free-flight control remains equivocal due to the largely unknown effects of the highly constrained experimental conditions. To perform a systems analysis of the visual flight speed response under free-flight conditions, we implemented a 'one-parameter open-loop' paradigm using 'TrackFly' in a wind tunnel equipped with real-time tracking and virtual reality display technology. Upwind flying flies were stimulated with sine gratings of varying temporal and spatial frequencies, and the resulting speed responses were measured from the resulting flight speed reactions. To control flight speed, the visual system of the fruit fly extracts linear pattern velocity robustly over a broad range of spatio-temporal frequencies. The speed signal is used for a proportional control of flight speed within locomotor limits. The extraction of pattern velocity over a broad spatio-temporal frequency range may require more sophisticated motion processing mechanisms than those identified in flies so far. In Drosophila, the neuromotor pathways underlying flight speed control may be suitably explored by applying advanced genetic techniques, for which our data can serve as a baseline. Finally, the high-level control principles identified in the fly can be meaningfully transferred into a robotic context, such as for the robust and efficient control of autonomous flying micro air vehicles.

  7. Global Precipitation Measurement (GPM) Orbit Design and Autonomous Maneuvers

    NASA Technical Reports Server (NTRS)

    Folta, David; Mendelsohn, Chad

    2003-01-01

    The NASA Goddard Space Flight Center's Global Precipitation Measurement (GPM) mission will meet a challenge of measuring worldwide precipitation every three hours. The GPM spacecraft, part of a constellation, will be required to maintain a circular orbit in a high drag environment to accomplish this challenge. Analysis by the Flight Dynamics Analysis Branch has shown that the prime orbit altitude of 40% is necessary to prevent ground track repeating. Combined with goals to minimize maneuver impacts to science data collection and enabling reasonable long-term orbit predictions, the GPM project has decided to fly an autonomous maneuver system. This system is a derivative of the successful New Millennium Program technology flown onboard the Earth Observing-1 mission. This paper presents the driving science requirements and goals of the mission and shows how they will be met. Analysis of the orbit optimization and the AV requirements for several ballistic properties are presented. The architecture of the autonomous maneuvering system to meet the goals and requirements is presented along with simulations using a GPM prototype. Additionally, the use of the GPM autonomous system to mitigate possible collision avoidance and to aid other spacecraft systems during navigation outages is explored.

  8. Ground ULV and thermal fog applications against Phlebotomine sand fly vectors of Leishmania in a hot arid environment in western Kenya

    USDA-ARS?s Scientific Manuscript database

    Phlebotomine sand fly vectors of Leishmania continue to threaten US military operations in Africa, Southwest Asia, and the Middle East. Ultra-low volume (ULV) and/or thermal fog pesticide dispersal are potentially effective against sand flies, but operational guidance is thinly based on mosquito con...

  9. Mosquito and Fly Surveillance and Control Research at the USDA-ARS Center for Medical, Agricultural and Veterinary Entomology: Solving Operational Challenges

    USDA-ARS?s Scientific Manuscript database

    The Mosquito and Fly Research Unit of the USDA-ARS Center for Medical, Agricultural and Veterinary Entomology located in Gainesville Florida is the largest Federal laboratory devoted to specifically solving operational mosquito and fly surveillance and control challenges in the U.S. and internationa...

  10. Information for Successful Interaction with Autonomous Systems

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Johnson, Kathy A.

    2003-01-01

    Interaction in heterogeneous mission operations teams is not well matched to classical models of coordination with autonomous systems. We describe methods of loose coordination and information management in mission operations. We describe an information agent and information management tool suite for managing information from many sources, including autonomous agents. We present an integrated model of levels of complexity of agent and human behavior, which shows types of information processing and points of potential error in agent activities. We discuss the types of information needed for diagnosing problems and planning interactions with an autonomous system. We discuss types of coordination for which designs are needed for autonomous system functions.

  11. Image Dependent Relative Formation Navigation for Autonomous Aerial Refueling

    DTIC Science & Technology

    2011-03-01

    and local variations of the Earth’s surface make a mathematical model difficult to create and use. The definition of an equipotential surface ...controlled with flight control surfaces attached to it. To refuel using this method, the receiver pilot flies the aircraft to within a defined refueling...I-frame would unnecessarily complicate aircraft navigation that, by definition, is limited to altitudes relatively close to the surface of the Earth

  12. SPHERES experiment session

    NASA Image and Video Library

    2007-03-24

    ISS014-E-17880 (24 March 2007) --- This medium close-up view shows three bowling-ball-sized free-flying satellites called Synchronized Position Hold, Engage, Reorient, Experimental Satellites (SPHERES) in the Destiny laboratory of the International Space Station. SPHERES were designed to test control algorithms for spacecraft by performing autonomous rendezvous and docking maneuvers inside the station. The results are important for multi-body control and in designing constellation and array spacecraft configurations.

  13. SPARTAN-201 satellite lined up with RMS arm for recapture

    NASA Image and Video Library

    1994-09-15

    STS064-76-035 (15 Sept. 1994) --- Backdropped against the darkness of space, the Shuttle Pointed Autonomous Research Tool for Astronomy 201 (SPARTAN-201) satellite is lined up with the space shuttle Discovery's Remote Manipulator System (RMS) arm for re-capture. The free-flying spacecraft had remained some 40 miles away from Discovery for over two days. Photo credit: NASA or National Aeronautics and Space Administration

  14. SPARTAN-201 satellite begins separation from Shuttle Discovery

    NASA Image and Video Library

    1994-09-12

    STS064-111-041 (12 Sept. 1994) ---- Backdropped against New England's coast, the Shuttle Pointed Autonomous Research Tool for Astronomy (SPARTAN-201) satellite begins its separation from the space shuttle Discovery. The free-flying spacecraft, 130 nautical miles above Cape Cod at frame center, remained some 40 miles away from Discovery until the crew retrieved it two days later. Photo credit: NASA or National Aeronautics and Space Administration

  15. High-efficient Unmanned Aircraft System Operations for Ecosystem Assessment

    NASA Astrophysics Data System (ADS)

    Xu, H.; Zhang, H.

    2016-02-01

    Diverse national and international agencies support the idea that incorporating Unmanned Aircraft Systems (UAS) into ecosystem assessment will improve the operations efficiency and accuracy. In this paper, a UAS will be designed to monitor the Gulf of Mexico's coastal area ecosystems intelligently and routinely. UAS onboard sensors will capture information that can be utilized to detect and geo-locate areas affected by invasive grasses. Moreover, practical ecosystem will be better assessed by analyzing the collected information. Compared with human-based/satellite-based surveillance, the proposed strategy is more efficient and accurate, and eliminates limitations and risks associated with human factors. State of the art UAS onboard sensors (e.g. high-resolution electro optical camera, night vision camera, thermal sensor etc.) will be used for monitoring coastal ecosystems. Once detected the potential risk in ecosystem, the onboard GPS data will be used to geo-locate and to store the exact coordinates of the affected area. Moreover, the UAS sensors will be used to observe and to record the daily evolution of coastal ecosystems. Further, benefitting from the data collected by the UAS, an intelligent big data processing scheme will be created to assess the ecosystem evolution effectively. Meanwhile, a cost-efficient intelligent autonomous navigation strategy will be implemented into the UAS, in order to guarantee that the UAS can fly over designated areas, and collect significant data in a safe and effective way. Furthermore, the proposed UAS-based ecosystem surveillance and assessment methodologies can be utilized for natural resources conservation. Flying UAS with multiple state of the art sensors will monitor and report the actual state of high importance natural resources frequently. Using the collected data, the ecosystem conservation strategy can be performed effectively and intelligently.

  16. Initial Satellite Formation Flight Results from the Magnetospheric Multiscale Mission

    NASA Technical Reports Server (NTRS)

    Williams, Trevor; Ottenstein, Neil; Palmer, Eric; Farahmand, Mitra

    2016-01-01

    This paper will describe the results that have been obtained to date concerning MMS formation flying. The MMS spacecraft spin at a rate of 3.1 RPM, with spin axis roughly aligned with Ecliptic North. Several booms are used to deploy instruments: two 5 m magnetometer booms in the spin plane, two rigid booms of length 12.5 m along the positive and negative spin axes, and four flexible wire booms of length 60 m in the spin plane. Minimizing flexible motion of the wire booms requires that reorientation of the spacecraft spin axis be kept to a minimum: this is limited to attitude maneuvers to counteract the effects of gravity-gradient and apparent solar motion. Orbital maneuvers must therefore be carried out in essentially the nominal science attitude. These burns make use of a set of monopropellant hydrazine thrusters: two (of thrust 4.5 N) along the spin axis in each direction, and eight (of thrust 18 N) in the spin plane; the latter are pulsed at the spin rate to produce a net delta-v. An on-board accelerometer-based controller is used to accurately generate a commanded delta-v. Navigation makes use of a weak-signal GPS-based system: this allows signals to be received even when MMS is flying above the GPS orbits, producing a highly accurate determination of the four MMS orbits. This data is downlinked to the MMS Mission Operations Center (MOC) and used by the MOC Flight Dynamics Operations Area (FDOA) for maneuver design. These commands are then uplinked to the spacecraft and executed autonomously using the controller, with the ground monitoring the burns in real time.

  17. Axon Termination, Pruning, and Synaptogenesis in the Giant Fiber System of Drosophila melanogaster Is Promoted by Highwire.

    PubMed

    Borgen, Melissa; Rowland, Kimberly; Boerner, Jana; Lloyd, Brandon; Khan, Aruna; Murphey, Rodney

    2017-03-01

    The ubiquitin ligase Highwire has a conserved role in synapse formation. Here, we show that Highwire coordinates several facets of central synapse formation in the Drosophila melanogaster giant fiber system, including axon termination, axon pruning, and synaptic function. Despite the similarities to the fly neuromuscular junction, the role of Highwire and the underlying signaling pathways are distinct in the fly's giant fiber system. During development, branching of the giant fiber presynaptic terminal occurs and, normally, the transient branches are pruned away. However, in highwire mutants these ectopic branches persist, indicating that Highwire promotes axon pruning. highwire mutants also exhibit defects in synaptic function. Highwire promotes axon pruning and synaptic function cell-autonomously by attenuating a mitogen-activated protein kinase pathway including Wallenda, c-Jun N-terminal kinase/Basket, and the transcription factor Jun. We also show a novel role for Highwire in non-cell autonomous promotion of synaptic function from the midline glia. Highwire also regulates axon termination in the giant fibers, as highwire mutant axons exhibit severe overgrowth beyond the pruning defect. This excessive axon growth is increased by manipulating Fos expression in the cells surrounding the giant fiber terminal, suggesting that Fos regulates a trans -synaptic signal that promotes giant fiber axon growth. Copyright © 2017 by the Genetics Society of America.

  18. A Safe Cooperative Framework for Atmospheric Science Missions with Multiple Heterogeneous UAS using Piecewise Bezier Curves

    NASA Technical Reports Server (NTRS)

    Mehdi, S. Bilal; Puig-Navarro, Javier; Choe, Ronald; Cichella, Venanzio; Hovakimyan, Naira; Chandarana, Meghan; Trujillo, Anna; Rothhaar, Paul M.; Tran, Loc; Neilan, James H.; hide

    2016-01-01

    Autonomous operation of UAS holds promise for greater productivity of atmospheric science missions. However, several challenges need to be overcome before such missions can be made autonomous. This paper presents a framework for safe autonomous operations of multiple vehicles, particularly suited for atmospheric science missions. The framework revolves around the use of piecewise Bezier curves for trajectory representation, which in conjunction with path-following and time-coordination algorithms, allows for safe coordinated operations of multiple vehicles.

  19. Autonomous Dirigible Airships: A Comparative Analysis and Operational Efficiency Evaluation for Logistical Use in Complex Environments

    DTIC Science & Technology

    2012-06-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA MBA PROFESSIONAL REPORT Autonomous Dirigible Airships: A Comparative Analysis...COVERED MBA Professional Report 4. TITLE AND SUBTITLE: Autonomous Dirigible Airships: A Comparative Analysis and Operational Efficiency Evaluation...NAME(S) AND ADDRESS(ES) N/ A 10. SPONSORING / MONITORING AGENCY REPORT NUMBER 11. SUPPLEMENTARY NOTES The views expressed in this report are

  20. Innovation Talk at TARDEC by Dr. Tulga Ersal

    Science.gov Websites

    problems of teleoperation and fully autonomous operation of large Unmanned Ground Vehicles (UGVs) at high wide spectrum in their mode of operation ranging from teleoperated, in which the remote human operator implementable solution. High speeds also present a challenge to fully autonomous operation with respect to

  1. Vision based control of unmanned aerial vehicles with applications to an autonomous four-rotor helicopter, quadrotor

    NASA Astrophysics Data System (ADS)

    Altug, Erdinc

    Our work proposes a vision-based stabilization and output tracking control method for a model helicopter. This is a part of our effort to produce a rotorcraft based autonomous Unmanned Aerial Vehicle (UAV). Due to the desired maneuvering ability, a four-rotor helicopter has been chosen as the testbed. On previous research on flying vehicles, vision is usually used as a secondary sensor. Unlike previous research, our goal is to use visual feedback as the main sensor, which is not only responsible for detecting where the ground objects are but also for helicopter localization. A novel two-camera method has been introduced for estimating the full six degrees of freedom (DOF) pose of the helicopter. This two-camera system consists of a pan-tilt ground camera and an onboard camera. The pose estimation algorithm is compared through simulation to other methods, such as four-point, and stereo method and is shown to be less sensitive to feature detection errors. Helicopters are highly unstable flying vehicles; although this is good for agility, it makes the control harder. To build an autonomous helicopter, two methods of control are studied---one using a series of mode-based, feedback linearizing controllers and the other using a back-stepping control law. Various simulations with 2D and 3D models demonstrate the implementation of these controllers. We also show global convergence of the 3D quadrotor controller even with large calibration errors or presence of large errors on the image plane. Finally, we present initial flight experiments where the proposed pose estimation algorithm and non-linear control techniques have been implemented on a remote-controlled helicopter. The helicopter was restricted with a tether to vertical, yaw motions and limited x and y translations.

  2. Mission Operations of EO-1 with Onboard Autonomy

    NASA Technical Reports Server (NTRS)

    Tran, Daniel Q.

    2006-01-01

    Space mission operations are extremely labor and knowledge-intensive and are driven by the ground and flight systems. Inclusion of an autonomy capability can have dramatic effects on mission operations. We describe the prior, labor and knowledge intensive mission operations flow for the Earth Observing-1 (EO-1) spacecraft as well as the new autonomous operations as part of the Autonomous Sciencecraft Experiment.

  3. Networking Multiple Autonomous Air and Ocean Vehicles for Oceanographic Research and Monitoring

    NASA Astrophysics Data System (ADS)

    McGillivary, P. A.; Borges de Sousa, J.; Rajan, K.

    2013-12-01

    Autonomous underwater and surface vessels (AUVs and ASVs) are coming into wider use as components of oceanographic research, including ocean observing systems. Unmanned airborne vehicles (UAVs) are now available at modest cost, allowing multiple UAVs to be deployed with multiple AUVs and ASVs. For optimal use good communication and coordination among vehicles is essential. We report on the use of multiple AUVs networked in communication with multiple UAVs. The UAVs are augmented by inferential reasoning software developed at MBARI that allows UAVs to recognize oceanographic fronts and change their navigation and control. This in turn allows UAVs to automatically to map frontal features, as well as to direct AUVs and ASVs to proceed to such features and conduct sampling via onboard sensors to provide validation for airborne mapping. ASVs can also act as data nodes for communication between UAVs and AUVs, as well as collecting data from onboard sensors, while AUVs can sample the water column vertically. This allows more accurate estimation of phytoplankton biomass and productivity, and can be used in conjunction with UAV sampling to determine air-sea flux of gases (e.g. CO2, CH4, DMS) affecting carbon budgets and atmospheric composition. In particular we describe tests in July 2013 conducted off Sesimbra, Portugal in conjunction with the Portuguese Navy by the University of Porto and MBARI with the goal of tracking large fish in the upper water column with coordinated air/surface/underwater measurements. A thermal gradient was observed in the infrared by a low flying UAV, which was used to dispatch an AUV to obtain ground truth to demonstrate the event-response capabilities using such autonomous platforms. Additional field studies in the future will facilitate integration of multiple unmanned systems into research vessel operations. The strength of hardware and software tools described in this study is to permit fundamental oceanographic measurements of both ocean and atmosphere over temporal and spatial scales that have previously been problematic. The methods demonstrated are particularly suited to the study of oceanographic fronts and for tracking and mapping oil spills or plankton blooms. With the networked coordination of multiple autonomous systems, individual components may be changed out while ocean observations continue, allowing coarse to fine spatial studies of hydrographic features over temporal dimensions that would otherwise be difficult, including diurnal and tidal periods. Constraints on these methods currently involve coordination of data archiving systems into shipboard operating systems, familiarization of oceanographers with these methods, and existing nearshore airspace use constraints on UAVs. An important outcome of these efforts is to understand the methodology for using multiple heterogeneous autonomous vehicles for targeted science exploration.

  4. Smart Ultrasound Remote Guidance Experiment (SURGE)- Concept of Operations Evaluation for Using Remote Guidance Ultrasound for Planetary Space Flight

    NASA Technical Reports Server (NTRS)

    Hurst, Victor, IV; Peterson, Sean; Garcia, Kathleen; Sargsyan, Ashot; Ebert, Douglas; Ham, David; Amponsah, David; Dulchavsky, Scott

    2010-01-01

    Introduction Use of remote guidance (RG) techniques aboard the International Space Station (ISS) has enabled astronauts to collect diagnostic-level ultrasound images. Exploration class missions will require this cohort of (typically) non-formally trained sonographers to operate with greater autonomy given the longer communication delays (2 seconds for ISS vs. >6 seconds for missions beyond the Moon) and communication blackouts. To determine the feasibility and training requirements for autonomous ultrasound image collection by non-expert ultrasound operators, ultrasound images were collected from a similar cohort using three different image collection protocols: RG only, RG with a computer-based learning tool (LT), and autonomous image collection with LT. The groups were assessed for both image quality and time to collect the images. Methods Subjects were randomized into three groups: RG only, RG with LT, and autonomous with LT. Each subject received 10 minutes of standardized training before the experiment. The subjects were tasked with making the following ultrasound assessments: 1) bone fracture and 2) focused assessment with sonography in trauma (FAST) to assess a patient s abdomen. Human factors-related questionnaire data were collected immediately after the assessments. Results The autonomous group did not out-perform the two groups that received RG. The mean time for the autonomous group to collect images was less than the RG groups, however the mean image quality for the autonomous group was less compared to both RG groups. Discussion Remote guidance continues to produce higher quality ultrasound images than autonomous ultrasound operation. This is likely due to near-instant feedback on image quality from the remote guider. Expansion in communication time delays, however, diminishes the capability to provide this feedback, thus requiring more autonomous ultrasound operation. The LT has the potential to be an excellent training and coaching component for autonomous ultrasound image collection during exploration missions.

  5. An autonomous observation and control system based on EPICS and RTS2 for Antarctic telescopes

    NASA Astrophysics Data System (ADS)

    Zhang, Guang-yu; Wang, Jian; Tang, Peng-yi; Jia, Ming-hao; Chen, Jie; Dong, Shu-cheng; Jiang, Fengxin; Wu, Wen-qing; Liu, Jia-jing; Zhang, Hong-fei

    2016-01-01

    For unattended telescopes in Antarctic, the remote operation, autonomous observation and control are essential. An EPICS-(Experimental Physics and Industrial Control System) and RTS2-(Remote Telescope System, 2nd Version) based autonomous observation and control system with remoted operation is introduced in this paper. EPICS is a set of open source software tools, libraries and applications developed collaboratively and used worldwide to create distributed soft real-time control systems for scientific instruments while RTS2 is an open source environment for control of a fully autonomous observatory. Using the advantage of EPICS and RTS2, respectively, a combined integrated software framework for autonomous observation and control is established that use RTS2 to fulfil the function of astronomical observation and use EPICS to fulfil the device control of telescope. A command and status interface for EPICS and RTS2 is designed to make the EPICS IOC (Input/Output Controller) components integrate to RTS2 directly. For the specification and requirement of control system of telescope in Antarctic, core components named Executor and Auto-focus for autonomous observation is designed and implemented with remote operation user interface based on browser-server mode. The whole system including the telescope is tested in Lijiang Observatory in Yunnan Province for practical observation to complete the autonomous observation and control, including telescope control, camera control, dome control, weather information acquisition with the local and remote operation.

  6. ANTS: A New Concept for Very Remote Exploration with Intelligent Software Agents

    NASA Astrophysics Data System (ADS)

    Clark, P. E.; Curtis, S.; Rilee, M.; Truszkowski, W.; Iyengar, J.; Crawford, H.

    2001-12-01

    ANTS (Autonomous Nano-Technology Swarm), a NASA advanced mission concept, is a large (100 to 1000 member) swarm of pico-class (1 kg) totally autonomous spacecraft that prospect the asteroid belt. As the capacity and complexity of hardware and software, and the sophistication of technical and scientific goals have increased, greater cost constraints have led to fewer resources and thus, the need to operate spacecraft with less frequent contact. At present, autonomous operation of spacecraft systems allows great capability of spacecraft to 'safe' themselves when conditions threaten spacecraft safety. To further develop spacecraft capability, NASA is at the forefront of Intelligent Software Agent (ISA) research, performing experiments in space and on the ground to advance deliberative and collaborative autonomous control techniques. Selected missions in current planning stages require small groups of spacecraft to cooperate at a tactical level to select and schedule measurements to be made by appropriate instruments to characterize rapidly unfolding real-time events on a routine basis. The next level of development, which we are considering here, is in the use of ISAs at a strategic level, to explore the final, remote frontiers of the solar system, potentially involving a large class of objects with only infrequent contact possible. Obvious mission candidates are mainbelt asteroids, a population consisting of more than a million small bodies. Although a large fraction of solar system objects are asteroids, little data is available for them because the vast majority of them are too small to be observed except in close proximity. Asteroids originated in the transitional region between the inner (rocky) and outer (solidified gases) solar system, have remained largely unmodified since formation, and thus have a more primitive composition which includes higher abundances of siderophile (metallic iron-associated) elements and volatiles than other planetary surfaces. As a result, there has been interest in asteroids as sources of exploitable resources. Far more reconnaissance is required before such a program is undertaken. A traditional mission approach (to explore larger asteroids sequentially) is not adequate for determining the systematic distribution of exploitable material in the asteroid population. Our approach involves the use of distributed intelligence in a swarm of tiny spacecraft, each with specialized instrument capability (e.g., advanced computing, imaging, spectrometry, etc.) to evaluate the resource potential of the entire population. Supervised clusters of spacecraft will operate simultaneously within a broadly defined framework of goals to select targets (>1000) from among available candidates and to develop scenarios for studying targets simultaneously. Spacecraft use solar sails to fly directly to asteroids 1 kilometer or greater in diameter. Selected swarm members return to Earth with data, replacements join the swarm as needed. We would like to acknowledge our students R. Watson, V. Cox, and F. Olukomo for their support of this work.

  7. Advanced Autonomous Systems for Space Operations

    NASA Astrophysics Data System (ADS)

    Gross, A. R.; Smith, B. D.; Muscettola, N.; Barrett, A.; Mjolssness, E.; Clancy, D. J.

    2002-01-01

    New missions of exploration and space operations will require unprecedented levels of autonomy to successfully accomplish their objectives. Inherently high levels of complexity, cost, and communication distances will preclude the degree of human involvement common to current and previous space flight missions. With exponentially increasing capabilities of computer hardware and software, including networks and communication systems, a new balance of work is being developed between humans and machines. This new balance holds the promise of not only meeting the greatly increased space exploration requirements, but simultaneously dramatically reducing the design, development, test, and operating costs. New information technologies, which take advantage of knowledge-based software, model-based reasoning, and high performance computer systems, will enable the development of a new generation of design and development tools, schedulers, and vehicle and system health management capabilities. Such tools will provide a degree of machine intelligence and associated autonomy that has previously been unavailable. These capabilities are critical to the future of advanced space operations, since the science and operational requirements specified by such missions, as well as the budgetary constraints will limit the current practice of monitoring and controlling missions by a standing army of ground-based controllers. System autonomy capabilities have made great strides in recent years, for both ground and space flight applications. Autonomous systems have flown on advanced spacecraft, providing new levels of spacecraft capability and mission safety. Such on-board systems operate by utilizing model-based reasoning that provides the capability to work from high-level mission goals, while deriving the detailed system commands internally, rather than having to have such commands transmitted from Earth. This enables missions of such complexity and communication` distances as are not otherwise possible, as well as many more efficient and low cost applications. In addition, utilizing component and system modeling and reasoning capabilities, autonomous systems will play an increasing role in ground operations for space missions, where they will both reduce the human workload as well as provide greater levels of monitoring and system safety. This paper will focus specifically on new and innovative software for remote, autonomous, space systems flight operations. Topics to be presented will include a brief description of key autonomous control concepts, the Remote Agent program that commanded the Deep Space 1 spacecraft to new levels of system autonomy, recent advances in distributed autonomous system capabilities, and concepts for autonomous vehicle health management systems. A brief description of teaming spacecraft and rovers for complex exploration missions will also be provided. New on-board software for autonomous science data acquisition for planetary exploration will be described, as well as advanced systems for safe planetary landings. A new multi-agent architecture that addresses some of the challenges of autonomous systems will be presented. Autonomous operation of ground systems will also be considered, including software for autonomous in-situ propellant production and management, and closed- loop ecological life support systems (CELSS). Finally, plans and directions for the future will be discussed.

  8. Advancing Autonomous Operations for Deep Space Vehicles

    NASA Technical Reports Server (NTRS)

    Haddock, Angie T.; Stetson, Howard K.

    2014-01-01

    Starting in Jan 2012, the Advanced Exploration Systems (AES) Autonomous Mission Operations (AMO) Project began to investigate the ability to create and execute "single button" crew initiated autonomous activities [1]. NASA Marshall Space Flight Center (MSFC) designed and built a fluid transfer hardware test-bed to use as a sub-system target for the investigations of intelligent procedures that would command and control a fluid transfer test-bed, would perform self-monitoring during fluid transfers, detect anomalies and faults, isolate the fault and recover the procedures function that was being executed, all without operator intervention. In addition to the development of intelligent procedures, the team is also exploring various methods for autonomous activity execution where a planned timeline of activities are executed autonomously and also the initial analysis of crew procedure development. This paper will detail the development of intelligent procedures for the NASA MSFC Autonomous Fluid Transfer System (AFTS) as well as the autonomous plan execution capabilities being investigated. Manned deep space missions, with extreme communication delays with Earth based assets, presents significant challenges for what the on-board procedure content will encompass as well as the planned execution of the procedures.

  9. Utilization of the International Space Station for Crew Autonomous Scheduling Test (CAST)

    NASA Technical Reports Server (NTRS)

    Healy, Matthew; Marquez, Jesica; Hillenius, Steven; Korth, David; Bakalyar, Laure Rush; Woodbury, Neil; Larsen, Crystal M.; Bates, Shelby; Kockler, Mikayla; Rhodes, Brooke; hide

    2017-01-01

    The United States space policy is evolving toward missions beyond low Earth orbit. In an effort to meet that policy, NASA has recognized Autonomous Mission Operations (AMO) as a valuable capability. Identified within AMO capabilities is the potential for autonomous planning and replanning during human spaceflight operations. That is allowing crew members to collectively or individually participate in the development of their own schedules. Currently, dedicated mission operations planners collaborate with international partners to create daily plans for astronauts aboard the International Space Station (ISS), taking into account mission requirements, ground rules, and various vehicle and payload constraints. In future deep space operations the crew will require more independence from ground support due to communication transmission delays. Furthermore, crew members who are provided with the capability to schedule their own activities are able to leverage direct experience operating in the space environment, and possibly maximize their efficiency. CAST (Crew Autonomous Scheduling Test) is an ISS investigation designed to analyze three important hypotheses about crew autonomous scheduling. First, given appropriate inputs, the crew is able to create and execute a plan in a reasonable period of time without impacts to mission success. Second, the proximity of the planner, in this case the crew, to the planned operations increases their operational efficiency. Third, crew members are more satisfied when given a role in plan development. This paper presents the results from a single astronaut test subject who participated in five CAST sessions. The details on the operational philosophy of CAST are discussed, including the approach to crew training, selection criteria for test days, and data collection methods. CAST is a technology demonstration payload sponsored by the ISS Research Science and Technology Office, and performed by experts in Mission Operations Planning from the Flight Operations Directorate at NASA Johnson Space Center, and researchers across multiple NASA centers. It is hoped the results of this investigation will guide NASA's implementation of autonomous mission operations for long duration human space missions to Mars and beyond.

  10. Field evaluation of a mechanical fly catcher in the control of houseflies.

    PubMed

    Tilak, R; Dutta Gupta, K K

    2007-01-01

    'Fly Catcher', an innovative herbal based mechanical trap was evaluated for its efficacy in reducing fly nuisance in and around messes operating in a large teaching establishment and the adjacent garbage dumps. It is recommended that the 'Fly Catcher' may be used as an adjunct to other routinely followed anti fly measures.

  11. Computers Take Flight: A History of NASA's Pioneering Digital Fly-By-Wire Project

    NASA Technical Reports Server (NTRS)

    Tomayko, James E.

    2000-01-01

    An overview of the NASA F-8 Fly-by Wire project is presented. The project made two significant contributions to the new technology: (1) a solid design base of techniques that work and those that do not, and (2) credible evidence of good flying qualities and the ability of such a system to tolerate real faults and to continue operation without degradation. In 1972 the F-8C aircraft used in the program became he first digital fly-by-wire aircraft to operate without a mechanical backup system.

  12. Prognostics and Health Monitoring: Application to Electric Vehicles

    NASA Technical Reports Server (NTRS)

    Kulkarni, Chetan S.

    2017-01-01

    As more and more autonomous electric vehicles emerge in our daily operation progressively, a very critical challenge lies in accurate prediction of remaining useful life of the systemssubsystems, specifically the electrical powertrain. In case of electric aircrafts, computing remaining flying time is safety-critical, since an aircraft that runs out of power (battery charge) while in the air will eventually lose control leading to catastrophe. In order to tackle and solve the prediction problem, it is essential to have awareness of the current state and health of the system, especially since it is necessary to perform condition-based predictions. To be able to predict the future state of the system, it is also required to possess knowledge of the current and future operations of the vehicle.Our research approach is to develop a system level health monitoring safety indicator either to the pilotautopilot for the electric vehicles which runs estimation and prediction algorithms to estimate remaining useful life of the vehicle e.g. determine state-of-charge in batteries. Given models of the current and future system behavior, a general approach of model-based prognostics can be employed as a solution to the prediction problem and further for decision making.

  13. Feasibility of Decentralized Linear-Quadratic-Gaussian Control of Autonomous Distributed Spacecraft

    NASA Technical Reports Server (NTRS)

    Carpenter, J. Russell

    1999-01-01

    A distributed satellite formation, modeled as an arbitrary number of fully connected nodes in a network, could be controlled using a decentralized controller framework that distributes operations in parallel over the network. For such problems, a solution that minimizes data transmission requirements, in the context of linear-quadratic-Gaussian (LQG) control theory, was given by Speyer. This approach is advantageous because it is non-hierarchical, detected failures gracefully degrade system performance, fewer local computations are required than for a centralized controller, and it is optimal with respect to the standard LQG cost function. Disadvantages of the approach are the need for a fully connected communications network, the total operations performed over all the nodes are greater than for a centralized controller, and the approach is formulated for linear time-invariant systems. To investigate the feasibility of the decentralized approach to satellite formation flying, a simple centralized LQG design for a spacecraft orbit control problem is adapted to the decentralized framework. The simple design uses a fixed reference trajectory (an equatorial, Keplerian, circular orbit), and by appropriate choice of coordinates and measurements is formulated as a linear time-invariant system.

  14. Robust Targeting for the Smartphone Video Guidance Sensor

    NASA Technical Reports Server (NTRS)

    Carter, Christopher

    2017-01-01

    The Smartphone Video Guidance Sensor (SVGS) is a miniature, self-contained autonomous rendezvous and docking sensor developed using a commercial off the shelf Android-based smartphone. It aims to provide a miniaturized solution for rendezvous and docking, enabling small satellites to conduct proximity operations and formation flying while minimizing interference with a primary payload. Previously, the sensor was limited by a slow (2 Hz) refresh rate and its use of retro-reflectors, both of which contributed to a limited operating environment. To advance the technology readiness level, a modified approach was developed, combining a multi-colored LED target with a focused target-detection algorithm. Alone, the use of an LED system was determined to be much more reliable, though slower, than the retro-reflector system. The focused target-detection system was developed in response to this problem to mitigate the speed reduction of using color. However, it also improved the reliability. In combination these two methods have been demonstrated to dramatically increase sensor speed and allow the sensor to select the target even with significant noise interfering with the sensor, providing millimeter level accuracy at a range of two meters with a 1U target.

  15. Robust Targeting for the Smartphone Video Guidance Sensor

    NASA Technical Reports Server (NTRS)

    Carter, C.

    2017-01-01

    The Smartphone Video Guidance Sensor (SVGS) is a miniature, self-contained autonomous rendezvous and docking sensor developed using a commercial off the shelf Android-based smartphone. It aims to provide a miniaturized solution for rendezvous and docking, enabling small satellites to conduct proximity operations and formation flying while minimizing interference with a primary payload. Previously, the sensor was limited by a slow (2 Hz) refresh rate and its use of retro-reflectors, both of which contributed to a limited operating environment. To advance the technology readiness level, a modified approach was developed, combining a multi-colored LED target with a focused target-detection algorithm. Alone, the use of an LED system was determined to be much more reliable, though slower, than the retro-reflector system. The focused target-detection system was developed in response to this problem to mitigate the speed reduction of using color. However it also improved the reliability. In combination these two methods have been demonstrated to dramatically increase sensor speed and allow the sensor to select the target even with significant noise interfering with the sensor, providing millimeter level precision at a range of two meters with a 1U target.

  16. Evaluation of imidacloprid-treated traps as an attract and kill system for filth flies during contingency operations.

