Science.gov

Sample records for fm chirp waveforms

  1. Generating nonlinear FM chirp waveforms for radar.

    SciTech Connect

    Doerry, Armin Walter

    2006-09-01

    Nonlinear FM waveforms offer a radar matched filter output with inherently low range sidelobes. This yields a 1-2 dB advantage in Signal-to-Noise Ratio over the output of a Linear FM waveform with equivalent sidelobe filtering. This report presents design and implementation techniques for Nonlinear FM waveforms.

  2. SAR processing with non-linear FM chirp waveforms.

    SciTech Connect

    Doerry, Armin Walter

    2006-12-01

    Nonlinear FM (NLFM) waveforms offer a radar matched filter output with inherently low range sidelobes. This yields a 1-2 dB advantage in Signal-to-Noise Ratio over the output of a Linear FM (LFM) waveform with equivalent sidelobe filtering. This report presents details of processing NLFM waveforms in both range and Doppler dimensions, with special emphasis on compensating intra-pulse Doppler, often cited as a weakness of NLFM waveforms.

  3. Multiplexed chirp waveform synthesizer

    DOEpatents

    Dudley, Peter A.; Tise, Bert L.

    2003-09-02

    A synthesizer for generating a desired chirp signal has M parallel channels, where M is an integer greater than 1, each channel including a chirp waveform synthesizer generating at an output a portion of a digital representation of the desired chirp signal; and a multiplexer for multiplexing the M outputs to create a digital representation of the desired chirp signal. Preferably, each channel receives input information that is a function of information representing the desired chirp signal.

  4. Waveform design and Doppler sensitivity analysis for nonlinear FM chirp pulses

    NASA Astrophysics Data System (ADS)

    Johnston, J. A.; Fairhead, A. C.

    1986-04-01

    The use of pulse compression to obtain simultaneous long-range detection and good range resolution is described. The types of modulation that can be used to obtain pulse compression are outlined with particular emphasis on their performance under Doppler shift. It is shown that nonlinear frequency-modulated (FM) signals are capable of providing low range-sidelobes while being compressed using a matched filter. A design method for nonlinear FM signals based on window functions is outlined. Simulation results for pulse compression of nonlinear FM signals based on four different window functions with Doppler shift are presented. The results are used to define the effects of Doppler shift on the pulse compression. An analysis is presented, and interpreted pictorially, that explains the effects of Doppler shift on the pulse compression. The analysis is also extended to explain the better Doppler performance of hybrid FM pulse compression systems.

  5. Doppler estimation accuracy of linear FM waveforms

    NASA Astrophysics Data System (ADS)

    Daum, F. E.

    The single-pulse Doppler estimation accuracy of an unweighted linear FM waveform is analyzed in detail. Simple formulas are derived that predict that one-sigma Doppler estimation error for realistic radar applications. The effects of multiple target interference and nonlinearlities in the radar measurements are considered. In addition, a practical method to estimate Doppler frequency is presented. This technique uses the phase data after pulse compression, and it limits the effect of multiple target interference. In contrast, the available literature is based on the Cramer-Rao bound for Doppler accuracy, which ignores the effects of nonlinearities, multiple target interference and the question of practical implementation. A simple formula is derived that predicts the region of validity for the Cramer-Rao bound. This formula provides a criterion for minimum signal-to-noise ratio in terms of time-bandwidth product. Finally, an important concept that is demonstrated in this paper is that: the bulk of the Doppler information in a linear FM pulse is encoded in the range sidelobes after pulse compression.

  6. Generating nonlinear FM chirp radar signals by multiple integrations

    DOEpatents

    Doerry, Armin W [Albuquerque, NM

    2011-02-01

    A phase component of a nonlinear frequency modulated (NLFM) chirp radar pulse can be produced by performing digital integration operations over a time interval defined by the pulse width. Each digital integration operation includes applying to a respectively corresponding input parameter value a respectively corresponding number of instances of digital integration.

  7. Design of chirp excitation waveform for dual-frequency harmonic contrast detection.

    PubMed

    Shen, Che-Chou; Chiu, Yi-Yuan

    2009-10-01

    Tissue background suppression is essential for harmonic detection of ultrasonic contrast microbubbles. To reduce the tissue harmonic amplitude for improvement of contrast-to-tissue ratio (CTR), the method of third harmonic (3f(0)) transmit phasing uses an additional 3f(0) transmit signal to provide mutual cancellation between the frequency-sum component and the frequency-difference component of tissue harmonic signal. Chirp excitation can further improve the SNR in harmonic imaging without requiring an excessive transmit pressure and thus reduce potential bubble destruction. However, for effective suppression of tissue harmonic background in 3f(0) transmit phasing, the 3f(0) chirp waveform has to be carefully designed for the generation of spectrally matched cancellation pairs over the entire second harmonic band. In this study, we proposed a chirp waveform suitable for the method of 3f(0) transmit phasing, the different-bandwidth chirp signal (DBCS). With the DBCS waveform, the frequency-difference component of tissue harmonic signal becomes a chirp signal similar to its frequency-sum counterpart. Thus, the combination of the DBCS waveform with the 3f(0) transmit phasing can markedly suppress the tissue harmonic amplitude for CTR improvement together with effective SNR increase of contrast harmonic signal. Our results indicate that, as compared with the conventional Gaussian pulse, the DBCS waveform can provide 6-dB improvement of SNR in 3f(0) transmit phasing with a CTR increase of 3 dB. Nevertheless, the limitation of available transmit bandwidth and the frequency-dependent attenuation can degrade the performance of the DBCS waveform in tissue suppression. The design of the DBCS waveform is also applicable to other dual-frequency imaging techniques that rely on the harmonic generation at the difference frequency.

  8. Frequency-Dependent Blanking with Digital Linear Chirp Waveform Synthesis

    SciTech Connect

    Doerry, Armin Walter; Andrews, John M.

    2014-07-01

    Wideband radar systems, especially those that operate at lower frequencies such as VHF and UHF, are often restricted from transmitting within or across specific frequency bands in order to prevent interference to other spectrum users. Herein we describe techniques for notching the transmitted spectrum of a generated and transmitted radar waveform. The notches are fully programmable as to their location, and techniques are given that control the characteristics of the notches.

  9. Ultrafast chirped optical waveform recorder using a time microscope

    SciTech Connect

    Bennett, Corey Vincent

    2015-04-21

    A new technique for capturing both the amplitude and phase of an optical waveform is presented. This technique can capture signals with many THz of bandwidths in a single shot (e.g., temporal resolution of about 44 fs), or be operated repetitively at a high rate. That is, each temporal window (or frame) is captured single shot, in real time, but the process may be run repeatedly or single-shot. By also including a variety of possible demultiplexing techniques, this process is scalable to recoding continuous signals.

  10. Ultrafast chirped optical waveform recorder using referenced heterodyning and a time microscope

    DOEpatents

    Bennett, Corey Vincent [Livermore, CA

    2011-11-22

    A new technique for capturing both the amplitude and phase of an optical waveform is presented. This technique can capture signals with many THz of bandwidths in a single shot (e.g., temporal resolution of about 44 fs), or be operated repetitively at a high rate. That is, each temporal window (or frame) is captured single shot, in real time, but the process may be run repeatedly or single-shot. This invention expands upon previous work in temporal imaging by adding heterodyning, which can be self-referenced for improved precision and stability, to convert frequency chirp (the second derivative of phase with respect to time) into a time varying intensity modulation. By also including a variety of possible demultiplexing techniques, this process is scalable to recoding continuous signals.

  11. Ultrafast chirped optical waveform recording using referenced heterodyning and a time microscope

    DOEpatents

    Bennett, Corey Vincent

    2010-06-15

    A new technique for capturing both the amplitude and phase of an optical waveform is presented. This technique can capture signals with many THz of bandwidths in a single shot (e.g., temporal resolution of about 44 fs), or be operated repetitively at a high rate. That is, each temporal window (or frame) is captured single shot, in real time, but the process may be run repeatedly or single-shot. This invention expands upon previous work in temporal imaging by adding heterodyning, which can be self-referenced for improved precision and stability, to convert frequency chirp (the second derivative of phase with respect to time) into a time varying intensity modulation. By also including a variety of possible demultiplexing techniques, this process is scalable to recoding continuous signals.

  12. Digital generation of high time-bandwidth product linear FM waveforms for radar altimeters

    NASA Astrophysics Data System (ADS)

    Griffiths, H. D.; Bradford, W. J.

    1992-04-01

    The paper describes and demonstrates a method of generating linear FM waveforms of very high time bandwidth product (in excess of 100,000) with range sidelobe levels more than adequate for future-generation radar altimeters. The technique is extremely flexible, and the pulse length and bandwidth are easily varied by changing the parameters of the digital circuitry. An analysis is developed to relate the level of phase and amplitude errors to the permissible range sidelobe level, showing that considerably greater phase errors can be tolerated than for conventional pulse compression radars. The validity of this analysis is confirmed by experiment.

  13. Nonlinear stepped chirp waveforms with subpulse processing for range side lobe suppression

    NASA Astrophysics Data System (ADS)

    Keel, Byron M.; Saffold, James A.; Walbridge, Mark R.; Chadwick, John

    1998-08-01

    The linear step frequency pulse compression waveform suffers from: a) range ambiguities due to periodicities in the discrete Fourier transform (DFT) and, b) signal-to-noise ratio (SNR) losses due to amplitude weighting used to suppress nominal range sidelobes. Mark Walbridge of DERA Malvern, UK, has proposed a nonlinear step frequency waveform which is derived from sampling a Dolph-Chebyshev weighting function. The waveform does not exhibit range ambiguities and achieves low near-in sidelobes without incurring the SNR loss associated with conventional sidelobe suppression techniques. This paper assesses an implementation of the non-linear step frequency waveform by quantifying range sidelobes, range resolution, and range- Doppler coupling. The waveform has application in ultra-high range resolution profile generation.

  14. Synthetic aperture acoustic imaging of canonical targets with a 2-15 kHz linear FM chirp

    NASA Astrophysics Data System (ADS)

    Vignola, Joseph F.; Judge, John A.; Good, Chelsea E.; Bishop, Steven S.; Gugino, Peter M.; Soumekh, Mehrdad

    2011-06-01

    Synthetic aperture image reconstruction applied to outdoor acoustic recordings is presented. Acoustic imaging is an alternate method having several military relevant advantages such as being immune to RF jamming, superior spatial resolution, capable of standoff side and forward-looking scanning, and relatively low cost, weight and size when compared to 0.5 - 3 GHz ground penetrating radar technologies. Synthetic aperture acoustic imaging is similar to synthetic aperture radar, but more akin to synthetic aperture sonar technologies owing to the nature of longitudinal or compressive wave propagation in the surrounding acoustic medium. The system's transceiver is a quasi mono-static microphone and audio speaker pair mounted on a rail 5meters in length. Received data sampling rate is 80 kHz with a 2- 15 kHz Linear Frequency Modulated (LFM) chirp, with a pulse repetition frequency (PRF) of 10 Hz and an inter-pulse period (IPP) of 50 milliseconds. Targets are positioned within the acoustic scene at slant range of two to ten meters on grass, dirt or gravel surfaces, and with and without intervening metallic chain link fencing. Acoustic image reconstruction results in means for literal interpretation and quantifiable analyses. A rudimentary technique characterizes acoustic scatter at the ground surfaces. Targets within the acoustic scene are first digitally spotlighted and further processed, providing frequency and aspect angle dependent signature information.

  15. SAR impulse response with residual chirps.

    SciTech Connect

    Doerry, Armin Walter

    2009-06-01

    A Linear Frequency-Modulated (LFM) chirp is a function with unit amplitude and quadratic phase characteristic. In a focused Synthetic Aperture Radar (SAR) image, a residual chirp is undesired for targets of interest, as it coarsens the manifested resolution. However, for undesired spurious signals, a residual chirp is often advantageous because it spreads the energy and thereby diminishes its peak value. In either case, a good understanding of the effects of a residual LFM chirp on a SAR Impulse Response (IPR) is required to facilitate system analysis and design. This report presents an analysis of the effects of a residual chirp on the IPR. As reference, there is a rich body of publications on various aspects of LFM chirps. A quick search reveals a plethora of articles, going back to the early 1950s. We mention here purely as trivia one of the earlier analysis papers on this waveform by Klauder, et al.

  16. Amplitude-modulation chirp imaging for contrast detection.

    PubMed

    Li, Meng-Lin; Kuo, Yu-Chen; Yeh, Chih-Kuang

    2010-09-01

    We propose an amplitude-modulation chirp imaging method for contrast detection with high-frequency ultrasound. Our proposed method detects microbubbles by extracting and then selectively compressing the component of the backscattered chirp signal modulated by changes in the radii of microbubbles at their resonance frequency. Microbubbles are sonicated simultaneously with a narrowband, low-frequency pumping signal at their resonance frequency and a wideband, high-frequency imaging chirp signal. Changes in the radii of the resonant microbubbles result in periodic changes in their acoustic cross section that modulate the amplitude of the backscattered imaging chirp signal, forming pumping and imaging frequency sum-and-difference chirp terms. The frequency-sum or -difference chirp component is then extracted by a bandpass filter (BPF). Because a long imaging pulse duration is required to obtain a sufficient modulation depth on the chirp for contrast detection and to facilitate frequency-sum-and-difference signal extraction with the BPF, a chirp with a longer-than-usual waveform is used so pulse compression of the extracted chirp signal can then be performed to maintain the axial resolution, and even further improve the signal-to-noise ratio and contrast-to-tissue ratio. Experiments performed on flow phantoms with and without a speckle-generating background were performed to demonstrate the efficacy of the proposed technique. These results indicate that our proposed method can potentially provide high-resolution contrast detection in the microvasculature.

  17. Automatic Parametrization of Somatosensory Evoked Potentials With Chirp Modeling.

    PubMed

    Vayrynen, Eero; Noponen, Kai; Vipin, Ashwati; Thow, X Y; Al-Nashash, Hasan; Kortelainen, Jukka; All, Angelo

    2016-09-01

    In this paper, an approach using polynomial phase chirp signals to model somatosensory evoked potentials (SEPs) is proposed. SEP waveforms are assumed as impulses undergoing group velocity dispersion while propagating along a multipath neural connection. Mathematical analysis of pulse dispersion resulting in chirp signals is performed. An automatic parameterization of SEPs is proposed using chirp models. A Particle Swarm Optimization algorithm is used to optimize the model parameters. Features describing the latencies and amplitudes of SEPs are automatically derived. A rat model is then used to evaluate the automatic parameterization of SEPs in two experimental cases, i.e., anesthesia level and spinal cord injury (SCI). Experimental results show that chirp-based model parameters and the derived SEP features are significant in describing both anesthesia level and SCI changes. The proposed automatic optimization based approach for extracting chirp parameters offers potential for detailed SEP analysis in future studies. The method implementation in Matlab technical computing language is provided online.

  18. Phase-locking and coherent power combining of broadband linearly chirped optical waves.

    PubMed

    Satyan, Naresh; Vasilyev, Arseny; Rakuljic, George; White, Jeffrey O; Yariv, Amnon

    2012-11-05

    We propose, analyze and demonstrate the optoelectronic phase-locking of optical waves whose frequencies are chirped continuously and rapidly with time. The optical waves are derived from a common optoelectronic swept-frequency laser based on a semiconductor laser in a negative feedback loop, with a precisely linear frequency chirp of 400 GHz in 2 ms. In contrast to monochromatic waves, a differential delay between two linearly chirped optical waves results in a mutual frequency difference, and an acoustooptic frequency shifter is therefore used to phase-lock the two waves. We demonstrate and characterize homodyne and heterodyne optical phase-locked loops with rapidly chirped waves, and show the ability to precisely control the phase of the chirped optical waveform using a digital electronic oscillator. A loop bandwidth of ~ 60 kHz, and a residual phase error variance of < 0.01 rad(2) between the chirped waves is obtained. Further, we demonstrate the simultaneous phase-locking of two optical paths to a common master waveform, and the ability to electronically control the resultant two-element optical phased array. The results of this work enable coherent power combining of high-power fiber amplifiers-where a rapidly chirping seed laser reduces stimulated Brillouin scattering-and electronic beam steering of chirped optical waves.

  19. Dual-frequency chirp imaging for contrast detection

    NASA Astrophysics Data System (ADS)

    Cheng, Chih-Hao; Shen, Che-Chou; Yeh, Chih-Kuang

    2011-05-01

    The method of dual-frequency (DF) difference excitation is capable of generating a low-frequency envelope component as the driving force of commercial contrast microbubbles by using a high-frequency pulse. Although the DF difference excitation method provides good lateral resolution in high-frequency contrast imaging, it suffers from degraded axial resolution because a longer-than-usual envelope component is required to induce the oscillation of microbubbles. In this study, a coded excitation technique (i.e. chirp waveform) is combined with the DF difference excitation method (also referred to as the DF chirp excitation method) to improve the axial resolution of contrast imaging while maintaining the impinging insonation energy. B-mode images were constructed to compare the performance of the DF chirp excitation method with the conventional tone-burst pulse method. Results indicate that the proposed DF chirp excitation method can provide better axial resolution after pulse compression. Moreover, as compared to the tone-burst pulse with the same pulse duration, the pulse compression results in a higher signal-to-noise ratio because of the temporal concentration of the received energy. Nevertheless, images with the DF chirp excitation method demonstrated noticeable image artefacts resulting from the range sidelobes. The DF chirp excitation method also produced obvious tissue harmonic generation that could degrade the contrast-to-tissue ratio at higher acoustic pressures.

  20. Dual-frequency chirp imaging for contrast detection.

    PubMed

    Cheng, Chih-Hao; Shen, Che-Chou; Yeh, Chih-Kuang

    2011-05-07

    The method of dual-frequency (DF) difference excitation is capable of generating a low-frequency envelope component as the driving force of commercial contrast microbubbles by using a high-frequency pulse. Although the DF difference excitation method provides good lateral resolution in high-frequency contrast imaging, it suffers from degraded axial resolution because a longer-than-usual envelope component is required to induce the oscillation of microbubbles. In this study, a coded excitation technique (i.e. chirp waveform) is combined with the DF difference excitation method (also referred to as the DF chirp excitation method) to improve the axial resolution of contrast imaging while maintaining the impinging insonation energy. B-mode images were constructed to compare the performance of the DF chirp excitation method with the conventional tone-burst pulse method. Results indicate that the proposed DF chirp excitation method can provide better axial resolution after pulse compression. Moreover, as compared to the tone-burst pulse with the same pulse duration, the pulse compression results in a higher signal-to-noise ratio because of the temporal concentration of the received energy. Nevertheless, images with the DF chirp excitation method demonstrated noticeable image artefacts resulting from the range sidelobes. The DF chirp excitation method also produced obvious tissue harmonic generation that could degrade the contrast-to-tissue ratio at higher acoustic pressures.

  1. Chirp-encoded excitation for dual-frequency ultrasound tissue harmonic imaging.

    PubMed

    Shen, Che-Chou; Lin, Chin-Hsiang

    2012-11-01

    Dual-frequency (DF) transmit waveforms comprise signals at two different frequencies. With a DF transmit waveform operating at both fundamental frequency (f(0)) and second-harmonic frequency (2f(0)), tissue harmonic imaging can be simultaneously performed using not only the conventional 2f(0) second-harmonic signal but also using the f(0 )frequency-difference harmonic signal. Nonetheless, when chirp excitation is incorporated into the DF transmit waveform for harmonic SNR improvement, a particular waveform design is required to maintain the bandwidth of the f(0) harmonic signal. In this study, two different DF chirp waveforms are proposed to produce equal harmonic bandwidth at both the f(0) and 2f(0) frequencies to achieve speckle reduction by harmonic spectral compounding and to increase harmonic SNR for enhanced penetration and sensitivity. The UU13 waveform comprises an up-sweeping f(0) chirp and an up-sweeping 2f(0) chirp with triple bandwidth, whereas the UD11 waveform includes an up-sweeping f(0) chirp and a down-sweeping 2f(0) chirp with equal bandwidth. Experimental results indicate that the UU13 tends to suffer from a high range side lobe level resulting from 3f(0) interference. Consequently, the 2f(0) harmonic envelopes of the UD11 and the UU13 waveforms have compression qualities of 87% and 77%, respectively, when the signal bandwidth is 30%. When the bandwidth increases to 50%, the compression quality of the 2f(0) harmonic envelope degrades to 78% and 54%, respectively, for the UD11 and the UU13 waveforms. The compression quality value of the f0 harmonic envelope remains similar between the two DF transmit waveforms for all signal bandwidths. B-mode harmonic images also show that the UD11 is less contaminated by range side lobe artifacts than is the UU13. Compared with a short pulse with equal bandwidth, the UD11 waveform not only preserves the same spatial resolution after compression but also improves the image SNR by about 10 dB. Moreover, the image

  2. Application of frequency modulated chirp stimuli for rapid and sensitive ABR measurements in the rat.

    PubMed

    Spankovich, Christopher; Hood, Linda J; Wesley Grantham, D; Polley, Daniel B

    2008-11-01

    Rodents have proven to be a useful model system to screen genes, ototoxic compounds and sound exposure protocols that may play a role in hearing loss. High-throughput screening depends upon a rapid and reliable functional assay for hearing loss. This study describes the use of a frequency modulated (FM) chirp stimulus as an alternative to the click to derive a rapid assessment of auditory brainstem response (ABR) threshold in the rodent. We designed a rising frequency A-chirp based upon the spatial mapping of preferred frequency along the rat basilar membrane to provide a more synchronous and equipotent input across the length of the cochlea. We observed that the ABR wave I and wave IV amplitudes evoked by the A-chirp were significantly greater than the click and that A-chirp minimum response thresholds were lower than the click. Subsequent analyses compared the efficacy of the A-chirp to linear, time-reversed and amplitude-reversed chirps and confirmed that the A-chirp was most effective chirp configuration. These data suggest that the A-chirp may be optimally suited as a single screening broad-frequency stimulus for rapid ABR threshold estimations in the rodent and could serve to complement more detailed frequency-specific physiologic and behavioral estimates of hearing threshold.

  3. Coded multiple chirp spread spectrum system and overlay service

    NASA Technical Reports Server (NTRS)

    Kim, Junghwan; Pratt, Timothy; Ha, Tri T.

    1988-01-01

    An asynchronous spread-spectrum system called coded multiple chirp is proposed, and the possible spread-spectrum overlay over an analog FM-TV signal is investigated by computer simulation. Multiple single-sloped up and down chirps are encoded by a pseudonoise code and decoded by dechirpers (pulse-compression filters) followed by a digital code correlator. The performance of the proposed system, expressed in terms of in probability of bit error and code miss probability, is similar to that of FSK (frequency shift keying) using codewords if sufficient compression gain is used. When chirp is used to overlay an FM-TV channel, two chirp signals with data rate up to 25 kb/s could be overlaid in a 36-MHz satellite transponder without significant mutual interference. Performance estimates for a VSAT (very small aperture terminal) earth station operating at C-band show that a 2.4-m antenna and 300-mW transmitter could send a 2.4-kb/s signal to a large central earth station over an occupied channel.

  4. Carrier Modulation Via Waveform Probability Density Function

    NASA Technical Reports Server (NTRS)

    Williams, Glenn L.

    2006-01-01

    Beyond the classic modes of carrier modulation by varying amplitude (AM), phase (PM), or frequency (FM), we extend the modulation domain of an analog carrier signal to include a class of general modulations which are distinguished by their probability density function histogram. Separate waveform states are easily created by varying the pdf of the transmitted waveform. Individual waveform states are assignable as proxies for digital one's or zero's. At the receiver, these states are easily detected by accumulating sampled waveform statistics and performing periodic pattern matching, correlation, or statistical filtering. No fundamental physical laws are broken in the detection process. We show how a typical modulation scheme would work in the digital domain and suggest how to build an analog version. We propose that clever variations of the modulating waveform (and thus the histogram) can provide simple steganographic encoding.

  5. Carrier Modulation Via Waveform Probability Density Function

    NASA Technical Reports Server (NTRS)

    Williams, Glenn L.

    2004-01-01

    Beyond the classic modes of carrier modulation by varying amplitude (AM), phase (PM), or frequency (FM), we extend the modulation domain of an analog carrier signal to include a class of general modulations which are distinguished by their probability density function histogram. Separate waveform states are easily created by varying the pdf of the transmitted waveform. Individual waveform states are assignable as proxies for digital ONEs or ZEROs. At the receiver, these states are easily detected by accumulating sampled waveform statistics and performing periodic pattern matching, correlation, or statistical filtering. No fundamental natural laws are broken in the detection process. We show how a typical modulation scheme would work in the digital domain and suggest how to build an analog version. We propose that clever variations of the modulating waveform (and thus the histogram) can provide simple steganographic encoding.

  6. Quantifying chirp in sleep spindles.

    PubMed

    Schönwald, Suzana V; Carvalho, Diego Z; Dellagustin, Guilherme; de Santa-Helena, Emerson L; Gerhardt, Günther J L

    2011-04-15

    Sleep spindles are considered as a marker of integrity for thalamo-cortical circuits. Recently, attention has been given to internal frequency variation in sleep spindles. In this study, a procedure based on matching pursuit with a Gabor-chirplet dictionary was applied in order to measure chirp rate in atoms representing sleep spindles, also categorized into negative, positive or zero chirp types. The sample comprised 707 EEG segments containing visual sleep spindles, labeled TP, obtained from nine healthy male volunteers (aged 20-34, average 24.6 y). Control datasets were 333 non-REM (NREM) sleep background segments and 287 REM sleep intervals, each with 16s duration. Analyses were carried out on the C3-A2 EEG channel. In TP and NREM groups, the proportion of non-null chirp types was non-random and total chirp distribution was asymmetrical towards negative values, in contrast to REM. Median negative chirp rate in the TP and NREM groups was significantly lower than in REM (-0.4 Hz/s vs -0.3 Hz/s, P < 0.05). Negative chirp atoms outnumbered positives by 50% in TP, while in NREM and REM, they were, respectively, only 22% and 12% more prevalent. TP negative chirp atoms were significantly higher in amplitude compared to positive or zero types. Considering individual subjects, 88.9% had a TP negative/positive chirp ratio above 1 (mean ± sd=1.64 ± 0.65). We propose there is increasing evidence, corroborated by the present study, favoring systematic measurement of sleep spindle chirp rate or internal frequency variation. Preferential occurrence of negatively chirping spindles is consistent with the hypothesis of electrophysiological modulation of neocortical memory consolidation.

  7. Transionospheric chirp event classifier

    SciTech Connect

    Argo, P.E.; Fitzgerald, T.J.; Freeman, M.J.

    1995-09-01

    In this paper we will discuss a project designed to provide computer recognition of the transionospheric chirps/pulses measured by the Blackbeard (BB) satellite, and expected to be measured by the upcoming FORTE satellite. The Blackbeard data has been perused by human means -- this has been satisfactory for the relatively small amount of data taken by Blackbeard. But with the advent of the FORTE system, which by some accounts might ``see`` thousands of events per day, it is important to provide a software/hardware method of accurately analyzing the data. In fact, we are providing an onboard DSP system for FORTE, which will test the usefulness of our Event Classifier techniques in situ. At present we are constrained to work with data from the Blackbeard satellite, and will discuss the progress made to date.

  8. Transionospheric chirp event classifier

    NASA Astrophysics Data System (ADS)

    Argo, P. E.; Fitzgerald, T. J.; Freeman, M. J.

    In this paper we will discuss a project designed to provide computer recognition of the transionospheric chirps/pulses measured by the Blackbeard (BB) satellite, and expected to be measured by the upcoming FORTE satellite. The Blackbeard data has been perused by human means - this has been satisfactory for the relatively small amount of data taken by Blackbeard. But with the advent of the FORTE system, which by some accounts might 'see' thousands of events per day, it is important to provide a software/hardware method of accurately analyzing the data. In fact, we are providing an onboard DSP system for FORTE, which will test the usefulness of our Event Classifier techniques in situ. At present we are constrained to work with data from the Blackbeard satellite, and will discuss the progress made to date.

  9. Waveform design for detection of weapons based on signature exploitation

    NASA Astrophysics Data System (ADS)

    Ahmad, Fauzia; Amin, Moeness G.; Dogaru, Traian

    2010-04-01

    We present waveform design based on signature exploitation techniques for improved detection of weapons in urban sensing applications. A single-antenna monostatic radar system is considered. Under the assumption of exact knowledge of the target orientation and, hence, known impulse response, matched illumination approach is used for optimal target detection. For the case of unknown target orientation, we analyze the target signatures as random processes and perform signal-to-noise-ratio based waveform optimization. Numerical electromagnetic modeling is used to provide the impulse responses of an AK-47 assault rifle for various target aspect angles relative to the radar. Simulation results depict an improvement in the signal-to-noise-ratio at the output of the matched filter receiver for both matched illumination and stochastic waveforms as compared to a chirp waveform of the same duration and energy.

  10. First results of a deep tow CHIRP sonar seafloor imaging system

    USGS Publications Warehouse

    Parent, M.; Fang, Changle; O'Brien, Thomas F.; Danforth, William W.

    1993-01-01

    The latest and most innovative technology has been applied towards the development of a full-ocean depth multi-sensor sonar system using linear swept-FM (Chirp) technology. The seafloor imaging system (SIS- 7000) described herein uses Chirp sidescan sonar to provide high resolution imagery at long range, and Chirp subbottom sonar to provide high resolution profiles in both the near bottom and deeper subbottom. The tow vehicle contains a suite of full-ocean depth instrumentation for measuring various oceanographic parameters and for monitoring vehicle status. Top side systems include a sonar display and data logging system as well as real-time sensor status display and tow vehicle control system. This paper will present an overview of this system, describe its technology and capabilities, and present some initial results. 

  11. Chirp Scaling Algorithms for SAR Processing

    NASA Technical Reports Server (NTRS)

    Jin, M.; Cheng, T.; Chen, M.

    1993-01-01

    The chirp scaling SAR processing algorithm is both accurate and efficient. Successful implementation requires proper selection of the interval of output samples, which is a function of the chirp interval, signal sampling rate, and signal bandwidth. Analysis indicates that for both airborne and spaceborne SAR applications in the slant range domain a linear chirp scaling is sufficient. To perform nonlinear interpolation process such as to output ground range SAR images, one can use a nonlinear chirp scaling interpolator presented in this paper.

  12. Amplitude modulated chirp excitation to reduce grating lobes and maintain ultrasound intensity at the focus of an array.

    PubMed

    Karunakaran, Chandra P; Oelze, Michael L

    2013-09-01

    During application of high intensity focused ultrasound (HIFU) with therapy arrays, the existence of grating lobes can cause heating at unintended tissue regions. Therefore, the reduction of grating lobes in therapeutic arrays is an important goal. One way to reduce the grating lobes in therapy arrays is to excite the arrays with broadband signals (defined here as >10% fractional bandwidth). To achieve a reduction in grating lobe levels in an ultrasonic array, coded waveforms can be utilized that reduce the grating lobe levels while maintaining the spatial peak temporal average intensity. In this study, a 5-MHz, 9-element, 1.25 mm inter-elemental spacing linear array was excited by a sinusoidal waveform, a conventional linear chirp, and a modified linear chirp. Both chirps spanned the -3-dB bandwidth of the transducer. The conventional chirp was a broadband signal with a linear sweep of frequencies between 2.5 and 7.5 MHz, with all frequency components excited with equal amplitude. The modified chirp signal also swept the frequencies between 2.5 and 7.5 MHz, but the amplitude was weighted such that the edges (low and high frequencies of the band) were excited with more energy than the center of the band. In simulations, the field patterns for the sinusoidal, conventional chirp and modified chirp excitations were produced from the array using Field II and compared. For experiments, the beam pattern from a 5-MHz single-element transducer was mapped using a hydrophone for the sinusoidal, conventional chirp and modified chirp excitation. Each field from the transducer was repeated and summed to produce a field from an array of 9 elements. The difference in the time averaged intensity (in dB) in the main lobe and grating lobes were estimated for each excitation and compared. The results demonstrated that the chirp signals resulted in decreases in grating lobe levels compared to the main lobe, i.e. 10 dB down for focusing and 6 dB down for focusing and steering. A

  13. The effect of amplitude modulation on subharmonic imaging with chirp excitation.

    PubMed

    Harput, Sevan; Arif, Muhammad; McLaughlan, James; Cowell, David M J; Freear, Steven

    2013-12-01

    Subharmonic generation from ultrasound contrast agents depends on the spectral and temporal properties of the excitation signal. The subharmonic response can be improved by using wideband and long-duration signals. However, for sinusoidal tone-burst excitation, the effective bandwidth of the signal is inversely proportional to the signal duration. Linear frequency-modulated (LFM) and nonlinear frequency-modulated (NLFM) chirp excitations allow independent control over the signal bandwidth and duration; therefore, in this study LFM and NLFM signals were used for the insonation of microbubble populations. The amplitude modulation of the excitation waveform was achieved by applying different window functions. A customized window was designed for the NLFM chirp excitation by focusing on reducing the spectral leakage at the subharmonic frequency and increasing the subharmonic generation from microbubbles. Subharmonic scattering from a microbubble population was measured for various excitation signals and window functions. At a peak negative pressure of 600 kPa, the generated subharmonic energy by ultrasound contrast agents was 15.4 dB more for NLFM chirp excitation with 40% fractional bandwidth when compared with tone-burst excitation. For this reason, the NLFM chirp with a customized window was used as an excitation signal to perform subharmonic imaging in an ultrasound flow phantom. Results showed that the NLFM waveform with a customized window improved the subharmonic contrast by 4.35 ± 0.42 dB on average over a Hann-windowed LFM excitation.

  14. Experimental photonic generation of chirped pulses using nonlinear dispersion-based incoherent processing.

    PubMed

    Rius, Manuel; Bolea, Mario; Mora, José; Ortega, Beatriz; Capmany, José

    2015-05-18

    We experimentally demonstrate, for the first time, a chirped microwave pulses generator based on the processing of an incoherent optical signal by means of a nonlinear dispersive element. Different capabilities have been demonstrated such as the control of the time-bandwidth product and the frequency tuning increasing the flexibility of the generated waveform compared to coherent techniques. Moreover, the use of differential detection improves considerably the limitation over the signal-to-noise ratio related to incoherent processing.

  15. Nuclear fission of Fm isotopes

    SciTech Connect

    Asano, T.; Wada, T.; Ohta, M.; Chiba, S.

    2010-06-01

    Multi-modal fission has been systematically investigated for the series of isotopes of Fm and Cf. The multi-dimensional Langevin-type stochastic differential equation is used for the dynamical calculation. The primary fission mode changes from mass-asymmetric fission to mass-symmetric fission with the increase of neutron numbers for both Fm and Cf cases.

  16. Simple Waveforms, Simply Described

    NASA Technical Reports Server (NTRS)

    Baker, John G.

    2008-01-01

    Since the first Lazarus Project calculations, it has been frequently noted that binary black hole merger waveforms are 'simple.' In this talk we examine some of the simple features of coalescence and merger waveforms from a variety of binary configurations. We suggest an interpretation of the waveforms in terms of an implicit rotating source. This allows a coherent description, of both the inspiral waveforms, derivable from post-Newtonian(PN) calculations, and the numerically determined merger-ringdown. We focus particularly on similarities in the features of various Multipolar waveform components Generated by various systems. The late-time phase evolution of most L these waveform components are accurately described with a sinple analytic fit. We also discuss apparent relationships among phase and amplitude evolution. Taken together with PN information, the features we describe can provide an approximate analytic description full coalescence wavefoRms. complementary to other analytic waveforns approaches.

  17. Hybrid chirped pulse amplification system

    SciTech Connect

    Barty, Christopher P.; Jovanovic, Igor

    2005-03-29

    A hybrid chirped pulse amplification system wherein a short-pulse oscillator generates an oscillator pulse. The oscillator pulse is stretched to produce a stretched oscillator seed pulse. A pump laser generates a pump laser pulse. The stretched oscillator seed pulse and the pump laser pulse are directed into an optical parametric amplifier producing an optical parametric amplifier output amplified signal pulse and an optical parametric amplifier output unconverted pump pulse. The optical parametric amplifier output amplified signal pulse and the optical parametric amplifier output laser pulse are directed into a laser amplifier producing a laser amplifier output pulse. The laser amplifier output pulse is compressed to produce a recompressed hybrid chirped pulse amplification pulse.

  18. Conversion of chirp in fiber compression.

    PubMed

    Dombi, Péter; Rácz, Péter; Veisz, Laszlo; Baum, Peter

    2014-04-15

    Focusing positively chirped femtosecond pulses into nonlinear fibers provides significant spectral broadening and compression at higher pulse energies than achievable conventionally because self-focusing and damage are avoided. Here, we investigate the transfer of input to output chirp in such an arrangement. Our measurements show that the group delay dispersion of the output pulse, originating from the nonlinearities, is considerably reduced as compared to the initial value, by about a factor of 10. The mechanism of chirp reduction is understood by an interplay of self-phase modulation with initial chirp within the fiber. A simple model calculation based on this picture yields satisfactory agreement with the observations and predicts significant chirp reduction for input pulses up to the μJ regime. In practice, the reduction of chirp observed here allows for compressing the spectrally broadened intense pulses by ultrabroadband dispersive multilayer mirrors of quite moderate dispersion.

  19. Influence of long-term social interaction on chirping behavior, steroid levels and neurogenesis in weakly electric fish

    PubMed Central

    Dunlap, Kent D.; Chung, Michael; Castellano, James F.

    2013-01-01

    Summary Social interactions dramatically affect the brain and behavior of animals. Studies in birds and mammals indicate that socially induced changes in adult neurogenesis participate in the regulation of social behavior, but little is known about this relationship in fish. Here, we review studies in electric fish (Apteronotus leptorhychus) that link social stimulation, changes in electrocommunication behavior and adult neurogenesis in brain regions associated with electrocommunication. Compared with isolated fish, fish living in pairs have greater production of chirps, an electrocommunication signal, during dyadic interactions and in response to standardized artificial social stimuli. Social interaction also promotes neurogenesis in the periventricular zone, which contributes born cells to the prepacemaker nucleus, the brain region that regulates chirping. Both long-term chirp rate and periventricular cell addition depend on the signal dynamics (amplitude and waveform variation), modulations (chirps) and novelty of the stimuli from the partner fish. Socially elevated cortisol levels and cortisol binding to glucocorticoid receptors mediate, at least in part, the effect of social interaction on chirping behavior and brain cell addition. In a closely related electric fish (Brachyhypopomus gauderio), social interaction enhances cell proliferation specifically in brain regions for electrocommunication and only during the breeding season, when social signaling is most elaborate. Together, these studies demonstrate a consistent correlation between brain cell addition and environmentally regulated chirping behavior across many social and steroidal treatments and suggest a causal relationship. PMID:23761468

  20. Small-signal response of a semiconductor laser with inhomogeneous linewidth enhancement factor: Possibilities of a flat carrier-induced FM response

    SciTech Connect

    Nilsson, O.; Yamamoto, Y.

    1985-02-01

    It is shown that inhomogeneities in the linewidth enhancement factor in a semiconductor laser exert great influence on the injection current modulation FM response. Several phenomena, which have not been explained so far, such as redshift frequency chirping, flat carrier induced FM response, and absence of phase reversal at the thermal cut-off frequency, are explained by the present theoretical model. A flat carrier induced FM response with either redshift or blueshift may be obtained in a semiconductor laser with an inhomogeneous linewidth enhancement factor without the accompanying spurious intensity modulation.

  1. Tone signal generator for producing multioperator tone signals using an operator circuit including a waveform generator, a selector and an enveloper

    DOEpatents

    Dong, Qiujie; Jenkins, Michael V.; Bernadas, Salvador R.

    1997-01-01

    A frequency modulation (FM) tone signal generator for generating a FM tone signal is disclosed. The tone signal generator includes a waveform generator having a plurality of wave tables, a selector and an enveloper. The waveform generator furnishes a waveform signal in response to a phase angle address signal. Each wave table stores a different waveform. The selector selects one of the wave tables in response to a plurality of selection signals such that the selected wave table largely provides the waveform signal upon being addressed largely by the phase angle address signal. Selection of the selected wave table varies with each selection signal. The enveloper impresses an envelope signal on the waveform signal. The envelope signal is used as a carrier or modulator for generating the FM tone signal.

  2. Tone signal generator for producing multioperator tone signals using an operator circuit including a waveform generator, a selector and an enveloper

    DOEpatents

    Dong, Q.; Jenkins, M.V.; Bernadas, S.R.

    1997-09-09

    A frequency modulation (FM) tone signal generator for generating a FM tone signal is disclosed. The tone signal generator includes a waveform generator having a plurality of wave tables, a selector and an enveloper. The waveform generator furnishes a waveform signal in response to a phase angle address signal. Each wave table stores a different waveform. The selector selects one of the wave tables in response to a plurality of selection signals such that the selected wave table largely provides the waveform signal upon being addressed largely by the phase angle address signal. Selection of the selected wave table varies with each selection signal. The enveloper impresses an envelope signal on the waveform signal. The envelope signal is used as a carrier or modulator for generating the FM tone signal. 17 figs.

  3. Design parameters for a FM/FM system

    NASA Astrophysics Data System (ADS)

    Carden, Frank

    Design parameters for a FM/FM telemetry system are determined in terms of the IRIG specifications for proportional bandwidth channels. Three mathematical models used by designers of the above processes are extended and compared. That is, FM multi-tone models are used to establish the relationship between frequency deviations, modulation indices, signal-to-noise and IF bandwidth for the IRIG channels. Since spectral efficiency and signal quality are of major importance, a goal of the design is to have a minimum IF bandwidth, while fixing as large as possible the values of the modulation indices for the subcarriers modulating the carrier in order to achieve as large as needed output signal-to-noise ratio.

  4. On waveform multigrid method

    NASA Technical Reports Server (NTRS)

    Taasan, Shlomo; Zhang, Hong

    1993-01-01

    Waveform multigrid method is an efficient method for solving certain classes of time dependent PDEs. This paper studies the relationship between this method and the analogous multigrid method for steady-state problems. Using a Fourier-Laplace analysis, practical convergence rate estimates of the waveform multigrid iterations are obtained. Experimental results show that the analysis yields accurate performance prediction.

  5. An MSK Radar Waveform

    NASA Technical Reports Server (NTRS)

    Quirk, Kevin J.; Srinivasan, Meera

    2012-01-01

    The minimum-shift-keying (MSK) radar waveform is formed by periodically extending a waveform that separately modulates the in-phase and quadrature- phase components of the carrier with offset pulse-shaped pseudo noise (PN) sequences. To generate this waveform, a pair of periodic PN sequences is each passed through a pulse-shaping filter with a half sinusoid impulse response. These shaped PN waveforms are then offset by half a chip time and are separately modulated on the in-phase and quadrature phase components of an RF carrier. This new radar waveform allows an increase in radar resolution without the need for additional spectrum. In addition, it provides self-interference suppression and configurable peak sidelobes. Compared strictly on the basis of the expressions for delay resolution, main-lobe bandwidth, effective Doppler bandwidth, and peak ambiguity sidelobe, it appears that bi-phase coded (BPC) outperforms the new MSK waveform. However, a radar waveform must meet certain constraints imposed by the transmission and reception of the modulation, as well as criteria dictated by the observation. In particular, the phase discontinuity of the BPC waveform presents a significant impediment to the achievement of finer resolutions in radar measurements a limitation that is overcome by using the continuous phase MSK waveform. The phase continuity, and the lower fractional out-of-band power of MSK, increases the allowable bandwidth compared with BPC, resulting in a factor of two increase in the range resolution of the radar. The MSK waveform also has been demonstrated to have an ambiguity sidelobe structure very similar to BPC, where the sidelobe levels can be decreased by increasing the length of the m-sequence used in its generation. This ability to set the peak sidelobe level is advantageous as it allows the system to be configured to a variety of targets, including those with a larger dynamic range. Other conventionally used waveforms that possess an even greater

  6. Detection and frequency tracking of chirping signals

    SciTech Connect

    Elliott, G.R.; Stearns, S.D.

    1990-08-01

    This paper discusses several methods to detect the presence of and track the frequency of a chirping signal in broadband noise. The dynamic behavior of each of the methods is described and tracking error bounds are investigated in terms of the chirp rate. Frequency tracking and behavior in the presence of varying levels of noise are illustrated in examples. 11 refs., 29 figs.

  7. Constant envelope chirped OFDM power efficiency

    NASA Astrophysics Data System (ADS)

    Dida, Mussa A.; Hao, Huan; Anjum, M. R.; Ran, Tao

    2016-10-01

    Fractional Fourier OFDM or simply chirped OFDM performs better in time-frequency selective channel than its convectional OFDM. Although chirped OFDM outperforms OFDM it still inherits Peak to Average Power Ratio (PAPR) drawback as a convectional OFDM. To eliminate PAPR drawback Constant Envelope OFDM was developed and for better performance in time frequency selective channel Constant Envelope Fractional Fourier OFDM (CE-COFDM) is used. Its BER performance is analyzed and compared to chirped OFDM and OFDM in AWGN and Rayleigh channel. The simulations show the BER performance of CE-COFDM is the same as chirped OFDM and OFDM. The power efficiency of CE-COFDM is also studied and different simulations performed shows CE-COFDM is more power efficient than chirped OFDM and convectional OFDM for class A and class B Linear Power Amplifier (LPA).

  8. Population inversion by chirped pulses

    SciTech Connect

    Lu Tianshi

    2011-09-15

    In this paper, we analyze the condition for complete population inversion by a chirped pulse over a finite duration. The nonadiabatic transition probability is mapped in the two-dimensional parameter space of coupling strength and detuning amplitude. Asymptotic forms of the probability are derived by the interference of nonadiabatic transitions for sinusoidal and triangular pulses. The qualitative difference between the maps for the two types of pulses is accounted for. The map is used for the design of stable inversion pulses under specific accuracy thresholds.

  9. SAW-based chirp Fourier transform and its application to analogue on-board signal processing

    NASA Astrophysics Data System (ADS)

    Bakken, Petter M.; Ronnekleiv, Arne

    1989-11-01

    This paper reports on the work done at ELAB-RUNIT on surface acoustic wave (SAW) on-board signal processing. The main processing is done by the analogue chirp Fourier transformer (CFT) and its inverse (ICFT). In a CFT, the input signal is transformed from an FDMA format to a TDMA format and at the same time filtered by a filter bank. By multiplying and convolving the signal with chirp waveforms, the CFT is implemented by one bandpass cover filter and one chirp filter. The paper demonstrates that SAW reflector array compressors (RAC) built by ELAB-RUNIT have suitable chirp responses and adequate precision for digital satellite communication. Two applications are described. An on-board multicarrier demodulator (MCD) for 9.6 kb/sec QPSK carriers and a processor for filtering, routing and beam steering (FROBE) for flexible transparent repeaters. For MCDs the use of SAW CFTs leads to a power consumption for demultiplexing and A/D conversion of 15 mW per carrier with room for improvements. For transparent payloads, the FROBE leads to more flexibility and narrower guardbands than can be obtained by other analogue processors.

  10. 47 CFR 74.1204 - Protection of FM broadcast, FM Translator and LP100 stations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... translator or an FM booster station that is 53 or 54 channels removed from an FM radio broadcast station will... radio broadcast station equivalents. FM radio broadcast station equivalents will be determined in... 47 Telecommunication 4 2011-10-01 2011-10-01 false Protection of FM broadcast, FM Translator...

  11. 47 CFR 74.1204 - Protection of FM broadcast, FM Translator and LP100 stations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... translator or an FM booster station that is 53 or 54 channels removed from an FM radio broadcast station will... radio broadcast station equivalents. FM radio broadcast station equivalents will be determined in... 47 Telecommunication 4 2010-10-01 2010-10-01 false Protection of FM broadcast, FM Translator...

  12. Coherent combining of pulsed fiber amplifiers in the nonlinear chirp regime with intra-pulse phase control.

    PubMed

    Palese, Stephen; Cheung, Eric; Goodno, Gregory; Shih, Chun-Ching; Di Teodoro, Fabio; McComb, Timothy; Weber, Mark

    2012-03-26

    Two high pulse contrast (> 95 dB) polarization maintaining all-fiber amplifier chains were coherently combined to generate 0.42 mJ, 1 ns 25 kHz pulses with 79% efficiency despite 38 radians of intra-pulse phase distortion. A recursive intra-pulse phase compensation method was utilized to correct for the large nonlinear chirp providing a path for improved coherent waveform control of nanosecond pulse trains.

