Studying the neural bases of prism adaptation using fMRI: A technical and design challenge.
Bultitude, Janet H; Farnè, Alessandro; Salemme, Romeo; Ibarrola, Danielle; Urquizar, Christian; O'Shea, Jacinta; Luauté, Jacques
2017-12-01
Prism adaptation induces rapid recalibration of visuomotor coordination. The neural mechanisms of prism adaptation have come under scrutiny since the observations that the technique can alleviate hemispatial neglect following stroke, and can alter spatial cognition in healthy controls. Relative to non-imaging behavioral studies, fMRI investigations of prism adaptation face several challenges arising from the confined physical environment of the scanner and the supine position of the participants. Any researcher who wishes to administer prism adaptation in an fMRI environment must adjust their procedures enough to enable the experiment to be performed, but not so much that the behavioral task departs too much from true prism adaptation. Furthermore, the specific temporal dynamics of behavioral components of prism adaptation present additional challenges for measuring their neural correlates. We developed a system for measuring the key features of prism adaptation behavior within an fMRI environment. To validate our configuration, we present behavioral (pointing) and head movement data from 11 right-hemisphere lesioned patients and 17 older controls who underwent sham and real prism adaptation in an MRI scanner. Most participants could adapt to prismatic displacement with minimal head movements, and the procedure was well tolerated. We propose recommendations for fMRI studies of prism adaptation based on the design-specific constraints and our results.
ERIC Educational Resources Information Center
Devauchelle, Anne-Dominique; Oppenheim, Catherine; Rizzi, Luigi; Dehaene, Stanislas; Pallier, Christophe
2009-01-01
Priming effects have been well documented in behavioral psycholinguistics experiments: The processing of a word or a sentence is typically facilitated when it shares lexico-semantic or syntactic features with a previously encountered stimulus. Here, we used fMRI priming to investigate which brain areas show adaptation to the repetition of a…
Hellrung, Lydia; Hollmann, Maurice; Zscheyge, Oliver; Schlumm, Torsten; Kalberlah, Christian; Roggenhofer, Elisabeth; Okon-Singer, Hadas; Villringer, Arno; Horstmann, Annette
2015-01-01
In this work we present a new open source software package offering a unified framework for the real-time adaptation of fMRI stimulation procedures. The software provides a straightforward setup and highly flexible approach to adapt fMRI paradigms while the experiment is running. The general framework comprises the inclusion of parameters from subject’s compliance, such as directing gaze to visually presented stimuli and physiological fluctuations, like blood pressure or pulse. Additionally, this approach yields possibilities to investigate complex scientific questions, for example the influence of EEG rhythms or fMRI signals results themselves. To prove the concept of this approach, we used our software in a usability example for an fMRI experiment where the presentation of emotional pictures was dependent on the subject’s gaze position. This can have a significant impact on the results. So far, if this is taken into account during fMRI data analysis, it is commonly done by the post-hoc removal of erroneous trials. Here, we propose an a priori adaptation of the paradigm during the experiment’s runtime. Our fMRI findings clearly show the benefits of an adapted paradigm in terms of statistical power and higher effect sizes in emotion-related brain regions. This can be of special interest for all experiments with low statistical power due to a limited number of subjects, a limited amount of time, costs or available data to analyze, as is the case with real-time fMRI. PMID:25837719
Hummel, Dennis; Rudolf, Anne K; Brandi, Marie-Luise; Untch, Karl-Heinz; Grabhorn, Ralph; Hampel, Harald; Mohr, Harald M
2013-12-01
Visual perception can be strongly biased due to exposure to specific stimuli in the environment, often causing neural adaptation and visual aftereffects. In this study, we investigated whether adaptation to certain body shapes biases the perception of the own body shape. Furthermore, we aimed to evoke neural adaptation to certain body shapes. Participants completed a behavioral experiment (n = 14) to rate manipulated pictures of their own bodies after adaptation to demonstratively thin or fat pictures of their own bodies. The same stimuli were used in a second experiment (n = 16) using functional magnetic resonance imaging (fMRI) adaptation. In the behavioral experiment, after adapting to a thin picture of the own body participants also judged a thinner than actual body picture to be the most realistic and vice versa, resembling a typical aftereffect. The fusiform body area (FBA) and the right middle occipital gyrus (rMOG) show neural adaptation to specific body shapes while the extrastriate body area (EBA) bilaterally does not. The rMOG cluster is highly selective for bodies and perhaps body parts. The findings of the behavioral experiment support the existence of a perceptual body shape aftereffect, resulting from a specific adaptation to thin and fat pictures of one's own body. The fMRI results imply that body shape adaptation occurs in the FBA and the rMOG. The role of the EBA in body shape processing remains unclear. The results are also discussed in the light of clinical body image disturbances. Copyright © 2012 Wiley Periodicals, Inc.
An fMRI Study of the Social Competition in Healthy Subjects
ERIC Educational Resources Information Center
Polosan, M.; Baciu, M.; Cousin, E.; Perrone, M.; Pichat, C.; Bougerol, T.
2011-01-01
Social interaction requires the ability to infer another person's mental state (Theory of Mind, ToM) and also executive functions. This fMRI study aimed to identify the cerebral correlates activated by ToM during a specific social interaction, the human-human competition. In this framework, we tested a conflict resolution task (Stroop) adapted to…
MULTISCALE ADAPTIVE SMOOTHING MODELS FOR THE HEMODYNAMIC RESPONSE FUNCTION IN FMRI*
Wang, Jiaping; Zhu, Hongtu; Fan, Jianqing; Giovanello, Kelly; Lin, Weili
2012-01-01
In the event-related functional magnetic resonance imaging (fMRI) data analysis, there is an extensive interest in accurately and robustly estimating the hemodynamic response function (HRF) and its associated statistics (e.g., the magnitude and duration of the activation). Most methods to date are developed in the time domain and they have utilized almost exclusively the temporal information of fMRI data without accounting for the spatial information. The aim of this paper is to develop a multiscale adaptive smoothing model (MASM) in the frequency domain by integrating the spatial and temporal information to adaptively and accurately estimate HRFs pertaining to each stimulus sequence across all voxels in a three-dimensional (3D) volume. We use two sets of simulation studies and a real data set to examine the finite sample performance of MASM in estimating HRFs. Our real and simulated data analyses confirm that MASM outperforms several other state-of-art methods, such as the smooth finite impulse response (sFIR) model. PMID:24533041
Konrad, F; Nennig, E; Ochmann, H; Kress, B; Sartor, K; Stippich, C
2005-03-01
Functional magnetic resonance imaging (fMRI) localizes Broca's area (B) and Wernicke's area (W) and the hemisphere dominant for language. In clinical fMRI, adapting the stimulation paradigms to each patient's individual cognitive capacity is crucial for diagnostic success. To interpret clinical fMRI findings correctly, we studied the effect of varying frequency and number of stimuli on functional localization, determination of language dominance and BOLD signals. Ten volunteers (VP) were investigated at 1.5 Tesla during visually triggered sentence generation using a standardized block design. In four different measurements, the stimuli were presented to each VP with frequencies of 1/1 s, (1/2) s, (1/3) s and (1/6) s. The functional localizations and the correlations of the measured BOLD signals to the applied hemodynamic reference function (r) were almost independent from frequency and number of the stimuli in both hemispheres, whereas the relative BOLD signal changes (DeltaS) in B and W increased with the stimulation rate, which also changed the lateralization indices. The strongest BOLD activations were achieved with the highest stimulation rate or with the maximum language production task, respectively. The adaptation of language paradigms necessary in clinical fMRI does not alter the functional localizations but changes the BOLD signals and language lateralization which should not be attributed to the underlying brain pathology.
Pairwise Classifier Ensemble with Adaptive Sub-Classifiers for fMRI Pattern Analysis.
Kim, Eunwoo; Park, HyunWook
2017-02-01
The multi-voxel pattern analysis technique is applied to fMRI data for classification of high-level brain functions using pattern information distributed over multiple voxels. In this paper, we propose a classifier ensemble for multiclass classification in fMRI analysis, exploiting the fact that specific neighboring voxels can contain spatial pattern information. The proposed method converts the multiclass classification to a pairwise classifier ensemble, and each pairwise classifier consists of multiple sub-classifiers using an adaptive feature set for each class-pair. Simulated and real fMRI data were used to verify the proposed method. Intra- and inter-subject analyses were performed to compare the proposed method with several well-known classifiers, including single and ensemble classifiers. The comparison results showed that the proposed method can be generally applied to multiclass classification in both simulations and real fMRI analyses.
Ngan, Shing-Chung; Hu, Xiaoping; Khong, Pek-Lan
2011-03-01
We propose a method for preprocessing event-related functional magnetic resonance imaging (fMRI) data that can lead to enhancement of template-free activation detection. The method is based on using a figure of merit to guide the wavelet shrinkage of a given fMRI data set. Several previous studies have demonstrated that in the root-mean-square error setting, wavelet shrinkage can improve the signal-to-noise ratio of fMRI time courses. However, preprocessing fMRI data in the root-mean-square error setting does not necessarily lead to enhancement of template-free activation detection. Motivated by this observation, in this paper, we move to the detection setting and investigate the possibility of using wavelet shrinkage to enhance template-free activation detection of fMRI data. The main ingredients of our method are (i) forward wavelet transform of the voxel time courses, (ii) shrinking the resulting wavelet coefficients as directed by an appropriate figure of merit, (iii) inverse wavelet transform of the shrunk data, and (iv) submitting these preprocessed time courses to a given activation detection algorithm. Two figures of merit are developed in the paper, and two other figures of merit adapted from the literature are described. Receiver-operating characteristic analyses with simulated fMRI data showed quantitative evidence that data preprocessing as guided by the figures of merit developed in the paper can yield improved detectability of the template-free measures. We also demonstrate the application of our methodology on an experimental fMRI data set. The proposed method is useful for enhancing template-free activation detection in event-related fMRI data. It is of significant interest to extend the present framework to produce comprehensive, adaptive and fully automated preprocessing of fMRI data optimally suited for subsequent data analysis steps. Copyright © 2010 Elsevier B.V. All rights reserved.
Activation of the cerebellar cortex and the dentate nucleus in a prism adaptation fMRI study.
Küper, Michael; Wünnemann, Meret J S; Thürling, Markus; Stefanescu, Roxana M; Maderwald, Stefan; Elles, Hans G; Göricke, Sophia; Ladd, Mark E; Timmann, Dagmar
2014-04-01
During prism adaptation two types of learning processes can be distinguished. First, fast strategic motor control responses are predominant in the early course of prism adaptation to achieve rapid error correction within few trials. Second, slower spatial realignment occurs among the misaligned visual and proprioceptive sensorimotor coordinate system. The aim of the present ultra-highfield (7T) functional magnetic resonance imaging (fMRI) study was to explore cerebellar cortical and dentate nucleus activation during the course of prism adaptation in relation to a similar visuomotor task without prism exposure. Nineteen young healthy participants were included into the study. Recently developed normalization procedures were applied for the cerebellar cortex and the dentate nucleus. By means of subtraction analysis (early prism adaptation > visuomotor, early prism adaptation > late prism adaptation) we identified ipsilateral activation associated with strategic motor control responses within the posterior cerebellar cortex (lobules VIII and IX) and the ventro-caudal dentate nucleus. During the late phase of adaptation we observed pronounced activation of posterior parts of lobule VI, although subtraction analyses (late prism adaptation > visuomotor) remained negative. These results are in good accordance with the concept of a representation of non-motor functions, here strategic control, within the ventro-caudal dentate nucleus. Copyright © 2013 Wiley Periodicals, Inc.
Armony, Jorge L; Aubé, William; Angulo-Perkins, Arafat; Peretz, Isabelle; Concha, Luis
2015-04-23
Several studies have identified, using functional magnetic resonance imaging (fMRI), a region within the superior temporal gyrus that preferentially responds to musical stimuli. However, in most cases, significant responses to other complex stimuli, particularly human voice, were also observed. Thus, it remains unknown if the same neurons respond to both stimulus types, albeit with different strengths, or whether the responses observed with fMRI are generated by distinct, overlapping neural populations. To address this question, we conducted an fMRI experiment in which short music excerpts and human vocalizations were presented in a pseudo-random order. Critically, we performed an adaptation-based analysis in which responses to the stimuli were analyzed taking into account the category of the preceding stimulus. Our results confirm the presence of a region in the anterior STG that responds more strongly to music than voice. Moreover, we found a music-specific adaptation effect in this area, consistent with the existence of music-preferred neurons. Lack of differences between musicians and non-musicians argues against an expertise effect. These findings provide further support for neural separability between music and speech within the temporal lobe. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
The representation of object viewpoint in human visual cortex.
Andresen, David R; Vinberg, Joakim; Grill-Spector, Kalanit
2009-04-01
Understanding the nature of object representations in the human brain is critical for understanding the neural basis of invariant object recognition. However, the degree to which object representations are sensitive to object viewpoint is unknown. Using fMRI we employed a parametric approach to examine the sensitivity to object view as a function of rotation (0 degrees-180 degrees ), category (animal/vehicle) and fMRI-adaptation paradigm (short or long-lagged). For both categories and fMRI-adaptation paradigms, object-selective regions recovered from adaptation when a rotated view of an object was shown after adaptation to a specific view of that object, suggesting that representations are sensitive to object rotation. However, we found evidence for differential representations across categories and ventral stream regions. Rotation cross-adaptation was larger for animals than vehicles, suggesting higher sensitivity to vehicle than animal rotation, and was largest in the left fusiform/occipito-temporal sulcus (pFUS/OTS), suggesting that this region has low sensitivity to rotation. Moreover, right pFUS/OTS and FFA responded more strongly to front than back views of animals (without adaptation) and rotation cross-adaptation depended both on the level of rotation and the adapting view. This result suggests a prevalence of neurons that prefer frontal views of animals in fusiform regions. Using a computational model of view-tuned neurons, we demonstrate that differential neural view tuning widths and relative distributions of neural-tuned populations in fMRI voxels can explain the fMRI results. Overall, our findings underscore the utility of parametric approaches for studying the neural basis of object invariance and suggest that there is no complete invariance to object view in the human ventral stream.
Encoding in the visual word form area: an fMRI adaptation study of words versus handwriting.
Barton, Jason J S; Fox, Christopher J; Sekunova, Alla; Iaria, Giuseppe
2010-08-01
Written texts are not just words but complex multidimensional stimuli, including aspects such as case, font, and handwriting style, for example. Neuropsychological reports suggest that left fusiform lesions can impair the reading of text for word (lexical) content, being associated with alexia, whereas right-sided lesions may impair handwriting recognition. We used fMRI adaptation in 13 healthy participants to determine if repetition-suppression occurred for words but not handwriting in the left visual word form area (VWFA) and the reverse in the right fusiform gyrus. Contrary to these expectations, we found adaptation for handwriting but not for words in both the left VWFA and the right VWFA homologue. A trend to adaptation for words but not handwriting was seen only in the left middle temporal gyrus. An analysis of anterior and posterior subdivisions of the left VWFA also failed to show any adaptation for words. We conclude that the right and the left fusiform gyri show similar patterns of adaptation for handwriting, consistent with a predominantly perceptual contribution to text processing.
Hollmann, M; Mönch, T; Mulla-Osman, S; Tempelmann, C; Stadler, J; Bernarding, J
2008-10-30
In functional MRI (fMRI) complex experiments and applications require increasingly complex parameter handling as the experimental setup usually consists of separated soft- and hardware systems. Advanced real-time applications such as neurofeedback-based training or brain computer interfaces (BCIs) may even require adaptive changes of the paradigms and experimental setup during the measurement. This would be facilitated by an automated management of the overall workflow and a control of the communication between all experimental components. We realized a concept based on an XML software framework called Experiment Description Language (EDL). All parameters relevant for real-time data acquisition, real-time fMRI (rtfMRI) statistical data analysis, stimulus presentation, and activation processing are stored in one central EDL file, and processed during the experiment. A usability study comparing the central EDL parameter management with traditional approaches showed an improvement of the complete experimental handling. Based on this concept, a feasibility study realizing a dynamic rtfMRI-based brain computer interface showed that the developed system in combination with EDL was able to reliably detect and evaluate activation patterns in real-time. The implementation of a centrally controlled communication between the subsystems involved in the rtfMRI experiments reduced potential inconsistencies, and will open new applications for adaptive BCIs.
Strappini, Francesca; Gilboa, Elad; Pitzalis, Sabrina; Kay, Kendrick; McAvoy, Mark; Nehorai, Arye; Snyder, Abraham Z
2017-03-01
Temporal and spatial filtering of fMRI data is often used to improve statistical power. However, conventional methods, such as smoothing with fixed-width Gaussian filters, remove fine-scale structure in the data, necessitating a tradeoff between sensitivity and specificity. Specifically, smoothing may increase sensitivity (reduce noise and increase statistical power) but at the cost loss of specificity in that fine-scale structure in neural activity patterns is lost. Here, we propose an alternative smoothing method based on Gaussian processes (GP) regression for single subjects fMRI experiments. This method adapts the level of smoothing on a voxel by voxel basis according to the characteristics of the local neural activity patterns. GP-based fMRI analysis has been heretofore impractical owing to computational demands. Here, we demonstrate a new implementation of GP that makes it possible to handle the massive data dimensionality of the typical fMRI experiment. We demonstrate how GP can be used as a drop-in replacement to conventional preprocessing steps for temporal and spatial smoothing in a standard fMRI pipeline. We present simulated and experimental results that show the increased sensitivity and specificity compared to conventional smoothing strategies. Hum Brain Mapp 38:1438-1459, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Utility of functional MRI in pediatric neurology.
Freilich, Emily R; Gaillard, William D
2010-01-01
Functional MRI (fMRI), a tool increasingly used to study cognitive function, is also an important tool for understanding not only normal development in healthy children, but also abnormal development, as seen in children with epilepsy, attention-deficit/hyperactivity disorder, and autism. Since its inception almost 15 years ago, fMRI has seen an explosion in its use and applications in the adult literature. However, only recently has it found a home in pediatric neurology. New adaptations in study design and technologic advances, especially the study of resting state functional connectivity as well as the use of passive task design in sedated children, have increased the utility of functional imaging in pediatrics to help us gain understanding into the developing brain at work. This article reviews the background of fMRI in pediatrics and highlights the most recent literature and clinical applications.
Neural mechanisms underlying spatial realignment during adaptation to optical wedge prisms.
Chapman, Heidi L; Eramudugolla, Ranmalee; Gavrilescu, Maria; Strudwick, Mark W; Loftus, Andrea; Cunnington, Ross; Mattingley, Jason B
2010-07-01
Visuomotor adaptation to a shift in visual input produced by prismatic lenses is an example of dynamic sensory-motor plasticity within the brain. Prism adaptation is readily induced in healthy individuals, and is thought to reflect the brain's ability to compensate for drifts in spatial calibration between different sensory systems. The neural correlate of this form of functional plasticity is largely unknown, although current models predict the involvement of parieto-cerebellar circuits. Recent studies that have employed event-related functional magnetic resonance imaging (fMRI) to identify brain regions associated with prism adaptation have discovered patterns of parietal and cerebellar modulation as participants corrected their visuomotor errors during the early part of adaptation. However, the role of these regions in the later stage of adaptation, when 'spatial realignment' or true adaptation is predicted to occur, remains unclear. Here, we used fMRI to quantify the distinctive patterns of parieto-cerebellar activity as visuomotor adaptation develops. We directly contrasted activation patterns during the initial error correction phase of visuomotor adaptation with that during the later spatial realignment phase, and found significant recruitment of the parieto-cerebellar network--with activations in the right inferior parietal lobe and the right posterior cerebellum. These findings provide the first evidence of both cerebellar and parietal involvement during the spatial realignment phase of prism adaptation. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Distortion analysis of subband adaptive filtering methods for FMRI active noise control systems.
Milani, Ali A; Panahi, Issa M; Briggs, Richard
2007-01-01
Delayless subband filtering structure, as a high performance frequency domain filtering technique, is used for canceling broadband fMRI noise (8 kHz bandwidth). In this method, adaptive filtering is done in subbands and the coefficients of the main canceling filter are computed by stacking the subband weights together. There are two types of stacking methods called FFT and FFT-2. In this paper, we analyze the distortion introduced by these two stacking methods. The effect of the stacking distortion on the performance of different adaptive filters in FXLMS algorithm with non-minimum phase secondary path is explored. The investigation is done for different adaptive algorithms (nLMS, APA and RLS), different weight stacking methods, and different number of subbands.
Using real-time fMRI brain-computer interfacing to treat eating disorders.
Sokunbi, Moses O
2018-05-15
Real-time functional magnetic resonance imaging based brain-computer interfacing (fMRI neurofeedback) has shown encouraging outcomes in the treatment of psychiatric and behavioural disorders. However, its use in the treatment of eating disorders is very limited. Here, we give a brief overview of how to design and implement fMRI neurofeedback intervention for the treatment of eating disorders, considering the basic and essential components. We also attempt to develop potential adaptations of fMRI neurofeedback intervention for the treatment of anorexia nervosa, bulimia nervosa and binge eating disorder. Copyright © 2018 Elsevier B.V. All rights reserved.
Imaging Agonist-Induced D2/D3 Receptor Desensitization and Internalization In Vivo with PET/fMRI.
Sander, Christin Y; Hooker, Jacob M; Catana, Ciprian; Rosen, Bruce R; Mandeville, Joseph B
2016-04-01
This study investigated the dynamics of dopamine receptor desensitization and internalization, thereby proposing a new technique for non-invasive, in vivo measurements of receptor adaptations. The D2/D3 agonist quinpirole, which induces receptor internalization in vitro, was administered at graded doses in non-human primates while imaging with simultaneous positron emission tomography (PET) and functional magnetic resonance imaging (fMRI). A pronounced temporal divergence between receptor occupancy and fMRI signal was observed: occupancy remained elevated while fMRI responded transiently. Analogous experiments with an antagonist (prochlorperazine) and a lower-affinity agonist (ropinirole) exhibited reduced temporal dissociation between occupancy and function, consistent with a mechanism of desensitization and internalization that depends upon drug efficacy and affinity. We postulated a model that incorporates internalization into a neurovascular-coupling relationship. This model yielded in vivo desensitization/internalization rates (0.2/min for quinpirole) consistent with published in vitro measurements. Overall, these results suggest that simultaneous PET/fMRI enables characterization of dynamic neuroreceptor adaptations in vivo, and may offer a first non-invasive method for assessing receptor desensitization and internalization.
Imaging Agonist-Induced D2/D3 Receptor Desensitization and Internalization In Vivo with PET/fMRI
Sander, Christin Y; Hooker, Jacob M; Catana, Ciprian; Rosen, Bruce R; Mandeville, Joseph B
2016-01-01
This study investigated the dynamics of dopamine receptor desensitization and internalization, thereby proposing a new technique for non-invasive, in vivo measurements of receptor adaptations. The D2/D3 agonist quinpirole, which induces receptor internalization in vitro, was administered at graded doses in non-human primates while imaging with simultaneous positron emission tomography (PET) and functional magnetic resonance imaging (fMRI). A pronounced temporal divergence between receptor occupancy and fMRI signal was observed: occupancy remained elevated while fMRI responded transiently. Analogous experiments with an antagonist (prochlorperazine) and a lower-affinity agonist (ropinirole) exhibited reduced temporal dissociation between occupancy and function, consistent with a mechanism of desensitization and internalization that depends upon drug efficacy and affinity. We postulated a model that incorporates internalization into a neurovascular-coupling relationship. This model yielded in vivo desensitization/internalization rates (0.2/min for quinpirole) consistent with published in vitro measurements. Overall, these results suggest that simultaneous PET/fMRI enables characterization of dynamic neuroreceptor adaptations in vivo, and may offer a first non-invasive method for assessing receptor desensitization and internalization. PMID:26388148
Loitfelder, Marisa; Fazekas, Franz; Koschutnig, Karl; Fuchs, Siegrid; Petrovic, Katja; Ropele, Stefan; Pichler, Alexander; Jehna, Margit; Langkammer, Christian; Schmidt, Reinhold; Neuper, Christa; Enzinger, Christian
2014-01-01
Extrapolations from previous cross-sectional fMRI studies suggest cerebral functional changes with progression of Multiple Sclerosis (MS), but longitudinal studies are scarce. We assessed brain activation changes over time in MS patients using a cognitive fMRI paradigm and examined correlations with clinical and cognitive status and brain morphology. 13 MS patients and 15 healthy controls (HC) underwent MRI including fMRI (go/no-go task), neurological and neuropsychological exams at baseline (BL) and follow-up (FU; minimum 12, median 20 months). We assessed estimates of and changes in fMRI activation, total brain and subcortical grey matter volumes, cortical thickness, and T2-lesion load. Bland-Altman (BA) plots served to assess fMRI signal variability. Cognitive and disability levels remained largely stable in the patients. With the fMRI task, both at BL and FU, patients compared to HC showed increased activation in the insular cortex, precuneus, cerebellum, posterior cingulate cortex, and occipital cortex. At BL, patients vs. HC also had lower caudate nucleus, thalamus and putamen volumes. Over time, patients (but not HC) demonstrated fMRI activity increments in the left inferior parietal lobule. These correlated with worse single-digit-modality test (SDMT) performance. BA-plots attested to reproducibility of the fMRI task. In the patients, the right caudate nucleus decreased in volume which again correlated with worsening SDMT performance. Given preserved cognitive performance, the increased activation at BL in the patients may be viewed as largely adaptive. In contrast, the negative correlation with SDMT performance suggests increasing parietal activation over time to be maladaptive. Several areas with purported relevance for cognition showed decreased volumes at BL and right caudate nucleus volume decline correlated with decreasing SDMT performance. This highlights the dynamics of functional changes and the strategic importance of specific brain areas for cognitive processes in MS.
A SVM-based quantitative fMRI method for resting-state functional network detection.
Song, Xiaomu; Chen, Nan-kuei
2014-09-01
Resting-state functional magnetic resonance imaging (fMRI) aims to measure baseline neuronal connectivity independent of specific functional tasks and to capture changes in the connectivity due to neurological diseases. Most existing network detection methods rely on a fixed threshold to identify functionally connected voxels under the resting state. Due to fMRI non-stationarity, the threshold cannot adapt to variation of data characteristics across sessions and subjects, and generates unreliable mapping results. In this study, a new method is presented for resting-state fMRI data analysis. Specifically, the resting-state network mapping is formulated as an outlier detection process that is implemented using one-class support vector machine (SVM). The results are refined by using a spatial-feature domain prototype selection method and two-class SVM reclassification. The final decision on each voxel is made by comparing its probabilities of functionally connected and unconnected instead of a threshold. Multiple features for resting-state analysis were extracted and examined using an SVM-based feature selection method, and the most representative features were identified. The proposed method was evaluated using synthetic and experimental fMRI data. A comparison study was also performed with independent component analysis (ICA) and correlation analysis. The experimental results show that the proposed method can provide comparable or better network detection performance than ICA and correlation analysis. The method is potentially applicable to various resting-state quantitative fMRI studies. Copyright © 2014 Elsevier Inc. All rights reserved.
Richards, Todd L; Abbott, Robert D; Yagle, Kevin; Peterson, Dan; Raskind, Wendy; Berninger, Virginia W
2017-01-01
To understand mental self-government of the developing reading and writing brain, correlations of clustering coefficients on fMRI reading or writing tasks with BASC 2 Adaptivity ratings (time 1 only) or working memory components (time 1 before and time 2 after instruction previously shown to improve achievement and change magnitude of fMRI connectivity) were investigated in 39 students in grades 4 to 9 who varied along a continuum of reading and writing skills. A Philips 3T scanner measured connectivity during six leveled fMRI reading tasks (subword-letters and sounds, word-word-specific spellings or affixed words, syntax comprehension-with and without homonym foils or with and without affix foils, and text comprehension) and three fMRI writing tasks-writing next letter in alphabet, adding missing letter in word spelling, and planning for composing. The Brain Connectivity Toolbox generated clustering coefficients based on the cingulo-opercular (CO) network; after controlling for multiple comparisons and movement, significant fMRI connectivity clustering coefficients for CO were identified in 8 brain regions bilaterally (cingulate gyrus, superior frontal gyrus, middle frontal gyrus, inferior frontal gyrus, superior temporal gyrus, insula, cingulum-cingulate gyrus, and cingulum-hippocampus). BASC2 Parent Ratings for Adaptivity were correlated with CO clustering coefficients on three reading tasks (letter-sound, word affix judgments and sentence comprehension) and one writing task (writing next letter in alphabet). Before instruction, each behavioral working memory measure (phonology, orthography, morphology, and syntax coding, phonological and orthographic loops for integrating internal language and output codes, and supervisory focused and switching attention) correlated significantly with at least one CO clustering coefficient. After instruction, the patterning of correlations changed with new correlations emerging. Results show that the reading and writing brain's mental government, supported by both CO Adaptive Control and multiple working memory components, had changed in response to instruction during middle childhood/early adolescence.
Khachaturian, Mark Haig
2010-01-01
Awake monkey fMRI and diffusion MRI combined with conventional neuroscience techniques has the potential to study the structural and functional neural network. The majority of monkey fMRI and diffusion MRI experiments are performed with single coils which suffer from severe EPI distortions which limit resolution. By constructing phased array coils for monkey MRI studies, gains in SNR and anatomical accuracy (i.e., reduction of EPI distortions) can be achieved using parallel imaging. The major challenges associated with constructing phased array coils for monkeys are the variation in head size and space constraints. Here, we apply phased array technology to a 4-channel phased array coil capable of improving the resolution and image quality of full brain awake monkey fMRI and diffusion MRI experiments. The phased array coil is that can adapt to different rhesus monkey head sizes (ages 4-8) and fits in the limited space provided by monkey stereotactic equipment and provides SNR gains in primary visual cortex and anatomical accuracy in conjunction with parallel imaging and improves resolution in fMRI experiments by a factor of 2 (1.25 mm to 1.0 mm isotropic) and diffusion MRI experiments by a factor of 4 (1.5 mm to 0.9 mm isotropic).
Khachaturian, Mark Haig
2010-01-01
Awake monkey fMRI and diffusion MRI combined with conventional neuroscience techniques has the potential to study the structural and functional neural network. The majority of monkey fMRI and diffusion MRI experiments are performed with single coils which suffer from severe EPI distortions which limit resolution. By constructing phased array coils for monkey MRI studies, gains in SNR and anatomical accuracy (i.e., reduction of EPI distortions) can be achieved using parallel imaging. The major challenges associated with constructing phased array coils for monkeys are the variation in head size and space constraints. Here, we apply phased array technology to a 4-channel phased array coil capable of improving the resolution and image quality of full brain awake monkey fMRI and diffusion MRI experiments. The phased array coil is that can adapt to different rhesus monkey head sizes (ages 4–8) and fits in the limited space provided by monkey stereotactic equipment and provides SNR gains in primary visual cortex and anatomical accuracy in conjunction with parallel imaging and improves resolution in fMRI experiments by a factor of 2 (1.25 mm to 1.0 mm isotropic) and diffusion MRI experiments by a factor of 4 (1.5 mm to 0.9 mm isotropic). PMID:21243106
Posse, Stefan
2011-01-01
The rapid development of fMRI was paralleled early on by the adaptation of MR spectroscopic imaging (MRSI) methods to quantify water relaxation changes during brain activation. This review describes the evolution of multi-echo acquisition from high-speed MRSI to multi-echo EPI and beyond. It highlights milestones in the development of multi-echo acquisition methods, such as the discovery of considerable gains in fMRI sensitivity when combining echo images, advances in quantification of the BOLD effect using analytical biophysical modeling and interleaved multi-region shimming. The review conveys the insight gained from combining fMRI and MRSI methods and concludes with recent trends in ultra-fast fMRI, which will significantly increase temporal resolution of multi-echo acquisition. PMID:22056458
Adaptation of a haptic robot in a 3T fMRI.
Snider, Joseph; Plank, Markus; May, Larry; Liu, Thomas T; Poizner, Howard
2011-10-04
Functional magnetic resonance imaging (fMRI) provides excellent functional brain imaging via the BOLD signal with advantages including non-ionizing radiation, millimeter spatial accuracy of anatomical and functional data, and nearly real-time analyses. Haptic robots provide precise measurement and control of position and force of a cursor in a reasonably confined space. Here we combine these two technologies to allow precision experiments involving motor control with haptic/tactile environment interaction such as reaching or grasping. The basic idea is to attach an 8 foot end effecter supported in the center to the robot allowing the subject to use the robot, but shielding it and keeping it out of the most extreme part of the magnetic field from the fMRI machine (Figure 1). The Phantom Premium 3.0, 6DoF, high-force robot (SensAble Technologies, Inc.) is an excellent choice for providing force-feedback in virtual reality experiments, but it is inherently non-MR safe, introduces significant noise to the sensitive fMRI equipment, and its electric motors may be affected by the fMRI's strongly varying magnetic field. We have constructed a table and shielding system that allows the robot to be safely introduced into the fMRI environment and limits both the degradation of the fMRI signal by the electrically noisy motors and the degradation of the electric motor performance by the strongly varying magnetic field of the fMRI. With the shield, the signal to noise ratio (SNR: mean signal/noise standard deviation) of the fMRI goes from a baseline of ~380 to ~330, and ~250 without the shielding. The remaining noise appears to be uncorrelated and does not add artifacts to the fMRI of a test sphere (Figure 2). The long, stiff handle allows placement of the robot out of range of the most strongly varying parts of the magnetic field so there is no significant effect of the fMRI on the robot. The effect of the handle on the robot's kinematics is minimal since it is lightweight (~2.6 lbs) but extremely stiff 3/4" graphite and well balanced on the 3DoF joint in the middle. The end result is an fMRI compatible, haptic system with about 1 cubic foot of working space, and, when combined with virtual reality, it allows for a new set of experiments to be performed in the fMRI environment including naturalistic reaching, passive displacement of the limb and haptic perception, adaptation learning in varying force fields, or texture identification.
Hernández-Martin, Estefania; Marcano, Francisco; Casanova, Oscar; Modroño, Cristian; Plata-Bello, Julio; González-Mora, Jose Luis
2017-01-01
Abstract. Diffuse optical tomography (DOT) measures concentration changes in both oxy- and deoxyhemoglobin providing three-dimensional images of local brain activations. A pilot study, which compares both DOT and functional magnetic resonance imaging (fMRI) volumes through t-maps given by canonical statistical parametric mapping (SPM) processing for both data modalities, is presented. The DOT series were processed using a method that is based on a Bayesian filter application on raw DOT data to remove physiological changes and minimum description length application index to select a number of singular values, which reduce the data dimensionality during image reconstruction and adaptation of DOT volume series to normalized standard space. Therefore, statistical analysis is performed with canonical SPM software in the same way as fMRI analysis is done, accepting DOT volumes as if they were fMRI volumes. The results show the reproducibility and ruggedness of the method to process DOT series on group analysis using cognitive paradigms on the prefrontal cortex. Difficulties such as the fact that scalp–brain distances vary between subjects or cerebral activations are difficult to reproduce due to strategies used by the subjects to solve arithmetic problems are considered. T-images given by fMRI and DOT volume series analyzed in SPM show that at the functional level, both DOT and fMRI measures detect the same areas, although DOT provides complementary information to fMRI signals about cerebral activity. PMID:28386575
Reference layer adaptive filtering (RLAF) for EEG artifact reduction in simultaneous EEG-fMRI.
Steyrl, David; Krausz, Gunther; Koschutnig, Karl; Edlinger, Günter; Müller-Putz, Gernot R
2017-04-01
Simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) combines advantages of both methods, namely high temporal resolution of EEG and high spatial resolution of fMRI. However, EEG quality is limited due to severe artifacts caused by fMRI scanners. To improve EEG data quality substantially, we introduce methods that use a reusable reference layer EEG cap prototype in combination with adaptive filtering. The first method, reference layer adaptive filtering (RLAF), uses adaptive filtering with reference layer artifact data to optimize artifact subtraction from EEG. In the second method, multi band reference layer adaptive filtering (MBRLAF), adaptive filtering is performed on bandwidth limited sub-bands of the EEG and the reference channels. The results suggests that RLAF outperforms the baseline method, average artifact subtraction, in all settings and also its direct predecessor, reference layer artifact subtraction (RLAS), in lower (<35 Hz) frequency ranges. MBRLAF is computationally more demanding than RLAF, but highly effective in all EEG frequency ranges. Effectivity is determined by visual inspection, as well as root-mean-square voltage reduction and power reduction of EEG provided that physiological EEG components such as occipital EEG alpha power and visual evoked potentials (VEP) are preserved. We demonstrate that both, RLAF and MBRLAF, improve VEP quality. For that, we calculate the mean-squared-distance of single trial VEP to the mean VEP and estimate single trial VEP classification accuracies. We found that the average mean-squared-distance is lowest and the average classification accuracy is highest after MBLAF. RLAF was second best. In conclusion, the results suggests that RLAF and MBRLAF are potentially very effective in improving EEG quality of simultaneous EEG-fMRI. Highlights We present a new and reusable reference layer cap prototype for simultaneous EEG-fMRI We introduce new algorithms for reducing EEG artifacts due to simultaneous fMRI The algorithms combine a reference layer and adaptive filtering Several evaluation criteria suggest superior effectivity in terms of artifact reduction We demonstrate that physiological EEG components are preserved.
Reference layer adaptive filtering (RLAF) for EEG artifact reduction in simultaneous EEG-fMRI
NASA Astrophysics Data System (ADS)
Steyrl, David; Krausz, Gunther; Koschutnig, Karl; Edlinger, Günter; Müller-Putz, Gernot R.
2017-04-01
Objective. Simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) combines advantages of both methods, namely high temporal resolution of EEG and high spatial resolution of fMRI. However, EEG quality is limited due to severe artifacts caused by fMRI scanners. Approach. To improve EEG data quality substantially, we introduce methods that use a reusable reference layer EEG cap prototype in combination with adaptive filtering. The first method, reference layer adaptive filtering (RLAF), uses adaptive filtering with reference layer artifact data to optimize artifact subtraction from EEG. In the second method, multi band reference layer adaptive filtering (MBRLAF), adaptive filtering is performed on bandwidth limited sub-bands of the EEG and the reference channels. Main results. The results suggests that RLAF outperforms the baseline method, average artifact subtraction, in all settings and also its direct predecessor, reference layer artifact subtraction (RLAS), in lower (<35 Hz) frequency ranges. MBRLAF is computationally more demanding than RLAF, but highly effective in all EEG frequency ranges. Effectivity is determined by visual inspection, as well as root-mean-square voltage reduction and power reduction of EEG provided that physiological EEG components such as occipital EEG alpha power and visual evoked potentials (VEP) are preserved. We demonstrate that both, RLAF and MBRLAF, improve VEP quality. For that, we calculate the mean-squared-distance of single trial VEP to the mean VEP and estimate single trial VEP classification accuracies. We found that the average mean-squared-distance is lowest and the average classification accuracy is highest after MBLAF. RLAF was second best. Significance. In conclusion, the results suggests that RLAF and MBRLAF are potentially very effective in improving EEG quality of simultaneous EEG-fMRI. Highlights We present a new and reusable reference layer cap prototype for simultaneous EEG-fMRI We introduce new algorithms for reducing EEG artifacts due to simultaneous fMRI The algorithms combine a reference layer and adaptive filtering Several evaluation criteria suggest superior effectivity in terms of artifact reduction We demonstrate that physiological EEG components are preserved
fMRI-adaptation studies of viewpoint tuning in the extrastriate and fusiform body areas.
Taylor, John C; Wiggett, Alison J; Downing, Paul E
2010-03-01
People are easily able to perceive the human body across different viewpoints, but the neural mechanisms underpinning this ability are currently unclear. In three experiments, we used functional MRI (fMRI) adaptation to study the view-invariance of representations in two cortical regions that have previously been shown to be sensitive to visual depictions of the human body--the extrastriate and fusiform body areas (EBA and FBA). The BOLD response to sequentially presented pairs of bodies was treated as an index of view invariance. Specifically, we compared trials in which the bodies in each image held identical poses (seen from different views) to trials containing different poses. EBA and FBA adapted to identical views of the same pose, and both showed a progressive rebound from adaptation as a function of the angular difference between views, up to approximately 30 degrees. However, these adaptation effects were eliminated when the body stimuli were followed by a pattern mask. Delaying the mask onset increased the response (but not the adaptation effect) in EBA, leaving FBA unaffected. We interpret these masking effects as evidence that view-dependent fMRI adaptation is driven by later waves of neuronal responses in the regions of interest. Finally, in a whole brain analysis, we identified an anterior region of the left inferior temporal sulcus (l-aITS) that responded linearly to stimulus rotation, but showed no selectivity for bodies. Our results show that body-selective cortical areas exhibit a similar degree of view-invariance as other object selective areas--such as the lateral occipitotemporal area (LO) and posterior fusiform gyrus (pFs).
Zhang, Qiushi; Yang, Xueqian; Yao, Li; Zhao, Xiaojie
2017-03-27
Working memory (WM) refers to the holding and manipulation of information during cognitive tasks. Its underlying neural mechanisms have been explored through both functional magnetic resonance imaging (fMRI) and electroencephalography (EEG). Trial-by-trial coupling of simultaneously collected EEG and fMRI signals has become an important and promising approach to study the spatio-temporal dynamics of such cognitive processes. Previous studies have demonstrated a modulation effect of the WM load on both the BOLD response in certain brain areas and the amplitude of P3. However, much remains to be explored regarding the WM load-dependent relationship between the amplitude of ERP components and cortical activities, and the low signal-to-noise ratio (SNR) of the EEG signal still poses a challenge to performing single-trial analyses. In this paper, we investigated the spatio-temporal activities of P3 during an n-back verbal WM task by introducing an adaptive wavelet denoiser into the extraction of single-trial P3 features and using general linear model (GLM) to integrate simultaneously collected EEG and fMRI data. Our results replicated the modulation effect of the WM load on the P3 amplitude. Additionally, the activation of single-trial P3 amplitudes was detected in multiple brain regions, including the insula, the cuneus, the lingual gyrus (LG), and the middle occipital gyrus (MOG). Moreover, we found significant correlations between P3 features and behavioral performance. These findings suggest that the single-trial integration of simultaneous EEG and fMRI signals may provide new insights into classical cognitive functions. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
Learning and Generalization under Ambiguity: An fMRI Study
Chumbley, J. R.; Flandin, G.; Bach, D. R.; Daunizeau, J.; Fehr, E.; Dolan, R. J.; Friston, K. J.
2012-01-01
Adaptive behavior often exploits generalizations from past experience by applying them judiciously in new situations. This requires a means of quantifying the relative importance of prior experience and current information, so they can be balanced optimally. In this study, we ask whether the brain generalizes in an optimal way. Specifically, we used Bayesian learning theory and fMRI to test whether neuronal responses reflect context-sensitive changes in ambiguity or uncertainty about experience-dependent beliefs. We found that the hippocampus expresses clear ambiguity-dependent responses that are associated with an augmented rate of learning. These findings suggest candidate neuronal systems that may be involved in aberrations of generalization, such as over-confidence. PMID:22275857
Learning and generalization under ambiguity: an fMRI study.
Chumbley, J R; Flandin, G; Bach, D R; Daunizeau, J; Fehr, E; Dolan, R J; Friston, K J
2012-01-01
Adaptive behavior often exploits generalizations from past experience by applying them judiciously in new situations. This requires a means of quantifying the relative importance of prior experience and current information, so they can be balanced optimally. In this study, we ask whether the brain generalizes in an optimal way. Specifically, we used Bayesian learning theory and fMRI to test whether neuronal responses reflect context-sensitive changes in ambiguity or uncertainty about experience-dependent beliefs. We found that the hippocampus expresses clear ambiguity-dependent responses that are associated with an augmented rate of learning. These findings suggest candidate neuronal systems that may be involved in aberrations of generalization, such as over-confidence.
Saj, Arnaud; Cojan, Yann; Vocat, Roland; Luauté, Jacques; Vuilleumier, Patrik
2013-01-01
Unilateral spatial neglect involves a failure to report or orient to stimuli in the contralesional (left) space due to right brain damage, with severe handicap in everyday activities and poor rehabilitation outcome. Because behavioral studies suggest that prism adaptation may reduce spatial neglect, we investigated the neural mechanisms underlying prism effects on visuo-spatial processing in neglect patients. We used functional magnetic resonance imaging (fMRI) to examine the effect of (right-deviating) prisms on seven patients with left neglect, by comparing brain activity while they performed three different spatial tasks on the same visual stimuli (bisection, search, and memory), before and after a single prism-adaptation session. Following prism adaptation, fMRI data showed increased activation in bilateral parietal, frontal, and occipital cortex during bisection and visual search, but not during the memory task. These increases were associated with significant behavioral improvement in the same two tasks. Changes in neural activity and behavior were seen only after prism adaptation, but not attributable to mere task repetition. These results show for the first time the neural substrates underlying the therapeutic benefits of prism adaptation, and demonstrate that visuo-motor adaptation induced by prism exposure can restore activation in bilateral brain networks controlling spatial attention and awareness. This bilateral recruitment of fronto-parietal networks may counteract the pathological biases produced by unilateral right hemisphere damage, consistent with recent proposals that neglect may reflect lateralized deficits induced by bilateral hemispheric dysfunction. Copyright © 2011 Elsevier Ltd. All rights reserved.
Norrelgen, Fritjof; Lilja, Anders; Ingvar, Martin; Gisselgård, Jens; Fransson, Peter
2012-01-01
Objective The aims of this study were to develop and assess a method to map language networks in children with two auditory fMRI protocols in combination with a dichotic listening task (DL). The method is intended for pediatric patients prior to epilepsy surgery. To evaluate the potential clinical usefulness of the method we first wanted to assess data from a group of healthy children. Methods In a first step language test materials were developed, intended for subsequent implementation in fMRI protocols. An evaluation of this material was done in 30 children with typical development, 10 from the 1st, 4th and the 7th grade, respectively. The language test material was then adapted and implemented in two fMRI protocols intended to target frontal and posterior language networks. In a second step language lateralization was assessed in 17 typical 10–11 year olds with fMRI and DL. To reach a conclusion about language lateralization, firstly, quantitative analyses of the index data from the two fMRI tasks and the index data from the DL task were done separately. In a second step a set of criteria were applied to these results to reach a conclusion about language lateralization. The steps of these analyses are described in detail. Results The behavioral assessment of the language test material showed that it was well suited for typical children. The results of the language lateralization assessments, based on fMRI data and DL data, showed that for 15 of the 17 subjects (88%) a conclusion could be reached about hemispheric language dominance. In 2 cases (12%) DL provided critical data. Conclusions The employment of DL combined with language mapping using fMRI for assessing hemispheric language dominance is novel and it was deemed valuable since it provided additional information compared to the results gained from each method individually. PMID:23284796
Single-trial EEG-informed fMRI analysis of emotional decision problems in hot executive function.
Guo, Qian; Zhou, Tiantong; Li, Wenjie; Dong, Li; Wang, Suhong; Zou, Ling
2017-07-01
Executive function refers to conscious control in psychological process which relates to thinking and action. Emotional decision is a part of hot executive function and contains emotion and logic elements. As a kind of important social adaptation ability, more and more attention has been paid in recent years. Gambling task can be well performed in the study of emotional decision. As fMRI researches focused on gambling task show not completely consistent brain activation regions, this study adopted EEG-fMRI fusion technology to reveal brain neural activity related with feedback stimuli. In this study, an EEG-informed fMRI analysis was applied to process simultaneous EEG-fMRI data. First, relative power-spectrum analysis and K-means clustering method were performed separately to extract EEG-fMRI features. Then, Generalized linear models were structured using fMRI data and using different EEG features as regressors. The results showed that in the win versus loss stimuli, the activated regions almost covered the caudate, the ventral striatum (VS), the orbital frontal cortex (OFC), and the cingulate. Wide activation areas associated with reward and punishment were revealed by the EEG-fMRI integration analysis than the conventional fMRI results, such as the posterior cingulate and the OFC. The VS and the medial prefrontal cortex (mPFC) were found when EEG power features were performed as regressors of GLM compared with results entering the amplitudes of feedback-related negativity (FRN) as regressors. Furthermore, the brain region activation intensity was the strongest when theta-band power was used as a regressor compared with the other two fusion results. The EEG-based fMRI analysis can more accurately depict the whole-brain activation map and analyze emotional decision problems.
Knuttinen, M-G; Parrish, T B; Weiss, C; LaBar, K S; Gitelman, D R; Power, J M; Mesulam, M-M; Disterhoft, J F
2002-10-01
This study was designed to develop a suitable method of recording eyeblink responses while conducting functional magnetic resonance imaging (fMRI). Given the complexity of this behavioral setup outside of the magnet, this study sought to adapt and further optimize an approach to eyeblink conditioning that would be suitable for conducting event-related fMRI experiments. This method involved the acquisition of electromyographic (EMG) signals from the orbicularis oculi of the right eye, which were subsequently amplified and converted into an optical signal outside of the head coil. This optical signal was converted back into an electrical signal once outside the magnet room. Electromyography (EMG)-detected eyeblinks were used to measure responses in a delay eyeblink conditioning paradigm. Our results indicate that: (1) electromyography is a sensitive method for the detection of eyeblinks during fMRI; (2) minimal interactions or artifacts of the EMG signal were created from the magnetic resonance pulse sequence; and (3) no electromyography-related artifacts were detected in the magnetic resonance images. Furthermore, an analysis of the functional data showed areas of activation that have previously been shown in positron emission tomography studies of human eyeblink conditioning. Our results support the strength of this behavioral setup as a suitable method to be used in association with fMRI.
NASA Astrophysics Data System (ADS)
Zhu, Maohu; Jie, Nanfeng; Jiang, Tianzi
2014-03-01
A reliable and precise classification of schizophrenia is significant for its diagnosis and treatment of schizophrenia. Functional magnetic resonance imaging (fMRI) is a novel tool increasingly used in schizophrenia research. Recent advances in statistical learning theory have led to applying pattern classification algorithms to access the diagnostic value of functional brain networks, discovered from resting state fMRI data. The aim of this study was to propose an adaptive learning algorithm to distinguish schizophrenia patients from normal controls using resting-state functional language network. Furthermore, here the classification of schizophrenia was regarded as a sample selection problem where a sparse subset of samples was chosen from the labeled training set. Using these selected samples, which we call informative vectors, a classifier for the clinic diagnosis of schizophrenia was established. We experimentally demonstrated that the proposed algorithm incorporating resting-state functional language network achieved 83.6% leaveone- out accuracy on resting-state fMRI data of 27 schizophrenia patients and 28 normal controls. In contrast with KNearest- Neighbor (KNN), Support Vector Machine (SVM) and l1-norm, our method yielded better classification performance. Moreover, our results suggested that a dysfunction of resting-state functional language network plays an important role in the clinic diagnosis of schizophrenia.
Adaptation of brain functional and structural networks in aging.
Lee, Annie; Ratnarajah, Nagulan; Tuan, Ta Anh; Chen, Shen-Hsing Annabel; Qiu, Anqi
2015-01-01
The human brain, especially the prefrontal cortex (PFC), is functionally and anatomically reorganized in order to adapt to neuronal challenges in aging. This study employed structural MRI, resting-state fMRI (rs-fMRI), and high angular resolution diffusion imaging (HARDI), and examined the functional and structural reorganization of the PFC in aging using a Chinese sample of 173 subjects aged from 21 years and above. We found age-related increases in the structural connectivity between the PFC and posterior brain regions. Such findings were partially mediated by age-related increases in the structural connectivity of the occipital lobe within the posterior brain. Based on our findings, it is thought that the PFC reorganization in aging could be partly due to the adaptation to age-related changes in the structural reorganization of the posterior brain. This thus supports the idea derived from task-based fMRI that the PFC reorganization in aging may be adapted to the need of compensation for resolving less distinctive stimulus information from the posterior brain regions. In addition, we found that the structural connectivity of the PFC with the temporal lobe was fully mediated by the temporal cortical thickness, suggesting that the brain morphology plays an important role in the functional and structural reorganization with aging.
McGonigle, John; Murphy, Anna; Paterson, Louise M; Reed, Laurence J; Nestor, Liam; Nash, Jonathan; Elliott, Rebecca; Ersche, Karen D; Flechais, Remy SA; Newbould, Rexford; Orban, Csaba; Smith, Dana G; Taylor, Eleanor M; Waldman, Adam D; Robbins, Trevor W; Deakin, JF William; Nutt, David J; Lingford-Hughes, Anne R; Suckling, John
2016-01-01
Objectives: We aimed to set up a robust multi-centre clinical fMRI and neuropsychological platform to investigate the neuropharmacology of brain processes relevant to addiction – reward, impulsivity and emotional reactivity. Here we provide an overview of the fMRI battery, carried out across three centres, characterizing neuronal response to the tasks, along with exploring inter-centre differences in healthy participants. Experimental design: Three fMRI tasks were used: monetary incentive delay to probe reward sensitivity, go/no-go to probe impulsivity and an evocative images task to probe emotional reactivity. A coordinate-based activation likelihood estimation (ALE) meta-analysis was carried out for the reward and impulsivity tasks to help establish region of interest (ROI) placement. A group of healthy participants was recruited from across three centres (total n=43) to investigate inter-centre differences. Principle observations: The pattern of response observed for each of the three tasks was consistent with previous studies using similar paradigms. At the whole brain level, significant differences were not observed between centres for any task. Conclusions: In developing this platform we successfully integrated neuroimaging data from three centres, adapted validated tasks and applied whole brain and ROI approaches to explore and demonstrate their consistency across centres. PMID:27703042
McGonigle, John; Murphy, Anna; Paterson, Louise M; Reed, Laurence J; Nestor, Liam; Nash, Jonathan; Elliott, Rebecca; Ersche, Karen D; Flechais, Remy Sa; Newbould, Rexford; Orban, Csaba; Smith, Dana G; Taylor, Eleanor M; Waldman, Adam D; Robbins, Trevor W; Deakin, Jf William; Nutt, David J; Lingford-Hughes, Anne R; Suckling, John
2017-01-01
We aimed to set up a robust multi-centre clinical fMRI and neuropsychological platform to investigate the neuropharmacology of brain processes relevant to addiction - reward, impulsivity and emotional reactivity. Here we provide an overview of the fMRI battery, carried out across three centres, characterizing neuronal response to the tasks, along with exploring inter-centre differences in healthy participants. Three fMRI tasks were used: monetary incentive delay to probe reward sensitivity, go/no-go to probe impulsivity and an evocative images task to probe emotional reactivity. A coordinate-based activation likelihood estimation (ALE) meta-analysis was carried out for the reward and impulsivity tasks to help establish region of interest (ROI) placement. A group of healthy participants was recruited from across three centres (total n=43) to investigate inter-centre differences. Principle observations: The pattern of response observed for each of the three tasks was consistent with previous studies using similar paradigms. At the whole brain level, significant differences were not observed between centres for any task. In developing this platform we successfully integrated neuroimaging data from three centres, adapted validated tasks and applied whole brain and ROI approaches to explore and demonstrate their consistency across centres.
Residual fMRI sensitivity for identity changes in acquired prosopagnosia.
Fox, Christopher J; Iaria, Giuseppe; Duchaine, Bradley C; Barton, Jason J S
2013-01-01
While a network of cortical regions contribute to face processing, the lesions in acquired prosopagnosia are highly variable, and likely result in different combinations of spared and affected regions of this network. To assess the residual functional sensitivities of spared regions in prosopagnosia, we designed a rapid event-related functional magnetic resonance imaging (fMRI) experiment that included pairs of faces with same or different identities and same or different expressions. By measuring the release from adaptation to these facial changes we determined the residual sensitivity of face-selective regions-of-interest. We tested three patients with acquired prosopagnosia, and all three of these patients demonstrated residual sensitivity for facial identity changes in surviving fusiform and occipital face areas of either the right or left hemisphere, but not in the right posterior superior temporal sulcus. The patients also showed some residual capabilities for facial discrimination with normal performance on the Benton Facial Recognition Test, but impaired performance on more complex tasks of facial discrimination. We conclude that fMRI can demonstrate residual processing of facial identity in acquired prosopagnosia, that this adaptation can occur in the same structures that show similar processing in healthy subjects, and further, that this adaptation may be related to behavioral indices of face perception.
Residual fMRI sensitivity for identity changes in acquired prosopagnosia
Fox, Christopher J.; Iaria, Giuseppe; Duchaine, Bradley C.; Barton, Jason J. S.
2013-01-01
While a network of cortical regions contribute to face processing, the lesions in acquired prosopagnosia are highly variable, and likely result in different combinations of spared and affected regions of this network. To assess the residual functional sensitivities of spared regions in prosopagnosia, we designed a rapid event-related functional magnetic resonance imaging (fMRI) experiment that included pairs of faces with same or different identities and same or different expressions. By measuring the release from adaptation to these facial changes we determined the residual sensitivity of face-selective regions-of-interest. We tested three patients with acquired prosopagnosia, and all three of these patients demonstrated residual sensitivity for facial identity changes in surviving fusiform and occipital face areas of either the right or left hemisphere, but not in the right posterior superior temporal sulcus. The patients also showed some residual capabilities for facial discrimination with normal performance on the Benton Facial Recognition Test, but impaired performance on more complex tasks of facial discrimination. We conclude that fMRI can demonstrate residual processing of facial identity in acquired prosopagnosia, that this adaptation can occur in the same structures that show similar processing in healthy subjects, and further, that this adaptation may be related to behavioral indices of face perception. PMID:24151479
Spatially Regularized Machine Learning for Task and Resting-state fMRI
Song, Xiaomu; Panych, Lawrence P.; Chen, Nan-kuei
2015-01-01
Background Reliable mapping of brain function across sessions and/or subjects in task- and resting-state has been a critical challenge for quantitative fMRI studies although it has been intensively addressed in the past decades. New Method A spatially regularized support vector machine (SVM) technique was developed for the reliable brain mapping in task- and resting-state. Unlike most existing SVM-based brain mapping techniques, which implement supervised classifications of specific brain functional states or disorders, the proposed method performs a semi-supervised classification for the general brain function mapping where spatial correlation of fMRI is integrated into the SVM learning. The method can adapt to intra- and inter-subject variations induced by fMRI nonstationarity, and identify a true boundary between active and inactive voxels, or between functionally connected and unconnected voxels in a feature space. Results The method was evaluated using synthetic and experimental data at the individual and group level. Multiple features were evaluated in terms of their contributions to the spatially regularized SVM learning. Reliable mapping results in both task- and resting-state were obtained from individual subjects and at the group level. Comparison with Existing Methods A comparison study was performed with independent component analysis, general linear model, and correlation analysis methods. Experimental results indicate that the proposed method can provide a better or comparable mapping performance at the individual and group level. Conclusions The proposed method can provide accurate and reliable mapping of brain function in task- and resting-state, and is applicable to a variety of quantitative fMRI studies. PMID:26470627
fMRI and MEG in the study of typical and atypical cognitive development.
Taylor, M J; Donner, E J; Pang, E W
2012-01-01
The tremendous changes in brain structure over childhood are critical to the development of cognitive functions. Neuroimaging provides a means of linking these brain-behaviour relations, as task protocols can be adapted for use with young children to assess the development of cognitive functions in both typical and atypical populations. This paper reviews some of our research using magnetoencephalography (MEG) and functional MRI (fMRI) in the study of cognitive development, with a focus on frontal lobe functions. Working memory for complex abstract patterns showed clear development in terms of the recruitment of frontal regions, seen with fMRI, with indications of strategy differences across the age range, from 6 to 35 years of age. Right hippocampal involvement was also evident in these n-back tasks, demonstrating its involvement in recognition in simple working memory protocols. Children born very preterm (7 to 9 years of age) showed reduced fMRI activation particularly in the precuneus and right hippocampal regions relative to control children. In a large normative n-back study (n=90) with upright and inverted faces, MEG data also showed right hippocampal activation that was present across the age range; frontal sources were evident only from 10 years of age. Other studies have investigated the development of set shifting, an executive function that is often deficit in atypical populations. fMRI showed recruitment of frontal areas, including the insula, that have significantly different patterns in children (7 to 14 years of age) with autism spectrum disorder compared to typically developing children, indicating that successful performance implicated differing strategies in these two groups of children. These types of studies will help our understanding of both normal brain-behaviour development and cognitive dysfunction in atypically developing populations. Copyright © 2011 Elsevier Masson SAS. All rights reserved.
FMRI evidence of 'mirror' responses to geometric shapes.
Press, Clare; Catmur, Caroline; Cook, Richard; Widmann, Hannah; Heyes, Cecilia; Bird, Geoffrey
2012-01-01
Mirror neurons may be a genetic adaptation for social interaction. Alternatively, the associative hypothesis proposes that the development of mirror neurons is driven by sensorimotor learning, and that, given suitable experience, mirror neurons will respond to any stimulus. This hypothesis was tested using fMRI adaptation to index populations of cells with mirror properties. After sensorimotor training, where geometric shapes were paired with hand actions, BOLD response was measured while human participants experienced runs of events in which shape observation alternated with action execution or observation. Adaptation from shapes to action execution, and critically, observation, occurred in ventral premotor cortex (PMv) and inferior parietal lobule (IPL). Adaptation from shapes to execution indicates that neuronal populations responding to the shapes had motor properties, while adaptation to observation demonstrates that these populations had mirror properties. These results indicate that sensorimotor training induced populations of cells with mirror properties in PMv and IPL to respond to the observation of arbitrary shapes. They suggest that the mirror system has not been shaped by evolution to respond in a mirror fashion to biological actions; instead, its development is mediated by stimulus-general processes of learning within a system adapted for visuomotor control.
fMRI Evidence of ‘Mirror’ Responses to Geometric Shapes
Press, Clare; Catmur, Caroline; Cook, Richard; Widmann, Hannah; Heyes, Cecilia; Bird, Geoffrey
2012-01-01
Mirror neurons may be a genetic adaptation for social interaction [1]. Alternatively, the associative hypothesis [2], [3] proposes that the development of mirror neurons is driven by sensorimotor learning, and that, given suitable experience, mirror neurons will respond to any stimulus. This hypothesis was tested using fMRI adaptation to index populations of cells with mirror properties. After sensorimotor training, where geometric shapes were paired with hand actions, BOLD response was measured while human participants experienced runs of events in which shape observation alternated with action execution or observation. Adaptation from shapes to action execution, and critically, observation, occurred in ventral premotor cortex (PMv) and inferior parietal lobule (IPL). Adaptation from shapes to execution indicates that neuronal populations responding to the shapes had motor properties, while adaptation to observation demonstrates that these populations had mirror properties. These results indicate that sensorimotor training induced populations of cells with mirror properties in PMv and IPL to respond to the observation of arbitrary shapes. They suggest that the mirror system has not been shaped by evolution to respond in a mirror fashion to biological actions; instead, its development is mediated by stimulus-general processes of learning within a system adapted for visuomotor control. PMID:23251653
Fernandez, Bruno; Cardebat, Dominique; Demonet, Jean-François; Joseph, Pierre Alain; Mazaux, Jean-Michel; Barat, Michel; Allard, Michèle
2004-09-01
The goal of this study was to develop a functional MRI (fMRI) paradigm robust and reproducible enough in healthy subjects to be adapted for a follow-up study aiming at evaluating the anatomical substratum of recovery in poststroke aphasia. Ten right-handed subjects were studied longitudinally using fMRI (7 of them being scanned twice) and compared with a patient with conduction aphasia during the first year of stroke recovery. Controls exhibited reproducible activation patterns between subjects and between sessions during language tasks. In contrast, the patient exhibited dynamic changes in brain activation pattern, particularly in the phonological task, during the 2 fMRI sessions. At 1 month after stroke, language homotopic right areas were recruited, whereas large perilesional left involvement occurred later (12 months). We first demonstrate intersubject robustness and intrasubject reproducibility of our paradigm in 10 healthy subjects and thus its validity in a patient follow-up study over a stroke recovery time course. Indeed, results suggest a spatiotemporal poststroke brain reorganization involving both hemispheres during the recovery course, with an early implication of a new contralateral functional neural network and a later implication of an ipsilateral one.
Chouinard, Philippe A; Goodale, Melvyn A
2012-02-01
We used fMRI to identify brain areas that adapted to either animals or manipulable artifacts while participants classified highly-rendered color photographs into subcategories. Several key brain areas adapted more strongly to one class of objects compared to the other. Namely, we observed stronger adaptation for animals in the lingual gyrus bilaterally, which are known to analyze the color of objects, and in the right frontal operculum and in the anterior insular cortex bilaterally, which are known to process emotional content. In contrast, the left anterior intraparietal sulcus, which is important for configuring the hand to match the three-dimensional structure of objects during grasping, adapted more strongly to manipulable artifacts. Contrary to what a previous study has found using gray-scale photographs, we did not replicate categorical-specific adaptation in the lateral fusiform gyrus for animals and categorical-specific adaptation in the medial fusiform gyrus for manipulable artifacts. Both categories of objects adapted strongly in the fusiform gyrus without any clear preference in location along its medial-lateral axis. We think that this is because the fusiform gyrus has an important role to play in color processing and hence its responsiveness to color stimuli could be very different than its responsiveness to gray-scale photographs. Nevertheless, on the basis of what we found, we propose that the recognition and subsequent classification of animals may depend primarily on perceptual properties, such as their color, and on their emotional content whereas other factors, such as their function, may play a greater role for classifying manipulable artifacts. Copyright © 2011 Elsevier Inc. All rights reserved.
Mullen, Kathy T; Chang, Dorita H F; Hess, Robert F
2015-12-01
There is controversy as to how responses to colour in the human brain are organized within the visual pathways. A key issue is whether there are modular pathways that respond selectively to colour or whether there are common neural substrates for both colour and achromatic (Ach) contrast. We used functional magnetic resonance imaging (fMRI) adaptation to investigate the responses of early and extrastriate visual areas to colour and Ach contrast. High-contrast red-green (RG) and Ach sinewave rings (0.5 cycles/degree, 2 Hz) were used as both adapting stimuli and test stimuli in a block design. We found robust adaptation to RG or Ach contrast in all visual areas. Cross-adaptation between RG and Ach contrast occurred in all areas indicating the presence of integrated, colour and Ach responses. Notably, we revealed contrasting trends for the two test stimuli. For the RG test, unselective processing (robust adaptation to both RG and Ach contrast) was most evident in the early visual areas (V1 and V2), but selective responses, revealed as greater adaptation between the same stimuli than cross-adaptation between different stimuli, emerged in the ventral cortex, in V4 and VO in particular. For the Ach test, unselective responses were again most evident in early visual areas but Ach selectivity emerged in the dorsal cortex (V3a and hMT+). Our findings support a strong presence of integrated mechanisms for colour and Ach contrast across the visual hierarchy, with a progression towards selective processing in extrastriate visual areas. © 2015 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Functional magnetic resonance imaging in clinical practice: State of the art and science.
Barras, Christen D; Asadi, Hamed; Baldeweg, Torsten; Mancini, Laura; Yousry, Tarek A; Bisdas, Sotirios
2016-11-01
Functional magnetic resonance imaging (fMRI) has become a mainstream neuroimaging modality in the assessment of patients being evaluated for brain tumour and epilepsy surgeries. Thus, it is important for doctors in primary care settings to be well acquainted with the present and potential future applications, as well as limitations, of this modality. The objective of this article is to introduce the theoretical principles and state-of-the-art clinical applications of fMRI in brain tumour and epilepsy surgery, with a focus on the implications for clinical primary care. fMRI enables non-invasive functional mapping of specific cortical tasks (eg motor, language, memory-based, visual), revealing information about functional localisation, anatomical variation in cortical function, and disease effects and adaptations, including the fascinating phenomenon of brain plasticity. fMRI is currently ordered by specialist neurologists and neurosurgeons for the purposes of pre-surgical assessment, and within the context of an experienced multidisciplinary team to prepare, conduct and interpret the scan. With an increasing number of patients undergoing fMRI, general practitioners can expect questions about the current and emerging role of fMRI in clinical care from these patients and their families.
Brain activation patterns elicited by the 'Faces Symbol Test' -- a pilot fMRI study.
Grabner, Rh; Popotnig, F; Ropele, S; Neuper, C; Gorani, F; Petrovic, K; Ebner, F; Strasser-Fuchs, S; Fazekas, F; Enzinger, C
2008-04-01
The Faces Symbol Test (FST) has recently been proposed as a brief and patient-friendly screening instrument for the assessment of cognitive dysfunction in patients with multiple sclerosis (MS). However, in contrast to well-established MS screening tests such as the Paced Auditory Serial Addition Test, the neural correlates of the FST have not been investigated so far. In the present study, we developed a functional MRI (fMRI) version of the FST to provide first data on brain regions and networks involved in this test. A sample of 19 healthy participants completed a version of the FST adapted for fMRI, requiring matching of faces and symbols in a multiple choice test and two further experimental conditions drawing on cognitive subcomponents (face matching and symbol matching). Imaging data showed a differential involvement of a fronto-parieto-occipital network in the three conditions. The most demanding FST condition elicited brain activation patterns related with sustained attention and executive control. These results suggest that the FST recruits brain networks critical for higher-order cognitive functions often impaired in MS patients.
Reddy, Rajiv M; Panahi, Issa M S
2008-01-01
The performance of FIR feedforward, IIR feedforward, FIR feedback, hybrid FIR feedforward--FIR feedback, and hybrid IIR feedforward - FIR feedback structures for active noise control (ANC) are compared for an fMRI noise application. The filtered-input normalized least squares (FxNLMS) algorithm is used to update the coefficients of the adaptive filters in all these structures. Realistic primary and secondary paths of an fMRI bore are used by estimating them on a half cylindrical acrylic bore of 0.76 m (D)x1.52 m (L). Detailed results of the performance of the ANC system are presented in the paper for each of these structures. We find that the IIR feedforward structure produces most of the performance improvement in the hybrid IIR feedforward - FIR feedback structure and adding the feedback structure becomes almost redundant in the case of fMRI noise.
Objective assessment of olfactory function using functional magnetic resonance imaging.
Toledano, Adolfo; Borromeo, Susana; Luna, Guillermo; Molina, Elena; Solana, Ana Beatriz; García-Polo, Pablo; Hernández, Juan Antonio; Álvarez-linera, Juan
2012-01-01
To show the results of a device that generates automated olfactory stimuli suitable for functional magnetic resonance imaging (fMRI) experiments. Ten normal volunteers, 5 women and 5 men, were studied. The system allows the programming of several sequences, providing the capability to synchronise the onset of odour presentation with acquisition by a trigger signal of the MRI scanner. The olfactometer is a device that allows selection of the odour, the event paradigm, the time of stimuli and the odour concentration. The paradigm used during fMRI scanning consisted of 15-s blocks. The odorant event took 2s with butanol, mint and coffee. We observed olfactory activity in the olfactory bulb, entorhinal cortex (4%), amygdala (2.5%) and temporo-parietal cortex, especially in the areas related to emotional integration. The device has demonstrated its effectiveness in stimulating olfactory areas and its capacity to adapt to fMRI equipment. Copyright © 2010 Elsevier España, S.L. All rights reserved.
A Model of Emotion Management for U.S. Army Leaders
2010-12-01
study . The Leadership Quarterly, 13, 601-614. Ochsner, K. N., Bunge, S. A., Gross, J. J., & Gabrieli, J. D. E. (2002). Rethinking feelings: An fMRI ...adaptability, innovation) 3) Motivation (achievement drive, commitment to group/organization, initiative, optimism) 4) Empathy (understanding...regard, emotional self-awareness, assertiveness, independence, self-actualization) 2) Interpersonal ( empathy , social responsibility, establishing
SLEEP AND THE FUNCTIONAL CONNECTOME
Picchioni, Dante; Duyn, Jeff H.; Horovitz, Silvina G.
2013-01-01
Sleep and the functional connectome are research areas with considerable overlap. Neuroimaging studies of sleep based on EEG-PET and EEG-fMRI are revealing the brain networks that support sleep, as well as networks that may support the roles and processes attributed to sleep. For example, phenomena such as arousal and consciousness are substantially modulated during sleep, and one would expect this modulation to be reflected in altered network activity. In addition, recent work suggests that sleep also has a number of adaptive functions that support waking activity. Thus the study of sleep may elucidate the circuits and processes that support waking function and complement information obtained from fMRI during waking conditions. In this review, we will discuss examples of this for memory, arousal, and consciousness after providing a brief background on sleep and on studying it with fMRI. PMID:23707592
Increased anterior cingulate cortex response precedes behavioural adaptation in anorexia nervosa
Geisler, Daniel; Ritschel, Franziska; King, Joseph A.; Bernardoni, Fabio; Seidel, Maria; Boehm, Ilka; Runge, Franziska; Goschke, Thomas; Roessner, Veit; Smolka, Michael N.; Ehrlich, Stefan
2017-01-01
Patients with anorexia nervosa (AN) are characterised by increased self-control, cognitive rigidity and impairments in set-shifting, but the underlying neural mechanisms are poorly understood. Here we used functional magnetic resonance imaging (fMRI) to elucidate the neural correlates of behavioural adaptation to changes in reward contingencies in young acutely ill AN patients. Thirty-six adolescent/young adult, non-chronic female AN patients and 36 age-matched healthy females completed a well-established probabilistic reversal learning task during fMRI. We analysed hemodynamic responses in empirically-defined regions of interest during positive feedback and negative feedback not followed/followed by behavioural adaptation and conducted functional connectivity analyses. Although overall task performance was comparable between groups, AN showed increased shifting after receiving negative feedback (lose-shift behaviour) and altered dorsal anterior cingulate cortex (dACC) responses as a function of feedback. Specifically, patients had increased dACC responses (which correlated with perfectionism) and task-related coupling with amygdala preceding behavioural adaption. Given the generally preserved task performance in young AN, elevated dACC responses specifically during behavioural adaption is suggestive of increased monitoring for the need to adjust performance strategies. Higher dACC-amygdala coupling and increased adaptation after negative feedback underlines this interpretation and could be related to intolerance of uncertainty which has been suggested for AN. PMID:28198813
Frequency-specific attentional modulation in human primary auditory cortex and midbrain.
Riecke, Lars; Peters, Judith C; Valente, Giancarlo; Poser, Benedikt A; Kemper, Valentin G; Formisano, Elia; Sorger, Bettina
2018-07-01
Paying selective attention to an audio frequency selectively enhances activity within primary auditory cortex (PAC) at the tonotopic site (frequency channel) representing that frequency. Animal PAC neurons achieve this 'frequency-specific attentional spotlight' by adapting their frequency tuning, yet comparable evidence in humans is scarce. Moreover, whether the spotlight operates in human midbrain is unknown. To address these issues, we studied the spectral tuning of frequency channels in human PAC and inferior colliculus (IC), using 7-T functional magnetic resonance imaging (FMRI) and frequency mapping, while participants focused on different frequency-specific sounds. We found that shifts in frequency-specific attention alter the response gain, but not tuning profile, of PAC frequency channels. The gain modulation was strongest in low-frequency channels and varied near-monotonically across the tonotopic axis, giving rise to the attentional spotlight. We observed less prominent, non-tonotopic spatial patterns of attentional modulation in IC. These results indicate that the frequency-specific attentional spotlight in human PAC as measured with FMRI arises primarily from tonotopic gain modulation, rather than adapted frequency tuning. Moreover, frequency-specific attentional modulation of afferent sound processing in human IC seems to be considerably weaker, suggesting that the spotlight diminishes toward this lower-order processing stage. Our study sheds light on how the human auditory pathway adapts to the different demands of selective hearing. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
van Atteveldt, Nienke M; Blau, Vera C; Blomert, Leo; Goebel, Rainer
2010-02-02
Efficient multisensory integration is of vital importance for adequate interaction with the environment. In addition to basic binding cues like temporal and spatial coherence, meaningful multisensory information is also bound together by content-based associations. Many functional Magnetic Resonance Imaging (fMRI) studies propose the (posterior) superior temporal cortex (STC) as the key structure for integrating meaningful multisensory information. However, a still unanswered question is how superior temporal cortex encodes content-based associations, especially in light of inconsistent results from studies comparing brain activation to semantically matching (congruent) versus nonmatching (incongruent) multisensory inputs. Here, we used fMR-adaptation (fMR-A) in order to circumvent potential problems with standard fMRI approaches, including spatial averaging and amplitude saturation confounds. We presented repetitions of audiovisual stimuli (letter-speech sound pairs) and manipulated the associative relation between the auditory and visual inputs (congruent/incongruent pairs). We predicted that if multisensory neuronal populations exist in STC and encode audiovisual content relatedness, adaptation should be affected by the manipulated audiovisual relation. The results revealed an occipital-temporal network that adapted independently of the audiovisual relation. Interestingly, several smaller clusters distributed over superior temporal cortex within that network, adapted stronger to congruent than to incongruent audiovisual repetitions, indicating sensitivity to content congruency. These results suggest that the revealed clusters contain multisensory neuronal populations that encode content relatedness by selectively responding to congruent audiovisual inputs, since unisensory neuronal populations are assumed to be insensitive to the audiovisual relation. These findings extend our previously revealed mechanism for the integration of letters and speech sounds and demonstrate that fMR-A is sensitive to multisensory congruency effects that may not be revealed in BOLD amplitude per se.
Jung, Kwan-Jin; Prasad, Parikshit; Qin, Yulin; Anderson, John R.
2013-01-01
A method to extract the subject's overt verbal response from the obscuring acoustic noise in an fMRI scan is developed by applying active noise cancellation with a conventional MRI microphone. Since the EPI scanning and its accompanying acoustic noise in fMRI are repetitive, the acoustic noise in one time segment was used as a reference noise in suppressing the acoustic noise in subsequent segments. However, the acoustic noise from the scanner was affected by the subject's movements, so the reference noise was adaptively adjusted as the scanner's acoustic properties varied in time. This method was successfully applied to a cognitive fMRI experiment with overt verbal responses. PMID:15723385
Shared orthographic neuronal representations for spelling and reading.
Purcell, Jeremy J; Jiang, Xiong; Eden, Guinevere F
2017-02-15
A central question in the study of the neural basis of written language is whether reading and spelling utilize shared orthographic representations. While recent studies employing fMRI to test this question report that the left inferior frontal gyrus (IFG) and ventral occipitotemporal cortex (vOTC) are active during both spelling and reading in the same subjects (Purcell et al., 2011a; Rapp and Lipka, 2011), the spatial resolution of fMRI limits the interpretation of these findings. Specifically, it is unknown if the neurons which encode orthography for reading are also involved in spelling of the same words. Here we address this question by employing an event-related functional magnetic resonance imaging-adaptation (fMRI-A) paradigm designed to examine shared orthographic representations across spelling and reading. First, we identified areas that independently showed adaptation to reading, and adaptation to spelling. Then we identified spatial convergence for these two separate maps via a conjunction analysis. Consistent with previous studies (Purcell et al., 2011a; Rapp and Lipka, 2011), this analysis revealed the left dorsal IFG, vOTC and supplementary motor area. To further validate these observations, we then interrogated these regions using an across-task adaptation technique, and found adaptation across reading and spelling in the left dorsal IFG (BA 44/9). Our final analysis focused specifically on the Visual Word Form Area (VWFA) in the vOTC, whose variability in location among subjects requires the use of subject-specific identification mechanisms (Glezer and Riesenhuber, 2013). Using a functional localizer for reading, we defined the VWFA in each subject, and found adaptation effects for both within the spelling and reading conditions, respectively, as well as across spelling and reading. Because none of these effects were observed during a phonological/semantic control condition, we conclude that the left dorsal IFG and VWFA are involved in accessing the same orthography-specific representations for spelling and reading. Copyright © 2016 Elsevier Inc. All rights reserved.
Shared Orthographic Neuronal Representations for Spelling and Reading
Purcell, Jeremy J.; Jiang, Xiong; Eden, Guinevere F.
2017-01-01
A central question in the study of the neural basis of written language is whether reading and spelling utilize shared orthographic representations. While recent studies employing fMRI to test this question report that the left inferior frontal gyrus (IFG) and ventral occipitotemporal cortex (vOTC) are active during both spelling and reading in the same subjects (Purcell et al., 2011a; Rapp and Lipka, 2011), the spatial resolution of fMRI limits the interpretation of these findings. Specifically, it is unknown if the neurons which encode orthography for reading are also involved in spelling of the same words. Here we address this question by employing an event-related functional magnetic resonance imaging-adaptation (fMRI-A) paradigm designed to examine shared orthographic representations across spelling and reading. First, we identified areas that independently showed adaptation to reading, and adaptation to spelling. Then we identified spatial convergence for these two separate maps via a conjunction analysis. Consistent with previous studies (Purcell et al., 2011a; Rapp and Lipka, 2011), this analysis revealed the left dorsal IFG, vOTC and supplementary motor area. To further validate these observations, we then interrogated these regions using an across-task adaptation technique, and found adaptation across reading and spelling in the left dorsal IFG (BA 44/9). Our final analysis focused specifically on the Visual Word Form Area (VWFA) in the vOTC, whose variability in location among subjects requires the use of subject-specific identification mechanisms (Glezer and Riesenhuber, 2013). Using a functional localizer for reading, we defined the VWFA in each subject, and found adaptation effects for both within the spelling and reading conditions, respectively, as well as across spelling and reading. Because none of these effects were observed during a phonological/semantic control condition, we conclude that the left dorsal IFG and VWFA are involved in accessing the same orthography-specific representations for spelling and reading. PMID:28011250
Natural image classification driven by human brain activity
NASA Astrophysics Data System (ADS)
Zhang, Dai; Peng, Hanyang; Wang, Jinqiao; Tang, Ming; Xue, Rong; Zuo, Zhentao
2016-03-01
Natural image classification has been a hot topic in computer vision and pattern recognition research field. Since the performance of an image classification system can be improved by feature selection, many image feature selection methods have been developed. However, the existing supervised feature selection methods are typically driven by the class label information that are identical for different samples from the same class, ignoring with-in class image variability and therefore degrading the feature selection performance. In this study, we propose a novel feature selection method, driven by human brain activity signals collected using fMRI technique when human subjects were viewing natural images of different categories. The fMRI signals associated with subjects viewing different images encode the human perception of natural images, and therefore may capture image variability within- and cross- categories. We then select image features with the guidance of fMRI signals from brain regions with active response to image viewing. Particularly, bag of words features based on GIST descriptor are extracted from natural images for classification, and a sparse regression base feature selection method is adapted to select image features that can best predict fMRI signals. Finally, a classification model is built on the select image features to classify images without fMRI signals. The validation experiments for classifying images from 4 categories of two subjects have demonstrated that our method could achieve much better classification performance than the classifiers built on image feature selected by traditional feature selection methods.