    PubMed

    Dunford, James C; Hoel, David F; Hertz, Jeffrey C; England, David B; Dunford, Kelly R; Stoops, Craig A; Szumlas, Daniel E; Hogsette, Jerome A

    2013-01-01

    Two field trials were conducted to evaluate if filth fly trap efficacy was increased by augmentation with an insecticide application to the trap's exterior. Four Fly Terminator Pro traps (Farnam Companies, Inc, Phoenix, AZ) baited with Terminator Fly Attractant (in water) were suspended on polyvinyl chloride pipe framing at a municipal waste transfer site in Clay County, Florida. The outer surfaces of 2 traps were treated with Maxforce Fly Spot Bait (Bayer Environmental Science, Research Triangle Park, NC) (10% imidacloprid) to compare kill rates between treated and untreated traps. Kill consisted of total flies collected from inside traps and from mesh nets suspended beneath all traps, both treated and untreated. Each of 2 treated and untreated traps was rotated through 4 trap sites every 24 hrs. In order to evaluate operational utility and conservation of supplies during remote contingency operations, fly attractant remained in traps for the duration of the first trial but was changed daily during the second trial (following manufacturer's recommendations). In addition, ½ strength Terminator Fly Attractant was used during the first trial and traps were set at full strength during the second trial. Flies collected within the traps and in mesh netting were counted and identified. Three species, Musca domestica (L.), Chrysomya megacephala (F.), and Lucilia cuprina (Wiedemann), comprised the majority of samples in both trials. The net samples recovered more flies when the outer surface was treated with imidacloprid, however, treated traps collected fewer flies inside the trap than did untreated traps for both trials. No significant statistical advantage was found in treating Fly Terminator Pro trap exteriors with Maxforce Fly Spot Bait. However, reducing manufacturer's recommended strength of Terminator Fly Attractant showed similar results to traps set at full strength. Treating the outer surfaces may improve kill of fly species that do not enter the trap. Terminator Fly Attractant was also found to be more effective if traps were not changed daily and left to hold dead flies for longer periods.

  17. Reducing cost with autonomous operations of the Deep Space Network radio science receiver

    NASA Technical Reports Server (NTRS)

    Asmar, S.; Anabtawi, A.; Connally, M.; Jongeling, A.

    2003-01-01

    This paper describes the Radio Science Receiver system and the savings it has brought to mission operations. The design and implementation of remote and autonomous operations will be discussed along with the process of including user feedback along the way and lessons learned and procedures avoided.

  18. Mission Operations of Earth Observing-1 with Onboard Autonomy

    NASA Technical Reports Server (NTRS)

    Rabideau, Gregg; Tran, Daniel Q.; Chien, Steve; Cichy, Benjamin; Sherwood, Rob; Mandl, Dan; Frye, Stuart; Shulman, Seth; Szwaczkowski, Joseph; Boyer, Darrell; hide

    2006-01-01

    Space mission operations are extremely labor and knowledge-intensive and are driven by the ground and flight systems. Inclusion of an autonomy capability can have dramatic effects on mission operations. We describe the past mission operations flow for the Earth Observing-1 (EO-1) spacecraft as well as the more autonomous operations to which we transferred as part of the Autonomous Sciencecraft Experiment (ASE).

  19. Simulation of Autonomic Logistics System (ALS) Sortie Generation

    DTIC Science & Technology

    2003-03-01

    84 Appendix B. ANOVA Assumptions Mission Capable Rate ANOVA Assumptions Constant Variance SSR # X cols SSE n Breusch - Pagan Chi-square 3.57E...85 Flying Scheduling Effectiveness ANOVA Assumptions Constant Variance SSR # X cols SSE n Breusch - Pagan Chi-square 2.12E-10 3 0.000816 270...Constant Variance SSR # X cols SSE n Breusch - Pagan Chi-square 1.86E-09 3 0.003758 270 3.20308814 0.9556957 Independence Durbin-Watson

  20. ISS Expedition 18 Synchronized Position Hold,Engage,Reorient,Experimental Satellites (SPHERES)

    NASA Image and Video Library

    2008-10-26

    ISS018-E-005214 (26 Oct. 2008) --- This close-up view shows three bowling-ball-sized free-flying satellites called Synchronized Position Hold, Engage, Reorient, Experimental Satellites (SPHERES) in the Destiny laboratory of the International Space Station. SPHERES were designed to test control algorithms for spacecraft by performing autonomous rendezvous and docking maneuvers inside the station. The results are important for multi-body control and in designing constellation and array spacecraft configurations.

  1. Tier-scalable reconnaissance: the future in autonomous C4ISR systems has arrived: progress towards an outdoor testbed

    NASA Astrophysics Data System (ADS)

    Fink, Wolfgang; Brooks, Alexander J.-W.; Tarbell, Mark A.; Dohm, James M.

    2017-05-01

    Autonomous reconnaissance missions are called for in extreme environments, as well as in potentially hazardous (e.g., the theatre, disaster-stricken areas, etc.) or inaccessible operational areas (e.g., planetary surfaces, space). Such future missions will require increasing degrees of operational autonomy, especially when following up on transient events. Operational autonomy encompasses: (1) Automatic characterization of operational areas from different vantages (i.e., spaceborne, airborne, surface, subsurface); (2) automatic sensor deployment and data gathering; (3) automatic feature extraction including anomaly detection and region-of-interest identification; (4) automatic target prediction and prioritization; (5) and subsequent automatic (re-)deployment and navigation of robotic agents. This paper reports on progress towards several aspects of autonomous C4ISR systems, including: Caltech-patented and NASA award-winning multi-tiered mission paradigm, robotic platform development (air, ground, water-based), robotic behavior motifs as the building blocks for autonomous tele-commanding, and autonomous decision making based on a Caltech-patented framework comprising sensor-data-fusion (feature-vectors), anomaly detection (clustering and principal component analysis), and target prioritization (hypothetical probing).

  2. Applications of Clocks to Space Navigation & "Planetary GPS"

    NASA Technical Reports Server (NTRS)

    Lichten, Stephen M.

    2004-01-01

    The ability to fly atomic clocks on GPS satellites has profoundly defined the capabilities and limitations of GPS in near-Earth applications. It is likely that future infrastructure for Lunar and Mars applications will be constrained by financial factors. The development of a low cost, small, high performance space clock -- or ultrahigh performance space clocks -- could revolutionize and drive the entire approach to GPS-like systems at the Moon (or Mars), and possibly even change the future of GPS at Earth. Many system trade studies are required. The performance of future GPS-like tracking systems at the Moon or Mars will depend critically on clock performance, availability of inertial sensors, and constellation coverage. Example: present-day GPS carry 10(exp -13) clocks and require several updates per day. With 10(exp -15) clocks, a constellation at Mars could operate autonomously with updates just once per month. Use of GPS tracking at the Moon should be evaluated in a technical study.

  3. KSC-99pp1272

    NASA Image and Video Library

    1999-11-01

    Two of KSC's X-34 technicians (far right), David Rowell and Roger Cartier, look at work being done on the modified A-1A at Dryden Flight Research Center, Calif. Since September, eight NASA engineering technicians from KSC's Engineering Prototype Lab have assisted Orbital Sciences Corporation and NASA's Dryden Flight Research Center in the complex process of converting the X-34 A-1 vehicle from captive carry status to unpowered flight status, the A-1A. The other KSC technicians are Kevin Boughner, Mike Dininny, Mike Lane, Jerry Moscoso, James Niehoff Jr. and Bryan Taylor. The X-34 is 58.3 feet long, 27.7 feet wide from wing tip to wing tip, and 11.5 feet tall from the bottom of the fuselage to the top of the tail. The autonomously operated technology demonstrator will be air-launched from an L-1011 airplane and should be capable of flying eight times the speed of sound, reaching an altitude of 250,000 feet. The X-34 Project is managed by NASA's Marshall Space Flight Center in Huntsville, Ala

  4. KSC-99pp1275

    NASA Image and Video Library

    1999-11-01

    At Dryden Flight Research Center, Calif., KSC technician Bryan Taylor makes an adjustment on the modified X-34, known as A-1A. Taylor is one of eight NASA engineering technicians from KSC's Engineering Prototype Lab who have assisted Orbital Sciences Corporation and Dryden in the complex process of converting the X-34 A-1 vehicle from captive carry status to unpowered flight status, the A-1A. The other KSC technicians are Kevin Boughner, Roger Cartier, Mike Dininny, Mike Lane, Jerry Moscoso, James Niehoff Jr. and David Rowell. The X-34 is 58.3 feet long, 27.7 feet wide from wing tip to wing tip, and 11.5 feet tall from the bottom of the fuselage to the top of the tail. The autonomously operated technology demonstrator will be air-launched from an L-1011 airplane and should be capable of flying eight times the speed of sound, reaching an altitude of 250,000 feet. The X-34 Project is managed by NASA's Marshall Space Flight Center in Huntsville, Ala

  5. KSC-99pp1274

    NASA Image and Video Library

    1999-11-01

    At Dryden Flight Research Center, Calif., KSC technician James Niehoff Jr. (left) helps attach the wing of the modified X-34, known as A-1A. Niehoff is one of eight NASA engineering technicians from KSC's Engineering Prototype Lab who have assisted Orbital Sciences Corporation and Dryden in the complex process of converting the X-34 A-1 vehicle from captive carry status to unpowered flight status, the A-1A. The other KSC technicians are Kevin Boughner, Roger Cartier, Mike Dininny, Mike Lane, Jerry Moscoso, David Rowell and Bryan Taylor. The X-34 is 58.3 feet long, 27.7 feet wide from wing tip to wing tip, and 11.5 feet tall from the bottom of the fuselage to the top of the tail. The autonomously operated technology demonstrator will be air-launched from an L-1011 airplane and should be capable of flying eight times the speed of sound, reaching an altitude of 250,000 feet. The X-34 Project is managed by NASA's Marshall Space Flight Center in Huntsville, Ala

  6. KSC technicians on team to modify X-34

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The modified X-34, known as A-1A, rests in the background of the Dryden Flight Research Center at Edwards Air Force Base, Calif., while an integrated team of KSC, Dryden Flight Research Center and Orbital Sciences Corporation engineers and technicians bring the X-34 A-1A vehicle closer to test flight readiness. Since September, eight NASA engineering technicians from KSC's Engineering Prototype Lab have assisted in the complex process of converting the X-34 A-1 vehicle from captive carry status to unpowered flight status, the A-1A. The X-34 is 58.3 feet long, 27.7 feet wide from wing tip to wing tip, and 11.5 feet tall from the bottom of the fuselage to the top of the tail. The autonomously operated technology demonstrator will be air- launched from an L-1011 airplane and should be capable of flying eight times the speed of sound, reaching an altitude of 250,000 feet. The X-34 Project is managed by NASA's Marshall Space Flight Center in Huntsville, Ala.

  7. KSC technicians on team to modify X-34

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At Dryden Flight Research Center, Calif., KSC technician Bryan Taylor makes an adjustment on the modified X-34, known as A-1A. Taylor is one of eight NASA engineering technicians from KSC's Engineering Prototype Lab who have assisted Orbital Sciences Corporation and Dryden in the complex process of converting the X-34 A-1 vehicle from captive carry status to unpowered flight status, the A-1A. The other KSC technicians are Kevin Boughner, Roger Cartier, Mike Dininny, Mike Lane, Jerry Moscoso, James Niehoff Jr. and David Rowell. The X-34 is 58.3 feet long, 27.7 feet wide from wing tip to wing tip, and 11.5 feet tall from the bottom of the fuselage to the top of the tail. The autonomously operated technology demonstrator will be air-launched from an L- 1011 airplane and should be capable of flying eight times the speed of sound, reaching an altitude of 250,000 feet. The X-34 Project is managed by NASA's Marshall Space Flight Center in Huntsville, Ala.

  8. KSC technicians on team to modify X-34

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At Dryden Flight Research Center, Calif., KSC technician James Niehoff Jr. (left) helps attach the wing of the modified X-34, known as A-1A. Niehoff is one of eight NASA engineering technicians from KSC's Engineering Prototype Lab who have assisted Orbital Sciences Corporation and Dryden in the complex process of converting the X-34 A-1 vehicle from captive carry status to unpowered flight status, the A-1A. The other KSC technicians are Kevin Boughner, Roger Cartier, Mike Dininny, Mike Lane, Jerry Moscoso, David Rowell and Bryan Taylor. The X-34 is 58.3 feet long, 27.7 feet wide from wing tip to wing tip, and 11.5 feet tall from the bottom of the fuselage to the top of the tail. The autonomously operated technology demonstrator will be air-launched from an L-1011 airplane and should be capable of flying eight times the speed of sound, reaching an altitude of 250,000 feet. The X-34 Project is managed by NASA's Marshall Space Flight Center in Huntsville, Ala.

  9. Automation of Armored Four Wheel Counter Steer Vehicles

    DTIC Science & Technology

    2015-08-28

    designed and implemented with an operator ease-of-use approach, allowing the simple transition between manual control and autonomous operation. Automation...Public Release The U.S. Army’s efforts in vehicle auto- mation are designed in part to protect soldiers in the field as they traverse poten- tially...System (AMAS) convoy autonomy, sensor, and drive-by-wire kits, to ground-up autonomous vehicle designs , such as TARDEC’s Autonomous Platform

  10. Recent Advances in Bathymetric Surveying of Continental Shelf Regions Using Autonomous Vehicles

    NASA Astrophysics Data System (ADS)

    Holland, K. T.; Calantoni, J.; Slocum, D.

    2016-02-01

    Obtaining bathymetric observations within the continental shelf in areas closer to the shore is often time consuming and dangerous, especially when uncharted shoals and rocks present safety concerns to survey ships and launches. However, surveys in these regions are critically important to numerical simulation of oceanographic processes, as bathymetry serves as the bottom boundary condition in operational forecasting models. We will present recent progress in bathymetric surveying using both traditional vessels retrofitted for autonomous operations and relatively inexpensive, small team deployable, Autonomous Underwater Vehicles (AUV). Both systems include either high-resolution multibeam echo sounders or interferometric sidescan sonar sensors with integrated inertial navigation system capabilities consistent with present commercial-grade survey operations. The advantages and limitations of these two configurations employing both unmanned and autonomous strategies are compared using results from several recent survey operations. We will demonstrate how sensor data collected from unmanned platforms can augment or even replace traditional data collection technologies. Oceanographic observations (e.g., sound speed, temperature and currents) collected simultaneously with bathymetry using autonomous technologies provide additional opportunities for advanced data assimilation in numerical forecasts. Discussion focuses on our vision for unmanned and autonomous systems working in conjunction with manned or in-situ systems to optimally and simultaneously collect data in environmentally hostile or difficult to reach areas.

  11. Autonomous Operations Mission Development Suite

    NASA Technical Reports Server (NTRS)

    Toro Medina, Jaime A.

    2016-01-01

    This is a presentation related to the development of Autonomous Operations Systems at NASA Kennedy Space Center. It covers a high level description of the work of FY14, FY15, FY16 for the AES IGODU and APL projects.

  12. Autonomous calibration of single spin qubit operations

    NASA Astrophysics Data System (ADS)

    Frank, Florian; Unden, Thomas; Zoller, Jonathan; Said, Ressa S.; Calarco, Tommaso; Montangero, Simone; Naydenov, Boris; Jelezko, Fedor

    2017-12-01

    Fully autonomous precise control of qubits is crucial for quantum information processing, quantum communication, and quantum sensing applications. It requires minimal human intervention on the ability to model, to predict, and to anticipate the quantum dynamics, as well as to precisely control and calibrate single qubit operations. Here, we demonstrate single qubit autonomous calibrations via closed-loop optimisations of electron spin quantum operations in diamond. The operations are examined by quantum state and process tomographic measurements at room temperature, and their performances against systematic errors are iteratively rectified by an optimal pulse engineering algorithm. We achieve an autonomous calibrated fidelity up to 1.00 on a time scale of minutes for a spin population inversion and up to 0.98 on a time scale of hours for a single qubit π/2 -rotation within the experimental error of 2%. These results manifest a full potential for versatile quantum technologies.

  13. Orbital Express Advanced Video Guidance Sensor

    NASA Technical Reports Server (NTRS)

    Howard, Ricky; Heaton, Andy; Pinson, Robin; Carrington, Connie

    2008-01-01

    In May 2007 the first US fully autonomous rendezvous and capture was successfully performed by DARPA's Orbital Express (OE) mission. Since then, the Boeing ASTRO spacecraft and the Ball Aerospace NEXTSat have performed multiple rendezvous and docking maneuvers to demonstrate the technologies needed for satellite servicing. MSFC's Advanced Video Guidance Sensor (AVGS) is a primary near-field proximity operations sensor integrated into ASTRO's Autonomous Rendezvous and Capture Sensor System (ARCSS), which provides relative state knowledge to the ASTRO GN&C system. This paper provides an overview of the AVGS sensor flying on Orbital Express, and a summary of the ground testing and on-orbit performance of the AVGS for OE. The AVGS is a laser-based system that is capable of providing range and bearing at midrange distances and full six degree-of-freedom (6DOF) knowledge at near fields. The sensor fires lasers at two different frequencies to illuminate the Long Range Targets (LRTs) and the Short Range Targets (SRTs) on NEXTSat. Subtraction of one image from the other image removes extraneous light sources and reflections from anything other than the corner cubes on the LRTs and SRTs. This feature has played a significant role for Orbital Express in poor lighting conditions. The very bright spots that remain in the subtracted image are processed by the target recognition algorithms and the inverse-perspective algorithms, to provide 3DOF or 6DOF relative state information. Although Orbital Express has configured the ASTRO ARCSS system to only use AVGS at ranges of 120 m or less, some OE scenarios have provided opportunities for AVGS to acquire and track NEXTSat at greater distances. Orbital Express scenarios to date that have utilized AVGS include a berthing operation performed by the ASTRO robotic arm, sensor checkout maneuvers performed by the ASTRO robotic arm, 10-m unmated operations, 30-m unmated operations, and Scenario 3-1 anomaly recovery. The AVGS performed very well during the pre-unmated operations, effectively tracking beyond its 10-degree Pitch and Yaw limit-specifications, and did not require I-LOAD adjustments before unmated operations. AVGS provided excellent performance in the 10-m unmated operations, effectively tracking and maintaining lock for the duration of this scenario, and showing good agreement between the short and long range targets. During the 30-m unmated operations, the AVGS continuously tracked the SRT to 31.6 m, exceeding expectations, and continuously tracked the LRT from 8.8 m out to 31.6 m, with good agreement between these two target solutions. After this scenario was aborted at a 10-m separation during remate operations, the AVGS tracked the LRT out 54.3 m, until the relative attitude between the vehicles was too large. The vehicles remained apart for eight days, at ranges from 1 km to 6 km. During the approach to remate in this recovery operation, the AVGS began tracking the LRT at 150 m, well beyond the OE planned limits for AVGS ranges, and functioned as the primary sensor for the autonomous rendezvous and docking.

  14. Autonomic Management of Space Missions. Chapter 12

    NASA Technical Reports Server (NTRS)

    Hinchey, Michael G.; Rash, James L.; Truszkowski, Walt; Rouff, Christopher A.; Sterritt, Roy

    2006-01-01

    With NASA s renewed commitment to outer space exploration, greater emphasis is being placed on both human and robotic exploration. Even when humans are involved in the exploration, human tending of assets becomes cost-prohibitive or in many cases is simply not feasible. In addition, certain exploration missions will require spacecraft that will be capable of venturing where humans cannot be sent. Early space missions were operated manually from ground control centers with little or no automated operations. In the mid-l980s, the high costs of satellite operations prompted NASA, and others, to begin automating as many functions as possible. In our context, a system is autonomous if it can achieve its goals without human intervention. A number of more-or-less automated ground systems exist today, but work continues with the goal being to reduce operations costs to even lower levels. Cost reductions can be achieved in a number of areas. Ground control and spacecraft operations are two such areas where greater autonomy can reduce costs. As a consequence, autonomy is increasingly seen as a critical approach for robotic missions and for some aspects of manned missions. Although autonomy will be critical for the success of future missions (and indeed will enable certain kinds of science data gathering approaches), missions imbued with autonomy must also exhibit autonomic properties. Exploitation of autonomy alone, without emphasis on autonomic properties, will leave spacecraft vulnerable to the dangerous environments in which they must operate. Without autonomic properties, a spacecraft may be unable to recognize negative environmental effects on its components and subsystems, or may be unable to take any action to ameliorate the effects. The spacecraft, though operating autonomously, may then sustain a degradation of performance of components or subsystems, and consequently may have a reduced potential for achieving mission objectives. In extreme cases, lack of autonomic properties could leave the spacecraft unable to recover from faults. Ensuring that exploration spacecraft have autonomic properties will increase the survivability and therefore the likelihood of success of these missions. In fact, over time, as mission requirements increased demands on spacecraft capabilities and longevity, designers have gradually built more autonomicity into spacecraft. For example, a spacecraft in low-earth orbit may experience an out-of-bounds perturbation of its attitude (orientation) due to increased drag caused by increased atmospheric density at its altitude as a result of a sufficiently large solar flare. If the spacecraft was designed to recognize the excessive attitude perturbation, it could decide to protect itself by going into a safe-hold mode where its internal configuration and operation are altered to conserve power and its coarse attitude is adjusted to point its solar panels toward the Sun to maximize power generation. This is an example of a simple type of autonomic behavior that has actually occurred. Future mission concepts will be increasingly dependent on space system survivability enabled by more advanced types of autonomic behaviors

  15. 30 CFR 57.14110 - Flying or falling materials.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Flying or falling materials. 57.14110 Section... and Equipment Safety Devices and Maintenance Requirements § 57.14110 Flying or falling materials. In areas where flying or falling materials generated from the operation of screens, crushers, or conveyors...

  16. 30 CFR 56.14110 - Flying or falling materials.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Flying or falling materials. 56.14110 Section... Equipment Safety Devices and Maintenance Requirements § 56.14110 Flying or falling materials. In areas where flying or falling materials generated from the operation of screens, crushers, or conveyors present a...

  17. 30 CFR 56.14110 - Flying or falling materials.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Flying or falling materials. 56.14110 Section... Equipment Safety Devices and Maintenance Requirements § 56.14110 Flying or falling materials. In areas where flying or falling materials generated from the operation of screens, crushers, or conveyors present a...

  18. 30 CFR 57.14110 - Flying or falling materials.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Flying or falling materials. 57.14110 Section... and Equipment Safety Devices and Maintenance Requirements § 57.14110 Flying or falling materials. In areas where flying or falling materials generated from the operation of screens, crushers, or conveyors...

  19. 30 CFR 57.14110 - Flying or falling materials.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Flying or falling materials. 57.14110 Section... and Equipment Safety Devices and Maintenance Requirements § 57.14110 Flying or falling materials. In areas where flying or falling materials generated from the operation of screens, crushers, or conveyors...

  20. 30 CFR 56.14110 - Flying or falling materials.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Flying or falling materials. 56.14110 Section... Equipment Safety Devices and Maintenance Requirements § 56.14110 Flying or falling materials. In areas where flying or falling materials generated from the operation of screens, crushers, or conveyors present a...

  1. 30 CFR 57.14110 - Flying or falling materials.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Flying or falling materials. 57.14110 Section... and Equipment Safety Devices and Maintenance Requirements § 57.14110 Flying or falling materials. In areas where flying or falling materials generated from the operation of screens, crushers, or conveyors...

  2. 30 CFR 56.14110 - Flying or falling materials.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Flying or falling materials. 56.14110 Section... Equipment Safety Devices and Maintenance Requirements § 56.14110 Flying or falling materials. In areas where flying or falling materials generated from the operation of screens, crushers, or conveyors present a...

  3. 30 CFR 56.14110 - Flying or falling materials.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Flying or falling materials. 56.14110 Section... Equipment Safety Devices and Maintenance Requirements § 56.14110 Flying or falling materials. In areas where flying or falling materials generated from the operation of screens, crushers, or conveyors present a...

  4. 30 CFR 57.14110 - Flying or falling materials.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Flying or falling materials. 57.14110 Section... and Equipment Safety Devices and Maintenance Requirements § 57.14110 Flying or falling materials. In areas where flying or falling materials generated from the operation of screens, crushers, or conveyors...

  5. Autonomous onboard crew operations: A review and developmental approach

    NASA Technical Reports Server (NTRS)

    Rogers, J. G.

    1982-01-01

    A review of the literature generated by an intercenter mission approach and consolidation team and their contractors was performed to obtain background information on the development of autonomous operations concepts for future space shuttle and space platform missions. The Boeing 757/767 flight management system was examined to determine the relevance for transfer of the developmental approach and technology to the performance of the crew operations function. In specific, the engine indications and crew alerting system was studied to determine the relevance of this display for the performance of crew operations onboard the vehicle. It was concluded that the developmental approach and technology utilized in the aeronautics industry would be appropriate for development of an autonomous operations concept for the space platform.

  6. Using Multimodal Input for Autonomous Decision Making for Unmanned Systems

    NASA Technical Reports Server (NTRS)

    Neilan, James H.; Cross, Charles; Rothhaar, Paul; Tran, Loc; Motter, Mark; Qualls, Garry; Trujillo, Anna; Allen, B. Danette

    2016-01-01

    Autonomous decision making in the presence of uncertainly is a deeply studied problem space particularly in the area of autonomous systems operations for land, air, sea, and space vehicles. Various techniques ranging from single algorithm solutions to complex ensemble classifier systems have been utilized in a research context in solving mission critical flight decisions. Realized systems on actual autonomous hardware, however, is a difficult systems integration problem, constituting a majority of applied robotics development timelines. The ability to reliably and repeatedly classify objects during a vehicles mission execution is vital for the vehicle to mitigate both static and dynamic environmental concerns such that the mission may be completed successfully and have the vehicle operate and return safely. In this paper, the Autonomy Incubator proposes and discusses an ensemble learning and recognition system planned for our autonomous framework, AEON, in selected domains, which fuse decision criteria, using prior experience on both the individual classifier layer and the ensemble layer to mitigate environmental uncertainty during operation.

  7. F/A-18 Performance Benefits Measured During the Autonomous Formation Flight Project

    NASA Technical Reports Server (NTRS)

    Vachon, M. Jake; Ray, Ronald J.; Walsh, Kevin R.; Ennix, Kimberly

    2003-01-01

    The Autonomous Formation Flight (AFF) project at the NASA Dryden Flight Research Center (Edwards, California) investigated performance benefits resulting from formation flight, such as reduced aerodynamic drag and fuel consumption. To obtain data on performance benefits, a trailing F/A-18 airplane flew within the wing tip-shed vortex of a leading F/A-18 airplane. The pilot of the trail airplane used advanced station-keeping technology to aid in positioning the trail airplane at precise locations behind the lead airplane. The specially instrumented trail airplane was able to obtain accurate fuel flow measurements and to calculate engine thrust and vehicle drag. A maneuver technique developed for this test provided a direct comparison of performance values while flying in and out of the vortex. Based on performance within the vortex as a function of changes in vertical, lateral, and longitudinal positioning, these tests explored design-drivers for autonomous stationkeeping control systems. Observations showed significant performance improvements over a large range of trail positions tested. Calculations revealed maximum drag reductions of over 20 percent, and demonstrated maximum reductions in fuel flow of just over 18 percent.

  8. Relative navigation for spacecraft formation flying

    NASA Technical Reports Server (NTRS)

    Hartman, Kate R.; Gramling, Cheryl J.; Lee, Taesul; Kelbel, David A.; Long, Anne C.

    1998-01-01

    The Goddard Space Flight Center Guidance, Navigation, and Control Center (GNCC) is currently developing and implementing advanced satellite systems to provide autonomous control of formation flyers. The initial formation maintenance capability will be flight-demonstrated on the Earth-Orbiter-1 (EO-1) satellite, which is planned under the National Aeronautics and Space Administration New Millennium Program to be a coflight with the Landsat-7 (L-7) satellite. Formation flying imposes relative navigation accuracy requirements in addition to the orbit accuracy requirements for the individual satellites. In the case of EO-1 and L-7, the two satellites are in nearly coplanar orbits, with a small difference in the longitude of the ascending node to compensate for the Earth's rotation. The GNCC has performed trajectory error analysis for the relative navigation of the EO-1/L-7 formation, as well as for a more advanced tracking configuration using cross-link satellite communications. This paper discusses the orbit determination and prediction accuracy achievable for EO-1 and L-7 under various tracking and orbit determination scenarios and discusses the expected relative separation errors in their formation flying configuration.

  9. Relative Navigation for Spacecraft Formation Flying

    NASA Technical Reports Server (NTRS)

    Hartman, Kate R.; Gramling, Cheryl J.; Lee, Taesul; Kelbel, David A.; Long, Anne C.

    1998-01-01

    The Goddard Space Flight Center Guidance, Navigation, and Control Center (GNCC) is currently developing and implementing advanced satellite systems to provide autonomous control of formation flyers. The initial formation maintenance capability will be flight-demonstrated on the Earth-Orbiter-1 (EO-l) satellite, which is planned under the National Aeronautics and Space Administration New Millennium Program to be a coflight with the Landsat-7 (L-7) satellite. Formation flying imposes relative navigation accuracy requirements in addition to the orbit accuracy requirements for the individual satellites. In the case of EO-1 and L-7, the two satellites are in nearly coplanar orbits, with a small difference in the longitude of the ascending node to compensate for the Earth's rotation. The GNCC has performed trajectory error analysis for the relative navigation of the EO-1/L-7 formation, as well as for a more advanced tracking configuration using cross- link satellite communications. This paper discusses the orbit determination and prediction accuracy achievable for EO-1 and L-7 under various tracking and orbit determination scenarios and discusses the expected relative separation errors in their formation flying configuration.

  10. Multimodal UAV detection: study of various intrusion scenarios

    NASA Astrophysics Data System (ADS)

    Hengy, Sebastien; Laurenzis, Martin; Schertzer, Stéphane; Hommes, Alexander; Kloeppel, Franck; Shoykhetbrod, Alex; Geibig, Thomas; Johannes, Winfried; Rassy, Oussama; Christnacher, Frank

    2017-10-01

    Small unmanned aerial vehicles (UAVs) are becoming increasingly popular and affordable the last years for professional and private consumer market, with varied capacities and performances. Recent events showed that illicit or hostile uses constitute an emergent, quickly evolutionary threat. Recent developments in UAV technologies tend to bring autonomous, highly agile and capable unmanned aerial vehicles to the market. These UAVs can be used for spying operations as well as for transporting illicit or hazardous material (smuggling, flying improvised explosive devices). The scenario of interest concerns the protection of sensitive zones against the potential threat constituted by small drones. In the recent past, field trials were carried out to investigate the detection and tracking of multiple UAV flying at low altitude. Here, we present results which were achieved using a heterogeneous sensor network consisting of acoustic antennas, small FMCW RADAR systems and optical sensors. While acoustics and RADAR was applied to monitor a wide azimuthal area (360°), optical sensors were used for sequentially identification. The localization results have been compared to the ground truth data to estimate the efficiency of each detection system. Seven-microphone acoustic arrays allow single source localization. The mean azimuth and elevation estimation error has been measured equal to 1.5 and -2.5 degrees respectively. The FMCW radar allows tracking of multiple UAVs by estimating their range, azimuth and motion speed. Both technologies can be linked to the electro-optical system for final identification of the detected object.

  11. Piloted Evaluation of the H-Mode, a Variable Autonomy Control System, in Motion-Based Simulation

    NASA Technical Reports Server (NTRS)

    Goodrich, Kenneth H.; Schutte, Paul C.; Williams, Ralph A.

    2008-01-01

    As aircraft become able to autonomously respond to a range of situations with performance surpassing human operators, we are compelled to look for new methods that help understand their use and guide the design of new, more effective forms of automation and interaction. The "H-mode" is one such method and is based on the metaphor of a well-trained horse. The concept allows the pilot to manage a broad range of control automation functionality, from augmented manual control to FMS-like coupling and automation initiated actions, using a common interface system and easily learned set of interaction skills. The interface leverages familiar manual control interfaces (e.g., the control stick) and flight displays through the addition of contextually dependent haptic-multimodal elements. The concept is relevant to manned and remotely piloted vehicles. This paper provides an overview of the H-mode concept followed by a presentation of the results from a recent evaluation conducted in a motion-based simulator. The evaluation focused on assessing the overall usability and flying qualities of the concept with an emphasis on the effects of turbulence and cockpit motion. Because the H-mode results in interactions between traditional flying qualities and management of higher-level flight path automation, these effects are of particular interest. The results indicate that the concept may provide a useful complement or replacement to conventional interfaces, and retains the usefulness in the presence of turbulence and motion.

  12. Physiological reactivity to phobic stimuli in people with fear of flying.

    PubMed

    Busscher, Bert; van Gerwen, Lucas J; Spinhoven, Philip; de Geus, Eco J C

    2010-09-01

    The nature of the relationship between physiological and subjective responses in phobic subjects remains unclear. Phobics have been thought to be characterized by a heightened physiological response (physiological perspective) or by a heightened perception of a normal physiological response (psychological perspective). In this study, we examined subjective measures of anxiety, heart rate (HR), and cardiac autonomic responses to flight-related stimuli in 127 people who applied for fear-of-flying therapy at a specialized treatment center and in 36 controls without aviophobia. In keeping with the psychological perspective, we found a large increase in subjective distress (eta(2)=.43) during exposure to flight-related stimuli in the phobics and no change in subjective distress in the controls, whereas the physiological responses of both groups were indiscriminate. However, in keeping with the physiological perspective, we found that, within the group of phobics, increases in subjective fear during exposure were moderately strong coupled to HR (r =.208, P=.022) and cardiac vagal (r =.199, P=.028) reactivity. In contrast to predictions by the psychological perspective, anxiety sensitivity did not modulate this coupling. We conclude that subjective fear responses and autonomic responses are only loosely coupled during mildly threatening exposure to flight-related stimuli. More ecologically valid exposure to phobic stimuli may be needed to test the predictions from the physiological and psychological perspectives. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  13. Development of flying qualities criteria for single pilot instrument flight operations

    NASA Technical Reports Server (NTRS)

    Bar-Gill, A.; Nixon, W. B.; Miller, G. E.

    1982-01-01

    Flying qualities criteria for Single Pilot Instrument Flight Rule (SPIFR) operations were investigated. The ARA aircraft was modified and adapted for SPIFR operations. Aircraft configurations to be flight-tested were chosen and matched on the ARA in-flight simulator, implementing modern control theory algorithms. Mission planning and experimental matrix design were completed. Microprocessor software for the onboard data acquisition system was debugged and flight-tested. Flight-path reconstruction procedure and the associated FORTRAN program were developed. Algorithms associated with the statistical analysis of flight test results and the SPIFR flying qualities criteria deduction are discussed.