  13. Segmented chirped-pulse Fourier transform submillimeter spectroscopy for broadband gas analysis.

    PubMed

    Neill, Justin L; Harris, Brent J; Steber, Amanda L; Douglass, Kevin O; Plusquellic, David F; Pate, Brooks H

    2013-08-26

    Chirped-pulse Fourier transform spectroscopy has recently been extended to millimeter wave spectroscopy as a technique for the characterization of room-temperature gas samples. Here we present a variation of this technique that significantly reduces the technical requirements on high-speed digital electronics and the data throughput, with no reduction in the broadband spectral coverage and no increase in the time required to reach a given sensitivity level. This method takes advantage of the frequency agility of arbitrary waveform generators by utilizing a series of low-bandwidth chirped excitation pulses paired in time with a series of offset single frequency local oscillators, which are used to detect the molecular free induction decay signals in a heterodyne receiver. A demonstration of this technique is presented in which a 67 GHz bandwidth spectrum of methanol (spanning from 792 to 859 GHz) is acquired in 58 μs.

  14. a Portable Ionosonde Using Coherent Spread-Spectrum Waveforms for Remote Sensing of the Ionosphere.

    NASA Astrophysics Data System (ADS)

    Haines, Donald Mark

    From the beginning of the practice of ionospheric sounding the instruments used, with a few notable exceptions, have incorporated powerful pulse transmitters. Due to the extremely high external noise in the HF spectrum and the large variability of propagation conditions, it is hard to set a reasonable upper limit on the amount of power required to provide quality measurements. However, balanced against this need for high power is a desire on the part of radio operators as well as government agencies and the scientific community to have a small portable monitoring capability to get the measurement instrument and the data provided by it closer to the end user, especially at remote locations. These motivations initiated an effort at the University of Massachusetts Lowell to apply modern radar signal processing techniques and technology in order to provide a high quality measurement capability in a small, inexpensive, low power system. This new instrument was named the Digisonde Portable Sounder or DPS. Techniques incorporated in the DPS system which provide the basis for its measurement capabilities include coherent digital pulse compression, coherent Doppler integration, interpulse phase coding, digital beamforming, stepped frequency high range resolution processing, dphi/df precision ranging, super-resolution angle-of-arrival processing, rapid switching of transmitter and receiver polarization, and multiplexed integration for simultaneous measurement on several antennas, frequencies and polarizations. Technology involved includes parallel phase coherent receivers, direct digital frequency synthesis, 12-bit quadrature digitization at 1MHz, DSP/microcomputer parallel processor architecture, interrupt driven real-time multitasking software, MOSFET solid-state transmitter, and synchronization to a GPS satellite receiver. The pulse compression technique with the widest acceptance in the radar community has historically been FM/CW "chirp" waveforms. The waveform used in

  15. Chirped femtosecond pulse scattering by spherical particles

    NASA Astrophysics Data System (ADS)

    Kim, Dal-Woo; Xiao, Gang-Yao; Lee, Tong-Nyong

    1996-05-01

    Generalized Lorentz-Mie formulas are used to study the scattering characteristics when a chirped femtosecond pulse illuminates a spherical particle. For a linear chirped Gaussian pulse with the envelope function g( tau ) = exp[- pi (1 + ib) tau 2], dimensionless parameter b is defined as a chirp. The calculation illustrated that even for pulses with a constant carrier wavelength ( lambda 0 = 0.5 mu m) and pulse-filling coefficient (l0 = 1.98), the efficiencies for extinction and scattering differ very much between the carrier wave and the different chirped pulses. The slowly varying background of the extinction and the scattering curves is damped by the chirp. When the pulse is deeply chirped, the maxima and minima of the background curves reduce to the point where they disappear, and the efficiency curves illustrate a steplike dependence on the sphere size. Another feature is that the only on the amount of chirp (|b|), regardless of upchirp (b greater than 0) or downchirp (b less than 0).

  16. Altimeter waveform software design

    NASA Technical Reports Server (NTRS)

    Hayne, G. S.; Miller, L. S.; Brown, G. S.

    1977-01-01

    Techniques are described for preprocessing raw return waveform data from the GEOS-3 radar altimeter. Topics discussed include: (1) general altimeter data preprocessing to be done at the GEOS-3 Data Processing Center to correct altimeter waveform data for temperature calibrations, to convert between engineering and final data units and to convert telemetered parameter quantities to more appropriate final data distribution values: (2) time "tagging" of altimeter return waveform data quantities to compensate for various delays, misalignments and calculational intervals; (3) data processing procedures for use in estimating spacecraft attitude from altimeter waveform sampling gates; and (4) feasibility of use of a ground-based reflector or transponder to obtain in-flight calibration information on GEOS-3 altimeter performance.

  17. Contrast harmonic detection with chirp excitation in 3f0 transmit phasing.

    PubMed

    Shen, Che-Chou; Wang, Hong-Wei; Chiu, Yi-Yuan

    2008-10-01

    The method of third harmonic (3f0 transmit phasing is capable of providing effective tissue background suppression for contrast-to-tissue ratio (CTR) improvement in harmonic imaging. With the additional 3f0 transmit signal to generate both the frequency-sum and the frequency-difference components of harmonic signal, the tissue suppression is achieved when the two components are opposite in phase and mutually cancel out. One major problem in 3f0 transmit phasing is the limited signal-to-noise ratio (SNR) due to the constraint on transmit amplitude. Chirp excitation can be applied in contrast harmonic imaging to enhance the SNR with minimal destruction of the microbubbles. In this paper, the effect of chirp waveform in combination with the 3f0 transmit phasing was studied using both in-vitro experiments and simulations. Our results indicate that, though the chirp transmit pulse can increase the SNR of harmonic imaging in 3f0 transmit phasing (3 dB, p < 0.001), it suffers from degraded tissue harmonic suppression and thus provides less CTR improvement as compared to a conventional pulse. The spectral mismatch between the frequency-sum and the frequency-difference components of tissue harmonic signal is particularly evident in the off-center region of second harmonic band, leading to significant residue tissue background. Consequently, with the chirp waveform, the improvement of CTR decreases from 9.5 dB to 5.9 dB (p < 0.0006) and thus a tradeoff exists between the SNR improvement and the CTR improvement in 3f0 transmit phasing.

  18. Transionospheric signal detection with chirped wavelets

    SciTech Connect

    Doser, A.B.; Dunham, M.E.

    1997-11-01

    Chirped wavelets are utilized to detect dispersed signals in the joint time scale domain. Specifically, pulses that become dispersed by transmission through the ionosphere and are received by satellites as nonlinear chirps are investigated. Since the dispersion greatly lowers the signal to noise ratios, it is difficult to isolate the signals in the time domain. Satellite data are examined with discrete wavelet expansions. Detection is accomplished via a template matching threshold scheme. Quantitative experimental results demonstrate that the chirped wavelet detection scheme is successful in detecting the transionospheric pulses at very low signal to noise ratios.

  19. Arterial waveform analysis.

    PubMed

    Esper, Stephen A; Pinsky, Michael R

    2014-12-01

    The bedside measurement of continuous arterial pressure values from waveform analysis has been routinely available via indwelling arterial catheterization for >50 years. Invasive blood pressure monitoring has been utilized in critically ill patients, in both the operating room and critical care units, to facilitate rapid diagnoses of cardiovascular insufficiency and monitor response to treatments aimed at correcting abnormalities before the consequences of either hypo- or hypertension are seen. Minimally invasive techniques to estimate cardiac output (CO) have gained increased appeal. This has led to the increased interest in arterial waveform analysis to provide this important information, as it is measured continuously in many operating rooms and intensive care units. Arterial waveform analysis also allows for the calculation of many so-called derived parameters intrinsically created by this pulse pressure profile. These include estimates of left ventricular stroke volume (SV), CO, vascular resistance, and during positive-pressure breathing, SV variation, and pulse pressure variation. This article focuses on the principles of arterial waveform analysis and their determinants, components of the arterial system, and arterial pulse contour. It will also address the advantage of measuring real-time CO by the arterial waveform and the benefits to measuring SV variation. Arterial waveform analysis has gained a large interest in the overall assessment and management of the critically ill and those at a risk of hemodynamic deterioration.

  20. Detailed spectroscopy of Fm249

    NASA Astrophysics Data System (ADS)

    Lopez-Martens, A.; Hauschild, K.; Yeremin, A. V.; Belozerov, A. V.; Briançon, Ch.; Chelnokov, M. L.; Chepigin, V. I.; Curien, D.; Dorvaux, O.; Gall, B.; Gorshkov, V. A.; Guttormsen, M.; Hanappe, F.; Kabachenko, A. P.; Khalfallah, F.; Korichi, A.; Larsen, A. C.; Malyshev, O. N.; Minkova, A.; Oganessian, Yu. Ts.; Popeko, A. G.; Rousseau, M.; Rowley, N.; Sagaidak, R. N.; Sharo, S.; Shutov, A. V.; Siem, S.; Svirikhin, A. I.; Syed, N. U. H.; Theisen, Ch.

    2006-10-01

    Excited states in Fm249 were populated via the α decay of No253 and the subsequent decay was observed with the GABRIELA detection system installed at the focal plane of the VASSILISSA recoil separator. The energies, spins, and parities of these states could be established through combined α,γ, and conversion-electron spectroscopy. The first members of the ground-state rotational band were identified. Their excitation energies as well as the observation of a cross-over E2 transition confirm the assignment of 7/2+[624] for the ground state of Fm249. Two excited states were also observed and their decay properties suggest that they correspond to the particle excitation 9/2-[734] and hole excitation 5/2+[622]. The analysis suggests that the 279-keV transition de-exciting the 9/2- state has anomalous E1 conversion coefficients.

  1. Optical chirped beam amplification and propagation

    DOEpatents

    Barty, Christopher P.

    2004-10-12

    A short pulse laser system uses dispersive optics in a chirped-beam amplification architecture to produce high peak power pulses and high peak intensities without the potential for intensity dependent damage to downstream optical components after amplification.

  2. Low frequency AC waveform generator

    DOEpatents

    Bilharz, Oscar W.

    1986-01-01

    Low frequency sine, cosine, triangle and square waves are synthesized in circuitry which allows variation in the waveform amplitude and frequency while exhibiting good stability and without requiring significant stabilization time. A triangle waveform is formed by a ramped integration process controlled by a saturation amplifier circuit which produces the necessary hysteresis for the triangle waveform. The output of the saturation circuit is tapped to produce the square waveform. The sine waveform is synthesized by taking the absolute value of the triangular waveform, raising this absolute value to a predetermined power, multiplying the raised absolute value of the triangle wave with the triangle wave itself and properly scaling the resultant waveform and subtracting it from the triangular waveform itself. The cosine is synthesized by squaring the triangular waveform, raising the triangular waveform to a predetermined power and adding the squared waveform raised to the predetermined power with a DC reference and subtracting the squared waveform therefrom, with all waveforms properly scaled. The resultant waveform is then multiplied with a square wave in order to correct the polarity and produce the resultant cosine waveform.

  3. Full Waveform Inversion Using Waveform Sensitivity Kernels

    NASA Astrophysics Data System (ADS)

    Schumacher, Florian; Friederich, Wolfgang

    2013-04-01

    We present a full waveform inversion concept for applications ranging from seismological to enineering contexts, in which the steps of forward simulation, computation of sensitivity kernels, and the actual inversion are kept separate of each other. We derive waveform sensitivity kernels from Born scattering theory, which for unit material perturbations are identical to the Born integrand for the considered path between source and receiver. The evaluation of such a kernel requires the calculation of Green functions and their strains for single forces at the receiver position, as well as displacement fields and strains originating at the seismic source. We compute these quantities in the frequency domain using the 3D spectral element code SPECFEM3D (Tromp, Komatitsch and Liu, 2008) and the 1D semi-analytical code GEMINI (Friederich and Dalkolmo, 1995) in both, Cartesian and spherical framework. We developed and implemented the modularized software package ASKI (Analysis of Sensitivity and Kernel Inversion) to compute waveform sensitivity kernels from wavefields generated by any of the above methods (support for more methods is planned), where some examples will be shown. As the kernels can be computed independently from any data values, this approach allows to do a sensitivity and resolution analysis first without inverting any data. In the context of active seismic experiments, this property may be used to investigate optimal acquisition geometry and expectable resolution before actually collecting any data, assuming the background model is known sufficiently well. The actual inversion step then, can be repeated at relatively low costs with different (sub)sets of data, adding different smoothing conditions. Using the sensitivity kernels, we expect the waveform inversion to have better convergence properties compared with strategies that use gradients of a misfit function. Also the propagation of the forward wavefield and the backward propagation from the receiver

  4. Noise analysis for near field 3-D FM-CW radar imaging systems

    SciTech Connect

    Sheen, David M.

    2015-06-19

    Near field radar imaging systems are used for several applications including concealed weapon detection in airports and other high-security venues. Despite the near-field operation, phase noise and thermal noise can limit the performance in several ways including reduction in system sensitivity and reduction of image dynamic range. In this paper, the effects of thermal noise, phase noise, and processing gain are analyzed in the context of a near field 3-D FM-CW imaging radar as might be used for concealed weapon detection. In addition to traditional frequency domain analysis, a time-domain simulation is employed to graphically demonstrate the effect of these noise sources on a fast-chirping FM-CW system.

  5. Adaptive chirp-Fourier transform for chirp estimation with applications in ISAR imaging of maneuvering targets

    NASA Astrophysics Data System (ADS)

    Xia, Xiang-Gen; Wang, Genyuan; Chen, Victor C.

    2001-03-01

    This paper first reviews some basic properties of the discrete chirp-Fourier transform and then present an adaptive chirp- Fourier transform, a generalization of the amplitude and phase estimation of sinusoids (APES) algorithm proposed by Li and Stoica for sinusoidal signals. We finally applied it to the ISAR imaging of maneuvering targets.

  6. Low frequency ac waveform generator

    DOEpatents

    Bilharz, O.W.

    1983-11-22

    Low frequency sine, cosine, triangle and square waves are synthesized in circuitry which allows variation in the waveform amplitude and frequency while exhibiting good stability and without requiring significant stablization time. A triangle waveform is formed by a ramped integration process controlled by a saturation amplifier circuit which produces the necessary hysteresis for the triangle waveform. The output of the saturation circuit is tapped to produce the square waveform. The sine waveform is synthesized by taking the absolute value of the triangular waveform, raising this absolute value to a predetermined power, multiplying the raised absolute value of the triangle wave with the triangle wave itself and properly scaling the resultant waveform and subtracting it from the triangular waveform to a predetermined power and adding the squared waveform raised to the predetermined power with a DC reference and subtracting the squared waveform therefrom, with all waveforms properly scaled. The resultant waveform is then multiplied with a square wave in order to correct the polarity and produce the resultant cosine waveform.

  7. ECCM Waveform Investigation

    DTIC Science & Technology

    1977-08-01

    For either target model and fixed trans - mit energy, the radar performance decreases as bandwidth increases. The performance decrease with bandwidth...Active Jamming From a radar waveform viewpoint, the wideband barrage jamming environment Is essentially Identical to the thermal noise...nificant radar energy is detected. A quantitative measure of the improvement achievable by wideband techniques is obtained by considering the case

  8. Analog device simulates physiological waveforms

    NASA Technical Reports Server (NTRS)

    Hickman, D. M.

    1964-01-01

    An analog physiological simulator generates representative waveforms for a wide range of physiological conditions. Direct comparison of these waveforms with those from telemetric inputs permits quick detection of signal parameter degradation.

  9. a Chirped-Pulse Fourier Transform Spectrometer Operating from 110 TO 170 GHZ

    NASA Astrophysics Data System (ADS)

    Bernier, Lauren E.; Shipman, Steven

    2014-06-01

    A chirped-pulse Fourier transform spectrometer operating from 110 - 170 GHz was constructed. The design of this spectrometer is directly adapted from that of the 260 - 295 GHz chirped-pulse spectrometer built by Steber and co-workers at the University of Virginia. In this instrument, an arbitrary waveform generator (AWG) produces a chirped pulse which is frequency shifted to a range between 9.2 and 14.1 GHz and then multiplied by a factor of 12 via an active multiplier chain to a range between 110 and 170 GHz. As in the Pate lab design, the AWG also serves as a local oscillator (LO) source; this LO is multiplied and used to downconvert the molecular emission, allowing it to be collected by a 40 GS/s digitizer. Benchmark measurements were taken for methanol at room temperature, and details of the instrument's performance will be discussed. A.L. Steber, B.J. Harris, J.L. Neill, and B.H. Pate, J. Mol. Spectrosc., 280, 3 (2012)

  10. Investigating the nonlinear microbubble response to chirp encoded, multipulse sequences.

    PubMed

    Chetty, Kevin; Hajnal, Joseph V; Eckersley, Robert J

    2006-12-01

    A modified Rayleigh-Plesset model was used to investigate the nonlinear acoustic response of ultrasound contrast microbubbles to multipulse phase and amplitude modulated, chirp encoded sequences. Trade-offs between the signal-to-noise ratio (SNR) and axial resolution were quantified for differing chirp time-bandwidth products and methods for minimising the artifacts formed in the postprocessing stages were developed. It was found that the chirp length can be increased and bandwidth reduced to improve SNR, though resolution is sacrificed. Results from the simulated chirp, pulse inverted, amplitude modulated (chirp PIAM) sequences were also compared with equivalent short pulse PIAM sequences and it was found that the chirp sequences preserve their extra energy after scattering, which translates to an improved SNR after processing. Compression artifacts were reduced by using chirps with a centre frequency and bandwidth tuned to the frequency response of the microbubble and reversing the frequency sweep of one chirp in the sequence.

  11. Optical waveform generation using a directly modulated laser

    NASA Astrophysics Data System (ADS)

    Cartledge, John C.; Karar, Abdullah S.; Roberts, Kim

    2013-10-01

    The capability of a directly modulated laser (DML) can be dramatically enhanced through precise control of the drive current waveform based on digital signal processing (DSP) and a digital-to-analog convertor (DAC). In this paper, a novel method to pre-compensate fiber dispersion for metro and regional networks is described for a bit rate of 10.709 Gb/s using a DML. A look-up table (LUT) for the drive current is optimized for dispersion mitigation. The entries of the LUT are determined based on the effects of the DML adiabatic and transient chirp on pulse propagation, the nonlinear mapping between the input current and the output optical power, and the bandwidth of the DML package. A DAC operating at 2 samples per bit (21.418 GSa/s with 6 bit resolution) converts the digital samples at the output of the LUT to an analog current waveform driving the DML. Experimental results for a bit rate of 10.709 Gb/s and on-off keying demonstrate a transmission reach of 252 km using a DML intended for 2.5 Gb/s operation and 608 km using a chirp managed laser intended for 10 Gb/s operation. Using this approach (DSP + DAC), the generation of 10.709 Gb/s differential phase shift keying (DPSK) and 56 Gb/s 16-ary quadrature amplitude modulation, sub-carrier multiplexed (QAM SCM) optical signals using the direct modulation of a passive feedback laser is also presented. 6-bit DACs operating at sampling rates of 21.418 GSa/s and 28 GSa/s, respectively, was used to generate the requisite analog current waveform.

  12. Optimizing chirped laser pulse parameters for electron acceleration in vacuum

    SciTech Connect

    Akhyani, Mina; Jahangiri, Fazel; Niknam, Ali Reza; Massudi, Reza

    2015-11-14

    Electron dynamics in the field of a chirped linearly polarized laser pulse is investigated. Variations of electron energy gain versus chirp parameter, time duration, and initial phase of laser pulse are studied. Based on maximizing laser pulse asymmetry, a numerical optimization procedure is presented, which leads to the elimination of rapid fluctuations of gain versus the chirp parameter. Instead, a smooth variation is observed that considerably reduces the accuracy required for experimentally adjusting the chirp parameter.

  13. Detection of a chirping electromagnetic signal

    SciTech Connect

    Stearns, S.D.

    1989-01-01

    A matched chirp transform (MCT) method for detecting a dispersive electromagnetic pulse is described. The unique feature of this transform is that it gives a distribution of signal amplitude over time rather than frequency, and thereby simplifies signal detection and identification in the case described here. In the MCT method, the incoming signal is matched to a set of signal segments that chirp in accordance with an expected model of the dispersive medium. The performance of the MCT method is compared with that of a standard periodogram method of frequency measurement. 6 refs., 5 figs.

  14. Good code sets based on Piecewise Linear FM

    NASA Astrophysics Data System (ADS)

    Qazi, Farhan Aslam

    In this dissertation, classes of good analog and polyphase code sets, based on Piecewise Linear FM (PLFM) are introduced. The analog code sets, designed using pieces of Linear FM waveforms, have good autocorrelation and cross-correlation properties, i.e. they have small autocorrelation sidelobe peaks and cross-correlation peaks. They also possess the ability to both tolerate and detect Doppler shift. By concatenating sections of P3/P4 polyphase codes, new polyphase code sets are constructed, which can be considered as polyphase counterparts of the analog PLFM based code sets. Like the analog code sets, the polyphase PLFM code sets have good correlation properties and stand out in being the only class of polyphase code sets that can both tolerate and detect Doppler shift. The receiver is modeled as a matched filter, decomposed into two parallel parts, in order to extract information on the radial direction of a target in addition to its radial speed. At the cost of a slight degradation in the correlation properties and a small SNR loss, the Doppler properties of the proposed analog and digital code sets can be improved further by extending the matched filter parts in either direction.

  15. Above-threshold ionization by chirped laser pulses

    SciTech Connect

    Nakajima, Takashi

    2007-05-15

    We theoretically investigate above-threshold ionization by chirped laser pulses. By comparing the photoelectron energy spectra and the photoelectron angular distributions of Na for the laser pulses with different chirp rates but with the identical spectral profile, we find that the ionization processes have a clear dependence on the chirp rate. Further calculations without excited bound states during the time propagation of the wave function reveal practically no chirp dependence, which is clear evidence that the origin of the chirp dependence in above-threshold ionization is the excited bound states.

  16. Improved transmission performance resulting from the reduced chirp of a semiconductor laser coupled to an external high-Q resonator

    SciTech Connect

    Cartledge, J.C. )

    1990-05-01

    The coupling of a Fabry--Perot laser to an external high-{ital Q} resonator, whose resonance frequencies are not altered by changes in the carrier density, yields a dynamic single-longitudinal-mode laser with a significantly reduced transient frequency chirp. The improvement in the receiver sensitivity due to the reduced chirp is examined for NRZ and RZ intensity modulation, direct detection systems operating in the 1.55-{mu}m wavelength region with conventional single-mode optical fiber. The methodology involves a solving modified rate equations numerically for the optical power and phase of the external resonator laser in response to an injected current waveform, modeling the signal transmission properties of single-mode optical fibers by convolution and modulus squared operations, and using a truncated pulse train approximation to evaluate the probability of error in the presence of intersymbol interference, shot noise, APD multiplication noise, and preamplifier circuit noise.

  17. Extension of harmonic cutoff in a multicycle chirped pulse combined with a chirp-free pulse

    SciTech Connect

    Xu Junjie; Zeng Bin; Yu Yongli

    2010-11-15

    We demonstrate high-order harmonic generation in a wave form synthesized by a multicycle 800-nm chirped laser pulse and a chirp-free laser pulse. Compared with the case of using only a chirped pulse, both the harmonic cutoff and the extreme ultraviolet supercontinuum can be extended when a weak chirp-free pulse is combined with the chirped pulse. When chirp-free pulse intensity grows, the cutoff energy and bandwidth of the supercontinuum grow as well. It is found that the broad supercontinuum can be achieved for a driving pulse with long duration even though the driving pulse reaches 10 optical cycles. An isolated attosecond pulse with duration of about 59 as is obtained, and after appropriate phase compensation with a duration of about 11 as. In addition, by performing time-frequency analyses and the classical trajectory simulation, the difference in supercontinuum generation between the preceding wave form and a similar wave form synthesized by an 800-nm fundamental pulse and a 1600-nm subharmonic pulse is investigated.

  18. Evaluation and assessment of FM systems.

    PubMed

    Lewis, D E; Feigin, J A; Karasek, A E; Stelmachowicz, P G

    1991-08-01

    In the past, frequency modulated (FM) systems were recommended for use only in educational settings for children with severe or profound hearing losses. Recent studies, however, have suggested that FM systems may be appropriate in nonacademic settings and also may benefit children with minimal hearing loss. In addition to the more widespread application of FM use, advances in amplification technology have provided audiologists with a variety of devices and coupling options, resulting in more variables to evaluate in the fitting process. There are three commonly used methods of evaluating FM systems: functional gain measures, probe tube microphone measures, and coupler measures. This paper is intended to provide the audiologist working with FM systems with an overview of the complexities involved in selecting and setting FM systems and the benefits and limitations of each evaluation method. Each evaluation method is examined in view of how well it answers three basic questions related to frequency response, maximum output, and distortion in FM systems. Finally, other issues which may impact on the selection of an FM system for a given individual are discussed.

  19. Spontaneous fission of /sup 259/Fm

    SciTech Connect

    Hulet, E.K.; Lougheed, R.W.; Landrum, J.H.; Wild, J.F.; Hoffman, D.C.; Weber, J.; Wilhelmy, J.B.

    1980-03-01

    A 1.5-s spontaneous fission activity has been produced by irradiating /sup 257/Fm with 16-MeV tritons. On the basis of formation cross sections, fission half-life systematics, and the identification of other possible products, this 1.5-s activity has been attributed to /sup 259/Fm formed by the reaction /sup 257/Fm(t,p)/sup 259/Fm. /sup 259/Fm is the heaviest known isotope of Fm and has more neutrons than any other nuclide thus far identified. This measurement of the spontaneous fission of /sup 259/Fm is the first to show a narrow, predominantly symmetric, mass division from spontaneous fission. It is accompanied by a very high kinetic energy, the most probable total kinetic energy being 242 +- 6 MeV. These features show a marked acceleration in the trend toward more symmetric mass division and higher total kinetic energies than have been observed previously for the Fm isotopes as the mass increased.

  20. Synthetic-aperture chirp confocal imaging.

    PubMed

    Chien, Wei-Chen; Dilworth, D S; Liu, Elson; Leith, E N

    2006-01-20

    An imaging system that combines synthetic-aperture imaging, holography, and an optical chirp with confocal imaging is described and analyzed. Comparisons are made with synthetic-aperture radar systems. Adaptation of several synthetic-aperture radar techniques to the optical counterparts is suggested.

  1. Unambiguous evaluation of a chirp measurement standard

    NASA Astrophysics Data System (ADS)

    Seewig, Jörg; Eifler, Matthias; Wiora, Georg

    2014-10-01

    This article describes an automated evaluation method for the chirp standard. Chirp calibration standards provide a way to describe the transfer behavior of different spatial frequencies as they contain sinusoidal functions of varying wavelengths (Krüger-Sehm et al 2007 chirp calibration standards for surface measuring instruments Tech. Mess. tm 74 572-76 Pehnelt et al 2011 Comparative analysis of optical surface measuring systems with a chip calibration standard Tech. Mess. tm 78 457-62). By introducing a new, automated evaluation method, an improvement for the application of the chirp standard can be achieved. The data-preprocessing for topography and profile measurement data and the fit of the geometric elements are described. Automated evaluation can reduce the labor required to evaluate measured data and make it easier to compare different evaluations in the course of standardization. The algorithm can be used to characterize the so-called ‘small scale fidelity’ of an optical instrument. The term ‘small scale fidelity’ is currently discussed in the optical group of working group no. 16 of the ISO technical committee 213.

  2. Chirp excitation of ultrasonic guided waves.

    PubMed

    Michaels, Jennifer E; Lee, Sang Jun; Croxford, Anthony J; Wilcox, Paul D

    2013-01-01

    Most ultrasonic guided wave methods require tone burst excitations to achieve some degree of mode purity while maintaining temporal resolution. In addition, it is often desirable to acquire data using multiple frequencies, particularly during method development when the best frequency for a specific application is not known. However, this process is inconvenient and time-consuming, particularly if extensive signal averaging at each excitation frequency is required to achieve a satisfactory signal-to-noise ratio. Both acquisition time and data storage requirements may be prohibitive if responses from many narrowband tone burst excitations are measured. Here chirp excitations are utilized to address the need to both test at multiple frequencies and achieve a high signal-to-noise ratio to minimize acquisition time. A broadband chirp is used to acquire data at a wide range of frequencies, and deconvolution is applied to extract multiple narrowband responses. After optimizing the frequency and duration of the desired tone burst excitation, a long-time narrowband chirp is used as the actual excitation, and the desired tone burst response is similarly extracted during post-processing. Results are shown that demonstrate the efficacy of both broadband and narrowband chirp excitations.

  3. High precision triangular waveform generator

    DOEpatents

    Mueller, Theodore R.

    1983-01-01

    An ultra-linear ramp generator having separately programmable ascending and descending ramp rates and voltages is provided. Two constant current sources provide the ramp through an integrator. Switching of the current at current source inputs rather than at the integrator input eliminates switching transients and contributes to the waveform precision. The triangular waveforms produced by the waveform generator are characterized by accurate reproduction and low drift over periods of several hours. The ascending and descending slopes are independently selectable.

  4. 4-bit Bipolar Triangle Voltage Waveform Generator Using Single-Flux-Quantum Circuit

    NASA Astrophysics Data System (ADS)

    Watanabe, Tomoki; Takahashi, Yoshitaka; Shimada, Hiroshi; Maezawa, Masaaki; Mizugaki, Yoshinao

    SFQ digital-to-analog converters (DACs) are one of the candidates for AC voltage standards. We have proposed SFQ-DACs based on frequency modulation (FM). Bipolar output is required for applications of AC voltage standards, while our previous SFQ-DACs generated only positive voltages. In this paper, we present our design of a 4-bit bipolar triangle voltage waveform generator comprising an SFQ-DAC. The waveform generator has two output ports. Synthesized half-period waveforms are alternately generated in one of the output ports. The bipolar output is realized by observing the differential voltage between the ports. We confirmed a 72-μVPP bipolar triangle voltage waveform at the frequency of 35.7 Hz.

  5. Project Echo: FM Demodulators with Negative Feedback

    NASA Technical Reports Server (NTRS)

    Ruthroff, Clyde L.

    1961-01-01

    The primary experimental objective of Project Echo was the transmission of radio communications between points on the earth by reflection from the balloon satellite. Owing to the large path losses from transmitter to receiver via the satellite, a wide-band frequency modulation technique was used in which bandwidth was traded for signal-to-noise ratio. This paper describes the FM receiving demodulators employed. Negative feedback applied to the local oscillator reduces the FM modulation index in the receiver IF amplifiers, resulting in threshold performance superior to that of conventional FM receivers.

  6. Assessing Accuracy of Waveform Models against Numerical Relativity Waveforms

    NASA Astrophysics Data System (ADS)

    Pürrer, Michael; LVC Collaboration

    2016-03-01

    We compare currently available phenomenological and effective-one-body inspiral-merger-ringdown models for gravitational waves (GW) emitted from coalescing black hole binaries against a set of numerical relativity waveforms from the SXS collaboration. Simplifications are used in the construction of some waveform models, such as restriction to spins aligned with the orbital angular momentum, no inclusion of higher harmonics in the GW radiation, no modeling of eccentricity and the use of effective parameters to describe spin precession. In contrast, NR waveforms provide us with a high fidelity representation of the ``true'' waveform modulo small numerical errors. To focus on systematics we inject NR waveforms into zero noise for early advanced LIGO detector sensitivity at a moderately optimistic signal-to-noise ratio. We discuss where in the parameter space the above modeling assumptions lead to noticeable biases in recovered parameters.

  7. Broadband frequency-chirped terahertz-wave signal generation using periodically-poled lithium niobate for frequency-modulated continuous-wave radar application

    NASA Astrophysics Data System (ADS)

    Hamazaki, Junichi; Ogawa, Yoh; Sekine, Norihiko; Kasamatsu, Akifumi; Kanno, Atsushi; Yamamoto, Naokatsu; Hosako, Iwao

    2016-02-01

    We have proposed a method by using a nonlinear optical technique to generate frequency-modulated (FM) signals in the terahertz (THz) band with much broader bandwidth. Periodically-poled lithium niobates (PPLNs) are excited by ultrashort pulses, and linearly frequency-chirped THz pulses are obtained by changing the periodicity of the PPLN gradually. The bandwidth achieved is approximately 1 THz at a center frequency of 1.5 THz. Using this wave in a FM continuous (CW) radar system is expected to result in a range resolution of ~150 μm. This FM-THz signal generation technique will thus be useful in or future civil safety applications requiring high-resolution ranging or imaging.

  8. Numerical analysis of double chirp effect in tapered and linearly chirped fiber Bragg gratings.

    PubMed

    Markowski, Konrad; Jedrzejewski, Kazimierz; Osuch, Tomasz

    2016-06-10

    In this paper, a theoretical analysis of recently developed tapered chirped fiber Bragg gratings (TCFBG) written in co-directional and counter-directional configurations is presented. In particular, the effects of the synthesis of chirps resulting from both a fused taper profile and a linearly chirped fringe pattern of the induced refractive index changes within the fiber core are extensively examined. For this purpose, a numerical model based on the transfer matrix method (TMM) and the coupled mode theory (CMT) was developed for such a grating. The impact of TCFBG parameters, such as grating length and steepness of the taper transition, as well as the effect of the fringe pattern chirp rate on the spectral properties of the resulting gratings, are presented. Results show that, by using the appropriate design process, TCFBGs with reduced or enhanced resulting chirp, and thus with widely tailored spectral responses, can be easily achieved. In turn, it reveals a great potential application of such structures. The presented numerical approach provides an excellent tool for TCFBG design.

  9. Chirped Pulse Microwave Spectroscopy on Methyl Butanoate

    NASA Astrophysics Data System (ADS)

    Hernandez-Castillo, Alicia O.; Hays, Brian M.; Abeysekera, Chamara; Zwier, Timothy S.

    2016-06-01

    The microwave spectrum of methyl butanoate has been taken from 8-18 GHz using a chirped pulse spectrometer. This molecule is a model biofuel, and its thermal decomposition products are of interest due to its many dissociation channels. As a preliminary step before such pyrolysis studies, we have examined the jet cooled spectrum of methyl butanoate in a chirped pulse spectrometer, which shows a very rich spectrum. Several conformers have been identified, each with tunneling splittings in the methyl ester group due to internal rotation. These spectra have been fit to obtain rotational constants, relative populations, and methyl rotor barriers for each conformational isomer. The results of these studies are compared to high level calculations.

  10. STRS Compliant FPGA Waveform Development

    NASA Technical Reports Server (NTRS)

    Nappier, Jennifer; Downey, Joseph; Mortensen, Dale

    2008-01-01

    The Space Telecommunications Radio System (STRS) Architecture Standard describes a standard for NASA space software defined radios (SDRs). It provides a common framework that can be used to develop and operate a space SDR in a reconfigurable and reprogrammable manner. One goal of the STRS Architecture is to promote waveform reuse among multiple software defined radios. Many space domain waveforms are designed to run in the special signal processing (SSP) hardware. However, the STRS Architecture is currently incomplete in defining a standard for designing waveforms in the SSP hardware. Therefore, the STRS Architecture needs to be extended to encompass waveform development in the SSP hardware. The extension of STRS to the SSP hardware will promote easier waveform reconfiguration and reuse. A transmit waveform for space applications was developed to determine ways to extend the STRS Architecture to a field programmable gate array (FPGA). These extensions include a standard hardware abstraction layer for FPGAs and a standard interface between waveform functions running inside a FPGA. A FPGA-based transmit waveform implementation of the proposed standard interfaces on a laboratory breadboard SDR will be discussed.

  11. Coherent control of ultracold collisions with chirped light: Direction matters

    SciTech Connect

    Wright, M. J.; Pechkis, J. A.; Carini, J. L.; Gould, P. L.; Kallush, S.; Kosloff, R.

    2007-05-15

    We demonstrate the ability to coherently control ultracold atomic Rb collisions using frequency-chirped light on the nanosecond time scale. For certain center frequencies of the chirp, the rate of inelastic trap-loss collisions induced by negatively chirped light is dramatically suppressed compared to the case of a positive chirp. We attribute this to a fundamental asymmetry in the system: an excited wave packet moves inward on the attractive molecular potential. For a positive chirp, the resonance condition moves outward in time, while for a negative chirp, it moves inward, in the same direction as the excited wave packet; this allows multiple interactions between the wave packet and the light, enabling the wave packet to be returned coherently to the ground state. Classical and quantum calculations support this interpretation.

  12. Waveform Sampler CAMAC Module

    SciTech Connect

    Freytag, D.R.; Haller, G.M.; Kang, H.; Wang, J.

    1985-09-01

    A Waveform Sampler Module (WSM) for the measurement of signal shapes coming from the multi-hit drift chambers of the SLAC SLC detector is described. The module uses a high speed, high resolution analog storage device (AMU) developed in collaboration between SLAC and Stanford University. The AMU devices together with high speed TTL clocking circuitry are packaged in a hybrid which is also suitable for mounting on the detector. The module is in CAMAC format and provides eight signal channels, each recording signal amplitude versus time in 512 cells at a sampling rate of up to 360 MHz. Data are digitized by a 12-bit ADC with a 1 ..mu..s conversion time and stored in an on-board memory accessible through CAMAC.

  13. Photon Counting Chirped Amplitude Modulation Ladar

    DTIC Science & Technology

    2008-03-01

    22202-4302. Respondents should be aware that notwithstanding any other provision of law , no person shall be subject to any penalty for failing to...135 S. Taylor Ave., Room 103, Louisville, CO 80027-3025 14. ABSTRACT This work developed a method using Geiger -mode avalanche photodiode (GM-APD...architecture are discussed. 15. SUBJECT TERMS laser radar, ladar, avalanche photo-detectors, Geiger mode detectors, chirped amplitude modulation

  14. Detector For FM Voice Or Digital Signals

    NASA Technical Reports Server (NTRS)

    Davarian, Faramaz

    1989-01-01

    Frequency-modulation (FM) detector operates with either analog audio (usually voice) signals or digital signals sent by differential minimum-shift keying (DMSK). Performance expected similar to conventional limiter/discriminator FM detectors. Detector operates at baseband, obviating need for band-pass filtering at intermediate frequency. Baseband version made in very-large-scale integrated circuit. New detector useful in mobile communications, where trend is toward integrated voice and data service.

  15. SAR processing with stepped chirps and phased array antennas.

    SciTech Connect

    Doerry, Armin Walter

    2006-09-01

    Wideband radar signals are problematic for phased array antennas. Wideband radar signals can be generated from series or groups of narrow-band signals centered at different frequencies. An equivalent wideband LFM chirp can be assembled from lesser-bandwidth chirp segments in the data processing. The chirp segments can be transmitted as separate narrow-band pulses, each with their own steering phase operation. This overcomes the problematic dilemma of steering wideband chirps with phase shifters alone, that is, without true time-delay elements.

  16. Analysis of intrapulse chirp in CO2 oscillators

    NASA Technical Reports Server (NTRS)

    Moody, Stephen E.; Berger, Russell G.; Thayer, William J., III

    1987-01-01

    Pulsed single-frequency CO2 laser oscillators are often used as transmitters for coherent lidar applications. These oscillators suffer from intrapulse chirp, or dynamic frequency shifting. If excessive, such chirp can limit the signal-to-noise ratio of the lidar (by generating excess bandwidth), or limit the velocity resolution if the lidar is of the Doppler type. This paper describes a detailed numerical model that considers all known sources of intrapulse chirp. Some typical predictions of the model are shown, and simple design rules to minimize chirp are proposed.

  17. Callback response of dugongs to conspecific chirp playbacks.

    PubMed

    Ichikawa, Kotaro; Akamatsu, Tomonari; Shinke, Tomio; Adulyanukosol, Kanjana; Arai, Nobuaki

    2011-06-01

    Dugongs (Dugong dugon) produce bird-like calls such as chirps and trills. The vocal responses of dugongs to playbacks of several acoustic stimuli were investigated. Animals were exposed to four different playback stimuli: a recorded chirp from a wild dugong, a synthesized down-sweep sound, a synthesized constant-frequency sound, and silence. Wild dugongs vocalized more frequently after playback of broadcast chirps than that after constant-frequency sounds or silence. The down-sweep sound also elicited more vocal responses than did silence. No significant difference was found between the broadcast chirps and the down-sweep sound. The ratio of wild dugong chirps to all calls and the dominant frequencies of the wild dugong calls were significantly higher during playbacks of broadcast chirps, down-sweep sounds, and constant-frequency sounds than during those of silence. The source level and duration of dugong chirps increased significantly as signaling distance increased. No significant correlation was found between signaling distance and the source level of trills. These results show that dugongs vocalize to playbacks of frequency-modulated signals and suggest that the source level of dugong chirps may be manipulated to compensate for transmission loss between the source and receiver. This study provides the first behavioral observations revealing the function of dugong chirps.

  18. Tapered and linearly chirped fiber Bragg gratings with co-directional and counter-directional resultant chirps

    NASA Astrophysics Data System (ADS)

    Osuch, Tomasz

    2016-05-01

    A method of spectral width tailoring of tapered fiber Bragg gratings is theoretically analyzed and experimentally verified. This concept is based on inscription grating structures in which synthesis of chirps comes from both taper profile and a linearly chirped phase mask used for grating inscription. It is shown that under UV exposure and depending on the orientation of the optical fiber taper relative to the variable-pitch phase mask, tapered and linearly chirped fiber Bragg gratings (TCFBG) with resultant co-directional or counter-directional chirps are achieved. Thus, both effects, those of reduction and enhancement of the grating chirp, as well as their influence on the grating spectral response, are presented. In particular, using the above approach TCFBG with significantly narrowed spectral width are shown. Moreover, fused tapered chirped FBG with relatively large waist diameter are shown having broad spectrum, something that prior to now was not attainable using previously developed techniques.

  19. Analysis of radial and longitudinal force of plasma wakefield generated by a chirped pulse laser

    SciTech Connect

    Ghasemi, Leila; Afhami, Saeedeh; Eslami, Esmaeil

    2015-08-15

    In present paper, the chirp effect of an electromagnetic pulse via an analytical model of wakefield generation is studied. Different types of chirps are employed in this study. Our results show that by the use of nonlinear chirped pulse the longitudinal wakefield and focusing force is stronger than that of linear chirped pulse. It is indicated that quadratic nonlinear chirped pulses are globally much efficient than periodic nonlinear chirped pulses. Our calculations also predict that in nonlinear chirped pulse case, the overlap of focusing and accelerating regions is broader than that achieved in linear chirped pulse.

  20. Fourier-transform electron spin resonance with bandwidth-compensated chirp pulses

    NASA Astrophysics Data System (ADS)

    Doll, Andrin; Jeschke, Gunnar

    2014-09-01

    Electron spin echo experiments using chirp pulses at X-band around 9 GHz have been performed with a home-built spectrometer based on an arbitrary waveform generator. Primary echoes without phase dispersion were obtained by employing the Böhlen-Bodenhausen scheme with the refocusing pulse being half as long as the coherence-generating pulse. To account for physical bandwidth limitation by the resonator, the instantaneous sweep rate of the chirps was adapted to the spectrometer’s frequency response function, which can be recorded from the sample under study within a few minutes. Such bandwidth-compensated chirp pulses are experimentally shown to achieve an almost uniform excitation bandwidth that exceeds the resonator bandwidth. This uniform excitation allows for computing frequency-domain spectra by Fourier-transformation (FT) of the echo signal. For a nitroxide in dilute solid solution with a spectral width of 200 MHz, the FT EPR spectrum agrees remarkably well with a field-swept echo-detected EPR spectrum. The overall spectral perturbation for operation far beyond the resonator bandwidth was characterized by acquiring a 700 MHz wide spectral range of a copper (II) EPR spectrum with nearly uniform amplitude with excitation and refocusing pulses of 200 and 100 ns, respectively. Furthermore, peculiarities were observed in solid-state FT EPR spectra of disordered systems. To understand these peculiarities two-dimensional data sets were acquired that correlate the FT EPR spectrum to inversion recovery or nuclear modulation. The echo envelope modulation experiments reveal echo decay rates increased by enhanced instantaneous diffusion and passage-specific effects in the nuclear modulations. The latter effect can be suppressed by nuclear modulation averaging. Apparent longitudinal relaxation times for a given subset of orientations are influenced by nuclear modulation effects. Proper extraction of orientation-dependent relaxation times thus requires an experimental

  1. Fourier-transform electron spin resonance with bandwidth-compensated chirp pulses.

    PubMed

    Doll, Andrin; Jeschke, Gunnar

    2014-09-01

    Electron spin echo experiments using chirp pulses at X-band around 9GHz have been performed with a home-built spectrometer based on an arbitrary waveform generator. Primary echoes without phase dispersion were obtained by employing the Böhlen-Bodenhausen scheme with the refocusing pulse being half as long as the coherence-generating pulse. To account for physical bandwidth limitation by the resonator, the instantaneous sweep rate of the chirps was adapted to the spectrometer's frequency response function, which can be recorded from the sample under study within a few minutes. Such bandwidth-compensated chirp pulses are experimentally shown to achieve an almost uniform excitation bandwidth that exceeds the resonator bandwidth. This uniform excitation allows for computing frequency-domain spectra by Fourier-transformation (FT) of the echo signal. For a nitroxide in dilute solid solution with a spectral width of 200MHz, the FT EPR spectrum agrees remarkably well with a field-swept echo-detected EPR spectrum. The overall spectral perturbation for operation far beyond the resonator bandwidth was characterized by acquiring a 700MHz wide spectral range of a copper (II) EPR spectrum with nearly uniform amplitude with excitation and refocusing pulses of 200 and 100ns, respectively. Furthermore, peculiarities were observed in solid-state FT EPR spectra of disordered systems. To understand these peculiarities two-dimensional data sets were acquired that correlate the FT EPR spectrum to inversion recovery or nuclear modulation. The echo envelope modulation experiments reveal echo decay rates increased by enhanced instantaneous diffusion and passage-specific effects in the nuclear modulations. The latter effect can be suppressed by nuclear modulation averaging. Apparent longitudinal relaxation times for a given subset of orientations are influenced by nuclear modulation effects. Proper extraction of orientation-dependent relaxation times thus requires an experimental setup

  2. A Segmented Chirped-Pulse Fourier Transform Mm-Wave Spectrometer (260-295 Ghz) with Real-Time Signal Averaging Capability

    NASA Astrophysics Data System (ADS)

    Harris, Brent J.; Steber, Amanda L.; Pate, Brooks H.

    2013-06-01

    The design and performance of a 260-295 GHz segmented chirped-pulse Fourier transform mm-wave spectrometer is presented. The spectrometer uses an arbitrary waveform generator to create an excitation and detection waveform. The excitation waveform is a series of chirped pulses with 720 MHz bandwidth at mm-wave and about 200 ns pulse duration. The excitation pulses are produced using an x24 active multiplier chain with a peak power of 30 mW. Following a chirped pulse excitation, the molecular emission from all transitions in the excitation bandwidth is detected using heterodyne detection. The free induction decay (FID) is collected for about 1.5 microseconds and each segment measurement time period is 2 microseconds. The local oscillator for the detection in each segment is also created from the arbitrary waveform generator. The full excitation waveform contains 50 segments that scan the chirped pulse frequency and LO frequency across the 260-295 GHz frequency range in a total measurement time of 100 microseconds. The FID from each measurement segment is digitized at 4 GSamples/s, for a record length of 400 kpts. Signal averaging is performed by accumulating the FID signals from each sweep through the spectrum in a 32-bit FPGA. This allows the acquisition of 16 million sequential 260-295 GHz spectra in real time. The final spectrum is produced from fast Fourier transform of the FID in each measurement segment with the frequency calculated using the segment's LO frequency. The agility of the arbitrary waveform generator light source makes it possible to perform several coherent spectroscopic measurements to speed the analysis of the spectrum. In particular, high-sensitivity double-resonance measurements can be performed by applying a "pi-pulse" to a selected molecular transition and observing the changes to all other transitions in the 260-295 GHz frequency range of the spectrometer. In this mode of operation, up to 50 double-resonance frequencies can be used in each

  3. a KA-BAND Chirped-Pulse Fourier Transform Microwave Spectrometer.