Spatiotopic updating of visual feature information.
Zimmermann, Eckart; Weidner, Ralph; Fink, Gereon R
2017-10-01
Saccades shift the retina with high-speed motion. In order to compensate for the sudden displacement, the visuomotor system needs to combine saccade-related information and visual metrics. Many neurons in oculomotor but also in visual areas shift their receptive field shortly before the execution of a saccade (Duhamel, Colby, & Goldberg, 1992; Nakamura & Colby, 2002). These shifts supposedly enable the binding of information from before and after the saccade. It is a matter of current debate whether these shifts are merely location based (i.e., involve remapping of abstract spatial coordinates) or also comprise information about visual features. We have recently presented fMRI evidence for a feature-based remapping mechanism in visual areas V3, V4, and VO (Zimmermann, Weidner, Abdollahi, & Fink, 2016). In particular, we found fMRI adaptation in cortical regions representing a stimulus' retinotopic as well as its spatiotopic position. Here, we asked whether spatiotopic adaptation exists independently from retinotopic adaptation and which type of information is behaviorally more relevant after saccade execution. We first adapted at the saccade target location only and found a spatiotopic tilt aftereffect. Then, we simultaneously adapted both the fixation and the saccade target location but with opposite tilt orientations. As a result, adaptation from the fixation location was carried retinotopically to the saccade target position. The opposite tilt orientation at the retinotopic location altered the effects induced by spatiotopic adaptation. More precisely, it cancelled out spatiotopic adaptation at the saccade target location. We conclude that retinotopic and spatiotopic visual adaptation are independent effects.
Brain correlates of autonomic modulation: combining heart rate variability with fMRI.
Napadow, Vitaly; Dhond, Rupali; Conti, Giulia; Makris, Nikos; Brown, Emery N; Barbieri, Riccardo
2008-08-01
The central autonomic network (CAN) has been described in animal models but has been difficult to elucidate in humans. Potential confounds include physiological noise artifacts affecting brainstem neuroimaging data, and difficulty in deriving non-invasive continuous assessments of autonomic modulation. We have developed and implemented a new method which relates cardiac-gated fMRI timeseries with continuous-time heart rate variability (HRV) to estimate central autonomic processing. As many autonomic structures of interest are in brain regions strongly affected by cardiogenic pulsatility, we chose to cardiac-gate our fMRI acquisition to increase sensitivity. Cardiac-gating introduces T1-variability, which was corrected by transforming fMRI data to a fixed TR using a previously published method [Guimaraes, A.R., Melcher, J.R., et al., 1998. Imaging subcortical auditory activity in humans. Hum. Brain Mapp. 6(1), 33-41]. The electrocardiogram was analyzed with a novel point process adaptive-filter algorithm for computation of the high-frequency (HF) index, reflecting the time-varying dynamics of efferent cardiovagal modulation. Central command of cardiovagal outflow was inferred by using the resample HF timeseries as a regressor to the fMRI data. A grip task was used to perturb the autonomic nervous system. Our combined HRV-fMRI approach demonstrated HF correlation with fMRI activity in the hypothalamus, cerebellum, parabrachial nucleus/locus ceruleus, periaqueductal gray, amygdala, hippocampus, thalamus, and dorsomedial/dorsolateral prefrontal, posterior insular, and middle temporal cortices. While some regions consistent with central cardiovagal control in animal models gave corroborative evidence for our methodology, other mostly higher cortical or limbic-related brain regions may be unique to humans. Our approach should be optimized and applied to study the human brain correlates of autonomic modulation for various stimuli in both physiological and pathological states.
Hierarchical functional modularity in the resting-state human brain.
Ferrarini, Luca; Veer, Ilya M; Baerends, Evelinda; van Tol, Marie-José; Renken, Remco J; van der Wee, Nic J A; Veltman, Dirk J; Aleman, André; Zitman, Frans G; Penninx, Brenda W J H; van Buchem, Mark A; Reiber, Johan H C; Rombouts, Serge A R B; Milles, Julien
2009-07-01
Functional magnetic resonance imaging (fMRI) studies have shown that anatomically distinct brain regions are functionally connected during the resting state. Basic topological properties in the brain functional connectivity (BFC) map have highlighted the BFC's small-world topology. Modularity, a more advanced topological property, has been hypothesized to be evolutionary advantageous, contributing to adaptive aspects of anatomical and functional brain connectivity. However, current definitions of modularity for complex networks focus on nonoverlapping clusters, and are seriously limited by disregarding inclusive relationships. Therefore, BFC's modularity has been mainly qualitatively investigated. Here, we introduce a new definition of modularity, based on a recently improved clustering measurement, which overcomes limitations of previous definitions, and apply it to the study of BFC in resting state fMRI of 53 healthy subjects. Results show hierarchical functional modularity in the brain. Copyright 2009 Wiley-Liss, Inc
Martin-Trias, Pablo; Lanteaume, Laura; Solana, Elisabeth; Cassé-Perrot, Catherine; Fernández-Cabello, Sara; Babiloni, Claudio; Marzano, Nicola; Junqué, Carme; Rossini, Paolo Maria; Micallef, Joëlle; Truillet, Romain; Charles, Estelle; Jouve, Elisabeth; Bordet, Régis; Santamaria, Joan; Jovicich, Jorge; Rossi, Simone; Pascual-Leone, Alvaro; Blin, Olivier; Richardson, Jill; Bartrés-Faz, David
2018-06-19
Transcranial magnetic stimulation (TMS) can interfere with cognitive processes, such as transiently impairing memory. As part of a multi-center European project, we investigated the adaptability and reproducibility of a previously published TMS memory interfering protocol in two centers using EEG or fMRI scenarios. Participants were invited to attend three experimental sessions on different days, with sham repetitive TMS (rTMS) applied on day 1 and real rTMS on days 2 and 3. Sixty-eight healthy young men were included. On each experimental day, volunteers were instructed to remember visual pictures while receiving neuronavigated rTMS trains (20 Hz, 900 ms) during picture encoding at the left dorsolateral prefrontal cortex (L-DLPFC) and the vertex. Mixed ANOVA model analyses were performed. rTMS to the L-DLPFC significantly disrupted recognition memory on experimental day 2. No differences were found between centers or between fMRI and EEG recordings. Subjects with lower baseline memory performances were more susceptible to TMS disruption. No stability of TMS-induced memory interference could be demonstrated on day 3. Our data suggests that adapted cognitive rTMS protocols can be implemented in multi-center studies incorporating standardized experimental procedures. However, our center and modality effects analyses lacked sufficient statistical power, hence highlighting the need to conduct further studies with larger samples. In addition, inter and intra-subject variability in response to TMS might limit its application in crossover or longitudinal studies.
Egner, Tobias
2013-01-01
Conflict adaptation – a conflict-triggered improvement in the resolution of conflicting stimulus or response representations – has become a widely used probe of cognitive control processes in both healthy and clinical populations. Previous functional magnetic resonance imaging (fMRI) studies have localized activation foci associated with conflict resolution to dorsolateral prefrontal cortex (dlPFC). The traditional group-analysis approach employed in these studies highlights regions that are, on average, activated during conflict resolution, but does not necessarily reveal areas mediating individual differences in conflict resolution, because between-subject variance is treated as noise. Here, we employed a complementary approach in order to elucidate the neural bases of variability in the proficiency of conflict-driven cognitive control. We analyzed two independent fMRI data sets of face-word Stroop tasks by using individual variability in the behavioral expression of conflict adaptation as the metric against which brain activation was regressed, while controlling for individual differences in mean reaction time and Stroop interference. Across the two experiments, a replicable neural substrate of individual variation in conflict adaptation was found in ventrolateral prefrontal cortex (vlPFC), specifically, in the right inferior frontal gyrus, pars orbitalis (BA 47). Unbiased regression estimates showed that variability in activity in this region accounted for ~40% of the variance in behavioral expression of conflict adaptation across subjects, thus documenting a heretofore unsuspected key role for vlPFC in mediating conflict-driven adjustments in cognitive control. We speculate that vlPFC plays a primary role in conflict control that is supplemented by dlPFC recruitment under conditions of suboptimal performance. PMID:21568631
Egner, Tobias
2011-12-01
Conflict adaptation--a conflict-triggered improvement in the resolution of conflicting stimulus or response representations--has become a widely used probe of cognitive control processes in both healthy and clinical populations. Previous fMRI studies have localized activation foci associated with conflict resolution to dorsolateral PFC (dlPFC). The traditional group analysis approach employed in these studies highlights regions that are, on average, activated during conflict resolution, but does not necessarily reveal areas mediating individual differences in conflict resolution, because between-subject variance is treated as noise. Here, we employed a complementary approach to elucidate the neural bases of variability in the proficiency of conflict-driven cognitive control. We analyzed two independent fMRI data sets of face-word Stroop tasks by using individual variability in the behavioral expression of conflict adaptation as the metric against which brain activation was regressed while controlling for individual differences in mean RT and Stroop interference. Across the two experiments, a replicable neural substrate of individual variation in conflict adaptation was found in ventrolateral PFC (vlPFC), specifically, in the right inferior frontal gyrus, pars orbitalis (BA 47). Unbiased regression estimates showed that variability in activity in this region accounted for ∼ 40% of the variance in behavioral expression of conflict adaptation across subjects, thus documenting a heretofore unsuspected key role for vlPFC in mediating conflict-driven adjustments in cognitive control. We speculate that vlPFC plays a primary role in conflict control that is supplemented by dlPFC recruitment under conditions of suboptimal performance.
Della-Maggiore, Valeria; Villalta, Jorge I; Kovacevic, Natasa; McIntosh, Anthony Randal
2017-03-01
Adaptation learning is crucial to maintain precise motor control in face of environmental perturbations. Although much progress has been made in understanding the psychophysics and neurophysiology of sensorimotor adaptation (SA), the time course of memory consolidation remains elusive. The lack of a reproducible gradient of memory resistance using protocols of retrograde interference has even led to the proposal that memories produced through SA do not consolidate. Here, we pursued an alternative approach using resting-state fMRI to track changes in functional connectivity (FC) induced by learning. Given that consolidation leads to long-term memory, we hypothesized that a change in FC that predicted long-term memory but not short-term memory would provide indirect evidence for memory stabilization. Six scans were acquired before, 15 min, 1, 3, 5.5, and 24 h after training on a center-out task under veridical or distorted visual feedback. The experimental group showed an increment in FC of a network including motor, premotor, posterior parietal cortex, cerebellum, and putamen that peaked at 5.5 h. Crucially, the strengthening of this network correlated positively with long-term retention but negatively with short-term retention. Our work provides evidence, suggesting that adaptation memories stabilize within a 6-h window, and points to different mechanisms subserving short- and long-term memory. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Visual and proprioceptive interaction in patients with bilateral vestibular loss☆
Cutfield, Nicholas J.; Scott, Gregory; Waldman, Adam D.; Sharp, David J.; Bronstein, Adolfo M.
2014-01-01
Following bilateral vestibular loss (BVL) patients gradually adapt to the loss of vestibular input and rely more on other sensory inputs. Here we examine changes in the way proprioceptive and visual inputs interact. We used functional magnetic resonance imaging (fMRI) to investigate visual responses in the context of varying levels of proprioceptive input in 12 BVL subjects and 15 normal controls. A novel metal-free vibrator was developed to allow vibrotactile neck proprioceptive input to be delivered in the MRI system. A high level (100 Hz) and low level (30 Hz) control stimulus was applied over the left splenius capitis; only the high frequency stimulus generates a significant proprioceptive stimulus. The neck stimulus was applied in combination with static and moving (optokinetic) visual stimuli, in a factorial fMRI experimental design. We found that high level neck proprioceptive input had more cortical effect on brain activity in the BVL patients. This included a reduction in visual motion responses during high levels of proprioceptive input and differential activation in the midline cerebellum. In early visual cortical areas, the effect of high proprioceptive input was present for both visual conditions but in lateral visual areas, including V5/MT, the effect was only seen in the context of visual motion stimulation. The finding of a cortical visuo-proprioceptive interaction in BVL patients is consistent with behavioural data indicating that, in BVL patients, neck afferents partly replace vestibular input during the CNS-mediated compensatory process. An fMRI cervico-visual interaction may thus substitute the known visuo-vestibular interaction reported in normal subject fMRI studies. The results provide evidence for a cortical mechanism of adaptation to vestibular failure, in the form of an enhanced proprioceptive influence on visual processing. The results may provide the basis for a cortical mechanism involved in proprioceptive substitution of vestibular function in BVL patients. PMID:25061564
Visual and proprioceptive interaction in patients with bilateral vestibular loss.
Cutfield, Nicholas J; Scott, Gregory; Waldman, Adam D; Sharp, David J; Bronstein, Adolfo M
2014-01-01
Following bilateral vestibular loss (BVL) patients gradually adapt to the loss of vestibular input and rely more on other sensory inputs. Here we examine changes in the way proprioceptive and visual inputs interact. We used functional magnetic resonance imaging (fMRI) to investigate visual responses in the context of varying levels of proprioceptive input in 12 BVL subjects and 15 normal controls. A novel metal-free vibrator was developed to allow vibrotactile neck proprioceptive input to be delivered in the MRI system. A high level (100 Hz) and low level (30 Hz) control stimulus was applied over the left splenius capitis; only the high frequency stimulus generates a significant proprioceptive stimulus. The neck stimulus was applied in combination with static and moving (optokinetic) visual stimuli, in a factorial fMRI experimental design. We found that high level neck proprioceptive input had more cortical effect on brain activity in the BVL patients. This included a reduction in visual motion responses during high levels of proprioceptive input and differential activation in the midline cerebellum. In early visual cortical areas, the effect of high proprioceptive input was present for both visual conditions but in lateral visual areas, including V5/MT, the effect was only seen in the context of visual motion stimulation. The finding of a cortical visuo-proprioceptive interaction in BVL patients is consistent with behavioural data indicating that, in BVL patients, neck afferents partly replace vestibular input during the CNS-mediated compensatory process. An fMRI cervico-visual interaction may thus substitute the known visuo-vestibular interaction reported in normal subject fMRI studies. The results provide evidence for a cortical mechanism of adaptation to vestibular failure, in the form of an enhanced proprioceptive influence on visual processing. The results may provide the basis for a cortical mechanism involved in proprioceptive substitution of vestibular function in BVL patients.
The brain dynamics of rapid perceptual adaptation to adverse listening conditions.
Erb, Julia; Henry, Molly J; Eisner, Frank; Obleser, Jonas
2013-06-26
Listeners show a remarkable ability to quickly adjust to degraded speech input. Here, we aimed to identify the neural mechanisms of such short-term perceptual adaptation. In a sparse-sampling, cardiac-gated functional magnetic resonance imaging (fMRI) acquisition, human listeners heard and repeated back 4-band-vocoded sentences (in which the temporal envelope of the acoustic signal is preserved, while spectral information is highly degraded). Clear-speech trials were included as baseline. An additional fMRI experiment on amplitude modulation rate discrimination quantified the convergence of neural mechanisms that subserve coping with challenging listening conditions for speech and non-speech. First, the degraded speech task revealed an "executive" network (comprising the anterior insula and anterior cingulate cortex), parts of which were also activated in the non-speech discrimination task. Second, trial-by-trial fluctuations in successful comprehension of degraded speech drove hemodynamic signal change in classic "language" areas (bilateral temporal cortices). Third, as listeners perceptually adapted to degraded speech, downregulation in a cortico-striato-thalamo-cortical circuit was observable. The present data highlight differential upregulation and downregulation in auditory-language and executive networks, respectively, with important subcortical contributions when successfully adapting to a challenging listening situation.
Furl, N; van Rijsbergen, N J; Treves, A; Dolan, R J
2007-08-01
Previous studies have shown reductions of the functional magnetic resonance imaging (fMRI) signal in response to repetition of specific visual stimuli. We examined how adaptation affects the neural responses associated with categorization behavior, using face adaptation aftereffects. Adaptation to a given facial category biases categorization towards non-adapted facial categories in response to presentation of ambiguous morphs. We explored a hypothesis, posed by recent psychophysical studies, that these adaptation-induced categorizations are mediated by activity in relatively advanced stages within the occipitotemporal visual processing stream. Replicating these studies, we find that adaptation to a facial expression heightens perception of non-adapted expressions. Using comparable behavioral methods, we also show that adaptation to a specific identity heightens perception of a second identity in morph faces. We show both expression and identity effects to be associated with heightened anterior medial temporal lobe activity, specifically when perceiving the non-adapted category. These regions, incorporating bilateral anterior ventral rhinal cortices, perirhinal cortex and left anterior hippocampus are regions previously implicated in high-level visual perception. These categorization effects were not evident in fusiform or occipital gyri, although activity in these regions was reduced to repeated faces. The findings suggest that adaptation-induced perception is mediated by activity in regions downstream to those showing reductions due to stimulus repetition.
Fast and Adaptive Sparse Precision Matrix Estimation in High Dimensions
Liu, Weidong; Luo, Xi
2014-01-01
This paper proposes a new method for estimating sparse precision matrices in the high dimensional setting. It has been popular to study fast computation and adaptive procedures for this problem. We propose a novel approach, called Sparse Column-wise Inverse Operator, to address these two issues. We analyze an adaptive procedure based on cross validation, and establish its convergence rate under the Frobenius norm. The convergence rates under other matrix norms are also established. This method also enjoys the advantage of fast computation for large-scale problems, via a coordinate descent algorithm. Numerical merits are illustrated using both simulated and real datasets. In particular, it performs favorably on an HIV brain tissue dataset and an ADHD resting-state fMRI dataset. PMID:25750463
Uga, Minako; Dan, Ippeita; Sano, Toshifumi; Dan, Haruka; Watanabe, Eiju
2014-01-01
Abstract. An increasing number of functional near-infrared spectroscopy (fNIRS) studies utilize a general linear model (GLM) approach, which serves as a standard statistical method for functional magnetic resonance imaging (fMRI) data analysis. While fMRI solely measures the blood oxygen level dependent (BOLD) signal, fNIRS measures the changes of oxy-hemoglobin (oxy-Hb) and deoxy-hemoglobin (deoxy-Hb) signals at a temporal resolution severalfold higher. This suggests the necessity of adjusting the temporal parameters of a GLM for fNIRS signals. Thus, we devised a GLM-based method utilizing an adaptive hemodynamic response function (HRF). We sought the optimum temporal parameters to best explain the observed time series data during verbal fluency and naming tasks. The peak delay of the HRF was systematically changed to achieve the best-fit model for the observed oxy- and deoxy-Hb time series data. The optimized peak delay showed different values for each Hb signal and task. When the optimized peak delays were adopted, the deoxy-Hb data yielded comparable activations with similar statistical power and spatial patterns to oxy-Hb data. The adaptive HRF method could suitably explain the behaviors of both Hb parameters during tasks with the different cognitive loads during a time course, and thus would serve as an objective method to fully utilize the temporal structures of all fNIRS data. PMID:26157973
Fundamental Visual Representations of Social Cognition in ASD
2016-12-01
visual adaptation functions in Autism , again pointing to basic sensory processing anomalies in this population. Our research team is developing...challenging-to-test ASD pediatric population. 15. SUBJECT TERMS Autism , Visual Adaptation, Retinotopy, Social Communication, Eye-movements, fMRI, EEG, ERP...social interaction are a hallmark symptom of Autism , and the lack of appropriate eye- contact during interpersonal interactions is an oft-noted feature
Adaptive Influence of Long Term High Altitude Residence on Spatial Working Memory: An fMRI Study
ERIC Educational Resources Information Center
Yan, Xiaodan; Zhang, Jiaxing; Gong, Qiyong; Weng, Xuchu
2011-01-01
With an increasing population living at a high altitude (HA), the impact of HA residence on human cognitive function has raised concerns. We recruited two groups of college students with one group born and grew up at HA until early adulthood and the control group born and grew up at near sea level (SL); the two groups were matched at age, gender…
Fox, Christopher J.; Moon, So Young; Iaria, Giuseppe; Barton, Jason J.S.
2009-01-01
The recognition of facial identity and expression are distinct tasks, with current models hypothesizing anatomic segregation of processing within a face-processing network. Using fMRI adaptation and a region-of-interest approach, we assessed how the perception of identity and expression changes in morphed stimuli affected the signal within this network, by contrasting (a) changes that crossed categorical boundaries of identity or expression with those that did not, and (b) changes that subjects perceived as causing identity or expression to change, versus changes that they perceived as not affecting the category of identity or expression. The occipital face area (OFA) was sensitive to any structural change in a face, whether it was identity or expression, but its signal did not correlate with whether subjects perceived a change or not. Both the fusiform face area (FFA) and the posterior superior temporal sulcus (pSTS) showed release from adaptation when subjects perceived a change in either identity or expression, although in the pSTS this effect only occurred when subjects were explicitly attending to expression. The middle superior temporal sulcus (mSTS) showed release from adaptation for expression only, and the precuneus for identity only. The data support models where the OFA is involved in the early perception of facial structure. However, evidence for a functional overlap in the FFA and pSTS, with both identity and expression signals in both areas, argues against a complete independence of identity and expression processing in these regions of the core face-processing network. PMID:18852053
Fox, Christopher J; Moon, So Young; Iaria, Giuseppe; Barton, Jason J S
2009-01-15
The recognition of facial identity and expression are distinct tasks, with current models hypothesizing anatomic segregation of processing within a face-processing network. Using fMRI adaptation and a region-of-interest approach, we assessed how the perception of identity and expression changes in morphed stimuli affected the signal within this network, by contrasting (a) changes that crossed categorical boundaries of identity or expression with those that did not, and (b) changes that subjects perceived as causing identity or expression to change, versus changes that they perceived as not affecting the category of identity or expression. The occipital face area (OFA) was sensitive to any structural change in a face, whether it was identity or expression, but its signal did not correlate with whether subjects perceived a change or not. Both the fusiform face area (FFA) and the posterior superior temporal sulcus (pSTS) showed release from adaptation when subjects perceived a change in either identity or expression, although in the pSTS this effect only occurred when subjects were explicitly attending to expression. The middle superior temporal sulcus (mSTS) showed release from adaptation for expression only, and the precuneus for identity only. The data support models where the OFA is involved in the early perception of facial structure. However, evidence for a functional overlap in the FFA and pSTS, with both identity and expression signals in both areas, argues against a complete independence of identity and expression processing in these regions of the core face-processing network.
Scheef, Lukas; Nordmeyer-Massner, Jurek A; Smith-Collins, Adam Pr; Müller, Nicole; Stegmann-Woessner, Gaby; Jankowski, Jacob; Gieseke, Jürgen; Born, Mark; Seitz, Hermann; Bartmann, Peter; Schild, Hans H; Pruessmann, Klaas P; Heep, Axel; Boecker, Henning
2017-01-01
Functional magnetic resonance imaging (fMRI) in neonates has been introduced as a non-invasive method for studying sensorimotor processing in the developing brain. However, previous neonatal studies have delivered conflicting results regarding localization, lateralization, and directionality of blood oxygenation level dependent (BOLD) responses in sensorimotor cortex (SMC). Amongst the confounding factors in interpreting neonatal fMRI studies include the use of standard adult MR-coils providing insufficient signal to noise, and liberal statistical thresholds, compromising clinical interpretation at the single subject level. Here, we employed a custom-designed neonatal MR-coil adapted and optimized to the head size of a newborn in order to improve robustness, reliability and validity of neonatal sensorimotor fMRI. Thirteen preterm infants with a median gestational age of 26 weeks were scanned at term-corrected age using a prototype 8-channel neonatal head coil at 3T (Achieva, Philips, Best, NL). Sensorimotor stimulation was elicited by passive extension/flexion of the elbow at 1 Hz in a block design. Analysis of temporal signal to noise ratio (tSNR) was performed on the whole brain and the SMC, and was compared to data acquired with an 'adult' 8 channel head coil published previously. Task-evoked activation was determined by single-subject SPM8 analyses, thresholded at p < 0.05, whole-brain FWE-corrected. Using a custom-designed neonatal MR-coil, we found significant positive BOLD responses in contralateral SMC after unilateral passive sensorimotor stimulation in all neonates (analyses restricted to artifact-free data sets = 8/13). Improved imaging characteristics of the neonatal MR-coil were evidenced by additional phantom and in vivo tSNR measurements: phantom studies revealed a 240% global increase in tSNR; in vivo studies revealed a 73% global and a 55% local (SMC) increase in tSNR, as compared to the 'adult' MR-coil. Our findings strengthen the importance of using optimized coil settings for neonatal fMRI, yielding robust and reproducible SMC activation at the single subject level. We conclude that functional lateralization of SMC activation, as found in children and adults, is already present in the newborn period.
A wavelet method for modeling and despiking motion artifacts from resting-state fMRI time series.
Patel, Ameera X; Kundu, Prantik; Rubinov, Mikail; Jones, P Simon; Vértes, Petra E; Ersche, Karen D; Suckling, John; Bullmore, Edward T
2014-07-15
The impact of in-scanner head movement on functional magnetic resonance imaging (fMRI) signals has long been established as undesirable. These effects have been traditionally corrected by methods such as linear regression of head movement parameters. However, a number of recent independent studies have demonstrated that these techniques are insufficient to remove motion confounds, and that even small movements can spuriously bias estimates of functional connectivity. Here we propose a new data-driven, spatially-adaptive, wavelet-based method for identifying, modeling, and removing non-stationary events in fMRI time series, caused by head movement, without the need for data scrubbing. This method involves the addition of just one extra step, the Wavelet Despike, in standard pre-processing pipelines. With this method, we demonstrate robust removal of a range of different motion artifacts and motion-related biases including distance-dependent connectivity artifacts, at a group and single-subject level, using a range of previously published and new diagnostic measures. The Wavelet Despike is able to accommodate the substantial spatial and temporal heterogeneity of motion artifacts and can consequently remove a range of high and low frequency artifacts from fMRI time series, that may be linearly or non-linearly related to physical movements. Our methods are demonstrated by the analysis of three cohorts of resting-state fMRI data, including two high-motion datasets: a previously published dataset on children (N=22) and a new dataset on adults with stimulant drug dependence (N=40). We conclude that there is a real risk of motion-related bias in connectivity analysis of fMRI data, but that this risk is generally manageable, by effective time series denoising strategies designed to attenuate synchronized signal transients induced by abrupt head movements. The Wavelet Despiking software described in this article is freely available for download at www.brainwavelet.org. Copyright © 2014. Published by Elsevier Inc.
A wavelet method for modeling and despiking motion artifacts from resting-state fMRI time series
Patel, Ameera X.; Kundu, Prantik; Rubinov, Mikail; Jones, P. Simon; Vértes, Petra E.; Ersche, Karen D.; Suckling, John; Bullmore, Edward T.
2014-01-01
The impact of in-scanner head movement on functional magnetic resonance imaging (fMRI) signals has long been established as undesirable. These effects have been traditionally corrected by methods such as linear regression of head movement parameters. However, a number of recent independent studies have demonstrated that these techniques are insufficient to remove motion confounds, and that even small movements can spuriously bias estimates of functional connectivity. Here we propose a new data-driven, spatially-adaptive, wavelet-based method for identifying, modeling, and removing non-stationary events in fMRI time series, caused by head movement, without the need for data scrubbing. This method involves the addition of just one extra step, the Wavelet Despike, in standard pre-processing pipelines. With this method, we demonstrate robust removal of a range of different motion artifacts and motion-related biases including distance-dependent connectivity artifacts, at a group and single-subject level, using a range of previously published and new diagnostic measures. The Wavelet Despike is able to accommodate the substantial spatial and temporal heterogeneity of motion artifacts and can consequently remove a range of high and low frequency artifacts from fMRI time series, that may be linearly or non-linearly related to physical movements. Our methods are demonstrated by the analysis of three cohorts of resting-state fMRI data, including two high-motion datasets: a previously published dataset on children (N = 22) and a new dataset on adults with stimulant drug dependence (N = 40). We conclude that there is a real risk of motion-related bias in connectivity analysis of fMRI data, but that this risk is generally manageable, by effective time series denoising strategies designed to attenuate synchronized signal transients induced by abrupt head movements. The Wavelet Despiking software described in this article is freely available for download at www.brainwavelet.org. PMID:24657353
Bulgarelli, Chiara; Blasi, Anna; Arridge, Simon; Powell, Samuel; de Klerk, Carina C J M; Southgate, Victoria; Brigadoi, Sabrina; Penny, William; Tak, Sungho; Hamilton, Antonia
2018-04-12
Tracking the connectivity of the developing brain from infancy through childhood is an area of increasing research interest, and fNIRS provides an ideal method for studying the infant brain as it is compact, safe and robust to motion. However, data analysis methods for fNIRS are still underdeveloped compared to those available for fMRI. Dynamic causal modelling (DCM) is an advanced connectivity technique developed for fMRI data, that aims to estimate the coupling between brain regions and how this might be modulated by changes in experimental conditions. DCM has recently been applied to adult fNIRS, but not to infants. The present paper provides a proof-of-principle for the application of this method to infant fNIRS data and a demonstration of the robustness of this method using a simultaneously recorded fMRI-fNIRS single case study, thereby allowing the use of this technique in future infant studies. fMRI and fNIRS were simultaneously recorded from a 6-month-old sleeping infant, who was presented with auditory stimuli in a block design. Both fMRI and fNIRS data were preprocessed using SPM, and analysed using a general linear model approach. The main challenges that adapting DCM for fNIRS infant data posed included: (i) the import of the structural image of the participant for spatial pre-processing, (ii) the spatial registration of the optodes on the structural image of the infant, (iii) calculation of an accurate 3-layer segmentation of the structural image, (iv) creation of a high-density mesh as well as (v) the estimation of the NIRS optical sensitivity functions. To assess our results, we compared the values obtained for variational Free Energy (F), Bayesian Model Selection (BMS) and Bayesian Model Average (BMA) with the same set of possible models applied to both the fMRI and fNIRS datasets. We found high correspondence in F, BMS, and BMA between fMRI and fNIRS data, therefore showing for the first time high reliability of DCM applied to infant fNIRS data. This work opens new avenues for future research on effective connectivity in infancy by contributing a data analysis pipeline and guidance for applying DCM to infant fNIRS data. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Lee, Yune-Sang; Turkeltaub, Peter; Granger, Richard; Raizada, Rajeev D S
2012-03-14
Although much effort has been directed toward understanding the neural basis of speech processing, the neural processes involved in the categorical perception of speech have been relatively less studied, and many questions remain open. In this functional magnetic resonance imaging (fMRI) study, we probed the cortical regions mediating categorical speech perception using an advanced brain-mapping technique, whole-brain multivariate pattern-based analysis (MVPA). Normal healthy human subjects (native English speakers) were scanned while they listened to 10 consonant-vowel syllables along the /ba/-/da/ continuum. Outside of the scanner, individuals' own category boundaries were measured to divide the fMRI data into /ba/ and /da/ conditions per subject. The whole-brain MVPA revealed that Broca's area and the left pre-supplementary motor area evoked distinct neural activity patterns between the two perceptual categories (/ba/ vs /da/). Broca's area was also found when the same analysis was applied to another dataset (Raizada and Poldrack, 2007), which previously yielded the supramarginal gyrus using a univariate adaptation-fMRI paradigm. The consistent MVPA findings from two independent datasets strongly indicate that Broca's area participates in categorical speech perception, with a possible role of translating speech signals into articulatory codes. The difference in results between univariate and multivariate pattern-based analyses of the same data suggest that processes in different cortical areas along the dorsal speech perception stream are distributed on different spatial scales.
A Stimulus-Locked Vector Autoregressive Model for Slow Event-Related fMRI Designs
Siegle, Greg
2009-01-01
Summary Neuroscientists have become increasingly interested in exploring dynamic relationships among brain regions. Such a relationship, when directed from one region toward another, is denoted by “effective connectivity.” An fMRI experimental paradigm which is well-suited for examination of effective connectivity is the slow event-related design. This design presents stimuli at sufficient temporal spacing for determining within-trial trajectories of BOLD activation, allowing for the analysis of stimulus-locked temporal covariation of brain responses in multiple regions. This may be especially important for emotional stimuli processing, which can evolve over the course of several seconds, if not longer. However, while several methods have been devised for determining fMRI effective connectivity, few are adapted to event-related designs, which include non-stationary BOLD responses and multiple levels of nesting. We propose a model tailored for exploring effective connectivity of multiple brain regions in event-related fMRI designs - a semi-parametric adaptation of vector autoregressive (VAR) models, termed “stimulus-locked VAR” (SloVAR). Connectivity coefficients vary as a function of time relative to stimulus onset, are regularized via basis expansions, and vary randomly across subjects. SloVAR obtains flexible, data-driven estimates of effective connectivity and hence is useful for building connectivity models when prior information on dynamic regional relationships is sparse. Indices derived from the coefficient estimates can also be used to relate effective connectivity estimates to behavioral or clinical measures. We demonstrate the SloVAR model on a sample of clinically depressed and normal controls, showing that early but not late cortico-amygdala connectivity appears crucial to emotional control and early but not late cortico-cortico connectivity predicts depression severity in the depressed group, relationships that would have been missed in a more traditional VAR analysis. PMID:19236927
Hsu, Yi-Fang; Szűcs, Dénes
2012-02-15
Several functional magnetic resonance imaging (fMRI) studies have used neural adaptation paradigms to detect anatomical locations of brain activity related to number processing. However, currently not much is known about the temporal structure of number adaptation. In the present study, we used electroencephalography (EEG) to elucidate the time course of neural events in symbolic number adaptation. The numerical distance of deviants relative to standards was manipulated. In order to avoid perceptual confounds, all levels of deviants consisted of perceptually identical stimuli. Multiple successive numerical distance effects were detected in event-related potentials (ERPs). Analysis of oscillatory activity further showed at least two distinct stages of neural processes involved in the automatic analysis of numerical magnitude, with the earlier effect emerging at around 200ms and the later effect appearing at around 400ms. The findings support for the hypothesis that numerical magnitude processing involves a succession of cognitive events. Crown Copyright © 2011. Published by Elsevier Inc. All rights reserved.
A two-step super-Gaussian independent component analysis approach for fMRI data.
Ge, Ruiyang; Yao, Li; Zhang, Hang; Long, Zhiying
2015-09-01
Independent component analysis (ICA) has been widely applied to functional magnetic resonance imaging (fMRI) data analysis. Although ICA assumes that the sources underlying data are statistically independent, it usually ignores sources' additional properties, such as sparsity. In this study, we propose a two-step super-GaussianICA (2SGICA) method that incorporates the sparse prior of the sources into the ICA model. 2SGICA uses the super-Gaussian ICA (SGICA) algorithm that is based on a simplified Lewicki-Sejnowski's model to obtain the initial source estimate in the first step. Using a kernel estimator technique, the source density is acquired and fitted to the Laplacian function based on the initial source estimates. The fitted Laplacian prior is used for each source at the second SGICA step. Moreover, the automatic target generation process for initial value generation is used in 2SGICA to guarantee the stability of the algorithm. An adaptive step size selection criterion is also implemented in the proposed algorithm. We performed experimental tests on both simulated data and real fMRI data to investigate the feasibility and robustness of 2SGICA and made a performance comparison between InfomaxICA, FastICA, mean field ICA (MFICA) with Laplacian prior, sparse online dictionary learning (ODL), SGICA and 2SGICA. Both simulated and real fMRI experiments showed that the 2SGICA was most robust to noises, and had the best spatial detection power and the time course estimation among the six methods. Copyright © 2015. Published by Elsevier Inc.
Mascalchi, Mario; Ginestroni, Andrea; Toschi, Nicola; Poggesi, Anna; Cecchi, Paolo; Salvadori, Emilia; Tessa, Carlo; Cosottini, Mirco; De Stefano, Nicola; Pracucci, Giovanni; Pantoni, Leonardo; Inzitari, Domenico; Diciotti, Stefano
2014-03-01
The term leuko-araiosis (LA) describes a common chronic affection of the cerebral white matter (WM) in the elderly due to small vessel disease with variable clinical correlates. To explore whether severity of LA entails some adaptive reorganization in the cerebral cortex we evaluated with functional MRI (fMRI) the cortical activation pattern during a simple motor task in 60 subjects with mild cognitive impairment and moderate or severe (moderate-to-severe LA group, n = 46) and mild (mild LA group, n = 14) LA extension on visual rating. The microstructural damage associated with LA was measured on diffusion tensor data by computation of the mean diffusivity (MD) of the cerebral WM and by applying tract based spatial statistics (TBSS). Subjects were examined with fMRI during continuous tapping of the right dominant hand with task performance measurement. Moderate-to-severe LA group showed hyperactivation of left primary sensorimotor cortex (SM1) and right cerebellum. Regression analyses using the individual median of WM MD as explanatory variable revealed a posterior shift of activation within the left SM1 and hyperactivation of the left SMA and paracentral lobule and of the bilateral cerebellar crus. These data indicate that brain activation is modulated by increasing severity of LA with a local remapping within the SM1 and increased activity in ipsilateral nonprimary sensorimotor cortex and bilateral cerebellum. These potentially adaptive changes as well lack of contralateral cerebral hemisphere hyperactivation are in line with sparing of the U fibers and brainstem and cerebellar WM tracts and the emerging microstructual damage of the corpus callosum revealed by TBSS with increasing severity of LA. Copyright © 2012 Wiley Periodicals, Inc.
Menon, Samir; Zhu, Jack; Goyal, Deeksha; Khatib, Oussama
2017-07-01
Haptic interfaces compatible with functional magnetic resonance imaging (Haptic fMRI) promise to enable rich motor neuroscience experiments that study how humans perform complex manipulation tasks. Here, we present a large-scale study (176 scans runs, 33 scan sessions) that characterizes the reliability and performance of one such electromagnetically actuated device, Haptic fMRI Interface 3 (HFI-3). We outline engineering advances that ensured HFI-3 did not interfere with fMRI measurements. Observed fMRI temporal noise levels with HFI-3 operating were at the fMRI baseline (0.8% noise to signal). We also present results from HFI-3 experiments demonstrating that high resolution fMRI can be used to study spatio-temporal patterns of fMRI blood oxygenation dependent (BOLD) activation. These experiments include motor planning, goal-directed reaching, and visually-guided force control. Observed fMRI responses are consistent with existing literature, which supports Haptic fMRI's effectiveness at studying the brain's motor regions.
Butler, Pamela D.; Chen, Yue; Ford, Judith M.; Geyer, Mark A.; Silverstein, Steven M.; Green, Michael F.
2012-01-01
The sixth meeting of the Cognitive Neuroscience Treatment Research to Improve Cognition in Schizophrenia (CNTRICS) focused on selecting promising imaging paradigms for each of the cognitive constructs selected in the first CNTRICS meeting. In the domain of perception, the 2 constructs of interest were “gain control” and “visual integration.” CNTRICS received 6 task nominations for imaging paradigms for gain control and 3 task nominations for integration. The breakout group for perception evaluated the degree to which each of these tasks met prespecified criteria. For gain control, the breakout group believed that one task (mismatch negativity) was already mature and was being incorporated into multisite clinical trials. The breakout group recommended that 1 visual task (steady-state visual evoked potentials to magnocellular- vs parvocellular-biased stimuli) and 2 auditory measures (an event-related potential (ERP) measure of corollary discharge and a functional magnetic resonance imaging (fMRI) version of prepulse inhibition of startle) be adapted for use in clinical trials in schizophrenia research. For visual integration, the breakout group recommended that fMRI and ERP versions of a contour integration test and an fMRI version of a coherent motion test be adapted for use in clinical trials. This manuscript describes the ways in which each of these tasks met the criteria used in the breakout group to evaluate and recommend tasks for further development. PMID:21890745
An improved algorithm of fiber tractography demonstrates postischemic cerebral reorganization
NASA Astrophysics Data System (ADS)
Liu, Xiao-dong; Lu, Jie; Yao, Li; Li, Kun-cheng; Zhao, Xiao-jie
2008-03-01
In vivo white matter tractography by diffusion tensor imaging (DTI) accurately represents the organizational architecture of white matter in the vicinity of brain lesions and especially ischemic brain. In this study, we suggested an improved fiber tracking algorithm based on TEND, called TENDAS, for tensor deflection with adaptive stepping, which had been introduced a stepping framework for interpreting the algorithm behavior as a function of the tensor shape (linear-shaped or not) and tract history. The propagation direction at each step was given by the deflection vector. TENDAS tractography was used to examine a 17-year-old recovery patient with congenital right hemisphere artery stenosis combining with fMRI. Meaningless picture location was used as spatial working memory task in this study. We detected the shifted functional localization to the contralateral homotypic cortex and more prominent and extensive left-sided parietal and medial frontal cortical activations which were used directly as seed mask for tractography for the reconstruction of individual spatial parietal pathways. Comparing with the TEND algorithms, TENDAS shows smoother and less sharp bending characterization of white matter architecture of the parietal cortex. The results of this preliminary study were twofold. First, TENDAS may provide more adaptability and accuracy in reconstructing certain anatomical features, whereas it is very difficult to verify tractography maps of white matter connectivity in the living human brain. Second, our study indicates that combination of TENDAS and fMRI provide a unique image of functional cortical reorganization and structural modifications of postischemic spatial working memory.
Lafer-Sousa, Rosa; Liu, Yang O; Lafer-Sousa, Luis; Wiest, Michael C; Conway, Bevil R
2012-05-01
Colors defined by the two intermediate directions in color space, "orange-cyan" and "lime-magenta," elicit the same spatiotemporal average response from the two cardinal chromatic channels in the lateral geniculate nucleus (LGN). While we found LGN functional magnetic resonance imaging (fMRI) responses to these pairs of colors were statistically indistinguishable, primary visual cortex (V1) fMRI responses were stronger to orange-cyan. Moreover, linear combinations of single-cell responses to cone-isolating stimuli of V1 cone-opponent cells also yielded stronger predicted responses to orange-cyan over lime-magenta, suggesting these neurons underlie the fMRI result. These observations are consistent with the hypothesis that V1 recombines LGN signals into "higher-order" mechanisms tuned to noncardinal color directions. In light of work showing that natural images and daylight samples are biased toward orange-cyan, our findings further suggest that V1 is adapted to daylight. V1, especially double-opponent cells, may function to extract spatial information from color boundaries correlated with scene-structure cues, such as shadows lit by ambient blue sky juxtaposed with surfaces reflecting sunshine. © 2012 Optical Society of America
NASA Astrophysics Data System (ADS)
Zhang, Aiying; Jia, Bochao; Wang, Yu-Ping
2018-03-01
Adolescence is a transitional period between childhood and adulthood with physical changes, as well as increasing emotional activity. Studies have shown that the emotional sensitivity is related to a second dramatical brain growth. However, there is little focus on the trend of brain development during this period. In this paper, we aim to track the functional brain connectivity development in adolescence using resting state fMRI (rs-fMRI), which amounts to a time-series analysis problem. Most existing methods either require the time point to be fairly long or are only applicable to small graphs. To this end, we adapted a fast Bayesian integrative analysis (FBIA) to address the short time-series difficulty, and combined with adaptive sum of powered score (aSPU) test for group difference. The data we used are the resting state fMRI (rs-fMRI) obtained from the publicly available Philadelphia Neurodevelopmental Cohort (PNC). They include 861 individuals aged 8-22 years who were divided into five different adolescent stages. We summarized the networks with global measurements: segregation and integration, and provided full brain functional connectivity pattern in various stages of adolescence. Moreover, our research revealed several brain functional modules development trends. Our results are shown to be both statistically and biologically significant.
Dynamic modeling of neuronal responses in fMRI using cubature Kalman filtering
Havlicek, Martin; Friston, Karl J.; Jan, Jiri; Brazdil, Milan; Calhoun, Vince D.
2011-01-01
This paper presents a new approach to inverting (fitting) models of coupled dynamical systems based on state-of-the-art (cubature) Kalman filtering. Crucially, this inversion furnishes posterior estimates of both the hidden states and parameters of a system, including any unknown exogenous input. Because the underlying generative model is formulated in continuous time (with a discrete observation process) it can be applied to a wide variety of models specified with either ordinary or stochastic differential equations. These are an important class of models that are particularly appropriate for biological time-series, where the underlying system is specified in terms of kinetics or dynamics (i.e., dynamic causal models). We provide comparative evaluations with generalized Bayesian filtering (dynamic expectation maximization) and demonstrate marked improvements in accuracy and computational efficiency. We compare the schemes using a series of difficult (nonlinear) toy examples and conclude with a special focus on hemodynamic models of evoked brain responses in fMRI. Our scheme promises to provide a significant advance in characterizing the functional architectures of distributed neuronal systems, even in the absence of known exogenous (experimental) input; e.g., resting state fMRI studies and spontaneous fluctuations in electrophysiological studies. Importantly, unlike current Bayesian filters (e.g. DEM), our scheme provides estimates of time-varying parameters, which we will exploit in future work on the adaptation and enabling of connections in the brain. PMID:21396454
Adaptive scaling of reward in episodic memory: a replication study.
Mason, Alice; Ludwig, Casimir; Farrell, Simon
2017-11-01
Reward is thought to enhance episodic memory formation via dopaminergic consolidation. Bunzeck, Dayan, Dolan, and Duzel [(2010). A common mechanism for adaptive scaling of reward and novelty. Human Brain Mapping, 31, 1380-1394] provided functional magnetic resonance imaging (fMRI) and behavioural evidence that reward and episodic memory systems are sensitive to the contextual value of a reward-whether it is relatively higher or lower-as opposed to absolute value or prediction error. We carried out a direct replication of their behavioural study and did not replicate their finding that memory performance associated with reward follows this pattern of adaptive scaling. An effect of reward outcome was in the opposite direction to that in the original study, with lower reward outcomes leading to better memory than higher outcomes. There was a marginal effect of reward context, suggesting that expected value affected memory performance. We discuss the robustness of the reward memory relationship to variations in reward context, and whether other reward-related factors have a more reliable influence on episodic memory.
Breaking down the barriers: fMRI applications in pain, analgesia and analgesics
Borsook, David; Becerra, Lino R
2006-01-01
This review summarizes functional magnetic resonance imaging (fMRI) findings that have informed our current understanding of pain, analgesia and related phenomena, and discusses the potential role of fMRI in improved therapeutic approaches to pain. It is divided into 3 main sections: (1) fMRI studies of acute and chronic pain. Physiological studies of pain have found numerous regions of the brain to be involved in the interpretation of the 'pain experience'; studies in chronic pain conditions have identified a significant CNS component; and fMRI studies of surrogate models of chronic pain are also being used to further this understanding. (2) fMRI studies of endogenous pain processing including placebo, empathy, attention or cognitive modulation of pain. (3) The use of fMRI to evaluate the effects of analgesics on brain function in acute and chronic pain. fMRI has already provided novel insights into the neurobiology of pain. These insights should significantly advance therapeutic approaches to chronic pain. PMID:16982005
The neural basis for category-specific knowledge: an fMRI study.
Grossman, Murray; Koenig, Phyllis; DeVita, Chris; Glosser, Guila; Alsop, David; Detre, John; Gee, James
2002-04-01
Functional neuroimaging studies of healthy adults have associated different categories of knowledge with distinct activation patterns. The basis for these recruitment patterns has been controversial, due in part to the limited range of categories that has been studied. We used fMRI to monitor regional cortical recruitment patterns while subjects were exposed to printed names of Animals, Implements, and Abstract nouns. Both Implements and Abstract nouns were related to recruitment of left posterolateral temporal cortex and left prefrontal cortex, and Abstract nouns additionally recruited posterolateral temporal and prefrontal regions of the right hemisphere. Animals were associated with activation of ventral-medial occipital cortex in the left hemisphere at a level that approaches significance. These findings are not consistent with the "sensory-motor" model proposed to explain the neural representation of word knowledge. We suggest instead a neural model of semantic memory that reflects the processes common to understanding Implements and Abstract nouns and a selective sensitivity, possibly evolving from adaptive pressures, to the overlapping, intercorrelated visual characteristics of Animals. (C)2002 Elsevier Science (USA).
Dopamine Modulates Adaptive Prediction Error Coding in the Human Midbrain and Striatum.
Diederen, Kelly M J; Ziauddeen, Hisham; Vestergaard, Martin D; Spencer, Tom; Schultz, Wolfram; Fletcher, Paul C
2017-02-15
Learning to optimally predict rewards requires agents to account for fluctuations in reward value. Recent work suggests that individuals can efficiently learn about variable rewards through adaptation of the learning rate, and coding of prediction errors relative to reward variability. Such adaptive coding has been linked to midbrain dopamine neurons in nonhuman primates, and evidence in support for a similar role of the dopaminergic system in humans is emerging from fMRI data. Here, we sought to investigate the effect of dopaminergic perturbations on adaptive prediction error coding in humans, using a between-subject, placebo-controlled pharmacological fMRI study with a dopaminergic agonist (bromocriptine) and antagonist (sulpiride). Participants performed a previously validated task in which they predicted the magnitude of upcoming rewards drawn from distributions with varying SDs. After each prediction, participants received a reward, yielding trial-by-trial prediction errors. Under placebo, we replicated previous observations of adaptive coding in the midbrain and ventral striatum. Treatment with sulpiride attenuated adaptive coding in both midbrain and ventral striatum, and was associated with a decrease in performance, whereas bromocriptine did not have a significant impact. Although we observed no differential effect of SD on performance between the groups, computational modeling suggested decreased behavioral adaptation in the sulpiride group. These results suggest that normal dopaminergic function is critical for adaptive prediction error coding, a key property of the brain thought to facilitate efficient learning in variable environments. Crucially, these results also offer potential insights for understanding the impact of disrupted dopamine function in mental illness. SIGNIFICANCE STATEMENT To choose optimally, we have to learn what to expect. Humans dampen learning when there is a great deal of variability in reward outcome, and two brain regions that are modulated by the brain chemical dopamine are sensitive to reward variability. Here, we aimed to directly relate dopamine to learning about variable rewards, and the neural encoding of associated teaching signals. We perturbed dopamine in healthy individuals using dopaminergic medication and asked them to predict variable rewards while we made brain scans. Dopamine perturbations impaired learning and the neural encoding of reward variability, thus establishing a direct link between dopamine and adaptation to reward variability. These results aid our understanding of clinical conditions associated with dopaminergic dysfunction, such as psychosis. Copyright © 2017 Diederen et al.
Keller, Jürgen; Böhm, Sarah; Aho-Özhan, Helena E A; Loose, Markus; Gorges, Martin; Kassubek, Jan; Uttner, Ingo; Abrahams, Sharon; Ludolph, Albert C; Lulé, Dorothée
2018-06-01
Cognitive deficits, especially in the domains of social cognition and executive function including verbal fluency, are common in amyotrophic lateral sclerosis (ALS) patients. There is yet sparse understanding of pathogenesis of the underlying, possibly adaptive, cortical patterns. To address this issue, 65 patients with ALS and 33 age-, gender- and education-matched healthy controls were tested on cognitive and behavioral deficits with the Edinburgh Cognitive and Behavioural ALS Screen (ECAS). Using functional magnetic resonance imaging (fMRI), cortical activity during social cognition and executive function tasks (theory of mind, verbal fluency, alternation) adapted from the ECAS was determined in a 3 Tesla scanner. Compared to healthy controls, ALS patients performed worse in the ECAS overall (p < 0.001) and in all of its subdomains (p < 0.02), except memory. Imaging revealed altered cortical activation during all tasks, with patients consistently showing a hyperactivation in relevant brain areas compared to healthy controls. Additionally, cognitively high performing ALS patients consistently exhibited more activation in frontal brain areas than low performing patients and behaviorally unimpaired patients presented with more neuronal activity in orbitofrontal areas than behaviorally impaired patients. In conclusion, hyperactivation in fMRI cognitive tasks seems to represent an early adaptive process to overcome neuronal cell loss in relevant brain areas. The hereby presented cortical pattern change might suggest that, once this loss passes a critical threshold and no cortical buffering is possible, clinical representation of cognitive and behavioral impairment evolves. Future studies might shed light on the pattern of cortical pattern change in the course of ALS.
Cortical lamina-dependent blood volume changes in human brain at 7 T.
Huber, Laurentius; Goense, Jozien; Kennerley, Aneurin J; Trampel, Robert; Guidi, Maria; Reimer, Enrico; Ivanov, Dimo; Neef, Nicole; Gauthier, Claudine J; Turner, Robert; Möller, Harald E
2015-02-15
Cortical layer-dependent high (sub-millimeter) resolution functional magnetic resonance imaging (fMRI) in human or animal brain can be used to address questions regarding the functioning of cortical circuits, such as the effect of different afferent and efferent connectivities on activity in specific cortical layers. The sensitivity of gradient echo (GE) blood oxygenation level-dependent (BOLD) responses to large draining veins reduces its local specificity and can render the interpretation of the underlying laminar neural activity impossible. The application of the more spatially specific cerebral blood volume (CBV)-based fMRI in humans has been hindered by the low sensitivity of the noninvasive modalities available. Here, a vascular space occupancy (VASO) variant, adapted for use at high field, is further optimized to capture layer-dependent activity changes in human motor cortex at sub-millimeter resolution. Acquired activation maps and cortical profiles show that the VASO signal peaks in gray matter at 0.8-1.6mm depth, and deeper compared to the superficial and vein-dominated GE-BOLD responses. Validation of the VASO signal change versus well-established iron-oxide contrast agent based fMRI methods in animals showed the same cortical profiles of CBV change, after normalization for lamina-dependent baseline CBV. In order to evaluate its potential of revealing small lamina-dependent signal differences due to modulations of the input-output characteristics, layer-dependent VASO responses were investigated in the ipsilateral hemisphere during unilateral finger tapping. Positive activation in ipsilateral primary motor cortex and negative activation in ipsilateral primary sensory cortex were observed. This feature is only visible in high-resolution fMRI where opposing sides of a sulcus can be investigated independently because of a lack of partial volume effects. Based on the results presented here, we conclude that VASO offers good reproducibility, high sensitivity and lower sensitivity than GE-BOLD to changes in larger vessels, making it a valuable tool for layer-dependent fMRI studies in humans. Copyright © 2014 Elsevier Inc. All rights reserved.
Basho, Surina; Palmer, Erica D.; Rubio, Miguel A.; Wulfeck, Beverly; Müller, Ralph-Axel
2007-01-01
Verbal fluency is a widely used neuropsychological paradigm. In fMRI implementations, conventional unpaced (self-paced) versions are suboptimal due to uncontrolled timing of responses, and overt responses carry the risk of motion artifact. We investigated the behavioral and neurofunctional effects of response pacing and overt speech in semantic category-driven word generation. Twelve right-handed adults (8 female) ages 21–37 were scanned in four conditions each: Paced-Overt, Paced-Covert, Unpaced-Overt, and Unpaced-Covert. There was no significant difference in the number of exemplars generated between overt versions of the paced and unpaced conditions. Imaging results for category-driven word generation overall showed left-hemispheric activation in inferior frontal cortex, premotor cortex, cingulate gyrus, thalamus, and basal ganglia. Direct comparison of generation modes revealed significantly greater activation for the paced compared to unpaced conditions in right superior temporal, bilateral middle frontal, and bilateral anterior cingulate cortex, including regions associated with sustained attention, motor planning, and response inhibition. Covert (compared to overt) conditions showed significantly greater effects in right parietal and anterior cingulate, as well as left middle temporal and superior frontal regions. We conclude that paced overt paradigms are useful adaptations of conventional semantic fluency in fMRI, given their superiority with regard to control over and monitoring of behavioral responses. However, response pacing is associated with additional non-linguistic effects related to response inhibition, motor preparation, and sustained attention. PMID:17292926
A wavelet-based statistical analysis of FMRI data: I. motivation and data distribution modeling.
Dinov, Ivo D; Boscardin, John W; Mega, Michael S; Sowell, Elizabeth L; Toga, Arthur W
2005-01-01
We propose a new method for statistical analysis of functional magnetic resonance imaging (fMRI) data. The discrete wavelet transformation is employed as a tool for efficient and robust signal representation. We use structural magnetic resonance imaging (MRI) and fMRI to empirically estimate the distribution of the wavelet coefficients of the data both across individuals and spatial locations. An anatomical subvolume probabilistic atlas is used to tessellate the structural and functional signals into smaller regions each of which is processed separately. A frequency-adaptive wavelet shrinkage scheme is employed to obtain essentially optimal estimations of the signals in the wavelet space. The empirical distributions of the signals on all the regions are computed in a compressed wavelet space. These are modeled by heavy-tail distributions because their histograms exhibit slower tail decay than the Gaussian. We discovered that the Cauchy, Bessel K Forms, and Pareto distributions provide the most accurate asymptotic models for the distribution of the wavelet coefficients of the data. Finally, we propose a new model for statistical analysis of functional MRI data using this atlas-based wavelet space representation. In the second part of our investigation, we will apply this technique to analyze a large fMRI dataset involving repeated presentation of sensory-motor response stimuli in young, elderly, and demented subjects.
Dynamic changes in brain activity during prism adaptation.
Luauté, Jacques; Schwartz, Sophie; Rossetti, Yves; Spiridon, Mona; Rode, Gilles; Boisson, Dominique; Vuilleumier, Patrik
2009-01-07
Prism adaptation does not only induce short-term sensorimotor plasticity, but also longer-term reorganization in the neural representation of space. We used event-related fMRI to study dynamic changes in brain activity during both early and prolonged exposure to visual prisms. Participants performed a pointing task before, during, and after prism exposure. Measures of trial-by-trial pointing errors and corrections allowed parametric analyses of brain activity as a function of performance. We show that during the earliest phase of prism exposure, anterior intraparietal sulcus was primarily implicated in error detection, whereas parieto-occipital sulcus was implicated in error correction. Cerebellum activity showed progressive increases during prism exposure, in accordance with a key role for spatial realignment. This time course further suggests that the cerebellum might promote neural changes in superior temporal cortex, which was selectively activated during the later phase of prism exposure and could mediate the effects of prism adaptation on cognitive spatial representations.
Neural Specificity for Grammatical Operations is Revealed by Content-Independent fMR Adaptation
Shapiro, Kevin A.; Moo, Lauren R.; Caramazza, Alfonso
2012-01-01
The ability to generate novel sentences depends on cognitive operations that specify the syntactic function of nouns, verbs, and other words retrieved from the mental lexicon. Although neuropsychological studies suggest that such operations rely on neural circuits distinct from those encoding word form and meaning, it has not been possible to characterize this distinction definitively with neuroimaging. We used functional magnetic resonance imaging (fMRI) to show that a brain area engaged in a given grammatical operation can be identified uniquely by a monotonic decrease in activation as that operation is repeated. We applied this methodology to identify areas involved selectively in the operation of inflection of nouns or verbs. By contrast, areas involved in processing word meaning do not show this monotonic adaptation across stimuli. These results are the first to demonstrate adaptation in the fMR signal evoked not by specific stimuli, but by well-defined cognitive linguistic operations. PMID:22347206
Adaptive changes in early and late blind: a fMRI study of Braille reading.
Burton, H; Snyder, A Z; Conturo, T E; Akbudak, E; Ollinger, J M; Raichle, M E
2002-01-01
Braille reading depends on remarkable adaptations that connect the somatosensory system to language. We hypothesized that the pattern of cortical activations in blind individuals reading Braille would reflect these adaptations. Activations in visual (occipital-temporal), frontal-language, and somatosensory cortex in blind individuals reading Braille were examined for evidence of differences relative to previously reported studies of sighted subjects reading print or receiving tactile stimulation. Nine congenitally blind and seven late-onset blind subjects were studied with fMRI as they covertly performed verb generation in response to reading Braille embossed nouns. The control task was reading the nonlexical Braille string "######". This study emphasized image analysis in individual subjects rather than pooled data. Group differences were examined by comparing magnitudes and spatial extent of activated regions first determined to be significant using the general linear model. The major adaptive change was robust activation of visual cortex despite the complete absence of vision in all subjects. This included foci in peri-calcarine, lingual, cuneus and fusiform cortex, and in the lateral and superior occipital gyri encompassing primary (V1), secondary (V2), and higher tier (VP, V4v, LO and possibly V3A) visual areas previously identified in sighted subjects. Subjects who never had vision differed from late blind subjects in showing even greater activity in occipital-temporal cortex, provisionally corresponding to V5/MT and V8. In addition, the early blind had stronger activation of occipital cortex located contralateral to the hand used for reading Braille. Responses in frontal and parietal cortex were nearly identical in both subject groups. There was no evidence of modifications in frontal cortex language areas (inferior frontal gyrus and dorsolateral prefrontal cortex). Surprisingly, there was also no evidence of an adaptive expansion of the somatosensory or primary motor cortex dedicated to the Braille reading finger(s). Lack of evidence for an expected enlargement of the somatosensory representation may have resulted from balanced tactile stimulation and gross motor demands during Braille reading of nouns and the control fields. Extensive engagement of visual cortex without vision is discussed in reference to the special demands of Braille reading. It is argued that these responses may represent critical language processing mechanisms normally present in visual cortex.
Adaptive Changes in Early and Late Blind: A fMRI Study of Braille Reading
SNYDER, A. Z.; CONTURO, T. E.; AKBUDAK, E.; OLLINGER, J. M.; RAICHLE, M. E.
2013-01-01
Braille reading depends on remarkable adaptations that connect the somatosensory system to language. We hypothesized that the pattern of cortical activations in blind individuals reading Braille would reflect these adaptations. Activations in visual (occipital-temporal), frontal-language, and somatosensory cortex in blind individuals reading Braille were examined for evidence of differences relative to previously reported studies of sighted subjects reading print or receiving tactile stimulation. Nine congenitally blind and seven late-onset blind subjects were studied with fMRI as they covertly performed verb generation in response to reading Braille embossed nouns. The control task was reading the nonlexical Braille string “######”. This study emphasized image analysis in individual subjects rather than pooled data. Group differences were examined by comparing magnitudes and spatial extent of activated regions first determined to be significant using the general linear model. The major adaptive change was robust activation of visual cortex despite the complete absence of vision in all subjects. This included foci in peri-calcarine, lingual, cuneus and fusiform cortex, and in the lateral and superior occipital gyri encompassing primary (V1), secondary (V2), and higher tier (VP, V4v, LO and possibly V3A) visual areas previously identified in sighted subjects. Subjects who never had vision differed from late blind subjects in showing even greater activity in occipital-temporal cortex, provisionally corresponding to V5/MT and V8. In addition, the early blind had stronger activation of occipital cortex located contralateral to the hand used for reading Braille. Responses in frontal and parietal cortex were nearly identical in both subject groups. There was no evidence of modifications in frontal cortex language areas (inferior frontal gyrus and dorsolateral prefrontal cortex). Surprisingly, there was also no evidence of an adaptive expansion of the somatosensory or primary motor cortex dedicated to the Braille reading finger(s). Lack of evidence for an expected enlargement of the somatosensory representation may have resulted from balanced tactile stimulation and gross motor demands during Braille reading of nouns and the control fields. Extensive engagement of visual cortex without vision is discussed in reference to the special demands of Braille reading. It is argued that these responses may represent critical language processing mechanisms normally present in visual cortex. PMID:11784773
Sparse dictionary learning for resting-state fMRI analysis
NASA Astrophysics Data System (ADS)
Lee, Kangjoo; Han, Paul Kyu; Ye, Jong Chul
2011-09-01
Recently, there has been increased interest in the usage of neuroimaging techniques to investigate what happens in the brain at rest. Functional imaging studies have revealed that the default-mode network activity is disrupted in Alzheimer's disease (AD). However, there is no consensus, as yet, on the choice of analysis method for the application of resting-state analysis for disease classification. This paper proposes a novel compressed sensing based resting-state fMRI analysis tool called Sparse-SPM. As the brain's functional systems has shown to have features of complex networks according to graph theoretical analysis, we apply a graph model to represent a sparse combination of information flows in complex network perspectives. In particular, a new concept of spatially adaptive design matrix has been proposed by implementing sparse dictionary learning based on sparsity. The proposed approach shows better performance compared to other conventional methods, such as independent component analysis (ICA) and seed-based approach, in classifying the AD patients from normal using resting-state analysis.
Mueller, Jutta L; Rueschemeyer, Shirley-Ann; Ono, Kentaro; Sugiura, Motoaki; Sadato, Norihiro; Nakamura, Akinori
2014-01-01
The present study used functional magnetic resonance imaging (fMRI) to investigate the neural correlates of language acquisition in a realistic learning environment. Japanese native speakers were trained in a miniature version of German prior to fMRI scanning. During scanning they listened to (1) familiar sentences, (2) sentences including a novel sentence structure, and (3) sentences containing a novel word while visual context provided referential information. Learning-related decreases of brain activation over time were found in a mainly left-hemispheric network comprising classical frontal and temporal language areas as well as parietal and subcortical regions and were largely overlapping for novel words and the novel sentence structure in initial stages of learning. Differences occurred at later stages of learning during which content-specific activation patterns in prefrontal, parietal and temporal cortices emerged. The results are taken as evidence for a domain-general network supporting the initial stages of language learning which dynamically adapts as learners become proficient.
Intrinsic functional connectivity underlying successful emotion regulation of angry faces
Morawetz, Carmen; Kellermann, Tanja; Kogler, Lydia; Radke, Sina; Blechert, Jens; Derntl, Birgit
2016-01-01
Most of our social interaction is naturally based on emotional information derived from the perception of faces of other people. Negative facial expressions of a counterpart might trigger negative emotions and initiate emotion regulatory efforts to reduce the impact of the received emotional message in a perceiver. Despite the high adaptive value of emotion regulation in social interaction, the neural underpinnings of it are largely unknown. To remedy this, this study investigated individual differences in emotion regulation effectiveness during the reappraisal of angry faces on the underlying functional activity using functional magnetic resonance imaging (fMRI) as well as the underlying functional connectivity using resting-state fMRI. Greater emotion regulation ability was associated with greater functional activity in the ventromedial prefrontal cortex. Furthermore, greater functional coupling between activity in the ventrolateral prefrontal cortex and the amygdala was associated with emotion regulation success. Our findings provide a first link between prefrontal cognitive control and subcortical emotion processing systems during successful emotion regulation in an explicitly social context. PMID:27510495
Limotai, Chusak; McLachlan, Richard S; Hayman-Abello, Susan; Hayman-Abello, Brent; Brown, Suzan; Bihari, Frank; Mirsattari, Seyed M
2018-06-19
This study was aimed to longitudinally assess memory function and whole-brain memory circuit reorganization in patients with temporal lobe epilepsy (TLE) by comparing activation potentials before versus after anterior temporal lobe (ATL) resection. Nineteen patients with medically-intractable TLE (10 left TLE, 9 right TLE) and 15 healthy controls were enrolled. Group analyses were conducted pre- and post-ATL of a novelty complex scene-encoding paradigm comparing areas of blood oxygen-level-dependent (BOLD) signal activations on functional magnetic resonance imaging (fMRI). None of the pre-operative patient characteristics we studied predicted the extent of pre- to post-operative memory loss. On fMRI, extra-temporal activations were detected pre-operatively in both LTLE and RTLE, particularly in the frontal lobe. Greater activations also were noted in the contralateral hippocampus and parahippocampus in both groups. Performing within-subject comparisons, post-op relative to pre-op, pronounced ipsilateral activations were identified in the left parahippocampal gyrus in LTLE, versus the right middle temporal gyrus in RTLE patients. Memory function was impaired pre-operatively but declined after ATL resection in both RTLE and LTLE patients. Post-operative fMRI results indicate possible functional adaptations to ATL loss, primarily occurring within the left parahippocampal gyrus versus right middle temporal gyrus in LTLE versus RTLE patients, respectively. Copyright © 2018 Elsevier Ltd. All rights reserved.
Jiang, Xiong; Bollich, Angela; Cox, Patrick; Hyder, Eric; James, Joette; Gowani, Saqib Ali; Hadjikhani, Nouchine; Blanz, Volker; Manoach, Dara S.; Barton, Jason J.S.; Gaillard, William D.; Riesenhuber, Maximilian
2013-01-01
Individuals with Autism Spectrum Disorder (ASD) appear to show a general face discrimination deficit across a range of tasks including social–emotional judgments as well as identification and discrimination. However, functional magnetic resonance imaging (fMRI) studies probing the neural bases of these behavioral differences have produced conflicting results: while some studies have reported reduced or no activity to faces in ASD in the Fusiform Face Area (FFA), a key region in human face processing, others have suggested more typical activation levels, possibly reflecting limitations of conventional fMRI techniques to characterize neuron-level processing. Here, we test the hypotheses that face discrimination abilities are highly heterogeneous in ASD and are mediated by FFA neurons, with differences in face discrimination abilities being quantitatively linked to variations in the estimated selectivity of face neurons in the FFA. Behavioral results revealed a wide distribution of face discrimination performance in ASD, ranging from typical performance to chance level performance. Despite this heterogeneity in perceptual abilities, individual face discrimination performance was well predicted by neural selectivity to faces in the FFA, estimated via both a novel analysis of local voxel-wise correlations, and the more commonly used fMRI rapid adaptation technique. Thus, face processing in ASD appears to rely on the FFA as in typical individuals, differing quantitatively but not qualitatively. These results for the first time mechanistically link variations in the ASD phenotype to specific differences in the typical face processing circuit, identifying promising targets for interventions. PMID:24179786
Dynamic modeling of neuronal responses in fMRI using cubature Kalman filtering.
Havlicek, Martin; Friston, Karl J; Jan, Jiri; Brazdil, Milan; Calhoun, Vince D
2011-06-15
This paper presents a new approach to inverting (fitting) models of coupled dynamical systems based on state-of-the-art (cubature) Kalman filtering. Crucially, this inversion furnishes posterior estimates of both the hidden states and parameters of a system, including any unknown exogenous input. Because the underlying generative model is formulated in continuous time (with a discrete observation process) it can be applied to a wide variety of models specified with either ordinary or stochastic differential equations. These are an important class of models that are particularly appropriate for biological time-series, where the underlying system is specified in terms of kinetics or dynamics (i.e., dynamic causal models). We provide comparative evaluations with generalized Bayesian filtering (dynamic expectation maximization) and demonstrate marked improvements in accuracy and computational efficiency. We compare the schemes using a series of difficult (nonlinear) toy examples and conclude with a special focus on hemodynamic models of evoked brain responses in fMRI. Our scheme promises to provide a significant advance in characterizing the functional architectures of distributed neuronal systems, even in the absence of known exogenous (experimental) input; e.g., resting state fMRI studies and spontaneous fluctuations in electrophysiological studies. Importantly, unlike current Bayesian filters (e.g. DEM), our scheme provides estimates of time-varying parameters, which we will exploit in future work on the adaptation and enabling of connections in the brain. Copyright © 2011 Elsevier Inc. All rights reserved.
The Brain Adapts to Orthography with Experience: Evidence from English and Chinese
ERIC Educational Resources Information Center
Cao, Fan; Brennan, Christine; Booth, James R.
2015-01-01
Using functional magnetic resonance imaging (fMRI), we examined the process of language specialization in the brain by comparing developmental changes in two contrastive orthographies: Chinese and English. In a visual word rhyming judgment task, we found a significant interaction between age and language in left inferior parietal lobule and left…
Using fMRI to study reward processing in humans: past, present, and future
Wang, Kainan S.; Smith, David V.
2016-01-01
Functional magnetic resonance imaging (fMRI) is a noninvasive tool used to probe cognitive and affective processes. Although fMRI provides indirect measures of neural activity, the advent of fMRI has allowed for 1) the corroboration of significant animal findings in the human brain, and 2) the expansion of models to include more common human attributes that inform behavior. In this review, we briefly consider the neural basis of the blood oxygenation level dependent signal to set up a discussion of how fMRI studies have applied it in examining cognitive models in humans and the promise of using fMRI to advance such models. Specifically, we illustrate the contribution that fMRI has made to the study of reward processing, focusing on the role of the striatum in encoding reward-related learning signals that drive anticipatory and consummatory behaviors. For instance, we discuss how fMRI can be used to link neural signals (e.g., striatal responses to rewards) to individual differences in behavior and traits. While this functional segregation approach has been constructive to our understanding of reward-related functions, many fMRI studies have also benefitted from a functional integration approach that takes into account how interconnected regions (e.g., corticostriatal circuits) contribute to reward processing. We contend that future work using fMRI will profit from using a multimodal approach, such as combining fMRI with noninvasive brain stimulation tools (e.g., transcranial electrical stimulation), that can identify causal mechanisms underlying reward processing. Consequently, advancements in implementing fMRI will promise new translational opportunities to inform our understanding of psychopathologies. PMID:26740530
Magnani, Barbara; Frassinetti, Francesca; Ditye, Thomas; Oliveri, Massimiliano; Costantini, Marcello; Walsh, Vincent
2014-05-15
Prismatic adaptation (PA) has been shown to affect left-to-right spatial representations of temporal durations. A leftward aftereffect usually distorts time representation toward an underestimation, while rightward aftereffect usually results in an overestimation of temporal durations. Here, we used functional magnetic resonance imaging (fMRI) to study the neural mechanisms that underlie PA effects on time perception. Additionally, we investigated whether the effect of PA on time is transient or stable and, in the case of stability, which cortical areas are responsible of its maintenance. Functional brain images were acquired while participants (n=17) performed a time reproduction task and a control-task before, immediately after and 30 min after PA inducing a leftward aftereffect, administered outside the scanner. The leftward aftereffect induced an underestimation of time intervals that lasted for at least 30 min. The left anterior insula and the left superior frontal gyrus showed increased functional activation immediately after versus before PA in the time versus the control-task, suggesting these brain areas to be involved in the executive spatial manipulation of the representation of time. The left middle frontal gyrus showed an increase of activation after 30 min with respect to before PA. This suggests that this brain region may play a key role in the maintenance of the PA effect over time. Copyright © 2014. Published by Elsevier Inc.
Andari, Elissar; Richard, Nathalie; Leboyer, Marion; Sirigu, Angela
2016-03-01
The neuropeptide oxytocin (OT) is one of the major targets of research in neuroscience, with respect to social functioning. Oxytocin promotes social skills and improves the quality of face processing in individuals with social dysfunctions such as autism spectrum disorder (ASD). Although one of OT's key functions is to promote social behavior during dynamic social interactions, the neural correlates of this function remain unknown. Here, we combined acute intranasal OT (IN-OT) administration (24 IU) and fMRI with an interactive ball game and a face-matching task in individuals with ASD (N = 20). We found that IN-OT selectively enhanced the brain activity of early visual areas in response to faces as compared to non-social stimuli. OT inhalation modulated the BOLD activity of amygdala and hippocampus in a context-dependent manner. Interestingly, IN-OT intake enhanced the activity of mid-orbitofrontal cortex in response to a fair partner, and insula region in response to an unfair partner. These OT-induced neural responses were accompanied by behavioral improvements in terms of allocating appropriate feelings of trust toward different partners' profiles. Our findings suggest that OT impacts the brain activity of key areas implicated in attention and emotion regulation in an adaptive manner, based on the value of social cues. Copyright © 2016 Elsevier Ltd. All rights reserved.
Neural Mechanisms of Recognizing Camouflaged Objects: A Human fMRI Study
2015-07-30
Unlimited Final Report: Neural Mechanisms of Recognizing Camouflaged Objects: A Human fMRI Study The views, opinions and/or findings contained in this...27709-2211 Visual search, Camouflage, Functional magnetic resonance imaging ( fMRI ), Perceptual learning REPORT DOCUMENTATION PAGE 11. SPONSOR...ABSTRACT Number of Papers published in peer-reviewed journals: Final Report: Neural Mechanisms of Recognizing Camouflaged Objects: A Human fMRI Study
Development of Neural Sensitivity to Face Identity Correlates with Perceptual Discriminability
Barnett, Michael A.; Hartley, Jake; Gomez, Jesse; Stigliani, Anthony; Grill-Spector, Kalanit
2016-01-01
Face perception is subserved by a series of face-selective regions in the human ventral stream, which undergo prolonged development from childhood to adulthood. However, it is unknown how neural development of these regions relates to the development of face-perception abilities. Here, we used functional magnetic resonance imaging (fMRI) to measure brain responses of ventral occipitotemporal regions in children (ages, 5–12 years) and adults (ages, 19–34 years) when they viewed faces that parametrically varied in dissimilarity. Since similar faces generate lower responses than dissimilar faces due to fMRI adaptation, this design objectively evaluates neural sensitivity to face identity across development. Additionally, a subset of subjects participated in a behavioral experiment to assess perceptual discriminability of face identity. Our data reveal three main findings: (1) neural sensitivity to face identity increases with age in face-selective but not object-selective regions; (2) the amplitude of responses to faces increases with age in both face-selective and object-selective regions; and (3) perceptual discriminability of face identity is correlated with the neural sensitivity to face identity of face-selective regions. In contrast, perceptual discriminability is not correlated with the amplitude of response in face-selective regions or of responses of object-selective regions. These data suggest that developmental increases in neural sensitivity to face identity in face-selective regions improve perceptual discriminability of faces. Our findings significantly advance the understanding of the neural mechanisms of development of face perception and open new avenues for using fMRI adaptation to study the neural development of high-level visual and cognitive functions more broadly. SIGNIFICANCE STATEMENT Face perception, which is critical for daily social interactions, develops from childhood to adulthood. However, it is unknown what developmental changes in the brain lead to improved performance. Using fMRI in children and adults, we find that from childhood to adulthood, neural sensitivity to changes in face identity increases in face-selective regions. Critically, subjects' perceptual discriminability among faces is linked to neural sensitivity: participants with higher neural sensitivity in face-selective regions demonstrate higher perceptual discriminability. Thus, our results suggest that developmental increases in face-selective regions' sensitivity to face identity improve perceptual discrimination of faces. These findings significantly advance understanding of the neural mechanisms underlying the development of face perception and have important implications for assessing both typical and atypical development. PMID:27798143
Anthony, Mia; Lin, Feng
2017-12-13
Cognitive reserve has been proposed to explain the discrepancy between clinical symptoms and the effects of aging or Alzheimer's pathology. Functional magnetic resonance imaging (fMRI) may help elucidate how neural reserve and compensation delay cognitive decline and identify brain regions associated with cognitive reserve. This systematic review evaluated neural correlates of cognitive reserve via fMRI (resting-state and task-related) studies across the cognitive aging spectrum (i.e., normal cognition, mild cognitive impairment, and Alzheimer's disease). This review examined published articles up to March 2017. There were 13 cross-sectional observational studies that met the inclusion criteria, including relevance to cognitive reserve, subjects 60 years or older with normal cognition, mild cognitive impairment, and/or Alzheimer's disease, at least one quantitative measure of cognitive reserve, and fMRI as the imaging modality. Quality assessment of included studies was conducted using the Newcastle-Ottawa Scale adapted for cross-sectional studies. Across the cognitive aging spectrum, medial temporal regions and an anterior or posterior cingulate cortex-seeded default mode network were associated with neural reserve. Frontal regions and the dorsal attentional network were related to neural compensation. Compared to neural reserve, neural compensation was more common in mild cognitive impairment and Alzheimer's disease. Neural reserve and compensation both support cognitive reserve, with compensation more common in later stages of the cognitive aging spectrum. Longitudinal and intervention studies are needed to investigate changes between neural reserve and compensation during the transition between clinical stages, and to explore the causal relationship between cognitive reserve and potential neural substrates. © The Author(s) 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Gawryluk, Jodie R.; Mazerolle, Erin L.; D'Arcy, Ryan C. N.
2014-01-01
Functional magnetic resonance imaging (fMRI) is a non-invasive technique that allows for visualization of activated brain regions. Until recently, fMRI studies have focused on gray matter. There are two main reasons white matter fMRI remains controversial: (1) the blood oxygen level dependent (BOLD) fMRI signal depends on cerebral blood flow and volume, which are lower in white matter than gray matter and (2) fMRI signal has been associated with post-synaptic potentials (mainly localized in gray matter) as opposed to action potentials (the primary type of neural activity in white matter). Despite these observations, there is no direct evidence against measuring fMRI activation in white matter and reports of fMRI activation in white matter continue to increase. The questions underlying white matter fMRI activation are important. White matter fMRI activation has the potential to greatly expand the breadth of brain connectivity research, as well as improve the assessment and diagnosis of white matter and connectivity disorders. The current review provides an overview of the motivation to investigate white matter fMRI activation, as well as the published evidence of this phenomenon. We speculate on possible neurophysiologic bases of white matter fMRI signals, and discuss potential explanations for why reports of white matter fMRI activation are relatively scarce. We end with a discussion of future basic and clinical research directions in the study of white matter fMRI. PMID:25152709
James, G. Andrew; Lu, Zhong-Lin; VanMeter, John W.; Sathian, K.; Hu, Xiaoping P.; Butler, Andrew J.