  14. Intelligent Decisions? Intelligent Support? Agenda and Participants for the Internal Workshop on Intelligent Decision Support Systems : Retrospects and Prospects, August 29 - September 2, 2005, Certosa di Pontignano (Siena), Italy

    DTIC Science & Technology

    2005-09-01

    ENGINEERING APPROACH TO INTELLIGENT OPERATOR ASSISTANCE AND AUTONOMOUS VEHICLE GUIDANCE ..................100 27. SHARPLE, SARAH (WITH COX, GEMMA & STEDMON...104 30. TANGO, FABIO: CONCEPT OF AUTONOMIC COMPUTING APPLIED TO TRANSPORTATION ISSUES: THE SENSITIVE CAR .....105 31. TAYLOR, ROBERT: POSITION...SYSTEMS ENGINEERING APPROACH TO INTELLIGENT OPERATOR ASSISTANCE AND AUTONOMOUS VEHICLE GUIDANCE Today’s automation systems are typically introduced

  15. Investigations into near-real-time surveying for geophysical data collection using an autonomous ground vehicle

    USGS Publications Warehouse

    Phelps, Geoffrey A.; Ippolito, C.; Lee, R.; Spritzer, R.; Yeh, Y.

    2014-01-01

    The U.S. Geological Survey and the National Aeronautics and Space Administration are cooperatively investigating the utility of unmanned vehicles for near-real-time autonomous surveys of geophysical data collection. Initially focused on unmanned ground vehicle collection of magnetic data, this cooperative effort has brought unmanned surveying, precision guidance, near-real-time communication, on-the-fly data processing, and near-real-time data interpretation into the realm of ground geophysical surveying, all of which offer advantages over current methods of manned collection of ground magnetic data. An unmanned ground vehicle mission has demonstrated that these vehicles can successfully complete missions to collect geophysical data, and add advantages in data collection, processing, and interpretation. We view the current experiment as an initial phase in further unmanned vehicle data-collection missions, including aerial surveying.

  16. Mobile robots IV; Proceedings of the Meeting, Philadelphia, PA, Nov. 6, 7, 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolfe, W.J.; Chun, W.H.

    1990-01-01

    The present conference on mobile robot systems discusses high-speed machine perception based on passive sensing, wide-angle optical ranging, three-dimensional path planning for flying/crawling robots, navigation of autonomous mobile intelligence in an unstructured natural environment, mechanical models for the locomotion of a four-articulated-track robot, a rule-based command language for a semiautonomous Mars rover, and a computer model of the structured light vision system for a Mars rover. Also discussed are optical flow and three-dimensional information for navigation, feature-based reasoning trail detection, a symbolic neural-net production system for obstacle avoidance and navigation, intelligent path planning for robot navigation in an unknown environment,more » behaviors from a hierarchical control system, stereoscopic TV systems, the REACT language for autonomous robots, and a man-amplifying exoskeleton.« less

  17. Physics Simulation Software for Autonomous Propellant Loading and Gas House Autonomous System Monitoring

    NASA Technical Reports Server (NTRS)

    Regalado Reyes, Bjorn Constant

    2015-01-01

    1. Kennedy Space Center (KSC) is developing a mobile launching system with autonomous propellant loading capabilities for liquid-fueled rockets. An autonomous system will be responsible for monitoring and controlling the storage, loading and transferring of cryogenic propellants. The Physics Simulation Software will reproduce the sensor data seen during the delivery of cryogenic fluids including valve positions, pressures, temperatures and flow rates. The simulator will provide insight into the functionality of the propellant systems and demonstrate the effects of potential faults. This will provide verification of the communications protocols and the autonomous system control. 2. The High Pressure Gas Facility (HPGF) stores and distributes hydrogen, nitrogen, helium and high pressure air. The hydrogen and nitrogen are stored in cryogenic liquid state. The cryogenic fluids pose several hazards to operators and the storage and transfer equipment. Constant monitoring of pressures, temperatures and flow rates are required in order to maintain the safety of personnel and equipment during the handling and storage of these commodities. The Gas House Autonomous System Monitoring software will be responsible for constantly observing and recording sensor data, identifying and predicting faults and relaying hazard and operational information to the operators.

  18. Electrical Hyperexcitation of Lateral Ventral Pacemaker Neurons Desynchronizes Downstream Circadian Oscillators in the Fly Circadian Circuit and Induces Multiple Behavioral Periods

    PubMed Central

    Nitabach, Michael N.; Wu, Ying; Sheeba, Vasu; Lemon, William C.; Strumbos, John; Zelensky, Paul K.; White, Benjamin H.; Holmes, Todd C.

    2008-01-01

    Coupling of autonomous cellular oscillators is an essential aspect of circadian clock function but little is known about its circuit requirements. Functional ablation of the pigment-dispersing factor-expressing lateral ventral subset (LNV ) of Drosophila clock neurons abolishes circadian rhythms of locomotor activity. The hypothesis that LNVs synchronize oscillations in downstream clock neurons was tested by rendering the LNVs hyperexcitable via transgenic expression of a low activation threshold voltage-gated sodium channel. When the LNVs are made hyperexcitable, free-running behavioral rhythms decompose into multiple independent superimposed oscillations and the clock protein oscillations in the dorsal neuron 1 and 2 subgroups of clock neurons are phase-shifted. Thus, regulated electrical activity of the LNVs synchronize multiple oscillators in the fly circadian pacemaker circuit. PMID:16407545

  19. Progress of Crew Autonomous Scheduling Test (CAST) On the ISS

    NASA Technical Reports Server (NTRS)

    Healy, Matthew; Marquez, Jessica; Hillenius, Steven; Korth, David; Bakalyar, Lauren Rush; Woodbury, Neil; Larsen, Crystal M.; Bates, Shelby; Kockler, Mikayla; Rhodes, Brooke; hide

    2017-01-01

    The United States space policy is evolving toward missions beyond low Earth orbit. In an effort to meet that policy, NASA has recognized Autonomous Mission Operations (AMO) as a valuable capability. Identified within AMO capabilities is the potential for autonomous planning and replanning during human spaceflight operations. That is allowing crew members to collectively or individually participate in the development of their own schedules. Currently, dedicated mission operations planners collaborate with international partners to create daily plans for astronauts aboard the International Space Station (ISS), taking into account mission requirements, ground rules, and various vehicle and payload constraints. In future deep space operations the crew will require more independence from ground support due to communication transmission delays. Furthermore, crew members who are provided with the capability to schedule their own activities are able to leverage direct experience operating in the space environment, and possibly maximize their efficiency. CAST (Crew Autonomous Scheduling Test) is an ISS investigation designed to analyze three important hypotheses about crew autonomous scheduling. First, given appropriate inputs, the crew is able to create and execute a plan in a reasonable period of time without impacts to mission success. Second, the proximity of the planner, in this case the crew, to the planned operations increases their operational efficiency. Third, crew members are more satisfied when given a role in plan development. This presentation shows the progress done in this study with a single astronaut test subject participating in five CAST sessions. CAST is a technology demonstration payload sponsored by the ISS Research Science and Technology Office, and performed by experts in Mission Operations Planning from the Flight Operations Directorate at NASA Johnson Space Center, and researchers across multiple NASA centers.

  20. Development of a semi-autonomous service robot with telerobotic capabilities

    NASA Technical Reports Server (NTRS)

    Jones, J. E.; White, D. R.

    1987-01-01

    The importance to the United States of semi-autonomous systems for application to a large number of manufacturing and service processes is very clear. Two principal reasons emerge as the primary driving forces for development of such systems: enhanced national productivity and operation in environments whch are hazardous to humans. Completely autonomous systems may not currently be economically feasible. However, autonomous systems that operate in a limited operation domain or that are supervised by humans are within the technology capability of this decade and will likely provide reasonable return on investment. The two research and development efforts of autonomy and telerobotics are distinctly different, yet interconnected. The first addresses the communication of an intelligent electronic system with a robot while the second requires human communication and ergonomic consideration. Discussed here are work in robotic control, human/robot team implementation, expert system robot operation, and sensor development by the American Welding Institute, MTS Systems Corporation, and the Colorado School of Mines--Center for Welding Research.

  1. An intelligent algorithm for autonomous scientific sampling with the VALKYRIE cryobot

    NASA Astrophysics Data System (ADS)

    Clark, Evan B.; Bramall, Nathan E.; Christner, Brent; Flesher, Chris; Harman, John; Hogan, Bart; Lavender, Heather; Lelievre, Scott; Moor, Joshua; Siegel, Vickie

    2018-07-01

    The development of algorithms for agile science and autonomous exploration has been pursued in contexts ranging from spacecraft to planetary rovers to unmanned aerial vehicles to autonomous underwater vehicles. In situations where time, mission resources and communications are limited and the future state of the operating environment is unknown, the capability of a vehicle to dynamically respond to changing circumstances without human guidance can substantially improve science return. Such capabilities are difficult to achieve in practice, however, because they require intelligent reasoning to utilize limited resources in an inherently uncertain environment. Here we discuss the development, characterization and field performance of two algorithms for autonomously collecting water samples on VALKYRIE (Very deep Autonomous Laser-powered Kilowatt-class Yo-yoing Robotic Ice Explorer), a glacier-penetrating cryobot deployed to the Matanuska Glacier, Alaska (Mission Control location: 61°42'09.3''N 147°37'23.2''W). We show performance on par with human performance across a wide range of mission morphologies using simulated mission data, and demonstrate the effectiveness of the algorithms at autonomously collecting samples with high relative cell concentration during field operation. The development of such algorithms will help enable autonomous science operations in environments where constant real-time human supervision is impractical, such as penetration of ice sheets on Earth and high-priority planetary science targets like Europa.

  2. Passive Baited Sequential Fly Trap

    USDA-ARS?s Scientific Manuscript database

    Sampling fly populations associated with human populations is needed to understand diel behavior and to monitor population densities before and after control operations. Population control measures are dependent on the results of monitoring efforts as they may provide insight into the fly behavior ...

  3. Development of a standard operating procedure for analysis of ammonia concentrations in coal fly ash.

    DOT National Transportation Integrated Search

    2015-04-01

    Research was performed to support the development and recommendation of a standard operating : procedure (SOP) for analyzing the ammonia content in fly ash intended for use in concrete. A review : of existing ash producers found that several differen...

  4. Mapping automotive like controls to a general aviation aircraft

    NASA Astrophysics Data System (ADS)

    Carvalho, Christopher G.

    The purpose of this thesis was to develop fly-by-wire control laws enabling a general aviation aircraft to be flown with automotive controls, i.e. a steering wheel and gas/brake pedals. There was a six speed shifter used to change the flight mode of the aircraft. This essentially allows the pilot to have control over different aspects of the flight profile such as climb/descend or cruise. A highway in the sky was used to aid in the navigation since it is not intuitive to people without flight experience how to navigate from the sky or when to climb and descend. Many believe that general aviation could become as widespread as the automobile. Every person could have a personal aircraft at their disposal and it would be as easy to operate as driving an automobile. The goal of this thesis is to fuse the ease of drivability of a car with flight of a small general aviation aircraft. A standard automotive control hardware setup coupled with variably autonomous control laws will allow new pilots to fly a plane as easily as driving a car. The idea is that new pilots will require very little training to become proficient with these controls. Pilots with little time to stay current can maintain their skills simply by driving a car which is typically a daily activity. A human factors study was conducted to determine the feasibility of the applied control techniques. Pilot performance metrics were developed to compare candidates with no aviation background and experienced pilots. After analyzing the relative performance between pilots and non-pilots, it has been determined that the control system is robust and easy to learn. Candidates with no aviation experience whatsoever can learn to fly an aircraft as safely and efficiently as someone with hundreds of hours of flight experience using these controls.

  5. Smart Power Supply for Battery-Powered Systems

    NASA Technical Reports Server (NTRS)

    Krasowski, Michael J.; Greer, Lawrence; Prokop, Norman F.; Flatico, Joseph M.

    2010-01-01

    A power supply for battery-powered systems has been designed with an embedded controller that is capable of monitoring and maintaining batteries, charging hardware, while maintaining output power. The power supply is primarily designed for rovers and other remote science and engineering vehicles, but it can be used in any battery alone, or battery and charging source applications. The supply can function autonomously, or can be connected to a host processor through a serial communications link. It can be programmed a priori or on the fly to return current and voltage readings to a host. It has two output power busses: a constant 24-V direct current nominal bus, and a programmable bus for output from approximately 24 up to approximately 50 V. The programmable bus voltage level, and its output power limit, can be changed on the fly as well. The power supply also offers options to reduce the programmable bus to 24 V when the set power limit is reached, limiting output power in the case of a system fault detected in the system. The smart power supply is based on an embedded 8051-type single-chip microcontroller. This choice was made in that a credible progression to flight (radiation hard, high reliability) can be assumed as many 8051 processors or gate arrays capable of accepting 8051-type core presently exist and will continue to do so for some time. To solve the problem of centralized control, this innovation moves an embedded microcontroller to the power supply and assigns it the task of overseeing the operation and charging of the power supply assets. This embedded processor is connected to the application central processor via a serial data link such that the central processor can request updates of various parameters within the supply, such as battery current, bus voltage, remaining power in battery estimations, etc. This supply has a direct connection to the battery bus for common (quiescent) power application. Because components from multiple vendors may have differing power needs, this supply also has a secondary power bus, which can be programmed a priori or on-the-fly to boost the primary battery voltage level from 24 to 50 V to accommodate various loads as they are brought on line. Through voltage and current monitoring, the device can also shield the charging source from overloads, keep it within safe operating modes, and can meter available power to the application and maintain safe operations.

  6. Nanotechnology at NASA Ames

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Meyyappan, Meyya; Yan, Jerry (Technical Monitor)

    2000-01-01

    Advanced miniaturization, a key thrust area to enable new science and exploration missions, provides ultrasmall sensors, power sources, communication, navigation, and propulsion systems with very low mass, volume, and power consumption. Revolutions in electronics and computing will allow reconfigurable, autonomous, 'thinking' spacecraft. Nanotechnology presents a whole new spectrum of opportunities to build device components and systems for entirely new space architectures: (1) networks of ultrasmall probes on planetary surfaces; (2) micro-rovers that drive, hop, fly, and burrow; and (3) collections of microspacecraft making a variety of measurements.

  7. The Role of X-Rays in Future Space Navigation and Communication

    NASA Technical Reports Server (NTRS)

    Winternitz, Luke M. B.; Gendreau, Keith C.; Hasouneh, Monther A.; Mitchell, Jason W.; Fong, Wai H.; Lee, Wing-Tsz; Gavriil, Fotis; Arzoumanian, Zaven

    2013-01-01

    In the near future, applications using X-rays will enable autonomous navigation and time distribution throughout the solar system, high capacity and low-power space data links, highly accurate attitude sensing, and extremely high-precision formation flying capabilities. Each of these applications alone has the potential to revolutionize mission capabilities, particularly beyond Earth orbit. This paper will outline the NASA Goddard Space Flight Center vision and efforts toward realizing the full potential of X-ray navigation and communications.

  8. Evaluation of imidacloprid-treated traps as an attract and kill system for filth flies during contingency operations.

    USDA-ARS?s Scientific Manuscript database

    Field trials were conducted to evaluate if filth fly trap efficacy was increased by application of an insecticide to a trap’s exterior. Four Fly Terminator® Pro traps baited with Fly Terminator® attractant were suspended on PVC pipe framing at a Florida waste transfer site. Exterior surfaces of tw...

  9. Integrating small satellite communication in an autonomous vehicle network: A case for oceanography

    NASA Astrophysics Data System (ADS)

    Guerra, André G. C.; Ferreira, António Sérgio; Costa, Maria; Nodar-López, Diego; Aguado Agelet, Fernando

    2018-04-01

    Small satellites and autonomous vehicles have greatly evolved in the last few decades. Hundreds of small satellites have been launched with increasing functionalities, in the last few years. Likewise, numerous autonomous vehicles have been built, with decreasing costs and form-factor payloads. Here we focus on combining these two multifaceted assets in an incremental way, with an ultimate goal of alleviating the logistical expenses in remote oceanographic operations. The first goal is to create a highly reliable and constantly available communication link for a network of autonomous vehicles, taking advantage of the small satellite lower cost, with respect to conventional spacecraft, and its higher flexibility. We have developed a test platform as a proving ground for this network, by integrating a satellite software defined radio on an unmanned air vehicle, creating a system of systems, and several tests have been run successfully, over land. As soon as the satellite is fully operational, we will start to move towards a cooperative network of autonomous vehicles and small satellites, with application in maritime operations, both in-situ and remote sensing.

  10. Integration of a Decentralized Linear-Quadratic-Gaussian Control into GSFC's Universal 3-D Autonomous Formation Flying Algorithm

    NASA Technical Reports Server (NTRS)

    Folta, David C.; Carpenter, J. Russell

    1999-01-01

    A decentralized control is investigated for applicability to the autonomous formation flying control algorithm developed by GSFC for the New Millenium Program Earth Observer-1 (EO-1) mission. This decentralized framework has the following characteristics: The approach is non-hierarchical, and coordination by a central supervisor is not required; Detected failures degrade the system performance gracefully; Each node in the decentralized network processes only its own measurement data, in parallel with the other nodes; Although the total computational burden over the entire network is greater than it would be for a single, centralized controller, fewer computations are required locally at each node; Requirements for data transmission between nodes are limited to only the dimension of the control vector, at the cost of maintaining a local additional data vector. The data vector compresses all past measurement history from all the nodes into a single vector of the dimension of the state; and The approach is optimal with respect to standard cost functions. The current approach is valid for linear time-invariant systems only. Similar to the GSFC formation flying algorithm, the extension to linear LQG time-varying systems requires that each node propagate its filter covariance forward (navigation) and controller Riccati matrix backward (guidance) at each time step. Extension of the GSFC algorithm to non-linear systems can also be accomplished via linearization about a reference trajectory in the standard fashion, or linearization about the current state estimate as with the extended Kalman filter. To investigate the feasibility of the decentralized integration with the GSFC algorithm, an existing centralized LQG design for a single spacecraft orbit control problem is adapted to the decentralized framework while using the GSFC algorithm's state transition matrices and framework. The existing GSFC design uses both reference trajectories of each spacecraft in formation and by appropriate choice of coordinates and simplified measurement modeling is formulated as a linear time-invariant system. Results for improvements to the GSFC algorithm and a multiple satellite formation will be addressed. The goal of this investigation is to progressively relax the assumptions that result in linear time-invariance, ultimately to the point of linearization of the non-linear dynamics about the current state estimate as in the extended Kalman filter. An assessment will then be made about the feasibility of the decentralized approach to the realistic formation flying application of the EO-1/Landsat 7 formation flying experiment.

  11. Autonomous mission planning and scheduling: Innovative, integrated, responsive

    NASA Technical Reports Server (NTRS)

    Sary, Charisse; Liu, Simon; Hull, Larry; Davis, Randy

    1994-01-01

    Autonomous mission scheduling, a new concept for NASA ground data systems, is a decentralized and distributed approach to scientific spacecraft planning, scheduling, and command management. Systems and services are provided that enable investigators to operate their own instruments. In autonomous mission scheduling, separate nodes exist for each instrument and one or more operations nodes exist for the spacecraft. Each node is responsible for its own operations which include planning, scheduling, and commanding; and for resolving conflicts with other nodes. One or more database servers accessible to all nodes enable each to share mission and science planning, scheduling, and commanding information. The architecture for autonomous mission scheduling is based upon a realistic mix of state-of-the-art and emerging technology and services, e.g., high performance individual workstations, high speed communications, client-server computing, and relational databases. The concept is particularly suited to the smaller, less complex missions of the future.

  12. Development of a non-contextual model for determining the autonomy level of intelligent unmanned systems

    NASA Astrophysics Data System (ADS)

    Durst, Phillip J.; Gray, Wendell; Trentini, Michael

    2013-05-01

    A simple, quantitative measure for encapsulating the autonomous capabilities of unmanned systems (UMS) has yet to be established. Current models for measuring a UMS's autonomy level require extensive, operational level testing, and provide a means for assessing the autonomy level for a specific mission/task and operational environment. A more elegant technique for quantifying autonomy using component level testing of the robot platform alone, outside of mission and environment contexts, is desirable. Using a high level framework for UMS architectures, such a model for determining a level of autonomy has been developed. The model uses a combination of developmental and component level testing for each aspect of the UMS architecture to define a non-contextual autonomous potential (NCAP). The NCAP provides an autonomy level, ranging from fully non- autonomous to fully autonomous, in the form of a single numeric parameter describing the UMS's performance capabilities when operating at that level of autonomy.

  13. Nature-Inspired Acoustic Sensor Projects

    DTIC Science & Technology

    1999-08-24

    m). The pager motors are worn on the wrists. Yale Intelligent Sensors Lab 8 Autonomous vehicle navigation Yago – Yale Autonomous Go-Cart Yago is used...proximity sensor determined the presence of close-by objects missed by the sonars. Yago operated autonomously by avoiding obstacles. Problems being

  14. Hardware design for the Autonomous Visibility Monitoring (AVM) observatory

    NASA Technical Reports Server (NTRS)

    Cowles, K.

    1993-01-01

    The hardware for the three Autonomous Visibility Monitoring (AVM) observatories was redesigned. Changes in hardware design include electronics components, weather sensors, and the telescope drive system. Operation of the new hardware is discussed, as well as some of its features. The redesign will allow reliable automated operation.

  15. Autonomous Mission Manager for Rendezvous, Inspection and Mating

    NASA Technical Reports Server (NTRS)

    Zimpfer, Douglas J.

    2003-01-01

    To meet cost and safety objectives, space missions that involve proximity operations between two vehicles require a high level of autonomy to successfully complete their missions. The need for autonomy is primarily driven by the need to conduct complex operations outside of communication windows, and the communication time delays inherent in space missions. Autonomy also supports the goals of both NASA and the DOD to make space operations more routine, and lower operational costs by reducing the requirement for ground personnel. NASA and the DoD have several programs underway that require a much higher level of autonomy for space vehicles. NASA's Space Launch Initiative (SLI) program has ambitious goals of reducing costs by a factor or 10 and improving safety by a factor of 100. DARPA has recently begun its Orbital Express to demonstrate key technologies to make satellite servicing routine. The Air Force's XSS-ll program is developing a protoflight demonstration of an autonomous satellite inspector. A common element in space operations for many NASA and DOD missions is the ability to rendezvous, inspect anclJor dock with another spacecraft. For DARPA, this is required to service or refuel military satellites. For the Air Force, this is required to inspect un-cooperative resident space objects. For NASA, this is needed to meet the primary SLI design reference mission of International Space Station re-supply. A common aspect for each of these programs is an Autonomous Mission Manager that provides highly autonomous planning, execution and monitoring of the rendezvous, inspection and docking operations. This paper provides an overview of the Autonomous Mission Manager (AMM) design being incorporated into many of these technology programs. This AMM provides a highly scalable level of autonomous operations, ranging from automatic execution of ground-derived plans to highly autonomous onboard planning to meet ground developed mission goals. The AMM provides the capability to automatically execute the plans and monitor the system performance. In the event of system dispersions or failures the AMM can modify plans or abort to assure overall system safety. This paper describes the design and functionality of Draper's AMM framework, presents concept of operations associated with the use of the AMM, and outlines the relevant features of the flight demonstrations.

  16. Longitudinal flying qualities criteria for single-pilot instrument flight operations

    NASA Technical Reports Server (NTRS)

    Stengel, R. F.; Bar-Gill, A.

    1983-01-01

    Modern estimation and control theory, flight testing, and statistical analysis were used to deduce flying qualities criteria for General Aviation Single Pilot Instrument Flight Rule (SPIFR) operations. The principal concern is that unsatisfactory aircraft dynamic response combined with high navigation/communication workload can produce problems of safety and efficiency. To alleviate these problems. The relative importance of these factors must be determined. This objective was achieved by flying SPIFR tasks with different aircraft dynamic configurations and assessing the effects of such variations under these conditions. The experimental results yielded quantitative indicators of pilot's performance and workload, and for each of them, multivariate regression was applied to evaluate several candidate flying qualities criteria.

  17. Acetylcholinesterase mutations and organophosphate resistance in sand flies and mosquitoes

    USDA-ARS?s Scientific Manuscript database

    The sand fly, Phlebotomus papatasi (Scopoli) is a major vector of Leishamnia major, the principle causative agent of human cutaneous leishmaniasis in the Middle East, southern Europe, northern Africa, and Southern Asia. Sand fly bites and leishmaniasis significantly impacted U.S. military operations...

  18. Cooperative Control of Multiple Unmanned Autonomous Vehicles

    DTIC Science & Technology

    2005-06-03

    I I Final Report 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Cooperative Control of Multiple Unmanned Autonomous Vehicles F49620-01-1-0337 6. AUTHOR(S... Autonomous Vehicles Final Report Kendall E. Nygard Department of Computer Science and Operations Research North Dakota State University Fargo, ND 58105-5164

  19. Lower cost offshore field development utilizing autonomous vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frisbie, F.R.; Vie, K.J.; Welch, D.W.

    1996-12-31

    The offshore oil and gas industry has the requirement to inspect offshore oil and gas pipelines for scour, corrosion and damage as well as inspect and intervene on satellite production facilities. This task is currently performed with Remotely Operated Vehicles (ROV) operated from dynamically positioned (DP) offshore supply or diving support boats. Currently, these tasks are expensive due to the high day rates for DP ships and the slow, umbilical impeded, 1 knot inspection rates of the tethered ROVs, Emerging Autonomous Undersea Vehicle (AUV) technologies offer opportunities to perform these same inspection tasks for 50--75% lower cost, with comparable ormore » improved quality. The new generation LAPV (Linked Autonomous Power Vehicles) will operate from fixed facilities such as TLPs or FPFs and cover an operating field 10 kms in diameter.« less

  20. Mapping Gnss Restricted Environments with a Drone Tandem and Indirect Position Control

    NASA Astrophysics Data System (ADS)

    Cledat, E.; Cucci, D. A.

    2017-08-01

    The problem of autonomously mapping highly cluttered environments, such as urban and natural canyons, is intractable with the current UAV technology. The reason lies in the absence or unreliability of GNSS signals due to partial sky occlusion or multi-path effects. High quality carrier-phase observations are also required in efficient mapping paradigms, such as Assisted Aerial Triangulation, to achieve high ground accuracy without the need of dense networks of ground control points. In this work we consider a drone tandem in which the first drone flies outside the canyon, where GNSS constellation is ideal, visually tracks the second drone and provides an indirect position control for it. This enables both autonomous guidance and accurate mapping of GNSS restricted environments without the need of ground control points. We address the technical feasibility of this concept considering preliminary real-world experiments in comparable conditions and we perform a mapping accuracy prediction based on a simulation scenario.

  1. A Space Station robot walker and its shared control software

    NASA Technical Reports Server (NTRS)

    Xu, Yangsheng; Brown, Ben; Aoki, Shigeru; Yoshida, Tetsuji

    1994-01-01

    In this paper, we first briefly overview the update of the self-mobile space manipulator (SMSM) configuration and testbed. The new robot is capable of projecting cameras anywhere interior or exterior of the Space Station Freedom (SSF), and will be an ideal tool for inspecting connectors, structures, and other facilities on SSF. Experiments have been performed under two gravity compensation systems and a full-scale model of a segment of SSF. This paper presents a real-time shared control architecture that enables the robot to coordinate autonomous locomotion and teleoperation input for reliable walking on SSF. Autonomous locomotion can be executed based on a CAD model and off-line trajectory planning, or can be guided by a vision system with neural network identification. Teleoperation control can be specified by a real-time graphical interface and a free-flying hand controller. SMSM will be a valuable assistant for astronauts in inspection and other EVA missions.

  2. Drosophila heart cell movement to the midline occurs through both cell autonomous migration and dorsal closure.

    PubMed

    Haack, Timm; Schneider, Matthias; Schwendele, Bernd; Renault, Andrew D

    2014-12-15

    The Drosophila heart is a linear organ formed by the movement of bilaterally specified progenitor cells to the midline and adherence of contralateral heart cells. This movement occurs through the attachment of heart cells to the overlying ectoderm which is undergoing dorsal closure. Therefore heart cells are thought to move to the midline passively. Through live imaging experiments and analysis of mutants that affect the speed of dorsal closure we show that heart cells in Drosophila are autonomously migratory and part of their movement to the midline is independent of the ectoderm. This means that heart formation in flies is more similar to that in vertebrates than previously thought. We also show that defects in dorsal closure can result in failure of the amnioserosa to properly degenerate, which can physically hinder joining of contralateral heart cells leading to a broken heart phenotype. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Local navigation and fuzzy control realization for autonomous guided vehicle

    NASA Astrophysics Data System (ADS)

    El-Konyaly, El-Sayed H.; Saraya, Sabry F.; Shehata, Raef S.

    1996-10-01

    This paper addresses the problem of local navigation for an autonomous guided vehicle (AGV) in a structured environment that contains static and dynamic obstacles. Information about the environment is obtained via a CCD camera. The problem is formulated as a dynamic feedback control problem in which speed and steering decisions are made on the fly while the AGV is moving. A decision element (DE) that uses local information is proposed. The DE guides the vehicle in the environment by producing appropriate navigation decisions. Dynamic models of a three-wheeled vehicle for driving and steering mechanisms are derived. The interaction between them is performed via the local feedback DE. A controller, based on fuzzy logic, is designed to drive the vehicle safely in an intelligent and human-like manner. The effectiveness of the navigation and control strategies in driving the AGV is illustrated and evaluated.

  4. KSC-2013-4284

    NASA Image and Video Library

    2013-12-06

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, the Project Morpheus prototype lander has been lifted by a tether and hovers above a transportable launch platform positioned at the north end of the Shuttle Landing Facility. The lander’s engine begins firing for a tethered test that includes lifting it 20 feet by crane, ascending another 10 feet, maneuvering backwards 10 feet, and then flying forward and descending to its original position, landing at the end of the tether. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Daniel Casper

  5. KSC-2013-4286

    NASA Image and Video Library

    2013-12-06

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, the Project Morpheus prototype lander’s engine begins to fire during a tether test at the north end of the Shuttle Landing Facility. During the test, the lander is lifted 20 feet by crane, and will ascend another 10 feet, maneuver backwards 10 feet, and then fly forward and descend to its original position, landing at the end of the tether onto a transportable launch platform. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Daniel Casper

  6. KSC-2013-4282

    NASA Image and Video Library

    2013-12-06

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, the Project Morpheus prototype lander has been attached to a tether and is being raised from a transportable launch platform positioned at the north end of the Shuttle Landing Facility. The tethered test includes lifting the lander 20 feet by crane, ascending another 10 feet, maneuvering backwards 10 feet, and then flying forward and descending to its original position, landing at the end of the tether. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Daniel Casper

  7. KSC-2013-4281

    NASA Image and Video Library

    2013-12-06

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, the Project Morpheus prototype lander has been attached to a tether and is being prepared for a tether test on a transportable launch platform positioned at the north end of the Shuttle Landing Facility. The tether test includes lifting the lander 20 feet by crane, ascending another 10 feet, maneuvering backwards 10 feet, and then flying forward and descending to its original position, landing at the end of the tether. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Daniel Casper

  8. KSC-2013-4256

    NASA Image and Video Library

    2013-12-06

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, the Project Morpheus prototype lander is being prepared for placement on a transportable launch platform positioned at the north end of the Shuttle Landing Facility. The lander will be prepared for a tethered test that includes lifting it 20 feet by crane, ascending another 10 feet, maneuvering backwards 10 feet, and then flying forward and descending to its original position, landing at the end of the tether. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett

  9. Multi-agent autonomous system

    NASA Technical Reports Server (NTRS)

    Fink, Wolfgang (Inventor); Dohm, James (Inventor); Tarbell, Mark A. (Inventor)

    2010-01-01

    A multi-agent autonomous system for exploration of hazardous or inaccessible locations. The multi-agent autonomous system includes simple surface-based agents or craft controlled by an airborne tracking and command system. The airborne tracking and command system includes an instrument suite used to image an operational area and any craft deployed within the operational area. The image data is used to identify the craft, targets for exploration, and obstacles in the operational area. The tracking and command system determines paths for the surface-based craft using the identified targets and obstacles and commands the craft using simple movement commands to move through the operational area to the targets while avoiding the obstacles. Each craft includes its own instrument suite to collect information about the operational area that is transmitted back to the tracking and command system. The tracking and command system may be further coupled to a satellite system to provide additional image information about the operational area and provide operational and location commands to the tracking and command system.

  10. The central molecular clock is robust in the face of behavioural arrhythmia in a Drosophila model of Alzheimer's disease.

    PubMed

    Chen, Ko-Fan; Possidente, Bernard; Lomas, David A; Crowther, Damian C

    2014-04-01

    Circadian behavioural deficits, including sleep irregularity and restlessness in the evening, are a distressing early feature of Alzheimer's disease (AD). We have investigated these phenomena by studying the circadian behaviour of transgenic Drosophila expressing the amyloid beta peptide (Aβ). We find that Aβ expression results in an age-related loss of circadian behavioural rhythms despite ongoing normal molecular oscillations in the central clock neurons. Even in the absence of any behavioural correlate, the synchronised activity of the central clock remains protective, prolonging lifespan, in Aβ flies just as it does in control flies. Confocal microscopy and bioluminescence measurements point to processes downstream of the molecular clock as the main site of Aβ toxicity. In addition, there seems to be significant non-cell-autonomous Aβ toxicity resulting in morphological and probably functional signalling deficits in central clock neurons.

  11. Single-Frequency GPS Relative Navigation in a High Ionosphere Orbital Environment

    NASA Technical Reports Server (NTRS)

    Conrad, Patrick R.; Naasz, Bo J.

    2007-01-01

    The Global Positioning System (GPS) provides a convenient source for space vehicle relative navigation measurements, especially for low Earth orbit formation flying and autonomous rendezvous mission concepts. For single-frequency GPS receivers, ionospheric path delay can be a significant error source if not properly mitigated. In particular, ionospheric effects are known to cause significant radial position error bias and add dramatically to relative state estimation error if the onboard navigation software does not force the use of measurements from common or shared GPS space vehicles. Results from GPS navigation simulations are presented for a pair of space vehicles flying in formation and using GPS pseudorange measurements to perform absolute and relative orbit determination. With careful measurement selection techniques relative state estimation accuracy to less than 20 cm with standard GPS pseudorange processing and less than 10 cm with single-differenced pseudorange processing is shown.

  12. Accurate estimation of object location in an image sequence using helicopter flight data

    NASA Technical Reports Server (NTRS)

    Tang, Yuan-Liang; Kasturi, Rangachar

    1994-01-01

    In autonomous navigation, it is essential to obtain a three-dimensional (3D) description of the static environment in which the vehicle is traveling. For a rotorcraft conducting low-latitude flight, this description is particularly useful for obstacle detection and avoidance. In this paper, we address the problem of 3D position estimation for static objects from a monocular sequence of images captured from a low-latitude flying helicopter. Since the environment is static, it is well known that the optical flow in the image will produce a radiating pattern from the focus of expansion. We propose a motion analysis system which utilizes the epipolar constraint to accurately estimate 3D positions of scene objects in a real world image sequence taken from a low-altitude flying helicopter. Results show that this approach gives good estimates of object positions near the rotorcraft's intended flight-path.