    NASA Astrophysics Data System (ADS)

    Zaleski, Daniel P.; Neill, Justin L.; Muckle, Matthew T.; Pate, Brooks H.; Carroll, P. Brandon; Weaver, Susanna L. Widicus

    2010-06-01

    The design and performance of a new chirped-pulse Fourier transform microwave (CP-FTMW) spectrometer operating from 25-40 GHz will be discussed. A 10.5-3 GHz linear frequency sweep, generated by a 24 GS/s arbitrary waveform generator, is upconverted by a 23.00 GHz phase-locked oscillator, then fed into an active doubler to create a 25-40 GHz chirped pulse. After amplification with a 60-80 W pulsed traveling wave tube amplifier, the pulse is broadcast across a molecular beam chamber where it interacts with a molecular sample. The molecular FID signal is downconverted with the 23 GHz oscillator so that it can be digitized on a 50 GS/s oscilloscope with 16 GHz hardware bandwidth. The sensitivity and phase stability of this spectrometer is comparable to that of the previously reported 6.5-18.5 CP-FTMW spectrometer. On propyne (μ=0.78 D), a single-shot signal to noise ratio of approximately 200:1 is observed on the J=2-1 rotational transition at 34183 MHz when the full bandwidth is swept; optimal excitation is observed for this transition with a 250 MHz bandwidth sweep. The emission has a T_2 lifetime of 4 μs. Early results from this spectrometer, particularly in the study of species of astrochemical interest, will be presented. G.G. Brown et al., Rev. Sci. Instrum. 79 (2008) 053103.

  4. 47 CFR 73.293 - Use of FM multiplex subcarriers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Use of FM multiplex subcarriers. 73.293 Section 73.293 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES FM Broadcast Stations § 73.293 Use of FM multiplex subcarriers. Licensees of FM...

  5. 47 CFR 73.293 - Use of FM multiplex subcarriers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Use of FM multiplex subcarriers. 73.293 Section 73.293 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES FM Broadcast Stations § 73.293 Use of FM multiplex subcarriers. Licensees of FM...

  6. 75 FR 13236 - FM Table of Allotments, Port Angeles, Washington

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-19

    ... COMMISSION 47 CFR Part 73 FM Table of Allotments, Port Angeles, Washington AGENCY: Federal Communications... Broadcasting, Inc., the licensee of Station KANY(FM), Ocean Shores, Washington, and the permittee of Station KSWW(FM), Montesano, Washington, to substitute FM Channel 271A for vacant Channel 229A at Port...

  7. 47 CFR 73.297 - FM stereophonic sound broadcasting.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false FM stereophonic sound broadcasting. 73.297... RADIO BROADCAST SERVICES FM Broadcast Stations § 73.297 FM stereophonic sound broadcasting. (a) An FM..., quadraphonic, etc.) sound programs upon installation of stereophonic sound transmitting equipment under...

  8. 47 CFR 73.297 - FM stereophonic sound broadcasting.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false FM stereophonic sound broadcasting. 73.297... RADIO BROADCAST SERVICES FM Broadcast Stations § 73.297 FM stereophonic sound broadcasting. (a) An FM..., quadraphonic, etc.) sound programs upon installation of stereophonic sound transmitting equipment under...

  9. 47 CFR 73.297 - FM stereophonic sound broadcasting.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false FM stereophonic sound broadcasting. 73.297... RADIO BROADCAST SERVICES FM Broadcast Stations § 73.297 FM stereophonic sound broadcasting. (a) An FM..., quadraphonic, etc.) sound programs upon installation of stereophonic sound transmitting equipment under...

  10. 47 CFR 73.297 - FM stereophonic sound broadcasting.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false FM stereophonic sound broadcasting. 73.297... RADIO BROADCAST SERVICES FM Broadcast Stations § 73.297 FM stereophonic sound broadcasting. (a) An FM..., quadraphonic, etc.) sound programs upon installation of stereophonic sound transmitting equipment under...

  11. 47 CFR 73.297 - FM stereophonic sound broadcasting.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false FM stereophonic sound broadcasting. 73.297... RADIO BROADCAST SERVICES FM Broadcast Stations § 73.297 FM stereophonic sound broadcasting. (a) An FM..., quadraphonic, etc.) sound programs upon installation of stereophonic sound transmitting equipment under...

  12. Electron acceleration by a chirped Gaussian laser pulse in vacuum

    SciTech Connect

    Sohbatzadeh, F.; Mirzanejhad, S.; Ghasemi, M.

    2006-12-15

    Electron acceleration by a chirped Gaussian laser pulse is investigated numerically. A linear and negative chirp is employed in this study. At first, a simple analytical description for the chirp effect on the electron acceleration in vacuum is provided in one-dimensional model. The chirp mechanism is then extended to the interaction of a femtosecond laser pulse and electron. The electron final energy is obtained as a function of laser beam waist, laser intensity, chirp parameter, and initial phase of the laser pulse. It is shown that the electron final energy depends strongly on the chirp parameter and the initial phase of the laser pulse. There is an optimal value for the chirp parameter in which the electron acceleration takes place effectively. The energy gain increases with laser beam waist and intensity. It is also shown that the electron is accelerated within a few degrees to the axial direction. Emphasis is on the important aspect of the chirp effect on the energy gained by an electron from the electromagnetic wave.

  13. High speed and high resolution interrogation of a fiber Bragg grating sensor based on microwave photonic filtering and chirped microwave pulse compression.

    PubMed

    Xu, Ou; Zhang, Jiejun; Yao, Jianping

    2016-11-01

    High speed and high resolution interrogation of a fiber Bragg grating (FBG) sensor based on microwave photonic filtering and chirped microwave pulse compression is proposed and experimentally demonstrated. In the proposed sensor, a broadband linearly chirped microwave waveform (LCMW) is applied to a single-passband microwave photonic filter (MPF) which is implemented based on phase modulation and phase modulation to intensity modulation conversion using a phase modulator (PM) and a phase-shifted FBG (PS-FBG). Since the center frequency of the MPF is a function of the central wavelength of the PS-FBG, when the PS-FBG experiences a strain or temperature change, the wavelength is shifted, which leads to the change in the center frequency of the MPF. At the output of the MPF, a filtered chirped waveform with the center frequency corresponding to the applied strain or temperature is obtained. By compressing the filtered LCMW in a digital signal processor, the resolution is improved. The proposed interrogation technique is experimentally demonstrated. The experimental results show that interrogation sensitivity and resolution as high as 1.25 ns/με and 0.8 με are achieved.

  14. 47 CFR 73.827 - Interference to the input signals of FM translator or FM booster stations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... translator or FM booster stations. 73.827 Section 73.827 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES Low Power FM Broadcast Stations (LPFM) § 73.827 Interference to the input signals of FM translator or FM booster stations. (a) Interference to the...

  15. 47 CFR 73.827 - Interference to the input signals of FM translator or FM booster stations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... translator or FM booster stations. 73.827 Section 73.827 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES Low Power FM Broadcast Stations (LPFM) § 73.827 Interference to the input signals of FM translator or FM booster stations. (a) An authorized LPFM station...

  16. 47 CFR 73.827 - Interference to the input signals of FM translator or FM booster stations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... translator or FM booster stations. 73.827 Section 73.827 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES Low Power FM Broadcast Stations (LPFM) § 73.827 Interference to the input signals of FM translator or FM booster stations. (a) Interference to the...

  17. Melanoma incidence and frequency modulation (FM) broadcasting.

    PubMed

    Hallberg, Orjan; Johansson, Olle

    2002-01-01

    The incidence of melanoma has been increasing steadily in many countries since 1960, but the underlying mechanism causing this increase remains elusive. The incidence of melanoma has been linked to the distance to frequency modulation (FM) broadcasting towers. In the current study, the authors sought to determine if there was also a related link on a larger scale for entire countries. Exposure-time-specific incidence was extracted from exposure and incidence data from 4 different countries, and this was compared with reported age-specific incidence of melanoma. Geographic differences in melanoma incidence were compared with the magnitude of this environmental stress. The exposure-time-specific incidence from all 4 countries became almost identical, and they were approximately equal to the reported age-specific incidence of melanoma. A correlation between melanoma incidence and the number of locally receivable FM transmitters was found. The authors concluded that melanoma is associated with exposure to FM broadcasting.

  18. STRS Compliant FPGA Waveform Development

    NASA Technical Reports Server (NTRS)

    Nappier, Jennifer; Downey, Joseph

    2008-01-01

    The Space Telecommunications Radio System (STRS) Architecture Standard describes a standard for NASA space software defined radios (SDRs). It provides a common framework that can be used to develop and operate a space SDR in a reconfigurable and reprogrammable manner. One goal of the STRS Architecture is to promote waveform reuse among multiple software defined radios. Many space domain waveforms are designed to run in the special signal processing (SSP) hardware. However, the STRS Architecture is currently incomplete in defining a standard for designing waveforms in the SSP hardware. Therefore, the STRS Architecture needs to be extended to encompass waveform development in the SSP hardware. A transmit waveform for space applications was developed to determine ways to extend the STRS Architecture to a field programmable gate array (FPGA). These extensions include a standard hardware abstraction layer for FPGAs and a standard interface between waveform functions running inside a FPGA. Current standards were researched and new standard interfaces were proposed. The implementation of the proposed standard interfaces on a laboratory breadboard SDR will be presented.

  19. Near-field diffraction of chirped gratings.

    PubMed

    Sanchez-Brea, Luis Miguel; Torcal-Milla, Francisco Jose; Morlanes, Tomas

    2016-09-01

    In this Letter, we analyze the near-field diffraction pattern produced by chirped gratings. An intuitive analytical interpretation of the generated diffraction orders is proposed. Several interesting properties of the near-field diffraction pattern can be determined, such as the period of the fringes and its visibility. Diffraction orders present different widths and also, some of them present focusing properties. The width, location, and depth of focus of the converging diffraction orders are also determined. The analytical expressions are compared to numerical simulation and experimental results, showing a high agreement.

  20. A broadband Fourier transform microwave spectrometer based on chirped pulse excitation.

    PubMed

    Brown, Gordon G; Dian, Brian C; Douglass, Kevin O; Geyer, Scott M; Shipman, Steven T; Pate, Brooks H

    2008-05-01

    Designs for a broadband chirped pulse Fourier transform microwave (CP-FTMW) spectrometer are presented. The spectrometer is capable of measuring the 7-18 GHz region of a rotational spectrum in a single data acquisition. One design uses a 4.2 Gsampless arbitrary waveform generator (AWG) to produce a 1 mus duration chirped pulse with a linear frequency sweep of 1.375 GHz. This pulse is sent through a microwave circuit to multiply the bandwidth of the pulse by a factor of 8 and upconvert it to the 7.5-18.5 GHz range. The chirped pulse is amplified by a traveling wave tube amplifier and broadcast inside the spectrometer by using a double ridge standard gain horn antenna. The broadband molecular free induction decay (FID) is received by a second horn antenna, downconverted, and digitized by a 40 Gsampless (12 GHz hardware bandwidth) digital oscilloscope. The second design uses a simplified pulse generation and FID detection scheme, employing current state-of-the-art high-speed digital electronics. In this spectrometer, a chirped pulse with 12 GHz of bandwidth is directly generated by using a 20 Gsampless AWG and upconverted in a single step with an ultrabroadband mixer. The amplified molecular emission is directly detected by using a 50 Gsampless digital oscilloscope with 18 GHz bandwidth. In both designs, fast Fourier transform of the FID produces the frequency domain rotational spectrum in the 7-18 GHz range. The performance of the CP-FTMW spectrometer is compared to a Balle-Flygare-type cavity-FTMW spectrometer. The CP-FTMW spectrometer produces an equal sensitivity spectrum with a factor of 40 reduction in measurement time and a reduction in sample consumption by a factor of 20. The CP-FTMW spectrometer also displays good intensity accuracy for both sample number density and rotational transition moment. Strategies to reduce the CP-FTMW measurement time by another factor of 90 while simultaneously reducing the sample consumption by a factor of 30 are demonstrated.

  1. High-accuracy waveforms for binary black hole inspiral, merger, and ringdown

    SciTech Connect

    Scheel, Mark A.; Boyle, Michael; Chu, Tony; Matthews, Keith D.; Pfeiffer, Harald P.; Kidder, Lawrence E.

    2009-01-15

    The first spectral numerical simulations of 16 orbits, merger, and ringdown of an equal-mass nonspinning binary black hole system are presented. Gravitational waveforms from these simulations have accumulated numerical phase errors through ringdown of < or approx. 0.1 radian when measured from the beginning of the simulation, and < or approx. 0.02 radian when waveforms are time and phase shifted to agree at the peak amplitude. The waveform seen by an observer at infinity is determined from waveforms computed at finite radii by an extrapolation process accurate to < or approx. 0.01 radian in phase. The phase difference between this waveform at infinity and the waveform measured at a finite radius of r=100M is about half a radian. The ratio of final mass to initial mass is M{sub f}/M=0.951 62{+-}0.000 02, and the final black hole spin is S{sub f}/M{sub f}{sup 2}=0.686 46{+-}0.000 04.

  2. Tailoring Chirp in Spin-Lasers

    NASA Astrophysics Data System (ADS)

    Lee, Jeongsu; Boeris, Guilhem; Vyborny, Karel; Zutic, Igor

    2012-02-01

    The interplay of spin injection in lasers and their nonlinear response leads to novel spintronic devices [1]. Such spin-lasers can enable desirable properties including threshold reduction, bandwidth enhancement, and low chirp [1-3]. These lasers can also be viewed as spin-amplifiers, since high circular polarization in the output can be achieved even with nearly spin-unpolarized injection [2,3]. In the present work, we study chirp in spin-lasers and suggest new modulation schemes to improve their performance. Supported by NSF-ECCS, U.S. ONR, AFOSR-DCT, and NSF-NEB 2020. [4pt] [1] M. Holub et al., Phys. Rev. Lett. 98, 146603 (2007); J. Rudolph et al., Appl. Phys. Lett. 87, 241117 (2005). [0pt] [2] J. Lee, W. Falls, R. Oszwadowski, and I. Zuti'c, Appl. Phys. Lett. 97, 041116 (2010).[0pt] [3] C. Gøthgen, R. Oszwadowski, A. Petrou, and I. Zuti'c, Appl. Phys. Lett. 93, 042513 (2008).[0pt] [4] G. Boeris, J. Lee, K. V'yborn'y, and I. Zuti'c, preprint (2011).

  3. FY05 FM Dial Summary Report

    SciTech Connect

    Harper, Warren W.; Strasburg, Jana D.; Golovich, Elizabeth C.; Thompson, Jason S.; Stewart, Timothy L.; Batdorf, Michael T.

    2005-12-01

    Pacific Northwest National Laboratory's Infrared Sensors team is focused on developing methods for standoff detection of nuclear proliferation. In FY05, PNNL continued the development of the FM DIAL (frequency-modulated differential absorption LIDAR) experiment. Additional improvements to the FM DIAL trailer provided greater stability during field campaigns which made it easier to explore new locations for field campaigns. In addition to the Hanford Townsite, successful experiments were conducted at the Marine Science Laboratory in Sequim, WA and the Nevada Test Site located outside Las Vegas, NV. The range of chemicals that can be detected by FM DIAL has also increased. Prior to FY05, distributed feedback quantum cascade lasers (DFB-QCL) were used in the FM DIAL experiments. With these lasers, only simple chemicals with narrow (1-2 cm-1) absorption spectra, such as CO2 and N2O, could be detected. Fabry-Perot (FP) QC lasers have much broader spectra (20-40 cm-1) which allows for the detection of larger chemicals and a wider array of chemicals that can be detected. A FP-QCL has been characterized and used during initial studies detecting DMMP (dimethyl methylphosphonate).

  4. Non-Commercial FM: Profiles of Service.

    ERIC Educational Resources Information Center

    Clift, Charles; Lee, Varnell

    This paper examines the growth of noncommercial FM radio and the service it provides to various regions of the United States and to large metropolitan areas. It concludes that the service provided does not reflect the policies for noncommercial broadcasting set forth by Congress and the Federal Communications Commission and that it does not…

  5. Click- and chirp-evoked human compound action potentials.

    PubMed

    Chertoff, Mark; Lichtenhan, Jeffery; Willis, Marie

    2010-05-01

    In the experiments reported here, the amplitude and the latency of human compound action potentials (CAPs) evoked from a chirp stimulus are compared to those evoked from a traditional click stimulus. The chirp stimulus was created with a frequency sweep to compensate for basilar membrane traveling wave delay using the O-Chirp equations from Fobel and Dau [(2004). J. Acoust. Soc. Am. 116, 2213-2222] derived from otoacoustic emission data. Human cochlear traveling wave delay estimates were obtained from derived compound band action potentials provided by Eggermont [(1979). J. Acoust. Soc. Am. 65, 463-470]. CAPs were recorded from an electrode placed on the tympanic membrane (TM), and the acoustic signals were monitored with a probe tube microphone attached to the TM electrode. Results showed that the amplitude and latency of chirp-evoked N1 of the CAP differed from click-evoked CAPs in several regards. For the chirp-evoked CAP, the N1 amplitude was significantly larger than the click-evoked N1s. The latency-intensity function was significantly shallower for chirp-evoked CAPs as compared to click-evoked CAPs. This suggests that auditory nerve fibers respond with more unison to a chirp stimulus than to a click stimulus.

  6. Tunable reflecting terahertz filter based on chirped metamaterial structure.

    PubMed

    Yang, Jing; Gong, Cheng; Sun, Lu; Chen, Ping; Lin, Lie; Liu, Weiwei

    2016-12-12

    Tunable reflecting terahertz bandstop filter based on chirped metamaterial structure is demonstrated by numerical simulation. In the metamaterial, the metal bars are concatenated to silicon bars with different lengths. By varying the conductivity of the silicon bars, the reflectivity, central frequency and bandwidth of the metamaterial could be tuned. Light illumination could be introduced to change the conductivity of the silicon bars. Numerical simulations also show that the chirped metamaterial structure is insensitive to the incident angle and polarization-dependent. The proposed chirped metamaterial structure can be operated as a tunable bandstop filter whose modulation depth, bandwidth, shape factor and center frequency can be controlled by light pumping.

  7. Tunable reflecting terahertz filter based on chirped metamaterial structure

    PubMed Central

    Yang, Jing; Gong, Cheng; Sun, Lu; Chen, Ping; Lin, Lie; Liu, Weiwei

    2016-01-01

    Tunable reflecting terahertz bandstop filter based on chirped metamaterial structure is demonstrated by numerical simulation. In the metamaterial, the metal bars are concatenated to silicon bars with different lengths. By varying the conductivity of the silicon bars, the reflectivity, central frequency and bandwidth of the metamaterial could be tuned. Light illumination could be introduced to change the conductivity of the silicon bars. Numerical simulations also show that the chirped metamaterial structure is insensitive to the incident angle and polarization-dependent. The proposed chirped metamaterial structure can be operated as a tunable bandstop filter whose modulation depth, bandwidth, shape factor and center frequency can be controlled by light pumping. PMID:27941833

  8. Evolution of chirped laser pulses in a magnetized plasma channel

    SciTech Connect

    Jha, Pallavi; Hemlata,; Mishra, Rohit Kumar

    2014-12-15

    The propagation of intense, short, sinusoidal laser pulses in a magnetized plasma channel has been studied. The wave equation governing the evolution of the radiation field is set up and a variational technique is used to obtain the equations describing the evolution of the laser spot size, pulse length and chirp parameter. Numerical methods are used to analyze the simultaneous evolution of these parameters. The effect of the external magnetic field on initially chirped as well as unchirped laser pulses on the spot size, pulse length and chirping has been analyzed.

  9. Differential processing for frequency chirp measurement using optical pulse synthesizer

    NASA Astrophysics Data System (ADS)

    Kashiwagi, Ken; Seki, Satoshi; Tsuda, Hiroyuki; Takenouchi, Hirokazu; Kurokawa, Takashi

    2017-03-01

    In this study, we introduced an optical pulse synthesizer (OPS) to measure frequency chirps of optical pulses by differential processing. The OPS has a single-chip integrated structure of all elements for the differential filtering and enables stable measurement. Because the exact filter causes a large loss, we employed a phase-only filter, whose frequency response was only in phase. We measured chirp rates of pulses which were induced by propagating standard single mode fibers with different lengths. The retrieved chirp rates were comparable to calculated results. We simulated accuracy of the method and concluded that our experiment had phase control accuracy within 0.07π.

  10. Propagation of chirped laser pulses in a plasma channel

    SciTech Connect

    Jha, Pallavi; Malviya, Amita; Upadhyay, Ajay K.

    2009-06-15

    Propagation of an initially chirped, Gaussian laser pulse in a preformed parabolic plasma channel is analyzed. A variational technique is used to obtain equations describing the evolution of the phase shift and laser spot size. The effect of initial chirp on the laser pulse length and intensity of a matched laser beam propagating in a plasma channel has been analyzed. The effective pulse length and chirp parameter of the laser pulse due to its interaction with plasma have been obtained and graphically depicted. The resultant variation in laser frequency across the laser pulse is discussed.

  11. Band limited chirp stimulation in vestibular evoked myogenic potentials.

    PubMed

    Walther, Leif Erik; Cebulla, Mario

    2016-10-01

    Air conducted vestibular evoked myogenic potentials (VEMP) can be elicited by various low frequency and intense sound stimuli, mainly clicks or short tone bursts (STB). Chirp stimuli are increasingly used in diagnostic audiological evaluations as an effective means to obtain acoustically evoked responses in narrowed or extended frequency ranges. We hypothesized in this study that band limited chirp stimulation, which covers the main sensitivity range of sound sensitive otolithic afferents (around 500 Hz), might be useful for application in cervical and ocular VEMP to air conduction. For this purpose we designed a chirp stimulus ranging 250-1000 Hz (up chirp). The chirp stimulus was delivered with a stimulus intensity of 100 dB nHL in normal subjects (n = 10) and patients with otolith involvement (vestibular neuritis) (n = 6). Amplitudes of the designed chirp ("CW-VEMP-chirp, 250-1000 Hz") were compared with amplitudes of VEMPs evoked by click stimuli (0.1 ms) and a short tone burst (STB, 1-2-1, 8 ms, 500 Hz). CVEMPs and oVEMPs were detectable in 9 of 10 normal individuals. Statistical evaluation in healthy patients revealed significantly larger cVEMP and oVEMP amplitudes for CW-VEMP-chirp (250-1000 Hz) stimuli. CVEMP amplitudes evoked by CW-VEMP-chirp (250-1000 Hz) showed a high stability in comparison with click and STB stimulation. CW-VEMP-chirp (250-1000 Hz) showed abnormal cVEMP and oVEMP amplitudes in patients with vestibular neuritis, with the same properties as click and STB stimulated VEMPs. We conclude that the designed CW-VEMP-chirp (250-1000 Hz) is an effective stimulus which can be further used in VEMP diagnostic. Since a chirp stimulus can be easily varied in its properties, in particular with regard to frequency, this might be a promising tool for further investigations.

  12. Tunable reflecting terahertz filter based on chirped metamaterial structure

    NASA Astrophysics Data System (ADS)

    Yang, Jing; Gong, Cheng; Sun, Lu; Chen, Ping; Lin, Lie; Liu, Weiwei

    2016-12-01

    Tunable reflecting terahertz bandstop filter based on chirped metamaterial structure is demonstrated by numerical simulation. In the metamaterial, the metal bars are concatenated to silicon bars with different lengths. By varying the conductivity of the silicon bars, the reflectivity, central frequency and bandwidth of the metamaterial could be tuned. Light illumination could be introduced to change the conductivity of the silicon bars. Numerical simulations also show that the chirped metamaterial structure is insensitive to the incident angle and polarization-dependent. The proposed chirped metamaterial structure can be operated as a tunable bandstop filter whose modulation depth, bandwidth, shape factor and center frequency can be controlled by light pumping.

  13. Chirped-Superlattice, Blocked-Intersubband QWIP

    NASA Technical Reports Server (NTRS)

    Gunapala, Sarath; Ting, David; Bandara, Sumith

    2004-01-01

    An Al(x)Ga(1-x)As/GaAs quantum-well infrared photodetector (QWIP) of the blocked-intersubband-detector (BID) type, now undergoing development, features a chirped (that is, aperiodic) superlattice. The purpose of the chirped superlattice is to increase the quantum efficiency of the device. A somewhat lengthy background discussion is necessary to give meaning to a brief description of the present developmental QWIP. A BID QWIP was described in "MQW Based Block Intersubband Detector for Low-Background Operation" (NPO-21073), NASA Tech Briefs Vol. 25, No. 7 (July 2001), page 46. To recapitulate: The BID design was conceived in response to the deleterious effects of operation of a QWIP at low temperature under low background radiation. These effects can be summarized as a buildup of space charge and an associated high impedance and diminution of responsivity with increasing modulation frequency. The BID design, which reduces these deleterious effects, calls for a heavily doped multiple-quantum-well (MQW) emitter section with barriers that are thinner than in prior MQW devices. The thinning of the barriers results in a large overlap of sublevel wave functions, thereby creating a miniband. Because of sequential resonant quantum-mechanical tunneling of electrons from the negative ohmic contact to and between wells, any space charge is quickly neutralized. At the same time, what would otherwise be a large component of dark current attributable to tunneling current through the whole device is suppressed by placing a relatively thick, undoped, impurity-free AlxGa1 x As blocking barrier layer between the MQW emitter section and the positive ohmic contact. [This layer is similar to the thick, undoped Al(x)Ga(1-x)As layers used in photodetectors of the blocked-impurity-band (BIB) type.] Notwithstanding the aforementioned advantage afforded by the BID design, the responsivity of a BID QWIP is very low because of low collection efficiency, which, in turn, is a result of low

  14. Optically tunable chirped fiber Bragg grating.

    PubMed

    Li, Zhen; Chen, Zhe; Hsiao, V K S; Tang, Jie-Yuan; Zhao, Fuli; Jiang, Shao-Ji

    2012-05-07

    This work presents an optically tunable chirped fiber Bragg grating (CFBG). The CFBG is obtained by a side-polished fiber Bragg grating (SPFBG) whose thickness of the residual cladding layer in the polished area (D(RC)) varies with position along the length of the grating, which is coated with a photoresponsive liquid crystal (LC) overlay. The reflection spectrum of the CFBG is tuned by refractive index (RI) modulation, which comes from the phase transition of the overlaid photoresponsive LC under ultraviolet (UV) light irradiation. The broadening in the reflection spectrum and corresponding shift in the central wavelength are observed with UV light irradiation density of 0.64mW/mm. During the phase transition of the photoresponsive LC, the RI increase of the overlaid LC leads to the change of the CFBG reflection spectrum and the change is reversible and repeatable. The optically tunable CFBGs have potential use in optical DWDM system and an all-fiber telecommunication system.

  15. Dispersion compensation in chirped pulse amplification systems

    DOEpatents

    Bayramian, Andrew James; Molander, William A.

    2014-07-15

    A chirped pulse amplification system includes a laser source providing an input laser pulse along an optical path. The input laser pulse is characterized by a first temporal duration. The system also includes a multi-pass pulse stretcher disposed along the optical path. The multi-pass pulse stretcher includes a first set of mirrors operable to receive input light in a first plane and output light in a second plane parallel to the first plane and a first diffraction grating. The pulse stretcher also includes a second set of mirrors operable to receive light diffracted from the first diffraction grating and a second diffraction grating. The pulse stretcher further includes a reflective element operable to reflect light diffracted from the second diffraction grating. The system further includes an amplifier, a pulse compressor, and a passive dispersion compensator disposed along the optical path.

  16. Chirped pulse amplification: Present and future

    SciTech Connect

    Maine, P.; Strickland, D.; Pessot, M.; Squier, J.; Bado, P.; Mourou, G.; Harter, D.

    1988-01-01

    Short pulses with ultrahigh peak powers have been generated in Nd: glass and Alexandrite using the Chirped Pulse Amplification (CPA) technique. This technique has been successful in producing picosecond terawatt pulses with a table-top laser system. In the near future, CPA will be applied to large laser systems such as NOVA to produce petawatt pulses (1 kJ in a 1 ps pulse) with focused intensities exceeding 10/sup /plus/21/ W/cm/sup 2/. These pulses will be associated with electric fields in excess of 100 e/a/sub o//sup 2/ and blackbody energy densities equivalent to 3 /times/ 10/sup 10/ J/cm/sup 3/. This petawatt source will have important applications in x-ray laser research and will lead to fundamentally new experiments in atomic, nuclear, solid-state, plasma, and high-energy density physics. A review of present and future designs are discussed. 17 refs., 5 figs.

  17. An Evaluation of FCC Policy on FM Ownership.

    ERIC Educational Resources Information Center

    Soley, Lawrence C.

    1979-01-01

    An examination of data on FM construction permits shows that independent FM broadcasters have obtained construction permits in markets with larger adjusted populations than those where AM licensees were granted same-market permits. (GT)

  18. Detailed spectroscopy of {sup 249}Fm

    SciTech Connect

    Lopez-Martens, A.; Hauschild, K.; Briancon, Ch.; Korichi, A.; Yeremin, A. V.; Belozerov, A. V.; Chelnokov, M. L.; Chepigin, V. I.; Gorshkov, V. A.; Kabachenko, A. P.; Malyshev, O. N.; Oganessian, Yu. Ts.; Popeko, A. G.; Sagaidak, R. N.; Shutov, A. V.; Svirikhin, A. I.; Curien, D.; Dorvaux, O.; Gall, B.; Khalfallah, F.

    2006-10-15

    Excited states in {sup 249}Fm were populated via the {alpha} decay of {sup 253}No and the subsequent decay was observed with the GABRIELA detection system installed at the focal plane of the VASSILISSA recoil separator. The energies, spins, and parities of these states could be established through combined {alpha},{gamma}, and conversion-electron spectroscopy. The first members of the ground-state rotational band were identified. Their excitation energies as well as the observation of a cross-over E2 transition confirm the assignment of 7/2{sup +}624 for the ground state of {sup 249}Fm. Two excited states were also observed and their decay properties suggest that they correspond to the particle excitation 9/2{sup -}734 and hole excitation 5/2{sup +}622. The analysis suggests that the 279-keV transition de-exciting the 9/2{sup -} state has anomalous E1 conversion coefficients.

  19. Cancer versus FM radio polarization types.

    PubMed

    Hallberg, Örjan

    2016-07-01

    In 2002, a detailed analysis of skin melanoma in 289 Swedish municipalities showed a strong association with the number of horizontally polarized main FM transmitters covering a municipality. Basic antenna theory says that body-resonance and standing waves cannot appear above a metal spring mattress unless the electric field is horizontally polarized. To test the hypothesis that body-resonant radiation can cause increased cancer risk in other European countries, I collected and analysed reported data from 24 countries, among which six were using vertical polarization. The results showed a strong association between cancer risk and the use of horizontally polarized FM broadcasting radiation, whereas vertical polarization seemed to cause no health effects. This information should form the basis for initiating relevant corrective actions by responsible authorities.

  20. Meaningful FM transmitter modulation linearity measurements

    NASA Astrophysics Data System (ADS)

    Jeske, H. O.

    The IM products in the demodulator output in this case are due only to the demodulator's transfer characteristics. IM product levels of the test system greater than 60 dB below the simultaneous modulation level of +300 kHz each by 400 and 450 kHz tones are obtained at Sandia Laboratories. The use of two-tone IM tests for the evaluation and specification of FM transmitter modulation linearity is strongly recommended.

  1. Signal Enhancement in AM-FM Interference

    DTIC Science & Technology

    1994-05-17

    the short-time linear assumption, it provides a good test of the suppression algorithm. A 10-ms Hamming window, a 4-ms frame, and a 2048-point DFT...complex suppression with a different test signal consisting of the AM-FM interference added to an information signal generated from a closing stapler...1st The results of an informal listening test are also listed in Table 1, based on the judgment of interference reduction and clarity of the information

  2. Automatic frequency control for FM transmitter

    NASA Technical Reports Server (NTRS)

    Honnell, M. A. (Inventor)

    1974-01-01

    An automatic frequency control circuit for an FM television transmitter is described. The frequency of the transmitter is sampled during what is termed the back porch portion of the horizontal synchronizing pulse which occurs during the retrace interval, the frequency sample compared with the frequency of a reference oscillator, and a correction applied to the frequency of the transmitter during this portion of the retrace interval.

  3. Graphs for Isotopes of 100-Fm (Fermium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides a graphic representation of nucleon separation energies and residual interaction parameters for isotopes of the chemical element 100-Fm (Fermium, atomic number Z = 100).

  4. Giant-chirp oscillators for short-pulse fiber amplifiers.

    PubMed

    Renninger, William H; Chong, Andy; Wise, Frank W

    2008-12-15

    A new regime of pulse parameters in a normal-dispersion fiber laser is identified. Dissipative solitons exist with remarkably large pulse duration and chirp, along with large pulse energy. A low-repetition-rate oscillator that generates pulses with large and linear chirp can replace the standard oscillator, stretcher, pulse-picker, and preamplifier in a chirped-pulse fiber amplifier. The theoretical properties of such a giant-chirp oscillator are presented. A fiber laser designed to operate in the new regime generates approximately 150 ps pulses at a 3 MHz repetition rate. Amplification of these pulses to 1 microJ energy with pulse duration as short as 670 fs demonstrates the promise of this new approach.

  5. Chirp and polarization control of femtosecond molecular fragmentation

    NASA Astrophysics Data System (ADS)

    Goswami, T.; Das, D. K.; Karthick Kumar, S. K.; Goswami, D.

    2012-03-01

    We explore the simultaneous effect of chirp and polarization as the two control parameters for non-resonant photo-dissociation of n-propyl benzene. Experiments performed over a wide range of laser intensities show that these two control knobs behave mutually exclusively. Specifically, for the coherently enhanced fragments (C3H3 +, C5H5 +) with negatively chirped pulses and C6H5 + with positively chirped pulses, polarization effect is the same as compared to that in the case of transform-limited pulses. Though a change in polarization affects the overall fragmentation efficiency, the fragmentation pattern of n-propyl benzene molecule remains unaffected in contrast to the chirp case.

  6. Chirp and polarization control of femtosecond molecular fragmentation.

    PubMed

    Goswami, T; Das, D K; Kumar, S K Karthick; Goswami, D

    2012-03-01

    We explore the simultaneous effect of chirp and polarization as the two control parameters for non-resonant photo-dissociation of n-propyl benzene. Experiments performed over a wide range of laser intensities show that these two control knobs behave mutually exclusively. Specifically, for the coherently enhanced fragments (C3H3(+), C5H5(+)) with negatively chirped pulses and C6H5(+) with positively chirped pulses, polarization effect is the same as compared to that in the case of transform-limited pulses. Though a change in polarization affects the overall fragmentation efficiency, the fragmentation pattern of n-propyl benzene molecule remains unaffected in contrast to the chirp case.

  7. A theoretical investigation of chirp insonification of ultrasound contrast agents.

    PubMed

    Barlow, Euan; Mulholland, Anthony J; Gachagan, Anthony; Nordon, Alison

    2011-08-01

    A theoretical investigation of second harmonic imaging of an Ultrasound Contrast Agent (UCA) under chirp insonification is considered. By solving the UCA's dynamical equation analytically, the effect that the chirp signal parameters and the UCA shell parameters have on the amplitude of the second harmonic frequency are examined. This allows optimal parameter values to be identified which maximise the UCA's second harmonic response. A relationship is found for the chirp parameters which ensures that a signal can be designed to resonate a UCA for a given set of shell parameters. It is also shown that the shell thickness, shell viscosity and shell elasticity parameter should be as small as realistically possible in order to maximise the second harmonic amplitude. Keller-Herring, Second Harmonic, Chirp, Ultrasound Contrast Agent.

  8. Phase-locked loop FM demodulator

    NASA Technical Reports Server (NTRS)

    Kirkham, Harold (Inventor); Jackson, Shannon P. (Inventor)

    1992-01-01

    A conventional phase-locked loop is improved by replacing its phase detector with one comprising a linear ramp generator and a sample-and-hold circuit, thus eliminating the need for a lowpass loop filter, although the output of the sample-and-hold circuit may be filtered in the case of a very low level modulating signal on the incoming FM signal, but then filtering is not a difficult problem as in a conventional phase-locked loop. The result is FM demodulation by zero-order estimation. For FM demodulation by first-order estimation, the arithmetic difference between adjacent samples is formed, and using a second sample-and-hold circuit an arithmetic difference signal is produced as an input to a second ramp generator that is reset after each sampling cycle to generate a ramp the slope of which is a function of the arithmetic difference signal stored in the second sample-and-hold circuit. The ramp thus generated by the second ramp generator is arithmetically summed with the zero-estimation signal from the first sample-and-hold circuit to form a first-order estimation signal. Filtering such a first-order estimation signal is less of a problem than filtering a zero-order estimation signal.

  9. 47 CFR 73.599 - NCE-FM engineering charts.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false NCE-FM engineering charts. 73.599 Section 73.599 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES Noncommercial Educational FM Broadcast Stations § 73.599 NCE-FM engineering charts....

  10. 47 CFR 73.599 - NCE-FM engineering charts.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false NCE-FM engineering charts. 73.599 Section 73.599 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES Noncommercial Educational FM Broadcast Stations § 73.599 NCE-FM engineering charts....

  11. 47 CFR 73.599 - NCE-FM engineering charts.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false NCE-FM engineering charts. 73.599 Section 73.599 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES Noncommercial Educational FM Broadcast Stations § 73.599 NCE-FM engineering charts....

  12. 75 FR 65521 - FM Approvals; Expansion of Recognition

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-25

    ... Occupational Safety and Health Administration FM Approvals; Expansion of Recognition AGENCY: Occupational... a Nationally Recognized Testing Laboratory under 29 CFR 1910.7. DATES: The expansion of recognition... (FM) as a Nationally Recognized Testing Laboratory (NRTL). FM's expansion covers the use of...

  13. 47 CFR 73.599 - NCE-FM engineering charts.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false NCE-FM engineering charts. 73.599 Section 73.599 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES Noncommercial Educational FM Broadcast Stations § 73.599 NCE-FM engineering charts....

  14. 47 CFR 73.310 - FM technical definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false FM technical definitions. 73.310 Section 73.310 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES FM Broadcast Stations § 73.310 FM technical definitions. (a) Frequency modulation. Antenna height above...

  15. 47 CFR 73.295 - FM subsidiary communications services.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false FM subsidiary communications services. 73.295 Section 73.295 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES FM Broadcast Stations § 73.295 FM subsidiary communications services....

  16. 47 CFR 73.515 - NCE FM transmitter location.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false NCE FM transmitter location. 73.515 Section 73.515 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES Noncommercial Educational FM Broadcast Stations § 73.515 NCE FM transmitter location....

  17. 47 CFR 73.295 - FM subsidiary communications services.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false FM subsidiary communications services. 73.295 Section 73.295 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES FM Broadcast Stations § 73.295 FM subsidiary communications services....

  18. 75 FR 27977 - FM Table of Allotments, Fairbanks, Alaska

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-19

    ... COMMISSION 47 CFR Part 73 FM Table of Allotments, Fairbanks, Alaska AGENCY: Federal Communications Commission ACTION: Proposed rule. SUMMARY: This document sets forth a proposal to amend the FM Table of Allotments... allotment of FM Channels 224C2 and 232C2 as the thirteenth and fourteenth local service at Fairbanks,...

  19. 75 FR 43897 - FM TABLE OF ALLOTMENTS, GRANTS PASS, OREGON

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-27

    ... COMMISSION 47 CFR Part 73 FM TABLE OF ALLOTMENTS, GRANTS PASS, OREGON AGENCY: Federal Communications Commission ACTION: Proposed rule. SUMMARY: This document sets forth a proposal to amend the FM Table of... the allotment of FM Channel 257A as the second commercial allotment at Grants Pass, Oregon....

  20. 47 CFR 73.599 - NCE-FM engineering charts.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false NCE-FM engineering charts. 73.599 Section 73.599 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES Noncommercial Educational FM Broadcast Stations § 73.599 NCE-FM engineering charts....

  1. 75 FR 4037 - FM TABLE OF ALLOTMENTS, BRACKETTVILLE, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-26

    ... COMMISSION 47 CFR Part 73 FM TABLE OF ALLOTMENTS, BRACKETTVILLE, TX AGENCY: Federal Communications Commission... proposed deletion of this vacant allotment accommodates the new FM station application, which requests the... Rocksprings, to Brackettville, Texas, modification of the new FM station authorization. See File No....

  2. 47 CFR 73.316 - FM antenna systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false FM antenna systems. 73.316 Section 73.316 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES FM Broadcast Stations § 73.316 FM antenna systems. (a) It shall be standard to employ horizontal...

  3. 47 CFR 73.317 - FM transmission system requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false FM transmission system requirements. 73.317 Section 73.317 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES FM Broadcast Stations § 73.317 FM transmission system requirements. (a)...

  4. 47 CFR 73.315 - FM transmitter location.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false FM transmitter location. 73.315 Section 73.315 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES FM Broadcast Stations § 73.315 FM transmitter location. (a) The transmitter location shall be chosen so...

  5. 47 CFR 73.310 - FM technical definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false FM technical definitions. 73.310 Section 73.310 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES FM Broadcast Stations § 73.310 FM technical definitions. (a) Frequency modulation. Antenna height above...

  6. 47 CFR 73.515 - NCE FM transmitter location.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false NCE FM transmitter location. 73.515 Section 73.515 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES Noncommercial Educational FM Broadcast Stations § 73.515 NCE FM transmitter location....

  7. 47 CFR 73.315 - FM transmitter location.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false FM transmitter location. 73.315 Section 73.315 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES FM Broadcast Stations § 73.315 FM transmitter location. (a) The transmitter location shall be chosen so...

  8. 47 CFR 73.319 - FM multiplex subcarrier technical standards.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false FM multiplex subcarrier technical standards. 73.319 Section 73.319 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES FM Broadcast Stations § 73.319 FM multiplex subcarrier...

  9. 47 CFR 73.317 - FM transmission system requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false FM transmission system requirements. 73.317 Section 73.317 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES FM Broadcast Stations § 73.317 FM transmission system requirements. (a)...

  10. 47 CFR 73.317 - FM transmission system requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false FM transmission system requirements. 73.317 Section 73.317 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES FM Broadcast Stations § 73.317 FM transmission system requirements. (a)...

  11. 47 CFR 73.317 - FM transmission system requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false FM transmission system requirements. 73.317 Section 73.317 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES FM Broadcast Stations § 73.317 FM transmission system requirements. (a)...

  12. 47 CFR 73.317 - FM transmission system requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false FM transmission system requirements. 73.317 Section 73.317 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES FM Broadcast Stations § 73.317 FM transmission system requirements. (a)...

  13. 47 CFR 73.322 - FM stereophonic sound transmission standards.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false FM stereophonic sound transmission standards... SERVICES RADIO BROADCAST SERVICES FM Broadcast Stations § 73.322 FM stereophonic sound transmission... modulation levels apply: (i) When a signal exists in only one channel of a two channel (biphonic)...

  14. 47 CFR 73.597 - FM stereophonic sound broadcasting.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false FM stereophonic sound broadcasting. 73.597... RADIO BROADCAST SERVICES Noncommercial Educational FM Broadcast Stations § 73.597 FM stereophonic sound..., transmit stereophonic sound programs upon installation of stereophonic sound transmitting equipment...

  15. 47 CFR 73.597 - FM stereophonic sound broadcasting.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false FM stereophonic sound broadcasting. 73.597... RADIO BROADCAST SERVICES Noncommercial Educational FM Broadcast Stations § 73.597 FM stereophonic sound..., transmit stereophonic sound programs upon installation of stereophonic sound transmitting equipment...

  16. 47 CFR 73.597 - FM stereophonic sound broadcasting.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false FM stereophonic sound broadcasting. 73.597... RADIO BROADCAST SERVICES Noncommercial Educational FM Broadcast Stations § 73.597 FM stereophonic sound..., transmit stereophonic sound programs upon installation of stereophonic sound transmitting equipment...

  17. 47 CFR 73.597 - FM stereophonic sound broadcasting.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false FM stereophonic sound broadcasting. 73.597... RADIO BROADCAST SERVICES Noncommercial Educational FM Broadcast Stations § 73.597 FM stereophonic sound..., transmit stereophonic sound programs upon installation of stereophonic sound transmitting equipment...

  18. 47 CFR 73.322 - FM stereophonic sound transmission standards.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false FM stereophonic sound transmission standards... SERVICES RADIO BROADCAST SERVICES FM Broadcast Stations § 73.322 FM stereophonic sound transmission... modulation levels apply: (i) When a signal exists in only one channel of a two channel (biphonic)...

  19. 47 CFR 73.322 - FM stereophonic sound transmission standards.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false FM stereophonic sound transmission standards... SERVICES RADIO BROADCAST SERVICES FM Broadcast Stations § 73.322 FM stereophonic sound transmission... modulation levels apply: (i) When a signal exists in only one channel of a two channel (biphonic)...

  20. 47 CFR 73.322 - FM stereophonic sound transmission standards.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false FM stereophonic sound transmission standards... SERVICES RADIO BROADCAST SERVICES FM Broadcast Stations § 73.322 FM stereophonic sound transmission... modulation levels apply: (i) When a signal exists in only one channel of a two channel (biphonic)...

  1. 47 CFR 73.322 - FM stereophonic sound transmission standards.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false FM stereophonic sound transmission standards... SERVICES RADIO BROADCAST SERVICES FM Broadcast Stations § 73.322 FM stereophonic sound transmission... modulation levels apply: (i) When a signal exists in only one channel of a two channel (biphonic)...

  2. 47 CFR 73.597 - FM stereophonic sound broadcasting.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false FM stereophonic sound broadcasting. 73.597... RADIO BROADCAST SERVICES Noncommercial Educational FM Broadcast Stations § 73.597 FM stereophonic sound..., transmit stereophonic sound programs upon installation of stereophonic sound transmitting equipment...

  3. Chirp-enhanced fast light in semiconductor optical amplifiers.

    PubMed

    Sedgwick, F G; Pesala, Bala; Uskov, Alexander V; Chang-Hasnain, C J

    2007-12-24

    We present a novel scheme to increase the THz-bandwidth fast light effect in semiconductor optical amplifiers and increase the number of advanced pulses. By introducing a linear chirp to the input pulses before the SOA and recompressing at the output with an opposite chirp, the advance-bandwidth product reached 3.5 at room temperature, 1.55 microm wavelength. This is the largest number reported, to the best of our knowledge, for a semiconductor slow/fast light device.

  4. Control of Ultracold Collisions with Frequency-Chirped Light

    SciTech Connect

    Wright, M.J.; Gould, P.L.; Gensemer, S.D.; Vala, J.; Kosloff, R.

    2005-08-05

    We report on ultracold atomic collision experiments utilizing frequency-chirped laser light. A rapid chirp below the atomic resonance results in adiabatic excitation to an attractive molecular potential over a wide range of internuclear separation. This leads to a transient inelastic collision rate which is large compared to that obtained with fixed-frequency excitation. The combination of high efficiency and temporal control demonstrates the benefit of applying the techniques of coherent control to the ultracold domain.

  5. Iterative direction-of-arrival estimation with wideband chirp signals

    NASA Astrophysics Data System (ADS)

    Wang, Genyuan; Xia, Xiang-Gen; Chen, Victor C.

    1999-11-01

    Amin et. al. recently developed a time-frequency MUSIC algorithm with narrow band models for the estimation of direction of arrival (DOA) when the source signals are chirps. In this research, we consider wideband models. The joint time-frequency analysis is first used to estimate the chirp rates of the source signals and then the DOA is estimated by the MUSIC algorithm with an iterative approach.

  6. Simulation of Chirping Avalanche in Neighborhood of TAE gap

    NASA Astrophysics Data System (ADS)

    Berk, Herb; Breizman, Boris; Wang, Ge; Zheng, Linjin

    2016-10-01

    A new kinetic code, CHIRP, focuses on the nonlinear response of resonant energetic particles (EPs) that destabilize Alfven waves which then can produce hole and clump phase space chirping structures, while the background plasma currents are assumed to respond linearly to the generated fields. EP currents are due to the motion arising from the perturbed field that is time averaged over an equilibrium orbit. A moderate EP source produces TAE chirping structures that have a limited range of chirping that do not reach the continuum. When the source is sufficiently strong, an EPM is excited in the lower continuum and it chirps rapidly downward as its amplitude rapidly grows in time. This response resembles the experimental observation of an avalanche, which occurs after a series of successive chirping events with a modest frequency shift, and then suddenly a rapid large amplitude and rapid frequency burst to low frequency with the loss of EPs. From these simulation observations we propose that in the experiment the EP population is slowly increasing to the point where the EPM is eventually excited. Supported by SCIDAC Center for Nonlinear Simulation of Energetic Particles Burning Plasmas (CSEP).