2013-01-01
Background A promising paradigm in human neuroimaging is the study of slow (<0.1 Hz) spontaneous fluctuations in the hemodynamic response measured by functional magnetic resonance imaging (fMRI). Spontaneous activity (i.e., resting state) refers to activity that cannot be attributed to specific inputs or outputs, that is, activity intrinsically generated by the brain. Method This article presents pilot data examining neural connectivity in patients with poststroke hemiparesis before and after 3 weeks of upper extremity rehabilitation in the Accelerated Skill Acquisition Program (ASAP). Resting-state fMRI data acquired pre and post therapy were analyzed using an exploratory adaptation of structural equation modeling (SEM) to evaluate therapy-related changes in motor network effective connectivity. Results Each ASAP patient showed behavioral improvement. ASAP patients also showed increased influence of the affected hemisphere premotor cortex (a-PM) upon the unaffected hemisphere premotor cortex (u-PM) following therapy. The influence of a-PM on affected hemisphere primary motor cortex (a-M1) also increased with therapy for 3 of 5 patients, including those with greatest behavioral improvement. Conclusions Our findings suggest that network analyses of resting-state fMRI constitute promising tools for functional characterization of functional brain disorders, for intergroup comparisons, and potentially for assessing effective connectivity within single subjects; all of which have important implications for stroke rehabilitation. PMID:19740732
Asaad, Mazen; Lee, Jin Hyung
2018-05-18
Alzheimer's disease is a leading healthcare challenge facing our society today. Functional magnetic resonance imaging (fMRI) of the brain has played an important role in our efforts to understand how Alzheimer's disease alters brain function. Using fMRI in animal models of Alzheimer's disease has the potential to provide us with a more comprehensive understanding of the observations made in human clinical fMRI studies. However, using fMRI in animal models of Alzheimer's disease presents some unique challenges. Here, we highlight some of these challenges and discuss potential solutions for researchers interested in performing fMRI in animal models. First, we briefly summarize our current understanding of Alzheimer's disease from a mechanistic standpoint. We then overview the wide array of animal models available for studying this disease and how to choose the most appropriate model to study, depending on which aspects of the condition researchers seek to investigate. Finally, we discuss the contributions of fMRI to our understanding of Alzheimer's disease and the issues to consider when designing fMRI studies for animal models, such as differences in brain activity based on anesthetic choice and ways to interrogate more specific questions in rodents beyond those that can be addressed in humans. The goal of this article is to provide information on the utility of fMRI, and approaches to consider when using fMRI, for studies of Alzheimer's disease in animal models. © 2018. Published by The Company of Biologists Ltd.
A guide to using functional magnetic resonance imaging to study Alzheimer's disease in animal models
Asaad, Mazen
2018-01-01
ABSTRACT Alzheimer's disease is a leading healthcare challenge facing our society today. Functional magnetic resonance imaging (fMRI) of the brain has played an important role in our efforts to understand how Alzheimer's disease alters brain function. Using fMRI in animal models of Alzheimer's disease has the potential to provide us with a more comprehensive understanding of the observations made in human clinical fMRI studies. However, using fMRI in animal models of Alzheimer's disease presents some unique challenges. Here, we highlight some of these challenges and discuss potential solutions for researchers interested in performing fMRI in animal models. First, we briefly summarize our current understanding of Alzheimer's disease from a mechanistic standpoint. We then overview the wide array of animal models available for studying this disease and how to choose the most appropriate model to study, depending on which aspects of the condition researchers seek to investigate. Finally, we discuss the contributions of fMRI to our understanding of Alzheimer's disease and the issues to consider when designing fMRI studies for animal models, such as differences in brain activity based on anesthetic choice and ways to interrogate more specific questions in rodents beyond those that can be addressed in humans. The goal of this article is to provide information on the utility of fMRI, and approaches to consider when using fMRI, for studies of Alzheimer's disease in animal models. PMID:29784664
Equalizing secondary path effects using the periodicity of fMRI acoustic noise.
Kannan, Govind; Milani, Ali A; Panahi, Issa; Briggs, Richard
2008-01-01
Non-minimum phase secondary path has a direct effect on achieving a desired noise attenuation level in active noise control (ANC) systems. The adaptive noise canceling filter is often a causal FIR filter which may not be able to sufficiently equalize the effect of a non-minimum phase secondary path, since in theory only a non-causal filter can equalize it. However a non-causal stable filter can be found to equalize the non-minimum phase effect of secondary path. Realization of non-causal stable filters requires knowledge of future values of input signal. In this paper we develop methods for equalizing the non-minimum phase property of the secondary path and improving the performance of an ANC system by exploiting the periodicity of fMRI acoustic noise. It has been shown that the scanner noise component is highly periodic and hence predictable which enables easy realization of non-causal filtering. Improvement in performance due to the proposed methods (with and without the equalizer) is shown for periodic fMRI acoustic noise.
NASA Astrophysics Data System (ADS)
Maugeri, L.; Moraschi, M.; Summers, P.; Favilla, S.; Mascali, D.; Cedola, A.; Porro, C. A.; Giove, F.; Fratini, M.
2018-02-01
Functional Magnetic Resonance Imaging (fMRI) based on Blood Oxygenation Level Dependent (BOLD) contrast has become one of the most powerful tools in neuroscience research. On the other hand, fMRI approaches have seen limited use in the study of spinal cord and subcortical brain regions (such as the brainstem and portions of the diencephalon). Indeed obtaining good BOLD signal in these areas still represents a technical and scientific challenge, due to poor control of physiological noise and to a limited overall quality of the functional series. A solution can be found in the combination of optimized experimental procedures at acquisition stage, and well-adapted artifact mitigation procedures in the data processing. In this framework, we studied two different data processing strategies to reduce physiological noise in cortical and subcortical brain regions and in the spinal cord, based on the aCompCor and RETROICOR denoising tools respectively. The study, performed in healthy subjects, was carried out using an ad hoc isometric motor task. We observed an increased signal to noise ratio in the denoised functional time series in the spinal cord and in the subcortical brain region.
A Putative Multiple-Demand System in the Macaque Brain.
Mitchell, Daniel J; Bell, Andrew H; Buckley, Mark J; Mitchell, Anna S; Sallet, Jerome; Duncan, John
2016-08-17
In humans, cognitively demanding tasks of many types recruit common frontoparietal brain areas. Pervasive activation of this "multiple-demand" (MD) network suggests a core function in supporting goal-oriented behavior. A similar network might therefore be predicted in nonhuman primates that readily perform similar tasks after training. However, an MD network in nonhuman primates has not been described. Single-cell recordings from macaque frontal and parietal cortex show some similar properties to human MD fMRI responses (e.g., adaptive coding of task-relevant information). Invasive recordings, however, come from limited prespecified locations, so they do not delineate a macaque homolog of the MD system and their positioning could benefit from knowledge of where MD foci lie. Challenges of scanning behaving animals mean that few macaque fMRI studies specifically contrast levels of cognitive demand, so we sought to identify a macaque counterpart to the human MD system using fMRI connectivity in 35 rhesus macaques. Putative macaque MD regions, mapped from frontoparietal MD regions defined in humans, were found to be functionally connected under anesthesia. To further refine these regions, an iterative process was used to maximize their connectivity cross-validated across animals. Finally, whole-brain connectivity analyses identified voxels that were robustly connected to MD regions, revealing seven clusters across frontoparietal and insular cortex comparable to human MD regions and one unexpected cluster in the lateral fissure. The proposed macaque MD regions can be used to guide future electrophysiological investigation of MD neural coding and in task-based fMRI to test predictions of similar functional properties to human MD cortex. In humans, a frontoparietal "multiple-demand" (MD) brain network is recruited during a wide range of cognitively demanding tasks. Because this suggests a fundamental function, one might expect a similar network to exist in nonhuman primates, but this remains controversial. Here, we sought to identify a macaque counterpart to the human MD system using fMRI connectivity. Putative macaque MD regions were functionally connected under anesthesia and were further refined by iterative optimization. The result is a network including lateral frontal, dorsomedial frontal, and insular and inferior parietal regions closely similar to the human counterpart. The proposed macaque MD regions can be useful in guiding electrophysiological recordings or in task-based fMRI to test predictions of similar functional properties to human MD cortex. Copyright © 2016 Mitchell et al.
Churchill, Nathan W.; Oder, Anita; Abdi, Hervé; Tam, Fred; Lee, Wayne; Thomas, Christopher; Ween, Jon E.; Graham, Simon J.; Strother, Stephen C.
2016-01-01
Subject-specific artifacts caused by head motion and physiological noise are major confounds in BOLD fMRI analyses. However, there is little consensus on the optimal choice of data preprocessing steps to minimize these effects. To evaluate the effects of various preprocessing strategies, we present a framework which comprises a combination of (1) nonparametric testing including reproducibility and prediction metrics of the data-driven NPAIRS framework (Strother et al. [2002]: NeuroImage 15:747–771), and (2) intersubject comparison of SPM effects, using DISTATIS (a three-way version of metric multidimensional scaling (Abdi et al. [2009]: NeuroImage 45:89–95). It is shown that the quality of brain activation maps may be significantly limited by sub-optimal choices of data preprocessing steps (or “pipeline”) in a clinical task-design, an fMRI adaptation of the widely used Trail-Making Test. The relative importance of motion correction, physiological noise correction, motion parameter regression, and temporal detrending were examined for fMRI data acquired in young, healthy adults. Analysis performance and the quality of activation maps were evaluated based on Penalized Discriminant Analysis (PDA). The relative importance of different preprocessing steps was assessed by (1) a nonparametric Friedman rank test for fixed sets of preprocessing steps, applied to all subjects; and (2) evaluating pipelines chosen specifically for each subject. Results demonstrate that preprocessing choices have significant, but subject-dependant effects, and that individually-optimized pipelines may significantly improve the reproducibility of fMRI results over fixed pipelines. This was demonstrated by the detection of a significant interaction with motion parameter regression and physiological noise correction, even though the range of subject head motion was small across the group (≪ 1 voxel). Optimizing pipelines on an individual-subject basis also revealed brain activation patterns either weak or absent under fixed pipelines, which has implications for the overall interpretation of fMRI data, and the relative importance of preprocessing methods. PMID:21455942
Functional neuroimaging for addiction medicine: From mechanisms to practical considerations.
Ekhtiari, Hamed; Faghiri, Ashkan; Oghabian, Mohammad-Ali; Paulus, Martin P
2016-01-01
During last 20 years, neuroimaging with functional magnetic resonance imaging (fMRI) in people with drug addictions has introduced a wide range of quantitative biomarkers from brain's regional or network level activities during different cognitive functions. These quantitative biomarkers could be potentially used for assessment, planning, prediction, and monitoring for "addiction medicine" during screening, acute intoxication, admission to a program, completion of an acute program, admission to a long-term program, and postgraduation follow-up. In this chapter, we have briefly reviewed main neurocognitive targets for fMRI studies associated with addictive behaviors, main study types using fMRI among drug dependents, and potential applications for fMRI in addiction medicine. Main challenges and limitations for extending fMRI studies and evidences aiming at clinical applications in addiction medicine are also discussed. There is still a significant gap between available evidences from group-based fMRI studies and personalized decisions during daily practices in addiction medicine. It will be important to fill this gap with large-scale clinical trials and longitudinal studies using fMRI measures with a well-defined strategic plan for the future. © 2016 Elsevier B.V. All rights reserved.
Fetal functional imaging portrays heterogeneous development of emerging human brain networks
Jakab, András; Schwartz, Ernst; Kasprian, Gregor; Gruber, Gerlinde M.; Prayer, Daniela; Schöpf, Veronika; Langs, Georg
2014-01-01
The functional connectivity architecture of the adult human brain enables complex cognitive processes, and exhibits a remarkably complex structure shared across individuals. We are only beginning to understand its heterogeneous structure, ranging from a strongly hierarchical organization in sensorimotor areas to widely distributed networks in areas such as the parieto-frontal cortex. Our study relied on the functional magnetic resonance imaging (fMRI) data of 32 fetuses with no detectable morphological abnormalities. After adapting functional magnetic resonance acquisition, motion correction, and nuisance signal reduction procedures of resting-state functional data analysis to fetuses, we extracted neural activity information for major cortical and subcortical structures. Resting fMRI networks were observed for increasing regional functional connectivity from 21st to 38th gestational weeks (GWs) with a network-based statistical inference approach. The overall connectivity network, short range, and interhemispheric connections showed sigmoid expansion curve peaking at the 26–29 GW. In contrast, long-range connections exhibited linear increase with no periods of peaking development. Region-specific increase of functional signal synchrony followed a sequence of occipital (peak: 24.8 GW), temporal (peak: 26 GW), frontal (peak: 26.4 GW), and parietal expansion (peak: 27.5 GW). We successfully adapted functional neuroimaging and image post-processing approaches to correlate macroscopical scale activations in the fetal brain with gestational age. This in vivo study reflects the fact that the mid-fetal period hosts events that cause the architecture of the brain circuitry to mature, which presumably manifests in increasing strength of intra- and interhemispheric functional macro connectivity. PMID:25374531
Fetal functional imaging portrays heterogeneous development of emerging human brain networks.
Jakab, András; Schwartz, Ernst; Kasprian, Gregor; Gruber, Gerlinde M; Prayer, Daniela; Schöpf, Veronika; Langs, Georg
2014-01-01
The functional connectivity architecture of the adult human brain enables complex cognitive processes, and exhibits a remarkably complex structure shared across individuals. We are only beginning to understand its heterogeneous structure, ranging from a strongly hierarchical organization in sensorimotor areas to widely distributed networks in areas such as the parieto-frontal cortex. Our study relied on the functional magnetic resonance imaging (fMRI) data of 32 fetuses with no detectable morphological abnormalities. After adapting functional magnetic resonance acquisition, motion correction, and nuisance signal reduction procedures of resting-state functional data analysis to fetuses, we extracted neural activity information for major cortical and subcortical structures. Resting fMRI networks were observed for increasing regional functional connectivity from 21st to 38th gestational weeks (GWs) with a network-based statistical inference approach. The overall connectivity network, short range, and interhemispheric connections showed sigmoid expansion curve peaking at the 26-29 GW. In contrast, long-range connections exhibited linear increase with no periods of peaking development. Region-specific increase of functional signal synchrony followed a sequence of occipital (peak: 24.8 GW), temporal (peak: 26 GW), frontal (peak: 26.4 GW), and parietal expansion (peak: 27.5 GW). We successfully adapted functional neuroimaging and image post-processing approaches to correlate macroscopical scale activations in the fetal brain with gestational age. This in vivo study reflects the fact that the mid-fetal period hosts events that cause the architecture of the brain circuitry to mature, which presumably manifests in increasing strength of intra- and interhemispheric functional macro connectivity.
Bauer, Prisca R; Reitsma, Johannes B; Houweling, Bernard M; Ferrier, Cyrille H; Ramsey, Nick F
2014-05-01
Recent studies have shown that fMRI (functional magnetic resonance imaging) may be of value for pre-surgical assessment of language lateralisation. The aim of this study was to systematically review and analyse the available literature. A systematic electronic search for studies comparing fMRI with Wada testing was conducted in the PubMed database between March 2009 and November 2011. Studies involving unilateral Wada testing, study population consisting exclusively of children younger than 12 years of age or involving five patients or fewer were excluded. 22 studies (504 patients) were included. A random effects meta-analysis was conducted to obtain pooled estimates of the positive and negative predictive values of the fMRI using the Wada test as the reference standard. The impact of several study features on the performance of fMRI was assessed. The results showed that 81% of patients were correctly classified as having left or right language dominance or mixed language representation. Techniques were discordant in 19% of patients. fMRI and Wada test agreed in 94% for typical language lateralisation and in 51% for atypical language lateralisation. Language production or language comprehension tasks and different regions of interest did not yield statistically significant different results. It can be concluded that fMRI is reliable when there is strong left-lateralised language. The Wada test is warranted when fMRI fails to show clear left-lateralisation.
Müller, Ulrich; Suckling, J; Zelaya, F; Honey, G; Faessel, H; Williams, S C R; Routledge, C; Brown, J; Robbins, T W; Bullmore, E T
2005-08-01
Methylphenidate (MPH) is a dopamine and noradrenaline enhancing drug used to treat attentional deficits. Understanding of its cognition-enhancing effects and the neurobiological mechanisms involved, especially in elderly people, is currently incomplete. The aim of this study was to investigate the relationship between MPH plasma levels and brain activation during visuospatial attention and movement preparation. Twelve healthy elderly volunteers were scanned twice using functional magnetic resonance imaging (fMRI) after oral administration of MPH 20 mg or placebo in a within-subject design. The cognitive paradigm was a four-choice reaction time task presented at two levels of difficulty (with and without spatial cue). Plasma MPH levels were measured at six time points between 30 and 205 min after dosing. FMRI data were analysed using a linear model to estimate physiological response to the task and nonparametric permutation tests for inference. Lateral premotor and medial posterior parietal cortical activation was increased by MPH, on average, over both levels of task difficulty. There was considerable intersubject variability in the pharmacokinetics of MPH. Greater area under the plasma concentration-time curve was positively correlated with strength of activation in motor and premotor cortex, temporoparietal cortex and caudate nucleus during the difficult version of the task. This is the first pharmacokinetic/pharmacodynamic study to find an association between plasma levels of MPH and its modulatory effects on brain activation measured using fMRI. The results suggest that catecholaminergic mechanisms may be important in brain adaptivity to task difficulty and in task-specific recruitment of spatial attention systems.
Disrupted Prefrontal Activity during Emotion Processing in Complicated Grief: an fMRI Investigation
Arizmendi, Brian; Kaszniak, Alfred W.; O’Connor, Mary-Frances
2015-01-01
Complicated Grief, marked by a persistent and intrusive grief lasting beyond the expected period of adaptation, is associated with a relative inability to disengage from idiographic loss-relevant stimuli (O’Connor & Arizmendi, 2014). In other populations, functional magnetic resonance imaging (fMRI) studies investigating the neural networks associated with this bias consistently implicate the anterior cingulate cortex (ACC) during emotion regulation. In the present study, twenty-eight older adults were categorized into three groups based on grief severity: Complicated Grief (n=8), Non-Complicated Grief (n=9), and Nonbereaved, married controls (n=11). Using a block design, all participants completed 8 blocks (20 stimuli per block) of the ecStroop task during fMRI data acquisition. Differences in neural activity during grief-related (as opposed to neutral) stimuli across groups were examined. Those with Complicated Grief showed an absence of increased rostral ACC (rACC) and fronto-cortical recruitment relative to Nonbereaved controls. Activity in the orbitofrontal cortex (x=6, y=54, z=−10) was significantly elevated in the Non-Complicated Grief group when compared to Nonbereaved controls. Post hoc analysis evidenced activity in the dorsal ACC in the Complicated Grief and Nonbereaved groups late in the task. These findings, supported by behavioral data, suggest a relative inability to recruit the regions necessary for successful completion of this emotional task in those with Complicated Grief. This deficit was not observed in recruitment of the orbitofrontal cortex and the rACC during processing of idiographic semantic stimuli in Non-Complicated Grief. PMID:26434802
Disrupted prefrontal activity during emotion processing in complicated grief: An fMRI investigation.
Arizmendi, Brian; Kaszniak, Alfred W; O'Connor, Mary-Frances
2016-01-01
Complicated Grief, marked by a persistent and intrusive grief lasting beyond the expected period of adaptation, is associated with a relative inability to disengage from idiographic loss-relevant stimuli (O'Connor and Arizmendi, 2014). In other populations, functional magnetic resonance imaging (fMRI) studies investigating the neural networks associated with this bias consistently implicate the anterior cingulate cortex (ACC) during emotion regulation. In the present study, twenty-eight older adults were categorized into three groups based on grief severity: Complicated Grief (n=8), Non-Complicated Grief (n=9), and Nonbereaved, married controls (n=11). Using a block design, all participants completed 8 blocks (20 stimuli per block) of the ecStroop task during fMRI data acquisition. Differences in neural activity during grief-related (as opposed to neutral) stimuli across groups were examined. Those with Complicated Grief showed an absence of increased rostral ACC (rACC) and fronto-cortical recruitment relative to Nonbereaved controls. Activity in the orbitofrontal cortex (x=6, y=54, z=-10) was significantly elevated in the Non-Complicated Grief group when compared to Nonbereaved controls. Post hoc analysis evidenced activity in the dorsal ACC in the Complicated Grief and Nonbereaved groups late in the task. These findings, supported by behavioral data, suggest a relative inability to recruit the regions necessary for successful completion of this emotional task in those with Complicated Grief. This deficit was not observed in recruitment of the orbitofrontal cortex and the rACC during processing of idiographic semantic stimuli in Non-Complicated Grief. Copyright © 2015 Elsevier Inc. All rights reserved.
The cerebral correlates of set-shifting: an fMRI study of the trail making test.
Moll, Jorge; de Oliveira-Souza, Ricardo; Moll, Fernanda Tovar; Bramati, Ivanei Edson; Andreiuolo, Pedro Angelo
2002-12-01
The trail making test (TMT) pertains to a family of tests that tap the ability to alternate between cognitive categories. However, the value of the TMT as a localizing instrument remains elusive. Here we report the results of a functional magnetic resonance imaging (fMRI) study of a verbal adaptation of the TMT (vTMT). The vTMT takes advantage of the set-shifting properties of the TMT and, at the same time, minimizes the visuospatial and visuomotor components of the written TMT. Whole brain BOLD fMRI was performed during the alternating execution of vTMTA and vTMTB in seven normal adults with more than 12 years of formal education. Brain activation related to the set-shifting component of vTMTB was investigated by comparing performance on vTMTB with vTMTA, a simple counting task. There was a marked asymmetry of activation in favor of the left hemisphere, most notably in dorsolateral prefrontal cortex (BA 6 lateral, 44 and 46) and supplementary motor area/cingulate sulcus (BA 6 medial and 32). The intraparietal sulcus (BA 7 and 39) was bilaterally activated. These findings are in line with clinico-anatomic and functional neuroimaging data that point to a critical role of the dorsolateral and medial prefrontal cortices as well as the intraparietal sulci in the regulation of cognitive flexibility, intention, and the covert execution of saccades/anti-saccades. Many commonly used neuropsychological paradigms, such as the Stroop, Wisconsin Card Sorting, and go - no go tasks, share some patterns of cerebral activation with the TMT.
Smitha, K A; Arun, K M; Rajesh, P G; Thomas, B; Kesavadas, C
2017-06-01
Language is a cardinal function that makes human unique. Preservation of language function poses a great challenge for surgeons during resection. The aim of the study was to assess the efficacy of resting-state fMRI in the lateralization of language function in healthy subjects to permit its further testing in patients who are unable to perform task-based fMRI. Eighteen healthy right-handed volunteers were prospectively evaluated with resting-state fMRI and task-based fMRI to assess language networks. The laterality indices of Broca and Wernicke areas were calculated by using task-based fMRI via a voxel-value approach. We adopted seed-based resting-state fMRI connectivity analysis together with parameters such as amplitude of low-frequency fluctuation and fractional amplitude of low-frequency fluctuation (fALFF). Resting-state fMRI connectivity maps for language networks were obtained from Broca and Wernicke areas in both hemispheres. We performed correlation analysis between the laterality index and the z scores of functional connectivity, amplitude of low-frequency fluctuation, and fALFF. Pearson correlation analysis between signals obtained from the z score of fALFF and the laterality index yielded a correlation coefficient of 0.849 ( P < .05). Regression analysis of the fALFF with the laterality index yielded an R 2 value of 0.721, indicating that 72.1% of the variance in the laterality index of task-based fMRI could be predicted from the fALFF of resting-state fMRI. The present study demonstrates that fALFF can be used as an alternative to task-based fMRI for assessing language laterality. There was a strong positive correlation between the fALFF of the Broca area of resting-state fMRI with the laterality index of task-based fMRI. Furthermore, we demonstrated the efficacy of fALFF for predicting the laterality of task-based fMRI. © 2017 by American Journal of Neuroradiology.
Speaker Invariance for Phonetic Information: an fMRI Investigation
Salvata, Caden; Blumstein, Sheila E.; Myers, Emily B.
2012-01-01
The current study explored how listeners map the variable acoustic input onto a common sound structure representation while being able to retain phonetic detail to distinguish among the identity of talkers. An adaptation paradigm was utilized to examine areas which showed an equal neural response (equal release from adaptation) to phonetic change when spoken by the same speaker and when spoken by two different speakers, and insensitivity (failure to show release from adaptation) when the same phonetic input was spoken by a different speaker. Neural areas which showed speaker invariance were located in the anterior portion of the middle superior temporal gyrus bilaterally. These findings provide support for the view that speaker normalization processes allow for the translation of a variable speech input to a common abstract sound structure. That this process appears to occur early in the processing stream, recruiting temporal structures, suggests that this mapping takes place prelexically, before sound structure input is mapped on to lexical representations. PMID:23264714
An Automated, Adaptive Framework for Optimizing Preprocessing Pipelines in Task-Based Functional MRI
Churchill, Nathan W.; Spring, Robyn; Afshin-Pour, Babak; Dong, Fan; Strother, Stephen C.
2015-01-01
BOLD fMRI is sensitive to blood-oxygenation changes correlated with brain function; however, it is limited by relatively weak signal and significant noise confounds. Many preprocessing algorithms have been developed to control noise and improve signal detection in fMRI. Although the chosen set of preprocessing and analysis steps (the “pipeline”) significantly affects signal detection, pipelines are rarely quantitatively validated in the neuroimaging literature, due to complex preprocessing interactions. This paper outlines and validates an adaptive resampling framework for evaluating and optimizing preprocessing choices by optimizing data-driven metrics of task prediction and spatial reproducibility. Compared to standard “fixed” preprocessing pipelines, this optimization approach significantly improves independent validation measures of within-subject test-retest, and between-subject activation overlap, and behavioural prediction accuracy. We demonstrate that preprocessing choices function as implicit model regularizers, and that improvements due to pipeline optimization generalize across a range of simple to complex experimental tasks and analysis models. Results are shown for brief scanning sessions (<3 minutes each), demonstrating that with pipeline optimization, it is possible to obtain reliable results and brain-behaviour correlations in relatively small datasets. PMID:26161667
Minati, Ludovico; Grisoli, Marina; Franceschetti, Silvana; Epifani, Francesca; Granvillano, Alice; Medford, Nick; Harrison, Neil A; Piacentini, Sylvie; Critchley, Hugo D
2012-01-01
Adaptive behaviour requires an ability to obtain rewards by choosing between different risky options. Financial gambles can be used to study effective decision-making experimentally, and to distinguish processes involved in choice option evaluation from outcome feedback and other contextual factors. Here, we used a paradigm where participants evaluated 'mixed' gambles, each presenting a potential gain and a potential loss and an associated variable outcome probability. We recorded neural responses using autonomic monitoring, electroencephalography (EEG) and functional neuroimaging (fMRI), and used a univariate, parametric design to test for correlations with the eleven economic parameters that varied across gambles, including expected value (EV) and amount magnitude. Consistent with behavioural economic theory, participants were risk-averse. Gamble evaluation generated detectable autonomic responses, but only weak correlations with outcome uncertainty were found, suggesting that peripheral autonomic feedback does not play a major role in this task. Long-latency stimulus-evoked EEG potentials were sensitive to expected gain and expected value, while alpha-band power reflected expected loss and amount magnitude, suggesting parallel representations of distinct economic qualities in cortical activation and central arousal. Neural correlates of expected value representation were localized using fMRI to ventromedial prefrontal cortex, while the processing of other economic parameters was associated with distinct patterns across lateral prefrontal, cingulate, insula and occipital cortices including default-mode network and early visual areas. These multimodal data provide complementary evidence for distributed substrates of choice evaluation across multiple, predominantly cortical, brain systems wherein distinct regions are preferentially attuned to specific economic features. Our findings extend biologically-plausible models of risky decision-making while providing potential biomarkers of economic representations that can be applied to the study of deficits in motivational behaviour in neurological and psychiatric patients.
Moran, Lauren V; Stoeckel, Luke E; Wang, Kristina; Caine, Carolyn E; Villafuerte, Rosemond; Calderon, Vanessa; Baker, Justin T; Ongur, Dost; Janes, Amy C; Evins, A Eden; Pizzagalli, Diego A
2018-03-01
Nicotine improves attention and processing speed in individuals with schizophrenia. Few studies have investigated the effects of nicotine on cognitive control. Prior functional magnetic resonance imaging (fMRI) research demonstrates blunted activation of dorsal anterior cingulate cortex (dACC) and rostral anterior cingulate cortex (rACC) in response to error and decreased post-error slowing in schizophrenia. Participants with schizophrenia (n = 13) and healthy controls (n = 12) participated in a randomized, placebo-controlled, crossover study of the effects of transdermal nicotine on cognitive control. For each drug condition, participants underwent fMRI while performing the stop signal task where participants attempt to inhibit prepotent responses to "go (motor activation)" signals when an occasional "stop (motor inhibition)" signal appears. Error processing was evaluated by comparing "stop error" trials (failed response inhibition) to "go" trials. Resting-state fMRI data were collected prior to the task. Participants with schizophrenia had increased nicotine-induced activation of right caudate in response to errors compared to controls (DRUG × GROUP effect: p corrected < 0.05). Both groups had significant nicotine-induced activation of dACC and rACC in response to errors. Using right caudate activation to errors as a seed for resting-state functional connectivity analysis, relative to controls, participants with schizophrenia had significantly decreased connectivity between the right caudate and dACC/bilateral dorsolateral prefrontal cortices. In sum, we replicated prior findings of decreased post-error slowing in schizophrenia and found that nicotine was associated with more adaptive (i.e., increased) post-error reaction time (RT). This proof-of-concept pilot study suggests a role for nicotinic agents in targeting cognitive control deficits in schizophrenia.
ERIC Educational Resources Information Center
Parsons, Michael W.; Haut, Marc W.; Lemieux, Susan K.; Moran, Maria T.; Leach, Sharon G.
2006-01-01
The existence of a rostrocaudal gradient of medial temporal lobe (MTL) activation during memory encoding has historically received support from positron emission tomography studies, but less so from functional MRI (FMRI) studies. More recently, FMRI studies have demonstrated that characteristics of the stimuli can affect the location of activation…
Altered Dynamics of the fMRI Response to Faces in Individuals with Autism
ERIC Educational Resources Information Center
Kleinhans, Natalia M.; Richards, Todd; Greenson, Jessica; Dawson, Geraldine; Aylward, Elizabeth
2016-01-01
Abnormal fMRI habituation in autism spectrum disorders (ASDs) has been proposed as a critical component in social impairment. This study investigated habituation to fearful faces and houses in ASD and whether fMRI measures of brain activity discriminate between ASD and typically developing (TD) controls. Two identical fMRI runs presenting masked…
Bishop, Sonia J.; Aguirre, Geoffrey K.; Nunez-Elizalde, Anwar O.; Toker, Daniel
2015-01-01
Anxious individuals have a greater tendency to categorize faces with ambiguous emotional expressions as fearful (Richards et al., 2002). These behavioral findings might reflect anxiety-related biases in stimulus representation within the human amygdala. Here, we used functional magnetic resonance imaging (fMRI) together with a continuous adaptation design to investigate the representation of faces from three expression continua (surprise-fear, sadness-fear, and surprise-sadness) within the amygdala and other brain regions implicated in face processing. Fifty-four healthy adult participants completed a face expression categorization task. Nineteen of these participants also viewed the same expressions presented using type 1 index 1 sequences while fMRI data were acquired. Behavioral analyses revealed an anxiety-related categorization bias in the surprise-fear continuum alone. Here, elevated anxiety was associated with a more rapid transition from surprise to fear responses as a function of percentage fear in the face presented, leading to increased fear categorizations for faces with a mid-way blend of surprise and fear. fMRI analyses revealed that high trait anxious participants also showed greater representational similarity, as indexed by greater adaptation of the Blood Oxygenation Level Dependent (BOLD) signal, between 50/50 surprise/fear expression blends and faces from the fear end of the surprise-fear continuum in both the right amygdala and right fusiform face area (FFA). No equivalent biases were observed for the other expression continua. These findings suggest that anxiety-related biases in the processing of expressions intermediate between surprise and fear may be linked to differential representation of these stimuli in the amygdala and FFA. The absence of anxiety-related biases for the sad-fear continuum might reflect intermediate expressions from the surprise-fear continuum being most ambiguous in threat-relevance. PMID:25870551
Lying about Facial Recognition: An fMRI Study
ERIC Educational Resources Information Center
Bhatt, S.; Mbwana, J.; Adeyemo, A.; Sawyer, A.; Hailu, A.; VanMeter, J.
2009-01-01
Novel deception detection techniques have been in creation for centuries. Functional magnetic resonance imaging (fMRI) is a neuroscience technology that non-invasively measures brain activity associated with behavior and cognition. A number of investigators have explored the utilization and efficiency of fMRI in deception detection. In this study,…
NASA Astrophysics Data System (ADS)
Hu, Jin; Tian, Jie; Pan, Xiaohong; Liu, Jiangang
2007-03-01
The purpose of this paper is to compare between EEG source localization and fMRI during emotional processing. 108 pictures for EEG (categorized as positive, negative and neutral) and 72 pictures for fMRI were presented to 24 healthy, right-handed subjects. The fMRI data were analyzed using statistical parametric mapping with SPM2. LORETA was applied to grand averaged ERP data to localize intracranial sources. Statistical analysis was implemented to compare spatiotemporal activation of fMRI and EEG. The fMRI results are in accordance with EEG source localization to some extent, while part of mismatch in localization between the two methods was also observed. In the future we should apply the method for simultaneous recording of EEG and fMRI to our study.
Development of Neural Sensitivity to Face Identity Correlates with Perceptual Discriminability.
Natu, Vaidehi S; Barnett, Michael A; Hartley, Jake; Gomez, Jesse; Stigliani, Anthony; Grill-Spector, Kalanit
2016-10-19
Face perception is subserved by a series of face-selective regions in the human ventral stream, which undergo prolonged development from childhood to adulthood. However, it is unknown how neural development of these regions relates to the development of face-perception abilities. Here, we used functional magnetic resonance imaging (fMRI) to measure brain responses of ventral occipitotemporal regions in children (ages, 5-12 years) and adults (ages, 19-34 years) when they viewed faces that parametrically varied in dissimilarity. Since similar faces generate lower responses than dissimilar faces due to fMRI adaptation, this design objectively evaluates neural sensitivity to face identity across development. Additionally, a subset of subjects participated in a behavioral experiment to assess perceptual discriminability of face identity. Our data reveal three main findings: (1) neural sensitivity to face identity increases with age in face-selective but not object-selective regions; (2) the amplitude of responses to faces increases with age in both face-selective and object-selective regions; and (3) perceptual discriminability of face identity is correlated with the neural sensitivity to face identity of face-selective regions. In contrast, perceptual discriminability is not correlated with the amplitude of response in face-selective regions or of responses of object-selective regions. These data suggest that developmental increases in neural sensitivity to face identity in face-selective regions improve perceptual discriminability of faces. Our findings significantly advance the understanding of the neural mechanisms of development of face perception and open new avenues for using fMRI adaptation to study the neural development of high-level visual and cognitive functions more broadly. Face perception, which is critical for daily social interactions, develops from childhood to adulthood. However, it is unknown what developmental changes in the brain lead to improved performance. Using fMRI in children and adults, we find that from childhood to adulthood, neural sensitivity to changes in face identity increases in face-selective regions. Critically, subjects' perceptual discriminability among faces is linked to neural sensitivity: participants with higher neural sensitivity in face-selective regions demonstrate higher perceptual discriminability. Thus, our results suggest that developmental increases in face-selective regions' sensitivity to face identity improve perceptual discrimination of faces. These findings significantly advance understanding of the neural mechanisms underlying the development of face perception and have important implications for assessing both typical and atypical development. Copyright © 2016 the authors 0270-6474/16/3610893-15$15.00/0.
Intersession reliability of fMRI activation for heat pain and motor tasks
Quiton, Raimi L.; Keaser, Michael L.; Zhuo, Jiachen; Gullapalli, Rao P.; Greenspan, Joel D.
2014-01-01
As the practice of conducting longitudinal fMRI studies to assess mechanisms of pain-reducing interventions becomes more common, there is a great need to assess the test–retest reliability of the pain-related BOLD fMRI signal across repeated sessions. This study quantitatively evaluated the reliability of heat pain-related BOLD fMRI brain responses in healthy volunteers across 3 sessions conducted on separate days using two measures: (1) intraclass correlation coefficients (ICC) calculated based on signal amplitude and (2) spatial overlap. The ICC analysis of pain-related BOLD fMRI responses showed fair-to-moderate intersession reliability in brain areas regarded as part of the cortical pain network. Areas with the highest intersession reliability based on the ICC analysis included the anterior midcingulate cortex, anterior insula, and second somatosensory cortex. Areas with the lowest intersession reliability based on the ICC analysis also showed low spatial reliability; these regions included pregenual anterior cingulate cortex, primary somatosensory cortex, and posterior insula. Thus, this study found regional differences in pain-related BOLD fMRI response reliability, which may provide useful information to guide longitudinal pain studies. A simple motor task (finger-thumb opposition) was performed by the same subjects in the same sessions as the painful heat stimuli were delivered. Intersession reliability of fMRI activation in cortical motor areas was comparable to previously published findings for both spatial overlap and ICC measures, providing support for the validity of the analytical approach used to assess intersession reliability of pain-related fMRI activation. A secondary finding of this study is that the use of standard ICC alone as a measure of reliability may not be sufficient, as the underlying variance structure of an fMRI dataset can result in inappropriately high ICC values; a method to eliminate these false positive results was used in this study and is recommended for future studies of test–retest reliability. PMID:25161897
Chang, Hing-Chiu; Gaur, Pooja; Chou, Ying-hui; Chu, Mei-Lan; Chen, Nan-kuei
2014-01-01
Functional magnetic resonance imaging (fMRI) is a non-invasive and powerful imaging tool for detecting brain activities. The majority of fMRI studies are performed with single-shot echo-planar imaging (EPI) due to its high temporal resolution. Recent studies have demonstrated that, by increasing the spatial-resolution of fMRI, previously unidentified neuronal networks can be measured. However, it is challenging to improve the spatial resolution of conventional single-shot EPI based fMRI. Although multi-shot interleaved EPI is superior to single-shot EPI in terms of the improved spatial-resolution, reduced geometric distortions, and sharper point spread function (PSF), interleaved EPI based fMRI has two main limitations: 1) the imaging throughput is lower in interleaved EPI; 2) the magnitude and phase signal variations among EPI segments (due to physiological noise, subject motion, and B0 drift) are translated to significant in-plane aliasing artifact across the field of view (FOV). Here we report a method that integrates multiple approaches to address the technical limitations of interleaved EPI-based fMRI. Firstly, the multiplexed sensitivity-encoding (MUSE) post-processing algorithm is used to suppress in-plane aliasing artifacts resulting from time-domain signal instabilities during dynamic scans. Secondly, a simultaneous multi-band interleaved EPI pulse sequence, with a controlled aliasing scheme incorporated, is implemented to increase the imaging throughput. Thirdly, the MUSE algorithm is then generalized to accommodate fMRI data obtained with our multi-band interleaved EPI pulse sequence, suppressing both in-plane and through-plane aliasing artifacts. The blood-oxygenation-level-dependent (BOLD) signal detectability and the scan throughput can be significantly improved for interleaved EPI-based fMRI. Our human fMRI data obtained from 3 Tesla systems demonstrate the effectiveness of the developed methods. It is expected that future fMRI studies requiring high spatial-resolvability and fidelity will largely benefit from the reported techniques.
Presurgical language fMRI: Clinical practices and patient outcomes in epilepsy surgical planning.
Benjamin, Christopher F A; Li, Alexa X; Blumenfeld, Hal; Constable, R Todd; Alkawadri, Rafeed; Bickel, Stephan; Helmstaedter, Christoph; Meletti, Stefano; Bronen, Richard; Warfield, Simon K; Peters, Jurriaan M; Reutens, David; Połczyńska, Monika; Spencer, Dennis D; Hirsch, Lawrence J
2018-03-12
The goal of this study was to document current clinical practice and report patient outcomes in presurgical language functional MRI (fMRI) for epilepsy surgery. Epilepsy surgical programs worldwide were surveyed as to the utility, implementation, and efficacy of language fMRI in the clinic; 82 programs responded. Respondents were predominantly US (61%) academic programs (85%), and evaluated adults (44%), adults and children (40%), or children only (16%). Nearly all (96%) reported using language fMRI. Surprisingly, fMRI is used to guide surgical margins (44% of programs) as well as lateralize language (100%). Sites using fMRI for localization most often use a distance margin around activation of 10mm. While considered useful, 56% of programs reported at least one instance of disagreement with other measures. Direct brain stimulation typically confirmed fMRI findings (74%) when guiding margins, but instances of unpredicted decline were reported by 17% of programs and 54% reported unexpected preservation of function. Programs reporting unexpected decline did not clearly differ from those which did not. Clinicians using fMRI to guide surgical margins do not typically map known language-critical areas beyond Broca's and Wernicke's. This initial data shows many clinical teams are confident using fMRI not only for language lateralization but also to guide surgical margins. Reported cases of unexpected language preservation when fMRI activation is resected, and cases of language decline when it is not, emphasize a critical need for further validation. Comprehensive studies comparing commonly-used fMRI paradigms to predict stimulation mapping and post-surgical language decline remain of high importance. © 2018 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Kim, Hoyoung; Chey, Jeanyung; Lee, Sanghun
2017-11-01
The aim of this study was to investigate the changes in cognitive functions and brain activation after multicomponent training of cognitive control in non-demented older adults, utilizing neuropsychological tests and fMRI. We developed and implemented a computerized Multicomponent Training of Cognitive Control (MTCC), characterized by task variability and adaptive procedures, in order to maximize training effects in cognitive control and transfer to other cognitive domains. Twenty-seven community-dwelling adults, aged 64-77 years, without any history of neurological or psychiatric problems, participated in this study (14 in the training group and 13 in the control group). The MTCC was administered to the participants assigned to the training group for 8 weeks, while those in the control group received no training. Neuropsychological tests and fMRI were administered prior to and after the training. Trained participants showed improvements in cognitive control, recognition memory and general cognitive functioning. Furthermore, the MTCC led to an increased brain activation of the regions adjacent to the baseline cognitive control-related areas in the frontoparietal network. Future studies are necessary to confirm our hypothesis that MTCC improves cognitive functioning of healthy elderly individuals by expanding their frontoparietal network that is involved in cognitive control. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Tracking brain arousal fluctuations with fMRI
Chang, Catie; Leopold, David A.; Schölvinck, Marieke Louise; Mandelkow, Hendrik; Picchioni, Dante; Liu, Xiao; Ye, Frank Q.; Turchi, Janita N.; Duyn, Jeff H.
2016-01-01
Changes in brain activity accompanying shifts in vigilance and arousal can interfere with the study of other intrinsic and task-evoked characteristics of brain function. However, the difficulty of tracking and modeling the arousal state during functional MRI (fMRI) typically precludes the assessment of arousal-dependent influences on fMRI signals. Here we combine fMRI, electrophysiology, and the monitoring of eyelid behavior to demonstrate an approach for tracking continuous variations in arousal level from fMRI data. We first characterize the spatial distribution of fMRI signal fluctuations that track a measure of behavioral arousal; taking this pattern as a template, and using the local field potential as a simultaneous and independent measure of cortical activity, we observe that the time-varying expression level of this template in fMRI data provides a close approximation of electrophysiological arousal. We discuss the potential benefit of these findings for increasing the sensitivity of fMRI as a cognitive and clinical biomarker. PMID:27051064
Kallioniemi, Elisa; Pitkänen, Minna; Könönen, Mervi; Vanninen, Ritva; Julkunen, Petro
2016-11-01
Although the relationship between neuronavigated transcranial magnetic stimulation (nTMS) and functional magnetic resonance imaging (fMRI) has been widely studied in motor mapping, it is unknown how the motor response type or the choice of motor task affect this relationship. Centers of gravity (CoGs) and response maxima were measured with blood-oxygen-level dependent (BOLD) and arterial spin labeling (ASL) fMRI during motor tasks against nTMS CoGs and response maxima, which were mapped with motor evoked potentials (MEPs) and silent periods (SPs). No differences in motor representations (CoGs and response maxima) were observed in lateral-medial direction (p=0.265). fMRI methods localized the motor representation more posterior than nTMS (p<0.001). This was not affected by the BOLD fMRI motor task (p>0.999) nor nTMS response type (p>0.999). ASL fMRI maxima did not differ from the nTMS nor BOLD fMRI CoGs (p≥0.070), but the ASL CoG was deeper in comparison to other methods (p≤0.042). The BOLD fMRI motor task did not influence the depth of the motor representation (p≥0.745). The median Euclidean distances between the nTMS and fMRI motor representations varied between 7.7mm and 14.5mm and did not differ between the methods (F≤1.23, p≥0.318). The relationship between fMRI and nTMS mapped excitatory (MEP) and inhibitory (SP) responses, and whether the choice of motor task affects this relationship, have not been studied before. The congruence between fMRI and nTMS is good. The choice of nTMS motor response type nor BOLD fMRI motor task had no effect on this relationship. Copyright © 2016 Elsevier B.V. All rights reserved.
Compressed Sensing for fMRI: Feasibility Study on the Acceleration of Non-EPI fMRI at 9.4T
Kim, Seong-Gi; Ye, Jong Chul
2015-01-01
Conventional functional magnetic resonance imaging (fMRI) technique known as gradient-recalled echo (GRE) echo-planar imaging (EPI) is sensitive to image distortion and degradation caused by local magnetic field inhomogeneity at high magnetic fields. Non-EPI sequences such as spoiled gradient echo and balanced steady-state free precession (bSSFP) have been proposed as an alternative high-resolution fMRI technique; however, the temporal resolution of these sequences is lower than the typically used GRE-EPI fMRI. One potential approach to improve the temporal resolution is to use compressed sensing (CS). In this study, we tested the feasibility of k-t FOCUSS—one of the high performance CS algorithms for dynamic MRI—for non-EPI fMRI at 9.4T using the model of rat somatosensory stimulation. To optimize the performance of CS reconstruction, different sampling patterns and k-t FOCUSS variations were investigated. Experimental results show that an optimized k-t FOCUSS algorithm with acceleration by a factor of 4 works well for non-EPI fMRI at high field under various statistical criteria, which confirms that a combination of CS and a non-EPI sequence may be a good solution for high-resolution fMRI at high fields. PMID:26413503
Comparison of fMRI data analysis by SPM99 on different operating systems.
Shinagawa, Hideo; Honda, Ei-ichi; Ono, Takashi; Kurabayashi, Tohru; Ohyama, Kimie
2004-09-01
The hardware chosen for fMRI data analysis may depend on the platform already present in the laboratory or the supporting software. In this study, we ran SPM99 software on multiple platforms to examine whether we could analyze fMRI data by SPM99, and to compare their differences and limitations in processing fMRI data, which can be attributed to hardware capabilities. Six normal right-handed volunteers participated in a study of hand-grasping to obtain fMRI data. Each subject performed a run that consisted of 98 images. The run was measured using a gradient echo-type echo planar imaging sequence on a 1.5T apparatus with a head coil. We used several personal computer (PC), Unix and Linux machines to analyze the fMRI data. There were no differences in the results obtained on several PC, Unix and Linux machines. The only limitations in processing large amounts of the fMRI data were found using PC machines. This suggests that the results obtained with different machines were not affected by differences in hardware components, such as the CPU, memory and hard drive. Rather, it is likely that the limitations in analyzing a huge amount of the fMRI data were due to differences in the operating system (OS).
ERIC Educational Resources Information Center
Liang, Chun-Yu; Xu, Zhi-Yuan; Mei, Wei; Wang, Li-Li; Xue, Li; Lu, De Jian; Zhao, Hu
2012-01-01
Previous functional magnetic resonance imaging (fMRI) studies have identified activation in the prefrontal-parietal-sub-cortical circuit during feigned memory impairment when comparing with truthful telling. Here, we used fMRI to determine whether neural activity can differentiate between answering correctly, answering randomly, answering…
ERIC Educational Resources Information Center
Steinbrink, Claudia; Groth, Katarina; Lachmann, Thomas; Riecker, Axel
2012-01-01
This fMRI study investigated phonological vs. auditory temporal processing in developmental dyslexia by means of a German vowel length discrimination paradigm (Groth, Lachmann, Riecker, Muthmann, & Steinbrink, 2011). Behavioral and fMRI data were collected from dyslexics and controls while performing same-different judgments of vowel duration in…
Menon, Samir; Brantner, Gerald; Aholt, Chris; Kay, Kendrick; Khatib, Oussama
2013-01-01
A challenging problem in motor control neuroimaging studies is the inability to perform complex human motor tasks given the Magnetic Resonance Imaging (MRI) scanner's disruptive magnetic fields and confined workspace. In this paper, we propose a novel experimental platform that combines Functional MRI (fMRI) neuroimaging, haptic virtual simulation environments, and an fMRI-compatible haptic device for real-time haptic interaction across the scanner workspace (above torso ∼ .65×.40×.20m(3)). We implement this Haptic fMRI platform with a novel haptic device, the Haptic fMRI Interface (HFI), and demonstrate its suitability for motor neuroimaging studies. HFI has three degrees-of-freedom (DOF), uses electromagnetic motors to enable high-fidelity haptic rendering (>350Hz), integrates radio frequency (RF) shields to prevent electromagnetic interference with fMRI (temporal SNR >100), and is kinematically designed to minimize currents induced by the MRI scanner's magnetic field during motor displacement (<2cm). HFI possesses uniform inertial and force transmission properties across the workspace, and has low friction (.05-.30N). HFI's RF noise levels, in addition, are within a 3 Tesla fMRI scanner's baseline noise variation (∼.85±.1%). Finally, HFI is haptically transparent and does not interfere with human motor tasks (tested for .4m reaches). By allowing fMRI experiments involving complex three-dimensional manipulation with haptic interaction, Haptic fMRI enables-for the first time-non-invasive neuroscience experiments involving interactive motor tasks, object manipulation, tactile perception, and visuo-motor integration.
A new vibrator to stimulate muscle proprioceptors in fMRI.
Montant, Marie; Romaiguère, Patricia; Roll, Jean-Pierre
2009-03-01
Studying cognitive brain functions by functional magnetic resonance imaging (fMRI) requires appropriate stimulation devices that do not interfere with the magnetic fields. Since the emergence of fMRI in the 90s, a number of stimulation devices have been developed for the visual and auditory modalities. Only few devices, however, have been developed for the somesthesic modality. Here, we present a vibration device for studying somesthesia that is compatible with high magnetic field environments and that can be used in fMRI machines. This device consists of a poly vinyl chloride (PVC) vibrator containing a wind turbine and of a pneumatic apparatus that controls 1-6 vibrators simultaneously. Just like classical electromagnetic vibrators, our device stimulates muscle mechanoreceptors (muscle spindles) and generates reliable illusions of movement. We provide the fMRI compatibility data (phantom test), the calibration curve (vibration frequency as a function of air flow), as well as the results of a kinesthetic test (perceived speed of the illusory movement as a function of vibration frequency). This device was used successfully in several brain imaging studies using both fMRI and magnetoencephalography.
Shared Syntax in Language Production and Language Comprehension—An fMRI Study
Menenti, Laura; Weber, Kirsten; Petersson, Karl Magnus; Hagoort, Peter
2012-01-01
During speaking and listening syntactic processing is a crucial step. It involves specifying syntactic relations between words in a sentence. If the production and comprehension modality share the neuronal substrate for syntactic processing then processing syntax in one modality should lead to adaptation effects in the other modality. In the present functional magnetic resonance imaging experiment, participants either overtly produced or heard descriptions of pictures. We looked for brain regions showing adaptation effects to the repetition of syntactic structures. In order to ensure that not just the same brain regions but also the same neuronal populations within these regions are involved in syntactic processing in speaking and listening, we compared syntactic adaptation effects within processing modalities (syntactic production-to-production and comprehension-to-comprehension priming) with syntactic adaptation effects between processing modalities (syntactic comprehension-to-production and production-to-comprehension priming). We found syntactic adaptation effects in left inferior frontal gyrus (Brodmann's area [BA] 45), left middle temporal gyrus (BA 21), and bilateral supplementary motor area (BA 6) which were equally strong within and between processing modalities. Thus, syntactic repetition facilitates syntactic processing in the brain within and across processing modalities to the same extent. We conclude that that the same neurobiological system seems to subserve syntactic processing in speaking and listening. PMID:21934094
Zhang, Jing; Liang, Lichen; Anderson, Jon R; Gatewood, Lael; Rottenberg, David A; Strother, Stephen C
2008-01-01
As functional magnetic resonance imaging (fMRI) becomes widely used, the demands for evaluation of fMRI processing pipelines and validation of fMRI analysis results is increasing rapidly. The current NPAIRS package, an IDL-based fMRI processing pipeline evaluation framework, lacks system interoperability and the ability to evaluate general linear model (GLM)-based pipelines using prediction metrics. Thus, it can not fully evaluate fMRI analytical software modules such as FSL.FEAT and NPAIRS.GLM. In order to overcome these limitations, a Java-based fMRI processing pipeline evaluation system was developed. It integrated YALE (a machine learning environment) into Fiswidgets (a fMRI software environment) to obtain system interoperability and applied an algorithm to measure GLM prediction accuracy. The results demonstrated that the system can evaluate fMRI processing pipelines with univariate GLM and multivariate canonical variates analysis (CVA)-based models on real fMRI data based on prediction accuracy (classification accuracy) and statistical parametric image (SPI) reproducibility. In addition, a preliminary study was performed where four fMRI processing pipelines with GLM and CVA modules such as FSL.FEAT and NPAIRS.CVA were evaluated with the system. The results indicated that (1) the system can compare different fMRI processing pipelines with heterogeneous models (NPAIRS.GLM, NPAIRS.CVA and FSL.FEAT) and rank their performance by automatic performance scoring, and (2) the rank of pipeline performance is highly dependent on the preprocessing operations. These results suggest that the system will be of value for the comparison, validation, standardization and optimization of functional neuroimaging software packages and fMRI processing pipelines.
HAFNI-enabled largescale platform for neuroimaging informatics (HELPNI).
Makkie, Milad; Zhao, Shijie; Jiang, Xi; Lv, Jinglei; Zhao, Yu; Ge, Bao; Li, Xiang; Han, Junwei; Liu, Tianming
Tremendous efforts have thus been devoted on the establishment of functional MRI informatics systems that recruit a comprehensive collection of statistical/computational approaches for fMRI data analysis. However, the state-of-the-art fMRI informatics systems are especially designed for specific fMRI sessions or studies of which the data size is not really big, and thus has difficulty in handling fMRI 'big data.' Given the size of fMRI data are growing explosively recently due to the advancement of neuroimaging technologies, an effective and efficient fMRI informatics system which can process and analyze fMRI big data is much needed. To address this challenge, in this work, we introduce our newly developed informatics platform, namely, 'HAFNI-enabled largescale platform for neuroimaging informatics (HELPNI).' HELPNI implements our recently developed computational framework of sparse representation of whole-brain fMRI signals which is called holistic atlases of functional networks and interactions (HAFNI) for fMRI data analysis. HELPNI provides integrated solutions to archive and process large-scale fMRI data automatically and structurally, to extract and visualize meaningful results information from raw fMRI data, and to share open-access processed and raw data with other collaborators through web. We tested the proposed HELPNI platform using publicly available 1000 Functional Connectomes dataset including over 1200 subjects. We identified consistent and meaningful functional brain networks across individuals and populations based on resting state fMRI (rsfMRI) big data. Using efficient sampling module, the experimental results demonstrate that our HELPNI system has superior performance than other systems for large-scale fMRI data in terms of processing and storing the data and associated results much faster.
HAFNI-enabled largescale platform for neuroimaging informatics (HELPNI).
Makkie, Milad; Zhao, Shijie; Jiang, Xi; Lv, Jinglei; Zhao, Yu; Ge, Bao; Li, Xiang; Han, Junwei; Liu, Tianming
2015-12-01
Tremendous efforts have thus been devoted on the establishment of functional MRI informatics systems that recruit a comprehensive collection of statistical/computational approaches for fMRI data analysis. However, the state-of-the-art fMRI informatics systems are especially designed for specific fMRI sessions or studies of which the data size is not really big, and thus has difficulty in handling fMRI 'big data.' Given the size of fMRI data are growing explosively recently due to the advancement of neuroimaging technologies, an effective and efficient fMRI informatics system which can process and analyze fMRI big data is much needed. To address this challenge, in this work, we introduce our newly developed informatics platform, namely, 'HAFNI-enabled largescale platform for neuroimaging informatics (HELPNI).' HELPNI implements our recently developed computational framework of sparse representation of whole-brain fMRI signals which is called holistic atlases of functional networks and interactions (HAFNI) for fMRI data analysis. HELPNI provides integrated solutions to archive and process large-scale fMRI data automatically and structurally, to extract and visualize meaningful results information from raw fMRI data, and to share open-access processed and raw data with other collaborators through web. We tested the proposed HELPNI platform using publicly available 1000 Functional Connectomes dataset including over 1200 subjects. We identified consistent and meaningful functional brain networks across individuals and populations based on resting state fMRI (rsfMRI) big data. Using efficient sampling module, the experimental results demonstrate that our HELPNI system has superior performance than other systems for large-scale fMRI data in terms of processing and storing the data and associated results much faster.
fMRI Validation of fNIRS Measurements During a Naturalistic Task
Noah, J. Adam; Ono, Yumie; Nomoto, Yasunori; Shimada, Sotaro; Tachibana, Atsumichi; Zhang, Xian; Bronner, Shaw; Hirsch, Joy
2015-01-01
We present a method to compare brain activity recorded with near-infrared spectroscopy (fNIRS) in a dance video game task to that recorded in a reduced version of the task using fMRI (functional magnetic resonance imaging). Recently, it has been shown that fNIRS can accurately record functional brain activities equivalent to those concurrently recorded with functional magnetic resonance imaging for classic psychophysical tasks and simple finger tapping paradigms. However, an often quoted benefit of fNIRS is that the technique allows for studying neural mechanisms of complex, naturalistic behaviors that are not possible using the constrained environment of fMRI. Our goal was to extend the findings of previous studies that have shown high correlation between concurrently recorded fNIRS and fMRI signals to compare neural recordings obtained in fMRI procedures to those separately obtained in naturalistic fNIRS experiments. Specifically, we developed a modified version of the dance video game Dance Dance Revolution (DDR) to be compatible with both fMRI and fNIRS imaging procedures. In this methodology we explain the modifications to the software and hardware for compatibility with each technique as well as the scanning and calibration procedures used to obtain representative results. The results of the study show a task-related increase in oxyhemoglobin in both modalities and demonstrate that it is possible to replicate the findings of fMRI using fNIRS in a naturalistic task. This technique represents a methodology to compare fMRI imaging paradigms which utilize a reduced-world environment to fNIRS in closer approximation to naturalistic, full-body activities and behaviors. Further development of this technique may apply to neurodegenerative diseases, such as Parkinson’s disease, late states of dementia, or those with magnetic susceptibility which are contraindicated for fMRI scanning. PMID:26132365
Uncertainty during pain anticipation: the adaptive value of preparatory processes.
Seidel, Eva-Maria; Pfabigan, Daniela M; Hahn, Andreas; Sladky, Ronald; Grahl, Arvina; Paul, Katharina; Kraus, Christoph; Küblböck, Martin; Kranz, Georg S; Hummer, Allan; Lanzenberger, Rupert; Windischberger, Christian; Lamm, Claus
2015-02-01
Anticipatory processes prepare the organism for upcoming experiences. The aim of this study was to investigate neural responses related to anticipation and processing of painful stimuli occurring with different levels of uncertainty. Twenty-five participants (13 females) took part in an electroencephalography and functional magnetic resonance imaging (fMRI) experiment at separate times. A visual cue announced the occurrence of an electrical painful or nonpainful stimulus, delivered with certainty or uncertainty (50% chance), at some point during the following 15 s. During the first 2 s of the anticipation phase, a strong effect of uncertainty was reflected in a pronounced frontal stimulus-preceding negativity (SPN) and increased fMRI activation in higher visual processing areas. In the last 2 s before stimulus delivery, we observed stimulus-specific preparatory processes indicated by a centroparietal SPN and posterior insula activation that was most pronounced for the certain pain condition. Uncertain anticipation was associated with attentional control processes. During stimulation, the results revealed that unexpected painful stimuli produced the strongest activation in the affective pain processing network and a more pronounced offset-P2. Our results reflect that during early anticipation uncertainty is strongly associated with affective mechanisms and seems to be a more salient event compared to certain anticipation. During the last 2 s before stimulation, attentional control mechanisms are initiated related to the increased salience of uncertainty. Furthermore, stimulus-specific preparatory mechanisms during certain anticipation also shaped the response to stimulation, underlining the adaptive value of stimulus-targeted preparatory activity which is less likely when facing an uncertain event. © 2014 Wiley Periodicals, Inc.
Holloway, Ian D; Battista, Christian; Vogel, Stephan E; Ansari, Daniel
2013-03-01
The ability to process the numerical magnitude of sets of items has been characterized in many animal species. Neuroimaging data have associated this ability to represent nonsymbolic numerical magnitudes (e.g., arrays of dots) with activity in the bilateral parietal lobes. Yet the quantitative abilities of humans are not limited to processing the numerical magnitude of nonsymbolic sets. Humans have used this quantitative sense as the foundation for symbolic systems for the representation of numerical magnitude. Although numerical symbol use is widespread in human cultures, the brain regions involved in processing of numerical symbols are just beginning to be understood. Here, we investigated the brain regions underlying the semantic and perceptual processing of numerical symbols. Specifically, we used an fMRI adaptation paradigm to examine the neural response to Hindu-Arabic numerals and Chinese numerical ideographs in a group of Chinese readers who could read both symbol types and a control group who could read only the numerals. Across groups, the Hindu-Arabic numerals exhibited ratio-dependent modulation in the left IPS. In contrast, numerical ideographs were associated with activation in the right IPS, exclusively in the Chinese readers. Furthermore, processing of the visual similarity of both digits and ideographs was associated with activation of the left fusiform gyrus. Using culture as an independent variable, we provide clear evidence for differences in the brain regions associated with the semantic and perceptual processing of numerical symbols. Additionally, we reveal a striking difference in the laterality of parietal activation between the semantic processing of the two symbols types.
Hulbert, J. C.; Norman, K. A.
2015-01-01
Selective retrieval of overlapping memories can generate competition. How does the brain adaptively resolve this competition? One possibility is that competing memories are inhibited; in support of this view, numerous studies have found that selective retrieval leads to forgetting of memories that are related to the just-retrieved memory. However, this retrieval-induced forgetting (RIF) effect can be eliminated or even reversed if participants are given opportunities to restudy the materials between retrieval attempts. Here, we outline an explanation for such a reversal, rooted in a neural network model of RIF that predicts representational differentiation when restudy is interleaved with selective retrieval. To test this hypothesis, we measured changes in pattern similarity of the BOLD fMRI signal elicited by related memories after undergoing interleaved competitive retrieval and restudy. Reduced pattern similarity within the hippocampus positively correlated with retrieval-induced facilitation of competing memories. This result is consistent with an adaptive differentiation process that allows individuals to learn to distinguish between once-confusable memories. PMID:25477369
Warbrick, Tracy; Reske, Martina; Shah, N Jon
2014-09-22
As cognitive neuroscience methods develop, established experimental tasks are used with emerging brain imaging modalities. Here transferring a paradigm (the visual oddball task) with a long history of behavioral and electroencephalography (EEG) experiments to a functional magnetic resonance imaging (fMRI) experiment is considered. The aims of this paper are to briefly describe fMRI and when its use is appropriate in cognitive neuroscience; illustrate how task design can influence the results of an fMRI experiment, particularly when that task is borrowed from another imaging modality; explain the practical aspects of performing an fMRI experiment. It is demonstrated that manipulating the task demands in the visual oddball task results in different patterns of blood oxygen level dependent (BOLD) activation. The nature of the fMRI BOLD measure means that many brain regions are found to be active in a particular task. Determining the functions of these areas of activation is very much dependent on task design and analysis. The complex nature of many fMRI tasks means that the details of the task and its requirements need careful consideration when interpreting data. The data show that this is particularly important in those tasks relying on a motor response as well as cognitive elements and that covert and overt responses should be considered where possible. Furthermore, the data show that transferring an EEG paradigm to an fMRI experiment needs careful consideration and it cannot be assumed that the same paradigm will work equally well across imaging modalities. It is therefore recommended that the design of an fMRI study is pilot tested behaviorally to establish the effects of interest and then pilot tested in the fMRI environment to ensure appropriate design, implementation and analysis for the effects of interest.
Shim, Woo H; Suh, Ji-Yeon; Kim, Jeong K; Jeong, Jaeseung; Kim, Young R
2016-01-01
Neurological recovery after stroke has been extensively investigated to provide better understanding of neurobiological mechanism, therapy, and patient management. Recent advances in neuroimaging techniques, particularly functional MRI (fMRI), have widely contributed to unravel the relationship between the altered neural function and stroke-affected brain areas. As results of previous investigations, the plastic reorganization and/or gradual restoration of the hemodynamic fMRI responses to neural stimuli have been suggested as relevant mechanisms underlying the stroke recovery process. However, divergent study results and modality-dependent outcomes have clouded the proper interpretation of variable fMRI signals. Here, we performed both evoked and resting state fMRI (rs-fMRI) to clarify the link between the fMRI phenotypes and post-stroke functional recovery. The experiments were designed to examine the altered neural activity within the contra-lesional hemisphere and other undamaged brain regions using rat models with large unilateral stroke, which despite the severe injury, exhibited nearly full recovery at ∼6 months after stroke. Surprisingly, both blood oxygenation level-dependent and blood volume-weighted (CBVw) fMRI activities elicited by electrical stimulation of the stroke-affected forelimb were completely absent, failing to reveal the neural origin of the behavioral recovery. In contrast, the functional connectivity maps showed highly robust rs-fMRI activity concentrated in the contra-lesional ventromedial nucleus of thalamus (VM). The negative finding in the stimuli-induced fMRI study using the popular rat middle cerebral artery model denotes weak association between the fMRI hemodynamic responses and neurological improvement. The results strongly caution the indiscreet interpretation of stroke-affected fMRI signals and demonstrate rs-fMRI as a complementary tool for efficiently characterizing stroke recovery.
Adaptive cyclic physiologic noise modeling and correction in functional MRI.
Beall, Erik B
2010-03-30
Physiologic noise in BOLD-weighted MRI data is known to be a significant source of the variance, reducing the statistical power and specificity in fMRI and functional connectivity analyses. We show a dramatic improvement on current noise correction methods in both fMRI and fcMRI data that avoids overfitting. The traditional noise model is a Fourier series expansion superimposed on the periodicity of parallel measured breathing and cardiac cycles. Correction using this model results in removal of variance matching the periodicity of the physiologic cycles. Using this framework allows easy modeling of noise. However, using a large number of regressors comes at the cost of removing variance unrelated to physiologic noise, such as variance due to the signal of functional interest (overfitting the data). It is our hypothesis that there are a small variety of fits that describe all of the significantly coupled physiologic noise. If this is true, we can replace a large number of regressors used in the model with a smaller number of the fitted regressors and thereby account for the noise sources with a smaller reduction in variance of interest. We describe these extensions and demonstrate that we can preserve variance in the data unrelated to physiologic noise while removing physiologic noise equivalently, resulting in data with a higher effective SNR than with current corrections techniques. Our results demonstrate a significant improvement in the sensitivity of fMRI (up to a 17% increase in activation volume for fMRI compared with higher order traditional noise correction) and functional connectivity analyses. Copyright (c) 2010 Elsevier B.V. All rights reserved.
A new fun and robust version of an fMRI localizer for the frontotemporal language system.
Scott, Terri L; Gallée, Jeanne; Fedorenko, Evelina
2017-07-01
A set of brain regions in the frontal, temporal, and parietal lobes supports high-level linguistic processing. These regions can be reliably identified in individual subjects using fMRI, by contrasting neural responses to meaningful and structured language stimuli vs. stimuli matched for low-level properties but lacking meaning and/or structure. We here present a novel version of a language 'localizer,' which should be suitable for diverse populations including children and/or clinical populations who may have difficulty with reading or cognitively demanding tasks. In particular, we contrast responses to auditorily presented excerpts from engaging interviews or stories, and acoustically degraded versions of these materials. This language localizer is appealing because it uses (a) naturalistic and engaging linguistic materials, (b) auditory presentation, (c) a passive listening task, and can be easily adapted to new stimulus materials enabling comparisons of language activation in children and speakers of diverse languages.
Plow, Ela B; Cattaneo, Zaira; Carlson, Thomas A; Alvarez, George A; Pascual-Leone, Alvaro; Battelli, Lorella
2014-01-01
A balance of mutual tonic inhibition between bi-hemispheric posterior parietal cortices is believed to play an important role in bilateral visual attention. However, experimental support for this notion has been mainly drawn from clinical models of unilateral damage. We have previously shown that low-frequency repetitive TMS (rTMS) over the intraparietal sulcus (IPS) generates a contralateral attentional deficit in bilateral visual tracking. Here, we used functional magnetic resonance imaging (fMRI) to study whether rTMS temporarily disrupts the inter-hemispheric balance between bilateral IPS in visual attention. Following application of 1 Hz rTMS over the left IPS, subjects performed a bilateral visual tracking task while their brain activity was recorded using fMRI. Behaviorally, tracking accuracy was reduced immediately following rTMS. Areas ventro-lateral to left IPS, including inferior parietal lobule (IPL), lateral IPS (LIPS), and middle occipital gyrus (MoG), showed decreased activity following rTMS, while dorsomedial areas, such as Superior Parietal Lobule (SPL), Superior occipital gyrus (SoG), and lingual gyrus, as well as middle temporal areas (MT+), showed higher activity. The brain activity of the homologues of these regions in the un-stimulated, right hemisphere was reversed. Interestingly, the evolution of network-wide activation related to attentional behavior following rTMS showed that activation of most occipital synergists adaptively compensated for contralateral and ipsilateral decrement after rTMS, while activation of parietal synergists, and SoG remained competing. This pattern of ipsilateral and contralateral activations empirically supports the hypothesized loss of inter-hemispheric balance that underlies clinical manifestation of visual attentional extinction.
Adaptation to Conflict via Context-Driven Anticipatory Signals in the Dorsomedial Prefrontal Cortex
Horga, Guillermo; Maia, Tiago V.; Wang, Pengwei; Wang, Zhishun; Marsh, Rachel; Peterson, Bradley S.
2011-01-01
Behavioral interference elicited by competing response tendencies adapts to contextual changes. Recent nonhuman primate research suggests a key mnemonic role of distinct prefrontal cells in supporting such context-driven behavioral adjustments by maintaining conflict information across trials, but corresponding prefrontal functions have yet to be probed in humans. Using event-related functional magnetic resonance imaging (fMRI), we investigated the human neural substrates of contextual adaptations to conflict. We found that a neural system comprising the rostral dorsomedial prefrontal cortex and portions of the dorsolateral prefrontal cortex specifically encodes the history of previously experienced conflict and influences subsequent adaptation to conflict on a trial-by-trial basis. This neural system became active in anticipation of stimulus onsets during preparatory periods and interacted with a second neural system engaged during the processing of conflict. Our findings suggest that a dynamic interaction between a system that represents conflict history and a system that resolves conflict underlies the contextual adaptation to conflict. PMID:22072672
Increased fMRI signal with age in familial Alzheimer’s disease mutation carriers
Braskie, Meredith N.; Medina, Luis D.; Rodriguez-Agudelo, Yaneth; Geschwind, Daniel H.; Macias-Islas, Miguel Angel; Cummings, Jeffrey L.; Bookheimer, Susan Y.; Ringman, John M.
2010-01-01
Although many Alzheimer’s disease (AD) patients have a family history of the disease, it is rarely inherited in a predictable way. Functional magnetic resonance imaging (fMRI) studies of non-demented adults carrying familial AD mutations provide an opportunity to prospectively identify brain differences associated with early AD-related changes. We compared fMRI activity of 18 non-demented autosomal dominant AD mutation carriers with fMRI activity in 8 of their non-carrier relatives as they performed a novelty encoding task in which they viewed novel and repeated images. Because age of disease onset is relatively consistent within families, we also correlated fMRI activity with subjects’ distance from the median age of diagnosis for their family. Mutation carriers did not show significantly different voxelwise fMRI activity from non-carriers as a group. However, as they approached their family age of disease diagnosis, only mutation carriers showed increased fMRI activity in the fusiform and middle temporal gyri. This suggests that during novelty encoding, increased fMRI activity in the temporal lobe may relate to incipient AD processes. PMID:21129823
Trinh, Victoria T; Fahim, Daniel K; Maldaun, Marcos V C; Shah, Komal; McCutcheon, Ian E; Rao, Ganesh; Lang, Frederick; Weinberg, Jeffrey; Sawaya, Raymond; Suki, Dima; Prabhu, Sujit S
2014-01-01
We wanted to study the role of functional MRI (fMRI) in preventing neurological injury in awake craniotomy patients as this has not been previously studied. To examine the role of fMRI as an intraoperative adjunct during awake craniotomy procedures. Preoperative fMRI was carried out routinely in 214 patients undergoing awake craniotomy with direct cortical stimulation (DCS). In 40% of our cases (n = 85) fMRI was utilized for the intraoperative localization of the eloquent cortex. In the other 129 cases significant noise distortion, poor task performance and nonspecific BOLD activation precluded the surgeon from using the fMRI data. Compared with DCS, fMRI had a sensitivity and specificity, respectively, of 91 and 64% in Broca's area, 93 and 18% in Wernicke's area and 100 and 100% in motor areas. A new intraoperative neurological deficit during subcortical dissection was predictive of a worsened deficit following surgery (p < 0.001). The use of fMRI for intraoperative localization was, however, not significant in preventing worsened neurological deficits, both in the immediate postoperative period (p = 1.00) and at the 3-month follow-up (p = 0.42). The routine use of fMRI was not useful in identifying language sites as performed and, more importantly, practiced tasks failed to prevent neurological deficits following awake craniotomy procedures. © 2014 S. Karger AG, Basel.
Pooresmaeili, Arezoo; Arrighi, Roberto; Biagi, Laura; Morrone, Maria Concetta
2016-01-01
In natural scenes, objects rarely occur in isolation but appear within a spatiotemporal context. Here, we show that the perceived size of a stimulus is significantly affected by the context of the scene: brief previous presentation of larger or smaller adapting stimuli at the same region of space changes the perceived size of a test stimulus, with larger adapting stimuli causing the test to appear smaller than veridical and vice versa. In a human fMRI study, we measured the blood oxygen level-dependent activation (BOLD) responses of the primary visual cortex (V1) to the contours of large-diameter stimuli and found that activation closely matched the perceptual rather than the retinal stimulus size: the activated area of V1 increased or decreased, depending on the size of the preceding stimulus. A model based on local inhibitory V1 mechanisms simulated the inward or outward shifts of the stimulus contours and hence the perceptual effects. Our findings suggest that area V1 is actively involved in reshaping our perception to match the short-term statistics of the visual scene. PMID:24089504
Functional Magnetic Resonance Imaging Methods
Chen, Jingyuan E.; Glover, Gary H.
2015-01-01
Since its inception in 1992, Functional Magnetic Resonance Imaging (fMRI) has become an indispensible tool for studying cognition in both the healthy and dysfunctional brain. FMRI monitors changes in the oxygenation of brain tissue resulting from altered metabolism consequent to a task-based evoked neural response or from spontaneous fluctuations in neural activity in the absence of conscious mentation (the “resting state”). Task-based studies have revealed neural correlates of a large number of important cognitive processes, while fMRI studies performed in the resting state have demonstrated brain-wide networks that result from brain regions with synchronized, apparently spontaneous activity. In this article, we review the methods used to acquire and analyze fMRI signals. PMID:26248581
Social reinforcement can regulate localized brain activity.
Mathiak, Krystyna A; Koush, Yury; Dyck, Miriam; Gaber, Tilman J; Alawi, Eliza; Zepf, Florian D; Zvyagintsev, Mikhail; Mathiak, Klaus
2010-11-01
Social learning is essential for adaptive behavior in humans. Neurofeedback based on functional magnetic resonance imaging (fMRI) trains control over localized brain activity. It can disentangle learning processes at the neural level and thus investigate the mechanisms of operant conditioning with explicit social reinforcers. In a pilot study, a computer-generated face provided a positive feedback (smiling) when activity in the anterior cingulate cortex (ACC) increased and gradually returned to a neutral expression when the activity dropped. One female volunteer without previous experience in fMRI underwent training based on a social reinforcer. Directly before and after the neurofeedback runs, neural responses to a cognitive interference task (Simon task) were recorded. We observed a significant increase in activity within ACC during the neurofeedback blocks, correspondent with the a-priori defined anatomical region of interest. In the course of the neurofeedback training, the subject learned to regulate ACC activity and could maintain the control even without direct feedback. Moreover, ACC was activated significantly stronger during Simon task after the neurofeedback training when compared to before. Localized brain activity can be controlled by social reward. The increased ACC activity transferred to a cognitive task with the potential to reduce cognitive interference. Systematic studies are required to explore long-term effects on social behavior and clinical applications.
Repetition Suppression and Reactivation in Auditory–Verbal Short-Term Recognition Memory
D'Esposito, Mark
2009-01-01
The neural response to stimulus repetition is not uniform across brain regions, stimulus modalities, or task contexts. For instance, it has been observed in many functional magnetic resonance imaging (fMRI) studies that sometimes stimulus repetition leads to a relative reduction in neural activity (repetition suppression), whereas in other cases repetition results in a relative increase in activity (repetition enhancement). In the present study, we hypothesized that in the context of a verbal short-term recognition memory task, repetition-related “increases” should be observed in the same posterior temporal regions that have been previously associated with “persistent activity” in working memory rehearsal paradigms. We used fMRI and a continuous recognition memory paradigm with short lags to examine repetition effects in the posterior and anterior regions of the superior temporal cortex. Results showed that, consistent with our hypothesis, the 2 posterior temporal regions consistently associated with working memory maintenance, also show repetition increases during short-term recognition memory. In contrast, a region in the anterior superior temporal lobe showed repetition suppression effects, consistent with previous research work on perceptual adaptation in the auditory–verbal domain. We interpret these results in light of recent theories of the functional specialization along the anterior and posterior axes of the superior temporal lobe. PMID:18987393
Repetition suppression and reactivation in auditory-verbal short-term recognition memory.
Buchsbaum, Bradley R; D'Esposito, Mark
2009-06-01
The neural response to stimulus repetition is not uniform across brain regions, stimulus modalities, or task contexts. For instance, it has been observed in many functional magnetic resonance imaging (fMRI) studies that sometimes stimulus repetition leads to a relative reduction in neural activity (repetition suppression), whereas in other cases repetition results in a relative increase in activity (repetition enhancement). In the present study, we hypothesized that in the context of a verbal short-term recognition memory task, repetition-related "increases" should be observed in the same posterior temporal regions that have been previously associated with "persistent activity" in working memory rehearsal paradigms. We used fMRI and a continuous recognition memory paradigm with short lags to examine repetition effects in the posterior and anterior regions of the superior temporal cortex. Results showed that, consistent with our hypothesis, the 2 posterior temporal regions consistently associated with working memory maintenance, also show repetition increases during short-term recognition memory. In contrast, a region in the anterior superior temporal lobe showed repetition suppression effects, consistent with previous research work on perceptual adaptation in the auditory-verbal domain. We interpret these results in light of recent theories of the functional specialization along the anterior and posterior axes of the superior temporal lobe.
Attention and amygdala activity: an fMRI study with spider pictures in spider phobia.
Alpers, Georg W; Gerdes, Antje B M; Lagarie, Bernadette; Tabbert, Katharina; Vaitl, Dieter; Stark, Rudolf
2009-06-01
Facilitated detection of threatening visual cues is thought to be adaptive. In theory, detection of threat cues should activate the amygdala independently from allocation of attention. However, previous studies using emotional facial expressions as well as phobic cues yielded contradictory results. We used fMRI to examine whether the allocation of attention to components of superimposed spider and bird displays modulates amygdala activation. Nineteen spider-phobic women were instructed to identify either a moving or a stationary animal in briefly presented double-exposure displays. Amygdala activation followed a dose-response relationship: Compared to congruent neutral displays (two birds), amygdala activation was most pronounced in response to congruent phobic displays (two spiders) and less but still significant in response to mixed displays (spider and bird) when attention was focused on the phobic component. When attention was focused on the neutral component, mixed displays did not result in significant amygdala activation. This was confirmed in a significant parametric graduation of the amygdala activation in the order of congruent phobic displays, mixed displays with attention focus on the spider, mixed displays with focus on the bird and congruent neutral displays. These results challenge the notion that amygdala activation in response to briefly presented phobic cues is independent from attention.
Riem, Madelon M E; Bakermans-Kranenburg, Marian J; Voorthuis, Alexandra; van IJzendoorn, Marinus H
2014-06-03
The neuropeptide oxytocin has been shown to stimulate a range of social behaviors. However, recent studies indicate that the effects of intranasal oxytocin are more nuanced than previously thought and that contextual factors and individual characteristics moderate the beneficiary oxytocin effects. In this randomized-controlled trial we examine the influence of intranasally administered oxytocin on neural activity during mind-reading with fMRI, taking into account harsh caregiving experiences as a potential moderator. Participants were 50 women who received a nasal spray containing either 16 IU of oxytocin or a placebo and had reported how often their mother used love withdrawal as a disciplinary strategy. Participants performed an adapted version of the Reading the Mind in the Eyes Test (RMET), a task which requires individuals to infer mental states by looking at photographs of the eye region of faces. We found that oxytocin enhanced neural activation in the superior temporal gyrus (STG) and insula during the RMET. Moreover, oxytocin increased RMET performance outside the scanner. However, the oxytocin induced changes in STG activation and RMET performance were only brought about in potentially less socially proficient individuals who had low RMET performance, that is, participants reporting higher levels of maternal love withdrawal. Copyright © 2014 Elsevier Inc. All rights reserved.