  13. Network Configuration Analysis for Formation Flying Satellites

    NASA Technical Reports Server (NTRS)

    Knoblock, Eric J.; Wallett, Thomas M.; Konangi, Vijay K.; Bhasin, Kul B.

    2001-01-01

    The performance of two networks to support autonomous multi-spacecraft formation flying systems is presented. Both systems are comprised of a ten-satellite formation, with one of the satellites designated as the central or 'mother ship.' All data is routed through the mother ship to the terrestrial network. The first system uses a TCP/EP over ATM protocol architecture within the formation, and the second system uses the IEEE 802.11 protocol architecture within the formation. The simulations consist of file transfers using either the File Transfer Protocol (FTP) or the Simple Automatic File Exchange (SAFE) Protocol. The results compare the IP queuing delay, IP queue size and IP processing delay at the mother ship as well as end-to-end delay for both systems. In all cases, using IEEE 802.11 within the formation yields less delay. Also, the throughput exhibited by SAFE is better than FTP.

  14. 3D Visualization of Cooperative Trajectories

    NASA Technical Reports Server (NTRS)

    Schaefer, John A.

    2014-01-01

    Aerodynamicists and biologists have long recognized the benefits of formation flight. When birds or aircraft fly in the upwash region of the vortex generated by leaders in a formation, induced drag is reduced for the trail bird or aircraft, and efficiency improves. The major consequence of this is that fuel consumption can be greatly reduced. When two aircraft are separated by a large enough longitudinal distance, the aircraft are said to be flying in a cooperative trajectory. A simulation has been developed to model autonomous cooperative trajectories of aircraft; however it does not provide any 3D representation of the multi-body system dynamics. The topic of this research is the development of an accurate visualization of the multi-body system observable in a 3D environment. This visualization includes two aircraft (lead and trail), a landscape for a static reference, and simplified models of the vortex dynamics and trajectories at several locations between the aircraft.

  15. The Drosophila Circadian Pacemaker Circuit: Pas de Deux or Tarantella?

    PubMed Central

    Sheeba, Vasu; Kaneko, Maki; Sharma, Vijay Kumar; Holmes, Todd C.

    2008-01-01

    Molecular genetic analysis of the fruit fly Drosophila melanogaster has revolutionized our understanding of the transcription/translation loop mechanisms underlying the circadian molecular oscillator. More recently, Drosophila has been used to understand how different neuronal groups within the circadian pacemaker circuit interact to regulate the overall behavior of the fly in response to daily cyclic environmental cues as well as seasonal changes. Our present understanding of circadian timekeeping at the molecular and circuit level is discussed with a critical evaluation of the strengths and weaknesses of present models. Two models for circadian neural circuits are compared: one that posits that two anatomically distinct oscillators control the synchronization to the two major daily morning and evening transitions, versus a distributed network model that posits that many cell-autonomous oscillators are coordinated in a complex fashion and respond via plastic mechanisms to changes in environmental cues. PMID:18307108

  16. The central molecular clock is robust in the face of behavioural arrhythmia in a Drosophila model of Alzheimer’s disease

    PubMed Central

    Chen, Ko-Fan; Possidente, Bernard; Lomas, David A.; Crowther, Damian C.

    2014-01-01

    Circadian behavioural deficits, including sleep irregularity and restlessness in the evening, are a distressing early feature of Alzheimer’s disease (AD). We have investigated these phenomena by studying the circadian behaviour of transgenic Drosophila expressing the amyloid beta peptide (Aβ). We find that Aβ expression results in an age-related loss of circadian behavioural rhythms despite ongoing normal molecular oscillations in the central clock neurons. Even in the absence of any behavioural correlate, the synchronised activity of the central clock remains protective, prolonging lifespan, in Aβ flies just as it does in control flies. Confocal microscopy and bioluminescence measurements point to processes downstream of the molecular clock as the main site of Aβ toxicity. In addition, there seems to be significant non-cell-autonomous Aβ toxicity resulting in morphological and probably functional signalling deficits in central clock neurons. PMID:24574361

  17. Turning a remotely controllable observatory into a fully autonomous system

    NASA Astrophysics Data System (ADS)

    Swindell, Scott; Johnson, Chris; Gabor, Paul; Zareba, Grzegorz; Kubánek, Petr; Prouza, Michael

    2014-08-01

    We describe a complex process needed to turn an existing, old, operational observatory - The Steward Observatory's 61" Kuiper Telescope - into a fully autonomous system, which observers without an observer. For this purpose, we employed RTS2,1 an open sourced, Linux based observatory control system, together with other open sourced programs and tools (GNU compilers, Python language for scripting, JQuery UI for Web user interface). This presentation provides a guide with time estimates needed for a newcomers to the field to handle such challenging tasks, as fully autonomous observatory operations.

  18. 14 CFR 121.517 - Flight time limitations: Other commercial flying: airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight time limitations: Other commercial flying: airplanes. 121.517 Section 121.517 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Limitations: Supplemental Operations § 121.517 Flight time limitations: Other commercial flying: airplanes. No...

  19. 14 CFR 121.517 - Flight time limitations: Other commercial flying: airplanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight time limitations: Other commercial flying: airplanes. 121.517 Section 121.517 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Limitations: Supplemental Operations § 121.517 Flight time limitations: Other commercial flying: airplanes. No...

  20. 14 CFR 121.517 - Flight time limitations: Other commercial flying: airplanes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight time limitations: Other commercial flying: airplanes. 121.517 Section 121.517 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Limitations: Supplemental Operations § 121.517 Flight time limitations: Other commercial flying: airplanes. No...

  1. 14 CFR 121.517 - Flight time limitations: Other commercial flying: airplanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight time limitations: Other commercial flying: airplanes. 121.517 Section 121.517 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Limitations: Supplemental Operations § 121.517 Flight time limitations: Other commercial flying: airplanes. No...

  2. 14 CFR 121.517 - Flight time limitations: Other commercial flying: airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight time limitations: Other commercial flying: airplanes. 121.517 Section 121.517 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Limitations: Supplemental Operations § 121.517 Flight time limitations: Other commercial flying: airplanes. No...

  3. Wireless IR Image Transfer System for Autonomous Vehicles

    DTIC Science & Technology

    2003-12-01

    the camera can operate between 0 and 500 C; this uniquely suites it for employment on autonomous vehicles in rugged environments. The camera is...system is suitable for used on autonomous vehicles under varying antenna orientations. • The third is the use of MDS transceivers allows the received

  4. Video Guidance Sensor for Surface Mobility Operations

    NASA Technical Reports Server (NTRS)

    Fernandez, Kenneth R.; Fischer, Richard; Bryan, Thomas; Howell, Joe; Howard, Ricky; Peters, Bruce

    2008-01-01

    Robotic systems and surface mobility will play an increased role in future exploration missions. Unlike the LRV during Apollo era which was an astronaut piloted vehicle future systems will include teleoperated and semi-autonomous operations. The tasks given to these vehicles will run the range from infrastructure maintenance, ISRU, and construction to name a few. A common task that may be performed would be the retrieval and deployment of trailer mounted equipment. Operational scenarios may require these operations to be performed remotely via a teleoperated mode,or semi-autonomously. This presentation describes the on-going project to adapt the Automated Rendezvous and Capture (AR&C) sensor developed at the Marshall Space Flight Center for use in an automated trailer pick-up and deployment operation. The sensor which has been successfully demonstrated on-orbit has been mounted on an iRobot/John Deere RGATOR autonomous vehicle for this demonstration which will be completed in the March 2008 time-frame.

  5. Defining the Levels of Adjustable Autonomy: A Means of Improving Resilience in an Unmanned Aerial System

    DTIC Science & Technology

    2014-09-01

    efficient yet safe operations. • Further understanding of human psychology in the operation of autonomous systems. • Interfaces, be they visual...that system, especially when included in aspects or during times where automation backup is required, when the human-operators anticipatory skills...political and psychological domains, where it connotes self-determination (Christman 2009). The autonomous systems domain that has evolved since

  6. The HAL 9000 Space Operating System Real-Time Planning Engine Design and Operations Requirements

    NASA Technical Reports Server (NTRS)

    Stetson, Howard; Watson, Michael D.; Shaughnessy, Ray

    2012-01-01

    In support of future deep space manned missions, an autonomous/automated vehicle, providing crew autonomy and an autonomous response planning system, will be required due to the light time delays in communication. Vehicle capabilities as a whole must provide for tactical response to vehicle system failures and space environmental effects induced failures, for risk mitigation of permanent loss of communication with Earth, and for assured crew return capabilities. The complexity of human rated space systems and the limited crew sizes and crew skills mix drive the need for a robust autonomous capability on-board the vehicle. The HAL 9000 Space Operating System[2] designed for such missions and space craft includes the first distributed real-time planning / re-planning system. This paper will detail the software architecture of the multiple planning engine system, and the interface design for plan changes, approval and implementation that is performed autonomously. Operations scenarios will be defined for analysis of the planning engines operations and its requirements for nominal / off nominal activities. An assessment of the distributed realtime re-planning system, in the defined operations environment, will be provided as well as findings as it pertains to the vehicle, crew, and mission control requirements needed for implementation.

  7. Onboard Processing and Autonomous Operations on the IPEX Cubesat

    NASA Technical Reports Server (NTRS)

    Chien, Steve; Doubleday, Joshua; Ortega, Kevin; Flatley, Tom; Crum, Gary; Geist, Alessandro; Lin, Michael; Williams, Austin; Bellardo, John; Puig-Suari, Jordi; hide

    2012-01-01

    IPEX is a 1u Cubesat sponsored by NASA Earth Science Technology Office (ESTO), the goals or which are: (1) Flight validate high performance flight computing, (2) Flight validate onboard instrument data processing product generation software, (3) flight validate autonomous operations for instrument processing, (4) enhance NASA outreach and university ties.

  8. Mission Operations with an Autonomous Agent

    NASA Technical Reports Server (NTRS)

    Pell, Barney; Sawyer, Scott R.; Muscettola, Nicola; Smith, Benjamin; Bernard, Douglas E.

    1998-01-01

    The Remote Agent (RA) is an Artificial Intelligence (AI) system which automates some of the tasks normally reserved for human mission operators and performs these tasks autonomously on-board the spacecraft. These tasks include activity generation, sequencing, spacecraft analysis, and failure recovery. The RA will be demonstrated as a flight experiment on Deep Space One (DSI), the first deep space mission of the NASA's New Millennium Program (NMP). As we moved from prototyping into actual flight code development and teamed with ground operators, we made several major extensions to the RA architecture to address the broader operational context in which PA would be used. These extensions support ground operators and the RA sharing a long-range mission profile with facilities for asynchronous ground updates; support ground operators monitoring and commanding the spacecraft at multiple levels of detail simultaneously; and enable ground operators to provide additional knowledge to the RA, such as parameter updates, model updates, and diagnostic information, without interfering with the activities of the RA or leaving the system in an inconsistent state. The resulting architecture supports incremental autonomy, in which a basic agent can be delivered early and then used in an increasingly autonomous manner over the lifetime of the mission. It also supports variable autonomy, as it enables ground operators to benefit from autonomy when L'@ey want it, but does not inhibit them from obtaining a detailed understanding and exercising tighter control when necessary. These issues are critical to the successful development and operation of autonomous spacecraft.

  9. Formation Algorithms and Simulation Testbed

    NASA Technical Reports Server (NTRS)

    Wette, Matthew; Sohl, Garett; Scharf, Daniel; Benowitz, Edward

    2004-01-01

    Formation flying for spacecraft is a rapidly developing field that will enable a new era of space science. For one of its missions, the Terrestrial Planet Finder (TPF) project has selected a formation flying interferometer design to detect earth-like planets orbiting distant stars. In order to advance technology needed for the TPF formation flying interferometer, the TPF project has been developing a distributed real-time testbed to demonstrate end-to-end operation of formation flying with TPF-like functionality and precision. This is the Formation Algorithms and Simulation Testbed (FAST) . This FAST was conceived to bring out issues in timing, data fusion, inter-spacecraft communication, inter-spacecraft sensing and system-wide formation robustness. In this paper we describe the FAST and show results from a two-spacecraft formation scenario. The two-spacecraft simulation is the first time that precision end-to-end formation flying operation has been demonstrated in a distributed real-time simulation environment.

  10. Investigating the Use of Cloudbursts for High-Throughput Medical Image Registration

    PubMed Central

    Kim, Hyunjoo; Parashar, Manish; Foran, David J.; Yang, Lin

    2010-01-01

    This paper investigates the use of clouds and autonomic cloudbursting to support a medical image registration. The goal is to enable a virtual computational cloud that integrates local computational environments and public cloud services on-the-fly, and support image registration requests from different distributed researcher groups with varied computational requirements and QoS constraints. The virtual cloud essentially implements shared and coordinated task-spaces, which coordinates the scheduling of jobs submitted by a dynamic set of research groups to their local job queues. A policy-driven scheduling agent uses the QoS constraints along with performance history and the state of the resources to determine the appropriate size and mix of the public and private cloud resource that should be allocated to a specific request. The virtual computational cloud and the medical image registration service have been developed using the CometCloud engine and have been deployed on a combination of private clouds at Rutgers University and the Cancer Institute of New Jersey and Amazon EC2. An experimental evaluation is presented and demonstrates the effectiveness of autonomic cloudbursts and policy-based autonomic scheduling for this application. PMID:20640235

  11. Development of a standard operating procedure for analysis of ammonia concentrations in coal fly ash : [summary].

    DOT National Transportation Integrated Search

    2015-04-01

    Fly ash produced when pulverized coal is burned in electrical generators can be used as a : concrete additive with many benefits. However, fly ash can have a high ammonia content, : which is released when used in concrete, potentially exposing worker...

  12. Evaluation of ULV applications against Old World sand fly species in equatorial Kenya

    USDA-ARS?s Scientific Manuscript database

    Reducing populations of phlebotomine sand flies in areas prevalent for leishmaniases is of ongoing importance to U.S. military operations. Collateral reduction of sand flies or human cases of leishmaniases during pesticide campaigns against vectors of malaria indicate that residuals like DDT can be ...

  13. Evaluation of ULV applications against Old World sand fly (Diptera: Psychodidae) species in equatorial Kenya

    USDA-ARS?s Scientific Manuscript database

    Reducing populations of phlebotomine sand flies in areas prevalent for human leishmaniases is of ongoing importance to US military operations and civilian populations in endemic regions. Collateral reduction of sand flies or human cases of leishmaniases during pesticide campaigns against vectors of ...

  14. FlyAR: augmented reality supported micro aerial vehicle navigation.

    PubMed

    Zollmann, Stefanie; Hoppe, Christof; Langlotz, Tobias; Reitmayr, Gerhard

    2014-04-01

    Micro aerial vehicles equipped with high-resolution cameras can be used to create aerial reconstructions of an area of interest. In that context automatic flight path planning and autonomous flying is often applied but so far cannot fully replace the human in the loop, supervising the flight on-site to assure that there are no collisions with obstacles. Unfortunately, this workflow yields several issues, such as the need to mentally transfer the aerial vehicle’s position between 2D map positions and the physical environment, and the complicated depth perception of objects flying in the distance. Augmented Reality can address these issues by bringing the flight planning process on-site and visualizing the spatial relationship between the planned or current positions of the vehicle and the physical environment. In this paper, we present Augmented Reality supported navigation and flight planning of micro aerial vehicles by augmenting the user’s view with relevant information for flight planning and live feedback for flight supervision. Furthermore, we introduce additional depth hints supporting the user in understanding the spatial relationship of virtual waypoints in the physical world and investigate the effect of these visualization techniques on the spatial understanding.

  15. Theseus in Flight

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Theseus prototype research aircraft shows off its unique design as it flies low over Rogers Dry Lake during a 1996 test flight from NASA's Dryden Flight Research Center, Edwards, California. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able to validate satellite-based global environmental change measurements. Dryden's Project Manager was John Del Frate.

  16. 9 CFR 355.15 - Inedible material operating and storage rooms; outer premises, docks, driveways, etc.; fly...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...-breeding material; nuisances. All operating and storage rooms and departments of inspected plants used for... storage rooms; outer premises, docks, driveways, etc.; fly-breeding material; nuisances. 355.15 Section... premises of every inspected plant shall be kept in clean and orderly condition. All catchbasins on the...

  17. 9 CFR 355.15 - Inedible material operating and storage rooms; outer premises, docks, driveways, etc.; fly...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...-breeding material; nuisances. All operating and storage rooms and departments of inspected plants used for... storage rooms; outer premises, docks, driveways, etc.; fly-breeding material; nuisances. 355.15 Section... premises of every inspected plant shall be kept in clean and orderly condition. All catchbasins on the...

  18. Interfacing and Verifying ALHAT Safe Precision Landing Systems with the Morpheus Vehicle

    NASA Technical Reports Server (NTRS)

    Carson, John M., III; Hirsh, Robert L.; Roback, Vincent E.; Villalpando, Carlos; Busa, Joseph L.; Pierrottet, Diego F.; Trawny, Nikolas; Martin, Keith E.; Hines, Glenn D.

    2015-01-01

    The NASA Autonomous precision Landing and Hazard Avoidance Technology (ALHAT) project developed a suite of prototype sensors to enable autonomous and safe precision landing of robotic or crewed vehicles under any terrain lighting conditions. Development of the ALHAT sensor suite was a cross-NASA effort, culminating in integration and testing on-board a variety of terrestrial vehicles toward infusion into future spaceflight applications. Terrestrial tests were conducted on specialized test gantries, moving trucks, helicopter flights, and a flight test onboard the NASA Morpheus free-flying, rocket-propulsive flight-test vehicle. To accomplish these tests, a tedious integration process was developed and followed, which included both command and telemetry interfacing, as well as sensor alignment and calibration verification to ensure valid test data to analyze ALHAT and Guidance, Navigation and Control (GNC) performance. This was especially true for the flight test campaign of ALHAT onboard Morpheus. For interfacing of ALHAT sensors to the Morpheus flight system, an adaptable command and telemetry architecture was developed to allow for the evolution of per-sensor Interface Control Design/Documents (ICDs). Additionally, individual-sensor and on-vehicle verification testing was developed to ensure functional operation of the ALHAT sensors onboard the vehicle, as well as precision-measurement validity for each ALHAT sensor when integrated within the Morpheus GNC system. This paper provides some insight into the interface development and the integrated-systems verification that were a part of the build-up toward success of the ALHAT and Morpheus flight test campaigns in 2014. These campaigns provided valuable performance data that is refining the path toward spaceflight infusion of the ALHAT sensor suite.

  19. Autonomic Computing for Spacecraft Ground Systems

    NASA Technical Reports Server (NTRS)

    Li, Zhenping; Savkli, Cetin; Jones, Lori

    2007-01-01

    Autonomic computing for spacecraft ground systems increases the system reliability and reduces the cost of spacecraft operations and software maintenance. In this paper, we present an autonomic computing solution for spacecraft ground systems at NASA Goddard Space Flight Center (GSFC), which consists of an open standard for a message oriented architecture referred to as the GMSEC architecture (Goddard Mission Services Evolution Center), and an autonomic computing tool, the Criteria Action Table (CAT). This solution has been used in many upgraded ground systems for NASA 's missions, and provides a framework for developing solutions with higher autonomic maturity.

  20. Return glider radiosonde for in situ upper-air research measurements

    NASA Astrophysics Data System (ADS)

    Kräuchi, Andreas; Philipona, Rolf

    2016-06-01

    Upper-air balloon soundings for weather predictions have been made since the beginning of the 20th century. New radiosonde instruments for in situ humidity-, radiation- and gas-profile measurements in the troposphere and the lower stratosphere, were introduced in recent years for atmospheric research and climate monitoring, but such instruments are often expensive and it is desired they be reused on multiple flights. Recovering instruments that freely descend with parachutes is time consuming, sometimes difficult and even dangerous. Here, we introduce the return glider radiosonde (RGR), which enables flying and retrieving valuable in situ upper-air instruments. The RGR is lifted with weather balloons similar to traditional radiosondes to a preset altitude, at which time a release mechanism cuts the tether string, and a built-in autopilot flies the glider autonomously back to the launch site or a desired preprogrammed location. Once the RGR reaches the landing coordinates it circles down and releases a parachute 100 m above ground for landing. The motivation for this project was to measure radiation profiles throughout the atmosphere with the same instrument multiple times and with a rapid turn-around time. The paper describes technical aspects of the return glider radiosonde and the built-in radiation instruments and shows test flights up to 24 km altitude that are analyzed in terms of flight performance and maximal distances covered. Several successive flights measuring radiation profiles demonstrate the reliability and the operational readiness of the RGR, allowing new ways for atmospheric in situ research and monitoring with payloads up to several kg depending on the specific size of the glider.

  1. KSC-99pp1273

    NASA Image and Video Library

    1999-11-01

    KSC technician David Rowell works on the wing of the modified X-34, known as A-1A, at the Dryden Flight Research Center, Calif. Looking on are Art Cape, with Dryden, and Mike Brainard, with Orbital Sciences Corporation. Rowell is one of eight NASA engineering technicians from KSC's Engineering Prototype Lab who have assisted Orbital and Dryden in the complex process of converting the X-34 A-1 vehicle from captive carry status to unpowered flight status, the A-1A. The other KSC technicians are Kevin Boughner, Roger Cartier, Mike Dininny, Mike Lane, Jerry Moscoso, James Niehoff Jr. and Bryan Taylor. The X-34 is 58.3 feet long, 27.7 feet wide from wing tip to wing tip, and 11.5 feet tall from the bottom of the fuselage to the top of the tail. The autonomously operated technology demonstrator will be air-launched from an L-1011 airplane and should be capable of flying eight times the speed of sound, reaching an altitude of 250,000 feet. The X-34 Project is managed by NASA's Marshall Space Flight Center in Huntsville, Ala

  2. KSC-99pp1270

    NASA Image and Video Library

    1999-11-01

    Six of the KSC workers who supported recent X-34 modifications pose in front of the modified A-1A vehicle at Edwards Air Force Base, Calif. From left are Mike Lane, Roger Cartier, Dave Rowell, Mike Dininny, Bryan Taylor and James Niehoff Jr. Not shown are Kevin Boughner and Jerry Moscoso. Since September, the eight NASA engineering technicians from KSC's Engineering Prototype Lab have assisted Orbital Sciences Corporation and NASA's Dryden Flight Research Center in the complex process of converting the X-34 A-1 vehicle from captive carry status to unpowered flight status, known as A-1A. The X-34 is 58.3 feet long, 27.7 feet wide from wing tip to wing tip, and 11.5 feet tall from the bottom of the fuselage to the top of the tail. The autonomously operated technology demonstrator will be air-launched from an L-1011 airplane and should be capable of flying eight times the speed of sound, reaching an altitude of 250,000 feet. The X-34 Project is managed by NASA's Marshall Space Flight Center in Huntsville, Ala

  3. Optimal helicopter trajectory planning for terrain following flight

    NASA Technical Reports Server (NTRS)

    Menon, P. K. A.

    1990-01-01

    Helicopters operating in high threat areas have to fly close to the earth surface to minimize the risk of being detected by the adversaries. Techniques are presented for low altitude helicopter trajectory planning. These methods are based on optimal control theory and appear to be implementable onboard in realtime. Second order necessary conditions are obtained to provide a criterion for finding the optimal trajectory when more than one extremal passes through a given point. A second trajectory planning method incorporating a quadratic performance index is also discussed. Trajectory planning problem is formulated as a differential game. The objective is to synthesize optimal trajectories in the presence of an actively maneuvering adversary. Numerical methods for obtaining solutions to these problems are outlined. As an alternative to numerical method, feedback linearizing transformations are combined with the linear quadratic game results to synthesize explicit nonlinear feedback strategies for helicopter pursuit-evasion. Some of the trajectories generated from this research are evaluated on a six-degree-of-freedom helicopter simulation incorporating an advanced autopilot. The optimal trajectory planning methods presented are also useful for autonomous land vehicle guidance.

  4. KSC technicians on team to modify X-34

    NASA Technical Reports Server (NTRS)

    1999-01-01

    KSC technician David Rowell works on the wing of the modified X- 34, known as A-1A, at the Dryden Flight Research Center, Calif. Looking on are Art Cape, with Dryden, and Mike Brainard, with Orbital Sciences Corporation. Rowell is one of eight NASA engineering technicians from KSC's Engineering Prototype Lab who have assisted Orbital and Dryden in the complex process of converting the X-34 A-1 vehicle from captive carry status to unpowered flight status, the A-1A. The other KSC technicians are Kevin Boughner, Roger Cartier, Mike Dininny, Mike Lane, Jerry Moscoso, James Niehoff Jr. and Bryan Taylor. The X-34 is 58.3 feet long, 27.7 feet wide from wing tip to wing tip, and 11.5 feet tall from the bottom of the fuselage to the top of the tail. The autonomously operated technology demonstrator will be air- launched from an L-1011 airplane and should be capable of flying eight times the speed of sound, reaching an altitude of 250,000 feet. The X-34 Project is managed by NASA's Marshall Space Flight Center in Huntsville, Ala.

  5. KSC technicians on team to modify X-34

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Two of KSC's X-34 technicians (far right), David Rowell and Roger Cartier, look at work being done on the modified A-1A at Dryden Flight Research Center, Calif. Since September, eight NASA engineering technicians from KSC's Engineering Prototype Lab have assisted Orbital Sciences Corporation and NASA's Dryden Flight Research Center in the complex process of converting the X-34 A-1 vehicle from captive carry status to unpowered flight status, the A-1A. The other KSC technicians are Kevin Boughner, Mike Dininny, Mike Lane, Jerry Moscoso, James Niehoff Jr. and Bryan Taylor. The X-34 is 58.3 feet long, 27.7 feet wide from wing tip to wing tip, and 11.5 feet tall from the bottom of the fuselage to the top of the tail. The autonomously operated technology demonstrator will be air-launched from an L-1011 airplane and should be capable of flying eight times the speed of sound, reaching an altitude of 250,000 feet. The X-34 Project is managed by NASA's Marshall Space Flight Center in Huntsville, Ala.

  6. KSC technicians on team to modify X-34

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Six of the KSC workers who supported recent X-34 modifications pose in front of the modified A-1A vehicle at Edwards Air Force Base, Calif. From left are Mike Lane, Roger Cartier, Dave Rowell, Mike Dininny, Bryan Taylor and James Niehoff Jr. Not shown are Kevin Boughner and Jerry Moscoso. Since September, the eight NASA engineering technicians from KSC's Engineering Prototype Lab have assisted Orbital Sciences Corporation and NASA's Dryden Flight Research Center in the complex process of converting the X-34 A-1 vehicle from captive carry status to unpowered flight status, known as A-1A. The X-34 is 58.3 feet long, 27.7 feet wide from wing tip to wing tip, and 11.5 feet tall from the bottom of the fuselage to the top of the tail. The autonomously operated technology demonstrator will be air-launched from an L-1011 airplane and should be capable of flying eight times the speed of sound, reaching an altitude of 250,000 feet. The X-34 Project is managed by NASA's Marshall Space Flight Center in Huntsville, Ala.

  7. Autonomous Payload Operations Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Stetson, Howard K.; Deitsch, David K.; Cruzen, Craig A.; Haddock, Angie T.

    2007-01-01

    Operating the International Space Station (ISS) involves many complex crew tended, ground operated and combined systems. Over the life of the ISS program, it has become evident that by having automated and autonomous systems on board, more can be accomplished and at the same time reduce the workload of the crew and ground operators. Engineers at the National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center in Huntsville Alabama, working in collaboration with The Charles Stark Draper Laboratory have developed an autonomous software system that uses the Timeliner User Interface Language and expert logic to continuously monitor ISS payload systems, issue commands and signal ground operators as required. This paper describes the development history of the system, its concept of operation and components. The paper also discusses the testing process as well as the facilities used to develop the system. The paper concludes with a description of future enhancement plans for use on the ISS as well as potential applications to Lunar and Mars exploration systems.

  8. Autonomous Command Operation of the WIRE Spacecraft

    NASA Technical Reports Server (NTRS)

    Prior, Mike; Walyus, Keith; Saylor, Rick

    1999-01-01

    This paper presents the end-to-end design architecture for an autonomous commanding capability to be used on the Wide Field Infrared Explorer (WIRE) mission for the uplink of command loads during unattended station contacts. The WIRE mission is the fifth and final mission of NASA's Goddard Space Flight Center Small Explorer (SMEX) series to be launched in March of 1999. Its primary mission is the targeting of deep space fields using an ultra-cooled infrared telescope. Due to its mission design WIRE command loads are large (approximately 40 Kbytes per 24 hours) and must be performed daily. To reduce the cost of mission operations support that would be required in order to uplink command loads, the WIRE Flight Operations Team has implemented an autonomous command loading capability. This capability allows completely unattended operations over a typical two-day weekend period.

  9. Solving Autonomy Technology Gaps through Wireless Technology and Orion Avionics Architectural Principles

    NASA Astrophysics Data System (ADS)

    Black, Randy; Bai, Haowei; Michalicek, Andrew; Shelton, Blaine; Villela, Mark

    2008-01-01

    Currently, autonomy in space applications is limited by a variety of technology gaps. Innovative application of wireless technology and avionics architectural principles drawn from the Orion crew exploration vehicle provide solutions for several of these gaps. The Vision for Space Exploration envisions extensive use of autonomous systems. Economic realities preclude continuing the level of operator support currently required of autonomous systems in space. In order to decrease the number of operators, more autonomy must be afforded to automated systems. However, certification authorities have been notoriously reluctant to certify autonomous software in the presence of humans or when costly missions may be jeopardized. The Orion avionics architecture, drawn from advanced commercial aircraft avionics, is based upon several architectural principles including partitioning in software. Robust software partitioning provides "brick wall" separation between software applications executing on a single processor, along with controlled data movement between applications. Taking advantage of these attributes, non-deterministic applications can be placed in one partition and a "Safety" application created in a separate partition. This "Safety" partition can track the position of astronauts or critical equipment and prevent any unsafe command from executing. Only the Safety partition need be certified to a human rated level. As a proof-of-concept demonstration, Honeywell has teamed with the Ultra WideBand (UWB) Working Group at NASA Johnson Space Center to provide tracking of humans, autonomous systems, and critical equipment. Using UWB the NASA team can determine positioning to within less than one inch resolution, allowing a Safety partition to halt operation of autonomous systems in the event that an unplanned collision is imminent. Another challenge facing autonomous systems is the coordination of multiple autonomous agents. Current approaches address the issue as one of networking and coordination of multiple independent units, each with its own mission. As a proof-of-concept Honeywell is developing and testing various algorithms that lead to a deterministic, fault tolerant, reliable wireless backplane. Just as advanced avionics systems control several subsystems, actuators, sensors, displays, etc.; a single "master" autonomous agent (or base station computer) could control multiple autonomous systems. The problem is simplified to controlling a flexible body consisting of several sensors and actuators, rather than one of coordinating multiple independent units. By filling technology gaps associated with space based autonomous system, wireless technology and Orion architectural principles provide the means for decreasing operational costs and simplifying problems associated with collaboration of multiple autonomous systems.

  10. Real-Time Systems

    DTIC Science & Technology

    1992-02-01

    Postgraduate School Autonomous Under Vehicle (AUV) are then examined. Autonomous underwater vehicle (AUV), hard real-time system, real - time operating system , real-time programming language, real-time system, soft real-time system.

  11. Infrastructure-Based Sensors Augmenting Efficient Autonomous Vehicle Operations: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jun, Myungsoo; Markel, Anthony J

    Autonomous vehicle technology development relies on an on-board network of fused sensor inputs for safe and efficient operation. The fused sensors offer multiple perspectives of similar information aiding in system decision robustness. The high cost of full systems on individual vehicles is seen as a potential barrier to broad adoption and achieving system energy efficiency gains. Since traffic in autonomous vehicle technology development relies on an on-board network of fused sensor inputs for safe and efficient operation. The fused sensors offer multiple perspectives of similar information aiding in system decision robustness. The high cost of full systems on individual vehiclesmore » is seen as a potential barrier to broad adoption and achieving system energy efficiency gains.« less

  12. Autonomous Cryogenics Loading Operations Simulation Software: Knowledgebase Autonomous Test Engineer

    NASA Technical Reports Server (NTRS)

    Wehner, Walter S.

    2012-01-01

    The Simulation Software, KATE (Knowledgebase Autonomous Test Engineer), is used to demonstrate the automatic identification of faults in a system. The ACLO (Autonomous Cryogenics Loading Operation) project uses KATE to monitor and find faults in the loading of the cryogenics int o a vehicle fuel tank. The KATE software interfaces with the IHM (Integrated Health Management) systems bus to communicate with other systems that are part of ACLO. One system that KATE uses the IHM bus to communicate with is AIS (Advanced Inspection System). KATE will send messages to AIS when there is a detected anomaly. These messages include visual inspection of specific valves, pressure gauges and control messages to have AIS open or close manual valves. My goals include implementing the connection to the IHM bus within KATE and for the AIS project. I will also be working on implementing changes to KATE's Ul and implementing the physics objects in KATE that will model portions of the cryogenics loading operation.

  13. System and method of self-properties for an autonomous and automatic computer environment

    NASA Technical Reports Server (NTRS)

    Sterritt, Roy (Inventor); Hinchey, Michael G. (Inventor)

    2010-01-01

    Systems, methods and apparatus are provided through which in some embodiments self health/urgency data and environment health/urgency data may be transmitted externally from an autonomic element. Other embodiments may include transmitting the self health/urgency data and environment health/urgency data together on a regular basis similar to the lub-dub of a heartbeat. Yet other embodiments may include a method for managing a system based on the functioning state and operating status of the system, wherein the method may include processing received signals from the system indicative of the functioning state and the operating status to obtain an analysis of the condition of the system, generating one or more stay alive signals based on the functioning status and the operating state of the system, transmitting the stay-alive signal, transmitting self health/urgency data, and transmitting environment health/urgency data. Still other embodiments may include an autonomic element that includes a self monitor, a self adjuster, an environment monitor, and an autonomic manager.