  7. Broadband spectroscopy of dynamic impedances with short chirp pulses.

    PubMed

    Min, M; Land, R; Paavle, T; Parve, T; Annus, P; Trebbels, D

    2011-07-01

    An impedance spectrum of dynamic systems is time dependent. Fast impedance changes take place, for example, in high throughput microfluidic devices and in operating cardiovascular systems. Measurements must be as short as possible to avoid significant impedance changes during the spectrum analysis, and as long as possible for enlarging the excitation energy and obtaining a better signal-to-noise ratio (SNR). The authors propose to use specific short chirp pulses for excitation. Thanks to the specific properties of the chirp function, it is possible to meet the needs for a spectrum bandwidth, measurement time and SNR so that the most accurate impedance spectrogram can be obtained. The chirp wave excitation can include thousands of cycles when the impedance changes slowly, but in the case of very high speed changes it can be shorter than a single cycle, preserving the same excitation bandwidth. For example, a 100 kHz bandwidth can be covered by the chirp pulse with durations from 10 µs to 1 s; only its excitation energy differs also 10(5) times. After discussing theoretical short chirp properties in detail, the authors show how to generate short chirps in the microsecond range with a bandwidth up to a few MHz by using digital synthesis architectures developed inside a low-cost standard field programmable gate array.

  8. An MSK Waveform for Radar Applications

    NASA Technical Reports Server (NTRS)

    Quirk, Kevin J.; Srinivasan, Meera

    2009-01-01

    We introduce a minimum shift keying (MSK) waveform developed for use in radar applications. This waveform is characterized in terms of its spectrum, autocorrelation, and ambiguity function, and is compared with the conventionally used bi-phase coded (BPC) radar signal. It is shown that the MSK waveform has several advantages when compared with the BPC waveform, and is a better candidate for deep-space radar imaging systems such as NASA's Goldstone Solar System Radar.

  9. 47 CFR 73.827 - Interference to the input signals of FM translator or FM booster stations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Interference to the input signals of FM translator or FM booster stations. 73.827 Section 73.827 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES Low Power FM Broadcast Stations (LPFM) §...

  10. 47 CFR 73.827 - Interference to the input signals of FM translator or FM booster stations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Interference to the input signals of FM translator or FM booster stations. 73.827 Section 73.827 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES Low Power FM Broadcast Stations (LPFM) §...

  11. Amplitude-phase coupling and chirp in quantum-dot lasers: influence of charge carrier scattering dynamics.

    PubMed

    Lingnau, Benjamin; Chow, Weng W; Lüdge, Kathy

    2014-03-10

    We investigate the dependence of the amplitude-phase coupling in quantum-dot (QD) lasers on the charge-carrier scattering timescales. The carrier scattering processes influence the relaxation oscillation parameters, as well as the frequency chirp, which are both important parameters when determining the modulation performance of the laser device and its reaction to optical perturbations. We find that the FM/AM response exhibits a strong dependence on the modulation frequency, which leads to a modified optical response of QD lasers when compared to conventional laser devices. Furthermore, the frequency response curve changes with the scattering time scales, which can allow for an optimization of the laser stability towards optical perturbations.

  12. Versatile Dual-Channel Waveform Generator

    NASA Technical Reports Server (NTRS)

    Staples, Edward J.; Lie, Sen; Ching, Michael; Budinger, James M.

    1994-01-01

    Programmable waveform generator synthesizes two independent waveforms simultaneously at frequencies up to 250 MHz. Can be in phase or out of phase with each other. Use of commercial integrated circuits helps keep cost low. Operation governed by BASIC source code enabling any user equipped with suitable personal computer to specify waveforms. User can modify source code to satisfy special needs. Other applications include simulation of Doppler waveforms for radar, and of video signals for testing color displays and computer monitors. With eventual substitution of gallium arsenide integrated circuits for its present silicon integrated circuits, instrument able to generate waveforms with 14-bit precision and sample rates as high as 2 GHz.

  13. Phase and amplitude errors in FM radars

    NASA Astrophysics Data System (ADS)

    Griffiths, Hugh D.

    The constraints on phase and amplitude errors are determined for various types of FM radar by calculating the range sidelobe levels on the point target response due to the phase and amplitude modulation of the target echo. It is shown that under certain circumstances the constraints on phase linearity appropriate for conventional pulse compression radars are unnecessarily stringent, and quite large phase errors can be tolerated provided the relative delay of the local oscillator with respect to the target echo is small compared with the periodicity of the phase error characteristic. The constraints on amplitude flatness, however, are severe under almost all circumstances.

  14. A fine resolution multifrequency polarimetric FM radar

    NASA Technical Reports Server (NTRS)

    Bredow, J.; Gogineni, S.; Leung, T.; Moore, R. K.

    1988-01-01

    A fine resolution polarimetric FM SAR was developed for optimization of polarimetric SARs and interpretation of SAR data via controlled experiments with surface-base sensors. The system is designed for collecting polarimetric data at 5.3 and 10 GHz over incidence angles from 0 to 60 deg. Features of the system include broad bandwidth to obtain fine range resolution, phase stabilization and linearization loop circuitry, and digital signal processing capability. The system is used in a research program to collect polarimetric backscatter data from artificial sea ice research and design trade-offs, laboratory and field evaluation, as well as results from experiments on artificial sea ice are presented.

  15. Why Waveform Correlation Sometimes Fails

    NASA Astrophysics Data System (ADS)

    Carmichael, J.

    2015-12-01

    Waveform correlation detectors used in explosion monitoring scan noisy geophysical data to test two competing hypotheses: either (1) an amplitude-scaled version of a template waveform is present, or, (2) no signal is present at all. In reality, geophysical wavefields that are monitored for explosion signatures include waveforms produced by non-target sources that are partially correlated with the waveform template. Such signals can falsely trigger correlation detectors, particularly at low thresholds required to monitor for smaller target explosions. This challenge is particularly formidable when monitoring known test sites for seismic disturbances, since uncatalogued natural seismicity is (generally) more prevalent at lower magnitudes, and could be mistaken for small explosions. To address these challenges, we identify real examples in which correlation detectors targeting explosions falsely trigger on both site-proximal earthquakes (Figure 1, below) and microseismic "noise". Motivated by these examples, we quantify performance loss when applying these detectors, and re-evaluate the correlation-detector's hypothesis test. We thereby derive new detectors from more general hypotheses that admit unknown background seismicity, and apply these to real data. From our treatment, we derive "rules of thumb'' for proper template and threshold selection in heavily cluttered signal environments. Last, we answer the question "what is the probability of falsely detecting an earthquake collocated at a test site?", using correlation detectors that include explosion-triggered templates. Figure Top: An eight-channel data stream (black) recorded from an earthquake near a mine. Red markers indicate a detection. Middle: The correlation statistic computed by scanning the template against the data stream at top. The red line indicates the threshold for event declaration, determined by a false-alarm on noise probability constraint, as computed from the signal-absent distribution using

  16. Analysing the ventricular fibrillation waveform.

    PubMed

    Reed, Matthew J; Clegg, Gareth R; Robertson, Colin E

    2003-04-01

    The surface electrocardiogram associated with ventricular fibrillation has been of interest to researchers for some time. Over the last few decades, techniques have been developed to analyse this signal in an attempt to obtain more information about the state of the myocardium and the chances of successful defibrillation. This review looks at the implications of analysing the VF waveform and discusses the various techniques that have been used, including fast Fourier transform analysis, wavelet transform analysis and mathematical techniques such as chaos theory.

  17. Photonic Arbitrary Waveform Generation Technology

    DTIC Science & Technology

    2006-06-01

    filters or ring resonator based technologies [26-29]. Key aspects of the filter technology are the flatness of the filter channel, the crosstalk...photodetectors would also be warranted. 28 References [1] K. Nosu, “ Advanced coherent lightwave technologies ,” IEEE Commun. Magn,, vol. 26...AFRL-SN-RS-TR-2006-208 Final Technical Report June 2006 PHOTONIC ARBITRARY WAVEFORM GENERATION TECHNOLOGY University of

  18. FD-CHIRP: hosted payload system engineering lessons

    NASA Astrophysics Data System (ADS)

    Schueler, Carl F.

    2012-10-01

    The Commercially Hosted Infrared Payload (CHIRP) Flight Demonstration (FD-CHIRP) launched 21 Sept 2011 was designated a "resounding success" as the first Wide Field-of-View (WFOV) staring infrared (IR) sensor flown in geostationary earth orbit (GEO) with a primary mission of Missile Warning (MW). FD-CHIRP was an Air Force research and development project initiated in July 2008 via an unsolicited industry proposal aimed to mature and reduce the risk of WFOV sensors and ground processing technologies. Unlike the Defense Support Program (DSP) and the Space Based Infrared System (SBIRS) which were acquired via traditional integrated sensor and satellite design, FDCHIRP was developed using the "commercially hosted" approach. The FD-CHIRP host spacecraft and sensor were independently designed, creating significant development risk to the industry proposer, especially under a Firm Fixed Price contract. Yet, within 39 months of contract initiation, FD-CHIRP was launched and successfully operated in GEO to 30 June 2012 at a total cost of 111M including the 82.9M CHIRP commercial-hosting contract and a $28M sensor upgrade. The commercial-hosting contract included sensor and spacecraft modifications, integration and test, design and development of secure Mission Operations and Analysis Centers, launch, and nearly a year of GEO operations with 70 Mbps secure data acquisition. The Air Force extended the contract for six months to continue operations through the end of calendar 2012. This paper outlines system engineering challenges FD-CHIRP overcame and key lessons to smooth development of future commercially hosted missions.

  19. Automated Analysis, Classification, and Display of Waveforms

    NASA Technical Reports Server (NTRS)

    Kwan, Chiman; Xu, Roger; Mayhew, David; Zhang, Frank; Zide, Alan; Bonggren, Jeff

    2004-01-01

    A computer program partly automates the analysis, classification, and display of waveforms represented by digital samples. In the original application for which the program was developed, the raw waveform data to be analyzed by the program are acquired from space-shuttle auxiliary power units (APUs) at a sampling rate of 100 Hz. The program could also be modified for application to other waveforms -- for example, electrocardiograms. The program begins by performing principal-component analysis (PCA) of 50 normal-mode APU waveforms. Each waveform is segmented. A covariance matrix is formed by use of the segmented waveforms. Three eigenvectors corresponding to three principal components are calculated. To generate features, each waveform is then projected onto the eigenvectors. These features are displayed on a three-dimensional diagram, facilitating the visualization of the trend of APU operations.

  20. Chirped nonlinear resonance dynamics in phase space

    NASA Astrophysics Data System (ADS)

    Friedland, Lazar; Armon, Tsafrir

    2016-10-01

    Passage through and capture into resonance in systems with slowly varying parameters is one of the outstanding problems of nonlinear dynamics. Examples include resonant capture in planetary dynamics , resonant excitation of nonlinear waves, adiabatic resonant transitions in atomic and molecular systems and more. In the most common setting the problem involves a nonlinear oscillator driven by an oscillating perturbation with a slowly varying frequency, which passes through the resonance with the unperturbed oscillator. The process of resonant capture in this case involves crossing of separatrix and, therefore, the adiabatic theorem cannot be used in studying this problem no matter how slow is the variation of the driving frequency. It will be shown that if instead of analyzing complicated single orbit dynamics in passage through resonance, one considers the evolution of a distribution of initial conditions in phase space, simple adiabaticity and phase space incompressibility arguments yield a solution to the resonant capture probability problem. The approach will be illustrated in the case of a beam of charged particles driven by a chirped frequency wave passing through the Cherenkov resonance with the velocity distribution of the particles. Supported by Israel Science Foundation Grant 30/14.

  1. 47 CFR 74.1204 - Protection of FM broadcast, FM Translator and LP100 stations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... accepted for filing if the proposed operation would involve overlap of predicted field contours with any... overlap with an LP100 station, as set forth: (1) Commercial Class B FM Stations (Protected Contour: 0.5 mV/m) Frequency separation Interference contour of proposed translator station Protected contour...

  2. 47 CFR 74.1204 - Protection of FM broadcast, FM Translator and LP100 stations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... accepted for filing if the proposed operation would involve overlap of predicted field contours with any... overlap with an LP100 station, as set forth: (1) Commercial Class B FM Stations (Protected Contour: 0.5 mV/m) Frequency separation Interference contour of proposed translator station Protected contour...

  3. 47 CFR 74.1204 - Protection of FM broadcast, FM Translator and LP100 stations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... accepted for filing if the proposed operation would involve overlap of predicted field contours with any... overlap with an LP100 station, as set forth: (1) Commercial Class B FM Stations (Protected Contour: 0.5 mV/m) Frequency separation Interference contour of proposed translator station Protected contour...

  4. Exploring Agro-Climatic Trends in Ethiopia Using CHIRPS

    NASA Astrophysics Data System (ADS)

    Pedreros, D. H.; Funk, C. C.; Brown, M. E.; Korecha, D.; Seid, Y. M.

    2015-12-01

    The Famine Early Warning Systems Network (FEWS NET) uses the Climate Hazards Group Infrared Precipitation with Stations (CHIRPS) to monitor agricultural food production in different regions of the world. CHIRPS is a 1981-present, 5 day, approximately 5km resolution, rainfall product based on a combination of geostationary satellite observations, a high resolution climatology and in situ station observations. Furthermore, FEWS NET has developed a gridded implementation of the Water Requirement Satisfaction Index (WRSI), a water balance measurement indicator of crop performance. This study takes advantage of the CHIRPS' long term period of record and high spatial and temporal resolution to examine agro-climatic trends in Ethiopia. We use the CHIRPS rainfall dataset to calculate the WRSI for the boreal spring and summer crop seasons, as well as for spring-summer rangelands conditions. We find substantial long term rainfall declines in the spring and summer seasons across southeastern and northeastern Ethiopia. Crop Model results indicate that rainfall declines in the cropped regions have been associated with water deficits during the critical grain filling periods in well populated and/or highly vulnerable parts of eastern Ethiopia. WRSI results in the pastoral areas indicate substantial reductions in rangeland health during the later part of the growing seasons. These health declines correspond to the regions of Somaliland and Afar that have experienced chronic severe food insecurity since 2010. Key words: CHIRPS, satellite estimated rainfall, agricultural production

  5. Generation of frequency-chirped optical pulses with felix

    SciTech Connect

    Knippels, G.M.H.; Meer, A.F.G. van der; Mols, R.F.X.A.M.

    1995-12-31

    Frequency-chirped optical pulses have been produced in the picosecond regime by varying the energy of the electron beam on a microsecond time scale. These pulses were then compressed close to their bandwidth limit by an external pulse compressor. The amount of chirp can be controlled by varying the sweep rate on the electron beam energy and by cavity desynchronisation. To examine the generated chirp we used the following diagnostics: a pulse compressor, a crossed beam autocorrelator, a multichannel electron spectrometer and multichannel optical spectrometer. The compressor is build entirely using reflective optics to permit broad band operation. The autocorrelator is currently operating from 6 {mu}m to 30 {mu}m with one single crystal. It has been used to measure pulses as short as 500 fs. All diagnostics are evacuated to prevent pulse shape distortion or pulse lengthening caused by absorption in ambient water vapour. Pulse length measurements and optical spectra will be presented for different electron beam sweep rates, showing the presence of a frequency chirp. Results on the compression of the optical pulses to their bandwidth limit are given for different electron sweep rates. More experimental results showing the dependence of the amount of chirp on cavity desynchronisation will be presented.

  6. Quasimonoenergic collimated electrons from the ionization of nitrogen by a chirped intense laser pulse

    SciTech Connect

    Singh, Kunwar Pal; Sajal, Vivek

    2009-04-15

    A scheme is proposed for quasimonoenergic collimated GeV electrons generated during ionization of nitrogen by a chirped intense laser pulse. The electrons accelerated by a laser pulse without a frequency chirp are known for poor-quality beams. If a suitable frequency chirp is introduced, then the energy of the electrons increases significantly. It is shown that quasimonoenergic collimated GeV electrons can be produced using a right choice of laser spot size, frequency chirp, and pulse duration.

  7. Chirped Laser Dispersion Spectroscopy: Fundamentals and Applications

    NASA Astrophysics Data System (ADS)

    Plant, Genevieve B.

    The subject of this thesis is the fundamentals, implementation, and applications of Chirped Laser Dispersion Spectroscopy (CLaDS), an alternative dispersion spectroscopy technique that aims to overcome some limitations of absorption-based sensing. CLaDS preserves many of the benefits of dispersion sensing, namely baseline-free operation, immunity to received intensity, and linearity with sample concentration, and is fairly easy to implement without the need for stabilized interferometers, mode-locked lasers, and complex optical configurations required by many other dispersion-based sensors. First an introduction to CLaDS and a derivation of the spectroscopic signals are provided, highlighting fundamental similarities and differences to absorption-based sensing. Next the fundamental limit of CLaDS is investigated through analysis of the shot-noise limited performance under ideal operating conditions. This in turn allows for a theoretical and direct comparison to the shot-noise-limited performance of direct laser absorption spectroscopy (DLAS). This investigation shows that when full spectral scan fitting of realistic unknown parameters for each technique is used, both techniques demonstrate the same efficiency of parameter extraction. Following this theoretical investigation of ideal CLaDS performance, the technical details, methods of implementation, and component-introduced limitations of real-world CLaDS systems are discussed. Also included is a discussion of the first demonstration of an optical heterodyne enhanced CLaDS technique (HE-CLaDS). To overcome some of the technical limitations imposed by system instability, a modulation based technique (CM-CLaDS) was developed; the theory, optimization and noise characteristics of which are detailed. Finally, several applications of CLaDS are provided. These include atmospheric sensing, distributed sensor networks, and fiber dispersion characterization, all of which aim at demonstrating the technical advantages of the

  8. Experimental investigation of chirp properties induced by signal amplification in quantum-dot semiconductor optical amplifiers.

    PubMed

    Matsuura, Motoharu; Ohta, Hiroaki; Seki, Ryota

    2015-03-15

    We experimentally show the dynamic frequency chirp properties induced by signal amplification in a quantum-dot semiconductor optical amplifier (QD-SOA) for the first time. We also compare the red and blue chirp peak values and temporal chirp changes while changing the gain and injected signal powers of the QD-SOA with those of a common SOA.

  9. Excitation of Chirping Whistler Waves in a Laboratory Plasma

    NASA Astrophysics Data System (ADS)

    Van Compernolle, B.; An, X.; Bortnik, J.; Thorne, R. M.; Gekelman, W. N.; Pribyl, P.

    2015-12-01

    Whistler mode chorus emissions with a characteristic frequency chirp are an important magnetospheric wave, responsible for the acceleration of outer radiation belt electrons to relativistic energies and also for the scattering loss of these electrons into the atmosphere. Here, we report on the first laboratory experiment where whistler waves exhibiting fast frequency chirping have been artificially produced using a beam of energetic electrons launched into a cold plasma. Frequency chirps are only observed for a narrow range of plasma and beam parameters, and show a strong dependence on beam density, plasma density and magnetic field gradient. Broadband whistler waves similar to magnetospheric hiss are also observed, and the parameter ranges for each emission are quantified. The research was funded by NSF/DOE Plasma Partnership program by grant DE-SC0010578. Work was done at the Basic Plasma Science Facility (BAPSF) also funded by NSF/DOE.

  10. Above threshold dissociation in HD+ using frequency chirped laser pulses

    NASA Astrophysics Data System (ADS)

    Yuan, Kai-Jun; Liu, Zheng-Tang; Cong, Shu-Lin

    2011-06-01

    We have theoretically studied the dynamics of above threshold dissociation (ATD) in molecular ions HD+ using frequency chirped femtosecond laser pulses from numerical solutions of the time-dependent Schrödinger equation by using the three-dimensional time-dependent quantum wave packet method. Energy-dependent distributions of ATD fragments are analyzed by an asymptotic-flow expression in momentum space. Linearly positive and negative frequency chirped laser pulses are adopted. It is found that varying frequency chirped parameters can change branching ratios of the 1sσ g and 2pσ u dissociations channels. The concept of a light-induced potential is used to interpret the ATD process. The angular resolved energy distributions of the photofragments are also illustrated.

  11. Molecular π pulses: Population inversion with positively chirped short pulses

    NASA Astrophysics Data System (ADS)

    Cao, Jianshu; Bardeen, Christopher J.; Wilson, Kent R.

    2000-08-01

    Detailed theoretical analysis and numerical simulation indicate that nearly complete electronic population inversion of molecular systems can be achieved with intense positively chirped broadband laser pulses. To provide a simple physical picture, a two-level model is used to examine the condition for the so-called π pulses and a four-level model is designed to demonstrate for molecular systems the correlation between the sign of the chirp and the excited state population. The proposed molecular π pulse is the combined result of vibrational coherence in the femtosecond regime and adiabatic inversion in the picosecond regime. Numerical results for a displaced oscillator, for LiH and for I2, show that the proposed molecular π pulse scheme is robust with respect to changes in field parameters such as the linear positive chirp rate, field intensity, bandwidth, and carrier frequency, and is stable with respect to thermal and condensed phase conditions including molecular rotation, rovibronic coupling, and electronic dephasing.

  12. Chirped pulse inverse free-electron laser vacuum accelerator

    DOEpatents

    Hartemann, Frederic V.; Baldis, Hector A.; Landahl, Eric C.

    2002-01-01

    A chirped pulse inverse free-electron laser (IFEL) vacuum accelerator for high gradient laser acceleration in vacuum. By the use of an ultrashort (femtosecond), ultrahigh intensity chirped laser pulse both the IFEL interaction bandwidth and accelerating gradient are increased, thus yielding large gains in a compact system. In addition, the IFEL resonance condition can be maintained throughout the interaction region by using a chirped drive laser wave. In addition, diffraction can be alleviated by taking advantage of the laser optical bandwidth with negative dispersion focusing optics to produce a chromatic line focus. The combination of these features results in a compact, efficient vacuum laser accelerator which finds many applications including high energy physics, compact table-top laser accelerator for medical imaging and therapy, material science, and basic physics.

  13. A direct digital synthesis chirped pulse Fourier transform microwave spectrometer.

    PubMed

    Finneran, Ian A; Holland, Daniel B; Carroll, P Brandon; Blake, Geoffrey A

    2013-08-01

    Chirped pulse Fourier transform microwave (CP-FTMW) spectrometers have become the instrument of choice for acquiring rotational spectra, due to their high sensitivity, fast acquisition rate, and large bandwidth. Here we present the design and capabilities of a recently constructed CP-FTMW spectrometer using direct digital synthesis (DDS) as a new method for chirped pulse generation, through both a suite of extensive microwave characterizations and deep averaging of the 10-14 GHz spectrum of jet-cooled acetone. The use of DDS is more suited for in situ applications of CP-FTMW spectroscopy, as it reduces the size, weight, and power consumption of the chirp generation segment of the spectrometer all by more than an order of magnitude, while matching the performance of traditional designs. The performance of the instrument was further improved by the use of a high speed digitizer with dedicated signal averaging electronics, which facilitates a data acquisition rate of 2.1 kHz.

  14. Time-frequency signature sparse reconstruction using chirp dictionary

    NASA Astrophysics Data System (ADS)

    Nguyen, Yen T. H.; Amin, Moeness G.; Ghogho, Mounir; McLernon, Des

    2015-05-01

    This paper considers local sparse reconstruction of time-frequency signatures of windowed non-stationary radar returns. These signals can be considered instantaneously narrow-band, thus the local time-frequency behavior can be recovered accurately with incomplete observations. The typically employed sinusoidal dictionary induces competing requirements on window length. It confronts converse requests on the number of measurements for exact recovery, and sparsity. In this paper, we use chirp dictionary for each window position to determine the signal instantaneous frequency laws. This approach can considerably mitigate the problems of sinusoidal dictionary, and enable the utilization of longer windows for accurate time-frequency representations. It also reduces the picket fence by introducing a new factor, the chirp rate α. Simulation examples are provided, demonstrating the superior performance of local chirp dictionary over its sinusoidal counterpart.

  15. Thomson scattering in high-intensity chirped laser pulses

    SciTech Connect

    Holkundkar, Amol R.; Harvey, Chris Marklund, Mattias

    2015-10-15

    We consider the Thomson scattering of an electron in an ultra-intense laser pulse. It is well known that at high laser intensities, the frequency and brilliance of the emitted radiation will be greatly reduced due to the electron losing energy before it reaches the peak field. In this work, we investigate the use of a small frequency chirp in the laser pulse in order to mitigate this effect of radiation reaction. It is found that the introduction of a negative chirp means the electron enters a high frequency region of the field while it still has a large proportion of its original energy. This results in a significant enhancement of the frequency and intensity of the emitted radiation as compared to the case without chirping.

  16. Duobinary pulse shaping for frequency chirp enabled complex modulation.

    PubMed

    Che, Di; Yuan, Feng; Khodakarami, Hamid; Shieh, William

    2016-09-01

    The frequency chirp of optical direct modulation (DM) used to be a performance barrier of optical transmission system, because it broadens the signal optical spectrum, which becomes more susceptible to chromatic dispersion induced inter-symbol interference (ISI). However, by considering the chirp as frequency modulation, the single DM simultaneously generates a 2-D signal containing the intensity and phase (namely, the time integral of frequency). This complex modulation concept significantly increases the optical signal to noise ratio (OSNR) sensitivity of DM systems. This Letter studies the duobinary pulse shaping (DB-PS) for chirp enabled DM and its impact on the optical bandwidth and system OSNR sensitivity. DB-PS relieves the bandwidth requirement, at the sacrifice of system OSNR sensitivity. As DB-PS induces a controlled ISI, the receiver requires one more tap for maximum likelihood sequence estimation (MLSE). We verify this modified MLSE with a 10-Gbaud duobinary PAM-4 transmission experiment.

  17. Broadband interferometric characterization of divergence and spatial chirp.

    PubMed

    Meier, Amanda K; Iliev, Marin; Squier, Jeff A; Durfee, Charles G

    2015-09-01

    We demonstrate a spectral interferometric method to characterize lateral and angular spatial chirp to optimize intensity localization in spatio-temporally focused ultrafast beams. Interference between two spatially sheared beams in an interferometer will lead to straight fringes if the wavefronts are curved. To produce reference fringes, we delay one arm relative to another in order to measure fringe rotation in the spatially resolved spectral interferogram. With Fourier analysis, we can obtain frequency-resolved divergence. In another arrangement, we spatially flip one beam relative to the other, which allows the frequency-dependent beamlet direction (angular spatial chirp) to be measured. Blocking one beam shows the spatial variation of the beamlet position with frequency (i.e., the lateral spatial chirp).

  18. Schwinger vacuum pair production in chirped laser pulses

    SciTech Connect

    Dumlu, Cesim K.

    2010-08-15

    The recent developments of high intensity ultrashort laser pulses have raised the hopes of observing Schwinger vacuum pair production which is one of the important nonperturbative phenomena in QED. The quantitative analysis of realistic high intensity laser pulses is vital for understanding the effect of the field parameters on the momentum spectrum of the produced particles. In this study, we analyze chirped laser pulses with a subcycle structure, and investigate the effects of the chirp parameter on the momentum spectrum of the produced particles. The combined effect of the chirp and carrier phase of the laser pulse is also analyzed. These effects are qualitatively explained by investigating the turning-point structure of the potential within the framework of the complex WKB scattering approach to pair production.

  19. Applications of chirped Raman adiabatic rapid passage to atom interferometry

    NASA Astrophysics Data System (ADS)

    Kotru, Krish; Butts, David L.; Kinast, Joseph M.; Johnson, David M. S.; Radojevic, Antonije M.; Timmons, Brian P.; Stoner, Richard E.

    2012-02-01

    We present robust atom optics, based on chirped Raman adiabatic rapid passage (ARP), in the context of atom interferometry. Such ARP light pulses drive coherent population transfer between two hyperfine ground states by sweeping the frequency difference of two fixed-intensity optical fields with large single photon detunings. Since adiabatic transfer is less sensitive to atom temperature and non-uniform Raman beam intensity than standard Raman pulses, this approach should improve the stability of atom interferometers operating in dynamic environments. In such applications, chirped Raman ARP may also provide advantages over the previously demonstrated stimulated Raman adiabatic passage (STIRAP) technique, which requires precise modulation of beam intensity and zeroing of the single photon detuning. We demonstrate a clock interferometer with chirped Raman ARP pulses, and compare its stability to that of a conventional Raman pulse interferometer. We also discuss potential improvements to inertially sensitive atom interferometers. Copyright 2011 by The Charles Stark Draper Laboratory, Inc. All rights reserved.

  20. Lightning current waveform measuring system

    NASA Technical Reports Server (NTRS)

    Wojtasinski, R. J.; Fuchs, J. C.; Grove, C. H. (Inventor)

    1978-01-01

    An apparatus is described for monitoring current waveforms produced by lightning strikes which generate currents in an elongated cable. These currents are converted to voltages and to light waves for being transmitted over an optical cable to a remote location. At the remote location, the waves are reconstructed back into electrical waves for being stored into a memory. The information is stored within the memory with a timing signal so that only different signals need be stored in order to reconstruct the wave form.

  1. FINDR: Low-Cost Indoor Positioning Using FM Radio

    NASA Astrophysics Data System (ADS)

    Papliatseyeu, Andrei; Kotilainen, Niko; Mayora, Oscar; Osmani, Venet

    This paper presents an indoor positioning system based on FM radio. The system is built upon commercially available, short-range FM transmitters. The features of the FM radio which make it distinct from other localisation technologies are discussed. Despite the low cost and off-the-shelf components, the performance of the FM positioning is comparable to that of other positioning technologies (such as Wi-Fi). From our experiments, the median accuracy of the system is around 1.3 m and in 95% of cases the error is below 4.5 m.

  2. Fractal characteristics for binary noise radar waveform

    NASA Astrophysics Data System (ADS)

    Li, Bing C.

    2016-05-01

    Noise radars have many advantages over conventional radars and receive great attentions recently. The performance of a noise radar is determined by its waveforms. Investigating characteristics of noise radar waveforms has significant value for evaluating noise radar performance. In this paper, we use binomial distribution theory to analyze general characteristics of binary phase coded (BPC) noise waveforms. Focusing on aperiodic autocorrelation function, we demonstrate that the probability distributions of sidelobes for a BPC noise waveform depend on the distances of these sidelobes to the mainlobe. The closer a sidelobe to the mainlobe, the higher the probability for this sidelobe to be a maximum sidelobe. We also develop Monte Carlo framework to explore the characteristics that are difficult to investigate analytically. Through Monte Carlo experiments, we reveal the Fractal relationship between the code length and the maximum sidelobe value for BPC waveforms, and propose using fractal dimension to measure noise waveform performance.

  3. Quantum cascade laser FM spectroscopy of explosives

    NASA Astrophysics Data System (ADS)

    Gutmann, Zach; Clasp, Trocia; Lue, Chris; Johnson, Tiffani; Ingle, Taylor; Jamison, Janet; Buchanan, Roger; Reeve, Scott

    2013-05-01

    Polyisobutylene is an industrial polymer that is widely used in a number of applications including the manufacture of military grade explosives. We have examined the vapor emanating from a series of different molecular weight samples of polyisobutylene using high resolution Quantum Cascade Laser FM spectroscopy. The vapor phase spectra all exhibit a rovibrational structure similar to that for the gas phase isobutylene molecule. We have assigned the structure in the 890 cm-1 and 1380 cm-1 regions to the isobutylene ν28 and ν7 fundamental bands respectively. These spectroscopic signatures may prove useful for infrared sensing applications. Here we will present the infrared signatures along with recent GCMS data from a sample of C4, utilizing solid-phase microextraction vapor collection fibers, which confirm the presence of isobutylene as one of the volatile bouquet species in RDX-based explosives.

  4. Widely tunable distributed-feedback lasers with chirped gratings

    NASA Astrophysics Data System (ADS)

    Xue, Liang; Brueck, S. R. J.; Kaspi, R.

    2009-04-01

    A quasicontinuous tuning range of 65 nm at 3.2 μm was obtained for continuous wave, single-longitudinal-mode operation at 77 K of an optically pumped distributed-feedback laser with a chirped grating. Interferometric lithography with spherical wavefronts was used to fabricate a large-area chirped grating whose period varied continuously in the direction of the grating lines. Tuning was achieved by translating the optical pump stripe relative to the device to activate regions with different grating periods. Methane absorption spectra, obtained using this tunable distributed-feedback laser, closely match the high-resolution transmission molecular absorption database simulations.

  5. Ultrabroadband optical chirp linearization for precision metrology applications.

    PubMed

    Roos, Peter A; Reibel, Randy R; Berg, Trenton; Kaylor, Brant; Barber, Zeb W; Babbitt, Wm Randall

    2009-12-01

    We demonstrate precise linearization of ultrabroadband laser frequency chirps via a fiber-based self-heterodyne technique to enable extremely high-resolution, frequency-modulated cw laser-radar (LADAR) and a wide range of other metrology applications. Our frequency chirps cover bandwidths up to nearly 5 THz with frequency errors as low as 170 kHz, relative to linearity. We show that this performance enables 31-mum transform-limited LADAR range resolution (FWHM) and 86 nm range precisions over a 1.5 m range baseline. Much longer range baselines are possible but are limited by atmospheric turbulence and fiber dispersion.

  6. Dense Monoenergetic Proton Beams from Chirped Laser-Plasma Interaction

    NASA Astrophysics Data System (ADS)

    Galow, Benjamin J.; Salamin, Yousef I.; Liseykina, Tatyana V.; Harman, Zoltán; Keitel, Christoph H.

    2011-10-01

    Interaction of a frequency-chirped laser pulse with single protons and a hydrogen gas target is studied analytically and by means of particle-in-cell simulations, respectively. The feasibility of generating ultraintense (107 particles per bunch) and phase-space collimated beams of protons (energy spread of about 1%) is demonstrated. Phase synchronization of the protons and the laser field, guaranteed by the appropriate chirping of the laser pulse, allows the particles to gain sufficient kinetic energy (around 250 MeV) required for such applications as hadron cancer therapy, from state-of-the-art laser systems of intensities of the order of 1021W/cm2.

  7. High-precision triangular-waveform generator

    DOEpatents

    Mueller, T.R.

    1981-11-14

    An ultra-linear ramp generator having separately programmable ascending and decending ramp rates and voltages is provided. Two constant current sources provide the ramp through an integrator. Switching of the current at current source inputs rather than at the integrator input eliminates switching transients and contributes to the waveform precision. The triangular waveforms produced by the waveform generator are characterized by accurate reproduction and low drift over periods of several hours. The ascending and descending slopes are independently selectable.

  8. Seismic waveform modeling over cloud

    NASA Astrophysics Data System (ADS)

    Luo, Cong; Friederich, Wolfgang

    2016-04-01

    With the fast growing computational technologies, numerical simulation of seismic wave propagation achieved huge successes. Obtaining the synthetic waveforms through numerical simulation receives an increasing amount of attention from seismologists. However, computational seismology is a data-intensive research field, and the numerical packages usually come with a steep learning curve. Users are expected to master considerable amount of computer knowledge and data processing skills. Training users to use the numerical packages, correctly access and utilize the computational resources is a troubled task. In addition to that, accessing to HPC is also a common difficulty for many users. To solve these problems, a cloud based solution dedicated on shallow seismic waveform modeling has been developed with the state-of-the-art web technologies. It is a web platform integrating both software and hardware with multilayer architecture: a well designed SQL database serves as the data layer, HPC and dedicated pipeline for it is the business layer. Through this platform, users will no longer need to compile and manipulate various packages on the local machine within local network to perform a simulation. By providing users professional access to the computational code through its interfaces and delivering our computational resources to the users over cloud, users can customize the simulation at expert-level, submit and run the job through it.

  9. Range-Doppler imaging of moving target with chirped AM ladar

    NASA Astrophysics Data System (ADS)

    Liu, Chun-bo; Lu, Fang; Zhao, Yanjie; Han, Xiang'e.

    2011-06-01

    As the result of the synthetic aperture radar technique applied to laser band, SAIL (synthetic aperture imaging ladar) can provide range-Doppler image of targets with much more high-resolution than its counterpart in microwave band. However, the complicated structure of coherent heterodyne detection and the significant impacts of laser atmospheric effect, target depolarization, phase error arising from platform vibration on heterodyne detection efficiency degrades its performance. In this paper, an APD and semiconductor laser based range-Doppler imaging ladar is presented. The ladar combines the (inverse) synthetic aperture technique and direct detection and can obtain the high-resolution image at a relative low cost and complexity. In the meanwhile, owing to the poor coherence of semiconductor laser, the impact of atmospheric effect on laser pattern can be released to some extent. Firstly, the system diagram is presented and the components are briefly introduced; Secondly, the operation principle and performance are formulated detailedly; and then the parameters determination of the chirped AM waveform is analyzed considering the extraction of the range and velocity and the fine resolution. Finally, the 1-D range and 2-D range-Doppler imaging procedure are numerically simulated based on the given target model, which shows that the proposed imaging ladar is effective and feasible.

  10. The rotational spectrum of epifluorohydrin measured by chirped-pulse Fourier transform microwave spectroscopy

    NASA Astrophysics Data System (ADS)

    Brown, Gordon G.; Dian, Brian C.; Douglass, Kevin O.; Geyer, Scott M.; Pate, Brooks H.

    2006-08-01

    The rotational spectrum of epifluorohydrin measured by chirped-pulse Fourier transform microwave (CP-FTMW) spectroscopy is presented. A new CP-FTMW spectrometer capable of measuring the entire 7.5-18.5 GHz spectrum with a single polarizing pulse is described briefly. The CP-FTMW spectrometer takes advantage of recent advances in digital electronics by utilizing a 4.2 GS/s arbitrary waveform generator as a frequency source and a 12 GHz digital oscilloscope to digitize the down converted molecular free induction decay (FID). Signal averaging in the time domain is used to increase the signal-to-noise ratio. The rotational constants of three unique conformers of epifluorohydrin were measured, as well as the rotational constants of the three unique 13C isotopomers and the 18O isotopomer (in natural abundance) of the most stable conformer. The rotational constants of the two less stable conformers differ significantly from those previously reported [F.G. Fujiwara, J.L. Painter, H. Kim, J. Mol. Struct. 41 (1977) 169-175]. Ab initio calculations were performed for all three conformations and are compared to experimental values.

  11. End-to-end RMS error testing on a constant bandwidth FM/FM system

    NASA Technical Reports Server (NTRS)

    Wallace, G. R.; Salter, W. E.

    1972-01-01

    End-to-end root-mean-square (rms) tests performed on a constant bandwidth FM/FM system with various settings of system parameters are reported. The testing technique employed is that of sampling, digitizing, delaying, and comparing the analog input against the sampled and digitized corresponding output. Total system error is determined by fully loading all channels with band-limited noise and conducting end-to-end rms error tests on one channel. Tests are also conducted with and without a transmission link and plots of rms errors versus receiver signal-to-noise (S/N) values are obtained. The combined effects of intermodulation, adjacent channel crosstalk, and residual system noise are determined as well as the single channel distortion of the system.

  12. Measurement and control of the frequency chirp rate of high-order harmonic pulses

    SciTech Connect

    Mauritsson, J.; Johnsson, P.; Lopez-Martens, R.; Varju, K.; L'Huillier, A.; Kornelis, W.; Biegert, J.; Keller, U.; Gaarde, M.B.; Schafer, K.J.

    2004-08-01

    We measure the chirp rate of harmonics 13 to 23 in argon by cross correlation with a 12 femtosecond probe pulse. Under low ionization conditions, we directly measure the negative chirp due to the atomic dipole phase, and show that an additional chirp on the pump pulse is transferred to the qth harmonic as q times the fundamental chirp. Our results are in accord with simulations using the experimentally measured 815 nm pump and probe pulses. The ability to measure and manipulate the harmonic chirp rate is essential for the characterization and optimization of attosecond pulse trains.

  13. SPIDYAN, a MATLAB library for simulating pulse EPR experiments with arbitrary waveform excitation.

    PubMed

    Pribitzer, Stephan; Doll, Andrin; Jeschke, Gunnar

    2016-02-01

    Frequency-swept chirp pulses, created with arbitrary waveform generators (AWGs), can achieve inversion over a range of several hundreds of MHz. Such passage pulses provide defined flip angles and increase sensitivity. The fact that spectra are not excited at once, but single transitions are passed one after another, can cause new effects in established pulse EPR sequences. We developed a MATLAB library for simulation of pulse EPR, which is especially suited for modeling spin dynamics in ultra-wideband (UWB) EPR experiments, but can also be used for other experiments and NMR. At present the command line controlled SPin DYnamics ANalysis (SPIDYAN) package supports one-spin and two-spin systems with arbitrary spin quantum numbers. By providing the program with appropriate spin operators and Hamiltonian matrices any spin system is accessible, with limits set only by available memory and computation time. Any pulse sequence using rectangular and linearly or variable-rate frequency-swept chirp pulses, including phase cycling can be quickly created. To keep track of spin evolution the user can choose from a vast variety of detection operators, including transition selective operators. If relaxation effects can be neglected, the program solves the Liouville-von Neumann equation and propagates spin density matrices. In the other cases SPIDYAN uses the quantum mechanical master equation and Liouvillians for propagation. In order to consider the resonator response function, which on the scale of UWB excitation limits bandwidth, the program includes a simple RLC circuit model. Another subroutine can compute waveforms that, for a given resonator, maintain a constant critical adiabaticity factor over the excitation band. Computational efficiency is enhanced by precomputing propagator lookup tables for the whole set of AWG output levels. The features of the software library are discussed and demonstrated with spin-echo and population transfer simulations.

  14. SPIDYAN, a MATLAB library for simulating pulse EPR experiments with arbitrary waveform excitation

    NASA Astrophysics Data System (ADS)

    Pribitzer, Stephan; Doll, Andrin; Jeschke, Gunnar

    2016-02-01

    Frequency-swept chirp pulses, created with arbitrary waveform generators (AWGs), can achieve inversion over a range of several hundreds of MHz. Such passage pulses provide defined flip angles and increase sensitivity. The fact that spectra are not excited at once, but single transitions are passed one after another, can cause new effects in established pulse EPR sequences. We developed a MATLAB library for simulation of pulse EPR, which is especially suited for modeling spin dynamics in ultra-wideband (UWB) EPR experiments, but can also be used for other experiments and NMR. At present the command line controlled SPin DYnamics ANalysis (SPIDYAN) package supports one-spin and two-spin systems with arbitrary spin quantum numbers. By providing the program with appropriate spin operators and Hamiltonian matrices any spin system is accessible, with limits set only by available memory and computation time. Any pulse sequence using rectangular and linearly or variable-rate frequency-swept chirp pulses, including phase cycling can be quickly created. To keep track of spin evolution the user can choose from a vast variety of detection operators, including transition selective operators. If relaxation effects can be neglected, the program solves the Liouville-von Neumann equation and propagates spin density matrices. In the other cases SPIDYAN uses the quantum mechanical master equation and Liouvillians for propagation. In order to consider the resonator response function, which on the scale of UWB excitation limits bandwidth, the program includes a simple RLC circuit model. Another subroutine can compute waveforms that, for a given resonator, maintain a constant critical adiabaticity factor over the excitation band. Computational efficiency is enhanced by precomputing propagator lookup tables for the whole set of AWG output levels. The features of the software library are discussed and demonstrated with spin-echo and population transfer simulations.

  15. Goldstone Solar System Radar Waveform Generator

    NASA Technical Reports Server (NTRS)

    Quirk, Kevin J.; Patawaran, Ferze D.; Nguyen, Danh H.; Nguyen, Huy

    2012-01-01

    Due to distances and relative motions among the transmitter, target object, and receiver, the time-base between any transmitted and received signal will undergo distortion. Pre-distortion of the transmitted signal to compensate for this time-base distortion allows reception of an undistorted signal. In most radar applications, an arbitrary waveform generator (AWG) would be used to store the pre-calculated waveform and then play back this waveform during transmission. The Goldstone Solar System Radar (GSSR), however, has transmission durations that exceed the available memory storage of such a device. A waveform generator capable of real-time pre-distortion of a radar waveform to a given time-base distortion function is needed. To pre-distort the transmitted signal, both the baseband radar waveform and the RF carrier must be modified. In the GSSR, this occurs at the up-conversion mixing stage to an intermediate frequency (IF). A programmable oscillator (PO) is used to generate the IF along with a time-varying phase component that matches the time-base distortion of the RF carrier. This serves as the IF input to the waveform generator where it is mixed with a baseband radar waveform whose time-base has been distorted to match the given time-base distortion function producing the modulated IF output. An error control feedback loop is used to precisely control the time-base distortion of the baseband waveform, allowing its real-time generation. The waveform generator produces IF modulated radar waveforms whose time-base has been pre-distorted to match a given arbitrary function. The following waveforms are supported: continuous wave (CW), frequency hopped (FH), binary phase code (BPC), and linear frequency modulation (LFM). The waveform generator takes as input an IF with a time varying phase component that matches the time-base distortion of the carrier. The waveform generator supports interconnection with deep-space network (DSN) timing and frequency standards, and

  16. Elimination of the chirp of narrowband terahertz pulses generated by chirped pulse beating using a tandem grating pair laser pulse stretcher.

    PubMed

    Yoshida, Tetsuya; Kamada, Shohei; Aoki, Takao

    2014-09-22

    We study the elimination of the chirp of narrowband terahertz pulses generated by chirped laser pulse beating using a laser pulse stretcher with two grating pairs that cancel out the third-order spectral phase. First, we show that positively chirped terahertz pulses can be generated using a pulse stretcher with a grating pair and internal lenses. We then combine this with a second grating pair, the spectral phase of which has the opposite sign to that of the first one. By varying the separation of the second grating pair, we experimentally verify that the chirp of the generated terahertz pulses can be eliminated.

  17. Preparing Students to Take SOA/CAS Exam FM/2

    ERIC Educational Resources Information Center

    Marchand, Richard J.

    2014-01-01

    This paper provides suggestions for preparing students to take the actuarial examination on financial mathematics, SOA/CAS Exam FM/2. It is based on current practices employed at Slippery Rock University, a small public liberal arts university. Detailed descriptions of our Theory of Interest course and subsequent Exam FM/2 prep course are provided…

  18. 47 CFR 73.316 - FM antenna systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false FM antenna systems. 73.316 Section 73.316... Broadcast Stations § 73.316 FM antenna systems. (a) It shall be standard to employ horizontal polarization...) Directional antennas. A directional antenna is an antenna that is designed or altered for the purpose...

  19. 47 CFR 73.316 - FM antenna systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false FM antenna systems. 73.316 Section 73.316... Broadcast Stations § 73.316 FM antenna systems. (a) It shall be standard to employ horizontal polarization...) Directional antennas. A directional antenna is an antenna that is designed or altered for the purpose...

  20. 47 CFR 73.316 - FM antenna systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false FM antenna systems. 73.316 Section 73.316... Broadcast Stations § 73.316 FM antenna systems. (a) It shall be standard to employ horizontal polarization...) Directional antennas. A directional antenna is an antenna that is designed or altered for the purpose...

  1. 47 CFR 73.4108 - FM transmitter site map submissions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false FM transmitter site map submissions. 73.4108 Section 73.4108 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES Rules Applicable to All Broadcast Stations § 73.4108 FM transmitter site...

  2. 47 CFR 73.4108 - FM transmitter site map submissions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false FM transmitter site map submissions. 73.4108 Section 73.4108 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES Rules Applicable to All Broadcast Stations § 73.4108 FM transmitter site...

  3. 47 CFR 73.4108 - FM transmitter site map submissions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false FM transmitter site map submissions. 73.4108 Section 73.4108 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES Rules Applicable to All Broadcast Stations § 73.4108 FM transmitter site...

  4. 47 CFR 73.4108 - FM transmitter site map submissions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false FM transmitter site map submissions. 73.4108 Section 73.4108 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES Rules Applicable to All Broadcast Stations § 73.4108 FM transmitter site...

  5. 47 CFR 73.4108 - FM transmitter site map submissions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false FM transmitter site map submissions. 73.4108 Section 73.4108 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES Rules Applicable to All Broadcast Stations § 73.4108 FM transmitter site...

  6. 75 FR 19338 - FM TABLE OF ALLOTMENTS, Milford, Utah

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-14

    ... COMMISSION 47 CFR Part 73 FM TABLE OF ALLOTMENTS, Milford, Utah AGENCY: Federal Communications Commission... Group, LLC, authorized assignee of Station KCLS(FM), Channel 269C2, Pioche, Nevada, requesting the... highlight topics or organize text. See DDH, pages 1-12 and 1-13.] List of Subjects in 47 CFR Part 73...

  7. 75 FR 19340 - FM TABLE OF ALLOTMENTS, Jewett, Texas

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-14

    ... COMMISSION 47 CFR Part 73 FM TABLE OF ALLOTMENTS, Jewett, Texas AGENCY: Federal Communications Commission..., proposing the allotment of FM Channel 232A at Jewett, Texas, as a first local service. The reference... Radio, Radio broadcasting. For the reasons discussed in the preamble, the Federal...