Silva, Guilherme; Citterio, Alberto
2017-10-01
Introduction Previous studies have shown that the arcuate fasciculus has a leftward asymmetry in right-handers that could be correlated with the language lateralisation defined by functional magnetic resonance imaging. Nonetheless, information about the asymmetry of the other fibres that constitute the dorsal language pathway is scarce. Objectives This study investigated the asymmetry of the white-matter tracts involved in the dorsal language pathway through the diffusion tensor imaging (DTI) technique, in relation to language hemispheric dominance determined by task-dependent functional magnetic resonance imaging (fMRI). Methods We selected 11 patients (10 right-handed) who had been studied with task-dependent fMRI for language areas and DTI and who had no language impairment or structural abnormalities that could compromise magnetic resonance tractography of the fibres involved in the dorsal language pathway. Laterality indices (LI) for fMRI and for the volumes of each tract were calculated. Results In fMRI, all the right-handers had left hemispheric lateralisation, and the ambidextrous subject presented right hemispheric dominance. The arcuate fasciculus LI was strongly correlated with fMRI LI ( r = 0.739, p = 0.009), presenting the same lateralisation of fMRI in seven subjects (including the right hemispheric dominant). It was not asymmetric in three cases and had opposite lateralisation in one case. The other tracts presented predominance for rightward lateralisation, especially superior longitudinal fasciculus (SLF) II/III (nine subjects), but their LI did not correlate (directly or inversely) with fMRI LI. Conclusion The fibres that constitute the dorsal language pathway have an asymmetric distribution in the cerebral hemispheres. Only the asymmetry of the arcuate fasciculus is correlated with fMRI language lateralisation.
Electrophysiological correlates of the BOLD signal for EEG-informed fMRI
Murta, Teresa; Leite, Marco; Carmichael, David W; Figueiredo, Patrícia; Lemieux, Louis
2015-01-01
Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) are important tools in cognitive and clinical neuroscience. Combined EEG–fMRI has been shown to help to characterise brain networks involved in epileptic activity, as well as in different sensory, motor and cognitive functions. A good understanding of the electrophysiological correlates of the blood oxygen level-dependent (BOLD) signal is necessary to interpret fMRI maps, particularly when obtained in combination with EEG. We review the current understanding of electrophysiological–haemodynamic correlates, during different types of brain activity. We start by describing the basic mechanisms underlying EEG and BOLD signals and proceed by reviewing EEG-informed fMRI studies using fMRI to map specific EEG phenomena over the entire brain (EEG–fMRI mapping), or exploring a range of EEG-derived quantities to determine which best explain colocalised BOLD fluctuations (local EEG–fMRI coupling). While reviewing studies of different forms of brain activity (epileptic and nonepileptic spontaneous activity; cognitive, sensory and motor functions), a significant attention is given to epilepsy because the investigation of its haemodynamic correlates is the most common application of EEG-informed fMRI. Our review is focused on EEG-informed fMRI, an asymmetric approach of data integration. We give special attention to the invasiveness of electrophysiological measurements and the simultaneity of multimodal acquisitions because these methodological aspects determine the nature of the conclusions that can be drawn from EEG-informed fMRI studies. We emphasise the advantages of, and need for, simultaneous intracranial EEG–fMRI studies in humans, which recently became available and hold great potential to improve our understanding of the electrophysiological correlates of BOLD fluctuations. PMID:25277370
van Atteveldt, Nienke; Musacchia, Gabriella; Zion-Golumbic, Elana; Sehatpour, Pejman; Javitt, Daniel C.; Schroeder, Charles
2015-01-01
The brain’s fascinating ability to adapt its internal neural dynamics to the temporal structure of the sensory environment is becoming increasingly clear. It is thought to be metabolically beneficial to align ongoing oscillatory activity to the relevant inputs in a predictable stream, so that they will enter at optimal processing phases of the spontaneously occurring rhythmic excitability fluctuations. However, some contexts have a more predictable temporal structure than others. Here, we tested the hypothesis that the processing of rhythmic sounds is more efficient than the processing of irregularly timed sounds. To do this, we simultaneously measured functional magnetic resonance imaging (fMRI) and electro-encephalograms (EEG) while participants detected oddball target sounds in alternating blocks of rhythmic (e.g., with equal inter-stimulus intervals) or random (e.g., with randomly varied inter-stimulus intervals) tone sequences. Behaviorally, participants detected target sounds faster and more accurately when embedded in rhythmic streams. The fMRI response in the auditory cortex was stronger during random compared to random tone sequence processing. Simultaneously recorded N1 responses showed larger peak amplitudes and longer latencies for tones in the random (vs. the rhythmic) streams. These results reveal complementary evidence for more efficient neural and perceptual processing during temporally predictable sensory contexts. PMID:26579044
Functional magnetic resonance imaging (FMRI) with auditory stimulation in songbirds.
Van Ruijssevelt, Lisbeth; De Groof, Geert; Van der Kant, Anne; Poirier, Colline; Van Audekerke, Johan; Verhoye, Marleen; Van der Linden, Annemie
2013-06-03
The neurobiology of birdsong, as a model for human speech, is a pronounced area of research in behavioral neuroscience. Whereas electrophysiology and molecular approaches allow the investigation of either different stimuli on few neurons, or one stimulus in large parts of the brain, blood oxygenation level dependent (BOLD) functional Magnetic Resonance Imaging (fMRI) allows combining both advantages, i.e. compare the neural activation induced by different stimuli in the entire brain at once. fMRI in songbirds is challenging because of the small size of their brains and because their bones and especially their skull comprise numerous air cavities, inducing important susceptibility artifacts. Gradient-echo (GE) BOLD fMRI has been successfully applied to songbirds (1-5) (for a review, see (6)). These studies focused on the primary and secondary auditory brain areas, which are regions free of susceptibility artifacts. However, because processes of interest may occur beyond these regions, whole brain BOLD fMRI is required using an MRI sequence less susceptible to these artifacts. This can be achieved by using spin-echo (SE) BOLD fMRI (7,8) . In this article, we describe how to use this technique in zebra finches (Taeniopygia guttata), which are small songbirds with a bodyweight of 15-25 g extensively studied in behavioral neurosciences of birdsong. The main topic of fMRI studies on songbirds is song perception and song learning. The auditory nature of the stimuli combined with the weak BOLD sensitivity of SE (compared to GE) based fMRI sequences makes the implementation of this technique very challenging.
Schallmo, Michael-Paul; Grant, Andrea N; Burton, Philip C; Olman, Cheryl A
2016-08-01
Although V1 responses are driven primarily by elements within a neuron's receptive field, which subtends about 1° visual angle in parafoveal regions, previous work has shown that localized fMRI responses to visual elements reflect not only local feature encoding but also long-range pattern attributes. However, separating the response to an image feature from the response to the surrounding stimulus and studying the interactions between these two responses demands both spatial precision and signal independence, which may be challenging to attain with fMRI. The present study used 7 Tesla fMRI with 1.2-mm resolution to measure the interactions between small sinusoidal grating patches (targets) at 3° eccentricity and surrounds of various sizes and orientations to test the conditions under which localized, context-dependent fMRI responses could be predicted from either psychophysical or electrophysiological data. Targets were presented at 8%, 16%, and 32% contrast while manipulating (a) spatial extent of parallel (strongly suppressive) or orthogonal (weakly suppressive) surrounds, (b) locus of attention, (c) stimulus onset asynchrony between target and surround, and (d) blocked versus event-related design. In all experiments, the V1 fMRI signal was lower when target stimuli were flanked by parallel versus orthogonal context. Attention amplified fMRI responses to all stimuli but did not show a selective effect on central target responses or a measurable effect on orientation-dependent surround suppression. Suppression of the V1 fMRI response by parallel surrounds was stronger than predicted from psychophysics but showed a better match to previous electrophysiological reports.
Richards, Todd; Webb, Sara Jane; Murias, Michael; Merkle, Kristen; Kleinhans, Natalia M.; Johnson, L. Clark; Poliakov, Andrew; Aylward, Elizabeth; Dawson, Geraldine
2013-01-01
Brain activity patterns during face processing have been extensively explored with functional magnetic resonance imaging (fMRI) and event-related potentials (ERPs). ERP source localization adds a spatial dimension to the ERP time series recordings, which allows for a more direct comparison and integration with fMRI findings. The goals for this study were (1) to compare the spatial descriptions of neuronal activity during face processing obtained with fMRI and ERP source localization using low-resolution electro-magnetic tomography (LORETA), and (2) to use the combined information from source localization and fMRI to explore how the temporal sequence of brain activity during face processing is summarized in fMRI activation maps. fMRI and high-density ERP data were acquired in separate sessions for 17 healthy adult males for a face and object processing task. LORETA statistical maps for the comparison of viewing faces and viewing houses were coregistered and compared to fMRI statistical maps for the same conditions. The spatial locations of face processing-sensitive activity measured by fMRI and LORETA were found to overlap in a number of areas including the bilateral fusiform gyri, the right superior, middle and inferior temporal gyri, and the bilateral precuneus. Both the fMRI and LORETA solutions additionally demon-strated activity in regions that did not overlap. fMRI and LORETA statistical maps of face processing-sensitive brain activity were found to converge spatially primarily at LORETA solution latencies that were within 18 ms of the N170 latency. The combination of data from these techniques suggested that electrical brain activity at the latency of the N170 is highly represented in fMRI statistical maps. PMID:19322649
Technical Note: Independent component analysis for quality assurance in functional MRI.
Astrakas, Loukas G; Kallistis, Nikolaos S; Kalef-Ezra, John A
2016-02-01
Independent component analysis (ICA) is an established method of analyzing human functional MRI (fMRI) data. Here, an ICA-based fMRI quality control (QC) tool was developed and used. ICA-based fMRI QC tool to be used with a commercial phantom was developed. In an attempt to assess the performance of the tool relative to preexisting alternative tools, it was used seven weeks before and eight weeks after repair of a faulty gradient amplifier of a non-state-of-the-art MRI unit. More specifically, its performance was compared with the AAPM 100 acceptance testing and quality assurance protocol and two fMRI QC protocols, proposed by Freidman et al. ["Report on a multicenter fMRI quality assurance protocol," J. Magn. Reson. Imaging 23, 827-839 (2006)] and Stocker et al. ["Automated quality assurance routines for fMRI data applied to a multicenter study," Hum. Brain Mapp. 25, 237-246 (2005)], respectively. The easily developed and applied ICA-based QC protocol provided fMRI QC indices and maps equally sensitive to fMRI instabilities with the indices and maps of other established protocols. The ICA fMRI QC indices were highly correlated with indices of other fMRI QC protocols and in some cases theoretically related to them. Three or four independent components with slow varying time series are detected under normal conditions. ICA applied on phantom measurements is an easy and efficient tool for fMRI QC. Additionally, it can protect against misinterpretations of artifact components as human brain activations. Evaluating fMRI QC indices in the central region of a phantom is not always the optimal choice.
Using Brain Imaging to Extract the Structure of Complex Events at the Rational Time Band
Anderson, John R.; Qin, Yulin
2017-01-01
A functional magnetic resonance imaging (fMRI) study was performed in which participants performed a complex series of mental calculations that spanned about 2 min. An Adaptive Control of Thought—Rational (ACT-R) model [Anderson, J. R. How can the human mind occur in the physical universe? New York: Oxford University Press, 2007] was developed that successfully fit the distribution of latencies. This model generated predictions for the fMRI signal in six brain regions that have been associated with modules in the ACT-R theory. The model’s predictions were confirmed for a fusiform region that reflects the visual module, for a prefrontal region that reflects the retrieval module, and for an anterior cingulate region that reflects the goal module. In addition, the only significant deviations to the motor region that reflects the manual module were anticipatory hand movements. In contrast, the predictions were relatively poor for a parietal region that reflects an imaginal module and for a caudate region that reflects the procedural module. Possible explanations of these poor fits are discussed. In addition, exploratory analyses were performed to find regions that might correspond to the predictions of the modules. PMID:18345979
Using brain imaging to extract the structure of complex events at the rational time band.
Anderson, John R; Qin, Yulin
2008-09-01
A functional magnetic resonance imaging (fMRI) study was performed in which participants performed a complex series of mental calculations that spanned about 2 min. An Adaptive Control of Thought--Rational (ACT-R) model [Anderson, J. R. How can the human mind occur in the physical universe? New York: Oxford University Press, 2007] was developed that successfully fit the distribution of latencies. This model generated predictions for the fMRI signal in six brain regions that have been associated with modules in the ACT-R theory. The model's predictions were confirmed for a fusiform region that reflects the visual module, for a prefrontal region that reflects the retrieval module, and for an anterior cingulate region that reflects the goal module. In addition, the only significant deviations to the motor region that reflects the manual module were anticipatory hand movements. In contrast, the predictions were relatively poor for a parietal region that reflects an imaginal module and for a caudate region that reflects the procedural module. Possible explanations of these poor fits are discussed. In addition, exploratory analyses were performed to find regions that might correspond to the predictions of the modules.
Real-time fMRI: a tool for local brain regulation.
Caria, Andrea; Sitaram, Ranganatha; Birbaumer, Niels
2012-10-01
Real-time fMRI permits simultaneous measurement and observation of brain activity during an ongoing task. One of the most challenging applications of real-time fMRI in neuroscientific and clinical research is the possibility of acquiring volitional control of localized brain activity using real-time fMRI-based neurofeedback protocols. Real-time fMRI allows the experimenter to noninvasively manipulate brain activity as an independent variable to observe the effects on behavior. Real-time fMRI neurofeedback studies demonstrated that learned control of the local brain activity leads to specific changes in behavior. Here, the authors describe the implementation and application of real-time fMRI with particular emphasis on the self-regulation of local brain activity and the investigation of brain-function relationships. Real-time fMRI represents a promising new approach to cognitive neuroscience that could complement traditional neuroimaging techniques by providing more causal insights into the functional role of circumscribed brain regions in behavior.
Sources and implications of whole-brain fMRI signals in humans
Power, Jonathan D; Plitt, Mark; Laumann, Timothy O; Martin, Alex
2016-01-01
Whole-brain fMRI signals are a subject of intense interest: variance in the global fMRI signal (the spatial mean of all signals in the brain) indexes subject arousal, and psychiatric conditions such as schizophrenia and autism have been characterized by differences in the global fMRI signal. Further, vigorous debates exist on whether global signals ought to be removed from fMRI data. However, surprisingly little research has focused on the empirical properties of whole-brain fMRI signals. Here we map the spatial and temporal properties of the global signal, individually, in 1000+ fMRI scans. Variance in the global fMRI signal is strongly linked to head motion, to hardware artifacts, and to respiratory patterns and their attendant physiologic changes. Many techniques used to prepare fMRI data for analysis fail to remove these uninteresting kinds of global signal fluctuations. Thus, many studies include, at the time of analysis, prominent global effects of yawns, breathing changes, and head motion, among other signals. Such artifacts will mimic dynamic neural activity and will spuriously alter signal covariance throughout the brain. Methods capable of isolating and removing global artifactual variance while preserving putative “neural” variance are needed; this paper adopts no position on the topic of global signal regression. PMID:27751941
McGraw, P; Mathews, V P; Wang, Y; Phillips, M D
2001-05-01
Functional MR imaging (fMRI) has been a useful tool in the evaluation of language both in normal individuals and patient populations. The purpose of this article is to use various models of language as a framework to review fMRI studies. Specifically, fMRI language studies are subdivided into the following categories: word generation or fluency, passive listening, orthography, phonology, semantics, and syntax.
Wu, Ruiqi; Yang, Pai-Feng; Chen, Li Min
2017-11-15
This study aims to understand how functional connectivity (FC) between areas 3b and S2 alters following input deprivation and the neuronal basis of disrupted FC of resting-state fMRI signals. We combined submillimeter fMRI with microelectrode recordings to localize the deafferented digit regions in areas 3b and S2 by mapping tactile stimulus-evoked fMRI activations before and after cervical dorsal column lesion in each male monkey. An average afferent disruption of 97% significantly reduced fMRI, local field potential (LFP), and spike responses to stimuli in both areas. Analysis of resting-state fMRI signal correlation, LFP coherence, and spike cross-correlation revealed significantly reduced functional connectivity between deafferented areas 3b and S2. The degrees of reductions in stimulus responsiveness and FC after deafferentation differed across fMRI, LFP, and spiking signals. The reduction of FC was much weaker than that of stimulus-evoked responses. Whereas the largest stimulus-evoked signal drop (∼80%) was observed in LFP signals, the greatest FC reduction was detected in the spiking activity (∼30%). fMRI signals showed mild reductions in stimulus responsiveness (∼25%) and FC (∼20%). The overall deafferentation-induced changes were quite similar in areas 3b and S2 across signals. Here we demonstrated that FC strength between areas 3b and S2 was much weakened by dorsal column lesion, and stimulus response reduction and FC disruption in fMRI covary with those of LFP and spiking signals in deafferented areas 3b and S2. These findings have important implications for fMRI studies aiming to probe FC alterations in pathological conditions involving deafferentation in humans. SIGNIFICANCE STATEMENT By directly comparing fMRI, local field potential, and spike signals in both tactile stimulation and resting states before and after severe disruption of dorsal column afferent, we demonstrated that reduction in fMRI responses to stimuli is accompanied by weakened resting-state fMRI functional connectivity (FC) in input-deprived and reorganized digit regions in area 3b of the S1 and S2. Concurrent reductions in local field potential and spike FC validated the use of resting-state fMRI signals for probing neural intrinsic FC alterations in pathological deafferented cortex, and indicated that disrupted FC between mesoscale functionally highly related regions may contribute to the behavioral impairments. Copyright © 2017 the authors 0270-6474/17/3711192-12$15.00/0.
2017-01-01
This study aims to understand how functional connectivity (FC) between areas 3b and S2 alters following input deprivation and the neuronal basis of disrupted FC of resting-state fMRI signals. We combined submillimeter fMRI with microelectrode recordings to localize the deafferented digit regions in areas 3b and S2 by mapping tactile stimulus-evoked fMRI activations before and after cervical dorsal column lesion in each male monkey. An average afferent disruption of 97% significantly reduced fMRI, local field potential (LFP), and spike responses to stimuli in both areas. Analysis of resting-state fMRI signal correlation, LFP coherence, and spike cross-correlation revealed significantly reduced functional connectivity between deafferented areas 3b and S2. The degrees of reductions in stimulus responsiveness and FC after deafferentation differed across fMRI, LFP, and spiking signals. The reduction of FC was much weaker than that of stimulus-evoked responses. Whereas the largest stimulus-evoked signal drop (∼80%) was observed in LFP signals, the greatest FC reduction was detected in the spiking activity (∼30%). fMRI signals showed mild reductions in stimulus responsiveness (∼25%) and FC (∼20%). The overall deafferentation-induced changes were quite similar in areas 3b and S2 across signals. Here we demonstrated that FC strength between areas 3b and S2 was much weakened by dorsal column lesion, and stimulus response reduction and FC disruption in fMRI covary with those of LFP and spiking signals in deafferented areas 3b and S2. These findings have important implications for fMRI studies aiming to probe FC alterations in pathological conditions involving deafferentation in humans. SIGNIFICANCE STATEMENT By directly comparing fMRI, local field potential, and spike signals in both tactile stimulation and resting states before and after severe disruption of dorsal column afferent, we demonstrated that reduction in fMRI responses to stimuli is accompanied by weakened resting-state fMRI functional connectivity (FC) in input-deprived and reorganized digit regions in area 3b of the S1 and S2. Concurrent reductions in local field potential and spike FC validated the use of resting-state fMRI signals for probing neural intrinsic FC alterations in pathological deafferented cortex, and indicated that disrupted FC between mesoscale functionally highly related regions may contribute to the behavioral impairments. PMID:29038239
Characterizing Response to Elemental Unit of Acoustic Imaging Noise: An fMRI Study
Luh, Wen-Ming; Talavage, Thomas M.
2010-01-01
Acoustic imaging noise produced during functional magnetic resonance imaging (fMRI) studies can hinder auditory fMRI research analysis by altering the properties of the acquired time-series data. Acoustic imaging noise can be especially confounding when estimating the time course of the hemodynamic response (HDR) in auditory event-related fMRI (fMRI) experiments. This study is motivated by the desire to establish a baseline function that can serve not only as a comparison to other quantities of acoustic imaging noise for determining how detrimental is one's experimental noise, but also as a foundation for a model that compensates for the response to acoustic imaging noise. Therefore, the amplitude and spatial extent of the HDR to the elemental unit of acoustic imaging noise (i.e., a single ping) associated with echoplanar acquisition were characterized and modeled. Results from this fMRI study at 1.5 T indicate that the group-averaged HDR in left and right auditory cortex to acoustic imaging noise (duration of 46 ms) has an estimated peak magnitude of 0.29% (right) to 0.48% (left) signal change from baseline, peaks between 3 and 5 s after stimulus presentation, and returns to baseline and remains within the noise range approximately 8 s after stimulus presentation. PMID:19304477
Richlan, Fabio; Gagl, Benjamin; Hawelka, Stefan; Braun, Mario; Schurz, Matthias; Kronbichler, Martin; Hutzler, Florian
2014-10-01
The present study investigated the feasibility of using self-paced eye movements during reading (measured by an eye tracker) as markers for calculating hemodynamic brain responses measured by functional magnetic resonance imaging (fMRI). Specifically, we were interested in whether the fixation-related fMRI analysis approach was sensitive enough to detect activation differences between reading material (words and pseudowords) and nonreading material (line and unfamiliar Hebrew strings). Reliable reading-related activation was identified in left hemisphere superior temporal, middle temporal, and occipito-temporal regions including the visual word form area (VWFA). The results of the present study are encouraging insofar as fixation-related analysis could be used in future fMRI studies to clarify some of the inconsistent findings in the literature regarding the VWFA. Our study is the first step in investigating specific visual word recognition processes during self-paced natural sentence reading via simultaneous eye tracking and fMRI, thus aiming at an ecologically valid measurement of reading processes. We provided the proof of concept and methodological framework for the analysis of fixation-related fMRI activation in the domain of reading research. © The Author 2013. Published by Oxford University Press.
Functional magnetic resonance imaging: basic principles and application in the neurosciences.
Labbé Atenas, T; Ciampi Díaz, E; Cruz Quiroga, J P; Uribe Arancibia, S; Cárcamo Rodríguez, C
2018-03-12
Functional magnetic resonance imaging (fMRI) is an advanced tool for the study of brain functions in healthy subjects and in neuropsychiatric patients. This tool makes it possible to identify and locate specific phenomena related to neuronal metabolism and activity. Starting with the detection of changes in the blood supply to a region that participates in a function, more complex approaches have been developed to study the dynamics of neuronal networks. Studies examining the brain at rest or involved in different tasks have provided evidence related to the onset, development, and/or response to treatment in various diseases. The diversity of the possible artifacts associated with image registration as well as the complexity of the analytical experimental designs has generated abundant debate about the technique behind fMRI. This article aims to introduce readers to the fundamentals underlying fMRI, to explain how fMRI studies are interpreted, and to discuss fMRI's contributions to the study of the mechanisms underlying diverse diseases of the nervous system. Copyright © 2018 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.
Sozda, Christopher N.; Larson, Michael J.; Kaufman, David A.S.; Schmalfuss, Ilona M.; Perlstein, William M.
2011-01-01
Continuous monitoring of one’s performance is invaluable for guiding behavior towards successful goal attainment by identifying deficits and strategically adjusting responses when performance is inadequate. In the present study, we exploited the advantages of event-related functional magnetic resonance imaging (fMRI) to examine brain activity associated with error-related processing after severe traumatic brain injury (sTBI). fMRI and behavioral data were acquired while 10 sTBI participants and 12 neurologically-healthy controls performed a task-switching cued-Stroop task. fMRI data were analyzed using a random-effects whole-brain voxel-wise general linear model and planned linear contrasts. Behaviorally, sTBI patients showed greater error-rate interference than neurologically-normal controls. fMRI data revealed that, compared to controls, sTBI patients showed greater magnitude error-related activation in the anterior cingulate cortex (ACC) and an increase in the overall spatial extent of error-related activation across cortical and subcortical regions. Implications for future research and potential limitations in conducting fMRI research in neurologically-impaired populations are discussed, as well as some potential benefits of employing multimodal imaging (e.g., fMRI and event-related potentials) of cognitive control processes in TBI. PMID:21756946
Sozda, Christopher N; Larson, Michael J; Kaufman, David A S; Schmalfuss, Ilona M; Perlstein, William M
2011-10-01
Continuous monitoring of one's performance is invaluable for guiding behavior towards successful goal attainment by identifying deficits and strategically adjusting responses when performance is inadequate. In the present study, we exploited the advantages of event-related functional magnetic resonance imaging (fMRI) to examine brain activity associated with error-related processing after severe traumatic brain injury (sTBI). fMRI and behavioral data were acquired while 10 sTBI participants and 12 neurologically-healthy controls performed a task-switching cued-Stroop task. fMRI data were analyzed using a random-effects whole-brain voxel-wise general linear model and planned linear contrasts. Behaviorally, sTBI patients showed greater error-rate interference than neurologically-normal controls. fMRI data revealed that, compared to controls, sTBI patients showed greater magnitude error-related activation in the anterior cingulate cortex (ACC) and an increase in the overall spatial extent of error-related activation across cortical and subcortical regions. Implications for future research and potential limitations in conducting fMRI research in neurologically-impaired populations are discussed, as well as some potential benefits of employing multimodal imaging (e.g., fMRI and event-related potentials) of cognitive control processes in TBI. Copyright © 2011 Elsevier B.V. All rights reserved.
fMRI mapping of the visual system in the mouse brain with interleaved snapshot GE-EPI.
Niranjan, Arun; Christie, Isabel N; Solomon, Samuel G; Wells, Jack A; Lythgoe, Mark F
2016-10-01
The use of functional magnetic resonance imaging (fMRI) in mice is increasingly prevalent, providing a means to non-invasively characterise functional abnormalities associated with genetic models of human diseases. The predominant stimulus used in task-based fMRI in the mouse is electrical stimulation of the paw. Task-based fMRI in mice using visual stimuli remains underexplored, despite visual stimuli being common in human fMRI studies. In this study, we map the mouse brain visual system with BOLD measurements at 9.4T using flashing light stimuli with medetomidine anaesthesia. BOLD responses were observed in the lateral geniculate nucleus, the superior colliculus and the primary visual area of the cortex, and were modulated by the flashing frequency, diffuse vs focussed light and stimulus context. Negative BOLD responses were measured in the visual cortex at 10Hz flashing frequency; but turned positive below 5Hz. In addition, the use of interleaved snapshot GE-EPI improved fMRI image quality without diminishing the temporal contrast-noise-ratio. Taken together, this work demonstrates a novel methodological protocol in which the mouse brain visual system can be non-invasively investigated using BOLD fMRI. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Long, Zhiying; Chen, Kewei; Wu, Xia; Reiman, Eric; Peng, Danling; Yao, Li
2009-02-01
Spatial Independent component analysis (sICA) has been widely used to analyze functional magnetic resonance imaging (fMRI) data. The well accepted implicit assumption is the spatially statistical independency of intrinsic sources identified by sICA, making the sICA applications difficult for data in which there exist interdependent sources and confounding factors. This interdependency can arise, for instance, from fMRI studies investigating two tasks in a single session. In this study, we introduced a linear projection approach and considered its utilization as a tool to separate task-related components from two-task fMRI data. The robustness and feasibility of the method are substantiated through simulation on computer data and fMRI real rest data. Both simulated and real two-task fMRI experiments demonstrated that sICA in combination with the projection method succeeded in separating spatially dependent components and had better detection power than pure model-based method when estimating activation induced by each task as well as both tasks.
Diminished Neural Adaptation during Implicit Learning in Autism
Schipul, Sarah E.; Just, Marcel Adam
2015-01-01
Neuroimaging studies have shown evidence of disrupted neural adaptation during learning in individuals with autism spectrum disorder (ASD) in several types of tasks, potentially stemming from frontal-posterior cortical underconnectivity (Schipul et al., 2012). The aim of the current study was to examine neural adaptations in an implicit learning task that entails participation of frontal and posterior regions. Sixteen high-functioning adults with ASD and sixteen neurotypical control participants were trained on and performed an implicit dot pattern prototype learning task in a functional magnetic resonance imaging (fMRI) session. During the preliminary exposure to the type of implicit prototype learning task later to be used in the scanner, the ASD participants took longer than the neurotypical group to learn the task, demonstrating altered implicit learning in ASD. After equating task structure learning, the two groups’ brain activation differed during their learning of a new prototype in the subsequent scanning session. The main findings indicated that neural adaptations in a distributed task network were reduced in the ASD group, relative to the neurotypical group, and were related to ASD symptom severity. Functional connectivity was reduced and did not change as much during learning for the ASD group, and was related to ASD symptom severity. These findings suggest that individuals with ASD show altered neural adaptations during learning, as seen in both activation and functional connectivity measures. This finding suggests why many real-world implicit learning situations may pose special challenges for ASD. PMID:26484826
Test-retest reliability of an fMRI paradigm for studies of cardiovascular reactivity.
Sheu, Lei K; Jennings, J Richard; Gianaros, Peter J
2012-07-01
We examined the reliability of measures of fMRI, subjective, and cardiovascular reactions to standardized versions of a Stroop color-word task and a multisource interference task. A sample of 14 men and 12 women (30-49 years old) completed the tasks on two occasions, separated by a median of 88 days. The reliability of fMRI BOLD signal changes in brain areas engaged by the tasks was moderate, and aggregating fMRI BOLD signal changes across the tasks improved test-retest reliability metrics. These metrics included voxel-wise intraclass correlation coefficients (ICCs) and overlap ratio statistics. Task-aggregated ratings of subjective arousal, valence, and control, as well as cardiovascular reactions evoked by the tasks showed ICCs of 0.57 to 0.87 (ps < .001), indicating moderate-to-strong reliability. These findings support using these tasks as a battery for fMRI studies of cardiovascular reactivity. Copyright © 2012 Society for Psychophysiological Research.
NEURAL SUBSTRATES OF CUE-REACTIVITY: ASSOCIATION WITH TREATMENT OUTCOMES AND RELAPSE
Courtney, Kelly E.; Schacht, Joseph P.; Hutchison, Kent; Roche, Daniel J.O.; Ray, Lara A.
2016-01-01
Given the strong evidence for neurological alterations at the basis of drug dependence, functional magnetic resonance imaging (fMRI) represents an important tool in the clinical neuroscience of addiction. fMRI cue-reactivity paradigms represent an ideal platform to probe the involvement of neurobiological pathways subserving the reward/motivation system in addiction and potentially offer a translational mechanism by which interventions and behavioral predictions can be tested. Thus, this review summarizes the research that has applied fMRI cue-reactivity paradigms to the study of adult substance use disorder treatment responses. Studies utilizing fMRI cue-reactivity paradigms for the prediction of relapse, and as a means to investigate psychosocial and pharmacological treatment effects on cue-elicited brain activation are presented within four primary categories of substances: alcohol, nicotine, cocaine, and opioids. Lastly, suggestions for how to leverage fMRI technology to advance addiction science and treatment development are provided. PMID:26435524
Vassena, Eliana; Gerrits, Robin; Demanet, Jelle; Verguts, Tom; Siugzdaite, Roma
2018-04-26
Preparing for a mentally demanding task calls upon cognitive and motivational resources. The underlying neural implementation of these mechanisms is receiving growing attention because of its implications for professional, social, and medical contexts. While several fMRI studies converge in assigning a crucial role to a cortico-subcortical network including Anterior Cigulate Cortex (ACC) and striatum, the involvement of Dorsolateral Prefrontal Cortex (DLPFC) during mental effort anticipation has yet to be replicated. This study was designed to target DLPFC contribution to anticipation of a difficult task using functional Near Infrared Spectroscopy (fNIRS), as a more cost-effective tool measuring cortical hemodynamics. We adapted a validated mental effort task, where participants performed easy and difficult mental calculation, and measured DLPFC activity during the anticipation phase. As hypothesized, DLPFC activity increased during anticipation of a hard task as compared to an easy task. Besides replicating previous fMRI work, these results establish fNIRS as an effective tool to investigate cortical contributions to anticipation of effortful behavior. This is especially useful if one requires testing large samples (e.g., to target individual differences), populations with contraindication for functional MRI (e.g., infants or patients with metal implants), or subjects in more naturalistic environments (e.g., work or sport). Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
2012-10-01
Yurgelun-Todd DA, Killgore WD. Fear-related activity in the prefrontal cortex increases with age during adolescence: a preliminary fMRI study . Neurosci...associated with altered brain activation during visual perception of high-calorie foods: An fMRI study . Abstract presented at the 25th Annual Meeting of the...Fereira MD, Nasello AG, Savoia M, et al. Police officers under attack: resilience implications of an fMRI study . J Psychiatr Res 2011; 45:727–734. 22
Altered spinal cord activity during sexual stimulation in women with SCI: a pilot fMRI study.
Alexander, Marcalee; Kozyrev, Natalie; Figley, Chase R; Richards, J Scott
2017-01-01
The objective of this study was to assess the feasibility of the use of functional magnetic resonance imaging (fMRI) to evaluate the spinal activation during sexual response of the thoracic, lumbar and sacral spinal cord. This is a laboratory-based pilot study in human females at a University-based medical center in the United States. In three healthy spinal cord injury (SCI) females, spinal cord activations during sexual audiovisual stimulation (alone), genital self-stimulation (alone) and simultaneous audiovisual and genital self-stimulation (combined) were assessed and then compared with each subjects' remaining sensory and motor function. Spinal fMRI responses of the intermediolateral columns were found during audiovisual stimulation in both subjects with incomplete injuries, but they were not observed in the subject with a complete injury. Moreover, sacral responses to combined stimulation differed greatly between the subjects with complete and incomplete injuries. These results not only provide the first in vivo documentation of spinal fMRI responses associated with sexual arousal in women with SCIs, but also suggest that spinal cord fMRI is capable of distinguishing between injury subtypes. Therefore, although there are certain limitations associated with fMRI during sexual stimulation (for example, movement artifacts, an artificially controlled environment and so), these findings demonstrate the potential utility of incorporating spinal cord fMRI in future research to evaluate the impact of specific patterns of SCI on sexual responses and/or the effects of treatment.
Functional Brain Activation Differences in Stuttering Identified with a Rapid fMRI Sequence
ERIC Educational Resources Information Center
Loucks, Torrey; Kraft, Shelly Jo; Choo, Ai Leen; Sharma, Harish; Ambrose, Nicoline G.
2011-01-01
The purpose of this study was to investigate whether brain activity related to the presence of stuttering can be identified with rapid functional MRI (fMRI) sequences that involved overt and covert speech processing tasks. The long-term goal is to develop sensitive fMRI approaches with developmentally appropriate tasks to identify deviant speech…
Automatic EEG-assisted retrospective motion correction for fMRI (aE-REMCOR).
Wong, Chung-Ki; Zotev, Vadim; Misaki, Masaya; Phillips, Raquel; Luo, Qingfei; Bodurka, Jerzy
2016-04-01
Head motions during functional magnetic resonance imaging (fMRI) impair fMRI data quality and introduce systematic artifacts that can affect interpretation of fMRI results. Electroencephalography (EEG) recordings performed simultaneously with fMRI provide high-temporal-resolution information about ongoing brain activity as well as head movements. Recently, an EEG-assisted retrospective motion correction (E-REMCOR) method was introduced. E-REMCOR utilizes EEG motion artifacts to correct the effects of head movements in simultaneously acquired fMRI data on a slice-by-slice basis. While E-REMCOR is an efficient motion correction approach, it involves an independent component analysis (ICA) of the EEG data and identification of motion-related ICs. Here we report an automated implementation of E-REMCOR, referred to as aE-REMCOR, which we developed to facilitate the application of E-REMCOR in large-scale EEG-fMRI studies. The aE-REMCOR algorithm, implemented in MATLAB, enables an automated preprocessing of the EEG data, an ICA decomposition, and, importantly, an automatic identification of motion-related ICs. aE-REMCOR has been used to perform retrospective motion correction for 305 fMRI datasets from 16 subjects, who participated in EEG-fMRI experiments conducted on a 3T MRI scanner. Performance of aE-REMCOR has been evaluated based on improvement in temporal signal-to-noise ratio (TSNR) of the fMRI data, as well as correction efficiency defined in terms of spike reduction in fMRI motion parameters. The results show that aE-REMCOR is capable of substantially reducing head motion artifacts in fMRI data. In particular, when there are significant rapid head movements during the scan, a large TSNR improvement and high correction efficiency can be achieved. Depending on a subject's motion, an average TSNR improvement over the brain upon the application of aE-REMCOR can be as high as 27%, with top ten percent of the TSNR improvement values exceeding 55%. The average correction efficiency over the 305 fMRI scans is 18% and the largest achieved efficiency is 71%. The utility of aE-REMCOR on the resting state fMRI connectivity of the default mode network is also examined. The motion-induced position-dependent error in the DMN connectivity analysis is shown to be reduced when aE-REMCOR is utilized. These results demonstrate that aE-REMCOR can be conveniently and efficiently used to improve fMRI motion correction in large clinical EEG-fMRI studies. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
A Hierarchical Model for Simultaneous Detection and Estimation in Multi-subject fMRI Studies
Degras, David; Lindquist, Martin A.
2014-01-01
In this paper we introduce a new hierarchical model for the simultaneous detection of brain activation and estimation of the shape of the hemodynamic response in multi-subject fMRI studies. The proposed approach circumvents a major stumbling block in standard multi-subject fMRI data analysis, in that it both allows the shape of the hemodynamic response function to vary across region and subjects, while still providing a straightforward way to estimate population-level activation. An e cient estimation algorithm is presented, as is an inferential framework that not only allows for tests of activation, but also for tests for deviations from some canonical shape. The model is validated through simulations and application to a multi-subject fMRI study of thermal pain. PMID:24793829
Neural Mechanisms of Updating under Reducible and Irreducible Uncertainty.
Kobayashi, Kenji; Hsu, Ming
2017-07-19
Adaptive decision making depends on an agent's ability to use environmental signals to reduce uncertainty. However, because of multiple types of uncertainty, agents must take into account not only the extent to which signals violate prior expectations but also whether uncertainty can be reduced in the first place. Here we studied how human brains of both sexes respond to signals under conditions of reducible and irreducible uncertainty. We show behaviorally that subjects' value updating was sensitive to the reducibility of uncertainty, and could be quantitatively characterized by a Bayesian model where agents ignore expectancy violations that do not update beliefs or values. Using fMRI, we found that neural processes underlying belief and value updating were separable from responses to expectancy violation, and that reducibility of uncertainty in value modulated connections from belief-updating regions to value-updating regions. Together, these results provide insights into how agents use knowledge about uncertainty to make better decisions while ignoring mere expectancy violation. SIGNIFICANCE STATEMENT To make good decisions, a person must observe the environment carefully, and use these observations to reduce uncertainty about consequences of actions. Importantly, uncertainty should not be reduced purely based on how surprising the observations are, particularly because in some cases uncertainty is not reducible. Here we show that the human brain indeed reduces uncertainty adaptively by taking into account the nature of uncertainty and ignoring mere surprise. Behaviorally, we show that human subjects reduce uncertainty in a quasioptimal Bayesian manner. Using fMRI, we characterize brain regions that may be involved in uncertainty reduction, as well as the network they constitute, and dissociate them from brain regions that respond to mere surprise. Copyright © 2017 the authors 0270-6474/17/376972-11$15.00/0.
Neural Mechanisms of Updating under Reducible and Irreducible Uncertainty
2017-01-01
Adaptive decision making depends on an agent's ability to use environmental signals to reduce uncertainty. However, because of multiple types of uncertainty, agents must take into account not only the extent to which signals violate prior expectations but also whether uncertainty can be reduced in the first place. Here we studied how human brains of both sexes respond to signals under conditions of reducible and irreducible uncertainty. We show behaviorally that subjects' value updating was sensitive to the reducibility of uncertainty, and could be quantitatively characterized by a Bayesian model where agents ignore expectancy violations that do not update beliefs or values. Using fMRI, we found that neural processes underlying belief and value updating were separable from responses to expectancy violation, and that reducibility of uncertainty in value modulated connections from belief-updating regions to value-updating regions. Together, these results provide insights into how agents use knowledge about uncertainty to make better decisions while ignoring mere expectancy violation. SIGNIFICANCE STATEMENT To make good decisions, a person must observe the environment carefully, and use these observations to reduce uncertainty about consequences of actions. Importantly, uncertainty should not be reduced purely based on how surprising the observations are, particularly because in some cases uncertainty is not reducible. Here we show that the human brain indeed reduces uncertainty adaptively by taking into account the nature of uncertainty and ignoring mere surprise. Behaviorally, we show that human subjects reduce uncertainty in a quasioptimal Bayesian manner. Using fMRI, we characterize brain regions that may be involved in uncertainty reduction, as well as the network they constitute, and dissociate them from brain regions that respond to mere surprise. PMID:28626019
van Hoorn, Jorien; McCormick, Ethan M; Telzer, Eva H
2018-05-01
Adolescence is a time of increased social-affective sensitivity, which is often related to heightened health-risk behaviors. However, moderate levels of social sensitivity, relative to either low (social vacuum) or high levels (exceptionally attuned), may confer benefits as it facilitates effective navigation of the social world. The present fMRI study tested a curvilinear relationship between social sensitivity and adaptive decision-making. Participants (ages 12-16; N = 35) played the Social Analogue Risk Task, which measures participants' willingness to knock on doors in order to earn points. With each knock, the facial expression of the house's resident shifted from happy to somewhat angrier. If the resident became too angry, the door slammed and participants lost points. Social sensitivity was defined as the extent to which adolescents adjusted their risky choices based on shifting facial expressions. Results confirmed a curvilinear relationship between social sensitivity and self-reported adaptive decision-making at the behavioral and neural level. Moderate adolescent social sensitivity was modulated via heightened tracking of social cues in the temporoparietal junction, insula and dorsolateral prefrontal cortex and related to adaptive decision-making. These findings suggest that social-affective sensitivity may positively impact outcomes in adolescence and have implications for interventions to help adolescents reach mature social goals into adulthood.
Plow, Ela B.; Cattaneo, Zaira; Carlson, Thomas A.; Alvarez, George A.; Pascual-Leone, Alvaro; Battelli, Lorella
2014-01-01
A balance of mutual tonic inhibition between bi-hemispheric posterior parietal cortices is believed to play an important role in bilateral visual attention. However, experimental support for this notion has been mainly drawn from clinical models of unilateral damage. We have previously shown that low-frequency repetitive TMS (rTMS) over the intraparietal sulcus (IPS) generates a contralateral attentional deficit in bilateral visual tracking. Here, we used functional magnetic resonance imaging (fMRI) to study whether rTMS temporarily disrupts the inter-hemispheric balance between bilateral IPS in visual attention. Following application of 1 Hz rTMS over the left IPS, subjects performed a bilateral visual tracking task while their brain activity was recorded using fMRI. Behaviorally, tracking accuracy was reduced immediately following rTMS. Areas ventro-lateral to left IPS, including inferior parietal lobule (IPL), lateral IPS (LIPS), and middle occipital gyrus (MoG), showed decreased activity following rTMS, while dorsomedial areas, such as Superior Parietal Lobule (SPL), Superior occipital gyrus (SoG), and lingual gyrus, as well as middle temporal areas (MT+), showed higher activity. The brain activity of the homologues of these regions in the un-stimulated, right hemisphere was reversed. Interestingly, the evolution of network-wide activation related to attentional behavior following rTMS showed that activation of most occipital synergists adaptively compensated for contralateral and ipsilateral decrement after rTMS, while activation of parietal synergists, and SoG remained competing. This pattern of ipsilateral and contralateral activations empirically supports the hypothesized loss of inter-hemispheric balance that underlies clinical manifestation of visual attentional extinction. PMID:24860462
Representation of action in occipito-temporal cortex.
Wiggett, Alison J; Downing, Paul E
2011-07-01
A fundamental question for social cognitive neuroscience is how and where in the brain the identities and actions of others are represented. Here we present a replication and extension of a study by Kable and Chatterjee [Kable, J. W., & Chatterjee, A. Specificity of action representations in the lateral occipito-temporal cortex. Journal of Cognitive Neuroscience, 18, 1498-1517, 2006] examining the role of occipito-temporal cortex in these processes. We presented full-cue movies of actors performing whole-body actions and used fMRI to test for action- and identity-specific adaptation effects. We examined a series of functionally defined regions, including the extrastriate and fusiform body areas, the fusiform face area, the parahippocampal place area, the lateral occipital complex, the right posterior superior temporal sulcus, and motion-selective area hMT+. These regions were analyzed with both standard univariate measures as well as multivoxel pattern analyses. Additionally, we performed whole-brain tests for significant adaptation effects. We found significant action-specific adaptation in many areas, but no evidence for identity-specific adaptation. We argue that this finding could be explained by differences in the familiarity of the stimuli presented: The actions shown were familiar but the actors performing the actions were unfamiliar. However, in contrast to previous findings, we found that the action adaptation effect could not be conclusively tied to specific functionally defined regions. Instead, our results suggest that the adaptation to previously seen actions across identities is a widespread effect, evident across lateral and ventral occipito-temporal cortex.
Effects of hypoglycemia on human brain activation measured with fMRI.
Anderson, Adam W; Heptulla, Rubina A; Driesen, Naomi; Flanagan, Daniel; Goldberg, Philip A; Jones, Timothy W; Rife, Fran; Sarofin, Hedy; Tamborlane, William; Sherwin, Robert; Gore, John C
2006-07-01
Functional magnetic resonance imaging (fMRI) was used to measure the effects of acute hypoglycemia caused by passive sensory stimulation on brain activation. Visual stimulation was used to generate blood-oxygen-level-dependent (BOLD) contrast, which was monitored during hyperinsulinemic hypoglycemic and euglycemic clamp studies. Hypoglycemia (50 +/- 1 mg glucose/dl) decreased the fMRI signal relative to euglycemia in 10 healthy human subjects: the fractional signal change was reduced by 28 +/- 12% (P < .05). These changes were reversed when euglycemia was restored. These data provide a basis of comparison for studies that quantify hypoglycemia-related changes in fMRI activity during cognitive tasks based on visual stimuli and demonstrate that variations in blood glucose levels may modulate BOLD signals in the healthy brain.
Longitudinal Changes of Resting-State Functional Connectivity during Motor Recovery after Stroke
Park, Chang-hyun; Chang, Won Hyuk; Ohn, Suk Hoon; Kim, Sung Tae; Bang, Oh Young; Pascual-Leone, Alvaro; Kim, Yun-Hee
2013-01-01
Background and Purpose Functional magnetic resonance imaging (fMRI) studies could provide crucial information on the neural mechanisms of motor recovery in stroke patients. Resting-state fMRI is applicable to stroke patients who are not capable of proper performance of the motor task. In this study, we explored neural correlates of motor recovery in stroke patients by investigating longitudinal changes in resting-state functional connectivity of the ipsilesional primary motor cortex (M1). Methods A longitudinal observational study using repeated fMRI experiments was conducted in 12 patients with stroke. Resting-state fMRI data were acquired four times over a period of 6 months. Patients participated in the first session of fMRI shortly after onset, and thereafter in subsequent sessions at 1, 3, and 6 months after onset. Resting-state functional connectivity of the ipsilesional M1 was assessed and compared with that of healthy subjects. Results Compared with healthy subjects, patients demonstrated higher functional connectivity with the ipsilesional frontal and parietal cortices, bilateral thalamus, and cerebellum. Instead, functional connectivity with the contralesional M1 and occipital cortex were decreased in stroke patients. Functional connectivity between the ipsilesional and contralesional M1 showed the most asymmetry at 1 month after onset to the ipsilesional side. Functional connectivity of the ipsilesional M1 with the contralesional thalamus, supplementary motor area, and middle frontal gyrus at onset was positively correlated with motor recovery at 6 months after stroke. Conclusions Resting-state fMRI elicited distinctive but comparable results with previous task-based fMRI, presenting complementary and practical values for use in the study of stroke patients. PMID:21441147
Motor Cortex Stimulation Reverses Maladaptive Plasticity Following Spinal Cord Injury
2012-09-01
pp 74–85. Austin: Landes Biosciences. 3. Abstracts o Mechanisms of Pain Relief Following Motor Cortex Stimulation: An fMRI Study. Society for...Neuroscience Meeting. Washington, DC. 2012. o Resting State fMRI in a Rat Model of Spinal Cord Injury Neuropathic Pain: A Longitudinal Study. Society...2601–2610. 16. Stefanacci L, Reber P, Costanza J, Wong E, Buxton R, Zola S, Squire L, Albright T. fMRI of monkey visual cortex. Neuron 1998;20:1051
Davidow, Juliet Y; Foerde, Karin; Galván, Adriana; Shohamy, Daphna
2016-10-05
Adolescents are notorious for engaging in reward-seeking behaviors, a tendency attributed to heightened activity in the brain's reward systems during adolescence. It has been suggested that reward sensitivity in adolescence might be adaptive, but evidence of an adaptive role has been scarce. Using a probabilistic reinforcement learning task combined with reinforcement learning models and fMRI, we found that adolescents showed better reinforcement learning and a stronger link between reinforcement learning and episodic memory for rewarding outcomes. This behavioral benefit was related to heightened prediction error-related BOLD activity in the hippocampus and to stronger functional connectivity between the hippocampus and the striatum at the time of reinforcement. These findings reveal an important role for the hippocampus in reinforcement learning in adolescence and suggest that reward sensitivity in adolescence is related to adaptive differences in how adolescents learn from experience. Copyright © 2016 Elsevier Inc. All rights reserved.
Durning, Steven J; Costanzo, Michelle E; Beckman, Thomas J; Artino, Anthony R; Roy, Michael J; van der Vleuten, Cees; Holmboe, Eric S; Lipner, Rebecca S; Schuwirth, Lambert
2016-06-01
Diagnostic reasoning involves the thinking steps up to and including arrival at a diagnosis. Dual process theory posits that a physician's thinking is based on both non-analytic or fast, subconscious thinking and analytic thinking that is slower, more conscious, effortful and characterized by comparing and contrasting alternatives. Expertise in clinical reasoning may relate to the two dimensions measured by the diagnostic thinking inventory (DTI): memory structure and flexibility in thinking. Explored the functional magnetic resonance imaging (fMRI) correlates of these two aspects of the DTI: memory structure and flexibility of thinking. Participants answered and reflected upon multiple-choice questions (MCQs) during fMRI. A DTI was completed shortly after the scan. The brain processes associated with the two dimensions of the DTI were correlated with fMRI phases - assessing flexibility in thinking during analytical clinical reasoning, memory structure during non-analytical clinical reasoning and the total DTI during both non-analytical and analytical reasoning in experienced physicians. Each DTI component was associated with distinct functional neuroanatomic activation patterns, particularly in the prefrontal cortex. Our findings support diagnostic thinking conceptual models and indicate mechanisms through which cognitive demands may induce functional adaptation within the prefrontal cortex. This provides additional objective validity evidence for the use of the DTI in medical education and practice settings.
Dual-TRACER: High resolution fMRI with constrained evolution reconstruction.
Li, Xuesong; Ma, Xiaodong; Li, Lyu; Zhang, Zhe; Zhang, Xue; Tong, Yan; Wang, Lihong; Sen Song; Guo, Hua
2018-01-01
fMRI with high spatial resolution is beneficial for studies in psychology and neuroscience, but is limited by various factors such as prolonged imaging time, low signal to noise ratio and scarcity of advanced facilities. Compressed Sensing (CS) based methods for accelerating fMRI data acquisition are promising. Other advanced algorithms like k-t FOCUSS or PICCS have been developed to improve performance. This study aims to investigate a new method, Dual-TRACER, based on Temporal Resolution Acceleration with Constrained Evolution Reconstruction (TRACER), for accelerating fMRI acquisitions using golden angle variable density spiral. Both numerical simulations and in vivo experiments at 3T were conducted to evaluate and characterize this method. Results show that Dual-TRACER can provide functional images with a high spatial resolution (1×1mm 2 ) under an acceleration factor of 20 while maintaining hemodynamic signals well. Compared with other investigated methods, dual-TRACER provides a better signal recovery, higher fMRI sensitivity and more reliable activation detection. Copyright © 2017 Elsevier Inc. All rights reserved.
Monkey cortex through fMRI glasses
Vanduffel, Wim; Zhu, Qi; Orban, Guy A.
2015-01-01
In 1998 several groups reported the feasibility of functional magnetic resonance imaging (fMRI) experiments in monkeys, with the goal to bridge the gap between invasive nonhuman primate studies and human functional imaging. These studies yielded critical insights in the neuronal underpinnings of the BOLD signal. Furthermore, the technology has been successful in guiding electrophysiological recordings and identifying focal perturbation targets. Finally, invaluable information was obtained concerning human brain evolution. We here provide a comprehensive overview of awake monkey fMRI studies mainly confined to the visual system. We review the latest insights about the topographic organization of monkey visual cortex and discuss the spatial relationships between retinotopy and category and feature selective clusters. We briefly discuss the functional layout of parietal and frontal cortex and continue with a summary of some fascinating functional and effective connectivity studies. Finally, we review recent comparative fMRI experiments and speculate about the future of nonhuman primate imaging. PMID:25102559
Monkey cortex through fMRI glasses.
Vanduffel, Wim; Zhu, Qi; Orban, Guy A
2014-08-06
In 1998 several groups reported the feasibility of fMRI experiments in monkeys, with the goal to bridge the gap between invasive nonhuman primate studies and human functional imaging. These studies yielded critical insights in the neuronal underpinnings of the BOLD signal. Furthermore, the technology has been successful in guiding electrophysiological recordings and identifying focal perturbation targets. Finally, invaluable information was obtained concerning human brain evolution. We here provide a comprehensive overview of awake monkey fMRI studies mainly confined to the visual system. We review the latest insights about the topographic organization of monkey visual cortex and discuss the spatial relationships between retinotopy and category- and feature-selective clusters. We briefly discuss the functional layout of parietal and frontal cortex and continue with a summary of some fascinating functional and effective connectivity studies. Finally, we review recent comparative fMRI experiments and speculate about the future of nonhuman primate imaging. Copyright © 2014 Elsevier Inc. All rights reserved.
Crottaz-Herbette, Sonia; Fornari, Eleonora; Notter, Michael P; Bindschaedler, Claire; Manzoni, Laura; Clarke, Stephanie
2017-09-01
Prismatic adaptation has been repeatedly reported to alleviate neglect symptoms; in normal subjects, it was shown to enhance the representation of the left visual space within the left inferior parietal cortex. Our study aimed to determine in humans whether similar compensatory mechanisms underlie the beneficial effect of prismatic adaptation in neglect. Fifteen patients with right hemispheric lesions and 11 age-matched controls underwent a prismatic adaptation session which was preceded and followed by fMRI using a visual detection task. In patients, the prismatic adaptation session improved the accuracy of target detection in the left and central space and enhanced the representation of this visual space within the left hemisphere in parts of the temporal convexity, inferior parietal lobule and prefrontal cortex. Across patients, the increase in neuronal activation within the temporal regions correlated with performance improvements in this visual space. In control subjects, prismatic adaptation enhanced the representation of the left visual space within the left inferior parietal lobule and decreased it within the left temporal cortex. Thus, a brief exposure to prismatic adaptation enhances, both in patients and in control subjects, the competence of the left hemisphere for the left space, but the regions extended beyond the inferior parietal lobule to the temporal convexity in patients. These results suggest that the left hemisphere provides compensatory mechanisms in neglect by assuming the representation of the whole space within the ventral attentional system. The rapidity of the change suggests that the underlying mechanism relies on uncovering pre-existing synaptic connections. Copyright © 2017 Elsevier Ltd. All rights reserved.
Jang, Hojin; Plis, Sergey M.; Calhoun, Vince D.; Lee, Jong-Hwan
2016-01-01
Feedforward deep neural networks (DNN), artificial neural networks with multiple hidden layers, have recently demonstrated a record-breaking performance in multiple areas of applications in computer vision and speech processing. Following the success, DNNs have been applied to neuroimaging modalities including functional/structural magnetic resonance imaging (MRI) and positron-emission tomography data. However, no study has explicitly applied DNNs to 3D whole-brain fMRI volumes and thereby extracted hidden volumetric representations of fMRI that are discriminative for a task performed as the fMRI volume was acquired. Our study applied fully connected feedforward DNN to fMRI volumes collected in four sensorimotor tasks (i.e., left-hand clenching, right-hand clenching, auditory attention, and visual stimulus) undertaken by 12 healthy participants. Using a leave-one-subject-out cross-validation scheme, a restricted Boltzmann machine-based deep belief network was pretrained and used to initialize weights of the DNN. The pretrained DNN was fine-tuned while systematically controlling weight-sparsity levels across hidden layers. Optimal weight-sparsity levels were determined from a minimum validation error rate of fMRI volume classification. Minimum error rates (mean ± standard deviation; %) of 6.9 (± 3.8) were obtained from the three-layer DNN with the sparsest condition of weights across the three hidden layers. These error rates were even lower than the error rates from the single-layer network (9.4 ± 4.6) and the two-layer network (7.4 ± 4.1). The estimated DNN weights showed spatial patterns that are remarkably task-specific, particularly in the higher layers. The output values of the third hidden layer represented distinct patterns/codes of the 3D whole-brain fMRI volume and encoded the information of the tasks as evaluated from representational similarity analysis. Our reported findings show the ability of the DNN to classify a single fMRI volume based on the extraction of hidden representations of fMRI volumes associated with tasks across multiple hidden layers. Our study may be beneficial to the automatic classification/diagnosis of neuropsychiatric and neurological diseases and prediction of disease severity and recovery in (pre-) clinical settings using fMRI volumes without requiring an estimation of activation patterns or ad hoc statistical evaluation. PMID:27079534
2014-01-01
Background The ability to walk independently is a primary goal for rehabilitation after stroke. Gait analysis provides a great amount of valuable information, while functional magnetic resonance imaging (fMRI) offers a powerful approach to define networks involved in motor control. The present study reports a new methodology based on both fMRI and gait analysis outcomes in order to investigate the ability of fMRI to reflect the phases of motor learning before/after electromyographic biofeedback treatment: the preliminary fMRI results of a post stroke subject’s brain activation, during passive and active ankle dorsal/plantarflexion, before and after biofeedback (BFB) rehabilitation are reported and their correlation with gait analysis data investigated. Methods A control subject and a post-stroke patient with chronic hemiparesis were studied. Functional magnetic resonance images were acquired during a block-design protocol on both subjects while performing passive and active ankle dorsal/plantarflexion. fMRI and gait analysis were assessed on the patient before and after electromyographic biofeedback rehabilitation treatment during gait activities. Lower limb three-dimensional kinematics, kinetics and surface electromyography were evaluated. Correlation between fMRI and gait analysis categorical variables was assessed: agreement/disagreement was assigned to each variable if the value was in/outside the normative range (gait analysis), or for presence of normal/diffuse/no activation of motor area (fMRI). Results Altered fMRI activity was found on the post-stroke patient before biofeedback rehabilitation with respect to the control one. Meanwhile the patient showed a diffuse, but more limited brain activation after treatment (less voxels). The post-stroke gait data showed a trend towards the normal range: speed, stride length, ankle power, and ankle positive work increased. Preliminary correlation analysis revealed that consistent changes were observed both for the fMRI data, and the gait analysis data after treatment (R > 0.89): this could be related to the possible effects BFB might have on the central as well as on the peripheral nervous system. Conclusions Our findings showed that this methodology allows evaluation of the relationship between alterations in gait and brain activation of a post-stroke patient. Such methodology, if applied on a larger sample subjects, could provide information about the specific motor area involved in a rehabilitation treatment. PMID:24716475
Jang, Hojin; Plis, Sergey M; Calhoun, Vince D; Lee, Jong-Hwan
2017-01-15
Feedforward deep neural networks (DNNs), artificial neural networks with multiple hidden layers, have recently demonstrated a record-breaking performance in multiple areas of applications in computer vision and speech processing. Following the success, DNNs have been applied to neuroimaging modalities including functional/structural magnetic resonance imaging (MRI) and positron-emission tomography data. However, no study has explicitly applied DNNs to 3D whole-brain fMRI volumes and thereby extracted hidden volumetric representations of fMRI that are discriminative for a task performed as the fMRI volume was acquired. Our study applied fully connected feedforward DNN to fMRI volumes collected in four sensorimotor tasks (i.e., left-hand clenching, right-hand clenching, auditory attention, and visual stimulus) undertaken by 12 healthy participants. Using a leave-one-subject-out cross-validation scheme, a restricted Boltzmann machine-based deep belief network was pretrained and used to initialize weights of the DNN. The pretrained DNN was fine-tuned while systematically controlling weight-sparsity levels across hidden layers. Optimal weight-sparsity levels were determined from a minimum validation error rate of fMRI volume classification. Minimum error rates (mean±standard deviation; %) of 6.9 (±3.8) were obtained from the three-layer DNN with the sparsest condition of weights across the three hidden layers. These error rates were even lower than the error rates from the single-layer network (9.4±4.6) and the two-layer network (7.4±4.1). The estimated DNN weights showed spatial patterns that are remarkably task-specific, particularly in the higher layers. The output values of the third hidden layer represented distinct patterns/codes of the 3D whole-brain fMRI volume and encoded the information of the tasks as evaluated from representational similarity analysis. Our reported findings show the ability of the DNN to classify a single fMRI volume based on the extraction of hidden representations of fMRI volumes associated with tasks across multiple hidden layers. Our study may be beneficial to the automatic classification/diagnosis of neuropsychiatric and neurological diseases and prediction of disease severity and recovery in (pre-) clinical settings using fMRI volumes without requiring an estimation of activation patterns or ad hoc statistical evaluation. Copyright © 2016 Elsevier Inc. All rights reserved.
Suarez, Ralph O; Taimouri, Vahid; Boyer, Katrina; Vega, Clemente; Rotenberg, Alexander; Madsen, Joseph R; Loddenkemper, Tobias; Duffy, Frank H; Prabhu, Sanjay P; Warfield, Simon K
2014-12-01
In this study we validate passive language fMRI protocols designed for clinical application in pediatric epilepsy surgical planning as they do not require overt participation from patients. We introduced a set of quality checks that assess reliability of noninvasive fMRI mappings utilized for clinical purposes. We initially compared two fMRI language mapping paradigms, one active in nature (requiring participation from the patient) and the other passive in nature (requiring no participation from the patient). Group-level analysis in a healthy control cohort demonstrated similar activation of the putative language centers of the brain in the inferior frontal (IFG) and temporoparietal (TPG) regions. Additionally, we showed that passive language fMRI produced more left-lateralized activation in TPG (LI=+0.45) compared to the active task; with similarly robust left-lateralized IFG (LI=+0.24) activations using the passive task. We validated our recommended fMRI mapping protocols in a cohort of 15 pediatric epilepsy patients by direct comparison against the invasive clinical gold-standards. We found that language-specific TPG activation by fMRI agreed to within 9.2mm to subdural localizations by invasive functional mapping in the same patients, and language dominance by fMRI agreed with Wada test results at 80% congruency in TPG and 73% congruency in IFG. Lastly, we tested the recommended passive language fMRI protocols in a cohort of very young patients and confirmed reliable language-specific activation patterns in that challenging cohort. We concluded that language activation maps can be reliably achieved using the passive language fMRI protocols we proposed even in very young (average 7.5 years old) or sedated pediatric epilepsy patients. Copyright © 2014 Elsevier B.V. All rights reserved.
Kozák, Lajos R; van Graan, Louis André; Chaudhary, Umair J; Szabó, Ádám György; Lemieux, Louis
2017-12-01
Generally, the interpretation of functional MRI (fMRI) activation maps continues to rely on assessing their relationship to anatomical structures, mostly in a qualitative and often subjective way. Recently, the existence of persistent and stable brain networks of functional nature has been revealed; in particular these so-called intrinsic connectivity networks (ICNs) appear to link patterns of resting state and task-related state connectivity. These networks provide an opportunity of functionally-derived description and interpretation of fMRI maps, that may be especially important in cases where the maps are predominantly task-unrelated, such as studies of spontaneous brain activity e.g. in the case of seizure-related fMRI maps in epilepsy patients or sleep states. Here we present a new toolbox (ICN_Atlas) aimed at facilitating the interpretation of fMRI data in the context of ICN. More specifically, the new methodology was designed to describe fMRI maps in function-oriented, objective and quantitative way using a set of 15 metrics conceived to quantify the degree of 'engagement' of ICNs for any given fMRI-derived statistical map of interest. We demonstrate that the proposed framework provides a highly reliable quantification of fMRI activation maps using a publicly available longitudinal (test-retest) resting-state fMRI dataset. The utility of the ICN_Atlas is also illustrated on a parametric task-modulation fMRI dataset, and on a dataset of a patient who had repeated seizures during resting-state fMRI, confirmed on simultaneously recorded EEG. The proposed ICN_Atlas toolbox is freely available for download at http://icnatlas.com and at http://www.nitrc.org for researchers to use in their fMRI investigations. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Meszlényi, Regina J.; Buza, Krisztian; Vidnyánszky, Zoltán
2017-01-01
Machine learning techniques have become increasingly popular in the field of resting state fMRI (functional magnetic resonance imaging) network based classification. However, the application of convolutional networks has been proposed only very recently and has remained largely unexplored. In this paper we describe a convolutional neural network architecture for functional connectome classification called connectome-convolutional neural network (CCNN). Our results on simulated datasets and a publicly available dataset for amnestic mild cognitive impairment classification demonstrate that our CCNN model can efficiently distinguish between subject groups. We also show that the connectome-convolutional network is capable to combine information from diverse functional connectivity metrics and that models using a combination of different connectivity descriptors are able to outperform classifiers using only one metric. From this flexibility follows that our proposed CCNN model can be easily adapted to a wide range of connectome based classification or regression tasks, by varying which connectivity descriptor combinations are used to train the network. PMID:29089883
Meszlényi, Regina J; Buza, Krisztian; Vidnyánszky, Zoltán
2017-01-01
Machine learning techniques have become increasingly popular in the field of resting state fMRI (functional magnetic resonance imaging) network based classification. However, the application of convolutional networks has been proposed only very recently and has remained largely unexplored. In this paper we describe a convolutional neural network architecture for functional connectome classification called connectome-convolutional neural network (CCNN). Our results on simulated datasets and a publicly available dataset for amnestic mild cognitive impairment classification demonstrate that our CCNN model can efficiently distinguish between subject groups. We also show that the connectome-convolutional network is capable to combine information from diverse functional connectivity metrics and that models using a combination of different connectivity descriptors are able to outperform classifiers using only one metric. From this flexibility follows that our proposed CCNN model can be easily adapted to a wide range of connectome based classification or regression tasks, by varying which connectivity descriptor combinations are used to train the network.
Tracking Plasticity: Effects of Long-Term Rehearsal in Expert Dancers Encoding Music to Movement
Bar, Rachel J.; DeSouza, Joseph F. X.
2016-01-01
Our knowledge of neural plasticity suggests that neural networks show adaptation to environmental and intrinsic change. In particular, studies investigating the neuroplastic changes associated with learning and practicing motor tasks have shown that practicing such tasks results in an increase in neural activation in several specific brain regions. However, studies comparing experts and non-experts suggest that experts employ less neuronal activation than non-experts when performing a familiar motor task. Here, we aimed to determine the long-term changes in neural networks associated with learning a new dance in professional ballet dancers over 34 weeks. Subjects visualized dance movements to music while undergoing fMRI scanning at four time points over 34-weeks. Results demonstrated that initial learning and performance at seven weeks led to increases in activation in cortical regions during visualization compared to the first week. However, at 34 weeks, the cortical networks showed reduced activation compared to week seven. Specifically, motor learning and performance over the 34 weeks showed the typical inverted-U-shaped function of learning. Further, our result demonstrate that learning of a motor sequence of dance movements to music in the real world can be visualized by expert dancers using fMRI and capture highly significant modeled fits of the brain network variance of BOLD signals from early learning to expert level performance. PMID:26824475
Assessing the feasibility of time-resolved fNIRS to detect brain activity during motor imagery
NASA Astrophysics Data System (ADS)
Abdalmalak, Androu; Milej, Daniel; Diop, Mamadou; Naci, Lorina; Owen, Adrian M.; St. Lawrence, Keith
2016-03-01
Functional near-infrared spectroscopy (fNIRS) is a non-invasive optical technique for detecting brain activity, which has been previously used during motor and motor executive tasks. There is an increasing interest in using fNIRS as a brain computer interface (BCI) for patients who lack the physical, but not the mental, ability to respond to commands. The goal of this study is to assess the feasibility of time-resolved fNIRS to detect brain activity during motor imagery. Stability tests were conducted to ensure the temporal stability of the signal, and motor imagery data were acquired on healthy subjects. The NIRS probes were placed on the scalp over the premotor cortex (PMC) and supplementary motor area (SMA), as these areas are responsible for motion planning. To confirm the fNIRS results, subjects underwent functional magnetic resonance imaging (fMRI) while performing the same task. Seven subjects have participated to date, and significant activation in the SMA and/or the PMC during motor imagery was detected by both fMRI and fNIRS in 4 of the 7 subjects. No activation was detected by either technique in the remaining three participants, which was not unexpected due to the nature of the task. The agreement between the two imaging modalities highlights the potential of fNIRS as a BCI, which could be adapted for bedside studies of patients with disorders of consciousness.
Consistency and similarity of MEG- and fMRI-signal time courses during movie viewing.
Lankinen, Kaisu; Saari, Jukka; Hlushchuk, Yevhen; Tikka, Pia; Parkkonen, Lauri; Hari, Riitta; Koskinen, Miika
2018-06-01
Movie viewing allows human perception and cognition to be studied in complex, real-life-like situations in a brain-imaging laboratory. Previous studies with functional magnetic resonance imaging (fMRI) and with magneto- and electroencephalography (MEG and EEG) have demonstrated consistent temporal dynamics of brain activity across movie viewers. However, little is known about the similarities and differences of fMRI and MEG or EEG dynamics during such naturalistic situations. We thus compared MEG and fMRI responses to the same 15-min black-and-white movie in the same eight subjects who watched the movie twice during both MEG and fMRI recordings. We analyzed intra- and intersubject voxel-wise correlations within each imaging modality as well as the correlation of the MEG envelopes and fMRI signals. The fMRI signals showed voxel-wise within- and between-subjects correlations up to r = 0.66 and r = 0.37, respectively, whereas these correlations were clearly weaker for the envelopes of band-pass filtered (7 frequency bands below 100 Hz) MEG signals (within-subjects correlation r < 0.14 and between-subjects r < 0.05). Direct MEG-fMRI voxel-wise correlations were unreliable. Notably, applying a spatial-filtering approach to the MEG data uncovered consistent canonical variates that showed considerably stronger (up to r = 0.25) between-subjects correlations than the univariate voxel-wise analysis. Furthermore, the envelopes of the time courses of these variates up to about 10 Hz showed association with fMRI signals in a general linear model. Similarities between envelopes of MEG canonical variates and fMRI voxel time-courses were seen mostly in occipital, but also in temporal and frontal brain regions, whereas intra- and intersubject correlations for MEG and fMRI separately were strongest only in the occipital areas. In contrast to the conventional univariate analysis, the spatial-filtering approach was able to uncover associations between the MEG envelopes and fMRI time courses, shedding light on the similarities of hemodynamic and electromagnetic brain activities during movie viewing. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Cetin, Mustafa S.; Houck, Jon M.; Rashid, Barnaly; Agacoglu, Oktay; Stephen, Julia M.; Sui, Jing; Canive, Jose; Mayer, Andy; Aine, Cheryl; Bustillo, Juan R.; Calhoun, Vince D.
2016-01-01
Mental disorders like schizophrenia are currently diagnosed by physicians/psychiatrists through clinical assessment and their evaluation of patient's self-reported experiences as the illness emerges. There is great interest in identifying biological markers of prognosis at the onset of illness, rather than relying on the evolution of symptoms across time. Functional network connectivity, which indicates a subject's overall level of “synchronicity” of activity between brain regions, demonstrates promise in providing individual subject predictive power. Many previous studies reported functional connectivity changes during resting-state using only functional magnetic resonance imaging (fMRI). Nevertheless, exclusive reliance on fMRI to generate such networks may limit the inference of the underlying dysfunctional connectivity, which is hypothesized to be a factor in patient symptoms, as fMRI measures connectivity via hemodynamics. Therefore, combination of connectivity assessments using fMRI and magnetoencephalography (MEG), which more directly measures neuronal activity, may provide improved classification of schizophrenia than either modality alone. Moreover, recent evidence indicates that metrics of dynamic connectivity may also be critical for understanding pathology in schizophrenia. In this work, we propose a new framework for extraction of important disease related features and classification of patients with schizophrenia based on using both fMRI and MEG to investigate functional network components in the resting state. Results of this study show that the integration of fMRI and MEG provides important information that captures fundamental characteristics of functional network connectivity in schizophrenia and is helpful for prediction of schizophrenia patient group membership. Combined fMRI/MEG methods, using static functional network connectivity analyses, improved classification accuracy relative to use of fMRI or MEG methods alone (by 15 and 12.45%, respectively), while combined fMRI/MEG methods using dynamic functional network connectivity analyses improved classification up to 5.12% relative to use of fMRI alone and up to 17.21% relative to use of MEG alone. PMID:27807403
Bayesian deconvolution of [corrected] fMRI data using bilinear dynamical systems.
Makni, Salima; Beckmann, Christian; Smith, Steve; Woolrich, Mark
2008-10-01
In Penny et al. [Penny, W., Ghahramani, Z., Friston, K.J. 2005. Bilinear dynamical systems. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360(1457) 983-993], a particular case of the Linear Dynamical Systems (LDSs) was used to model the dynamic behavior of the BOLD response in functional MRI. This state-space model, called bilinear dynamical system (BDS), is used to deconvolve the fMRI time series in order to estimate the neuronal response induced by the different stimuli of the experimental paradigm. The BDS model parameters are estimated using an expectation-maximization (EM) algorithm proposed by Ghahramani and Hinton [Ghahramani, Z., Hinton, G.E. 1996. Parameter Estimation for Linear Dynamical Systems. Technical Report, Department of Computer Science, University of Toronto]. In this paper we introduce modifications to the BDS model in order to explicitly model the spatial variations of the haemodynamic response function (HRF) in the brain using a non-parametric approach. While in Penny et al. [Penny, W., Ghahramani, Z., Friston, K.J. 2005. Bilinear dynamical systems. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360(1457) 983-993] the relationship between neuronal activation and fMRI signals is formulated as a first-order convolution with a kernel expansion using basis functions (typically two or three), in this paper, we argue in favor of a spatially adaptive GLM in which a local non-parametric estimation of the HRF is performed. Furthermore, in order to overcome the overfitting problem typically associated with simple EM estimates, we propose a full Variational Bayes (VB) solution to infer the BDS model parameters. We demonstrate the usefulness of our model which is able to estimate both the neuronal activity and the haemodynamic response function in every voxel of the brain. We first examine the behavior of this approach when applied to simulated data with different temporal and noise features. As an example we will show how this method can be used to improve interpretability of estimates from an independent component analysis (ICA) analysis of fMRI data. We finally demonstrate its use on real fMRI data in one slice of the brain.
fMRI reliability: influences of task and experimental design.
Bennett, Craig M; Miller, Michael B
2013-12-01
As scientists, it is imperative that we understand not only the power of our research tools to yield results, but also their ability to obtain similar results over time. This study is an investigation into how common decisions made during the design and analysis of a functional magnetic resonance imaging (fMRI) study can influence the reliability of the statistical results. To that end, we gathered back-to-back test-retest fMRI data during an experiment involving multiple cognitive tasks (episodic recognition and two-back working memory) and multiple fMRI experimental designs (block, event-related genetic sequence, and event-related m-sequence). Using these data, we were able to investigate the relative influences of task, design, statistical contrast (task vs. rest, target vs. nontarget), and statistical thresholding (unthresholded, thresholded) on fMRI reliability, as measured by the intraclass correlation (ICC) coefficient. We also utilized data from a second study to investigate test-retest reliability after an extended, six-month interval. We found that all of the factors above were statistically significant, but that they had varying levels of influence on the observed ICC values. We also found that these factors could interact, increasing or decreasing the relative reliability of certain Task × Design combinations. The results suggest that fMRI reliability is a complex construct whose value may be increased or decreased by specific combinations of factors.
Test-Retest Reliability of fMRI Brain Activity during Memory Encoding
Brandt, David J.; Sommer, Jens; Krach, Sören; Bedenbender, Johannes; Kircher, Tilo; Paulus, Frieder M.; Jansen, Andreas
2013-01-01
The mechanisms underlying hemispheric specialization of memory are not completely understood. Functional magnetic resonance imaging (fMRI) can be used to develop and test models of hemispheric specialization. In particular for memory tasks however, the interpretation of fMRI results is often hampered by the low reliability of the data. In the present study we therefore analyzed the test-retest reliability of fMRI brain activation related to an implicit memory encoding task, with a particular focus on brain activity of the medial temporal lobe (MTL). Fifteen healthy subjects were scanned with fMRI on two sessions (average retest interval 35 days) using a commonly applied novelty encoding paradigm contrasting known and unknown stimuli. To assess brain lateralization, we used three different stimuli classes that differed in their verbalizability (words, scenes, fractals). Test-retest reliability of fMRI brain activation was assessed by an intraclass-correlation coefficient (ICC), describing the stability of inter-individual differences in the brain activation magnitude over time. We found as expected a left-lateralized brain activation network for the words paradigm, a bilateral network for the scenes paradigm, and predominantly right-hemispheric brain activation for the fractals paradigm. Although these networks were consistently activated in both sessions on the group level, across-subject reliabilities were only poor to fair (ICCs ≤ 0.45). Overall, the highest ICC values were obtained for the scenes paradigm, but only in strongly activated brain regions. In particular the reliability of brain activity of the MTL was poor for all paradigms. In conclusion, for novelty encoding paradigms the interpretation of fMRI results on a single subject level is hampered by its low reliability. More studies are needed to optimize the retest reliability of fMRI activation for memory tasks. PMID:24367338
Koffarnus, Mikhail N; Deshpande, Harshawardhan U; Lisinski, Jonathan M; Eklund, Anders; Bickel, Warren K; LaConte, Stephen M
2017-11-01
Research on the rate at which people discount the value of future rewards has become increasingly prevalent as discount rate has been shown to be associated with many unhealthy patterns of behavior such as drug abuse, gambling, and overeating. fMRI research points to a fronto-parietal-limbic pathway that is active during decisions between smaller amounts of money now and larger amounts available after a delay. Researchers in this area have used different variants of delay discounting tasks and reported various contrasts between choice trials of different types from these tasks. For instance, researchers have compared 1) choices of delayed monetary amounts to choices of the immediate monetary amounts, 2) 'hard' choices made near one's point of indifference to 'easy' choices that require little thought, and 3) trials where an immediate choice is available versus trials where one is unavailable, regardless of actual eventual choice. These differences in procedure and analysis make comparison of results across studies difficult. In the present experiment, we designed a delay discounting task with the intended capability of being able to construct contrasts of all three comparisons listed above while optimizing scanning time to reduce costs and avoid participant fatigue. This was accomplished with an algorithm that customized the choice trials presented to each participant with the goal of equalizing choice trials of each type. We compared this task, which we refer to here as the individualized discounting task (IDT), to two other delay discounting tasks previously reported in the literature (McClure et al., 2004; Amlung et al., 2014) in 18 participants. Results show that the IDT can examine each of the three contrasts mentioned above, while yielding a similar degree of activation as the reference tasks. This suggests that this new task could be used in delay discounting fMRI studies to allow researchers to more easily compare their results to a majority of previous research while minimizing scanning duration. Copyright © 2017 Elsevier Inc. All rights reserved.
Scarapicchia, Vanessa; Brown, Cassandra; Mayo, Chantel; Gawryluk, Jodie R.
2017-01-01
Although blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) is a widely available, non-invasive technique that offers excellent spatial resolution, it remains limited by practical constraints imposed by the scanner environment. More recently, functional near infrared spectroscopy (fNIRS) has emerged as an alternative hemodynamic-based approach that possesses a number of strengths where fMRI is limited, most notably in portability and higher tolerance for motion. To date, fNIRS has shown promise in its ability to shed light on the functioning of the human brain in populations and contexts previously inaccessible to fMRI. Notable contributions include infant neuroimaging studies and studies examining full-body behaviors, such as exercise. However, much like fMRI, fNIRS has technical constraints that have limited its application to clinical settings, including a lower spatial resolution and limited depth of recording. Thus, by combining fMRI and fNIRS in such a way that the two methods complement each other, a multimodal imaging approach may allow for more complex research paradigms than is feasible with either technique alone. In light of these issues, the purpose of the current review is to: (1) provide an overview of fMRI and fNIRS and their associated strengths and limitations; (2) review existing combined fMRI-fNIRS recording studies; and (3) discuss how their combined use in future research practices may aid in advancing modern investigations of human brain function. PMID:28867998
EEG-Informed fMRI: A Review of Data Analysis Methods
Abreu, Rodolfo; Leal, Alberto; Figueiredo, Patrícia
2018-01-01
The simultaneous acquisition of electroencephalography (EEG) with functional magnetic resonance imaging (fMRI) is a very promising non-invasive technique for the study of human brain function. Despite continuous improvements, it remains a challenging technique, and a standard methodology for data analysis is yet to be established. Here we review the methodologies that are currently available to address the challenges at each step of the data analysis pipeline. We start by surveying methods for pre-processing both EEG and fMRI data. On the EEG side, we focus on the correction for several MR-induced artifacts, particularly the gradient and pulse artifacts, as well as other sources of EEG artifacts. On the fMRI side, we consider image artifacts induced by the presence of EEG hardware inside the MR scanner, and the contamination of the fMRI signal by physiological noise of non-neuronal origin, including a review of several approaches to model and remove it. We then provide an overview of the approaches specifically employed for the integration of EEG and fMRI when using EEG to predict the blood oxygenation level dependent (BOLD) fMRI signal, the so-called EEG-informed fMRI integration strategy, the most commonly used strategy in EEG-fMRI research. Finally, we systematically review methods used for the extraction of EEG features reflecting neuronal phenomena of interest. PMID:29467634
The power of using functional fMRI on small rodents to study brain pharmacology and disease
Jonckers, Elisabeth; Shah, Disha; Hamaide, Julie; Verhoye, Marleen; Van der Linden, Annemie
2015-01-01
Functional magnetic resonance imaging (fMRI) is an excellent tool to study the effect of pharmacological modulations on brain function in a non-invasive and longitudinal manner. We introduce several blood oxygenation level dependent (BOLD) fMRI techniques, including resting state (rsfMRI), stimulus-evoked (st-fMRI), and pharmacological MRI (phMRI). Respectively, these techniques permit the assessment of functional connectivity during rest as well as brain activation triggered by sensory stimulation and/or a pharmacological challenge. The first part of this review describes the physiological basis of BOLD fMRI and the hemodynamic response on which the MRI contrast is based. Specific emphasis goes to possible effects of anesthesia and the animal’s physiological conditions on neural activity and the hemodynamic response. The second part of this review describes applications of the aforementioned techniques in pharmacologically induced, as well as in traumatic and transgenic disease models and illustrates how multiple fMRI methods can be applied successfully to evaluate different aspects of a specific disorder. For example, fMRI techniques can be used to pinpoint the neural substrate of a disease beyond previously defined hypothesis-driven regions-of-interest. In addition, fMRI techniques allow one to dissect how specific modifications (e.g., treatment, lesion etc.) modulate the functioning of specific brain areas (st-fMRI, phMRI) and how functional connectivity (rsfMRI) between several brain regions is affected, both in acute and extended time frames. Furthermore, fMRI techniques can be used to assess/explore the efficacy of novel treatments in depth, both in fundamental research as well as in preclinical settings. In conclusion, by describing several exemplary studies, we aim to highlight the advantages of functional MRI in exploring the acute and long-term effects of pharmacological substances and/or pathology on brain functioning along with several methodological considerations. PMID:26539115
Meuwese, Julia D. I.; Scholte, H. Steven; Lamme, Victor A. F.