  14. Recombinant acetylcholinesterase 1 of the sand fly Phlebotomus papatasi (Scopoli): expression, biochemical properties, and insensitivity to organophosphate inhibition

    USDA-ARS?s Scientific Manuscript database

    Phlebotomine sand flies are small hematophagous vectors of human and zoonotic leishmaniases present throughout tropical and subtropical areas of the world. These flies present serious problems for military operations and resident populations in the Middle East and other areas where they are endemic....

  15. Expression and Biochemical Properties of a Recombinant Acetylcholinesterase 1 of the Sand Fly, Phlebotomus papatasi (Scopoli) Insensitive to Organophosphate Inhibition

    USDA-ARS?s Scientific Manuscript database

    Phlebotomine sand flies are small hematophagous flies present throughout tropical and subtropical areas of the world and are vectors of human and zoonotic leishmaniases. Human cutaneous leishmaniasis is a debilitating disease presenting major problems for U.S. military operations in the Middle East,...

  16. Reducing Sand Fly Numbers in Leishmania Endemic Regions in Kenya with Insecticide Treated Camouflage Screening

    USDA-ARS?s Scientific Manuscript database

    Current US military operations in deserts face persistent threats from sand flies that transmit human Leishmania. Methods to reduce the risk of human infection from leishmaniasis by reducing the number of sand fly vectors were investigated in Kenya. Bifenthrin treated and un-treated camouflage netti...

  17. Mosquito and filth fly control in desert and temperate environments with a synergized pesticide mister and barrier treatment

    USDA-ARS?s Scientific Manuscript database

    U.S. military operations face significant negative impacts on mission readiness from disease-vector and nuisance filth flies, mosquitoes, and sand flies. Through the Deployed War Fighter Protection Program (DWFP) we previously developed small scale 9 ft by 3 ft pesticide-treated perimeters enhanced ...

  18. Assessment of flying-quality criteria for air-breathing aerospacecraft

    NASA Technical Reports Server (NTRS)

    Mcruer, Duane T.; Myers, Thomas T.; Hoh, Roger H.; Ashkenas, Irving L.; Johnston, Donald E.

    1992-01-01

    A study of flying quality requirements for air breathing aerospacecraft gives special emphasis to the unusual operational requirements and characteristics of these aircraft, including operation at hypersonic speed. The report considers distinguishing characteristics of these vehicles, including dynamic deficiencies and their implications for control. Particular emphasis is given to the interaction of the airframe and propulsion system, and the requirements for dynamic systems integration. Past operational missions are reviewed to define tasks and maneuvers to be considered for this class of aircraft. Areas of special concern with respect to vehicle dynamics and control are identified. Experience with the space shuttle orbiter is reviewed with respect to flight control system mechanization and flight experience in approach and landing flying qualities for the National Aerospace Plane (NASP).

  19. Orbital Express mission operations planning and resource management using ASPEN

    NASA Astrophysics Data System (ADS)

    Chouinard, Caroline; Knight, Russell; Jones, Grailing; Tran, Daniel

    2008-04-01

    As satellite equipment and mission operations become more costly, the drive to keep working equipment running with less labor-power rises. Demonstrating the feasibility of autonomous satellite servicing was the main goal behind the Orbital Express (OE) mission. Like a tow-truck delivering gas to a car on the road, the "servicing" satellite of OE had to find the "client" from several kilometers away, connect directly to the client, and transfer fluid (or a battery) autonomously, while on earth-orbit. The mission met 100% of its success criteria, and proved that autonomous satellite servicing is now a reality for space operations. Planning the satellite mission operations for OE required the ability to create a plan which could be executed autonomously over variable conditions. As the constraints for execution could change weekly, daily, and even hourly, the tools used create the mission execution plans needed to be flexible and adaptable to many different kinds of changes. At the same time, the hard constraints of the plans needed to be maintained and satisfied. The Automated Scheduling and Planning Environment (ASPEN) tool, developed at the Jet Propulsion Laboratory, was used to create the schedule of events in each daily plan for the two satellites of the OE mission. This paper presents an introduction to the ASPEN tool, an overview of the constraints of the OE domain, the variable conditions that were presented within the mission, and the solution to operations that ASPEN provided. ASPEN has been used in several other domains, including research rovers, Deep Space Network scheduling research, and in flight operations for the NASA's Earth Observing One mission's EO1 satellite. Related work is discussed, as are the future of ASPEN and the future of autonomous satellite servicing.

  20. A Simulation Study of a Speed Control System for Autonomous On-Road Operation of Automotive Vehicles.

    DTIC Science & Technology

    1987-06-01

    by block numoiber) The study of human driving of automotive vehicles is an important aid to the development of viable autonomous vehicle navigation...of human driving which could provide some different insights into possible approaches to autonomous vehicle control. At the start of this work, it was...advanced work in the behavioral aspects of human driving . Research of this nature can have a significant impact on the development of autonomous vehicles

  1. Autonomous vision-based navigation for proximity operations around binary asteroids

    NASA Astrophysics Data System (ADS)

    Gil-Fernandez, Jesus; Ortega-Hernando, Guillermo

    2018-02-01

    Future missions to small bodies demand higher level of autonomy in the Guidance, Navigation and Control system for higher scientific return and lower operational costs. Different navigation strategies have been assessed for ESA's asteroid impact mission (AIM). The main objective of AIM is the detailed characterization of binary asteroid Didymos. The trajectories for the proximity operations shall be intrinsically safe, i.e., no collision in presence of failures (e.g., spacecraft entering safe mode), perturbations (e.g., non-spherical gravity field), and errors (e.g., maneuver execution error). Hyperbolic arcs with sufficient hyperbolic excess velocity are designed to fulfil the safety, scientific, and operational requirements. The trajectory relative to the asteroid is determined using visual camera images. The ground-based trajectory prediction error at some points is comparable to the camera Field Of View (FOV). Therefore, some images do not contain the entire asteroid. Autonomous navigation can update the state of the spacecraft relative to the asteroid at higher frequency. The objective of the autonomous navigation is to improve the on-board knowledge compared to the ground prediction. The algorithms shall fit in off-the-shelf, space-qualified avionics. This note presents suitable image processing and relative-state filter algorithms for autonomous navigation in proximity operations around binary asteroids.

  2. Autonomous vision-based navigation for proximity operations around binary asteroids

    NASA Astrophysics Data System (ADS)

    Gil-Fernandez, Jesus; Ortega-Hernando, Guillermo

    2018-06-01

    Future missions to small bodies demand higher level of autonomy in the Guidance, Navigation and Control system for higher scientific return and lower operational costs. Different navigation strategies have been assessed for ESA's asteroid impact mission (AIM). The main objective of AIM is the detailed characterization of binary asteroid Didymos. The trajectories for the proximity operations shall be intrinsically safe, i.e., no collision in presence of failures (e.g., spacecraft entering safe mode), perturbations (e.g., non-spherical gravity field), and errors (e.g., maneuver execution error). Hyperbolic arcs with sufficient hyperbolic excess velocity are designed to fulfil the safety, scientific, and operational requirements. The trajectory relative to the asteroid is determined using visual camera images. The ground-based trajectory prediction error at some points is comparable to the camera Field Of View (FOV). Therefore, some images do not contain the entire asteroid. Autonomous navigation can update the state of the spacecraft relative to the asteroid at higher frequency. The objective of the autonomous navigation is to improve the on-board knowledge compared to the ground prediction. The algorithms shall fit in off-the-shelf, space-qualified avionics. This note presents suitable image processing and relative-state filter algorithms for autonomous navigation in proximity operations around binary asteroids.

  3. Collaborating with Autonomous Agents

    NASA Technical Reports Server (NTRS)

    Trujillo, Anna C.; Cross, Charles D.; Fan, Henry; Hempley, Lucas E.; Motter, Mark A.; Neilan, James H.; Qualls, Garry D.; Rothhaar, Paul M.; Tran, Loc D.; Allen, B. Danette

    2015-01-01

    With the anticipated increase of small unmanned aircraft systems (sUAS) entering into the National Airspace System, it is highly likely that vehicle operators will be teaming with fleets of small autonomous vehicles. The small vehicles may consist of sUAS, which are 55 pounds or less that typically will y at altitudes 400 feet and below, and small ground vehicles typically operating in buildings or defined small campuses. Typically, the vehicle operators are not concerned with manual control of the vehicle; instead they are concerned with the overall mission. In order for this vision of high-level mission operators working with fleets of vehicles to come to fruition, many human factors related challenges must be investigated and solved. First, the interface between the human operator and the autonomous agent must be at a level that the operator needs and the agents can understand. This paper details the natural language human factors e orts that NASA Langley's Autonomy Incubator is focusing on. In particular these e orts focus on allowing the operator to interact with the system using speech and gestures rather than a mouse and keyboard. With this ability of the system to understand both speech and gestures, operators not familiar with the vehicle dynamics will be able to easily plan, initiate, and change missions using a language familiar to them rather than having to learn and converse in the vehicle's language. This will foster better teaming between the operator and the autonomous agent which will help lower workload, increase situation awareness, and improve performance of the system as a whole.

  4. Secure, Autonomous, Intelligent Controller for Integrating Distributed Emergency Response Satellite Operations

    NASA Astrophysics Data System (ADS)

    Ivancic, W. D.; Paulsen, P. E.; Miller, E. M.; Sage, S. P.

    This report describes a Secure, Autonomous, and Intelligent Controller for Integrating Distributed Emergency Response Satellite Operations. It includes a description of current improvements to existing Virtual Mission Operations Center technology being used by US Department of Defense and originally developed under NASA funding. The report also highlights a technology demonstration performed in partnership with the United States Geological Service for Earth Resources Observation and Science using DigitalGlobe® satellites to obtain space-based sensor data.

  5. Autonomous Electrothermal Facility for Oil Recovery Intensification Fed by Wind Driven Power Unit

    NASA Astrophysics Data System (ADS)

    Belsky, Aleksey A.; Dobush, Vasiliy S.

    2017-10-01

    This paper describes the structure of autonomous facility fed by wind driven power unit for intensification of viscous and heavy crude oil recovery by means of heat impact on productive strata. Computer based service simulation of this facility was performed. Operational energy characteristics were obtained for various operational modes of facility. The optimal resistance of heating element of the downhole heater was determined for maximum operating efficiency of wind power unit.

  6. Airborne Management of Traffic Conflicts in Descent With Arrival Constraints

    NASA Technical Reports Server (NTRS)

    Doble, Nathan A.; Barhydt, Richard; Krishnamurthy, Karthik

    2005-01-01

    NASA is studying far-term air traffic management concepts that may increase operational efficiency through a redistribution of decisionmaking authority among airborne and ground-based elements of the air transportation system. One component of this research, En Route Free Maneuvering, allows trained pilots of equipped autonomous aircraft to assume responsibility for traffic separation. Ground-based air traffic controllers would continue to separate traffic unequipped for autonomous operations and would issue flow management constraints to all aircraft. To evaluate En Route Free Maneuvering operations, a human-in-the-loop experiment was jointly conducted by the NASA Ames and Langley Research Centers. In this experiment, test subject pilots used desktop flight simulators to resolve conflicts in cruise and descent, and to adhere to air traffic flow constraints issued by test subject controllers. Simulators at NASA Langley were equipped with a prototype Autonomous Operations Planner (AOP) flight deck toolset to assist pilots with conflict management and constraint compliance tasks. Results from the experiment are presented, focusing specifically on operations during the initial descent into the terminal area. Airborne conflict resolution performance in descent, conformance to traffic flow management constraints, and the effects of conflicting traffic on constraint conformance are all presented. Subjective data from subject pilots are also presented, showing perceived levels of workload, safety, and acceptability of autonomous arrival operations. Finally, potential AOP functionality enhancements are discussed along with suggestions to improve arrival procedures.

  7. Automated Operations Development for Advanced Exploration Systems

    NASA Technical Reports Server (NTRS)

    Haddock, Angie; Stetson, Howard K.

    2012-01-01

    Automated space operations command and control software development and its implementation must be an integral part of the vehicle design effort. The software design must encompass autonomous fault detection, isolation, recovery capabilities and also provide single button intelligent functions for the crew. Development, operations and safety approval experience with the Timeliner system on-board the International Space Station (ISS), which provided autonomous monitoring with response and single command functionality of payload systems, can be built upon for future automated operations as the ISS Payload effort was the first and only autonomous command and control system to be in continuous execution (6 years), 24 hours a day, 7 days a week within a crewed spacecraft environment. Utilizing proven capabilities from the ISS Higher Active Logic (HAL) System [1] , along with the execution component design from within the HAL 9000 Space Operating System [2] , this design paper will detail the initial HAL System software architecture and interfaces as applied to NASA s Habitat Demonstration Unit (HDU) in support of the Advanced Exploration Systems, Autonomous Mission Operations project. The development and implementation of integrated simulators within this development effort will also be detailed and is the first step in verifying the HAL 9000 Integrated Test-Bed Component [2] designs effectiveness. This design paper will conclude with a summary of the current development status and future development goals as it pertains to automated command and control for the HDU.

  8. Automated Operations Development for Advanced Exploration Systems

    NASA Technical Reports Server (NTRS)

    Haddock, Angie T.; Stetson, Howard

    2012-01-01

    Automated space operations command and control software development and its implementation must be an integral part of the vehicle design effort. The software design must encompass autonomous fault detection, isolation, recovery capabilities and also provide "single button" intelligent functions for the crew. Development, operations and safety approval experience with the Timeliner system onboard the International Space Station (ISS), which provided autonomous monitoring with response and single command functionality of payload systems, can be built upon for future automated operations as the ISS Payload effort was the first and only autonomous command and control system to be in continuous execution (6 years), 24 hours a day, 7 days a week within a crewed spacecraft environment. Utilizing proven capabilities from the ISS Higher Active Logic (HAL) System, along with the execution component design from within the HAL 9000 Space Operating System, this design paper will detail the initial HAL System software architecture and interfaces as applied to NASA's Habitat Demonstration Unit (HDU) in support of the Advanced Exploration Systems, Autonomous Mission Operations project. The development and implementation of integrated simulators within this development effort will also be detailed and is the first step in verifying the HAL 9000 Integrated Test-Bed Component [2] designs effectiveness. This design paper will conclude with a summary of the current development status and future development goals as it pertains to automated command and control for the HDU.

  9. The JPL roadmap for Deep Space navigation

    NASA Technical Reports Server (NTRS)

    Martin-Mur, Tomas J.; Abraham, Douglas S.; Berry, David; Bhaskaran, Shyam; Cesarone, Robert J.; Wood, Lincoln

    2006-01-01

    This paper reviews the tentative set of deep space missions that will be supported by NASA's Deep Space Mission System in the next twenty-five years, and extracts the driving set of navigation capabilities that these missions will require. There will be many challenges including the support of new mission navigation approaches such as formation flying and rendezvous in deep space, low-energy and low-thrust orbit transfers, precise landing and ascent vehicles, and autonomous navigation. Innovative strategies and approaches will be needed to develop and field advanced navigation capabilities.

  10. Contingency Software in Autonomous Systems: Technical Level Briefing

    NASA Technical Reports Server (NTRS)

    Lutz, Robyn R.; Patterson-Hines, Ann

    2006-01-01

    Contingency management is essential to the robust operation of complex systems such as spacecraft and Unpiloted Aerial Vehicles (UAVs). Automatic contingency handling allows a faster response to unsafe scenarios with reduced human intervention on low-cost and extended missions. Results, applied to the Autonomous Rotorcraft Project and Mars Science Lab, pave the way to more resilient autonomous systems.

  11. Autonomous Aircraft Operations using RTCA Guidelines for Airborne Conflict Management

    NASA Technical Reports Server (NTRS)

    Krishnamurthy, Karthik; Wing, David J.; Barmore, Bryan E.; Barhydt, Richard; Palmer, Michael T.; Johnson, Edward J.; Ballin, Mark G.; Eischeid, Todd M.

    2003-01-01

    A human-in-the-loop experiment was performed at the NASA Langley Research Center to study the feasibility of DAG-TM autonomous aircraft operations in highly constrained airspace. The airspace was constrained by a pair of special-use airspace (SUA) regions on either side of the pilot's planned route. Traffic flow management (TFM) constraints were imposed as a required time of arrival and crossing altitude at an en route fix. Key guidelines from the RTCA Airborne Conflict Management (ACM) concept were applied to autonomous aircraft operations for this experiment. These concepts included the RTCA ACM definitions of distinct conflict detection and collision avoidance zones, and the use of a graded system of conflict alerts for the flight crew. Three studies were conducted in the course of the experiment. The first study investigated the effect of hazard proximity upon pilot ability to meet constraints and solve conflict situations. The second study investigated pilot use of the airborne tools when faced with an unexpected loss of separation (LOS). The third study explored pilot interactions in an over-constrained conflict situation, with and without priority rules dictating who should move first. Detailed results from these studies were presented at the 5th USA/Europe Air Traffic Management R&D Seminar (ATM2003). This overview paper focuses on the integration of the RTCA ACM concept into autonomous aircraft operations in highly constrained situations, and provides an overview of the results presented at the ATM2003 seminar. These results, together with previously reported studies, continue to support the feasibility of autonomous aircraft operations.

  12. Autonomous System Technologies for Resilient Airspace Operations

    NASA Technical Reports Server (NTRS)

    Houston, Vincent E.; Le Vie, Lisa R.

    2017-01-01

    Increasing autonomous systems within the aircraft cockpit begins with an effort to understand what autonomy is and developing the technology that encompasses it. Autonomy allows an agent, human or machine, to act independently within a circumscribed set of goals; delegating responsibility to the agent(s) to achieve overall system objective(s). Increasingly Autonomous Systems (IAS) are the highly sophisticated progression of current automated systems toward full autonomy. Working in concert with humans, these types of technologies are expected to improve the safety, reliability, costs, and operational efficiency of aviation. IAS implementation is imminent, which makes the development and the proper performance of such technologies, with respect to cockpit operation efficiency, the management of air traffic and data communication information, vital. A prototype IAS agent that attempts to optimize the identification and distribution of "relevant" air traffic data to be utilized by human crews during complex airspace operations has been developed.

  13. Autonomous Integrated Receive System (AIRS) requirements definition. Volume 3: Performance and simulation

    NASA Technical Reports Server (NTRS)

    Chie, C. M.; Su, Y. T.; Lindsey, W. C.; Koukos, J.

    1984-01-01

    The autonomous and integrated aspects of the operation of the AIRS (Autonomous Integrated Receive System) are discussed from a system operation point of view. The advantages of AIRS compared to the existing SSA receive chain equipment are highlighted. The three modes of AIRS operation are addressed in detail. The configurations of the AIRS are defined as a function of the operating modes and the user signal characteristics. Each AIRS configuration selection is made up of three components: the hardware, the software algorithms and the parameters used by these algorithms. A comparison between AIRS and the wide dynamics demodulation (WDD) is provided. The organization of the AIRS analytical/simulation software is described. The modeling and analysis is for simulating the performance of the PN subsystem is documented. The frequence acquisition technique using a frequency-locked loop is also documented. Doppler compensation implementation is described. The technological aspects of employing CCD's for PN acquisition are addressed.

  14. Fuzzy logic in autonomous orbital operations

    NASA Technical Reports Server (NTRS)

    Lea, Robert N.; Jani, Yashvant

    1991-01-01

    Fuzzy logic can be used advantageously in autonomous orbital operations that require the capability of handling imprecise measurements from sensors. Several applications are underway to investigate fuzzy logic approaches and develop guidance and control algorithms for autonomous orbital operations. Translational as well as rotational control of a spacecraft have been demonstrated using space shuttle simulations. An approach to a camera tracking system has been developed to support proximity operations and traffic management around the Space Station Freedom. Pattern recognition and object identification algorithms currently under development will become part of this camera system at an appropriate level in the future. A concept to control environment and life support systems for large Lunar based crew quarters is also under development. Investigations in the area of reinforcement learning, utilizing neural networks, combined with a fuzzy logic controller, are planned as a joint project with the Ames Research Center.

  15. Laser Range and Bearing Finder for Autonomous Missions

    NASA Technical Reports Server (NTRS)

    Granade, Stephen R.

    2004-01-01

    NASA has recently re-confirmed their interest in autonomous systems as an enabling technology for future missions. In order for autonomous missions to be possible, highly-capable relative sensor systems are needed to determine an object's distance, direction, and orientation. This is true whether the mission is autonomous in-space assembly, rendezvous and docking, or rover surface navigation. Advanced Optical Systems, Inc. has developed a wide-angle laser range and bearing finder (RBF) for autonomous space missions. The laser RBF has a number of features that make it well-suited for autonomous missions. It has an operating range of 10 m to 5 km, with a 5 deg field of view. Its wide field of view removes the need for scanning systems such as gimbals, eliminating moving parts and making the sensor simpler and space qualification easier. Its range accuracy is 1% or better. It is designed to operate either as a stand-alone sensor or in tandem with a sensor that returns range, bearing, and orientation at close ranges, such as NASA's Advanced Video Guidance Sensor. We have assembled the initial prototype and are currently testing it. We will discuss the laser RBF's design and specifications. Keywords: laser range and bearing finder, autonomous rendezvous and docking, space sensors, on-orbit sensors, advanced video guidance sensor

  16. Challenges in verification and validation of autonomous systems for space exploration

    NASA Technical Reports Server (NTRS)

    Brat, Guillaume; Jonsson, Ari

    2005-01-01

    Space exploration applications offer a unique opportunity for the development and deployment of autonomous systems, due to limited communications, large distances, and great expense of direct operation. At the same time, the risk and cost of space missions leads to reluctance to taking on new, complex and difficult-to-understand technology. A key issue in addressing these concerns is the validation of autonomous systems. In recent years, higher-level autonomous systems have been applied in space applications. In this presentation, we will highlight those autonomous systems, and discuss issues in validating these systems. We will then look to future demands on validating autonomous systems for space, identify promising technologies and open issues.

  17. Orbital Express Mission Operations Planning and Resource Management using ASPEN

    NASA Technical Reports Server (NTRS)

    Chouinard, Caroline; Knight, Russell; Jones, Grailing; Tran, Daniel

    2008-01-01

    As satellite equipment and mission operations become more costly, the drive to keep working equipment running with less man-power rises.Demonstrating the feasibility of autonomous satellite servicing was the main goal behind the Orbital Express (OE) mission. Planning the satellite mission operations for OE required the ability to create a plan which could be executed autonomously over variable conditions. The Automated-Scheduling and Planning Environment (ASPEN)tool, developed at the Jet Propulsion Laboratory, was used to create the schedule of events in each daily plan for the two satellites of the OE mission. This paper presents an introduction to the ASPEN tool, the constraints of the OE domain, the variable conditions that were presented within the mission, and the solution to operations that ASPEN provided. ASPEN has been used in several other domains, including research rovers, Deep Space Network scheduling research, and in flight operations for the ASE project's EO1 satellite. Related work is discussed, as are the future of ASPEN and the future of autonomous satellite servicing.

  18. Distributed autonomous systems: resource management, planning, and control algorithms

    NASA Astrophysics Data System (ADS)

    Smith, James F., III; Nguyen, ThanhVu H.

    2005-05-01

    Distributed autonomous systems, i.e., systems that have separated distributed components, each of which, exhibit some degree of autonomy are increasingly providing solutions to naval and other DoD problems. Recently developed control, planning and resource allocation algorithms for two types of distributed autonomous systems will be discussed. The first distributed autonomous system (DAS) to be discussed consists of a collection of unmanned aerial vehicles (UAVs) that are under fuzzy logic control. The UAVs fly and conduct meteorological sampling in a coordinated fashion determined by their fuzzy logic controllers to determine the atmospheric index of refraction. Once in flight no human intervention is required. A fuzzy planning algorithm determines the optimal trajectory, sampling rate and pattern for the UAVs and an interferometer platform while taking into account risk, reliability, priority for sampling in certain regions, fuel limitations, mission cost, and related uncertainties. The real-time fuzzy control algorithm running on each UAV will give the UAV limited autonomy allowing it to change course immediately without consulting with any commander, request other UAVs to help it, alter its sampling pattern and rate when observing interesting phenomena, or to terminate the mission and return to base. The algorithms developed will be compared to a resource manager (RM) developed for another DAS problem related to electronic attack (EA). This RM is based on fuzzy logic and optimized by evolutionary algorithms. It allows a group of dissimilar platforms to use EA resources distributed throughout the group. For both DAS types significant theoretical and simulation results will be presented.

  19. Verification of a Remaining Flying Time Prediction System for Small Electric Aircraft

    NASA Technical Reports Server (NTRS)

    Hogge, Edward F.; Bole, Brian M.; Vazquez, Sixto L.; Celaya, Jose R.; Strom, Thomas H.; Hill, Boyd L.; Smalling, Kyle M.; Quach, Cuong C.

    2015-01-01

    This paper addresses the problem of building trust in online predictions of a battery powered aircraft's remaining available flying time. A set of ground tests is described that make use of a small unmanned aerial vehicle to verify the performance of remaining flying time predictions. The algorithm verification procedure described here uses a fully functional vehicle that is restrained to a platform for repeated run-to-functional-failure experiments. The vehicle under test is commanded to follow a predefined propeller RPM profile in order to create battery demand profiles similar to those expected in flight. The fully integrated aircraft is repeatedly operated until the charge stored in powertrain batteries falls below a specified lower-limit. The time at which the lower-limit on battery charge is crossed is then used to measure the accuracy of remaining flying time predictions. Accuracy requirements are considered in this paper for an alarm that warns operators when remaining flying time is estimated to fall below a specified threshold.

  20. Development and Execution of Autonomous Procedures Onboard the International Space Station to Support the Next Phase of Human Space Exploration

    NASA Technical Reports Server (NTRS)

    Beisert, Susan; Rodriggs, Michael; Moreno, Francisco; Korth, David; Gibson, Stephen; Lee, Young H.; Eagles, Donald E.

    2013-01-01

    Now that major assembly of the International Space Station (ISS) is complete, NASA's focus has turned to using this high fidelity in-space research testbed to not only advance fundamental science research, but also demonstrate and mature technologies and develop operational concepts that will enable future human exploration missions beyond low Earth orbit. The ISS as a Testbed for Analog Research (ISTAR) project was established to reduce risks for manned missions to exploration destinations by utilizing ISS as a high fidelity micro-g laboratory to demonstrate technologies, operations concepts, and techniques associated with crew autonomous operations. One of these focus areas is the development and execution of ISS Testbed for Analog Research (ISTAR) autonomous flight crew procedures intended to increase crew autonomy that will be required for long duration human exploration missions. Due to increasing communications delays and reduced logistics resupply, autonomous procedures are expected to help reduce crew reliance on the ground flight control team, increase crew performance, and enable the crew to become more subject-matter experts on both the exploration space vehicle systems and the scientific investigation operations that will be conducted on a long duration human space exploration mission. These tests make use of previous or ongoing projects tested in ground analogs such as Research and Technology Studies (RATS) and NASA Extreme Environment Mission Operations (NEEMO). Since the latter half of 2012, selected non-critical ISS systems crew procedures have been used to develop techniques for building ISTAR autonomous procedures, and ISS flight crews have successfully executed them without flight controller involvement. Although the main focus has been preparing for exploration, the ISS has been a beneficiary of this synergistic effort and is considering modifying additional standard ISS procedures that may increase crew efficiency, reduce operational costs, and raise the amount of crew time available for scientific research. The next phase of autonomous procedure development is expected to include payload science and human research investigations. Additionally, ISS International Partners have expressed interest in participating in this effort. The recently approved one-year crew expedition starting in 2015, consisting of one Russian and one U.S. Operating Segment (USOS) crewmember, will be used not only for long duration human research investigations but also for the testing of exploration operations concepts, including crew autonomy.

  1. Autonomous Aerobraking: A Design, Development, and Feasibility Study

    NASA Technical Reports Server (NTRS)

    Prince, Jill L. H.; Powell, Richard W.; Murri, Dan

    2011-01-01

    Aerobraking has been used four times to decrease the apoapsis of a spacecraft in a captured orbit around a planetary body with a significant atmosphere utilizing atmospheric drag to decelerate the spacecraft. While aerobraking requires minimum fuel, the long time required for aerobraking requires both a large operations staff, and large Deep Space Network resources. A study to automate aerobraking has been sponsored by the NASA Engineering and Safety Center to determine initial feasibility of equipping a spacecraft with the onboard capability for autonomous aerobraking, thus saving millions of dollars incurred by a large aerobraking operations workforce and continuous DSN coverage. This paper describes the need for autonomous aerobraking, the development of the Autonomous Aerobraking Development Software that includes an ephemeris estimator, an atmospheric density estimator, and maneuver calculation, and the plan forward for continuation of this study.

  2. Autonomous Cryogenics Loading Operations Simulation Software: Knowledgebase Autonomous Test Engineer

    NASA Technical Reports Server (NTRS)

    Wehner, Walter S., Jr.

    2013-01-01

    Working on the ACLO (Autonomous Cryogenics Loading Operations) project I have had the opportunity to add functionality to the physics simulation software known as KATE (Knowledgebase Autonomous Test Engineer), create a new application allowing WYSIWYG (what-you-see-is-what-you-get) creation of KATE schematic files and begin a preliminary design and implementation of a new subsystem that will provide vision services on the IHM (Integrated Health Management) bus. The functionality I added to KATE over the past few months includes a dynamic visual representation of the fluid height in a pipe based on number of gallons of fluid in the pipe and implementing the IHM bus connection within KATE. I also fixed a broken feature in the system called the Browser Display, implemented many bug fixes and made changes to the GUI (Graphical User Interface).

  3. Autonomous Flight Rules Concept: User Implementation Costs and Strategies

    NASA Technical Reports Server (NTRS)

    Cotton, William B.; Hilb, Robert

    2014-01-01

    The costs to implement Autonomous Flight Rules (AFR) were examined for estimates in acquisition, installation, training and operations. The user categories were airlines, fractional operators, general aviation and unmanned aircraft systems. Transition strategies to minimize costs while maximizing operational benefits were also analyzed. The primary cost category was found to be the avionics acquisition. Cost ranges for AFR equipment were given to reflect the uncertainty of the certification level for the equipment and the extent of existing compatible avionics in the aircraft to be modified.

  4. Secure, Autonomous, Intelligent Controller for Integrating Distributed Emergency Response Satellite Operations

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Paulsen, Phillip E.; Miller, Eric M.; Sage, Steen P.

    2013-01-01

    This report describes a Secure, Autonomous, and Intelligent Controller for Integrating Distributed Emergency Response Satellite Operations. It includes a description of current improvements to existing Virtual Mission Operations Center technology being used by US Department of Defense and originally developed under NASA funding. The report also highlights a technology demonstration performed in partnership with the United States Geological Service for Earth Resources Observation and Science using DigitalGlobe(Registered TradeMark) satellites to obtain space-based sensor data.

  5. Tele-autonomous systems: New methods for projecting and coordinating intelligent action at a distance

    NASA Technical Reports Server (NTRS)

    Conway, Lynn; Volz, Richard; Walker, Michael W.

    1989-01-01

    There is a growing need for humans to perform complex remote operations and to extend the intelligence and experience of experts to distant applications. It is asserted that a blending of human intelligence, modern information technology, remote control, and intelligent autonomous systems is required, and have coined the term tele-autonomous technology, or tele-automation, for methods producing intelligent action at a distance. Tele-automation goes beyond autonomous control by blending in human intelligence. It goes beyond tele-operation by incorporating as much autonomy as possible and/or reasonable. A new approach is discussed for solving one of the fundamental problems facing tele-autonomous systems: The need to overcome time delays due to telemetry and signal propagation. New concepts are introduced called time and position clutches, that allow the time and position frames between the local user control and the remote device being controlled, to be desynchronized respectively. The design and implementation of these mechanisms are described in detail. It is demonstrated that these mechanisms lead to substantial telemanipulation performance improvements, including the result of improvements even in the absence of time delays. The new controls also yield a simple protocol for control handoffs of manipulation tasks between local operators and remote systems.

  6. Economical and Environmentally Benign Extraction of Rare Earth Elements (REES) from Coal & Coal Byproducts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, Gary

    This final report provides a complete summary of the activities, results, analytical discussion, and overall evaluation of the project titled “Economical and Environmentally Benign Extraction of Rare Earth Elements (REES) from Coal & Coal Byproducts” under DOE Award Number DE-FE-0027155 that started in March 2016 and ended December 2017. Fly ash was selected as the coal-byproduct source material due to fact that it is readily available with no need for extensive methods to obtain the material, it is produced in large quantities (>50 million tons per year) and had REE concentrations similar to other coal-byproducts. The selected fly ash usedmore » throughout this project was from the Mill Creek power generating facility operated by Louisville Gas and Electric located in Louisville, KY and was subjected to a variety of physical and chemical characterization tests. Results from fusion extractions showed that the selected fly-ash had a TREE+Y concentration of 480 ppm with critical REEs concentration of 200 ppm. The fly ash had an outlook ratio of 1.25 and an estimated value of $16-$18 worth of salable REEs per 1-tonne of fly ash. Additional characterizations by optical evaluation, QEMSCAN, XRD, size fractionation, and SEM analysis showed the fly ash consisted of small glassy spherules with a size range between 1 to 110 µm (ave. diam. of 13 um), was heterogeneous in chemical composition (main crystalline phases: aluminum oxides and iron oxides) and was primarily an amorphous material (75 to 80%). A simple stepped approach was completed to estimate the total REE resource quantity. The approach included REE characterization of the representative samples, evaluation of fly-ash availability, and final determination estimated resource availability with regards to REE grade on a regional and national scale. This data represents the best available information and is based upon the assumptions that the power generating facility where the fly-ash was obtained will use the same coal sources (actual mines were identified), the coal materials will have relatively consistent REE concentrations, and the REE extraction process developed during this project can achieve 42% REE recovery (validated and confirmed). Calculations indicated that the estimated REE resource is approximately 175,000 tonnes with a current estimated value of $3,330MM. The proposed REE extraction and production process developed during this project used four fundamental steps; 1) fly-ash pretreatment to enhance REE extraction, 2) REE extraction by acid digestion, 3) REE separation/concentration by carbon adsorption and column chromatography, and 4) REE oxide production. Secondary processing steps to manage process residuals and additional processing techniques to produce value-added products were incorporated into the process during the project. These secondary steps were not only necessary to manage residuals, but also provided additional revenue streams that offset operational and capital expenditures. The process produces one value product stream (production of zeolite Na-P1), a solids waste stream, and one liquid stream that met RCRA discharge requirements. Based upon final design criteria and operational parameters, the proposed system could produce approximately 200 grams of REOs from 1-tonne of fly-ash, thereby representing a TREE+Y recovery of 42% (project target of > 25%). A detailed economic model was developed to evaluate both CAPEX and OPEX estimates for systems with varying capacities between 100 kg to 200 tonnes of fly ash processed per day. Using a standard system capacity of 10 tonne/day system, capital costs were estimated at $88/kg fly ash while operating costs were estimated at approximately $450/kg fly ash. This operating cost estimate includes a revenue of $495/tonne of fly ash processed from the value-added product produced from the system (zeolite Na-P1). Although operating cost savings due to zeolite production were significant, the capital + operating cost for a 10 tonne system was more expensive than the total dollar value of REEs present in the fly ash material. Specifically, the estimated cost per 1-tonne of fly ash treated is approximately $540 while the estimated value of REEs in the fly ash is $18-$20/tonne. This is an excessive difference showing that the proposed process is not economically feasible strictly on the basis of REE revenue compared to extraction costs. Although the current proposed system does not produce sufficient quantities of REEs or additional revenue sources to offset operational and capital costs, supplementary factors including US strategic concerns, commercial demands, and defense department requirements must be factored. At this time, the process developed during this project provides foundational information for future development of simple processes that require low capital investment and one that will extract a valuable quality and quantity of REE oxides from industrial waste.« less

  7. The MAP Autonomous Mission Control System

    NASA Technical Reports Server (NTRS)

    Breed, Juile; Coyle, Steven; Blahut, Kevin; Dent, Carolyn; Shendock, Robert; Rowe, Roger

    2000-01-01

    The Microwave Anisotropy Probe (MAP) mission is the second mission in NASA's Office of Space Science low-cost, Medium-class Explorers (MIDEX) program. The Explorers Program is designed to accomplish frequent, low cost, high quality space science investigations utilizing innovative, streamlined, efficient management, design and operations approaches. The MAP spacecraft will produce an accurate full-sky map of the cosmic microwave background temperature fluctuations with high sensitivity and angular resolution. The MAP spacecraft is planned for launch in early 2001, and will be staffed by only single-shift operations. During the rest of the time the spacecraft must be operated autonomously, with personnel available only on an on-call basis. Four (4) innovations will work cooperatively to enable a significant reduction in operations costs for the MAP spacecraft. First, the use of a common ground system for Spacecraft Integration and Test (I&T) as well as Operations. Second, the use of Finite State Modeling for intelligent autonomy. Third, the integration of a graphical planning engine to drive the autonomous systems without an intermediate manual step. And fourth, the ability for distributed operations via Web and pager access.