  8. 47 CFR 73.4017 - Application processing: Commercial FM stations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Application processing: Commercial FM stations... RADIO SERVICES RADIO BROADCAST SERVICES Rules Applicable to All Broadcast Stations § 73.4017 Application processing: Commercial FM stations. See Report and Order, MM Docket 84-750, FCC 85-125, adopted March 4,...

  9. Electron heating enhancement by frequency-chirped laser pulses

    SciTech Connect

    Yazdani, E.; Afarideh, H.; Sadighi-Bonabi, R.; Riazi, Z.; Hora, H.

    2014-09-14

    Propagation of a chirped laser pulse with a circular polarization through an uprising plasma density profile is studied by using 1D-3V particle-in-cell simulation. The laser penetration depth is increased in an overdense plasma compared to an unchirped pulse. The induced transparency due to the laser frequency chirp results in an enhanced heating of hot electrons as well as increased maximum longitudinal electrostatic field at the back side of the solid target, which is very essential in target normal sheath acceleration regime of proton acceleration. For an applied chirp parameter between 0.008 and 0.01, the maximum amount of the electrostatic field is improved by a factor of 2. Furthermore, it is noticed that for a chirped laser pulse with a₀=5, because of increasing the plasma transparency length, the laser pulse can penetrate up to about n{sub e}≈6n{sub c}, where n{sub c} is plasma critical density. It shows 63% increase in the effective critical density compared to the relativistic induced transparency regime for an unchirped condition.

  10. Coded tissue harmonic imaging with nonlinear chirp signals.

    PubMed

    Song, Jaehee; Chang, Jin Ho; Song, Tai-kyong; Yoo, Yangmo

    2011-05-01

    Coded tissue harmonic imaging with pulse inversion (CTHI-PI) based on a linear chirp signal can improve the signal-to-noise ratio with minimizing the peak range sidelobe level (PRSL), which is the main advantage over CTHI with bandpass filtering (CTHI-BF). However, the CTHI-PI technique could suffer from motion artifacts due to decreasing frame rate caused by two firings of opposite phase signals for each scanline. In this paper, a new CTHI method based on a nonlinear chirp signal (CTHI-NC) is presented, which can improve the separation of fundamental and harmonic components without sacrificing frame rate. The nonlinear chirp signal is designed to minimize the PRSL value by optimizing its frequency sweep rate and time duration. The performance of the CTHI-NC method was evaluated by measuring the PRSL and mainlobe width after compression. From the in vitro experiments, the CTHI-NC provided the PRSL of -40.6 dB and the mainlobe width of 2.1 μs for the transmit quadratic nonlinear chirp signal with the center frequency of 2.1 MHz, the fractional bandwidth at -6 dB of 0.6 and the time duration of 15 μs. These results indicate that the proposed method could be used for improving frame rates in CTHI while providing comparable image quality to CTHI-PI.

  11. Chirp dependence of wave packet motion in oxazine 1.

    PubMed

    Malkmus, Stephan; Dürr, Regina; Sobotta, Constanze; Pulvermacher, Horst; Zinth, Wolfgang; Braun, Markus

    2005-11-24

    The motion of vibrational wave packets in the system oxazine 1 in methanol is investigated by spectrally resolved transient absorption spectroscopy. The spectral properties of the probe pulse from 600 to 700 nm were chosen to cover the overlap region where ground-state bleach and stimulated emission signals are detected. The spectral phase of the pump pulse was manipulated by a liquid crystal display based pulse-shaping setup. Chirped excitation pulses of negative and positive chirp can be used to excite vibrational modes predominantly in the ground or excited state, respectively. To distinguish the observed wave packets in oxazine 1 moving in the ground or excited state, spectrally resolved transient absorption experiments are performed for various values of the linear chirp of the pump pulses. The amplitudes of the wave packet motion show an asymmetric behavior with an optimum signal for a negative chirp of -0.75 +/- 0.2 fs/nm, which indicates that predominantly ground-state wave packets are observed.

  12. Spectral analysis using the CCD Chirp Z-transform

    NASA Technical Reports Server (NTRS)

    Eversole, W. L.; Mayer, D. J.; Bosshart, P. W.; Dewit, M.; Howes, C. R.; Buss, D. D.

    1978-01-01

    The charge coupled device (CCD) Chirp Z transformation (CZT) spectral analysis techniques were reviewed and results on state-of-the-art CCD CZT technology are presented. The CZT algorithm was examined and the advantages of CCD implementation are discussed. The sliding CZT which is useful in many spectral analysis applications is described, and the performance limitations of the CZT are studied.

  13. Chirped microlens arrays for diode laser circularization and beam expansion

    NASA Astrophysics Data System (ADS)

    Schreiber, Peter; Dannberg, Peter; Hoefer, Bernd; Beckert, Erik

    2005-08-01

    Single-mode diode lasers are well-established light sources for a huge number of applications but suffer from astigmatism, beam ellipticity and large manufacturing tolerances of beam parameters. To compensate for these shortcomings, various approaches like anamorphic prism pairs and cylindrical telescopes for circularization as well as variable beam expanders based on zoomed telescopes for precise adjustment of output beam parameters have been employed in the past. The presented new approach for both beam circularization and expansion is based on the use of microlens arrays with chirped focal length: Selection of lenslets of crossed cylindrical microlens arrays as part of an anamorphic telescope enables circularization, astigmatism correction and divergence tolerance compensation of diode lasers simultaneously. Another promising application of chirped spherical lens array telescopes is stepwise variable beam expansion for circular laser beams of fiber or solid-state lasers. In this article we describe design and manufacturing of beam shaping systems with chirped microlens arrays fabricated by polymer-on-glass replication of reflow lenses. A miniaturized diode laser module with beam circularization and astigmatism correction assembled on a structured ceramics motherboard and a modulated RGB laser-source for photofinishing applications equipped with both cylindrical and spherical chirped lens arrays demonstrate the feasibility of the proposed system design approach.

  14. Optical arbitrary waveform characterization using linear spectrograms.

    PubMed

    Jiang, Zhi; Leaird, Daniel E; Long, Christopher M; Boppart, Stephen A; Weiner, Andrew M

    2010-08-01

    We demonstrate the first application of linear spectrogram methods based on electro-optic phase modulation to characterize optical arbitrary waveforms generated under spectral line-by-line control. This approach offers both superior sensitivity and self-referencing capability for retrieval of periodic high repetition rate optical arbitrary waveforms.

  15. Electron microscopy of electromagnetic waveforms

    NASA Astrophysics Data System (ADS)

    Ryabov, A.; Baum, P.

    2016-07-01

    Rapidly changing electromagnetic fields are the basis of almost any photonic or electronic device operation. We report how electron microscopy can measure collective carrier motion and fields with subcycle and subwavelength resolution. A collimated beam of femtosecond electron pulses passes through a metamaterial resonator that is previously excited with a single-cycle electromagnetic pulse. If the probing electrons are shorter in duration than half a field cycle, then time-frozen Lorentz forces distort the images quasi-classically and with subcycle time resolution. A pump-probe sequence reveals in a movie the sample’s oscillating electromagnetic field vectors with time, phase, amplitude, and polarization information. This waveform electron microscopy can be used to visualize electrodynamic phenomena in devices as small and fast as available.

  16. Passive Bistatic Radar and Waveform Diversity

    DTIC Science & Technology

    2009-11-01

    marked with a sync pulse, and the total duration of each line is 64 µs. The video information is modulated onto a carrier as vestigial -sideband AM...DRM, 10 kHz 50 MW VHF FM (analogue) ~ 100 MHz FM, 50 kHz 250 kW UHF TV (analogue) ~ 550 MHz vestigial -sideband AM (vision); FM (sound...sound carrier 2MHz/div digital sound carrier vestigial -sideband amplitude modulation digital TV channel 6 MHz 6.225 MHz 8 MHz 0 7-1.25 Figure 6

  17. Preemphasis for an S-band constant bandwidth FM/FM system.

    NASA Technical Reports Server (NTRS)

    Wallace, G. R.; Salter, W. E.

    1973-01-01

    Preemphasis schedules are given for 11 constant-bandwidth FM subcarriers modulating an S-band transmitter at various receiver SNRs (9 dB, 15 dB and 25 dB). The criterion for establishing these preemphasis curves is the achievement, at various receiver IF SNR, of equal receiver output SNR for all channels. The empirically derived results are compared with a simplified, analytically derived schedule and the primary differences are explained. The S-band preemphasis schedule is also found to differ from the lower frequency VHF case.

  18. Time frequency chirp-Wigner transform for signals with any nonlinear polynomial time varying instantaneous frequency

    NASA Astrophysics Data System (ADS)

    Gelman, L.; Gould, J. D.

    2007-11-01

    The new technique, the time-frequency chirp-Wigner transform has been proposed recently. This technique is further investigated for the general case of higher order chirps, i.e. non-stationary signals with any nonlinear polynomial variation of the instantaneous frequency in time. Analytical and numerical comparison of the chirp-Wigner transform and the classical Wigner distribution was performed for processing of single-component and multi-component higher order chirps. It is shown for the general case of single component higher order chirps that the chirp-Wigner transform has an essential advantage in comparison with the traditional Wigner distribution: the chirp-Wigner transform ideally follows the nonlinear polynomial frequency variation without amplitude errors. It is shown for multi-component signal where each component is a higher order chirp, that the chirp-Wigner transform adjusted to a single component will follow the instantaneous frequency of the component without amplitude errors. It is also shown that the classical Wigner distribution is unable to estimate component amplitudes of single component and multi-component higher order chirps.

  19. Calculation and manipulation of the chirp rates of high-order harmonics

    SciTech Connect

    Murakami, M.; Mauritsson, J.; Schafer, K.J.; Gaarde, M.B.; L'Huillier, A.

    2005-01-01

    We calculate the linear chirp rates of high-order harmonics in argon, generated by intense, 810 nm laser pulses, and explore the dependence of the chirp rate on harmonic order, driving laser intensity, and pulse duration. By using a time-frequency representation of the harmonic fields we can identify several different linear chirp contributions to the plateau harmonics. Our results, which are based on numerical integration of the time-dependent Schroedinger equation, are in good agreement with the adiabatic predictions of the strong field approximation for the chirp rates. Extending the theoretical analysis in the recent paper by Mauritsson et al. [Phys. Rev. A 70, 021801(R) (2004)], we also manipulate the chirp rates of the harmonics by adding a chirp to the driving pulse. We show that the chirp rate for harmonic q is given by the sum of the intrinsic chirp rate, which is determined by the new duration and peak intensity of the chirped driving pulse, and q times the external chirp rate.

  20. Flow pumping system for physiological waveforms.

    PubMed

    Tsai, William; Savaş, Omer

    2010-02-01

    A pulsatile flow pumping system is developed to replicate flow waveforms with reasonable accuracy for experiments simulating physiological blood flows at numerous points in the body. The system divides the task of flow waveform generation between two pumps: a gear pump generates the mean component and a piston pump generates the oscillatory component. The system is driven by two programmable servo controllers. The frequency response of the system is used to characterize its operation. The system has been successfully tested in vascular flow experiments where sinusoidal, carotid, and coronary flow waveforms are replicated.

  1. Doppler-Offset Waveforms for MIMO Radar

    DTIC Science & Technology

    2010-01-01

    Division Multiple Access, or FDMA . In the MIMO radar literature, the term FDMA is used, generically, to refer to sets of waveforms occupying different...frequencies at the same time. Mathematically, the lit" FDMA waveform can be written as: S" (I) = s (I) ej 2K I.’ 0 5, 1 5, T . for /I = I, ... ,N...noise) whenever i i’ j . Page 3 of 13 Pages On transmit, FDMA MIMO radars emit all N, frequency offset waveforms simultaneously. Then, each of the N

  2. Elliptic waveforms for inspiralling compact binaries

    NASA Astrophysics Data System (ADS)

    Mikóczi, Balázs

    2010-03-01

    The inspiral of supermassive black hole binary systems with high orbital eccentricity are the most promising sources for the gravitational wave observatories. The importance of elliptic gravitational waveforms in various physical scenarios has been emphasized by several authors (Wahlquist 1987, Moreno-Garrido, Buitrago and Mediavilla 1994, Martel and Poisson 1999). Taking into account the eccentricity of the orbit in the total waveform improves the parameter estimation for these sources, as it is shown by the construction and analyzation of the Fisher information matrix. In our work we use the Fourier-Bessel analysis of the Kepler motion and the stationary phase approximation of time-depend waveforms.

  3. Role of spin polarization in FM/Al/FM trilayer film at low temperature

    NASA Astrophysics Data System (ADS)

    Lu, Ning; Webb, Richard

    2014-03-01

    Measurements of electronic transport in diffusive FM/normal metal/FM trilayer film are performed at temperature ranging from 2K to 300K to determine the behavior of the spin polarized current in normal metal under the influence of quantum phase coherence and spin-orbital interaction. Ten samples of Hall bar with length of 200 micron and width of 20 micron are fabricated through e-beam lithography followed by e-gun evaporation of Ni0.8Fe0.2, aluminum and Ni0.8Fe0.2 with different thickness (5nm to 45nm) in vacuum. At low temperature of 4.2K, coherent backscattering, Rashba spin-orbital interaction and spin flip scattering of conduction electrons contribute to magnetoresistance at low field. Quantitative analysis of magnetoresistance shows transition between weak localization and weak anti-localization for samples with different thickness ratio, which indicates the spin polarization actually affects the phase coherence length and spin-orbital scattering length. However, at temperature between 50K and 300K, only the spin polarization dominates the magnetoresistance.

  4. Viscoacoustic anisotropic full waveform inversion

    NASA Astrophysics Data System (ADS)

    Qu, Yingming; Li, Zhenchun; Huang, Jianping; Li, Jinli

    2017-01-01

    A viscoacoustic vertical transverse isotropic (VTI) quasi-differential wave equation, which takes account for both the viscosity and anisotropy of media, is proposed for wavefield simulation in this study. The finite difference method is used to solve the equations, for which the attenuation terms are solved in the wavenumber domain, and all remaining terms in the time-space domain. To stabilize the adjoint wavefield, robust regularization operators are applied to the wave equation to eliminate the high-frequency component of the numerical noise produced during the backward propagation of the viscoacoustic wavefield. Based on these strategies, we derive the corresponding gradient formula and implement a viscoacoustic VTI full waveform inversion (FWI). Numerical tests verify that our proposed viscoacoustic VTI FWI can produce accurate and stable inversion results for viscoacoustic VTI data sets. In addition, we test our method's sensitivity to velocity, Q, and anisotropic parameters. Our results show that the sensitivity to velocity is much higher than that to Q and anisotropic parameters. As such, our proposed method can produce acceptable inversion results as long as the Q and anisotropic parameters are within predefined thresholds.

  5. Diode-quad bridge for reactive transducers and FM discriminators

    NASA Technical Reports Server (NTRS)

    Harrison, D. R.; Dimeff, J.

    1972-01-01

    Diode-quad bridge circuit was developed for use with pressure-sensitive capacitive transducers, liquid-level measuring devices, proximity deflection sensors, and inductive displacement sensors. It may also be used as FM discriminator and as universal impedance bridge.

  6. 59. Credit FM. Flood waters on South Battle Creek next ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    59. Credit FM. Flood waters on South Battle Creek next to powerhouse. Note height of water in relation to tailraces. - Battle Creek Hydroelectric System, Battle Creek & Tributaries, Red Bluff, Tehama County, CA

  7. When hearing aids go bad: an FM success story.

    PubMed

    McArdle, Rachel; Abrams, Harvey B; Chisolm, Theresa Hnath

    2005-01-01

    Both clinical and research findings support the effectiveness of frequency-modulated (FM) technology among individuals who continue to encounter significant communication problems despite the use of conventional hearing instruments. The use rate of FM devices throughout the nation, however, remains disappointingly low. The authors present a case of a longtime hearing aid user whose hearing aids provided decreasing benefit as his hearing impairment increased to the extent that cochlear implantation was considered. Through the establishment of patient-specific treatment goals, the provision of appropriate FM technology as verified through real-ear measurements, and careful and deliberate counseling and follow-up, this patient was able to realize significant communication benefits as reported through several self-assessment measures. The cost-benefit implications of FM technology versus cochlear implantation are discussed.

  8. 72. Credit FM. Overview of powerhouse from gallery. Notice cooling ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    72. Credit FM. Overview of powerhouse from gallery. Notice cooling duct on generator (now removed) and spare gate valve in far corner. - Battle Creek Hydroelectric System, Battle Creek & Tributaries, Red Bluff, Tehama County, CA

  9. 68. Credit FM. Detail showing operators. Note cooling duct (now ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    68. Credit FM. Detail showing operators. Note cooling duct (now removed), governor (now removed), hand-operated needle valve controls (now removed). - Battle Creek Hydroelectric System, Battle Creek & Tributaries, Red Bluff, Tehama County, CA

  10. 76. Credit FM. Detail showing belts running from water wheel ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    76. Credit FM. Detail showing belts running from water wheel to governor and from water wheel to tachometer (foreground). - Battle Creek Hydroelectric System, Battle Creek & Tributaries, Red Bluff, Tehama County, CA

  11. 56. Credit FM. East elevation taken from along penstock. Note ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    56. Credit FM. East elevation taken from along penstock. Note additions to the east side and the north side of the building. - Battle Creek Hydroelectric System, Battle Creek & Tributaries, Red Bluff, Tehama County, CA

  12. Description of a New 400 MHZ Bandwidth Chirp Transform Spectrometer

    NASA Astrophysics Data System (ADS)

    Paganini, Lucas; Hartogh, Paul

    A new chirp transform spectrometer (CTS) with a bandwidth of 400 MHz and a spectral resolution of 100 kHz has been developed. The CTS is deviced using a digital chirp generator and a preprocessing unit based on a Complementary Metal Oxide Semiconductor (CMOS) and an Application-Specific Integrated Circuit (ASIC). A build in PC 104 computer handles the process control and the external communication via Ethernet and a Transistor-Transistor Logic (TTL) interface. The CTS has been applied to atmospheric science, i.e., a 25-K noise temperature, 22-GHz water vapor, and a 142-GHz ozone system. Astronomical observations have been performed using the Heinrich Hertz submillimeter telescope. In this paper, we describe the function of the CTS and provide information about its functional performance.

  13. Optical chirp z-transform processor with a simplified architecture.

    PubMed

    Ngo, Nam Quoc

    2014-12-29

    Using a simplified chirp z-transform (CZT) algorithm based on the discrete-time convolution method, this paper presents the synthesis of a simplified architecture of a reconfigurable optical chirp z-transform (OCZT) processor based on the silica-based planar lightwave circuit (PLC) technology. In the simplified architecture of the reconfigurable OCZT, the required number of optical components is small and there are no waveguide crossings which make fabrication easy. The design of a novel type of optical discrete Fourier transform (ODFT) processor as a special case of the synthesized OCZT is then presented to demonstrate its effectiveness. The designed ODFT can be potentially used as an optical demultiplexer at the receiver of an optical fiber orthogonal frequency division multiplexing (OFDM) transmission system.

  14. Interaction of strongly chirped pulses with two-level atoms

    SciTech Connect

    Ibanez, S.; Peralta Conde, A.; Muga, J. G.; Guery-Odelin, D.

    2011-07-15

    We study the effect of ultrachirped pulses on the population inversion of two-level atoms. Ultrachirped pulses are defined as those for which the frequency chirp is of the order of the transition frequency of the two-level atom. When the chirp is large enough, the resonance may be crossed twice, for positive and negative frequencies. In fact the decomposition of the field into amplitude and phase factors, and the corresponding definition of the instantaneous frequency, are not unique. The interaction pictures for different decomposition are strictly equivalent, but only as long as approximations are not applied. The domain of validity of the formal rotating wave approximation is dramatically enhanced by a suitable choice, the so-called analytic signal representation.

  15. Dense monoenergetic proton beams from chirped laser-plasma interaction.

    PubMed

    Galow, Benjamin J; Salamin, Yousef I; Liseykina, Tatyana V; Harman, Zoltán; Keitel, Christoph H

    2011-10-28

    Interaction of a frequency-chirped laser pulse with single protons and a hydrogen gas target is studied analytically and by means of particle-in-cell simulations, respectively. The feasibility of generating ultraintense (10(7) particles per bunch) and phase-space collimated beams of protons (energy spread of about 1%) is demonstrated. Phase synchronization of the protons and the laser field, guaranteed by the appropriate chirping of the laser pulse, allows the particles to gain sufficient kinetic energy (around 250 MeV) required for such applications as hadron cancer therapy, from state-of-the-art laser systems of intensities of the order of 10(21) W/cm(2).

  16. Frequency-chirp rates of harmonics driven by a few-cycle pulse

    SciTech Connect

    Murakami, M.; Mauritsson, J.; Gaarde, M.B.

    2005-08-15

    We present numerical calculations of the time-frequency characteristics of cutoff harmonics generated by few-cycle laser pulses. We find that for driving pulses as short as three optical cycles, the adiabatic prediction for the harmonic chirp rate is very accurate. This negative chirp is so large that the resulting bandwidth causes substantial overlap between neighboring harmonics, and the harmonic phase therefore appears to not vary in time or frequency. By adding a compensating positive chirp to the driving pulse, which reduces the harmonic bandwidth and allows for the appearance of the negative chirp, we can measure the harmonic chirp rates. We also find that the positive chirp on the driving pulse causes the harmonics to shift down in frequency. We show that this counterintuitive result is caused by the change in the strong field continuum dynamics introduced by the variation of the driving frequency with time.

  17. An Analysis of FM Jamming and Noise Quality Measures

    DTIC Science & Technology

    1993-12-01

    sequel, 3 this cae will be referred to as NBFM/N became of the corepondece to the rough definition of narrowband FM (29). A full discussion of the... definition of noise quality (30)) actually shows an increase in noise quality with a decrease in peak frequency deviation from WBFM/N towards NBFM/N. An...of the behavior of FM/N from a theoretical standpoint and the provision of further motivation for a standard definition of noise quality which

  18. LISA Parameter Estimation using Numerical Merger Waveforms

    NASA Technical Reports Server (NTRS)

    Thorpe, J. I.; McWilliams, S.; Baker, J.

    2008-01-01

    Coalescing supermassive black holes are expected to provide the strongest sources for gravitational radiation detected by LISA. Recent advances in numerical relativity provide a detailed description of the waveforms of such signals. We present a preliminary study of LISA's sensitivity to waveform parameters using a hybrid numerical/analytic waveform describing the coalescence of two equal-mass, nonspinning black holes. The Synthetic LISA software package is used to simulate the instrument response and the Fisher information matrix method is used to estimate errors in the waveform parameters. Initial results indicate that inclusion of the merger signal can significantly improve the precision of some parameter estimates. For example, the median parameter errors for an ensemble of systems with total redshifted mass of 10(exp 6) deg M solar mass at a redshift of z is approximately 1 were found to decrease by a factor of slightly more than two when the merger was included.

  19. Seismic waveform viewer, processor and calculator

    SciTech Connect

    2015-02-15

    SWIFT is a computer code that is designed to do research level signal analysis on seismic waveforms, including visualization, filtering and measurement. LLNL is using this code, amplitude and global tomography efforts.

  20. Development of a Reduced-Cost Chirped Pulse Microwave Spectrometer

    NASA Astrophysics Data System (ADS)

    Finneran, Ian A.; Holland, Daniel B.; Carroll, P. Brandon; Blake, Geoffrey A.

    2013-06-01

    Chirped pulse Fourier transform microwave (CP-FTMW) spectroscopy has become a ubiquitous technique in the high-resolution molecular spectroscopy community. Unfortunately, many components of CP-FTMW spectrometers are extremely expensive. Here we report of the development of an inexpensive microwave circuit and we present spectra of tetrahydrofuran and methanol collected between 8-16 GHz. Possible applications in remote sensing will also be discussed.

  1. Hyper dispersion pulse compressor for chirped pulse amplification systems

    DOEpatents

    Barty, Christopher P. J.

    2011-11-29

    A grating pulse compressor configuration is introduced for increasing the optical dispersion for a given footprint and to make practical the application for chirped pulse amplification (CPA) to quasi-narrow bandwidth materials, such as Nd:YAG. The grating configurations often use cascaded pairs of gratings to increase angular dispersion an order of magnitude or more. Increased angular dispersion allows for decreased grating separation and a smaller compressor footprint.

  2. Chirp and Click Evoked Auditory Steady State Responses

    DTIC Science & Technology

    2007-11-02

    state evoked potentials: A new tool for the accurate assessment of hearing in cochlear implant candidates. Advances in Otorhinolaryngology, 1993. 48...State Responses (ASSR) to 100 µsec clicks and 4 msec cochlear chirps are recorded in adult subjects at repetition rates of 20 to 100 Hz in 10 Hz...differences in the cochlea according to the DeBoer’s cochlear model [14] in order to determine if it will generate better ASSR. We also attempted to

  3. Superharmonic imaging with chirp coded excitation: filtering spectrally overlapped harmonics.

    PubMed

    Harput, Sevan; McLaughlan, James; Cowell, David M J; Freear, Steven

    2014-11-01

    Superharmonic imaging improves the spatial resolution by using the higher order harmonics generated in tissue. The superharmonic component is formed by combining the third, fourth, and fifth harmonics, which have low energy content and therefore poor SNR. This study uses coded excitation to increase the excitation energy. The SNR improvement is achieved on the receiver side by performing pulse compression with harmonic matched filters. The use of coded signals also introduces new filtering capabilities that are not possible with pulsed excitation. This is especially important when using wideband signals. For narrowband signals, the spectral boundaries of the harmonics are clearly separated and thus easy to filter; however, the available imaging bandwidth is underused. Wideband excitation is preferable for harmonic imaging applications to preserve axial resolution, but it generates spectrally overlapping harmonics that are not possible to filter in time and frequency domains. After pulse compression, this overlap increases the range side lobes, which appear as imaging artifacts and reduce the Bmode image quality. In this study, the isolation of higher order harmonics was achieved in another domain by using the fan chirp transform (FChT). To show the effect of excitation bandwidth in superharmonic imaging, measurements were performed by using linear frequency modulated chirp excitation with varying bandwidths of 10% to 50%. Superharmonic imaging was performed on a wire phantom using a wideband chirp excitation. Results were presented with and without applying the FChT filtering technique by comparing the spatial resolution and side lobe levels. Wideband excitation signals achieved a better resolution as expected, however range side lobes as high as -23 dB were observed for the superharmonic component of chirp excitation with 50% fractional bandwidth. The proposed filtering technique achieved >50 dB range side lobe suppression and improved the image quality without

  4. Pulsing dynamics in Ytterbium based chirped-pulse oscillators.

    PubMed

    Siegel, Martin; Palmer, Guido; Emons, Moritz; Schultze, Marcel; Ruehl, Axel; Morgner, Uwe

    2008-09-15

    The properties of passively mode-locked laser oscillators based on Ytterbium doped gain media are studied theoretically along with experimental data. Based on the chirped-pulse approach limitations due to excessive non-linearities are avoided, opening up new routes for energy scaling of mode-locked solid-state oscillators. Predictions about potential future pulse energies are made and possible experimental problems are discussed.

  5. High-Voltage, Asymmetric-Waveform Generator

    NASA Technical Reports Server (NTRS)

    Beegle, Luther W.; Duong, Tuan A.; Duong, Vu A.; Kanik, Isik

    2008-01-01

    The shapes of waveforms generated by commercially available analytical separation devices, such as some types of mass spectrometers and differential mobility spectrometers are, in general, inadequate and result in resolution degradation in output spectra. A waveform generator was designed that would be able to circumvent these shortcomings. It is capable of generating an asymmetric waveform, having a peak amplitude as large as 2 kV and frequency of several megahertz, which can be applied to a capacitive load. In the original intended application, the capacitive load would consist of the drift plates in a differential-mobility spectrometer. The main advantage to be gained by developing the proposed generator is that the shape of the waveform is made nearly optimum for various analytical devices requiring asymmetric-waveform such as differential-mobility spectrometers. In addition, this waveform generator could easily be adjusted to modify the waveform in accordance with changed operational requirements for differential-mobility spectrometers. The capacitive nature of the load is an important consideration in the design of the proposed waveform generator. For example, the design provision for shaping the output waveform is based partly on the principle that (1) the potential (V) on a capacitor is given by V=q/C, where C is the capacitance and q is the charge stored in the capacitor; and, hence (2) the rate of increase or decrease of the potential is similarly proportional to the charging or discharging current. The proposed waveform generator would comprise four functional blocks: a sine-wave generator, a buffer, a voltage shifter, and a high-voltage switch (see Figure 1). The sine-wave generator would include a pair of operational amplifiers in a feedback configuration, the parameters of which would be chosen to obtain a sinusoidal timing signal of the desired frequency. The buffer would introduce a slight delay (approximately equal to 20 ns) but would otherwise

  6. Spectral characteristics of draw-tower step-chirped fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Idrisov, Ravil F.; Varzhel, Sergey V.; Kulikov, Andrey V.; Meshkovskiy, Igor K.; Rothhardt, Manfred; Becker, Martin; Schuster, Kay; Bartelt, Hartmut

    2016-06-01

    This paper presents research results on the spectral properties of step-chirped fiber Bragg grating arrays written during the fiber drawing process into a birefringent optical fiber with an elliptical stress cladding. The dependences of resonance shift of the step-chirped fiber Bragg grating on bending, on applied tensile stress and on temperature have been investigated. A usage of such step-chirped fiber Bragg gratings in fiber-optic sensing elements creation has been considered.

  7. Efficacy of Various Waveforms to Support Geolocation

    DTIC Science & Technology

    2009-06-01

    the square root of the summed signal as shown in Figure 16. The resulting distribution of the decision variable with signal present is non- central ...resulting distribution for the case with no signal, i.e., noise only, is central Chi-squared with two degrees of freedom or Rayleigh for the case in...summing the waveform power weighted by time from the central time, and dividing this by the sum of the unweighted waveform power, or signal energy sE

  8. GRC GSFC TDRSS Waveform Metrics Report

    NASA Technical Reports Server (NTRS)

    Mortensen, Dale J.

    2013-01-01

    The report presents software metrics and porting metrics for the GGT Waveform. The porting was from a ground-based COTS SDR, the SDR-3000, to the CoNNeCT JPL SDR. The report does not address any of the Operating Environment (OE) software development, nor the original TDRSS waveform development at GSFC for the COTS SDR. With regard to STRS, the report presents compliance data and lessons learned.

  9. Harmonic chirp imaging method for ultrasound contrast agent.

    PubMed

    Borsboom, Jerome M G; Chin, Chien Ting; Bouakaz, Ayache; Versluis, Michel; de Jong, Nico

    2005-02-01

    Coded excitation is currently used in medical ultrasound to increase signal-to-noise ratio (SNR) and penetration depth. We propose a chirp excitation method for contrast agents using the second harmonic component of the response. This method is based on a compression filter that selectively compresses and extracts the second harmonic component from the received echo signal. Simulations have shown a clear increase in response for chirp excitation over pulse excitation with the same peak amplitude. This was confirmed by two-dimensional (2-D) optical observations of bubble response with a fast framing camera. To evaluate the harmonic compression method, we applied it to simulated bubble echoes, to measured propagation harmonics, and to B-mode scans of a flow phantom and compared it to regular pulse excitation imaging. An increase of approximately 10 dB in SNR was found for chirp excitation. The compression method was found to perform well in terms of resolution. Axial resolution was in all cases within 10% of the axial resolution from pulse excitation. Range side-lobe levels were 30 dB below the main lobe for the simulated bubble echoes and measured propagation harmonics. However, side-lobes were visible in the B-mode contrast images.

  10. Study on characteristics of chirp about Doppler wind lidar system

    NASA Astrophysics Data System (ADS)

    Du, Li-fang; Yang, Guo-tao; Wang, Ji-hong; Yue, Chuan; Chen, Lin-xiang

    2016-11-01

    In the doppler wind lidar, usually every 4MHz frequency error will produce wind error of 1m/s of 532nm laser. In the Doppler lidar system, frequency stabilization was achieved through absorption of iodine molecules. Commands that control the instrumental system were based on the PID algorithm and coded using VB language. The frequency of the seed laser was locked to iodine molecular absorption line 1109 which is close to the upper edge of the absorption range, with long-time (>4h) frequency-locking accuracy being≤0.5MHz and long-time frequency stability being 10-9 . The experimental result indicated that the seed frequency and the pulse laser frequency have a deviation, which effect is called the laser chirp characteristics. Finally chirp test system was constructed and tested the frequency offset in time. And such frequency deviation is known as Chirp of the laser pulse. The real-time measured frequency difference of the continuous and pulsed lights was about 10MHz, long-time stability deviation was around 5MHz. After experimental testing technology mature, which can monitoring the signal at long-term with corrected the wind speed.

  11. Nonlinear Frequency Chirping of β-induced Alfven Eigenmode

    NASA Astrophysics Data System (ADS)

    Zhang, Huasen

    2012-03-01

    The β-induced Alfven eigenmode (BAE) have been observed in many tokamaks. The BAE oscillates with the GAM frequency φ0, and therefore, has strong interactions with both thermal and energetic particles. In this work, linear gyrokinetic particle simulations show that nonperturbative contributions by energetic particles and kinetic effects of thermal particles modify BAE mode structure and frequency relative to the MHD theory. Gyrokinetic simulations have been verified by theory-simulation comparison and by benchmark with MHD-gyrokinetic hybrid simulation. Nonlinear simulations show that the unstable BAE saturates due to nonlinear wave-particle interactions with thermal and energetic particles. Wavelet analysis shows that the mode frequency chirping occurs in the absence of sources and sinks, thus it complements the standard ``bump-on-tail'' paradigm for the frequency chirping of Alfven eigenmodes. Analysis of nonlinear wave-particle interactions shows that the frequency chirping is induced by the nonlinear evolution of coherent structures in the energetic particle phase space of (ζ,φd) with toroidal angle ζ and precessional frequency φd. The dynamics of the coherent structures is controlled by the formation and destruction of phase space islands of energetic particles in the canonical variables of (ζ,Pζ) with canonical angular momentum Pζ. Our studies use the gyrokinetic toroidal code (GTC) recently upgraded with a comprehensive formulation for simulating kinetic-MHD processes. In collaborations with GTC team and SciDAC GSEP Center.

  12. Progress Towards Chirped-Pulse Fourier Transform Thz Spectroscopy

    NASA Astrophysics Data System (ADS)

    Douglass, Kevin O.; Plusquellic, David F.; Gerecht, Eyal

    2010-06-01

    New opportunities are provided by the development of higher power THz frequency multiplier sources, the development of a broadband Chirped-Pulse FTMW spectroscopy technique at microwave and mm Wave frequencies, and recently demonstrated heterodyne hot electron bolometer detection technology in the THz frequency region with near quantum noise-limited performance and high spectral resolution. Combining these three technologies and extending the chirped-pulse technique to 0.85 THz enables a host of new applications. NIST is currently pursing applications as a point sensor for greenhouse gases, volatile organic compounds, and potentially human breath. The generation and detection of phase stable chirped pulses at 850 GHz will be demonstrated. A description of the experimental setup and preliminary data will be presented for nitrous oxide. G.G. Brown, B.C. Dian, K.O. Douglass, S.M. Geyer, S. Shipman and B.H. Pate, Rev.Sci.Instrum. 79 (2008) 053103. E. Gerecht, D. Gu, L. You, K.S. Yngvesson, IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES. 56, (2008) 1083.

  13. Chirped pulse Raman amplification in warm plasma: towards controlling saturation.

    PubMed

    Yang, X; Vieux, G; Brunetti, E; Ersfeld, B; Farmer, J P; Hur, M S; Issac, R C; Raj, G; Wiggins, S M; Welsh, G H; Yoffe, S R; Jaroszynski, D A

    2015-08-20

    Stimulated Raman backscattering in plasma is potentially an efficient method of amplifying laser pulses to reach exawatt powers because plasma is fully broken down and withstands extremely high electric fields. Plasma also has unique nonlinear optical properties that allow simultaneous compression of optical pulses to ultra-short durations. However, current measured efficiencies are limited to several percent. Here we investigate Raman amplification of short duration seed pulses with different chirp rates using a chirped pump pulse in a preformed plasma waveguide. We identify electron trapping and wavebreaking as the main saturation mechanisms, which lead to spectral broadening and gain saturation when the seed reaches several millijoules for durations of 10's - 100's fs for 250 ps, 800 nm chirped pump pulses. We show that this prevents access to the nonlinear regime and limits the efficiency, and interpret the experimental results using slowly-varying-amplitude, current-averaged particle-in-cell simulations. We also propose methods for achieving higher efficiencies.

  14. Shear wave speed and dispersion measurements using crawling wave chirps.

    PubMed

    Hah, Zaegyoo; Partin, Alexander; Parker, Kevin J

    2014-10-01

    This article demonstrates the measurement of shear wave speed and shear speed dispersion of biomaterials using a chirp signal that launches waves over a range of frequencies. A biomaterial is vibrated by two vibration sources that generate shear waves inside the medium, which is scanned by an ultrasound imaging system. Doppler processing of the acquired signal produces an image of the square of vibration amplitude that shows repetitive constructive and destructive interference patterns called "crawling waves." With a chirp vibration signal, successive Doppler frames are generated from different source frequencies. Collected frames generate a distinctive pattern which is used to calculate the shear speed and shear speed dispersion. A special reciprocal chirp is designed such that the equi-phase lines of a motion slice image are straight lines. Detailed analysis is provided to generate a closed-form solution for calculating the shear wave speed and the dispersion. Also several phantoms and an ex vivo human liver sample are scanned and the estimation results are presented.

  15. Coherent chirped pulse laser network with Mickelson phase conjugator.

    PubMed

    Okulov, A Yu

    2014-04-10

    The mechanisms of nonlinear phase-locking of a large fiber amplifier array are analyzed. The preference is given to the most suitable configuration for a coherent coupling of thousands of fundamental spatial mode fiber beams into a single smooth beam ready for chirped pulse compression. It is shown that a Michelson phase-conjugating configuration with double passage through an array of fiber amplifiers has the definite advantage compared to a one-way fiber array coupled in a Mach-Zehnder configuration. Regardless of the amount of synchronized fiber amplifiers, the Michelson phase-conjugating interferometer is expected to do a perfect compensation of the phase-piston errors and collimation of backwardly amplified fiber beams on an entrance/output beam splitter. In both configurations, the nonlinear transformation of the stretched pulse envelope, due to gain saturation, is capable of randomizing the position of chirp inside an envelope; thus it may reduce the visibility of the interference pattern at an output beam splitter. Certain advantages are inherent to the sech-form temporal envelope because of the exponential precursor and self-similar propagation in gain medium. The Gaussian envelope is significantly compressed in a deep gain saturation regime, and the frequency chirp position inside pulse envelope is more deformed.

  16. Chirp Z-transform spectral zoom optimization with MATLAB.

    SciTech Connect

    Martin, Grant D.

    2005-11-01

    The MATLAB language has become a standard for rapid prototyping throughout all disciplines of engineering because the environment is easy to understand and use. Many of the basic functions included in MATLAB are those operations that are necessary to carry out larger algorithms such as the chirp z-transform spectral zoom. These functions include, but are not limited to mathematical operators, logical operators, array indexing, and the Fast Fourier Transform (FFT). However, despite its ease of use, MATLAB's technical computing language is interpreted and thus is not always capable of the memory management and performance of a compiled language. There are however, several optimizations that can be made within the chirp z-transform spectral zoom algorithm itself, and also to the MATLAB implementation in order to take full advantage of the computing environment and lower processing time and improve memory usage. To that end, this document's purpose is two-fold. The first demonstrates how to perform a chirp z-transform spectral zoom as well as an optimization within the algorithm that improves performance and memory usage. The second demonstrates a minor MATLAB language usage technique that can reduce overhead memory costs and improve performance.

  17. Chirped pulse Raman amplification in warm plasma: towards controlling saturation

    PubMed Central

    Yang, X.; Vieux, G.; Brunetti, E.; Ersfeld, B.; Farmer, J. P.; Hur, M. S.; Issac, R. C.; Raj, G.; Wiggins, S. M.; Welsh, G. H.; Yoffe, S. R.; Jaroszynski, D. A.

    2015-01-01

    Stimulated Raman backscattering in plasma is potentially an efficient method of amplifying laser pulses to reach exawatt powers because plasma is fully broken down and withstands extremely high electric fields. Plasma also has unique nonlinear optical properties that allow simultaneous compression of optical pulses to ultra-short durations. However, current measured efficiencies are limited to several percent. Here we investigate Raman amplification of short duration seed pulses with different chirp rates using a chirped pump pulse in a preformed plasma waveguide. We identify electron trapping and wavebreaking as the main saturation mechanisms, which lead to spectral broadening and gain saturation when the seed reaches several millijoules for durations of 10’s – 100’s fs for 250 ps, 800 nm chirped pump pulses. We show that this prevents access to the nonlinear regime and limits the efficiency, and interpret the experimental results using slowly-varying-amplitude, current-averaged particle-in-cell simulations. We also propose methods for achieving higher efficiencies. PMID:26290153

  18. Analysis and Application of LIDAR Waveform Data Using a Progressive Waveform Decomposition Method

    NASA Astrophysics Data System (ADS)

    Zhu, J.; Zhang, Z.; Hu, X.; Li, Z.

    2011-09-01

    Due to rich information of a full waveform of airborne LiDAR (light detection and ranging) data, the analysis of full waveform has been an active area in LiDAR application. It is possible to digitally sample and store the entire reflected waveform of small-footprint instead of only discrete point clouds. Decomposition of waveform data, a key step in waveform data analysis, can be categorized to two typical methods: 1) the Gaussian modelling method such as the Non-linear least-squares (NLS) algorithm and the maximum likelihood estimation using the Exception Maximization (EM) algorithm. 2) pulse detection method—Average Square Difference Function (ASDF). However, the Gaussian modelling methods strongly rely on initial parameters, whereas the ASDF omits the importance of parameter information of the waveform. In this paper, we proposed a fast algorithm—Progressive Waveform Decomposition (PWD) method to extract local maxims and fit the echo with Gaussian function, and calculate other parameters from the raw waveform data. On the one hand, experiments are implemented to evaluate the PWD method and the results demonstrate its robustness and efficiency. On the other hand, with the PWD parametric analysis of the full-waveform instead of a 3D point cloud, some special applications are investigated afterward.

  19. Georgia tech catalog of gravitational waveforms

    NASA Astrophysics Data System (ADS)

    Jani, Karan; Healy, James; Clark, James A.; London, Lionel; Laguna, Pablo; Shoemaker, Deirdre

    2016-10-01

    This paper introduces a catalog of gravitational waveforms from the bank of simulations by the numerical relativity effort at Georgia Tech. Currently, the catalog consists of 452 distinct waveforms from more than 600 binary black hole simulations: 128 of the waveforms are from binaries with black hole spins aligned with the orbital angular momentum, and 324 are from precessing binary black hole systems. The waveforms from binaries with non-spinning black holes have mass-ratios q = m 1/m 2 ≤ 15, and those with precessing, spinning black holes have q ≤ 8. The waveforms expand a moderate number of orbits in the late inspiral, the burst during coalescence, and the ring-down of the final black hole. Examples of waveforms in the catalog matched against the widely used approximate models are presented. In addition, predictions of the mass and spin of the final black hole by phenomenological fits are tested against the results from the simulation bank. The role of the catalog in interpreting the GW150914 event and future massive binary black-hole search in LIGO is discussed. The Georgia Tech catalog is publicly available at einstein.gatech.edu/catalog.

  20. Modeling measured glottal volume velocity waveforms.

    PubMed

    Verneuil, Andrew; Berry, David A; Kreiman, Jody; Gerratt, Bruce R; Ye, Ming; Berke, Gerald S

    2003-02-01

    The source-filter theory of speech production describes a glottal energy source (volume velocity waveform) that is filtered by the vocal tract and radiates from the mouth as phonation. The characteristics of the volume velocity waveform, the source that drives phonation, have been estimated, but never directly measured at the glottis. To accomplish this measurement, constant temperature anemometer probes were used in an in vivo canine constant pressure model of phonation. A 3-probe array was positioned supraglottically, and an endoscopic camera was positioned subglottically. Simultaneous recordings of airflow velocity (using anemometry) and glottal area (using stroboscopy) were made in 3 animals. Glottal airflow velocities and areas were combined to produce direct measurements of glottal volume velocity waveforms. The anterior and middle parts of the glottis contributed significantly to the volume velocity waveform, with less contribution from the posterior part of the glottis. The measured volume velocity waveforms were successfully fitted to a well-known laryngeal airflow model. A noninvasive measured volume velocity waveform holds promise for future clinical use.

  1. High-power all-fiber femtosecond chirped pulse amplification based on dispersive wave and chirped-volume Bragg grating.

    PubMed

    Sun, Ruoyu; Jin, Dongchen; Tan, Fangzhou; Wei, Shouyu; Hong, Chang; Xu, Jia; Liu, Jiang; Wang, Pu

    2016-10-03

    We report a high-power all-fiber-integrated femtosecond chirped pulse amplification system operating at 1064 nm, which consists of a dispersive wave source, a fiber stretcher, a series of ytterbium-doped amplifiers and a chirped volume Bragg grating (CVBG) compressor. The dispersive wave is generated by an erbium-doped mode-locked fiber laser with frequency shifted to the 1 μm region in a highly nonlinear fiber. With three stages of ytterbium-doped amplification, the average output power is scaled up to 125 W. Through CVBG, the pulse duration is compressed from 525 ps to 566 fs, the average output power of 107 W with a high compression efficiency of 86% is achieved, and the measured repetition rate is 17.57 MHz, corresponding to the peak power of 10.8 MW.

  2. Platform for Postprocessing Waveform-Based NDE

    NASA Technical Reports Server (NTRS)

    Roth, Don

    2008-01-01

    Taking advantage of the similarities that exist among all waveform-based non-destructive evaluation (NDE) methods, a common software platform has been developed containing multiple- signal and image-processing techniques for waveforms and images. The NASA NDE Signal and Image Processing software has been developed using the latest versions of LabVIEW, and its associated Advanced Signal Processing and Vision Toolkits. The software is useable on a PC with Windows XP and Windows Vista. The software has been designed with a commercial grade interface in which two main windows, Waveform Window and Image Window, are displayed if the user chooses a waveform file to display. Within these two main windows, most actions are chosen through logically conceived run-time menus. The Waveform Window has plots for both the raw time-domain waves and their frequency- domain transformations (fast Fourier transform and power spectral density). The Image Window shows the C-scan image formed from information of the time-domain waveform (such as peak amplitude) or its frequency-domain transformation at each scan location. The user also has the ability to open an image, or series of images, or a simple set of X-Y paired data set in text format. Each of the Waveform and Image Windows contains menus from which to perform many user actions. An option exists to use raw waves obtained directly from scan, or waves after deconvolution if system wave response is provided. Two types of deconvolution, time-based subtraction or inverse-filter, can be performed to arrive at a deconvolved wave set. Additionally, the menu on the Waveform Window allows preprocessing of waveforms prior to image formation, scaling and display of waveforms, formation of different types of images (including non-standard types such as velocity), gating of portions of waves prior to image formation, and several other miscellaneous and specialized operations. The menu available on the Image Window allows many further image

  3. 47 CFR 73.201 - Numerical designation of FM broadcast channels.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... SERVICES RADIO BROADCAST SERVICES FM Broadcast Stations § 73.201 Numerical designation of FM broadcast channels. The FM broadcast band consists of that portion of the radio frequency spectrum between 88 MHz and... 47 Telecommunication 4 2010-10-01 2010-10-01 false Numerical designation of FM broadcast...

  4. 75 FR 13235 - FM Table of Allotments, Buffalo and Centerville, Texas

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-19

    ... COMMISSION 47 CFR Part 73 FM Table of Allotments, Buffalo and Centerville, Texas AGENCY: Federal... Kaherine Pyeatt, the permittee of Station KKLB(FM), Madisonville, Texas, to substitute FM Channel 278A for... No. BMPH-20090831ADM), Pyeatt proposes the substitution of FM Channel 299A for Channel 267A...

  5. 47 CFR 73.201 - Numerical designation of FM broadcast channels.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... SERVICES RADIO BROADCAST SERVICES FM Broadcast Stations § 73.201 Numerical designation of FM broadcast channels. The FM broadcast band consists of that portion of the radio frequency spectrum between 88 MHz and... 47 Telecommunication 4 2011-10-01 2011-10-01 false Numerical designation of FM broadcast...

  6. Effect of frequency chirp on supercontinuum generation in photonic crystal fibers with two zero-dispersion wavelengths.