2014-01-01
Although we can only report about what is in the focus of our attention, much more than that is actually processed. And even when attended, stimuli may not always be reportable, for instance when they are masked. A stimulus can thus be unreportable for different reasons: the absence of attention or the absence of a conscious percept. But to what extent does the brain learn from exposure to these unreportable stimuli? In this fMRI experiment subjects were exposed to textured figure-ground stimuli, of which reportability was manipulated either by masking (which only interferes with consciousness) or with an inattention paradigm (which only interferes with attention). One day later learning was assessed neurally and behaviorally. Positive neural learning effects were found for stimuli presented in the inattention paradigm; for attended yet masked stimuli negative adaptation effects were found. Interestingly, these inattentional learning effects only became apparent in a second session after a behavioral detection task had been administered during which performance feedback was provided. This suggests that the memory trace that is formed during inattention is latent until reactivated by behavioral practice. However, no behavioral learning effects were found, therefore we cannot conclude that perceptual learning has taken place for these unattended stimuli. PMID:24603676
Meuwese, Julia D I; Scholte, H Steven; Lamme, Victor A F
2014-01-01
Although we can only report about what is in the focus of our attention, much more than that is actually processed. And even when attended, stimuli may not always be reportable, for instance when they are masked. A stimulus can thus be unreportable for different reasons: the absence of attention or the absence of a conscious percept. But to what extent does the brain learn from exposure to these unreportable stimuli? In this fMRI experiment subjects were exposed to textured figure-ground stimuli, of which reportability was manipulated either by masking (which only interferes with consciousness) or with an inattention paradigm (which only interferes with attention). One day later learning was assessed neurally and behaviorally. Positive neural learning effects were found for stimuli presented in the inattention paradigm; for attended yet masked stimuli negative adaptation effects were found. Interestingly, these inattentional learning effects only became apparent in a second session after a behavioral detection task had been administered during which performance feedback was provided. This suggests that the memory trace that is formed during inattention is latent until reactivated by behavioral practice. However, no behavioral learning effects were found, therefore we cannot conclude that perceptual learning has taken place for these unattended stimuli.
Andresen, V; Bach, D R; Poellinger, A; Tsrouya, C; Stroh, A; Foerschler, A; Georgiewa, P; Zimmer, C; Mönnikes, H
2005-12-01
Visceral hypersensitivity in irritable bowel syndrome (IBS) has been associated with altered cerebral activations in response to visceral stimuli. It is unclear whether these processing alterations are specific for visceral sensation. In this study we aimed to determine by functional magnetic resonance imaging (fMRI) whether cerebral processing of supraliminal and subliminal rectal stimuli and of auditory stimuli is altered in IBS. In eight IBS patients and eight healthy controls, fMRI activations were recorded during auditory and rectal stimulation. Intensities of rectal balloon distension were adapted to the individual threshold of first perception (IPT): subliminal (IPT -10 mmHg), liminal (IPT), or supraliminal (IPT +10 mmHg). IBS patients relative to controls responded with lower activations of the prefrontal cortex (PFC) and anterior cingulate cortex (ACC) to both subliminal and supraliminal stimulation and with higher activation of the hippocampus (HC) to supraliminal stimulation. In IBS patients, not in controls, ACC and HC were also activated by auditory stimulation. In IBS patients, decreased ACC and PFC activation with subliminal and supraliminal rectal stimuli and increased HC activation with supraliminal stimuli suggest disturbances of the associative and emotional processing of visceral sensation. Hyperreactivity to auditory stimuli suggests that altered sensory processing in IBS may not be restricted to visceral sensation.
Reinke, Karen S.; LaMontagne, Pamela J.; Habib, Reza
2011-01-01
Spatial attention has been argued to be adaptive by enhancing the processing of visual stimuli within the ‘spotlight of attention’. We previously reported that crude threat cues (backward masked fearful faces) facilitate spatial attention through a network of brain regions consisting of the amygdala, anterior cingulate and contralateral visual cortex. However, results from previous functional magnetic resonance imaging (fMRI) dot-probe studies have been inconclusive regarding a fearful face-elicited contralateral modulation of visual targets. Here, we tested the hypothesis that the capture of spatial attention by crude threat cues would facilitate processing of subsequently presented visual stimuli within the masked fearful face-elicited ‘spotlight of attention’ in the contralateral visual cortex. Participants performed a backward masked fearful face dot-probe task while brain activity was measured with fMRI. Masked fearful face left visual field trials enhanced activity for spatially congruent targets in the right superior occipital gyrus, fusiform gyrus and lateral occipital complex, while masked fearful face right visual field trials enhanced activity in the left middle occipital gyrus. These data indicate that crude threat elicited spatial attention enhances the processing of subsequent visual stimuli in contralateral occipital cortex, which may occur by lowering neural activation thresholds in this retinotopic location. PMID:20702500
Global brain dynamics during social exclusion predict subsequent behavioral conformity
Wasylyshyn, Nick; Hemenway Falk, Brett; Garcia, Javier O; Cascio, Christopher N; O’Donnell, Matthew Brook; Bingham, C Raymond; Simons-Morton, Bruce; Vettel, Jean M; Falk, Emily B
2018-01-01
Abstract Individuals react differently to social experiences; for example, people who are more sensitive to negative social experiences, such as being excluded, may be more likely to adapt their behavior to fit in with others. We examined whether functional brain connectivity during social exclusion in the fMRI scanner can be used to predict subsequent conformity to peer norms. Adolescent males (n = 57) completed a two-part study on teen driving risk: a social exclusion task (Cyberball) during an fMRI session and a subsequent driving simulator session in which they drove alone and in the presence of a peer who expressed risk-averse or risk-accepting driving norms. We computed the difference in functional connectivity between social exclusion and social inclusion from each node in the brain to nodes in two brain networks, one previously associated with mentalizing (medial prefrontal cortex, temporoparietal junction, precuneus, temporal poles) and another with social pain (dorsal anterior cingulate cortex, anterior insula). Using predictive modeling, this measure of global connectivity during exclusion predicted the extent of conformity to peer pressure during driving in the subsequent experimental session. These findings extend our understanding of how global neural dynamics guide social behavior, revealing functional network activity that captures individual differences. PMID:29529310
The neural basis of understanding the expression of the emotions in man and animals
Ellsworth, Emily; Adolphs, Ralph
2017-01-01
Abstract Humans cannot help but attribute human emotions to non-human animals. Although such attributions are often regarded as gratuitous anthropomorphisms and held apart from the attributions humans make about each other’s internal states, they may be the product of a general mechanism for flexibly interpreting adaptive behavior. To examine this, we used functional magnetic resonance imaging (fMRI) in humans to compare the neural mechanisms associated with attributing emotions to humans and non-human animal behavior. Although undergoing fMRI, participants first passively observed the facial displays of human, non-human primate and domestic dogs, and subsequently judged the acceptability of emotional (e.g. ‘annoyed’) and facial descriptions (e.g. ‘baring teeth’) for the same images. For all targets, emotion attributions selectively activated regions in prefrontal and anterior temporal cortices associated with causal explanation in prior studies. These regions were similarly activated by both human and non-human targets even during the passive observation task; moreover, the degree of neural similarity was dependent on participants’ self-reported beliefs in the mental capacities of non-human animals. These results encourage a non-anthropocentric view of emotion understanding, one that treats the idea that animals have emotions as no more gratuitous than the idea that humans other than ourselves do. PMID:27803286
Evidence for highly selective neuronal tuning to whole words in the "visual word form area".
Glezer, Laurie S; Jiang, Xiong; Riesenhuber, Maximilian
2009-04-30
Theories of reading have posited the existence of a neural representation coding for whole real words (i.e., an orthographic lexicon), but experimental support for such a representation has proved elusive. Using fMRI rapid adaptation techniques, we provide evidence that the human left ventral occipitotemporal cortex (specifically the "visual word form area," VWFA) contains a representation based on neurons highly selective for individual real words, in contrast to current theories that posit a sublexical representation in the VWFA.
Keedy, Sarah; Berman, Mitchell E.; Lee, Royce; Coccaro, Emil F.
2017-01-01
Purpose of review Aggressive behavior has adaptive value in many natural environments; however, it places substantial burden and costs on human society. For this reason, there has long been interest in understanding the neurobiological basis of aggression. This interest, and the flourishing of neuroimaging research in general, has spurred the development of a large and growing scientific literature on the topic. As a result, a neural circuit model of aggressive behavior has emerged that implicates interconnected brain regions that are involved in emotional reactivity, emotion regulation, and cognitive control. Recent findings Recently, behavioral paradigms that simulate provocative interactions have been adapted to neuroimaging protocols, providing an opportunity to directly probe the involvement of neural circuits in an aggressive interaction. Here we review neuroimaging studies of simulated aggressive interactions in research volunteers. We focus on studies that use a well-validated laboratory paradigm for reactive physical aggression and examine the neural correlates of provocation, retaliation, and evaluating punishment of an opponent. Summary Overall, the studies reviewed support the involvement of neural circuits that support emotional reactivity, emotion regulation, and cognitive control in aggressive behavior. Based on a synthesis of this literature, future research directions are discussed. PMID:29607288
Functional MR imaging assessment of a non-responsive brain injured patient.
Moritz, C H; Rowley, H A; Haughton, V M; Swartz, K R; Jones, J; Badie, B
2001-10-01
Functional magnetic resonance imaging (fMRI) was requested to assist in the evaluation of a comatose 38-year-old woman who had sustained multiple cerebral contusions from a motor vehicle accident. Previous electrophysiologic studies suggested absence of thalamocortical processing in response to median nerve stimulation. Whole-brain fMRI was performed utilizing visual, somatosensory, and auditory stimulation paradigms. Results demonstrated intact task-correlated sensory and cognitive blood oxygen level dependent (BOLD) hemodynamic response to stimuli. Electrodiagnostic studies were repeated and evoked potentials indicated supratentorial recovery in the cerebrum. At 3-months post trauma the patient had recovered many cognitive & sensorimotor functions, accurately reflecting the prognostic fMRI evaluation. These results indicate that fMRI examinations may provide a useful evaluation for brain function in non-responsive brain trauma patients.
FMRI Is a Valid Noninvasive Alternative to Wada Testing
Binder, Jeffrey R.
2010-01-01
Partial removal of the anterior temporal lobe (ATL) is a highly effective surgical treatment for intractable temporal lobe epilepsy, yet roughly half of patients who undergo left ATL resection show decline in language or verbal memory function postoperatively. Two recent studies demonstrate that preoperative fMRI can predict postoperative naming and verbal memory changes in such patients. Most importantly, fMRI significantly improves the accuracy of prediction relative to other noninvasive measures used alone. Addition of language and memory lateralization data from the intracarotid amobarbital (Wada) test did not improve prediction accuracy in these studies. Thus, fMRI provides patients and practitioners with a safe, non-invasive, and well-validated tool for making better-informed decisions regarding elective surgery based on a quantitative assessment of cognitive risk. PMID:20850386
Functional Magnetic Resonance Imaging for Preoperative Planning in Brain Tumour Surgery.
Lau, Jonathan C; Kosteniuk, Suzanne E; Bihari, Frank; Megyesi, Joseph F
2017-01-01
Functional magnetic resonance imaging (fMRI) is being increasingly used for the preoperative evaluation of patients with brain tumours. The study is a retrospective chart review investigating the use of clinical fMRI from 2002 through 2013 in the preoperative evaluation of brain tumour patients. Baseline demographic and clinical data were collected. The specific fMRI protocols used for each patient were recorded. Sixty patients were identified over the 12-year period. The tumour types most commonly investigated were high-grade glioma (World Health Organization grade III or IV), low-grade glioma (World Health Organization grade II), and meningioma. Most common presenting symptoms were seizures (69.6%), language deficits (23.2%), and headache (19.6%). There was a predominance of left hemispheric lesions investigated with fMRI (76.8% vs 23.2% for right). The most commonly involved lobes were frontal (64.3%), temporal (33.9%), parietal (21.4%), and insular (7.1%). The most common fMRI paradigms were language (83.9%), motor (75.0%), sensory (16.1%), and memory (10.7%). The majority of patients ultimately underwent a craniotomy (75.0%), whereas smaller groups underwent stereotactic biopsy (8.9%) and nonsurgical management (16.1%). Time from request for fMRI to actual fMRI acquisition was 3.1±2.3 weeks. Time from fMRI acquisition to intervention was 4.9±5.5 weeks. We have characterized patient demographics in a retrospective single-surgeon cohort undergoing preoperative clinical fMRI at a Canadian centre. Our experience suggests an acceptable wait time from scan request to scan completion/analysis and from scan to intervention.
Strigel, Roberta M; Moritz, Chad H; Haughton, Victor M; Badie, Behnam; Field, Aaron; Wood, David; Hartman, Michael; Rowley, Howard A
2005-03-01
The purpose of this study was to determine the incidence of susceptibility artifacts on functional MR imaging (fMRI) studies and their effect on fMRI readings. We hypothesized that the availability of the signal intensity maps (SIMs) changes the interpretation of fMRI studies in which susceptibility artifacts affected eloquent brain regions. We reviewed 152 consecutive clinical fMRI studies performed with a SIM. The SIM consisted of the initial echo-planar images (EPI) in each section thresholded to eliminate signal intensity from outside the brain and then overlaid on anatomic images. The cause of the artifact was then determined by examining the images. Cases with a susceptibility artifact in eloquent brain were included in a blinded study read by four readers, first without and then with the SIM. For each reader, the number of times the interpretation changed on viewing the SIM was counted. Of 152 patients, 44% had signal intensity loss involving cerebral cortex and 18% involving an eloquent brain region. Causes of the artifacts were: surgical site artifact, blood products, dental devices, calcium, basal ganglia calcifications, ICP monitors, embolization materials, and air. When provided with the SIM, readers changed interpretations in 8-38% of patient cases, depending on reader experience and size and location of susceptibility artifact. Patients referred for clinical fMRI have a high incidence of susceptibility artifacts, whose presence and size can be determined by inspection of the SIM but not anatomic images. The availability of the SIM may affect interpretation of the fMRI.
Murnane, Kevin Sean; Howell, Leonard Lee
2010-08-15
Functional magnetic resonance imaging (fMRI) is a technique with significant potential to advance our understanding of multiple brain systems. However, when human subjects undergo fMRI studies they are typically conscious whereas pre-clinical fMRI studies typically utilize anesthesia, which complicates comparisons across studies. Therefore, we have developed an apparatus suitable for imaging conscious rhesus monkeys. In order to minimize subject stress and spatial motion, each subject was acclimated to the necessary procedures over several months. The effectiveness of this process was then evaluated, in fully trained subjects, by quantifying objective physiological measures. These physiological metrics were stable both within and across sessions and did not differ from when these same subjects were immobilized using standard primate handling procedures. Subject motion and blood oxygenation level dependent (BOLD) fMRI measurements were then evaluated by scanning subjects under three different conditions: the absence of stimulation, presentation of a visual stimulus, or administration of intravenous (i.v.) cocaine (0.3mg/kg). Spatial motion differed neither by condition nor along the three principal axes. In addition, maximum translational and rotational motion never exceeded one half of the voxel size (0.75 mm) or 1.5 degrees, respectively. Furthermore, the localization of changes in blood oxygenation closely matched those reported in previous studies using similar stimuli. These findings document the feasibility of fMRI data collection in conscious rhesus monkeys using these procedures and allow for the further study of the neural effects of psychoactive drugs. (c) 2010 Elsevier B.V. All rights reserved.
Pak, Rebecca W; Hadjiabadi, Darian H; Senarathna, Janaka; Agarwal, Shruti; Thakor, Nitish V; Pillai, Jay J; Pathak, Arvind P
2017-11-01
Functional magnetic resonance imaging (fMRI) serves as a critical tool for presurgical mapping of eloquent cortex and changes in neurological function in patients diagnosed with brain tumors. However, the blood-oxygen-level-dependent (BOLD) contrast mechanism underlying fMRI assumes that neurovascular coupling remains intact during brain tumor progression, and that measured changes in cerebral blood flow (CBF) are correlated with neuronal function. Recent preclinical and clinical studies have demonstrated that even low-grade brain tumors can exhibit neurovascular uncoupling (NVU), which can confound interpretation of fMRI data. Therefore, to avoid neurosurgical complications, it is crucial to understand the biophysical basis of NVU and its impact on fMRI. Here we review the physiology of the neurovascular unit, how it is remodeled, and functionally altered by brain cancer cells. We first discuss the latest findings about the components of the neurovascular unit. Next, we synthesize results from preclinical and clinical studies to illustrate how brain tumor induced NVU affects fMRI data interpretation. We examine advances in functional imaging methods that permit the clinical evaluation of brain tumors with NVU. Finally, we discuss how the suppression of anomalous tumor blood vessel formation with antiangiogenic therapies can "normalize" the brain tumor vasculature, and potentially restore neurovascular coupling.
Fully automated processing of fMRI data in SPM: from MRI scanner to PACS.
Maldjian, Joseph A; Baer, Aaron H; Kraft, Robert A; Laurienti, Paul J; Burdette, Jonathan H
2009-01-01
Here we describe the Wake Forest University Pipeline, a fully automated method for the processing of fMRI data using SPM. The method includes fully automated data transfer and archiving from the point of acquisition, real-time batch script generation, distributed grid processing, interface to SPM in MATLAB, error recovery and data provenance, DICOM conversion and PACS insertion. It has been used for automated processing of fMRI experiments, as well as for the clinical implementation of fMRI and spin-tag perfusion imaging. The pipeline requires no manual intervention, and can be extended to any studies requiring offline processing.
Adaptive Changes in Early and Late Blind: A fMRI Study of Verb Generation to Heard Nouns
BURTON, H.; SNYDER, A. Z.; DIAMOND, J. B.; RAICHLE, M. E.
2013-01-01
Literacy for blind people requires learning Braille. Along with others, we have shown that reading Braille activates visual cortex. This includes striate cortex (V1), i.e., banks of calcarine sulcus, and several higher visual areas in lingual, fusiform, cuneus, lateral occipital, inferior temporal, and middle temporal gyri. The spatial extent and magnitude of magnetic resonance (MR) signals in visual cortex is greatest for those who became blind early in life. Individuals who lost sight as adults, and subsequently learned Braille, still exhibited activity in some of the same visual cortex regions, especially V1. These findings suggest these visual cortex regions become adapted to processing tactile information and that this cross-modal neural change might support Braille literacy. Here we tested the alternative hypothesis that these regions directly respond to linguistic aspects of a task. Accordingly, language task performance by blind persons should activate the same visual cortex regions regardless of input modality. Specifically, visual cortex activity in blind people ought to arise during a language task involving heard words. Eight early blind, six late blind, and eight sighted subjects were studied using functional magnetic resonance imaging (fMRI) during covert generation of verbs to heard nouns. The control task was passive listening to indecipherable sounds (reverse words) matched to the nouns in sound intensity, duration, and spectral content. Functional responses were analyzed at the level of individual subjects using methods based on the general linear model and at the group level, using voxel based ANOVA and t-test analyses. Blind and sighted subjects showed comparable activation of language areas in left inferior frontal, dorsolateral prefrontal, and left posterior superior temporal gyri. The main distinction was bilateral, left dominant activation of the same visual cortex regions previously noted with Braille reading in all blind subjects. The spatial extent and magnitude of responses was greatest on the left in early blind individuals. Responses in the late blind group mostly were confined to V1 and nearby portions of the lingual and fusiform gyri. These results confirm the presence of adaptations in visual cortex of blind people but argue against the notion that this activity during Braille reading represents somatosensory (haptic) processing. Rather, we suggest that these responses can be most parsimoniously explained in terms of linguistic operations. It remains possible that these responses represent adaptations which initially are for processing either sound or touch, but which are later generalized to the other modality during acquisition of Braille reading skills. PMID:12466452
Complementary aspects of diffusion imaging and fMRI; I: structure and function.
Mulkern, Robert V; Davis, Peter E; Haker, Steven J; Estepar, Raul San Jose; Panych, Lawrence P; Maier, Stephan E; Rivkin, Michael J
2006-05-01
Studying the intersection of brain structure and function is an important aspect of modern neuroscience. The development of magnetic resonance imaging (MRI) over the last 25 years has provided new and powerful tools for the study of brain structure and function. Two tools in particular, diffusion imaging and functional MRI (fMRI), are playing increasingly important roles in elucidating the complementary aspects of brain structure and function. In this work, we review basic technical features of diffusion imaging and fMRI for studying the integrity of white matter structural components and for determining the location and extent of cortical activation in gray matter, respectively. We then review a growing body of literature in which the complementary aspects of diffusion imaging and fMRI, applied as separate examinations but analyzed in tandem, have been exploited to enhance our knowledge of brain structure and function.
McLaren, Donald G.; Sreenivasan, Aishwarya; Diamond, Eli L.; Mitchell, Meghan B.; Van Dijk, Koene R.A.; DeLuca, Amy N.; O’Brien, Jacqueline L.; Rentz, Dorene M.; Sperling, Reisa A.; Atri, Alireza
2012-01-01
Background Previous studies have revealed that functional magnetic resonance imaging (fMRI) blood oxygen level-dependent (BOLD) signal in specific brain regions correlates with cross-sectional performance on standardized clinical trial measures in Alzheimer's disease (AD); however, the relationship between longitudinal change in fMRI-BOLD signal and neuropsychological performance remains unknown. Objective: To identify changes in regional fMRI-BOLD activity that tracks change in neuropsychological performance in mild AD dementia over 6 months. Methods Twenty-four subjects (mean age 71.6) with mild AD dementia (mean Mini Mental State Examination 21.7, Global Clinical Dementia Rating 1.0) on stable donepezil dosing participated in two task-related fMRI sessions consisting of a face-name paired associative encoding memory paradigm 24 weeks apart during a randomized placebo-controlled pharmaco-fMRI drug study. Regression analysis was used to identify regions where the change in fMRI activity for Novel > Repeated stimulus contrast was associated with the change scores on postscan memory tests and the Free and Cued Selective Reminding Test (FCSRT). Results Correlations between changes in postscan memory accuracy and changes in fMRI activity were observed in regions including the angular gyrus, parahippocampal gyrus, inferior frontal gyrus and cerebellum. Correlations between changes in FCSRT-free recall and changes in fMRI were observed in regions including the inferior parietal lobule, precuneus, hippocampus and parahippocampal gyrus. Conclusion Changes in encoding-related fMRI activity in regions implicated in mnemonic networks correlated with changes in psychometric measures of episodic memory retrieval performed outside the scanner. These exploratory results support the potential of fMRI activity to track cognitive change and detect signals of short-term pharmacologic effect in early-phase AD studies. PMID:22456451
McLaren, Donald G; Sreenivasan, Aishwarya; Diamond, Eli L; Mitchell, Meghan B; Van Dijk, Koene R A; Deluca, Amy N; O'Brien, Jacqueline L; Rentz, Dorene M; Sperling, Reisa A; Atri, Alireza
2012-01-01
Previous studies have revealed that functional magnetic resonance imaging (fMRI) blood oxygen level-dependent (BOLD) signal in specific brain regions correlates with cross-sectional performance on standardized clinical trial measures in Alzheimer's disease (AD); however, the relationship between longitudinal change in fMRI-BOLD signal and neuropsychological performance remains unknown. To identify changes in regional fMRI-BOLD activity that tracks change in neuropsychological performance in mild AD dementia over 6 months. Twenty-four subjects (mean age 71.6) with mild AD dementia (mean Mini Mental State Examination 21.7, Global Clinical Dementia Rating 1.0) on stable donepezil dosing participated in two task-related fMRI sessions consisting of a face-name paired associative encoding memory paradigm 24 weeks apart during a randomized placebo-controlled pharmaco-fMRI drug study. Regression analysis was used to identify regions where the change in fMRI activity for Novel > Repeated stimulus contrast was associated with the change scores on postscan memory tests and the Free and Cued Selective Reminding Test (FCSRT). Correlations between changes in postscan memory accuracy and changes in fMRI activity were observed in regions including the angular gyrus, parahippocampal gyrus, inferior frontal gyrus and cerebellum. Correlations between changes in FCSRT-free recall and changes in fMRI were observed in regions including the inferior parietal lobule, precuneus, hippocampus and parahippocampal gyrus. Changes in encoding-related fMRI activity in regions implicated in mnemonic networks correlated with changes in psychometric measures of episodic memory retrieval performed outside the scanner. These exploratory results support the potential of fMRI activity to track cognitive change and detect signals of short-term pharmacologic effect in early-phase AD studies. Copyright © 2012 S. Karger AG, Basel.
Ruggieri, Andrea; Vaudano, Anna Elisabetta; Benuzzi, Francesca; Serafini, Marco; Gessaroli, Giuliana; Farinelli, Valentina; Nichelli, Paolo Frigio; Meletti, Stefano
2015-01-15
During resting-state EEG-fMRI studies in epilepsy, patients' spontaneous head-face movements occur frequently. We tested the usefulness of synchronous video recording to identify and model the fMRI changes associated with non-epileptic movements to improve sensitivity and specificity of fMRI maps related to interictal epileptiform discharges (IED). Categorization of different facial/cranial movements during EEG-fMRI was obtained for 38 patients [with benign epilepsy with centro-temporal spikes (BECTS, n=16); with idiopathic generalized epilepsy (IGE, n=17); focal symptomatic/cryptogenic epilepsy (n=5)]. We compared at single subject- and at group-level the IED-related fMRI maps obtained with and without additional regressors related to spontaneous movements. As secondary aim, we considered facial movements as events of interest to test the usefulness of video information to obtain fMRI maps of the following face movements: swallowing, mouth-tongue movements, and blinking. Video information substantially improved the identification and classification of the artifacts with respect to the EEG observation alone (mean gain of 28 events per exam). Inclusion of physiological activities as additional regressors in the GLM model demonstrated an increased Z-score and number of voxels of the global maxima and/or new BOLD clusters in around three quarters of the patients. Video-related fMRI maps for swallowing, mouth-tongue movements, and blinking were comparable to the ones obtained in previous task-based fMRI studies. Video acquisition during EEG-fMRI is a useful source of information. Modeling physiological movements in EEG-fMRI studies for epilepsy will lead to more informative IED-related fMRI maps in different epileptic conditions. Copyright © 2014 Elsevier B.V. All rights reserved.
Biology and therapy of fibromyalgia. Functional magnetic resonance imaging findings in fibromyalgia
Williams, David A; Gracely, Richard H
2006-01-01
Techniques in neuroimaging such as functional magnetic resonance imaging (fMRI) have helped to provide insights into the role of supraspinal mechanisms in pain perception. This review focuses on studies that have applied fMRI in an attempt to gain a better understanding of the mechanisms involved in the processing of pain associated with fibromyalgia. This article provides an overview of the nociceptive system as it functions normally, reviews functional brain imaging methods, and integrates the existing literature utilizing fMRI to study central pain mechanisms in fibromyalgia. PMID:17254318
Abnormal Social Reward Responses in Anorexia Nervosa: An fMRI Study.
Via, Esther; Soriano-Mas, Carles; Sánchez, Isabel; Forcano, Laura; Harrison, Ben J; Davey, Christopher G; Pujol, Jesús; Martínez-Zalacaín, Ignacio; Menchón, José M; Fernández-Aranda, Fernando; Cardoner, Narcís
2015-01-01
Patients with anorexia nervosa (AN) display impaired social interactions, implicated in the development and prognosis of the disorder. Importantly, social behavior is modulated by reward-based processes, and dysfunctional at-brain-level reward responses have been involved in AN neurobiological models. However, no prior evidence exists of whether these neural alterations would be equally present in social contexts. In this study, we conducted a cross-sectional social-judgment functional magnetic resonance imaging (fMRI) study of 20 restrictive-subtype AN patients and 20 matched healthy controls. Brain activity during acceptance and rejection was investigated and correlated with severity measures (Eating Disorder Inventory -EDI-2) and with personality traits of interest known to modulate social behavior (The Sensitivity to Punishment and Sensitivity to Reward Questionnaire). Patients showed hypoactivation of the dorsomedial prefrontal cortex (DMPFC) during social acceptance and hyperactivation of visual areas during social rejection. Ventral striatum activation during rejection was positively correlated in patients with clinical severity scores. During acceptance, activation of the frontal opercula-anterior insula and dorsomedial/dorsolateral prefrontal cortices was differentially associated with reward sensitivity between groups. These results suggest an abnormal motivational drive for social stimuli, and involve overlapping social cognition and reward systems leading to a disruption of adaptive responses in the processing of social reward. The specific association of reward-related regions with clinical and psychometric measures suggests the putative involvement of reward structures in the maintenance of pathological behaviors in AN.
Li, Hui-Jie; Hou, Xiao-Hui; Liu, Han-Hui; Yue, Chun-Lin; He, Yong; Zuo, Xi-Nian
2015-03-01
Most of the previous task functional magnetic resonance imaging (fMRI) studies found abnormalities in distributed brain regions in mild cognitive impairment (MCI) and Alzheimer's disease (AD), and few studies investigated the brain network dysfunction from the system level. In this meta-analysis, we aimed to examine brain network dysfunction in MCI and AD. We systematically searched task-based fMRI studies in MCI and AD published between January 1990 and January 2014. Activation likelihood estimation meta-analyses were conducted to compare the significant group differences in brain activation, the significant voxels were overlaid onto seven referenced neuronal cortical networks derived from the resting-state fMRI data of 1,000 healthy participants. Thirty-nine task-based fMRI studies (697 MCI patients and 628 healthy controls) were included in MCI-related meta-analysis while 36 task-based fMRI studies (421 AD patients and 512 healthy controls) were included in AD-related meta-analysis. The meta-analytic results revealed that MCI and AD showed abnormal regional brain activation as well as large-scale brain networks. MCI patients showed hypoactivation in default, frontoparietal, and visual networks relative to healthy controls, whereas AD-related hypoactivation mainly located in visual, default, and ventral attention networks relative to healthy controls. Both MCI-related and AD-related hyperactivation fell in frontoparietal, ventral attention, default, and somatomotor networks relative to healthy controls. MCI and AD presented different pathological while shared similar compensatory large-scale networks in fulfilling the cognitive tasks. These system-level findings are helpful to link the fundamental declines of cognitive tasks to brain networks in MCI and AD. © 2014 Wiley Periodicals, Inc.
Safety and EEG data quality of concurrent high-density EEG and high-speed fMRI at 3 Tesla.
Foged, Mette Thrane; Lindberg, Ulrich; Vakamudi, Kishore; Larsson, Henrik B W; Pinborg, Lars H; Kjær, Troels W; Fabricius, Martin; Svarer, Claus; Ozenne, Brice; Thomsen, Carsten; Beniczky, Sándor; Paulson, Olaf B; Posse, Stefan
2017-01-01
Concurrent EEG and fMRI is increasingly used to characterize the spatial-temporal dynamics of brain activity. However, most studies to date have been limited to conventional echo-planar imaging (EPI). There is considerable interest in integrating recently developed high-speed fMRI methods with high-density EEG to increase temporal resolution and sensitivity for task-based and resting state fMRI, and for detecting interictal spikes in epilepsy. In the present study using concurrent high-density EEG and recently developed high-speed fMRI methods, we investigate safety of radiofrequency (RF) related heating, the effect of EEG on cortical signal-to-noise ratio (SNR) in fMRI, and assess EEG data quality. The study compared EPI, multi-echo EPI, multi-band EPI and multi-slab echo-volumar imaging pulse sequences, using clinical 3 Tesla MR scanners from two different vendors that were equipped with 64- and 256-channel MR-compatible EEG systems, respectively, and receive only array head coils. Data were collected in 11 healthy controls (3 males, age range 18-70 years) and 13 patients with epilepsy (8 males, age range 21-67 years). Three of the healthy controls were scanned with the 256-channel EEG system, the other subjects were scanned with the 64-channel EEG system. Scalp surface temperature, SNR in occipital cortex and head movement were measured with and without the EEG cap. The degree of artifacts and the ability to identify background activity was assessed by visual analysis by a trained expert in the 64 channel EEG data (7 healthy controls, 13 patients). RF induced heating at the surface of the EEG electrodes during a 30-minute scan period with stable temperature prior to scanning did not exceed 1.0° C with either EEG system and any of the pulse sequences used in this study. There was no significant decrease in cortical SNR due to the presence of the EEG cap (p > 0.05). No significant differences in the visually analyzed EEG data quality were found between EEG recorded during high-speed fMRI and during conventional EPI (p = 0.78). Residual ballistocardiographic artifacts resulted in 58% of EEG data being rated as poor quality. This study demonstrates that high-density EEG can be safely implemented in conjunction with high-speed fMRI and that high-speed fMRI does not adversely affect EEG data quality. However, the deterioration of the EEG quality due to residual ballistocardiographic artifacts remains a significant constraint for routine clinical applications of concurrent EEG-fMRI.
Maintenance and Representation of Mind Wandering during Resting-State fMRI.
Chou, Ying-Hui; Sundman, Mark; Whitson, Heather E; Gaur, Pooja; Chu, Mei-Lan; Weingarten, Carol P; Madden, David J; Wang, Lihong; Kirste, Imke; Joliot, Marc; Diaz, Michele T; Li, Yi-Ju; Song, Allen W; Chen, Nan-Kuei
2017-01-12
Major advances in resting-state functional magnetic resonance imaging (fMRI) techniques in the last two decades have provided a tool to better understand the functional organization of the brain both in health and illness. Despite such developments, characterizing regulation and cerebral representation of mind wandering, which occurs unavoidably during resting-state fMRI scans and may induce variability of the acquired data, remains a work in progress. Here, we demonstrate that a decrease or decoupling in functional connectivity involving the caudate nucleus, insula, medial prefrontal cortex and other domain-specific regions was associated with more sustained mind wandering in particular thought domains during resting-state fMRI. Importantly, our findings suggest that temporal and between-subject variations in functional connectivity of above-mentioned regions might be linked with the continuity of mind wandering. Our study not only provides a preliminary framework for characterizing the maintenance and cerebral representation of different types of mind wandering, but also highlights the importance of taking mind wandering into consideration when studying brain organization with resting-state fMRI in the future.
Figure-ground representation and its decay in primary visual cortex.
Strother, Lars; Lavell, Cheryl; Vilis, Tutis
2012-04-01
We used fMRI to study figure-ground representation and its decay in primary visual cortex (V1). Human observers viewed a motion-defined figure that gradually became camouflaged by a cluttered background after it stopped moving. V1 showed positive fMRI responses corresponding to the moving figure and negative fMRI responses corresponding to the static background. This positive-negative delineation of V1 "figure" and "background" fMRI responses defined a retinotopically organized figure-ground representation that persisted after the figure stopped moving but eventually decayed. The temporal dynamics of V1 "figure" and "background" fMRI responses differed substantially. Positive "figure" responses continued to increase for several seconds after the figure stopped moving and remained elevated after the figure had disappeared. We propose that the sustained positive V1 "figure" fMRI responses reflected both persistent figure-ground representation and sustained attention to the location of the figure after its disappearance, as did subjects' reports of persistence. The decreasing "background" fMRI responses were relatively shorter-lived and less biased by spatial attention. Our results show that the transition from a vivid figure-ground percept to its disappearance corresponds to the concurrent decay of figure enhancement and background suppression in V1, both of which play a role in form-based perceptual memory.
Chan, Suk-tak; Evans, Karleyton C; Rosen, Bruce R; Song, Tian-yue; Kwong, Kenneth K
2015-01-01
To use breath-hold functional magnetic resonance imaging (fMRI) to localize the brain regions with impaired cerebrovascular reactivity (CVR) in a female patient diagnosed with mild traumatic brain injury (mTBI). The extent of impaired CVR was evaluated 2 months after concussion. Follow-up scan was performed 1 year post-mTBI using the same breath-hold fMRI technique. Case report. fMRI blood oxygenation dependent level (BOLD) signals were measured under breath-hold challenge in a female mTBI patient 2 months after concussion followed by a second fMRI with breath-hold challenge 1 year later. CVR was expressed as the percentage change of BOLD signals per unit time of breath-hold. In comparison with CVR measurement of normal control subjects, statistical maps of CVR revealed substantial neurovascular deficits and hemispheric asymmetry within grey and white matter in the initial breath-hold fMRI scan. Follow-up breath-hold fMRI performed 1 year post-mTBI demonstrated normalization of CVR accompanied with symptomatic recovery. CVR may serve as an imaging biomarker to detect subtle deficits in both grey and white matter for individual diagnosis of mTBI. The findings encourage further investigation of hypercapnic fMRI as a diagnostic tool for mTBI.
Brain Functional Connectivity in MS: An EEG-NIRS Study
2015-10-01
electrical (EEG) and blood volume and blood oxygen-based (NIRS and fMRI ) signals, and to use the results to help optimize blood oxygen level...dependent (BOLD) fMRI analyses of brain activity. Participants will be patients with MS (n=25) and healthy demographically matched controls (n=25) who will...undergo standardized evaluations and imaging using combined EEG-NIRS- fMRI . EEG-NIRS data will be used to construct maps of neurovascular coupling
Neural Markers and Rehabilitation of Executive Functioning in Veterans with TBI and PTSD
2015-10-01
functioning. Functional magnetic resonance imaging ( fMRI ) will be used to evaluate changes in cortical function in frontostriate and frontoparietal circuits...EEG and fMRI will be conducted and then transport Veterans back to our laboratory. We will assure transportation is running efficiently and without...delays before study commencement. Transportation to the EEG and fMRI was arranged through the UNC-Chapel Hill School of Medicine at month 9
Slotnick, Scott D
2017-07-01
Analysis of functional magnetic resonance imaging (fMRI) data typically involves over one hundred thousand independent statistical tests; therefore, it is necessary to correct for multiple comparisons to control familywise error. In a recent paper, Eklund, Nichols, and Knutsson used resting-state fMRI data to evaluate commonly employed methods to correct for multiple comparisons and reported unacceptable rates of familywise error. Eklund et al.'s analysis was based on the assumption that resting-state fMRI data reflect null data; however, their 'null data' actually reflected default network activity that inflated familywise error. As such, Eklund et al.'s results provide no basis to question the validity of the thousands of published fMRI studies that have corrected for multiple comparisons or the commonly employed methods to correct for multiple comparisons.
Large-Scale, High-Resolution Neurophysiological Maps Underlying fMRI of Macaque Temporal Lobe
Papanastassiou, Alex M.; DiCarlo, James J.
2013-01-01
Maps obtained by functional magnetic resonance imaging (fMRI) are thought to reflect the underlying spatial layout of neural activity. However, previous studies have not been able to directly compare fMRI maps to high-resolution neurophysiological maps, particularly in higher level visual areas. Here, we used a novel stereo microfocal x-ray system to localize thousands of neural recordings across monkey inferior temporal cortex (IT), construct large-scale maps of neuronal object selectivity at subvoxel resolution, and compare those neurophysiology maps with fMRI maps from the same subjects. While neurophysiology maps contained reliable structure at the sub-millimeter scale, fMRI maps of object selectivity contained information at larger scales (>2.5 mm) and were only partly correlated with raw neurophysiology maps collected in the same subjects. However, spatial smoothing of neurophysiology maps more than doubled that correlation, while a variety of alternative transforms led to no significant improvement. Furthermore, raw spiking signals, once spatially smoothed, were as predictive of fMRI maps as local field potential signals. Thus, fMRI of the inferior temporal lobe reflects a spatially low-passed version of neurophysiology signals. These findings strongly validate the widespread use of fMRI for detecting large (>2.5 mm) neuronal domains of object selectivity but show that a complete understanding of even the most pure domains (e.g., faces vs nonface objects) requires investigation at fine scales that can currently only be obtained with invasive neurophysiological methods. PMID:24048850
Estimating neural response functions from fMRI
Kumar, Sukhbinder; Penny, William
2014-01-01
This paper proposes a methodology for estimating Neural Response Functions (NRFs) from fMRI data. These NRFs describe non-linear relationships between experimental stimuli and neuronal population responses. The method is based on a two-stage model comprising an NRF and a Hemodynamic Response Function (HRF) that are simultaneously fitted to fMRI data using a Bayesian optimization algorithm. This algorithm also produces a model evidence score, providing a formal model comparison method for evaluating alternative NRFs. The HRF is characterized using previously established “Balloon” and BOLD signal models. We illustrate the method with two example applications based on fMRI studies of the auditory system. In the first, we estimate the time constants of repetition suppression and facilitation, and in the second we estimate the parameters of population receptive fields in a tonotopic mapping study. PMID:24847246
FIACH: A biophysical model for automatic retrospective noise control in fMRI.
Tierney, Tim M; Weiss-Croft, Louise J; Centeno, Maria; Shamshiri, Elhum A; Perani, Suejen; Baldeweg, Torsten; Clark, Christopher A; Carmichael, David W
2016-01-01
Different noise sources in fMRI acquisition can lead to spurious false positives and reduced sensitivity. We have developed a biophysically-based model (named FIACH: Functional Image Artefact Correction Heuristic) which extends current retrospective noise control methods in fMRI. FIACH can be applied to both General Linear Model (GLM) and resting state functional connectivity MRI (rs-fcMRI) studies. FIACH is a two-step procedure involving the identification and correction of non-physiological large amplitude temporal signal changes and spatial regions of high temporal instability. We have demonstrated its efficacy in a sample of 42 healthy children while performing language tasks that include overt speech with known activations. We demonstrate large improvements in sensitivity when FIACH is compared with current methods of retrospective correction. FIACH reduces the confounding effects of noise and increases the study's power by explaining significant variance that is not contained within the commonly used motion parameters. The method is particularly useful in detecting activations in inferior temporal regions which have proven problematic for fMRI. We have shown greater reproducibility and robustness of fMRI responses using FIACH in the context of task induced motion. In a clinical setting this will translate to increasing the reliability and sensitivity of fMRI used for the identification of language lateralisation and eloquent cortex. FIACH can benefit studies of cognitive development in young children, patient populations and older adults. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Yamamoto, Toru; Kato, Toshinori
2002-04-01
Signal increases in functional magnetic resonance imaging (fMRI) are believed to be a result of decreased paramagnetic deoxygenated haemoglobin (deoxyHb) content in the neural activation area. However, discrepancies in this canonical blood oxygenation level dependent (BOLD) theory have been pointed out in studies using optical techniques, which directly measure haemoglobin changes. To explain the discrepancies, we developed a new theory bridging magnetic resonance (MR) signal and haemoglobin changes. We focused on capillary influences, which have been neglected in most previous fMRI studies and performed a combined fMRI and near-infrared spectroscopy (NIRS) study using a language task. Paradoxically, both the MR signal and deoxyHb content increased in Broca's area. On the other hand, fMRI activation in the auditory area near large veins correlated with a mirror-image decrease in deoxyHb and increase in oxygenated haemoglobin (oxyHb), in agreement with canonical BOLD theory. All fMRI signal changes correlated consistently with changes in oxyHb, the diamagnetism of which is insensitive to MR. We concluded that the discrepancy with the canonical BOLD theory is caused by the fact that the BOLD theory ignores the effect of the capillaries. Our theory explains the paradoxical phenomena of the oxyHb and deoxyHb contributions to the MR signal and gives a new insight into the precise haemodynamics of activation by analysing fMRI and NIRS data.
Combining fMRI and behavioral measures to examine the process of human learning.
Karuza, Elisabeth A; Emberson, Lauren L; Aslin, Richard N
2014-03-01
Prior to the advent of fMRI, the primary means of examining the mechanisms underlying learning were restricted to studying human behavior and non-human neural systems. However, recent advances in neuroimaging technology have enabled the concurrent study of human behavior and neural activity. We propose that the integration of behavioral response with brain activity provides a powerful method of investigating the process through which internal representations are formed or changed. Nevertheless, a review of the literature reveals that many fMRI studies of learning either (1) focus on outcome rather than process or (2) are built on the untested assumption that learning unfolds uniformly over time. We discuss here various challenges faced by the field and highlight studies that have begun to address them. In doing so, we aim to encourage more research that examines the process of learning by considering the interrelation of behavioral measures and fMRI recording during learning. Copyright © 2013 Elsevier Inc. All rights reserved.
Combining fMRI and Behavioral Measures to Examine the Process of Human Learning
Karuza, Elisabeth A.; Emberson, Lauren L.; Aslin, Richard N.
2013-01-01
Prior to the advent of fMRI, the primary means of examining the mechanisms underlying learning were restricted to studying human behavior and non-human neural systems. However, recent advances in neuroimaging technology have enabled the concurrent study of human behavior and neural activity. We propose that the integration of behavioral response with brain activity provides a powerful method of investigating the process through which internal representations are formed or changed. Nevertheless, a review of the literature reveals that many fMRI studies of learning either (1) focus on outcome rather than process or (2) are built on the untested assumption that learning unfolds uniformly over time. We discuss here various challenges faced by the field and highlight studies that have begun to address them. In doing so, we aim to encourage more research that examines the process of learning by considering the interrelation of behavioral measures and fMRI recording during learning. PMID:24076012
Hypercapnic evaluation of vascular reactivity in healthy aging and acute stroke via functional MRI.
Raut, Ryan V; Nair, Veena A; Sattin, Justin A; Prabhakaran, Vivek
2016-01-01
Functional MRI (fMRI) is well-established for the study of brain function in healthy populations, although its clinical application has proven more challenging. Specifically, cerebrovascular reactivity (CVR), which allows the assessment of the vascular response that serves as the basis for fMRI, has been shown to be reduced in healthy aging as well as in a range of diseases, including chronic stroke. However, the timing of when this occurs relative to the stroke event is unclear. We used a breath-hold fMRI task to evaluate CVR across gray matter in a group of acute stroke patients (< 10 days from stroke; N = 22) to address this question. These estimates were compared with those from both age-matched (N = 22) and younger (N = 22) healthy controls. As expected, young controls had the greatest mean CVR, as indicated by magnitude and extent of fMRI activation; however, stroke patients did not differ from age-matched controls. Moreover, the ipsilesional and contralesional hemispheres of stroke patients did not differ with respect to any of these measures. These findings suggest that fMRI remains a valid tool within the first few days of a stroke, particularly for group fMRI studies in which findings are compared with healthy subjects of similar age. However, given the relatively high variability in CVR observed in our stroke sample, caution is warranted when interpreting fMRI data from individual patients or a small cohort. We conclude that a breath-hold task can be a useful addition to functional imaging protocols for stroke patients.
Conflict adaptation in prefrontal cortex: now you see it, now you don't.
Kim, Chobok; Johnson, Nathan F; Gold, Brian T
2014-01-01
Daily life requires people to monitor and resolve conflict arising from distracting information irrelevant to current goals. The highly influential conflict monitoring theory (CMT) holds that the anterior cingulate cortex (ACC) detects conflict and subsequently triggers the dorsolateral prefrontal cortex (DLPFC) to regulate that conflict. Multiple lines of evidence have provided support for CMT. For example, performance is faster on incongruent trials that follow other incongruent trials (iI), and is accompanied by reduced ACC and increased DLPFC activation (the conflict adaptation effect). In this fMRI study, we explored whether ACC-DLPFC conflict signaling can result in behavioral adjustments beyond on-line contexts. Participants completed a modified version of the Stroop conflict adaptation paradigm which tested for conflict adaptation effects on the current (N) trial associated with not only the immediately preceding (N - 1) trial, but also 2-back (N - 2) trials. Results demonstrated evidence for direct relationships between ACC activity on N - 2 trials and both N trial DLPFC activity and behavioral adjustment when intervening trials were congruent (i.e., icI). In contrast, when N - 1 trials were incongruent (i.e., iiI), ACC-DLPFC signaling failed and conflict adaptation was absent. These results provide new evidence demonstrating that the conflict monitor-controller maintains previously experienced conflict in the service of subsequent behavioral adjustment. However, the processing of multiple, temporally proximal conflict signals takes a toll on the working memory (WM) system, which appears to require resetting in order to adapt our behavior to frequently changing environmental demands. Copyright © 2013 Elsevier Ltd. All rights reserved.
Broadband Electrophysiological Dynamics Contribute to Global Resting-State fMRI Signal.
Wen, Haiguang; Liu, Zhongming
2016-06-01
Spontaneous activity observed with resting-state fMRI is used widely to uncover the brain's intrinsic functional networks in health and disease. Although many networks appear modular and specific, global and nonspecific fMRI fluctuations also exist and both pose a challenge and present an opportunity for characterizing and understanding brain networks. Here, we used a multimodal approach to investigate the neural correlates to the global fMRI signal in the resting state. Like fMRI, resting-state power fluctuations of broadband and arrhythmic, or scale-free, macaque electrocorticography and human magnetoencephalography activity were correlated globally. The power fluctuations of scale-free human electroencephalography (EEG) were coupled with the global component of simultaneously acquired resting-state fMRI, with the global hemodynamic change lagging the broadband spectral change of EEG by ∼5 s. The levels of global and nonspecific fluctuation and synchronization in scale-free population activity also varied across and depended on arousal states. Together, these results suggest that the neural origin of global resting-state fMRI activity is the broadband power fluctuation in scale-free population activity observable with macroscopic electrical or magnetic recordings. Moreover, the global fluctuation in neurophysiological and hemodynamic activity is likely modulated through diffuse neuromodulation pathways that govern arousal states and vigilance levels. This study provides new insights into the neural origin of resting-state fMRI. Results demonstrate that the broadband power fluctuation of scale-free electrophysiology is globally synchronized and directly coupled with the global component of spontaneous fMRI signals, in contrast to modularly synchronized fluctuations in oscillatory neural activity. These findings lead to a new hypothesis that scale-free and oscillatory neural processes account for global and modular patterns of functional connectivity observed with resting-state fMRI, respectively. Copyright © 2016 the authors 0270-6474/16/366030-11$15.00/0.
Brain functional BOLD perturbation modelling for forward fMRI and inverse mapping
Robinson, Jennifer; Calhoun, Vince
2018-01-01
Purpose To computationally separate dynamic brain functional BOLD responses from static background in a brain functional activity for forward fMRI signal analysis and inverse mapping. Methods A brain functional activity is represented in terms of magnetic source by a perturbation model: χ = χ0 +δχ, with δχ for BOLD magnetic perturbations and χ0 for background. A brain fMRI experiment produces a timeseries of complex-valued images (T2* images), whereby we extract the BOLD phase signals (denoted by δP) by a complex division. By solving an inverse problem, we reconstruct the BOLD δχ dataset from the δP dataset, and the brain χ distribution from a (unwrapped) T2* phase image. Given a 4D dataset of task BOLD fMRI, we implement brain functional mapping by temporal correlation analysis. Results Through a high-field (7T) and high-resolution (0.5mm in plane) task fMRI experiment, we demonstrated in detail the BOLD perturbation model for fMRI phase signal separation (P + δP) and reconstructing intrinsic brain magnetic source (χ and δχ). We also provided to a low-field (3T) and low-resolution (2mm) task fMRI experiment in support of single-subject fMRI study. Our experiments show that the δχ-depicted functional map reveals bidirectional BOLD χ perturbations during the task performance. Conclusions The BOLD perturbation model allows us to separate fMRI phase signal (by complex division) and to perform inverse mapping for pure BOLD δχ reconstruction for intrinsic functional χ mapping. The full brain χ reconstruction (from unwrapped fMRI phase) provides a new brain tissue image that allows to scrutinize the brain tissue idiosyncrasy for the pure BOLD δχ response through an automatic function/structure co-localization. PMID:29351339
Reiter, Andrea M F; Heinze, Hans-Jochen; Schlagenhauf, Florian; Deserno, Lorenz
2017-02-01
Despite its clinical relevance and the recent recognition as a diagnostic category in the DSM-5, binge eating disorder (BED) has rarely been investigated from a cognitive neuroscientific perspective targeting a more precise neurocognitive profiling of the disorder. BED patients suffer from a lack of behavioral control during recurrent binge eating episodes and thus fail to adapt their behavior in the face of negative consequences, eg, high risk for obesity. To examine impairments in flexible reward-based decision-making, we exposed BED patients (n=22) and matched healthy individuals (n=22) to a reward-guided decision-making task during functional resonance imaging (fMRI). Performing fMRI analysis informed via computational modeling of choice behavior, we were able to identify specific signatures of altered decision-making in BED. On the behavioral level, we observed impaired behavioral adaptation in BED, which was due to enhanced switching behavior, a putative deficit in striking a balance between exploration and exploitation appropriately. This was accompanied by diminished activation related to exploratory decisions in the anterior insula/ventro-lateral prefrontal cortex. Moreover, although so-called model-free reward prediction errors remained intact, representation of ventro-medial prefrontal learning signatures, incorporating inference on unchosen options, was reduced in BED, which was associated with successful decision-making in the task. On the basis of a computational psychiatry account, the presented findings contribute to defining a neurocognitive phenotype of BED.
Reiter, Andrea M F; Heinze, Hans-Jochen; Schlagenhauf, Florian; Deserno, Lorenz
2017-01-01
Despite its clinical relevance and the recent recognition as a diagnostic category in the DSM-5, binge eating disorder (BED) has rarely been investigated from a cognitive neuroscientific perspective targeting a more precise neurocognitive profiling of the disorder. BED patients suffer from a lack of behavioral control during recurrent binge eating episodes and thus fail to adapt their behavior in the face of negative consequences, eg, high risk for obesity. To examine impairments in flexible reward-based decision-making, we exposed BED patients (n=22) and matched healthy individuals (n=22) to a reward-guided decision-making task during functional resonance imaging (fMRI). Performing fMRI analysis informed via computational modeling of choice behavior, we were able to identify specific signatures of altered decision-making in BED. On the behavioral level, we observed impaired behavioral adaptation in BED, which was due to enhanced switching behavior, a putative deficit in striking a balance between exploration and exploitation appropriately. This was accompanied by diminished activation related to exploratory decisions in the anterior insula/ventro-lateral prefrontal cortex. Moreover, although so-called model-free reward prediction errors remained intact, representation of ventro–medial prefrontal learning signatures, incorporating inference on unchosen options, was reduced in BED, which was associated with successful decision-making in the task. On the basis of a computational psychiatry account, the presented findings contribute to defining a neurocognitive phenotype of BED. PMID:27301429
Andoh, J; Ferreira, M; Leppert, I R; Matsushita, R; Pike, B; Zatorre, R J
2017-02-15
Resting-state fMRI studies have become very important in cognitive neuroscience because they are able to identify BOLD fluctuations in brain circuits involved in motor, cognitive, or perceptual processes without the use of an explicit task. Such approaches have been fruitful when applied to various disordered populations, or to children or the elderly. However, insufficient attention has been paid to the consequences of the loud acoustic scanner noise associated with conventional fMRI acquisition, which could be an important confounding factor affecting auditory and/or cognitive networks in resting-state fMRI. Several approaches have been developed to mitigate the effects of acoustic noise on fMRI signals, including sparse sampling protocols and interleaved silent steady state (ISSS) acquisition methods, the latter being used only for task-based fMRI. Here, we developed an ISSS protocol for resting-state fMRI (rs-ISSS) consisting of rapid acquisition of a set of echo planar imaging volumes following each silent period, during which the steady state longitudinal magnetization was maintained with a train of relatively silent slice-selective excitation pulses. We evaluated the test-retest reliability of intensity and spatial extent of connectivity networks of fMRI BOLD signal across three different days for rs-ISSS and compared it with a standard resting-state fMRI (rs-STD). We also compared the strength and distribution of connectivity networks between rs-ISSS and rs-STD. We found that both rs-ISSS and rs-STD showed high reproducibility of fMRI signal across days. In addition, rs-ISSS showed a more robust pattern of functional connectivity within the somatosensory and motor networks, as well as an auditory network compared with rs-STD. An increased connectivity between the default mode network and the language network and with the anterior cingulate cortex (ACC) network was also found for rs-ISSS compared with rs-STD. Finally, region of interest analysis showed higher interhemispheric connectivity in Heschl's gyri in rs-ISSS compared with rs-STD, with lower variability across days. The present findings suggest that rs-ISSS may be advantageous for detecting network connectivity in a less noisy environment, and that resting-state studies carried out with standard scanning protocols should consider the potential effects of loud noise on the measured networks. Copyright © 2017 Elsevier Inc. All rights reserved.
A hierarchical model for probabilistic independent component analysis of multi-subject fMRI studies
Tang, Li
2014-01-01
Summary An important goal in fMRI studies is to decompose the observed series of brain images to identify and characterize underlying brain functional networks. Independent component analysis (ICA) has been shown to be a powerful computational tool for this purpose. Classic ICA has been successfully applied to single-subject fMRI data. The extension of ICA to group inferences in neuroimaging studies, however, is challenging due to the unavailability of a pre-specified group design matrix. Existing group ICA methods generally concatenate observed fMRI data across subjects on the temporal domain and then decompose multi-subject data in a similar manner to single-subject ICA. The major limitation of existing methods is that they ignore between-subject variability in spatial distributions of brain functional networks in group ICA. In this paper, we propose a new hierarchical probabilistic group ICA method to formally model subject-specific effects in both temporal and spatial domains when decomposing multi-subject fMRI data. The proposed method provides model-based estimation of brain functional networks at both the population and subject level. An important advantage of the hierarchical model is that it provides a formal statistical framework to investigate similarities and differences in brain functional networks across subjects, e.g., subjects with mental disorders or neurodegenerative diseases such as Parkinson’s as compared to normal subjects. We develop an EM algorithm for model estimation where both the E-step and M-step have explicit forms. We compare the performance of the proposed hierarchical model with that of two popular group ICA methods via simulation studies. We illustrate our method with application to an fMRI study of Zen meditation. PMID:24033125
Puzzlingly High Correlations in fMRI Studies of Emotion, Personality, and Social Cognition
ERIC Educational Resources Information Center
Vul, Edward; Harris, Christine; Winkielman, Piotr; Pashler, Harold
2009-01-01
Functional Magnetic Resonance Imaging (fMRI) studies of emotion, personality, and social cognition have drawn much attention in recent years, with high-profile studies frequently reporting extremely high (e.g., > 8) correlations between behavioral and self-report measures of personality or emotion and measures of brain activation. We show…
Using fMRI to Study Conceptual Change: Why and How?
ERIC Educational Resources Information Center
Masson, Steve; Potvin, Patrice; Riopel, Martin; Foisy, Lorie-Marlene Brault; Lafortune, Stephanie
2012-01-01
Although the use of brain imaging techniques, such as functional magnetic resonance imaging (fMRI) is increasingly common in educational research, only a few studies regarding science learning have so far taken advantage of this technology. This paper aims to facilitate the design and implementation of brain imaging studies relating to science…
Cai, Rong-Lin; Shen, Guo-Ming; Wang, Hao; Guan, Yuan-Yuan
2018-01-01
Functional magnetic resonance imaging (fMRI) is a novel method for studying the changes of brain networks due to acupuncture treatment. In recent years, more and more studies have focused on the brain functional connectivity network of acupuncture stimulation. To offer an overview of the different influences of acupuncture on the brain functional connectivity network from studies using resting-state fMRI. The authors performed a systematic search according to PRISMA guidelines. The database PubMed was searched from January 1, 2006 to December 31, 2016 with restriction to human studies in English language. Electronic searches were conducted in PubMed using the keywords "acupuncture" and "neuroimaging" or "resting-state fMRI" or "functional connectivity". Selection of included articles, data extraction and methodological quality assessments were respectively conducted by two review authors. Forty-four resting-state fMRI studies were included in this systematic review according to inclusion criteria. Thirteen studies applied manual acupuncture vs. sham, four studies applied electro-acupuncture vs. sham, two studies also compared transcutaneous electrical acupoint stimulation vs. sham, and nine applied sham acupoint as control. Nineteen studies with a total number of 574 healthy subjects selected to perform fMRI only considered healthy adult volunteers. The brain functional connectivity of the patients had varying degrees of change. Compared with sham acupuncture, verum acupuncture could increase default mode network and sensorimotor network connectivity with pain-, affective- and memory-related brain areas. It has significantly greater connectivity of genuine acupuncture between the periaqueductal gray, anterior cingulate cortex, left posterior cingulate cortex, right anterior insula, limbic/paralimbic and precuneus compared with sham acupuncture. Some research had also shown that acupuncture could adjust the limbic-paralimbic-neocortical network, brainstem, cerebellum, subcortical and hippocampus brain areas. It can be presumed that the functional connectivity network is closely related to the mechanism of acupuncture, and central integration plays a critical role in the acupuncture mechanism. Copyright © 2017 Shanghai Changhai Hospital. Published by Elsevier B.V. All rights reserved.
Integrated Eye Tracking and Neural Monitoring for Enhanced Assessment of Mild TBI
2016-04-01
but these delays are nearing resolution and we anticipate the initiation of the neuroimaging portion of the study early in Year 3. The fMRI task...resonance imagining ( fMRI ) and diffusion tensor imaging (DTI) to characterize the extent of functional cortical recruitment and white matter injury...respectively. The inclusion of fMRI and DTI will provide an objective basis for cross-validating the EEG and eye tracking system. Both the EEG and eye
2013-03-01
fMRI data (e.g. Kamitami & Tong, 2005). This approach has been remarkably successful in classifying mental workload in complex tasks (Berka, et al...1991). These previous studies relied upon spectral comparison rather than classification. In previous research examining the stability of fMRI ...chose to focus on electrophysiology, as the collection conditions may be more carefully controlled across days than fMRI and it is more amenable to
Hantke, Nathan; Nielson, Kristy A; Woodard, John L; Breting, Leslie M Guidotti; Butts, Alissa; Seidenberg, Michael; Carson Smith, J; Durgerian, Sally; Lancaster, Melissa; Matthews, Monica; Sugarman, Michael A; Rao, Stephen M
2013-01-01
Previous studies suggest that task-activated functional magnetic resonance imaging (fMRI) can predict future cognitive decline among healthy older adults. The present fMRI study examined the relative sensitivity of semantic memory (SM) versus episodic memory (EM) activation tasks for predicting cognitive decline. Seventy-eight cognitively intact elders underwent neuropsychological testing at entry and after an 18-month interval, with participants classified as cognitively "Stable" or "Declining" based on ≥ 1.0 SD decline in performance. Baseline fMRI scanning involved SM (famous name discrimination) and EM (name recognition) tasks. SM and EM fMRI activation, along with Apolipoprotein E (APOE) ε4 status, served as predictors of cognitive outcome using a logistic regression analysis. Twenty-seven (34.6%) participants were classified as Declining and 51 (65.4%) as Stable. APOE ε4 status alone significantly predicted cognitive decline (R(2) = .106; C index = .642). Addition of SM activation significantly improved prediction accuracy (R(2) = .285; C index = .787), whereas the addition of EM did not (R(2) = .212; C index = .711). In combination with APOE status, SM task activation predicts future cognitive decline better than EM activation. These results have implications for use of fMRI in prevention clinical trials involving the identification of persons at-risk for age-associated memory loss and Alzheimer's disease.
Spritzer, Scott D; Hoerth, Matthew T; Zimmerman, Richard S; Shmookler, Aaron; Hoffman-Snyder, Charlene R; Wellik, Kay E; Demaerschalk, Bart M; Wingerchuk, Dean M
2012-09-01
Presurgical evaluation for refractory epilepsy typically includes assessment of cognitive and language functions. The reference standard for determination of hemispheric language dominance has been the intracarotid amobarbital test (IAT) but functional magnetic resonance imaging (fMRI) is increasingly used. To critically assess current evidence regarding the diagnostic properties of fMRI in comparison with the IAT for determination of hemispheric language dominance. The objective was addressed through the development of a structured critically appraised topic. This included a clinical scenario, structured question, literature search strategy, critical appraisal, results, evidence summary, commentary, and bottom-line conclusions. Participants included consultant and resident neurologists, a medical librarian, clinical epidemiologists, and content experts in the fields of epilepsy and neurosurgery. A systematic review and meta-analysis that compared the sensitivity and specificity of fMRI to IAT-determined language lateralization was selected for critical appraisal. The review included data from 23 articles (n=442); study methodology varied widely. fMRI was 83.5% sensitive and 88.1% specific for detection of hemispheric language dominance. There are insufficient data to support routine use of fMRI for the purpose of determining hemispheric language dominance in patients with intractable epilepsy. Larger, well-designed studies of fMRI for language and other cognitive outcomes as part of the presurgical and postsurgical evaluation of epilepsy patients are necessary.
Sparse representation of whole-brain fMRI signals for identification of functional networks.
Lv, Jinglei; Jiang, Xi; Li, Xiang; Zhu, Dajiang; Chen, Hanbo; Zhang, Tuo; Zhang, Shu; Hu, Xintao; Han, Junwei; Huang, Heng; Zhang, Jing; Guo, Lei; Liu, Tianming
2015-02-01
There have been several recent studies that used sparse representation for fMRI signal analysis and activation detection based on the assumption that each voxel's fMRI signal is linearly composed of sparse components. Previous studies have employed sparse coding to model functional networks in various modalities and scales. These prior contributions inspired the exploration of whether/how sparse representation can be used to identify functional networks in a voxel-wise way and on the whole brain scale. This paper presents a novel, alternative methodology of identifying multiple functional networks via sparse representation of whole-brain task-based fMRI signals. Our basic idea is that all fMRI signals within the whole brain of one subject are aggregated into a big data matrix, which is then factorized into an over-complete dictionary basis matrix and a reference weight matrix via an effective online dictionary learning algorithm. Our extensive experimental results have shown that this novel methodology can uncover multiple functional networks that can be well characterized and interpreted in spatial, temporal and frequency domains based on current brain science knowledge. Importantly, these well-characterized functional network components are quite reproducible in different brains. In general, our methods offer a novel, effective and unified solution to multiple fMRI data analysis tasks including activation detection, de-activation detection, and functional network identification. Copyright © 2014 Elsevier B.V. All rights reserved.
Morrison, Melanie A.; Churchill, Nathan W.; Cusimano, Michael D.; Schweizer, Tom A.; Das, Sunit; Graham, Simon J.
2016-01-01
Background Functional magnetic resonance imaging (fMRI) continues to develop as a clinical tool for patients with brain cancer, offering data that may directly influence surgical decisions. Unfortunately, routine integration of preoperative fMRI has been limited by concerns about reliability. Many pertinent studies have been undertaken involving healthy controls, but work involving brain tumor patients has been limited. To develop fMRI fully as a clinical tool, it will be critical to examine these reliability issues among patients with brain tumors. The present work is the first to extensively characterize differences in activation map quality between brain tumor patients and healthy controls, including the effects of tumor grade and the chosen behavioral testing paradigm on reliability outcomes. Method Test-retest data were collected for a group of low-grade (n = 6) and high-grade glioma (n = 6) patients, and for matched healthy controls (n = 12), who performed motor and language tasks during a single fMRI session. Reliability was characterized by the spatial overlap and displacement of brain activity clusters, BOLD signal stability, and the laterality index. Significance testing was performed to assess differences in reliability between the patients and controls, and low-grade and high-grade patients; as well as between different fMRI testing paradigms. Results There were few significant differences in fMRI reliability measures between patients and controls. Reliability was significantly lower when comparing high-grade tumor patients to controls, or to low-grade tumor patients. The motor task produced more reliable activation patterns than the language tasks, as did the rhyming task in comparison to the phonemic fluency task. Conclusion In low-grade glioma patients, fMRI data are as reliable as healthy control subjects. For high-grade glioma patients, further investigation is required to determine the underlying causes of reduced reliability. To maximize reliability outcomes, testing paradigms should be carefully selected to generate robust activation patterns. PMID:26894279
Sreedharan, Ruma Madhu; Menon, Amitha C; James, Jija S; Kesavadas, Chandrasekharan; Thomas, Sanjeev V
2015-03-01
Language lateralization is unique to humans. Functional MRI (fMRI) and diffusion tensor imaging (DTI) enable the study of language areas and white matter fibers involved in language, respectively. The objective of this study was to correlate arcuate fasciculus (AF) laterality by diffusion tensor imaging with that by fMRI in preadolescent children which has not yet been reported. Ten children between 8 and 12 years were subjected to fMRI and DTI imaging using Siemens 1.5 T MRI. Two language fMRI paradigms--visual verb generation and word pair task--were used. Analysis was done using SPM8 software. In DTI, the fiber volume of the arcuate fasciculus (AFV) and fractional anisotropy (FA) was measured. The fMRI Laterality Index (fMRI-LI) and DTI Laterality Index (DTI-LI) were calculated and their correlation assessed using the Pearson Correlation Index. Of ten children, mean age 10.6 years, eight showed left lateralization while bilateral language lateralization was seen in two. AFV by DTI was more on the left side in seven of the eight children who had left lateralization by fMRI. DTI could not trace the AF in one child. Of the two with bilateral language lateralization on fMRI, one showed larger AFV on the right side while the other did not show any asymmetry. There was a significant correlation (p < 0.02) between fMRI-LI and DTI-LI. Group mean of AFV by DTI was higher on the left side (2659.89 ± 654.75 mm(3)) as compared to the right (1824.11 ± 582.81 mm(3)) (p < 0.01). Like fMRI, DTI also reveals language laterality in children with a high degree of correlation between the two imaging modalities.
Working Memory in 8 Kleine-Levin Syndrome Patients: An fMRI Study
Engstrom, Maria; Vigren, Patrick; Karlsson, Thomas; Landtblom, Anne-Marie
2009-01-01
Study Objectives: The objectives of this study were to investigate possible neuropathology behind the Kleine-Levin Syndrome (KLS), a severe form of hypersomnia with onset during adolescence. Design: Functional magnetic resonance imaging (fMRI) applying a verbal working memory task was used in conjunction with a paper-and-pencil version of the task. Participants: Eight patients with KLS and 12 healthy volunteers participated in the study. Results: The results revealed a pattern of increased thalamic activity and reduced frontal activity (involving the anterior cingulate and adjacent prefrontal cortex) while performing a reading span task. Discussion: This finding may explain the clinical symptoms observed in KLS, in that the thalamus is known to be involved in the control of sleep. Given the increasing access to fMRI, this investigation may aid clinicians in the diagnosis of patients suffering from severe forms of hypersomnia. Citation: Engström M; Vigren P; Karlsson T; Landtblom AM. Working memory in 8 kleine-levin syndrome patients: an fmri study. SLEEP 2009;32(5):681–688. PMID:19480235
Mutschler, Isabella; Wieckhorst, Birgit; Meyer, Andrea H; Schweizer, Tina; Klarhöfer, Markus; Wilhelm, Frank H; Seifritz, Erich; Ball, Tonio
2014-11-07
Experiments using functional magnetic resonance imaging (fMRI) play a fundamental role in affective neuroscience. When placed in an MR scanner, some volunteers feel safe and relaxed in this situation, while others experience uneasiness and fear. Little is known about the basis and consequences of such inter-individually different responses to the general experimental fMRI setting. In this study emotional stimuli were presented during fMRI and subjects' state-anxiety was assessed at the onset and end of the experiment while they were within the scanner. We show that Val/Val but neither Met/Met nor Val/Met carriers of the catechol-O-methyltransferase (COMT) Val(158)Met polymorphism-a prime candidate for anxiety vulnerability-became significantly more anxious during the fMRI experiment (N=97 females: 24 Val/Val, 51 Val/Met, and 22 Met/Met). Met carriers demonstrated brain responses with increased stability over time in the right parietal cortex and significantly better cognitive performances likely mediated by lower levels of anxiety. Val/Val, Val/Met and Met/Met did not significantly differ in state-anxiety at the beginning of the experiment. The exposure of a control group (N=56 females) to the same experiment outside the scanner did not cause a significant increase in state-anxiety, suggesting that the increase we observe in the fMRI experiment may be specific to the fMRI setting. Our findings reveal that genetics may play an important role in shaping inter-individual different emotional, cognitive and neuronal responses during fMRI experiments. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Modeling fMRI signals can provide insights into neural processing in the cerebral cortex
Sharifian, Fariba; Heikkinen, Hanna; Vigário, Ricardo
2015-01-01
Every stimulus or task activates multiple areas in the mammalian cortex. These distributed activations can be measured with functional magnetic resonance imaging (fMRI), which has the best spatial resolution among the noninvasive brain imaging methods. Unfortunately, the relationship between the fMRI activations and distributed cortical processing has remained unclear, both because the coupling between neural and fMRI activations has remained poorly understood and because fMRI voxels are too large to directly sense the local neural events. To get an idea of the local processing given the macroscopic data, we need models to simulate the neural activity and to provide output that can be compared with fMRI data. Such models can describe neural mechanisms as mathematical functions between input and output in a specific system, with little correspondence to physiological mechanisms. Alternatively, models can be biomimetic, including biological details with straightforward correspondence to experimental data. After careful balancing between complexity, computational efficiency, and realism, a biomimetic simulation should be able to provide insight into how biological structures or functions contribute to actual data processing as well as to promote theory-driven neuroscience experiments. This review analyzes the requirements for validating system-level computational models with fMRI. In particular, we study mesoscopic biomimetic models, which include a limited set of details from real-life networks and enable system-level simulations of neural mass action. In addition, we discuss how recent developments in neurophysiology and biophysics may significantly advance the modelling of fMRI signals. PMID:25972586
Modeling fMRI signals can provide insights into neural processing in the cerebral cortex.
Vanni, Simo; Sharifian, Fariba; Heikkinen, Hanna; Vigário, Ricardo
2015-08-01
Every stimulus or task activates multiple areas in the mammalian cortex. These distributed activations can be measured with functional magnetic resonance imaging (fMRI), which has the best spatial resolution among the noninvasive brain imaging methods. Unfortunately, the relationship between the fMRI activations and distributed cortical processing has remained unclear, both because the coupling between neural and fMRI activations has remained poorly understood and because fMRI voxels are too large to directly sense the local neural events. To get an idea of the local processing given the macroscopic data, we need models to simulate the neural activity and to provide output that can be compared with fMRI data. Such models can describe neural mechanisms as mathematical functions between input and output in a specific system, with little correspondence to physiological mechanisms. Alternatively, models can be biomimetic, including biological details with straightforward correspondence to experimental data. After careful balancing between complexity, computational efficiency, and realism, a biomimetic simulation should be able to provide insight into how biological structures or functions contribute to actual data processing as well as to promote theory-driven neuroscience experiments. This review analyzes the requirements for validating system-level computational models with fMRI. In particular, we study mesoscopic biomimetic models, which include a limited set of details from real-life networks and enable system-level simulations of neural mass action. In addition, we discuss how recent developments in neurophysiology and biophysics may significantly advance the modelling of fMRI signals. Copyright © 2015 the American Physiological Society.
Esposito, Fabrizio; Formisano, Elia; Seifritz, Erich; Goebel, Rainer; Morrone, Renato; Tedeschi, Gioacchino; Di Salle, Francesco
2002-07-01
Independent component analysis (ICA) has been successfully employed to decompose functional MRI (fMRI) time-series into sets of activation maps and associated time-courses. Several ICA algorithms have been proposed in the neural network literature. Applied to fMRI, these algorithms might lead to different spatial or temporal readouts of brain activation. We compared the two ICA algorithms that have been used so far for spatial ICA (sICA) of fMRI time-series: the Infomax (Bell and Sejnowski [1995]: Neural Comput 7:1004-1034) and the Fixed-Point (Hyvärinen [1999]: Adv Neural Inf Proc Syst 10:273-279) algorithms. We evaluated the Infomax- and Fixed Point-based sICA decompositions of simulated motor, and real motor and visual activation fMRI time-series using an ensemble of measures. Log-likelihood (McKeown et al. [1998]: Hum Brain Mapp 6:160-188) was used as a measure of how significantly the estimated independent sources fit the statistical structure of the data; receiver operating characteristics (ROC) and linear correlation analyses were used to evaluate the algorithms' accuracy of estimating the spatial layout and the temporal dynamics of simulated and real activations; cluster sizing calculations and an estimation of a residual gaussian noise term within the components were used to examine the anatomic structure of ICA components and for the assessment of noise reduction capabilities. Whereas both algorithms produced highly accurate results, the Fixed-Point outperformed the Infomax in terms of spatial and temporal accuracy as long as inferential statistics were employed as benchmarks. Conversely, the Infomax sICA was superior in terms of global estimation of the ICA model and noise reduction capabilities. Because of its adaptive nature, the Infomax approach appears to be better suited to investigate activation phenomena that are not predictable or adequately modelled by inferential techniques. Copyright 2002 Wiley-Liss, Inc.
High spatial resolution compressed sensing (HSPARSE) functional MRI.
Fang, Zhongnan; Van Le, Nguyen; Choy, ManKin; Lee, Jin Hyung
2016-08-01
To propose a novel compressed sensing (CS) high spatial resolution functional MRI (fMRI) method and demonstrate the advantages and limitations of using CS for high spatial resolution fMRI. A randomly undersampled variable density spiral trajectory enabling an acceleration factor of 5.3 was designed with a balanced steady state free precession sequence to achieve high spatial resolution data acquisition. A modified k-t SPARSE method was then implemented and applied with a strategy to optimize regularization parameters for consistent, high quality CS reconstruction. The proposed method improves spatial resolution by six-fold with 12 to 47% contrast-to-noise ratio (CNR), 33 to 117% F-value improvement and maintains the same temporal resolution. It also achieves high sensitivity of 69 to 99% compared the original ground-truth, small false positive rate of less than 0.05 and low hemodynamic response function distortion across a wide range of CNRs. The proposed method is robust to physiological noise and enables detection of layer-specific activities in vivo, which cannot be resolved using the highest spatial resolution Nyquist acquisition. The proposed method enables high spatial resolution fMRI that can resolve layer-specific brain activity and demonstrates the significant improvement that CS can bring to high spatial resolution fMRI. Magn Reson Med 76:440-455, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
Hjelmervik, Helene; Hausmann, Markus; Osnes, Berge; Westerhausen, René; Specht, Karsten
2014-01-01
To what degree resting state fMRI is stable or susceptible to internal mind states of the individual is currently an issue of debate. To address this issue, the present study focuses on sex differences and investigates whether resting state fMRI is stable in men and women or changes within relative short-term periods (i.e., across the menstrual cycle). Due to the fact that we recently reported menstrual cycle effects on cognitive control based on data collected during the same sessions, the current study is particularly interested in fronto-parietal resting state networks. Resting state fMRI was measured in sixteen women during three different cycle phases (menstrual, follicular, and luteal). Fifteen men underwent three sessions in corresponding time intervals. We used independent component analysis to identify four fronto-parietal networks. The results showed sex differences in two of these networks with women exhibiting higher functional connectivity in general, including the prefrontal cortex. Menstrual cycle effects on resting states were non-existent. It is concluded that sex differences in resting state fMRI might reflect sexual dimorphisms in the brain rather than transitory activating effects of sex hormones on the functional connectivity in the resting brain.
Hjelmervik, Helene; Hausmann, Markus; Osnes, Berge; Westerhausen, René; Specht, Karsten
2014-01-01
To what degree resting state fMRI is stable or susceptible to internal mind states of the individual is currently an issue of debate. To address this issue, the present study focuses on sex differences and investigates whether resting state fMRI is stable in men and women or changes within relative short-term periods (i.e., across the menstrual cycle). Due to the fact that we recently reported menstrual cycle effects on cognitive control based on data collected during the same sessions, the current study is particularly interested in fronto-parietal resting state networks. Resting state fMRI was measured in sixteen women during three different cycle phases (menstrual, follicular, and luteal). Fifteen men underwent three sessions in corresponding time intervals. We used independent component analysis to identify four fronto-parietal networks. The results showed sex differences in two of these networks with women exhibiting higher functional connectivity in general, including the prefrontal cortex. Menstrual cycle effects on resting states were non-existent. It is concluded that sex differences in resting state fMRI might reflect sexual dimorphisms in the brain rather than transitory activating effects of sex hormones on the functional connectivity in the resting brain. PMID:25057823
Du, Juan; Yang, Fang; Zhang, Zhiqiang; Hu, Jingze; Xu, Qiang; Hu, Jianping; Zeng, Fanyong; Lu, Guangming; Liu, Xinfeng
2018-05-15
An accurate prediction of long term outcome after stroke is urgently required to provide early individualized neurorehabilitation. This study aimed to examine the added value of early neuroimaging measures and identify the best approaches for predicting motor outcome after stroke. This prospective study involved 34 first-ever ischemic stroke patients (time since stroke: 1-14 days) with upper limb impairment. All patients underwent baseline multimodal assessments that included clinical (age, motor impairment), neurophysiological (motor-evoked potentials, MEP) and neuroimaging (diffusion tensor imaging and motor task-based fMRI) measures, and also underwent reassessment 3 months after stroke. Bivariate analysis and multivariate linear regression models were used to predict the motor scores (Fugl-Meyer assessment, FMA) at 3 months post-stroke. With bivariate analysis, better motor outcome significantly correlated with (1) less initial motor impairment and disability, (2) less corticospinal tract injury, (3) the initial presence of MEPs, (4) stronger baseline motor fMRI activations. In multivariate analysis, incorporating neuroimaging data improved the predictive accuracy relative to only clinical and neurophysiological assessments. Baseline fMRI activation in SMA was an independent predictor of motor outcome after stroke. A multimodal model incorporating fMRI and clinical measures best predicted the motor outcome following stroke. fMRI measures obtained early after stroke provided independent prediction of long-term motor outcome.