  8. Crew/Robot Coordinated Planetary EVA Operations at a Lunar Base Analog Site

    NASA Technical Reports Server (NTRS)

    Diftler, M. A.; Ambrose, R. O.; Bluethmann, W. J.; Delgado, F. J.; Herrera, E.; Kosmo, J. J.; Janoiko, B. A.; Wilcox, B. H.; Townsend, J. A.; Matthews, J. B.; hide

    2007-01-01

    Under the direction of NASA's Exploration Technology Development Program, robots and space suited subjects from several NASA centers recently completed a very successful demonstration of coordinated activities indicative of base camp operations on the lunar surface. For these activities, NASA chose a site near Meteor Crater, Arizona close to where Apollo Astronauts previously trained. The main scenario demonstrated crew returning from a planetary EVA (extra-vehicular activity) to a temporary base camp and entering a pressurized rover compartment while robots performed tasks in preparation for the next EVA. Scenario tasks included: rover operations under direct human control and autonomous modes, crew ingress and egress activities, autonomous robotic payload removal and stowage operations under both local control and remote control from Houston, and autonomous robotic navigation and inspection. In addition to the main scenario, participants had an opportunity to explore additional robotic operations: hill climbing, maneuvering heaving loads, gathering geo-logical samples, drilling, and tether operations. In this analog environment, the suited subjects and robots experienced high levels of dust, rough terrain, and harsh lighting.

  9. The Spacecraft Emergency Response System (SERS) for Autonomous Mission Operations

    NASA Technical Reports Server (NTRS)

    Breed, Julia; Chu, Kai-Dee; Baker, Paul; Starr, Cynthia; Fox, Jeffrey; Baitinger, Mick

    1998-01-01

    Today, most mission operations are geared toward lowering cost through unmanned operations. 7-day/24-hour operations are reduced to either 5-day/8-hour operations or become totally autonomous, especially for deep-space missions. Proper and effective notification during a spacecraft emergency could mean success or failure for an entire mission. The Spacecraft Emergency Response System (SERS) is a tool designed for autonomous mission operations. The SERS automatically contacts on-call personnel as needed when crises occur, either on-board the spacecraft or within the automated ground systems. Plus, the SERS provides a group-ware solution to facilitate the work of the person(s) contacted. The SERS is independent of the spacecraft's automated ground system. It receives and catalogues reports for various ground system components in near real-time. Then, based on easily configurable parameters, the SERS determines whom, if anyone, should be alerted. Alerts may be issued via Sky-Tel 2-way pager, Telehony, or e-mail. The alerted personnel can then review and respond to the spacecraft anomalies through the Netscape Internet Web Browser, or directly review and respond from the Sky-Tel 2-way pager.

  10. Autonomous Mission Operations for Sensor Webs

    NASA Astrophysics Data System (ADS)

    Underbrink, A.; Witt, K.; Stanley, J.; Mandl, D.

    2008-12-01

    We present interim results of a 2005 ROSES AIST project entitled, "Using Intelligent Agents to Form a Sensor Web for Autonomous Mission Operations", or SWAMO. The goal of the SWAMO project is to shift the control of spacecraft missions from a ground-based, centrally controlled architecture to a collaborative, distributed set of intelligent agents. The network of intelligent agents intends to reduce management requirements by utilizing model-based system prediction and autonomic model/agent collaboration. SWAMO agents are distributed throughout the Sensor Web environment, which may include multiple spacecraft, aircraft, ground systems, and ocean systems, as well as manned operations centers. The agents monitor and manage sensor platforms, Earth sensing systems, and Earth sensing models and processes. The SWAMO agents form a Sensor Web of agents via peer-to-peer coordination. Some of the intelligent agents are mobile and able to traverse between on-orbit and ground-based systems. Other agents in the network are responsible for encapsulating system models to perform prediction of future behavior of the modeled subsystems and components to which they are assigned. The software agents use semantic web technologies to enable improved information sharing among the operational entities of the Sensor Web. The semantics include ontological conceptualizations of the Sensor Web environment, plus conceptualizations of the SWAMO agents themselves. By conceptualizations of the agents, we mean knowledge of their state, operational capabilities, current operational capacities, Web Service search and discovery results, agent collaboration rules, etc. The need for ontological conceptualizations over the agents is to enable autonomous and autonomic operations of the Sensor Web. The SWAMO ontology enables automated decision making and responses to the dynamic Sensor Web environment and to end user science requests. The current ontology is compatible with Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) Sensor Model Language (SensorML) concepts and structures. The agents are currently deployed on the U.S. Naval Academy MidSTAR-1 satellite and are actively managing the power subsystem on-orbit without the need for human intervention.

  11. On-board emergent scheduling of autonomous spacecraft payload operations

    NASA Technical Reports Server (NTRS)

    Lindley, Craig A.

    1994-01-01

    This paper describes a behavioral competency level concerned with emergent scheduling of spacecraft payload operations. The level is part of a multi-level subsumption architecture model for autonomous spacecraft, and it functions as an action selection system for processing a spacecraft commands that can be considered as 'plans-as-communication'. Several versions of the selection mechanism are described, and their robustness is qualitatively compared.

  12. Automated Detection and Classification in High-Resolution Sonar Imagery for Autonomous Underwater Vehicle Operations

    DTIC Science & Technology

    2008-12-01

    n. , ’>, ,. Australian Government Department of Defence Defence Science and Technology Organisation Automated Detection and Classification in... Organisation DSTO-GD-0537 ABSTRACT Autonomous Underwater Vehicles (AUVs) are increasingly being used by military forces to acquire high-resolution sonar...release Published by Maritime Operations Division DsTO Defrnce sdence and Technology Organisation PO Box 1500 Edinburgh South Australia 5111 Australia

  13. Active Control of NITINOL-Reinforced Structural Composites

    DTIC Science & Technology

    1992-10-12

    useful in many critical structures that are intended to operate autonomously for long durations in isolated environments such as defense vehicles , space...durations in isolated environment such as defense vehicles , space structures and satellites. ACKNOWLEDGEMENTS This work is funded by a grant from the US Army...are intended to operate autonomously for long durations in isolated environment such as defense vehicles , space structures and satellites. REFERENCES

  14. System for autonomous monitoring of bioagents

    DOEpatents

    Langlois, Richard G.; Milanovich, Fred P.; Colston, Jr, Billy W.; Brown, Steve B.; Masquelier, Don A.; Mariella, Jr., Raymond P.; Venkateswaran, Kodomudi

    2015-06-09

    An autonomous monitoring system for monitoring for bioagents. A collector gathers the air, water, soil, or substance being monitored. A sample preparation means for preparing a sample is operatively connected to the collector. A detector for detecting the bioagents in the sample is operatively connected to the sample preparation means. One embodiment of the present invention includes confirmation means for confirming the bioagents in the sample.

  15. Explanation Capabilities for Behavior-Based Robot Control

    NASA Technical Reports Server (NTRS)

    Huntsberger, Terrance L.

    2012-01-01

    A recent study that evaluated issues associated with remote interaction with an autonomous vehicle within the framework of grounding found that missing contextual information led to uncertainty in the interpretation of collected data, and so introduced errors into the command logic of the vehicle. As the vehicles became more autonomous through the activation of additional capabilities, more errors were made. This is an inefficient use of the platform, since the behavior of remotely located autonomous vehicles didn't coincide with the "mental models" of human operators. One of the conclusions of the study was that there should be a way for the autonomous vehicles to describe what action they choose and why. Robotic agents with enough self-awareness to dynamically adjust the information conveyed back to the Operations Center based on a detail level component analysis of requests could provide this description capability. One way to accomplish this is to map the behavior base of the robot into a formal mathematical framework called a cost-calculus. A cost-calculus uses composition operators to build up sequences of behaviors that can then be compared to what is observed using well-known inference mechanisms.

  16. Autonomous Soaring for Improved Endurance of a Small Uninhabited Air Vehicle

    NASA Technical Reports Server (NTRS)

    Allen, Michael J.

    2005-01-01

    A relatively unexplored method to improve the endurance of an autonomous aircraft is to use buoyant plumes of air found in the lower atmosphere called thermals or updrafts. Glider pilots and birds commonly use updrafts to improve range, endurance, or cross-country speed. This report presents a quantitative analysis of a small electric-powered uninhabited air vehicle using updrafts to extend its endurance over a target location. A three-degree-of-freedom simulation of the uninhabited air vehicle was used to determine the yearly effect of updrafts on performance. Surface radiation and rawinsonde balloon measurements taken at Desert Rock, Nevada, were used to determine updraft size, strength, spacing, shape, and maximum height for the simulation. A fixed-width spiral path was used to search for updrafts at the same time as maintaining line-of-sight to the surface target position. Power was used only when the aircraft was flying at the lower-altitude limit in search of updrafts. Results show that an uninhabited air vehicle with a nominal endurance of 2 hours can fly a maximum of 14 hours using updrafts during the summer and a maximum of 8 hours during the winter. The performance benefit and the chance of finding updrafts both depend on what time of day the uninhabited air vehicle is launched. Good endurance and probability of finding updrafts during the year was obtained when the uninhabited air vehicle was launched 30 percent into the daylight hours after sunrise each day. Yearly average endurance was found to be 8.6 hours with these launch times.

  17. Concept of Operations for RCO SPO

    NASA Technical Reports Server (NTRS)

    Matessa, Michael; Strybel, Thomas; Vu, Kim; Battiste, Vernol; Schnell, Thomas

    2017-01-01

    Reduced crew operations (RCO) refers to the reduction of crew members flying long-haul or military operations with more than one pilot onboard. Single pilot operations (SPO) refers to flying a commercial transport aircraft with only one pilot on board the aircraft, assisted by advanced onboard automation andor ground operators providing piloting support services. Properly implemented, RCO/SPO could provide operating cost savings while maintaining a level of safety no less than conventional two-pilot commercial operations. A concept of operations (ConOps) for any paradigm describes the characteristics of its various components and their integration in a multi-dimensional design space. This paper presents key options for humanautomation function allocation being considered by NASA in its ongoing development of RCO/SPO ConOps.

  18. Comparison of three control methods for an autonomous vehicle

    NASA Astrophysics Data System (ADS)

    Deshpande, Anup; Mathur, Kovid; Hall, Ernest

    2010-01-01

    The desirability and challenge of developing a completely autonomous vehicle and the rising need for more efficient use of energy by automobiles motivate this research- a study for an optimum solution to computer control of energy efficient vehicles. The purpose of this paper is to compare three control methods - mechanical, hydraulic and electric that have been used to convert an experimental all terrain vehicle to drive by wire which would eventually act as a test bed for conducting research on various technologies for autonomous operation. Computer control of basic operations in a vehicle namely steering, braking and speed control have been implemented and will be described in this paper. The output from a 3 axis motion controller is used for this purpose. The motion controller is interfaced with a software program using WSDK (Windows Servo Design Kit) as an intermediate tuning layer for tuning and parameter settings in autonomous operation. The software program is developed in C++. The voltage signal sent to the motion controller can be varied through the control program for desired results in controlling the steering motor, activating the hydraulic brakes and varying the vehicle's speed. The vehicle has been tested for its basic functionality which includes testing of street legal operations and also a 1000 mile test while running in a hybrid mode. The vehicle has also been tested for control when it is interfaced with devices such as a keyboard, joystick and sensors under full autonomous operation. The vehicle is currently being tested in various safety studies and is being used as a test bed for experiments in control courses and research studies. The significance of this research is in providing a greater understanding of conventional driving controls and the possibility of improving automobile safety by removing human error in control of a motor vehicle.

  19. Relative Navigation of Formation Flying Satellites

    NASA Technical Reports Server (NTRS)

    Long, Anne; Kelbel, David; Lee, Taesul; Leung, Dominic; Carpenter, Russell; Gramling, Cheryl; Bauer, Frank (Technical Monitor)

    2002-01-01

    The Guidance, Navigation, and Control Center (GNCC) at Goddard Space Flight Center (GSFC) has successfully developed high-accuracy autonomous satellite navigation systems using the National Aeronautics and Space Administration's (NASA's) space and ground communications systems and the Global Positioning System (GPS). In addition, an autonomous navigation system that uses celestial object sensor measurements is currently under development and has been successfully tested using real Sun and Earth horizon measurements.The GNCC has developed advanced spacecraft systems that provide autonomous navigation and control of formation flyers in near-Earth, high-Earth, and libration point orbits. To support this effort, the GNCC is assessing the relative navigation accuracy achievable for proposed formations using GPS, intersatellite crosslink, ground-to-satellite Doppler, and celestial object sensor measurements. This paper evaluates the performance of these relative navigation approaches for three proposed missions with two or more vehicles maintaining relatively tight formations. High-fidelity simulations were performed to quantify the absolute and relative navigation accuracy as a function of navigation algorithm and measurement type. Realistically-simulated measurements were processed using the extended Kalman filter implemented in the GPS Enhanced Inboard Navigation System (GEONS) flight software developed by GSFC GNCC. Solutions obtained by simultaneously estimating all satellites in the formation were compared with the results obtained using a simpler approach based on differencing independently estimated state vectors.

  20. 40 CFR 240.211-3 - Recommended procedures: Operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... every 60 minutes and as changes are made. (5) Weights of bottom ash, grate siftings, and fly ash.... (10) Gross calorific value of daily representative samples of bottom ash, grate siftings, and fly ash...

  1. Reduction of Syndecan Transcript Levels in the Insulin-Producing Cells Affects Glucose Homeostasis in Adult Drosophila melanogaster.

    PubMed

    Warren, Jonathan L; Hoxha, Eneida; Jumbo-Lucioni, Patricia; De Luca, Maria

    2017-11-01

    Signaling by direct cell-matrix interactions has been shown to impact the transcription, secretion, and storage of insulin in mammalian β cells. However, more research is still needed in this area. Syndecans are transmembrane heparan sulfate proteoglycans that function independently and in synergy with integrin-mediated signaling to mediate cell adhesion to the extracellular matrix. In this study, we used the model organism Drosophila melanogaster to determine whether knockdown of the Syndecan (Sdc) gene expression specifically in the insulin-producing cells (IPCs) might affect insulin-like peptide (ILP) production and secretion. IPCs of adult flies produce three ILPs (ILP2, ILP3, and ILP5), which have significant homology to mammalian insulin. We report that flies with reduced Sdc expression in the IPCs did not show any difference in the expression of ilp genes compared to controls. However, they had significantly reduced levels of the circulating ILP2 protein, higher circulating carbohydrates, and were less glucose tolerant than control flies. Finally, we found that IPCs-specific Sdc knockdown led to reduced levels of head Glucose transporter1 gene expression, extracellular signal-regulated kinase phosphorylation, and reactive oxygen species. Taken together, our findings suggest a cell autonomous role for Sdc in insulin release in D. melanogaster.

  2. Situation Awareness of Onboard System Autonomy

    NASA Technical Reports Server (NTRS)

    Schreckenghost, Debra; Thronesbery, Carroll; Hudson, Mary Beth

    2005-01-01

    We have developed intelligent agent software for onboard system autonomy. Our approach is to provide control agents that automate crew and vehicle systems, and operations assistants that aid humans in working with these autonomous systems. We use the 3 Tier control architecture to develop the control agent software that automates system reconfiguration and routine fault management. We use the Distributed Collaboration and Interaction (DCI) System to develop the operations assistants that provide human services, including situation summarization, event notification, activity management, and support for manual commanding of autonomous system. In this paper we describe how the operations assistants aid situation awareness of the autonomous control agents. We also describe our evaluation of the DCI System to support control engineers during a ground test at Johnson Space Center (JSC) of the Post Processing System (PPS) for regenerative water recovery.

  3. Synthesis of the unmanned aerial vehicle remote control augmentation system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomczyk, Andrzej, E-mail: A.Tomczyk@prz.edu.pl

    Medium size Unmanned Aerial Vehicle (UAV) usually flies as an autonomous aircraft including automatic take-off and landing phases. However in the case of the on-board control system failure, the remote steering is using as an emergency procedure. In this reason, remote manual control of unmanned aerial vehicle is used more often during take-of and landing phases. Depends on UAV take-off mass and speed (total energy) the potential crash can be very danger for airplane and environment. So, handling qualities of UAV is important from pilot-operator point of view. In many cases the dynamic properties of remote controlling UAV are notmore » suitable for obtaining the desired properties of the handling qualities. In this case the control augmentation system (CAS) should be applied. Because the potential failure of the on-board control system, the better solution is that the CAS algorithms are placed on the ground station computers. The method of UAV handling qualities shaping in the case of basic control system failure is presented in this paper. The main idea of this method is that UAV reaction on the operator steering signals should be similar - almost the same - as reaction of the 'ideal' remote control aircraft. The model following method was used for controller parameters calculations. The numerical example concerns the medium size MP-02A UAV applied as an aerial observer system.« less

  4. KSC-2013-4257

    NASA Image and Video Library

    2013-12-06

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, the Project Morpheus prototype lander has been attached to a tether and is being prepared for placement on a transportable launch platform positioned at the north end of the Shuttle Landing Facility. The lander will be prepared for a tethered test that includes lifting it 20 feet by crane, ascending another 10 feet, maneuvering backwards 10 feet, and then flying forward and descending to its original position, landing at the end of the tether. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett

  5. KSC-2013-4260

    NASA Image and Video Library

    2013-12-06

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, technicians and engineers assist as the Project Morpheus prototype lander is attached to a tether and lowered onto a transportable launch platform positioned at the north end of the Shuttle Landing Facility. The lander will be prepared for a tethered test that includes lifting it 20 feet by crane, ascending another 10 feet, maneuvering backwards 10 feet, and then flying forward and descending to its original position, landing at the end of the tether. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett

  6. KSC-2013-4288

    NASA Image and Video Library

    2013-12-06

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, smoke fills the air as the Project Morpheus prototype lander’s engine fires during a tether test at the north end of the Shuttle Landing Facility. During the test, the lander was lifted 20 feet by crane, and then ascended another 10 feet. The lander will maneuver backwards 10 feet, and then fly forward and descend to its original position, landing at the end of the tether onto a transportable launch platform. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Daniel Casper

  7. KSC-2013-4280

    NASA Image and Video Library

    2013-12-06

    CAPE CANAVERAL, Fla. – Inside a control room at NASA’s Kennedy Space Center in Florida, engineers monitor the progress as the Project Morpheus prototype lander is being prepared for a tether test on a transportable launch platform positioned at the north end of the Shuttle Landing Facility. The tethered test will include lifting it 20 feet by crane, ascending another 10 feet, maneuvering backwards 10 feet, and then flying forward and descending to its original position, landing at the end of the tether. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Daniel Casper

  8. KSC-2013-4258

    NASA Image and Video Library

    2013-12-06

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, the Project Morpheus prototype lander has been attached to a tether and is being lowered onto a transportable launch platform positioned at the north end of the Shuttle Landing Facility. The lander will be prepared for a tethered test that includes lifting it 20 feet by crane, ascending another 10 feet, maneuvering backwards 10 feet, and then flying forward and descending to its original position, landing at the end of the tether. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett

  9. Highly Reusable Space Transportation System Concept Evaluation (The Argus Launch Vehicle)

    NASA Technical Reports Server (NTRS)

    Olds, John R.; Bellini, Peter X.

    1998-01-01

    This paper summarizes the results of a conceptual design study that was performed in support of NASA's recent Highly Reusable Space Transportation study. The Argus concept uses a Maglifter magnetic-levitation sled launch assist system to accelerate it to a takeoff ground speed of 800 fps on its way to delivering a payload of 20,000 lb. to low earth orbit. Main propulsion is provided by two supercharged ejector rocket engines. The vehicle is autonomous and is fully reusable. A conceptual design exercise determined the vehicle gross weight to be approximately 597,250 lb. and the dry weight to be 75,500 lb. Aggressive weight and operations cost assumptions were used throughout the design process consistent with a second-generation reusable system that might be deployed in 10-15 years. Drawings, geometry, and weight of the concept are included. Preliminary development, production, and operations costs along with a business scenario assuming a price-elastic payload market are also included. A fleet of three Argus launch vehicles flying a total of 149 flights per year is shown to have a financial internal rate of return of 28%. At $169/lb., the recurring cost of Argus is shown to meet the study goal of $100/lb.-$200/lb., but optimum market price results in only a factor of two to five reduction compared to today's launch systems.

  10. Recent UAS Developments: VTOL HQ-series Shipboard Recovery and Autonomous Monitoring with MicroQuads

    NASA Astrophysics Data System (ADS)

    Wardell, L. J.; Farber, A. M.; Douglas, J.

    2017-12-01

    Ocean research would benefit from reliable shipboard launch and recovery of small class UAS. The vertical take-off and landing (VTOL) system reduces equipment footprint without the need for launchers or recovery systems. The HQ-60 (Latitude Engineering) has demonstrated reliable ship take-off and recovery on a 10x10' area on the R/V Falkor (Schmidt Ocean Institute) and other research vessels. The HQ-60 recently set a record for longest time aloft for a VTOL aircraft, flying nearly 22.5 hours non-stop. To support close-range research, autonomous MicroQuads that "perch" in a protective box that also recharges the aircraft and transmits the data is in development. Recent MicroQuad work with developing high-resolution (<1cm) DEMs using on-board cameras has yielded promising results for the use of surface change detection. Recent USDA development targeted erosion monitoring with this system. The latest updates and testing results for both systems will be presented.

  11. Flight Testing of Guidance, Navigation and Control Systems on the Mighty Eagle Robotic Lander Testbed

    NASA Technical Reports Server (NTRS)

    Hannan, Mike; Rickman, Doug; Chavers, Greg; Adam, Jason; Becker, Chris; Eliser, Joshua; Gunter, Dan; Kennedy, Logan; O'Leary, Patrick

    2015-01-01

    During 2011 a series of progressively more challenging flight tests of the Mighty Eagle autonomous terrestrial lander testbed were conducted primarily to validate the GNC system for a proposed lunar lander. With the successful completion of this GNC validation objective the opportunity existed to utilize the Mighty Eagle as a flying testbed for a variety of technologies. In 2012 an Autonomous Rendezvous and Capture (AR&C) algorithm was implemented in flight software and demonstrated in a series of flight tests. In 2012 a hazard avoidance system was developed and flight tested on the Mighty Eagle. Additionally, GNC algorithms from Moon Express and a MEMs IMU were tested in 2012. All of the testing described herein was above and beyond the original charter for the Mighty Eagle. In addition to being an excellent testbed for a wide variety of systems the Mighty Eagle also provided a great learning opportunity for many engineers and technicians to work a flight program.

  12. Evaluation of Relative Navigation Algorithms for Formation-Flying Satellites

    NASA Technical Reports Server (NTRS)

    Kelbel, David; Lee, Taesul; Long, Anne; Carpenter, J. Russell; Gramling, Cheryl

    2001-01-01

    Goddard Space Flight Center is currently developing advanced spacecraft systems to provide autonomous navigation and control of formation flyers. This paper discusses autonomous relative navigation performance for formations in eccentric, medium, and high-altitude Earth orbits using Global Positioning System (GPS) Standard Positioning Service (SPS) and intersatellite range measurements. The performance of several candidate relative navigation approaches is evaluated. These analyses indicate that the relative navigation accuracy is primarily a function of the frequency of acquisition and tracking of the GPS signals. A relative navigation position accuracy of 0.5 meters root-mean-square (RMS) can be achieved for formations in medium-attitude eccentric orbits that can continuously track at least one GPS signal. A relative navigation position accuracy of better than 75 meters RMS can be achieved for formations in high-altitude eccentric orbits that have sparse tracking of the GPS signals. The addition of round-trip intersatellite range measurements can significantly improve relative navigation accuracy for formations with sparse tracking of the GPS signals.

  13. Square tracking sensor for autonomous helicopter hover stabilization

    NASA Astrophysics Data System (ADS)

    Oertel, Carl-Henrik

    1995-06-01

    Sensors for synthetic vision are needed to extend the mission profiles of helicopters. A special task for various applications is the autonomous position hold of a helicopter above a ground fixed or moving target. As a proof of concept for a general synthetic vision solution a restricted machine vision system, which is capable of locating and tracking a special target, was developed by the Institute of Flight Mechanics of Deutsche Forschungsanstalt fur Luft- und Raumfahrt e.V. (i.e., German Aerospace Research Establishment). This sensor, which is specialized to detect and track a square, was integrated in the fly-by-wire helicopter ATTHeS (i.e., Advanced Technology Testing Helicopter System). An existing model following controller for the forward flight condition was adapted for the hover and low speed requirements of the flight vehicle. The special target, a black square with a length of one meter, was mounted on top of a car. Flight tests demonstrated the automatic stabilization of the helicopter above the moving car by synthetic vision.

  14. Autonomous Vehicles: A Policy Roadmap for Law Enforcement

    DTIC Science & Technology

    2015-09-01

    Timeline for Autonomous Vehicle Development ................................48 Figure 3. RAS 2020 Strategic Theme, Five Areas of Strategic Activity to...BLANK 1 I. INTRODUCTION It would be like an elevator. They used to have elevator operators, and then we developed some simple circuitry to have...advancements to make autonomous vehicles possible are being developed , manufactured, and tested. These two advantages should be used to help develop a solid

  15. Testing the Intelligence of Unmanned Autonomous Systems

    DTIC Science & Technology

    2008-01-01

    decisions without the operator. The term autonomous is also used interchangeably with intelligent, giving rise to the name unmanned autonomous system ( UAS ...For the purposes of this article, UAS describes an unmanned system that makes decisions based on gathered information. Because testers should not...make assumptions about the decision process within a UAS , there is a need for a methodology that completely tests this decision process without biasing

  16. Development of Mission Enabling Infrastructure — Cislunar Autonomous Positioning System (CAPS)

    NASA Astrophysics Data System (ADS)

    Cheetham, B. W.

    2017-10-01

    Advanced Space, LLC is developing the Cislunar Autonomous Positioning System (CAPS) which would provide a scalable and evolvable architecture for navigation to reduce ground congestion and improve operations for missions throughout cislunar space.

  17. Technologies for Human Exploration

    NASA Technical Reports Server (NTRS)

    Drake, Bret G.

    2014-01-01

    Access to Space, Chemical Propulsion, Advanced Propulsion, In-Situ Resource Utilization, Entry, Descent, Landing and Ascent, Humans and Robots Working Together, Autonomous Operations, In-Flight Maintenance, Exploration Mobility, Power Generation, Life Support, Space Suits, Microgravity Countermeasures, Autonomous Medicine, Environmental Control.

  18. Distributed Autonomous Control of Multiple Spacecraft During Close Proximity Operations

    DTIC Science & Technology

    2007-12-01

    programs may be the XSS-11. The AFRL Space Vehicle Directorate at Kirtland Air Force Base in New Mexico developed the XSS-11 in order to exhibit the...the LQR/APF algorithm appears to be a promising new development for the field of multiple spacecraft close proximity maneuver control. Monte...dissertation reports the development of an autonomous distributed control algorithm for multiple spacecraft during close proximity operations

  19. Investigating the Usefulness of Soldier Aids for Autonomous Unmanned Ground Vehicles, Part 2

    DTIC Science & Technology

    2015-03-01

    distribution is unlimited. 13. SUPPLEMENTARY NOTES DCS Corporation, Alexandria, VA 14. ABSTRACT In the past, robot operation has been a high-cognitive...increase performance and reduce perceived workload. The aids were overlays displaying what an autonomous robot perceived in the environment and the...subsequent course of action planned by the robot . Eight active-duty, US Army Soldiers completed 16 scenario missions using an operator interface

  20. A UAV System for Observing Volcanoes and Natural Hazards

    NASA Astrophysics Data System (ADS)

    Saggiani, G.; Persiani, F.; Ceruti, A.; Tortora, P.; Troiani, E.; Giuletti, F.; Amici, S.; Buongiorno, M.; Distefano, G.; Bentini, G.; Bianconi, M.; Cerutti, A.; Nubile, A.; Sugliani, S.; Chiarini, M.; Pennestri, G.; Petrini, S.; Pieri, D.

    2007-12-01

    Fixed or rotary wing manned aircraft are currently the most commonly used platforms for airborne reconnaissance in response to natural hazards, such as volcanic eruptions, oil spills, wild fires, earthquakes. Such flights are very often undertaken in hazardous flying conditions (e.g., turbulence, downdrafts, reduced visibility, close proximity to dangerous terrain) and can be expensive. To mitigate these two fundamental issues-- safety and cost--we are exploring the use of small (less than 100kg), relatively inexpensive, but effective, unmanned aerial vehicles (UAVs) for this purpose. As an operational test, in 2004 we flew a small autonomous UAV in the airspace above and around Stromboli Volcano. Based in part on this experience, we are adapting the RAVEN UAV system for such natural hazard surveillance missions. RAVEN has a 50km range, with a 3.5m wingspan, main fuselage length of 4.60m, and maximum weight of 56kg. It has autonomous flight capability and a ground control Station for the mission planning and control. It will carry a variety of imaging devices, including a visible camera, and an IR camera. It will also carry an experimental Fourier micro-interferometer based on MOEMS technology, (developed by IMM Institute of CNR), to detect atmospheric trace gases. Such flexible, capable, and easy-to-deploy UAV systems may significantly shorten the time necessary to characterize the nature and scale of the natural hazard threats if used from the outset of, and systematically during, natural hazard events. When appropriately utilized, such UAVs can provide a powerful new hazard mitigation and documentation tool for civil protection hazard responders. This research was carried out under the auspices of the Italian government, and, in part, under contract to NASA at the Jet Propulsion Laboratory.

  1. Development of autonomous eating mechanism for biomimetic robots

    NASA Astrophysics Data System (ADS)

    Jeong, Kil-Woong; Cho, Ik-Jin; Lee, Yun-Jung

    2005-12-01

    Most of the recently developed robots are human friendly robots which imitate animals or humans such as entertainment robot, bio-mimetic robot and humanoid robot. Interest for these robots are being increased because the social trend is focused on health, welfare, and graying. Autonomous eating functionality is most unique and inherent behavior of pets and animals. Most of entertainment robots and pet robots make use of internal-type battery. Entertainment robots and pet robots with internal-type battery are not able to operate during charging the battery. Therefore, if a robot has an autonomous function for eating battery as its feeds, the robot is not only able to operate during recharging energy but also become more human friendly like pets. Here, a new autonomous eating mechanism was introduced for a biomimetic robot, called ELIRO-II(Eating LIzard RObot version 2). The ELIRO-II is able to find a food (a small battery), eat and evacuate by itself. This work describe sub-parts of the developed mechanism such as head-part, mouth-part, and stomach-part. In addition, control system of autonomous eating mechanism is described.

  2. A learning-based semi-autonomous controller for robotic exploration of unknown disaster scenes while searching for victims.

    PubMed

    Doroodgar, Barzin; Liu, Yugang; Nejat, Goldie

    2014-12-01

    Semi-autonomous control schemes can address the limitations of both teleoperation and fully autonomous robotic control of rescue robots in disaster environments by allowing a human operator to cooperate and share such tasks with a rescue robot as navigation, exploration, and victim identification. In this paper, we present a unique hierarchical reinforcement learning-based semi-autonomous control architecture for rescue robots operating in cluttered and unknown urban search and rescue (USAR) environments. The aim of the controller is to enable a rescue robot to continuously learn from its own experiences in an environment in order to improve its overall performance in exploration of unknown disaster scenes. A direction-based exploration technique is integrated in the controller to expand the search area of the robot via the classification of regions and the rubble piles within these regions. Both simulations and physical experiments in USAR-like environments verify the robustness of the proposed HRL-based semi-autonomous controller to unknown cluttered scenes with different sizes and varying types of configurations.

  3. Pelvic autonomic neuromonitoring: present reality, future prospects.

    PubMed

    Skinner, Stanley A

    2014-08-01

    Currently, the means to assess the autonomic nervous system primarily depend on end organ functional measurement: intravesical pressure, skin resistance, and penile strain gauge tension, for example. None of these measures has been generally accepted in the operating room. Nevertheless, the segmental and peripheral pelvic autonomic nerve supply is placed at risk during both pelvic and lower spine surgery. In this difficult era of suboptimal post-prostatectomy outcomes, the urological literature does reveal the salutary development of safer dissection techniques about the peri-prostatic and cavernous plexus. Means of reliably specific nerve identification remain elusive. The need for actual nerve monitoring (not just identification) has only recently been proposed. Data from the animal lab reinforce an appreciation of the intimate and elegant interconnectedness of autonomic and somatic structures, particularly at the segmental level. Also, the biochemistry of erectile tissue engorgement (in both sexes) is very well understood (the electrophysiology increasingly so). Understanding these principles should permit parallel investigation and implementation of neurophysiological techniques which both identify and monitor pelvic autonomic function. The predicates for these proposed new approaches in the operating room are discussed in this review.