    PubMed

    Zhang, Hua; Yu, Song; Zhang, Jie; Gu, Wanyi

    2007-02-05

    The effect of initial frequency chirp is investigated numerically to obtain efficient supercontinuum radiation in photonic crystal fibers (PCFs) with two closely spaced zero-dispersion wavelengths. The positive chirps, instead of zero or negative chirps, are recommended because self phase modulation and four-wave mixing can be facilitated by employing positive chirps. In contrast with the complicated and irregular spectrum generated by negative-chirped pulse, the spectrums generated by positive-chirped pulses are wider and much more regular. Moreover, the saturated length of the PCF, corresponding to the maximal spectrum width, can be shortened greatly and the efficiency of frequency conversion is also improved because of initial positive chirps. Nearly all the energy between the zero-dispersion wavelengths can be transferred to the normal dispersion region from the region within the two zero-dispersion wavelengths provided that the initial positive chirp is large enough.

  7. Design of pulse waveform for waveform division multiple access UWB wireless communication system.

    PubMed

    Yin, Zhendong; Wang, Zhirui; Liu, Xiaohui; Wu, Zhilu

    2014-01-01

    A new multiple access scheme, Waveform Division Multiple Access (WDMA) based on the orthogonal wavelet function, is presented. After studying the correlation properties of different categories of single wavelet functions, the one with the best correlation property will be chosen as the foundation for combined waveform. In the communication system, each user is assigned to different combined orthogonal waveform. Demonstrated by simulation, combined waveform is more suitable than single wavelet function to be a communication medium in WDMA system. Due to the excellent orthogonality, the bit error rate (BER) of multiuser with combined waveforms is so close to that of single user in a synchronous system. That is to say, the multiple access interference (MAI) is almost eliminated. Furthermore, even in an asynchronous system without multiuser detection after matched filters, the result is still pretty ideal and satisfactory by using the third combination mode that will be mentioned in the study.

  8. Bazhen Fm matured reservoir evaluation (West Siberia, Russia)

    NASA Astrophysics Data System (ADS)

    Parnachev, S.; Skripkin, A.; Baranov, V.; Zakharov, S.

    2015-02-01

    The depletion of the traditional sources of hydrocarbons leads to the situation when the biggest players of the oil and gas production market turn to unconventional reserves. Commercial shale oil and gas production levels in the USA have largely determined world prospects for oil and gas industry development. Russia takes one of the leading place in the world in terms of shale oil resources. The main source rock of the West Siberia, the biggest oil and gas basin in Russia under development, the Bazhen Fm and its stratigraphic and lithologic analogs, is located in the territory of over 1,000,000 square kilometers. Provided it has similar key properties (organic carbon content, porosity, permeability) with the deposits of the Bakken Fm and Green River Fm, USA, it is still extremely poorly described with laboratory methods. We have performed the laboratory analysis of core samples from a well drilled in Bazhen Fm deposits with matured organic matter (Tmax>435 °C). It was demonstrated the applicability of the improved steady-state gas flow method to evaluate the permeability of nanopermeable rocks. The role of natural fracturing in forming voids was determided that allows regarding potential Bazhen Fm reservoirs as systems with dual porosity and dual permeability.

  9. Low sidelobe nonlinear stepped-frequency waveforms

    NASA Astrophysics Data System (ADS)

    Chebanov, Dmitry

    2008-04-01

    Frequency stepping is one of the known techniques employed by modern radars to attain high range resolution. One of the main advantages of this approach is that it allows to achieve wideband pulse compression through narrowband processing. It is also known that the traditional linear stepped-frequency waveform suffers from relatively high range sidelobes and grating lobes that appear due to periodicities in the Discrete Fourier Transform (DFT). An amplitude weighting (applied prior to the DFT) is typically used to reduce the near-in sidelobes. This results in undesirable losses in sensitivity. In this paper, we propose a new approach that may be used to derive families of nonlinear stepped-frequency waveforms that would have desired characteristics such as suppressed grating lobes and built-in low range sidelobes. Our approach is based on new analytical properties of stepped-frequency waveforms presented in the paper. We give examples of nonlinear waveforms generated by this approach and show that they exhibit improved performance when compared with traditional waveforms.

  10. Gaussian Decomposition of Laser Altimeter Waveforms

    NASA Technical Reports Server (NTRS)

    Hofton, Michelle A.; Minster, J. Bernard; Blair, J. Bryan

    1999-01-01

    We develop a method to decompose a laser altimeter return waveform into its Gaussian components assuming that the position of each Gaussian within the waveform can be used to calculate the mean elevation of a specific reflecting surface within the laser footprint. We estimate the number of Gaussian components from the number of inflection points of a smoothed copy of the laser waveform, and obtain initial estimates of the Gaussian half-widths and positions from the positions of its consecutive inflection points. Initial amplitude estimates are obtained using a non-negative least-squares method. To reduce the likelihood of fitting the background noise within the waveform and to minimize the number of Gaussians needed in the approximation, we rank the "importance" of each Gaussian in the decomposition using its initial half-width and amplitude estimates. The initial parameter estimates of all Gaussians ranked "important" are optimized using the Levenburg-Marquardt method. If the sum of the Gaussians does not approximate the return waveform to a prescribed accuracy, then additional Gaussians are included in the optimization procedure. The Gaussian decomposition method is demonstrated on data collected by the airborne Laser Vegetation Imaging Sensor (LVIS) in October 1997 over the Sequoia National Forest, California.

  11. SCA Waveform Development for Space Telemetry

    NASA Technical Reports Server (NTRS)

    Mortensen, Dale J.; Kifle, Multi; Hall, C. Steve; Quinn, Todd M.

    2004-01-01

    The NASA Glenn Research Center is investigating and developing suitable reconfigurable radio architectures for future NASA missions. This effort is examining software-based open-architectures for space based transceivers, as well as common hardware platform architectures. The Joint Tactical Radio System's (JTRS) Software Communications Architecture (SCA) is a candidate for the software approach, but may need modifications or adaptations for use in space. An in-house SCA compliant waveform development focuses on increasing understanding of software defined radio architectures and more specifically the JTRS SCA. Space requirements put a premium on size, mass, and power. This waveform development effort is key to evaluating tradeoffs with the SCA for space applications. Existing NASA telemetry links, as well as Space Exploration Initiative scenarios, are the basis for defining the waveform requirements. Modeling and simulations are being developed to determine signal processing requirements associated with a waveform and a mission-specific computational burden. Implementation of the waveform on a laboratory software defined radio platform is proceeding in an iterative fashion. Parallel top-down and bottom-up design approaches are employed.

  12. Frequency chirping for resonance-enhanced electron energy during laser acceleration

    NASA Astrophysics Data System (ADS)

    Gupta, D. N.; Suk, H.

    2006-04-01

    The model given by Singh-Tripathi [Phys. Plasmas 11, 743 (2004)] for laser electron acceleration in a magnetic wiggler is revisited by including the effect of laser frequency chirping. Laser frequency chirp helps to maintain the resonance condition longer, which increases the electron energy gain. A significant enhancement in electron energy gain during laser acceleration is observed.

  13. Amplification of a seed pumped by a chirped laser in the strong coupling Brillouin regime

    SciTech Connect

    Schluck, F.; Lehmann, G.; Spatschek, K. H.

    2015-09-15

    Seed amplification via Brillouin backscattering of a long pump laser-pulse is considered. The interaction takes place in the so called strong coupling regime. Pump chirping is applied to mitigate spontaneous Raman backscattering of the pump before interacting with the seed. The strong coupling regime facilitates stronger exponential growth and narrower seeds compared to the so called weak coupling regime, although in the latter the scaling with pump amplitude is stronger. Strong coupling is achieved when the pump laser amplitude exceeds a certain threshold. It is shown how the chirp influences both the linear as well as the nonlinear amplification process. First, linear amplification as well as the seed profiles are determined in dependence of the chirping rate. In contrast to the weak coupling situation, the evolution is not symmetric with respect to the sign of the chirping rate. In the nonlinear stage of the amplification, we find an intrinsic chirp of the seed pulse even for an un-chirped pump. We show that chirping the pump may have a strong influence on the shape of the seed in the nonlinear amplification phase. Also, the influence of pump chirp on the efficiency of Brillouin seed amplification is discussed.

  14. Effects of Energy Chirp on Echo-Enabled Harmonic Generation Free-Electron Lasers

    SciTech Connect

    Huang, Z.; Ratner, D.; Stupakov, G.; Xiang, D.; /SLAC

    2009-02-23

    We study effects of energy chirp on echo-enabled harmonic generation (EEHG). Analytical expressions are compared with numerical simulations for both harmonic and bunching factors. We also discuss the EEHG free-electron laser bandwidth increase due to an energy-modulated beam and its pulse length dependence on the electron energy chirp.

  15. Effect of pulse profile and chirp on a laser wakefield generation

    SciTech Connect

    Zhang Xiaomei; Shen Baifei; Ji Liangliang; Wang Wenpeng; Xu Jiancai; Yu Yahong; Yi Longqing; Wang Xiaofeng; Hafz, Nasr A. M.; Kulagin, V.

    2012-05-15

    A laser wakefield driven by an asymmetric laser pulse with/without chirp is investigated analytically and through two-dimensional particle-in-cell simulations. For a laser pulse with an appropriate pulse length compared with the plasma wavelength, the wakefield amplitude can be enhanced by using an asymmetric un-chirped laser pulse with a fast rise time; however, the growth is small. On the other hand, the wakefield can be greatly enhanced for both positively chirped laser pulse having a fast rise time and negatively chirped laser pulse having a slow rise time. Simulations show that at the early laser-plasma interaction stage, due to the influence of the fast rise time the wakefield driven by the positively chirped laser pulse is more intense than that driven by the negatively chirped laser pulse, which is in good agreement with analytical results. At a later time, since the laser pulse with positive chirp exhibits opposite evolution to the one with negative chirp when propagating in plasma, the wakefield in the latter case grows more intensely. These effects should be useful in laser wakefield acceleration experiments operating at low plasma densities.

  16. Chirped Airy-Gaussian beam in a medium with a parabolic potential

    NASA Astrophysics Data System (ADS)

    Zhang, Liping; Deng, Fu; Peng, Yulian; Chen, Bo; Peng, Xi; Li, Dongdong; Deng, Dongmei

    2017-01-01

    By solving the normalized dimensionless linear parabolic (Schrödinger-like) equations in the paraxial approximation, we can obtain the analytic solutions of the chirped Airy-Gaussian (CAiG) beam in a medium with a parabolic potential. We study the propagation properties of the finite energy CAiG beam in a parabolic potential and the influence of the distribution factor and the chirped factor on the CAiG beam. The propagation of the CAiG beam changes drastically with the distribution factor increasing: the CAiG beam tends to the chirped Airy beam when the distribution factor is very small; while as the distribution factor increases further, the CAiG beam tends to the chirped Gaussian beam. At the same time, the CAiG beam with a chirp has big changes when the chirped factor is increasing: the multi-peak structure is not obvious, the accelerated velocity and the peak intensity are larger, but the period does not change; when the CAiG beam has a quadratic chirp, the maximum intensity of the CAiG beam becomes smaller and the envelope is gradually smoother with the increasing of the chirped factor.

  17. Neutron multiplicity measurements of Cf and Fm isotopes

    SciTech Connect

    Hoffman, D.C.; Ford, G.P.; Balagna, J.P.; Veeser, L.R.

    1980-02-01

    Prompt neutrons in coincidence with the fission fragments from the spontaneous fission of /sup 250,252,254/Cf and /sup 257/Fm were measured inside a 75-cm-diameter, Gd-loaded liquid scintillation counter having a neutron-detection efficiency of about 78%. Measurements for /sup 256/Fm were done just outside the counter with an efficiency of 31%. The kinetic energies of both fission fragments and the number of neutrons for each fission event were recorded. From these data, the fragment kinetic energies and masses and the neutron multiplicity distributions were determined for /sup 250,252,254/Cf and /sup 257/Fm. Variances of neutron multiplicity distributions as a function of total fragment kinetic energy and the ratio of fragment masses have been calculated and are presented for all the nuclides studied.

  18. Photonic arbitrary waveform generator based on Taylor synthesis method.

    PubMed

    Liao, Shasha; Ding, Yunhong; Dong, Jianji; Yan, Siqi; Wang, Xu; Zhang, Xinliang

    2016-10-17

    Arbitrary waveform generation has been widely used in optical communication, radar system and many other applications. We propose and experimentally demonstrate a silicon-on-insulator (SOI) on chip optical arbitrary waveform generator, which is based on Taylor synthesis method. In our scheme, a Gaussian pulse is launched to some cascaded microrings to obtain first-, second- and third-order differentiations. By controlling amplitude and phase of the initial pulse and successive differentiations, we can realize an arbitrary waveform generator according to Taylor expansion. We obtain several typical waveforms such as square waveform, triangular waveform, flat-top waveform, sawtooth waveform, Gaussian waveform and so on. Unlike other schemes based on Fourier synthesis or frequency-to-time mapping, our scheme is based on Taylor synthesis method. Our scheme does not require any spectral disperser or large dispersion, which are difficult to fabricate on chip. Our scheme is compact and capable for integration with electronics.

  19. Waveform information from quantum mechanical entropy

    NASA Astrophysics Data System (ADS)

    Funkhouser, Scott; Suski, William; Winn, Andrew

    2016-06-01

    Although the entropy of a given signal-type waveform is technically zero, it is nonetheless desirable to use entropic measures to quantify the associated information. Several such prescriptions have been advanced in the literature but none are generally successful. Here, we report that the Fourier-conjugated `total entropy' associated with quantum-mechanical probabilistic amplitude functions (PAFs) is a meaningful measure of information in non-probabilistic real waveforms, with either the waveform itself or its (normalized) analytic representation acting in the role of the PAF. Detailed numerical calculations are presented for both adaptations, showing the expected informatic behaviours in a variety of rudimentary scenarios. Particularly noteworthy are the sensitivity to the degree of randomness in a sequence of pulses and potential for detection of weak signals.

  20. Wavelet analysis of the impedance cardiogram waveforms

    NASA Astrophysics Data System (ADS)

    Podtaev, S.; Stepanov, R.; Dumler, A.; Chugainov, S.; Tziberkin, K.

    2012-12-01

    Impedance cardiography has been used for diagnosing atrial and ventricular dysfunctions, valve disorders, aortic stenosis, and vascular diseases. Almost all the applications of impedance cardiography require determination of some of the characteristic points of the ICG waveform. The ICG waveform has a set of characteristic points known as A, B, E ((dZ/dt)max) X, Y, O and Z. These points are related to distinct physiological events in the cardiac cycle. Objective of this work is an approbation of a new method of processing and interpretation of the impedance cardiogram waveforms using wavelet analysis. A method of computer thoracic tetrapolar polyrheocardiography is used for hemodynamic registrations. Use of original wavelet differentiation algorithm allows combining filtration and calculation of the derivatives of rheocardiogram. The proposed approach can be used in clinical practice for early diagnostics of cardiovascular system remodelling in the course of different pathologies.

  1. Optimal radar waveform design for moving target

    NASA Astrophysics Data System (ADS)

    Zhu, Binqi; Gao, Yesheng; Wang, Kaizhi; Liu, Xingzhao

    2016-07-01

    An optimal radar waveform-design method is proposed to detect moving targets in the presence of clutter and noise. The clutter is split into moving and static parts. Radar-moving target/clutter models are introduced and combined with Neyman-Pearson criteria to design optimal waveforms. Results show that optimal waveform for a moving target is different with that for a static target. The combination of simple-frequency signals could produce maximum detectability based on different noise-power spectrum density situations. Simulations show that our algorithm greatly improves signal-to-clutter plus noise ratio of radar system. Therefore, this algorithm may be preferable for moving target detection when prior information on clutter and noise is available.

  2. Krylov subspace acceleration of waveform relaxation

    SciTech Connect

    Lumsdaine, A.; Wu, Deyun

    1996-12-31

    Standard solution methods for numerically solving time-dependent problems typically begin by discretizing the problem on a uniform time grid and then sequentially solving for successive time points. The initial time discretization imposes a serialization to the solution process and limits parallel speedup to the speedup available from parallelizing the problem at any given time point. This bottleneck can be circumvented by the use of waveform methods in which multiple time-points of the different components of the solution are computed independently. With the waveform approach, a problem is first spatially decomposed and distributed among the processors of a parallel machine. Each processor then solves its own time-dependent subsystem over the entire interval of interest using previous iterates from other processors as inputs. Synchronization and communication between processors take place infrequently, and communication consists of large packets of information - discretized functions of time (i.e., waveforms).

  3. Synthesis of MBE-4 accelerating waveforms

    SciTech Connect

    Kim, C.H.; Brady, V.O.; Fessenden, T.J.; Judd, D.L.; Laslett, L.J.

    1985-05-01

    An ion induction linac for HIF must operate near the space charge current limit along most of its length. Small errors in the voltages applied to the accelerating gaps can readily produce local unwanted beam bunching and consequent beam loss. Uncompensated space charge forces will generate current loss from longitudinal beam spreading. In the design of the MBE-4 ideal acceleration voltages were developed that assure self-similar amplifying current waveforms at each position along the accelerator. These were approximately synthesized by adding waveforms that can be obtained from realizable electrical pulsers. A code is used to study effects produced by the imperfect synthesis on the longitudinal ion dynamics and beam current waveforms in the presence of space-charge forces.

  4. Chirped Pulse Microwave Spectroscopy in Pulsed Uniform Supersonic Flows

    NASA Astrophysics Data System (ADS)

    Abeysekera, Chamara; Oldham, James; Prozument, Kirill; Joalland, Baptiste; Park, Barratt; Field, Robert W.; Sims, Ian; Suits, Arthur; Zack, Lindsay

    2014-06-01

    We present preliminary results describing the development of a new instrument that combines two powerful techniques: Chirped Pulse-Fourier Transform MicroWave (CP-FTMW) spectroscopy and pulsed uniform supersonic flows. It promises a nearly universal detection method that can deliver quantitative isomer, conformer, and vibrational level specific detection, characterization of unstable reaction products and intermediates and perform unique spectroscopic, kinetics and dynamics measurements. We have constructed a new high-power K_a-band, 26-40 GHz, chirped pulse spectrometer with sub-MHz resolution, analogous to the revolutionary CP-FTMW spectroscopic technique developed in the Pate group at University of Virginia. In order to study smaller molecules, the E-band, 60-90 GHz, CP capability was added to our spectrometer. A novel strategy for generating uniform supersonic flow through a Laval nozzle is introduced. High throughput pulsed piezo-valve is used to produce cold (30 K) uniform flow with large volumes of 150 cm^3 and densities of 1014 molecules/cm3 with modest pumping facilities. The uniform flow conditions for a variety of noble gases extend as far as 20 cm from the Laval nozzle and a single compound turbo-molecular pump maintains the operating pressure. Two competing design considerations are critical to the performance of the system: a low temperature flow is needed to maximize the population difference between rotational levels, and high gas number densities are needed to ensure rapid cooling to achieve the uniform flow conditions. At the same time, collision times shorter than the chirp duration will give inaccurate intensities and reduced signal levels due to collisional dephasing of free induction decay. Details of the instrument and future directions and challenges will be discussed.

  5. Pre-emphasis determination for an S-band constant bandwidth FM/FM station

    NASA Technical Reports Server (NTRS)

    Wallace, G. R.; Salter, W. E.

    1972-01-01

    Pre-emphasis schedules are given for 11 constant-bandwidth FM subcarriers modulating an S band transmitter at three receiver signal to noise ratios (i.e., 9, 15, and 25 dB). The criterion for establishing these pre-emphasis curves is the achievement, at various receiver intermediate frequency signal to noise ratios, of equal receiver output signal to noise ratios for all channels. It is realized that these curves may not be the optimum pre-emphasis curves based on overall efficiency or maximum utilization of the allotted spectrum, but they are near-optimum for data with channels which require equal output signal to noise ratios, such as spectral densities. The empirically derived results are compared with a simplified, analytically derived schedule and the primary differences are explained. The S band pre-emphasis schedule differs from the lower frequency VHF case. Since most proportional bandwidth and constant bandwidth systems use ground based recorders and some use flight recorders (as the Saturn systems did on VHF proportional bandwidth telemetry), the effects of these recorders are discussed and a modified pre-emphasis schedule is presented showing the results of this study phase.

  6. Waveform Design for Wireless Power Transfer

    NASA Astrophysics Data System (ADS)

    Clerckx, Bruno; Bayguzina, Ekaterina

    2016-12-01

    Far-field Wireless Power Transfer (WPT) has attracted significant attention in recent years. Despite the rapid progress, the emphasis of the research community in the last decade has remained largely concentrated on improving the design of energy harvester (so-called rectenna) and has left aside the effect of transmitter design. In this paper, we study the design of transmit waveform so as to enhance the DC power at the output of the rectenna. We derive a tractable model of the non-linearity of the rectenna and compare with a linear model conventionally used in the literature. We then use those models to design novel multisine waveforms that are adaptive to the channel state information (CSI). Interestingly, while the linear model favours narrowband transmission with all the power allocated to a single frequency, the non-linear model favours a power allocation over multiple frequencies. Through realistic simulations, waveforms designed based on the non-linear model are shown to provide significant gains (in terms of harvested DC power) over those designed based on the linear model and over non-adaptive waveforms. We also compute analytically the theoretical scaling laws of the harvested energy for various waveforms as a function of the number of sinewaves and transmit antennas. Those scaling laws highlight the benefits of CSI knowledge at the transmitter in WPT and of a WPT design based on a non-linear rectenna model over a linear model. Results also motivate the study of a promising architecture relying on large-scale multisine multi-antenna waveforms for WPT. As a final note, results stress the importance of modeling and accounting for the non-linearity of the rectenna in any system design involving wireless power.

  7. Direct Waveform Inversion: a New Recursive Scheme

    NASA Astrophysics Data System (ADS)

    Zheng, Y.

    2015-12-01

    The goal of the full-waveform inversion (FWI) is to find an Earth's model such that the synthetic waveforms computed using the model fit the observed ones. In practice, such a model is found in the context of the perturbation approach in an iterative fashion. Specifically, to find such a model, one starts from an initial global velocity model and perform model updating iteratively based on the Frechet derivative or single scattering by adjoint methods to minimize some cost function. However, this process often leads to local minima for the nonlinear cost function in the optimization and slow or no convergence when the starting model is far from the true model. To solve for the initial-model dependence and the convergence issue, we show a new direct waveform inversion (DWI) idea to directly invert the waveform data recursively by explicitly enforcing the causality principle. The DWI offers the advantage of assuming no global initial model and no iteration is needed for the model updating. Starting from the source-receiver region, the DWI builds the model outward recursively by fitting the earliest part of the reflection waveforms and the DWI process is always convergent. The DWI combines seismic imaging and velocity model building into one single process and this is in contrast to many industrial applications where seismic imaging/migration and velocity modeling building are done alternatively. The DWI idea is applicable to one-, two-, and three-dimensional spaces. We show numerical examples to support our idea using full waveform data including both free-surface and inter-bed multiples. Using reflection seismic data, we show that the DWI can invert for both velocity and density, separately.

  8. STEREO database of interplanetary Langmuir electric waveforms

    NASA Astrophysics Data System (ADS)

    Briand, C.; Henri, P.; Génot, V.; Lormant, N.; Dufourg, N.; Cecconi, B.; Nguyen, Q. N.; Goetz, K.

    2016-02-01

    This paper describes a database of electric waveforms that is available at the Centre de Données de la Physique des Plasmas (CDPP, http://cdpp.eu/). This database is specifically dedicated to waveforms of Langmuir/Z-mode waves. These waves occur in numerous kinetic processes involving electrons in space plasmas. Statistical analysis from a large data set of such waves is then of interest, e.g., to study the relaxation of high-velocity electron beams generated at interplanetary shock fronts, in current sheets and magnetic reconnection region, the transfer of energy between high and low frequencies, the generation of electromagnetic waves. The Langmuir waveforms were recorded by the Time Domain Sampler (TDS) of the WAVES radio instrument on board the STEREO mission. In this paper, we detail the criteria used to identify the Langmuir/Z-mode waves among the whole set of waveforms of the STEREO spacecraft. A database covering the November 2006 to August 2014 period is provided. It includes electric waveforms expressed in the normalized frame (B,B × Vsw,B × (B × Vsw)) with B and Vsw the local magnetic field and solar wind velocity vectors, and the local magnetic field in the variance frame, in an interval of ±1.5 min around the time of the Langmuir event. Quicklooks are also provided that display the three components of the electric waveforms together with the spectrum of E∥, together with the magnitude and components of the magnetic field in the 3 min interval, in the variance frame. Finally, the distribution of the Langmuir/Z-mode waves peak amplitude is also analyzed.

  9. Control of laser induced molecular fragmentation of n-propyl benzene using chirped femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Goswami, Tapas; Karthick Kumar, S. K.; Dutta, Aveek; Goswami, Debabrata

    2009-06-01

    We present the effect of chirping a femtosecond laser pulse on the fragmentation of n-propyl benzene. An enhancement of an order of magnitude for the relative yields of C3H 3 + and C5H 5 + in the case of negatively chirped pulses and C6H 5 + in the case of positively chirped pulses with respect to the transform-limited pulse indicates that in some fragmentation channel, coherence of the laser field plays an important role. For the relative yield of all other heavier fragment ions, resulting from the interaction of the intense laser field with the molecule, there is no such enhancement effect with the sign of chirp, within experimental errors. The importance of the laser phase is further reinforced through a direct comparison of the fragmentation results with the second harmonic of the chirped laser pulse with identical bandwidth.

  10. Control of laser induced molecular fragmentation of n-propyl benzene using chirped femtosecond laser pulses.

    PubMed

    Goswami, Tapas; Karthick Kumar, S K; Dutta, Aveek; Goswami, Debabrata

    2009-06-12

    We present the effect of chirping a femtosecond laser pulse on the fragmentation of n-propyl benzene. An enhancement of an order of magnitude for the relative yields of C3H3+ and C5H5+ in the case of negatively chirped pulses and C6H5+ in the case of positively chirped pulses with respect to the transform-limited pulse indicates that in some fragmentation channel, coherence of the laser field plays an important role. For the relative yield of all other heavier fragment ions, resulting from the interaction of the intense laser field with the molecule, there is no such enhancement effect with the sign of chirp, within experimental errors. The importance of the laser phase is further reinforced through a direct comparison of the fragmentation results with the second harmonic of the chirped laser pulse with identical bandwidth.

  11. Chirped Peregrine solitons in a class of cubic-quintic nonlinear Schrödinger equations.

    PubMed

    Chen, Shihua; Baronio, Fabio; Soto-Crespo, Jose M; Liu, Yi; Grelu, Philippe

    2016-06-01

    We shed light on the fundamental form of the Peregrine soliton as well as on its frequency chirping property by virtue of a pertinent cubic-quintic nonlinear Schrödinger equation. An exact generic Peregrine soliton solution is obtained via a simple gauge transformation, which unifies the recently-most-studied fundamental rogue-wave species. We discover that this type of Peregrine soliton, viable for both the focusing and defocusing Kerr nonlinearities, could exhibit an extra doubly localized chirp while keeping the characteristic intensity features of the original Peregrine soliton, hence the term chirped Peregrine soliton. The existence of chirped Peregrine solitons in a self-defocusing nonlinear medium may be attributed to the presence of self-steepening effect when the latter is not balanced out by the third-order dispersion. We numerically confirm the robustness of such chirped Peregrine solitons in spite of the onset of modulation instability.

  12. Perturbation-theory analysis of ionization by a chirped few-cycle attosecond pulse

    SciTech Connect

    Pronin, E. A.; Starace, Anthony F.; Peng Liangyou

    2011-07-15

    The angular distribution of electrons ionized from an atom by a chirped few-cycle attosecond pulse is analyzed using perturbation theory (PT), keeping terms in the transition amplitude up to second order in the pulse electric field. The dependence of the asymmetry in the ionized electron distributions on both the chirp and the carrier-envelope phase (CEP) of the pulse are explained using a simple analytical formula that approximates the exact PT result. This approximate formula (in which the chirp dependence is explicit) reproduces reasonably well the chirp-dependent oscillations of the electron angular distribution asymmetries found numerically by Peng et al. [Phys. Rev. A 80, 013407 (2009)]. It can also be used to determine the chirp rate of the attosecond pulse from the measured electron angular distribution asymmetry.

  13. Control of Brillouin short-pulse seed amplification by chirping the pump pulse

    SciTech Connect

    Lehmann, G.; Spatschek, K. H.

    2015-04-15

    Seed amplification via Brillouin backscattering of a long pump pulse is considered. Similar to Raman amplification, several obstructive effects may occur during short-pulse Brillouin amplification. One is the spontaneous Raman backscattering of the pump before interacting with the seed. Preforming the plasma and/or chirping the pump will reduce unwanted pump backscattering. Optimized regions for low-loss pump propagation were proposed already in conjunction with Raman seed amplification. Hence, the influence of the chirp of the pump during Brillouin interaction with the seed becomes important and will be considered here. Both, the linear as well as the nonlinear evolution phases of the seed caused by Brillouin amplification under the action of a chirped pump are investigated. The amplification rate as well as the seed profiles are presented as function of the chirping rate. Also the dependence of superradiant scaling rates on the chirp parameter is discussed.

  14. Isolated short attosecond pulse generation in an orthogonally polarized multicycle chirped laser field

    SciTech Connect

    Xu Junjie

    2011-03-15

    We theoretically demonstrate the generation of a high-order harmonic and isolated attosecond pulse in an orthogonally polarized laser field, which is synthesized by an 800-nm chirped laser pulse and an 800-nm chirp-free laser pulse. Owing to the instantaneous frequency increasingly reducing close to the center of the driving pulse, the extreme ultraviolet supercontinuum for the chirped synthesized field is even broader than that for an orthogonal chirp-free two-color laser field. It is found that the broadband supercontinuum spectrum can be achieved for the driving pulse with ten and above optical cycles. After phase compensation an isolated attosecond pulse with a duration of {approx}16 as is produced. Furthermore, the optimization of the chirping rate parameters is investigated to achieve cutoff extension and an isolated short attosecond pulse.

  15. Chirp of the single attosecond pulse generated by a polarization gating

    SciTech Connect

    Chang Zenghu

    2005-02-01

    The chirp of the xuv supercontinuum generated by a polarization gating is investigated by comparing three-dimensional nonadiabatic numerical simulations with classical calculations. The origin of the chirp is the dependence of the energy gain by an electron on the return time. The chirp is positive and its value is almost the same as that when a linearly polarized laser is used. Although the 250-eV-wide supercontinuum corresponds to a single attosecond pulse, the shortest duration of the pulse is limited by the chirp. By compensating the positive chirp with the negative group velocity dispersion of a Sn filter, it is predicted that a single 58-as pulse can be generated.

  16. Effect of nonlinear chirped Gaussian laser pulse on plasma wake field generation

    SciTech Connect

    Afhami, Saeedeh; Eslami, Esmaeil

    2014-08-15

    An ultrashort laser pulse propagating in plasma can excite a nonlinear plasma wake field which can accelerate charged particles up to GeV energies within a compact space compared to the conventional accelerator devices. In this paper, the effect of different kinds of nonlinear chirped Gaussian laser pulse on wake field generation is investigated. The numerical analysis of our results depicts that the excitation of plasma wave with large and highly amplitude can be accomplished by nonlinear chirped pulses. The maximum amplitude of excited wake in nonlinear chirped pulse is approximately three times more than that of linear chirped pulse. In order to achieve high wake field generation, chirp parameters and functions should be set to optimal values.

  17. CE-Chirp® ABR in cerebellopontine angle surgery neuromonitoring: technical assessment in four cases.

    PubMed

    Di Scipio, Ettore; Mastronardi, Luciano

    2015-04-01

    Continuous monitoring of wave V of auditory brainstem response (ABR), also called brainstem auditory evoked potential (BAEP), is the most common method used in intraoperative neuromonitoring (IONM) functionality of cochlear nerve during surgery in cerebellopontine angle (CPA). CE-Chirp® ABR represents a recent development of classical ABR. CE-Chirp® is a new acoustic stimulus used in newborn hearing testing, designed to provide enhanced neural synchronicity and faster detection of larger amplitude wave V. In four cases, CE-Chirp® ABR was performed during cerebellopontine angle (CPA) surgery. CE-Chirp® ABR represented a safe and effective method in neuromonitoring functionality of vestibulocochlear nerve. A faster neuromonitoring feedback to surgical equipe was possible with CE-Chirp ABR®.

  18. Transverse-to-longitudinal Emittance-exchange with an Energy Chirped Beam

    SciTech Connect

    Thangaraj, J.; Ruan, J.; Johnson, A.S.; Thurman-Keup, R.; Lumpkin, A.H.; Santucci, J.; Sun, Y.-E; Maxwell, T.; Edwards, H.; /Fermilab

    2012-05-01

    Emittance exchange has been proposed to increase the performance of free electron lasers by tailoring the phase space of an electron beam. The principle of emittance exchange - where the transverse phase space of the electron beam is exchanged with the longitudinal phase space - has been demonstrated recently at the A0 photoinjector. The experiment used a low charge bunch (250 pC) with no energy chirp. Theory predicts an improvement in the emittance exchange scheme when the incoming beam has an energy chirp imparted on it. The energy chirp helps to overcome the thick lens effect of the deflecting mode cavity and other second order effects that might lead to an incomplete emittance exchange at higher charges. In this work, we report experimental and simulation results from operating the emittance exchange beam line using an energy chirped beam with higher charge (500 pC) at different RF-chirp settings.

  19. Chirped Peregrine solitons in a class of cubic-quintic nonlinear Schrödinger equations

    NASA Astrophysics Data System (ADS)

    Chen, Shihua; Baronio, Fabio; Soto-Crespo, Jose M.; Liu, Yi; Grelu, Philippe

    2016-06-01

    We shed light on the fundamental form of the Peregrine soliton as well as on its frequency chirping property by virtue of a pertinent cubic-quintic nonlinear Schrödinger equation. An exact generic Peregrine soliton solution is obtained via a simple gauge transformation, which unifies the recently-most-studied fundamental rogue-wave species. We discover that this type of Peregrine soliton, viable for both the focusing and defocusing Kerr nonlinearities, could exhibit an extra doubly localized chirp while keeping the characteristic intensity features of the original Peregrine soliton, hence the term chirped Peregrine soliton. The existence of chirped Peregrine solitons in a self-defocusing nonlinear medium may be attributed to the presence of self-steepening effect when the latter is not balanced out by the third-order dispersion. We numerically confirm the robustness of such chirped Peregrine solitons in spite of the onset of modulation instability.

  20. Chirped-Pulse Fourier Transform Microwave Spectroscopy of 3-VINYLBENZALDEHYDE

    NASA Astrophysics Data System (ADS)

    Smith, Miranda; Brown, Gordon G.

    2013-06-01

    The pure rotational spectrum of 3-vinylbenzaldehyde (3VBA) has been measured and assigned. Coker College's chirped-pulse Fourier transform microwave (CP-FTMW) spectrometer was used to measure the rotational spectrum of 3VBA in the 7.5 - 18.5 GHz region of the microwave spectrum. The results have been analyzed to discover the rotational constants and centrifugal distortion constants of four distinct conformations of 3VBA: cis,cis-, cis,trans-, trans,cis-, and trans,trans-3VBA. The experimental rotational constants have been compared to the results of ab initio calculations. The performance of Coker's CP-FTMW spectrometer will also be discussed.

  1. Spatial filtering of light by chirped photonic crystals

    SciTech Connect

    Staliunas, Kestutis; Sanchez-Morcillo, Victor J.

    2009-05-15

    We propose an efficient method for spatial filtering of light beams by propagating them through two-dimensional (also three dimensional) chirped photonic crystals, i.e., through the photonic structures with fixed transverse lattice period and with the longitudinal lattice period varying along the direction of the beam propagation. We prove the proposed idea by numerically solving the paraxial propagation equation in refraction-index-modulated media and we evaluate the efficiency of the process by harmonic-expansion analysis. The technique can be also applied for filtering (for cleaning) of the packages of atomic waves (Bose condensates), also to improve the directionality of acoustic and mechanical waves.

  2. Plasma absorption evidence via chirped pulse spectral transmission measurements

    SciTech Connect

    Jedrkiewicz, Ottavia; Minardi, Stefano; Couairon, Arnaud; Jukna, Vytautas; Selva, Marco; Di Trapani, Paolo

    2015-06-08

    This work aims at highlighting the plasma generation dynamics and absorption when a Bessel beam propagates in glass. We developed a simple diagnostics allowing us to retrieve clear indications of the formation of the plasma in the material, thanks to transmission measurements in the angular and wavelength domains. This technique featured by the use of a single chirped pulse having the role of pump and probe simultaneously leads to results showing the plasma nonlinear absorption effect on the trailing part of the pulse, thanks to the spectral-temporal correspondence in the measured signal, which is also confirmed by numerical simulations.

  3. Random FM-CW radar and its ECCM

    NASA Astrophysics Data System (ADS)

    Liu, Guosui; Shi, Xiangquan; Lu, Jinhui

    The principle of a random FM-CW radar system is introduced, and the range cutoff charactertistic (RCC) for the system is derived. In a fuze radar system, this radar can be used against passive jamming away from the point of range cutoff as well as against active jamming. Experimental results are presented which show that the random FM-CW radar system has RCC and ECCM properties. The system can be used as a short-range detection system, a low-altitude altimeter, and a blind landing device.

  4. Light-charged-particle emission in the spontaneous fission of /sup 250/Cf, /sup 256/Fm, and /sup 257/Fm

    SciTech Connect

    Wild, J.F.; Baisden, P.A.; Dougan, R.J.; Hulet, E.K.; Lougheed, R.W.; Landrum, J.H.

    1985-08-01

    We have measured the energy spectra for the emission of long-range ..cap alpha.. particles from the spontaneous fission of /sup 250/Cf, /sup 256/Fm, and /sup 257/Fm, and for tritons and protons from the spontaneous fission of /sup 250/Cf and /sup 256/Fm. We have determined ..cap alpha.., triton, and proton emission probabilities and estimated total light-particle emission probabilities for these nuclides. We compare these and known emission probabilities for five other spontaneously fissioning nuclides with the deformation energy available at scission and show that there is a possible correlation that is consistent with a one-body dissipation mechanism for transferring release energy to particle clusters.

  5. Nonlinear Frequency Chirping of beta-induced Aflven eigenmode

    NASA Astrophysics Data System (ADS)

    Zhang, Huasen

    2011-10-01

    The β-induced Alfvén eigenmode (BAE) is studied using global gyrokinetic toroidal code GTC. Linear simulations show that kinetic effects modify BAE mode structure and reduce the frequency relative to the MHD theory. Both passing and trapped energetic particles contribute to BAE excitation through transit and bounce- precessional resonance, respectively. Nonlinear simulations show that the unstable BAE saturates due to nonlinear wave-particle interaction with both thermal and energetic particles. The saturated amplitude exhibits a coherent oscillation with an asymmetric growing and damping phase. Wavelet analysis shows that the mode frequency has a strong chirping associated with the oscillation of the mode amplitude. Analysis of nonlinear wave-particle interaction shows that the frequency chirping is induced by the nonlinear evolution of coherent structures in the energetic particle phase space of toroidal angle and precessional frequency. Controlled simulations further find that thermal particle nonlinearity plays a key role in controlling the saturation amplitude. We will also report self-consistent energetic particle transport from turbulence simulation with wave-particle and wave-wave nonlinearity treated on the same footing for the first time. Work in collaboration with W. Deng, I. Holod, Z. Lin, Y. Xiao and supported by DOE SciDAC GSEP Center and INCITE Program.

  6. Chirp-driven vibrational distribution in transition metal carbonyl complexes.

    PubMed

    Gollub, C; Korff, B M R; Kompa, K L; de Vivie-Riedle, R

    2007-01-21

    In this theoretical study vibrational ladder climbing in transition metal carbonyl complexes, as a possible means to initialize chemical ground state reactions, and the resulting vibrational population distribution using chirped mid-infrared femtosecond laser pulses is investigated. Our model system is MnBr(CO)(5), a strong IR-absorber within an experimentally easily accessible wavelength region. Special emphasis is put on the perturbation due to additional vibrational modes, especially on one, which allows dissociation at low energies. The related potential energy surface for the three representative modes is calculated, whereon quantum dynamics calculations, including the laser-molecule interaction, are performed. No significant coupling could be detected, neither in the bound, nor in the dissociative region. Contrarily, we found a dynamical barrier even for energies high above the dissociation limit. Different vibrational population distributions after the laser excitation of the CO stretching mode could be generated in dependence of the chirp parameters. Based on these findings we simulated the laser excitation corresponding to an experiment by M. Joffre et al., Proc. Natl. Acad. Ssi. U. S. A., 2004, 101(36), 13216-13220, where coherent vibrational ladder climbing in carboxyhemoglobin was demonstrated and we could offer an explanation for an open question, concerning the interpretation of the spectroscopic data.

  7. Characterization and compensation of the residual chirp in a Mach-Zehnder-type electro-optical intensity modulator.

    PubMed

    Rogers, C E; Carini, J L; Pechkis, J A; Gould, P L

    2010-01-18

    We utilize various techniques to characterize the residual phase modulation of a waveguide-based Mach-Zehnder electro-optical intensity modulator. A heterodyne technique is used to directly measure the phase change due to a given change in intensity, thereby determining the chirp parameter of the device. This chirp parameter is also measured by examining the ratio of sidebands for sinusoidal amplitude modulation. Finally, the frequency chirp caused by an intensity pulse on the nanosecond time scale is measured via the heterodyne signal. We show that this chirp can be largely compensated with a separate phase modulator. The various measurements of the chirp parameter are in reasonable agreement.

  8. 75 FR 4036 - FM TABLE OF ALLOTMENTS, DEBEQUE, CO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-26

    ... From the Federal Register Online via the Government Publishing Office FEDERAL COMMUNICATIONS COMMISSION 47 CFR Part 73 FM TABLE OF ALLOTMENTS, DEBEQUE, CO AGENCY: Federal Communications Commission. ACTION: Proposed rule. SUMMARY: The Audio Division seeks comments on a petition filed by Cochise...

  9. 47 CFR 73.3573 - Processing FM broadcast station applications.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... case of a Class D or an NCE FM reserved band channel station, a major facility change is any change in... community of license or any change in frequency other than to a first-, second-, or third-adjacent channel... this section; (ii) A change to a higher or lower class co-channel, first-, second-, or...

  10. An Inexpensive Group FM Amplification System for the Classroom.

    ERIC Educational Resources Information Center

    Worner, William A.

    1988-01-01

    An inexpensive FM amplification system was developed to enhance auditory learning in classrooms for the hearing impaired. Evaluation indicated that the system equalizes the sound pressure level throughout the room, with the increased sound pressure level falling in the range of 70 to 73 decibels. (Author/DB)

  11. Sound-Field FM Amplification: Theory and Practical Applications.

    ERIC Educational Resources Information Center

    Crandell, Carl C.; Smaldino, Joseph J.; Flexer, Carol

    The purpose of this book is to provide a comprehensive and cohesive guide for the use of small, frequency modulated sound-field FM amplification systems in classrooms. The book addresses both theoretical and practical issues with an emphasis on application of information to real-world situations. Worksheets and checklists are included at the end…

  12. 47 CFR 73.3573 - Processing FM broadcast station applications.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... case of a Class D or an NCE FM reserved band channel station, a major facility change is any change in... in the non-reserved band will be dismissed as set forth in paragraph (f)(2)(i) of this section. (2) An amendment to a non-reserved band application which would effect a major change, as defined...

  13. Thermal Properties of Bazhen fm. Sediments from Thermal Core Logging

    NASA Astrophysics Data System (ADS)

    Spasennykh, Mikhail; Popov, Evgeny; Popov, Yury; Chekhonin, Evgeny; Romushkevich, Raisa; Zagranovskaya, Dzhuliya; Belenkaya, Irina; Zhukov, Vladislav; Karpov, Igor; Saveliev, Egor; Gabova, Anastasia

    2016-04-01

    The Bazhen formation (B. fm.) is the hugest self-contained source-and-reservoir continuous petroleum system covering by more than 1 mln. km2 (West Siberia, Russia). High lithological differentiation in Bazhen deposits dominated by silicic shales and carbonates accompanied by extremely high total organic carbon values (of up to 35%), pyrite content and brittle mineralogical composition deteriorate standard thermal properties assessment for low permeable rocks. Reliable information of unconventional system thermal characteristics is the necessary part of works such as modelling of different processes in reservoir under thermal EOR for accessing their efficiency, developing and optimizing design of the oil recovery methods, interpretation of the well temperature logging data and for the basin petroleum modelling. A unique set of data including thermal conductivity, thermal diffusivity, volumetric heat capacity, thermal anisotropy for the B.fm. rocks was obtained from thermal core logging (high resolution continuous thermal profiling) on more than 4680 core samples (2000 of B.fm. samples are among) along seven wells for four oil fields. Some systematic peculiarities of the relation between thermal properties of the B.fm. rocks and their mineralogical composition, structural and texture properties were obtained. The high-resolution data are processed jointly with the standard petrophysical logging that allowed us to provide better separation of the formation. The research work was done with financial support of the Russian Ministry of Education and Science (unique identification number RFMEFI58114X0008).

  14. 75 FR 30756 - FM Table of Allotments, Pacific Junction, Iowa

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-02

    ... From the Federal Register Online via the Government Publishing Office FEDERAL COMMUNICATIONS COMMISSION 47 CFR Part 73 FM Table of Allotments, Pacific Junction, Iowa AGENCY: Federal Communications... Channel 299C2 at Pacific Junction, Iowa. The reference coordinates for Channel 299C2 at Pacific...

  15. 75 FR 41093 - FM Table of Allotments, Maupin, Oregon

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-15

    ... COMMISSION 47 CFR Part 73 FM Table of Allotments, Maupin, Oregon AGENCY: Federal Communications Commission... CFR Part 73 Radio, Radio broadcasting. 0 As stated in the preamble, the Federal Communications Commission amends 47 CFR part 73 as follows: PART 73--RADIO BROADCAST SERVICES 0 1. The authority...

  16. FM Radio as Observational Access to Wilderness Environments

    ERIC Educational Resources Information Center

    Davis, Bruce

    1975-01-01

    An FM radio service is being proposed for the wilderness environments of western Canada. The purpose of this system is to listen in on the wilderness sound environments. It is hoped that when all problems of transmission and financing have been solved, this radio service will provide valuable information. (MA)

  17. 75 FR 19339 - FM Table of Allotments, Amboy, California

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-14

    ... COMMISSION 47 CFR Part 73 FM Table of Allotments, Amboy, California AGENCY: Federal Communications Commission... CFR Part 73 Radio, Radio broadcasting. For the reasons discussed in the preamble, the Federal Communications Commission proposes to amend 47 CFR part 73 as follows: PART 73 - RADIO BROADCAST SERVICES 1....

  18. Pocket-sized tone-modulated FM transmitter

    NASA Technical Reports Server (NTRS)

    Couvillon, L. A.

    1969-01-01

    Pressure of a button on a crystal-controlled transmitter causes generation of a tone. The tone modulates the FM transmitter which in turn radiates by way of the enclosed loop antenna, through the radio-frequency-transparent wall of the transmitters case to the receiver.

  19. Principles and Limitations of Ultra-Wideband FM Communications Systems

    NASA Astrophysics Data System (ADS)

    Gerrits, John F. M.; Kouwenhoven, Michiel H. L.; van der Meer, Paul R.; Farserotu, John R.; Long, John R.

    2005-12-01

    This paper presents a novel UWB communications system using double FM: a low-modulation index digital FSK followed by a high-modulation index analog FM to create a constant-envelope UWB signal. FDMA techniques at the subcarrier level are exploited to accommodate multiple users. The system is intended for low (1-10 kbps) and medium (100-1000 kbps) bit rate, and short-range WPAN systems. A wideband delay-line FM demodulator that is not preceded by any limiting amplifier constitutes the key component of the UWBFM receiver. This unusual approach permits multiple users to share the same RF bandwidth. Multipath, however, may limit the useful subcarrier bandwidth to one octave. This paper addresses the performance with AWGN and multipath, the resistance to narrowband interference, as well as the simultaneous detection of multiple FM signals at the same carrier frequency. SPICE and Matlab simulation results illustrate the principles and limitations of this new technology. A hardware demonstrator has been realized and has allowed the confirmation of theory with practical results.

  20. 47 CFR 73.310 - FM technical definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES FM... antenna height above average terrain must be based upon the height of the radiation of the antenna that... specified for a particular direction, antenna power gain is based on that field strength in the...