Functional Neuroimaging of Spike-Wave Seizures
Motelow, Joshua E.; Blumenfeld, Hal
2013-01-01
Generalized spike-wave seizures are typically brief events associated with dynamic changes in brain physiology, metabolism, and behavior. Functional magnetic resonance imaging (fMRI) provides a relatively high spatio-temporal resolution method for imaging cortical-subcortical network activity during spike-wave seizures. Patients with spike-wave seizures often have episodes of staring and unresponsiveness which interfere with normal behavior. Results from human fMRI studies suggest that spike-wave seizures disrupt specific networks in the thalamus and fronto-parietal association cortex which are critical for normal attentive consciousness. However, the neuronal activity underlying imaging changes seen during fMRI is not well understood, particularly in abnormal conditions such as seizures. Animal models have begun to provide important fundamental insights into the neuronal basis for fMRI changes during spike-wave activity. Work from these models including both fMRI and direct neuronal recordings suggest that, like in humans, specific cortical-subcortical networks are involved in spike-wave, while other regions are spared. Regions showing fMRI increases demonstrate correlated increases in neuronal activity in animal models. The mechanisms of fMRI decreases in spike-wave will require further investigation. A better understanding of the specific brain regions involved in generating spike-wave seizures may help guide efforts to develop targeted therapies aimed at preventing or reversing abnormal excitability in these brain regions, ultimately leading to a cure for this disorder. PMID:18839093
Integrated Eye Tracking and Neural Monitoring for Enhanced Assessment of Mild TBI
2016-04-01
and we anticipate the initiation of the neuroimaging portion of the study early in Year 3. The fMRI task has been completed and is in beta testing...neurocognitive test battery, and self-report measures of cognitive efficacy. We will also include functional magnetic resonance imagining ( fMRI ) and... fMRI and DTI will provide an objective basis for cross-validating the EEG and eye tracking system. Both the EEG and eye tracking data will be
A longitudinal model for functional connectivity networks using resting-state fMRI.
Hart, Brian; Cribben, Ivor; Fiecas, Mark
2018-06-04
Many neuroimaging studies collect functional magnetic resonance imaging (fMRI) data in a longitudinal manner. However, the current fMRI literature lacks a general framework for analyzing functional connectivity (FC) networks in fMRI data obtained from a longitudinal study. In this work, we build a novel longitudinal FC model using a variance components approach. First, for all subjects' visits, we account for the autocorrelation inherent in the fMRI time series data using a non-parametric technique. Second, we use a generalized least squares approach to estimate 1) the within-subject variance component shared across the population, 2) the baseline FC strength, and 3) the FC's longitudinal trend. Our novel method for longitudinal FC networks seeks to account for the within-subject dependence across multiple visits, the variability due to the subjects being sampled from a population, and the autocorrelation present in fMRI time series data, while restricting the number of parameters in order to make the method computationally feasible and stable. We develop a permutation testing procedure to draw valid inference on group differences in the baseline FC network and change in FC over longitudinal time between a set of patients and a comparable set of controls. To examine performance, we run a series of simulations and apply the model to longitudinal fMRI data collected from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Overall, we found no difference in the global FC network between Alzheimer's disease patients and healthy controls, but did find differing local aging patterns in the FC between the left hippocampus and the posterior cingulate cortex. Copyright © 2018 Elsevier Inc. All rights reserved.
Glasser, Matthew F; Coalson, Timothy S; Bijsterbosch, Janine D; Harrison, Samuel J; Harms, Michael P; Anticevic, Alan; Van Essen, David C; Smith, Stephen M
2018-06-02
Temporal fluctuations in functional Magnetic Resonance Imaging (fMRI) have been profitably used to study brain activity and connectivity for over two decades. Unfortunately, fMRI data also contain structured temporal "noise" from a variety of sources, including subject motion, subject physiology, and the MRI equipment. Recently, methods have been developed to automatically and selectively remove spatially specific structured noise from fMRI data using spatial Independent Components Analysis (ICA) and machine learning classifiers. Spatial ICA is particularly effective at removing spatially specific structured noise from high temporal and spatial resolution fMRI data of the type acquired by the Human Connectome Project and similar studies. However, spatial ICA is mathematically, by design, unable to separate spatially widespread "global" structured noise from fMRI data (e.g., blood flow modulations from subject respiration). No methods currently exist to selectively and completely remove global structured noise while retaining the global signal from neural activity. This has left the field in a quandary-to do or not to do global signal regression-given that both choices have substantial downsides. Here we show that temporal ICA can selectively segregate and remove global structured noise while retaining global neural signal in both task-based and resting state fMRI data. We compare the results before and after temporal ICA cleanup to those from global signal regression and show that temporal ICA cleanup removes the global positive biases caused by global physiological noise without inducing the network-specific negative biases of global signal regression. We believe that temporal ICA cleanup provides a "best of both worlds" solution to the global signal and global noise dilemma and that temporal ICA itself unlocks interesting neurobiological insights from fMRI data. Copyright © 2018 Elsevier Inc. All rights reserved.
Hou, YanBing; Luo, ChunYan; Yang, Jing; Ou, RuWei; Song, Wei; Wei, QianQian; Cao, Bei; Zhao, Bi; Wu, Ying; Shang, Hui-Fang; Gong, QiYong
2016-07-15
Neuroimaging holds the promise that it may one day aid the clinical assessment. However, the vast majority of studies using resting-state functional magnetic resonance imaging (fMRI) have reported average differences between Parkinson's disease (PD) patients and healthy controls, which do not permit inferences at the level of individuals. This study was to develop a model for the prediction of PD illness severity ratings from individual fMRI brain scan. The resting-state fMRI scans were obtained from 84 patients with PD and the Unified Parkinson's Disease Rating Scale-III (UPDRS-III) scores were obtained before scanning. The RVR method was used to predict clinical scores (UPDRS-III) from fMRI scans. The application of RVR to whole-brain resting-state fMRI data allowed prediction of UPDRS-III scores with statistically significant accuracy (correlation=0.35, P-value=0.001; mean sum of squares=222.17, P-value=0.002). This prediction was informed strongly by negative weight areas including prefrontal lobe and medial occipital lobe, and positive weight areas including medial parietal lobe. It was suggested that fMRI scans contained sufficient information about neurobiological change in patients with PD to permit accurate prediction about illness severity, on an individual subject basis. Our results provided preliminary evidence, as proof-of-concept, to support that fMRI might be possible to be a clinically useful quantitative assessment aid in PD at individual level. This may enable clinicians to target those uncooperative patients and machines to replace human for a more efficient use of health care resources. Copyright © 2016 Elsevier B.V. All rights reserved.
Presurgical functional magnetic resonance imaging in patients with brain tumors.
Ravn, Søren; Holmberg, Mats; Sørensen, Preben; Frokjaer, Jens B; Carl, Jesper
2016-01-01
Clinical functional magnetic resonance imaging (fMRI) is still an upcoming diagnostic tool because it is time-consuming to perform the post-scan calculations and interpretations. A standardized and easily used method for the clinical assessment of fMRI scans could decrease the workload and make fMRI more attractive for clinical use. To evaluate a standardized clinical approach for distance measurement between benign brain tumors and eloquent cortex in terms of the ability to predict pre- and postoperative neurological deficits after intraoperative neuronavigation-assisted surgery. A retrospective study of 34 patients. The fMRI data were reanalyzed using a standardized distance measurement procedure combining data from both fMRI and three-dimensional T1 MRI scans. The pre- and postoperative neurological status of each patient was obtained from hospital records. Data analysis was performed using logistic regression analysis to determine whether the distance measured between the tumor margin and fMRI activity could serve as a predictor for neurological deficits. An odds ratio of 0.89 mm(-1) (P = 0.03) was found between the risk of preoperative neurological motor deficits and the tumor-fMRI distance. An odds ratio of 0.82 mm(-1) (P = 0.04) was found between the risk of additional postoperative neurological motor deficits and the tumor-fMRI distance. The tumor was radically removed in 10 cases; five patients experienced additional postoperative motor deficits (tumor-fMRI distance <18 mm) and five did not (tumor-fMRI distance >18 mm) (P = 0.008). This study indicates that the distance measured between the tumor margin and fMRI activation could serve as a valuable predictor of neurological motor deficits. © The Foundation Acta Radiologica 2014.
Performance of Blind Source Separation Algorithms for FMRI Analysis using a Group ICA Method
Correa, Nicolle; Adali, Tülay; Calhoun, Vince D.
2007-01-01
Independent component analysis (ICA) is a popular blind source separation (BSS) technique that has proven to be promising for the analysis of functional magnetic resonance imaging (fMRI) data. A number of ICA approaches have been used for fMRI data analysis, and even more ICA algorithms exist, however the impact of using different algorithms on the results is largely unexplored. In this paper, we study the performance of four major classes of algorithms for spatial ICA, namely information maximization, maximization of non-gaussianity, joint diagonalization of cross-cumulant matrices, and second-order correlation based methods when they are applied to fMRI data from subjects performing a visuo-motor task. We use a group ICA method to study the variability among different ICA algorithms and propose several analysis techniques to evaluate their performance. We compare how different ICA algorithms estimate activations in expected neuronal areas. The results demonstrate that the ICA algorithms using higher-order statistical information prove to be quite consistent for fMRI data analysis. Infomax, FastICA, and JADE all yield reliable results; each having their strengths in specific areas. EVD, an algorithm using second-order statistics, does not perform reliably for fMRI data. Additionally, for the iterative ICA algorithms, it is important to investigate the variability of the estimates from different runs. We test the consistency of the iterative algorithms, Infomax and FastICA, by running the algorithm a number of times with different initializations and note that they yield consistent results over these multiple runs. Our results greatly improve our confidence in the consistency of ICA for fMRI data analysis. PMID:17540281
Performance of blind source separation algorithms for fMRI analysis using a group ICA method.
Correa, Nicolle; Adali, Tülay; Calhoun, Vince D
2007-06-01
Independent component analysis (ICA) is a popular blind source separation technique that has proven to be promising for the analysis of functional magnetic resonance imaging (fMRI) data. A number of ICA approaches have been used for fMRI data analysis, and even more ICA algorithms exist; however, the impact of using different algorithms on the results is largely unexplored. In this paper, we study the performance of four major classes of algorithms for spatial ICA, namely, information maximization, maximization of non-Gaussianity, joint diagonalization of cross-cumulant matrices and second-order correlation-based methods, when they are applied to fMRI data from subjects performing a visuo-motor task. We use a group ICA method to study variability among different ICA algorithms, and we propose several analysis techniques to evaluate their performance. We compare how different ICA algorithms estimate activations in expected neuronal areas. The results demonstrate that the ICA algorithms using higher-order statistical information prove to be quite consistent for fMRI data analysis. Infomax, FastICA and joint approximate diagonalization of eigenmatrices (JADE) all yield reliable results, with each having its strengths in specific areas. Eigenvalue decomposition (EVD), an algorithm using second-order statistics, does not perform reliably for fMRI data. Additionally, for iterative ICA algorithms, it is important to investigate the variability of estimates from different runs. We test the consistency of the iterative algorithms Infomax and FastICA by running the algorithm a number of times with different initializations, and we note that they yield consistent results over these multiple runs. Our results greatly improve our confidence in the consistency of ICA for fMRI data analysis.
Magnetic susceptibility induced echo time shifts: Is there a bias in age-related fMRI studies?
Ngo, Giang-Chau; Wong, Chelsea N.; Guo, Steve; Paine, Thomas; Kramer, Arthur F.; Sutton, Bradley P.
2016-01-01
Purpose To evaluate the potential for bias in functional MRI (fMRI) aging studies resulting from age-related differences in magnetic field distributions which can impact echo time and functional contrast. Materials and Methods Magnetic field maps were taken on 31 younger adults (age: 22 ± 2.9 years) and 46 older adults (age: 66 ± 4.5 years) on a 3 T scanner. Using the spatial gradients of the magnetic field map for each participant, an echo planar imaging (EPI) trajectory was simulated. The effective echo time, time at which the k-space trajectory is the closest to the center of k-space, was calculated. This was used to examine both within-subject and across-age-group differences in the effective echo time maps. The Blood Oxygenation Level Dependent (BOLD) percent signal change resulting from those echo time shifts was also calculated to determine their impact on fMRI aging studies. Result For a single subject, the effective echo time varied as much as ± 5 ms across the brain. An unpaired t-test between the effective echo time across age group resulted in significant differences in several regions of the brain (p<0.01). The difference in echo time was only approximately 1 ms, however which is not expected to have an important impact on BOLD fMRI percent signal change (< 4%). Conclusion Susceptibility-induced magnetic field gradients induce local echo time shifts in gradient echo fMRI images, which can cause variable BOLD sensitivity across the brain. However, the age-related differences in BOLD signal are expected to be small for an fMRI study at 3 T. PMID:27299727
Neural correlates of human body perception.
Aleong, Rosanne; Paus, Tomás
2010-03-01
The objective of this study was to investigate potential sex differences in the neural response to human bodies using fMRI carried out in healthy young adults. We presented human bodies in a block-design experiment to identify body-responsive regions of the brain, namely, extrastriate body area (EBA) and fusiform body area (FBA). In a separate event-related "adaptation" experiment, carried out in the same group of subjects, we presented sets of four human bodies of varying body size and shape. Varying levels of body morphing were introduced to assess the degree of morphing required for adaptation release. Analysis of BOLD signal in the block-design experiment revealed significant Sex x Hemisphere interactions in the EBA and the FBA responses to human bodies. Only women showed greater BOLD response to bodies in the right hemisphere compared with the left hemisphere for both EBA and FBA. The BOLD response in right EBA was higher in women compared with men. In the adaptation experiment, greater right versus left hemisphere response for EBA and FBA was also identified among women but not men. These findings are particularly novel in that they address potential sex differences in the lateralization of EBA and FBA responses to human body images. Although previous studies have found some degree of right hemisphere dominance in body perception, our results suggest that such a functional lateralization may differ between men and women.
Wittmann, A; Schlagenhauf, F; John, T; Guhn, A; Rehbein, H; Siegmund, A; Stoy, M; Held, D; Schulz, I; Fehm, L; Fydrich, T; Heinz, A; Bruhn, H; Ströhle, A
2011-04-01
Agoraphobia (with and without panic disorder) is a highly prevalent and disabling anxiety disorder. Its neural complexity can be characterized by specific cues in fMRI studies. Therefore, we developed a fMRI paradigm with agoraphobia-specific stimuli. Pictures of potential agoraphobic situations were generated. Twenty-six patients, suffering from panic disorder and agoraphobia, and 22 healthy controls rated the pictures with respect to arousal, valence, and agoraphobia-related anxiety. The 96 pictures, which discriminated best between groups were chosen, split into two parallel sets and supplemented with matched neutral pictures from the International Affective Picture System. Reliability, criterion, and construct validity of the picture set were determined in a second sample (44 patients, 28 controls). The resulting event-related "Westphal-Paradigm" with cued and uncued pictures was tested in a fMRI pilot study with 16 patients. Internal consistency of the sets was very high; parallelism was given. Positive correlations of picture ratings with Mobility Inventory and Hamilton anxiety scores support construct validity. FMRI data revealed activations in areas associated with the fear circuit including amygdala, insula, and hippocampal areas. Psychometric properties of the Westphal-Paradigm meet necessary quality requirements for further scientific use. The paradigm reliably produces behavioral and fMRI patterns in response to agoraphobia-specific stimuli. To our knowledge, it is the first fMRI paradigm with these properties. This paradigm can be used to further characterize the functional neuroanatomy of panic disorder and agoraphobia and might be useful to contribute data to the differentiation of panic disorder and agoraphobia as related, but conceptually different clinical disorders.
ERIC Educational Resources Information Center
Gureckis, Todd M.; James, Thomas W.; Nosofsky, Robert M.
2011-01-01
Recent fMRI studies have found that distinct neural systems may mediate perceptual category learning under implicit and explicit learning conditions. In these previous studies, however, different stimulus-encoding processes may have been associated with implicit versus explicit learning. The present design was aimed at decoupling the influence of…
Are Errors Differentiable from Deceptive Responses when Feigning Memory Impairment? An fMRI Study
ERIC Educational Resources Information Center
Lee, Tatia M. C.; Au, Ricky K. C.; Liu, Ho-Ling; Ting, K. H.; Huang, Chih-Mao; Chan, Chetwyn C. H.
2009-01-01
Previous neuroimaging studies have suggested that the neural activity associated with truthful recall, with false memory, and with feigned memory impairment are different from one another. Here, we report a functional magnetic resonance imaging (fMRI) study that addressed an important but yet unanswered question: Is the neural activity associated…
An fMRI Study of Sentence-Embedded Lexical-Semantic Decision in Children and Adults
ERIC Educational Resources Information Center
Moore-Parks, Erin Nicole; Burns, Erin L.; Bazzill, Rebecca; Levy, Sarah; Posada, Valerie; Muller, Ralph-Axel
2010-01-01
Lexical-semantic knowledge is a core language component that undergoes prolonged development throughout childhood and is therefore highly amenable to developmental studies. Most previous lexical-semantic functional MRI (fMRI) studies have been limited to single-word or word-pair tasks, outside a sentence context. Our objective was to investigate…
When encoding yields remembering: insights from event-related neuroimaging.
Wagner, A D; Koutstaal, W; Schacter, D L
1999-01-01
To understand human memory, it is important to determine why some experiences are remembered whereas others are forgotten. Until recently, insights into the neural bases of human memory encoding, the processes by which information is transformed into an enduring memory trace, have primarily been derived from neuropsychological studies of humans with select brain lesions. The advent of functional neuroimaging methods, such as positron emission tomography (PET) and functional magnetic resonance imaging (fMRI), has provided a new opportunity to gain additional understanding of how the brain supports memory formation. Importantly, the recent development of event-related fMRI methods now allows for examination of trial-by-trial differences in neural activity during encoding and of the consequences of these differences for later remembering. In this review, we consider the contributions of PET and fMRI studies to the understanding of memory encoding, placing a particular emphasis on recent event-related fMRI studies of the Dm effect: that is, differences in neural activity during encoding that are related to differences in subsequent memory. We then turn our attention to the rich literature on the Dm effect that has emerged from studies using event-related potentials (ERPs). It is hoped that the integration of findings from ERP studies, which offer higher temporal resolution, with those from event-related fMRI studies, which offer higher spatial resolution, will shed new light on when and why encoding yields subsequent remembering. PMID:10466153
Cerebral correlates of heart rate variations during a spontaneous panic attack in the fMRI scanner.
Spiegelhalder, Kai; Hornyak, Magdolna; Kyle, Simon David; Paul, Dominik; Blechert, Jens; Seifritz, Erich; Hennig, Jürgen; Tebartz van Elst, Ludger; Riemann, Dieter; Feige, Bernd
2009-12-01
We report the first published case study of a suddenly occurring panic attack in a patient with no prior history of panic disorder during combined functional magnetic resonance imaging (fMRI, 1.5 Tesla) and electrocardiogram (ECG) recording. The single case was a 46-year-old woman who developed a panic attack near the planned end of the fMRI acquisition session, which therefore had to be aborted. Correlational analysis of heart rate fluctuations and fMRI data revealed a significant negative association in the left middle temporal gyrus. Additionally, regions-of-interest (ROI) analyses indicated significant positive associations in the left amygdala, and trends towards significance in the right amygdala and left insula.
ERIC Educational Resources Information Center
Spaniol, Julia; Davidson, Patrick S. R.; Kim, Alice S. N.; Han, Hua; Moscovitch, Morris; Grady, Cheryl L.
2009-01-01
The recent surge in event-related fMRI studies of episodic memory has generated a wealth of information about the neural correlates of encoding and retrieval processes. However, interpretation of individual studies is hampered by methodological differences, and by the fact that sample sizes are typically small. We submitted results from studies of…
Brain entropy and human intelligence: A resting-state fMRI study
Calderone, Daniel; Morales, Leah J.
2018-01-01
Human intelligence comprises comprehension of and reasoning about an infinitely variable external environment. A brain capable of large variability in neural configurations, or states, will more easily understand and predict variable external events. Entropy measures the variety of configurations possible within a system, and recently the concept of brain entropy has been defined as the number of neural states a given brain can access. This study investigates the relationship between human intelligence and brain entropy, to determine whether neural variability as reflected in neuroimaging signals carries information about intellectual ability. We hypothesize that intelligence will be positively associated with entropy in a sample of 892 healthy adults, using resting-state fMRI. Intelligence is measured with the Shipley Vocabulary and WASI Matrix Reasoning tests. Brain entropy was positively associated with intelligence. This relation was most strongly observed in the prefrontal cortex, inferior temporal lobes, and cerebellum. This relationship between high brain entropy and high intelligence indicates an essential role for entropy in brain functioning. It demonstrates that access to variable neural states predicts complex behavioral performance, and specifically shows that entropy derived from neuroimaging signals at rest carries information about intellectual capacity. Future work in this area may elucidate the links between brain entropy in both resting and active states and various forms of intelligence. This insight has the potential to provide predictive information about adaptive behavior and to delineate the subdivisions and nature of intelligence based on entropic patterns. PMID:29432427
Brain entropy and human intelligence: A resting-state fMRI study.
Saxe, Glenn N; Calderone, Daniel; Morales, Leah J
2018-01-01
Human intelligence comprises comprehension of and reasoning about an infinitely variable external environment. A brain capable of large variability in neural configurations, or states, will more easily understand and predict variable external events. Entropy measures the variety of configurations possible within a system, and recently the concept of brain entropy has been defined as the number of neural states a given brain can access. This study investigates the relationship between human intelligence and brain entropy, to determine whether neural variability as reflected in neuroimaging signals carries information about intellectual ability. We hypothesize that intelligence will be positively associated with entropy in a sample of 892 healthy adults, using resting-state fMRI. Intelligence is measured with the Shipley Vocabulary and WASI Matrix Reasoning tests. Brain entropy was positively associated with intelligence. This relation was most strongly observed in the prefrontal cortex, inferior temporal lobes, and cerebellum. This relationship between high brain entropy and high intelligence indicates an essential role for entropy in brain functioning. It demonstrates that access to variable neural states predicts complex behavioral performance, and specifically shows that entropy derived from neuroimaging signals at rest carries information about intellectual capacity. Future work in this area may elucidate the links between brain entropy in both resting and active states and various forms of intelligence. This insight has the potential to provide predictive information about adaptive behavior and to delineate the subdivisions and nature of intelligence based on entropic patterns.
Social context and perceived agency affects empathy for pain: an event-related fMRI investigation.
Akitsuki, Yuko; Decety, Jean
2009-08-15
Studying of the impact of social context on the perception of pain in others is important for understanding the role of intentionality in interpersonal sensitivity, empathy, and implicit moral reasoning. Here we used an event-related fMRI with pain and social context (i.e., the number of individuals in the stimuli) as the two factors to investigate how different social contexts and resulting perceived agency modulate the neural response to the perception of pain in others. Twenty-six healthy participants were scanned while presented with short dynamic visual stimuli depicting painful situations accidentally caused by or intentionally caused by another individual. The main effect of perception of pain was associated with signal increase in the aMCC, insula, somatosensory cortex, SMA and PAG. Importantly, perceiving the presence of another individual led to specific hemodynamic increase in regions involved in representing social interaction and emotion regulation including the temporoparietal junction, medial prefrontal cortex, inferior frontal gyrus, and orbitofrontal cortex. Furthermore, the functional connectivity pattern between the left amygdala and other brain areas was modulated by the perceived agency. Our study demonstrates that the social context in which pain occurs modulate the brain response to other's pain. This modulation may reflect successful adaptation to potential danger present in a social interaction. Our results contribute to a better understanding of the neural mechanisms underpinning implicit moral reasoning that concern actions that can harm other people.
Living With Anxiety Disorders, Worried Sick | NIH MedlinePlus the Magazine
... behaviors. Using an imaging technique called functional MRI (fMRI), scientists are scanning the brain in action as ... Bishop of the University of California, Berkeley, uses fMRI to study people at high risk for anxiety ...
Liu, Ho-Ling; Wu, Chien-Te; Chen, Jian-Chuan; Hsu, Yuan-Yu; Wai, Yau-Yau; Wan, Yung-Liang
2003-01-01
Recently, functional MRI (fMRI) using word generation (WG) tasks has been shown to be effective for mapping the Chinese language-related brain areas. In clinical applications, however, patients' performance cannot be easily monitored during WG tasks. In this study, we evaluated the feasibility of a word choice (WC) paradigm in the clinical setting and compared the results with those from WG tasks. Intrasubject comparisons of fMRI with both WG and WC paradigms were performed on six normal human subjects and two tumor patients. Subject responses in the WC paradigm, based on semantic judgments, were recorded. Activation strength, extent, and laterality were evaluated and compared. Our results showed that fMRI with the WC paradigm evoked weaker neuronal activation than that with the WG paradigm in Chinese language-related brain areas. It was sufficient to reveal language laterality for clinical use, however. In addition, it resulted in less nonlanguage-specific brain activation. Results from the patient data demonstrated strong evidence for the necessity of incorporating response monitoring during fMRI studies, which suggested that fMRI with the WC paradigm is more appropriate to be implemented for the prediction of Chinese language dominance in clinical environments.
Causal mapping of emotion networks in the human brain: Framework and initial findings.
Dubois, Julien; Oya, Hiroyuki; Tyszka, J Michael; Howard, Matthew; Eberhardt, Frederick; Adolphs, Ralph
2017-11-13
Emotions involve many cortical and subcortical regions, prominently including the amygdala. It remains unknown how these multiple network components interact, and it remains unknown how they cause the behavioral, autonomic, and experiential effects of emotions. Here we describe a framework for combining a novel technique, concurrent electrical stimulation with fMRI (es-fMRI), together with a novel analysis, inferring causal structure from fMRI data (causal discovery). We outline a research program for investigating human emotion with these new tools, and provide initial findings from two large resting-state datasets as well as case studies in neurosurgical patients with electrical stimulation of the amygdala. The overarching goal is to use causal discovery methods on fMRI data to infer causal graphical models of how brain regions interact, and then to further constrain these models with direct stimulation of specific brain regions and concurrent fMRI. We conclude by discussing limitations and future extensions. The approach could yield anatomical hypotheses about brain connectivity, motivate rational strategies for treating mood disorders with deep brain stimulation, and could be extended to animal studies that use combined optogenetic fMRI. Copyright © 2017 Elsevier Ltd. All rights reserved.
Safety and EEG data quality of concurrent high-density EEG and high-speed fMRI at 3 Tesla
Foged, Mette Thrane; Lindberg, Ulrich; Vakamudi, Kishore; Larsson, Henrik B. W.; Pinborg, Lars H.; Kjær, Troels W.; Fabricius, Martin; Svarer, Claus; Ozenne, Brice; Thomsen, Carsten; Beniczky, Sándor; Posse, Stefan
2017-01-01
Purpose Concurrent EEG and fMRI is increasingly used to characterize the spatial-temporal dynamics of brain activity. However, most studies to date have been limited to conventional echo-planar imaging (EPI). There is considerable interest in integrating recently developed high-speed fMRI methods with high-density EEG to increase temporal resolution and sensitivity for task-based and resting state fMRI, and for detecting interictal spikes in epilepsy. In the present study using concurrent high-density EEG and recently developed high-speed fMRI methods, we investigate safety of radiofrequency (RF) related heating, the effect of EEG on cortical signal-to-noise ratio (SNR) in fMRI, and assess EEG data quality. Materials and methods The study compared EPI, multi-echo EPI, multi-band EPI and multi-slab echo-volumar imaging pulse sequences, using clinical 3 Tesla MR scanners from two different vendors that were equipped with 64- and 256-channel MR-compatible EEG systems, respectively, and receive only array head coils. Data were collected in 11 healthy controls (3 males, age range 18–70 years) and 13 patients with epilepsy (8 males, age range 21–67 years). Three of the healthy controls were scanned with the 256-channel EEG system, the other subjects were scanned with the 64-channel EEG system. Scalp surface temperature, SNR in occipital cortex and head movement were measured with and without the EEG cap. The degree of artifacts and the ability to identify background activity was assessed by visual analysis by a trained expert in the 64 channel EEG data (7 healthy controls, 13 patients). Results RF induced heating at the surface of the EEG electrodes during a 30-minute scan period with stable temperature prior to scanning did not exceed 1.0° C with either EEG system and any of the pulse sequences used in this study. There was no significant decrease in cortical SNR due to the presence of the EEG cap (p > 0.05). No significant differences in the visually analyzed EEG data quality were found between EEG recorded during high-speed fMRI and during conventional EPI (p = 0.78). Residual ballistocardiographic artifacts resulted in 58% of EEG data being rated as poor quality. Conclusion This study demonstrates that high-density EEG can be safely implemented in conjunction with high-speed fMRI and that high-speed fMRI does not adversely affect EEG data quality. However, the deterioration of the EEG quality due to residual ballistocardiographic artifacts remains a significant constraint for routine clinical applications of concurrent EEG-fMRI. PMID:28552957
fMRI for mapping language networks in neurosurgical cases
Gupta, Santosh S
2014-01-01
Evaluating language has been a long-standing application in functional magnetic resonance imaging (fMRI) studies, both in research and clinical circumstances, and still provides challenges. Localization of eloquent areas is important in neurosurgical cases, so that there is least possible damage to these areas during surgery, maintaining their function postoperatively, therefore providing good quality of life to the patient. Preoperative fMRI study is a non-invasive tool to localize the eloquent areas, including language, with other traditional methods generally used being invasive and at times perilous. In this article, we describe methods and various paradigms to study the language areas, in clinical neurosurgical cases, along with illustrations of cases from our institute. PMID:24851003
Functionally dissociable influences on learning rate in a dynamic environment
McGuire, Joseph T.; Nassar, Matthew R.; Gold, Joshua I.; Kable, Joseph W.
2015-01-01
Summary Maintaining accurate beliefs in a changing environment requires dynamically adapting the rate at which one learns from new experiences. Beliefs should be stable in the face of noisy data, but malleable in periods of change or uncertainty. Here we used computational modeling, psychophysics and fMRI to show that adaptive learning is not a unitary phenomenon in the brain. Rather, it can be decomposed into three computationally and neuroanatomically distinct factors that were evident in human subjects performing a spatial-prediction task: (1) surprise-driven belief updating, related to BOLD activity in visual cortex; (2) uncertainty-driven belief updating, related to anterior prefrontal and parietal activity; and (3) reward-driven belief updating, a context-inappropriate behavioral tendency related to activity in ventral striatum. These distinct factors converged in a core system governing adaptive learning. This system, which included dorsomedial frontal cortex, responded to all three factors and predicted belief updating both across trials and across individuals. PMID:25459409
The influence of FMRI lie detection evidence on juror decision-making.
McCabe, David P; Castel, Alan D; Rhodes, Matthew G
2011-01-01
In the current study, we report on an experiment examining whether functional magnetic resonance imaging (fMRI) lie detection evidence would influence potential jurors' assessment of guilt in a criminal trial. Potential jurors (N = 330) read a vignette summarizing a trial, with some versions of the vignette including lie detection evidence indicating that the defendant was lying about having committed the crime. Lie detector evidence was based on evidence from the polygraph, fMRI (functional brain imaging), or thermal facial imaging. Results showed that fMRI lie detection evidence led to more guilty verdicts than lie detection evidence based on polygraph evidence, thermal facial imaging, or a control condition that did not include lie detection evidence. However, when the validity of the fMRI lie detection evidence was called into question on cross-examination, guilty verdicts were reduced to the level of the control condition. These results provide important information about the influence of lie detection evidence in legal settings. Copyright © 2011 John Wiley & Sons, Ltd.
How challenges in auditory fMRI led to general advancements for the field.
Talavage, Thomas M; Hall, Deborah A
2012-08-15
In the early years of fMRI research, the auditory neuroscience community sought to expand its knowledge of the underlying physiology of hearing, while also seeking to come to grips with the inherent acoustic disadvantages of working in the fMRI environment. Early collaborative efforts between prominent auditory research laboratories and prominent fMRI centers led to development of a number of key technical advances that have subsequently been widely used to elucidate principles of auditory neurophysiology. Perhaps the key imaging advance was the simultaneous and parallel development of strategies to use pulse sequences in which the volume acquisitions were "clustered," providing gaps in which stimuli could be presented without direct masking. Such sequences have become widespread in fMRI studies using auditory stimuli and also in a range of translational research domains. This review presents the parallel stories of the people and the auditory neurophysiology research that led to these sequences. Copyright © 2011 Elsevier Inc. All rights reserved.
A hybrid method for classifying cognitive states from fMRI data.
Parida, S; Dehuri, S; Cho, S-B; Cacha, L A; Poznanski, R R
2015-09-01
Functional magnetic resonance imaging (fMRI) makes it possible to detect brain activities in order to elucidate cognitive-states. The complex nature of fMRI data requires under-standing of the analyses applied to produce possible avenues for developing models of cognitive state classification and improving brain activity prediction. While many models of classification task of fMRI data analysis have been developed, in this paper, we present a novel hybrid technique through combining the best attributes of genetic algorithms (GAs) and ensemble decision tree technique that consistently outperforms all other methods which are being used for cognitive-state classification. Specifically, this paper illustrates the combined effort of decision-trees ensemble and GAs for feature selection through an extensive simulation study and discusses the classification performance with respect to fMRI data. We have shown that our proposed method exhibits significant reduction of the number of features with clear edge classification accuracy over ensemble of decision-trees.
Minati, Ludovico; Visani, Elisa; Dowell, Nick G; Medford, Nick; Critchley, Hugo D
2011-01-01
Brain near-infrared spectroscopy (NIRS) is emerging as a potential alternative to functional MRI (fMRI). To date, no study has explicitly compared the two techniques in terms of measurement variability, a key parameter dictating attainable statistical power. Here, NIRS and fMRI were simultaneously recorded during event-related visual stimulation. Inter-subject coefficients of variation (CVs) for peak response amplitude were considerably larger for NIRS than fMRI, but inter-subject CVs for response latency and intra-subject CVs for response amplitude were overall comparable. Our results may represent an optimistic estimate of the CVs of NIRS measurements, as optode positioning was guided by structural MRI, which is normally unavailable. We conclude that fMRI may be preferable to NIRS for group comparisons, but NIRS is equally powerful when comparing conditions within participants. The discrepancy between inter- and intra-subject CVs is likely related to variability in head anatomy and tissue properties which may be better accounted for by emerging NIRS technology. PMID:21780948
Kühn, Simone; Fernyhough, Charles; Alderson-Day, Benjamin; Hurlburt, Russell T.
2014-01-01
To provide full accounts of human experience and behavior, research in cognitive neuroscience must be linked to inner experience, but introspective reports of inner experience have often been found to be unreliable. The present case study aimed at providing proof of principle that introspection using one method, descriptive experience sampling (DES), can be reliably integrated with fMRI. A participant was trained in the DES method, followed by nine sessions of sampling within an MRI scanner. During moments where the DES interview revealed ongoing inner speaking, fMRI data reliably showed activation in classic speech processing areas including left inferior frontal gyrus. Further, the fMRI data validated the participant’s DES observations of the experiential distinction between inner speaking and innerly hearing her own voice. These results highlight the precision and validity of the DES method as a technique of exploring inner experience and the utility of combining such methods with fMRI. PMID:25538649
2012-01-01
Background There is growing evidence for the idea of fMRI activation in white matter. In the current study, we compared hemodynamic response functions (HRF) in white matter and gray matter using 4 T fMRI. White matter fMRI activation was elicited in the isthmus of the corpus callosum at both the group and individual levels (using an established interhemispheric transfer task). Callosal HRFs were compared to HRFs from cingulate and parietal activation. Results Examination of the raw HRF revealed similar overall response characteristics. Finite impulse response modeling confirmed that the WM HRF characteristics were comparable to those of the GM HRF, but had significantly decreased peak response amplitudes. Conclusions Overall, the results matched a priori expectations of smaller HRF responses in white matter due to the relative drop in cerebral blood flow (CBF) and cerebral blood volume (CBV). Importantly, the findings demonstrate that despite lower CBF and CBV, white matter fMRI activation remained within detectable ranges at 4 T. PMID:22852798
N-back Working Memory Task: Meta-analysis of Normative fMRI Studies With Children.
Yaple, Zachary; Arsalidou, Marie
2018-05-07
The n-back task is likely the most popular measure of working memory for functional magnetic resonance imaging (fMRI) studies. Despite accumulating neuroimaging studies with the n-back task and children, its neural representation is still unclear. fMRI studies that used the n-back were compiled, and data from children up to 15 years (n = 260) were analyzed using activation likelihood estimation. Results show concordance in frontoparietal regions recognized for their role in working memory as well as regions not typically highlighted as part of the working memory network, such as the insula. Findings are discussed in terms of developmental methodology and potential contribution to developmental theories of cognition. © 2018 Society for Research in Child Development.
Attention and Semantic Processing during Speech: An fMRI Study
ERIC Educational Resources Information Center
Rama, Pia; Relander-Syrjanen, Kristiina; Carlson, Synnove; Salonen, Oili; Kujala, Teija
2012-01-01
This fMRI study was conducted to investigate whether language semantics is processed even when attention is not explicitly directed to word meanings. In the "unattended" condition, the subjects performed a visual detection task while hearing semantically related and unrelated word pairs. In the "phoneme" condition, the subjects made phoneme…
Lying about facial recognition: an fMRI study.
Bhatt, S; Mbwana, J; Adeyemo, A; Sawyer, A; Hailu, A; Vanmeter, J
2009-03-01
Novel deception detection techniques have been in creation for centuries. Functional magnetic resonance imaging (fMRI) is a neuroscience technology that non-invasively measures brain activity associated with behavior and cognition. A number of investigators have explored the utilization and efficiency of fMRI in deception detection. In this study, 18 subjects were instructed during an fMRI "line-up" task to either conceal (lie) or reveal (truth) the identities of individuals seen in study sets in order to determine the neural correlates of intentionally misidentifying previously known faces (lying about recognition). A repeated measures ANOVA (lie vs. truth and familiar vs. unfamiliar) and two paired t-tests (familiar vs. unfamiliar and familiar lie vs. familiar truth) revealed areas of activation associated with deception in the right MGF, red nucleus, IFG, SMG, SFG (with ACC), DLPFC, and bilateral precuneus. The areas activated in the present study may be involved in the suppression of truth, working and visuospatial memories, and imagery when providing misleading (deceptive) responses to facial identification prompts in the form of a "line-up".
Topiramate and its effect on fMRI of language in patients with right or left temporal lobe epilepsy.
Szaflarski, Jerzy P; Allendorfer, Jane B
2012-05-01
Topiramate (TPM) is well recognized for its negative effects on cognition, language performance and lateralization results on the intracarotid amobarbital procedure (IAP). But, the effects of TPM on functional MRI (fMRI) of language and the fMRI signals are less clear. Functional MRI is increasingly used for presurgical evaluation of epilepsy patients in place of IAP for language lateralization. Thus, the goal of this study was to assess the effects of TPM on fMRI signals. In this study, we included 8 patients with right temporal lobe epilepsy (RTLE) and 8 with left temporal lobe epilepsy (LTLE) taking TPM (+TPM). Matched to them for age, handedness and side of seizure onset were 8 patients with RTLE and 8 with LTLE not taking TPM (-TPM). Matched for age and handedness to the patients with TLE were 32 healthy controls. The fMRI paradigm involved semantic decision/tone decision task (in-scanner behavioral data were collected). All epilepsy patients received a standard neuropsychological language battery. One sample t-tests were performed within each group to assess task-specific activations. Functional MRI data random-effects analysis was performed to determine significant group activation differences and to assess the effect of TPM dose on task activation. Direct group comparisons of fMRI, language and demographic data between patients with R/L TLE +TPM vs. -TPM and the analysis of the effects of TPM on blood oxygenation level-dependent (BOLD) signal were performed. Groups were matched for age, handedness and, within the R/L TLE groups, for the age of epilepsy onset/duration and the number of AEDs/TPM dose. The in-scanner language performance of patients was worse when compared to healthy controls - all p<0.044. While all groups showed fMRI activation typical for this task, regression analyses comparing L/R TLE +TPM vs. -TPM showed significant fMRI signal differences between groups (increases in left cingulate gyrus and decreases in left superior temporal gyrus in the patients with LTLE +TPM; increases in the right BA 10 and left visual cortex and decreases in the left BA 47 in +TPM RTLE). Further, TPM dose showed positive relationship with activation in the basal ganglia and negative associations with activation in anterior cingulate and posterior visual cortex. Thus, TPM appears to have a different effect on fMRI language distribution in patients with R/L TLE and a dose-dependent effect on fMRI signals. These findings may, in part, explain the negative effects of TPM on cognition and language performance and support the notion that TPM may affect the results of language fMRI lateralization/localization. Copyright © 2012 Elsevier Inc. All rights reserved.
Studying brain organization via spontaneous fMRI signal
Power, Jonathan D; Schlaggar, Bradley L; Petersen, Steven E
2014-01-01
In recent years, some substantial advances in understanding human (and non-human) brain organization have emerged from a relatively unusual approach: the observation of spontaneous activity, and correlated patterns in spontaneous activity, in the “resting” brain. Most commonly, spontaneous neural activity is measured indirectly via fMRI signal in subjects who are lying quietly in the scanner, the so-called “resting state”. This Primer introduces the fMRI-based study of spontaneous brain activity, some of the methodological issues active in the field, and some ways in which resting state fMRI has been used to delineate aspects of area-level and supra-areal brain organization. PMID:25459408
Moon, Chan Hong; Fukuda, Mitsuhiro; Kim, Seong-Gi
2012-01-01
The neural specificity of hemodynamic-based functional magnetic resonance imaging (fMRI) signals are dependent on both the vascular regulation and the sensitivity of the applied fMRI technique to different types and sizes of blood vessels. In order to examine the specificity of MRI-detectable hemodynamic responses, submillimeter blood oxygenation-level dependent (BOLD) and cerebral blood volume (CBV) fMRI studies were performed in a well-established cat orientation column model at 9.4 Tesla. Neural-nonspecific and -specific signals were separated by comparing the fMRI responses of orthogonal orientation stimuli. The BOLD response was dominantly neural-nonspecific, mostly originating from pial and intracortical emerging veins, and thus was highly correlated with baseline blood volume. Uneven baseline CBV may displace or distort small functional domains in high-resolution BOLD maps. The CBV response in the parenchyma exhibited dual spatiotemporal characteristics, a fast and early neural-nonspecific response (with 4.3-s time constant) and a slightly slower and delayed neural-specific response (with 9.4-s time constant). The nonspecific CBV signal originates from early-responding arteries and arterioles, while the specific CBV response, which is not correlated with baseline blood volume, arises from late-responding microvessels including small pre-capillary arterioles and capillaries. Our data indicate that although the neural specificity of CBV fMRI signals is dependent on stimulation duration, high-resolution functional maps can be obtained from steady-state CBV studies. PMID:22960251
Electrodermal Recording and fMRI to Inform Sensorimotor Recovery in Stroke Patients
MacIntosh, Bradley J.; McIlroy, William E.; Mraz, Richard; Staines, W. Richard; Black, Sandra E.; Graham, Simon J.
2016-01-01
Background Functional magnetic resonance imaging (fMRI) appears to be useful for investigating motor recovery after stroke. Some of the potential confounders of brain activation studies, however, could be mitigated through complementary physiological monitoring. Objective To investigate a sensorimotor fMRI battery that included simultaneous measurement of electrodermal activity in subjects with hemiparetic stroke to provide a measure related to the sense of effort during motor performance. Methods Bilateral hand and ankle tasks were performed by 6 patients with stroke (2 subacute, 4 chronic) during imaging with blood oxygen level-dependent (BOLD) fMRI using an event-related design. BOLD percent changes, peak activation, and laterality index values were calculated in the sensorimotor cortex. Electrodermal recordings were made concurrently and used as a regressor. Results Sensorimotor BOLD time series and percent change values provided evidence of an intact motor network in each of these well-recovered patients. During tasks involving the hemiparetic limb, electrodermal activity changes were variable in amplitude, and electrodermal activity time-series data showed significant correlations with fMRI in 3 of 6 patients. No such correlations were observed for control tasks involving the unaffected lower limb. Conclusions Electrodermal activity activation maps implicated the contralesional over the ipsilesional hemisphere, supporting the notion that stroke patients may require higher order motor processing to perform simple tasks. Electrodermal activity recordings may be useful as a physiological marker of differences in effort required during movements of a subject’s hemiparetic compared with the unaffected limb during fMRI studies. PMID:18784267
Brain atrophy can introduce age-related differences in BOLD response.
Liu, Xueqing; Gerraty, Raphael T; Grinband, Jack; Parker, David; Razlighi, Qolamreza R
2017-04-11
Use of functional magnetic resonance imaging (fMRI) in studies of aging is often hampered by uncertainty about age-related differences in the amplitude and timing of the blood oxygenation level dependent (BOLD) response (i.e., hemodynamic impulse response function (HRF)). Such uncertainty introduces a significant challenge in the interpretation of the fMRI results. Even though this issue has been extensively investigated in the field of neuroimaging, there is currently no consensus about the existence and potential sources of age-related hemodynamic alterations. Using an event-related fMRI experiment with two robust and well-studied stimuli (visual and auditory), we detected a significant age-related difference in the amplitude of response to auditory stimulus. Accounting for brain atrophy by circumventing spatial normalization and processing the data in subjects' native space eliminated these observed differences. In addition, we simulated fMRI data using age differences in brain morphology while controlling HRF shape. Analyzing these simulated fMRI data using standard image processing resulted in differences in HRF amplitude, which were eliminated when the data were analyzed in subjects' native space. Our results indicate that age-related atrophy introduces inaccuracy in co-registration to standard space, which subsequently appears as attenuation in BOLD response amplitude. Our finding could explain some of the existing contradictory reports regarding age-related differences in the fMRI BOLD responses. Hum Brain Mapp, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Tensorial extensions of independent component analysis for multisubject FMRI analysis.
Beckmann, C F; Smith, S M
2005-03-01
We discuss model-free analysis of multisubject or multisession FMRI data by extending the single-session probabilistic independent component analysis model (PICA; Beckmann and Smith, 2004. IEEE Trans. on Medical Imaging, 23 (2) 137-152) to higher dimensions. This results in a three-way decomposition that represents the different signals and artefacts present in the data in terms of their temporal, spatial, and subject-dependent variations. The technique is derived from and compared with parallel factor analysis (PARAFAC; Harshman and Lundy, 1984. In Research methods for multimode data analysis, chapter 5, pages 122-215. Praeger, New York). Using simulated data as well as data from multisession and multisubject FMRI studies we demonstrate that the tensor PICA approach is able to efficiently and accurately extract signals of interest in the spatial, temporal, and subject/session domain. The final decompositions improve upon PARAFAC results in terms of greater accuracy, reduced interference between the different estimated sources (reduced cross-talk), robustness (against deviations of the data from modeling assumptions and against overfitting), and computational speed. On real FMRI 'activation' data, the tensor PICA approach is able to extract plausible activation maps, time courses, and session/subject modes as well as provide a rich description of additional processes of interest such as image artefacts or secondary activation patterns. The resulting data decomposition gives simple and useful representations of multisubject/multisession FMRI data that can aid the interpretation and optimization of group FMRI studies beyond what can be achieved using model-based analysis techniques.
Corney, David; Haynes, John-Dylan; Rees, Geraint; Lotto, R. Beau
2009-01-01
Background The perception of brightness depends on spatial context: the same stimulus can appear light or dark depending on what surrounds it. A less well-known but equally important contextual phenomenon is that the colour of a stimulus can also alter its brightness. Specifically, stimuli that are more saturated (i.e. purer in colour) appear brighter than stimuli that are less saturated at the same luminance. Similarly, stimuli that are red or blue appear brighter than equiluminant yellow and green stimuli. This non-linear relationship between stimulus intensity and brightness, called the Helmholtz-Kohlrausch (HK) effect, was first described in the nineteenth century but has never been explained. Here, we take advantage of the relative simplicity of this ‘illusion’ to explain it and contextual effects more generally, by using a simple Bayesian ideal observer model of the human visual ecology. We also use fMRI brain scans to identify the neural correlates of brightness without changing the spatial context of the stimulus, which has complicated the interpretation of related fMRI studies. Results Rather than modelling human vision directly, we use a Bayesian ideal observer to model human visual ecology. We show that the HK effect is a result of encoding the non-linear statistical relationship between retinal images and natural scenes that would have been experienced by the human visual system in the past. We further show that the complexity of this relationship is due to the response functions of the cone photoreceptors, which themselves are thought to represent an efficient solution to encoding the statistics of images. Finally, we show that the locus of the response to the relationship between images and scenes lies in the primary visual cortex (V1), if not earlier in the visual system, since the brightness of colours (as opposed to their luminance) accords with activity in V1 as measured with fMRI. Conclusions The data suggest that perceptions of brightness represent a robust visual response to the likely sources of stimuli, as determined, in this instance, by the known statistical relationship between scenes and their retinal responses. While the responses of the early visual system (receptors in this case) may represent specifically the statistics of images, post receptor responses are more likely represent the statistical relationship between images and scenes. A corollary of this suggestion is that the visual cortex is adapted to relate the retinal image to behaviour given the statistics of its past interactions with the sources of retinal images: the visual cortex is adapted to the signals it receives from the eyes, and not directly to the world beyond. PMID:19333398
Niedtfeld, Inga; Schmitt, Ruth; Winter, Dorina; Bohus, Martin; Schmahl, Christian; Herpertz, Sabine C
2017-05-01
Borderline Personality Disorder (BPD) is characterized by affective instability, but self-injurious behavior appears to have an emotion-regulating effect. We investigated whether pain-mediated affect regulation can be altered at the neural level by residential Dialectical Behavior Therapy (DBT), providing adaptive emotion regulation techniques. Likewise, we investigated whether pain thresholds or the appraisal of pain change after psychotherapy. We investigated 28 patients with BPD undergoing DBT (self-referral), 15 patients with treatment as usual and 23 healthy control subjects at two time points 12 weeks apart. We conducted an fMRI experiment eliciting negative emotions with picture stimuli and induced heat pain to investigate the role of pain in emotion regulation. Additionally, we assessed heat and cold pain thresholds.At first measurement, patients with BPD showed amygdala deactivation in response to painful stimulation, as well as altered connectivity between left amygdala and dorsal anterior cingulate cortex. These effects were reduced after DBT, as compared with patients with treatment as usual. Pain thresholds did not differ between the patient groups. We replicated the role of pain as a means of affect regulation in BPD, indicated by increased amygdala coupling. For the first time, we could demonstrate that pain-mediated affect regulation can be changed by DBT. © The Author (2017). Published by Oxford University Press.
Saggar, Manish; Quintin, Eve-Marie; Bott, Nicholas T; Kienitz, Eliza; Chien, Yin-Hsuan; Hong, Daniel W-C; Liu, Ning; Royalty, Adam; Hawthorne, Grace; Reiss, Allan L
2017-07-01
Creativity is widely recognized as an essential skill for entrepreneurial success and adaptation to daily-life demands. However, we know little about the neural changes associated with creative capacity enhancement. For the first time, using a prospective, randomized control design, we examined longitudinal changes in brain activity associated with participating in a five-week design-thinking-based Creative Capacity Building Program (CCBP), when compared with Language Capacity Building Program (LCBP). Creativity, an elusive and multifaceted construct, is loosely defined as an ability to produce useful/appropriate and novel outcomes. Here, we focus on one of the facets of creative thinking-spontaneous improvization. Participants were assessed pre- and post-intervention for spontaneous improvization skills using a game-like figural Pictionary-based fMRI task. Whole-brain group-by-time interaction revealed reduced task-related activity in CCBP participants (compared with LCBP participants) after training in the right dorsolateral prefrontal cortex, anterior/paracingulate gyrus, supplementary motor area, and parietal regions. Further, greater cerebellar-cerebral connectivity was observed in CCBP participants at post-intervention when compared with LCBP participants. In sum, our results suggest that improvization-based creative capacity enhancement is associated with reduced engagement of executive functioning regions and increased involvement of spontaneous implicit processing. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
ERIC Educational Resources Information Center
Whalley, Matthew G.; Rugg, Michael D.; Smith, Adam P. R.; Dolan, Raymond J.; Brewin, Chris R.
2009-01-01
In the present study, we used fMRI to assess patients suffering from post-traumatic stress disorder (PTSD) or depression, and trauma-exposed controls, during an episodic memory retrieval task that included non-trauma-related emotional information. In the study phase of the task neutral pictures were presented in emotional or neutral contexts.…
ERIC Educational Resources Information Center
Zhou, Bo; Konstorum, Anna; Duong, Thao; Tieu, Kinh H.; Wells, William M.; Brown, Gregory G.; Stern, Hal S.; Shahbaba, Babak
2013-01-01
We propose a hierarchical Bayesian model for analyzing multi-site experimental fMRI studies. Our method takes the hierarchical structure of the data (subjects are nested within sites, and there are multiple observations per subject) into account and allows for modeling between-site variation. Using posterior predictive model checking and model…
Say It with Flowers! An fMRI Study of Object Mediated Communication
ERIC Educational Resources Information Center
Tylen, Kristian; Wallentin, Mikkel; Roepstorff, Andreas
2009-01-01
Human communicational interaction can be mediated by a host of expressive means from words in a natural language to gestures and material symbols. Given the proper contextual setting even an everyday object can gain a mediating function in a communicational situation. In this study we used event-related fMRI to study the brain activity caused by…
Neural Substrates of the Topology Test to Measure Fluid Reasoning: An fMRI Study
ERIC Educational Resources Information Center
Masunaga, Hiromi; Kawashima, Ryuta; Horn, John L.; Sassa, Yuko; Sekiguchi, Atsushi
2008-01-01
In our prior study the negative correlation between Topology, a behavioral measure of fluid reasoning, and adult age diminished with the increase in the level of expertise in a cognitively-demanding domain of expertise in the game of GO. The present fMRI study was designed to investigate neural substrates of Topology. The modified topology…
Cong, Fengyu; Puoliväli, Tuomas; Alluri, Vinoo; Sipola, Tuomo; Burunat, Iballa; Toiviainen, Petri; Nandi, Asoke K; Brattico, Elvira; Ristaniemi, Tapani
2014-02-15
Independent component analysis (ICA) has been often used to decompose fMRI data mostly for the resting-state, block and event-related designs due to its outstanding advantage. For fMRI data during free-listening experiences, only a few exploratory studies applied ICA. For processing the fMRI data elicited by 512-s modern tango, a FFT based band-pass filter was used to further pre-process the fMRI data to remove sources of no interest and noise. Then, a fast model order selection method was applied to estimate the number of sources. Next, both individual ICA and group ICA were performed. Subsequently, ICA components whose temporal courses were significantly correlated with musical features were selected. Finally, for individual ICA, common components across majority of participants were found by diffusion map and spectral clustering. The extracted spatial maps (by the new ICA approach) common across most participants evidenced slightly right-lateralized activity within and surrounding the auditory cortices. Meanwhile, they were found associated with the musical features. Compared with the conventional ICA approach, more participants were found to have the common spatial maps extracted by the new ICA approach. Conventional model order selection methods underestimated the true number of sources in the conventionally pre-processed fMRI data for the individual ICA. Pre-processing the fMRI data by using a reasonable band-pass digital filter can greatly benefit the following model order selection and ICA with fMRI data by naturalistic paradigms. Diffusion map and spectral clustering are straightforward tools to find common ICA spatial maps. Copyright © 2013 Elsevier B.V. All rights reserved.
A New Paradigm for Individual Subject Language Mapping: Movie-Watching fMRI.
Tie, Yanmei; Rigolo, Laura; Ozdemir Ovalioglu, Aysegul; Olubiyi, Olutayo; Doolin, Kelly L; Mukundan, Srinivasan; Golby, Alexandra J
2015-01-01
Functional MRI (fMRI) based on language tasks has been used in presurgical language mapping in patients with lesions in or near putative language areas. However, if patients have difficulty performing the tasks due to neurological deficits, it leads to unreliable or noninterpretable results. In this study, we investigate the feasibility of using a movie-watching fMRI for language mapping. A 7-minute movie clip with contrasting speech and nonspeech segments was shown to 22 right-handed healthy subjects. Based on all subjects' language functional regions-of-interest, 6 language response areas were defined, within which a language response model (LRM) was derived by extracting the main temporal activation profile. Using a leave-one-out procedure, individuals' language areas were identified as the areas that expressed highly correlated temporal responses with the LRM derived from an independent group of subjects. Compared with an antonym generation task-based fMRI, the movie-watching fMRI generated language maps with more localized activations in the left frontal language area, larger activations in the left temporoparietal language area, and significant activations in their right-hemisphere homologues. Results of 2 brain tumor patients' movie-watching fMRI using the LRM derived from the healthy subjects indicated its ability to map putative language areas; while their task-based fMRI maps were less robust and noisier. These results suggest that it is feasible to use this novel "task-free" paradigm as a complementary tool for fMRI language mapping when patients cannot perform the tasks. Its deployment in more neurosurgical patients and validation against gold-standard techniques need further investigation. Copyright © 2015 by the American Society of Neuroimaging.
Durning, Steven J; Graner, John; Artino, Anthony R; Pangaro, Louis N; Beckman, Thomas; Holmboe, Eric; Oakes, Terrance; Roy, Michael; Riedy, Gerard; Capaldi, Vincent; Walter, Robert; van der Vleuten, Cees; Schuwirth, Lambert
2012-09-01
Clinical reasoning is essential to medical practice, but because it entails internal mental processes, it is difficult to assess. Functional magnetic resonance imaging (fMRI) and think-aloud protocols may improve understanding of clinical reasoning as these methods can more directly assess these processes. The objective of our study was to use a combination of fMRI and think-aloud procedures to examine fMRI correlates of a leading theoretical model in clinical reasoning based on experimental findings to date: analytic (i.e., actively comparing and contrasting diagnostic entities) and nonanalytic (i.e., pattern recognition) reasoning. We hypothesized that there would be functional neuroimaging differences between analytic and nonanalytic reasoning theory. 17 board-certified experts in internal medicine answered and reflected on validated U.S. Medical Licensing Exam and American Board of Internal Medicine multiple-choice questions (easy and difficult) during an fMRI scan. This procedure was followed by completion of a formal think-aloud procedure. fMRI findings provide some support for the presence of analytic and nonanalytic reasoning systems. Statistically significant activation of prefrontal cortex distinguished answering incorrectly versus correctly (p < 0.01), whereas activation of precuneus and midtemporal gyrus distinguished not guessing from guessing (p < 0.01). We found limited fMRI evidence to support analytic and nonanalytic reasoning theory, as our results indicate functional differences with correct vs. incorrect answers and guessing vs. not guessing. However, our findings did not suggest one consistent fMRI activation pattern of internal medicine expertise. This model of employing fMRI correlates offers opportunities to enhance our understanding of theory, as well as improve our teaching and assessment of clinical reasoning, a key outcome of medical education.
Zhang, Chuncheng; Song, Sutao; Wen, Xiaotong; Yao, Li; Long, Zhiying
2015-04-30
Feature selection plays an important role in improving the classification accuracy of multivariate classification techniques in the context of fMRI-based decoding due to the "few samples and large features" nature of functional magnetic resonance imaging (fMRI) data. Recently, several sparse representation methods have been applied to the voxel selection of fMRI data. Despite the low computational efficiency of the sparse representation methods, they still displayed promise for applications that select features from fMRI data. In this study, we proposed the Laplacian smoothed L0 norm (LSL0) approach for feature selection of fMRI data. Based on the fast sparse decomposition using smoothed L0 norm (SL0) (Mohimani, 2007), the LSL0 method used the Laplacian function to approximate the L0 norm of sources. Results of the simulated and real fMRI data demonstrated the feasibility and robustness of LSL0 for the sparse source estimation and feature selection. Simulated results indicated that LSL0 produced more accurate source estimation than SL0 at high noise levels. The classification accuracy using voxels that were selected by LSL0 was higher than that by SL0 in both simulated and real fMRI experiment. Moreover, both LSL0 and SL0 showed higher classification accuracy and required less time than ICA and t-test for the fMRI decoding. LSL0 outperformed SL0 in sparse source estimation at high noise level and in feature selection. Moreover, LSL0 and SL0 showed better performance than ICA and t-test for feature selection. Copyright © 2015 Elsevier B.V. All rights reserved.
A new paradigm for individual subject language mapping: Movie-watching fMRI
Tie, Yanmei; Rigolo, Laura; Ovalioglu, Aysegul Ozdemir; Olubiyi, Olutayo; Doolin, Kelly L.; Mukundan, Srinivasan; Golby, Alexandra J.
2015-01-01
Background Functional MRI (fMRI) based on language tasks has been used in pre-surgical language mapping in patients with lesions in or near putative language areas. However, if the patients have difficulty performing the tasks due to neurological deficits, it leads to unreliable or non-interpretable results. In this study, we investigate the feasibility of using a movie-watching fMRI for language mapping. Methods A 7-min movie clip with contrasting speech and non-speech segments was shown to 22 right-handed healthy subjects. Based on all subjects' language functional regions-of-interest, six language response areas were defined, within which a language response model (LRM) was derived by extracting the main temporal activation profile. Using a leave-one-out procedure, individuals' language areas were identified as the areas that expressed highly correlated temporal responses with the LRM derived from an independent group of subjects. Results Compared with an antonym generation task-based fMRI, the movie-watching fMRI generated language maps with more localized activations in the left frontal language area, larger activations in the left temporoparietal language area, and significant activations in their right-hemisphere homologues. Results of two brain tumor patients' movie-watching fMRI using the LRM derived from the healthy subjects indicated its ability to map putative language areas; while their task-based fMRI maps were less robust and noisier. Conclusions These results suggest that it is feasible to use this novel “task-free” paradigm as a complementary tool for fMRI language mapping when patients cannot perform the tasks. Its deployment in more neurosurgical patients and validation against gold-standard techniques need further investigation. PMID:25962953
Dager, Alecia D; Tice, Madelynn R; Book, Gregory A; Tennen, Howard; Raskin, Sarah A; Austad, Carol S; Wood, Rebecca M; Fallahi, Carolyn R; Hawkins, Keith A; Pearlson, Godfrey D
2018-04-26
Marijuana (MJ) is widely used among college students, with peak use between ages 18-22. Research suggests memory dysfunction in adolescent and young adult MJ users, but the neural correlates are unclear. We examined functional magnetic resonance imaging (fMRI) response during a memory task among college students with varying degrees of MJ involvement. Participants were 64 college students, ages 18-20, who performed a visual encoding and recognition task during fMRI. MJ use was ascertained for 3 months prior to scanning; 27 individuals reported past 3-month MJ use, and 33 individuals did not. fMRI response was modeled during encoding based on whether targets were subsequently recognized (correct encoding), and during recognition based on target identification (hits). fMRI response in left and right inferior frontal gyrus (IFG) and hippocampal regions of interest was examined between MJ users and controls. There were no group differences between MJ users and controls on fMRI response during encoding, although single sample t-tests revealed that MJ users failed to activate the hippocampus. During recognition, MJ users showed less fMRI response than controls in right hippocampus (Cohen's d = 0.55), left hippocampus (Cohen's d = 0.67) and left IFG (Cohen's d = 0.61). Heavier MJ involvement was associated with lower fMRI response in left hippocampus and left IFG. This study provides evidence of MJ-related prefrontal and hippocampal dysfunction during recognition memory in college students. These findings may contribute to our previously identified decrements in academic performance in college MJ users and could have substantial implications for academic and occupational functioning. Copyright © 2018 Elsevier B.V. All rights reserved.
Córdova-Palomera, Aldo; Tornador, Cristian; Falcón, Carles; Bargalló, Nuria; Nenadic, Igor; Deco, Gustavo; Fañanás, Lourdes
2015-10-01
Recent findings indicate that alterations of the amygdalar resting-state fMRI connectivity play an important role in the etiology of depression. While both depression and resting-state brain activity are shaped by genes and environment, the relative contribution of genetic and environmental factors mediating the relationship between amygdalar resting-state connectivity and depression remain largely unexplored. Likewise, novel neuroimaging research indicates that different mathematical representations of resting-state fMRI activity patterns are able to embed distinct information relevant to brain health and disease. The present study analyzed the influence of genes and environment on amygdalar resting-state fMRI connectivity, in relation to depression risk. High-resolution resting-state fMRI scans were analyzed to estimate functional connectivity patterns in a sample of 48 twins (24 monozygotic pairs) informative for depressive psychopathology (6 concordant, 8 discordant and 10 healthy control pairs). A graph-theoretical framework was employed to construct brain networks using two methods: (i) the conventional approach of filtered BOLD fMRI time-series and (ii) analytic components of this fMRI activity. Results using both methods indicate that depression risk is increased by environmental factors altering amygdalar connectivity. When analyzing the analytic components of the BOLD fMRI time-series, genetic factors altering the amygdala neural activity at rest show an important contribution to depression risk. Overall, these findings show that both genes and environment modify different patterns the amygdala resting-state connectivity to increase depression risk. The genetic relationship between amygdalar connectivity and depression may be better elicited by examining analytic components of the brain resting-state BOLD fMRI signals. © 2015 Wiley Periodicals, Inc.
Jech, Robert; Mueller, Karsten; Urgošík, Dušan; Sieger, Tomáš; Holiga, Štefan; Růžička, Filip; Dušek, Petr; Havránková, Petra; Vymazal, Josef; Růžička, Evžen
2012-01-01
Electrode implantation into the subthalamic nucleus for deep brain stimulation in Parkinson's disease (PD) is associated with a temporary motor improvement occurring prior to neurostimulation. We studied this phenomenon by functional magnetic resonance imaging (fMRI) when considering the Unified Parkinson's Disease Rating Scale (UPDRS-III) and collateral oedema. Twelve patients with PD (age 55.9± (SD)6.8 years, PD duration 9-15 years) underwent bilateral electrode implantation into the subthalamic nucleus. The fMRI was carried out after an overnight withdrawal of levodopa (OFF condition): (i) before and (ii) within three days after surgery in absence of neurostimulation. The motor task involved visually triggered finger tapping. The OFF/UPDRS-III score dropped from 33.8±8.7 before to 23.3±4.8 after the surgery (p<0.001), correlating with the postoperative oedema score (p<0.05). During the motor task, bilateral activation of the thalamus and basal ganglia, motor cortex and insula were preoperatively higher than after surgery (p<0.001). The results became more enhanced after compensation for the oedema and UPDRS-III scores. In addition, the rigidity and axial symptoms score correlated inversely with activation of the putamen and globus pallidus (p<0.0001). One month later, the OFF/UPDRS-III score had returned to the preoperative level (35.8±7.0, p = 0.4).In conclusion, motor improvement induced by insertion of an inactive electrode into the subthalamic nucleus caused an acute microlesion which was at least partially related to the collateral oedema and associated with extensive impact on the motor network. This was postoperatively manifested as lowered movement-related activation at the cortical and subcortical levels and differed from the known effects of neurostimulation or levodopa. The motor system finally adapted to the microlesion within one month as suggested by loss of motor improvement and good efficacy of deep brain stimulation.
Urgošík, Dušan; Sieger, Tomáš; Holiga, Štefan; Růžička, Filip; Dušek, Petr; Havránková, Petra; Vymazal, Josef; Růžička, Evžen
2012-01-01
Electrode implantation into the subthalamic nucleus for deep brain stimulation in Parkinson's disease (PD) is associated with a temporary motor improvement occurring prior to neurostimulation. We studied this phenomenon by functional magnetic resonance imaging (fMRI) when considering the Unified Parkinson's Disease Rating Scale (UPDRS-III) and collateral oedema. Twelve patients with PD (age 55.9± (SD)6.8 years, PD duration 9–15 years) underwent bilateral electrode implantation into the subthalamic nucleus. The fMRI was carried out after an overnight withdrawal of levodopa (OFF condition): (i) before and (ii) within three days after surgery in absence of neurostimulation. The motor task involved visually triggered finger tapping. The OFF/UPDRS-III score dropped from 33.8±8.7 before to 23.3±4.8 after the surgery (p<0.001), correlating with the postoperative oedema score (p<0.05). During the motor task, bilateral activation of the thalamus and basal ganglia, motor cortex and insula were preoperatively higher than after surgery (p<0.001). The results became more enhanced after compensation for the oedema and UPDRS-III scores. In addition, the rigidity and axial symptoms score correlated inversely with activation of the putamen and globus pallidus (p<0.0001). One month later, the OFF/UPDRS-III score had returned to the preoperative level (35.8±7.0, p = 0.4). In conclusion, motor improvement induced by insertion of an inactive electrode into the subthalamic nucleus caused an acute microlesion which was at least partially related to the collateral oedema and associated with extensive impact on the motor network. This was postoperatively manifested as lowered movement-related activation at the cortical and subcortical levels and differed from the known effects of neurostimulation or levodopa. The motor system finally adapted to the microlesion within one month as suggested by loss of motor improvement and good efficacy of deep brain stimulation. PMID:23145068
Minati, Ludovico; Nigri, Anna; Rosazza, Cristina; Bruzzone, Maria Grazia
2012-06-01
Previous studies have demonstrated the possibility of using functional MRI to control a robot arm through a brain-machine interface by directly coupling haemodynamic activity in the sensory-motor cortex to the position of two axes. Here, we extend this work by implementing interaction at a more abstract level, whereby imagined actions deliver structured commands to a robot arm guided by a machine vision system. Rather than extracting signals from a small number of pre-selected regions, the proposed system adaptively determines at individual level how to map representative brain areas to the input nodes of a classifier network. In this initial study, a median action recognition accuracy of 90% was attained on five volunteers performing a game consisting of collecting randomly positioned coloured pawns and placing them into cups. The "pawn" and "cup" instructions were imparted through four mental imaginery tasks, linked to robot arm actions by a state machine. With the current implementation in MatLab language the median action recognition time was 24.3s and the robot execution time was 17.7s. We demonstrate the notion of combining haemodynamic brain-machine interfacing with computer vision to implement interaction at the level of high-level commands rather than individual movements, which may find application in future fMRI approaches relevant to brain-lesioned patients, and provide source code supporting further work on larger command sets and real-time processing. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.
Anterior temporal face patches: a meta-analysis and empirical study
Von Der Heide, Rebecca J.; Skipper, Laura M.; Olson, Ingrid R.
2013-01-01
Evidence suggests the anterior temporal lobe (ATL) plays an important role in person identification and memory. In humans, neuroimaging studies of person memory report consistent activations in the ATL to famous and personally familiar faces and studies of patients report resection or damage of the ATL causes an associative prosopagnosia in which face perception is intact but face memory is compromised. In addition, high-resolution fMRI studies of non-human primates and electrophysiological studies of humans also suggest regions of the ventral ATL are sensitive to novel faces. The current study extends previous findings by investigating whether similar subregions in the dorsal, ventral, lateral, or polar aspects of the ATL are sensitive to personally familiar, famous, and novel faces. We present the results of two studies of person memory: a meta-analysis of existing fMRI studies and an empirical fMRI study using optimized imaging parameters. Both studies showed left-lateralized ATL activations to familiar individuals while novel faces activated the right ATL. Activations to famous faces were quite ventral, similar to what has been reported in previous high-resolution fMRI studies of non-human primates. These findings suggest that face memory-sensitive patches in the human ATL are in the ventral/polar ATL. PMID:23378834
A novel fMRI paradigm suggests that pedaling-related brain activation is altered after stroke
Promjunyakul, Nutta-on; Schmit, Brian D.; Schindler-Ivens, Sheila M.
2015-01-01
The purpose of this study was to examine the feasibility of using functional magnetic resonance imaging (fMRI) to measure pedaling-related brain activation in individuals with stroke and age-matched controls. We also sought to identify stroke-related changes in brain activation associated with pedaling. Fourteen stroke and 12 control subjects were asked to pedal a custom, MRI-compatible device during fMRI. Subjects also performed lower limb tapping to localize brain regions involved in lower limb movement. All stroke and control subjects were able to pedal while positioned for fMRI. Two control subjects were withdrawn due to claustrophobia, and one control data set was excluded from analysis due to an incidental finding. In the stroke group, one subject was unable to enter the gantry due to excess adiposity, and one stroke data set was excluded from analysis due to excessive head motion. Consequently, 81% of subjects (12/14 stroke, 9/12 control) completed all procedures and provided valid pedaling-related fMRI data. In these subjects, head motion was ≤3 mm. In both groups, brain activation localized to the medial aspect of M1, S1, and Brodmann’s area 6 (BA6) and to the cerebellum (vermis, lobules IV, V, VIII). The location of brain activation was consistent with leg areas. Pedaling-related brain activation was apparent on both sides of the brain, with values for laterality index (LI) of –0.06 (0.20) in the stroke cortex, 0.05 (±0.06) in the control cortex, 0.29 (0.33) in the stroke cerebellum, and 0.04 (0.15) in the control cerebellum. In the stroke group, activation in the cerebellum – but not cortex – was significantly lateralized toward the damaged side of the brain (p = 0.01). The volume of pedaling-related brain activation was smaller in stroke as compared to control subjects. Differences reached statistical significance when all active regions were examined together [p = 0.03; 27,694 (9,608) μL stroke; 37,819 (9,169) μL control]. When individual regions were examined separately, reduced brain activation volume reached statistical significance in BA6 [p = 0.04; 4,350 (2,347) μL stroke; 6,938 (3,134) μL control] and cerebellum [p = 0.001; 4,591 (1,757) μL stroke; 8,381 (2,835) μL control]. Regardless of whether activated regions were examined together or separately, there were no significant between-group differences in brain activation intensity [p = 0.17; 1.30 (0.25)% stroke; 1.16 (0.20)% control]. Reduced volume in the stroke group was not observed during lower limb tapping and could not be fully attributed to differences in head motion or movement rate. There was a tendency for pedaling-related brain activation volume to increase with increasing work performed by the paretic limb during pedaling (p = 0.08, r = 0.525). Hence, the results of this study provide two original and important contributions. First, we demonstrated that pedaling can be used with fMRI to examine brain activation associated with lower limb movement in people with stroke. Unlike previous lower limb movements examined with fMRI, pedaling involves continuous, reciprocal, multijoint movement of both limbs. In this respect, pedaling has many characteristics of functional lower limb movements, such as walking. Thus, the importance of our contribution lies in the establishment of a novel paradigm that can be used to understand how the brain adapts to stroke to produce functional lower limb movements. Second, preliminary observations suggest that brain activation volume is reduced during pedaling post-stroke. Reduced brain activation volume may be due to anatomic, physiology, and/or behavioral differences between groups, but methodological issues cannot be excluded. Importantly, brain action volume post-stroke was both task-dependent and mutable, which suggests that it could be modified through rehabilitation. Future work will explore these possibilities. PMID:26089789
Hattemer, Katja; Plate, Annika; Heverhagen, Johannes T; Haag, Anja; Keil, Boris; Klein, Karl Martin; Hermsen, Anke; Oertel, Wolfgang H; Hamer, Hajo M; Rosenow, Felix; Knake, Susanne
2011-01-01
the aim of this study was to investigate specific activation patterns and potential gender differences during mental rotation and to investigate whether functional magnetic resonance imaging (fMRI) and functional transcranial Doppler sonography (fTCD) lateralize hemispheric dominance concordantly. regional brain activation and hemispheric dominance during mental rotation (cube perspective test) were investigated in 10 female and 10 male healthy subjects using fMRI and fTCD. significant activation was found in the superior parietal lobe, at the parieto-occipital border, in the middle and superior frontal gyrus bilaterally, and the right inferior frontal gyrus using fMRI. Men showed a stronger lateralization to the right hemisphere during fMRI and a tendency toward stronger right-hemispheric activation during fTCD. Furthermore, more activation in frontal and parieto-occipital regions of the right hemisphere was observed using fMRI. Hemispheric dominance for mental rotation determined by the 2 methods correlated well (P= .008), but did not show concordant results in every single subject. the neural basis of mental rotation depends on a widespread bilateral network. Hemispheric dominance for mental rotation determined by fMRI and fTCD, though correlating well, is not always concordant. Hemispheric lateralization of complex cortical functions such as spatial rotation therefore should be investigated using multimodal imaging approaches, especially if used clinically as a tool for the presurgical evaluation of patients undergoing neurosurgery. Copyright © 2009 by the American Society of Neuroimaging.
High-field fMRI unveils orientation columns in humans.
Yacoub, Essa; Harel, Noam; Ugurbil, Kâmil
2008-07-29
Functional (f)MRI has revolutionized the field of human brain research. fMRI can noninvasively map the spatial architecture of brain function via localized increases in blood flow after sensory or cognitive stimulation. Recent advances in fMRI have led to enhanced sensitivity and spatial accuracy of the measured signals, indicating the possibility of detecting small neuronal ensembles that constitute fundamental computational units in the brain, such as cortical columns. Orientation columns in visual cortex are perhaps the best known example of such a functional organization in the brain. They cannot be discerned via anatomical characteristics, as with ocular dominance columns. Instead, the elucidation of their organization requires functional imaging methods. However, because of insufficient sensitivity, spatial accuracy, and image resolution of the available mapping techniques, thus far, they have not been detected in humans. Here, we demonstrate, by using high-field (7-T) fMRI, the existence and spatial features of orientation- selective columns in humans. Striking similarities were found with the known spatial features of these columns in monkeys. In addition, we found that a larger number of orientation columns are devoted to processing orientations around 90 degrees (vertical stimuli with horizontal motion), whereas relatively similar fMRI signal changes were observed across any given active column. With the current proliferation of high-field MRI systems and constant evolution of fMRI techniques, this study heralds the exciting prospect of exploring unmapped and/or unknown columnar level functional organizations in the human brain.
BREESE, GEORGE R.; SINHA, RAJITA; HEILIG, MARKUS
2010-01-01
Alcoholism is a chronic relapsing disorder. Major characteristics observed in alcoholics during an initial period of alcohol abstinence are altered physiological functions and a negative emotional state. Evidence suggests that a persistent, cumulative adaptation involving a kindling/allostasis-like process occurs during the course of repeated chronic alcohol exposures that is critical for the negative symptoms observed during alcohol withdrawal. Basic studies have provided evidence for specific neurotransmitters within identified brain sites being responsible for the negative emotion induced by the persistent cumulative adaptation following intermittent-alcohol exposures. After an extended period of abstinence, the cumulative alcohol adaptation increases susceptibility to stress- and alcohol cue-induced negative symptoms and alcohol seeking, both of which can facilitate excessive ingestion of alcohol. In the alcoholic, stressful imagery and alcohol cues alter physiological responses, enhance negative emotion, and induce craving. Brain fMRI imaging following stress and alcohol cues has documented neural changes in specific brain regions of alcoholics not observed in social drinkers. Such altered activity in brain of abstinent alcoholics to stress and alcohol cues is consistent with a continuing ethanol adaptation being responsible. Therapies in alcoholics found to block responses to stress and alcohol cues would presumably be potential treatments by which susceptibility for continued alcohol abuse can be reduced. By continuing to define the neurobiological basis of the sustained alcohol adaptation critical for the increased susceptibility of alcoholics to stress and alcohol cues that facilitate craving, a new era is expected to evolve in which the high rate of relapse in alcoholism is minimized. 250 PMID:20951730
Test-retest reliability of evoked BOLD signals from a cognitive-emotive fMRI test battery.
Plichta, Michael M; Schwarz, Adam J; Grimm, Oliver; Morgen, Katrin; Mier, Daniela; Haddad, Leila; Gerdes, Antje B M; Sauer, Carina; Tost, Heike; Esslinger, Christine; Colman, Peter; Wilson, Frederick; Kirsch, Peter; Meyer-Lindenberg, Andreas
2012-04-15
Even more than in cognitive research applications, moving fMRI to the clinic and the drug development process requires the generation of stable and reliable signal changes. The performance characteristics of the fMRI paradigm constrain experimental power and may require different study designs (e.g., crossover vs. parallel groups), yet fMRI reliability characteristics can be strongly dependent on the nature of the fMRI task. The present study investigated both within-subject and group-level reliability of a combined three-task fMRI battery targeting three systems of wide applicability in clinical and cognitive neuroscience: an emotional (face matching), a motivational (monetary reward anticipation) and a cognitive (n-back working memory) task. A group of 25 young, healthy volunteers were scanned twice on a 3T MRI scanner with a mean test-retest interval of 14.6 days. FMRI reliability was quantified using the intraclass correlation coefficient (ICC) applied at three different levels ranging from a global to a localized and fine spatial scale: (1) reliability of group-level activation maps over the whole brain and within targeted regions of interest (ROIs); (2) within-subject reliability of ROI-mean amplitudes and (3) within-subject reliability of individual voxels in the target ROIs. Results showed robust evoked activation of all three tasks in their respective target regions (emotional task=amygdala; motivational task=ventral striatum; cognitive task=right dorsolateral prefrontal cortex and parietal cortices) with high effect sizes (ES) of ROI-mean summary values (ES=1.11-1.44 for the faces task, 0.96-1.43 for the reward task, 0.83-2.58 for the n-back task). Reliability of group level activation was excellent for all three tasks with ICCs of 0.89-0.98 at the whole brain level and 0.66-0.97 within target ROIs. Within-subject reliability of ROI-mean amplitudes across sessions was fair to good for the reward task (ICCs=0.56-0.62) and, dependent on the particular ROI, also fair-to-good for the n-back task (ICCs=0.44-0.57) but lower for the faces task (ICC=-0.02-0.16). In conclusion, all three tasks are well suited to between-subject designs, including imaging genetics. When specific recommendations are followed, the n-back and reward task are also suited for within-subject designs, including pharmaco-fMRI. The present study provides task-specific fMRI reliability performance measures that will inform the optimal use, powering and design of fMRI studies using comparable tasks. Copyright © 2012 Elsevier Inc. All rights reserved.