  4. Force Modeling and State Propagation for Navigation and Maneuver Planning for the Proximity Operations Nano-Satellite Flight Demonstration Mission

    NASA Astrophysics Data System (ADS)

    Roscoe, C.; Griesbach, J.; Westphal, J.; Hawes, D.; Carrico, J.

    2013-09-01

    The state propagation accuracy resulting from different choices of gravitational force models and orbital perturbations is investigated for a pair of CubeSats flying in formation in low Earth orbit (LEO). Accurate on-board state propagation is necessary to autonomously plan maneuvers and perform proximity operations and docking safely. The ability to perform high-precision navigation is made especially challenging by the limited computer processing power available on-board the spacecraft. Propagation accuracy is investigated both in terms of the absolute (chief) state and the relative (deputy relative to chief) state. Different perturbing effects are quantified and related directly to important mission factors such as maneuver accuracy, fuel use (mission lifetime), and collision prediction/avoidance (mission safety). The Proximity Operations Nano-Satellite Flight Demonstration (PONSFD) program is to demonstrate rendezvous proximity operations (RPO), formation flying, and docking with a pair of 3U CubeSats. The program is sponsored by NASA Ames via the Office of the Chief Technologist (OCT) in support of its Small Spacecraft Technology Program (SSTP). The goal of the mission is to demonstrate complex RPO and docking operations with a pair of low-cost 3U CubeSat satellites using passive navigation sensors. The primary orbital perturbation affecting spacecraft in low Earth orbit (LEO) is the Earth oblateness, or J2, perturbation. Provided that a spacecraft does not have an extremely high area-to-mass ratio or is not flying at a very low altitude, the effect of J2 will usually be greater than that of atmospheric drag, which will typically be the next largest perturbing force in LEO. After these perturbations, factors such as higher-order Earth gravitational parameters, third-body perturbations, and solar radiation pressure will follow in magnitude but will have much less noticeable effects than J2 and drag. For spacecraft formations, where relative dynamics and not absolute dynamics are of primary importance, J2 will still be significant but drag effects become highly dependent on differences in the ballistic coefficients of the spacecraft in the formation. The PONSFD program uses a pair of 3U CubeSats with protruding solar panels, which means that inertial attitude differences between the two spacecraft will result in large differences in presented cross-sectional area. However, on-board prediction of drag effects may not be practical in all circumstances because it requires accurate knowledge of the Earth's atmospheric density as well as of the attitude of both spacecraft. This paper investigates the accuracy of performing long-term state propagation using different choices of gravitational force models and orbital perturbations for a wide range of orbit altitude and inclination possibilities. Propagation accuracy is affected by a number of orbit parameters and force model parameters which makes performing such a study with uncertain orbit knowledge a challenging prospect. However, much intuition can be gained by breaking the study down in terms of each of these parameters to see the effect of each one individually. The results of this study will be used to select a propagation method for the on-board navigation system for the mission.

  5. Feasibility of Turing-Style Tests for Autonomous Aerial Vehicle "Intelligence"

    NASA Technical Reports Server (NTRS)

    Young, Larry A.

    2007-01-01

    A new approach is suggested to define and evaluate key metrics as to autonomous aerial vehicle performance. This approach entails the conceptual definition of a "Turing Test" for UAVs. Such a "UAV Turing test" would be conducted by means of mission simulations and/or tailored flight demonstrations of vehicles under the guidance of their autonomous system software. These autonomous vehicle mission simulations and flight demonstrations would also have to be benchmarked against missions "flown" with pilots/human-operators in the loop. In turn, scoring criteria for such testing could be based upon both quantitative mission success metrics (unique to each mission) and by turning to analog "handling quality" metrics similar to the well-known Cooper-Harper pilot ratings used for manned aircraft. Autonomous aerial vehicles would be considered to have successfully passed this "UAV Turing Test" if the aggregate mission success metrics and handling qualities for the autonomous aerial vehicle matched or exceeded the equivalent metrics for missions conducted with pilots/human-operators in the loop. Alternatively, an independent, knowledgeable observer could provide the "UAV Turing Test" ratings of whether a vehicle is autonomous or "piloted." This observer ideally would, in the more sophisticated mission simulations, also have the enhanced capability of being able to override the scripted mission scenario and instigate failure modes and change of flight profile/plans. If a majority of mission tasks are rated as "piloted" by the observer, when in reality the vehicle/simulation is fully- or semi- autonomously controlled, then the vehicle/simulation "passes" the "UAV Turing Test." In this regards, this second "UAV Turing Test" approach is more consistent with Turing s original "imitation game" proposal. The overall feasibility, and important considerations and limitations, of such an approach for judging/evaluating autonomous aerial vehicle "intelligence" will be discussed from a theoretical perspective.

  6. The experimental studies of operating modes of a diesel-generator set at variable speed

    NASA Astrophysics Data System (ADS)

    Obukhov, S. G.; Plotnikov, I. A.; Surkov, M. A.; Sumarokova, L. P.

    2017-02-01

    A diesel generator set working at variable speed to save fuel is studied. The results of experimental studies of the operating modes of an autonomous diesel generator set are presented. Areas for regulating operating modes are determined. It is demonstrated that the transfer of the diesel generator set to variable speed of the diesel engine makes it possible to improve the energy efficiency of the autonomous generator source, as well as the environmental and ergonomic performance of the equipment as compared with general industrial analogues.

  7. Fitting primitive shapes in point clouds: a practical approach to improve autonomous underwater grasp specification of unknown objects

    NASA Astrophysics Data System (ADS)

    Fornas, D.; Sales, J.; Peñalver, A.; Pérez, J.; Fernández, J. J.; Marín, R.; Sanz, P. J.

    2016-03-01

    This article presents research on the subject of autonomous underwater robot manipulation. Ongoing research in underwater robotics intends to increase the autonomy of intervention operations that require physical interaction in order to achieve social benefits in fields such as archaeology or biology that cannot afford the expenses of costly underwater operations using remote operated vehicles. Autonomous grasping is still a very challenging skill, especially in underwater environments, with highly unstructured scenarios, limited availability of sensors and adverse conditions that affect the robot perception and control systems. To tackle these issues, we propose the use of vision and segmentation techniques that aim to improve the specification of grasping operations on underwater primitive shaped objects. Several sources of stereo information are used to gather 3D information in order to obtain a model of the object. Using a RANSAC segmentation algorithm, the model parameters are estimated and a set of feasible grasps are computed. This approach is validated in both simulated and real underwater scenarios.

  8. Energy extraction from atmospheric turbulence to improve flight vehicle performance

    NASA Astrophysics Data System (ADS)

    Patel, Chinmay Karsandas

    Small 'bird-sized' Unmanned Aerial Vehicles (UAVs) have now become practical due to technological advances in embedded electronics, miniature sensors and actuators, and propulsion systems. Birds are known to take advantage of wind currents to conserve energy and fly long distances without flapping their wings. This dissertation explores the possibility of improving the performance of small UAVs by extracting the energy available in atmospheric turbulence. An aircraft can gain energy from vertical gusts by increasing its lift in regions of updraft and reducing its lift in downdrafts - a concept that has been known for decades. Starting with a simple model of a glider flying through a sinusoidal gust, a parametric optimization approach is used to compute the minimum gust amplitude and optimal control input required for the glider to sustain flight without losing energy. For small UAVs using optimal control inputs, sinusoidal gusts with amplitude of 10--15% of the cruise speed are sufficient to keep the aircraft aloft. The method is then modified and extended to include random gusts that are representative of natural turbulence. A procedure to design optimal control laws for energy extraction from realistic gust profiles is developed using a Genetic Algorithm (GA). A feedback control law is designed to perform well over a variety of random gusts, and not be tailored for one particular gust. A small UAV flying in vertical turbulence is shown to obtain average energy savings of 35--40% with the use of a simple control law. The design procedure is also extended to determine optimal control laws for sinusoidal as well as turbulent lateral gusts. The theoretical work is complemented by experimental validation using a small autonomous UAV. The development of a lightweight autopilot and UAV platform is presented. Flight test results show that active control of the lift of an autonomous glider resulted in approximately 46% average energy savings compared to glides with fixed control surfaces. Statistical analysis of test samples shows that 19% of the active control test runs resulted in no energy loss, thus demonstrating the potential of the 'gust soaring' concept to dramatically improve the performance of small UAVs.

  9. Project : transit demand and routing after autonomous vehicle availability.

    DOT National Transportation Integrated Search

    2015-12-01

    Autonomous vehicles (AVs) create the potential for improvements in traffic operations as well as : new behaviors for travelers such as car sharing among trips through driverless repositioning. Most studies : on AVs have focused on technology or traff...

  10. Fire Support Coordination Measures by the Numbers

    DTIC Science & Technology

    1999-06-01

    the enemy in defense; and Period Three (27 to 28 Feb), Coalition operations with the enemy withdrawing. General H. Norman Schwarzkopf, Commander-in...flying in Operation Desert Storm and participated in the Highway 8 attacks. 97 Scales, 290. 98 Ibid., 315. 99 William L. Smallwood , Warthog, Flying...General, USA. Certain Victory: The US Army in the Gulf War. Fort Leavenworth, KS: US Command and General Staff College Press, 1994. Smallwood , William L

  11. Conflict Resolution Performance in an Experimental Study of En Route Free Maneuvering Operations

    NASA Technical Reports Server (NTRS)

    Doble, Nathan A.; Barhydt, Richard; Hitt, James M., II

    2005-01-01

    NASA has developed a far-term air traffic management concept, termed Distributed Air/Ground Traffic Management (DAG-TM). One component of DAG-TM, En Route Free Maneuvering, allows properly trained flight crews of equipped autonomous aircraft to assume responsibility for separation from other autonomous aircraft and from Instrument Flight Rules (IFR) aircraft. Ground-based air traffic controllers continue to separate IFR traffic and issue flow management constraints to all aircraft. To examine En Route Free Maneuvering operations, a joint human-in-the-loop experiment was conducted in summer 2004 at the NASA Ames and Langley Research Centers. Test subject pilots used desktop flight simulators to resolve traffic conflicts and adhere to air traffic flow constraints issued by subject controllers. The experimental airspace integrated both autonomous and IFR aircraft at varying traffic densities. This paper presents a subset of the En Route Free Maneuvering experimental results, focusing on airborne and ground-based conflict resolution, and the effects of increased traffic levels on the ability of pilots and air traffic controllers to perform this task. The results show that, in general, increases in autonomous traffic do not significantly impact conflict resolution performance. In addition, pilot acceptability of autonomous operations remains high throughout the range of traffic densities studied. Together with previously reported findings, these results continue to support the feasibility of the En Route Free Maneuvering component of DAG-TM.

  12. Aircraft Configuration and Flight Crew Compliance with Procedures While Conducting Flight Deck Based Interval Management (FIM) Operations

    NASA Technical Reports Server (NTRS)

    Shay, Rick; Swieringa, Kurt A.; Baxley, Brian T.

    2012-01-01

    Flight deck based Interval Management (FIM) applications using ADS-B are being developed to improve both the safety and capacity of the National Airspace System (NAS). FIM is expected to improve the safety and efficiency of the NAS by giving pilots the technology and procedures to precisely achieve an interval behind the preceding aircraft by a specific point. Concurrently but independently, Optimized Profile Descents (OPD) are being developed to help reduce fuel consumption and noise, however, the range of speeds available when flying an OPD results in a decrease in the delivery precision of aircraft to the runway. This requires the addition of a spacing buffer between aircraft, reducing system throughput. FIM addresses this problem by providing pilots with speed guidance to achieve a precise interval behind another aircraft, even while flying optimized descents. The Interval Management with Spacing to Parallel Dependent Runways (IMSPiDR) human-in-the-loop experiment employed 24 commercial pilots to explore the use of FIM equipment to conduct spacing operations behind two aircraft arriving to parallel runways, while flying an OPD during high-density operations. This paper describes the impact of variations in pilot operations; in particular configuring the aircraft, their compliance with FIM operating procedures, and their response to changes of the FIM speed. An example of the displayed FIM speeds used incorrectly by a pilot is also discussed. Finally, this paper examines the relationship between achieving airline operational goals for individual aircraft and the need for ATC to deliver aircraft to the runway with greater precision. The results show that aircraft can fly an OPD and conduct FIM operations to dependent parallel runways, enabling operational goals to be achieved efficiently while maintaining system throughput.

  13. GOATS 2008: Autonomous, Adaptive Multistatic Acoustic Sensing

    DTIC Science & Technology

    2010-09-30

    carried out jointly with the NATO Undersea Research Centre in the Tuscan archipelago July 26 – August 16, 2010. MIT operated the Unicorn AUV and...4 trail behavior with the physical Unicorn AUV, and is accidentally passing close the R/V Leonardo, fully autonomously changing its depth from...vehicles. The AUV Unicorn is performing an adaptive thermocline mapping mission, with the vehicle trail shown in green. Note the autonomous collision

  14. Autonomous Collision-Free Navigation of Microvehicles in Complex and Dynamically Changing Environments.

    PubMed

    Li, Tianlong; Chang, Xiaocong; Wu, Zhiguang; Li, Jinxing; Shao, Guangbin; Deng, Xinghong; Qiu, Jianbin; Guo, Bin; Zhang, Guangyu; He, Qiang; Li, Longqiu; Wang, Joseph

    2017-09-26

    Self-propelled micro- and nanoscale robots represent a rapidly emerging and fascinating robotics research area. However, designing autonomous and adaptive control systems for operating micro/nanorobotics in complex and dynamically changing environments, which is a highly demanding feature, is still an unmet challenge. Here we describe a smart microvehicle for precise autonomous navigation in complicated environments and traffic scenarios. The fully autonomous navigation system of the smart microvehicle is composed of a microscope-coupled CCD camera, an artificial intelligence planner, and a magnetic field generator. The microscope-coupled CCD camera provides real-time localization of the chemically powered Janus microsphere vehicle and environmental detection for path planning to generate optimal collision-free routes, while the moving direction of the microrobot toward a reference position is determined by the external electromagnetic torque. Real-time object detection offers adaptive path planning in response to dynamically changing environments. We demonstrate that the autonomous navigation system can guide the vehicle movement in complex patterns, in the presence of dynamically changing obstacles, and in complex biological environments. Such a navigation system for micro/nanoscale vehicles, relying on vision-based close-loop control and path planning, is highly promising for their autonomous operation in complex dynamic settings and unpredictable scenarios expected in a variety of realistic nanoscale scenarios.

  15. Real-Time Trajectory Assessment and Abort Management for the X-33 Vehicle

    NASA Technical Reports Server (NTRS)

    Moise, M. C.; McCarter, J. W.; Mulqueen, J.

    2000-01-01

    The X-33 is a flying testbed to evaluate technologies and designs for a reusable Single Stage To Orbit (SSTO) production vehicle. Although it is sub-orbital, it is trans-atmospheric. This paper will discuss the abort capabilities, both commanded and autonomous, available to the X-33. The cornerstone of the abort capabilities is the Performance Monitor (PM) and it's supporting software. PM is an on-board 3-DOF simulation, which evaluates the vehicle ability to execute the current trajectory. The Abort Manager evaluates the results from PM, and, when indicated, computes and implements an abort trajectory.

  16. Flying SATS Higher Volume Operations: Training, Lessons Learned, and Pilots' Experiences

    NASA Technical Reports Server (NTRS)

    Conway, Sheila; Williams, Dan; Adams, Catherine; Consiglio, Maria; Murdoch, Jennifer

    2005-01-01

    Developments in aviation, including new surveillance technologies and quicker, more economical small aircraft, have been identified as driving factors in a potential expansion of the use of non-towered, non-radar airports. The Small Aircraft Transportation System (SATS) project has developed the Higher Volume Operations (HVO) concept that enables pilots to safely arrive and depart these airports in instrument conditions at an increased rate as compared to today's procedures. This is achieved by transferring some traffic management tasks to centralized, ground-based automation, while assigning others to participating pilots aided by on-board tools. This paper describes strategies and lessons learned while training pilots to fly these innovative operations. Pilot approaches to using the experimental displays and dynamic altering systems during training are discussed. Potential operational benefits as well as pit-falls and frustrations expressed by subjects while learning to fly these new procedures are presented. Generally, pilots were comfortable with the procedures and the training process, and expressed interest in its near-term implementation.

  17. Mission-oriented requirements for updating MIL-H-8501: Calspan proposed structure and rationale

    NASA Technical Reports Server (NTRS)

    Chalk, C. R.; Radford, R. C.

    1985-01-01

    This report documents the effort by Arvin/Calspan Corporation to formulate a revision of MIL-H-8501A in terms of Mission-Oriented Flying Qualities Requirements for Military Rotorcraft. Emphasis is placed on development of a specification structure which will permit addressing Operational Missions and Flight Phases, Flight Regions, Classification of Required Operational Capability, Categorization of Flight Phases, and Levels of Flying Qualities. A number of definitions is established to permit addressing the rotorcraft state, flight envelopes, environments, and the conditions under which degraded flying qualities are permitted. Tentative requirements are drafted for Required Operational Capability Class 1. Also included is a Background Information and Users Guide for the draft specification structure proposed for the MIL-H-8501A revision. The report also contains a discussion of critical data gaps and attempts to prioritize these data gaps and to suggest experiments that should be performed to generate data needed to support formulation of quantitative design criteria for the additional Operational Capability Classes 2, 3, and 4.

  18. Shuttle Liquid Fly Back Booster Configuration Options

    NASA Technical Reports Server (NTRS)

    Healy, T. J., Jr.

    1998-01-01

    This paper surveys the basic configuration options available to a Liquid Fly Back Booster (LFBB), integrated with the Space Shuttle system. The background of the development of the LFBB concept is given. The influence of the main booster engine (BME) installations and the Fly Back Engine (FBE) installation on the aerodynamic configurations are also discussed. Limits on the LFBB configuration design space imposed by the existing Shuttle flight and ground elements are also described. The objective of the paper is to put the constrains and design space for an LFBB in perspective. The object of the work is to define LFBB configurations that significantly improve safety, operability, reliability and performance of the Shuttle system and dramatically lower operations costs.

  19. Air Traffic Management Technology Demonstration-1 Concept of Operations (ATD-1 ConOps)

    NASA Technical Reports Server (NTRS)

    Baxley, Brian T.; Johnson, William C.; Swenson, Harry; Robinson, John E.; Prevot, Thomas; Callantine, Todd; Scardina, John; Greene, Michael

    2012-01-01

    The operational goal of the ATD-1 ConOps is to enable aircraft, using their onboard FMS capabilities, to fly Optimized Profile Descents (OPDs) from cruise to the runway threshold at a high-density airport, at a high throughput rate, using primarily speed control to maintain in-trail separation and the arrival schedule. The three technologies in the ATD-1 ConOps achieve this by calculating a precise arrival schedule, using controller decision support tools to provide terminal controllers with speeds for aircraft to fly to meet times at a particular meter points, and onboard software providing flight crews with speeds for the aircraft to fly to achieve a particular spacing behind preceding aircraft.

  20. Two F/A-18B aircraft involved in the AFF program return to base in close formation with the autonomo

    NASA Technical Reports Server (NTRS)

    2001-01-01

    After completing a milestone autonomous station-keeping formation, two F/A-18B aircraft from the NASA Dryden Flight Research Center, Edwards, California, return to base in close formation with the autonomous function disengaged. For the milestone, the aircraft were spaced approximately 200 feet nose-to-tail and 50 feet apart laterally and vertically. Autonomous formation control was maintained by the trailing aircraft, the Systems Research Aircraft (SRA), in the lateral and vertical axes to within five feet of the commanded position. Nose-to-tail separation of the aircraft was controlled by manual throttle inputs by the trailing aircraft's pilot. The milestone was accomplished on the seventh flight of a 12 flight phase. The AFF flights were a first for a project under NASA's Revolutionary (RevCon) in Aeronautics Project. Dryden was the lead NASA center for RevCon, an endeavor to accelerate the exploration of high-risk, revolutionary technologies in atmospheric flight. Automated formation flight could lead to formation fuel efficiencies and higher air traffic capacity. In the background is the U. S. Borax mine, Boron, California, near the Dryden/Edwards Air Force Base complex. Autonomous Formation Flight (AFF) is intended to allow an aircraft to fly in close formation over long distances using advanced positioning and controls technology. It utilizes Global Positioning System satellites and inertial navigation systems to position two or more aircraft in formation, with an accuracy of a few inches. This capability is expected to yield fuel efficiency improvements.

  1. Distributed subterranean exploration and mapping with teams of UAVs

    NASA Astrophysics Data System (ADS)

    Rogers, John G.; Sherrill, Ryan E.; Schang, Arthur; Meadows, Shava L.; Cox, Eric P.; Byrne, Brendan; Baran, David G.; Curtis, J. Willard; Brink, Kevin M.

    2017-05-01

    Teams of small autonomous UAVs can be used to map and explore unknown environments which are inaccessible to teams of human operators in humanitarian assistance and disaster relief efforts (HA/DR). In addition to HA/DR applications, teams of small autonomous UAVs can enhance Warfighter capabilities and provide operational stand-off for military operations such as cordon and search, counter-WMD, and other intelligence, surveillance, and reconnaissance (ISR) operations. This paper will present a hardware platform and software architecture to enable distributed teams of heterogeneous UAVs to navigate, explore, and coordinate their activities to accomplish a search task in a previously unknown environment.

  2. Boiler water regime

    NASA Astrophysics Data System (ADS)

    Khavanov, Pavel; Chulenyov, Anatoly

    2017-10-01

    Active development of autonomous heating the past 25 years has led to the widespread use of hot-water boilers of small capacity up to 2.5 MW. Rational use of the design of autonomous sources of heating boilers design features significantly improve their technical, economic and operational performance. This publication reviewed and analyzed a number of features of the design, operation and exploitation of boilers of small capacity, significantly affecting the efficiency and reliability of their application.

  3. Development of autonomous grasping and navigating robot

    NASA Astrophysics Data System (ADS)

    Kudoh, Hiroyuki; Fujimoto, Keisuke; Nakayama, Yasuichi

    2015-01-01

    The ability to find and grasp target items in an unknown environment is important for working robots. We developed an autonomous navigating and grasping robot. The operations are locating a requested item, moving to where the item is placed, finding the item on a shelf or table, and picking the item up from the shelf or the table. To achieve these operations, we designed the robot with three functions: an autonomous navigating function that generates a map and a route in an unknown environment, an item position recognizing function, and a grasping function. We tested this robot in an unknown environment. It achieved a series of operations: moving to a destination, recognizing the positions of items on a shelf, picking up an item, placing it on a cart with its hand, and returning to the starting location. The results of this experiment show the applicability of reducing the workforce with robots.

  4. Commensal Bacteria Aid Mate-selection in the Fruit Fly, Bactrocera dorsalis.

    PubMed

    Damodaram, Kamala Jayanthi Pagadala; Ayyasamy, Arthikirubha; Kempraj, Vivek

    2016-10-01

    Commensal bacteria influence many aspects of an organism's behaviour. However, studies on the influence of commensal bacteria in insect mate-selection are scarce. Here, we present empirical evidence that commensal bacteria mediate mate-selection in the Oriental fruit fly, Bactrocera dorsalis. Male flies were attracted to female flies, but this attraction was abolished when female flies were fed with antibiotics, suggesting the role of the fly's microbiota in mediating mate-selection. We show that male flies were attracted to and ejaculated more sperm into females harbouring the microbiota. Using culturing and 16S rDNA sequencing, we isolated and identified different commensal bacteria, with Klebsiella oxytoca being the most abundant bacterial species. This preliminary study will enhance our understanding of the influence of commensal bacteria on mate-selection behaviour of B. dorsalis and may find use in devising control operations against this devastating pest.

  5. Detection flying aircraft from Landsat 8 OLI data

    NASA Astrophysics Data System (ADS)

    Zhao, F.; Xia, L.; Kylling, A.; Li, R. Q.; Shang, H.; Xu, Ming

    2018-07-01

    Monitoring flying aircraft from satellite data is important for evaluating the climate impact caused by the global aviation industry. However, due to the small size of aircraft and the complex surface types, it is almost impossible to identify aircraft from satellite data with moderate resolution, e.g. 30 m. In this study, the 1.38 μm water vapor absorption channel, often used for cirrus cloud or ash detection, is for the first time used to monitor flying aircraft from Landsat 8 data. The basic theory behind the detection of flying aircraft is that in the 1.38 μm channel most of the background reflectance between the ground and the aircraft is masked due to the strong water vapor absorption, while the signal of the flying aircraft will be attenuated less due to the low water vapor content between the satellite and the aircraft. A new composition of the Laplacian and Sobel operators for segmenting aircraft and other features were used to identify the flying aircraft. The Landsat 8 Operational Land Imager (OLI) 2.1 μm channel was used to make the method succeed under low vapor content. The accuracy assessment based on 65 Landsat 8 images indicated that the percentage of leakage is 3.18% and the percentage of false alarm is 0.532%.

  6. Multi-Spacecraft Autonomous Positioning System

    NASA Technical Reports Server (NTRS)

    Anzalone, Evan

    2015-01-01

    As the number of spacecraft in simultaneous operation continues to grow, there is an increased dependency on ground-based navigation support. The current baseline system for deep space navigation utilizes Earth-based radiometric tracking, requiring long-duration observations to perform orbit determination and generate a state update. The age, complexity, and high utilization of the ground assets pose a risk to spacecraft navigation performance. In order to perform complex operations at large distances from Earth, such as extraterrestrial landing and proximity operations, autonomous systems are required. With increasingly complex mission operations, the need for frequent and Earth-independent navigation capabilities is further reinforced. The Multi-spacecraft Autonomous Positioning System (MAPS) takes advantage of the growing interspacecraft communication network and infrastructure to allow for Earth-autonomous state measurements to enable network-based space navigation. A notional concept of operations is given in figure 1. This network is already being implemented and routinely used in Martian communications through the use of the Mars Reconnaissance Orbiter and Mars Odyssey spacecraft as relays for surface assets. The growth of this communications architecture is continued through MAVEN, and future potential commercial Mars telecom orbiters. This growing network provides an initial Marslocal capability for inter-spacecraft communication and navigation. These navigation updates are enabled by cross-communication between assets in the network, coupled with onboard navigation estimation routines to integrate packet travel time to generate ranging measurements. Inter-spacecraft communication allows for frequent state broadcasts and time updates from trusted references. The architecture is a software-based solution, enabling its implementation on a wide variety of current assets, with the operational constraints and measurement accuracy determined by onboard systems.

  7. Optimized autonomous operations of a 20 K space hydrogen sorption cryocooler

    NASA Astrophysics Data System (ADS)

    Borders, J.; Morgante, G.; Prina, M.; Pearson, D.; Bhandari, P.

    2004-06-01

    A fully redundant hydrogen sorption cryocooler is being developed for the European Space Agency Planck mission, dedicated to the measurement of the temperature anisotropies of the cosmic microwave background radiation with unprecedented sensitivity and resolution [Advances in Cryogenic Engineering 45A (2000) 499]. In order to achieve this ambitious scientific task, this cooler is required to provide a stable temperature reference (˜20 K) and appropriate cooling (˜1 W) to the two instruments on-board, with a flight operational lifetime of 18 months. During mission operations, communication with the spacecraft will be possible in a restricted time-window, not longer than 2 h/day. This implies the need for an operations control structure with the required robustness to safely perform autonomous procedures. The cooler performance depends on many operating parameters (such as the temperatures of the pre-cooling stages and the warm radiator), therefore the operation control system needs the capability to adapt to variations of these boundary conditions, while maintaining safe operating procedures. An engineering bread board (EBB) cooler was assembled and tested to evaluate the behavior of the system under conditions simulating flight operations and the test data were used to refine and improve the operation control software. In order to minimize scientific data loss, the cooler is required to detect all possible failure modes and to autonomously react to them by taking the appropriate action in a rapid fashion. Various procedures and schemes both general and specific in nature were developed, tested and implemented to achieve these goals. In general, the robustness to malfunctions was increased by implementing an automatic classification of anomalies in different levels relative to the seriousness of the error. The response is therefore proportional to the failure level. Specifically, the start-up sequence duration was significantly reduced, allowing a much faster activation of the system, particularly useful in case of restarts after inadvertent shutdowns arising from malfunctions in the spacecraft. The capacity of the system to detect J-T plugs was increased to the point that the cooler is able to autonomously identify actual contaminants clogging from gas flow reductions due to off-nominal operating conditions. Once a plug is confirmed, the software autonomously energizes, and subsequently turns off, a J-T defrost heater until the clog is removed, bringing the system back to normal operating conditions. In this paper, all the cooler Operational Modes are presented, together with the description of the logic structure of the procedures and the advantages they produce for the operations.

  8. Fly ash carbon burn-out at TVA`s Colbert and Shawnee Stations: Site specific application study. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cochran, J.W.; Kirkconnell, S.F.

    1996-04-01

    Many power plants, particularly after conversion to low-NOx burners, produce fly ash that is too high in carbon content to be successfully marketed as a concrete admixture. Fly ash beneficiation using Carbon Burn-Out (CBO) technology offers the opportunity to market fly ash that was previously landfilled. This site application study of beneficiating pulverized coal boiler fly ash at Tennessee Valley Authority`s Colbert and Shawnee Stations indicates this process is a cost effective solution for decreasing solid waste disposal, increasing landfill life, improving boiler heat rate, and generating a positive revenue stream. Results indicate that the Colbert Station has the flymore » ash market, site integration potential, and positive economics to support construction and operation of a CBO plant with an annual production rate of approximately 150,000 tons. As the market for fly ash increases, this capacity may be expanded to handle the majority of fly ash generated at Colbert. Results of the Shawnee Station analysis indicate that site integration constraints combined with the lack of near term local area fly ash market growth do not support construction and operation of a CBO plant. CBO commercial process design work in developing a generic commercial design resulted in a major improvement to the heat recovery portion of the process. This development resulted in the elimination of five major equipment items, with a corresponding reduction in plant complexity and costs. The design change is now considered part of the commercial offering.« less

  9. Autonomous Agents and Intelligent Assistants for Exploration Operations

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.

    2000-01-01

    Human exploration of space will involve remote autonomous crew and systems in long missions. Data to earth will be delayed and limited. Earth control centers will not receive continuous real-time telemetry data, and there will be communication round trips of up to one hour. There will be reduced human monitoring on the planet and earth. When crews are present on the planet, they will be occupied with other activities, and system management will be a low priority task. Earth control centers will use multi-tasking "night shift" and on-call specialists. A new project at Johnson Space Center is developing software to support teamwork between distributed human and software agents in future interplanetary work environments. The Engineering and Mission Operations Directorates at Johnson Space Center (JSC) are combining laboratories and expertise to carry out this project, by establishing a testbed for hWl1an centered design, development and evaluation of intelligent autonomous and assistant systems. Intelligent autonomous systems for managing systems on planetary bases will commuicate their knowledge to support distributed multi-agent mixed-initiative operations. Intelligent assistant agents will respond to events by developing briefings and responses according to instructions from human agents on earth and in space.

  10. Break-even analysis revisited: the need to adjust for profitability, the collection rate and autonomous income.

    PubMed

    Broyles, R W; Narine, L; Khaliq, A

    2003-08-01

    This paper modifies traditional break-even analysis and develops a model that reflects the influence of variation in payer mix, the collection rate, profitability and autonomous income on the desired volume alternative. The augmented model indicates that a failure to adjust for uncollectibles and the net surplus results in a systematic understatement of the desired volume alternative. Conversely, a failure to adjust for autonomous income derived from the operation of cafeterias, gift shops or an organization's investment in marketable securities produces an overstatement of the desired volume. In addition, this paper uses Microsoft Excel to develop a spreadsheet that constructs a pro forma income statement, expressed in terms of the contribution margin. The spreadsheet also relies on the percentage of sales or revenue approach to prepare a balance sheet from which indicators of fiscal performance are calculated. Hence, the analysis enables the organization to perform a sensitivity analysis of potential changes in the desired volume, the operating margin, the current ratio, the debt: equity ratio and the amount of cash derived from operations that are associated with expected variation in payer mix, the collection rate, grouped by payer, the net surplus and autonomous income.

  11. Design, Development and Testing of the Miniature Autonomous Extravehicular Robotic Camera (Mini AERCam) Guidance, Navigation and Control System

    NASA Technical Reports Server (NTRS)

    Wagenknecht, J.; Fredrickson, S.; Manning, T.; Jones, B.

    2003-01-01

    Engineers at NASA Johnson Space Center have designed, developed, and tested a nanosatellite-class free-flyer intended for future external inspection and remote viewing of human spaceflight activities. The technology demonstration system, known as the Miniature Autonomous Extravehicular Robotic Camera (Mini AERCam), has been integrated into the approximate form and function of a flight system. The primary focus has been to develop a system capable of providing external views of the International Space Station. The Mini AERCam system is spherical-shaped and less than eight inches in diameter. It has a full suite of guidance, navigation, and control hardware and software, and is equipped with two digital video cameras and a high resolution still image camera. The vehicle is designed for either remotely piloted operations or supervised autonomous operations. Tests have been performed in both a six degree-of-freedom closed-loop orbital simulation and on an air-bearing table. The Mini AERCam system can also be used as a test platform for evaluating algorithms and relative navigation for autonomous proximity operations and docking around the Space Shuttle Orbiter or the ISS.

  12. Approach for Autonomous Control of Unmanned Aerial Vehicle Using Intelligent Agents for Knowledge Creation

    NASA Technical Reports Server (NTRS)

    Dufrene, Warren R., Jr.

    2004-01-01

    This paper describes the development of a planned approach for Autonomous operation of an Unmanned Aerial Vehicle (UAV). A Hybrid approach will seek to provide Knowledge Generation through the application of Artificial Intelligence (AI) and Intelligent Agents (IA) for UAV control. The applications of several different types of AI techniques for flight are explored during this research effort. The research concentration is directed to the application of different AI methods within the UAV arena. By evaluating AI and biological system approaches. which include Expert Systems, Neural Networks. Intelligent Agents, Fuzzy Logic, and Complex Adaptive Systems, a new insight may be gained into the benefits of AI and CAS techniques applied to achieving true autonomous operation of these systems. Although flight systems were explored, the benefits should apply to many Unmanned Vehicles such as: Rovers. Ocean Explorers, Robots, and autonomous operation systems. A portion of the flight system is broken down into control agents that represent the intelligent agent approach used in AI. After the completion of a successful approach, a framework for applying an intelligent agent is presented. The initial results from simulation of a security agent for communication are presented.