  1. A transformer of closely spaced pulsed waveforms

    NASA Technical Reports Server (NTRS)

    Niedra, J.

    1970-01-01

    Passive circuit, using diodes, transistors, and magnetic cores, transforms the voltage of repetitive positive or negative pulses. It combines a pulse transformer with switching devices to effect a resonant flux reset and can transform various pulsed waveforms that have a nonzero average value and are relatively cosely spaced in time.

  2. Parameter Estimation using Numerical Merger Waveforms

    NASA Technical Reports Server (NTRS)

    Thorpe, J. I.; McWilliams, S.; Kelly, B.; Fahey, R.; Arnaud, K.; Baker, J.

    2008-01-01

    Results: Developed parameter estimation model integrating complete waveforms and improved instrumental models. Initial results for equal-mass non-spinning systems indicate moderate improvement in most parameters, significant improvement in some Near-term improvement: a) Improved statistics; b) T-channel; c) Larger parameter space coverage. Combination with other results: a) Higher harmonics; b) Spin precession; c) Instrumental effects.

  3. A multi-channel waveform digitizer system

    SciTech Connect

    Bieser, F.; Muller, W.F.J. )

    1990-04-01

    The authors report on the design and performance of a multichannel waveform digitizer system for use with the Multiple Sample Ionization Chamber (MUSIC) Detector at the Bevalac. 128 channels of 20 MHz Flash ADC plus 256 word deep memory are housed in a single crate. Digital thresholds and hit pattern logic facilitate zero suppression during readout which is performed over a standard VME bus.

  4. Processing Waveforms as Trees for Pattern Recognition.

    DTIC Science & Technology

    1986-05-01

    patterns (after Ganong (15]) 5.7 ECG Classification As in the previous example, waveforms were simulated with additive colored gaussian noise. In order to...Principles and Techniques- (AAPG Course Note Series 13), Amer. Assoc. Pet. Geol., Tulsa, OK,p. 86, (1984). [15] W. F. Ganong , Review of Medical Physiology. Lange, Los Altos, CA. pp. 393-408, (1973). /

  5. Matter effects on binary neutron star waveforms

    NASA Astrophysics Data System (ADS)

    Read, Jocelyn S.; Baiotti, Luca; Creighton, Jolien D. E.; Friedman, John L.; Giacomazzo, Bruno; Kyutoku, Koutarou; Markakis, Charalampos; Rezzolla, Luciano; Shibata, Masaru; Taniguchi, Keisuke

    2013-08-01

    Using an extended set of equations of state and a multiple-group multiple-code collaborative effort to generate waveforms, we improve numerical-relativity-based data-analysis estimates of the measurability of matter effects in neutron-star binaries. We vary two parameters of a parametrized piecewise-polytropic equation of state (EOS) to analyze the measurability of EOS properties, via a parameter Λ that characterizes the quadrupole deformability of an isolated neutron star. We find that, to within the accuracy of the simulations, the departure of the waveform from point-particle (or spinless double black-hole binary) inspiral increases monotonically with Λ and changes in the EOS that did not change Λ are not measurable. We estimate with two methods the minimal and expected measurability of Λ in second- and third-generation gravitational-wave detectors. The first estimate using numerical waveforms alone shows that two EOSs which vary in radius by 1.3 km are distinguishable in mergers at 100 Mpc. The second estimate relies on the construction of hybrid waveforms by matching to post-Newtonian inspiral and estimates that the same EOSs are distinguishable in mergers at 300 Mpc. We calculate systematic errors arising from numerical uncertainties and hybrid construction, and we estimate the frequency at which such effects would interfere with template-based searches.

  6. Waveform Selectivity at the Same Frequency

    PubMed Central

    Wakatsuchi, Hiroki; Anzai, Daisuke; Rushton, Jeremiah J.; Gao, Fei; Kim, Sanghoon; Sievenpiper, Daniel F.

    2015-01-01

    Electromagnetic properties depend on the composition of materials, i.e. either angstrom scales of molecules or, for metamaterials, subwavelength periodic structures. Each material behaves differently in accordance with the frequency of an incoming electromagnetic wave due to the frequency dispersion or the resonance of the periodic structures. This indicates that if the frequency is fixed, the material always responds in the same manner unless it has nonlinearity. However, such nonlinearity is controlled by the magnitude of the incoming wave or other bias. Therefore, it is difficult to distinguish different incoming waves at the same frequency. Here we present a new concept of circuit-based metasurfaces to selectively absorb or transmit specific types of waveforms even at the same frequency. The metasurfaces, integrated with schottky diodes as well as either capacitors or inductors, selectively absorb short or long pulses, respectively. The two types of circuit elements are then combined to absorb or transmit specific waveforms in between. This waveform selectivity gives us another degree of freedom to control electromagnetic waves in various fields including wireless communications, as our simulation reveals that the metasurfaces are capable of varying bit error rates in response to different waveforms. PMID:25866071

  7. Effects of noise reduction on AM and FM perception.

    PubMed

    Ives, D Timothy; Calcus, Axelle; Kalluri, Sridhar; Strelcyk, Olaf; Sheft, Stanley; Lorenzi, Christian

    2013-02-01

    The goal of noise reduction (NR) algorithms in digital hearing aid devices is to reduce background noise whilst preserving as much of the original signal as possible. These algorithms may increase the signal-to-noise ratio (SNR) in an ideal case, but they generally fail to improve speech intelligibility. However, due to the complex nature of speech, it is difficult to disentangle the numerous low- and high-level effects of NR that may underlie the lack of speech perception benefits. The goal of this study was to better understand why NR algorithms do not improve speech intelligibility by investigating the effects of NR on the ability to discriminate two basic acoustic features, namely amplitude modulation (AM) and frequency modulation (FM) cues, known to be crucial for speech identification in quiet and in noise. Here, discrimination of complex, non-linguistic AM and FM patterns was measured for normal hearing listeners using a same/different task. The stimuli were generated by modulating 1-kHz pure tones by either a two-component AM or FM modulator with patterns changed by manipulating component phases. Modulation rates were centered on 3 Hz. Discrimination of AM and FM patterns was measured in quiet and in the presence of a white noise that had been passed through a gammatone filter centered on 1 kHz. The noise was presented at SNRs ranging from -6 to +12 dB. Stimuli were left as such or processed via an NR algorithm based on the spectral subtraction method. NR was found to yield small but systematic improvements in discrimination for the AM conditions at favorable SNRs but had little effect, if any, on FM discrimination. A computational model of early auditory processing was developed to quantify the fidelity of AM and FM transmission. The model captured the improvement in discrimination performance for AM stimuli at high SNRs with NR. However, the model also predicted a relatively small detrimental effect of NR for FM stimuli in contrast with the average

  8. Waveform calibration strategies for a small-footprint laser scanner

    NASA Astrophysics Data System (ADS)

    Roncat, Andreas; Wagner, Wolfgang; Melzer, Thomas; Ullrich, Andreas

    2008-10-01

    Waveform calibration is a crucial task in the processing of full-waveform laser scanner data. In most cases, there is a non-linear relationship between the "raw" waveform data stored by the sensor system and the actual input power. However, to establish standardized methods for the post processing of waveform data, input data related linearly to the power input are required. For some commercially available systems, this problem is handled by using a look-up table (LUT) as a transfer function from the "raw" amplitude (stored by the sensor system) of the peaks of the waveforms to their actual amplitude. Since the transformation is only valid for the peaks of the waveform, the question arises how this transformation would perturbate the shape (i.e. position, width and amplitude) of a backscattered laser pulse if applied to the whole waveform. This paper discusses the effects of the use of such non-linear transfer functions on complex laser scanner waveforms.

  9. JTRS/SCA and Custom/SDR Waveform Comparison

    NASA Technical Reports Server (NTRS)

    Oldham, Daniel R.; Scardelletti, Maximilian C.

    2007-01-01

    This paper compares two waveform implementations generating the same RF signal using the same SDR development system. Both waveforms implement a satellite modem using QPSK modulation at 1M BPS data rates with one half rate convolutional encoding. Both waveforms are partitioned the same across the general purpose processor (GPP) and the field programmable gate array (FPGA). Both waveforms implement the same equivalent set of radio functions on the GPP and FPGA. The GPP implements the majority of the radio functions and the FPGA implements the final digital RF modulator stage. One waveform is implemented directly on the SDR development system and the second waveform is implemented using the JTRS/SCA model. This paper contrasts the amount of resources to implement both waveforms and demonstrates the importance of waveform partitioning across the SDR development system.

  10. Radar altimeter waveform modeled parameter recovery. [SEASAT-1 data

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Satellite-borne radar altimeters include waveform sampling gates providing point samples of the transmitted radar pulse after its scattering from the ocean's surface. Averages of the waveform sampler data can be fitted by varying parameters in a model mean return waveform. The theoretical waveform model used is described as well as a general iterative nonlinear least squares procedures used to obtain estimates of parameters characterizing the modeled waveform for SEASAT-1 data. The six waveform parameters recovered by the fitting procedure are: (1) amplitude; (2) time origin, or track point; (3) ocean surface rms roughness; (4) noise baseline; (5) ocean surface skewness; and (6) altitude or off-nadir angle. Additional practical processing considerations are addressed and FORTRAN source listing for subroutines used in the waveform fitting are included. While the description is for the Seasat-1 altimeter waveform data analysis, the work can easily be generalized and extended to other radar altimeter systems.

  11. Unexpected Behavior on Nonlinear Tunneling of Chirped Ultrashort Soliton Pulse in Non-Kerr Media with Raman Effect

    NASA Astrophysics Data System (ADS)

    Rajan, M. S. Mani

    2016-08-01

    In this manuscript, the ultrashort soliton pulse propagation through nonlinear tunneling in cubic quintic media is investigated. The effect of chirping on propagation characteristics of the soliton pulse is analytically investigated using similarity transformation. In particular, we investigate the propagation dynamics of ultrashort soliton pulse through dispersion barrier for both chirp and chirp-free soliton. By investigating the obtained soliton solution, we found that chirping has strong influence on soliton dynamics such as pulse compression with amplification. These two important dynamics of chirped soliton in cubic quintic media open new possibilities to improve the solitonic communication system. Moreover, we surprisingly observe that a dispersion well is formed for the chirped case whereas a barrier is formed for the chirp-free case, which has certain applications in the construction of logic gate devices to achieve ultrafast switching.

  12. Chirp-modulated visual evoked potential as a generalization of steady state visual evoked potential.

    PubMed

    Tu, Tao; Xin, Yi; Gao, Xiaorong; Gao, Shangkai

    2012-02-01

    Visual evoked potentials (VEPs) are of great concern in cognitive and clinical neuroscience as well as in the recent research field of brain-computer interfaces (BCIs). In this study, a chirp-modulated stimulation was employed to serve as a novel type of visual stimulus. Based on our empirical study, the chirp stimuli visual evoked potential (Chirp-VEP) preserved frequency features of the chirp stimulus analogous to the steady state evoked potential (SSVEP), and therefore it can be regarded as a generalization of SSVEP. Specifically, we first investigated the characteristics of the Chirp-VEP in the time-frequency domain and the fractional domain via fractional Fourier transform. We also proposed a group delay technique to derive the apparent latency from Chirp-VEP. Results on EEG data showed that our approach outperformed the traditional SSVEP-based method in efficiency and ease of apparent latency estimation. For the recruited six subjects, the average apparent latencies ranged from 100 to 130 ms. Finally, we implemented a BCI system with six targets to validate the feasibility of Chirp-VEP as a potential candidate in the field of BCIs.

  13. Comparisons of transient evoked otoacoustic emissions using chirp and click stimuli.

    PubMed

    Keefe, Douglas H; Feeney, M Patrick; Hunter, Lisa L; Fitzpatrick, Denis F

    2016-09-01

    Transient-evoked otoacoustic emission (TEOAE) responses (0.7-8 kHz) were measured in normal-hearing adult ears using click stimuli and chirps whose local frequency increased or decreased linearly with time over the stimulus duration. Chirp stimuli were created by allpass filtering a click with relatively constant incident pressure level over frequency. Chirp TEOAEs were analyzed as a nonlinear residual signal by inverse allpass filtering each chirp response into an equivalent click response. Multi-window spectral and temporal averaging reduced noise levels compared to a single-window average. Mean TEOAE levels using click and chirp stimuli were similar with respect to their standard errors in adult ears. TEOAE group delay, group spread, instantaneous frequency, and instantaneous bandwidth were similar overall for chirp and click conditions, except for small differences showing nonlinear interactions differing across stimulus conditions. These results support the theory of a similar generation mechanism on the basilar membrane for both click and chirp conditions based on coherent reflection within the tonotopic region. TEOAE temporal fine structure was invariant across changes in stimulus level, which is analogous to the intensity invariance of click-evoked basilar-membrane displacement data.

  14. Evolution of the frequency chirp of Gaussian pulses and beams when passing through a pulse compressor.

    PubMed

    Li, Derong; Lv, Xiaohua; Bowlan, Pamela; Du, Rui; Zeng, Shaoqun; Luo, Qingming

    2009-09-14

    The evolution of the frequency chirp of a laser pulse inside a classical pulse compressor is very different for plane waves and Gaussian beams, although after propagating through the last (4th) dispersive element, the two models give the same results. In this paper, we have analyzed the evolution of the frequency chirp of Gaussian pulses and beams using a method which directly obtains the spectral phase acquired by the compressor. We found the spatiotemporal couplings in the phase to be the fundamental reason for the difference in the frequency chirp acquired by a Gaussian beam and a plane wave. When the Gaussian beam propagates, an additional frequency chirp will be introduced if any spatiotemporal couplings (i.e. angular dispersion, spatial chirp or pulse front tilt) are present. However, if there are no couplings present, the chirp of the Gaussian beam is the same as that of a plane wave. When the Gaussian beam is well collimated, the introduced frequency chirp predicted by the plane wave and Gaussian beam models are in closer agreement. This work improves our understanding of pulse compressors and should be helpful for optimizing dispersion compensation schemes in many applications of femtosecond laser pulses.

  15. Production of excited hydrogen molecule in a two-frequency chirped laser field

    NASA Astrophysics Data System (ADS)

    Datta, Avijit

    2017-02-01

    We have studied the population transfer in a 1+1 ladder system from v = 0, j = 0 of X 1 Σ g + state to J 1 Δ g +( v = 2, j = 2) state using two frequency-chirped laser pulses and thus to create excited hydrogen molecule. The first chirped frequency connects the ground level with two nonadiabatically coupled (i.e. dressed) intermediate levels, B 1 Σ u +( v = 14, j = 1) and C 1 Π u ( v = 3, j = 1), while the second chirped pulse excites the intermediate levels to the final target level. Here both the chirped fields produce adiabatic crossings due to the chirping actions and facilitate the population transfer to the higher levels. We reported complete population transfer to the highly excited bound electronic level J 1 Δ g +( v = 2, j = 2) using appropriate laser parameters of the two chirped laser pulses for all combinations of negatively and positively chirped fields. We explained the population transfer by drawing adiabatic dressed states including nonadiabatic interaction.

  16. Chirp-modulated visual evoked potential as a generalization of steady state visual evoked potential

    NASA Astrophysics Data System (ADS)

    Tu, Tao; Xin, Yi; Gao, Xiaorong; Gao, Shangkai

    2012-02-01

    Visual evoked potentials (VEPs) are of great concern in cognitive and clinical neuroscience as well as in the recent research field of brain-computer interfaces (BCIs). In this study, a chirp-modulated stimulation was employed to serve as a novel type of visual stimulus. Based on our empirical study, the chirp stimuli visual evoked potential (Chirp-VEP) preserved frequency features of the chirp stimulus analogous to the steady state evoked potential (SSVEP), and therefore it can be regarded as a generalization of SSVEP. Specifically, we first investigated the characteristics of the Chirp-VEP in the time-frequency domain and the fractional domain via fractional Fourier transform. We also proposed a group delay technique to derive the apparent latency from Chirp-VEP. Results on EEG data showed that our approach outperformed the traditional SSVEP-based method in efficiency and ease of apparent latency estimation. For the recruited six subjects, the average apparent latencies ranged from 100 to 130 ms. Finally, we implemented a BCI system with six targets to validate the feasibility of Chirp-VEP as a potential candidate in the field of BCIs.

  17. AM/FM development for a small electric utility or form partnerships to minimize AM/FM development costs

    SciTech Connect

    Hahne, R.

    1996-08-01

    Chelan County Public Utility District is a 32,000 customer electric utility in central Washington State. Being a small utility presents unique problems in developing a complex AM/FM system. With only a small staff assigned part-time to this project, partnering and outsourcing became essential for developing an AM/FM system. An incremental approach was also necessary. Our project started in 1992 in partnership with Chelan County and the City of Wenatchee for the development of a common landbase in ARC/INFO. For our AM/FM system, a purchased solution was much more feasible than in-house development. We decided against a big requirements definition phase or a formal RFP, and instead looked at available AM/FM systems to decide what was feasible for us. This paper shares the basics of our partnering strategy and outlines how our approach will allow the project to be completed in a fast-track of 40 months at a minimal cost to the Chelan P.U.D. ratepayers.

  18. Design of chirped fly's eye uniformizer for ArF lithography illumination system

    NASA Astrophysics Data System (ADS)

    Xiao, Lei; Li, Yanqiu; Wei, Lidong

    2014-11-01

    Fly's eye uniformizer is the key part of ArF lithography illumination system, whose main function is to illuminate the reticle uniformly. Due to the periodic structure of regular fly's eye uniformizer and the high coherence of the ArF laser, the output intensity distribution is modulated with equidistant sharp intensity peaks (interference speckle pattern) which disturbed the uniformity on the reticle. In this paper, we design a chirped fly's eye uniformizer which consists of chirped fly's eye and a condenser for illumination system in ArF lithography system. The chirped fly's eye consists of individually shaped micro-lenses defined by a parametric description which can be derived completely from analytical functions. The micro-lenses with different thicknesses in the chirped fly's eye have a function of delaying the optical path which reducing the laser coherence and speckle pattern on the reticle. Detailed design process of the chirped fly's eye uniformizer for numerical aperture (NA) 0.75 lithography illumination system is presented. Light intensity distribution on reticle produced by regular and chirped fly's eye uniformizer are analyzed and compared by the method of wave optics, and the results show that chirped can restrain sharp intensity peaks efficiently. Furthermore, the chirped fly's eye uniformizer has been traced in LightTools software under conventional and annual illumination modes, and the non-uniformity of the non-scan and scan direction on the reticle reached 0.75% and 1.24% respectively. The simulation results show that the chirped fly's eye uniformizer can provide high illumination uniformity and reduce the speckle pattern efficiently without additional elements.

  19. Wakefield evolution and electron acceleration in interaction of frequency-chirped laser pulse with inhomogeneous plasma

    NASA Astrophysics Data System (ADS)

    Rezaei-Pandari, M.; Niknam, A. R.; Massudi, R.; Jahangiri, F.; Hassaninejad, H.; Khorashadizadeh, S. M.

    2017-02-01

    The nonlinear interaction of an ultra-short intense frequency-chirped laser pulse with an underdense plasma is studied. The effects of plasma inhomogeneity and laser parameters such as chirp, pulse duration, and intensity on plasma density and wakefield evolutions, and electron acceleration are examined. It is found that a properly chirped laser pulse could induce a stronger laser wakefield in an inhomogeneous plasma and result in higher electron acceleration energy. It is also shown that the wakefield amplitude is enhanced by increasing the slope of density in the inhomogeneous plasma.

  20. Dynamic Chirp Control and Pulse Compression for Attosecond High-Order Harmonic Emission

    SciTech Connect

    Zheng Yinghui; Zeng Zhinan; Zou Pu; Zhang Li; Li Xiaofang; Liu Peng; Li Ruxin; Xu Zhizhan

    2009-07-24

    We propose a scheme to compensate dynamically the intrinsic chirp of the attosecond harmonic pulses. By adding a weak second harmonic laser field to the driving laser field, the chirp compensation can be varied from the negative to the positive continuously by simply adjusting the relative time delay between the two-color pulses. Using this technique, the compensation of the negative chirp in harmonic emission is demonstrated experimentally for the first time and the nearly transform-limited attosecond pulse trains are obtained.

  1. Intrinsic chirp of attosecond pulses: Single-atom model versus experiment

    SciTech Connect

    Kazamias, S.; Balcou, Ph.

    2004-06-01

    We demonstrate and evaluate the importance of an intrinsic chirp inherent to attosecond pulse creation accompanying high-order harmonic generation in recently published experimental data by Dinu et al. [Phys. Rev. Lett. 91, 063901 (2003)]. We present an analytical model, from which the atomic origin of the harmonic chirp is clearly understood. Moreover, the behavior of the chirp as a function of experimental parameters such as laser intensity is inferred. The comparison between our model and the experimental data provides us with useful information about the conditions in which the high-order harmonics is generated.

  2. Peculiarities of laser phase behavior associated with the accelerated electron in a chirped laser pulse

    SciTech Connect

    Song, Q.; Wu, X. Y.; Wang, J. X.; Kawata, S.; Wang, P. X.

    2014-05-15

    In this paper, we qualitatively analyzed peculiarities of laser phase behavior associated with the accelerated electron in a chirped laser pulse. We unveiled the relationship between the changes in the orientation of the electron trajectory and the cusps in magnitude of the phase velocity of the optical field along the electron trajectory in a chirped laser pulse. We also explained how the chirp effect induced the singular point of the phase velocity. Finally, we discussed the phase velocity and phase witnessed by the electron in the particle's moving instantaneous frame.

  3. Dynamic Chirp Control and Pulse Compression for Attosecond High-Order Harmonic Emission

    NASA Astrophysics Data System (ADS)

    Zheng, Yinghui; Zeng, Zhinan; Zou, Pu; Zhang, Li; Li, Xiaofang; Liu, Peng; Li, Ruxin; Xu, Zhizhan

    2009-07-01

    We propose a scheme to compensate dynamically the intrinsic chirp of the attosecond harmonic pulses. By adding a weak second harmonic laser field to the driving laser field, the chirp compensation can be varied from the negative to the positive continuously by simply adjusting the relative time delay between the two-color pulses. Using this technique, the compensation of the negative chirp in harmonic emission is demonstrated experimentally for the first time and the nearly transform-limited attosecond pulse trains are obtained.

  4. Estimation of central aortic pressure waveform features derived from the brachial cuff volume displacement waveform.

    PubMed

    Butlin, Mark; Qasem, Ahmad; Avolio, Alberto P

    2012-01-01

    There is increasing interest in non-invasive estimation of central aortic waveform parameters in the clinical setting. However, controversy has arisen around radial tonometric based systems due to the requirement of a trained operator or lack of ease of use, especially in the clinical environment. A recently developed device utilizes a novel algorithm for brachial cuff based assessment of aortic pressure values and waveform (SphygmoCor XCEL, AtCor Medical). The cuff was inflated to 10 mmHg below an individual's diastolic blood pressure and the brachial volume displacement waveform recorded. The aortic waveform was derived using proprietary digital signal processing and transfer function applied to the recorded waveform. The aortic waveform was also estimated using a validated technique (radial tonometry based assessment, SphygmoCor, AtCor Medical). Measurements were taken in triplicate with each device in 30 people (17 female) aged 22 to 79 years of age. An average for each device for each individual was calculated, and the results from the two devices were compared using regression and Bland-Altman analysis. A high correlation was found between the devices for measures of aortic systolic (R(2)=0.99) and diastolic (R(2)=0.98) pressure. Augmentation index and subendocardial viability ratio both had a between device R(2) value of 0.82. The difference between devices for measured aortic systolic pressure was 0.5±1.8 mmHg, and for augmentation index, 1.8±7.0%. The brachial cuff based approach, with an individualized sub-diastolic cuff pressure, provides an operator independent method of assessing not only systolic pressure, but also aortic waveform features, comparable to existing validated tonometric-based methods.

  5. Chirped-frequency excitation of gravitationally bound ultracold neutrons

    NASA Astrophysics Data System (ADS)

    Manfredi, Giovanni; Morandi, Omar; Friedland, Lazar; Jenke, Tobias; Abele, Hartmut

    2017-01-01

    Ultracold neutrons confined in the Earth's gravitational field display quantized energy levels that have been observed for over a decade. In recent resonance spectroscopy experiments [T. Jenke et al., Nat. Phys. 7, 468 (2011), 10.1038/nphys1970], the transition between two such gravitational quantum states was driven by the mechanical oscillation of the plates that confine the neutrons. Here we show that by applying a sinusoidal modulation with slowly varying frequency (chirp), the neutrons can be brought to higher excited states by climbing the energy levels one by one. The proposed experiment should make it possible to observe the quantum-classical transition that occurs at high neutron energies. Furthermore, it provides a technique to realize superpositions of gravitational quantum states, to be used for precision tests of gravity at short distances.

  6. Asymmetric light propagation in chirped photonic crystal waveguides.

    PubMed

    Kurt, H; Yilmaz, D; Akosman, A E; Ozbay, E

    2012-08-27

    We report numerical and experimental investigations of asymmetric light propagation in a newly designed photonic structure that is formed by creating a chirped photonic crystal (PC) waveguide. The use of a non-symmetric distribution of unit cells of PC ensures the obtaining of asymmetric light propagation. Properly designing the spatial modulation of a PC waveguide inherently modifies the band structure. That in turn induces asymmetry for the light's followed path. The investigation of the transmission characteristics of this structure reveals optical diode like transmission behavior. The amount of power collected at the output of the waveguide centerline is different for the forward and backward propagation directions in the designed configuration. The advantageous properties of the proposed approach are the linear optic concept, compact configuration and compatibility with the integrated photonics. These features are expected to hold great potential for implementing practical optical rectifier-type devices.

  7. Experimental demonstration of fiber optical parametric chirped-pulse amplification

    NASA Astrophysics Data System (ADS)

    Zhou, Yue; Cheung, Kim K. Y.; Chui, P. C.; Wong, Kenneth K. Y.

    2010-02-01

    A fiber optical parametric chirped-pulse amplifier (FOPCPA) is experimentally demonstrated. A 1.76 ps signal at 1542 nm with a peak power of 20 mW is broadened to 40 ps, and then amplified by a 100-ps pulsed pump at 1560 nm. The corresponding idler at 1578 nm is generated as the FOPCPA output. The same medium used to stretch the signal is deployed to compress the idler to 3.8 ps, and another spool of fiber is deployed to further compress the idler to 1.87 ps. The peak power of the compressed idler is 2 W, which corresponds to a gain of 20 dB.

  8. Multiplexing technique using amplitude-modulated chirped fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Wong, Allan C. L.; Childs, Paul A.; Peng, Gang-Ding

    2007-07-01

    We propose a new multiplexing technique using amplitude-modulated chirped fiber Bragg gratings that have an identical center Bragg wavelength. Each grating is inscribed with a unique amplitude modulation that allows them to be multiplexed with complete overlapping within a certain bandwidth. To demodulate the multiplexed signal, the discrete wavelet transform is employed. Concurrently, a wavelet denoising technique is used to reduce the noise. This proposed multiplexing technique has been verified through strain measurements. Experimental results showed that for strains applied up to 1250 μɛ the absolute error and cross-talk are within ±20 μɛ and 16 μɛ, respectively. A strain resolution of 4 μɛ is obtained.

  9. Femtosecond Chirp-Free Transient Absorption Method And Apparatus

    DOEpatents

    McBranch, Duncan W.; Klimov, Victor I.

    2001-02-20

    A method and apparatus for femtosecond transient absorption comprising phase-sensitive detection, spectral scanning and simultaneous controlling of a translation stage to obtain TA spectra information having at least a sensitivity two orders of magnitude higher than that for single-shot methods, with direct, simultaneous compensation for chirp as the data is acquired. The present invention includes a amplified delay translation stage which generates a splittable frequency-doubled laser signal at a predetermined frequency f, a controllable means for synchronously modulating one of the laser signals at a repetition rate of f/2, applying the laser signals to a material to be sample, and acquiring data from the excited sample while simultaneously controlling the controllable means for synchronously modulating.

  10. Trending Technologies for Indoor FM: Looking for "Geo" in Information

    NASA Astrophysics Data System (ADS)

    Gunduz, M.; Isikdag, U.; Basaraner, M.

    2016-10-01

    Today technological developments in the Architecture Engineering and Construction (AEC) industry provides opportunities to build huge and complex buildings and facilities. In order to operate these facilities and to meet the requirements of the occupants and also to manage energy, waste and to keep all facility services operational, several Facility Management (FM) solutions were developed. This paper starts by presenting a state of art review of research related to Indoor Facility Management Systems. Later, a textual analysis focused to identify the research trends in this field is presented in the paper. The result of the literature review and textual analysis indicates that current research in Indoor FM Systems is underestimating the role of Geoinformation, Geoinformation models and systems.

  11. Simultaneous occupational exposure to FM and UHF transmitters.

    PubMed

    Valič, Blaž; Kos, Bor; Gajšek, Peter

    2012-01-01

    Occupational exposure caused by large broadcasting transmitters exceeds current reference levels. As it is common for different radio and TV transmitters to share the location, we analysed combined exposure on a 40-m high mast. The frequency modulation (FM) transmitter, located between the 10th and 30th metre, had the power of 25 kW, whereas an ultra-high frequency (UHF) transmitter of 5 kW occupied the top 8 m of the mast. Measured and calculated values of the electric field strength exceeded the reference levels up to 10 times; however, the results for the specific absorption rate (SAR) values show that the reference levels are very conservative for FM exposure, i.e., basic restrictions are not exceeded even when the reference levels are exceeded 10 times. However, for UHF exposure the reference levels are not conservative; they give a good prediction of real exposure.

  12. Advanced Waveform Simulation for Seismic Monitoring

    DTIC Science & Technology

    2008-09-01

    velocity model. The method separates the main arrivals of the regional waveform into 5 windows: Pnl (vertical and radial components), Rayleigh (vertical and...ranges out to 10°, including extensive observations of crustal thinning and thickening and various Pnl complexities. Broadband modeling in 1D, 2D...existing models perform in predicting the various regional phases, Rayleigh waves, Love waves, and Pnl waves. Previous events from this Basin-and-Range

  13. Waveforms Measured in Confined Thermobaric Explosion

    SciTech Connect

    Reichenbach, H; Neuwald, P; Kuhl, A L

    2007-05-04

    Experiments with 1.5-g Shock-Dispersed-Fuel (SDF) charges have been conducted in six different chambers. Both flake Aluminum and TNT were used as the fuel. Static pressure gauges on the chamber wall were the main diagnostic. Waveforms for explosions in air were significantly larger than those in nitrogen - thereby demonstrating a strong thermobaric (combustion) effect. This effect increases as the confinement volume decreases and the mixture richness approaches 1.

  14. Genetic algorithm reveals energy-efficient waveforms for neural stimulation.

    PubMed

    Wongsarnpigoon, Amorn; Grill, Warren M

    2009-01-01

    Energy consumption is an important consideration for battery-powered implantable stimulators. We used a genetic algorithm (GA) that mimics biological evolution to determine the energy-optimal waveform shape for neural stimulation. The GA was coupled to NEURON using a model of extracellular stimulation of a mammalian myelinated axon. Stimulation waveforms represented the organisms of a population, and each waveform's shape was encoded into genes. The fitness of each waveform was based on its energy efficiency and ability to elicit an action potential. After each generation of the GA, waveforms mated to produce offspring waveforms, and a new population was formed consisting of the offspring and the fittest waveforms of the previous generation. Over the course of the GA, waveforms became increasingly energy-efficient and converged upon a highly energy-efficient shape. The resulting waveforms resembled truncated normal curves or sinusoids and were 3-74% more energy-efficient than several waveform shapes commonly used in neural stimulation. If implemented in implantable neural stimulators, the GA optimized waveforms could prolong battery life, thereby reducing the costs and risks of battery-replacement surgery.

  15. Level structure of sup 256 Fm: Experiment vs theory

    SciTech Connect

    Bunker, M.E.; Starner, J.W.

    1990-01-01

    The amount of experimental data on intrinsic states in the even-even isotopes of the transcurium elements is rather limited, providing only a few tests of theoretical models in this region. Thus, it is of interest to determine to what extent the recent results on levels in {sup 256}Fm compare with existing theoretical calculations, such as those of Ivanova et al. 4 refs., 1 fig., 1 tab.

  16. Analytical Approaches to Guide SLS Fault Management (FM) Development

    NASA Technical Reports Server (NTRS)

    Patterson, Jonathan D.

    2012-01-01

    Extensive analysis is needed to determine the right set of FM capabilities to provide the most coverage without significantly increasing the cost, reliability (FP/FN), and complexity of the overall vehicle systems. Strong collaboration with the stakeholders is required to support the determination of the best triggers and response options. The SLS Fault Management process has been documented in the Space Launch System Program (SLSP) Fault Management Plan (SLS-PLAN-085).

  17. Prismatic and full-waveform joint inversion

    NASA Astrophysics Data System (ADS)

    Qu, Ying-Ming; Li, Zhen-Chun; Huang, Jian-Ping; Li, Jin-Li

    2016-09-01

    Prismatic wave is that it has three reflection paths and two reflection points, one of which is located at the reflection interface and the other is located at the steep dip angle reflection layer, so that contains a lot of the high and steep reflection interface information that primary cannot reach. Prismatic wave field information can be separated by applying Born approximation to traditional reverse time migration profile, and then the prismatic wave is used to update velocity to improve the inversion efficiency for the salt dame flanks and some other high and steep structure. Under the guidance of this idea, a prismatic waveform inversion method is proposed (abbreviated as PWI). PWI has a significant drawback that an iteration time of PWI is more than twice as that of FWI, meanwhile, the full wave field information cannot all be used, for this problem, we propose a joint inversion method to combine prismatic waveform inversion with full waveform inversion. In this method, FWI and PWI are applied alternately to invert the velocity. Model tests suggest that the joint inversion method is less dependence on the high and steep structure information in the initial model and improve high inversion efficiency and accuracy for the model with steep dip angle structure.

  18. Binary Black Holes: Mergers, Dynamics, and Waveforms

    NASA Astrophysics Data System (ADS)

    Centrella, Joan

    2007-04-01

    The final merger of two black holes is expected to be the strongest gravitational wave source for ground-based interferometers such as LIGO, VIRGO, and GEO600, as well as the space-based interferometer LISA. Observing these sources with gravitational wave detectors requires that we know the radiation waveforms they emit. Since these mergers take place in regions of extreme gravity, we need to solve Einstein's equations of general relativity on a computer in order to calculate these waveforms. For more than 30 years, scientists have tried to compute black hole mergers using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Within the past few years, however, this situation has changed dramatically, with a series of remarkable breakthroughs. This talk will focus on new simulations that are revealing the dynamics and waveforms of binary black hole mergers, and their applications in gravitational wave detection, data analysis, and astrophysics.

  19. Full waveform inversion for ultrasonic flaw identification

    NASA Astrophysics Data System (ADS)

    Seidl, Robert; Rank, Ernst

    2017-02-01

    Ultrasonic Nondestructive Testing is concerned with detecting flaws inside components without causing physical damage. It is possible to detect flaws using ultrasound measurements but usually no additional details about the flaw like position, dimension or orientation are available. The information about these details is hidden in the recorded experimental signals. The idea of full waveform inversion is to adapt the parameters of an initial simulation model of the undamaged specimen by minimizing the discrepancy between these simulated signals and experimentally measured signals of the flawed specimen. Flaws in the structure are characterized by a change or deterioration in the material properties. Commonly, full waveform inversion is mostly applied in seismology on a larger scale to infer mechanical properties of the earth. We propose to use acoustic full waveform inversion for structural parameters to visualize the interior of the component. The method is adapted to US NDT by combining multiple similar experiments on the test component as the typical small amount of sensors is not sufficient for a successful imaging. It is shown that the combination of simulations and multiple experiments can be used to detect flaws and their position, dimension and orientation in emulated simulation cases.

  20. Acoustofluidic Chemical Waveform Generator and Switch

    PubMed Central

    2015-01-01

    Eliciting a cellular response to a changing chemical microenvironment is central to many biological processes including gene expression, cell migration, differentiation, apoptosis, and intercellular signaling. The nature and scope of the response is highly dependent upon the spatiotemporal characteristics of the stimulus. To date, studies that investigate this phenomenon have been limited to digital (or step) chemical stimulation with little control over the temporal counterparts. Here, we demonstrate an acoustofluidic (i.e., fusion of acoustics and microfluidics) approach for generating programmable chemical waveforms that permits continuous modulation of the signal characteristics including the amplitude (i.e., sample concentration), shape, frequency, and duty cycle, with frequencies reaching up to 30 Hz. Furthermore, we show fast switching between multiple distinct stimuli, wherein the waveform of each stimulus is independently controlled. Using our device, we characterized the frequency-dependent activation and internalization of the β2-adrenergic receptor (β2-AR), a prototypic G-protein coupled receptor (GPCR), using epinephrine. The acoustofluidic-based programmable chemical waveform generation and switching method presented herein is expected to be a powerful tool for the investigation and characterization of the kinetics and other dynamic properties of many biological and biochemical processes. PMID:25405550

  1. Indoor localization using FM radio and DTMB signals

    NASA Astrophysics Data System (ADS)

    Wu, H.; Wang, Q.; Zhao, Y.; Ma, X.; Yang, M.; Liu, B.; Tang, R.; Xu, X.

    2016-07-01

    Indoor localization systems based on Wi-Fi signal strength fingerprinting techniques are widely used in office buildings. However, a general problem of these systems pertains to Wi-Fi signal degradation due to the environmental factors. And also, these systems cannot be used in the environments not covered with Wi-Fi signals or the environments with only a single Wi-Fi access point. In this paper, a new indoor location fingerprinting system using both FM radio and Digital Television Terrestrial Multimedia Broadcasting (DTMB) signals is proposed. First, the indoor location fingerprinting using FM radio and DTMB signals is theoretically analyzed to confirm its feasibility. Then, a specially designed combined strength fingerprinting location algorithm is proposed for the location system, which is achieved on the USRP2 platform. Finally, the system is tested in a typical indoor environment. The theoretical analysis and the tests show that the indoor location fingerprinting system using FM radio and DTMB signals has a similar localization accuracy to the Wi-Fi signal strength fingerprinting location system, while it has a wider coverage area, a lower maintenance cost, and more stable signal strength, which makes it a practical indoor positioning method.

  2. New fission valley for /sup 258/Fm and nuclei beyond

    SciTech Connect

    Moeller, P.; Nix, J.R.; Swiatecki, W.J.

    1986-01-01

    Experimental results on the fission properties of nuclei close to /sup 264/Fm show sudden and large changes with a change of only one or two neutrons or protons. The nucleus /sup 258/Fm, for instance, undergoes symmetric fission with a half-life of about 0.4 ms and a kinetic energy peaked at about 235 MeV whereas /sup 256/Fm undergoes asymmetric fission with a half-life of about 3 h and a kinetic energy peaked at about 200 MeV. Qualitatively, these sudden changes hve been postulated to be due to the emergence of fragment shells in symmetric fission products close to /sup 132/Sn. A quantitative calculation that shows where high-kinetic-energy symmetric fission occurs and why it is associated with a sudden and large decrease in fission half-lives. The study is based on calculations of potential-energy surfaces in the macroscopic-microscopic model and a semi-empirical model for the nuclear inertia. The implications of the new fission valley on the stability of the heaviest elements is discussed. 33 refs., 12 figs.

  3. Chirp reduction and on/off contrast enhancement via optical injection locking and coherent carrier manipulation

    NASA Astrophysics Data System (ADS)

    Slavík, Radan; Kakande, Joseph; Phelan, Richard; O'Carroll, John; Kelly, Brian; Richardson, David J.

    2013-05-01

    The most cost-effective solution for modulating data onto an optical carrier is via direct modulation of a semiconductor laser. Unfortunately, this approach suffers from high chirp. The chirp can be reduced by reducing the on/off modulation contrast ratio (i.e. by keeping the signaling laser well above threshold when generating both logical `0' and `1' bits), but the low contrast ratio itself compromises performance. Other techniques can better suppress chirp, e,g., based on selfinjection or optical injection locking of the directly-modulated laser (slave) to another laser (master) that emits CW light. However, this technique although very efficient at eliminating chirp, also requires the slave laser be operated well above threshold. We show however that the issue of the limited on/off modulation contrast can be addressed in this instance by subtraction of the carrier using a component of the master beam and an interferometric arrangement.

  4. Tunable chirped fiber Bragg grating embedded in a textile laminated beam for fiber dispersion compensation

    NASA Astrophysics Data System (ADS)

    Du, Weichong; Liu, W. P.; Du, David G.; Tam, Hwa-Yaw; Tao, Xiaoming; Yu, ChongXiu; Liu, Shong Hao

    1998-06-01

    A simple method is reported for transformation of a uniform fiber grating into a linear chirped grating and realization of independent tuning of grating's linear chirp degree and central wavelength. This method involves embedding a uniform grating into a textile laminated beam and creating an odd- symmetrical linear strain distribution along the grating versus its center with a three-point-bending and stretching setup. The grating's central wavelength and chirp degree can be tuned by adjusting the horizontal stretching range and vertical bending displacement on the beam independently. A simulated experiment for compensating the dispersion of a standard single-mode fiber over 100km for 10Gbit/s signal at 1550nm window is successfully demonstrated using such a tunable chirped grating with 10 cm in length.

  5. Few-cycle attosecond pulse chirp effects on asymmetries in ionized electron momentum distributions

    SciTech Connect

    Peng Liangyou; Tan Fang; Gong Qihuang; Pronin, Evgeny A.; Starace, Anthony F.

    2009-07-15

    The momentum distributions of electrons ionized from H atoms by chirped few-cycle attosecond pulses are investigated by numerically solving the time-dependent Schroedinger equation. The central carrier frequency of the pulse is chosen to be 25 eV, which is well above the ionization threshold. The asymmetry (or difference) in the yield of electrons ionized along and opposite to the direction of linear laser polarization is found to be very sensitive to the pulse chirp (for pulses with fixed carrier-envelope phase), both for a fixed electron energy and for the energy-integrated yield. In particular, the larger the pulse chirp, the larger the number of times the asymmetry changes sign as a function of ionized electron energy. For a fixed chirp, the ionized electron asymmetry is found to be sensitive also to the carrier-envelope phase of the few-cycle pulse.

  6. Effective temporal resolution in pump-probe spectroscopy with strongly chirped pulses

    SciTech Connect

    Polli, D.; Lanzani, G.; Brida, D.; Cerullo, G.; Mukamel, S.

    2010-11-15

    This paper introduces a general theoretical description of femtosecond pump-probe spectroscopy with chirped pulses whose joint spectral and temporal profile is expressed by Wigner spectrograms. We demonstrate that the actual experimental time resolution intimately depends on the pulse-sample interaction and that the commonly used instrumental response function needs to be replaced by a sample-dependent effective response function. We also show that, using the proper configurations in excitation and/or detection, it is possible to overcome the temporal smearing of the measured dynamics due to chirp-induced pulse broadening and recover the temporal resolution that would be afforded by the transform-limited pulses. We verify these predictions with experiments using broadband chirped pump and probe pulses. Our results allow optimization of the temporal resolution in the common case when the chirp of the pump and/or probe pulse is not corrected and may be extended to a broad range of time-resolved experiments.

  7. Individual acoustic variation in Belding's ground squirrel alarm chirps in the High Sierra Nevada

    NASA Astrophysics Data System (ADS)

    McCowan, Brenda; Hooper, Stacie L.

    2002-03-01

    The acoustic structure of calls within call types can vary as function of individual identity, sex, and social group membership and is important in kin and social group recognition. Belding's ground squirrels (Spermophilus beldingi) produce alarm chirps that function in predator avoidance but little is known about the acoustic variability of these alarm chirps. The purpose of this preliminary study was to analyze the acoustic structure of alarm chirps with respect to individual differences (e.g., signature information) from eight Belding's ground squirrels from four different lakes in the High Sierra Nevada. Results demonstrate that alarm chirps are individually distinctive, and that acoustic similarity among individuals may correspond to genetic similarity and thus dispersal patterns in this species. These data suggest, on a preliminary basis, that the acoustic structure of calls might be used as a bioacoustic tool for tracking individuals, dispersal, and other population dynamics in Belding's ground squirrels, and perhaps other vocal species.

  8. A Multiterawatt Laser Using a High-Contrast, Optical Parametric Chirped-Pulse Presamplifier

    SciTech Connect

    Bagnoud, V.; Puth, J.; Begishev, I.; Guardalben, M.; Zuegel, J.D.; Forget, N.; LeBlanc, C.

    2005-09-30

    A laser has been built that uses optical parametric chirped-pulse preamplification and a glass booster amplifier. We review the performance of the 5-Hz, multijoule OPCPA pump laser, the 370-mJ OPCPA, and the overall laser.

  9. Nonlinear chirped-pulse propagation and supercontinuum generation in photonic crystal fibers.

    PubMed

    Hu, Xiaohong; Wang, Yishan; Zhao, Wei; Yang, Zhi; Zhang, Wei; Li, Cheng; Wang, Hushan

    2010-09-10

    Based on the generalized nonlinear Schrödinger equation and waveguiding properties typical of the photonic crystal fiber structure, nonlinear chirped-pulse propagation and supercontinua generation in the femtosecond and picosecond regimes are investigated numerically. The simulation results indicate that an input chirp parameter mainly affects the initial stage of spectral broadening caused by the self-phase modulation (SPM) effect. In the femtosecond regime where the SPM effect plays an important role in the process of spectral broadening, an input positive chirp can enhance the supercontinuum bandwidth through a modified pulse compression phase and a decreased propagation distance required by soliton fission. In the picosecond regime, where the SPM effect contributes less to the continuum bandwidth and four-wave mixing process or modulational instability dominates the initial stage of spectral and temporal evolution, the output spectral shape and bandwidths are less sensitive to the input chirp parameters.

  10. Quantum dynamics of a two-state system induced by a chirped zero-area pulse

    NASA Astrophysics Data System (ADS)

    Lee, Han-gyeol; Song, Yunheung; Kim, Hyosub; Jo, Hanlae; Ahn, Jaewook

    2016-02-01

    It is well known that area pulses make Rabi oscillation and chirped pulses in the adiabatic interaction regime induce complete population inversion of a two-state system. Here we show that chirped zero-area pulses could engineer an interplay between the adiabatic evolution and Rabi-like rotations. In a proof-of-principle experiment utilizing spectral chirping of femtosecond laser pulses with a resonant spectral hole, we demonstrate that the chirped zero-area pulses could induce, for example, complete population inversion and return of the cold rubidium atom two-state system. Experimental result agrees well with the theoretically considered overall dynamics, which could be approximately modeled to a Ramsey-like three-pulse interaction, where the x and z rotations are driven by the hole and the main pulse, respectively.

  11. 47 CFR 73.809 - Interference protection to full service FM stations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... stations. 73.809 Section 73.809 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES Low Power FM Broadcast Stations (LPFM) § 73.809 Interference protection to full service FM stations. (a) If a full service commercial or NCE FM facility application...

  12. 47 CFR 73.809 - Interference protection to full service FM stations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... stations. 73.809 Section 73.809 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES Low Power FM Broadcast Stations (LPFM) § 73.809 Interference protection to full service FM stations. (a) If a full service commercial or NCE FM facility application...

  13. 47 CFR 74.1233 - Processing FM translator and booster station applications.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Processing FM translator and booster station... RADIO SERVICES EXPERIMENTAL RADIO, AUXILIARY, SPECIAL BROADCAST AND OTHER PROGRAM DISTRIBUTIONAL SERVICES FM Broadcast Translator Stations and FM Broadcast Booster Stations § 74.1233 Processing...

  14. 76 FR 50732 - Radio Broadcasting Services; AM or FM Proposals To Change the Community of License

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-16

    ... COMMISSION Radio Broadcasting Services; AM or FM Proposals To Change the Community of License AGENCY: Federal Communications Commission. ACTION: Notice. SUMMARY: The following applicants filed AM or FM proposals to change..., LLC, Station KOMO-FM, Facility ID 51167, BMPH-20110630AGT, From OAKVILLE, WA, To BELFAIR,...

  15. 47 CFR 73.513 - Noncommercial educational FM stations operating on unreserved channels.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES Noncommercial Educational FM Broadcast Stations § 73.513 Noncommercial educational FM stations operating on unreserved channels. (a) Noncommercial... 47 Telecommunication 4 2010-10-01 2010-10-01 false Noncommercial educational FM stations...