Learning Predictive Statistics: Strategies and Brain Mechanisms.
Wang, Rui; Shen, Yuan; Tino, Peter; Welchman, Andrew E; Kourtzi, Zoe
2017-08-30
When immersed in a new environment, we are challenged to decipher initially incomprehensible streams of sensory information. However, quite rapidly, the brain finds structure and meaning in these incoming signals, helping us to predict and prepare ourselves for future actions. This skill relies on extracting the statistics of event streams in the environment that contain regularities of variable complexity from simple repetitive patterns to complex probabilistic combinations. Here, we test the brain mechanisms that mediate our ability to adapt to the environment's statistics and predict upcoming events. By combining behavioral training and multisession fMRI in human participants (male and female), we track the corticostriatal mechanisms that mediate learning of temporal sequences as they change in structure complexity. We show that learning of predictive structures relates to individual decision strategy; that is, selecting the most probable outcome in a given context (maximizing) versus matching the exact sequence statistics. These strategies engage distinct human brain regions: maximizing engages dorsolateral prefrontal, cingulate, sensory-motor regions, and basal ganglia (dorsal caudate, putamen), whereas matching engages occipitotemporal regions (including the hippocampus) and basal ganglia (ventral caudate). Our findings provide evidence for distinct corticostriatal mechanisms that facilitate our ability to extract behaviorally relevant statistics to make predictions. SIGNIFICANCE STATEMENT Making predictions about future events relies on interpreting streams of information that may initially appear incomprehensible. Past work has studied how humans identify repetitive patterns and associative pairings. However, the natural environment contains regularities that vary in complexity from simple repetition to complex probabilistic combinations. Here, we combine behavior and multisession fMRI to track the brain mechanisms that mediate our ability to adapt to changes in the environment's statistics. We provide evidence for an alternate route for learning complex temporal statistics: extracting the most probable outcome in a given context is implemented by interactions between executive and motor corticostriatal mechanisms compared with visual corticostriatal circuits (including hippocampal cortex) that support learning of the exact temporal statistics. Copyright © 2017 Wang et al.
Cerebral Processing of Voice Gender Studied Using a Continuous Carryover fMRI Design
Pernet, Cyril; Latinus, Marianne; Crabbe, Frances; Belin, Pascal
2013-01-01
Normal listeners effortlessly determine a person's gender by voice, but the cerebral mechanisms underlying this ability remain unclear. Here, we demonstrate 2 stages of cerebral processing during voice gender categorization. Using voice morphing along with an adaptation-optimized functional magnetic resonance imaging design, we found that secondary auditory cortex including the anterior part of the temporal voice areas in the right hemisphere responded primarily to acoustical distance with the previously heard stimulus. In contrast, a network of bilateral regions involving inferior prefrontal and anterior and posterior cingulate cortex reflected perceived stimulus ambiguity. These findings suggest that voice gender recognition involves neuronal populations along the auditory ventral stream responsible for auditory feature extraction, functioning in pair with the prefrontal cortex in voice gender perception. PMID:22490550
De Martin, Elena; Duran, Dunja; Ghielmetti, Francesco; Visani, Elisa; Aquino, Domenico; Marchetti, Marcello; Sebastiano, Davide Rossi; Cusumano, Davide; Bruzzone, Maria Grazia; Panzica, Ferruccio; Fariselli, Laura
2017-12-01
Magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI) provide noninvasive localization of eloquent brain areas for presurgical planning. The aim of this study is the integration of MEG and fMRI maps into a CyberKnife (CK) system to optimize dose planning. Four patients with brain metastases in the motor area underwent functional imaging study of the hand motor cortex before radiosurgery. MEG data were acquired during a visually cued hand motor task. Motor activations were identified also using an fMRI block-designed paradigm. MEG and fMRI maps were then integrated into a CK system and contoured as organs at risk for treatment planning optimization. The integration of fMRI data into the CK system was achieved for all patients by means of a standardized protocol. We also implemented an ad hoc pipeline to convert the MEG signal into a DICOM standard, to make sure that it was readable by our CK treatment planning system. Inclusion of the activation areas into the optimization plan allowed the creation of treatment plans that reduced the irradiation of the motor cortex yet not affecting the brain peripheral dose. The availability of advanced neuroimaging techniques is playing an increasingly important role in radiosurgical planning strategy. We successfully imported MEG and fMRI activations into a CK system. This additional information can improve dose sparing of eloquent areas, allowing a more comprehensive investigation of the related dose-volume constraints that in theory could translate into a gain in tumor local control, and a reduction of neurological complications. Copyright © 2017 Elsevier Inc. All rights reserved.
Implicit structured sequence learning: an fMRI study of the structural mere-exposure effect
Folia, Vasiliki; Petersson, Karl Magnus
2014-01-01
In this event-related fMRI study we investigated the effect of 5 days of implicit acquisition on preference classification by means of an artificial grammar learning (AGL) paradigm based on the structural mere-exposure effect and preference classification using a simple right-linear unification grammar. This allowed us to investigate implicit AGL in a proper learning design by including baseline measurements prior to grammar exposure. After 5 days of implicit acquisition, the fMRI results showed activations in a network of brain regions including the inferior frontal (centered on BA 44/45) and the medial prefrontal regions (centered on BA 8/32). Importantly, and central to this study, the inclusion of a naive preference fMRI baseline measurement allowed us to conclude that these fMRI findings were the intrinsic outcomes of the learning process itself and not a reflection of a preexisting functionality recruited during classification, independent of acquisition. Support for the implicit nature of the knowledge utilized during preference classification on day 5 come from the fact that the basal ganglia, associated with implicit procedural learning, were activated during classification, while the medial temporal lobe system, associated with explicit declarative memory, was consistently deactivated. Thus, preference classification in combination with structural mere-exposure can be used to investigate structural sequence processing (syntax) in unsupervised AGL paradigms with proper learning designs. PMID:24550865
Implicit structured sequence learning: an fMRI study of the structural mere-exposure effect.
Folia, Vasiliki; Petersson, Karl Magnus
2014-01-01
In this event-related fMRI study we investigated the effect of 5 days of implicit acquisition on preference classification by means of an artificial grammar learning (AGL) paradigm based on the structural mere-exposure effect and preference classification using a simple right-linear unification grammar. This allowed us to investigate implicit AGL in a proper learning design by including baseline measurements prior to grammar exposure. After 5 days of implicit acquisition, the fMRI results showed activations in a network of brain regions including the inferior frontal (centered on BA 44/45) and the medial prefrontal regions (centered on BA 8/32). Importantly, and central to this study, the inclusion of a naive preference fMRI baseline measurement allowed us to conclude that these fMRI findings were the intrinsic outcomes of the learning process itself and not a reflection of a preexisting functionality recruited during classification, independent of acquisition. Support for the implicit nature of the knowledge utilized during preference classification on day 5 come from the fact that the basal ganglia, associated with implicit procedural learning, were activated during classification, while the medial temporal lobe system, associated with explicit declarative memory, was consistently deactivated. Thus, preference classification in combination with structural mere-exposure can be used to investigate structural sequence processing (syntax) in unsupervised AGL paradigms with proper learning designs.
Neural Mechanisms for Adaptive Learned Avoidance of Mental Effort.
Mitsuto Nagase, Asako; Onoda, Keiichi; Clifford Foo, Jerome; Haji, Tomoki; Akaishi, Rei; Yamaguchi, Shuhei; Sakai, Katsuyuki; Morita, Kenji
2018-02-05
Humans tend to avoid mental effort. Previous studies have demonstrated this tendency using various demand-selection tasks; participants generally avoid options associated with higher cognitive demand. However, it remains unclear whether humans avoid mental effort adaptively in uncertain and non-stationary environments, and if so, what neural mechanisms underlie this learned avoidance and whether they remain the same irrespective of cognitive-demand types. We addressed these issues by developing novel demand-selection tasks where associations between choice options and cognitive-demand levels change over time, with two variations using mental arithmetic and spatial reasoning problems (29:4 and 18:2 males:females). Most participants showed avoidance, and their choices depended on the demand experienced on multiple preceding trials. We assumed that participants updated the expected cost of mental effort through experience, and fitted their choices by reinforcement learning models, comparing several possibilities. Model-based fMRI analyses revealed that activity in the dorsomedial and lateral frontal cortices was positively correlated with the trial-by-trial expected cost for the chosen option commonly across the different types of cognitive demand, and also revealed a trend of negative correlation in the ventromedial prefrontal cortex. We further identified correlates of cost-prediction-error at time of problem-presentation or answering the problem, the latter of which partially overlapped with or were proximal to the correlates of expected cost at time of choice-cue in the dorsomedial frontal cortex. These results suggest that humans adaptively learn to avoid mental effort, having neural mechanisms to represent expected cost and cost-prediction-error, and the same mechanisms operate for various types of cognitive demand. SIGNIFICANCE STATEMENT In daily life, humans encounter various cognitive demands, and tend to avoid high-demand options. However, it remains unclear whether humans avoid mental effort adaptively under dynamically changing environments, and if so, what are the underlying neural mechanisms and whether they operate irrespective of cognitive-demand types. To address these issues, we developed novel tasks, where participants could learn to avoid high-demand options under uncertain and non-stationary environments. Through model-based fMRI analyses, we found regions whose activity was correlated with the expected mental effort cost, or cost-prediction-error, regardless of demand-type, with overlap or adjacence in the dorsomedial frontal cortex. This finding contributes to clarifying the mechanisms for cognitive-demand avoidance, and provides empirical building blocks for the emerging computational theory of mental effort. Copyright © 2018 the authors.
Seeing Chinese Characters in Action: An fMRI Study of the Perception of Writing Sequences
ERIC Educational Resources Information Center
Yu, Hongbo; Gong, Lanyun; Qiu, Yinchen; Zhou, Xiaolin
2011-01-01
The Chinese character is composed of a finite set of strokes whose order in writing follows consensual principles and is learnt through school education. Using functional magnetic resonance imaging (fMRI), this study investigates the neural activity associated with the perception of writing sequences by asking participants to observe…
Decreased Parahippocampal Activity in Associative Priming: Evidence from an Event-Related fMRI Study
ERIC Educational Resources Information Center
Yang, Jiongjiong; Meckingler, Axel; Xu, Mingwei; Zhao, Yanbing; Weng, Xuchu
2008-01-01
In recent years, there has been intense debate on the neural basis of associative priming, particularly on the role of the medial temporal lobe (MTL) in retrieving associative information without awareness. In this study, event-related fMRI was used while healthy subjects performed a perceptual identification task on briefly presented unrelated…
Gender Differences in the Cognitive Control of Emotion: An fMRI Study
ERIC Educational Resources Information Center
Koch, Kathrin; Pauly, Katharina; Kellermann, Thilo; Seiferth, Nina Y.; Reske, Martina; Backes, Volker; Stocker, Tony; Shah, N. Jon; Amunts, Katrin; Kircher, Tilo; Schneider, Frank; Habel, Ute
2007-01-01
The interaction of emotion and cognition has become a topic of major interest. However, the influence of gender on the interplay between the two processes, along with its neural correlates have not been fully analysed so far. In this functional magnetic resonance imaging (fMRI) study we induced negative emotion using negative olfactory stimulation…
Perceiving Age and Gender in Unfamiliar Faces: An fMRI Study on Face Categorization
ERIC Educational Resources Information Center
Wiese, Holger; Kloth, Nadine; Gullmar, Daniel; Reichenbach, Jurgen R.; Schweinberger, Stefan R.
2012-01-01
Efficient processing of unfamiliar faces typically involves their categorization (e.g., into old vs. young or male vs. female). However, age and gender categorization may pose different perceptual demands. In the present study, we employed functional magnetic resonance imaging (fMRI) to compare the activity evoked during age vs. gender…
[Research progress of functional magnetic resonance imaging in mechanism studies of tinnitus].
Ji, B B; Li, M; Zhang, J N
2018-02-07
Tinnitus is a subjective symptom of phantom sound in the ear or brain without sound or electrical stimulation in the environment. The mechanism of tinnitus is complicated and mostly unclear. Recent studies suggested that the abnormal peripheral auditory input lead to neuroplasticity changes in central nervous system followed by tinnitus. More research concerned on the tinnitus central mechanism. A rapid development of functional magnetic resonance imaging (fMRI) technique made it more widely used in tinnitus central mechanism research. fMRI brought new findings but also presented some shortages in technology and cognition in tinnitus study. This article summarized the outcomes of fMRI research on tinnitus in recent years, exploring its existing problems and application prospects.
Functional magnetic resonance imaging of internet addiction in young adults.
Sepede, Gianna; Tavino, Margherita; Santacroce, Rita; Fiori, Federica; Salerno, Rosa Maria; Di Giannantonio, Massimo
2016-02-28
To report the results of functional magnetic resonance imaging (fMRI) studies pertaining internet addiction disorder (IAD) in young adults. We conducted a systematic review on PubMed, focusing our attention on fMRI studies involving adult IAD patients, free from any comorbid psychiatric condition. The following search words were used, both alone and in combination: fMRI, internet addiction, internet dependence, functional neuroimaging. The search was conducted on April 20(th), 2015 and yielded 58 records. Inclusion criteria were the following: Articles written in English, patients' age ≥ 18 years, patients affected by IAD, studies providing fMRI results during resting state or cognitive/emotional paradigms. Structural MRI studies, functional imaging techniques other than fMRI, studies involving adolescents, patients with comorbid psychiatric, neurological or medical conditions were excluded. By reading titles and abstracts, we excluded 30 records. By reading the full texts of the 28 remaining articles, we identified 18 papers meeting our inclusion criteria and therefore included in the qualitative synthesis. We found 18 studies fulfilling our inclusion criteria, 17 of them conducted in Asia, and including a total number of 666 tested subjects. The included studies reported data acquired during resting state or different paradigms, such as cue-reactivity, guessing or cognitive control tasks. The enrolled patients were usually males (95.4%) and very young (21-25 years). The most represented IAD subtype, reported in more than 85% of patients, was the internet gaming disorder, or videogame addiction. In the resting state studies, the more relevant abnormalities were localized in the superior temporal gyrus, limbic, medial frontal and parietal regions. When analyzing the task related fmri studies, we found that less than half of the papers reported behavioral differences between patients and normal controls, but all of them found significant differences in cortical and subcortical brain regions involved in cognitive control and reward processing: Orbitofrontal cortex, insula, anterior and posterior cingulate cortex, temporal and parietal regions, brain stem and caudate nucleus. IAD may seriously affect young adults' brain functions. It needs to be studied more in depth to provide a clear diagnosis and an adequate treatment.
Functional magnetic resonance imaging of internet addiction in young adults
Sepede, Gianna; Tavino, Margherita; Santacroce, Rita; Fiori, Federica; Salerno, Rosa Maria; Di Giannantonio, Massimo
2016-01-01
AIM: To report the results of functional magnetic resonance imaging (fMRI) studies pertaining internet addiction disorder (IAD) in young adults. METHODS: We conducted a systematic review on PubMed, focusing our attention on fMRI studies involving adult IAD patients, free from any comorbid psychiatric condition. The following search words were used, both alone and in combination: fMRI, internet addiction, internet dependence, functional neuroimaging. The search was conducted on April 20th, 2015 and yielded 58 records. Inclusion criteria were the following: Articles written in English, patients’ age ≥ 18 years, patients affected by IAD, studies providing fMRI results during resting state or cognitive/emotional paradigms. Structural MRI studies, functional imaging techniques other than fMRI, studies involving adolescents, patients with comorbid psychiatric, neurological or medical conditions were excluded. By reading titles and abstracts, we excluded 30 records. By reading the full texts of the 28 remaining articles, we identified 18 papers meeting our inclusion criteria and therefore included in the qualitative synthesis. RESULTS: We found 18 studies fulfilling our inclusion criteria, 17 of them conducted in Asia, and including a total number of 666 tested subjects. The included studies reported data acquired during resting state or different paradigms, such as cue-reactivity, guessing or cognitive control tasks. The enrolled patients were usually males (95.4%) and very young (21-25 years). The most represented IAD subtype, reported in more than 85% of patients, was the internet gaming disorder, or videogame addiction. In the resting state studies, the more relevant abnormalities were localized in the superior temporal gyrus, limbic, medial frontal and parietal regions. When analyzing the task related fmri studies, we found that less than half of the papers reported behavioral differences between patients and normal controls, but all of them found significant differences in cortical and subcortical brain regions involved in cognitive control and reward processing: Orbitofrontal cortex, insula, anterior and posterior cingulate cortex, temporal and parietal regions, brain stem and caudate nucleus. CONCLUSION: IAD may seriously affect young adults’ brain functions. It needs to be studied more in depth to provide a clear diagnosis and an adequate treatment. PMID:26981230
Emotion Reactivity Is Increased 4-6 Weeks Postpartum in Healthy Women: A Longitudinal fMRI Study
Gingnell, Malin; Bannbers, Elin; Moes, Harmen; Engman, Jonas; Sylvén, Sara; Skalkidou, Alkistis; Kask, Kristiina; Wikström, Johan; Sundström-Poromaa, Inger
2015-01-01
Marked endocrine alterations occur after delivery. Most women cope well with these changes, but the postpartum period is associated with an increased risk of depressive episodes. Previous studies of emotion processing have focused on maternal–infant bonding or postpartum depression (PPD), and longitudinal studies of the neural correlates of emotion processing throughout the postpartum period in healthy women are lacking. In this study, 13 women, without signs of post partum depression, underwent fMRI with an emotional face matching task and completed the MADRS-S, STAI-S, and EPDS within 48 h (early postpartum) and 4–6 weeks after delivery (late postpartum). Also, data from a previous study including 15 naturally cycling controls assessed in the luteal and follicular phase of the menstrual cycle was used. Women had lower reactivity in insula, middle frontal gyrus (MFG), and inferior frontal gyrus (IFG) in the early as compared to the late postpartum assessment. Insular reactivity was positively correlated with anxiety in the early postpartum period and with depressive symptoms late postpartum. Reactivity in insula and IFG were greater in postpartum women than in non-pregnant control subjects. Brain reactivity was not correlated with serum estradiol or progesterone levels. Increased reactivity in the insula, IFG, and MFG may reflect normal postpartum adaptation, but correlation with self-rated symptoms of depression and anxiety in these otherwise healthy postpartum women, may also suggest that these changes place susceptible women at increased risk of PPD. These findings contribute to our understanding of the neurobiological aspects of the postpartum period, which might shed light on the mechanisms underlying affective puerperal disorders, such as PPD. PMID:26061879
Learning Computational Models of Video Memorability from fMRI Brain Imaging.
Han, Junwei; Chen, Changyuan; Shao, Ling; Hu, Xintao; Han, Jungong; Liu, Tianming
2015-08-01
Generally, various visual media are unequally memorable by the human brain. This paper looks into a new direction of modeling the memorability of video clips and automatically predicting how memorable they are by learning from brain functional magnetic resonance imaging (fMRI). We propose a novel computational framework by integrating the power of low-level audiovisual features and brain activity decoding via fMRI. Initially, a user study experiment is performed to create a ground truth database for measuring video memorability and a set of effective low-level audiovisual features is examined in this database. Then, human subjects' brain fMRI data are obtained when they are watching the video clips. The fMRI-derived features that convey the brain activity of memorizing videos are extracted using a universal brain reference system. Finally, due to the fact that fMRI scanning is expensive and time-consuming, a computational model is learned on our benchmark dataset with the objective of maximizing the correlation between the low-level audiovisual features and the fMRI-derived features using joint subspace learning. The learned model can then automatically predict the memorability of videos without fMRI scans. Evaluations on publically available image and video databases demonstrate the effectiveness of the proposed framework.
Memory Performance and fMRI Signal in Presymptomatic Familial Alzheimer’s Disease
Braskie, Meredith N.; Medina, Luis D.; Rodriguez-Agudelo, Yaneth; Geschwind, Daniel H.; Macias-Islas, Miguel Angel; Thompson, Paul M.; Cummings, Jeffrey L.; Bookheimer, Susan Y.; Ringman, John M.
2013-01-01
Rare autosomal dominant mutations result in familial Alzheimer’s disease (FAD) with a relatively consistent age of onset within families. This provides an estimate of years until disease onset (relative age) in mutation carriers. Increased AD risk has been associated with differences in functional magnetic resonance imaging (fMRI) activity during memory tasks, but most of these studies have focused on possession of apolipoprotein E allele 4 (APOE4), a risk factor, but not causative variant, of late-onset AD. Evaluation of fMRI activity in presymptomatic FAD mutation carriers versus noncarriers provides insight into preclinical changes in those who will certainly develop AD in a prescribed period of time. Adults from FAD mutation-carrying families (nine mutation carriers, eight noncarriers) underwent fMRI scanning while performing a memory task. We examined fMRI signal differences between carriers and noncarriers, and how signal related to fMRI task performance within mutation status group, controlling for relative age and education. Mutation noncarriers had greater retrieval period activity than carriers in several AD-relevant regions, including the left hippocampus. Better performing noncarriers showed greater encoding period activity including in the parahippocampal gyrus. Poorer performing carriers showed greater retrieval period signal, including in the frontal and temporal lobes, suggesting underlying pathological processes. PMID:22806961
Feature-space-based FMRI analysis using the optimal linear transformation.
Sun, Fengrong; Morris, Drew; Lee, Wayne; Taylor, Margot J; Mills, Travis; Babyn, Paul S
2010-09-01
The optimal linear transformation (OLT), an image analysis technique of feature space, was first presented in the field of MRI. This paper proposes a method of extending OLT from MRI to functional MRI (fMRI) to improve the activation-detection performance over conventional approaches of fMRI analysis. In this method, first, ideal hemodynamic response time series for different stimuli were generated by convolving the theoretical hemodynamic response model with the stimulus timing. Second, constructing hypothetical signature vectors for different activity patterns of interest by virtue of the ideal hemodynamic responses, OLT was used to extract features of fMRI data. The resultant feature space had particular geometric clustering properties. It was then classified into different groups, each pertaining to an activity pattern of interest; the applied signature vector for each group was obtained by averaging. Third, using the applied signature vectors, OLT was applied again to generate fMRI composite images with high SNRs for the desired activity patterns. Simulations and a blocked fMRI experiment were employed for the method to be verified and compared with the general linear model (GLM)-based analysis. The simulation studies and the experimental results indicated the superiority of the proposed method over the GLM-based analysis in detecting brain activities.
[fMRI study of the dominant hemisphere for language in patients with brain tumor].
Buklina, S B; Podoprigora, A E; Pronin, I N; Shishkina, L V; Boldyreva, G N; Bondarenko, A A; Fadeeva, L M; Kornienko, V N; Zhukov, V Iu
2013-01-01
Paper describes a study of language lateralization of patients with brain tumors, measured by preoperative functional magnetic resonance imaging (fMRI) and comparison results with tumor histology and profile of functional asymmetry. During the study 21 patient underwent fMRI scan. 15 patients had a tumor in the left and 6 in the right hemisphere. Tumors were localized mainly in the frontal, temporal and fronto-temporal regions. Histological diagnosis in 8 cases was malignant Grade IV, in 13 cases--Grade I-III. fMRI study was perfomed on scanner "Signa Exite" with a field strength of 1.5 As speech test reciting the months of the year in reverse order was used. fMRI scan results were compared with the profile of functional asymmetry, which was received with the results of questionnaire Annette and dichotic listening test. Broca's area was found in 7 cases in the left hemisphere, 6 had a tumor Grade I-III. And one patient with glioblastoma had a tumor of the right hemisphere. Broca's area in the right hemisphere was found in 3 patients (2 patients with left sided tumor, and one with right-sided tumor). One patient with left-sided tumor had mild motor aphasia. Bilateral activation in both hemispheres of the brain was observed in 6 patients. All of them had tumor Grade II-III of the left hemisphere. Signs of left-handedness were revealed only in half of these patients. Broca's area was not found in 4 cases. All of them had large malignant tumors Grade IV. One patient couldn't handle program of the research. Results of fMRI scans, questionnaire Annette and dichotic listening test frequently were not the same, which is significant. Bilateral activation in speech-loads may be a reflection of brain plasticity in cases of long-growing tumors. Thus it's important to consider the full range of clinical data in studying the problem of the dominant hemisphere for language.
A general probabilistic model for group independent component analysis and its estimation methods
Guo, Ying
2012-01-01
SUMMARY Independent component analysis (ICA) has become an important tool for analyzing data from functional magnetic resonance imaging (fMRI) studies. ICA has been successfully applied to single-subject fMRI data. The extension of ICA to group inferences in neuroimaging studies, however, is challenging due to the unavailability of a pre-specified group design matrix and the uncertainty in between-subjects variability in fMRI data. We present a general probabilistic ICA (PICA) model that can accommodate varying group structures of multi-subject spatio-temporal processes. An advantage of the proposed model is that it can flexibly model various types of group structures in different underlying neural source signals and under different experimental conditions in fMRI studies. A maximum likelihood method is used for estimating this general group ICA model. We propose two EM algorithms to obtain the ML estimates. The first method is an exact EM algorithm which provides an exact E-step and an explicit noniterative M-step. The second method is an variational approximation EM algorithm which is computationally more efficient than the exact EM. In simulation studies, we first compare the performance of the proposed general group PICA model and the existing probabilistic group ICA approach. We then compare the two proposed EM algorithms and show the variational approximation EM achieves comparable accuracy to the exact EM with significantly less computation time. An fMRI data example is used to illustrate application of the proposed methods. PMID:21517789
Multivariate Strategies in Functional Magnetic Resonance Imaging
ERIC Educational Resources Information Center
Hansen, Lars Kai
2007-01-01
We discuss aspects of multivariate fMRI modeling, including the statistical evaluation of multivariate models and means for dimensional reduction. In a case study we analyze linear and non-linear dimensional reduction tools in the context of a "mind reading" predictive multivariate fMRI model.
Relating Brain Damage to Brain Plasticity in Patients With Multiple Sclerosis
Tomassini, Valentina; Johansen-Berg, Heidi; Jbabdi, Saad; Wise, Richard G.; Pozzilli, Carlo; Palace, Jacqueline; Matthews, Paul M.
2013-01-01
Background Failure of adaptive plasticity with increasing pathology is suggested to contribute to progression of disability in multiple sclerosis (MS). However, functional impairments can be reduced with practice, suggesting that brain plasticity is preserved even in patients with substantial damage. Objective Here, functional magnetic resonance imaging (fMRI) was used to probe systems-level mechanisms of brain plasticity associated with improvements in visuomotor performance in MS patients and related to measures of microstructural damage. Methods 23 MS patients and 12 healthy controls underwent brain fMRI during the first practice session of a visuomotor task (short-term practice) and after 2 weeks of daily practice with the same task (longer-term practice). Participants also underwent a structural brain MRI scan. Results Patients performed more poorly than controls at baseline. Nonetheless, with practice, patients showed performance improvements similar to controls and independent of the extent of MRI measures of brain pathology. Different relationships between performance improvements and activations were found between groups: greater short-term improvements were associated with lower activation in the sensorimotor, posterior cingulate, and parahippocampal cortices for patients, whereas greater long-term improvements correlated with smaller activation reductions in the visual cortex of controls. Conclusions Brain plasticity for visuomotor practice is preserved in MS patients despite a high burden of cerebral pathology. Cognitive systems different from those acting in controls contribute to this plasticity in patients. These findings challenge the notion that increasing pathology is accompanied by an outright failure of adaptive plasticity, supporting a neuroscientific rationale for recovery-oriented strategies even in chronically disabled patients. PMID:22328685
The Global Signal in fMRI: Nuisance or Information?
Nalci, Alican; Falahpour, Maryam
2017-01-01
The global signal is widely used as a regressor or normalization factor for removing the effects of global variations in the analysis of functional magnetic resonance imaging (fMRI) studies. However, there is considerable controversy over its use because of the potential bias that can be introduced when it is applied to the analysis of both task-related and resting-state fMRI studies. In this paper we take a closer look at the global signal, examining in detail the various sources that can contribute to the signal. For the most part, the global signal has been treated as a nuisance term, but there is growing evidence that it may also contain valuable information. We also examine the various ways that the global signal has been used in the analysis of fMRI data, including global signal regression, global signal subtraction, and global signal normalization. Furthermore, we describe new ways for understanding the effects of global signal regression and its relation to the other approaches. PMID:28213118
Integration of fMRI, NIROT and ERP for studies of human brain function.
Gore, John C; Horovitz, Silvina G; Cannistraci, Christopher J; Skudlarski, Pavel
2006-05-01
Different methods of assessing human brain function possess specific advantages and disadvantages compared to others, but it is believed that combining different approaches will provide greater information than can be obtained from each alone. For example, functional magnetic resonance imaging (fMRI) has good spatial resolution but poor temporal resolution, whereas the converse is true for electrophysiological recordings (event-related potentials or ERPs). In this review of recent work, we highlight a novel approach to combining these modalities in a manner designed to increase information on the origins and locations of the generators of specific ERPs and the relationship between fMRI and ERP signals. Near infrared imaging techniques have also been studied as alternatives to fMRI and can be readily integrated with simultaneous electrophysiological recordings. Each of these modalities may in principle be also used in so-called steady-state acquisitions in which the correlational structure of signals from the brain may be analyzed to provide new insights into brain function.
BOLDSync: a MATLAB-based toolbox for synchronized stimulus presentation in functional MRI.
Joshi, Jitesh; Saharan, Sumiti; Mandal, Pravat K
2014-02-15
Precise and synchronized presentation of paradigm stimuli in functional magnetic resonance imaging (fMRI) is central to obtaining accurate information about brain regions involved in a specific task. In this manuscript, we present a new MATLAB-based toolbox, BOLDSync, for synchronized stimulus presentation in fMRI. BOLDSync provides a user friendly platform for design and presentation of visual, audio, as well as multimodal audio-visual (AV) stimuli in functional imaging experiments. We present simulation experiments that demonstrate the millisecond synchronization accuracy of BOLDSync, and also illustrate the functionalities of BOLDSync through application to an AV fMRI study. BOLDSync gains an advantage over other available proprietary and open-source toolboxes by offering a user friendly and accessible interface that affords both precision in stimulus presentation and versatility across various types of stimulus designs and system setups. BOLDSync is a reliable, efficient, and versatile solution for synchronized stimulus presentation in fMRI study. Copyright © 2013 Elsevier B.V. All rights reserved.
Stern, C E; Corkin, S; González, R G; Guimaraes, A R; Baker, J R; Jennings, P J; Carr, C A; Sugiura, R M; Vedantham, V; Rosen, B R
1996-01-01
Considerable evidence exists to support the hypothesis that the hippocampus and related medial temporal lobe structures are crucial for the encoding and storage of information in long-term memory. Few human imaging studies, however, have successfully shown signal intensity changes in these areas during encoding or retrieval. Using functional magnetic resonance imaging (fMRI), we studied normal human subjects while they performed a novel picture encoding task. High-speed echo-planar imaging techniques evaluated fMRI signal changes throughout the brain. During the encoding of novel pictures, statistically significant increases in fMRI signal were observed bilaterally in the posterior hippocampal formation and parahippocampal gyrus and in the lingual and fusiform gyri. To our knowledge, this experiment is the first fMRI study to show robust signal changes in the human hippocampal region. It also provides evidence that the encoding of novel, complex pictures depends upon an interaction between ventral cortical regions, specialized for object vision, and the hippocampal formation and parahippocampal gyrus, specialized for long-term memory. Images Fig. 1 Fig. 3 PMID:8710927
Regional homogeneity changes in prelingually deafened patients: a resting-state fMRI study
NASA Astrophysics Data System (ADS)
Li, Wenjing; He, Huiguang; Xian, Junfang; Lv, Bin; Li, Meng; Li, Yong; Liu, Zhaohui; Wang, Zhenchang
2010-03-01
Resting-state functional magnetic resonance imaging (fMRI) is a technique that measures the intrinsic function of brain and has some advantages over task-induced fMRI. Regional homogeneity (ReHo) assesses the similarity of the time series of a given voxel with its nearest neighbors on a voxel-by-voxel basis, which reflects the temporal homogeneity of the regional BOLD signal. In the present study, we used the resting state fMRI data to investigate the ReHo changes of the whole brain in the prelingually deafened patients relative to normal controls. 18 deaf patients and 22 healthy subjects were scanned. Kendall's coefficient of concordance (KCC) was calculated to measure the degree of regional coherence of fMRI time courses. We found that regional coherence significantly decreased in the left frontal lobe, bilateral temporal lobes and right thalamus, and increased in the postcentral gyrus, cingulate gyrus, left temporal lobe, left thalamus and cerebellum in deaf patients compared with controls. These results show that the prelingually deafened patients have higher degree of regional coherence in the paleocortex, and lower degree in neocortex. Since neocortex plays an important role in the development of auditory, these evidences may suggest that the deaf persons reorganize the paleocortex to offset the loss of auditory.
A designated odor-language integration system in the human brain.
Olofsson, Jonas K; Hurley, Robert S; Bowman, Nicholas E; Bao, Xiaojun; Mesulam, M-Marsel; Gottfried, Jay A
2014-11-05
Odors are surprisingly difficult to name, but the mechanism underlying this phenomenon is poorly understood. In experiments using event-related potentials (ERPs) and functional magnetic resonance imaging (fMRI), we investigated the physiological basis of odor naming with a paradigm where olfactory and visual object cues were followed by target words that either matched or mismatched the cue. We hypothesized that word processing would not only be affected by its semantic congruency with the preceding cue, but would also depend on the cue modality (olfactory or visual). Performance was slower and less precise when linking a word to its corresponding odor than to its picture. The ERP index of semantic incongruity (N400), reflected in the comparison of nonmatching versus matching target words, was more constrained to posterior electrode sites and lasted longer on odor-cue (vs picture-cue) trials. In parallel, fMRI cross-adaptation in the right orbitofrontal cortex (OFC) and the left anterior temporal lobe (ATL) was observed in response to words when preceded by matching olfactory cues, but not by matching visual cues. Time-series plots demonstrated increased fMRI activity in OFC and ATL at the onset of the odor cue itself, followed by response habituation after processing of a matching (vs nonmatching) target word, suggesting that predictive perceptual representations in these regions are already established before delivery and deliberation of the target word. Together, our findings underscore the modality-specific anatomy and physiology of object identification in the human brain. Copyright © 2014 the authors 0270-6474/14/3414864-10$15.00/0.
Studying brain organization via spontaneous fMRI signal.
Power, Jonathan D; Schlaggar, Bradley L; Petersen, Steven E
2014-11-19
In recent years, some substantial advances in understanding human (and nonhuman) brain organization have emerged from a relatively unusual approach: the observation of spontaneous activity, and correlated patterns in spontaneous activity, in the "resting" brain. Most commonly, spontaneous neural activity is measured indirectly via fMRI signal in subjects who are lying quietly in the scanner, the so-called "resting state." This Primer introduces the fMRI-based study of spontaneous brain activity, some of the methodological issues active in the field, and some ways in which resting-state fMRI has been used to delineate aspects of area-level and supra-areal brain organization. Copyright © 2014 Elsevier Inc. All rights reserved.
Primary and multisensory cortical activity is correlated with audiovisual percepts.
Benoit, Margo McKenna; Raij, Tommi; Lin, Fa-Hsuan; Jääskeläinen, Iiro P; Stufflebeam, Steven
2010-04-01
Incongruent auditory and visual stimuli can elicit audiovisual illusions such as the McGurk effect where visual /ka/ and auditory /pa/ fuse into another percept such as/ta/. In the present study, human brain activity was measured with adaptation functional magnetic resonance imaging to investigate which brain areas support such audiovisual illusions. Subjects viewed trains of four movies beginning with three congruent /pa/ stimuli to induce adaptation. The fourth stimulus could be (i) another congruent /pa/, (ii) a congruent /ka/, (iii) an incongruent stimulus that evokes the McGurk effect in susceptible individuals (lips /ka/ voice /pa/), or (iv) the converse combination that does not cause the McGurk effect (lips /pa/ voice/ ka/). This paradigm was predicted to show increased release from adaptation (i.e. stronger brain activation) when the fourth movie and the related percept was increasingly different from the three previous movies. A stimulus change in either the auditory or the visual stimulus from /pa/ to /ka/ (iii, iv) produced within-modality and cross-modal responses in primary auditory and visual areas. A greater release from adaptation was observed for incongruent non-McGurk (iv) compared to incongruent McGurk (iii) trials. A network including the primary auditory and visual cortices, nonprimary auditory cortex, and several multisensory areas (superior temporal sulcus, intraparietal sulcus, insula, and pre-central cortex) showed a correlation between perceiving the McGurk effect and the fMRI signal, suggesting that these areas support the audiovisual illusion. Copyright 2009 Wiley-Liss, Inc.
Primary and Multisensory Cortical Activity is Correlated with Audiovisual Percepts
Benoit, Margo McKenna; Raij, Tommi; Lin, Fa-Hsuan; Jääskeläinen, Iiro P.; Stufflebeam, Steven
2012-01-01
Incongruent auditory and visual stimuli can elicit audiovisual illusions such as the McGurk effect where visual /ka/ and auditory /pa/ fuse into another percept such as/ta/. In the present study, human brain activity was measured with adaptation functional magnetic resonance imaging to investigate which brain areas support such audiovisual illusions. Subjects viewed trains of four movies beginning with three congruent /pa/ stimuli to induce adaptation. The fourth stimulus could be (i) another congruent /pa/, (ii) a congruent /ka/, (iii) an incongruent stimulus that evokes the McGurk effect in susceptible individuals (lips /ka/ voice /pa/), or (iv) the converse combination that does not cause the McGurk effect (lips /pa/ voice/ ka/). This paradigm was predicted to show increased release from adaptation (i.e. stronger brain activation) when the fourth movie and the related percept was increasingly different from the three previous movies. A stimulus change in either the auditory or the visual stimulus from /pa/ to /ka/ (iii, iv) produced within-modality and cross-modal responses in primary auditory and visual areas. A greater release from adaptation was observed for incongruent non-McGurk (iv) compared to incongruent McGurk (iii) trials. A network including the primary auditory and visual cortices, nonprimary auditory cortex, and several multisensory areas (superior temporal sulcus, intraparietal sulcus, insula, and pre-central cortex) showed a correlation between perceiving the McGurk effect and the fMRI signal, suggesting that these areas support the audiovisual illusion. PMID:19780040
Zanto, Theodore P; Pa, Judy; Gazzaley, Adam
2014-01-01
As the aging population grows, it has become increasingly important to carefully characterize amnestic mild cognitive impairment (aMCI), a preclinical stage of Alzheimer's disease (AD). Functional magnetic resonance imaging (fMRI) is a valuable tool for monitoring disease progression in selectively vulnerable brain regions associated with AD neuropathology. However, the reliability of fMRI data in longitudinal studies of older adults with aMCI is largely unexplored. To address this, aMCI participants completed two visual working tasks, a Delayed-Recognition task and a One-Back task, on three separate scanning sessions over a three-month period. Test-retest reliability of the fMRI blood oxygen level dependent (BOLD) activity was assessed using an intraclass correlation (ICC) analysis approach. Results indicated that brain regions engaged during the task displayed greater reliability across sessions compared to regions that were not utilized by the task. During task-engagement, differential reliability scores were observed across the brain such that the frontal lobe, medial temporal lobe, and subcortical structures exhibited fair to moderate reliability (ICC=0.3-0.6), while temporal, parietal, and occipital regions exhibited moderate to good reliability (ICC=0.4-0.7). Additionally, reliability across brain regions was more stable when three fMRI sessions were used in the ICC calculation relative to two fMRI sessions. In conclusion, the fMRI BOLD signal is reliable across scanning sessions in this population and thus a useful tool for tracking longitudinal change in observational and interventional studies in aMCI. © 2013.
Hallquist, Michael N.; Hwang, Kai; Luna, Beatriz
2013-01-01
Recent resting-state functional connectivity fMRI (RS-fcMRI) research has demonstrated that head motion during fMRI acquisition systematically influences connectivity estimates despite bandpass filtering and nuisance regression, which are intended to reduce such nuisance variability. We provide evidence that the effects of head motion and other nuisance signals are poorly controlled when the fMRI time series are bandpass-filtered but the regressors are unfiltered, resulting in the inadvertent reintroduction of nuisance-related variation into frequencies previously suppressed by the bandpass filter, as well as suboptimal correction for noise signals in the frequencies of interest. This is important because many RS-fcMRI studies, including some focusing on motion-related artifacts, have applied this approach. In two cohorts of individuals (n = 117 and 22) who completed resting-state fMRI scans, we found that the bandpass-regress approach consistently overestimated functional connectivity across the brain, typically on the order of r = .10 – .35, relative to a simultaneous bandpass filtering and nuisance regression approach. Inflated correlations under the bandpass-regress approach were associated with head motion and cardiac artifacts. Furthermore, distance-related differences in the association of head motion and connectivity estimates were much weaker for the simultaneous filtering approach. We recommend that future RS-fcMRI studies ensure that the frequencies of nuisance regressors and fMRI data match prior to nuisance regression, and we advocate a simultaneous bandpass filtering and nuisance regression strategy that better controls nuisance-related variability. PMID:23747457
Simultaneous GCaMP6-based fiber photometry and fMRI in rats.
Liang, Zhifeng; Ma, Yuncong; Watson, Glenn D R; Zhang, Nanyin
2017-09-01
Understanding the relationship between neural and vascular signals is essential for interpretation of functional MRI (fMRI) results with respect to underlying neuronal activity. Simultaneously measuring neural activity using electrophysiology with fMRI has been highly valuable in elucidating the neural basis of the blood oxygenation-level dependent (BOLD) signal. However, this approach is also technically challenging due to the electromagnetic interference that is observed in electrophysiological recordings during MRI scanning. Recording optical correlates of neural activity, such as calcium signals, avoids this issue, and has opened a new avenue to simultaneously acquire neural and BOLD signals. The present study is the first to demonstrate the feasibility of simultaneously and repeatedly acquiring calcium and BOLD signals in animals using a genetically encoded calcium indicator, GCaMP6. This approach was validated with a visual stimulation experiment, during which robust increases of both calcium and BOLD signals in the superior colliculus were observed. In addition, repeated measurement in the same animal demonstrated reproducible calcium and BOLD responses to the same stimuli. Taken together, simultaneous GCaMP6-based fiber photometry and fMRI recording presents a novel, artifact-free approach to simultaneously measuring neural and fMRI signals. Furthermore, given the cell-type specificity of GCaMP6, this approach has the potential to mechanistically dissect the contributions of individual neuron populations to BOLD signal, and ultimately reveal its underlying neural mechanisms. The current study established the method for simultaneous GCaMP6-based fiber photometry and fMRI in rats. Copyright © 2017 Elsevier B.V. All rights reserved.
Schoo, L A; van Zandvoort, M J E; Biessels, G J; Kappelle, L J; Postma, A; de Haan, E H F
2011-03-01
Recent functional magnetic resonance imaging (fMRI) studies addressing healthy subjects point towards posterior parietal cortex (PPC) involvement in episodic memory tasks. This is noteworthy, since neuropsychological studies usually do not connect parietal lesions to episodic memory impairments. Therefore an inventory of the possible factors behind this apparent paradox is warranted. This review compared fMRI studies which demonstrated PPC activity in episodic memory tasks, with findings with studies of patients with PPC lesions. A systematic evaluation of possible explanations for the posterior parietal paradox indicates that PPC activation in fMRI studies does not appear to be attributable to confounding cognitive/psychomotor processes, such as button pressing or stimulus processing. What may be of more importance is the extent to which an episodic memory task loads on three closely related cognitive processes: effort and attention, self-related activity, and scene and image construction. We discuss to what extent these cognitive processes can account for the paradox between lesion and fMRI results. They are strongly intertwined with the episodic memory and may critically determine in how far the PPC plays a role in a given memory task. Future patient studies might profit from specifically taking these cognitive factors into consideration in the task design. ©2010 The British Psychological Society.
Hippocampal Networks Habituate as Novelty Accumulates
ERIC Educational Resources Information Center
Murty, Vishnu P.; Ballard, Ian C.; Macduffie, Katherine E.; Krebs, Ruth M.; Adcock, R. Alison
2013-01-01
Novelty detection, a critical computation within the medial temporal lobe (MTL) memory system, necessarily depends on prior experience. The current study used functional magnetic resonance imaging (fMRI) in humans to investigate dynamic changes in MTL activation and functional connectivity as experience with novelty accumulates. fMRI data were…
Mental Time Travel into the Past and the Future in Healthy Aged Adults: An fMRI Study
ERIC Educational Resources Information Center
Viard, Armelle; Chetelat, Gael; Lebreton, Karine; Desgranges, Beatrice; Landeau, Brigitte; de La Sayette, Vincent; Eustache, Francis; Piolino, Pascale
2011-01-01
Remembering the past and envisioning the future rely on episodic memory which enables mental time travel. Studies in young adults indicate that past and future thinking share common cognitive and neural underpinnings. No imaging data is yet available in healthy aged subjects. Using fMRI, we scanned older subjects while they remembered personal…
The Effect of 30% Oxygen on Visuospatial Performance and Brain Activation: An Fmri Study
ERIC Educational Resources Information Center
Chung, S.C.; Tack, G.R.; Lee, B.; Eom, G.M.; Lee, S.Y.; Sohn, J.H.
2004-01-01
This study aimed to investigate the hypothesis that administration of the air with 30% oxygen compared with normal air (21% oxygen) enhances cognitive functioning through increased activation in the brain. A visuospatial task was presented while brain images were scanned by a 3 T fMRI system. The results showed that there was an improvement in…
Prospects of functional magnetic resonance imaging as lie detector.
Rusconi, Elena; Mitchener-Nissen, Timothy
2013-09-24
Following the demise of the polygraph, supporters of assisted scientific lie detection tools have enthusiastically appropriated neuroimaging technologies "as the savior of scientifically verifiable lie detection in the courtroom" (Gerard, 2008: 5). These proponents believe the future impact of neuroscience "will be inevitable, dramatic, and will fundamentally alter the way the law does business" (Erickson, 2010: 29); however, such enthusiasm may prove premature. For in nearly every article published by independent researchers in peer reviewed journals, the respective authors acknowledge that fMRI research, processes, and technology are insufficiently developed and understood for gatekeepers to even consider introducing these neuroimaging measures into criminal courts as they stand today for the purpose of determining the veracity of statements made. Regardless of how favorable their analyses of fMRI or its future potential, they all acknowledge the presence of issues yet to be resolved. Even assuming a future where these issues are resolved and an appropriate fMRI lie-detection process is developed, its integration into criminal trials is not assured for the very success of such a future system may necessitate its exclusion from courtrooms on the basis of existing legal and ethical prohibitions. In this piece, aimed for a multidisciplinary readership, we seek to highlight and bring together the multitude of hurdles which would need to be successfully overcome before fMRI can (if ever) be a viable applied lie detection system. We argue that the current status of fMRI studies on lie detection meets neither basic legal nor scientific standards. We identify four general classes of hurdles (scientific, legal and ethical, operational, and social) and provide an overview on the stages and operations involved in fMRI studies, as well as the difficulties of translating these laboratory protocols into a practical criminal justice environment. It is our overall conclusion that fMRI is unlikely to constitute a viable lie detector for criminal courts.
Prospects of functional magnetic resonance imaging as lie detector
Rusconi, Elena; Mitchener-Nissen, Timothy
2013-01-01
Following the demise of the polygraph, supporters of assisted scientific lie detection tools have enthusiastically appropriated neuroimaging technologies “as the savior of scientifically verifiable lie detection in the courtroom” (Gerard, 2008: 5). These proponents believe the future impact of neuroscience “will be inevitable, dramatic, and will fundamentally alter the way the law does business” (Erickson, 2010: 29); however, such enthusiasm may prove premature. For in nearly every article published by independent researchers in peer reviewed journals, the respective authors acknowledge that fMRI research, processes, and technology are insufficiently developed and understood for gatekeepers to even consider introducing these neuroimaging measures into criminal courts as they stand today for the purpose of determining the veracity of statements made. Regardless of how favorable their analyses of fMRI or its future potential, they all acknowledge the presence of issues yet to be resolved. Even assuming a future where these issues are resolved and an appropriate fMRI lie-detection process is developed, its integration into criminal trials is not assured for the very success of such a future system may necessitate its exclusion from courtrooms on the basis of existing legal and ethical prohibitions. In this piece, aimed for a multidisciplinary readership, we seek to highlight and bring together the multitude of hurdles which would need to be successfully overcome before fMRI can (if ever) be a viable applied lie detection system. We argue that the current status of fMRI studies on lie detection meets neither basic legal nor scientific standards. We identify four general classes of hurdles (scientific, legal and ethical, operational, and social) and provide an overview on the stages and operations involved in fMRI studies, as well as the difficulties of translating these laboratory protocols into a practical criminal justice environment. It is our overall conclusion that fMRI is unlikely to constitute a viable lie detector for criminal courts. PMID:24065912
A receptor-based model for dopamine-induced fMRI signal
Mandeville, Joseph. B.; Sander, Christin Y. M.; Jenkins, Bruce G.; Hooker, Jacob M.; Catana, Ciprian; Vanduffel, Wim; Alpert, Nathaniel M.; Rosen, Bruce R.; Normandin, Marc D.
2013-01-01
This report describes a multi-receptor physiological model of the fMRI temporal response and signal magnitude evoked by drugs that elevate synaptic dopamine in basal ganglia. The model is formulated as a summation of dopamine’s effects at D1-like and D2-like receptor families, which produce functional excitation and inhibition, respectively, as measured by molecular indicators like adenylate cyclase or neuroimaging techniques like fMRI. Functional effects within the model are described in terms of relative changes in receptor occupancies scaled by receptor densities and neuro-vascular coupling constants. Using literature parameters, the model reconciles many discrepant observations and interpretations of pre-clinical data. Additionally, we present data showing that amphetamine stimulation produces fMRI inhibition at low doses and a biphasic response at higher doses in the basal ganglia of non-human primates (NHP), in agreement with model predictions based upon the respective levels of evoked dopamine. Because information about dopamine release is required to inform the fMRI model, we simultaneously acquired PET 11C-raclopride data in several studies to evaluate the relationship between raclopride displacement and assumptions about dopamine release. At high levels of dopamine release, results suggest that refinements of the model will be required to consistently describe the PET and fMRI data. Overall, the remarkable success of the model in describing a wide range of preclinical fMRI data indicate that this approach will be useful for guiding the design and analysis of basic science and clinical investigations and for interpreting the functional consequences of dopaminergic stimulation in normal subjects and in populations with dopaminergic neuroadaptations. PMID:23466936
Aggarwal, Priya; Gupta, Anubha
2017-12-01
A number of reconstruction methods have been proposed recently for accelerated functional Magnetic Resonance Imaging (fMRI) data collection. However, existing methods suffer with the challenge of greater artifacts at high acceleration factors. This paper addresses the issue of accelerating fMRI collection via undersampled k-space measurements combined with the proposed method based on l 1 -l 1 norm constraints, wherein we impose first l 1 -norm sparsity on the voxel time series (temporal data) in the transformed domain and the second l 1 -norm sparsity on the successive difference of the same temporal data. Hence, we name the proposed method as Double Temporal Sparsity based Reconstruction (DTSR) method. The robustness of the proposed DTSR method has been thoroughly evaluated both at the subject level and at the group level on real fMRI data. Results are presented at various acceleration factors. Quantitative analysis in terms of Peak Signal-to-Noise Ratio (PSNR) and other metrics, and qualitative analysis in terms of reproducibility of brain Resting State Networks (RSNs) demonstrate that the proposed method is accurate and robust. In addition, the proposed DTSR method preserves brain networks that are important for studying fMRI data. Compared to the existing methods, the DTSR method shows promising potential with an improvement of 10-12 dB in PSNR with acceleration factors upto 3.5 on resting state fMRI data. Simulation results on real data demonstrate that DTSR method can be used to acquire accelerated fMRI with accurate detection of RSNs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rosazza, Cristina; Deleo, Francesco; D'Incerti, Ludovico; Antelmi, Luigi; Tringali, Giovanni; Didato, Giuseppe; Bruzzone, Maria G.; Villani, Flavio; Ghielmetti, Francesco
2018-01-01
Objective: Mechanisms of motor plasticity are critical to maintain motor functions after cerebral damage. This study explores the mechanisms of motor reorganization occurring before and after surgery in four patients with drug-refractory epilepsy candidate to disconnective surgery. Methods: We studied four patients with early damage, who underwent tailored hemispheric surgery in adulthood, removing the cortical motor areas and disconnecting the corticospinal tract (CST) from the affected hemisphere. Motor functions were assessed clinically, with functional MRI (fMRI) tasks of arm and leg movement and Diffusion Tensor Imaging (DTI) before and after surgery with assessments of up to 3 years. Quantifications of fMRI motor activations and DTI fractional anisotropy (FA) color maps were performed to assess the lateralization of motor network. We hypothesized that lateralization of motor circuits assessed preoperatively with fMRI and DTI was useful to evaluate the motor outcome in these patients. Results: In two cases preoperative DTI-tractography did not reconstruct the CST, and FA-maps were strongly asymmetric. In the other two cases, the affected CST appeared reduced compared to the contralateral one, with modest asymmetry in the FA-maps. fMRI showed different degrees of lateralization of the motor network and the SMA of the intact hemisphere was mostly engaged in all cases. After surgery, patients with a strongly lateralized motor network showed a stable performance. By contrast, a patient with a more bilateral pattern showed worsening of the upper limb function. For all cases, fMRI activations shifted to the intact hemisphere. Structural alterations of motor circuits, observed with FA values, continued beyond 1 year after surgery. Conclusion: In our case series fMRI and DTI could track the longitudinal reorganization of motor functions. In these four patients the more the paretic limbs recruited the intact hemisphere in primary motor and associative areas, the greater the chances were of maintaining elementary motor functions after adult surgery. In particular, DTI-tractography and quantification of FA-maps were useful to assess the lateralization of motor network. In these cases reorganization of motor connectivity continued for long time periods after surgery. PMID:29922216
Rosazza, Cristina; Deleo, Francesco; D'Incerti, Ludovico; Antelmi, Luigi; Tringali, Giovanni; Didato, Giuseppe; Bruzzone, Maria G; Villani, Flavio; Ghielmetti, Francesco
2018-01-01
Objective: Mechanisms of motor plasticity are critical to maintain motor functions after cerebral damage. This study explores the mechanisms of motor reorganization occurring before and after surgery in four patients with drug-refractory epilepsy candidate to disconnective surgery. Methods: We studied four patients with early damage, who underwent tailored hemispheric surgery in adulthood, removing the cortical motor areas and disconnecting the corticospinal tract (CST) from the affected hemisphere. Motor functions were assessed clinically, with functional MRI (fMRI) tasks of arm and leg movement and Diffusion Tensor Imaging (DTI) before and after surgery with assessments of up to 3 years. Quantifications of fMRI motor activations and DTI fractional anisotropy (FA) color maps were performed to assess the lateralization of motor network. We hypothesized that lateralization of motor circuits assessed preoperatively with fMRI and DTI was useful to evaluate the motor outcome in these patients. Results: In two cases preoperative DTI-tractography did not reconstruct the CST, and FA-maps were strongly asymmetric. In the other two cases, the affected CST appeared reduced compared to the contralateral one, with modest asymmetry in the FA-maps. fMRI showed different degrees of lateralization of the motor network and the SMA of the intact hemisphere was mostly engaged in all cases. After surgery, patients with a strongly lateralized motor network showed a stable performance. By contrast, a patient with a more bilateral pattern showed worsening of the upper limb function. For all cases, fMRI activations shifted to the intact hemisphere. Structural alterations of motor circuits, observed with FA values, continued beyond 1 year after surgery. Conclusion: In our case series fMRI and DTI could track the longitudinal reorganization of motor functions. In these four patients the more the paretic limbs recruited the intact hemisphere in primary motor and associative areas, the greater the chances were of maintaining elementary motor functions after adult surgery. In particular, DTI-tractography and quantification of FA-maps were useful to assess the lateralization of motor network. In these cases reorganization of motor connectivity continued for long time periods after surgery.
Cognitive dissonance induction in everyday life: An fMRI study.
de Vries, Jan; Byrne, Mark; Kehoe, Elizabeth
2015-01-01
This functional magnetic resonance imaging (fMRI) study explored the neural substrates of cognitive dissonance during dissonance "induction." A novel task was developed based on the results of a separate item selection study (n = 125). Items were designed to generate dissonance by prompting participants to reflect on everyday personal experiences that were inconsistent with values they had expressed support for. One experimental condition (dissonance) and three control conditions (justification, consonance, and non-self-related inconsistency) were used for comparison. Items of all four types were presented to each participant (n = 14) in a randomized design. The fMRI analysis used a whole-brain approach focusing on the moments dissonance was induced. Results showed that in comparison with the control conditions the dissonance experience led to higher levels of activation in several brain regions. Specifically dissonance was associated with increased neural activation in key brain regions including the anterior cingulate cortex (ACC), anterior insula, inferior frontal gyrus, and precuneus. This supports current perspectives that emphasize the role of anterior cingulate and insula in dissonance processing. Less extensive activation in the prefrontal cortex than in some previous studies is consistent with this study's emphasis on dissonance induction, rather than reduction. This article also contains a short review and comparison with other fMRI studies of cognitive dissonance.
The insula is not specifically involved in disgust processing: an fMRI study.
Schienle, A; Stark, R; Walter, B; Blecker, C; Ott, U; Kirsch, P; Sammer, G; Vaitl, D
2002-11-15
fMRI studies have shown that the perception of facial disgust expressions specifically activates the insula. The present fMRI study investigated whether this structure is also involved in the processing of visual stimuli depicting non-mimic disgust elicitors compared to fear-inducing and neutral scenes. Twelve female subjects were scanned while viewing alternating blocks of 40 disgust-inducing, 40 fear-inducing and 40 affectively neutral pictures, shown for 1.5 s each. Afterwards, affective ratings were assessed. The disgust pictures, rated as highly repulsive, induced activation in the insula, the amygdala, the orbitofrontal and occipito-temporal cortex. Since during the fear condition the insula was also involved, our findings do not fit the idea of the insula as a specific disgust processor.
Age-Related Variability in Cortical Activity during Language Processing
ERIC Educational Resources Information Center
Fridriksson, Julius; Morrow, K. Leigh; Moser, Dana; Baylis, Gordon C.
2006-01-01
Purpose: The present study investigated the extent of cortical activity during overt picture naming using functional magnetic resonance imaging (fMRI). Method: Participants comprised 20 healthy, adult participants with ages ranging from 20 to 82 years. While undergoing fMRI, participants completed a picture-naming task consisting of 60…
Autobiographical Memory in Semantic Dementia: A Longitudinal fMRI Study
ERIC Educational Resources Information Center
Maguire, Eleanor A.; Kumaran, Dharshan; Hassabis, Demis; Kopelman, Michael D.
2010-01-01
Whilst patients with semantic dementia (SD) are known to suffer from semantic memory and language impairments, there is less agreement about whether memory for personal everyday experiences, autobiographical memory, is compromised. In healthy individuals, functional MRI (fMRI) has helped to delineate a consistent and distributed brain network…
Item Memory, Context Memory and the Hippocampus: fMRI Evidence
ERIC Educational Resources Information Center
Rugg, Michael D.; Vilberg, Kaia L.; Mattson, Julia T.; Yu, Sarah S.; Johnson, Jeffrey D.; Suzuki, Maki
2012-01-01
Dual-process models of recognition memory distinguish between the retrieval of qualitative information about a prior event (recollection), and judgments of prior occurrence based on an acontextual sense of familiarity. fMRI studies investigating the neural correlates of memory encoding and retrieval conducted within the dual-process framework have…
A Dictionary Learning Approach for Signal Sampling in Task-Based fMRI for Reduction of Big Data
Ge, Bao; Li, Xiang; Jiang, Xi; Sun, Yifei; Liu, Tianming
2018-01-01
The exponential growth of fMRI big data offers researchers an unprecedented opportunity to explore functional brain networks. However, this opportunity has not been fully explored yet due to the lack of effective and efficient tools for handling such fMRI big data. One major challenge is that computing capabilities still lag behind the growth of large-scale fMRI databases, e.g., it takes many days to perform dictionary learning and sparse coding of whole-brain fMRI data for an fMRI database of average size. Therefore, how to reduce the data size but without losing important information becomes a more and more pressing issue. To address this problem, we propose a signal sampling approach for significant fMRI data reduction before performing structurally-guided dictionary learning and sparse coding of whole brain's fMRI data. We compared the proposed structurally guided sampling method with no sampling, random sampling and uniform sampling schemes, and experiments on the Human Connectome Project (HCP) task fMRI data demonstrated that the proposed method can achieve more than 15 times speed-up without sacrificing the accuracy in identifying task-evoked functional brain networks. PMID:29706880
A Dictionary Learning Approach for Signal Sampling in Task-Based fMRI for Reduction of Big Data.
Ge, Bao; Li, Xiang; Jiang, Xi; Sun, Yifei; Liu, Tianming
2018-01-01
The exponential growth of fMRI big data offers researchers an unprecedented opportunity to explore functional brain networks. However, this opportunity has not been fully explored yet due to the lack of effective and efficient tools for handling such fMRI big data. One major challenge is that computing capabilities still lag behind the growth of large-scale fMRI databases, e.g., it takes many days to perform dictionary learning and sparse coding of whole-brain fMRI data for an fMRI database of average size. Therefore, how to reduce the data size but without losing important information becomes a more and more pressing issue. To address this problem, we propose a signal sampling approach for significant fMRI data reduction before performing structurally-guided dictionary learning and sparse coding of whole brain's fMRI data. We compared the proposed structurally guided sampling method with no sampling, random sampling and uniform sampling schemes, and experiments on the Human Connectome Project (HCP) task fMRI data demonstrated that the proposed method can achieve more than 15 times speed-up without sacrificing the accuracy in identifying task-evoked functional brain networks.
The Stroop Effect in Kana and Kanji Scripts in Native Japanese Speakers: An fMRI Study
Coderre, Emily L.; Filippi, Christopher G.; Newhouse, Paul A.; Dumas, Julie A.
2008-01-01
Prior research has shown that the two writing systems of the Japanese orthography are processed differently: kana (syllabic symbols) are processed like other phonetic languages such as English, while kanji (a logographic writing system) are processed like other logographic languages like Chinese. Previous work done with the Stroop task in Japanese has shown that these differences in processing strategies create differences in Stroop effects. This study investigated the Stroop effect in kanji and kana using functional magnetic resonance imaging (fMRI) to examine the similarities and differences in brain processing between logographic and phonetic languages. Nine native Japanese speakers performed the Stroop task both in kana and kanji scripts during fMRI. Both scripts individually produced significant Stroop effects as measured by the behavioral reaction time data. The imaging data for both scripts showed brain activation in the anterior cingulate gyrus, an area involved in inhibiting automatic processing. Though behavioral data showed no significant differences between the Stroop effects in kana and kanji, there were differential areas of activation in fMRI found for each writing system. In fMRI, the Stroop task activated an area in the left inferior parietal lobule during the kana task and the left inferior frontal gyrus during the kanji task. The results of the present study suggest that the Stroop task in Japanese kana and kanji elicits differential activation in brain regions involved in conflict detection and resolution for syllabic and logographic writing systems. PMID:18325582
Normal movement selectivity in autism.
Dinstein, Ilan; Thomas, Cibu; Humphreys, Kate; Minshew, Nancy; Behrmann, Marlene; Heeger, David J
2010-05-13
It has been proposed that individuals with autism have difficulties understanding the goals and intentions of others because of a fundamental dysfunction in the mirror neuron system. Here, however, we show that individuals with autism exhibited not only normal fMRI responses in mirror system areas during observation and execution of hand movements but also exhibited typical movement-selective adaptation (repetition suppression) when observing or executing the same movement repeatedly. Movement selectivity is a defining characteristic of neurons involved in movement perception, including mirror neurons, and, as such, these findings argue against a mirror system dysfunction in autism. Copyright 2010 Elsevier Inc. All rights reserved.
Karimpoor, Mahta; Tam, Fred; Strother, Stephen C.; Fischer, Corinne E.; Schweizer, Tom A.; Graham, Simon J.
2015-01-01
Neuropsychological tests behavioral tasks that very commonly involve handwriting and drawing are widely used in the clinic to detect abnormal brain function. Functional magnetic resonance imaging (fMRI) may be useful in increasing the specificity of such tests. However, performing complex pen-and-paper tests during fMRI involves engineering challenges. Previously, we developed an fMRI-compatible, computerized tablet system to address this issue. However, the tablet did not include visual feedback of hand position (VFHP), a human factors component that may be important for fMRI of certain patient populations. A real-time system was thus developed to provide VFHP and integrated with the tablet in an augmented reality display. The effectiveness of the system was initially tested in young healthy adults who performed various handwriting tasks in front of a computer display with and without VFHP. Pilot fMRI of writing tasks were performed by two representative individuals with and without VFHP. Quantitative analysis of the behavioral results indicated improved writing performance with VFHP. The pilot fMRI results suggest that writing with VFHP requires less neural resources compared to the without VFHP condition, to maintain similar behavior. Thus, the tablet system with VFHP is recommended for future fMRI studies involving patients with impaired brain function and where ecologically valid behavior is important. PMID:25859201
Hale, Matthew D; Zaman, Arshad; Morrall, Matthew C H J; Chumas, Paul; Maguire, Melissa J
2018-03-01
Presurgical evaluation for temporal lobe epilepsy routinely assesses speech and memory lateralization and anatomic localization of the motor and visual areas but not baseline musical processing. This is paramount in a musician. Although validated tools exist to assess musical ability, there are no reported functional magnetic resonance imaging (fMRI) paradigms to assess musical processing. We examined the utility of a novel fMRI paradigm in an 18-year-old left-handed pianist who underwent surgery for a left temporal low-grade ganglioglioma. Preoperative evaluation consisted of neuropsychological evaluation, T1-weighted and T2-weighted magnetic resonance imaging, and fMRI. Auditory blood oxygen level-dependent fMRI was performed using a dedicated auditory scanning sequence. Three separate auditory investigations were conducted: listening to, humming, and thinking about a musical piece. All auditory fMRI paradigms activated the primary auditory cortex with varying degrees of auditory lateralization. Thinking about the piece additionally activated the primary visual cortices (bilaterally) and right dorsolateral prefrontal cortex. Humming demonstrated left-sided predominance of auditory cortex activation with activity observed in close proximity to the tumor. This study demonstrated an fMRI paradigm for evaluating musical processing that could form part of preoperative assessment for patients undergoing temporal lobe surgery for epilepsy. Copyright © 2017 Elsevier Inc. All rights reserved.
Connectome Signatures of Neurocognitive Abnormalities in Euthymic Bipolar I Disorder
Ajilore, Olusola; Vizueta, Nathalie; Walshaw, Patricia; Zhan, Liang; Leow, Alex; Altshuler, Lori L.
2015-01-01
Objectives Connectomics have allowed researchers to study integrative patterns of neural connectivity in humans. Yet, it is unclear how connectomics may elucidate structure-function relationships in bipolar I disorder (BPI). Expanding on our previous structural connectome study, here we used an overlapping sample with additional psychometric and fMRI data to relate structural connectome properties to both fMRI signals and cognitive performance. Methods 42 subjects completed a neuropsychological (NP) battery covering domains of processing speed, verbal memory, working memory, and cognitive flexibility. 32 subjects also had fMRI data performing a Go/NoGo task. Results Bipolar participants had lower NP performance across all domains, but only working memory reached statistical significance. In BPI participants, processing speed was significantly associated with both white matter integrity (WMI) in the corpus callosum and interhemispheric network integration. Mediation models further revealed that the relationship between interhemispheric integration and processing speed was mediated by WMI, and processing speed mediated the relationship between WMI and working memory. Bipolar subjects had significantly decreased BA47 activation during NoGo vs. Go. Significant predictors of BA47 fMRI activations during the Go/NoGo task were its nodal path length (left hemisphere) and its nodal clustering coefficient (right hemisphere). Conclusions This study suggests that structural connectome changes underlie abnormalities in fMRI activation and cognitive performance in euthymic BPI subjects. Results support that BA47 structural connectome changes may be a trait marker for BPI. Future studies are needed to determine if these “connectome signatures” may also confer a biological risk and/or serve as predictors of relapse. PMID:26228398
STABILITY OF FMRI STRIATAL RESPONSE TO ALCOHOL CUES: A HIERARCHICAL LINEAR MODELING APPROACH
Schacht, Joseph P.; Anton, Raymond F.; Randall, Patrick K.; Li, Xingbao; Henderson, Scott; Myrick, Hugh
2011-01-01
In functional magnetic resonance imaging (fMRI) studies of alcohol-dependent individuals, alcohol cues elicit activation of the ventral and dorsal aspects of the striatum (VS and DS), which are believed to underlie aspects of reward learning critical to the initiation and maintenance of alcohol dependence. Cue-elicited striatal activation may represent a biological substrate through which treatment efficacy may be measured. However, to be useful for this purpose, VS or DS activation must first demonstrate stability across time. Using hierarchical linear modeling (HLM), this study tested the stability of cue-elicited activation in anatomically and functionally defined regions of interest in bilateral VS and DS. Nine non-treatment-seeking alcohol-dependent participants twice completed an alcohol cue reactivity task during two fMRI scans separated by 14 days. HLM analyses demonstrated that, across all participants, alcohol cues elicited significant activation in each of the regions of interest. At the group level, these activations attenuated slightly between scans, but session-wise differences were not significant. Within-participants stability was best in the anatomically defined right VS and DS and in a functionally defined region that encompassed right caudate and putamen (intraclass correlation coefficients of .75, .81, and .76, respectively). Thus, within this small sample, alcohol cue-elicited fMRI activation had good reliability in the right striatum, though a larger sample is necessary to ensure generalizability and further evaluate stability. This study also demonstrates the utility of HLM analytic techniques for serial fMRI studies, in which separating within-participants variance (individual changes in activation) from between-participants factors (time or treatment) is critical. PMID:21316465
Neural substrates of smoking cue reactivity: A meta-analysis of fMRI studies
Engelmann, Jeffrey M.; Versace, Francesco; Robinson, Jason D.; Minnix, Jennifer A.; Lam, Cho Y.; Cui, Yong; Brown, Victoria L.; Cinciripini, Paul M.
2012-01-01
Reactivity to smoking-related cues may be an important factor that precipitates relapse in smokers who are trying to quit. The neurobiology of smoking cue reactivity has been investigated in several fMRI studies. We combined the results of these studies using activation likelihood estimation, a meta-analytic technique for fMRI data. Results of the meta-analysis indicated that smoking cues reliably evoke larger fMRI responses than neutral cues in the extended visual system, precuneus, posterior cingulate gyrus, anterior cingulate gyrus, dorsal and medial prefrontal cortex, insula, and dorsal striatum. Subtraction meta-analyses revealed that parts of the extended visual system and dorsal prefrontal cortex are more reliably responsive to smoking cues in deprived smokers than in non-deprived smokers, and that short-duration cues presented in event-related designs produce larger responses in the extended visual system than long-duration cues presented in blocked designs. The areas that were found to be responsive to smoking cues agree with theories of the neurobiology of cue reactivity, with two exceptions. First, there was a reliable cue reactivity effect in the precuneus, which is not typically considered a brain region important to addiction. Second, we found no significant effect in the nucleus accumbens, an area that plays a critical role in addiction, but this effect may have been due to technical difficulties associated with measuring fMRI data in that region. The results of this meta-analysis suggest that the extended visual system should receive more attention in future studies of smoking cue reactivity. PMID:22206965
fMRI amygdala activation during a spontaneous panic attack in a patient with panic disorder.
Pfleiderer, Bettina; Zinkirciran, Sariye; Arolt, Volker; Heindel, Walter; Deckert, Juergen; Domschke, Katharina
2007-01-01
Previous studies on neuronal activation correlates of panic attacks were mostly based on challenge tests, sensory-related stimulation or fear conditioning in healthy subjects. In the present study, we report on a female patient with panic disorder experiencing a spontaneous panic attack under an auditory habituation paradigm in the last stimulation block with sine tones captured with fMRI at 3T. The panic attack was associated with a significantly increased activity in the right amygdala. This is the first report on neuronal activation correlates of a spontaneous panic attack in a patient with panic disorder as measured by fMRI, which lends further support to a pivotal role of the amygdala in the pathogenesis of the disease.
Visual feature extraction from voxel-weighted averaging of stimulus images in 2 fMRI studies.
Hart, Corey B; Rose, William J
2013-11-01
Multiple studies have provided evidence for distributed object representation in the brain, with several recent experiments leveraging basis function estimates for partial image reconstruction from fMRI data. Using a novel combination of statistical decomposition, generalized linear models, and stimulus averaging on previously examined image sets and Bayesian regression of recorded fMRI activity during presentation of these data sets, we identify a subset of relevant voxels that appear to code for covarying object features. Using a technique we term "voxel-weighted averaging," we isolate image filters that these voxels appear to implement. The results, though very cursory, appear to have significant implications for hierarchical and deep-learning-type approaches toward the understanding of neural coding and representation.
ERIC Educational Resources Information Center
Szucs, Denes; Soltesz, Fruzsina; Bryce, Donna; Whitebread, David
2009-01-01
The ability to select an appropriate motor response by resolving competition among alternative responses plays a major role in cognitive performance. fMRI studies suggest that the development of this skill is related to the maturation of the frontal cortex that underlies the improvement of motor inhibition abilities. However, fMRI cannot…
ERIC Educational Resources Information Center
Dinomais, Mickael; Lignon, Gregoire; Chinier, Eva; Richard, Isabelle; Minassian, Aram Ter; The Tich, Sylvie N'Guyen
2013-01-01
The aim of this functional magnetic resonance imaging (fMRI) study was to examine and compare brain activation in patients with unilateral cerebral palsy (CP) during observation of simple hand movement performed by the paretic and nonparetic hand. Nineteen patients with clinical unilateral CP (14 male, mean age 14 years, 7-21 years) participated…
Differential fMRI Activation Patterns to Noxious Heat and Tactile Stimuli in the Primate Spinal Cord
Yang, Pai-Feng; Wang, Feng
2015-01-01
Mesoscale local functional organizations of the primate spinal cord are largely unknown. Using high-resolution fMRI at 9.4 T, we identified distinct interhorn and intersegment fMRI activation patterns to tactile versus nociceptive heat stimulation of digits in lightly anesthetized monkeys. Within a spinal segment, 8 Hz vibrotactile stimuli elicited predominantly fMRI activations in the middle part of ipsilateral dorsal horn (iDH), along with significantly weaker activations in ipsilateral (iVH) and contralateral (cVH) ventral horns. In contrast, nociceptive heat stimuli evoked widespread strong activations in the superficial part of iDH, as well as in iVH and contralateral dorsal (cDH) horns. As controls, only weak signal fluctuations were detected in the white matter. The iDH responded most strongly to both tactile and heat stimuli, whereas the cVH and cDH responded selectively to tactile versus nociceptive heat, respectively. Across spinal segments, iDH activations were detected in three consecutive segments in both tactile and heat conditions. Heat responses, however, were more extensive along the cord, with strong activations in iVH and cDH in two consecutive segments. Subsequent subunit B of cholera toxin tracer histology confirmed that the spinal segments showing fMRI activations indeed received afferent inputs from the stimulated digits. Comparisons of the fMRI signal time courses in early somatosensory area 3b and iDH revealed very similar hemodynamic stimulus–response functions. In summary, we identified with fMRI distinct segmental networks for the processing of tactile and nociceptive heat stimuli in the cervical spinal cord of nonhuman primates. SIGNIFICANCE STATEMENT This is the first fMRI demonstration of distinct intrasegmental and intersegmental nociceptive heat and touch processing circuits in the spinal cord of nonhuman primates. This study provides novel insights into the local functional organizations of the primate spinal cord for pain and touch, information that will be valuable for designing and optimizing therapeutic interventions for chronic pain management. PMID:26203144
Liu, Peiying; Hebrank, Andrew C.; Rodrigue, Karen M.; Kennedy, Kristen M.; Section, Jarren; Park, Denise C.; Lu, Hanzhang
2013-01-01
BOLD fMRI has provided a wealth of information about the aging brain. A common finding is that posterior regions of the brain manifest an age-related decrease in activation while the anterior regions show an age-related increase. Several neurocognitive models have been proposed to interpret these findings. However, one issue that has not been sufficiently considered to date is that the BOLD signal is based on vascular responses secondary to neural activity. Thus the above findings could be in part due to a vascular change, especially in view of the expected decline of vascular health with age. In the present study, we aim to examine age-related differences in memory-encoding fMRI response in the context of vascular aging. One hundred and thirty healthy subjects ranging from 20 to 89 years old underwent a scene-viewing fMRI task and, in the same session, cerebrovascular reactivity (CVR) was measured in each subject using a CO2-inhalation task. Without accounting for the influence of vascular changes, the task-activated fMRI signal showed the typical age-related decrease in visual cortex and medial temporal lobe (MTL), but manifested an increase in the right inferior frontal gyrus (IFG). In the same individuals, an age-related CVR reduction was observed in all of these regions. We then used a previously proposed normalization approach to calculate a CVR-corrected fMRI signal, which was defined as the uncorrected signal divided by CVR. Based on the CVR-corrected fMRI signal, an age-related increase is now seen in both the left and right side of IFG; and no brain regions showed a signal decrease with age. We additionally used a model-based approach to examine the fMRI data in the context of CVR, which again suggested an age-related change in the two frontal regions, but not in the visual and MTL regions. PMID:23624491
PCA leverage: outlier detection for high-dimensional functional magnetic resonance imaging data.
Mejia, Amanda F; Nebel, Mary Beth; Eloyan, Ani; Caffo, Brian; Lindquist, Martin A
2017-07-01
Outlier detection for high-dimensional (HD) data is a popular topic in modern statistical research. However, one source of HD data that has received relatively little attention is functional magnetic resonance images (fMRI), which consists of hundreds of thousands of measurements sampled at hundreds of time points. At a time when the availability of fMRI data is rapidly growing-primarily through large, publicly available grassroots datasets-automated quality control and outlier detection methods are greatly needed. We propose principal components analysis (PCA) leverage and demonstrate how it can be used to identify outlying time points in an fMRI run. Furthermore, PCA leverage is a measure of the influence of each observation on the estimation of principal components, which are often of interest in fMRI data. We also propose an alternative measure, PCA robust distance, which is less sensitive to outliers and has controllable statistical properties. The proposed methods are validated through simulation studies and are shown to be highly accurate. We also conduct a reliability study using resting-state fMRI data from the Autism Brain Imaging Data Exchange and find that removal of outliers using the proposed methods results in more reliable estimation of subject-level resting-state networks using independent components analysis. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Guinchard, A-C; Ghazaleh, Naghmeh; Saenz, M; Fornari, E; Prior, J O; Maeder, P; Adib, S; Maire, R
2016-11-01
We studied possible brain changes with functional MRI (fMRI) and fluorodeoxyglucose positron emission tomography (FDG-PET) in a patient with a rare, high-intensity "objective tinnitus" (high-level SOAEs) in the left ear of 10 years duration, with no associated hearing loss. This is the first case of objective cochlear tinnitus to be investigated with functional neuroimaging. The objective cochlear tinnitus was measured by Spontaneous Otoacoustic Emissions (SOAE) equipment (frequency 9689 Hz, intensity 57 dB SPL) and is clearly audible to anyone standing near the patient. Functional modifications in primary auditory areas and other brain regions were evaluated using 3T and 7T fMRI and FDG-PET. In the fMRI evaluations, a saturation of the auditory cortex at the tinnitus frequency was observed, but the global cortical tonotopic organization remained intact when compared to the results of fMRI of healthy subjects. The FDG-PET showed no evidence of an increase or decrease of activity in the auditory cortices or in the limbic system as compared to normal subjects. In this patient with high-intensity objective cochlear tinnitus, fMRI and FDG-PET showed no significant brain reorganization in auditory areas and/or in the limbic system, as reported in the literature in patients with chronic subjective tinnitus. Copyright © 2016 Elsevier B.V. All rights reserved.
Ventral striatum and the evaluation of memory retrieval strategies.
Badre, David; Lebrecht, Sophie; Pagliaccio, David; Long, Nicole M; Scimeca, Jason M
2014-09-01
Adaptive memory retrieval requires mechanisms of cognitive control that facilitate the recovery of goal-relevant information. Frontoparietal systems are known to support control of memory retrieval. However, the mechanisms by which the brain acquires, evaluates, and adapts retrieval strategies remain unknown. Here, we provide evidence that ventral striatal activation tracks the success of a retrieval strategy and correlates with subsequent reliance on that strategy. Human participants were scanned with fMRI while performing a lexical decision task. A rule was provided that indicated the likely semantic category of a target word given the category of a preceding prime. Reliance on the rule improved decision-making, as estimated within a drift diffusion framework. Ventral striatal activation tracked the benefit that relying on the rule had on decision-making. Moreover, activation in ventral striatum correlated with a participant's subsequent reliance on the rule. Taken together, these results support a role for ventral striatum in learning and evaluating declarative retrieval strategies.