  13. Development of a Compact, Pulsed, 2-Micron, Coherent-Detection, Doppler Wind Lidar Transceiver; and Plans for Flights on NASA's DC-8 and WB-57 Aircraft

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Singh, Upendra N.; Koch, Grady J.; Yu, Jirong; Trieu, Bo C.; Petros, Mulugeta; Petzar, Paul J.

    2009-01-01

    We present results of a recently completed effort to design, fabricate, and demonstrate a compact lidar transceiver for coherent-detection lidar profiling of winds. The novel high-energy, 2-micron, Ho:Tm:LuLiF laser technology developed at NASA Langley was employed to permit study of the laser technology currently envisioned by NASA for global coherent Doppler lidar measurement of winds in the future. The 250 mJ, 10 Hz compact transceiver was also designed for future aircraft flight. Ground-based wind profiles made with this transceiver will be presented. NASA Langley is currently funded to build complete Doppler lidar systems using this transceiver for the DC-8 and WB-57 aircraft. The WB-57 flights will present a more severe environment and will require autonomous operation of the lidar system. The DC-8 lidar system is a likely component of future NASA hurricane research. It will include real-time data processing and display, as well as full data archiving. We will attempt to co-fly on both aircraft with a direct-detection Doppler wind lidar system being prepared by NASA Goddard Space Flight Center.

  14. Examples of design and achievement of vision systems for mobile robotics applications

    NASA Astrophysics Data System (ADS)

    Bonnin, Patrick J.; Cabaret, Laurent; Raulet, Ludovic; Hugel, Vincent; Blazevic, Pierre; M'Sirdi, Nacer K.; Coiffet, Philippe

    2000-10-01

    Our goal is to design and to achieve a multiple purpose vision system for various robotics applications : wheeled robots (like cars for autonomous driving), legged robots (six, four (SONY's AIBO) legged robots, and humanoid), flying robots (to inspect bridges for example) in various conditions : indoor or outdoor. Considering that the constraints depend on the application, we propose an edge segmentation implemented either in software, or in hardware using CPLDs (ASICs or FPGAs could be used too). After discussing the criteria of our choice, we propose a chain of image processing operators constituting an edge segmentation. Although this chain is quite simple and very fast to perform, results appear satisfactory. We proposed a software implementation of it. Its temporal optimization is based on : its implementation under the pixel data flow programming model, the gathering of local processing when it is possible, the simplification of computations, and the use of fast access data structures. Then, we describe a first dedicated hardware implementation of the first part, which requires 9CPLS in this low cost version. It is technically possible, but more expensive, to implement these algorithms using only a signle FPGA.

  15. STS-72 Mission Highlights Resource Tape

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The flight crew of the STS-72 Space Shuttle Orbiter Endeavour Cmdr. Brian Duffy, Pilot Brent W. Jett, and Mission Specialists; Leroy Chiao, Daniel T. Barry, Winston E. Scott, and Koichi Wakata (NASDA) present an overview of their mission, whose primary objective is the retrieval of two research satellites. The major activities of the mission will include retrieval of the Japanese Space Flyer Unit (SFU), which was launched aboard a Japanese H-2 rocket to conduct a variety of microgravity experiments. In addition, the STS-72 crew will deploy the AST-Flyer, a satellite, that will fly free of the Shuttle for about 50 hours. Four experiments on the science platform will operate autonomously before the satellite is retrieved by Endeavour's robot arm. Three of Endeavour's astronauts will conduct a pair of spacewalks during the mission to test hardware and tools that will be used in the assembly of the Space Station. Video footage includes the following: prelaunch and launch activities; the crew eating breakfast; shuttle launch; retrieval of the Japanese Space Flyer Unit (SFU); suit-up and EVA-1; EVA-2; crew members performing various physical exercises; various earth views; and the night landing of the shuttle at KSC.

  16. Hybrid ARQ Scheme with Autonomous Retransmission for Multicasting in Wireless Sensor Networks.

    PubMed

    Jung, Young-Ho; Choi, Jihoon

    2017-02-25

    A new hybrid automatic repeat request (HARQ) scheme for multicast service for wireless sensor networks is proposed in this study. In the proposed algorithm, the HARQ operation is combined with an autonomous retransmission method that ensure a data packet is transmitted irrespective of whether or not the packet is successfully decoded at the receivers. The optimal number of autonomous retransmissions is determined to ensure maximum spectral efficiency, and a practical method that adjusts the number of autonomous retransmissions for realistic conditions is developed. Simulation results show that the proposed method achieves higher spectral efficiency than existing HARQ techniques.

  17. Methods of monitoring the technical condition of the braking system of an autonomous vehicle during operation

    NASA Astrophysics Data System (ADS)

    Revin, A.; Dygalo, V.; Boyko, G.; Lyaschenko, M.; Dygalo, L.

    2018-02-01

    Possibilities of diagnosing of a technical condition of braking system of the autonomous vehicles with automated modules while in service are considered. The concept of sharing of onboard means and stands for diagnosing is presented.

  18. Autonomous Power System intelligent diagnosis and control

    NASA Technical Reports Server (NTRS)

    Ringer, Mark J.; Quinn, Todd M.; Merolla, Anthony

    1991-01-01

    The Autonomous Power System (APS) project at NASA Lewis Research Center is designed to demonstrate the abilities of integrated intelligent diagnosis, control, and scheduling techniques to space power distribution hardware. Knowledge-based software provides a robust method of control for highly complex space-based power systems that conventional methods do not allow. The project consists of three elements: the Autonomous Power Expert System (APEX) for fault diagnosis and control, the Autonomous Intelligent Power Scheduler (AIPS) to determine system configuration, and power hardware (Brassboard) to simulate a space based power system. The operation of the Autonomous Power System as a whole is described and the responsibilities of the three elements - APEX, AIPS, and Brassboard - are characterized. A discussion of the methodologies used in each element is provided. Future plans are discussed for the growth of the Autonomous Power System.

  19. Autonomous power system intelligent diagnosis and control

    NASA Technical Reports Server (NTRS)

    Ringer, Mark J.; Quinn, Todd M.; Merolla, Anthony

    1991-01-01

    The Autonomous Power System (APS) project at NASA Lewis Research Center is designed to demonstrate the abilities of integrated intelligent diagnosis, control, and scheduling techniques to space power distribution hardware. Knowledge-based software provides a robust method of control for highly complex space-based power systems that conventional methods do not allow. The project consists of three elements: the Autonomous Power Expert System (APEX) for fault diagnosis and control, the Autonomous Intelligent Power Scheduler (AIPS) to determine system configuration, and power hardware (Brassboard) to simulate a space based power system. The operation of the Autonomous Power System as a whole is described and the responsibilities of the three elements - APEX, AIPS, and Brassboard - are characterized. A discussion of the methodologies used in each element is provided. Future plans are discussed for the growth of the Autonomous Power System.

  20. Autonomous spacecraft maintenance study group

    NASA Technical Reports Server (NTRS)

    Marshall, M. H.; Low, G. D.

    1981-01-01

    A plan to incorporate autonomous spacecraft maintenance (ASM) capabilities into Air Force spacecraft by 1989 is outlined. It includes the successful operation of the spacecraft without ground operator intervention for extended periods of time. Mechanisms, along with a fault tolerant data processing system (including a nonvolatile backup memory) and an autonomous navigation capability, are needed to replace the routine servicing that is presently performed by the ground system. The state of the art fault handling capabilities of various spacecraft and computers are described, and a set conceptual design requirements needed to achieve ASM is established. Implementations for near term technology development needed for an ASM proof of concept demonstration by 1985, and a research agenda addressing long range academic research for an advanced ASM system for 1990s are established.

  1. Human-Interaction Challenges in UAV-Based Autonomous Surveillance

    NASA Technical Reports Server (NTRS)

    Freed, Michael; Harris, Robert; Shafto, Michael G.

    2004-01-01

    Autonomous UAVs provide a platform for intelligent surveillance in application domains ranging from security and military operations to scientific information gathering and land management. Surveillance tasks are often long duration, requiring that any approach be adaptive to changes in the environment or user needs. We describe a decision- theoretic model of surveillance, appropriate for use on our autonomous helicopter, that provides a basis for optimizing the value of information returned by the UAV. From this approach arise a range of challenges in making this framework practical for use by human operators lacking specialized knowledge of autonomy and mathematics. This paper describes our platform and approach, then describes human-interaction challenges arising from this approach that we have identified and begun to address.

  2. Mushroom bodies regulate habit formation in Drosophila.

    PubMed

    Brembs, Björn

    2009-08-25

    To make good decisions, we evaluate past choices to guide later decisions. In most situations, we have the opportunity to simultaneously learn about both the consequences of our choice (i.e., operantly) and the stimuli associated with correct or incorrect choices (i.e., classically). Interestingly, in many species, including humans, these learning processes occasionally lead to irrational decisions. An extreme case is the habitual drug user consistently administering the drug despite the negative consequences, but we all have experience with our own, less severe habits. The standard animal model employs a combination of operant and classical learning components to bring about habit formation in rodents. After extended training, these animals will press a lever even if the outcome associated with lever-pressing is no longer desired. In this study, experiments with wild-type and transgenic flies revealed that a prominent insect neuropil, the mushroom bodies (MBs), regulates habit formation in flies by inhibiting the operant learning system when a predictive stimulus is present. This inhibition enables generalization of the classical memory and prevents premature habit formation. Extended training in wild-type flies produced a phenocopy of MB-impaired flies, such that generalization was abolished and goal-directed actions were transformed into habitual responses.

  3. Power supply of autonomous systems using solar modules

    NASA Astrophysics Data System (ADS)

    Yurchenko, A. V.; Zotov, L. G.; Mekhtiev, A. D.; Yugai, V. V.; Tatkeeva, G. G.

    2015-04-01

    The article shows the methods of constructing autonomous decentralized energy systems from solar modules. It shows the operation of up DC inverter. It demonstrates the effectiveness of DC inverters with varying structure. The system has high efficiency and low level of conductive impulse noise and at the same time the system is practically feasible. Electrical processes have been analyzed to determine the characteristics of operating modes of the main circuit elements. Recommendations on using the converters have been given.

  4. Multidisciplinary unmanned technology teammate (MUTT)

    NASA Astrophysics Data System (ADS)

    Uzunovic, Nenad; Schneider, Anne; Lacaze, Alberto; Murphy, Karl; Del Giorno, Mark

    2013-01-01

    The U.S. Army Tank Automotive Research, Development and Engineering Center (TARDEC) held an autonomous robot competition called CANINE in June 2012. The goal of the competition was to develop innovative and natural control methods for robots. This paper describes the winning technology, including the vision system, the operator interaction, and the autonomous mobility. The rules stated only gestures or voice commands could be used for control. The robots would learn a new object at the start of each phase, find the object after it was thrown into a field, and return the object to the operator. Each of the six phases became more difficult, including clutter of the same color or shape as the object, moving and stationary obstacles, and finding the operator who moved from the starting location to a new location. The Robotic Research Team integrated techniques in computer vision, speech recognition, object manipulation, and autonomous navigation. A multi-filter computer vision solution reliably detected the objects while rejecting objects of similar color or shape, even while the robot was in motion. A speech-based interface with short commands provided close to natural communication of complicated commands from the operator to the robot. An innovative gripper design allowed for efficient object pickup. A robust autonomous mobility and navigation solution for ground robotic platforms provided fast and reliable obstacle avoidance and course navigation. The research approach focused on winning the competition while remaining cognizant and relevant to real world applications.

  5. Flying the Needles: Flight Deck Automation Erodes Fine-Motor Flying Skills Among Airline Pilots.

    PubMed

    Haslbeck, Andreas; Hoermann, Hans-Juergen

    2016-06-01

    The aim of this study was to evaluate the influence of practice and training on fine-motor flying skills during a manual instrument landing system (ILS) approach. There is an ongoing debate that manual flying skills of long-haul crews suffer from a lack of flight practice due to conducting only a few flights per month and the intensive use of automation. However, objective evidence is rare. One hundred twenty-six randomly selected airline pilots had to perform a manual flight scenario with a raw data precision approach. Pilots were assigned to four equal groups according to their level of practice and training by fleet (short-haul, long-haul) and rank (first officer, captain). Average ILS deviation scores differed significantly in relation to the group assignments. The strongest predictor variable was fleet, indicating degraded performance among long-haul pilots. Manual flying skills are subject to erosion due to a lack of practice on long-haul fleets: All results support the conclusion that recent flight practice is a significantly stronger predictor for fine-motor flying performance than the time period since flight school or even the total or type-specific flight experience. Long-haul crews have to be supported in a timely manner by adequate training tailored to address manual skills or by operational provisions like mixed-fleet flying or more frequent transitions between short-haul and long-haul operation. © 2016, Human Factors and Ergonomics Society.

  6. Caching Servers for ATLAS

    NASA Astrophysics Data System (ADS)

    Gardner, R. W.; Hanushevsky, A.; Vukotic, I.; Yang, W.

    2017-10-01

    As many LHC Tier-3 and some Tier-2 centers look toward streamlining operations, they are considering autonomously managed storage elements as part of the solution. These storage elements are essentially file caching servers. They can operate as whole file or data block level caches. Several implementations exist. In this paper we explore using XRootD caching servers that can operate in either mode. They can also operate autonomously (i.e. demand driven), be centrally managed (i.e. a Rucio managed cache), or operate in both modes. We explore the pros and cons of various configurations as well as practical requirements for caching to be effective. While we focus on XRootD caches, the analysis should apply to other kinds of caches as well.

  7. FLPP IXV Re-entry Vehicle, Transonic Characterisation Based on FOI T1500 Wind Tunnel Tests and CFD

    NASA Astrophysics Data System (ADS)

    Torngren, L.; Chiarelli, C.; Mareschi, V.; Tribot, J.-P.; Binetti, P.; Walloschek, T.

    2009-01-01

    The European Space Agency ESA, has engaged in 2004, the IXV project (Intermediate eXperimental Vehicle) which is part of the FLPP (Future Launcher Preparatory Programme) aiming at answering to critical technological issues, while supporting the future generation launchers and to improve in general European capabilities in the strategic field of atmospheric re-entry for space transportation, exploration and scientific applications. The IXV key mission and system objectives are the design, development, manufacturing, assembling and on-ground to in-flight verification of an autonomous European lifting and aerodynamically controlled re-entry system, integrating the critical re-entry technologies at the system level. The current IXV vehicle is a slender body type exhibiting rounded shape, thick body controlled by means of two control surfaces. The current mission is to perform an atmospheric re- entry ended by a safe recovery in supersonic regime. A potential extension of the flight domain down to the transonic regime was proposed to be analyzed. The objectives were to study the capability of the IXV for flying autonomously enabling a recovery of the vehicle by means of a subsonic parachute based DRS. The vehicle designed for the hypersonic speeds integrating a large base with only two control surfaces located close to the plane of symmetry is definitively not tuned for transonic ones. CFD done by Thales Alenia Space and wind tunnel activities involving FOI T1500 facility contributed to built up an Aerodynamic Data Base (AEDB) to be used as inputs for flying qualities analysis and re-entry simulations. The paper presents the main objectives of the transonic activities with emphasis on CFD and WTT including a description of the different prediction tools and discussing the main outcomes of the current data comparisons.

  8. Towards Autonomous Inspection of Space Systems Using Mobile Robotic Sensor Platforms

    NASA Technical Reports Server (NTRS)

    Wong, Edmond; Saad, Ashraf; Litt, Jonathan S.

    2007-01-01

    The space transportation systems required to support NASA's Exploration Initiative will demand a high degree of reliability to ensure mission success. This reliability can be realized through autonomous fault/damage detection and repair capabilities. It is crucial that such capabilities are incorporated into these systems since it will be impractical to rely upon Extra-Vehicular Activity (EVA), visual inspection or tele-operation due to the costly, labor-intensive and time-consuming nature of these methods. One approach to achieving this capability is through the use of an autonomous inspection system comprised of miniature mobile sensor platforms that will cooperatively perform high confidence inspection of space vehicles and habitats. This paper will discuss the efforts to develop a small scale demonstration test-bed to investigate the feasibility of using autonomous mobile sensor platforms to perform inspection operations. Progress will be discussed in technology areas including: the hardware implementation and demonstration of robotic sensor platforms, the implementation of a hardware test-bed facility, and the investigation of collaborative control algorithms.

  9. The SPEX-airborne multi-angle spectropolarimeter on NASA's ER-2 research aircraft: capabilities, data processing and data products

    NASA Astrophysics Data System (ADS)

    Rietjens, J.; Smit, M.; Hasekamp, O. P.; Grim, M.; Eggens, M.; Eigenraam, A.; Keizer, G.; van Loon, D.; Talsma, J.; van der Vlugt, J.; Wolfs, R.; van Harten, G.; Rheingans, B. E.; Snik, F.; Keller, C. U.; Smit, H.

    2016-12-01

    A multi-angle spectropolarimeter payload, "SPEX-airborne" has been developed for observing and characterizing aerosols from NASA's high-altitude research aircraft ER-2. SPEX-airborne provides autonomously multi-angle snapshot measurements of spectral radiance and degree of linear polarization over a 7 degree swath in the visible part of the optical spectrum. The instrument is unique in the sense that it combines 30 highly accurate polarimetric measurements with hyperspectral radiance measurements at 2.5 nm resolution simultaneously at nine fixed viewing angles and that it offers the possibility to include polarimetric measurements in absorption bands at lower accuracy. This combination of measurements holds great potential for present and new retrieval algorithms to derive aerosol microphysical properties during airborne campaigns. The opto-mechanical subsystem of SPEX-airborne is based on the Spectropolarimeter for Planetary EXploration (SPEX) prototype, which has been developed over recent years by a consortium of Dutch institutes and industry. The polarimetry technique used is spectral polarization modulation, which has been proven to enable high accuracy polarimetric measurements. In laboratory conditions, the SPEX prototype has a demonstrated polarimetric accuracy of 0.002 in the degree of linear polarization. The SPEX prototype has been made fit for autonomous operation on NASA's ER-2 high altitude platform. In this presentation we will present the design and main subsystems of the payload, and address the operational modes. An outline of the data processing chain including calibration data will be given and the foreseen capability and performance will be discussed. We will discuss the quality of the polarimetric measurement in the lab and as recorded during the maiden flight in 2016 when SPEX-airborne was flying together with JPL's AirMSPI imaging polarimeter. Finally, we will give an outlook on the processing of the data of land and ocean scenes, and on the possibilities for aerosol retrieval algorithms that the SPEX-airborne instrument offers, most notably the flexibility in number and center of the wavelength bands, and the incorporation of (polarimetric) O2A-band measurements.

  10. Conjunction Assessment Techniques and Operational Results from the Magnetospheric Multiscale Mission

    NASA Technical Reports Server (NTRS)

    Williams, Trevor; Carpenter, Russell; Farahmand, Mitra; Ottenstein, Neil; Demoret, Michael; Godine, Dominic

    2017-01-01

    This paper will describe the results that have been obtained to date during the MMS mission concerning conjunction assessment. MMS navigation makes use of a weak-signal GPS-based system: this allows signals to be received even when MMS is flying above the GPS orbits, producing a highly accurate determination of the four MMS orbits. This data is downlinked to the MMS Mission Operations Center (MOC) and used by the Flight Dynamics Operations Area (FDOA) for both maneuver design and conjunction assessment. The MMS fly in tetrahedron formations around apogee, in order to collect simultaneous particles and fields science data. The original plan was to fly tetrahedra between 10 and 160 km in size; however, after Phase 1a of the mission, the science team requested that smaller sizes be flown if feasible. After analysis (to be detailed in a companion paper), a new minimum size of 7 km was decided upon. Flying at this reduced scale size makes conjunction assessment between the MMS spacecraft even more important: the methods that are used by the MMS FDOA to address this problem will be described in the paper, and a summary given of the previous analyses that went into the development of these techniques. Details will also be given of operational experiences to date. Finally, two CA mitigation maneuver types that have been designed (but never yet required to actually be performed) will also be outlined.

  11. Workshop on Critical ORI Issues Held in Bordeaux, France on OCtober 27 - 29, 1992. Program and Abstracts.

    DTIC Science & Technology

    1992-10-29

    These people try to make their robotic vehicle as intelligent and autonomous as possible with the current state of technology. The robot only interacts... Robotics Peter J. Burt David Sarnoff Research Center Princeton, NJ 08543-5300 U.S.A. The ability of an operator to drive a remotely piloted vehicle depends...RESUPPLY - System which can rapidly and autonomously load and unload palletized ammunition. (18) AUTONOMOUS COMBAT EVACUATION VEHICLE - Robotic arms

  12. Evaluation of surveillance methods for monitoring house fly abundance and activity on large commercial dairy operations.

    PubMed

    Gerry, Alec C; Higginbotham, G E; Periera, L N; Lam, A; Shelton, C R

    2011-06-01

    Relative house fly, Musca domestica L., activity at three large dairies in central California was monitored during the peak fly activity period from June to August 2005 by using spot cards, fly tapes, bait traps, and Alsynite traps. Counts for all monitoring methods were significantly related at two of three dairies; with spot card counts significantly related to fly tape counts recorded the same week, and both spot card counts and fly tape counts significantly related to bait trap counts 1-2 wk later. Mean fly counts differed significantly between dairies, but a significant interaction between dairies sampled and monitoring methods used demonstrates that between-dairy comparisons are unwise. Estimate precision was determined by the coefficient of variability (CV) (or SE/mean). Using a CV = 0.15 as a desired level of estimate precision and assuming an integrate pest management (IPM) action threshold near the peak house fly activity measured by each monitoring method, house fly monitoring at a large dairy would require 12 spot cards placed in midafternoon shaded fly resting sites near cattle or seven bait traps placed in open areas near cattle. Software (FlySpotter; http://ucanr.org/ sites/FlySpotter/download/) using computer vision technology was developed to count fly spots on a scanned image of a spot card to dramatically reduce time invested in monitoring house flies. Counts provided by the FlySpotter software were highly correlated to visual counts. The use of spot cards for monitoring house flies is recommended for dairy IPM programs.

  13. Mountain Search and Rescue with Remotely Piloted Aircraft Systems

    NASA Astrophysics Data System (ADS)

    Silvagni, Mario; Tonoli, Andrea; Zenerino, Enrico; Chiaberge, Marcello

    2016-04-01

    Remotely Piloted Aircraft Systems (RPAS) also known as Unmanned Aerial Systems (UAS) are nowadays becoming more and more popular in several applications. Even though a complete regulation is not yet available all over the world, researches, tests and some real case applications are wide spreading. These technologies can bring many benefits also to the mountain operations especially in emergencies and harsh environmental conditions, such as Search and Rescue (SAR) and avalanche rescue missions. In fact, during last decade, the number of people practicing winter sports in backcountry environment is increased and one of the greatest hazards for recreationists and professionals are avalanches. Often these accidents have severe consequences leading, mostly, to asphyxia-related death, which is confirmed by the hard drop of survival probability after ten minutes from the burying. Therefore, it is essential to minimize the time of burial. Modern avalanche beacon (ARTVA) interface guides the rescuer during the search phase reducing its time. Even if modern avalanche beacons are valid and reliable, the seeking range influences the rescue time. Furthermore, the environment and morphologic conditions of avalanches usually complicates the rescues. The recursive methodology of this kind of searching offers the opportunity to use automatic device like drones (RPAS). These systems allow performing all the required tasks autonomously, with high accuracy and without exposing the rescuers to additional risks due to secondary avalanches. The availability of highly integrated electronics and subsystems specifically meant for the applications, better batteries, miniaturized payload and, in general, affordable prices, has led to the availability of small RPAS with very good performances that can give interesting application opportunities in unconventional environments. The present work is one of the outcome from the experience made by the authors in RPAS fields and in Mechatronics devices for Mountain Safety and shows the design, construction and testing of a multipurpose RPAS to be used in mountain operations. The flying, multi-rotors based, platform and its embedded avionics is designed to meet environmental requirements such as temperature, altitude and wind, assuring the capability of carrying different payloads (separately or together) aimed to: • Avalanche Beacon search with automatic signal recognition and path following algorithms for quick buried identification. • Visual (visible and InfraRed) search and rescue for identifying missing persons on snow and woods even during night. • Customizable payload deployment to drop emergency kits or specific explosive cartridge for controlled avalanche detachment. The resulting small (less than 5kg) RPA is capable of full autonomous flight (including take-off and landing) on a pre-programmed, or easily configurable, custom mission. Furthermore, the embedded autopilot manages the sensors measurements (i.e. beacons or cameras) to update the flying mission. Specific features such as laser altimeter for terrain following have been developed and implemented. Remote control of the RPA from a ground station is available and a possible infrastructure, based on cloud/on-line architecture, for the real application is presented.

  14. A Small Autonomous Unmanned Aerial Vehicle, Ant-Plane 4, for aeromagnetic survey

    NASA Astrophysics Data System (ADS)

    Funaki, M.; Tanabe, S.; Project, A.

    2007-05-01

    Autonomous unmanned aerial vehicles (UAV) are expected to use in Antarctica for geophysical research due to economy and safety operations. We have developed the technology of small UAVwith autonomous navigation referred to GPS and onboard magnetometer, meteorolgical devices and digital camera under the Ant-Plane project. The UAV focuses on operation for use in the summer season at coastal area in Antarctica; higher temperature than -15C under calm wind. In case of Ant-Plane 4, it can fly continuously more than 500 km, probably more than 1000 km, although the flight in Antarcitca has not succeeded The UAV of FRP is pusher type drone consisting of 2.6m span and 2.0m length with 2-cycles and 2-cylinder 86cc gasoline engine (7.2 HP) navigated. The maximum takeoff weight is 25kg including 1kg of payload. Cruising distance 500 km at speed of 130 km/h using 10 litter of fuel. The UAV is controlled by radio telemeter within 5km from a ground station and autonomous navigation referred to GPS latitude and longitude, pitot tube speed and barometer altitude. The magnetometer system consists of a 3-component magneto-resistant magnetometer (MR) sensor (Honeywell HMR2300), GPS and data logger. Three components of magnetic field, latitude, longitude, altitude, the number of satellite and time are recorded every second during 6 hours. The sensitivity of the magnetometer is 7 nT and we use a total magnetic field intensity for magnetic analysis due to unknown direction of heading of the plane. We succeeded in long distant flight to 500km with magnetometer by Ant-Plane 4 collaborated with Geoscience Australia, in March 2006. The survey was performed in the area 10kmx10km at Kalgoorlie, Western Australia. The magnetic data are obtained from 41 courses (250m in interval) of EW direction. The altitude of the flight was 900m from sea level and 500m from the runway. MR-magnetometer sensor was installed at the tip of a FRP pipe of 1m length, and the pipe was fixed to the head of the plane in order to reduce the plane magnetization. After 4 hours 14 minutes from the takeoff, the 500km flight was accomplished and the magnetic data were stored in the data logger. The straight flight course was almost consistent with the way point course, but the course was drastically disturbed when the plane was turning. The resolution of magnetic field decreased to 30nT, when the plane flew to the tail wind. However, it is worse against the head wind. Obtained anomaly pattern was compared with the magnetic anomaly pattern published by Geoscience Australia. Both patterns were essentially consistent, although a part of pattern in the head wind flights was not resemble. Ant-Plane 4 flew up to 5700 m in altitude with aerosol counter, thermometer and hygrometer at northern part of Japan. A drastic change of temperature, humidity and particle number was observed at the inversion layer of atmosphere. Consequently we conclude that the small drone Ant-Plane 4 can be used for geophysical research. We are making effort to develop Ant-Plane for more simple assemblage and more easy operation.

  15. Ground Operations Autonomous Control and Integrated Health Management

    NASA Technical Reports Server (NTRS)

    Daniels, James

    2014-01-01

    The Ground Operations Autonomous Control and Integrated Health Management plays a key role for future ground operations at NASA. The software that is integrated into this system is called G2 2011 Gensym. The purpose of this report is to describe the Ground Operations Autonomous Control and Integrated Health Management with the use of the G2 Gensym software and the G2 NASA toolkit for Integrated System Health Management (ISHM) which is a Computer Software Configuration Item (CSCI). The decision rationale for the use of the G2 platform is to develop a modular capability for ISHM and AC. Toolkit modules include knowledge bases that are generic and can be applied in any application domain module. That way, there's a maximization of reusability, maintainability, and systematic evolution, portability, and scalability. Engine modules are generic, while application modules represent the domain model of a specific application. Furthermore, the NASA toolkit, developed since 2006 (a set of modules), makes it possible to create application domain models quickly, using pre-defined objects that include sensors and components libraries for typical fluid, electrical, and mechanical systems.

  16. Fatty liver index and hepatic steatosis index for prediction of non-alcoholic fatty liver disease in type 1 diabetes.

    PubMed

    Sviklāne, Laura; Olmane, Evija; Dzērve, Zane; Kupčs, Kārlis; Pīrāgs, Valdis; Sokolovska, Jeļizaveta

    2018-01-01

    Little is known about the diagnostic value of hepatic steatosis index (HSI) and fatty liver index (FLI), as well as their link to metabolic syndrome in type 1 diabetes mellitus. We have screened the effectiveness of FLI and HSI in an observational pilot study of 40 patients with type 1 diabetes. FLI and HSI were calculated for 201 patients with type 1 diabetes. Forty patients with FLI/HSI values corresponding to different risk of liver steatosis were invited for liver magnetic resonance study. In-phase/opposed-phase technique of magnetic resonance was used. Accuracy of indices was assessed from the area under the receiver operating characteristic curve. Twelve (30.0%) patients had liver steatosis. For FLI, sensitivity was 90%; specificity, 74%; positive likelihood ratio, 3.46; negative likelihood ratio, 0.14; positive predictive value, 0.64; and negative predictive value, 0.93. For HSI, sensitivity was 86%; specificity, 66%; positive likelihood ratio, 1.95; negative likelihood ratio, 0.21; positive predictive value, 0.50; and negative predictive value, 0.92. Area under the receiver operating characteristic curve for FLI was 0.86 (95% confidence interval [0.72; 0.99]); for HSI 0.75 [0.58; 0.91]. Liver fat correlated with liver enzymes, waist circumference, triglycerides, and C-reactive protein. FLI correlated with C-reactive protein, liver enzymes, and blood pressure. HSI correlated with waist circumference and C-reactive protein. FLI ≥ 60 and HSI ≥ 36 were significantly associated with metabolic syndrome and nephropathy. The tested indices, especially FLI, can serve as surrogate markers for liver fat content and metabolic syndrome in type 1 diabetes. © 2017 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  17. Flight Control System Development for the BURRO Autonomous UAV

    NASA Technical Reports Server (NTRS)

    Colbourne, Jason D.; Frost, Chad R.; Tischler, Mark B.; Ciolani, Luigi; Sahai, Ranjana; Tomoshofski, Chris; LaMontagne, Troy; Rutkowski, Michael (Technical Monitor)

    2000-01-01

    Developing autonomous flying vehicles has been a growing field in aeronautical research within the last decade and will continue into the next century. With concerns about safety, size, and cost of manned aircraft, several autonomous vehicle projects are currently being developed; uninhabited rotorcraft offer solutions to requirements for hover, vertical take-off and landing, as well as slung load transportation capabilities. The newness of the technology requires flight control engineers to question what design approaches, control law architectures, and performance criteria apply to control law development and handling quality evaluation. To help answer these questions, this paper documents the control law design process for Kaman Aerospace BURRO project. This paper will describe the approach taken to design control laws and develop math models which will be used to convert the manned K-MAX into the BURRO autonomous rotorcraft. With the ability of the K-MAX to lift its own weight (6000 lb) the load significantly affects the dynamics of the system; the paper addresses the additional design requirements for slung load autonomous flight. The approach taken in this design was to: 1) generate accurate math models of the K-MAX helicopter with and without slung loads, 2) select design specifications that would deliver good performance as well as satisfy mission criteria, and 3) develop and tune the control system architecture to meet the design specs and mission criteria. An accurate math model was desired for control system development. The Comprehensive Identification from Frequency Responses (CIFER(R)) software package was used to identify a linear math model for unloaded and loaded flight at hover, 50 kts, and 100 kts. The results of an eight degree-of-freedom CIFER(R)-identified linear model for the unloaded hover flight condition are presented herein, and the identification of the two-body slung-load configuration is in progress.

  18. Mission Analysis and Orbit Control of Interferometric Wheel Formation Flying

    NASA Astrophysics Data System (ADS)

    Fourcade, J.

    Flying satellite in formation requires maintaining the specific relative geometry of the spacecraft with high precision. This requirement raises new problem of orbit control. This paper presents the results of the mission analysis of a low Earth observation system, the interferometric wheel, patented by CNES. This wheel is made up of three receiving spacecraft, which follow an emitting Earth observation radar satellite. The first part of this paper presents trades off which were performed to choose orbital elements of the formation flying which fulfils all constraints. The second part presents orbit positioning strategies including reconfiguration of the wheel to change its size. The last part describes the station keeping of the formation. Two kinds of constraints are imposed by the interferometric system : a constraint on the distance between the wheel and the radar satellite, and constraints on the distance between the wheel satellites. The first constraint is fulfilled with a classical chemical station keeping strategy. The second one is fulfilled using pure passive actuators. Due to the high stability of the relative eccentricity of the formation, only the relative semi major axis had to be controlled. Differential drag due to differential attitude motion was used to control relative altitude. An autonomous orbit controller was developed and tested. The final accuracy is a relative station keeping better than few meters for a wheel size of one kilometer.

  19. Test Operations Procedure (TOP) 02-2-546 Teleoperated Unmanned Ground Vehicle (UGV) Latency Measurements

    DTIC Science & Technology

    2017-01-11

    discrete system components or measurements of latency in autonomous systems. 15. SUBJECT TERMS Unmanned Ground Vehicles, Basic Video Latency, End-to... discrete system components or measurements of latency in autonomous systems. 1.1 Basic Video Latency. Teleoperation latency, or lag, describes

  20. Autonomous Mechanical Assembly on the Space Shuttle: An Overview

    NASA Technical Reports Server (NTRS)

    Raibert, M. H.

    1979-01-01

    The space shuttle will be equipped with a pair of 50 ft. manipulators used to handle payloads and to perform mechanical assembly operations. Although current plans call for these manipulators to be operated by a human teleoperator. The possibility of using results from robotics and machine intelligence to automate this shuttle assembly system was investigated. The major components of an autonomous mechanical assembly system are examined, along with the technology base upon which they depend. The state of the art in advanced automation is also assessed.

Top