  16. 75 FR 9530 - FM TABLE OF ALLOTMENTS, French Lick, Indiana, and Irvington, Kentucky.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-03

    ... COMMISSION 47 CFR Part 73 FM TABLE OF ALLOTMENTS, French Lick, Indiana, and Irvington, Kentucky. AGENCY... filed by L. Dean Spencer to allot FM Channel 261A at Irvington, Kentucky, as a first local service. To accommodate this new allotment, the staff modifies the license of Station WFLQ(FM), French Lick, Indiana,...

  17. 75 FR 63402 - FM Table of Allotments, Culebra, PR, Charlotte Amalie, and Christiansted, VI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-15

    ... COMMISSION 47 CFR Part 73 FM Table of Allotments, Culebra, PR, Charlotte Amalie, and Christiansted, VI AGENCY... 237B for vacant Channel 271B at Charlotte Amalie, Virgin Islands to enable Station WNVE-FM to obtain an... license of FM Station WJKC to reflect this change. The ultimate permittee of Channel 237B at...

  18. 75 FR 31437 - Radio Broadcasting Services; AM or FM Proposals To Change The Community of License

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-03

    ... COMMISSION Radio Broadcasting Services; AM or FM Proposals To Change The Community of License AGENCY: Federal Communications Commission. ACTION: Notice. SUMMARY: The following applicants filed AM or FM proposals to change..., BPH-20100406AAZ, From SOUTH BEND, WA, To COSMOPOLIS, WA; MOUNT WILSON FM BROADCASTERS, INC.,...

  19. 75 FR 9114 - FM Table of Allotments, Markham, Ganado, and Victoria, Texas

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-01

    ... COMMISSION 47 CFR Part 73 FM Table of Allotments, Markham, Ganado, and Victoria, Texas AGENCY: Federal... counterproposal filed by Fort Bend Broadcasting Company, licensee of Station KHTZ(FM), Ganado, Texas, to upgrade Station KHTZ(FM) from Channel 284C2 to Channel 235C and to modify its license accordingly....

  20. 47 CFR 73.513 - Noncommercial educational FM stations operating on unreserved channels.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES Noncommercial Educational FM Broadcast Stations § 73.513 Noncommercial educational FM stations operating on unreserved channels. (a) Noncommercial... 47 Telecommunication 4 2011-10-01 2011-10-01 false Noncommercial educational FM stations...

  1. 47 CFR 73.809 - Interference protection to full service FM stations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... RADIO SERVICES RADIO BROADCAST SERVICES Low Power FM Broadcast Stations (LPFM) § 73.809 Interference protection to full service FM stations. (a) If a full service commercial or NCE FM facility application is... 47 Telecommunication 4 2011-10-01 2011-10-01 false Interference protection to full service...

  2. 75 FR 20597 - Radio Broadcasting Services; AM or FM Proposals To Change the Community of License

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-20

    ... COMMISSION Radio Broadcasting Services; AM or FM Proposals To Change the Community of License AGENCY: Federal Communications Commission. ACTION: Notice. SUMMARY: The following applicants filed AM or FM proposals to change..., From RESERVE, NM, To CONCHO, AZ; DAILEY CORPORATION, Station WETZ-FM, Facility ID 18534,...

  3. 75 FR 1621 - Radio Broadcasting Services; AM or FM Proposals To Change the Community of License

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-12

    ... COMMISSION Radio Broadcasting Services; AM or FM Proposals To Change the Community of License AGENCY: Federal Communications Commission. ACTION: Notice. SUMMARY: The following applicants filed AM or FM proposals to change... ELDON, MO, To ST. THOMAS, MO; COX RADIO, INC., Station WALR-FM, Facility ID 48728, BPH-20091124ABA,...

  4. 75 FR 51812 - Radio Broadcasting Services; AM or FM Proposals To Change the Community of License

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-23

    ...] [FR Doc No: 2010-20912] FEDERAL COMMUNICATIONS COMMISSION Radio Broadcasting Services; AM or FM.... SUMMARY: The following applicants filed AM or FM proposals to change the community of license: BRYAN... STATION, TX; CUMULUS LICENSING LLC, Station KNRQ-FM, Facility ID 12501, BMPH-20100805AKO, From...

  5. FM Radio; An Oral Communication Project for Migrants in Palm Beach County.

    ERIC Educational Resources Information Center

    Early, L. F.

    This report gives a full description of the broadcasting and operation of WHRS-FM, a FM radio station established by federal grant to serve migrant workers and their children in Palm Beach County, Florida. The goal of the project was to evaluate FM radio as a solution to the serious economic and educational problem of communicating with the…

  6. 47 CFR 74.1290 - FM translator and booster station information available on the Internet.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false FM translator and booster station information... (CONTINUED) BROADCAST RADIO SERVICES EXPERIMENTAL RADIO, AUXILIARY, SPECIAL BROADCAST AND OTHER PROGRAM DISTRIBUTIONAL SERVICES FM Broadcast Translator Stations and FM Broadcast Booster Stations § 74.1290...

  7. 77 FR 57086 - Radio Broadcasting Services; AM or FM Proposals To Change The Community of License.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-17

    ... COMMISSION Radio Broadcasting Services; AM or FM Proposals To Change The Community of License. AGENCY: Federal Communications Commission. ACTION: Notice. SUMMARY: The following applicants filed AM or FM proposals to change the community of license: ALEXANDRA COMMUNICATIONS, INC., Station KRKZ- FM, Facility...

  8. 75 FR 13761 - Radio Broadcasting Services; AM or FM Proposals To Change the Community of License

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-23

    ... COMMISSION Radio Broadcasting Services; AM or FM Proposals To Change the Community of License AGENCY: Federal Communications Commission. ACTION: Notice. SUMMARY: The following applicants filed AM or FM proposals to change... BROADCASTING CORPORATION, Station KFFF-FM, Facility ID 6417, BPH-20100126AGR, From BOONE, IA, To JOHNSTON,...

  9. 47 CFR 73.809 - Interference protection to full service FM stations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... RADIO SERVICES RADIO BROADCAST SERVICES Low Power FM Broadcast Stations (LPFM) § 73.809 Interference protection to full service FM stations. (a) If a full service commercial or NCE FM facility application is... 47 Telecommunication 4 2010-10-01 2010-10-01 false Interference protection to full service...

  10. 47 CFR 74.1233 - Processing FM translator and booster station applications.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Processing FM translator and booster station... RADIO SERVICES EXPERIMENTAL RADIO, AUXILIARY, SPECIAL BROADCAST AND OTHER PROGRAM DISTRIBUTIONAL SERVICES FM Broadcast Translator Stations and FM Broadcast Booster Stations § 74.1233 Processing...

  11. 75 FR 63475 - Radio Broadcasting Services; AM or FM Proposals To Change The Community of License

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-15

    ... COMMISSION Radio Broadcasting Services; AM or FM Proposals To Change The Community of License AGENCY: Federal Communications Commission. ACTION: Notice. SUMMARY: The following applicants filed AM or FM proposals to change..., From CRAIGSVILLE, WV, To WEBSTER SPRINGS, WV; ENTRAVISION HOLDINGS, LLC, Station KVVA-FM, Facility...

  12. 77 FR 24954 - Radio Broadcasting Services; AM or FM Proposals to Change the Community of License

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-26

    ... COMMISSION Radio Broadcasting Services; AM or FM Proposals to Change the Community of License AGENCY: Federal Communications Commission. ACTION: Notice. SUMMARY: The following applicants filed AM or FM proposals to change... 17227, BPH-20120327ALB, From HUDSON, IA, To EVANSDALE; HOG RADIO, INC., Station KLYR-FM, Facility...

  13. 76 FR 22704 - Radio Broadcasting Services; AM or FM Proposals To Change the Community of License

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-22

    ... COMMISSION Radio Broadcasting Services; AM or FM Proposals To Change the Community of License AGENCY: Federal Communications Commission. ACTION: Notice. SUMMARY: The following applicants filed AM or FM proposals to change..., BMPED-20110302ABD, From DANBURY, NC, To MADISON, NC; COX RADIO, INC., Station WHIO-FM, Facility ID...

  14. 77 FR 75434 - Radio Broadcasting Services; AM or FM Proposals To Change the Community of License

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-20

    ... COMMISSION Radio Broadcasting Services; AM or FM Proposals To Change the Community of License AGENCY: Federal Communications Commission. ACTION: Notice. SUMMARY: The following applicants filed AM or FM proposals to change... ABERDEEN, WA; MCC RADIO, LLC, Station KDUX-FM, Facility ID 52676, BPH-20121114AGF, From ABERDEEN, WA,...

  15. 47 CFR 74.1290 - FM translator and booster station information available on the Internet.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false FM translator and booster station information... (CONTINUED) BROADCAST RADIO SERVICES EXPERIMENTAL RADIO, AUXILIARY, SPECIAL BROADCAST AND OTHER PROGRAM DISTRIBUTIONAL SERVICES FM Broadcast Translator Stations and FM Broadcast Booster Stations § 74.1290...

  16. 76 FR 6788 - Radio Broadcasting Services; AM or FM Proposals To Change The Community of License.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-08

    ... COMMISSION Radio Broadcasting Services; AM or FM Proposals To Change The Community of License. AGENCY: Federal Communications Commission. ACTION: Notice. SUMMARY: The following applicants filed AM or FM...-FM, Facility ID 32386, BPH-20101222ABO, From GREAT FALLS, MT, To HIGHWOOD, MT; THE MONTANA...

  17. E-Learning Readiness in Medicine: Turkish Family Medicine (FM) Physicians Case

    ERIC Educational Resources Information Center

    Parlakkiliç, Alaattin

    2015-01-01

    This research investigates e-learning readiness level of family medicine physicians (FM) in Turkey. The study measures the level of e-learning readiness of Turkish FM physicians by an online e-learning readiness survey. According to results five areas are ready at Turkish FM physicians but need a few improvements:…

  18. Resonant tunneling and the bimodal symmetric fission of sup 258 Fm

    SciTech Connect

    Bhandari, B.S. )

    1991-02-25

    The concept of resonant tunneling is invoked to explain the sharp drop in the measured spontaneous-fission half-life when going from {sup 256}Fm to {sup 258}Fm. Various consequences of such a suggestion on the other observed characteristics of the bimodal symmetric fission of {sup 258}Fm are briefly discussed.

  19. The Waveform Server: A Web-based Interactive Seismic Waveform Interface

    NASA Astrophysics Data System (ADS)

    Newman, R. L.; Clemesha, A.; Lindquist, K. G.; Reyes, J.; Steidl, J. H.; Vernon, F. L.

    2009-12-01

    Seismic waveform data has traditionally been displayed on machines that are either local area networked to, or directly host, a seismic networks waveform database(s). Typical seismic data warehouses allow online users to query and download data collected from regional networks passively, without the scientist directly visually assessing data coverage and/or quality. Using a suite of web-based protocols, we have developed an online seismic waveform interface that directly queries and displays data from a relational database through a web-browser. Using the Python interface to Datascope and the Python-based Twisted network package on the server side, and the jQuery Javascript framework on the client side to send and receive asynchronous waveform queries, we display broadband seismic data using the HTML Canvas element that is globally accessible by anyone using a modern web-browser. The system is used to display data from the USArray experiment, a US continent-wide migratory transportable seismic array. We are currently creating additional interface tools to create a rich-client interface for accessing and displaying seismic data that can be deployed to any system running Boulder Real Time Technology's (BRTT) Antelope Real Time System (ARTS). The software is freely available from the Antelope contributed code Git repository. Screenshot of the web-based waveform server interface

  20. Chirped pulse amplification of 300 fs pulses in an Alexandrite regenerative amplifier

    SciTech Connect

    Pessot, M.; Squier, J.; Bado, P.; Mourou, G. ); Harter, D.J. )

    1989-01-01

    The authors demonstrate the amplification of femtosecond dye laser pulses up to the 3.5 mJ level in an alexandrite regenerative amplifier. An expansion/compression system using diffraction gratings allows chirped pulse amplification techniques to be used to produce peak powers upwards of 1 GW. Limitations in the chirped pulse amplification of ultrashort pulses due to intracavity dispersive elements are discussed.

  1. Stimulated Brillouin Scattering Suppression in Fiber Amplifiers via Chirped Diode Lasers

    DTIC Science & Technology

    2011-09-01

    acousto- optic frequency shifters‡ ( 3 ). Coherent combination of 10 single-mode fiber lasers could then yield a robust, efficient, diffraction-limited 100... kW source. Long-distance fiber telecommunications are also adversely affected by SBS. In this case, the laser cannot be chirped without distorting...in fiber length. 3 1.5µ ChDL AOFS PLL ErFA Figure 1. Chirped diode laser seeding one or more Er fiber amplifiers, each preceded by an AOFS

  2. Multiplexed Chirped Pulse Quantum Cascade Laser Measurements of Ammonia and Other Small Molecules

    NASA Astrophysics Data System (ADS)

    Picken, Craig; Langford, Nigel; Duxbury, Geoffrey

    2014-06-01

    Spectrometers based on Quantum Cascade (QC) lasers can be run in either continuous or pulsed operation. Although the instrumentation based upon the most recent versions of continuously operating QC lasers can have higher resolution than chirped lasers, using chirped pulse QC lasers can give an advantage when rapid changes in gas composition occur. For example, when jet engines are being tested, a variety of temperature dependent effects on the trace gas concentrations of the plume may be observed. Most pulsed QC lasers are operated in the down chirped mode, in which the chirp rate slows during the pulse. In our spectrometer the changes in frequency are recorded using two Ge etalons, one with a free spectral range of 0.0495 cm-1, and the other with a fringe spacing of 0.0195 cm-1.They can also be deployed in multiplex schemes in which two or more down-chirped lasers are used. In this paper we wish to show examples of the use of multiplexed chirped pulse lasers to allow overlapping spectra to be recorded. The examples of multiplex methods used are taken partly from measurements of 14NH3 and 15NH3 in the region from 1630 to 1622 cm-1, and partly from the use of other chirped pulse lasers operating in the 8 μm region. Among the effects seen are rapid passage effects caused by the rapid down-chirp, and the use of gases such as nitrogen to cause variation in the shape of the collisional broadened absorption lines.

  3. Fragment mass and kinetic-energy distributions from spontaneous fission of the neutron-deficient isotopes, 1. 2-s /sup 246/Fm and 38-s /sup 248/Fm

    SciTech Connect

    Hoffman, D.; Lee, D.; Ghiorso, A.; Nurmia, M.; Aleklett, K.

    1980-10-01

    We have measured the mass and kinetic-energy distributions for fragments from the spontaneous fission of 1.2-s /sup 246/Fm and 38-s /sup 248/Fm. The mass distributions are highly asymmetric and the average total kinetic energies of 199 +- 4 MeV and 198 +- 4 MeV, respectively, are consistent with systematics for lower Z actinides. Their properties are in contrast to those of /sup 258/Fm and /sup 259/Fm, whose spontaneous fission results in narrowly symmetric mass distributions accompanied by unusually high total kinetic energies.

  4. Combining harmonic generation and laser chirping to achieve high spectral density in Compton sources

    NASA Astrophysics Data System (ADS)

    Terzić, Balša; Reeves, Cody; Krafft, Geoffrey A.

    2016-04-01

    Recently various laser-chirping schemes have been investigated with the goal of reducing or eliminating ponderomotive line broadening in Compton or Thomson scattering occurring at high laser intensities. As a next level of detail in the spectrum calculations, we have calculated the line smoothing and broadening expected due to incident beam energy spread within a one-dimensional plane wave model for the incident laser pulse, both for compensated (chirped) and unchirped cases. The scattered compensated distributions are treatable analytically within three models for the envelope of the incident laser pulses: Gaussian, Lorentzian, or hyperbolic secant. We use the new results to demonstrate that the laser chirping in Compton sources at high laser intensities: (i) enables the use of higher order harmonics, thereby reducing the required electron beam energies; and (ii) increases the photon yield in a small frequency band beyond that possible with the fundamental without chirping. This combination of chirping and higher harmonics can lead to substantial savings in the design, construction and operational costs of the new Compton sources. This is of particular importance to the widely popular laser-plasma accelerator based Compton sources, as the improvement in their beam quality enters the regime where chirping is most effective.

  5. On chirp stimuli and neural synchrony in the suprathreshold auditory brainstem response.

    PubMed

    Petoe, Matthew A; Bradley, Andrew P; Wilson, Wayne J

    2010-07-01

    The chirp-evoked ABR has been regarded as a more synchronous response than the click-evoked ABR, referring to the belief that the chirp stimulates lower-, mid-, and higher-frequency regions of the cochlea simultaneously. In this study a variety of tools were used to analyze the synchronicity of ABRs evoked by chirp- and click-stimuli at 40 dB HL in 32 normal hearing subjects aged 18 to 55 years (mean=24.8 years, SD=7.1 years). Compared to the click-evoked ABRs, the chirp-evoked ABRs showed larger wave V amplitudes, but an absence of earlier waves in the grand averages, larger wave V latency variance, smaller FFT magnitudes at the higher component frequencies, and larger phase variance at the higher component frequencies. These results strongly suggest that the chirp-evoked ABRs exhibited less synchrony than the click-evoked ABRs in this study. It is proposed that the temporal compensation offered by chirp stimuli is sufficient to increase neural recruitment (as measured by wave V amplitude), but that destructive phase interactions still exist along the cochlea partition, particularly in the low frequency portions of the cochlea where more latency jitter is expected. The clinical implications of these findings are discussed.

  6. Enhancement of subharmonic emission from encapsulated microbubbles by using a chirp excitation technique.

    PubMed

    Zhang, Dong; Gong, Yanjun; Gong, Xiufen; Liu, Zheng; Tan, Kaibin; Zheng, Hairong

    2007-09-21

    Subharmonic contrast imaging promises to improve ultrasound-imaging quality by taking advantage of an increased contrast to tissue signal. However, acoustic pressures beyond the subharmonic generation threshold using common ultrasound pulses may induce significant contrast microbubble destruction. In this work, a chirp excitation technique is presented to enhance the subharmonic emission from encapsulated microbubbles. Chirp signals with a center frequency of 5 MHz, variable frequency range and duration time are employed to drive microbubbles in numerical simulation and experimental studies. We provide a theoretical evaluation of the chirp excitation pressure threshold and the acoustic pressure dependence of subharmonic based on Church's model and demonstrate that the amplitude and axial resolution of the subharmonic can be optimized by proper selection of the frequency range and time duration of the chirp signal. Measurements are qualitatively in agreement with the simulation. Moreover, we demonstrate that chirp excitation may be able to improve the amplitude of the subharmonic component up to 22 dB over the pulse excitation. The chirp excitation technique could potentially be used for improving the subharmonic contrast imaging quality.

  7. Notched-noise embedded frequency specific chirps for objective audiometry using auditory brainstem responses

    PubMed Central

    Corona-Strauss, Farah I.; Schick, Bernhard; Delb, Wolfgang; Strauss, Daniel J.

    2012-01-01

    It has been shown recently that chirp-evoked auditory brainstem responses (ABRs) show better performance than click stimulations, especially at low intensity levels. In this paper we present the development, test, and evaluation of a series of notched-noise embedded frequency specific chirps. ABRs were collected in healthy young control subjects using the developed stimuli. Results of the analysis of the corresponding ABRs using a time-scale phase synchronization stability (PSS) measure are also reported. The resultant wave V amplitude and latency measures showed a similar behavior as for values reported in literature. The PSS of frequency specific chirp-evoked ABRs reflected the presence of the wave V for all stimulation intensities. The scales that resulted in higher PSS are in line with previous findings, where ABRs evoked by broadband chirps were analyzed, and which stated that low frequency channels are better for the recognition and analysis of chirp-evoked ABRs. We conclude that the development and test of the series of notched-noise embedded frequency specific chirps allowed the assessment of frequency specific ABRs, showing an identifiable wave V for different intensity levels. Future work may include the development of a faster automatic recognition scheme for these frequency specific ABRs. PMID:26557336

  8. Genetic Algorithm Reveals Energy-Efficient Waveforms for Neural Stimulation

    PubMed Central

    Wongsarnpigoon, Amorn; Grill, Warren M.

    2013-01-01

    Energy consumption is an important consideration for battery-powered implantable stimulators. We used a genetic algorithm (GA) that mimics biological evolution to determine the energy-optimal waveform shape for neural stimulation. The GA was coupled to NEURON using a model of extracellular stimulation of a mammalian myelinated axon. Stimulation waveforms represented the organisms of a population, and each waveform’s shape was encoded into genes. The fitness of each waveform was based on its energy efficiency and ability to elicit an action potential. After each generation of the GA, waveforms mated to produce offspring waveforms, and a new population was formed consisting of the offspring and the fittest waveforms of the previous generation. Over the course of the GA, waveforms became increasingly energy-efficient and converged upon a highly energy-efficient shape. The resulting waveforms resembled truncated normal curves or sinusoids and were 3–74% more energy-efficient than several waveform shapes commonly used in neural stimulation. If implemented in implantable neural stimulators, the GA optimized waveforms could prolong battery life, thereby reducing the costs and risks of battery-replacement surgery. PMID:19964233

  9. Coherent control of ultracold {sup 85}Rb trap-loss collisions with nonlinearly frequency-chirped light

    SciTech Connect

    Pechkis, J. A.; Carini, J. L.; Rogers, C. E. III; Gould, P. L.; Kallush, S.; Kosloff, R.

    2011-06-15

    We present results on coherent control of ultracold trap-loss collisions using 40-ns pulses of nonlinearly frequency-chirped light. The chirps, either positive or negative, sweep {approx}1 GHz in 100 ns and are centered at various detunings below the D{sub 2} line of {sup 85}Rb. At each center detuning, we compare the collisional rate constant {beta} for chirps that are linear in time, concave-down, and concave-up. For positive chirps, we find that {beta} generally depends very little on the shape of the chirp. For negative chirps, however, we find that {beta} can be enhanced by up to 50(20)% for the case of the concave-down shape. This occurs at detunings where the evolution of the wave packet is expected to be coherent. An enhancement at these detunings is also seen in quantum-mechanical simulations of the collisional process.

  10. Effect of gain compression above and below threshold on the chirp characteristics of 1.55 µm distributed feedback laser

    NASA Astrophysics Data System (ADS)

    Yousuf, Abida; Najeeb-ud-din, Hakim

    2016-12-01

    We have observed and quantified the adiabatic and transient chirp in a directly modulated laser. The wavelength excursion for both chirp terms is well characterized by the phase rate equation model that describes the chirp behavior. In this study, the effect of gain compression and linewidth enhancement factor, below and above threshold, on the chirp characteristics is investigated by simulation. We have observed the trade-off between the two chirp terms i.e., transient part of the chirp is reduced by the strong damping introduced by gain compression, while as the adiabatic part increases with gain compression. We have observed that above threshold the α-factor increases with bias current, which is attributed to the enhancement of gain compression coefficient. It is shown that the higher the maximum gain, the lower the effects of gain compression and lower the α-factor. Finally, the effects of gain compression on the transmission characteristics are investigated.

  11. Group velocity dispersion and relativistic effects on the wakefield induced by chirped laser pulse in parabolic plasma channel

    SciTech Connect

    Sohbatzadeh, F.; Akou, H.

    2013-04-15

    The excitation of wake field plasma waves by a short laser pulse propagating through a parabolic plasma channel is studied. The laser pulse is assumed to be initially chirped. In this regard, the effects of initial and induced chirp on the plasma wake field as well as the laser pulse parameters are investigated. The group velocity dispersion and nonlinear relativistic effects were taken into account to evaluate the excited wake field in two dimension using source dependent expansion method. Positive, negative, and un-chirped laser pulses were employed in numerical code to evaluate the effectiveness of the initial chirp on 2-D wake field excitation. Numerical results showed that for laser irradiances exceeding 10{sup 18}W/cm{sup 2}, an intense laser pulse with initial positive chirp generates larger wake field compared to negatively and un-chirped pulses.

  12. SSII cancellation in an EAM-based OFDM-IMDD transmission system employing a novel dynamic chirp model.

    PubMed

    Hsu, Dar-Zu; Wei, Chia-Chien; Chen, Hsing-Yu; Lu, Yi-Cheng; Song, Cih-Yuan; Yang, Chih-Chieh; Chen, Jyehong

    2013-01-14

    We develop a novel subcarrier-to-subcarrier intermixing interference (SSII) cancellation technique to estimate and eliminate SSII. For the first time, the SSII cancellation technique is experimentally demonstrated in an electro-absorption modulator- (EAM-) based intensity-modulation-direct-detection (IMDD) multi-band OFDM transmission system. Since the characteristics of SSII are seriously affected by the chirp parameter, a simple constant chirp model, we found, cannot effectively remove the SSII. Therefore, assuming that the chirp parameter linearly depends on the optical power, a novel dynamic chirp model is developed to obtain better estimation and cancellation of SSII. Compared with 23.6% SSII cancellation by the constant chirp model, our experimental results show that incorporating the dynamic chirp model into the SSII cancellation technique can achieve up to 74.4% SSII cancellation and 2.8-dB sensitivity improvement in a 32.25-Gbps OFDM system over 100-km uncompensated standard single-mode fiber.

  13. Pervasive post-Eocene faulting and folding in unconsolidated sediments of the Mississippi River, Central U.S. as imaged by high-resolution CHIRP seismic data

    NASA Astrophysics Data System (ADS)

    Fave, X. J.; Magnani, M.; Waldron, B. A.; McIntosh, K. D.; Saustrup, S.; Guo, L.

    2010-12-01

    Despite being located in the stable continental interior of the North American plate, in 1811-1812 the New Madrid Seismic Zone (NMSZ) experienced among the largest magnitude historical earthquakes that ever occurred in the U.S. Paleoseismological evidence shows that large earthquakes have been occurring every 500 yr in the region for the past few thousand years, and historical and instrumental seismicity demonstrate that the NMSZ fault system is actively deforming today. By contrast, motion rates emerging from almost twenty years of geodetic observations substantiate a very slow rate of deformation across the NMSZ faults, suggesting that present velocities are not representative of the long-term deformation rate of the NMSZ fault system, and that deformation has likely been accommodated along structures additional to the NMSZ. In the summer of 2010, a high-resolution marine seismic reflection survey was carried out along the Mississippi River as part of a multi-year cooperative effort to investigate the spatial and temporal distribution of deformation in the Mississippi Embayment. Coincident to the seismic reflection profile, the survey also acquired ~300 km of CHIRP (Edgetech SB-512i) data from Cape Girardeau, MO to Caruthersville, MO. The CHIRP used a 0.7-1.2 kHz source pulse and recorded to a depth of 5-50 m sub-bottom. Here we present the preliminary interpretation of part of the CHIRP profile along the Mississippi River north of Hickman, KY, where the survey imaged a highly reflective sedimentary package down to a depth of ~50 m. The sedimentary sequence is about 20 m thick and appears to be bounded at the top and at the bottom by angular unconformities. The package is mildly folded and pervasively faulted, in some cases by extensional faults that exhibit up to 2 m of displacement and that reach the riverbed. Based on exposure of Eocene deposits 7 km to the east of the study area, and on the correlation of electric and gamma logs of nearby oil, gas and water

  14. Chirped distributed Bragg reflector for broad-band group velocity dispersion compensation in terahertz quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Xu, C.; Ban, D.

    2016-11-01

    Behaviors of chirped DBR for group velocity dispersion (GVD) compensation in THz QCLs with metal-metal waveguides have been investigated theoretically in both 1D and 3D models with COMSOL Multiphysics. The strategy of designing chirped DBR for GVD compensation in terahertz frequency range has been presented. In order to achieve broad-band GVD compensation with less distortion, a two-section chirped DBR structure is proposed.

  15. Waveform Tomography of the North Atlantic Region

    NASA Astrophysics Data System (ADS)

    Celli, Nicolas Luca; Lebedev, Sergei; Schaeffer, Andrew; Gaina, Carmen

    2016-04-01

    The enormous volumes of newly available, broadband seismic data and the continuing development of waveform tomography techniques present us with an opportunity to resolve the structure of North Atlantic at a new level of detail. Dynamics of the North Atlantic Ridge and the Iceland Hotspot, evolution of the passive margins on both sides of the ocean, and the nature of the upper-mantle flow beneath the region are some of the important fundamental problems that we can make progress on using new, more detailed and accurate models of seismic structure and anisotropy within the lithosphere and underlying mantle. We assemble a very large waveform dataset including all publicly available data in the region, from both permanent and temporary seismic networks and experiments conducted in Northern and Western Europe, Iceland, Canada, USA, Greenland and Russia. The tomographic model is constrained by vertical-component waveform fits, computed using the Automated Multimode Inversion of surface, S and multiple S waves. Each seismogram fit provides a set of linear equations describing 1D average velocity perturbations with respect to a 3D reference velocity model within an approximate sensitivity region between the source and the receiver. The equations are then combined into a large linear system and jointly inverted for a model of shear- and compressional-wave speeds and azimuthal anisotropy within the lithosphere and underlying mantle. The isotropic-average shear speeds reflect the temperature and composition at depth, offering important new information on both regional- and basin-scale lithospheric structure and evolution. Azimuthal anisotropy provides evidence on the past and present deformation in the lithosphere and asthenosphere beneath the region, which can be interpreted together with other evidence from geological and geophysical data and recent plate kinematic models.

  16. CIDME: Short distances measured with long chirp pulses.

    PubMed

    Doll, Andrin; Qi, Mian; Godt, Adelheid; Jeschke, Gunnar

    2016-12-01

    Frequency-swept pulses have recently been introduced as pump pulses into double electron-electron resonance (DEER) experiments. A limitation of this approach is that the pump pulses need to be short in comparison to dipolar evolution periods. The "chirp-induced dipolar modulation enhancement" (CIDME) pulse sequence introduced in this work circumvents this limitation by means of longitudinal storage during the application of one single or two consecutive pump pulses. The resulting six-pulse sequence is closely related to the five-pulse "relaxation-induced dipolar modulation enhancement" (RIDME) pulse sequence: While dipolar modulation in RIDME is due to stochastic spin flips during longitudinal storage, modulation in CIDME is due to the pump pulse during longitudinal storage. Experimentally, CIDME is examined for Gd-Gd and nitroxide-nitroxide distance determination using a high-power Q-band spectrometer. Since longitudinal storage results in a 50% signal loss, comparisons between DEER using short chirp pump pulses of 64ns duration and CIDME using longer pump pulses are in favor of DEER. While the lower sensitivity restrains the applicability of CIDME for routine distance determination on high-power spectrometers, this result is not to be generalized to spectrometers having lower power and to specialized "non-routine" applications or different types of spin labels. In particular, the advantage of prolonged CIDME pump pulses is demonstrated for experiments at large frequency offset between the pumped and observed spins. At a frequency separation of 1GHz, where broadening due to dipolar pseudo-secular contributions becomes largely suppressed, a Gd-Gd modulation depth larger than 10% is achieved. Moreover, a CIDME experiment at deliberately reduced power underlines the potential of the new technique for spectrometers with lower power, as often encountered at higher microwave frequencies. With longitudinal storage times T below 10μs, however, CIDME appears rather

  17. CIDME: Short distances measured with long chirp pulses

    NASA Astrophysics Data System (ADS)

    Doll, Andrin; Qi, Mian; Godt, Adelheid; Jeschke, Gunnar

    2016-12-01

    Frequency-swept pulses have recently been introduced as pump pulses into double electron-electron resonance (DEER) experiments. A limitation of this approach is that the pump pulses need to be short in comparison to dipolar evolution periods. The "chirp-induced dipolar modulation enhancement" (CIDME) pulse sequence introduced in this work circumvents this limitation by means of longitudinal storage during the application of one single or two consecutive pump pulses. The resulting six-pulse sequence is closely related to the five-pulse "relaxation-induced dipolar modulation enhancement" (RIDME) pulse sequence: While dipolar modulation in RIDME is due to stochastic spin flips during longitudinal storage, modulation in CIDME is due to the pump pulse during longitudinal storage. Experimentally, CIDME is examined for Gd-Gd and nitroxide-nitroxide distance determination using a high-power Q-band spectrometer. Since longitudinal storage results in a 50% signal loss, comparisons between DEER using short chirp pump pulses of 64 ns duration and CIDME using longer pump pulses are in favor of DEER. While the lower sensitivity restrains the applicability of CIDME for routine distance determination on high-power spectrometers, this result is not to be generalized to spectrometers having lower power and to specialized "non-routine" applications or different types of spin labels. In particular, the advantage of prolonged CIDME pump pulses is demonstrated for experiments at large frequency offset between the pumped and observed spins. At a frequency separation of 1 GHz, where broadening due to dipolar pseudo-secular contributions becomes largely suppressed, a Gd-Gd modulation depth larger than 10% is achieved. Moreover, a CIDME experiment at deliberately reduced power underlines the potential of the new technique for spectrometers with lower power, as often encountered at higher microwave frequencies. With longitudinal storage times T below 10 μs, however, CIDME appears rather

  18. A Study of Mexican Free-Tailed Bat Chirp Syllables: Bayesian Functional Mixed Models for Nonstationary Acoustic Time Series

    PubMed Central

    MARTINEZ, Josue G.; BOHN, Kirsten M.; CARROLL, Raymond J.

    2013-01-01

    We describe a new approach to analyze chirp syllables of free-tailed bats from two regions of Texas in which they are predominant: Austin and College Station. Our goal is to characterize any systematic regional differences in the mating chirps and assess whether individual bats have signature chirps. The data are analyzed by modeling spectrograms of the chirps as responses in a Bayesian functional mixed model. Given the variable chirp lengths, we compute the spectrograms on a relative time scale interpretable as the relative chirp position, using a variable window overlap based on chirp length. We use 2D wavelet transforms to capture correlation within the spectrogram in our modeling and obtain adaptive regularization of the estimates and inference for the regions-specific spectrograms. Our model includes random effect spectrograms at the bat level to account for correlation among chirps from the same bat, and to assess relative variability in chirp spectrograms within and between bats. The modeling of spectrograms using functional mixed models is a general approach for the analysis of replicated nonstationary time series, such as our acoustical signals, to relate aspects of the signals to various predictors, while accounting for between-signal structure. This can be done on raw spectrograms when all signals are of the same length, and can be done using spectrograms defined on a relative time scale for signals of variable length in settings where the idea of defining correspondence across signals based on relative position is sensible. PMID:23997376

  19. Tracing the photodissociation probability of H{sub 2}{sup +} in intense fields using chirped laser pulses

    SciTech Connect

    Prabhudesai, Vaibhav S.; Natan, Adi; Bruner, Barry D.; Diner, Adi; Silberberg, Yaron; Lev, Uri; Heber, Oded; Zajfman, Daniel; Strasser, Daniel; Schwalm, D.; Ben-Itzhak, Itzik; Hua, J. J.; Esry, B. D.

    2010-02-15

    The temporal evolution of the dissociation probabilities for various vibrational levels of H{sub 2}{sup +} is observed in terms of shifts in the kinetic energy release dissociation spectra, induced by linearly chirped intense laser pulses. In contrast to previous observations, in which no dependence on the chirp sign was observed, the energy spectrum reported here shows peak shifts, up for negative chirp and down for positive chirp. For some vibrational levels, dissociation takes place early on in the pulse; hence, care must be taken while interpreting the effect of pulse duration in photodissociation studies. This interpretation is supported by numerical solutions of the time-dependent Schroedinger equation.

  20. A Study of Mexican Free-Tailed Bat Chirp Syllables: Bayesian Functional Mixed Models for Nonstationary Acoustic Time Series.

    PubMed

    Martinez, Josue G; Bohn, Kirsten M; Carroll, Raymond J; Morris, Jeffrey S

    2013-06-01

    We describe a new approach to analyze chirp syllables of free-tailed bats from two regions of Texas in which they are predominant: Austin and College Station. Our goal is to characterize any systematic regional differences in the mating chirps and assess whether individual bats have signature chirps. The data are analyzed by modeling spectrograms of the chirps as responses in a Bayesian functional mixed model. Given the variable chirp lengths, we compute the spectrograms on a relative time scale interpretable as the relative chirp position, using a variable window overlap based on chirp length. We use 2D wavelet transforms to capture correlation within the spectrogram in our modeling and obtain adaptive regularization of the estimates and inference for the regions-specific spectrograms. Our model includes random effect spectrograms at the bat level to account for correlation among chirps from the same bat, and to assess relative variability in chirp spectrograms within and between bats. The modeling of spectrograms using functional mixed models is a general approach for the analysis of replicated nonstationary time series, such as our acoustical signals, to relate aspects of the signals to various predictors, while accounting for between-signal structure. This can be done on raw spectrograms when all signals are of the same length, and can be done using spectrograms defined on a relative time scale for signals of variable length in settings where the idea of defining correspondence across signals based on relative position is sensible.

  1. Multi-waveform classification for seismic facies analysis

    NASA Astrophysics Data System (ADS)

    Song, Chengyun; Liu, Zhining; Wang, Yaojun; Li, Xingming; Hu, Guangmin

    2017-04-01

    Seismic facies analysis provides an effective way to delineate the heterogeneity and compartments within a reservoir. Traditional method is using the single waveform to classify the seismic facies, which does not consider the stratigraphy continuity, and the final facies map may affect by noise. Therefore, by defining waveforms in a 3D window as multi-waveform, we developed a new seismic facies analysis algorithm represented as multi-waveform classification (MWFC) that combines the multilinear subspace learning with self-organizing map (SOM) clustering techniques. In addition, we utilize multi-window dip search algorithm to extract multi-waveform, which reduce the uncertainty of facies maps in the boundaries. Testing the proposed method on synthetic data with different S/N, we confirm that our MWFC approach is more robust to noise than the conventional waveform classification (WFC) method. The real seismic data application on F3 block in Netherlands proves our approach is an effective tool for seismic facies analysis.

  2. PREFACE: Functional materials and nanotechnologies (FM&NT-2007)

    NASA Astrophysics Data System (ADS)

    Sternberg, Andris; Muzikante, Inta

    2007-06-01

    The International Baltic Sea Region conference Functional Materials and Nanotechnologies (FM&NT-2007) was held in Riga, 2-4 April 2007 in the Institute of Solid State Physics, University of Latvia (ISSP LU). The conference was organized in co-operation with projects ERANET 'MATERA' and EUREKA 'BIONANOCOMPOSITE'. The purpose of the conference was to bring together scientists, engineers and students from universities, research institutes and related industrial companies active in the field of advanced material science and materials technologies trends and future activities. Scientific themes covered in the conference are:

  3. advanced inorganic materials for photonics, energetics and microelectronics
  4. organic materials for photonics and nanoelectronics
  5. advanced methods for investigation of nanostructures
  6. perspective biomaterials and medicine technologies
  7. development of technologies for design of nanostructured materials, nanoparticles, and thin films
  8. design of functional materials and nanocomposites and development of their technologies
  9. The number of registered participants from 14 countries was nearly 110. During three days of the conference 70 oral reports and 58 posters were presented, 50 papers, based on these reports, are included in this volume of Journal of Physics: Conference Series. Additional information about FM&NT-2007 is available in its homepage http://fmnt.lu.lv and http://www.fmnt.lv . The Organizing Committee would like to thank all speakers, contributors, session chairs, referees and meeting staff for their efforts in making the FM&NT-2007 successful. The local Organization Committee would like to acknowledge and thank our sponsors - Latvian Council of Science and the Institute of Solid State Physics, University of Latvia. Andris Sternberg Inta Muzikante Guest editors

  10. 50 CFR 660.71 - Latitude/longitude coordinates defining the 10-fm (18-m) through 40-fm (73-m) depth contours.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Latitude/longitude coordinates defining the 10-fm (18-m) through 40-fm (73-m) depth contours. 660.71 Section 660.71 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT...

  11. 50 CFR 660.74 - Latitude/longitude coordinates defining the 180 fm (329 m) through 250 fm (457 m) depth contours.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Latitude/longitude coordinates defining the 180 fm (329 m) through 250 fm (457 m) depth contours. 660.74 Section 660.74 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT...

  12. 50 CFR 660.72 - Latitude/longitude coordinates defining the 50 fm (91 m) through 75 fm (137 m) depth contours.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Latitude/longitude coordinates defining the 50 fm (91 m) through 75 fm (137 m) depth contours. 660.72 Section 660.72 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT...

  13. 50 CFR 660.73 - Latitude/longitude coordinates defining the 100 fm (183 m) through 150 fm (274 m) depth contours.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Latitude/longitude coordinates defining the 100 fm (183 m) through 150 fm (274 m) depth contours. 660.73 Section 660.73 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT...

  14. The Marriage of Spectroscopy and Dynamics: Chirped-Pulse Fourier-Transform Mm-Wave Cp-Ft Spectroscopy in Pulsed Uniform Supersonic Flows

    NASA Astrophysics Data System (ADS)

    Abeysekera, Chamara; Oldham, James M.; Suits, Arthur G.; Park, G. Barratt; Field, Robert W.

    2012-06-01

    A new experimental scheme is presented that combines two powerful emerging technologies: chirped-pulse Fourier-transform mm-Wave spectroscopy and pulsed uniform supersonic flows. It promises a nearly universal detection method that can deliver quantitative isomer, conformer, and vibrational level specific detection, characterization of unstable reaction products and intermediates, and perform unique spectroscopic, kinetics, and dynamics measurements. Chirped-pulse Fourier-transform microwave (CP-FTMW) spectroscopy, pioneered by Pate and coworkers, allows rapid acquisition of broadband microwave spectrum through advancements in waveform generation and oscilloscope technology. This revolutionary approach has successfully been adapted to higher frequencies by the Field group at MIT. Our new apparatus will exploit amplified chirped pulses in the range of 26-40 GHz, in combination with a pulsed uniform supersonic flow from a Laval nozzle. This nozzle source, pioneered by Rowe, Sims, and Smith for low temperature kinetics studies, produces thermalized reactants at high densities and low temperatures perfectly suitable for reaction dynamics experiments studied using the CP-mmW approach. This combination of techniques shall enhance the thousand-fold improvement in data acquisition rate achieved in the CP method by a further 2-3 orders of magnitude. A pulsed flow alleviates the challenges of continuous uniform flow, e.g. large gas loads and reactant consumption rates. In contrast to other pulsed Laval systems currently in use, we will use a fast piezo valve and small chambers to achieve the desired pressures while minimizing the gas load, so that a 10 Hz repetition rate can be achieved with one turbomolecular pump. The proposed technique will be suitable for many diverse fields, including fundamental studies in spectroscopy and reaction dynamics, reaction kinetics, combustion, atmospheric chemistry, and astrochemistry. We expect a significant advancement in the ability to

  15. Multi channel FM reflection profiler for buried pipeline surveying

    SciTech Connect

    Schock, S.G.; LeBlanc, L.R.

    1996-12-31

    A towed multi-channel FM acoustic reflection profiler has been developed for locating and generating images of buried objects. One significant application of this sonar is buried pipeline surveying. The multi-channel reflection profiler uses 16 line arrays mounted in a towed vehicle to determine the position and burial depth of an 18 inch steel pipe filled with concrete buried under 1.5 meters of sand. This sonar will allow a survey vessel to continuously track a buried pipeline providing a continuous record of pipe burial depth and position.

  16. New frequency translation technique for FM-CW reflectometrya)

    NASA Astrophysics Data System (ADS)

    Meneses, Luis; Cupido, Luis; Manso, M. E.; Jet-Efda Contributors

    2010-10-01

    In broadband microwave reflectometry, coherent detection is widely used to obtain the phase information and to improve the systems sensitivity, both in diagnostics measuring the electronic density profile and plasma fluctuations. Coherent detection uses a translated version of the probing signal to guarantee a stable intermediate frequency. Here, a novel technique to generate the frequency translation by double frequency conversion is presented and its advantages over the commonly used single frequency conversion techniques employing image rejection mixers are discussed. The results obtained with the new frequency translator modules developed for the three JET FM-CW reflectometers, operating successfully at JET since mid-2009, are presented.

  17. Atomic Mass and Nuclear Binding Energy for Fm-329 (Fermium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Fm-329 (Fermium, atomic number Z = 100, mass number A = 329).

  18. Atomic Mass and Nuclear Binding Energy for Fm-315 (Fermium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Fm-315 (Fermium, atomic number Z = 100, mass number A = 315).

  19. Atomic Mass and Nuclear Binding Energy for Fm-320 (Fermium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Fm-320 (Fermium, atomic number Z = 100, mass number A = 320).

  20. Atomic Mass and Nuclear Binding Energy for Fm-287 (Fermium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Fm-287 (Fermium, atomic number Z = 100, mass number A = 287).

  21. Atomic Mass and Nuclear Binding Energy for Fm-304 (Fermium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Fm-304 (Fermium, atomic number Z = 100, mass number A = 304).

  22. Atomic Mass and Nuclear Binding Energy for Fm-297 (Fermium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Fm-297 (Fermium, atomic number Z = 100, mass number A = 297).

  23. Atomic Mass and Nuclear Binding Energy for Fm-302 (Fermium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Fm-302 (Fermium, atomic number Z = 100, mass number A = 302).

  24. Atomic Mass and Nuclear Binding Energy for Fm-317 (Fermium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Fm-317 (Fermium, atomic number Z = 100, mass number A = 317).

  25. Atomic Mass and Nuclear Binding Energy for Fm-262 (Fermium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Fm-262 (Fermium, atomic number Z = 100, mass number A = 262).

  26. Atomic Mass and Nuclear Binding Energy for Fm-296 (Fermium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Fm-296 (Fermium, atomic number Z = 100, mass number A = 296).

  27. Atomic Mass and Nuclear Binding Energy for Fm-281 (Fermium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Fm-281 (Fermium, atomic number Z = 100, mass number A = 281).

  1. Atomic Mass and Nuclear Binding Energy for Fm-275 (Fermium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Fm-275 (Fermium, atomic number Z = 100, mass number A = 275).

  2. Atomic Mass and Nuclear Binding Energy for Fm-260 (Fermium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Fm-260 (Fermium, atomic number Z = 100, mass number A = 260).

  3. Atomic Mass and Nuclear Binding Energy for Fm-311 (Fermium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Fm-311 (Fermium, atomic number Z = 100, mass number A = 311).

  4. Atomic Mass and Nuclear Binding Energy for Fm-301 (Fermium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Fm-301 (Fermium, atomic number Z = 100, mass number A = 301).

  5. Atomic Mass and Nuclear Binding Energy for Fm-283 (Fermium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Fm-283 (Fermium, atomic number Z = 100, mass number A = 283).

  6. Atomic Mass and Nuclear Binding Energy for Fm-312 (Fermium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Fm-312 (Fermium, atomic number Z = 100, mass number A = 312).

  7. Atomic Mass and Nuclear Binding Energy for Fm-332 (Fermium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Fm-332 (Fermium, atomic number Z = 100, mass number A = 332).

  8. Atomic Mass and Nuclear Binding Energy for Fm-279 (Fermium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Fm-279 (Fermium, atomic number Z = 100, mass number A = 279).

  9. Atomic Mass and Nuclear Binding Energy for Fm-269 (Fermium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Fm-269 (Fermium, atomic number Z = 100, mass number A = 269).

  10. Atomic Mass and Nuclear Binding Energy for Fm-268 (Fermium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Fm-268 (Fermium, atomic number Z = 100, mass number A = 268).

  11. Atomic Mass and Nuclear Binding Energy for Fm-272 (Fermium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Fm-272 (Fermium, atomic number Z = 100, mass number A = 272).

  12. Atomic Mass and Nuclear Binding Energy for Fm-300 (Fermium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Fm-300 (Fermium, atomic number Z = 100, mass number A = 300).

  13. Atomic Mass and Nuclear Binding Energy for Fm-318 (Fermium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Fm-318 (Fermium, atomic number Z = 100, mass number A = 318).

  14. Atomic Mass and Nuclear Binding Energy for Fm-261 (Fermium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Fm-261 (Fermium, atomic number Z = 100, mass number A = 261).

  15. Atomic Mass and Nuclear Binding Energy for Fm-303 (Fermium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Fm-303 (Fermium, atomic number Z = 100, mass number A = 303).

  16. Atomic Mass and Nuclear Binding Energy for Fm-273 (Fermium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Fm-273 (Fermium, atomic number Z = 100, mass number A = 273).

  17. Atomic Mass and Nuclear Binding Energy for Fm-310 (Fermium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Fm-310 (Fermium, atomic number Z = 100, mass number A = 310).

  18. Atomic Mass and Nuclear Binding Energy for Fm-309 (Fermium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Fm-309 (Fermium, atomic number Z = 100, mass number A = 309).

  19. Atomic Mass and Nuclear Binding Energy for Fm-270 (Fermium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Fm-270 (Fermium, atomic number Z = 100, mass number A = 270).

  20. Atomic Mass and Nuclear Binding Energy for Fm-333 (Fermium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Fm-333 (Fermium, atomic number Z = 100, mass number A = 333).