The Brain Adapts to Dishonesty
Garrett, Neil; Lazzaro, Stephanie C.; Ariely, Dan; Sharot, Tali
2016-01-01
Dishonesty is an integral part of our social world, influencing domains ranging from finance and politics to personal relationships. Anecdotally, digressions from a moral code are often described as a series of small breaches that grow over time. Here, we provide empirical evidence for a gradual escalation of self-serving dishonesty and reveal a neural mechanism supporting it. Behaviorally, we show that the extent to which participants engage in self-serving dishonesty increases with repetition. Using fMRI we show that signal reduction in the amygdala is sensitive to the history of dishonest behavior, consistent with adaptation. Critically, the extent of amygdala BOLD reduction to dishonesty on a present decision relative to the last, predicts the magnitude of escalation of self-serving dishonesty on the next decision. The findings uncover a biological mechanism that supports a “slippery slope”: what begins as small acts of dishonesty can escalate into larger instances. PMID:27775721
Yourganov, Grigori; Schmah, Tanya; Churchill, Nathan W; Berman, Marc G; Grady, Cheryl L; Strother, Stephen C
2014-08-01
The field of fMRI data analysis is rapidly growing in sophistication, particularly in the domain of multivariate pattern classification. However, the interaction between the properties of the analytical model and the parameters of the BOLD signal (e.g. signal magnitude, temporal variance and functional connectivity) is still an open problem. We addressed this problem by evaluating a set of pattern classification algorithms on simulated and experimental block-design fMRI data. The set of classifiers consisted of linear and quadratic discriminants, linear support vector machine, and linear and nonlinear Gaussian naive Bayes classifiers. For linear discriminant, we used two methods of regularization: principal component analysis, and ridge regularization. The classifiers were used (1) to classify the volumes according to the behavioral task that was performed by the subject, and (2) to construct spatial maps that indicated the relative contribution of each voxel to classification. Our evaluation metrics were: (1) accuracy of out-of-sample classification and (2) reproducibility of spatial maps. In simulated data sets, we performed an additional evaluation of spatial maps with ROC analysis. We varied the magnitude, temporal variance and connectivity of simulated fMRI signal and identified the optimal classifier for each simulated environment. Overall, the best performers were linear and quadratic discriminants (operating on principal components of the data matrix) and, in some rare situations, a nonlinear Gaussian naïve Bayes classifier. The results from the simulated data were supported by within-subject analysis of experimental fMRI data, collected in a study of aging. This is the first study that systematically characterizes interactions between analysis model and signal parameters (such as magnitude, variance and correlation) on the performance of pattern classifiers for fMRI. Copyright © 2014 Elsevier Inc. All rights reserved.
Mazerolle, Erin L; D'Arcy, Ryan CN; Beyea, Steven D
2008-01-01
Background It is generally believed that activation in functional magnetic resonance imaging (fMRI) is restricted to gray matter. Despite this, a number of studies have reported white matter activation, particularly when the corpus callosum is targeted using interhemispheric transfer tasks. These findings suggest that fMRI signals may not be neatly confined to gray matter tissue. In the current experiment, 4 T fMRI was employed to evaluate whether it is possible to detect white matter activation. We used an interhemispheric transfer task modelled after neurological studies of callosal disconnection. It was hypothesized that white matter activation could be detected using fMRI. Results Both group and individual data were considered. At liberal statistical thresholds (p < 0.005, uncorrected), group level activation was detected in the isthmus of the corpus callosum. This region connects the superior parietal cortices, which have been implicated previously in interhemispheric transfer. At the individual level, five of the 24 subjects (21%) had activation clusters that were located primarily within the corpus callosum. Consistent with the group results, the clusters of all five subjects were located in posterior callosal regions. The signal time courses for these clusters were comparable to those observed for task related gray matter activation. Conclusion The findings support the idea that, despite the inherent challenges, fMRI activation can be detected in the corpus callosum at the individual level. Future work is needed to determine whether the detection of this activation can be improved by utilizing higher spatial resolution, optimizing acquisition parameters, and analyzing the data with tissue specific models of the hemodynamic response. The ability to detect white matter fMRI activation expands the scope of basic and clinical brain mapping research, and provides a new approach for understanding brain connectivity. PMID:18789154
Korgaonkar, Mayuresh S; Ram, Kaushik; Williams, Leanne M; Gatt, Justine M; Grieve, Stuart M
2014-08-01
The resting state default mode network (DMN) has been shown to characterize a number of neurological and psychiatric disorders. Evidence suggests an underlying genetic basis for this network and hence could serve as potential endophenotype for these disorders. Heritability is a defining criterion for endophenotypes. The DMN is measured either using a resting-state functional magnetic resonance imaging (fMRI) scan or by extracting resting state activity from task-based fMRI. The current study is the first to evaluate heritability of this task-derived resting activity. 250 healthy adult twins (79 monozygotic and 46 dizygotic same sex twin pairs) completed five cognitive and emotion processing fMRI tasks. Resting state DMN functional connectivity was derived from these five fMRI tasks. We validated this approach by comparing connectivity estimates from task-derived resting activity for all five fMRI tasks, with those obtained using a dedicated task-free resting state scan in an independent cohort of 27 healthy individuals. Structural equation modeling using the classic twin design was used to estimate the genetic and environmental contributions to variance for the resting-state DMN functional connectivity. About 9-41% of the variance in functional connectivity between the DMN nodes was attributed to genetic contribution with the greatest heritability found for functional connectivity between the posterior cingulate and right inferior parietal nodes (P<0.001). Our data provide new evidence that functional connectivity measures from the intrinsic DMN derived from task-based fMRI datasets are under genetic control and have the potential to serve as endophenotypes for genetically predisposed psychiatric and neurological disorders. Copyright © 2014 Wiley Periodicals, Inc.
Charboneau, Evonne J.; Dietrich, Mary S.; Park, Sohee; Cao, Aize; Watkins, Tristan J; Blackford, Jennifer U; Benningfield, Margaret M.; Martin, Peter R.; Buchowski, Maciej S.; Cowan, Ronald L.
2013-01-01
Craving is a major motivator underlying drug use and relapse but the neural correlates of cannabis craving are not well understood. This study sought to determine whether visual cannabis cues increase cannabis craving and whether cue-induced craving is associated with regional brain activation in cannabis-dependent individuals. Cannabis craving was assessed in 16 cannabis-dependent adult volunteers while they viewed cannabis cues during a functional MRI (fMRI) scan. The Marijuana Craving Questionnaire was administered immediately before and after each of three cannabis cue-exposure fMRI runs. FMRI blood-oxygenation-level-dependent (BOLD) signal intensity was determined in regions activated by cannabis cues to examine the relationship of regional brain activation to cannabis craving. Craving scores increased significantly following exposure to visual cannabis cues. Visual cues activated multiple brain regions, including inferior orbital frontal cortex, posterior cingulate gyrus, parahippocampal gyrus, hippocampus, amygdala, superior temporal pole, and occipital cortex. Craving scores at baseline and at the end of all three runs were significantly correlated with brain activation during the first fMRI run only, in the limbic system (including amygdala and hippocampus) and paralimbic system (superior temporal pole), and visual regions (occipital cortex). Cannabis cues increased craving in cannabis-dependent individuals and this increase was associated with activation in the limbic, paralimbic, and visual systems during the first fMRI run, but not subsequent fMRI runs. These results suggest that these regions may mediate visually cued aspects of drug craving. This study provides preliminary evidence for the neural basis of cue-induced cannabis craving and suggests possible neural targets for interventions targeted at treating cannabis dependence. PMID:24035535
fMRI during natural sleep as a method to study brain function during early childhood.
Redcay, Elizabeth; Kennedy, Daniel P; Courchesne, Eric
2007-12-01
Many techniques to study early functional brain development lack the whole-brain spatial resolution that is available with fMRI. We utilized a relatively novel method in which fMRI data were collected from children during natural sleep. Stimulus-evoked responses to auditory and visual stimuli as well as stimulus-independent functional networks were examined in typically developing 2-4-year-old children. Reliable fMRI data were collected from 13 children during presentation of auditory stimuli (tones, vocal sounds, and nonvocal sounds) in a block design. Twelve children were presented with visual flashing lights at 2.5 Hz. When analyses combined all three types of auditory stimulus conditions as compared to rest, activation included bilateral superior temporal gyri/sulci (STG/S) and right cerebellum. Direct comparisons between conditions revealed significantly greater responses to nonvocal sounds and tones than to vocal sounds in a number of brain regions including superior temporal gyrus/sulcus, medial frontal cortex and right lateral cerebellum. The response to visual stimuli was localized to occipital cortex. Furthermore, stimulus-independent functional connectivity MRI analyses (fcMRI) revealed functional connectivity between STG and other temporal regions (including contralateral STG) and medial and lateral prefrontal regions. Functional connectivity with an occipital seed was localized to occipital and parietal cortex. In sum, 2-4 year olds showed a differential fMRI response both between stimulus modalities and between stimuli in the auditory modality. Furthermore, superior temporal regions showed functional connectivity with numerous higher-order regions during sleep. We conclude that the use of sleep fMRI may be a valuable tool for examining functional brain organization in young children.
NASA Astrophysics Data System (ADS)
Yang, Lei; Tian, Jie; Wang, Xiaoxiang; Hu, Jin
2005-04-01
The comprehensive understanding of human emotion processing needs consideration both in the spatial distribution and the temporal sequencing of neural activity. The aim of our work is to identify brain regions involved in emotional recognition as well as to follow the time sequence in the millisecond-range resolution. The effect of activation upon visual stimuli in different gender by International Affective Picture System (IAPS) has been examined. Hemodynamic and electrophysiological responses were measured in the same subjects. Both fMRI and ERP study were employed in an event-related study. fMRI have been obtained with 3.0 T Siemens Magnetom whole-body MRI scanner. 128-channel ERP data were recorded using an EGI system. ERP is sensitive to millisecond changes in mental activity, but the source localization and timing is limited by the ill-posed 'inversed' problem. We try to investigate the ERP source reconstruction problem in this study using fMRI constraint. We chose ICA as a pre-processing step of ERP source reconstruction to exclude the artifacts and provide a prior estimate of the number of dipoles. The results indicate that male and female show differences in neural mechanism during emotion visual stimuli.
An fMRI compatible wrist robotic interface to study brain development in neonates.
Allievi, A G; Melendez-Calderon, A; Arichi, T; Edwards, A D; Burdet, E
2013-06-01
A comprehensive understanding of the mechanisms that underlie brain development in premature infants and newborns is crucial for the identification of interventional therapies and rehabilitative strategies. fMRI has the potential to identify such mechanisms, but standard techniques used in adults cannot be implemented in infant studies in a straightforward manner. We have developed an MR safe wrist stimulating robot to systematically investigate the functional brain activity related to both spontaneous and induced wrist movements in premature babies using fMRI. We present the technical aspects of this development and the results of validation experiments. Using the device, the cortical activity associated with both active and passive finger movements were reliably identified in a healthy adult subject. In two preterm infants, passive wrist movements induced a well localized positive BOLD response in the contralateral somatosensory cortex. Furthermore, in a single preterm infant, spontaneous wrist movements were found to be associated with an adjacent cluster of activity, at the level of the infant's primary motor cortex. The described device will allow detailed and objective fMRI studies of somatosensory and motor system development during early human life and following neonatal brain injury.
Filippi, Massimo; Agosta, Federica
2011-01-01
Patients with Alzheimer’s disease (AD) experience a brain network breakdown, reflecting disconnection at both the structural and functional system level. Resting-state (RS) functional MRI (fMRI) studies demonstrated that the regional coherence of the fMRI signal is significantly altered in patients with AD and amnestic mild cognitive impairment. Diffusion tensor (DT) MRI has made it possible to track fiber bundle projections across the brain, revealing a substantially abnormal interplay of “critical” white matter tracts in these conditions. The observed agreement between the results of RS fMRI and DT MRI tractography studies in healthy individuals is encouraging and offers interesting hypotheses to be tested in patients with AD, a MCI, and other dementias in order to improve our understanding of their pathobiology in vivo. In this review,we describe the major findings obtained in AD using RS fMRI and DT MRI tractography, and discuss how the relationship between structure and function of the brain networks in AD may be better understood through the application of MR-based technology. This research endeavor holds a great promise in clarifying the mechanisms of cognitive decline in complex chronic neurodegenerative disorders.
Caffo, Brian S.; Crainiceanu, Ciprian M.; Verduzco, Guillermo; Joel, Suresh; Mostofsky, Stewart H.; Bassett, Susan Spear; Pekar, James J.
2010-01-01
Functional connectivity is the study of correlations in measured neurophysiological signals. Altered functional connectivity has been shown to be associated with a variety of cognitive and memory impairments and dysfunction, including Alzheimer’s disease. In this manuscript we use a two-stage application of the singular value decomposition to obtain data driven population-level measures of functional connectivity in functional magnetic resonance imaging (fMRI). The method is computationally simple and amenable to high dimensional fMRI data with large numbers of subjects. Simulation studies suggest the ability of the decomposition methods to recover population brain networks and their associated loadings. We further demonstrate the utility of these decompositions in a functional logistic regression model. The method is applied to a novel fMRI study of Alzheimer’s disease risk under a verbal paired associates task. We found a indication of alternative connectivity in clinically asymptomatic at-risk subjects when compared to controls, that was not significant in the light of multiple comparisons adjustment. The relevant brain network loads primarily on the temporal lobe and overlaps significantly with the olfactory areas and temporal poles. PMID:20227508
Caffo, Brian S; Crainiceanu, Ciprian M; Verduzco, Guillermo; Joel, Suresh; Mostofsky, Stewart H; Bassett, Susan Spear; Pekar, James J
2010-07-01
Functional connectivity is the study of correlations in measured neurophysiological signals. Altered functional connectivity has been shown to be associated with a variety of cognitive and memory impairments and dysfunction, including Alzheimer's disease. In this manuscript we use a two-stage application of the singular value decomposition to obtain data driven population-level measures of functional connectivity in functional magnetic resonance imaging (fMRI). The method is computationally simple and amenable to high dimensional fMRI data with large numbers of subjects. Simulation studies suggest the ability of the decomposition methods to recover population brain networks and their associated loadings. We further demonstrate the utility of these decompositions in a functional logistic regression model. The method is applied to a novel fMRI study of Alzheimer's disease risk under a verbal paired associates task. We found an indication of alternative connectivity in clinically asymptomatic at-risk subjects when compared to controls, which was not significant in the light of multiple comparisons adjustment. The relevant brain network loads primarily on the temporal lobe and overlaps significantly with the olfactory areas and temporal poles. Copyright (c) 2010 Elsevier Inc. All rights reserved.
Biophysical and physiological origins of blood oxygenation level-dependent fMRI signals.
Kim, Seong-Gi; Ogawa, Seiji
2012-07-01
After its discovery in 1990, blood oxygenation level-dependent (BOLD) contrast in functional magnetic resonance imaging (fMRI) has been widely used to map brain activation in humans and animals. Since fMRI relies on signal changes induced by neural activity, its signal source can be complex and is also dependent on imaging parameters and techniques. In this review, we identify and describe the origins of BOLD fMRI signals, including the topics of (1) effects of spin density, volume fraction, inflow, perfusion, and susceptibility as potential contributors to BOLD fMRI, (2) intravascular and extravascular contributions to conventional gradient-echo and spin-echo BOLD fMRI, (3) spatial specificity of hemodynamic-based fMRI related to vascular architecture and intrinsic hemodynamic responses, (4) BOLD signal contributions from functional changes in cerebral blood flow (CBF), cerebral blood volume (CBV), and cerebral metabolic rate of O(2) utilization (CMRO(2)), (5) dynamic responses of BOLD, CBF, CMRO(2), and arterial and venous CBV, (6) potential sources of initial BOLD dips, poststimulus BOLD undershoots, and prolonged negative BOLD fMRI signals, (7) dependence of stimulus-evoked BOLD signals on baseline physiology, and (8) basis of resting-state BOLD fluctuations. These discussions are highly relevant to interpreting BOLD fMRI signals as physiological means.
Biophysical and physiological origins of blood oxygenation level-dependent fMRI signals
Kim, Seong-Gi; Ogawa, Seiji
2012-01-01
After its discovery in 1990, blood oxygenation level-dependent (BOLD) contrast in functional magnetic resonance imaging (fMRI) has been widely used to map brain activation in humans and animals. Since fMRI relies on signal changes induced by neural activity, its signal source can be complex and is also dependent on imaging parameters and techniques. In this review, we identify and describe the origins of BOLD fMRI signals, including the topics of (1) effects of spin density, volume fraction, inflow, perfusion, and susceptibility as potential contributors to BOLD fMRI, (2) intravascular and extravascular contributions to conventional gradient-echo and spin-echo BOLD fMRI, (3) spatial specificity of hemodynamic-based fMRI related to vascular architecture and intrinsic hemodynamic responses, (4) BOLD signal contributions from functional changes in cerebral blood flow (CBF), cerebral blood volume (CBV), and cerebral metabolic rate of O2 utilization (CMRO2), (5) dynamic responses of BOLD, CBF, CMRO2, and arterial and venous CBV, (6) potential sources of initial BOLD dips, poststimulus BOLD undershoots, and prolonged negative BOLD fMRI signals, (7) dependence of stimulus-evoked BOLD signals on baseline physiology, and (8) basis of resting-state BOLD fluctuations. These discussions are highly relevant to interpreting BOLD fMRI signals as physiological means. PMID:22395207
Typical and Atypical Neurodevelopment for Face Specialization: An fMRI Study
ERIC Educational Resources Information Center
Joseph, Jane E.; Zhu, Xun; Gundran, Andrew; Davies, Faraday; Clark, Jonathan D.; Ruble, Lisa; Glaser, Paul; Bhatt, Ramesh S.
2015-01-01
Individuals with autism spectrum disorder (ASD) and their relatives process faces differently from typically developed (TD) individuals. In an fMRI face-viewing task, TD and undiagnosed sibling (SIB) children (5-18 years) showed face specialization in the right amygdala and ventromedial prefrontal cortex, with left fusiform and right amygdala face…
The Effect of Strategy on Problem Solving: An FMRI Study
ERIC Educational Resources Information Center
Newman, Sharlene D.; Pruce, Benjamin; Rusia, Akash; Burns, Thomas, Jr.
2010-01-01
fMRI was used to examine the differential effect of two problem-solving strategies. Participants were trained to use both a pictorial/spatial and a symbolic/algebraic strategy to solve word problems. While these two strategies activated similar cortical regions, a number of differences were noted in the level of activation. These differences…
What Has fMRI Told Us about the Development of Cognitive Control through Adolescence?
ERIC Educational Resources Information Center
Luna, Beatriz; Padmanabhan, Aarthi; O'Hearn, Kirsten
2010-01-01
Cognitive control, the ability to voluntarily guide our behavior, continues to improve throughout adolescence. Below we review the literature on age-related changes in brain function related to response inhibition and working memory, which support cognitive control. Findings from studies using functional magnetic resonance imaging (fMRI) indicate…
How Verbal and Spatial Manipulation Networks Contribute to Calculation: An fMRI Study
ERIC Educational Resources Information Center
Zago, Laure; Petit, Laurent; Turbelin, Marie-Renee; Andersson, Frederic; Vigneau, Mathieu; Tzourio-Mazoyer, Nathalie
2008-01-01
The manipulation of numbers required during calculation is known to rely on working memory (WM) resources. Here, we investigated the respective contributions of verbal and/or spatial WM manipulation brain networks during the addition of four numbers performed by adults, using functional magnetic resonance imaging (fMRI). Both manipulation and…
Dual-Tasking Alleviated Sleep Deprivation Disruption in Visuomotor Tracking: An fMRI Study
ERIC Educational Resources Information Center
Gazes, Yunglin; Rakitin, Brian C.; Steffener, Jason; Habeck, Christian; Butterfield, Brady; Basner, Robert C.; Ghez, Claude; Stern, Yaakov
2012-01-01
Effects of dual-responding on tracking performance after 49-h of sleep deprivation (SD) were evaluated behaviorally and with functional magnetic resonance imaging (fMRI). Continuous visuomotor tracking was performed simultaneously with an intermittent color-matching visual detection task in which a pair of color-matched stimuli constituted a…
Neural Changes after Phonological Treatment for Anomia: An fMRI Study
ERIC Educational Resources Information Center
Rochon, Elizabeth; Leonard, Carol; Burianova, Hana; Laird, Laura; Soros, Peter; Graham, Simon; Grady, Cheryl
2010-01-01
Functional magnetic resonance imaging (fMRI) was used to investigate the neural processing characteristics associated with word retrieval abilities after a phonologically-based treatment for anomia in two stroke patients with aphasia. Neural activity associated with a phonological and a semantic task was compared before and after treatment with…
The Effect of fMRI (Noise) on Cognitive Control
ERIC Educational Resources Information Center
Hommel, Bernhard; Fischer, Rico; Colzato, Lorenza S.; van den Wildenberg, Wery P. M.; Cellini, Cristiano
2012-01-01
Stressful situations, the aversiveness of events, or increases in task difficulty (e.g., conflict) have repeatedly been shown to be capable of triggering attentional control adjustments. In the present study we tested whether the particularity of an fMRI testing environment (i.e., EPI noise) might result in such increases of the cognitive control…
Gopinath, Kaundinya; Krishnamurthy, Venkatagiri; Sathian, K
2018-02-01
In a recent study, Eklund et al. employed resting-state functional magnetic resonance imaging data as a surrogate for null functional magnetic resonance imaging (fMRI) datasets and posited that cluster-wise family-wise error (FWE) rate-corrected inferences made by using parametric statistical methods in fMRI studies over the past two decades may have been invalid, particularly for cluster defining thresholds less stringent than p < 0.001; this was principally because the spatial autocorrelation functions (sACF) of fMRI data had been modeled incorrectly to follow a Gaussian form, whereas empirical data suggested otherwise. Here, we show that accounting for non-Gaussian signal components such as those arising from resting-state neural activity as well as physiological responses and motion artifacts in the null fMRI datasets yields first- and second-level general linear model analysis residuals with nearly uniform and Gaussian sACF. Further comparison with nonparametric permutation tests indicates that cluster-based FWE corrected inferences made with Gaussian spatial noise approximations are valid.
Mapping white-matter functional organization at rest and during naturalistic visual perception.
Marussich, Lauren; Lu, Kun-Han; Wen, Haiguang; Liu, Zhongming
2017-02-01
Despite the wide applications of functional magnetic resonance imaging (fMRI) to mapping brain activation and connectivity in cortical gray matter, it has rarely been utilized to study white-matter functions. In this study, we investigated the spatiotemporal characteristics of fMRI data within the white matter acquired from humans both in the resting state and while watching a naturalistic movie. By using independent component analysis and hierarchical clustering, resting-state fMRI data in the white matter were de-noised and decomposed into spatially independent components, which were further assembled into hierarchically organized axonal fiber bundles. Interestingly, such components were partly reorganized during natural vision. Relative to resting state, the visual task specifically induced a stronger degree of temporal coherence within the optic radiations, as well as significant correlations between the optic radiations and multiple cortical visual networks. Therefore, fMRI contains rich functional information about the activity and connectivity within white matter at rest and during tasks, challenging the conventional practice of taking white-matter signals as noise or artifacts. Copyright © 2016 Elsevier Inc. All rights reserved.
Exploring connectivity with large-scale Granger causality on resting-state functional MRI.
DSouza, Adora M; Abidin, Anas Z; Leistritz, Lutz; Wismüller, Axel
2017-08-01
Large-scale Granger causality (lsGC) is a recently developed, resting-state functional MRI (fMRI) connectivity analysis approach that estimates multivariate voxel-resolution connectivity. Unlike most commonly used multivariate approaches, which establish coarse-resolution connectivity by aggregating voxel time-series avoiding an underdetermined problem, lsGC estimates voxel-resolution, fine-grained connectivity by incorporating an embedded dimension reduction. We investigate application of lsGC on realistic fMRI simulations, modeling smoothing of neuronal activity by the hemodynamic response function and repetition time (TR), and empirical resting-state fMRI data. Subsequently, functional subnetworks are extracted from lsGC connectivity measures for both datasets and validated quantitatively. We also provide guidelines to select lsGC free parameters. Results indicate that lsGC reliably recovers underlying network structure with area under receiver operator characteristic curve (AUC) of 0.93 at TR=1.5s for a 10-min session of fMRI simulations. Furthermore, subnetworks of closely interacting modules are recovered from the aforementioned lsGC networks. Results on empirical resting-state fMRI data demonstrate recovery of visual and motor cortex in close agreement with spatial maps obtained from (i) visuo-motor fMRI stimulation task-sequence (Accuracy=0.76) and (ii) independent component analysis (ICA) of resting-state fMRI (Accuracy=0.86). Compared with conventional Granger causality approach (AUC=0.75), lsGC produces better network recovery on fMRI simulations. Furthermore, it cannot recover functional subnetworks from empirical fMRI data, since quantifying voxel-resolution connectivity is not possible as consequence of encountering an underdetermined problem. Functional network recovery from fMRI data suggests that lsGC gives useful insight into connectivity patterns from resting-state fMRI at a multivariate voxel-resolution. Copyright © 2017 Elsevier B.V. All rights reserved.
Fellner, C; Doenitz, C; Finkenzeller, T; Jung, E M; Rennert, J; Schlaier, J
2009-01-01
Geometric distortions and low spatial resolution are current limitations in functional magnetic resonance imaging (fMRI). The aim of this study was to evaluate if application of parallel imaging or significant reduction of voxel size in combination with a new 32-channel head array coil can reduce those drawbacks at 1.5 T for a simple hand motor task. Therefore, maximum t-values (tmax) in different regions of activation, time-dependent signal-to-noise ratios (SNR(t)) as well as distortions within the precentral gyrus were evaluated. Comparing fMRI with and without parallel imaging in 17 healthy subjects revealed significantly reduced geometric distortions in anterior-posterior direction. Using parallel imaging, tmax only showed a mild reduction (7-11%) although SNR(t) was significantly diminished (25%). In 7 healthy subjects high-resolution (2 x 2 x 2 mm3) fMRI was compared with standard fMRI (3 x 3 x 3 mm3) in a 32-channel coil and with high-resolution fMRI in a 12-channel coil. The new coil yielded a clear improvement for tmax (21-32%) and SNR(t) (51%) in comparison with the 12-channel coil. Geometric distortions were smaller due to the smaller voxel size. Therefore, the reduction in tmax (8-16%) and SNR(t) (52%) in the high-resolution experiment seems to be tolerable with this coil. In conclusion, parallel imaging is an alternative to reduce geometric distortions in fMRI at 1.5 T. Using a 32-channel coil, reduction of the voxel size might be the preferable way to improve spatial accuracy.
Improved FastICA algorithm in fMRI data analysis using the sparsity property of the sources.
Ge, Ruiyang; Wang, Yubao; Zhang, Jipeng; Yao, Li; Zhang, Hang; Long, Zhiying
2016-04-01
As a blind source separation technique, independent component analysis (ICA) has many applications in functional magnetic resonance imaging (fMRI). Although either temporal or spatial prior information has been introduced into the constrained ICA and semi-blind ICA methods to improve the performance of ICA in fMRI data analysis, certain types of additional prior information, such as the sparsity, has seldom been added to the ICA algorithms as constraints. In this study, we proposed a SparseFastICA method by adding the source sparsity as a constraint to the FastICA algorithm to improve the performance of the widely used FastICA. The source sparsity is estimated through a smoothed ℓ0 norm method. We performed experimental tests on both simulated data and real fMRI data to investigate the feasibility and robustness of SparseFastICA and made a performance comparison between SparseFastICA, FastICA and Infomax ICA. Results of the simulated and real fMRI data demonstrated the feasibility and robustness of SparseFastICA for the source separation in fMRI data. Both the simulated and real fMRI experimental results showed that SparseFastICA has better robustness to noise and better spatial detection power than FastICA. Although the spatial detection power of SparseFastICA and Infomax did not show significant difference, SparseFastICA had faster computation speed than Infomax. SparseFastICA was comparable to the Infomax algorithm with a faster computation speed. More importantly, SparseFastICA outperformed FastICA in robustness and spatial detection power and can be used to identify more accurate brain networks than FastICA algorithm. Copyright © 2016 Elsevier B.V. All rights reserved.
McDonald, Carrie R; Thesen, Thomas; Carlson, Chad; Blumberg, Mark; Girard, Holly M; Trongnetrpunya, Amy; Sherfey, Jason S; Devinsky, Orrin; Kuzniecky, Rubin; Dolye, Werner K; Cash, Sydney S; Leonard, Matthew K; Hagler, Donald J; Dale, Anders M; Halgren, Eric
2010-11-01
Repetition priming is a core feature of memory processing whose anatomical correlates remain poorly understood. In this study, we use advanced multimodal imaging (functional magnetic resonance imaging (fMRI) and magnetoencephalography; MEG) to investigate the spatiotemporal profile of repetition priming. We use intracranial electroencephalography (iEEG) to validate our fMRI/MEG measurements. Twelve controls completed a semantic judgment task with fMRI and MEG that included words presented once (new, 'N') and words that repeated (old, 'O'). Six patients with epilepsy completed the same task during iEEG recordings. Blood-oxygen level dependent (BOLD) responses for N vs. O words were examined across the cortical surface and within regions of interest. MEG waveforms for N vs. O words were estimated using a noise-normalized minimum norm solution, and used to interpret the timecourse of fMRI. Spatial concordance was observed between fMRI and MEG repetition effects from 350 to 450 ms within bilateral occipitotemporal and medial temporal, left prefrontal, and left posterior temporal cortex. Additionally, MEG revealed widespread sources within left temporoparietal regions, whereas fMRI revealed bilateral reductions in occipitotemporal and left superior frontal, and increases in inferior parietal, precuneus, and dorsolateral prefrontal activity. BOLD suppression in left posterior temporal, left inferior prefrontal, and right occipitotemporal cortex correlated with MEG repetition-related reductions. IEEG responses from all three regions supported the timecourse of MEG and localization of fMRI. Furthermore, iEEG decreases to repeated words were associated with decreased gamma power in several regions, providing evidence that gamma oscillations are tightly coupled to cognitive phenomena and reflect regional activations seen in the BOLD signal. Copyright 2010 Elsevier Inc. All rights reserved.
McDonald, Carrie R.; Thesen, Thomas; Carlson, Chad; Blumberg, Mark; Girard, Holly M.; Trongnetrpunya, Amy; Sherfey, Jason S.; Devinsky, Orrin; Kuzniecky, Rubin; Dolye, Werner K.; Cash, Sydney S.; Leonard, Matt K.; Hagler, Donald J.; Dale, Anders M.; Halgren, Eric
2010-01-01
Repetition priming is a core feature of memory processing whose anatomical correlates remain poorly understood. In this study, we use advanced multimodal imaging (functional magnetic resonance imaging (fMRI) and magnetoencephalography; MEG) to investigate the spatiotemporal profile of repetition priming. We use intracranial electroencephalography (iEEG) to validate our fMRI/MEG measurements. Twelve controls completed a semantic judgment task with fMRI and MEG that included words presented once (new, ‘N’) and words that repeated (old, ‘O’). Six patients with epilepsy completed the same task during iEEG recordings. Blood-oxygen level dependent (BOLD) responses for N vs O words were examined across the cortical surface and within regions of interest. MEG waveforms for N vs O words were estimated using a noise-normalized minimum norm solution, and used to interpret the timecourse of fMRI. Spatial concordance was observed between fMRI and MEG repetition effects from 350–450ms within bilateral occipitotemporal and medial temporal, left prefrontal, and left posterior temporal cortex. Additionally, MEG revealed widespread sources within left temporoparietal regions, whereas fMRI revealed bilateral reductions in occipitotemporal and left superior frontal, and increases in inferior parietal, precuneus, and dorsolateral prefrontal activity. BOLD suppression in left posterior temporal, left inferior prefrontal, and right occipitotemporal cortex correlated with MEG repetition-related reductions. IEEG responses from all three regions supported the timecourse of MEG and localization of fMRI. Furthermore, iEEG decreases to repeated words were associated with decreased gamma power in several regions, providing evidence that gamma oscillations are tightly coupled to cognitive phenomena and reflect regional activations seen in the BOLD signal. PMID:20620212
Power, Jonathan D; Plitt, Mark; Gotts, Stephen J; Kundu, Prantik; Voon, Valerie; Bandettini, Peter A; Martin, Alex
2018-02-27
"Functional connectivity" techniques are commonplace tools for studying brain organization. A critical element of these analyses is to distinguish variance due to neurobiological signals from variance due to nonneurobiological signals. Multiecho fMRI techniques are a promising means for making such distinctions based on signal decay properties. Here, we report that multiecho fMRI techniques enable excellent removal of certain kinds of artifactual variance, namely, spatially focal artifacts due to motion. By removing these artifacts, multiecho techniques reveal frequent, large-amplitude blood oxygen level-dependent (BOLD) signal changes present across all gray matter that are also linked to motion. These whole-brain BOLD signals could reflect widespread neural processes or other processes, such as alterations in blood partial pressure of carbon dioxide (pCO 2 ) due to ventilation changes. By acquiring multiecho data while monitoring breathing, we demonstrate that whole-brain BOLD signals in the resting state are often caused by changes in breathing that co-occur with head motion. These widespread respiratory fMRI signals cannot be isolated from neurobiological signals by multiecho techniques because they occur via the same BOLD mechanism. Respiratory signals must therefore be removed by some other technique to isolate neurobiological covariance in fMRI time series. Several methods for removing global artifacts are demonstrated and compared, and were found to yield fMRI time series essentially free of motion-related influences. These results identify two kinds of motion-associated fMRI variance, with different physical mechanisms and spatial profiles, each of which strongly and differentially influences functional connectivity patterns. Distance-dependent patterns in covariance are nearly entirely attributable to non-BOLD artifacts.
Ille, Sebastian; Sollmann, Nico; Hauck, Theresa; Maurer, Stefanie; Tanigawa, Noriko; Obermueller, Thomas; Negwer, Chiara; Droese, Doris; Boeckh-Behrens, Tobias; Meyer, Bernhard; Ringel, Florian; Krieg, Sandro M
2015-08-01
Language mapping by repetitive navigated transcranial magnetic stimulation (rTMS) is increasingly used and has already replaced functional MRI (fMRI) in some institutions for preoperative mapping of neurosurgical patients. Yet some factors affect the concordance of both methods with direct cortical stimulation (DCS), most likely by lesions affecting cortical oxygenation levels. Therefore, the impairment of the accuracy of rTMS and fMRI was analyzed and compared with DCS during awake surgery in patients with intraparenchymal lesions. Language mapping was performed by DCS, rTMS, and fMRI using an object-naming task in 27 patients with left-sided perisylvian lesions, and the induced language errors of each method were assigned to the cortical parcellation system. Subsequently, the receiver operating characteristics were calculated for rTMS and fMRI and compared with DCS as ground truth for regions with (w/) and without (w/o) the lesion in the mapped regions. The w/ subgroup revealed a sensitivity of 100% (w/o 100%), a specificity of 8% (w/o 5%), a positive predictive value of 34% (w/o: 53%), and a negative predictive value (NPV) of 100% (w/o: 100%) for the comparison of rTMS versus DCS. Findings for the comparison of fMRI versus DCS within the w/ subgroup revealed a sensitivity of 32% (w/o: 62%), a specificity of 88% (w/o: 60%), a positive predictive value of 56% (w/o: 62%), and a NPV of 73% (w/o: 60%). Although strengths and weaknesses exist for both rTMS and fMRI, the results show that rTMS is less affected by a brain lesion than fMRI, especially when performing mapping of language-negative cortical regions based on sensitivity and NPV.
Ishikawa, Tatsuya; Muragaki, Yoshihiro; Maruyama, Takashi; Abe, Kayoko; Kawamata, Takakazu
2017-01-15
This study examined the accuracy of functional magnetic resonance imaging (fMRI) in identifying the language-dominant hemisphere and the situations in which the Wada test can be skipped among patients with gliomas located near speech areas. We examined 74 patients [48 men (64.9%); mean ± standard deviation age of 42.7 ± 13.6 years (range: 13 to 70 years); 71 right-handed, 2 left-handed, and 1 ambidextrous] with gliomas located near speech areas. All patients underwent the Wada test and fMRI, and 34 patients underwent awake surgery. The "last-and-first" task was administered during fMRI. The Wada test was successful in determining the language-dominant hemisphere in 73 patients (98.6%): left hemisphere in 68 patients (91.9%), right hemisphere in 4 patients (5.4%), and bilateral in 1 patient (1.4%). The dominant hemisphere for right-handed patients (n = 71) was the left hemisphere in 67 patients (94.3%), right hemisphere in 3 patients (4.2%), and undetectable in 1 patient (1.4%). The fMRI was successful in determining the language-dominant hemisphere in 53 patients (71.6%). The results of the Wada test and fMRI were inconsistent in 5 patients (8.6%), of which 3 (5.2%) exhibited dominance in opposite hemispheres. Furthermore, 2 of these 3 cases (2.7%) were contralateral false positive cases, whereby fMRI identified the right-hemisphere as language dominant for right-handed individuals with tumors in the left hemisphere. Based on these findings, we concluded that the Wada test can be skipped if language dominancy can be detected by fMRI.
Presurgical language fMRI: Mapping of six critical regions
Walshaw, Patricia D.; Hale, Kayleigh; Gaillard, William D.; Baxter, Leslie C.; Berl, Madison M.; Polczynska, Monika; Noble, Stephanie; Alkawadri, Rafeed; Hirsch, Lawrence J.; Constable, R. Todd; Bookheimer, Susan Y.
2017-01-01
Abstract Language mapping is a key goal in neurosurgical planning. fMRI mapping typically proceeds with a focus on Broca's and Wernicke's areas, although multiple other language‐critical areas are now well‐known. We evaluated whether clinicians could use a novel approach, including clinician‐driven individualized thresholding, to reliably identify six language regions, including Broca's Area, Wernicke's Area (inferior, superior), Exner's Area, Supplementary Speech Area, Angular Gyrus, and Basal Temporal Language Area. We studied 22 epilepsy and tumor patients who received Wada and fMRI (age 36.4[12.5]; Wada language left/right/mixed in 18/3/1). fMRI tasks (two × three tasks) were analyzed by two clinical neuropsychologists who flexibly thresholded and combined these to identify the six regions. The resulting maps were compared to fixed threshold maps. Clinicians generated maps that overlapped significantly, and were highly consistent, when at least one task came from the same set. Cases diverged when clinicians prioritized different language regions or addressed noise differently. Language laterality closely mirrored Wada data (85% accuracy). Activation consistent with all six language regions was consistently identified. In blind review, three external, independent clinicians rated the individualized fMRI language maps as superior to fixed threshold maps; identified the majority of regions significantly more frequently; and judged language laterality to mirror Wada lateralization more often. These data provide initial validation of a novel, clinician‐based approach to localizing language cortex. They also demonstrate clinical fMRI is superior when analyzed by an experienced clinician and that when fMRI data is of low quality judgments of laterality are unreliable and should be withheld. Hum Brain Mapp 38:4239–4255, 2017. © 2017 Wiley Periodicals, Inc. PMID:28544168
High-Speed Real-Time Resting-State fMRI Using Multi-Slab Echo-Volumar Imaging
Posse, Stefan; Ackley, Elena; Mutihac, Radu; Zhang, Tongsheng; Hummatov, Ruslan; Akhtari, Massoud; Chohan, Muhammad; Fisch, Bruce; Yonas, Howard
2013-01-01
We recently demonstrated that ultra-high-speed real-time fMRI using multi-slab echo-volumar imaging (MEVI) significantly increases sensitivity for mapping task-related activation and resting-state networks (RSNs) compared to echo-planar imaging (Posse et al., 2012). In the present study we characterize the sensitivity of MEVI for mapping RSN connectivity dynamics, comparing independent component analysis (ICA) and a novel seed-based connectivity analysis (SBCA) that combines sliding-window correlation analysis with meta-statistics. This SBCA approach is shown to minimize the effects of confounds, such as movement, and CSF and white matter signal changes, and enables real-time monitoring of RSN dynamics at time scales of tens of seconds. We demonstrate highly sensitive mapping of eloquent cortex in the vicinity of brain tumors and arterio-venous malformations, and detection of abnormal resting-state connectivity in epilepsy. In patients with motor impairment, resting-state fMRI provided focal localization of sensorimotor cortex compared with more diffuse activation in task-based fMRI. The fast acquisition speed of MEVI enabled segregation of cardiac-related signal pulsation using ICA, which revealed distinct regional differences in pulsation amplitude and waveform, elevated signal pulsation in patients with arterio-venous malformations and a trend toward reduced pulsatility in gray matter of patients compared with healthy controls. Mapping cardiac pulsation in cortical gray matter may carry important functional information that distinguishes healthy from diseased tissue vasculature. This novel fMRI methodology is particularly promising for mapping eloquent cortex in patients with neurological disease, having variable degree of cooperation in task-based fMRI. In conclusion, ultra-high-real-time speed fMRI enhances the sensitivity of mapping the dynamics of resting-state connectivity and cerebro-vascular pulsatility for clinical and neuroscience research applications. PMID:23986677
Temporal recalibration of motor and visual potentials in lag adaptation in voluntary movement.
Cai, Chang; Ogawa, Kenji; Kochiyama, Takanori; Tanaka, Hirokazu; Imamizu, Hiroshi
2018-05-15
Adaptively recalibrating motor-sensory asynchrony is critical for animals to perceive self-produced action consequences. It is controversial whether motor- or sensory-related neural circuits recalibrate this asynchrony. By combining magnetoencephalography (MEG) and functional MRI (fMRI), we investigate the temporal changes in brain activities caused by repeated exposure to a 150-ms delay inserted between a button-press action and a subsequent flash. We found that readiness potentials significantly shift later in the motor system, especially in parietal regions (average: 219.9 ms), while visually evoked potentials significantly shift earlier in occipital regions (average: 49.7 ms) in the delay condition compared to the no-delay condition. Moreover, the shift in readiness potentials, but not in visually evoked potentials, was significantly correlated with the psychophysical measure of motor-sensory adaptation. These results suggest that although both motor and sensory processes contribute to the recalibration, the motor process plays the major role, given the magnitudes of shift and the correlation with the psychophysical measure. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Novak, Keisha D; Foti, Dan
2015-11-01
The monetary incentive delay (MID) task has been widely used in fMRI studies to investigate the neural networks involved in anticipatory and consummatory reward processing. Previous efforts to adapt the MID task for use with ERPs, however, have had limited success. Here, we sought to further decompose reward dynamics using a comprehensive set of anticipatory (cue-N2, cue-P3, contingent negative variation [CNV]) and consummatory ERPs (feedback negativity [FN], feedback P3 [fb-P3]). ERP data was recorded during adapted versions of the MID task across two experiments. Unlike previous studies, monetary incentive cues modulated the cue-N2, cue-P3, and CNV; however, cue-related ERPs and the CNV were uncorrelated with one another, indicating distinct anticipatory subprocesses. With regard to consummatory processing, FN amplitude primarily tracked outcome valence (reward vs. nonreward), whereas fb-P3 amplitude primarily tracked outcome salience (uncertain vs. certain). Independent modulation of the cue-P3 and fb-P3 was observed, indicating that these two P3 responses may uniquely capture the allocation of attention during anticipatory and consummatory reward processing, respectively. Overall, across two samples, consistent evidence of both anticipatory and consummatory ERP activity was observed on an adapted version of the MID paradigm, demonstrating for the first time how these ERP components may be integrated with one another to more fully characterize the time course of reward processing. This ERP-MID paradigm is well suited to parsing reward dynamics, and can be applied to both healthy and clinical populations. © 2015 Society for Psychophysiological Research.
Habermeyer, Benedikt; Händel, Nadja; Lemoine, Patrick; Klarhöfer, Markus; Seifritz, Erich; Dittmann, Volker; Graf, Marc
2012-01-01
Pedophilia is characterized by a persistent sexual attraction to prepubescent children. Treatment with anti-androgen agents, such as luteinizing hormone-releasing hormone (LH-RH) agonists, reduces testosterone levels and thereby sexual drive and arousal. We used functional magnetic resonance imaging (fMRI) to compare visual erotic stimulation pre- and on-treatment with the LH-RH agonist leuprolide acetate in the case of homosexual pedophilia. The pre-treatment contrasts of the erotic pictures against the respective neutral pictures showed an activation of the right amygdala and adjacent parahippocampal gyrus that decreased significantly under treatment with leuprolide acetate. Our single case fMRI study supports the notion that anti-androgens may modify amygdala response to visual erotic stimulation, a hypothesis that should be further examined in larger studies.
De Angelis, Vittoria; De Martino, Federico; Moerel, Michelle; Santoro, Roberta; Hausfeld, Lars; Formisano, Elia
2017-11-13
Pitch is a perceptual attribute related to the fundamental frequency (or periodicity) of a sound. So far, the cortical processing of pitch has been investigated mostly using synthetic sounds. However, the complex harmonic structure of natural sounds may require different mechanisms for the extraction and analysis of pitch. This study investigated the neural representation of pitch in human auditory cortex using model-based encoding and decoding analyses of high field (7 T) functional magnetic resonance imaging (fMRI) data collected while participants listened to a wide range of real-life sounds. Specifically, we modeled the fMRI responses as a function of the sounds' perceived pitch height and salience (related to the fundamental frequency and the harmonic structure respectively), which we estimated with a computational algorithm of pitch extraction (de Cheveigné and Kawahara, 2002). First, using single-voxel fMRI encoding, we identified a pitch-coding region in the antero-lateral Heschl's gyrus (HG) and adjacent superior temporal gyrus (STG). In these regions, the pitch representation model combining height and salience predicted the fMRI responses comparatively better than other models of acoustic processing and, in the right hemisphere, better than pitch representations based on height/salience alone. Second, we assessed with model-based decoding that multi-voxel response patterns of the identified regions are more informative of perceived pitch than the remainder of the auditory cortex. Further multivariate analyses showed that complementing a multi-resolution spectro-temporal sound representation with pitch produces a small but significant improvement to the decoding of complex sounds from fMRI response patterns. In sum, this work extends model-based fMRI encoding and decoding methods - previously employed to examine the representation and processing of acoustic sound features in the human auditory system - to the representation and processing of a relevant perceptual attribute such as pitch. Taken together, the results of our model-based encoding and decoding analyses indicated that the pitch of complex real life sounds is extracted and processed in lateral HG/STG regions, at locations consistent with those indicated in several previous fMRI studies using synthetic sounds. Within these regions, pitch-related sound representations reflect the modulatory combination of height and the salience of the pitch percept. Copyright © 2017 Elsevier Inc. All rights reserved.
Striatal dysfunction during reversal learning in unmedicated schizophrenia patients☆
Schlagenhauf, Florian; Huys, Quentin J.M.; Deserno, Lorenz; Rapp, Michael A.; Beck, Anne; Heinze, Hans-Joachim; Dolan, Ray; Heinz, Andreas
2014-01-01
Subjects with schizophrenia are impaired at reinforcement-driven reversal learning from as early as their first episode. The neurobiological basis of this deficit is unknown. We obtained behavioral and fMRI data in 24 unmedicated, primarily first episode, schizophrenia patients and 24 age-, IQ- and gender-matched healthy controls during a reversal learning task. We supplemented our fMRI analysis, focusing on learning from prediction errors, with detailed computational modeling to probe task solving strategy including an ability to deploy an internal goal directed model of the task. Patients displayed reduced functional activation in the ventral striatum (VS) elicited by prediction errors. However, modeling task performance revealed that a subgroup did not adjust their behavior according to an accurate internal model of the task structure, and these were also the more severely psychotic patients. In patients who could adapt their behavior, as well as in controls, task solving was best described by cognitive strategies according to a Hidden Markov Model. When we compared patients and controls who acted according to this strategy, patients still displayed a significant reduction in VS activation elicited by informative errors that precede salient changes of behavior (reversals). Thus, our study shows that VS dysfunction in schizophrenia patients during reward-related reversal learning remains a core deficit even when controlling for task solving strategies. This result highlights VS dysfunction is tightly linked to a reward-related reversal learning deficit in early, unmedicated schizophrenia patients. PMID:24291614
Signal Sampling for Efficient Sparse Representation of Resting State FMRI Data
Ge, Bao; Makkie, Milad; Wang, Jin; Zhao, Shijie; Jiang, Xi; Li, Xiang; Lv, Jinglei; Zhang, Shu; Zhang, Wei; Han, Junwei; Guo, Lei; Liu, Tianming
2015-01-01
As the size of brain imaging data such as fMRI grows explosively, it provides us with unprecedented and abundant information about the brain. How to reduce the size of fMRI data but not lose much information becomes a more and more pressing issue. Recent literature studies tried to deal with it by dictionary learning and sparse representation methods, however, their computation complexities are still high, which hampers the wider application of sparse representation method to large scale fMRI datasets. To effectively address this problem, this work proposes to represent resting state fMRI (rs-fMRI) signals of a whole brain via a statistical sampling based sparse representation. First we sampled the whole brain’s signals via different sampling methods, then the sampled signals were aggregate into an input data matrix to learn a dictionary, finally this dictionary was used to sparsely represent the whole brain’s signals and identify the resting state networks. Comparative experiments demonstrate that the proposed signal sampling framework can speed-up by ten times in reconstructing concurrent brain networks without losing much information. The experiments on the 1000 Functional Connectomes Project further demonstrate its effectiveness and superiority. PMID:26646924
Resting-state fMRI and social cognition: An opportunity to connect.
Doruyter, Alex; Groenewold, Nynke A; Dupont, Patrick; Stein, Dan J; Warwick, James M
2017-09-01
Many psychiatric disorders are characterized by altered social cognition. The importance of social cognition has previously been recognized by the National Institute of Mental Health Research Domain Criteria project, in which it features as a core domain. Social task-based functional magnetic resonance imaging (fMRI) currently offers the most direct insight into how the brain processes social information; however, resting-state fMRI may be just as important in understanding the biology and network nature of social processing. Resting-state fMRI allows researchers to investigate the functional relationships between brain regions in a neutral state: so-called resting functional connectivity (RFC). There is evidence that RFC is predictive of how the brain processes information during social tasks. This is important because it shifts the focus from possibly context-dependent aberrations to context-independent aberrations in functional network architecture. Rather than being analysed in isolation, the study of resting-state brain networks shows promise in linking results of task-based fMRI results, structural connectivity, molecular imaging findings, and performance measures of social cognition-which may prove crucial in furthering our understanding of the social brain. Copyright © 2017 John Wiley & Sons, Ltd.
Improvement in cerebral function with treatment of posttraumatic stress disorder.
Roy, Michael J; Francis, Jennifer; Friedlander, Joshua; Banks-Williams, Lisa; Lande, Raymond G; Taylor, Patricia; Blair, James; McLellan, Jennifer; Law, Wendy; Tarpley, Vanita; Patt, Ivy; Yu, Henry; Mallinger, Alan; Difede, Joann; Rizzo, Albert; Rothbaum, Barbara
2010-10-01
Posttraumatic stress disorder (PTSD) and mild traumatic brain injury (mTBI) are signature illnesses of the Iraq and Afghanistan wars, but current diagnostic and therapeutic measures for these conditions are suboptimal. In our study, functional magnetic resonance imaging (fMRI) is used to try to differentiate military service members with: PTSD and mTBI, PTSD alone, mTBI alone, and neither PTSD nor mTBI. Those with PTSD are then randomized to virtual reality exposure therapy or imaginal exposure. fMRI is repeated after treatment and along with the Clinician-Administered PTSD Scale (CAPS) and Clinical Global Impression (CGI) scores to compare with baseline. Twenty subjects have completed baseline fMRI scans, including four controls and one mTBI only; of 15 treated for PTSD, eight completed posttreatment scans. Most subjects have been male (93%) and Caucasian (83%), with a mean age of 34. Significant improvements are evident on fMRI scans, and corroborated by CGI scores, but CAPS scores improvements are modest. In conclusion, CGI scores and fMRI scans indicate significant improvement in PTSD in both treatment arms, though CAPS score improvements are less robust. © 2010 Association for Research in Nervous and Mental Disease.
Ojemann, George A; Ojemann, Jeffrey; Ramsey, Nick F
2013-01-01
The relation between changes in the blood oxygen dependent metabolic changes imaged by functional magnetic resonance imaging (fMRI) and neural events directly recorded from human cortex from single neurons, local field potentials (LFPs) and electrocorticogram (ECoG) is critically reviewed, based on the published literature including findings from the authors' laboratories. All these data are from special populations, usually patients with medically refractory epilepsy, as this provides the major opportunity for direct cortical neuronal recording in humans. For LFP and ECoG changes are often sought in different frequency bands, for single neurons in frequency of action potentials. Most fMRI studies address issues of functional localization. The relation of those findings to localized changes in neuronal recordings in humans has been established in several ways. Only a few studies have directly compared changes in activity from the same sites in the same individual, using the same behavioral measure. More often the comparison has been between fMRI and electrophysiologic changes in populations recorded from the same functional anatomic system as defined by lesion effects; in a few studies those systems have been defined by fMRI changes such as the "default" network. The fMRI-electrophysiologic relationships have been evaluated empirically by colocalization of significant changes, and by quantitative analyses, often multiple linear regression. There is some evidence that the fMRI-electrophysiology relationships differ in different cortical areas, particularly primary motor and sensory cortices compared to association cortex, but also within areas of association cortex. Although crucial for interpretation of fMRI changes as reflecting neural activity in human cortex, controversy remains as to these relationships. Supported by: Dutch Technology Foundation and University of Utrecht Grant UGT7685, ERC-Advanced grant 320708 (NR) and NIH grant NS065186 (JO).
ERIC Educational Resources Information Center
Van de Winckel, Ann; Klingels, Katrijn; Bruyninckx, Frans; Wenderoth, Nici; Peeters, Ron; Sunaert, Stefan; Van Hecke, Wim; De Cock, Paul; Eyssen, Maria; De Weerdt, Willy; Feys, Hilde
2013-01-01
The aim of the functional magnetic resonance imaging (fMRI) study was to investigate brain activation associated with active and passive movements, and tactile stimulation in 17 children with right-sided unilateral cerebral palsy (CP), compared to 19 typically developing children (TD). The active movements consisted of repetitive opening and…
Brashier, Nadia M.
2015-01-01
The human brain encodes experience in an integrative fashion by binding together the various features of an event (i.e., stimuli and responses) into memory “event files.” A subsequent reoccurrence of an event feature can then cue the retrieval of the memory file to “prime” cognition and action. Intriguingly, recent behavioral studies indicate that, in addition to linking concrete stimulus and response features, event coding may also incorporate more abstract, “internal” event features such as attentional control states. In the present study, we used fMRI in healthy human volunteers to determine the neural mechanisms supporting this type of holistic event binding. Specifically, we combined fMRI with a task protocol that dissociated the expression of event feature-binding effects pertaining to concrete stimulus and response features, stimulus categories, and attentional control demands. Using multivariate neural pattern classification, we show that the hippocampus and putamen integrate event attributes across all of these levels in conjunction with other regions representing concrete-feature-selective (primarily visual cortex), category-selective (posterior frontal cortex), and control demand-selective (insula, caudate, anterior cingulate, and parietal cortex) event information. Together, these results suggest that the hippocampus and putamen are involved in binding together holistic event memories that link physical stimulus and response characteristics with internal representations of stimulus categories and attentional control states. These bindings then presumably afford shortcuts to adaptive information processing and response selection in the face of recurring events. SIGNIFICANCE STATEMENT Memory binds together the different features of our experience, such as an observed stimulus and concurrent motor responses, into so-called event files. Recent behavioral studies suggest that the observer's internal attentional state might also become integrated into the event memory. Here, we used fMRI to determine the brain areas responsible for binding together event information pertaining to concrete stimulus and response features, stimulus categories, and internal attentional control states. We found that neural signals in the hippocampus and putamen contained information about all of these event attributes and could predict behavioral priming effects stemming from these features. Therefore, medial temporal lobe and dorsal striatum structures appear to be involved in binding internal control states to event memories. PMID:26538657
Lack of sex effect on brain activity during a visuomotor response task: functional MR imaging study.
Mikhelashvili-Browner, Nina; Yousem, David M; Wu, Colin; Kraut, Michael A; Vaughan, Christina L; Oguz, Kader Karli; Calhoun, Vince D
2003-03-01
As more individuals are enrolled in clinical functional MR imaging (fMRI) studies, an understanding of how sex may influence fMRI-measured brain activation is critical. We used fixed- and random-effects models to study the influence of sex on fMRI patterns of brain activation during a simple visuomotor reaction time task in the group of 26 age-matched men and women. We evaluated the right visual, left visual, left primary motor, left supplementary motor, and left anterior cingulate areas. Volumes of activations did not significantly differ between the groups in any defined regions. Analysis of variance failed to show any significant correlations between sex and volumes of brain activation in any location studied. Mean percentage signal-intensity changes for all locations were similar between men and women. A two-way t test of brain activation in men and women, performed as a part of random-effects modeling, showed no significant difference at any site. Our results suggest that sex seems to have little influence on fMRI brain activation when we compared performance on the simple reaction-time task. The need to control for sex effects is not critical in the analysis of this task with fMRI.
Kurland, Jacquie; Naeser, Margaret A.; Baker, Errol H.; Doron, Karl; Martin, Paula I.; Seekins, Heidi E.; Bogdan, Andrew; Renshaw, Perry; Yurgelun-Todd, Deborah
2005-01-01
Cortical reorganization in poststroke aphasia is not well understood. Few studies have investigated neural mechanisms underlying language recovery in severe aphasia patients, who are typically viewed as having a poor prognosis for language recovery. Although test-retest reliability is routinely demonstrated during collection of language data in single-subject aphasia research, this is rarely examined in fMRI studies investigating the underlying neural mechanisms in aphasia recovery. The purpose of this study was to acquire fMRI test-retest data examining semantic decisions both within and between two aphasia patients. Functional MRI was utilized to image individuals with chronic, moderate-severe nonfluent aphasia during nonverbal, yes/no button-box semantic judgments of iconic sentences presented in the Computer-assisted Visual Communication (C-ViC) program. We investigated the critical issue of intra-subject reliability by exploring similarities and differences in regions of activation during participants’ performance of identical tasks twice on the same day. Each participant demonstrated high intra-subject reliability, with response decrements typical of task familiarity. Differences between participants included greater left hemisphere perilesional activation in the individual with better response to C-ViC training. This study provides fMRI reliability in chronic nonfluent aphasia, and adds to evidence supporting differences in individual cortical reorganization in aphasia recovery. PMID:15706052
Lindquist, Martin A.; Xu, Yuting; Nebel, Mary Beth; Caffo, Brain S.
2014-01-01
To date, most functional Magnetic Resonance Imaging (fMRI) studies have assumed that the functional connectivity (FC) between time series from distinct brain regions is constant across time. However, recently, there has been increased interest in quantifying possible dynamic changes in FC during fMRI experiments, as it is thought this may provide insight into the fundamental workings of brain networks. In this work we focus on the specific problem of estimating the dynamic behavior of pair-wise correlations between time courses extracted from two different regions of the brain. We critique the commonly used sliding-windows technique, and discuss some alternative methods used to model volatility in the finance literature that could also prove useful in the neuroimaging setting. In particular, we focus on the Dynamic Conditional Correlation (DCC) model, which provides a model-based approach towards estimating dynamic correlations. We investigate the properties of several techniques in a series of simulation studies and find that DCC achieves the best overall balance between sensitivity and specificity in detecting dynamic changes in correlations. We also investigate its scalability beyond the bivariate case to demonstrate its utility for studying dynamic correlations between more than two brain regions. Finally, we illustrate its performance in an application to test-retest resting state fMRI data. PMID:24993894
Davis, Susan R; Davison, Sonia L; Gavrilescu, Maria; Searle, Karissa; Gogos, Andrea; Rossell, Susan L; Egan, Gary F; Bell, Robin J
2014-04-01
This study aims to investigate the effects of testosterone on cognitive performance during functional magnetic resonance imaging (fMRI) in healthy estrogen-treated postmenopausal women. This was an open-label study in which postmenopausal women on nonoral estrogen therapy were treated with transdermal testosterone for 26 weeks. Women performed tests of verbal fluency (number of words) and mental rotation (reaction time and accuracy) during pretreatment and posttreatment fMRI. Blood oxygen level-dependent (BOLD) signal intensity was measured during fMRI tasks. Nine women with a mean (SD) age of 55.4 (3.8) years completed the study. Twenty-six weeks of testosterone therapy was associated with significant decreases in BOLD intensity during the mental rotation task in the right superior parietal, left inferior parietal, and left precuneus regions, and during the verbal fluency task in the left inferior frontal gyrus, left lingual gyrus, and medial frontal gyrus (all P < 0.05), with no change in task performance, accuracy, or speed. Testosterone therapy is associated with reduced BOLD signal activation in key anatomical areas during fMRI verbal fluency and visuospatial tasks in healthy estrogen-treated postmenopausal women. Our interpretation is that testosterone therapy facilitates preservation of cognitive function with less neuronal recruitment.
Tsvetanov, Kamen A; Henson, Richard N A; Tyler, Lorraine K; Davis, Simon W; Shafto, Meredith A; Taylor, Jason R; Williams, Nitin; Cam-Can; Rowe, James B
2015-06-01
In functional magnetic resonance imaging (fMRI) research one is typically interested in neural activity. However, the blood-oxygenation level-dependent (BOLD) signal is a composite of both neural and vascular activity. As factors such as age or medication may alter vascular function, it is essential to account for changes in neurovascular coupling when investigating neurocognitive functioning with fMRI. The resting-state fluctuation amplitude (RSFA) in the fMRI signal (rsfMRI) has been proposed as an index of vascular reactivity. The RSFA compares favourably with other techniques such as breath-hold and hypercapnia, but the latter are more difficult to perform in some populations, such as older adults. The RSFA is therefore a candidate for use in adjusting for age-related changes in vascular reactivity in fMRI studies. The use of RSFA is predicated on its sensitivity to vascular rather than neural factors; however, the extent to which each of these factors contributes to RSFA remains to be characterized. The present work addressed these issues by comparing RSFA (i.e., rsfMRI variability) to proxy measures of (i) cardiovascular function in terms of heart rate (HR) and heart rate variability (HRV) and (ii) neural activity in terms of resting state magnetoencephalography (rsMEG). We derived summary scores of RSFA, a sensorimotor task BOLD activation, cardiovascular function and rsMEG variability for 335 healthy older adults in the population-based Cambridge Centre for Ageing and Neuroscience cohort (Cam-CAN; www.cam-can.com). Mediation analysis revealed that the effects of ageing on RSFA were significantly mediated by vascular factors, but importantly not by the variability in neuronal activity. Furthermore, the converse effects of ageing on the rsMEG variability were not mediated by vascular factors. We then examined the effect of RSFA scaling of task-based BOLD in the sensorimotor task. The scaling analysis revealed that much of the effects of age on task-based activation studies with fMRI do not survive correction for changes in vascular reactivity, and are likely to have been overestimated in previous fMRI studies of ageing. The results from the mediation analysis demonstrate that RSFA is modulated by measures of vascular function and is not driven solely by changes in the variance of neural activity. Based on these findings we propose that the RSFA scaling method is articularly useful in large scale and longitudinal neuroimaging studies of ageing, or with frail participants, where alternative measures of vascular reactivity are impractical. © 2015 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Henson, Richard N. A.; Tyler, Lorraine K.; Davis, Simon W.; Shafto, Meredith A.; Taylor, Jason R.; Williams, Nitin; Cam‐CAN; Rowe, James B.
2015-01-01
Abstract In functional magnetic resonance imaging (fMRI) research one is typically interested in neural activity. However, the blood‐oxygenation level‐dependent (BOLD) signal is a composite of both neural and vascular activity. As factors such as age or medication may alter vascular function, it is essential to account for changes in neurovascular coupling when investigating neurocognitive functioning with fMRI. The resting‐state fluctuation amplitude (RSFA) in the fMRI signal (rsfMRI) has been proposed as an index of vascular reactivity. The RSFA compares favourably with other techniques such as breath‐hold and hypercapnia, but the latter are more difficult to perform in some populations, such as older adults. The RSFA is therefore a candidate for use in adjusting for age‐related changes in vascular reactivity in fMRI studies. The use of RSFA is predicated on its sensitivity to vascular rather than neural factors; however, the extent to which each of these factors contributes to RSFA remains to be characterized. The present work addressed these issues by comparing RSFA (i.e., rsfMRI variability) to proxy measures of (i) cardiovascular function in terms of heart rate (HR) and heart rate variability (HRV) and (ii) neural activity in terms of resting state magnetoencephalography (rsMEG). We derived summary scores of RSFA, a sensorimotor task BOLD activation, cardiovascular function and rsMEG variability for 335 healthy older adults in the population‐based Cambridge Centre for Ageing and Neuroscience cohort (Cam‐CAN; www.cam-can.com). Mediation analysis revealed that the effects of ageing on RSFA were significantly mediated by vascular factors, but importantly not by the variability in neuronal activity. Furthermore, the converse effects of ageing on the rsMEG variability were not mediated by vascular factors. We then examined the effect of RSFA scaling of task‐based BOLD in the sensorimotor task. The scaling analysis revealed that much of the effects of age on task‐based activation studies with fMRI do not survive correction for changes in vascular reactivity, and are likely to have been overestimated in previous fMRI studies of ageing. The results from the mediation analysis demonstrate that RSFA is modulated by measures of vascular function and is not driven solely by changes in the variance of neural activity. Based on these findings we propose that the RSFA scaling method is articularly useful in large scale and longitudinal neuroimaging studies of ageing, or with frail participants, where alternative measures of vascular reactivity are impractical. Hum Brain Mapp 36:2248–2269, 2015. © 2015 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. PMID:25727740
Multivariate pattern analysis of fMRI: the early beginnings.
Haxby, James V
2012-08-15
In 2001, we published a paper on the representation of faces and objects in ventral temporal cortex that introduced a new method for fMRI analysis, which subsequently came to be called multivariate pattern analysis (MVPA). MVPA now refers to a diverse set of methods that analyze neural responses as patterns of activity that reflect the varying brain states that a cortical field or system can produce. This paper recounts the circumstances and events that led to the original study and later developments and innovations that have greatly expanded this approach to fMRI data analysis, leading to its widespread application. Copyright © 2012 Elsevier Inc. All rights reserved.
Altered functional connectivity in early Alzheimer's disease: a resting-state fMRI study.
Wang, Kun; Liang, Meng; Wang, Liang; Tian, Lixia; Zhang, Xinqing; Li, Kuncheng; Jiang, Tianzi
2007-10-01
Previous studies have led to the proposal that patients with Alzheimer's disease (AD) may have disturbed functional connectivity between different brain regions. Furthermore, recent resting-state functional magnetic resonance imaging (fMRI) studies have also shown that low-frequency (<0.08 Hz) fluctuations (LFF) of the blood oxygenation level-dependent signals were abnormal in several brain areas of AD patients. However, few studies have investigated disturbed LFF connectivity in AD patients. By using resting-state fMRI, this study sought to investigate the abnormal functional connectivities throughout the entire brain of early AD patients, and analyze the global distribution of these abnormalities. For this purpose, the authors divided the whole brain into 116 regions and identified abnormal connectivities by comparing the correlation coefficients of each pair. Compared with healthy controls, AD patients had decreased positive correlations between the prefrontal and parietal lobes, but increased positive correlations within the prefrontal lobe, parietal lobe, and occipital lobe. The AD patients also had decreased negative correlations (closer to zero) between two intrinsically anti-correlated networks that had previously been found in the resting brain. By using resting-state fMRI, our results supported previous studies that have reported an anterior-posterior disconnection phenomenon and increased within-lobe functional connectivity in AD patients. In addition, the results also suggest that AD may disturb the correlation/anti-correlation effect in the two intrinsically anti-correlated networks. Wiley-Liss, Inc.
Snack food as a modulator of human resting-state functional connectivity.
Mendez-Torrijos, Andrea; Kreitz, Silke; Ivan, Claudiu; Konerth, Laura; Rösch, Julie; Pischetsrieder, Monika; Moll, Gunther; Kratz, Oliver; Dörfler, Arnd; Horndasch, Stefanie; Hess, Andreas
2018-04-04
To elucidate the mechanisms of how snack foods may induce non-homeostatic food intake, we used resting state functional magnetic resonance imaging (fMRI), as resting state networks can individually adapt to experience after short time exposures. In addition, we used graph theoretical analysis together with machine learning techniques (support vector machine) to identifying biomarkers that can categorize between high-caloric (potato chips) vs. low-caloric (zucchini) food stimulation. Seventeen healthy human subjects with body mass index (BMI) 19 to 27 underwent 2 different fMRI sessions where an initial resting state scan was acquired, followed by visual presentation of different images of potato chips and zucchini. There was then a 5-minute pause to ingest food (day 1=potato chips, day 3=zucchini), followed by a second resting state scan. fMRI data were further analyzed using graph theory analysis and support vector machine techniques. Potato chips vs. zucchini stimulation led to significant connectivity changes. The support vector machine was able to accurately categorize the 2 types of food stimuli with 100% accuracy. Visual, auditory, and somatosensory structures, as well as thalamus, insula, and basal ganglia were found to be important for food classification. After potato chips consumption, the BMI was associated with the path length and degree in nucleus accumbens, middle temporal gyrus, and thalamus. The results suggest that high vs. low caloric food stimulation in healthy individuals can induce significant changes in resting state networks. These changes can be detected using graph theory measures in conjunction with support vector machine. Additionally, we found that the BMI affects the response of the nucleus accumbens when high caloric food is consumed.
Olichney, John M.; Taylor, Jason R.; Chan, Shiaohui; Yang, Jin-Chen; Stringfellow, Andrew; Hillert, Dieter G.; Simmons, Amanda L.; Salmon, David P.; Iragui-Madoz, Vicente; Kutas, Marta
2010-01-01
Background We adapted an event-related brain potential word repetition paradigm, sensitive to early Alzheimer’s disease (AD), for functional MRI (fMRI). We hypothesized that AD would be associated with reduced differential response to new/old congruous words. Methods Fifteen mild AD patients (mean age = 72.9) and 15 normal elderly underwent 1.5T fMRI during a semantic category decision task. Results We found robust between-groups differences in BOLD response to congruous words. In controls, the New > Old contrast demonstrated larger responses in much of the left-hemisphere (including putative P600 generators: parahippocampal, cingulate, fusiform, perirhinal, middle temporal (MTG) and inferior frontal gyri (IFG)); the Old > New contrast showed modest activation, mainly in right parietal and prefrontal cortex. By contrast, there were relatively few regions of significant New > Old responses in AD patients, mainly in the right-hemisphere, and their Old > New contrast did not demonstrate a right-hemisphere predominance. Across subjects, the spatial extent of New > Old responses in left medial temporal lobe (MTL) correlated with subsequent recall and recognition (r’s ≥ 0.60). In controls, the magnitude of New - Old response in left MTL, fusiform, IFG, MTG, superior temporal and cingulate gyrus correlated with subsequent cued recall and/or recognition (0.51 ≤ r’s ≤ 0.78). Conclusions A distributed network of mostly left-hemisphere structures, which are putative P600 generators, appears important for successful verbal encoding (with New > Old responses to congruous words in normal elderly). This network appears dysfunctional in mild AD patients, as reflected in decreased word repetition effects particularly in left association cortex, paralimbic and MTL structures. PMID:20433856
OdorMapComparer: an application for quantitative analyses and comparisons of fMRI brain odor maps.
Liu, Nian; Xu, Fuqiang; Miller, Perry L; Shepherd, Gordon M
2007-01-01
Brain odor maps are reconstructed flat images that describe the spatial activity patterns in the glomerular layer of the olfactory bulbs in animals exposed to different odor stimuli. We have developed a software application, OdorMapComparer, to carry out quantitative analyses and comparisons of the fMRI odor maps. This application is an open-source window program that first loads two odor map images being compared. It allows image transformations including scaling, flipping, rotating, and warping so that the two images can be appropriately aligned to each other. It performs simple subtraction, addition, and average of signals in the two images. It also provides comparative statistics including the normalized correlation (NC) and spatial correlation coefficient. Experimental studies showed that the rodent fMRI odor maps for aliphatic aldehydes displayed spatial activity patterns that are similar in gross outlines but somewhat different in specific subregions. Analyses with OdorMapComparer indicate that the similarity between odor maps decreases with increasing difference in the length of carbon chains. For example, the map of butanal is more closely related to that of pentanal (with a NC = 0.617) than to that of octanal (NC = 0.082), which is consistent with animal behavioral studies. The study also indicates that fMRI odor maps are statistically odor-specific and repeatable across both the intra- and intersubject trials. OdorMapComparer thus provides a tool for quantitative, statistical analyses and comparisons of fMRI odor maps in a fashion that is integrated with the overall odor mapping techniques.
Stevens, Courtney
2015-01-01
This article presents a modular activity on the neurobiology of sign language that engages undergraduate students in reading and analyzing the primary functional magnetic resonance imaging (fMRI) literature. Drawing on a seed empirical article and subsequently published critique and rebuttal, students are introduced to a scientific debate concerning the functional significance of right-hemisphere recruitment observed in some fMRI studies of sign language processing. The activity requires minimal background knowledge and is not designed to provide students with a specific conclusion regarding the debate. Instead, the activity and set of articles allow students to consider key issues in experimental design and analysis of the primary literature, including critical thinking regarding the cognitive subtractions used in blocked-design fMRI studies, as well as possible confounds in comparing results across different experimental tasks. By presenting articles representing different perspectives, each cogently argued by leading scientists, the readings and activity also model the type of debate and dialogue critical to science, but often invisible to undergraduate science students. Student self-report data indicate that undergraduates find the readings interesting and that the activity enhances their ability to read and interpret primary fMRI articles, including evaluating research design and considering alternate explanations of study results. As a stand-alone activity completed primarily in one 60-minute class block, the activity can be easily incorporated into existing courses, providing students with an introduction both to the analysis of empirical fMRI articles and to the role of debate and critique in the field of neuroscience.
Suzuki, Hideaki; Sumiyoshi, Akira; Kawashima, Ryuta; Shimokawa, Hiroaki
2013-01-01
Myocardial ischemia in the anterior wall of the left ventricule (LV) and in the inferior wall and/or right ventricle (RV) shows different manifestations that can be explained by the different innervations of cardiac afferent nerves. However, it remains unclear whether information from different areas of the heart, such as the LV and RV, are differently processed in the brain. In this study, we investigated the brain regions that process information from the LV or RV using cardiac electrical stimulation and functional magnetic resonance imaging (fMRI) in anesthetized rats because the combination of these two approaches cannot be used in humans. An electrical stimulation catheter was inserted into the LV or RV (n = 12 each). Brain fMRI scans were recorded during LV or RV stimulation (9 Hz and 0.3 ms width) over 10 blocks consisting of alternating periods of 2 mA for 30 sec followed by 0.2 mA for 60 sec. The validity of fMRI signals was confirmed by first and second-level analyses and temporal profiles. Increases in fMRI signals were observed in the anterior cingulate cortex and the right somatosensory cortex under LV stimulation. In contrast, RV stimulation activated the right somatosensory cortex, which was identified more anteriorly compared with LV stimulation but did not activate the anterior cingulate cortex. This study provides the first evidence for differences in brain activation under LV and RV stimulation. These different brain processes may be associated with different clinical manifestations between anterior wall and inferoposterior wall and/or RV myocardial ischemia.
Feasibility of using fMRI to study mothers responding to infant cries.
Lorberbaum, J P; Newman, J D; Dubno, J R; Horwitz, A R; Nahas, Z; Teneback, C C; Bloomer, C W; Bohning, D E; Vincent, D; Johnson, M R; Emmanuel, N; Brawman-Mintzer, O; Book, S W; Lydiard, R B; Ballenger, J C; George, M S
1999-01-01
While parenting is a universal human behavior, its neuroanatomic basis is currently unknown. Animal data suggest that the cingulate may play an important function in mammalian parenting behavior. For example, in rodents cingulate lesions impair maternal behavior. Here, in an attempt to understand the brain basis of human maternal behavior, we had mothers listen to recorded infant cries and white noise control sounds while they underwent functional MRI (fMRI) of the brain. We hypothesized that mothers would show significantly greater cingulate activity during the cries compared to the control sounds. Of 7 subjects scanned, 4 had fMRI data suitable for analysis. When fMRI data were averaged for these 4 subjects, the anterior cingulate and right medial prefrontal cortex were the only brain regions showing statistically increased activity with the cries compared to white noise control sounds (cluster analysis with one-tailed z-map threshold of P < 0.001 and spatial extent threshold of P < 0.05). These results demonstrate the feasibility of using fMRI to study brain activity in mothers listening to infant cries and that the anterior cingulate may be involved in mothers listening to crying babies. We are currently replicating this study in a larger group of mothers. Future work in this area may help (1) unravel the functional neuroanatomy of the parent-infant bond and (2) examine whether markers of this bond, such as maternal brain response to infant crying, can predict maternal style (i.e., child neglect), offspring temperament, or offspring depression or anxiety.
Stevens, Courtney
2015-01-01
This article presents a modular activity on the neurobiology of sign language that engages undergraduate students in reading and analyzing the primary functional magnetic resonance imaging (fMRI) literature. Drawing on a seed empirical article and subsequently published critique and rebuttal, students are introduced to a scientific debate concerning the functional significance of right-hemisphere recruitment observed in some fMRI studies of sign language processing. The activity requires minimal background knowledge and is not designed to provide students with a specific conclusion regarding the debate. Instead, the activity and set of articles allow students to consider key issues in experimental design and analysis of the primary literature, including critical thinking regarding the cognitive subtractions used in blocked-design fMRI studies, as well as possible confounds in comparing results across different experimental tasks. By presenting articles representing different perspectives, each cogently argued by leading scientists, the readings and activity also model the type of debate and dialogue critical to science, but often invisible to undergraduate science students. Student self-report data indicate that undergraduates find the readings interesting and that the activity enhances their ability to read and interpret primary fMRI articles, including evaluating research design and considering alternate explanations of study results. As a stand-alone activity completed primarily in one 60-minute class block, the activity can be easily incorporated into existing courses, providing students with an introduction both to the analysis of empirical fMRI articles and to the role of debate and critique in the field of neuroscience. PMID:26557797
Nakamura, Yuko; Goto, Tazuko K; Tokumori, Kenji; Yoshiura, Takashi; Kobayashi, Koji; Nakamura, Yasuhiko; Honda, Hiroshi; Ninomiya, Yuzo; Yoshiura, Kazunori
2012-04-18
It remains unclear how the cerebral cortex of humans perceives taste temporally, and whether or not such objective data about the brain show a correlation with the current widely used conventional methods of taste-intensity sensory evaluation. The aim of this study was to investigate the difference in the time-intensity profile between salty and sweet tastes in the human brain. The time-intensity profiles of functional MRI (fMRI) data of the human taste cortex were analyzed using finite impulse response analysis for a direct interpretation in terms of the peristimulus time signal. Also, time-intensity sensory evaluations for tastes were performed under the same condition as fMRI to confirm the reliability of the temporal profile in the fMRI data. The time-intensity profile for the brain activations due to a salty taste changed more rapidly than those due to a sweet taste in the human brain cortex and was also similar to the time-intensity sensory evaluation, confirming the reliability of the temporal profile of the fMRI data. In conclusion, the time-intensity profile using finite impulse response analysis for fMRI data showed that there was a temporal difference in the neural responses between salty and sweet tastes over a given period of time. This indicates that there might be taste-specific temporal profiles of activations in the human brain.
The physics of functional magnetic resonance imaging (fMRI)
NASA Astrophysics Data System (ADS)
Buxton, Richard B.
2013-09-01
Functional magnetic resonance imaging (fMRI) is a methodology for detecting dynamic patterns of activity in the working human brain. Although the initial discoveries that led to fMRI are only about 20 years old, this new field has revolutionized the study of brain function. The ability to detect changes in brain activity has a biophysical basis in the magnetic properties of deoxyhemoglobin, and a physiological basis in the way blood flow increases more than oxygen metabolism when local neural activity increases. These effects translate to a subtle increase in the local magnetic resonance signal, the blood oxygenation level dependent (BOLD) effect, when neural activity increases. With current techniques, this pattern of activation can be measured with resolution approaching 1 mm3 spatially and 1 s temporally. This review focuses on the physical basis of the BOLD effect, the imaging methods used to measure it, the possible origins of the physiological effects that produce a mismatch of blood flow and oxygen metabolism during neural activation, and the mathematical models that have been developed to understand the measured signals. An overarching theme is the growing field of quantitative fMRI, in which other MRI methods are combined with BOLD methods and analyzed within a theoretical modeling framework to derive quantitative estimates of oxygen metabolism and other physiological variables. That goal is the current challenge for fMRI: to move fMRI from a mapping tool to a quantitative probe of brain physiology.
The physics of functional magnetic resonance imaging (fMRI)
Buxton, Richard B
2015-01-01
Functional magnetic resonance imaging (fMRI) is a methodology for detecting dynamic patterns of activity in the working human brain. Although the initial discoveries that led to fMRI are only about 20 years old, this new field has revolutionized the study of brain function. The ability to detect changes in brain activity has a biophysical basis in the magnetic properties of deoxyhemoglobin, and a physiological basis in the way blood flow increases more than oxygen metabolism when local neural activity increases. These effects translate to a subtle increase in the local magnetic resonance signal, the blood oxygenation level dependent (BOLD) effect, when neural activity increases. With current techniques, this pattern of activation can be measured with resolution approaching 1 mm3 spatially and 1 s temporally. This review focuses on the physical basis of the BOLD effect, the imaging methods used to measure it, the possible origins of the physiological effects that produce a mismatch of blood flow and oxygen metabolism during neural activation, and the mathematical models that have been developed to understand the measured signals. An overarching theme is the growing field of quantitative fMRI, in which other MRI methods are combined with BOLD methods and analyzed within a theoretical modeling framework to derive quantitative estimates of oxygen metabolism and other physiological variables. That goal is the current challenge for fMRI: to move fMRI from a mapping tool to a quantitative probe of brain physiology. PMID:24006360